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Abstract

The class of instruments considered in this thesis, scanning probe microscopes

(SPM), raster scan a sensory probe over a surface to form both high resolution

images and quantitative interaction measurements. Understanding and extract-

ing information from SPM data has been considered extensively in the three

decades since the first SPM. Major developments tend to be greeted with their

own theory and data analysis techniques. The more gradual evolution of equip-

ment has not, however, attracted the same level of theoretical consideration.

In this thesis we consider the SPM from an instrumentation perspective, con-

centrating on two specific types of microscope: the scanning tunnelling micro-

scope (STM) and the atomic force microscope (AFM). Both of these microscopes

rely on a sensory probe or sensor to induce and measure the desired interaction.

We have carefully considered a range of experiments from a ‘sensor-eye-view’,

both theoretically and experimentally.

We first consider the effect of the geometry of AFM sensors on quantitative

force measurements, identifying that the length of tips that the length of tips

can induce an unwanted coupling of lateral and normal forces. We go further by

developing methods to experimentally correct these force measurements along

with designing a sensor which exploits symmetry to separate lateral and normal

forces.

We also consider the ways to automatically optimise the apex of the sensory

probe of an STM to give the desired imaging resolution using a combination of

prescribed routines and genetic algorithms. Image analysis techniques developed

for this work have been developed into an open-source toolbox to automatically

process and analyse SPM images.

Finally, we use control theory to analyse the feedback controlling the SPM

probe. We find that the methods used in the literature do not fully consider

the method with which the control loop is implemented in SPM. We employ a

modified approach which results in more realistic simulated SPM operation.
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Chapter 1

Introduction

“In the beginning there was nothing, which exploded.”

Terry Pratchett

Scanning probe microscopy (SPM) is arguably the most powerful and diverse

tool in a nanoscientist’s toolbox. Depending on the type of SPM and the mode

of operation a great range of surface data can be acquired. Usually this is in

the form of topographical data, mapping out contours of a surface to keep a

feedback parameter constant. This can be used as a first approximation of the

true surface topography as is common for larger scale studies, with scans of

microns in width. However, at the more fundamental atomic or molecular level

the data can tell us much more. For scanning tunnelling microscopy (STM) [1]

the feedback parameter is the tunnelling current. This is related not only to

the tip-sample distance, but also the local density of states. For non-contact

atomic force microscopy (AFM) the gradient of the tip-sample force [2], which

modifies the eigenfrequency of the sensor, is tracked (directly or indirectly) during

feedback. This force gradient depends on both the tip-sample distance and the

chemical nature of surface under study. Other important SPM techniques include

lateral force microscopy (LFM) [3], magnetic force microscopy [4], scanning near-

field optical microscopy [5], and scanning capacitance microscopy [6].

SPM data has been key to a number of important scientific studies, across

a range of fields. From the structure of the Si(111) 7 � 7 reconstruction, finally

solved using a diffraction techniques combined with STM data [7], to the first
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Introduction

true atomic resolution images of friction, produced with dynamic LFM [8] con-

tinuing the pioneering advances in nanotribology which LFM has provided [9]. In

addition to its use in fundamental nanoscience, SPM has become a standard tool

for surface characterisation of materials ranging from metal organic frameworks

to cell components.

We can divide the SPM into three core components: the sample under study,

the sensor detecting physical interactions, and the actuators with their associated

electronics. SPM studies normally take a sample-centred approach to experiment

design and analysis, often assuming the sensor and electronics perform perfectly

within the confines of idealised models which describe how they react to the

tip-sample interaction. Some exceptions to this generalisation exist: studies

regularly consider the broadening of surface features, due to image showing a

convolution of tip and surface structure [10–13]. Similarly, many papers note

the effect of feedback loop artefacts on SPM experiments [14, 15]. This thesis,

however, finds much of the theoretical modelling of these loops to be in need of

adjustment (see Chapter 9).

In this thesis, AFM and STM experiments are studied with the behaviour

of the instrumentation being the primary concern. From this it is possible to

identify possible inaccuracies in SPM experiments and analysis. We go further

to suggest methods to correct for or avoid such issues, including proposing a new

design for a combined AFM/LFM/STM sensor. The questions of repeatability

of SPM measurements and of wasted SPM researcher time are also considered.

From this we have developed new methods to automatically coerce the tip-apex

of SPM sensors into the desired state.

Chapter 4 discusses how the geometry of the tip of the qPlus sensor can

result in lateral motion of the tip apex. This causes forces to be probed in a

direction which is not normal to the surface, and how this affects force spec-

troscopy measurements. Chapter 5 details preliminary experimental work which

aims to directly measure the effect of this lateral motion in 3D for the interaction

between two C60 molecules, and discusses methods to correct for such motion.

From this work Chapter 6 introduces a proposed sensor design which exploits

symmetry to ensure a direction of oscillation which is purely normal to the sam-

ple surface. By exciting other eigenmodes of the sensor purely lateral motions

2



Introduction

can also be generated allowing LFM operation. For the experiments described

in Chapter 5 it was essential to engineer the tip apex into a specific condition.

To address the time consumed by this activity in Chapter 7 we explore methods

to automate tip conditioning. This conditioning is performed in STM due to its

relative simplicity compared to AFM. The final aim, however, is to apply such

methods to AFM. In Chapter 8 we discuss an open-source SPM image analy-

sis toolbox which was created from the algorithms developed for the automated

tip conditioning software to assess SPM images. We discuss the performance

of this toolbox for automated SPM data processing. Finally, Chapter 9 derives

improvements to the methods currently used in the literature to model SPM

feedback loops. These models can be applied to understand both instrumental

performance and SPM imaging artefacts.

3



Chapter 2

Instrumental Techniques

“And you know why four plus minus one

Plus ten is fourteen minus one?

’Cause addition is commutative, right.

And so you have thirteen tens,

And you take away seven,

And that leaves five...

Well, six actually.

But the idea is the important thing.”

Tom Lehrer

Chapter Overview

As this thesis is centred on instrumental influences on SPM mea-

surements, a detailed explanation of the instrumental techniques is

given before the literature review. This section discusses both scan-

ning tunnelling microscopy and atomic force microscopy specifically

along with instrumental concepts common to most scanning probe

microscopes.

2.1 STM Theory

The scanning tunnelling microscope utilises the phenomenon of quantum tun-

nelling to control the separation of a monatomic tip and a conducting surface.

4



Instrumental Techniques

The tip is raster scanned across the sample using piezoelectric actuators. As the

number of electrons tunnelling is dependent on tip-sample separation, another

piezoelectric actuator is used to adjust the height of the tip to keep the tun-

nelling current constant, see Figure 2.1. Hence it is possible to construct a three

dimensional image of the surface by recording the tip’s height as it is scanned.

Figure 2.1: Schematic diagram of an STM scan. The Py and Px actuators move
the tip across the sample. The control unit (CU) adjusts the voltage VP to the Pz
actuator, to keep the tunnelling current JT constant. The dashed line indicates
path taken by the tip. Note the response to a step edge (A) is not directly propor-
tional to the surface topography, and that the tip also responds (B) to changes in
the work function of the surface (C). (Figure from reference [16].)

Consider this tip-sample interaction in one dimension [17], see Figure 2.2(a),

where the barrier of height Evac arises from the vacuum1 between the tip and the

sample. We can calculate the dependence of the current on tip-sample separation

by applying the Schrödinger equation, where E is the energy of the electron state:

��~2

2m

B2

Bx2
� Evac



ψ � Eψ (2.1)

B2ψ

Bx2
� 2m

~2
pEvac � Eqψ . (2.2)

1While STM is not limited to vacuum, with many systems working in both ambient and
liquid environments, this section will consider the system to be in vacuum for simplicity.
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The solution inside the barrier is

ψ � Be�κx � Ceκx where κ �
c

2m

~2
pEvac � Eq . (2.3)

As Evac ¡ E, κ is real, and ψ is a combination of an exponentially increasing

and an exponentially decreasing function. The second term is not physical for a

tall and wide barrier, otherwise the electron would be more likely to be found on

the far side of the barrier, which is clearly untrue. C must always be less than

B for any size barrier for the probability to decrease across the barrier, as can

clearly be seen by differentiating equation (2.3).

Evac

(a) The vacuum between the
tip and the surface produces a
potential barrier through which
the electrons can tunnel.

aaa

ET
F

ES
F

Tip Sample

6?eV

(b) Applying a bias voltage V
between the tip and sample sep-
arates the Fermi levels by eV .

Figure 2.2: 1D representations of the tip-sample tunnel junction.

A good approximation for the tunnel current can be found by setting C � 0,

justified by the barrier being tall and wide enough. ψ then becomes an exponen-

tially decreasing function. Therefore the tunnelling current Ic, determined from

the transmission probability, decays as a function of the separation d,

Ic9e�2κd , (2.4)

as previously mentioned.

For electrons at the Fermi level in the tip, Evac � E is the work function of

the tip material. Since most materials have a work function of 4–6 eV [18], we

can calculate that 2κ � 2 Å�1. Hence, to reduce the tunnel current by an order

of magnitude, d must increase by

∆d � � lnp0.1q
2κ

� 1 Å . (2.5)
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A more thorough derivation of the tunnelling current can be done by matching

the solutions both sides of the barrier with the solution inside the barrier [19].

Considering a barrier extending from x � 0 to x � d we can say

ψ �

$'''&
'''%
eikx � Ae�ikx x   0

Be�κx � Ceκx 0   x   d

Deikx d   x

(2.6)

where the wavefunction is normalised in terms of the incidence flux on the barrier.

By matching the wave function and its derivative at the boundaries we get the

following four simultaneous equations

B � C � 1� A (2.7)

Be�κd � Ceκd � Deikd (2.8)

�xBe�κd � xCeκd � ikDeiks (2.9)

�xB � xC � ik � Aik (2.10)

By writing these as a matrix

M �

�
������
�1 1 1 0

0 e�κd eκd �eikd
0 �xe�κd xeκd �ikeikd
1 �x

ik
x
ik

0

�
�����


�
������
A

B

C

D

�
�����
�

�
������

1

0

0

1

�
�����
 (2.11)

and using Gaussian elimination M can be reduced to

�
������
�1 1 1 0

0 e�κd eκd �eikd
0 0 2xeκd �pik � κqeikd
0 0 0 �eikd �eκd ��κ

ik
� 1

� �
ik�κ

2κ
� 1

�� e�κd
�
κ
ik
� 1

� �
ik�κ

2κ

��

�
�����
 .

(2.12)

7



Instrumental Techniques

Hence, after some rearranging we can calculate D as

D � 1

eikd
�

coshpκdq � ipk2�x2q
2kx

sinhpκdq
	 . (2.13)

From elementary quantum mechanics we can say the probability current den-

sity of the electrons incident on the barrier is

ji � �i~
2m

�
ψ�i

dψi
dx

� ψi
dψ�i
dx



where ψi � eikx (2.14)

� hk

m
(2.15)

and for the transmitted wave the probability current density is

jt � �i~
2m

�
ψ�t

dψt
dx

� ψt
dψ�t
dx



where ψt � Deikx (2.16)

� hk

m
|D|2 (2.17)

hence the fraction of incident electrons transmitted, T , can be calculated as

T � ji
jt
� 1

|D|2 (2.18)

� 1

1� pk2�κ2q2

4k2κ2 sinh2pκdq
(2.19)

For large κd, sinh2pκdq tends to 1
4
e2κd, and this term will dominate the denomi-

nator. Thus, in this case

T � 16k2κ2

pk2 � κ2q2 e
�2κd (2.20)

and as T9Ic this agrees with equation (2.4).

To justify this approximation it must be shown that κd is large enough in

STM. Evaluating κ from equation (2.3), gives

κ � 1.15 Å
�1

(2.21)

using a value of 5 eV for pEvac � Eq, since most materials have a work function

of 4–6 eV [18]. A sensible value to use for k is kF , the Fermi wave vector of the
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material, as most tunnelling happens near the Fermi level. As metals tend to

have a Fermi wave vector of order 0.5–2 Å�1 [18] a value of k � 1.25 Å�1 will

be used. T has been plotted, using equations (2.19) and (2.20), for tip-sample

separations of of 0–3 Å in Figure 2.3. The approximation gives good agreement

for d ¡ 1.5 Å, however, below 0.6 Å the approximation is non-physical with

T ¡ 1, implying more electrons transmitted than incident on the barrier. For a

typical tip-sample separation of 5 Å, the approximation holds well.
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T =
1

1+ (k2+κ2)2

4k2κ2 sinh2(κd)

T ≈ 16k2κ2

(k2 + κ2)2
e−2κd

Figure 2.3: Comparing calculated transmittance of a 1D potential barrier to ex-
ponentially decreasing approximation.

The full transmittance equation, (2.19), is a time-independent solution for a

single tunnelling electron. A many particle time-dependent approximation for

tunnelling was calculated by Bardeen [20]. Here Fermi’s golden rule is used to

calculate the rate of transition from the incident state

TiÑt � 2π

~
|Mit|2 ρf (2.22)

where Mit is the matrix element of the electron transition from state i to

state t and ρf is the density of final states. Instead of creating a simple approxi-

mate Hamiltonian with exact solutions, approximate solutions are found for the

9
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‘exact’ Hamiltonian. The wavefunction ψi is approximated as an oscillating so-

lution on the left-hand-side of the barrier as before; inside the barrier and on the

right-hand-side it is approximated as an exponentially decreasing solution. Sim-

ilarly, ψf is an oscillating solution on the right-hand-side and an exponentially

decreasing solution on both in and left of the barrier. So for a barrier of width

d, we can say

ψi �
$&
%e

ikix � Aie
�ikix x   0

Bie
�κx x ¡ 0

(2.23)

ψt �
$&
%Ate

iktx x ¡ d

Bte
κpx�dq x   d

(2.24)

Defining the left-hand-side of the barrier as region L, the right-hand-side as

region R, and the barrier as region B, we can say ψi is a good solution in L and

B with energy Ei, also ψt is a good solution in R and B with energy Et. The

matrix element can be written as

Mit �
A
ψt

��� ĤT

���ψiE (2.25)

where ĤT � Ĥ � Ei is the Hamiltonian describing the tunnelling from state i.

So

Mit �
A
ψt

��� Ĥ � Ei

���ψiE (2.26)

writing separately in the regions L, B and R

�
»
L

ψ�t

�
Ĥ � Ei

	
ψidV �

»
B

ψ�t

�
Ĥ � Ei

	
ψidV �

»
R

ψ�t

�
Ĥ � Ei

	
ψidV

(2.27)

But in regions L and B Ĥ ψi � Eiψi, hence these integrals evaluate to zero

�
»
R

ψ�t

�
Ĥ � Ei

	
ψidV (2.28)

10
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In regions R, ψi

�
Ĥ � Et

	
ψ�t � 0, so this can be subtracted from the integral

for symmetry

�
»
R

�
ψ�t

�
Ĥ � Ei

	
ψi � ψi

�
Ĥ � Et

	
ψ�t

	
dV (2.29)

But as the perturbing Hamiltonian is time independent the scattering is elastic

and Ei � Et, thus

�
»
R

�
ψ�t Ĥ ψi � ψiĤ ψ�t

	
dV (2.30)

Inserting Ĥ � � ~2

2m
∇2 � Uprq, where Uprq is the potential.

�
»
R

�
� ~2

2m
ψ�t∇2ψi � ~2

2m
ψi∇2ψ�t � ψ�t Uprqψi � ψiUprqψ�t



dV (2.31)

Removing the last two terms inside the parentheses as Uprq � 0 in the region R,

and then applying the divergence theorem we get

� � ~2

2m

»
SR

pψ�t∇ψi � ψi∇ψ�t q � dS (2.32)

where the integral is over is the surface enclosing the region R. However, ψi tends

to zero quickly in region R hence the surface integral only needs to be evaluated

at the surface of boundary of the tunnelling gap, BT

Mit � � ~2

2m

»
BT

pψ�t∇ψi � ψi∇ψ�t q dS (2.33)

Evaluating this in 1D removes the integral and inserting the barrier wavefunctions

from equations (2.23) and (2.24), we get

Mit � � ~2

2m

"
Bte

κpx�dq B
Bx
�
Bie

�κx
�����
x�d

� Bie
�κx B

Bx
�
Bte

κpx�dq
�����
x�d

*
(2.34)

� ~2

m
κBtBie

�κd (2.35)

which is independent of x, thus, for thus uniform system the surface integral in

11
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equation (2.33) could be done over any surface in the barrier. Now by evaluating

|Mit|2 we can say

TiÑt9e�2κd (2.36)

as calculated before in equations (2.4) and (2.20). However, by considering the

Bardeen method we get TiÑt is proportional to the density of states of the final

state. As the number of electrons currently in the initial state depends on the

density of states, we can conclude that the tunnel current is proportional to both

the density of states in the initial and final state.

To obtain a tunnel current, a bias voltage V is applied between the tip and

sample. Although the barrier potential is no longer constant, see Figure 2.2(b),

the derivations above can still be used (by considering the average potential). A

more thorough solution can be obtained by using the Wentzel–Kramers–Brillouin

(WKB) approximation to solve the Schrödinger equation for the modified poten-

tial.

The bias voltage has the effect of separating the Fermi levels of the tip, ET
F ,

and the sample, ES
F , by an energy of eV .2 At absolute zero, tunnelling can only

occur between these two Fermi levels. This is because energies greater than ET
F

contain no electrons for tunnelling, and energies lower than ES
F have no empty

states to tunnel into3. At higher temperatures this energy window increases due

to the thermal excitation of electrons above the Fermi level. However, as this

happens in both materials it does not affect the net tunnelling current, instead

leading to thermal noise.

As only the electrons (and empty electron states) within the eV energy win-

dow below (above) the Fermi level can tunnel, it is only the density of states of

these states that affect the tunnelling. Hence, by sweeping the voltage at con-

stant tip-sample distance we can probe the integral of the local density of states

(LDOS) of the sample from EF to EF � eV , assuming the LDOS in the tip is

unchanging in energy. In fact what is being probed is4

IcpV q9
» eV

0

ρtippET
F � EqρsamplepES

F � eV � EqdE . (2.37)

2The elementary charge multiplied by the voltage, not to be confused with an electron volt.
3When applying a reverse bias, the same argument holds but with ET

F and ES
F reversed

4Assuming the matrix element is constant at all energies
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This equation allows us to understand the meaning of the varying contrast for

different bias voltages.

The formalism derived above is similar to the derivation used by Tersoff

and Hamann to describe the theory of the STM [21], however their method

goes further by including a simplistic model for the tip shape and solving the

equation in three dimensions. Tersoff-Hamann, however, relies on Equation 2.33

being valid for any smooth plane enclosed inside the barrier region. While this is

true for tunnelling between two infinite planes, or when reduced to a 1D system

(as above), this is not true for arbitrary geometries [22]. No proof of the validity

of this assertion for the geometry used by Tersoff-Hamann is given. The proposed

geometry is a spherical tip apex (with radius R) with an s-wave wavefunction

for a constant barrier potential. This s-wave is expanded as a 2D Fourier series

in the sample plane. This approximation is not covered in detail in this thesis

due to the complexity of the derivation. Instead the result:

Ic � 32πe2V pEvac � EF q2ρtpEF qR2

~κ4
e2κR

¸
i

|ψipr0q|2δpEi � EF q , (2.38)

will be considered qualitatively (where r0 is the coordinate of the centre of the

spherical tip). It is important to note that while current is proportional to e�2κd

the distance d is defined from the planar surface in which the Bloch surface states

exist. Therefore, to produce resolution one relies on the LDOS of the surface wave

function at the centre of the tip. As the corrugations in the LDOS are too small

to be observed at the distances used by Tersoff-Hamann, their approximations

do not explain atomic resolution imaging [22], and (more importantly for this

thesis) the dependence of image morphology on tip structure. Improvements

to the theory explain atomic corrugations on surfaces such as graphite [23]. A

more complete theory for STM in three dimensions, by considering a modified

Bardeen approach at the interface of a hyperbolic tip, is provided by Chen [22,24].

These more detailed approaches are not covered as they provide little intuitive

insight into image formation. Instead these formalisms provide models for image

simulations which are outside the scope of this thesis.
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2.2 AFM Theory

Atomic force microscopy uses a sharp (ideally terminated with a single atom)

tip attached to a force sensor to measure the force between the tip and the

sample. This thesis only considers non-contact AFM where tip-sample forces are

measured by their effect on the sensor’s mechanical resonance.

As most AFMs use a force sensor of cantilever geometry this section will

concentrate on this geometry. Due to the detail in which the results chapters

utilise and reapply the full derivations for the mechanics of AFM sensors these

derivations are provided in Appendix A. This section will cover how these results

apply to imaging, and will refer the reader to full derivations where appropriate.

In Appendix A.4.4 we derive the fundamental eigenfrequency of a freely os-

cillating cantilever to be

ω0 � 3.516015

c
EI

mL3
(2.39)

where E is the Young’s modulus of the material, m is the mass of the cantilever,

I is the second moment of area of the cantilever (Appendix A.4.2), and L the

length. This can also be written in terms of the spring constant, k, and effective

mass, meff , of the cantilever (see Appendices A.4.5 and A.4.3), as

ω0 �
c

k

meff

. (2.40)

As the AFM tip is approached to the sample the resulting force of the tip-

sample interaction, Fts, is felt by the cantilever. Under the assumption that

the amplitude of oscillation is small enough that the gradient of the tip sample

interaction is constant throughout the oscillation cycle, the resonant frequency

shifts by

∆ω � �ω0

2k

BFts

Bz , (2.41)

as derived in Appendix A.7.1. However, this approximation is not accurate for

the amplitude under which AFMs normally operate. For arbitrary amplitudes

of oscillation the frequency shift is proportional to the average force over the
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oscillation instead of the force gradient

∆ω � � ω0

A2k
xFtspz0 � q1qq1y , (2.42)

where A is the amplitude of oscillation and q1 � A cospωtq, as derived in Ap-

pendix A.7.2. Equation 2.42 is of particular importance for making quantitative

measurements. This is discussed in detail in Section 2.2.3.

AFM images are usually taken using one of two modes: either amplitude-

modulated (AM-AFM) or frequency-modulated (FM-AFM). In these modes a

feedback controller adjusts the tip-sample separation to maintain either a con-

stant amplitude of oscillation at a particular frequency or a constant resonant

frequency while always driving on resonance.

2.2.1 Amplitude-Modulated AFM

The amplitude of an oscillating cantilever, with a particular driving amplitude,

Adrive, varies for different drive frequencies ω as

|A| � |Adrive|c�
1� ω2

ω2
0

	2

� 1
Q2

ω2

ω2
0

, (2.43)

where ω0 is the resonant frequency of the cantilever and Q its quality factor.5 By

driving the cantilever just off resonance, any shift in resonant frequency of the

cantilever due to a tip-sample interaction will shift the resonance either closer

to the driving frequency or further from the driving frequency. This will cause

the amplitude to rise or fall respectively (see Figure 2.4). By comparing the

measured amplitude with a setpoint amplitude and using a feedback loop to

adjust the tip-sample separation the amplitude of the oscillation can be kept

constant as the tip is scanned across the surface. Assuming no change in non-

conservative forces, which lead to damping and hence a lower Q, this means the

tip will follow a contour of constant force gradient. By recording the path taken

by the tip an image of the surface can be constructed.

5See Appendices A.5 and A.2
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Figure 2.4: Response of a free cantilever (Blue) and a cantilever experiencing an
attractive potential (Red) to being externally driven. By exciting a cantilever just
off resonance any frequency shift will result in a change in the amplitude with
different sign for positive and negative frequency shifts.

2.2.2 Frequency-Modulated AFM

For frequency modulated AFM the cantilever needs to always be excited on reso-

nance, even as the resonance changes due to the tip-sample forces. By considering

the phase relationship between a cantilever and its driving frequency6

φ � arctan

�
�� ω

Qω0

�
1� ω2

ω2
0

	
�

 (2.44)

clearly when the cantilever is excited on resonance ω2

ω2
0
� 1 and therefore φ �

arctanp�8q � �π
2
. Thus, the resonance condition is that the driving force must

be quarter of a cycle ahead of the cantilever’s response. To keep the cantilever on

resonance the AFM electronics use the response signal of the cantilever, either

phase shifted or locked to by a PLL to excite the cantilever (See Sections 2.3.6

6See Appendix A.5
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and 2.3.7). A feedback controller adjusts the amplitude of this signal to maintain

a constant excitation amplitude. The output of this feedback controller is also

proportional to the damping due to non conservative forces. A second feedback

controller compares the frequency shift (relative to the free resonance of the

cantilever) with a setpoint and adjusts the tip-sample separation to maintain

this. Just as with AM-AFM the tip’s path is recorded as it is scanned over the

surface, maintaining a constant force gradient.

2.2.3 Force spectroscopy

Force spectroscopy is a technique used to obtain quantitative force measurements

from an FM-AFM. The method relies on inverting Equation 2.42. Considering

that the frequency shift is proportional to xFtspz0�q1qq1y, and that q1 is sinusoidal,

one realises that ∆f is unchanged for a constant offset in F . Thus, any method

used to deconvole Fts from ∆f only produces the relative difference in force

rather than an absolute force.

To overcome this, measurements are taken using the following method. The

feedback loop is disabled, and z is directly controlled while ∆f is recorded. ∆f

readings are taken at the same x–y coordinate at a large number of z positions

moving away from the surface. These are recorded until the force is negligible.

The point furthest from the surface is taken to have a force of zero and the force

for each subsequent measurement can be calculated relative to the previous mea-

surement, and thus the absolute force at each z position can be calculated. By

performing numerical integration one can further calculate the potential between

the tip and the surface.

In practice, using this process to directly measure the absolute force or po-

tential between the tip apex and a surface feature is far from simple. First, the

interaction of interest is not the only contribution to the frequency shift. Other,

longer range, interactions such as the van der Waals interaction of the surface

with the macroscopic tip structure often dominate the frequency shift. Thus,

to measure a particular interaction one must first calculate a short range fre-

quency shift. This is dealt with in Section 2.2.3.1. Secondly, as Equation 2.42

is a convolution, to invert the formula to calculate the force a deconvolution

17



Instrumental Techniques

operation is required. Analytical deconvolutions are rarely intuitive to derive,

and numerical deconvolutions necessarily result in an approximation. Sections

2.2.3.2 and 2.2.3.3 deal with the methods which can be used to deconvole ∆f

data into absolute force measurements.

2.2.3.1 Calculating the Short Range Chemical Interaction

To separate long range van der Waals interactions from short range interac-

tions under study one must find a way to estimate the long range contribu-

tion to the frequency shift and subtract this from the measured frequency shift.

This is analogous to background subtraction performed regularly in optical spec-

troscopy techniques [25]. In early force spectroscopy measurements the predom-

inant method for long range subtraction was to take the force spectra over a

very large z range (�10 nm) until even the long range interactions become neg-

ligible [26]. One then defines the first �0.5 nm as the short interaction area,

and the other �9.5 nm as the long range interaction area. By fitting a power

law to the long range interaction an extrapolating this power law into the short

interaction area one can subtract the long range interaction. This method, how-

ever, presents significant problems as fitting power laws to experimental data is

very imprecise [27]. Thus, changes in noise level or in the arbitrary choice of

cut-off between long and short range interaction can have a significant effect on

the numerical quantities obtained.

A more appropriate method, though sometimes experimentally challenging,

is to perform an equivalent force spectroscopy measurement, but without the

interaction of interest. For example if one is studying the interaction of the tip

termination with a molecule adsorbed on the surface one can perform identical

measurements over the molecule and over the surface near the molecule. As

the molecule is spatially higher in z than the surface, provided that the “off”

spectrum does not approach close enough to the surface such that chemical

interactions are probed, this spectrum should provide an accurate measurement

of the long range interaction contribution to the frequency shift. For studies of

surface features rather than adsorbed molecules this method may not be possible.

However, some surfaces such as the silicon (111) 7�7 reconstruction have recessed
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features above which suitable “off” spectra can be taken.

2.2.3.2 Force Deconvolution: Giessibl Matrix Method

Giessibl introduced a very intuitive and neat method for deconvolving the force

from the measured frequency shift [28]. This method starts by rewriting Equation

2.42 as an integral (See Appendix A.7.2) applying a change of variables to remove

time dependence

∆fpz0q � � f0

πkA2

» A

�A

Ftspz0 � q1qq1a
A2 � q12

dq1 . (2.45)

In this form it becomes apparent that ∆f is truly a convolution which can be

written in the form

∆fpzq � � f0

πkA2
pF �Gqpzq , where Gpq1q � q1a

A2 � q12
. (2.46)

To deconvolve the data Geissibl exploits the discrete nature of data acquisi-

tion to approximate the measured frequency shifts as a matrix equation, acting

on a vector of forces. Under this formalism inversion is simple under the laws of

linear algebra. To construct the matrix equation a further change of variables

applied to write the integral in terms of a normalised quantity τ � q1{A. Further,

the integral is written approximately as a sum of 2α � 1 integrals. Here α is an

integer quantity calculated as

α � int

�
A

∆z



, (2.47)

where int is an operation to round to the nearest integer and ∆z is the distance

in z between adjacent ∆f measurements. We can now write the mth frequency

shift (where m � 1 is the frequency shift measured furthest from the surface) as

∆fm � � f0

πkA

2α̧

n�0

» 2n
2α�1

�1

2pn�1q
2α�1

�1

τ?
1� τ 2

dτFm�n . (2.48)

Note here that the force is not a function of τ due to it being discretely measured

at only one point in the integrated region. We can now construct the following
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equation with the matrix M ,

�
��������������

∆f1

∆f2

...

∆f2α�1

∆f2α�2

...

∆fN

�
�������������

�

�
��������������

M11 0 � � � 0

M21 M22 � � � 0
...

...
. . .

...

Mp2α�1q 1 Mp2α�1q 2 � � � 0

0 Mp2α�2q 2 � � � 0
...

...
. . .

...

0 0 � � � MNN

�
�������������


�
��������������

F1

F2

...

F2α�1

F2α�2

...

FN

�
�������������

, (2.49)

where the matrix elements can be derived simply from Equation 2.48 as

Mij �

$''&
''%

if 0 ¤ pj � iq ¤ 2α,

» 2pj�iq
2α�1

�1

2pj�i�1q
2α�1

�1

τ?
1� τ 2

dτ

else, 0

. (2.50)

It is now clear that the vector of force values can be simply calculated as

�
������
F1

F2

...

FN

�
�����
�M�1

�
������

∆f1

∆f2

...

∆fN

�
�����
 . (2.51)

Although this formalism is simple to derive, the accuracy is highly dependent on

α � A
∆z

, and fails entirely if A
∆z

  0.5. This is due to the discrete nature under

which the formalism is derived.

In practice, the method is very computationally efficient as only 2α�1 terms

need to be calculated to build the matrix M . As often � 1000 measurements

are taken for a force spectroscopy experiment one intuitively expects inverting a

1000 � 1000 element matrix will be computationally expensive. However, as M

is triangular the calculation is extremely efficient.
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2.2.3.3 Force Deconvolution: Sader-Jarvis Method

Despite the discrete nature of the data acquisition it is arguably better to solve

the deconvolution in a continuous fashion. This way the discretisation of the

deconvolution cannot mismatch the discretisation of the measurement. In 2004

Sader and Jarvis derived a continuous method to approximate force deconvolu-

tion [29] (henceforth the Sader-Jarvis method).

Starting with Equation 2.46 and applying an inverse Laplace Transform and

using the convolution theorem we get

L�1

"
∆f

f0

*
� 1

πkA2
BpλqT pλq , (2.52)

where Bpλq and T pλq are the inverse Laplace transforms of F pzq and �Gpzq
respectively. By simply rearranging and applying a Laplace transform we arrive

at

F pzq � L
"
πkA2

T pλq L
�1

"
∆f

f0

**
. (2.53)

At this point Sader and Jarvis construct an approximate form for T pλq using a

Padé power series approximation with three terms. Two terms are derived from

the limiting behaviour of T pλq and a third ad hoc term numerically derived to

improve the approximation. Due to the difficulty of numerically solving Laplace

or inverse Laplace transforms these are rewritten as Riemann-Liouville fractional

integrals. From this they obtain their final form for the force to be

F pzq � 2k

f0

» 8

z

�
1� A1{2

8
a
πpτ � zq �

A3{2a
2pτ � zq

d

dτ

�
∆fpτqdτ , (2.54)

where τ is a dummy integration variable. By integrating we obtain a method to

directly calculate the interaction potential, Upzq from the recorded data:

Upzq � 2k

f0

» 8

z

�
pτ � zq � A1{2

4

c
τ � z

π
� A3{2a

2pτ � zq

�
∆fpτqdτ . (2.55)

The Sader-Jarvis method and the Giessibl matrix method have been com-

pared via numerical solutions of simulated ∆f data for a Morse potential [30].
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Both results provide similar accuracy, although the study of Ref. [30] does not

consider the effect of random noise on the experimental data.

Recent work [31] has shown that as Equation 2.55 is an improper integral

with the third bracketed term diverging to infinity at the limit τ � z, a more

appropriate integral for numerical implementation can be derived by substituting

u � ?
τ � z into the integral giving

Upzq � 4k

f0

» 8

0

�
u3 �

c
A

16π
u2 �

c
A3

2

�
∆fpu2 � zqdu . (2.56)

As numerical integrals are effectively low-pass filters converting straight to in-

teraction potential reduces experimental noise, compared to calculating the po-

tential by integrating Equation 2.54, where the noise has been amplified by the

differential term. Forces can can then be calculated from the results of Equa-

tion 2.56 via Lanczos low-noise differentiation which essentially applies a boxcar

average during the differentiation [32].

2.2.3.4 Grid Spectroscopy

Grid spectroscopy is an extension of force spectroscopy in which multiple force

spectra are taken above a grid of positions on the x–y (imaging) plane [26].

As multiple measurements in z are taken for each force spectrum the final data

represents a three dimensional array of spatially separated ∆f measurements. By

applying previously discussed methods to extract the interaction potential from

each spectrum, one can calculate the potential landscape in three dimensions.

By differentiating this grid in any direction of interest the force in this direction

can be calculated. Thus, by differentiating in three orthogonal directions the full

force vector felt by the tip is known for all sampled areas. A similar method has

been used in 2D to calculate the force needed for lateral manipulations [33, 34],

however, for this method the order of ∆f measurements is modified as the tip

moves parallel to the surface at a range of different heights.

Grid spectroscopy measurements take a considerable time. To improve the

accuracy of force deconvolution the spacing in z should ideally be much smaller

than the amplitude of oscillation, and the z range needs to extend far enough
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that the chemical interaction is zero. So if we assume a a z range of 1.5 nm

and a z step of 1.5 pm (as AFM measurements with amplitudes of order 20 pm

are possible [35]), this results in 1000 points in z. Spectroscopy measurements

are normally recorded during the movement in both directions as this allows the

hysteresis in the measurement caused by either piezoelectric creep or tip/sample

changes to be detected. If we assume a very sparse grid in the x–y plane of only

30�30 spectra, a total of 1.8 million individual ∆f measurements are required.

Assuming a short integration time for each measurement of only 10 ms and

ignoring the time the tip takes moving between the measurements, the entire

grid would take 5 hours to complete. Unless the AFM system is operating at

only a few kelvin in this time thermal drift can have a considerable effect on the

measurement. Increasing the density of the x–y grid to 45�45 and doubling the

integration time, the experiment will now take over 22 hours, probably over 24

once the time for the tip to move is factored in.

With such long experiments it it is important to introduce some method to

compensate for drift of the sample relative to the tip. For this we use the concept

of atom tracking [36]. Atom tracking is a method where the tip is positioned over

a local maximum or minimum on the surface. Assuming that the maximum is

radially symmetric, if the tip motion is set to circle the maxima in x and y, with

z feedback off, the frequency shift should remain constant. If the sample drifts

relative to the tip in the x–y plane the frequency shift will no longer remain

constant. The direction of tip movement to compensate for this drift can be

calculated very simply by considering that to apply the circular motion sinusoidal

signals are applied in x and y with a phase difference of 90�. The magnitude of

the variation in ∆f which is in-phase with the x component corresponds to the

drift in x. Similarly the ∆f variation 90� out of phase with x corresponds to drift

in y. Thus, the drift in the x–y plane can be compensated with two feedback

loops (See Section 2.3.4) acting on the in-phase and quadrature outputs of a

two-phase lock-in amplifier, with ∆f as the input and the x dither signal as the

reference input.

Atom tracking was originally used not to compensate for drift but to, as the

name suggests, track adsorbed atoms [37] (or dimers [38,39]) diffusing across the

sample surface in STM. The idea was then extended to AFM for drift compen-
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sation [40]. To combine drift compensation with other measurements the drift

is measured above a stable point of interest for a set time. The drift in z is

also calculated by setting low gain to the z feedback rather than switching it off.

The z feedback should be too slow to react to the changes in ∆f induced by the

tip dither (these being corrected by the x and y loops), instead correcting for

tip sample drift in z. By applying linear fits to the motion in x, y, and z the

drift rate can be calculated, and compensated for during the measurement. As

drift rates, however, are non-linear one must regularly pause long experiments to

re-calculate drift rates and update the drift compensation. For grid spectroscopy

measurements presented in this thesis atom tracking was performed to update

the drift rate between each spectra using specialised instrumentation designed

by Rahe et al. [41].

2.3 SPM Instrumentation

This section gives an overview of design considerations for SPM instrumentation.

It focuses on vacuum STM and AFM as this is most relevant to experimental

chapters. However, ambient SPM is also considered.

2.3.1 Vibration Isolation

As discussed in Section 2.1 a displacement of 1 Å between the tip and the sample

in STM changes the tunnel current by approximately an order of magnitude. Due

to this strong dependence on position, vibrational isolation is vital to collecting

accurate scan data in STM. Ideally, vibrations should be reduced to an amplitude

of less than 5 pm [17], and as floor vibrations are of the order of 0.5 µm this

requires a vibrational isolation factor of 10�5. Similarly, vibrations can excite an

AFM cantilever so any vibrations must have a much smaller amplitude than the

tip oscillation.

In vacuum SPM a first level vibrational isolation is often provided by pneu-

matic feet on the vacuum chamber, which houses the system. Further vibrational

isolation can provided by suspending the main stage of the SPM from springs

and damping any vibrations with eddy current damping, see Section 2.3.1.1. In
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ambient SPM vibrational isolation is often provided passively by suspending the

main stage of the SPM from bungee cords. Alternatively some systems use active

vibrational isolation stages which use an accelerometer to sense vibrations and

an actuator to move the stage to counter the vibration.

An important design consideration is the resonant frequency of any passive

vibrational isolation stage. The damped vibrational isolation stage needs to have

a low resonant frequency, as a damped oscillator does not attenuate vibration

below its resonant frequency [19], see Figure 2.5(b). In contrast to this, the

scanning unit (see Section 2.3.2) and sample experience the same vibrations, thus

the tip-sample junction is only affected by vibrations which are either amplified or

attenuated by the scanning unit. For this reason the tip-sample is less affected

by vibrations below the resonant frequency of the scanning unit, thus a high

resonant frequency is optimal, see Figure 2.5(a). By meeting these resonance

conditions the combined frequency response becomes significantly lower, Figure

2.5(c) [17].

10
0

10
1

10
2

10
3

10
4

10
5

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

ω

T
(ω

)

 

 

(a) Frequency response due to stiffness
(b) Frequency response due to damping
(c) Combined frequency response

Figure 2.5: The frequency response of vibrational isolation due to mechanical
vibration. By combining stiff scanning components with high resonant frequen-
cies (a), and damped vibrational isolation with low resonant frequencies (b), the
combined frequency response (c) can be reduced significantly.
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2.3.1.1 Eddy Current Damping

A method commonly used to produce a low frequency, well-damped main SPM

stage in vacuum systems is to suspend the stage from soft springs. The main

stage is then damped by attaching copper plates to the stage, such that as the

stage oscillates the plates are move through a magnetic field produced by fixed

magnets located between the plates. These magnets are mechanically coupled to

the outer vacuum system, not to the stage. The motion of the plates relative to

the magnetic field induces small circulating currents in to the copper [42]. These

currents, due to Faraday’s Law7

¾
C

E.dl � �BΦB,S

Bt , (2.57)

cause two important effects. First, by Lenz’s law, the induced current creates a

magnetic field opposing the magnetic field inducing it. The opposing magnetic

field increases the restoring force, reducing the amplitude of oscillation. Secondly,

the resistance of the copper causes Joule heating, thus dissipating energy from

the system.

The damping coefficient γ for eddy current damping is given by [17]

γ � B2SdC0

ρ
, (2.58)

where B is the magnetic field, S and d are the cross-sectional area and thickness

of the plate respectively and ρ is the resistivity of the plate. C0 is a dimensionless

constant that is dependent on the plate’s geometry. Therefore, to maximize eddy

current damping it is important to maximize flux cut by the plates, see Equation

(2.57). This is often achieved by having each plate in between two closely spaced

permanent magnets, mounted on a ring adjacent to the sample stage.

2.3.2 Scanning Unit

An SPM needs to be able to move the tip in three dimensions, with sub-Angstrom

resolution to collect an image with atomic resolution. There are multiple methods

7dl is an infinitesimal segment of the path C enclosing the area S.
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for making scanning units, but this report will concentrate on the piezoelectric

tube scanner. This will be compared with the more intuitive method of the

piezoelectric tripod, demonstrated in Figure 2.1.

Early STMs used tripod scanners. Typical tripod scanners have a lowest

resonant frequency of 5 kHz [43]. This resonance limits the maximum scan

speed, as well as affecting vibrational isolation. The tube scanner was designed

as a scanning unit with a higher resonant frequency. This is achieved by building

the scanner out of a single piezoelectric tube.

The outer surface of the piezoelectric tube is covered by four electrodes, see

Figure 2.6. By applying equal and opposite biases (with respect to the internal

electrode) to opposite electrodes the tube can be bent sideways. By applying an

equal bias to all electrodes the tube can be elongated.

�y

�x

�x

�y
ground

Figure 2.6: Diagram of a piezoelectric tube scanner.

The tip deflection can be calculated as [44]

∆x � 2
?

2 d31
l2

πDt
Vx , (2.59)

where ∆x is the x deflection8, l is the length of the tube, D is the internal

diameter of the tube, t is the thickness of the tube wall, and �Vx is the voltage

applied to the x electrodes. d31 is the piezoelectric voltage conversion factor.

8y deflection calculated using same equation, replacing Vx with Vy.
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The tube extension can be calculated as for a normal piezoelectric tube by [19]

∆l � d31
l

t
V . (2.60)

2.3.3 Coarse Positioning Motors

For an SPM to attain atomic or molecular resolution, the tip must be less than

a nanometre from the surface. As a typical tube scanner has a range of about

1–2 µm, the user must be able to move the tip relative to the sample with a

very high degree of accuracy. This is made more complicated as the range of

movement must be of the order of a few millimeters to allow procedures such as

replacing the sample. While only one dimensional coarse positioning normal to

the surface is strictly required, it is useful to be able to move the sample in two

or three dimensions so different areas of the sample can be scanned.

There are many methods for coarse positioning, ranging from a very sim-

ple manual screw approach to complicated piezoelectric walkers which can walk

around the isolation stage. A common method, used on all SPM systems used

in this thesis, is the inertial slider.

Figure 2.7: Design of an inertial slider. Showing the top plate(2), rods (3), leaf
springs (4) and (5), motor base (6) and piezoelectric tubes (7). (Diagram from
reference [45])

The inertial slider is a remarkably ingenious and simple design that can move

with steps as small as 5 nm, and typically has a range of up to a centimetre [46].

The original inertial slider design [45] consists of a top plate sitting on two

support rods, which are held in place by a holder, see Figure 2.7. This rod

holder is connected to the motor base by two leaf springs. Both the rod holder

and the base are attached to the ends of a pair of piezoelectric tubes. As the
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tubes are elongated (or contracted) the rods move relative to the fixed motor

base. If acceleration of the rods is low, the static friction will hold the top plate

on the rods, moving it with them. However, if the acceleration of the rods is high

enough, the inertial force will overcome the static friction and the top plate will

remain stationary as the rods move below it. Hence, by using a saw tooth signal

to control the piezoelectric tubes, the top plate can gradually be shunted across

the rods. By using three connected inertial sliders it is possible to produce a

three dimensional coarse positioning motor with resolution of a few nanometres

and range of a few millimetres in each dimension.

2.3.4 Feedback Controllers

As mentioned in Section 2.1, the topography is mapped in SPM by feedback

loops adjusting the tip-sample separation to keep the tunnel current constant.

Similarly, in AFM the topography is mapped by feeding back on either the

amplitude or frequency shift constant, for AM-AFM and FM-AFM respectively.

A detailed theoretical account of feedback is given in Chapter 9, this section

covers the basics of the feedback controller in the context of understanding SPM

instrumentation.

The simplest feedback controller is a “bang-bang” controller which has only

two possible states, normally referred to as ‘On’ and ‘Off’. In the case of the SPM

feedback loop they would relate to either approaching or retracting the tip one

‘step’ depending on if the measured interaction is below or above the set-point.

This feedback method is not appropriate for SPM. If the step is ‘small’ then it

will take many steps (and therefore a long time) to reach the set-point. If, on the

other hand, the step is ‘large’ then the set-point cannot be accurately reached

as the system will be constantly stepping forward and back over the set-point.

Another simple feedback loop is the proportional controller. In this feedback

loop the difference between the measured and set-point interaction is multiplied

by a constant and added to the tip-sample separation. Proportional feedback

controllers provide a much smother response than “bang-bang”, however they

are vulnerable to producing steady state errors, where the system tends towards

a value which is not the set-point (See Section 2.3.4.1).
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A common method for improving feedback loops is called a proportional-

integral-derivative (PID) controller. A PID controller adjusts the process vari-

able, or tip sample separation in the case of the SPM, under the following formula

δhptq � KpEptq �Ki

» t

0

Epτqdτ �Kd
d

dt
Eptq , (2.61)

where δhptq is the separation change at time t, E is the difference between the

set-point current and measured tunnel current, and τ is a dummy integration

variable. Kp, Ki and Kd are the system gains for the proportional, integral and

derivative components respectively.

The integral term sums all previous errors. This both speeds up the feed-

back response and, more importantly, eliminates steady state errors (see Section

2.3.4.1). However, the integral term causes the tip to overshoot the set-point po-

sition. The result is that the interaction approaches the set-point by oscillating

above and below it.

The derivative term is proportional to the rate of change of the error, acting to

reduce the overshoot introduced by the integral term. However, the disadvantage

of the derivative term is that it amplifies rapidly varying noise, and hence is only

suitable for controlling systems with a high single-to-noise ratio. For this reason

the derivative term is rarely implemented in SPM systems. For this reason SPM

feedback controllers are referred to as proportional-integral (PI) controllers.

2.3.4.1 Steady State Errors

As an explanation for steady state error we consider an SPM trying to main-

tain constant interaction using a simple proportional feedback loop, meanwhile

thermal expansion is causing the tip to drift from the sample at a rate ddrift per

feedback iteration. Then each iteration (n) of the feedback loop the tip-sample

separation dnts will be

dnts � dn�1
ts � ddrift � dfeedback (2.62)

where dfeedback is the distance moved due to feedback. Due to the proportional

relationship between dfeedback and Eptq this will eventually hit a steady state
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where

ddrift � �dfeedback � �EptqKp (2.63)

However, if the feedback also contains an integral term then this steady state

error is integrated, causing the feedback to compensate for the constant error.

This is shown graphically in Figure 2.8.
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Figure 2.8: Path taken by proportional, and PI (proportional integral) controllers,
feeding back to a setpoint while experiencing a constant drift. The proportional
controller reaches equilibrium when the feedback term equals the drift term leading
to a steady state error. However, the PI controller eliminates steady state error
by integrating the error signal.

2.3.5 STM Electronics

In STM the electronics are divided into two independent circuits. One circuit

contains the HV (high voltage) electronics for operating the piezoelectric actu-

ators used for scanning and coarse positioning. The other circuit contains the

LV (low voltage) electronics for controlling the sample bias, and amplifying the
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tunnel current. A schematic of the wiring has been provided in Figure 2.9.

Motors

Sample

Tip

Tube
Scanner

Motor
Connections

Scanner
Connections

-
+

R

LV Ground

Sample
Bias

Signal

Main Stage

All HV Connections All LV Connections

f

Figure 2.9: Schematic of STM electronics. Note, the motor and scanner connec-
tions are multiple wires. Generally all wires shown are twisted pairs, or occa-
sionaly coaxial cables depending on the exact design of the STM head.

2.3.5.1 Low Voltage Electronics

This section will explain the electronics for an STM where the sample is biased

and the tip is at virtual ground. Other implementations with virtual biases and

real ground, or biased tips are possible, but the concepts remain unchanged.

The STM tip is connected to the inverting input of an op-amp held at LV virtual

ground by the feedback resistor, as the non-inverting input is connected directly

to LV ground. This op-amp is used as a current-to-voltage amplifier (See Figure

2.9). As the tunnel current is of the order of nanoamps it is important to protect

the signal from noise as much as possible by using either twisted pairs or coaxial

cables. It is also important to position the preamp spatially as close as possible

to the tip to reduce the length of wire the tunnel current has to pass down.
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The feedback resistor of the op-amp (Rf ) determines the gain of the current-to-

voltage preamp. As no current passes through the op-amp the output voltage

can be calculated simply from Ohm’s law

Vout � IcRf , (2.64)

where Ic is the tunnel current. The feedback resistor is often of order 100 MΩ–1

GΩ, which will produce a signal of 0.1–1 V for 1 nA of current. This signal can

then be fed into the control electronics for the STM.

2.3.5.2 High Voltage Electronics

The HV electronics control the piezoelectric actuators for coarse positioning and

scanning. These are on a completely separate circuit to the LV electronics to

reduce the coupling of noise onto the sensitive LV electronics. Importantly, the

grounds are kept separate as the current flowing in a ground loop from the HV to

LV ground could be detected by the current to voltage preamp, and mistaken for

a tunnel current. Similar high voltage electronics are present in AFM systems,

but the need for complete isolation, while ideal, is less vital as the low voltage

signals are generally larger and thus are less sensitive to noise.

2.3.6 AM-AFM Electronics

For amplitude modulation the circuitry needs to excite the cantilever slightly

off resonance. This can simply be performed by a function generator. The tip

deflection signal is fed into a lock-in amplifier, with the excitation signal as a

reference signal. From the lock-in amplifier the amplitude of the cantilever can

be compared to a set-point amplitude and a PID controller adjusts the tip sample

separation to minimise the amplitude error signal.
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Figure 2.10: Schematic of self-excitation method of FM-AFM feedback with con-
stant amplitude and frequency shift.

2.3.7 FM-AFM Electronics

2.3.7.1 Self excitation FM-AFM

One method for exciting the cantilever on resonance is called self excitation. In

this the deflection signal (bandpass filtered to remove noise from frequencies far

from resonance) is phase shifted by 90� and used as the excitation signal (see

Figure 2.10).

The signal from the bandpass filter also goes into an RMS-to-DC converter

to produce a voltage proportional to the RMS amplitude of the oscillation. This

amplitude and a set-point amplitude are fed into the PI controller (see Section

34



Instrumental Techniques

2.3.4) which adjusts the driving amplitude to reduce the amplitude error. The

driving amplitude is adjusted by using an analogue multiplier to multiply the

phase-shifted deflection signal with the PI controller output. The output of the

PI controller can also be recorded as it is a measure of the damping felt by the

cantilever.

The signal from the bandpass filter branches in a third direction towards a

frequency-demodulator and a frequency-to-voltage converter, this compares the

frequency from the bandpass-filtered signal with f0, the cantilever’s free resonant

frequency, and outputs ∆f � f � f0. Many methods for this demodulation and

voltage conversion can be used, from complicated phase detection processes to

simply converting f and f0 to voltages with frequency-to-voltage converters and

then calculating ∆f with a differential amplifier.

The calculated ∆f signal and a set-point ∆f are fed into another PI controller

which adjusts the tip sample separation to minimise the frequency error.

2.3.7.2 PLL-driven FM-AFM

The PLL-driven FM-AFM design, as its name suggests, uses a PLL (phase-locked

loop) to drive the cantilever. An ideal PLL, explained below, produces a pure

sinusoidal wave at the same frequency as its input signal, this can then be used

as a spectrally clean driving waveform. However, the electronics are much more

difficult to implement and problems can occur when the PLL fails to lock to the

input signal.

Phase-locked loops (PLL)

A PLL produces a signal which is phase ‘locked’ to the input signal. In a simple

PLL this phase is arbitrary, but in order to lock to a constant phase the output

frequency must match the input frequency. A standard PLL has 4 components,

as shown in Figure 2.11, these are a phase detector, low pass filter, amplifier and

voltage-controlled oscillator (VCO).

The phase detector measures the phase between the VCO output and the

input signal and outputs a voltage proportional to this phase. Ignoring feedback

for a moment, if the two input signals have a different frequency then the phase

will repeatedly ramp from 0 to 2π over a period of T � 1
δf

, where δf is the
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Figure 2.11: Schematic of a simple PLL circuit.

frequency differences between the input signals. The low pass filter is used to

smooth the phase detector output into the expected linear voltage ramp, and

the amplifier is simply to adjust the phase detector’s output voltage to a sensible

range for the VCO.

The VCO outputs a sinusoidal signal with frequency proportional to the input

voltage. This means that if the filtered, amplified output of the phase detector is

fed into the VCO then the frequency will change in response to the varying phase

difference. Once the VCO varies to the correct frequency the phase difference will

remain constant and the output frequency will be locked to the input frequency.

This means that once locked the signal out of the amplifier is proportional both

the frequency of the input signal, and proportional to the phase between the VCO

output and the input signal. In other words the PLL will lock to a particular

phase depending on the frequency. The phase detector is set up such that if the

input frequency changes slightly the VCO will vary the correct way and lock very

quickly.

PLL-driven FM-AFM design

A PLL-driven FM-AFM needs the PLL output signal to be both equal in

frequency to the input signal, and also 90� out of phase. This poses a problem,

because for a simple PLL, the phase will change as the frequency changes. To

solve this we have to add a frequency tracker to the PLL [47]. In Figure 2.12 is

a schematic of the PLL driven design.

When the AFM starts (before approaching) the switch in Figure 2.12 starts
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Figure 2.12: Schematic of a PLL driven FM-AFM circuit.

in position a. A voltage proportional9 to a central frequency, fcent, is added to

the amplified phase detector output, and sent to the VCO. In this case when the

PLL locks the frequency is

fPLL � fcent � fPD (2.65)

where fPD is the frequency produced by the VCO for a voltage equal to the

amplified output of the phase detector. In this case the phase difference between

the cantilever deflection and the PLL signal is proportional to fPD instead of

fPLL as before.

9Such that if the signal was fed into the VCO it would produce a signal with frequency
fcent.
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Once the PLL has locked the switch is switched to position b. Now the

central frequency is coming from the frequency tracker. The frequency tracker is

a device which updates discretely such that the voltage output is set to equal the

voltage input. In this case at each iteration (n) when the switch is at position b,

fncent � fn�1
cent � fPD � fPLL (2.66)

and then when the PLL next locks using equation (2.65) we find that fPD � 0

and hence the phase difference between the cantilever deflection and the PLL

signal is 0. The frequency tracker is set to update at a slower rate than the time

for the PLL to lock so that the PLL has locked before each update. The switch

remains at b for the experiment, and the frequency tracker tracks the cantilever

frequency, allowing the PLL to constantly produce a signal in phase with the

cantilever. This PLL signal is then phase shifted 90� to produce the resonance

condition.

The voltage fed into the VCO is proportional to the cantilever’s oscillation

frequency f , this is fed into the positive terminal of a differential amplifier, and

a voltage proportional to f0 (which is collected at the start of the experiment) is

fed into the negative. The output (f � f0 � ∆f) this is fed into a PI controller

to maintain constant ∆f as seen in the self excitation method.

Just as with the self excitation method the RMS amplitude of the cantilever

is controlled by a second PI controller. The output of this is recorded as a

damping signal, and also multiplied to the phase shifted PLL output used to

dive the cantilever.

Commercial “PLL”-driven FM-AFM design

Some, more recent, commercial FM-AFM, such as the Omicron Matrix con-

troller and the Nanonis controller use a PI controller which varies the excitation

frequency to try to maintain a set-point phase of 90�. Such PI controlled systems

are referred to as PLLs, however, this is not strictly true as the loop does not lock

to the input frequency due to the phase relationship, instead the loop tracks the

phase and hence the resonant frequency. For this reason PLL has been included

in quotes for this section title, a more accurate name for such systems would be
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a phase tracking loop or PTL.
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Chapter 3

Literature Review

“Science knows it doesn’t know everything; otherwise, it’d stop.”

Dara Ó Briain

Chapter Overview

The central aim of this thesis is a careful consideration of SPM ex-

periments from an instrumental perspective to analyse accuracy and

reproducibility. Much of this work, therefore, depends on the the-

ory of the instrumental techniques discussed in the previous chapter.

This work, however, as with all science, must be understood in the

context of the relevant literature, an overview of which is presented

in this chapter.

We start with discussing the materials studied in SPM experiments in

this thesis. These are well-studied materials, the work presented does

not aim to deepen our understanding of these material, but instead

to exploit our understanding of the materials to test the SPM system.

The following sections discuss how AFM sensors have developed since

the introduction of the technique and outline methods used to cali-

brate AFM sensors. This gives a perspective on the importance of

the qPlus sensor, studied in detail in this thesis. More fundamentally

it provides context for the new sensor design introduced in Chapter

6.
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3.1 Materials

3.1.1 Highly Oriented Pyrolytic Graphite (HOPG)

Early work on automated tip conditioning (Chapter 7) was concentrated on

highly oriented pyrolytic graphite (HOPG). HOPG was chosen as it is a surface

which can be atomically resolved with the simplest of STM designs. Freshly

cleaved HOPG can be imaged with atomic resolution in air for days without

contamination or oxidation [48]. HOPG can be cleaved using adhesive tape, to

reveal a fresh (0001) surface. This made HOPG ideal for early automation work

as time-consuming processes, for example sample preparation, can be kept to a

minimum.

The structure of HOPG consists of planes of carbon atoms arranged in a

hexagonal lattice. The carbon atoms in the planes are sp2 hybridised, allowing

C–C bonding to three nearest neighbours with bond length of 1.42 Å [49]. The

planes are held by van der Waals forces, with a separation of 3.40 Å, and are

stacked ABAB to form a crystal. The offset between the A and B planes is

one atomic spacing, such that there are two types of atomic site: α-sites where

carbon atoms are present directly above and below in neighbouring layers, and

β-sites directly above and below hole sites in adjacent layers. This leads to a

primitive unit cell with four carbon atoms, 2 α and 2 β.

Despite the simplicity of sample preparation, and the relatively simple sur-

face structure, HOPG does produce some surprising STM results. STM images

of the (0001) surface do not regularly produce the hexagonal lattice expected,

but instead yield a trigonal lattice with spacing of 2.46 Å [50]. Simple geom-

etry tells us that the lattices of just α or β-sites are trigonal with spacings of

2 sinp60�q � 1.42 Å� 2.46 Å, implying that generally only the α or β-sites are

imaged. Theoretical models using the first integral of equation (2.37)1, have

predicted that it is the β-sites which are imaged [51]. This result is due to the

coupling between α-states which produce energies further from the Fermi level,

pushing many of these states out of the energy window imaged by the STM.

However, despite these calculation dating from 1987, the wide variety of possible

1Assuming a flat LDOS for the tip in the tunnelling energy region
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HOPG images and the theory behind them is still not fully explained [50].

Other interesting features in STM of HOPG include giant corrugations of up

to 24 Å being measured [52]. The corrugations expected for total charge densities

on graphite are 0.2 Å, whereas the corrugations for contours of LDOS is 0.8 Å.

Thus the tip will move physically closer to the surface between atomic sites in-

stead of tracking a constant tip-sample separation [53]. This is thought to causes

an elastic deformation of the sample as the tip approaches (or retracts) further

pushing (pulling) the sample away from its equilibrium position, amplifying the

corrugation.

Not only have giant corrugations been imaged in STM but entire giant lat-

tices in STM images with lattice constants of up to 77 Å [54, 55] have been

observed. The lattices, commonly referred to as Moiré patterns, are thought to

arise from a top layer of the graphite crystal having an angular offset from the

bulk lattice orientation. This forms an interference pattern with lattice constant,

D, dependent on the angular offset, θ, between the top and second layers of the

crystal, and d the lattice constant of the underlying surface, by [56]

D � d

2 sin
�
θ
2

� . (3.1)

3.1.2 Silicon(111)

Silicon, which dominates the semiconductor industry, is also widely studied in

surface science, making it a another good test substrate for automated SPM

imaging. Silicon is a group IV semiconductor with an indirect band gap of 1.17

eV [17]. It forms sp3 hybridised orbitals producing crystals of diamond crystal

structure and readily oxidises, so any SPM measurements of silicon must be

performed in UHV. The most commonly studied silicon surfaces are Si(111) and

Si(100). Si(111) was the first semiconductor surface studied by STM. This makes

it an ideal benchmark for any automated SPM software.

Silicon cleaved along the (111) plane at room temperature will form a 2 � 1

reconstruction, where the top double layer rearranges to bring chains of the higher

and lower atoms together allowing the dangling bonds from the 1� 1 surface to

π-bond chains lowering the surface energy [17]. These chains were first imaged
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Figure 3.1: First published STM image of the Si(111) 2� 1 reconstruction. The
left hand side shows the π bonded chains formed in the reconstruction. Repro-
duced from [56]

by Feenstra [56] and the first published image is reproduced in Figure 3.1.

However, the Si(111) 2�1 reconstruction is only metastable. If the surface in

annealed to above 875�C then the surface will form a stable 7�7 reconstruction.

This 7 � 7 reconstruction was first discovered by LEED (low energy electron

diffraction) experiments in 1959 [58]. No model had successfully been developed

to explain the surface reconstruction when it was first imaged in real space in

1983 with STM by Binnig et. al. [57], revealing 12 adatoms per unit cell (See

Figure 3.2). The same paper put forward a model to explain the images, but the

model did not explain why half of the unit cell regularly appears lower in images

with positive sample bias [59]. The currently accepted model was introduced in

1984 by Takayanagi [7] by combining these results and other previous data with

new TEM and TED (transmission electron microscopy and diffraction) data.

The result was the dimer-adatom-stacking-fault (DAS) model.

The DAS model (see Figure 3.3) consists of three dimers along each of the

four sides of the unit cell, each half enclosed by the cell. Three more dimers are

positioned along the short diagonal of the cell, marking the boundary of a partial

stacking fault. This gives a total of nine dimers per unit cell, and a faulted and

unfaulted half to each cell. The dimers form in the bottom half of the surface
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Figure 3.2: First published STM imaged of the Si(111) 7�7 reconstruction. The
crosses indicate the position of the adatoms. Reproduced from [57]

double layer of the crystal. Considering the edge of the unit cell in this layer

the four remaining silicon atoms, each quarter enclosed by the corner of the cell,

are lost revealing a dangling bond at the bottom of hole (referred to as a corner

hole). Finally, twelve silicon adatoms adsorb to the surface, each bonding with

three underlying atoms from the top half of the surface double layer. The final

surface has 19 dangling bonds per unit cell: one on each of the 12 adatoms; one

in each of the four corner holes, quarter enclosed by the unit cell; and 6 on the

rest atoms, the atoms in the top half of the surface double layer which did not

bond to an adatom.

Si(111) 7 � 7 has also been an important surface for AFM. The first atomic

resolution AFM image of the surface was produced by Giessibl in 1994 [60]. The

7� 7 surface was also used by Giessibl to demonstrate the abilities of the newly

developed qPlus force sensor [61], and to produce the first AFM images with

subatomic features [13] (see Figure 3.4). The subatomic features consisted of

two crescents being imaged for each of the 12 adatoms. The distance between

these features was too small (2.2 Å) to be explained by a standard double tip
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Figure 3.3: Schematic of the DAS model of the Si(111) 7 � 7 reconstruction.
Where the large black dots are adatoms, the smaller black dots are rest atoms,
the dotted circles enclose four different quarters of a corner hole, and the dotted
ellipses enclose dimers, 12 of which are only half inside the unit cell. Adapted
from [13]

as the nearest neighbour distance in tungsten (the tip material) is 3.16 Å, and

as defects do not get repeated across the image this rules out the possibility of

a double tip with a spacing of an integer number of silicon lattice vectors plus

2.2 Å. The interpretation of these images is that the tip has picked up a cluster

of silicon and the final atom is sp3 hybridised with two dangling bond, each of

which acts as a ‘subatomic’ mini-tip forming chemical bonds with the dangling

bond of the surface adatom.

3.1.3 C60

A great number SPM studies of molecules adsorbed on surfaces have been per-

formed, showing bonding geometries of individual molecules [62], the formation

of molecular tilings [63], and the synthesis of covalently bonded networks [64], to

mention just a few results. One of the molecules most studied in SPM is buck-

minsterfullerene (C60), a molecule consisting of a spherical cage of sixty carbon

atoms [65] (Figure 3.5). Due to the spherically symmetric shape of C60, it is used

in this thesis to detect asymmetries of the tip motion in AFM studies (Chap-
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Figure 3.4: Subatomic features in AFM image of Si(111) 7 � 7 reconstruction.
(A) AFM image, (B) line profile through (A), (C) schematic of proposed model
to explain image. Adapted from [13]

ter 5). For these experiments performed on the Si (111) 7 � 7 reconstruction,

the bonding geometry and stability of C60 adsorbed on silicon is of particular

interest, as is the C60–C60 potential.

Individual C60 molecules were first imaged in STM on Si (100) [68] and

S(111) [69] in 1992, just seven years after their discovery [65]. Subsequent studies

showed island and monolayer growth of C60 on silicon [70, 71]. In 1995 Chen et

al. showed that annealing C60 on Si(100) causes movement of the absorption

site from between dimer rows to on top of the rows [72]. Combining these mea-

surements with theory it was suggested that before annealing the C60 is only

physisorbed onto the silicon surface, and chemisorption happens after annealing.

Three years later Moriarty et al. combined photoemission spectroscopy mea-

surements with manipulations of C60 on Si (100) to show that the interaction

was actually chemisorption, however the bond strength does increase for sites on

top of the dimer rows [73]. This work furthered earlier work by the same group

from 1995 which demonstrated the first controlled SPM manipulation at room

temperature, by moving C60 on Si (1111) [74]. One interesting difference in the

later work on Si (100) was the ability to entirely remove C60 from the surface,

transferring the molecule to the tip which improved image resolution. Further

photoemission spectroscopy from Moriarty et al. in 1998 suggested that all C60-
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Figure 3.5: A rendering of a C60 molecule from Jmol [66] rendered in POV-
Ray [67]

Si interactions were always chemisorbed for both Si (111) and Si (100) [75].

Two papers by Sakamoto et al. in the same and following year suggested other-

wise [76,77], with physisorbed C60 on Si (111) for coverages close to a monolayer

measured with photoemission spectroscopy. In 2000, Pesci explained Sakamoto

et al.’s results as arising from miscalibration of the surface coverage with ph-

ysisorbed states resulting from coverages above one monolayer [78]. Following

studies have confirmed these results [79,80].

Due to the difficulties of imaging silicon in AFM, described in the previous

section, C60 on silicon was not successfully imaged with AFM until 1999 [82].

Later theoretical AFM studies suggested that it should be possible to image ori-

entation of C60 on silicon with a silicon terminated tip [83], and even perform

thermally driven manipulation of C60 mediated by the AFM tip [84]. The pre-

cise orientation of C60 on a surface was first demonstrated on copper rather than

silicon by STM imaging [85]. This work was extended to AFM where not only

the orientation of the C60 was measured, but also the bond order [86]. Further

investigations of C60 on Cu with a Cu tip via grid spectroscopy show clear asym-

metry in the C60 molecule [81] (See Figure 3.6). The cause of this asymmetry is
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Figure 3.6: Grid spectroscopy measurements of C60 with a Cu tip. The clear
asymmetry in the C60 could be a result of asymmetry of the Cu tip apex. From [81]

not discussed. However, as the precise structure of the Cu-terminated tip is not

known this result could simply be a result of tip asymmetry.

In 2012 the theoretically predicted imaging of the precise orientation of C60

with silicon tip was demonstrated in a novel way. Chiutu et al. used C60 ter-

minated tips to image the Si (111) 7 � 7 reconstruction [12]. Due to the large

adatom spacing and narrow spatial extent of the dangling bond orbitals, the

individual atoms of the closest face of the C60 are clearly resolved (See Figure

3.7). With the precise orientation of the tip apex known, force spectroscopy mea-

surements were performed on both the bare Si substrate to reliably calculate the

interaction between a known orientation of C60 on a specific Si site. Further force

spectroscopy measurements directly probed the C60–C60 interaction, showing ex-

cellent agreement with the analytical Girifalco potential [87]. Similar agreement

to the Girifalco potential had previously been achieved using density functional

theory studies [88]. Further experiments on C60 on Si (111) with C60 terminated

tips in STM showed that by combining the known orientation of the molecule

on the tip with theoretical STM images of the C60–C60 interaction [89, 90] the

orientation of the surface molecule could also be determined [91].
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Figure 3.7: Faces of a C60 molecule imaged on the adatoms of the Si (111) 7� 7
reconstruction. From [12]

3.2 The Evolution of AFM Sensors

The heart of an AFM is its sensor, used to measure atomic forces. Three fea-

tures are key to an AFM sensor: how forces affect the sensor’s motion, how its

deflection is measured, and (in the case of dynamic AFM) how the sensor is

excited. The spring constant of the sensor controls how strongly forces affect the

sensor’s deflection. Calibration of spring constants is therefore a high priority for

actuate force measurements. In dynamic AFM the sensor is oscillating and thus

properties such as the resonant frequency and the Q of the sensor are important

for understanding the sensor’s dynamics.

The first AFM sensor, designed by Binnig et al. in 1986 [92], consisted of a

diamond tip attached to a cantilever made from gold foil (with dimensions of 800

µm � 250 µm � 25 µm). This sensor used an STM to measure the deflection of

the cantilever. The sensor was operated both in static and dynamic modes. Dy-

namic modes were mechanically excited with a separate piezoelectric actuator.

The resonant frequency of the sensor is not given in Reference [92]. For the bare

(tipless) cantilever, however, this can be estimated as � 13 kHz using the dimen-

sions, density, and Young’s modulus [93] of the gold cantilever. The resonant

frequency of the final sensor depends on the size of the diamond tip attached
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(also not given) and thus we can conclude only that the resonant frequency was

less than (possibly much less, if the tip mass was significant compared to the

cantilever mass) 13 kHz. The spring constant can also be estimated to be � 150

N.m�1.

As AFM experiments developed, so did the designs of the sensors. Early

AFM experiments generally operated in a static mode. As such, the resonance

characteristics (i.e. resonant frequency and Q) were not considered as important

as the spring constant of the sensor. Just one year after the seminal AFM paper,

a considerably different AFM was built by Mate et al. [3]. It used etched tung-

sten wires, bent near the apex, to produce a sensor with an integrated tip. As

this wire was conductive, STM measurements were possible with the same micro-

scope. This AFM detected lateral deflection of the wire, thus introducing lateral

force microscopy (LFM). The deflections were detected optically with an inter-

ferometer (see [94] for more detail), removing the need for a complicated second

feedback loop and piezoelectric actuator needed for the tunnelling detection.

Optical detection was further simplified in 1988 when Meyer and Nabil in-

troduced the optical lever technique [95]. This technique requires a surface on

the rear of the sensor from which a laser can be reflected. The laser light is then

collected by a position-sensitive detector. From the position of the deflected laser

spot the angle of the sensor can be detected. This method, widely used in AFM,

is dependent on the position of the laser spot, and is an indirect measure of the

deflection. This must be considered carefully if using the deflection signal for

quantitative measurements [96].

The same year, Albrecht et al. [97] produced silicon dioxide microcantilevers

specifically designed for use in AFM. Both rectangular and V-shape cantilevers

were produced and compared. Initially these were produced without tips. In fact

some experiments were attempted with tip-free microcantilevers. Tips could then

be attached with either glue or evaporated onto the cantilever through a small

hole.

Günther et al. [98] developed a variant of the AFM, the scanning near-field

acoustic microscope, in 1999. This measures forces due to gas coupling between

a sensor oscillating on resonance and the sample. Despite not being a true AFM

it introduced new concepts to scanning probe microscopy. Most notably it used
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quartz tuning forks from watches as its sensors, as these are inexpensive, mass

produced resonators with a very high Q. They also do not require any external

deflection detection (except a simple electronic amplifier) as quartz is piezo-

electric and the tuning forks are produced with gold contacts for this purpose.

Another advantage of the quartz tuning fork sensors was that their resonance

can be excited electrically, removing the need for extra piezoelectric actuators

for mechanical excitation signals.

Deflection detection methods continued to develop. In 1990 Göddenhenrich

et al. [99] introduced capacitive detection. The capacitor consisted of a plate

attached to the rear of the sensor and a second adjustable plate behind this.

Capacitive detection allowed for deflection measurements with sub-Ångstrom

precision without the difficulties inherent in optical detection.

In the early 1990s silicon microcantilevers (SMCs) quickly developed, even-

tually becoming the standard method of AFM sensing. In 1990 SMCs with

integrated sharp tips were produced, removing the difficult process of tip attach-

ment [100, 101] (Figure 3.8(a)). In the same year SMCs were used to combine

AFM and LFM with both torsional and normal bending of the cantilever be-

ing measured [102]. Modified SMCs produced by Tortonese et al. [103] utilised

the piezoresistive effect in silicon to produce cantilevers which detected deflec-

tion from a change in resistance (Figure 3.8(b)). The cantilever can be included

as part of a Wheatstone bridge [104] to allow accurate detection of resistance

changes. Due to the conductivity of piezoresistive SMCs they could also be used

as STM sensors [105]. SMCs with integrated capacitive sensing [106] were also

fabricated, adding to the choice of detection methods easily available for the

SMC.

SMCs were used to make the first true atomic resolution AFM image [107]

and the first true atomic image of a reactive (silicon) surface, in 1992 with a

STM detected SMC and 1995 [60] with a piezoresistive SMC respectively.

As dynamic AFM in liquid became more popular a more direct way of exciting

the cantilever was required to produce well behaved resonances. In 1994, Florin

et al. [108] attached magnets to SMCs and directly excited the cantilever using an

electromagnet located below the sample. Four years later a more elegant solution

for direct cantilever excitation was developed by Ratcliff et al. [109] using a laser
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to photothermally excite SMCs with reflective coatings, already readily available

for optical detection.

When dynamic modes of lateral force microscopy were introduced [110,111],

originally the sample was oscillated rather than the sensors. Soon development

of sensors which could easily be excited with resonance motion parallel to the

surfaces began. Jarvis et al. [112] introduced a specialised cantilever which con-

sisted of two rectangular SMCs with a third microcantilever attached between

them by a hinge (See Figure 3.8(c)). This third cantilever had a tip located

between the hinges, and a magnet for magnetic excitation on the far end. Due

to the tip location any excitation about the hinges caused lateral motion of the

tip apex. The two support SMCs could also be excited to allow both normal

and lateral measurements to be made simultaneously [113]. Pfeiffer et al. also

achieved laterally excited sensors by exciting the torsional mode of standard rect-

angular SMCs, removing the requirement for specialist sensors. Indeed, the Q

factor of torsional modes is much higher than for normal modes. This led to the

development of T-shaped cantilevers with the tip located on the far arm of the

T [114]. If driven torsionally these produce vertical tip oscillation, allowing the

benefits of the torsional mode to be used in conventional AFM [115].

While SMCs became the standard AFM sensors in the early 1990s, develop-

ment of piezoelectric sensors continued. In 1993, Bartzke et al. introduced the

first piezoelectric sensors for conventional AFM, using a commercially available

quartz oscillator, with a micro-tip depositied by chemical vapour deposition. The

quartz oscillator was a length extensional resonator (LER), with a first resonance

of 1 MHz and an effective stiffness of � 1 MN.m�1 [116] (Figure 3.8(d)). Edwards

et al. [117] reintroduced the quartz tuning fork sensor in 1997, but by attaching

a small etched tungsten wire to one tine of the tuning fork, a sensor with a well

defined tip was produced. This added mass, however, removes the symmetry of

the tuning fork. The two tines with different resonant frequencies can no longer

share their energy so efficiently, and as a result the Q factor drops.

A year after Edwards et al. introduced the tuning fork AFM with attached

tip, Giessibl improved on the design by attaching the second tine of the tuning

fork to the substrate on which the sensor was mounted [118] (Figure 3.8(e)). This

effectively transforms the sensor into a quartz cantilever. While cantilevers do not
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have Q factors which are as high as an ideal tuning fork, this was a great benefit

over the unbalanced tuning fork, leading to this sensor being named the ‘qPlus’

sensor. qPlus senors took just two years to show true atomic resolution [61].

Hyde et al., 2004 [120], combined two tuning forks, in the qPlus configuration,

at 90 degrees to each other, with a tip in the centre to produce V-shaped quartz

cantilevers to limit other vibrational modes possible with the qPlus sensor(Figure

3.8(g)). The following year this sensor achieved true atomic resolution [121], as

did the LER sensor [119] after a 12 year wait. Improvements to the LER and its

amplifier have been commercialised as the KolibriSensor R© [122]. The qPlus and

Kolibri sensor have been compared in detail in [116].

Quartz sensors have also been used for lateral force microscopy, with the first

true atomic resolution mapping of friction achieved with a qPlus sensor in a

lateral configuration [8] (Figure 3.8(e)). Another interesting design for a quartz

LFM sensor was introduced by Mühlschlege in 2006 [123]. This consisted of a

sharp fiber probe normal to the surface held under tension against the side of a

tuning fork. Tuning fork oscillations then drive the needle laterally. The lack of

glued components allows tuning of the Q factor by changing the tension.

3.3 AFM Sensor Calibration

As previously mentioned, the spring constant of AFM sensors must be known to

obtain quantitative data from an AFM. For simple rectangular cantilevers this

can be easily derived from the Euler-Bernoulli beam equation. However, this

requires a variety of assumptions:

• The dimensions of the cantilever are known accurately and the beams cross

section is constant along the entire length.

• The beam is homogeneous and has a well defined Young’s modulus.

• The boundary conditions are perfect, both at the clamped and the free

end.

AFM sensors, however, cannot just be simply treated as a rectangular can-

tilever. Metallic coatings for optical, capacitive or piezoelectric sensing affect
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(a) (b)

(c) (d)

(i) (ii)

(e) (f)

(g)

Figure 3.8: A range of AFM sensors. (a) A silicon microcantilever with inte-
grated tip. (b) A piezoresistive cantilever. (c) A sensor specially designed for
dynamic lateral force microscopy. (d)(i) A length extensional resonator (ii) and
its integrated tip. (e) and (f) The qPlus sensor in conventional and lateral con-
figurations. (g) A double tuning fork sensor. (Images (a),(b),(e) and (f) are
reproduced from [2]; (c) from [113]; (d) from [119]; and (g) from [120])
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the homogeneity and Young’s modulus of the beam. The added mass of the tip

also modifies the cross section near the free end of the cantilever. Other factors

such as the accuracy of machining and the mounting of the sensor can affect

the boundary conditions. For these reasons, for reliable force measurements the

cantilever spring constant, wherever possible, should be measured rather than

calculated.

Direct measurements of spring constants, however, are not always practical.

Thus methods for calculating spring constants for sensors of other geometries

have been introduced [124]. Both analytical [124,125] and finite element analysis

[126] have been used to calculate other modes of sensors such as torsional modes

not arising from a simple Euler-Bernoulli model.

Three methods of calibration are commonly used: the Cleveland method

[127], thermal tuning [128], and the Sader method [129,130]. These are described

below in detail, along with variants of the methods. Comparisons, corrections,

and less commonly used methods are also discussed.

3.3.1 Cleveland Method

An ideal cantilever acts as a simple harmonic oscillator. Solving the bound-

ary conditions for an ideal cantilever to give a natural frequency and a spring

constant, however, does not agree with the resonances expected by Hooke’s law

(ω2
0 � k

m
, where, m is the oscillating mass). This results from the fact that most

of the cantilevers mass is not moving the full amplitude of oscillation. In the

first eigenmode, however, the equations can be balanced using an effective mass

of meff (See Appendix A.4.5) giving,

k � meffω
2
0 . (3.2)

Any mass, ∆m added to the end of the cantilever, however, must be treated

in full. Therefore, by adding masses to the cantilever the change in resonant

frequency allows the spring constant, k, to be calculated as

k � ∆m
1

p1{ω2
mq � pp1{ω2

0q
, (3.3)
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where ωm is the resonant frequency of the loaded cantilever. Cleveland et al. [127]

used this equation to calibrate cantilever spring constants by adding tungsten

micro-spheres of varying size to the end of a cantilever and comparing the reso-

nances to the unloaded resonance.

Variations of the Cleveland method have been implemented. Golovko et

al. [131], repeated the Cleveland method using micro-droplets of water from a

piezoelectric droplet generator. These droplets can be finely controlled, posi-

tioned accurately, and easily removed by evaporation. Shaw et al. [132] modified

the method for qPlus cantilevers by electrochemically etching the tungsten tip

to reduce the mass. Although the bare resonant frequency was left unknown, the

spring constant can be measured simply from the gradient of a ω�2
m vs. ∆m plot.

3.3.2 Thermal Tuning

From the equipartition theorem the average vibrational elastic potential energy

of the sensors is equal to 1
2
kBT . Combining with Hooke’s law gives

1
2
kxz2y � 1

2
kBT , (3.4)

where xz2y is the average deflection at the end of the cantilever. Hence, by simply

measuring the average deflection and the temperature of the sensor in thermal

equilibrium the spring constant can be calculated as

k � kBT

xz2y . (3.5)

Butt and Jaschke [96] provided a more rigorous derivation to show that the

mean deflection must include contributions from all modes of the cantilever to

produce the static spring constant, or simply the deflection for one particular

eigenmode to get the dynamic spring constant for that mode of oscillation. Stark

et al. [133] used finite element analysis to analyse the thermal noise of a V-shaped

cantilever as their extra modes complicate thermal tuning. A more detailed

discussion of dynamic versus static spring constants was provided by Melcher et

al. [134]. For rectangular cantilevers the error is � 3%.
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3.3.3 Sader Method

The Sader method [129] differs from thermal tuning and the Cleveland method

as it requires finite element analysis to solve the Euler-Bernoulli equation for the

beams normalised dimensions, to give the effective mass. This can then be used

in Equation (3.2). Sader et al. [129] also provide corrections for tips not placed

at the far end of the cantilever, gold coatings, and air damping.

This method was simplified for rectangular cantilevers by Sader et al. [130],

for use in a range of fluids into a final equation depending on the density of the

fluid (ρf ), the beam’s width (b) and length (L), the Q factor of the beam in the

fluid(Qf ) and the resonant frequency of the beam in the fluid (ωf ):

k � 0.1906ρfb
2LQfΓipωf qωf , (3.6)

where Γipωf q is the imaginary part of the cantilever’s hydrodynamic function.

The hydrodynamic function relates to the frequency dependent loading force

of the cantilever due to the fluid, a detailed discussion of which is given in

Reference [135].

3.3.4 Other Methods of Calibration

3.3.4.1 Indentation

A more direct method for measuring spring constants it to use an indenter which

loads the cantilever by applying a known force with a diamond stylus, and mea-

sures the deflection [132]. Theoretically the gradient of a displacement vs. force

plot should give the spring constant. In practice, however, other factors must

be considered, including the exact position of the loading, the angle between the

cantilever and the loading force, the machine compliance of the indenter, and

the contact compliance of the contact. This contact compliance is a factor of the

maximum force applied, the indentation hardness of the cantilever’s surface, both

the Poisson ratio and the Young’s modulus of the cantilever’s surface material

and diamond. The specialist equipment needed and the difficulties of calibrating

the indenter limit its use for AFM calibration.
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3.3.4.2 Reference Cantilever

Another direct method for measuring spring constants for AFM sensors is to use

a reference cantilever of known spring constant [136]. This requires purchasing

a cantilever with a well known spring constant which will have been measured

using one of the above methods. These are available from national standards

agencies such as NIST or NPL. The calibration procedure involves comparing

the static deflection of the AFM cantilever when pressed against a stiff surface

and the static deflection when pressed against the reference cantilever.

3.3.4.3 Tip Mass and Resonant Frequencies

Another method is to modify the boundary conditions of the Euler-Bernoulli

beam equation such that the free end feels the inertial force of the tip mass.

This has been studied in detail [137, 138], with two main effects. The dynamic

spring constant of the first mode tends towards the static spring constant for

increased tip mass, and the frequency ratios of the eigenmodes shift depending

on the ratio of tip mass to cantilever mass (m�).

Lübbe et al. [139] used this effect to calibrate sensors, by measuring the

frequencies of the first and second mode, and the dimensions of the tip. From

the dimensions they estimated the tip mass, and from the ratio of the first and

second eigenfrequencies they were able to determine m�. Combining m� with

the tip mass gives the cantilever mass (m). The ratio of the eigenfrequencies

also gives a theoretical unique value for β1L, the characteristic length of the first

eigenmode (See Appendix A.6). These are then combined with an equation from

elementary beam dynamics:

k � 3ω2
1m

pβ1Lq4 (3.7)

to give the spring constant.

Drawbacks to this method are that it requires an SEM to approximate the

tip dimensions assuming perfect geometries which are far from accurate. It also

assumes a constant profile of the beam, that the tip has no moment of inertia

and is located directly on the cantilever’s end (affecting the boundary conditions

at the free end), and that the boundary conditions at the fixed end are that of a
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perfect clamp. These assumptions are made by other methods too, however, due

to the repeated dependence of deriving one value from another through theory

these errors are difficult to quantify, especially as the relationships between the

eigenmodes’ properties are numerically derived and highly sensitive to boundary

conditions. For example, Tung et al. [140] show very extreme changes in resonant

frequencies of higher modes resulting from the moment of inertia of the tip.

3.3.5 Comparisons

Lévy and Maaloum [141], Cook et al. [142] and Ohler [143] compare thermal tun-

ing and the Sader method showing good agreement for rectangular cantilevers.

These values, however, differed significantly from the values quoted by the man-

ufacturers. These inconsistencies varied significantly for ‘identical’ cantilevers

produced on the same wafer. This highlights the need to calibrate individual

sensors. Lévy and Maaloum [141] also used V-shaped cantilevers. These showed

poor agreement between thermal tuning and the Sader method. This was at-

tributed to the Sader method’s assumption that the beam is of uniform thickness.

The Sader method and the Cleveland method were compared and shown to

agree in Sader’s original paper introducing the method [129]. This agreement

was tested for both V-shaped and rectangular cantilevers.
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Chapter 4

Calculation of the Effect of Tip

Geometry on ncAFM

Measurements with a qPlus

Sensor

“Several things are wrong here. The phrase “a moment after starting” is

entirely superfluous, for Newton’s law applies just as well a moment before

starting, or an hour after starting.”

George A. Lindsay [144]

Chapter Overview

In the first experimental chapter of this thesis we consider the sensors

used in qPlus AFM. qPlus measurements use the same calibration

procedures as other AFM measurements, these procedures generally

being derived from treating the sensor as free cantilever. Taking a

moment to consider geometry of the qPlus sensor (see Figure 3.8(e) on

page 54), the tip size is no longer negligible. This chapter investigates

the effect of this tip geometry on measurments with a qPlus sensor.

This chapter was published in a slightly modified form in the Beilstein

Journal of Nanotechnology [145].

60



Calculation of the Effect of Tip Geometry

4.1 Introduction

From imaging of individual chemical bonds [35] to subatomic imaging of the tip

apex [13], many experiments have demonstrated the ability of qPlus atomic force

microscopy (AFM) to produce unprecedented resolution. Other qPlus studies

have measured both the forces necessary to perform atomic precision manipu-

lations [33, 146, 147], and the strength of both atomic and molecular interac-

tions [12, 148]. As with all forms of AFM, image resolution and force measure-

ments ultimately depend on the structure of the last few Ångstroms of the tip

apex [2, 12, 13, 35, 146, 148, 149]. In the case of the qPlus sensor [61], however,

the tip’s macroscopic geometry cannot be ignored [140]. This is because in many

cases the length of the tip is comparable to that of the tuning fork tine which

forms the sensor.

An accurate value of the spring constant of the sensor is vital for any con-

version from raw data to meaningful force measurements [29]. Despite the oft-

quoted piconewton accuracy of qPlus measurements [33], the spring constant is

often left unmeasured and is assumed to be k � 1800 N.m�1 from the geometry of

the bare tine [61]. Other measurements of the spring constants of qPlus sensors

have produced conflicting results [132, 146], which highlights the need for more

detailed analysis. Tung et al. [140] have shown that the dimensions of conical

tips have large effects on the higher eigenmodes, suggesting careful consideration

of tip geometry is necessary for sensors operated in the the second eigenmode or

above.

Modelling the tine of the qPlus sensor as an Euler-Bernoulli beam [150] of

length L, we can write

EI
B4Zpx, tq
Bx4

� fpx, tq � ρA
B2Zpx, tq

Bt2 , (4.1)

where E, I, ρ, and A are the Young’s modulus, second moment of area, density,

and cross sectional area of the tine respectively. fpx, tq is the external force per

unit length acting on the tine, and Zpx, tq is the deflection along the length of

the tine. Separating the spatial (Φipxq) and temporal (Tiptq) components of the
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deflection for all eigenmodes, i, we can write

Zpx, tq �
8̧

i�1

ΦipxqTiptq , (4.2)

where

Ti � Ci sinpωit� δiq . (4.3)

As Equation 4.1 is fourth-order spatially we get the following general spatial

solution:

Φipxq � b1 cospβixq � b2 sinpβixq � b3 coshpβixq � b4 sinhpβixq (4.4)

where βi is the spatial frequency of the ith mode governed by

β4
i �

ρAω2
i

EI
. (4.5)

The tip connected to the tine, with mass mtip and moment of inertia about the

tip’s point of rotation Itip (A stylised I is used to differentiate between moments

of inertia and moments of area I.), will produce a resulting force of mtip
B2ZpL,tq

Bt2

and torque of �Itip
B3ZpL,tq
BxB2t

. Thus, we can write the spatial boundary conditions

as:

Φip0q � 0 (4.6)

BΦip0q
Bx � 0 (4.7)

EI
B2ΦipLq
Bx2

� Itipω
2
i

BΦipLq
Bx (4.8)

EI
B3ΦipLq
Bx3

� �mtipω
2
i ΦipLq (4.9)

as the tine is fixed at x � 0. Under the assumption of uniform tip density we can

write Itip � Jmtip, where J is a constant with units of length squared. The very

small effect of the motion, normal to the tine, of the tip’s center of mass due to

the tip rotation has been ignored as this significantly increases the complexity of

the problem for a negligible component of the motion unless the the tip’s width

becomes significant compared to its entire length, including the portion attached

62



Calculation of the Effect of Tip Geometry

to the end of the tine.

From Equations B.1 and B.2, presented in Appendix B.1, the conditions

b1 � �b3 and b2 � �b4 are apparent, and the ratio of b1 to b2 can be found from

Equation B.3. From this ratio we get the analytical form of the spatial solution

to be

Φipxq �
�

sinpβiLq � sinhpβiLq � Jβ2
i

γi
p� cospβiLq � coshpβiLqq




� � cospβixq � coshpβixq
�

�
�

cospβiLq � coshpβiLq � Jβ2
i

γi
psinpβiLq � sinhpβiLqq




� � sinpβixq � sinhpβixq
�

(4.10)

where γi is defined in equation B.5.

4.2 Effects on dynamic properties

As shown by Butt and Jaschke [96], properties of a cantilever (or tine) such as

the dynamic spring constants and the proportion of energy in each eigenmode at

thermal equilibrium can be found by considering the elastic potential energy of

the tine. This becomes particularly important if calibration is done by thermal

tuning, or if force measurements are done at higher modes [140]. The elastic

potential energy of the tine is given by

W � EI

2

» L

0

�B2Zpx, tq
Bx2


2

dx . (4.11)

Again, separating into spatial and temporal components gives

W � EI

2

» L

0

8̧

i�1

�
T 2
i ptq

B2Φipxq
Bx2


2

dx . (4.12)

In Appendix B.2 , we show that, just as for bare cantilevers [96], this reduces to

W � EI

2

8̧

i�1

T 2
i ptq

» L

0

�B2Φipxq
Bx2


2

dx . (4.13)
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For brevity we define Λi �
³L
0

�
B2Φipxq
Bx2

	2

dx. This allows us to write the average

elastic potential energy for each eigenmode as

xWiy � EI

2

@
T 2
i ptq

D
Λi . (4.14)

In thermal equilibrium, the equipartition theorem requires that xWiy � 1
2
kBT .

But, as xZ2
i pL, tqy � xT 2

i ptqyΦ2
i pLq, and including the static spring constant from

Euler-Bernoulli beam theory, kstat � 3EI{L3, we get the mean square deflection

of each mode in thermal equilibrium to be

@
Z2
i pL, tq

D � 3kBTΦ2
i pLq

L3kstatΛi

. (4.15)

The full analytical form of L3Λi{Φ2
i pLq is derived in Appendix B.3 . Combined

with solutions for Equation B.7, this could be used to measure the static spring

constant of a qPlus sensor with a well defined tip geometry, by thermal tun-

ing. However, thermal tuning of qPlus sensors with spring constants of order 2

kN.m�1 remains a challenging experimental task as the rms amplitude of thermal

excitation at 300 K is � 1.4 pm.

For well calibrated force measurements, the dynamic spring constant for

the excited eigenmode ki must be calculated. By considering the equiparti-

tion theorem again, but with the dynamic spring constant and Hooke’s law:
1
2
kBT � 1

2
xZ2

i pL, tqy ki. Combining with Equation 4.15 gives

ki
kstat

� L3Λi

3Φ2
i pLq

. (4.16)

Thus, as with the thermal tuning, and with the results given in Appendix B.3 ,

the dynamic spring constant for any eigenmode can be calculated, provided the

tip geometry is well-defined and the static spring constant is known.

The tine of a qPlus sensor was modeled as a quartz beam of length L � 2.4

mm, width w � 130 µm, and thickness tTF � 214 µm (Figure 4.1(a)). The tip

was modeled as a tungsten cylinder of diameter Dtip attached to the end of the

tine of the tuning fork. The tip protrudes H from the tine giving the tip a total

length of H�tTF. The axis of rotation is located at the centre of the join between
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tTF

H

D

d

tip

ax

L

ψ

ψ

θ

Leff

az

az

alat

(a)

(b)

Figure 4.1: (a) Diagram of theoretical model. dax is the distance from the centre
of mass of the tip to the axis of tip rotation. The tine of the tining fork is assumed
to be clamped at the left hand side. (b) Geometrical diagram of tip motion as
cantilever deforms. Note the two ψ angles are not identical in this diagram as θ
is too large due to the exaggerated amplitude of deflection, az.

the tip and cantilever. By the parallel axis theorem the moment of inertia, Itip,

can be calculated as Itip � ICOM
tip �d2

axmtip, where ICOM
tip is the moment of inertia

through the centre of mass of the tip and dax is the distance from the axis of

rotation to the centre of mass. The moment of inertia can be calculated as

ICOM
tip � mtip

�
D2

tip

16
� pH � tTFq2

12



. (4.17)

The distance to the axis is dax �
�pH{2q2 � pDtip{2q2

�1{2
. So, finally

Itip � mtip

48

�
15D2

tip � 4p4H2 � 2HtTF � t2TFq
�
, (4.18)

and thus

J � 1

48

�
15D2

tip � 4p4H2 � 2HtTF � t2TFq
�
. (4.19)

Using this model, dynamic spring constants have been calculated for the first

four eigenmodes, relative to kstat(Figure 4.2). The first two eigenmodes agree

qualitatively with experimentally verified Hamiltonian calculations by Tung et.

al. for the first two eigenmodes of conical tips [140]. The sudden rises to infinite

spring constant correspond to when a node of the vibrational mode is located at

the end of the cantilever.
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(a) (b)

(c) (d)

Figure 4.2: The ratio of dynamic spring constants kn to the cantilever static
spring constant kstat for n � 1, 2, 3, 4, plotted for a range of tip length and diam-
eters. The sudden increases in the higher eigenmodes result from nodes positioned
at the end of the tip resulting in infinite spring constants.
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4.3 Resulting lateral motion

The model presented above allows us to calculate the angle the tip is rotated

through during the oscillation as

θ � arctan

�BΦpLq
Bx

az
ΦpLq



(4.20)

� arctan

�
az
βi sinpβiLq sinhpβiLq

Ξ



(4.21)

where az is the amplitude of oscillation, and Ξ is a dimensionless parameter

defined as

Ξ �� β3
i JLm

� � cospβiLq sinhpβiLq
� coshpβiLq

�
β3
i JLm

� cospβiLq � sinpβiLq
�
. (4.22)

This has been plotted in Figure 4.3(a) for the first eigenmode with an ampli-

tude of 0.5 nm. The angle is extremely small, � p2�10�5q�, and nearly constant

for different tip geometries. However, the lateral motion at the end of the tip

will have an amplitude of

alat �
�
H � tTF

2



sin θ �

�
H � tTF

2



sin

�
arctan

�BΦpLq
Bx

az
ΦpLq




(4.23)

� BΦpLq
Bx

azpH � tTF{2q
ΦpLq (4.24)

� az

�
H � tTF

2



βi sinpβiLq sinhpβiLq

Ξ
(4.25)

The amplitude of lateral vibrations has been plotted as a function of H in Figure

4.3(b). This has been plotted for Dtip � 50 µm, as the angular dependence

on tip diameter is relatively small. It is apparent that this lateral motion can

be significant compared with the normal motion, even for relatively short tips,

reaching an equal amplitude at H � 1.389 mm. We can define a, the total

amplitude of oscillation at the apex, as

a �
b
a2
z � a2

lat . (4.26)
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Figure 4.3: Effect of tip geometry on tip movement for an arbitrary oscillation
amplitude. (a) Angle of tip rotation plotted for varying tip sizes. (b) Amplitude
of lateral motion of the tip apex plotted (solid line) for varying lengths with a
tip diameter of 50 µm. Circular data points represent experimentally measured
values. Angle of resulting motion, ψ of the tip apex is also plotted (dot-dashed
line). The dashed lines represent when the lateral amplitude equals the normal
amplitude. (c) Schematic of experimental setup for measuring both normal and
lateral motion of the qPlus sensor.
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Defining the angle of tip motion as ψ, where ψ � 0 corresponds to oscillation

normal to the surface and ψ � 90� to oscillation parallel to the surface, we get

ψ � arctan

�
alat

az



. (4.27)

It is important to note that as the angle of tip rotation is so small, the motion of

the tip apex should not be thought of as circular motion. Instead the tip apex is

moving over a linear trajectory at an angle ψ to the surface, with no detectable

rotation.

4.3.1 Experimental validation

The resulting lateral motion was measured experimentally for Omicron Nan-

otechnology qPlus sensors excited mechanically by a piezoelectric actuator lo-

cated under the qPlus sensor (Figure 4.3(c)). The actuator was driven by a

digital lock-in amplifier (Perkin Elmer 7280 DSP). The deflection of the qPlus

sensor was measured using a laser Doppler vibrometer (Polytec OFV-522) con-

nected to the lock-in amplifier. The qPlus sensor and piezoelectric actuator was

mounted on an encoded translation stage, allowing deflection measurements to

be recorded in multiple positions on the sensor. A 45� mirror positioned near the

qPlus sensor allowed lateral deflection measurements of the tip to be made with-

out remounting the sensor or interrupting the excitation, thus limiting changes

to the transfer function.

Tungsten wire of 50 µm in diameter was attached to the end of the bare

qPlus sensor with EPO-TEK H21D electrically conductive silver epoxy. These

were then etched to different tip lengths using potassium hydroxide.

For measurements of both normal and lateral motion the translation stage

was used to collect multiple deflection readings at different positions along the

sensor and tip respectively. These were then extrapolated to get the deflection

at the end of the sensor and tip despite poor reflectivity at both regions of the

sensor not covered by gold electrodes and the tip apex where it was etched.

The ratio of lateral to normal motion was measured for six sensors. Tip

lengths were measured with an optical microscope and an encoded translation
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stage. These results are presented in Figure 4.3(b). Four of the six sensors show

good agreement with the theoretical curve. The two remaining sensors show

significantly higher lateral motion. This is most likely due to the elasticity of

the epoxy used to connect the tip to the sensor allowing some rotation of the tip

relative to the end of the sensor. These results confirm the prediction of large

lateral motions on qPlus sensors.

Lateral amplitudes of this magnitude, at first glance, could be thought to

limit the resolution of the AFM. However, it is important to consider that the

lateral motion is perfectly correlated to the normal motion, unlike lateral motion

resulting from torsional modes of the cantilever which will oscillate with much

higher frequency causing blurring of the image. Simulated images and spectra

can be generated to theoretically calculate the effect, however one must care-

fully consider both the amplitude calibration and the methods for calculating

frequency shifts from a potential before continuing.

4.3.2 Effect on frequency shift

Under the assumption that the direction of motion of the tip apex is parallel to

the motion of end of the cantilever (or tine) it can be shown [2] that

∆f � � f0

ka2
z

xFtsZpLqy , (4.28)

where ZpLq � az cospω0tq, and Fts is the force due to the tip sample interaction.

In the case that the motion of the tip is not parallel to the cantilever’s oscil-

lation, more care must be taken. Equation 4.28 can be derived from Newton’s

second law in the reference frame of the end of the cantilever

meff
d2ZpLq

dt2
� �k1ZpLq � FC

ts pZpLqq , (4.29)

where FC
ts is the force due to the tip-sample interaction as experienced at the end

of the cantilever, and meff is the effective mass of the tip and cantilever. Thus,

to modify Equation 4.28 to include lateral oscillations the amplitude terms will

remain as az, as this is the oscillation amplitude of the beam. However, the

tip-sample force must be modified from the interaction at the tip apex to the
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resulting force at the end of the cantilever.

For an amplitude of az, the end of the cantilever is angled by θ, which can be

treated as circular motion about an effective pivot at a distance of Leff � az{ tan θ

from the end of the cantilever. Combining with Equations 4.23 and 4.27, and

equating sin θ to tan θ due to the very small angle we can show

Leff � H

tanψ
. (4.30)

Thus, the bending can be described by a torque of

τB � H

tanψ
FC

ts . (4.31)

In the reference frame of the tip apex the distance to the effective pivot is H{ sinψ

by simple geometry, and the measured tip sample force Fts is perpendicular to

the vector from the tip apex to the effective pivot such that

τB � H

sinψ
Fts . (4.32)

Hence,

FC
ts �

Fts

cosψ
, (4.33)

and so the frequency shift can be calculated as

∆f � � f0

ka2
z

B
Fts

cosψ
ZpLq

F
. (4.34)

In the case that the lateral force is zero,

Fts � F z
ts cosψ (4.35)

where F z
ts is the z component of the tip-sample force. Thus, if the calibrated

amplitude of the oscillation is az, rather than the total amplitude of oscillation

at the tip apex a, then ∆f is equal to the expected result for tip motion parallel

to the cantilever oscillation. However, if lateral forces are present, then these

will also affect the frequency shift.
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4.3.3 Effect on calibration

Amplitude calibration in qPlus AFM is usually performed by measuring the z

extension needed to maintain a constant value for ∆fa
3{2
z [61]. It can be shown

that for large amplitudes, by inserting

Ftspqq � �Cq�n (4.36)

into Equation 4.34, where q is the position of the tip apex relative to the surface,

that

∆f � f0C?
2π cosψka

3{2
z dn�1{2

I1pnq . (4.37)

This follows from using the force conversion in Equation 4.33, and applying the

method from [151]. I1pnq is an integral, dependent on n, but constant for the

experiment, and d is the point of closest approach.

To maintain a constant ∆fa
3{2
z , the point of closest approach must be kept

constant. The recorded z extension to meet this condition will be equal to the

change in az. Thus, the calibrated amplitude is not the amplitude of the complete

motion tip apex, but az, the z component of this amplitude.

4.3.4 Effect on imaging and spectroscopy

Simulated AFM data were produced by creating a Lennard-Jones potential for a

simple 2D square lattice, with a lattice constant of 3 Å, and a minimum potential

of -3 eV at a distance of 0.5 Å (Figure 4.4(a)). For simplicity the simulated AFM

was run in constant height mode to collect ∆f images. These were calculated

using Equation 4.34. Images were collected for both tips oscillating normal and

at 45� to the sample (i.e. a qPlus sensor with a tip length of 1.389 mm). An

oscillation amplitude of az � 0.5 Å was used for both motions (Figure 4.4(b)

and (c)), thus mimicking a calibration performed using the method described in

Section 4.3.3. This leads to a total amplitude of a � 0.707 Å, for the angled

motion of the finite tip.

Qualitatively the images for both angled and normal tip motion look almost

identical, and there is no noticeable reduction in resolution. Quantitatively the

difference between the scans (Figure 4.4(d)), is �2.5 Hz for images with a ∆f
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Figure 4.4: Effect of tip motion on imaging for an oscillation amplitude of az � 5
Å. All image widths are 2 nm�2 nm. (a) shows the model surface. (b) and (c)
theoretical ∆f images for constant height scans with tip motion normal and at
45� to the sample surface respectively. Lateral motion of the tip in (c) is aligned
with the x axis of the scan as indicated by light blue arrow in (a). (d) is the
difference between scans (b) and (c).

range of approximately 34 Hz, giving rise to a relative error of less than 8%.

As the model potential has only one decay power rather than a combination

of long range and short range forces, the relative changes between angled and

normal oscillations are largely independent of the amplitude of oscillation. The

change in sensitivity which arises from the different amplitudes will affect the

absolute values of the frequency shift. As the simulation is not subject to exper-

imental noise, however, limiting the frequency resolution, these absolute values

are of little interest.

Following this, simulated z spectroscopy measurements were taken over three
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Figure 4.5: Effect of lateral tip motion on spectroscopy for an oscillation am-
plitude of az � 5 Å. Simulated spectroscopy measurements taken at three points
as marked on Figure 4.4(a). These show that only when the tip apex moves
through significant lateral forces does the angle of scan have a noticeable effect
on z spectroscopy.

points (Marked on Figure 4.4(a).) for both images. The results, presented in

Figure 4.5, show that for points 1 and 3, where the lateral force is near zero

throughout the tip oscillation, the spectra align with a relative error of less than

3% at the point of highest interaction, as predicted in Section 4.3.2. However,

for point 2 where the lateral force is significant as the tip moves diagonally over

the adjacent atom there is a difference of 23% between the curves at the point

of highest interaction.
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4.4 Conclusion

We have shown that using a simple Euler-Bernoulli model for the tine of a qPlus

sensor, and inserting boundary conditions which account for both the moment

of inertia and mass of the tip, we were able to derive analytical results for a

range of dynamic properties. When the moment of inertia of the tip is zero

our results agree with previous results found in the literature for point mass

weighted cantilevers [138]. After including the moment of inertia our results are

in agreement with Tung et al. [140].

Further analysis of our model revealed large lateral motion at the tip apex

for long tips. Due to the methods used for calibrating amplitude in AFM, this

leads to no change in the z-component of the amplitude, but instead increases

the overall amplitude of motion at the tip apex. If the lateral force is near

zero throughout the tip oscillation then this has minimal effect on either imag-

ing or spectroscopy measurements, thus explaining the ability of qPlus AFM

to gain both sub-Ångstrom spatial resolution, and excellent agreement to theo-

retical force measurements [12]. However, the lateral motion has a large effect

on any data when lateral forces are present, requiring both careful analysis of

experimental results and knowledge of the tip geometry.
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Chapter 5

3D force mapping of C60–C60

interactions

“If you try and take a cat apart to see how it works, the first thing you have on

your hands is a nonworking cat.”

Douglas Adams

Chapter Overview

In the last chapter we discussed the inherent coupling of lateral forces

into ncAFM measurements with a qPlus sensor caused by the geom-

etry of the tip. In this chapter we present the preliminary findings of

work which uses grid spectroscopy measurements with a well defined

tip and sample structure to directly measure and correct for these

forces.

5.1 Introduction

The Girifaclo potential [87] has been shown experimentally [12] to accurately

describe the interaction potential landscape between two C60 molecules. With

functionalised C60 tips it is not only possible to measure the orientation of the C60

tip, but that of also the C60 adsorbed on the surface [91]. This results in a well

known tip-sample geometry and tip-sample potential. By using atom-tracking-

corrected grid spectroscopy [41] this potential can be mapped experimentally in
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3D. The Girifalco potential for two C60 molecules is

Uprq � � 602A

12d6
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90d12
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2
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, (5.1)

where s � r{d, d is the diameter of a C60 (7.1 Å), and A and B are constants

calculated from the energy of a C60 computed using experimental results for

the lattice constant and the heat of sublimation. Clearly due to the analytical

form of the Girifaclo potential the expected symmetry of the potential is radial.

However, as Chapter 4 has shown, coupling of the lateral forces is possible in

AFM due to the length of the tip causing tip motion which is no longer normal to

the surface. This has the potential to distort the symmetry of the experimental

results. Depending on the adsorbtion site of the C60 on the tip, tip-asymmetry

could also cause asymmetric results.

If the tip length is a significant fraction of the beam length of the sensor

the angle of the tip’s trajectory can be large, approaching 45� for tip lengths

� 60% of the beam length. While the tip trajectory angle has been measured

experimentally, and the effect on AFM measurements has been calculated, no

measurements have been performed which directly assess the effect of this motion.

Previous ∆fpzq grid spectroscopy measurements on C60 with an assumed Cu

tip have shown asymmetry [81], however without detailed knowledge of the tip

termination it is impossible to know if this results from asymmetry of the tip.

Asymmetry has also been noted in repulsive imaging of pentacene [35] with a

known CO termination, however this asymmetry has been attributed to the angle

of the CO molecule.

C60-terminated tips allow a well known tip structure, which facilitates an

accurate assessment of the asymmetry arising from the tip trajectory. In this

chapter we combine C60–C60 grid spectroscopy of this type with theoretical AFM

data generated from the Girifalco potential to not only measure but also correct

for such asymmetry.
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5.2 Calculation of sensor properties

Experiments in this chapter were performed with the same qPlus sensor with

two different length tips to vary the size of the lateral motion. The shorter tip

was produced by etching the tip in 1M NaOH. For both tips the apex trajectory

was calculated using the theoretical results from Chapter 4.

5.2.1 Measuring tip geometry from optical images

To determine the tip geometry backlit optical microscope images of the tip and

the end of the tine were first acquired. These were read into MATLAB, binarised

and reduced to an outline. Pixels in outline are listed as x-y coordinates and are

divided up as follows:

• Top of the top tine

• Bottom of top tine

• End of tines, where flat - not used for calculations on shorter tip

• Left side of tip, where flat - not used for calculations on shorter tip

• Right side of tip, where flat - not used for calculations on shorter tip

First order polynomials were then fitted to each of these sets of co-ordinates to

get gradients m and intercepts c in units of pixels. These fitted lines are shown

in Figure 5.1.

5.2.1.1 Conversion from pixels to real units

Any measurements from the optical micrographs is in pixels, and so we must

use known dimensions to calculate a conversion from pixels to real units. The

equation for distance, d between two parallel lines

d � |c1 � c2|?
m2 � 1

(5.2)

was used for the lines fitted either side of the tine to get the width of the tine

in pixels. Two values are calculated: one using m from the fit for the top of the
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(a) (b)

Figure 5.1: a) Original tip. Red lines mark the sides of top tine, the green line
the end of the tine, magenta lines the sides of the tip, blue line the centre line
of the tip (calculated from magenta lines), and red asterisk the end of the tip. b)
The same sensor as in (a) after tip is etched shorter. Red lines mark sides of
the top tine, and the red asterisk the end of the tip.

tine, another for m from the bottom. The same procedure is used with the fits

for the sides of the tip, to get the width of the tip in pixels. As the diameter

of the tip, dtip, is known to be 50 µm, and the width of the tine is known to

be 214 µm we can calculate four measured conversions for pixels to µm for the

image. This is then averaged for a final value. A maximum error method is used

to estimate the error on this value as only four, non-independent, measurements

are available. This gives a value of 2.37�0.04 µm/pixel.

For the shorter tip (Figure 5.1(b), taken on a different microscope due to

equipment maintenance), the sides of the tip have also been etched during the

process of etching to produce a shorter tip. As such measurements of the width

of tip cannot be calibrated to a known values. In light of this only the top and

bottom tine are used to calculate the conversion from pixels to µm. For this a

conservative error estimate of 5% (compared to 1.6% for the other image) is used

due to the lack of multiple corroborating measurements. This gives a value of

2.0�0.1 µm/pixel.

5.2.1.2 Measuring the tip offset

The tip is not mounted directly on the end of the tine. To measure the offset

of the tip we use Figure 5.1(a). The gradients and intercepts for the left and

79



3D force mapping of C60–C60 interactions

right-hand sides of the tip were averaged to give an equation for the central line

of the tip. The intercept of this line with the line for the top of the tine was then

taken as the position of the tip attachment. The intercept between the line for

the top of the tines and the line for the end of the tines was used to get a position

for the end of the tine. The distance between these intercepts was calculated to

be 123�2 µm.

5.2.1.3 Tip angle

The angle of the tip relative to the beam is not significant and is therefore not

accounted for in later calculations. For completeness this is calculated from

Figure 5.1(a). The angle between the tip and the tine is calculated for four

possible combinations of measured lines for top or bottom of tine with left or

right of the tip. Again, a maximum error method was used to estimate error

bars. This gives an angle of (3.81�0.09)�. This angle is only known in the plane

of the optical image, thus the small error bar is not really meaningful. We quote

this angle as � 4�, and thus a cosine error is less than 1%.

5.2.1.4 Tip length

As explained in Section 5.2.2, the critical measurement for this experiment is

not the length of the tip wire, but the shortest distance from the tip apex to the

top of the tine. As the tip is close (� 4�) to perpendicular to the beam of the

tuning fork we will still refer to this value as tip length. For this the end of the

tip was located by using the the final pixel in the binarised image. The shortest

distance from this pixel to the line defining the top of the tine is used as the tip

lengths. This gives apex to beam distances of 487�8 µm and 231�12 µm for the

long and short tips respectively.

5.2.2 Calculating angle of apex motion from tip geometry

For this we can take advantage of some properties of the sensor to simplify the

calculation. As apparent in Figure 4.3, for small changes in moments of inertia

the gradient of the end tine is nearly constant. Therefore, a small shift of the

tip from the apex to the end of the tine should have little effect on the mode
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shape. Thus, we can use the mode shape as though the tip was located at the

end. This saves very complex calculations for a beam loaded at an arbitrary

location. Secondly, the gradient of the tine is approximately constant at the free

end of the tine, so for a tip placed only a small distance from the free-end the

calculated free-end gradients can be used. To convert from free end gradient to

the angle of the tip apex the distance from the tip apex to the top of the tine

is needed, as the tip wire is angled � 4� we refer to this value as the tip length.

As such, the angle of the tip apex can be calculated using the expressions from

Chapter 4.

Using the length and diameter of the tips we calculate apex trajectory angles

of (20.3�0.3)� and (11.7�0.4)� for the long and short tips respectively. These

quoted uncertainties relate only to the uncertainty in the tip length and do not

include other uncertainties arising from the mechanical properties of the tuning

fork or the slightly modified geometry due to the offset tip placement.

For the qPlus sensor used, manufactured by Omicron Nanotechnology, the

angle with which the tuning fork is mounted relative to the surface is (5�). In-

cluding this the final angle of the tip apex motion relative to the sample plane

is 25.3� and 16.7� for the two tip lengths.

As well as the zenith angle of the tip trajectory relative to the plane of the

sample, we also need the azimuth angle. For this we use the angle of rotation

of the scan as recorded by our SPM, combined with the relative direction of the

sensor mounting.

5.2.3 Other experimental considerations: spring constant

and sensitivity

The spring constant of the qPlus sensor can be calculated using Euler-Bernoulli

beam theory as

k � 3EI

L3
, (5.3)

where E is the Young’s modulus, I is the second moment of area, and L is the

length of the beam. The length used is the distance from the base to the point

of tip attachment: L � p2400 � 123q µm. A value of 76.5 GPa was used for the
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Young’s modulus of quartz [152]. The second moment of area was calculated as

I � wt3

12
, (5.4)

where t � 214 µm and w � 130 µm are the width (z-direction) and thickness of

the beam respectively. This gives a value of k � 2064 N/m at the tip position,

and k � 1763 N/m at the end of the tine.

This method is internally consistent with the model used to estimate the tip

angle. A range of studies, however, have produced different measurements for the

spring constant of quartz tuning forks. Shaw has statically measured the spring

constant of tip free Omicron qPlus sensors using an indenter and 150 µm from

the end of the tine found k to be 2639 N/m [153], which extrapolates to k � 2175

N/m at the end of the tine. Tung et al. have fitted measured mode shapes of

qPlus sensors of the same geometry to the general solution for a cantilever beam

to the estimate spring constant at the free end [140]. These measurements, which

were performed on three sensors with varying tip lengths and a fourth with no

tip range from k � 1890 � 2379 N/m, showing a wider range of variation than

is expected for that caused by the tip. These variations could be explained by

the mounting of the tuning fork, which has been shown to cause large variations

in spring constant [154]. As such we will average the four results from Tung,

the results of Shaw, and the geometric result to get a value of k � 2022 N/m at

the free end. Extrapolating to 123 µm from the free end yields a final value of

k � 2368 N/m.

From the standard deviation of the above values the relative spread in spring

constant for qPlus sensors can be estimated to be of order 11%. Thus, we use a

spring constant as k � 2370� 260 N/m for all calculations.

Using the Giessibl normalised frequency shift method [61] we calculated the

piezoelectric sensitivity of the qPlus sensor in situ after experimental results were

taken. Our results give an inverse sensitivity of 5.35 � 0.17 nm/V for with long

tip and 4.42 � 0.14 nm/V for the short tip. The increase in sensitivity (V/nm)

for the shorter tip results from the change in strain due to the the modified mode

shape as predicted in Tung et al. [140]. It is important to note, as discussed in

Chapter 4 that the distance here is the z component of the tip apex amplitude.
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Figure 5.2: Tip convolution imaging showing C60 tip on the Si (111) 7 � 7
reconstruction in AFM. (a) Shows a constant ∆f image (set-point 25.5 Hz). (b)
Shows a constant height image. Blue dashed lines are to guide the eye to the unit
cell of the reconstruction. Separation between faulted and unfaulted halves are
marked by green dashed lines. Note how the tip contrast differs above adatoms
in the faulted and unfaulted halves of the cell, the increased reactivity of the
faulted half [155] has been used to identify the halves (A green “F” marks the
faulted and a “U” the unfaulted half). For both images the z-component of the
amplitude Az � 268 � 9 pm. No grid spectroscopy was performed with this tip
termination.

5.3 Measuring 3D potentials

For the experimental work we used an Omicron LT AFM/STM at a temperature

of 77 K. Atom-tracking-corrected grid spectroscopy was performed with external

control electronics designed by Rahe et al. [41] interfacing with the Omicron

control electronics via the MATE scripting interface. The sample was a Si (111)

wafer, flash annealed to produce the 7� 7 reconstruction. A low coverage of C60

was then evaporated onto the surface. The qPlus sensor was first conditioned to

show atomic resolution in dynamic STM (dSTM) by controlled tip crashes into

the Si surface, producing what is most likely a Si terminated tip. Controlled tip

crashes above C60 molecules, or high current scanning over C60 molecules was

used to produce C60 terminated tips.

To check for C60 termination, dSTM images of surface-adsorbed C60 were

taken showing molecular orbital convolution described in Lakin et al [91]. A
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second check was performed by spectroscopy measurements above the centre of

a C60. These are expected to accurately reproduce the Girifalco potential. The

accurate reproduction is expected even for a tip apex oscillating at an unknown

angle but treated as oscillating vertically due to the lack of significant lateral

forces at this position, as described in Section 4.3.4. Finally, ncAFM images of

the Si adatoms can be taken to verify the orientation of the C60 tip, see Figure

5.2. These ncAFM images, however, require very high tip sample forces which

can often change the tip apex.

As for this work the precise orientation of the C60 on the tip is not crucial, in

that we are interested in the radially symmetric Girifalco potential, the ∆fpzq
grid spectra were recorded before adatom ncAFM images. ncAFM images were

performed after the ∆fpzq grid spectroscopy for completeness.

5.3.1 Processing grid spectroscopy measurements

Using reference ∆fpzq spectra, taken on a molecule-free region of the Si(111)

7� 7 surface just before the ∆fpzq grid spectroscopy recordings were taken, the

Girifalco contribution to the frequency shift was calculated using the following

method. Taking only the points in the last (furthest from surface) � 0.6 nm

of the each spectra and the corresponding points from the reference spectrum,

the experimental z-offset between these spectra was calculated by using a least

squares method to find the offset which minimised the difference. After applying

this calculated offset to the z-axis of the experimental curve the interaction

frequency shift is calculated for measurements which overlap on the new z axis.

This processing is shown graphically in Figure 5.3. Finally a grid is constructed

from all measurements at z values which appear in all interaction ∆fpzq spectra.

The experimental potential is then calculated by numerical integration of

each interaction ∆fpzq spectrum using the Sader-Jarvis method [29] under the

substitution described in Section 2.2.3.3:

Upzq � 4k

f0

» 8

0

�
u3 �

c
A

16π
u2 �

c
A3

2

�
∆fpu2 � zqdu , (5.5)

where f0 is the centre frequency of the phase tracking loop (see final paragraph
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(a)
(b)

(c)

(d)

(e)

Figure 5.3: Graphical explanation of spectra processing. a) Experimental spec-
trum (green) and reference spectrum (blue). b) Spectra cropped to just the tail
end. c) Least squares fitting is used to determine the offset of the experimental
spectra with respect to the reference. d) This offset is applied to the full experi-
mental spectrum. d) The reference spectrum is subtracted from the experimental
spectrum at all z which appear in both spectra to produce the interaction spectrum.

of Section 2.3.7.2), A is the set-point amplitude, and u is a dummy integration

value.

5.3.2 Simulating grid spectroscopy measurements

For simulated grid spectroscopy measurements the Girifalco potential is calcu-

lated for a grid of points slightly larger than the experimental grid, to allow for

simulated tip oscillation. This grid is then differentiated along each dimension

to calculate the force in the x, y, and z directions. These force vectors are then

combined to give the force, Fts, in the direction of the calculated tip trajectory.

Next, ∆f is calculated using Equation 4.34 in the form

∆fprmq � � f0

kA2
z

B
Ftsprm � qpθqq

cosψ
q1zpθq

F
, (5.6)

where Az is the z components of the oscillation amplitude, rm is the point of
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closest approach, φ is the zenith angle of the tip apex motion relative to the

surface, θ is the phase angle of the oscillation, and xy denotes the average over

one oscillation (θ � 0 Ñ 2π). Here q1z � Az cospθq is the oscillation z-position

relative to the centre of oscillation, and qpθq � ûrAtp1 � cospθqq the vector

position of the tip apex relative to the point of closest approach, where At is the

full amplitude of tip apex, and ûr is a unit vector in the direction of the tip apex

motion during oscillation away from the surface.

The average in Equation 5.6 is calculated over 100 points. As the force has

not been calculated at the exact position of all 100 points linear 3D interpolation

of the calculated force grid is used. This calculation is repeated for all positions

rm required in the simulation. The final simulated ∆fpzq grid is then processed

identically to the experimental equivalent.

5.3.3 Correcting grid spectroscopy measurements

To correct the calculated experimental potential for the effects of tip angle we

consider that if each spectrum had been taken in a direction parallel to the tip

motion the force can be extracted by inverting equation 5.6. Thus, for each

measured ∆f point we interpolate all ∆f values along a path parallel to the

calculated tip apex motion, with the same spacing as the original z spacing for

∆f measurements, up to the final z height of the grid. This interpolation is

expected to be a reasonable estimate for all positions lying within the grid. For

positions outside the grid the x–y coordinates are replaced with the closest x–y

coordinates within the grid. This correction is thus of poor accuracy near the

bottom of the side of the grid where most interpolated points fall outside the

grid.

To deconvolve the force from these interpolated ∆f measurements we use an

equation analogous to the Sader-Jarvis method but to deconvolve Equation 5.6:

Upzq � 4k cospψq
f0

» 8

0

�
u3 �

c
Az
16π

u2 �
c
A3
z

2

�
∆fpu2 � zqdu . (5.7)
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Figure 5.4: Slices through the centre of the 3D experimental C60–C60 potential
in x–y and y–z planes. (a) and (d) show simulated experiments with a tip-apex
oscillating in the direction shown, with a z amplitude of Az � 268 � 9 pm. (b)
and (e) show the experimentally measured potentials. (c) and (f) are the result
of applying the correction for tip-apex oscillation angle to (b) and (e). Colour
scale is consistent along rows.

5.4 Results and Discussion

Figures 5.4(b) and (e) show slices through the centre of a the 3D potential

measured in a grid spectroscopy measurement taken over a C60 molecule with

a C60 tip termination. The direction of the lateral motion is 94� relative to

the x axis,1 and the resulting full tip apex oscillation direction has been noted

1We know image rotation relative to the normal scanner motion from the data files. The
direction of the normal scanner motion with respect to the coarse motors has been measured
by taking a sequence of large images with coarse motor steps taken between images. Finally,
the orientation of the sensor with respect to the coarse motors has been measured by recording
a video of the sensor moving as the coarse motors are moved a few millimeters. These videos
were compared with technical drawing suppled by Omicron Nanotechnology.
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with arrows in Figure 5.4. Figures 5.4(a) and (d) show the potential calculated

from simulated spectra with an angled apex oscillation as described in Section

5.3.2. It is clear from comparing the simulated with experimental data that the

results are in excellent agreement, not only in shape but in magnitude, as the

colour scale is consistent along each row. By applying the correction described in

Section 5.3.3, we generated Figures 5.4(c) and (f). From the direction of the tip

oscillation it is important to note that at the right hand side of (f) the correction

is not expected to be valid as the most of the interpolated points lie outside the

measured grid and were replaced with the closest values inside the grid. It is

clear, however, that the correction has produced a significant improvement of

the potential.

Taking slices in z (Figure 5.5) through the lower region of potentials pre-

sented in Figure 5.4 we can further see the similarity between experiment (Fig-

ure 5.5(b,e,h,k)) and theory (Figure 5.5(a,d,g,j)), and the effect of the correction

(Figure 5.5(c,f,i,l)). Here it is especially clear that, as expected, the correction

does not perform well on the top side of the grid. Another observation which

stands out is that the experimental work has a much slower onset of the repul-

sive regime of the potential. This effect has been seen before in measurements of

the Girifalco potential and is attributed to relaxation of the tip and the surface

under the applied force. The z scale used here is chosen such that at the centre

point of the grid the minima in the analytical Girfalco potential align with the

minima in the experiment. The centre of the grid is located as the point where

the original and corrected experimental potentials best align.

To quantitatively confirm the agreement between the original and corrected

experimental potentials and the Girifalco potential in Figure 5.6 we plot the

potential at three points. Again the only fitting here is the aligning of the

minima for the central point (Figure 5.6(b)), for the offset points the analytical

potential is calculated as

Upzq � Up
a
r2 � yoffq, (5.8)

where yoff is the magnitude of the offset from the centre. The experimental

and analytical potential minima still align well without any further fitting. The
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Figure 5.5: Slices through the 3D C60–C60 potential in the x–y plane at a range
of heights. The black arrow represents the direction of the lateral component
tip-apex oscillation during the motion towards the sample, the lateral amplitude
Alat � 127 � 4 pm. The first column is the shows simulated experiment. The
second and third column show the experimentally measured potential in original
and corrected form respectively. Colour scale is consistent along rows. All images
are 0.75� 0.75 nm2.
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Figure 5.6: Individual spectra measurements of C60–C60 interaction potential.
The grey error bar for the corrected potential only includes the contribution from
the uncertainty in the spring constant of the sensor. (a) Spectra from a negative
y offset of 1.7 Å from centre of C60, shows the corrected potential aligns well with
the analytical Girifalco potential. Inset shows the position of the three spectra on
the molecule. (b) shows the potential at the centre of the C60, corrected and raw
spectra align well as expected. (c) Spectra from a positive y offset of 1.7 Å from
centre of C60, correction does not perform as well as for a negative offset due
to using interpolated values which fall outside the measurement grid. For all
measurements Az � 268� 9 pm.

uncertainty presented in Figure 5.6 results from the one standard deviation un-

certainty in the spring constant, other uncertainties arising from other factors

such as the sensitivity are not included. For the central point the agreement be-

tween the magnitude of the minima in the experimental and analytical potentials

is well within the experimental uncertainty. Further the corrected and analyti-

90



3D force mapping of C60–C60 interactions

x−position (nm)

z−
po

si
ti

on
 (

nm
)

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

y−position (nm)
0 0.2 0.4 0.6

−0.4

−0.3

−0.2

−0.1

0(a) (b)

(c)

E
ne

rg
y 

(e
V

)

Figure 5.7: A second measurement of C60–C60 interaction potential for a different
surface molecule and tip termination. (a) and (b) show slices in the x–z and y–z
planes respectively. (c) is a slice in the x–y plane taken at the lowest recorded z
position. Colour scale is consistent throughout the figure. For all measurements
Az � 268� 9 pm

cal potential show good agreement for a negative offset in the y-axis, while the

original experimental result is unreliable due to the tips motion. Again we see

that the correction does not perform well for a positive offset in the y-axis for

reasons previously explained. We notice, however, that the correction while not

complete does represent a significant improvement over the original potential.

The results are consistent with a second grid spectroscopy measurement taken

over a different C60 on the surface. Between experiments a change in contrast

consistent with a tip change was observed and the tip was then modified until
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(a) (b) (c)

(d)

(f)(e)

Figure 5.8: (a) ncAFM of surface C60 used for grid spectroscopy measurements
presented in Figure 5.7. For areas where surface is visible the ∆f set-point is -38
Hz this is lowered to -9 Hz where the C60 molecule is to raise the tip height by � 6
Å. (b) dSTM image of C60 molecule in (a) showing sub-molecular contrast similar
to (c). (c) and (d) are reproduced from Lakin et al. [91], showing simulated STM
images of a C60 with a C60 tip termination for different orientations. (e) ncAFM
of surface C60 used for grid spectroscopy measurements presented in Figures 5.4–
5.6. For areas where surface is visible the ∆f set-point is -36.5 Hz this is lowered
to -9.5 Hz where the C60 molecule is to raise the tip height by � 5 Å. (f) dSTM
image of C60 molecule in (e) showing sub-molecular contrast similar to (d). Scale
bars are (a): 6 Å, (b) 15 Å, (e) 8 Å, and (f) 15 Å. For (a), (e), and (f)
Az � 268� 9 pm for (b) Az � 1 510� 50 pm.

resolution consistent with a C60 termination was again visible. These results,

presented in Figure 5.7, were taken with the same rotation as the data presented

in Figures 5.4 and 5.5. It is clear that the same symmetry is visible in the repeat

measurement.

92



3D force mapping of C60–C60 interactions

To verify the termination of the tip in these experiments we could point to the

agreement between experiment and theory for the potentials. Further evidence

is however gathered via imaging. Figures 5.8(b) and (f) show dSTM images of

the surface C60 with the tip termination used for the grids shown in Figures 5.7

and 5.4 respectively. These images show strong agreement to theoretical C60–C60

STM images from Lakin et al. [91], reproduced in (c) and (d). (c) corresponds to

the interaction between C60 molecules where a pentagon face on one is closest and

a single carbon atom on the other, (d) corresponds to a double bond and closest

to a single carbon atom. AFM measurements in 5.8(a) and (e) show they are

taken with the same tip and surface molecules as (b) and (f) respectively. The ∆f

set-point is lowered significantly over the region with the C60 to allow imaging

of the surface and molecule in the same image. The image is also flattened

line by line rather than with a plane otherwise the significant z change, due to

the modification of the set-point, masks all contrast. Neither image shows sub-

molecular contrast which we attribute to the C60 molecule having a single carbon

atom down. This is consistent with the orientations suggested from dSTM. We

also note the feature in (e) on the surface, this could be contamination on the

surface, it could also however result from a tip double. As these features are

separated by almost 2 nm in the x–y plane and by a further 5 Å in z this

possible tip double should have no effect on the force spectra.

After the tip was etched shorter further experiments with the same sensor

were performed. Due to the macroscopically blunt tip (See Figure 5.1), how-

ever, these experiments were significantly more difficult to perform. One grid

spectroscopy measurement was performed, however, during the analysis of the

results it became clear that the spectra taken prior to the grid show a signifi-

cantly reduced potential to what would be expected for a C60–C60 interaction

(Figure 5.9(e)). By comparing dSTM images (Figures 5.9(a–c)) with this tip

termination and a C60 we get good agreement to an image from Lakin et al. [91]

for an s-wave type tip (Figure 5.9(d)). This gives further evidence that the tip

was not C60 terminated. Furthermore the extraction of the potential is difficult

due to minor tip changes which are not visible in the raw ∆f data but become

visible when the background is subtracted. We note however that asymmetry in

the expected direction is present in the background subtracted ∆f data (Figures
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Figure 5.9: Identification of a tip not terminated with a C60 molecule. (a) dSTM
image of surface C60 molecule shows sub-molecular contrast. (b) and (c) are
zooms of (a) with colour scale adjusted to better identify contrast in molecule.
(d) A simulated STM image of a C60 with an s-wave type tip from Lakin et
al. [91], showing similar structure to (a)–(c). (e) Potential from ∆f spectrum
taken above the centre of C60 before grid measurement. These data show a much
reduced potential. (f) and (g) show x–z and y–z plane slices through the back-
ground subtracted 3D ∆f data. Asymmetry shows same orientation as Figures
5.4 and 5.7, however, due to the unknown tip termination this could arise from
an asymmetric tip. For all measurements Az � 221� 7 pm.

5.9(f–g), but due to the unknown tip termination and the known minor contrast

variation during the measurement we are not confident assigning this asymme-

try to the motion of the tip apex. As such, further experiments with varying tip

lengths are required to confirm that the observed asymmetry is a result of tip

length.
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5.5 Conclusion

We have shown the presence of asymmetry in C60–C60 interactions measured with

a qPlus sensor would appear to be in good agreement with the expected asym-

metry predicted in Chapter 4. Confirmation of varying levels of asymmetry for

different tip lengths on the same sensor was not achieved due to the challenging

nature of these experiments.

As experimental measurements were performed in 3D it is possible to in-

tegrate the potential in the direction of tip motion to correct the interaction

potential. Results for this correction were promising, however, for more accurate

results the measurement would need to be extended further in the x-y plane as

otherwise data must be interpolated.
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Chapter 6

Optimal geometry for a quartz

multi-purpose SPM sensor

“Only one thing is impossible for God: to find any sense in any copyright law

on the planet.”

Mark Twain

Chapter Overview

In the previous two chapters we have discussed how the geometry of

the qPlus sensor can cause inaccurate measurements due to the large

tip and the asymmetry of the cantilever. In this chapter this topic

is further developed to suggest a new sensor design which not only

solves these issues, but also opens doors for new measurements with

the same sensor. This chapter is adapted from work published in the

Beilstein Journal of Nanotechnology [156].

6.1 Introduction

The type of measurements possible for scanning probe microscope (SPM) depend

entirely on its sensory probe. For a scanning tunnelling microscope (STM) this

is simply an electrically conducting wire with an atomically sharp apex. For

atomic force microscopes (AFM) and lateral force microscopes (LFM), however,

the sensor is more complex. The atomically sharp probe must be combined with
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a force sensor, usually a cantilever, with either piezoelectric or optical deflection

detection. For non-contact AFM (NC-AFM) and dynamic LFM (DLFM), where

the sensor is excited at or near one of its eigenfrequencies, properties such as the

Q factor, eigenfrequencies, effective spring constant [140] and other geometrical

attributes [145] of the eigenmodes become important.

AFM and LFM sensors have evolved from gold foil with a diamond tip [92]

and bent tungsten wires [3] respectively, into a wide range of specialised sensors.

The most common NC-AFM sensors — namely, silicon microcantilvers [97], and

quartz sensors such as the qPlus sensor (tuning fork) [118] or KolibriSensor R©

[122], have all been used for combined AFM/STM [61, 105, 122]. Combined

AFM/LFM sensors have been constructed from silicon cantilevers by exciting

torsional modes to generate the lateral motion needed for the LFM [157]. The

qPlus sensor has been used as an LFM by rotating the tip on the end of the quartz

tuning fork [8], but no combined AFM/LFM qPlus system has been developed

due to the magnitude of the torsion constant for the tine of the sensor. A

combined AFM/LFM sensor, operated in frequency modulation mode, would

enable measurements of conservative and non-conservative forces simultaneously

in the normal and lateral direction. Such measurements could be used to further

important investigations in single-asperity friction [9], where the relationship

between normal and lateral force is of interest. In this chapter we suggest the

optimum geometry of a quartz sensor to produce a combined AFM/LFM/STM

from a quartz crystal resonator with many theoretical benefits over other sensors.

6.1.1 Combining NC-AFM and DLFM

For a sensor to image as both an NC-AFM and a DLFM it must be able to

oscillate both normal to and parallel to the surface it is scanning. The simplest

method for achieving this is a single oscillator which will oscillate in different

directions depending on the eigenmode excited. Ideally for atomic resolution

imaging the effective spring constant of the excited eigenmode should be low

[158]. However, as the spring constant normal to the surface lowers, the risk of the

probe snapping to contact with the surface increases. This produces a problem

for combined AFM/LFM using the principal and first torsional eigenmode of a
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cantilever, as the torsional mode can have an effective spring constant of up to

approximately two orders of magnitude higher than the principal mode [157].

This results in a difficult trade off. To avoid snap to contact, the following

condition must be satisfied: [151]

A0kN � FTS,N ¡ 0, (6.1)

where A0 and kN are the amplitude and effective spring constant of the principal

eigenmode, and FTS,N is the tip-sample force normal to the sample.

For high resolution AFM imaging A0 should be as low as possible [158].

However, the signal-to-noise ratio, which is a function of A0, [116] limits the

minimum amplitude. Experimentally some groups have achieved stable imaging

with amplitudes as low as 20pm [35]. Thus, to be safe from snap to contact for

atomic forces of order -3 nN, it is required that kN ¡150 N.m�1. If imaging,

however, is only in DLFM mode, then A0 is ideally zero. Obviously, Equation

6.1 doesn’t hold in this case as it would suggest that we require an infinite spring

constant to stop snap to contact. In this example A0 must be considered as the

distance the tip has moved from its equilibrium position due to FTS,N. Therefore,

if trying to image in DLFM mode, the error in z-position due to normal forces is

inversely proportional to kN , requiring higher minimum normal spring constants

of kN Á1–3 kN.m�1. This would result in torsional constants of order of hundreds

of kN.m�1, which is not ideal for LFM imaging.

The torque required to torsionally twist a beam of length L through an angle

θ is given by

T � θJG

L
, (6.2)

where J and G are the torsion constant and shear modulus of the beam. In the

case of a cantilever beam with a tip of length Ltip (measured from the central axis

of the beam), the lateral displacement of the tip apex, Alat, is Ltipθ. Replacing

the torque with the lateral tip sample force FTS,L multiplied by the tip length

we get

FTS,L � AlatJG

LL2
tip

. (6.3)
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Hence, the lateral spring constant

kL � JG

LL2
tip

, (6.4)

is inversely proportional to the square of the tip length. Thus, the tip length be-

comes an important parameter to consider alongside the more typical geometrical

constants associated with the normal spring constant.

For quartz sensors the obvious choice of cantilever is the standard qPlus

sensor with a normal spring constant of approximately 1.8 kN.m�1 [154, 159].

For commercially available silicon cantilevers the spring constants are usually

less than 50 N.m�1, with resonant frequencies of 200–300 kHz. The resonant

frequency of the cantilever scales with L�4 and the spring constant with L�3.

Considering that the torsional eigenfrequency can be approximately two orders of

magnitude larger than the normal eigenfrequency, achieving the necessary normal

spring constant by length reduction could push the torsional eigenfrequency into

GHz which is impractical. We instead will consider different rectangular cross

sections for a 200 µm long silicon beam.

A range of rectangular cross sections which would produce a normal spring

constant of 2 kN.m�1 for a 200 µm long beam have been calculated using Euler-

Bernoulli beam theory, see Table 6.1. The frequency of the first eigenmode has

also been calculated. Using Equation 6.4, the tip length needed for kL � 2

kN.m�1 was calculated, using previously tabulated values for J [160]. This tip

length was also calculated for the qPlus sensor.

The calculated tip lengths range from approximately 10% to 70% of the

beam length. As has previously been shown, AFM sensors with tip lengths of

similar scale to the length of the beam exhibit a large lateral component to the

motion of the tip apex in the first eigenmode [145]. This lateral component is

perpendicular to the torsional eigenmode, thus making it impossible to truly

separate the normal and lateral forces. This problem is exacerbated if the tip

length is further increased to increase sensitivity to lateral forces by reducing the

lateral spring constant as snap to contact is not an issue in the lateral direction.

Increasing the ratio of thickness to width reduces the required tip length, but

at the expense of introducing normal eigenfrequencies above 1 MHz, pushing
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Name L (µm) w (µm) T (µm) kN (N.m�1) fN (Hz) Ltip (µm) Ltip{L

Si1 200 112.2 15.0 2 000 515 913 139.1 0.696
Si2 200 47.3 20.0 2 000 687 884 124.6 0.623
Si3 200 24.2 25.0 2 000 859 856 93.1 0.466
Si4 200 14.0 30.0 2 000 1 031 827 57.2 0.286
Si5 200 8.8 35.0 2 000 1 203 798 33.7 0.168
Si6 200 5.9 40.0 2 000 1 375 769 20.5 0.102
qPlus 2 400 130.0 214.0 1 763 32 246 772.9 0.322

Table 6.1: Dimensions and dynamic properties of silicon microcantilevers which
would provide normal spring constants of 2 kN.m�1. Ltip is the tip length required
to provide a lateral spring constant of 2 kN.m�1. qPlus sensor is also included
(the frequency is not 32 768 Hz as some features, such as base deformations and
gold contacts, were neglected in the calculations).

torsional eigenfrequencies to ranges which most AFM electronics cannot handle.

6.2 Non-cantilever geometries

Due to the large difference between the operating frequencies of normal and

torsional modes, and the coupling of unwanted lateral motion into the normal

eigenmode for sensors with the tip lengths needed to produce low lateral spring

constants, we propose a new sensor geometry. The proposed design, see Figure

6.1, is to attach a tungsten tip to the centre of a quartz beam. The design exploits

the intrinsic symmetry of the sensor to remove any unwanted lateral motion in the

principal eigenmode (Figure 6.1(b)), thus allowing for longer tips. By exciting the

second eigenmode of the beam, lateral motion can be generated (Figure 6.1(c)).

The effective spring constant and eigenfrequency can be calculated, and thus

tuned, far more simply than for torsional modes, by solving the Euler-Bernoulli

beam equation with the appropriate boundary conditions. In principle, by also

exciting a torsional mode, a perpendicular lateral oscillation could be generated

allowing simultaneous measurements in all three dimensions. This chapter will,

however, concentrate on just the first and second eigenmode.

100



Optimal geometry for a quartz multi-purpose SPM sensor

(a) (b)

(c)

z

x

Figure 6.1: (a) Proposed geometry of new sensor. A tungsten tip connected to
the centre of a quartz bar clamped at both ends. (b) and (c) First and second
eigenmode of the sensor. The symmetry provides pure normal motion in the first
eigenmode and lateral motion of the tip apex in the second eigenmode due to the
rotation of the tip about the node of the beam.

6.2.1 Dynamic properties of symmetrical sensors

6.2.1.1 Spring constants

The two most fundamental properties to consider for dynamic force sensors are

the effective spring constants and the eigenfrequencies of each imaging mode.

For simplicity we will begin with effective spring constants as the influence of

the tip’s inertia has only the effect of moving the dynamic spring constant closer

to the static constant [138], removing the � 3% error. (Note that this is not true

in higher eigenmodes for cantilever geometries as the inertia shifts the position

of the antinodes [140] In this system, however, the antinodes are pinned due to

the symmetry of the system.)

As in Chapter 4, we use the dynamic Euler-Bernoulli beam equation

EI
B4

Bx4

�
8̧

i�1

ΦipxqTiptq
�
� fpx, tq � ρA

B2

Bt2
�

8̧

i�1

ΦipxqTiptq
�
, (6.5)

to describe the dynamic deformations of a beam, where E and ρ are the Young’s

modulus and density of the material respectively. A and I are the area and

second moment of area of the beam’s cross section. fpx, tq is the applied force

per unit length acting on the beam, Φipxq and Tiptq are the spatial and temporal

components of the beam’s deformation for the ith eigenmode.

As any effect from the tip must be considered at the centre of the beam we
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will consider only one half of the beam and use symmetry (or anti-symmetry in

the case of even eigenmodes) to construct the full spatial solution. For both even

and odd modes the boundary conditions

Φip0q � 0 (6.6)

BΦip0q
Bx � 0 (6.7)

are valid. Equation 6.5 is spatially fourth order, therefore two further conditions

are required. For odd modes:

BΦi,oddpL{2q
Bx � 0 (6.8)

EI
B3Φi,oddpL{2q

Bx3
� Fnorm

2
, (6.9)

and for even modes:

Φi,evenpL{2q � 0 (6.10)

EI
B2Φi,evenpL{2q

Bx2
� �T

2
. (6.11)

L is the length of the entire beam, and Fnorm and T are the force and torque

applied to the centre of the beam.

Entering these boundary conditions into the general static spatial solution

of Equation 6.5 (i.e the final term is zero), gives the spring constant of the first

eigenmode as

knorm � 192EI

L3
. (6.12)

Considering the torque on the centre of the beam T � LtipFlat, where Flat is

a lateral force applied in the x direction at the far end of the tip, the effective

lateral spring constant of the second eigenmode is

klat � 16EI

LL2
tip

. (6.13)

Full derivations are provided in Appendix C.

Thus, just as in the case of the torsional mode, the effective spring constant
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in the lateral mode can be tuned by tip length. However, due to the symmetry

of the sensor this will not cause unwanted lateral motion at the tip apex in the

first eigenmode.

6.2.1.2 Eigenfrequencies

When considering the eigenfrequencies of the sensor, the inertia of the tip plays a

very strong role which cannot be ignored. Solving Equation 6.5 for the dynamic

case, the same boundary conditions (Equations 6.6–6.11) hold, where

Fnorm � �mtipω
2
i,oddΦi,oddpL{2q (6.14)

and

T � �Itipω
2
i,even

dΦi,evenpL{2q
dx

. (6.15)

ωi is the angular eigenfrequency of the ith eigenmode. By combining the general

spatial solution with the four boundary conditions as a matrix equation, equal

to a zero vector, we see that resonance occurs when the determinant is equal to

zero (See Appendix C for full derivation). This yields the following resonance

conditions:

coshpβi,oddL{2q sinpβi,oddL{2q � cospβi,oddL{2q sinhpβi,oddL{2q
� 1

2γi,odd

�� 1� cospβi,oddL{2q coshpβi,oddL{2q
� � 0 ,

(6.16)

and

coshpβi,evenL{2q sinpβi,evenL{2q � cospβi,evenL{2q sinhpβi,evenL{2q
� εi,even

2

�� 1� cospβi,evenL{2q coshpβi,evenL{2q
� � 0 ,

(6.17)

where

β4
i �

ρAω2
i

EI
, γi � EIβ3

i

mtipω2
i

, εi � Itipω
2
i

EIβi
. (6.18)
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These equations can be solved numerically in terms of dimensionless quanti-

ties (βiL,m
�, I�, discussed in Appendix C), and dimensions can be added later

to get a value for ωi. In the case of no tip, the ratio between the second and first

eigenmode is 2.757. Whether this ratio rises or falls when a tip is added depends

on the dimensions of both the tip and sensor. It is clear, however, that such a

low ratio between the eigenmodes is another advantage of the symmetrical sensor

over torsional designs as both modes can be tuned to near the optimal frequency

of the detection system.

6.2.2 Optimal geometry for a symmetrical sensor

In order for the sensor to be used in currently available commercial UHV com-

bined AFM/STM systems, it should be similar in size to the qPlus sensor. How-

ever, as the normal spring constant per unit beam length (with the same cross

section) is 64 times higher than for a cantilever geometry, a greater length than

the 2.4 mm beam of the qPlus sensor is advisable.

Choosing a 3 mm long beam, and a normal spring constant of 2 kN.m�1,

as previously suggested, we calculate that the second moment of area of the

cross section should be I=3.68�10�18 m4. A width (y-direction), w of 100 µm,

would result in a thickness (z-direction) of t �76.1 µm, as I � wt3{12. Such a

beam would have first and second eigenfrequencies of 46.7 kHz and 128.8 kHz

respectively. These frequencies will reduce when the tip is added to the centre

of the beam.

Before considering the mass or moment of inertia of the tip and its effect

on the eigenfrequencies of the sensor, it is important to consider the spring

constant of the tip itself. Any bending of the tip will not be detected by the

piezoelectric quartz sensor. Thus, treating the tip as a cantilever, its spring

constant must be much greater than the effective lateral spring constant for the

sensor (klat), otherwise this will result in incorrect force measurements in the

LFM mode. Considering a maximum tip length of 1.73 mm, the length which

would give klat � 500 N.m�1, to keep the tip’s spring constant above 10 kN.m�1

the diameter of the tungsten wire must be greater than 144 µm.

We will consider a tip diameter, Dtip, of 150 µm, an easily available diameter

104



Optimal geometry for a quartz multi-purpose SPM sensor

 

S
p

ri
n

g
 c

o
n

st
an

t 
(i

n
 k

N
.m

-1
)

0

1

2

3

4

5

6

7

Fr
e

q
u

e
n

cy
 (

in
 k

H
z)

5

10

15

20

25

30

35

40

45

LTip (in mm)
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

klat

knorm

f1
f2

Figure 6.2: The effective spring constants (klat for mode 2, and knorm for mode 1)
and eigenfrequencies of the first two eigenmodes of a symmetrical sensor. Plotted
for 150 µm tungsten tips of varying lengths.

of tungsten wire. The moment of inertia of the tip for the even modes should

be calculated about the centre of the beam, t{2 from the bottom of the tip, and

hence a distance of pLtip � tq{2 from the tip’s centre of mass. Thus the moment

of inertia of the tip can simply be calculated by the parallel axis theorem as

Itip � mtippD2
tip{16 � L2

tip{3 � Ltipt{2 � t2{4q. Using Equations 6.13 and 6.16–

6.18, the spring constants and eigenfrequencies of the first two modes have been

plotted in Figure 6.2 for a range of tip lengths. For plotted tip lengths the ratio

of the spring constant of the tip to klat is at minimum 23.5.

Examining the plot it is clear that tip lengths near 1.47 mm are unusable as

the two eigenfrequencies are too close. This would make it difficult to selectively

excite them, as well as requiring long averaging times in bimodal operation to

remove any correlation between the modes.

The benefit of increasing the tip length is a reduction in lateral spring con-

stant which comes at the price of lower eigenfrequencies. A tip length of 1 mm

would provide eigenfrequencies of f1=11.8 kHz and f2=17.2 kHz, with klat= 1.50

kN.m�1. As these frequencies are of the same order of magnitude as qPlus sen-

sors with long tips, the sensor could be used in commercially available qPlus

systems with no modifications to the electronics.
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It is also important to consider the minimum amplitudes achievable by the

sensor, particularly in the lateral mode. As little is known about the optimum

amplitudes in DLFM, the issue will be treated approximately. The lateral am-

plitude of the tip apex is

Alat � Ltip
dΦ2pL{2q

dx
. (6.19)

By considering that the tip is approximately half the length of the beam (L{2),

and dΦ2pL{2q
dx

� 4Aanti�node

L
(approximating Figure 6.1(c) as 3 straight lines), where

Aanti�node is the amplitude of the anti-node. Thus, the ratio between Alat and

Aanti�node is of order 2. Other detection parameters are also of the same order of

magnitude as for a qPlus sensor. Thus, as qPlus sensors have achieved imaging

with amplitudes as low as 20pm [35], similar amplitudes are in theory possible

for the LFM mode of the symmetrical sensor. Such amplitudes are an order of

magnitude smaller than inter-atomic distances.

6.2.3 Experimental viability

The experimental viability of this method depends on the equipment available

to produce the sensor. Firstly, no quartz crystal resonators of the proposed

geometry are commercially available. The closest commercially available sen-

sor is a double-ended tuning fork available from Statek (DETF Force Sensor,

statek.com). By fixing the bottom tine it is possible to reproduce the required

symmetry. However, these sensors are too large for most commercial qPlus sys-

tems with a total width of 15.2 mm and a beam length of 8.44 mm. Also the

beams are recessed with respect to the top of the resonator by 0.86 mm, pre-

venting tip lengths below this. A second possible option would be to attach two

identical tuning forks end-to-end using a similar method to Heyde et al. [120].

However, the glue used to attach the tines will have different mechanical prop-

erties to the quartz, which also depend on the quantity, placement, and curing

conditions. This will affect the repeatability, as well shape of the eigenmodes,

and hence the spring constant. Thus, ideally custom resonators would need to

be made.
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Secondly, the correct placement of the tungsten wire is vital. The tip needs to

be positioned in the centre of the 3 mm beam, which is just 100�76.1 µm in cross

section, and needs to be mounted perfectly normal to the beam. Misplacement

of the tip breaks the symmetry, thus affecting operation. Reproducible tip place-

ment requires three dimensional micro-manipulators, which can be prohibitively

expensive for some groups.

A final consideration should be taken regarding the connection of a separate

electrode for the tunnel current. Two options are available. First a thin (�15-

50µm) loose wire could be attached to the tungsten tip, as is often done for qPlus

sensors. This is inadvisable as it also breaks the symmetry of the sensor. Another

method would be to add a thin insulating layer to the top side of the resonator

and on top of that a new electrode, such as the method developed by Nauga

Needles [161]. Although this maintains the symmetry, great care needs to be

taken to consider the possibility of capacitive cross-talk between the tunnelling

and and deflection channels [162].

6.3 Conclusion

We have proposed a new geometry of a piezoelectric sensor for use in combined

AFM/LFM, which utilises symmetry to bring the eigenfrequencies and spring

constants of the two modes closer together. This allows both modes to be tuned

to the optimal parameters for operation. The symmetry also removes issues with

unwanted lateral motion in normal oscillating modes, allowing longer tips for

tuning the lateral spring constant of the LFM operation. By attaching an extra

electrode, the sensor can also be used for STM providing a truly multi-purpose

SPM sensor.
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Chapter 7

Automated Tip Conditioning

“I think a nerd is a person who uses the telephone to talk to other people about

telephones. And a computer nerd therefore is somebody who uses a computer in

order to use a computer.”

Douglas Adams

Chapter Overview

Chapter 5 detailed experiments which fundamentally depend on the

state of the AFM tip. More generally, all AFM and STM experiments

rely on the tip state to achieve the desired resolution, even if the exact

termination is not important. In this chapter we detail our efforts to

automate conditioning of the tip apex, with the end goal being an

SPM which can both determine and modify its own tip apex. Early

work in this chapter on HOPG was published in Applied Physics

Letters [163]. Later work on Silicon is largely unpublished with one

result being presented in a separate paper [164] on the SPM image

analysis described in Chapter 8.

7.1 Introduction

In any SPM experiment, before any useful data can be collected the tip (probe)

itself must be in a good state. Reliable methods for tip conditioning become of

even more importance when experiments require specific molecular tip termina-
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tions [12,35]. Often a large proportion of time is spent initially conditioning the

tip, or re-conditioning a tip which has lost the desired resolution. Therefore, it

makes sense that any approach to automating SPM experiments must be able to

perform this conditioning. This chapter describes efforts taken to automatically

condition SPM tips. All the work been performed using STMs, but with the aim

to port these procedures to qPlus AFM.

To emphasise the need for tip conditioning Figure 7.1 shows some examples

of the types of images regularly acquired during STM imaging. The difficultly

with STM tip preparation is that it is not only difficult to identify the cause of

bad images, but even if the cause has been identified it is generally impossible

to correct it in any controlled manner. For example Figure 7.1(a), shows image

features changing almost every scan line. This suggests that the tip is unstable

and changing as the image is produced. Perhaps the user hypothesises there is

a small flake of graphite on the tip which changes orientation almost every scan

line. Even if this hypothesis is correct, there is no direct method for removing

the graphite. Common procedures for tip conditioning are: voltage pulses, high

current scanning and tip crashing. Each of these procedures can change the

termination of the tip, but the induced change is arbitrary and regularly just

changes the problem rather than solving it.

For a voltage pulse the sample bias is suddenly raised to of order 10 V.

Considering that the tip is approximately 5 Å from the surface this will produce

an electric field of order 2�1010 Vm�1. Such a field can move adsorbed molecules

or rearrange atoms at the end of the tip.

High current scanning in the constant current STM mode requires the tip to

be very near to the surface. If this is combined with low feedback gains or high

scan speeds then the feedback controller does not always have time to track the

surface adequately. This can lead to material being removed from the end of the

tip, or the tip picking up pieces of the surface, leading to a change in tip state.

Tip crashing involves using the z actuator to drive the tip a controlled dis-

tance into the sample. This can cause the sample to become bonded to the

tip. This can be performed on clean surfaces with the aim that as the tip and

sample separate the resulting tip structure will be sharper than the initial tip

structure, leading to clear imaging. This can also be performed above molecules
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(a) Contamination (b) Unstable tip

(c) Unknown problem (d) Tip change

Figure 7.1: A series of poor quality STM images which would never normally
make it into a publication. Identifying the cause of the problem can be a difficult
task even for experienced STM users.

on the surface to attempt to coerce the molecule to bond to the tip if molecular

termination is desired (as was described in Chapter 5).

The first attempts at automated tip conditioning were performed with an

entry level ambient STM (Nanosurf EasyScan 2), scanning HOPG with Pt/Ir

tips. HOPG, as mentioned in Section 3.1.1, is an ideal surface to be studied

with such a microscope as it is easy to prepare and can be scanned with atomic

resolution in air for days without quality degrading. Another advantage of HOPG

is that images often result from a sliding of one layer over another causing an

averaged image free of step edges and defects [165]. As such, these HOPG images

are not true atomic resolution images. Nonetheless, the uniformity of the images

allows for simple metrics to determine quality while tip conditioning algorithms

are developed. However, despite the simplicity of the final HOPG images it is

not the easiest surface to scan, as the layers of graphite are only bonded by van
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der Waals forces, and tip conditioning procedures can therefore lead to flakes

of graphite becoming attached to the tip. These flakes bond weakly to the tip

resulting in a physically unstable termination.

Further work on automated tip conditioning has been performed under room

temperature UHV conditions on the Si(111) 7�7 reconstruction. This is a more

difficult surface for image analysis, as features such as corner holes, defects,

contamination, and step edges can be present in high quality images. For this

work more specialised image analysis routines were developed. These routines

are discussed in detail in Chapter 8.

7.2 Image Analysis for HOPG images

To automate an optimisation process one must be able to assess the current state

of the process. In the case of automated SPM tip conditioning this requires the

quality of the tip apex for imaging to be assessed. To do this the collected images

need to be analysed. For optimisation on HOPG it was decided that the best

method was to compare collected scans with ideal images generated from theory.

Data from Cisternas et. al. [50] was used to generate ideal scans.

For simplicity, the automation software only collected images with one of four

sizes: 200 � 200 nm2, 50 � 50 nm2, 20 � 20 nm2, and 4 � 4 nm2. The image

analysis of 200 � 200 nm2 and 50 � 50 nm2 was generally the same and served

simply to check for a flat image, not specific structure. Smaller images of size

20� 20 nm2 and 4� 4 nm2 scans each had their own analysis methods to check

for structure. Sample tilt was removed from all images via plane subtraction

before any further processing was performed.

7.2.1 Large Size Image Analysis

Scans of graphite with a width in excess of 50 nm are not expected to show clear

atomic structure at the pixel densities used (256�256 px2). Instead, a good scan

should be flat with a surface roughness measured in Ångstroms. To account

for distortions often seen on large scale scans, surface roughness was estimated

from the residuals of second order polynomial lines fitted through each row and
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column of the final image. This was performed for simplicity compared to fitting

second order polynomial planes [166]. Polynomial plane fitting was introduced

into the image analysis code after the HOPG project was completed.

Images which were determined not to be flat were then divided into one of

two different classes of bad images which we defined as “cloudy” and “streaky”

images. Streaky images (for example, Figure 7.1(b)) are images where there

is a clear tip instability, whereas cloudy images (for example Figure 7.1(c)),

result from an unknown cause, but tend to show less fast changes in image

contrast. These two types of images were compared using the universal similarity

metric (USM) [167]. The USM compares the information needed to compress

the image under analysis with and without the information contained in target

images. Smaller compressed files relate to images being more closely related to

the target. The USM, however, is not discussed in more detail in this thesis as

its performance on analysing STM images was poor and was eventually removed

from the image analysis.

7.2.2 Target-Driven Image Analysis

For images with a width of 20 nm or less it is possible to resolve carbon atoms in

a 256�256 px2 image. Before comparing such images to target images they were

checked for the expected periodicity by applying a 2D fast Fourier transform

(FFT). If the measured spatial frequency was below the expected frequency then

the image is classified as not having atomic resolution; if it is above then this

suggests a low signal-to-noise ratio. This simple test for atomic resolution was

possible due to the lack of contamination and defects on HOPG images, combined

with the simplicity of the Fourier space image.

Further analysis was performed on images with recognised atomic resolution.

The logarithm of the measured power spectra of the scans was correlated with

expected power spectra calculated from the target images. The correlation co-

efficients were used to further define the quality of the resolution. For 20 � 20

nm2 scans this was the final test, as further analysis of scan quality is difficult

as the atomic spacings are only � 3 pixels.

4 � 4 nm2 images were further analysed by counting the peaks in the power
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spectrum. Due to the trigonal symmetry of the lattice six Fourier peaks are ex-

pected. Extra peaks are often found in noisy or doubled images, which sometimes

could pass the correlation test.

Scans passing all tests up to this point have atomic resolution, with the

correct symmetry for graphite. To accurately classify the quality of the image it

needs to be compared to the target in real space. For this the atomic positions

and rotation of the lattice must be calculated, so that the ideal image can be

positioned correctly for comparison. Atomic positions were found by convolving

the image with a 5 � 5 pixel Gaussian with a standard deviation of one pixel

to remove noise. After noise removal, all regional maxima are found. After

removing the lower of any pairs of maxima too close together to be neighbouring

atoms these positions are recorded as the atomic positions. The rotation of

the lattice can be found simply by a Radon transform [168]. Once the atomic

positions and lattice rotation have been found the image can be compared with

a correctly rotated unit cell of the ideal image at every atomic position. The

comparison was done by calculating the robust mutual information (RMI) [169]

of the images, as explained in Appendix D.1. The average of the RMI values for

each point is used as a measure of image quality. Figure 7.2 shows a selection of

scans and their RMI scores.

As mentioned in Section 3.1.1, two types of image can be formed in STM of

HOPG, either images with trigonal symmetry showing just β-sites in the lattice,

or images with a honeycomb structure showing all images in the lattice. All

methods above are calculated for both trigonal and honeycomb ideal images.

This allows not only the quality to be assessed but also the type of resolution to

be ascertained (see Figure 7.2).

7.3 Image Analysis for Silicon

As the project moved into UHV conditions using the Silicon (111) 7�7 recon-

struction as a test surface a decision was made to move away from target driven

image analysis to metrics which could be applied to a much wider variety of sur-

faces. This was done to make the tip conditioning protocol more easily portable

to other surfaces without sweeping changes to the analysis. The code for this new
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(a) RMI = 0.414,
Type = Trigonal

(b) RMI = 0.395,
Type = Trigonal

(c) RMI = 0.394,
Type = Trigonal

(d) RMI = 0.365,
Type = Honeycomb

(e) RMI = 0.358,
Type = Honeycomb

(f) RMI = 0.350,
Type = Honeycomb

(g) RMI = 0.326,
Type = Trigonal

(h) RMI = 0.307,
Type = Honeycomb

(i) RMI = 0.298,
Type = Honeycomb

(j) RMI = 0.297,
Type = Honeycomb

(k) RMI = 0.278,
Type = Honeycomb

(l) RMI = 0.194,
Type = Trigonal

(m) RMI = 0.184,
Type = Honeycomb

(n) RMI = 0.179,
Type = Honeycomb

(o) RMI = 0.170,
Type = Honeycomb

(p) RMI = 0.151,
Type = Trigonal

(q) RMI = 0.147,
Type = Honeycomb

(r) RMI = 0.137,
Type = Honeycomb

(s) RMI = 0.104,
Type = Honeycomb

(t) RMI = 0.089,
Type = Honeycomb

(u) RMI = 0.087,
Type = Honeycomb

(v) RMI = 0.086,
Type = Honeycomb

(w) RMI = 0.010,
Type = Trigonal

(x) RMI = 0.005,
Type = Trigonal

Figure 7.2: RMI scores for a selection of STM scans. The same program was
run for all images, calculating the RMI for a trigonal and a honeycomb target.
The highest RMI has been output along with the image type detected. Green dots
indicate image registration points (atoms) for trigonal images, blue dots indicate
image registration points (local minima) for honeycomb images.
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generalised automated SPM image analysis was made into an open-source MAT-

LAB toolbox called SPIW (scanning probe image wizard). As SPIW is discussed

in detail in Chapter 8, this section will concentrate on how SPIW features were

applied to classify images rather than how the image analysis was performed.

7.3.1 Analysing large scale images

As with HOPG, for images of large areas (in this case images with widths of 128

nm or 64 nm with 512 points per line) surface roughness was used to determine

images of sufficient quality (see Section 8.2.4). However, due to the presence of

contamination, large surface defects, and step edges the entire image cannot be

assessed at once. Instead, if step edges were located (Section 8.2.2) the image

was divided into terraces which (if above a threshold size) were each analysed

separately. When analysing individual terraces, they were flattened with high

and low regions masked (Section 8.2.1), surface roughness was then determined

only for non-masked regions. Figure 7.3 shows examples of this image analysis

being performed. Information on the surface roughness of terraces and on the

positions of located step edges were passed back to the optimisation software.

7.3.2 Target-Free Small Image Analysis

While target-free image analysis was used to assess the quality of the Si(111)

7 � 7 reconstruction image, some information about the surface was still re-

quired,including, for example, the expected number of atoms per unit area and

expected corrugation heights. As for the large scale images, steps, defects, and

contaminated regions in the image must be detected and handled separately from

the clean areas of the sample.

A separate method for finding the step edges is used instead of the method

used for larger images. This is due to the steep gradients present in atomic

resolution images which can get misidentified as step edges. This new method,

described in full in 8.3.1, first detects atomic positions and uses only the heights

of atomic maxima to create a new image which can be analysed for steps.

Once terraces have been separated, contamination and defects can be removed

from the image again by thresholding. For this thresholding method maxima
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a

b

c

Figure 7.3: Finding flat regions of large scans. The four sub-images in (a), (b),
and (c) correspond to: The raw STM scan after plane fitting (Top). The position
of step edges or the edges of large contamination, traced in green (Second). A
colourmap representation of areas in the image where blue represents edges, and
other colours define separate regions (Third). Plane fitted image of the largest
region with any further contamination removed.

and minima are located, and the median maxima and minima heights are used

to define the atomic corrugation. Anything significantly higher or lower can

be masked as contamination or surface defects. More detail on this method is

provided in Section 8.2.1.

From the remaining image the quality has to be assessed. This is done by

masking and analysing features located at the position of located maxima. This

is done using the features described in Section 8.2.3. From these located features

the height and the circularity of the atoms are returned to the optimisation
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software. Only clearly resolved features are used for generating these statistics,

and features appearing merged are ignored (see Figure 7.4). The number of

atoms used for these statistics is also returned to the optimisation software. An

image with only a few-resolved, highly-circular atoms is most likely a highly

contaminated surface, image with a good tip. Whereas an image with a number

of resolved atoms close to the number expected in an ideal image, but with low

circularity would imply a clean surface convolved with the structure of the tip.

a

b

Figure 7.4: Computer vision interpretation of a scan of Si(111) 7 � 7 recon-
struction. Cyan pixels represent maxima, green traces represent atoms, magenta
traces represent areas in which atomic structure appears merged, red traces repre-
sent contamination and blue traces surface defects. Final image shows scan after
contamination and defects are masked out. (a) shows that if the scan is uniform
the contrast is greatly increased, however (b) shows that treating the image as a
whole can lead to poor analysis.

7.4 Optimisation protocols

Optimising the scan quality requires not only the ability to measure the quality

of the scan but also to make decisions about how to improve the quality. This
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has been broken down into two tasks which are solved separately. Firstly, coarse

conditioning, i.e. taking the STM tip from a state where images are purely tip

artefacts to the point where atomic resolution can be seen. Secondly, fine tuning

where the quality of atomic resolution is improved until an acceptable image

quality is achieved.

7.4.1 Deterministic Coarse Conditioning

The coarse conditioning procedure is a series of rules specified to the software

which decide how it will act when it scans certain image types recognised by the

image analysis software. Consecutive scans of the same type increment coun-

ters so the software can perform more aggressive tip conditioning if the current

method is having little to no effect. It is described as deterministic as, given the

same sequence of images, it will always make the same decisions.

This method has been successfully applied to scanning HOPG and the Si(111)

7 � 7. The decision trees have been significantly changed between the two sur-

faces. This does not necessarily indicate that standard procedures could not

be developed, but instead that when changing from HOPG, where surface de-

fects and contamination are so rare, to Si(111), where they are common, major

changes to the method were needed. However, for this method to truly be effec-

tive and general the system will need to be able to change the decision trees to

learn from the past.

7.4.1.1 HOPG Coarse Conditioning

Coarse conditioning on HOPG was started by taking 200�200 nm2 scans. Once

a flat area was found 50 � 50 nm2 scans were taken to check the area was still

flat. After this, 20 � 20 nm2 scans were taken until an image with periodicity

was obtained. Finally 4 � 4 nm2 scans were taken until scan quality reached a

level with good Fourier correlations, and with 5–7 peaks in the power spectrum

of the scan. Full 256 � 256 scans were taken before analysis as the Nanosurf

software does not give access to the raw data stream to external software. Due

to other issues interfacing with the Nanosurf software, delays were so long that

it was decided to take full square images rather than rectangular images of just
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a few scan lines.

At each stage, if the criteria for progressing was not met the system would

either rescan, move, or apply tip cleaning procedures depending on how far from

the criteria the image was. On HOPG, tip pulsing and high current images were

regularly used for large scans, once flat regions were found smaller tip pulses

were used.

This coarse conditioning method has been shown to work for approximately

91% of probes. An example of a successful run is shown in Figure 7.5.

7.4.1.2 Si(111) 7� 7 Coarse Conditioning

Coarse conditioning on Si(111) was done in UHV with an Omicron VT STM. This

Omicron Matrix control software does not allow external programs access to the

raw data but the images can be accessed quickly once the scan is complete. To

speed up optimisation only a few lines are taken per image. Three different image

sizes are taken: 128�8 nm2 with 512�32 pixels, 64�4 nm2 with 512�32 pixels,

and 32 � 4 nm2 with 512 � 64 pixels. For the two larger size images, if surface

roughness was below an acceptable level, a decision was made to zoom in to the

next level. If a high proportion of the image was covered with contamination or

steps the scan area was moved. For other images, tip conditioning was performed.

For the smaller size images similar procedures were taken to try to maximise the

number of atoms (up to the limit of the maximum number expected for an ideal

scan) resolved and the circularity of these atoms. Tip conditioning methods

used were less severe for small images as if the first two stages of optimisation

had been completed, the tip state is assumed to be closer to an ideal state. If

atomic resolution is not detected for multiple consecutive scans the optimisation

procedure will zoom out again to only check for flat regions.

To complete automated tip conditioning on Si(111) takes a matter of hours.

As such no runs on Si(111) are short enough to be reproduced in full in this

thesis. Figure 7.6, however, shows representative images taken during a successful

optimisation run.
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(a) Width = 200

nm. Streaky Image.

Executing cleaning

pulse

(b) Width = 200

nm. Cloudy Image.

Executing cleaning

pulse

(c) Width = 200

nm. Flat Surface.

Zooming in to 50 nm

(d) Width = 50 nm.

Flat Surface.

Zooming in to 20

nm

(e) Width = 20 nm.

Atomic resolution.

Zooming in to 4 nm

(f) Width = 4

nm. Poor Atomic

resolution.

Rescanning

(g) Width = 4 nm.

Consistent fair

atomic resolution.

Stage 1 complete.

Figure 7.5: A sequence of scans on HOPG showing coarse optimisation. These
have been produced sequentially as taken by the microscope complete with the
output from the software. There was no human intervention once the tip was
approached to the sample.
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a
b
c

d

e

Figure 7.6: A sequence of images from automated STM tip conditioning on the
Si(111) 7 � 7 surface, image widths are 128 nm for a) and b), and 32 nm for
c)–e). a) First scan, shows an unstable tip. b) Less than 7 minutes into the run,
a flat area is detected, despite the presence of a step in the scan region. The
automation algorithm zooms in for finer tuning. Poor quality atomic resolution
is detected (c), as are steps in atomic resolution images (d). After less than
80 minutes good quality imaging is detected, despite surface contamination being
present.

7.4.2 Evolutionary Fine Tuning

To fine tune the scan parameters to acquire images of high quality is a complex

task which requires a large multi-dimensional parameter space to be explored.

Fine tuning of the scan parameters using evolutionary algorithms was performed

to produce images of the desired resolution on HOPG. This method has not

currently been implemented in UHV. Instead, engineering the molecular tip ter-

minations has taken priority for the researchers still working on this project.

Because of this, the following section on evolutionary fine tuning refers only to

ambient STM images of HOPG.

For our experiments, four parameters were modified during fine tuning: sam-

ple bias, V ; set-point current, I; proportional gain, Kp; and integral gain, Ki.

Fully exploring this entire parameter space systematically is not possible due to

the sheer number of possible combinations. Instead a machine learning process,

the cellular genetic algorithm (cGA) was chosen to control the fine tuning.

A standard genetic algorithm (GA) starts with a population of different in-
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dividuals. In this case an individual is a set of four scan parameters. These

individuals are tested for fitness, i.e. the quality of the resulting scan. Individu-

als with the lowest fitness are replaced by slightly mutated (small changes to the

scan parameters) offspring of fitter individuals. The cGA modifies this process

so the individuals are arranged on a grid and are only compared and replaced

by their direct neighbours. More detail is given in Appendix D.2.

In our experiment 24 initial parameter sets are generated randomly within a

set range. Combined with the parameter set from the final image of the coarse

conditioning this makes a population of 25 individuals. Images are recorded

with each of these 25 scan parameters. To save time only a 256� 50 pixel image

is taken for each individual. Due to the time overhead between scans on the

Nanosurf system 5 full images are recorded 256� 256 images are recorded, with

the scan parameters modified every 51 lines. The quality of each of these image

segments is assessed from the RMI compared to a target image. These qualities

are fed into the cGA algorithm which then generates 25 sets of scan parameters

for the next generation.

This fine tuning automatically begins when the tip conditioning algorithm

completes the coarse conditioning stage on HOPG. The method successfully gen-

erates high quality images of HOPG as shown in Figure 7.7. It is possible to

engineer a particular imaging state by only using trigonal or honeycomb targets,

or to simply aim for any high quality images by using the highest fitness score

from either target.
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a

b
c d

Figure 7.7: Evolutionary optimisation of HOPG imaging using a cellular genetic
algorithm. a) A generation of individuals. b) Fitness trend over multiple gener-
ations of the cGA. c) Initial image before cGA, and d) the final image after the
cGA.
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Chapter 8

SPIW: A toolbox for automated

scanning probe microscopy data

analysis

“Part of the inhumanity of the computer is that, once it is competently

programmed and working smoothly, it is completely honest.”

Isaac Asimov

Chapter Overview

In the previous chapter routines for automating SPM tip condition-

ing were described. That work heavily relied on specialised image

analysis to analyse the image quality to help determine the tip state.

These image analysis routines are equally applicable to offline analysis

of SPM data, and, as such, have been packaged into an open-source

toolbox for MATLAB named SPIW (scanning probe image wizard).

This chapter is a slightly edited form of a publication in the Review

of Scientific Instruments which gives an overview of SPIW’s capabil-

ities [164].
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8.1 Introduction

Analysis of scanning probe microscope (SPM) data, a standard tool for investi-

gating nanoscale surface structure in real space, can be a very time consuming

task. A huge portion of researcher time is invested in manual data analysis, often

in multiple software packages, or in writing custom analysis scripts. Considering,

also, the considerable time taken to perform SPM experiments, we believe that

automation of both data collection and analysis are of high priority.

While software packages, including Gwyddion [170], WSXM [171], and SPIP1,

are available for manipulating SPM images, such packages require a user to decide

how to process and extract statistics from the data. This can consume a large

portion of an SPM researcher’s time. Time can be saved by batch processing

(for example, the Gwiddion libraries can be accessed through gwybatch), such as

subtracting a fitted plane from all images and exporting to a suitable image file.

While this greatly improves the speed of processing for sets of similar images,

it still requires time to manually sort the images, and decide on the processing

needed. In addition, as the libraries were designed with human interaction in

mind, only a limited amount of batch processing is possible.

Often further data analysis is needed to extract the desired information from

the image. This ranges from measuring lattice constants or step heights, to more

complicated feature location, counting, and measuring. The standard SPM pro-

cessing software mentioned above has little support for such analysis, instead

concentrating on plane subtraction, filtering, and basic roughness statistics [172].

Some support for this analysis is available in software such as ImageJ [173].

ImageJ, however, is designed for conventional optical images and electron mi-

croscopy images, and thus many SPM specific analysis functions are not natively

supported. Due to this limitation a great deal of SPM data analysis is per-

formed by purpose written scripts [174,175], or even manual counting and mask-

ing in conventional image manipulation software. It is difficult to estimate the

researcher-time wasted on avoidable manual processing or on duplicated script

functionality, when so many groups write their own analysis code.

1http://www.imagemet.com
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We present Scanning Probe Image Wizard (SPIW)2 a new open source soft-

ware toolbox built entirely around the concept of automated scanning probe

data processing. SPIW is written as a MATLAB toolbox, allowing the user

to easily combine standard SPM image processing functions with new feature-

locating functions designed specifically for SPM images. For more complicated

or specialised analysis it is possible for researchers to combine SPIW functional-

ity with their own code as well as with any of the great range of data processing

operations already included in MATLAB.

8.2 Overview of capabilities

SPIW was originally written as part of a wider project to fully automate scanning

probe experiments, as described in Chapter 7. This project combines SPIW

image analysis with machine learning techniques to successfully automate STM

tip conditioning. Initial experiments in ambient conditions with highly oriented

pyrolytic graphite (HOPG) samples [163], relied heavily on prior knowledge of

the expected images. Moreover, as STM images of HOPG often result from the

sliding of graphite layers [165], this causes an averaging effect and thus step edges,

lattice defects, and contamination are rarely seen. The STM automation project

has since moved to ultra high vacuum (UHV) conditions, with a Si(111) 7 � 7

surface. In such conditions the image analysis must reliably recognise step edges

with flat terraces, process images accurately in the presence of contamination,

and identify atomic resolution even on areas of the surface with a high defect

density. This work is presented in Chapter 7.

As no human is present during the automation process, the image analysis

must work autonomously with a wide range of images. Successful tip condi-

tioning was achieved with no specific information of the surface reconstruction

and without target images. Below we provide detailed explanation of the most

important of SPIW’s capabilities.
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a b c

Figure 8.1: a) Raw STM image of Si(111) 7�7 reconstruction. b) Line-by-
line flattening of the same image, resulting in distortion of the surface near
contamination. c) Iterative plane flattening (with masking) of same image using
a SPIW algorithm. (Scale bars 6 nm.)

8.2.1 Adaptive masking and flattening

Raw SPM images show the topography traced by the probe. As the height of

the features in an image are generally much smaller than the width or length

of the image, a very small sample tilt can result in an image where features

are very difficult to recognise (Figure 8.1a). Most SPM software avoids this

problem by line fitting and subtracting from each line of data in the fast scan

direction, which we will refer to as line-by-line fitting. Although this allows the

user to see structure more clearly, large surface features such as contamination

and adsorbates can have a strong effect on only certain lines, causing previously

flat areas to become bowed (Figure 8.1b). Final processed images are usually

plane-fitted, to provide a realistic impression of the scanned surface (Figure 8.1c).

Certain scanners (such as tube scanners) can exhibit a bowed motion. To correct

for this, one can subtract second, or higher, order polynomial planes. Again, large

surface features affect the plane fitting algorithm, in this case causing the surface

to remain tilted or (for higher order planes) to even become distorted. As such,

the user must mask large features from the surface before fitting.

Erickson et al. [176] have produced an automatic method of adaptive thresh-

olding to produce masks and then used second order polynomials planes to flatten

images [166]. This method does not translate well to images with atomic scale

surface corrugation or molecular networks. SPIW offers similar capabilities, but

2https://sourceforge.net/projects/spiw/

127



SPIW: A toolbox for automated scanning probe microscopy data analysis

it also offers more powerful methods in the case of these corrugated surfaces. The

method involves locating every atom/molecule on the surface, via the methods

described in Section 8.2.3. By comparing the median maxima and minima of

the surface the corrugation height can be calculated. High and low areas are

defined as any part of the surface which is a user defined fraction of the cor-

rugation height above/below the median maxima/minima height Figure 8.2a).

These pixels are added to a mask (Figure 8.2c, and e), and will not be included

in the plane fitting. Before the plane fitting algorithm is executed, the mask

is processed to remove any small areas which can arise from artefacts such as

feedback instabilities.

The full flattening procedure is as follows. The image is first flattened with

a first order polynomial plane (as the distortions of higher polynomials are un-

desirable). Next a mask is produced using the method described above, and

the surface is again flattened, ignoring any masked pixels. This process can be

iterated until the mask does not change within a given tolerance (Figure 8.2b–e).

A final improvement to the flattening can optionally be applied. In this

method we fit a second order polynomial plane through just the surface maxima

which are not inside the masked region (Figure 8.2f–g). This removes the effect

of scanner bow, without less densely packed areas of the surface appearing lower

and thus distorting the final image.

8.2.2 Step edge finding

Other features which commonly appear in high resolution SPM images are step

edges (Figure 8.3). Step edges pose problems for both flattening routines and for

generating statistics about images. SPIW detects step edges using Sobel filtering

to calculate the square magnitude of the pixel height gradient [177]. These areas

are thresholded with respect to the mean square gradient, to create masks of

high gradient regions. The subsequent masks are thinned to single pixel lines.

Further processing consisting of hole filling and dilation followed by re-thinning

to single pixel. This improves the continuity of the single pixel mask along the

step edge.

Once steps have been located, they can be taken into account during flat-
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Figure 8.2: a) 2D schematic of masking procedure. Maxima/minima are marked
with red/blue points, their means by solid lines. hc is the calculated corrugation
height, and m is the fraction of hc above/below which features are masked. b)
STM image of Si(111) 7�7 reconstruction flattened using a first order polynomial
plane. c) Resulting mask of high and low areas of (b), using surface corrugations
to set threshold height. d) Result of 5 iterations of flattening non-masked regions,
and re-masking. e) Processed mask of (d). f) Result of second order polynomial
flattening only unmasked peaks in (d). g) Computer vision image of (f). Cyan
points represent atoms, red/blue outlines high/low masked areas. Note that the
image is now flat enough that all defects and corner holes are masked. (Scale
bars 3 nm.)
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tening by using a specially designed plane-flattening routine. The routine does

not fit the whole image, instead it carries out line fits to each line separately,

as in line-by-line fitting. If a line is broken by a step then each line segment is

fitted separately. This is repeated for both the fast and slow scan directions. A

weighted average of all gradients in each direction is used to produce a first order

polynomial plane. As no line segment contains a step, the step does not affect the

calculated gradients, leaving correctly flattened images. The advantage of this

method over defining a plane from three points in the image, a feature available

in most SPM software, is that this be applied automatically, rather than using

manually selected points.

Locating the positions of step edges opens up another opportunity for auto-

mated image processing, as the image has now been divided into terraces. SPIW

can be set to divide the image ordering terraces by size, and removing terraces

smaller than a set area. These terraces then can be flattened and processed

separately, to give statistics specific to each terrace.

8.2.3 Atom/molecule recognition

Locating the position of surface features such as atoms and molecules is an

essential part of many of the SPIW routines. For images with atomic or molecular

resolution the process of locating the molecule is relatively simple. The image is

first filtered using a 2D Gaussian kernel. The aim of this filtering is to remove

white noise, not to significantly alter the image. As such, the default Gaussian

kernel has a standard deviation of just one pixel width. After this, local maxima

in the filtered image are used as a first approximation of atom/molecule positions.

Local minima can also be located as they are required for certain functions such

as calculating corrugation heights. Both lists of points can be improved by

removing any points which falls within a masked region. To accurately resolve

atoms/molecules the peak to peak separation should be Á 5 pixels. For images

with a low signal to noise ratio the size of the Gaussian kernel may need to be

increased for better results.

Fitting of peaks is not used to improve the accuracy of the atomic positions,

as this was found to considerably increase the time to process images for no
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a b

c

Figure 8.3: a) STM image of Si(111) step edges flattened using a first order
polynomial plane, with computer vision overlay of located step edges. b) Image
flattened in SPIW with steps taken into account. c) Histogram of pixel heights for
image flattened with the SPIW step method (red), compared compared to first and
second order polynomial plane methods (green and blue respectively). z-heights
not yet calibrated, see Section 8.2.4. (Scale bars 20 nm.)

measurable improvement. Moreover, fitting algorithms were found to regularly

fail to provide a good fit when image features overlap, causing a decrease in

accuracy.

Further properties of the features can be analysed, such as the shape and the

area. This is done by looping though all maxima, and comparing to their closest

local minima. A local section of the image is then masked at some fraction of the

minima-to-maxima height (Figure 8.4). The user has control of both the height
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threshold and the local area size, but both are related to image features rather

than set values to improve the applicability of the routine to multiple surfaces.

Any masked feature which is not entirely contained in the local image is removed

from the statistics. Thus, badly resolved molecules or spuriously defined points

do not affect the final statistics. Features too close to the edge of the image are

also not included as they may overlap the edge of the image, which would distort

the statistics.

a b

c

Figure 8.4: a) STM image of Si(111) 7�7 reconstruction flattened using SPIW
mask and flatten routines. b) Computer vision image of (a) with all well-resolved
atoms masked for shape. c) Zoom of boxed region of (b). (Scale bars 3 nm.)
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8.2.4 Generating image statistics

The previous section touched upon SPIW’s ability to generate image statistics.

With SPIW it is possible to generate statistics for specific sections of the image

defined by masks. Thus contamination, surface defects, and steps have minimal

effect on the final results.

Lattice periodicity and step heights can also be measured automatically and

used to calibrate images. Step edge heights can be measured using a function

which fits Gaussian functions to each terrace identified in a histogram of pixel

heights. For example, for Figure 8.3c, the mean step height detected was 2.67

Å, giving a calibration factor of 1.17, as the bilayer step height between Si(111)

planes is 3.135 Å. Lattice periodicity can be measured without knowledge of

the expected lattice structure by calculating the distance between each detected

atom/molecule and its nearest neighbour. In the case of adatoms of the Si(111)

7 � 7 reconstruction, the closest pairing is 6.71 Å across the divide between the

faulted and unfaulted halves of the unit cell [178]. SPIW measures an average

closest distance of 6.88 Å for Figure 8.2f, and 6.64 Å for Figure 8.5c. These

values not only have percentage error of less than 3%, the absolute error is

also much smaller than the pixel width of 0.625 Å. This method was chosen

over using a Fourier transform, as many surface structures produce a number of

peaks in k-space, which are best analysed with specific routines for the expected

structure. The relative intensities and clarity of Fourier peaks can also be affected

significantly by contamination and defects. These problems are removed by

directly using the atomic positions in real space.

RMS surface roughness (RRMS) can be calculated as a simple standard devi-

ation of the surface heights. As an example, the RMS roughnesses of the four

detected terraces in Figure 8.3b, from left to right are RRMS � 53 pm, 29 pm, 39

pm, and 58 pm, after z-calibration. Compare these values to RRMS � 353 pm for

the whole image, or RRMS � 152 pm for the plane flattened image Figure 8.3a.

Surface corrugation, hc, can also be measured for atomic resolution images using

the method explained in Section 8.2.1 (see also Figure 8.2a).

Another benefit of writing SPIW in MATLAB is for more specialised statistics

it is easy to pass data from areas located or masked in SPIW into the wide range
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of built-in MATLAB functions or home-written scripts. This can dramatically

speed up script writing for very specialised image analysis not available ‘out of

the box’ in any software package.

8.2.5 Computer vision outputs

Generating image statistics is of little use without being able to verify that the

image analysis they rely on is working correctly. With this in mind, SPIW is able

to produce computer vision outputs which allow the user to see what features

were recognised, the positions of steps or masks, and how the image was flattened.

SPIW can easily be set to loop though a large batch of images and save image

files with the computer vision outputs along with the statistics. These computer

vision outputs can be used to monitor script behaviour to ensure accuracy. All

SPM images in this thesis are examples of the possible outputs in SPIW.

8.3 Performance under different conditions

8.3.1 Step edges with atomic resolution

A particularly difficult test for any step edge locating routine is to find step

edges in an image with atomic resolution. The problem arises from edge-finding

techniques’ use of gradients. Often the gradient from the atomic corrugations

is as strong as the gradient at the step edge. SPIW has tools to create images

where each pixel is the height of the nearest located atom. This image can then

be fed into the step edge locating routine with excellent results (Figure 8.5).

8.3.2 Feature locating for molecular networks

This chapter has concentrated on UHV STM images of Si(111) 7 � 7 as this is

a key prototype. The same routines, however, apply equally well to a number

of more complex surfaces. In Figure 8.6, we have used the same routines as for

Figure 8.4 but on a liquid STM image of a quaterphenyl-tetracarboxylic acid

and terphenyl benzene assembly on HOPG [179]. The only changes were the

size of the kernel used to generate the peak locations: the standard deviation
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a b

c d

Figure 8.5: a) STM image of Si(111) step edge flattened using a first order
polynomial plane, with computer vision overlay showing located atoms in cyan.
b) Image constructed such that each pixel height is equal to the height of the
nearest located atom, with computer vision overlay of located step edge. c) Image
flattened in SPIW with step taken into account. c) Histogram of pixel heights for
image flattened with the SPIW step method (red), compared to first and second
order polynomial plane methods (green and blue respectively). (Scale bars 6 nm.)

was increased from one to 3 pixels due to the more complex shapes of the sur-

face features. The results compare favourably to the results for masking atoms

previously presented.

8.3.3 Known issues

SPM image processing presents a number of very specific image processing chal-

lenges. This is due to the process by which the image is acquired. Image artifacts

which can arise from improper imaging parameters, such as feedback gains, can

be difficult to separate from real surface features. Changes at the apex of the
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scanning probe can cause sudden changes in height and/or resolution in the mid-

dle of an image. Sample drift or piezoelectric creep from the scanners can cause

distortions not only in the x-y plane but also in z. Images with periodic structure

can be corrected in the x-y plane [180], a method not currently implemented in

SPIW. However, images dominated by drift or creep in z are very difficult to

process in SPIW as flattening the image is near impossible, and no tools exist

to reliably correct such distortions automatically. Line by line fitting can give

visually pleasing results, yet a combination of inherent distortion and added dis-

tortion from the fitting result in images which cannot be used with any degree of

confidence for most purposes. SPIW can be used to output such images to alert

the user to interesting features, yet the raw data will still need manual processing

elsewhere.

8.4 Conclusion

We have presented a number of tools from SPIW that can be used to automat-

ically perform SPM data analysis. The tools are applicable to a wide range of

SPM data sets, and can be used in numerous ways from simply flattening SPM

images and saving to image files which can be easily browsed for interesting data,

to scripted routines which select only certain images to be processed and anal-

ysed statistically. SPIW, like all software projects, is an ongoing development.

We hope that by releasing it as an open source project, SPM and image process-

ing experts also can share their acquired knowledge to improve the toolbox for

the benefit of the entire SPM community3.

3As of the 12 of December 2013, the toolbox has been downloaded a total of 967 times from
either sourceforge or softpedia (a site mirroring the SPIW content).
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a b

c

e f

d

Figure 8.6: a) and b) Liquid STM image of quaterphenyl-tetracarboxylic acid and
terphenyl benzene assembly on HOPG. c) and d) Computer vision image of (a)
and (b) respectively with all well resolved molecules masked for shape. e) and f)
Zoom of boxed region of (c) and (d) respectively. (Scale bars 10 nm.)
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Chapter 9

Control theory for scanning

probe microscopy revisited

“Those people who think they know everything are a great annoyance to those of

us who do.”

Isaac Asimov

Chapter Overview

The final results chapter of this thesis describes theoretical work on

methods developed for modelling SPM feedback controllers. The first

section on analytical modelling of SPM feedback describes a correc-

tion to the prevailing method in the literature, and has been sub-

mitted to the Beilstein Journal of Nanotechnology [181]. The later

section on numerical feedback loops describes a simulator to generate

theoretical SPM images of nanoparticles. This will form one of the

central arguments of a paper in preparation discussing the apparent

striped morphology of thiol-capped nanoparticles [182].

9.1 Introduction

Scanning probe microscope (SPM) images rely on feedback loops to maintain

a constant interaction between the the tip and the sample [16, 92]. Many well

known artefacts can arise from improper feedback settings [14, 15]. Thus, for
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reliable SPM operation and analysis the characteristics and behaviour of feed-

back loops must be considered [183, 184]. SPM feedback loops usually employ

a proportional-integral (PI) controller, equivalent to the common proportional-

integral-differential (PID) controller with the differential gain set to zero to avoid

amplification of noise. Other groups have successfully modelled and implemented

proportional-differential controllers [185], but these are not commonly used. Pre-

vious work has used control theory to analyse the behaviour of PI and PID feed-

back loops in the context of SPM [17, 47, 186, 187], and these models are still

being applied in the current literature [188]. However, the details of the opera-

tion of the feedback loop have been incorrectly modelled, resulting in decreased

stability and exaggerated ringing at the resonant frequency of the piezoelectric

actuator. Due to these errors, the feedback controller often cannot maintain

tracking without a high derivative component [188], which is entirely at odds

with experimental observations. This chapter employs analysis of specific SPM

PI controllers to provide a more appropriate method for modelling such systems.

9.2 Analytical Models for SPM Feedback

When modelling an SPM feedback loop we must first consider the workings of

the PI controller under perfect conditions. First, assume that the tip is sta-

tionary above a sample of height Z, and that the z-piezoelectric actuator for

tip positioning is extended by X. For this perfect model X is considered to

be the output of the PI controller; consideration of amplifier bandwidths and

mechanical resonances are added later. For our original simplified model we will

consider a generic SPM which tracks to a set-point tip-sample distance (Note

that the exact mechanism to detect this distance is not relevant). Referring to

the set-point distance as P , and the tip-sample distance as Z�X, then the error

signal input to the PI controller, E, is

E � Z � pX � P q . (9.1)
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After a time t in feedback the output of a standard PI controller would be

Xptq � KpEptq �Ki

» t

0

Epτq dτ , (9.2)

where Kp and Ki are the proportional and integral gains of the PI controller

respectively and τ is a dummy integration variable. It is clear that such a system

is intrinsically unstable, by considering the case that Ept0q � 0. As the tip-

sample distance is equal to the set-point distance there should be no movement,

however, evaluating Equation 9.2, the output to the piezo Xpt0 � dtq will be

zero (where the dt is used to clarify that the system was not initiated at 0

but the first output after initiation will be zero.). Thus, the tip will return to

the zero piezo extension position, rather than staying static (because the error

signal being zero). At the next time step, there will be a large error signal and

the tip will move back towards its correct position. This rudimentary problem

has apparently gone unnoticed to date because it has been ‘disguised’ by the

more complicated modelling of the response of the various other electrical and

electromechanical components of the SPM (amplifiers, piezoelectric actuators).

It is helpful to draw an analogy with the most commonly considered control

system, namely a temperature controller. A conventional PI controller in essence

calculates the heat to be added to the system under control. If the set-point

matches the measured temperature an output of zero is required. However,

an SPM directly controls the extension of the piezoelectric actuator which is

analogous to directly controlling the temperature. To correct for this one must

consider that the output of a the PI controller in an SPM is the change in the

extension. Thus, for the final output of feedback controller to be the extension

we must integrate the PI controller output since the start of the experiment (with

Xp0q � 0):

Xptq � Kp

» t

0

Ept�q dt� �Ki

» t

0

» t�

0

Epτq dτ dt� , (9.3)

where t� is another dummy integration variable. This integration effectively

stores all previous feedback response. Comparing to Equation 9.2 we see that

if initiated under the same conditions, where Xp0q � 0, the integral term does

store the previous response as a proportional controller. Thus, the controller
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Figure 9.1: Direct comparison of our model (Equation 9.3, red and green lines)
with the model from the current literature (Equation 9.2, blue and pink lines),
without modelling of electrical or mechanical components. The comparison is
performed for a full PI controller (a) and a simple proportional controller (b),
where the grey area represents the surface being tracked with a set-point of 0.
Equation 2, shows unexpected discontinuities and does not track the set-point for
a proportional controller, instead only reacting to the initial impulse. Equation
9.3 produces the expected results from elementary control theory. All gain units
are arbitrary.

implemented by Equation 9.2 would perform as a proportional-differential con-

troller.

Figure 9.1 directly compares the response of Equations 9.2 and 9.3 to a unit

step, analytically solved using a Laplace transform, with a set-point of zero. For

a PI controller, Figure 9.1(a), modelled using Equation 9.2 there is a disconti-

nuity in the extension at the time of the step, this results from the incorrectly

modelled proportional controller acting as a derivative controller. This discon-

tinuity can go unnoticed if the equations are solved numerically, if a frequency

cut-off is modelled [17], or if the mechanical response of the z-piezo is modelled.

Additionally, the controller modelled using Equation 9.2 does not experience the

expected overshoot of the set-point for a PI controller, this can also go unno-

ticed when mechanical response of the z-piezo is modelled as its resonance can

be mistaken for feedback ringing [17]. By further examining Equation 9.2 for a

proportional controller (Ki � 0), we see (Figure 9.1(b)) that in addition to the
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discontinuity the controller settles to a value which is a 1{pKp � 1q of the re-

quired extension. This this has previously been mistaken as a steady state error

common to proportional controllers [17], however when plotted without any the

modelling of other components it becomes clear that it results from the controller

only acting to the initial impulse.

From Figure 9.1(b) it becomes apparent there will be no steady state offset

when evaluating the response of Equation 9.3 to a static surface (Zptq � E �
X � P �constant), for a simple proportional controller (Ki � 0). This initially

appears at odds with both experiments and elementary control theory. However,

this is due to the simplicity of the system we are modelling. Again considering

our analogous temperature controller it is well known that the cause of steady

state error is that the heat input into the system is equal to the heat lost to (or

gained from) outside the system. Now we see that steady state errors in SPM

feedback result from sample drift in the z-direction or a scanning a sample with

a tilt. Thus, any system not modelling z-drift or sample tilt should not expect a

steady state error.

9.2.1 Complete model of SPM feedback

Before running simulations of our simplified SPM system we will first derive the

model for the full SPM feedback system, and then set the transfer functions of

unmodelled components to unity, to reduce the possibility for errors following

their introduction. To avoid unnecessary generalisations we will discuss the feed-

back loop as it applies to the scanning tunnelling microscope (STM). The results

are, however, equally applicable to other forms of SPM. For analysis of the full

feedback loop of an STM (Figure 9.2) we start by considering that at any time

t the tip will be above a particular area of the sample with height Z. Thus,

the tip encounters the topography as a time changing function Zptq. Using the

extension of the z-axis of the piezoelectric scanner (z-piezo), Xptq (Note that

when modelling a complete SPM Xptq is no longer simply the output of the PI

controller, as described in Equation 9.7), we can express the tip-sample, Dptq,
distance as

Dptq � Zptq �Xptq . (9.4)
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Figure 9.2: Schematic of an STM feedback loop. Zptq and Xptq represent the
sample height and z-piezo extension at time t respectively, and P is the set-point
current. Other SPM systems can be modelled using the same feedback system
by replacing the operator ĤIV, with an operator which describes the tip sample
interaction and signal amplification of the SPM to be modelled.

The measured tunnelling current is a function of this distance, and also of the

properties of the current-to-voltage (I-V) amplifier of the STM. As the tunnel

current is exponentially dependent on the tip-sample distance the logarithm of

the tunnel current is used for the feedback to improve the linearity of the feedback

response. We can refer to this log tunnel current as

Iptq � ĤIVptqDptq , (9.5)

where ĤIVptq is the time dependent operator fully describing the tunnel junction,

the I-V amplifier, and the logarithm operation.

The feedback controller then compares Iptq with a set-point, P , and tries to

correct for discrepancies by modifying the output, Optq, to the z-piezo. We can

write the feedback controller as the time dependent operator Ĝptq, and hence

Optq � Ĝptq�P � Iptq� . (9.6)

Finally, we can link the z-piezo extension to the feedback controller output

with an operator, ĤPptq. This describes both the high voltage amplifier used for

143



Control theory for scanning probe microscopy revisited

the piezoelectric actuator and the mechanical response of the z-piezo itself:

Xptq � ĤPptqOptq . (9.7)

As the set-point acts as only a linear offset to the system we can set P � 0.

Thus, combining Equations 9.5 and 9.6 under this condition we get

Optq � �ĤIVptqĜptqDptq . (9.8)

Combining this with Equation 9.7:

Xptq � �ĤIVptqĤPptqĜptqDptq � �ĤIVptqĤPptqĜptq
�
Zptq �Xptq� , (9.9)

and applying a Laplace transform we get

X̃psq � �H̃IVpsqH̃PpsqG̃psq
�
Z̃psq � X̃psq� , (9.10)

where X̃psq � LtXptqu and L is the Laplace transform. Some minor rearrange-

ment gives

X̃psq � �H̃IVpsqH̃PpsqG̃psqZ̃psq
1� H̃IVpsqH̃PpsqG̃psq

. (9.11)

We are interested, however, in the output signal to the z-piezo, not its physical

extension, as this is what the SPM controller records for the image. By simply

considering the Laplace transform of Equation 9.7 (X̃psq � H̃PpsqÕpsq) we arrive

at a final result of

Õpsq � �H̃IVpsqG̃psq
1� H̃IVpsqH̃PpsqG̃psq

Z̃psq . (9.12)

For this chapter we are working in arbitrary units, thus the simulation needs

to provide the relative response to change in gain settings rather than a response

in physical units. Thus we can set ĤIVptq � �1 (H̃IVpsq � �1) as the logarithm

should cancel the exponential dependence of the tunnel junction, and the gain

of the I-V amplifier is simply linear, which is irrelevant if we are working in

arbitrary units. To specifically consider the effect of the bandwidth of the SPM
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pre-amplifier, the functional form of ĤIVptq must be considered in more detail.

More detail on modelling of such electrical components is given in the Section

9.2.3. Under this condition we can simplify Equation 9.12 to

Õpsq � G̃psq
1� H̃PpsqG̃psq

Z̃psq . (9.13)

By applying the same argument used to derive Equation 9.3 we can write the

operator for the PI-controller acting on an arbitrary function fptq as

Ĝptq � Kp

» t

0

fpt�q dt� �Ki

» t

0

» t�

0

fpτq dτ dt� , (9.14)

and thus in s-space this becomes

G̃psq � Kp

s
� Ki

s2
. (9.15)

9.2.2 Feedback performance - without mechanical mod-

elling

Initially we will study the stability of the STM feedback without modelling the

mechanical resonances of the SPM system. For this we can substitute H̃Ppsq � 1

and Equation 9.15 into Equation 9.13. The feedback behaviour has been studied

for four simulated surfaces:

Zptq � 1, Zptq � 1� t{10, Zptq � t{10, Zptq � sinptq expp�tq, (9.16)

which correspond to a unit step, a ramp added to a unit step, a ramp, and a

smooth topographical feature respectively. The results for a range of different

feedback parameters are plotted in Figure 9.3. As the system in modelled in

arbitrary units, time and x-position are equivalent if the tip is moving at a

constant speed in x. It is clear from Figure 9.3 that the system behaves as

expected. Steady state offsets appear for proportional only controllers if there is

a z ramp present, but is corrected by an integral controller.

When discussing the stability of the system, qualitatively one can see that

tracking is maintained for a wide range of proportional and integral gains. For
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Figure 9.3: The feedback response of an SPM, without the inclusion of mechanical
resonances, calculated for four different topographies, and for a range of feedback
gains. Not all gains are plotted for all topographies to avoid overcrowding.

large integral gains the system oscillates, as expected. For all plotted gains oscil-

lations always ring-off, never resulting in positive feedback. To further investigate

the stability in the case of the unit step the full system output in s-space can be

analysed for poles. The final output in s-space is:

Õpsq � Kps�Ki

sps2 �Kps�Kiq , (9.17)
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which results in three poles:

s � 0, s � �Kp �
a
K2
p � 4Ki

2
. (9.18)

From this it is clear that if Kp and Ki are always positive (true for a feedback

loop) no pole ever has a positive real value, and thus the system is always stable.

We can also calculate that the feedback output will not oscillate if 4Ki ¤ K2
p .

9.2.3 Feedback performance - with mechanical and elec-

trical modelling

For a more realistic model of SPM feedback one should also model the response

of electrical and mechanical components. Equations for such extra components

should be tested individually and added sequentially to reduce the possibility of

error as equations in s-space are rarely intuitive. To build up a full electrical and

mechanical model of an arbitrary system is of little use when discussing stability

as the system becomes too complicated to analytically derive the poles. Instead,

the above equations should be used in conjunction with real physical values from

a SPM system to understand its stability.

As an example we will include a mechanical resonance for the z-piezo relative

to its equilibrium position at its input voltage

H̃Ppsq � 1

1� s
Qω0

� s2

ω2
0

, (9.19)

where Q is the quality factor of the resonance and ω0 is the angular eigenfre-

quency. It is important to note that this equation differs from that used in

Reference [17], as this text mistakenly uses the mechanical response to a force

rather than to a coupled mechanical offset. It is possible to model the transfer

function of the z-piezo for an input voltage by replacing the numerator with the

relevant piezoelectric coefficient. This is not done as it has no effect for a model

in arbitrary units, and also as in this form Equation 9.19 can equally be used as

the response of an AFM cantilever. It is, however, important to note that for

some geometries of piezoelectric scanners, such as the tube scanner, the motion
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of the principle eigenmode is perpendicular to the z-axis [189], and thus cannot

be included into our one dimensional model.

Substituting Equations 9.19 and 9.15 into Equation 9.13, along with the

equation for a unit step, the response of the full system in s-space is given by

Õpsq � KpQs
3 � pKiQ�Kpω0qs2 � pKiω0 �KpQω

2
0qs�KiQω

2
0

spQs4 � ω0s3 �Qω2
0s

2 �KpQω2
0s�KiQω2

0q
. (9.20)

As the denominator is fifth order there are 5 poles. One pole at s � 0 shows the

final response to the step. The functional form of the other 4 poles is too long to

be qualitatively useful. However, the trend in pole positions can be qualitatively

understood. Two poles correspond to the ringing oscillations from the system

without the mechanical resonance, though the frequency and decay times are

affected by the modelled resonance. Two further poles represent the excitation

of the mechanical resonance. These poles can move into the unstable region if

excited by high gains. The system can be made stable under higher gains by

increasing the eigenfrequency or decreasing the Q of the resonator. For these

reasons components with a high quality factor and a low resonant frequency are

unsuitable as part of SPM scanners.

In Figure 9.4(a) the PI controller output for a range of mechanical eigen-

frequencies with a constant quality factor is plotted against time. Arbitrary

units are used for both time and the PI output as the evolution under increasing

eigenfrequency is valid for any magnitude. The y-axis is labelled PI output, not

extension, as these are no longer equivalent when mechanical resonance is mod-

elled. For all plotted outputs the bandwidth of the high voltage (HV) amplifier

driving the z-piezo was assumed to be infinite, and hence Equation 9.19 was used

without modification.

The evolution of the output under varying Q of the mechanical resonance is

shown in Figure 9.4(b). Again, in agreement with the polar analysis, the stability

increases for lower Q. For higher Q the resulting instability can be diminished or

eradicated by reducing the bandwidth of the HV amplifier. The transfer function

of an amplifier with a finite bandwidth can be accurately modelled as a first order

low-pass filter [190]

H̃amppsq � 1

s{ωc � 1
, (9.21)
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Figure 9.4: The feedback response of an SPM, including mechanical resonance.
(a) Shows the evolution of the feedback output for varying eigenfrequency of the
mechanical resonance. The stability improves for increasing resonant frequency.
For all plots the bandwidth of the HV amplifier is infinite and the Q of the
resonance does not vary. (b) Shows similar evolution in feedback output for
varying Q of the resonance at a constant eigenfunction, with lower Q values
stabilising the output. The cyan line shows the same resonance properties as the
pink line, however by limiting the bandwidth of the HV amplifier to near that of
the resonance, the stability is improved significantly. Both insets are zooms of
the most important region of their respective plots.

where ωc is the cut-off angular frequency (3dB point) of the amplifier. As we are

working in arbitrary units this amplifier has a gain of 1, the numerator of the

transfer function can be replaced with the desired gain if needed. Including this,

the full transfer function of the amplifier and piezo becomes

H̃Ppsq � 1

ps{ωc � 1q
�

1� s
Qω0

� s2

ω2
0

	 . (9.22)

The cyan line in 9.4(b) shows the significant improvement in stability resulting

from a cut-off frequency just above that of the mechanical eigenfrequency. This,

however, comes at the cost of an increased overshoot. One also must be careful

not to lower the cut-off frequency below the resonance, nor to use an over-damped

(Q   1{2) mechanical component as this can introduce a significant phase lag,

causing new instabilities.
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The MATLAB code used to generate the data for Figures 9.3 and 9.4 is

included as supplementary information. This can be used to further explore the

parameter space of the SPM PI controller.

The only component in Figure 9.2 not modelled, is the tunnel junction and

logarithmic amplifier, ĤIVptq. Considering the tunnel junction as an exponen-

tial decay with distance, producing a current which is first amplified by an I-V

preamp with a finite bandwidth. The logarithm of this output voltage is then

taken either by a logarithmic amplifier or calculated numerically by the SPM

controller. This results in a functional form for the time-domain operator action

on the tunnel gap Dptq being

ĤIVptq � log
�
Ĥamprexpt�κDptqus

	
(9.23)

where κ is the characteristic decay length of the tunnel junction, and Ĥamp is the

time-domain operator corresponding to the transfer function in Equation 9.21.

To calculate the s-space transfer function of Equation 9.23, one would need

to calculate the Laplace transform of the exponential of an arbitrary function

Dptq. This may be possible for the specific functional forms of Dptq but is not

generally applicable. One can approximate ĤIVptq under the approximation that

the logarithm and Ĥamp commute:

ĤIVptq � Ĥamp plogrexpt�κDptqusq � Ĥamp p�κDptqq (9.24)

in arbitrary units κ can be ignored and the transfer function of the tunnel junc-

tion approximates to H̃IVpsq � �H̃amppsq. Under this approximation we ignore

the effect of higher harmonics of frequencies present in Dptq being generated by

the exponential dependence in the tunnel junction.

9.3 Numerical implementation of feedback sim-

ulations

As a real SPM controller records the control interaction at a specific sample rate

rather than continuously, and as all feedback calculations are performed numer-
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ically, it is arguably more appropriate to model the system numerically. For

this we have built a simulation SPM in MATLAB. Again, for general applica-

tion the feedback is performed directly on the tip-sample distance, and neither

mechanical or electromechanical components are modelled.

This simulation is performed using arbitrary units. However, as the numer-

ical simulation’s performance is dependent on both sample rate and scan speed

the arbitrary units of the gains are not equivalent to those from the analyt-

ical feedback model. Rather than describing the numerical model as a large

and unintuitive equation, an algorithmic explanation of the feedback simulation

is provided as pseudocode in Algorithm 1, where text inside braces represents

comments.

In this simulation a sample topography is fed in. Two nested for loops sim-

ulate the raster scan. The code Algorithm 1 simulates trace and retrace in the

fast scan direction but only a single trace in the slow scan direction, and all scan

parameters must remain constant throughout the scan. This is done to make the

pseudocode more understandable. The full code allows arbitrarily timed changes

in scan parameters and continuous scanning.

An advantage of this numerical simulation is that it allows us to more accu-

rately replicate the conditions of a real STM. We simulate experimental noise by

adding normally distributed random numbers to each measurement. The am-

plitude the simulated noise can be modified to monitor performance at a range

of signal-to-noise ratios. As well as the options to change the proportional and

integral gains, the scan speed, and the set-point height common to most SPM

controllers, extra options can be modified. The sample rate of the STM con-

troller can be modified, to investigate how this affects imaging performance and

particular scan speeds. Finally, an option to modify the method for the PI con-

troller is available. This method named wind-up protection resets the integral

term after each pixel. This method will stop the built up integral gains caus-

ing large oscillations, but similarly will limit the ability of the PI controller to

combat steady state errors.

This simulator has been used as part of an ongoing project to understand

STM images of thiol-capped nanoparticles. For particles capped with a mixture

of two thiols, it has been suggested that the ligands spontaneously phase separate
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Algorithm 1 Pseudocode for STM simulation algorithm. Braces indicate com-
ments.

Input: The topography topog (an N � N array), time per line T line, Sample
Rate SR, Set-Point SetPoint, Proportional gain Pgain and Integral gain
Igain, Wind-up protection (boolean) Protect.

Output: The simulated STM outputs scan and scanR.

1: spp = Round(T line�SR{N) {Calculate the number of PID iterations taken
per pixel}

2: height � topogp1, 1q � SetPoint
3: I=0 {Initialise integral term}
4: {Using loops to simulate raster scan}
5: for m � 1 to N do
6: for n � 1 to 2�N do
7: if Protect then
8: I � 0 {Reset integral term if wind-up protection is on.}
9: end if

10: {Calculate if on trace or retrace}
11: if n ¡ N then
12: n2 � 2�N � 1 � n; {If on retrace, new x position is calculated from

n}
13: else
14: n2 � n; {If on trace x position is simply n}
15: end if
16: for i � 1 to spp do
17: {Calculating error and adding normally distributed noise}
18: err � topogpm,n2q � SetPoint� height� RandN
19: I � I � err
20: {Using feedback to adjust height.}
21: height � height� Pgain�err � Igain�pI{SRq
22: end for
23: {Scan data is the last height, must be written to either scan or scanR

depending on if tip motion is trace or retrace}
24: if n ¡ N then
25: scanRpm,n2q � height
26: else
27: scanpm,n2q � height
28: end if
29: end for
30: end for

31: return scan, scanR
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into ordered striped domains which can be imaged in STM [191]. However, other

work has suggested that these features are the result of improper scan parameters

causing feedback oscillations which cause the apparent striped morphology [14].

The full details of the striped nanoparticle controversy are outside the scope of

this thesis [14,192,193], however, preliminary results of the feedback simulations

are of relevance to this chapter.

Figure 9.5(a) shows a real STM image of mixed thiol-capped nanoparticles

with stripes of a clearly defined width all aligned perpendicular to the fast scan

direction and continuous between particles. Similar results are obtained with the

simulation SPM presented in Figure 9.5(c)–(h), with stripe widths which vary

for different gains. As predicted in the analytical model, by reducing the inte-

gral gain these oscillating features are no longer generated (Figure 9.5(i). This

suggests a simple test for images with striped morphologies: repeated measure-

ments on the same areas with varying integral gain. If these features arise from

feedback instabilities the stripe spacing should be dependent on the integral gain.

9.4 Conclusion

We have derived an appropriate updated model to understand SPM feedback

in the context of control theory. This model shows the intrinsic stability of the

SPM feedback controller in an ideal environment. We further discuss methods to

include modelling of mechanical resonances showing low frequency components

to cause instabilities. By introducing amplifiers with bandwidths just above

the mechanical eigenfrequency these instabilities can be controlled. The method

presented here uses arbitrary units to show a generalised approach, but can be

combined with real parameters from SPM systems to understand and model

performance under a range of conditions. We also present a numerical SPM sim-

ulation which can be used to understand the effect of SPM feedback on apparent

morphologies in SPM images.
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(b) (c)

(d) (e) (f)

(i)(h)(g)

(a)

Figure 9.5: a) An real STM image of mixed thiol-capped nanoparticles, raw data
equivalent to Figure 1(a) from [191], but processed in SPIW [164] showing the full
topography range on a linear scale. b) Shows the surface topography used in all nu-
merical simulations. d–h) Show numerically simulated images with Kp � 50 and
Ki � 8000, 5000, 3000, 2000, and 1000 respectively. i) The same simulation with
more appropriate parameters Kp � 500 and Ki � 100. c) is the retrace image
recorded while recording image (f). Note the arbitrary units are not consistent
between the analytical simulation in Figure 9.3 and the numerical simulations
(c)–(h).
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Chapter 10

Conclusion

“Only on the edge of the grave can man conclude anything.”

Henry Adams

This thesis has broadly concentrated on the effect of instrumentation on SPM

measurements, showing that three decades in to scanning probe microscopy there

are still instrumental artefacts which are not well understood. Both STM and

AFM operation have been considered, and topics ranging from feedback per-

formance and tip termination effects on imaging to the accuracy of force spec-

troscopy measurements have been studied.

Early chapters concentrated on accurate force extraction from ncAFM mea-

surements with a qPlus sensor. Here, we considered how the tip geometry, while

having little effect on the spring constant of the sensor, can introduce significant

lateral motion to the trajectory of the tip apex. This lateral motion results in a

coupling of lateral and normal forces into the measurements. The lateral motion

was confirmed experimentally, and the effect this has on imaging, calibration,

and force spectroscopy measurements was calculated. We progressed to use the

well defined C60–C60 interaction potential and the technique of grid spectroscopy

measurements to experimentally record the effects of this lateral motion in 3D.

Furthermore we were able to use the 3D data to attempt to correct for the effects

of the coupled lateral forces. Preliminary data suggests this can improve the ac-

curacy of the measured potential. Finally on the topic of force measurements

a new quartz sensor geometry was proposed which uses symmetry to eliminate
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lateral motion arising from cantilever geometry. A further advantage of this

symmetrical design is that for the second eigenmode of the sensor the position of

tip attachment is at a node of the sensor, and thus the direction of the tip-apex

oscillation is normal to the surface. This allows LFM measurements without

introducing torsional modes.

The next section of the thesis concentrated on automatic methods for instru-

ment operation and data analysis. Initially we considered the researcher-time

wasted on preparing the apex of the probe before SPM measurements can be

performed. Using a combination of prescribed methods and genetic algorithms

we developed methods to automatically optimise STM image resolution in both

vacuum and ambient conditions. This work relied heavily on advanced methods

developed to automatically process and analyse SPM data. This algorithms have

been packaged into an open-source toolbox for offline SPM data analysis.

Finally, we considered methods of simulating SPM feedback which are cur-

rently used in the literature. We found that the prevalent method for perform-

ing feedback calculations analytically showed a highly decreased stability for the

SPM loop than is expected. This arises from a mistake in the application of

control theory for the PI controller, instead the system models a proportional

differential controller. Combining this with incorrect modelling of the piezoelec-

tric actuator for z position, the feedback loop heavily excites the eigenmode of

the piezo causing oscillation which was mistaken as feedback ringing. We go

further to discuss numerical models of feedback performance showing them to

be in agreement with our the analytical model.

10.1 Future work

10.1.1 Accuracy of force extraction

Much work is needed for accurate and reproducible force extraction. The pro-

posed symmetrical sensor needs to be fabricated and tested. If the sensor per-

forms as expected this will eliminate the lateral motion present from sensors with

cantilever style sensors. The accuracy of force measurements, however, is affected

by the high uncertainty in the spring constant of the fabricated sensors. As such,
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once the sensor is fabricated it is important to find methods to experimentally

probe the spring constant for each individual sensor. Methods such as thermal

tuning and the Cleveland method could easily be applied to this sensor.

10.1.2 Automated SPM image acquisition and analysis

The automated SPM image acquisition needs to be extended in several direc-

tions. The tip optimisation software needs to be tested on a wider variety of

surfaces. Currently it is possible by configuration files to modify the prescribed

tip modification procedures if some are known to perform badly on a particular

surface, in future this needs to be extended so that the system can learn and mod-

ify its methods autonomously. Other desirable extensions of the tip optimisation

software is to extend it to qPlus ncAFM operation, and to engineer a specific

molecular tip termination. Both of these will require extensive work. ncAFM

operation can be very unstable, especially when surface contamination invisible

in STM can cause tip crashes. The software will therefore need to be modi-

fied to monitor the scan live. This is not possible with many commercial SPM

controllers and thus may require additional interfacing electronics. Recognising

specific tip terminations introduces further complications. The ‘fingerprints’ of

specific tip terminations are difficult for experienced operators to identify given

time and theoretical images to compare to. As such, the image recognition soft-

ware needs to perform as well as a human operator, something which will require

significant investment of time into developing state-of-the-art image recognition.

Future work for the automated SPM image acquisition should not be limited

to tip optimisation. As the system is capable of recognising high quality images,

modification to collect many high quality images of different scales in different

areas of a surface automatically should not be too time consuming. Combined

with masking and recognising features it should be possible to automatically

characterise surface reconstructions and molecular assemblies. This work will

rely on extending the tip optimisation to more surfaces as if atomic/molecular

resolution is lost the tip will need re-preparing.

For automated SPM image analysis further work is also needed to extend the

software to open a wider range of SPM image formats, and to improve methods
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of exporting processed data. It may also be desirable to develop a user-friendly

graphical user interface to help in the building and testing of analysis scripts

before they are batch applied to data.

10.1.3 Feedback loop modelling

The analytical model presented is purposefully simplified to allow isolated testing

of the transfer function of the PI controller. This work could be extended to

investigate the effect on imaging and stability caused by components such as

amplifier bandwidths and mechanical resonances. For example, by modelling

the resonance of an AFM cantilever it could be possible to investigate if the

feedback causes excitation of the cantilever above that expected from the drive

piezo. This would require modelling of the AFM control electronics as described

by Nony et al. [47].
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[4] J. J. Sáenz et al., Journal of Applied Physics 62, 4293 (1987).

[5] U. Dürig, D. W. Pohl, and F. Rohner, Journal of Applied Physics 59, 3318

(1986).

[6] C. D. Bugg and P. J. King, Journal of Physics E: Scientific Instruments

21, 147151 (1988).

[7] K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, J. Vac. Sci.

Technol. A 3, 1502 (1985).

[8] F. J. Giessibl, M. Herz, and J. Mannhart, Proceedings of the National

Academy of Sciences of the United States of America 99, 12006 (2002).

[9] I. Szlufarska, M. Chandross, and R. W. Carpick, Journal of Physics D:

Applied Physics 41, 123001 (2008).

[10] F. Atamny and a. Baiker, Surface Science 323, L314 (1995).

[11] P. Markiewicz and M. C. Goh, Review of Scientific Instruments 66, 3186

(1995).

[12] C. Chiutu et al., Phys. Rev. Lett. 108, 268302 (2012).

159



Bibliography

[13] F. J. Giessibl, Science 289, 422 (2000).

[14] Y. Cesbron, C. P. Shaw, J. P. Birchall, P. Free, and R. Lévy, Small (Wein-
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Appendix A

Derivations of key equations in
AFM

“Moderation is a fatal thing. Nothing succeeds like excess.”
Oscar Wilde

Appendix Overview
This appendix contains many very complete derivations of the key
equation needed to understand the motion of the cantilever in AFM.
It is included as the form of these derivations is vital to much of the
work presented in this thesis which modifies the standard calcula-
tions to take into account for elements such and tip geometry, and
other sensor geometries. Much of it could be described as bookwork,
however having it all together, cross-referenced and where possible
derived from first principles is considered preferable to citing a range
of textbooks and papers with less complete derivations.

A.1 Free simple harmonic oscilator

A freely oscillating damped cantilever with spring constant k, and displacement
z has equation of motion:

F � ma (A.1)

�kz � c 9z � m:z (A.2)

where c is the viscous damping coefficient.
By suggesting the oscillating, exponentially decreasing, solution

z � Ae�dteiωt � Aepiω�dqt (A.3)
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equation (A.2) becomes

�kz � cpiω � dqz �mpiω � dq2z (A.4)

�k � icω � dc�mω2 � 2imωd�md2 (A.5)

however by imposing the condition that k must be real we get

c � 2md (A.6)

taking the real part of equation (A.5) and substituting in equation (A.6) we get

�k � �md2 �mω2 (A.7)

k

m
� d2 � ω2 � ω2

0 (A.8)

we can now rewrite equation (A.2) as

0 � ω2
0z � 2d 9z � :z (A.9)

by writing d in terms of the damping ratio ζ � d
ω0

0 � ω2
0z � 2ζω0 9z � :z. (A.10)

This is the equation of motion for the damped harmonic oscillator.

A.2 Quality Factor

The quality factor, Q, is defined as

Q � 2π
Energy stored

Energy dissipated per oscillation
, (A.11)

therefore the fraction of energy after Q cycles is

EQ
E0

�
�

1� 2π

Q


Q
�
�
Q� 2π

Q


Q
. (A.12)

By generalising Q to z and 2π to a, we get

�z � a

z

	z
� pz � aqz

zz
(A.13)
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then by performing a binomial expansion on the top

� 1�
�
z
1



zz�1

z
p�aq �

�
z
2



zz�2

z
p�aq2 �

�
z
3



zz�3

z
p�aq3 � . . .

(A.14)

where

�
n
k



are binomial coefficients, which can be written as n!

k!pn�kq!

� 1� z!

pz � 1q!z p�aq �
z!

2pz � 2q!z2
p�aq2 � z!

3!pz � 3q!z3
p�aq3 � . . .

(A.15)

but

z!

pz � nq! � zpz � 1qpz � 2q . . . pz � nq (A.16)

� zn for z " n (A.17)

so if for large z �z � a

z

	z
� 1� p�aq � 1

2
p�aq2 � 1

3!
p�aq3 � . . . (A.18)

� e�a (A.19)

so from equation (A.12) for large Q the fraction of energy after Q cycles is

EQ
E0

� e�2π (A.20)

The energy of the oscillation is equal to the work done against the restoring
force of the cantilever to move from no deflection to maximum deflection,

E �
» A

0

zkdz � 1

2
kA2. (A.21)

Considering the exponential decay of the amplitude derived in Appendix A.1

A � A0e
�ω0ζt (A.22)
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after Q cycles of period T

EQ
E0

� A2
Q

A2
0

� �
e�ω0ζQT

�2 � e�2π (A.23)

6 2ω0ζQT � 2π (A.24)

But ω0 � 2π
T

, hence

Q � 1

2ζ
(A.25)

A.3 Driving Amplitude

It can be useful to consider any driving force in terms of a corresponding ampli-
tude without any resonance effects. Consider Hooke’s law with a constant force
F .

F � �kz (A.26)

dividing through by the mass and using equation (A.8) we get

F

m
� �ω2

0z (A.27)

we can rename the deflection amplitude z as Adrive getting the relation.

Adrive � � F

mω2
0

(A.28)

A.4 The Cantilever

A.4.1 Equation of Motion of a Cantilever

Consider a simple cantilever as shown in figure A.1. We will consider an element
of length dx deflected by z. It has opposing shear forces V and V � dV , and
opposing bending moments M and M � dM at either end and a force per unit
length of fpx, tq.

By resolving forces in the direction of deflection and using Newtons second
law

V � pV � dV q � fpx, tqdx � ρAdx
B2z

Bt2 (A.29)
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dx

z

V � dV
V

M � dM
M

fpx, tq

O

Figure A.1: A simple cantilever. With shear force V , bending moment M and
force per unit area f .

and balancing the moments

pM � dMq �M � pV � dV qdx� fdx
dx

2
� 0 (A.30)

Considering

dM � BM
Bx dx dV � BV

Bx dx (A.31)

therefore equation (A.29) becomes

�BVBx dx� fpx, tqdx � ρAdx
B2z

Bt2 (A.32)

�BVBx � fpx, tq � ρA
B2z

Bt2 (A.33)

and balancing the moments

BM
Bx dx� V dx� BV

Bx dxdx� fdx
dx

2
� 0 (A.34)

any terms with dx2 terms are considered vanishing, and hence

BM
Bx � V . (A.35)

Combining equations (A.33) and (A.35) we get

�B
2M

Bx2
� fpx, tq � ρA

B2z

Bt2 (A.36)
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According to Euler-Bernoulli theory [194] the bending moment of a thin beam
is related to the bending1 by

M � EI
B2z

Bx2
, (A.37)

where E is the Young’s modulus and I is the second moment of area of the
cantilever through the bending axis.

Thus equation (A.36) becomes

EI
B4z

Bx4
� fpx, tq � ρA

B2z

Bt2 (A.38)

the dynamic Euler-Bernoulli equation.

A.4.2 Second moment of area

At each cantilever segment beam bends through an axis located halfway trough
the beams thickness (parallel to the deflection). The axis of bending is perpen-
dicular to both the beams length and deflection. By defining the beams width
as w (y direction) and thickness as h (z direction) the second moment of area
can be calculated as

Iy �
»
A

z2dA �
» h

2

�h
2

» w

0

z2dydz (A.39)

�
» h

2

�h
2

z2wdz �
�
z3

3
w

�h
2

�h
2

(A.40)

� h3w

24
�
��h3w

24



� h3w

12
(A.41)

A.4.3 Spring Constant

Starting with equation (A.38) and considering a force, F , to be located directly
on the end of the cantilever, we can use a Dirac delta function and get

EI
B4z

Bx4
� Fδpx� Lq � ρA

B2z

Bt2 (A.42)

1Second derivative of the beam deflection with respect to position along the beams length

( B
2z

Bx2 )

177



Derivations of key equations in AFM

and for a static deflected cantilever B2z
Bt2

� 0

EI
B4z

Bx4
� Fδpx� Lq (A.43)»

EI
B4z

Bx4
dx �

»
Fδpx� Lqdx (A.44)

EI
B3z

Bx3
� F � c (A.45)

c � 0 as if F � 0 is applied the beam will relax and B3z
Bx3 � 0

EI
B3z

Bx3
� F (A.46)

We can now write the differential equation as

EI
B4z

Bx4
� 0 for 0 ¤ x   L (A.47)

and we have 4 boundary conditions

z|x�0 � 0 Beam clamped at x � 0. (A.48)

EI
Bz
Bx
����
x�0

� 0 Beam clamped at x � 0. (A.49)

EI
B2z

Bx2

����
x�L

� 0 No force at x ¡ L to cause it to bend. (A.50)

EI
B3z

Bx3

����
x�L

� F From equation (A.46). (A.51)

A general solution for equation (A.47) is

z � A�Bx� Cx2 �Dx3 (A.52)

from equations (A.48) and (A.49) we get

A � 0 and B � 0 . (A.53)

Therefore with equation (A.50) we get

2C � 6DL � 0 (A.54)
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and finally using equation (A.51) we can show

D � F

6EI
(A.55)

combining this with equation (A.54)

C � �3FL

6EI
(A.56)

Therefore giving the solution of z for these boundary conditions as

z � F

6EI

�
x3 � 3Lx2

�
. (A.57)

Considering the deflection a z � L

F � �3EI

L3
z (A.58)

Therefore using Hooke’s law the spring constant of a cantilever is

k � 3EI

L3
(A.59)

A.4.4 Natural Frequencies

Again starting with equation (A.38) this time with no force

EI
B4z

Bx4
� ρA

B2z

Bt2 � 0 (A.60)

the solution zpx, tq can be considered separable as

zpx, tq � ΦpxqT ptq (A.61)

6 EIT ptqB
4Φpxq
Bx4

� ρAΦpxqB
2T ptq
Bt2 � 0 (A.62)

B2T ptq
Bt2 � � EI

ρAΦpxq
B4Φpxq
Bx4loooooooomoooooooon

ω2
0

T ptq (A.63)
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From this we can get a differential equation for Φpxq
B4Φpxq
Bx4

� ρAω2

EI
Φpxq (A.64)

Let β4 � ρAω2

EI
(A.65)

B4Φpxq
Bx4

� β4Φpxq (A.66)

(A.67)

This has a general solution of

Φpxq � B1e
βx �B2e

�βx �B3e
iβx �B4e

�iβx (A.68)

which is equivalent to

Φpxq � b1 cospβxq � b2 sinpβxq � b3 coshpβxq � b4 sinpβxq (A.69)

For this system there is no external force so the boundary conditions are

z|x�0 � 0 Beam clamped at x � 0. (A.70)

EI
Bz
Bx
����
x�0

� 0 Beam clamped at x � 0. (A.71)

EI
B2z

Bx2

����
x�L

� 0 No force at x ¡ L to cause it to bend. (A.72)

EI
B3z

Bx3

����
x�L

� 0 From equation (A.46) (F � 0). (A.73)

Hence, from these four boundary conditions we get 4 simultaneous equations

b1 � b3 � 0 (A.74)

βb2 � βb4 � 0 (A.75)

�β2b1 cospβLq � β2b2 sinpβLq � β2b3 coshpβLq � β2b4 sinhpβLq � 0 (A.76)

β3b1 sinpβLq � β3b2 cospβLq � β3b3 sinhpβLq � β3b4 coshpβLq � 0 (A.77)

dividing each equation through to remove all β terms and then writing as a
matrix we get�

���
1 0 1 0
0 1 0 1

� cospβLq � sinpβLq coshpβLq sinhpβLq
sinpβLq � cospβLq sinhpβLq coshpβLq

�
��


looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon
D

�
���
b1

b2

b3

b4

�
��
�

�
���

0
0
0
0

�
��
 (A.78)
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Considering the case where
detpDq � 0 (A.79)

Then D�1 exists and hence

�
���
b1

b2

b3

b4

�
��
� D�1

�
���

0
0
0
0

�
��
 (A.80)

which would give a trivial solution

b1 � b2 � b3 � b4 � 0 (A.81)

Therefore the condition for a non-trivial solution is��������
1 0 1 0
0 1 0 1

� cospβLq � sinpβLq coshpβLq sinhpβLq
sinpβLq � cospβLq sinhpβLq coshpβLq

��������
� 0 (A.82)

We can solve this to get

sin2pβLq � cos2pβLqlooooooooooomooooooooooon
1

� cosh2pβLq � sinh2pβLqlooooooooooooomooooooooooooon
1

�2 cospβLq coshpβLq � 0 (A.83)

6 1� cospβLq coshpβLq � 0 (A.84)

This can be solved numerically using the Newton-Raphson method see figure
A.2, giving the solutions

βL � 1.875104, 4.694091, 7.854757, 10.995541, 14.137168, . . . (A.85)

From the definition of β in equation (A.65) we can calculate that

ω � pβLq2
c

EI

mL3
(A.86)
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Figure A.2: The first 5 roots of 1� cospβLq coshpβLq � 0.

hence we get the following resonant frequencies for our cantilever

ω1 � 3.516015

c
EI

mL3
f1 � 0.559591

c
EI

mL3
� 1f1

ω2 � 22.034492

c
EI

mL3
f2 � 3.506898

c
EI

mL3
� 6.266893f1

ω3 � 61.697214

c
EI

mL3
f3 � 9.819417

c
EI

mL3
� 17.547482f1

ω4 � 120.901916

c
EI

mL3
f4 � 19.242138

c
EI

mL3
� 34.386061f1

ω5 � 199.859530

c
EI

mL3
f5 � 31.808632

c
EI

mL3
� 56.842623f1

A.4.5 Effective Mass of Cantilever

From Hooke’s law we get
k

m
� ω2

0 (A.87)
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as shown in (A.8). Using the value for k derived in equation (A.59) we expect a
first resonance at

ω0 �
c
k

m
�
c

3EI

L3m
� 1.732051

c
EI

L3m
(A.88)

Does not agree with the first resonance as calculated in Appendix A.4.4 because
in Hooke’s law all the mass is moved over the entire deflection which is not true
for a cantilever. By defining the effective mass, meff , of a cantilever as its as
a fraction of its mass such that it follows the resonant frequency as derived by
Hooke’s law, we can say

ω0 � 1.732051

c
EI

L3Rm
� 3.516015

c
EI

mL3
(A.89)

where R � meff

m

1.732051R�1{2

c
EI

L3m
� 3.516015

c
EI

mL3
(A.90)

R �
�

1.732051

3.516015


2

� 0.242672 (A.91)

Thus the cantilever behaves as though it has an effective mass of

meff � 0.242672m (A.92)

In the case of an AFM cantilever, with a tip, the effective mass would be

meff � 0.242672mcant �mtip (A.93)

under the assumption the tip is a point mass at the far end of the cantilever.

A.5 Driven Cantilever

Taking the equation of motion derived for a free cantilever (equation (A.10)) and
including a sinusoidal force F sinpωtq, we get

F

meff

sinpωtq � ω2
0z � 2ζω0 9z � :z (A.94)
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we now have a response with both an in phase and out of phase component

z � A1 sinpωtq � A2 cospωtq (A.95)

9z � A1ω cospωtq � A2ω sinpωtq (A.96)

:z � �A1ω
2 sinpωtq � A2ω

2 cospωtq (A.97)

Taking the sinpωtq coefficients of equation (A.94)

F

meff

� ω2
0A1 � 2ζω0ωA2 � ω2A1 (A.98)

and then from the cospωtq coefficients of equation (A.94)

0 � ω2
0A2 � 2ζω0ωA1 � ω2A2 (A.99)

6 A1 � �pω
2
0 � ω2q

2ζω0ω
A2 (A.100)

By combining equations (A.98) and (A.100) to eliminate A1

F

meff

� �pω
2
0 � ω2q2
2ζω0ω

A2 � 2ζω0ωA2 (A.101)

� �pω
2
0 � ω2q2 � p2ζω0ωq2

2ζω0ω
A2 (A.102)

A2 � � 2ζω0ω pF {meffq
pω2

0 � ω2q2 � p2ζω0ωq2 (A.103)

Also combining equations (A.98) and (A.100) to eliminate A2

F

meff

� pω2
0 � ω2qA1 � p2ζω0ωq2

ω2
0 � ω2

A1 (A.104)

A1 � � pω2
0 � ω2q pF {meffq

pω2
0 � ω2q2 � p2ζω0ωq2 (A.105)

Now from elementary trigonometry

A sinpωt� φq � A sinpωtq cosφ� A cospωtq sinφ (A.106)

Therefore

A1 � cosφ and A2 � sinφ , (A.107)

and thus
A2

1 � A2
2 � A2pcos2 φ� sin2 φq � A2 . (A.108)
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Using this and the equations for A1 and A2 ((A.105) and (A.103)) we can say

A2 �
�

F

meff


2 pω2
0 � ω2q2 � p2ζω0ωq2

ppω2
0 � ω2q2 � p2ζω0ωq2q2

(A.109)

|A| � |F {meff |
p
a
ω2

0 � ω2q2 � p2ζω0ωq2
(A.110)

Using Q � 1
2ζ

from equation (A.25) and
��� F
meff

��� � |Adrive|ω2
0 from equation (A.28)

we can rewrite this as

|A| � |Adrive|ω2
0

p
b
ω2

0 � ω2q2 � 1
Q2ω2

0ω
2

(A.111)

and this rearranges to

|A| � |Adrive|c�
1� ω2

ω2
0

	2

� 1
Q2

ω2

ω2
0

, (A.112)

as it is commonly expressed [2].
From from the equations in (A.107) and from the equations ((A.105) and

(A.103)) for A1 and A2 we can say

A2

A1

� sinφ

cosφ
� tanφ � �2ζω0ω

ω2
0 � ω2

(A.113)

hence

φ � arctan

�
2ζω0ω

ω2 � ω2
0



(A.114)

and again using Q � 1
2ζ

from equation (A.25)

φ � arctan

�
�� ω

Qω0

�
1� ω2

ω2
0

	
�

 . (A.115)

This means that when the drive frequency ω is equal to ω0 the phase shift is
�90�, such that the AFM tip is lagging quarter of a cycle behind the driving
force.
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A.6 Full equations of motion for the cantilever.

Using the differential equation in equation (A.63), the solution for the time
dependent part is simply,

T ptq � sinpω0t� φq . (A.116)

Then for position dependent part, the simultaneous equations (A.74–A.77) can
be solved for each eigenfrequency, using the values for βL given in equation
(A.85) and the corresponding resonant frequencies can bef found on page 182.
From (A.74) and (A.75) we get

b1 � �b3 b2 � �b4 (A.117)

putting these into (A.76) gives

b1 � � sinpβLq � sinhpβLq
cospβLq � coshpβLq (A.118)

from this we can calculate the ratio between b1, b2, b3, and b4 for equation (A.69)
for each βL. The fourth simultaneous equation is not needed as for our βL values
the determinant of the equations in matrix form is zero, leading to infinitely many
solutions with three solutions for the relative sizes of the terms2.

Thus, by solving (A.118) for each eigenfrequency, we can write the full time

2 The fourth equation (eq (A.76)), combined with equation (A.117), can be used to verify
the result in equation (A.118), for each value of βL.
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dependent solution for our cantilever deflection as

zpx, tq �A1 sin

�
3.516015

c
EI

mL3
t

�

r1.362221pcospβ1xq � coshpβ1xqq � sinpβ1xq � sinhpβ1xqs �

A2 sin

�
22.034490

c
EI

mL3
t

�

r0.981868pcospβ2xq � coshpβ2xqq � sinpβ2xq � sinhpβ2xqs �

A3 sin

�
61.697208

c
EI

mL3
t

�

r1.000776pcospβ3xq � coshpβ3xqq � sinpβ3xq � sinhpβ3xqs �

A4 sin

�
120.901922

c
EI

mL3
t

�

r0.999966pcospβ4xq � coshpβ4xqq � sinpβ4xq � sinhpβ4xqs �

A5 sin

�
199.859519

c
EI

mL3
t

�

r1.000001pcospβ5xq � coshpβ5xqq � sinpβ5xq � sinhpβ5xqs �
. . . (A.119)

Noticeably for higher eigenfrequencies b1 Ñ �b2, as coshpxq Ñ sinhpxq for large
x, and coshpxq, sinhpxq " cospxq, sinpxq for large3 x. The first 5 eigenfrequencies
have been plotted out in figure A.3

A.7 Frequency shift in AFM

This section covers a simple first order approximation for the for the frequency
shift resulting from a force felt by the end of a cantilever for low amplitudes
where the force gradient is considered constant. Following this a formula for
arbitrary amplitudes is derived, an equation which is used extensively in this
thesis. Another approximation which is not covered here is an equation which is
true in the limit of large amplitudes which assumes only the force at the closest
point of approach dominates the frequency shift. This method is not covered in
detail as the derivation in Reference [151] covers the topic very clearly.

3Large in this case is Á 10.
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Figure A.3: From top to bottom, the first 5 eigenfrequencies of a freely oscillating
cantilever.

A.7.1 First order frequency shift (Low amplitude)

When an AFM approaches a surface it experiences a force from the surface
related to the tip-sample potential, Vts, by

Fts � �BVts

Bz . (A.120)

Hence by Hooke’s law

F � Fts � �keffz � �pk � ktsqz (A.121)

6 Fts � �ktsz (A.122)

kts � �BFts

Bz . (A.123)
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Therefore if we assume a constant force gradient then the natural frequency of
the cantilever becomes

ω0 �∆ω �
c

keff

meff

(A.124)

as meff is unchanged

�
c
k � kts

meff

(A.125)

?
meffpω0 �∆ωq �

a
k � kts (A.126)

by Taylor expansion taking just the first two terms (assuming k " kts)

�
?
k � 1

2
?
k
kts (A.127)

ω0 �∆ω �
c

k

meffloomoon
ω0

�1

2

c
k

meffloomoon
ω0

kts

k
(A.128)

∆ω � kts

2k
ω0 (A.129)

As derived by Giessibl in Ref [28]. However, as previously mentioned this is only
valid for a constant force gradient which is not a good approximation for large
amplitude AFM.

A.7.2 Frequency shift for arbitrary amplitudes

Starting with Newton’s second law

� kz � Ftspzq � meff
B2z

Bt2 (A.130)

and considering the cantilever’s motion as periodic we can describe its deflection
as a Fourier series [2]

zptq �
8̧

n�0

an cospnωtq (A.131)

inserting this into equation (A.130)

8̧

n�0

anrk � pnωq2meffs cospnωtq � Ftspzq (A.132)
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Multiplying by cosplωtq and integrating from over one oscillation gives

» 2π{ω

0

8̧

n�0

anrk � pnωq2meffs cospnωtq cosplωtqdt �
» 2π{ω

0

Ftspzq cosplωtqdt
(A.133)

but » 2π{ω

0

cospnωtq cosplωtqdt � π

ω
δnlp1� δn0q (A.134)

which reduces equation (A.133) to

anrk � pnωq2meffsπp1� δn0q � ω

» 2π{ω

0

Ftspzq cospnωtqdt . (A.135)

Considering a weak perturbation where ∆ω ! ω0, and z � A cospωtq then we
can just consider the case were n � 1 and an � A, hence

ω

» 2π{ω

0

Ftspzq cospωtqdt � A
�
k � ω2meff

�
π (A.136)

� A
�
k � ω2k

meff

kloomoon
1

ω2
0

	
π � Ak

�
1� ω2

ω2
0



π (A.137)

� Akπ

�
1� ω2

0 � 2ω0∆ω �∆ω2

ω2
0



(A.138)

� �2Akπ
∆ω

ω0

(A.139)

as ∆ω2

ω2
0
� 0 when ∆ω ! ω0. So to a good approximation

∆ωpzq � � ωω0

2πAk

» 2π{ω

0

Ftspzq cospωtqdt (A.140)

if we substitute in q1 � A cospωtq

∆ωpz0q � � ωω0

2πA2k

» 2π{ω

0

Ftspz0 � q1qq1dt , (A.141)

where z0 is the average tip position. Finally considering

xfpxqy � 1{X
» X

0

fpxqdx (A.142)
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we can say

∆ωpz0q � � ωω0

2πA2k

2π

ω
xFtspz0 � q1qq1y (A.143)

hence

∆ω � � ω0

A2k
xFtspz0 � q1qq1y (A.144)

As derived by Giessibl in Ref [151].
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Appendix B

Derivations from Calculation of
Effects of Tip Geometry

“I rarely end up where I was intending to go, but often I end up somewhere I
needed to be.”

Douglas Adams

Appendix Overview
Some derivation of results in Chapter 4 were too long too detailed to
included in the main text. They are presented here for completeness.

B.1 Boundary Conditions of a Loaded Cantilever

The boundary conditions in Equations 4.6–4.9 allow us to form four simultaneous
equations for the factors b1..4 of Φipxq from Equation 4.4.

b1 � b3 � 0

(B.1)

b2 � b4 � 0
(B.2)

b1

�
� cospβiLq � Jβ2

i

γi
sinpβiLq



� b2

�
� sinpβiLq � Jβ2

i

γi
cospβiLq




�b3

�
coshpβiLq � Jβ2

i

γi
sinhpβiLq



� b4

�
sinhpβiLq � Jβ2

i

γi
coshpβiLq



� 0

(B.3)

b1

�
γi sinpβiLq � cospβiLq

�� b2

�� γi cospβiLq � sinpβiLq
�

�b3

�
γi sinhpβiLq � coshpβiLq

�� b4

�
γi coshpβiLq � sinhpβiLq

� � 0
(B.4)
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where γi is a dimensionless parameter defined as

γi � EIβ3

mtipω2
i

. (B.5)

Writing Equations B.1, B.2, B.3, and B.4 as a matrix equation in the form

D

�
���
b1

b2

b3

b4

�
��
�

�
���

0
0
0
0

�
��
 (B.6)

it becomes clear that if detpDq � 0, then the solution would trivially be b1..4 � 0,
a stationary beam. Hence, detpDq � 0, giving the following condition for βi:

1�m�2β4
i JL

2 � �1�m�2β4
i JL

2
�

cospβLq coshpβiLq
�m�βiL

��
1� Jβ2

i

�
cospβiLq sinhpβiLq � p1� Jβiq coshpβiLq sinpβiLq

� � 0
(B.7)

using

γi � ρA

βimtip

� 1

βiLm�
, (B.8)

from Equations 4.5 and B.5, where m� is the ratio of the tip mass to the mass of
the tine. Equation B.7 can be numerically solved simply and quickly using the
Newton-Raphson method.

B.2 Elastic Potential Energy of a Loaded Can-

tilever

Equation 4.12 can be expanded to give

W � EI

2

�
8̧

i�1

T 2
i ptq

» L

0

�
d2Φipxq

dx2


2

dx

�
8̧

i�1

8̧

k�1,k�i

TiptqTkptq
» L

0

d2Φipxq
dx2

d2Φkpxq
dx2

dx

�
(B.9)

Butt and Jaschke [96] use
d4Φipxq

dx4
� β4

i Φipxq (B.10)

(which is clearly still true for our boundary conditions from the general form of
Φ given in equation 4.4) to show that the integral with mixed (Φipxq and Φkpxq)

193



Derivations from Calculation of Effects of Tip Geometry

second derivatives can be written as» L

0

d2Φipxq
dx2

d2Φkpxq
dx2

dx � 1

β4
i � β4

k

�
β4
i

d2Φkpxq
dx2

dΦipxq
dx

� β4
i

d3Φkpxq
dx3

Φipxq

�β4
k

d2Φipxq
dx2

dΦkpxq
dx

� β4
k

d3Φipxq
dx3

Φkpxq
�L

0

. (B.11)

If we combine equations B.5 and B.8 to give

β4
i Lm

� � mtipω
2
i

EI
(B.12)

then we can rewrite boundary conditions 4.8 and 4.9 as

B2ΦipLq
Bx2

� β4
i JLm

�BΦipLq
Bx (B.13)

B3ΦipLq
Bx3

� �β4
i Lm

�ΦipLq . (B.14)

From these conditions it becomes clear that the first and third terms in the
square brackets of equation B.11 cancel, as do the the second and fourth. Thus,» L

0

d2Φipxq
dx2

d2Φkpxq
dx2

dx � 0 , (B.15)

and

W � EI

2

8̧

i�1

T 2
i ptq

» L

0

�B2Φipxq
Bx2


2

dx . (B.16)

B.3 Analytical Solution for Λi

To solve Λi we first integrate by parts twice to give

Λi �
�

dΦipxq
dx

d2Φi

dx2
� Φipxqd

3Φipxq
dx3

�L
0

�
» L

0

Φipxqd
4Φipxq
dx4

dx . (B.17)

The square brackets can be evaluated using boundary conditions 4.6, 4.7, B.13,
and B.14. Furthermore, with equation B.10 the integral can be written in terms
of Φipxq only:

Λi � β4
i LJm

�

�
dΦipLq

dx


2

� β4
i Lm

�Φ2
i pLq � β4

i

» L

0

Φipxq2dx . (B.18)
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The integral can be solved by substituting in ζ � x{L, and writing βiL as αi,

» L

0

Φ2
idx �L

» 1

0

#�
sinpαiq � sinhpαiq � Jβ2

i

γi

�
� cospαiq � coshpαiq

	�

� � cospαiζq � coshpαiζq
�

�
�

cospαiq � coshpαiq � Jβ2
i

γi

�
sinpαiq � sinhpαiq

	�

� � sinpαiζq � sinhpαiζq
�+2

dζ (B.19)

�L
�

sinpαiq � sinhpαiq
	2

� 3L

αi

�
1� cospαiq coshpαiq

	
�
�
� coshpαiq sinpαiq � cospαiq sinhpαiq

	

� Jβ2
i

γi
L

#
1

αi

�
� 4� cosp2αiq �

�
1� 2 cosp2αiq

	
coshp2αiq

�

� 2pcospαiq � coshpαiqqpsinpαiq � sinhpαiqq
+

� J2β4
i

γ2
i

L

��
cospαiq � coshpαiq

	2

� 3

αi

�
� 1� cospαiq coshpαiq

	

�
�

coshpαiq sinpαiq � cospαiq sinhpαiq
	�

. (B.20)
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Returning back to notation without αi or γi and using equation B.7 to replace
p1� cospβiLq coshpβiLqq in the second term, after some manipulation gives

�L
�

sinpβiLq � sinhpβiLq
	2

� 3Lm�
�

coshpβiLq sinpβiLq � cospβiLq sinhpβiLq
	2

� β2
i Jm

�L

�
� 5

2
� cosp2βiLq � coshp2βiLq

� 1

2
cosp2βiLq coshp2βiLq

� 2βiL
�

cospβiLq � coshpβiLq
	�

sinpβiLq � sinhpβiLq
	

� 3m�βiL
�

1� cospβiLq coshpβiLq
	

�
�

coshpβiLq sinpβiLq � cospβiLq sinhpβiLq
	�

� β6
i J

2m�2L3

��
cospβiLq � coshpβiLq

	2
�

� 3β5
i J

2m�2L2
��

� 1� cospβiLq coshpβiLq
	

�
�

coshpβiLq sinpβiLq � cospβiLq sinhpβiLq
	�
. (B.21)

Using equation B.7 again, this time to replace β3
i Jm

�LpcoshpβiLq sinpβiLq �
cospβiLq sinhpβiLqq in the final term, rearranging will give

» L

0

Φ2
idx �L

�
sinpβiLq � sinhpβiLq

	2

� 3Lm�
�

coshpβiLq sinpβiLq � cospβiLq sinhpβiLq
	2

� β2
i Jm

�L
�

sin2pβiLq sinh2pβiLq
� 2βiL

�
cospβiLq � coshpβiLq

	
�
�

sinpβiLq � sinhpβiLq
	

� 6m�βiL
�

1� cospβiLq coshpβiLq
	

�
�

coshpβiLq sinpβiLq � cospβiLq sinhpβiLq
	�

� β6
i J

2m�2L3

��
cospβiLq � coshpβiLq

	2

� 3m�
�

1� cospβiLq coshpβiLq
	2
�
. (B.22)
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It can be shown simply that�
dΦipLq

dx


2

� 4β2
i sin2pβiLq sinh2pβiLq , (B.23)

and that

Φ2
i pLq � 4

��
coshpβiLq sinpβiLq � cospβiLq sinhpβiLq

	2

� 2β3
i Jm

�L
�

1� cospβiLq coshpβiLq
	

�
�

coshpβiLq sinpβiLq � cospβiLq sinhpβiLq
	

� β6
i J

2m�2L2
�

1� cospβiLq coshpβiLq
	2
�
. (B.24)

Note that this form of Φ2
i pLq appears in equation B.22, allowing us to reduce it

to » L

0

Φ2
idx �L

�
sinpβiLq � sinhpβiLq

	2

� 3Lm�

4
Φ2
i pLq

� β2
i Jm

�L
�

sin2pβiLq sinh2pβiLq
� 2βiL

�
cospβiLq � coshpβiLq

	�
sinpβiLq � sinhpβiLq

	�
� β6

i J
2m�2L3

�
pcospβiLq � coshpβiLq

	2

. (B.25)

Combining equations B.23, B.24, and B.25 after some manipulation gives

Λi �β
4
i Lm

�

4
Φ2
i pLq � β4

i L
�

sinpβiLq � sinhpβiLq
	2

� β6
i Jm

�L
�
� 3 sin2pβiLq sinh2pβiLq

� 2βiL
�

cospβiLq � coshpβiLq
	�

sinpβiLq � sinhpβiLq
	�

� β10
i J

2m�2L3
�
pcospβiLq � coshpβiLq

	2

. (B.26)

Which for simplicity, can be written as

Λi � β4
i Lm

�

4
Φ2
i pLq � β4

i L
�

sinpβiLq � sinhpβiLq
	2

� β6
i Jm

�Lfpm�, Jq , (B.27)
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where

fpm�, Jq �3 sin2pβiLq sinh2pβiLq
� 2βiL

�
cospβiLq � coshpβiLq

	�
sinpβiLq � sinhpβiLq

	
� β4

i Jm
�L2

�
pcospβiLq � coshpβiLq

	2

. (B.28)

By substituting equation B.7 into B.24 and rearranging we get

Φ2
i pLq �4

�
sinpβiLq � sinhpβiLq

	2

� 8βiLm
� sinpβiLq sinhpβiLq

�
�

coshpβiLq sinpβiLq � cospβiLq sinhpβiLq
	

� 8β3
i LJm

�
�
�
�

1� cospβiLq coshpβiLq
	

�
�

coshpβiLq sinpβiLq � cospβiLq sinhpβiLq
	

� sinpβiLq sinhpβiLq
�

coshpβiLq sinpβiLq � cospβiLq sinhpβiLq
	

� βiLm
�
�

1� cospβiLq coshpβiLq
	

sinpβiLq sinhpβiLq
�

� 4β6
i L

2J2m�2
�

1� cospβiLq coshpβiLq
	2

. (B.29)

Initially this form appears to be more complicated. However, as will be demon-
strated, because it contains the boundary conditions it produces a final result
which is more physically understandable. For simplicity it can be written as

�4
��

sinpβiLq � sinhpβiLq
	2

� βiLm
�
�

2g � β2
i Jhpm�, Jq

	�
, (B.30)

where

g � sinpβiLq sinhpβiLq
�

coshpβiLq sinpβiLq � cospβiLq sinhpβiLq
	

(B.31)
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and

hpm�, Jq �2
�
�
�

1� cospβiLq coshpβiLq
	

�
�

coshpβiLq sinpβiLq � cospβiLq sinhpβiLq
	

� sinpβiLq sinhpβiLq
�

coshpβiLq sinpβiLq � cospβiLq sinhpβiLq
	

� βiLm
�
�

1� cospβiLq coshpβiLq
	

sinpβiLq sinhpβiLq
�

� β3
i LJm

�
�

1� cospβiLq coshpβiLq
	2

(B.32)

Thus finally we can write

ΛiL
3

Φ2
i pLq

� β4
i L

4

4

�
��m�

�

�
sinpβiLq � sinhpβiLq

	2

� β2
i Jm

�fpm�, Jq�
sinpβiLq � sinhpβiLq

	2

� βiLm�
�

2g � β2
i Jhpm�, Jq

	
�
�
 . (B.33)

It is clear that in the case of no tip, m� � 0, this reduces to just
β4
i L

4

4
. Inserting

this into equation 4.16 is consistent with Melcher et al. [134]. Further consistency
with the literature can be shown in the case of the point mass, where J � 0 but
m� � 0. Inserting Equation B.33 into Equation 4.16 with these conditions,
agrees with the results of Lozano et al. [138].

A final test of the accuracy of this equation can be done by considering
equipartition theorem with Hooke’s law in terms of the static spring constant:

1

2
kBT � 1

2
kstat

8̧

i�1

@
Z2
i pLq

D
(B.34)

and inserting equation 4.15 we get

8̧

i�1

L3Λi

Φ2
i pLq

� 3 . (B.35)

Using the same model qPlus sensor as described in section 4.2, this has been
plotted in figure B.1, for i � 1..8 showing excellent agreement with theory, and
faster convergence for larger tips.
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Figure B.1: Agreement with lim
NÑ8

Ņ

i�1

L3Λi

Φ2
i pLq

� 3, plotted for N � 8 roots to show

that the equation is consistent with equipartition theorem. Where H is the length
and Dtip is the diameter of a cylindrical tip.

200



Appendix C

Full derivations of dynamic
properties for a symmetrical
sensor

“Math is the language of the universe. So the more equations you know, the
more you can converse with the cosmos.”

Neil de Grasse Tyson

Appendix Overview
Here is presented method used to derive the results in Chapter 6.
This was not included in the main text to improve readability of the
chapter.

C.1 Harmonics of the symmetrical sensor

Considering the boundary conditions for a symmetrical sensor is a little more
difficult than for a cantilever, as once the effects of the tip or interactions are
included they will occur at the centre of the beam. The best method to account
for this is to consider that for odd modes the cantilever will be symmetrical and
for even modes anti-symmetrical. Now we can consider the boundary conditions
at one of the clamped ends and at the centre of the beam.
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C.1.1 Odd modes

Not including tip mass for simplicity the boundary conditions for the odd modes
are

Φip0q � 0 (C.1)

dΦip0q
dx

� 0 (C.2)

dΦipL{2q
dx

� 0 (C.3)

d3ΦipL{2q
dx3

� 0 (C.4)

Thus, considering the normalised spatial solution as

Φipxq � b1 cospβixq � b2 sinpβixq � b3 coshpβixq � b4 sinhpβixq , (C.5)

where

β4
i �

ρAω2
i

EI
. (C.6)

This can be written as the following matrix equation

D

�
���
b1

b2

b3

b4

�
��
�

�
���

0
0
0
0

�
��
 , (C.7)

where

D �

�
���

1 0 1 0
0 1 0 1

� sinpβiL{2q cospβiL{2q sinhpβiL{2q coshpβiL{2q
sinpβiL{2q � cospβiL{2q sinhpβiL{2q coshpβiL{2q

�
��
 . (C.8)

Now for a non-trivial solution detD � 0. This gives the resonance conditions

coshpβiL{2q sinpβiL{2q � cospβiL{2q sinhpβiL{2q � 0 (C.9)

From equations (C.1) and (C.2) we can see that

b1 � �b3 b2 � �b4 (C.10)

and from equation (C.3) we can get the ratio between the constants:

b1

b2

� cospβiL{2q � coshpβiL{2q
sinpβiL{2q � sinhpβiL{2q (C.11)
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C.1.2 Even modes

For the even modes the boundary conditions are slightly different

Φip0q � 0 (C.12)

dΦip0q
dx

� 0 (C.13)

ΦipL{2q � 0 (C.14)

d2ΦipL{2q
dx2

� 0 (C.15)

thus for these cases

D �

�
���

1 0 1 0
0 1 0 1

cospβiL{2q sinpβiL{2q coshpβiL{2q sinhpβiL{2q
� cospβiL{2q � sinpβiL{2q coshpβiL{2q sinhpβiL{2q

�
��
 . (C.16)

giving a condition for resonance of

coshpβiL{2q sinpβiL{2q � cospβiL{2q sinhpβiL{2q � 0 (C.17)

As before, from equations (C.12) and (C.13) we can see that

b1 � �b3 b2 � �b4 (C.18)

but equation (C.14) gives a slightly different ratio between the constants:

b1

b2

� sinhpβiL{2q � sinpβiL{2q
cospβiL{2q � coshpβiL{2q (C.19)

C.1.3 Odd modes - including tip

Including the mass of the tip requires a simple change of the 4th boundary
condition to

EI
d3ΦipL{2q

dx3
� �mtip

2
ω2
i ΦipL{2q (C.20)

Again, writing this as a matrix equation,

D

�
���
b1

b2

b3

b4

�
��
�

�
���

0
0
0
0

�
��
 , (C.21)
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where

D �

�
���

1 0
0 1

� sinpβiL{2q cospβiL{2q
sinpβiL{2q � 1

2γi
cospβiL{2q � cospβiL{2q � 1

2γi
sinpβiL{2q

� � �

� � �
1 0
0 1

sinhpβiL{2q coshpβiL{2q
sinhpβiL{2q � 1

2γi
coshpβiL{2q coshpβiL{2q � 1

2γi
sinhpβiL{2q

�
��
 (C.22)

where

γi � EIβ3
i

mtipω2
i

(C.23)

Now for a non-trivial solution detD � 0. This gives the resonance conditions

coshpβiL{2q sinpβiL{2q � cospβiL{2q sinhpβiL{2q
� 1

2γi

�� 1� cospβiL{2q coshpβiL{2q
� � 0 . (C.24)

To calculate the frequencies we must first combine Equation C.23 with Equation
C.6 to remove the ωi dependence in the definition of γi:

γi � mb

mtipβiL
� 1

m�βiL
, (C.25)

where mb is the mass of the beam, and m� is the ratio of the tip mass to the
beam mass. Using this from of γi in Equation C.24 allows the the dimensionless
quantity βiL to be solved for any m� by a simple numerical method such as
Newton-Raphson. Dimensions can be subsequently added to calculate ωi.

As equations (C.1), (C.2) and (C.3) are still valid the ratio between the
constants remains as

b1

b2

� cospβiL{2q � coshpβiL{2q
sinpβiL{2q � sinhpβiL{2q (C.26)

C.1.4 Even modes - including tip

For the even modes the first three boundary conditions are also unaffected by
the tip, the fourth changes to

EI
d2ΦipL{2q

dx2
� Itip

2
ω2
i

dΦipL{2q
dx

, (C.27)

where Itip is the moment of inertia of the tip.
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Writing the new four conditions as a matrix

D �

�
���

1 0
0 1

cospβiL{2q sinpβiL{2q
� cospβiL{2q � εi

2
sinpβiL{2q � sinpβiL{2q � εi

2
cospβiL{2q

� � �

� � �
1 0
0 1

coshpβiL{2q sinhpβiL{2q
coshpβiL{2q � εi

2
sinhpβiL{2q sinhpβiL{2q � εi

2
coshpβiL{2q

�
��
 , (C.28)

where

εi � Itipω
2
i

EIβi
(C.29)

This gives a resonance condition of

coshpβiL{2q sinpβiL{2q � cospβiL{2q sinhpβiL{2q
� εi

2

�� 1� cospβiL{2q coshpβiL{2q
� � 0 . (C.30)

To calculate the frequencies we must first combine Equation C.29 with Equa-
tion C.6 to remove the ωi dependence in the definition of εi:

εi � ItippβiLq3
L2mb

� I�pβiLq3 , (C.31)

where I� is the ratio of the moment of inertia of the tip to the beam mass
multiplied by the beams length squared. This ratio while physically meaningless,
as mbL

2 is not the moment of inertia of the beam for any relevant rotational
axis, provides a dimensionless constant to solve Equation C.30. Again βiL can
be solved for any I� by the Newton-Raphson method and dimensions can be
added to calculate ωi.

Again as equations (C.12), (C.13) and (C.14) are still valid the ratio between
the constants remains as

b1

b2

� sinhpβiL{2q � sinpβiL{2q
cospβiL{2q � coshpβiL{2q (C.32)

C.2 Static Spring Constants

Static spring constants are not normally (by definition) linked to the modes.
However they are linked to the symmetry and boundary conditions. Thus, the
even and odd modes relate to two separate static spring constants. One for the
end of the tip being pushed normal to the beam (knorm), and the other for the
tip being pushed parallel to the beam ( klat).
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C.2.1 Calculating knorm

In the normal case our boundary conditions are now

Φip0q � 0 (C.33)

dΦip0q
dx

� 0 (C.34)

dΦipL{2q
dx

� 0 (C.35)

EI
d3ΦipL{2q

dx3
� Fnorm

2
(C.36)

where Fnorm is the force on the tip normal to the beam. The factor of two is
because we are only considering the force felt by half of the beam.

The general static spatial solution is

Φi � A�Bx� Cx2 �Dx3 (C.37)

from equations (C.33) and (C.34) we get

A � 0 and B � 0 . (C.38)

With equation (C.35) we get

C � �3DL

4
(C.39)

and finally using equation (C.36) we can show

D � Fnorm

12EI
(C.40)

combining this with equation (C.39)

C � �FnormL

16EI
(C.41)

Therefore giving the solution of x for these boundary conditions as

z � Fnorm

4EI

�
1

3
x3 � 1

4
Lx2



. (C.42)

Considering the deflection a x � L{2

Fnorm � �192EI

L3
Anorm (C.43)
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Therefore using Hooke’s law the static spring constant of the normal mode of a
double-ended tuning fork sensor is

knorm � 192EI

L3
. (C.44)

C.2.2 Calculating klat

In the lateral case our boundary conditions are now

Φip0q � 0 (C.45)

dΦip0q
dx

� 0 (C.46)

ΦipL{2q � 0 (C.47)

EI
d2ΦipL{2q

dx2
� �FlatH

2
(C.48)

where Flat is the force on the tip parallel to the beam, and H is the tip length.
The factor of two is because we are only considering the force felt by half of the
beam.

The general static spatial solution is still

Φi � A�Bx� Cx2 �Dx3 (C.49)

from equations (C.45) and (C.46) we get

A � 0 and B � 0 (C.50)

as before. With equation (C.47) we get

C � �DL (C.51)

and finally using equation (C.48) we can show

D � �FlatH

4EIL
(C.52)

combining this with equation (C.51)

C � FlatH

8EI
(C.53)

Therefore giving the solution of x for these boundary conditions as

z � FlatH

4EI

�
1

2
x2 � 1

L
x3



. (C.54)
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Considering the deflection a x � L{2, z � 0, as expected. Considering the first
derivative of the deflection

dz

dx
� FlatH

4EI

�
x� 3

L
x2



. (C.55)

at x � L{2

dzpL{2q
dx

� FlatHL

16EI
. (C.56)

However as Alat � �H dzpL{2q
dx

Flat � �16EI

H2L
Alat (C.57)

Therefore using Hooke’s law the static spring constant of the lateral mode of a
double-ended tuning fork sensor is

klat � 16EI

H2L
. (C.58)
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Appendix D

Computer Science Techniques

“The question of whether computers can think is like the question of whether
submarines can swim.”

Edsger W. Dijkstra

Appendix Overview
The work on automated tip conditioning in Chapter 7 has large over-
laps with computer science. As this is a physics PhD thesis details of
these methods are not presented in the main text. Detailed explana-
tions of techniques, however, are relevant to the thesis and have thus
been included in this appendix.

D.1 Robust Mutual Information (RMI)

D.1.1 Mutual Information (MI)

The mutual information (MI) between two data sets is a measure of how much
the images depend on a mutual source of information. This can be calculated
between two STM scans (henceforth image A and image B) by reshaping the
image arrays into a 1D arrays of pixel values. The images are reduced in quality to
N colour levels (N � 32 was used for all analysis in this project), the probability
of a pixel in image A having a particular colour value is calculated for each value,
n, to give pApnq:

pApnq � # of pixels P A, with value n

# of pixels P A
. (D.1)

pBpmq can be calculated in a similar way for all colour values m in image B. Also
pABpn,mq is calculated which corresponds to the joint probability of a pixel in
image A having value n and the corresponding pixel in image B having value m.
Thus, it is clear that if image A and image B are completely independent then
pABpn,mq � pApnqpBpmq, if they do share some dependence then pABpn,mq ¡
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pApnqpBpmq. This means that the logarithm of pABpn,mq
pApnqpBpmq

is a useful quantity for
measuring dependence as it goes to zero for no dependence. The full formula for
the MI is [169]

MIpA,Bq �
¸
n

¸
m

pABpn,mq log

�
pABpn,mq
pApnqpBpmq



(D.2)

The extra factor of pABpn,mq is to scale by the regularity pixels with these
dependence values.

D.1.2 Calculating RMI from MI

The robust mutual information (RMI) is a more robust measure of MI. Occa-
sionally images with no mutual dependence will get MI values above zero due
to artefacts in the calculation. By calculating the MI of a randomly reordered
second image image B1, this gives an idea of the portion of the MI resulting from
these artefacts. This MI is calculated for a number, R, of random rearrangements
and averaged. The RMI can then be calculated as

RMIpA,Bq �MIpA,Bq �
Ŗ

r�1

MIpA,B1rq
R

(D.3)

D.2 Cellular Genetic Algorithms

The nature of a cGA is to inherit parameters from fitter neighbours rather than
from across the entire population, this is shown in Figure D.1. This slows the con-
vergence of parameters across the population, allowing the algorithm to explore
more of the parameter space, thus giving it a greater chance to find the global
maximum fitness rather than concentrating around one of many local maxima.

A generation can consist of any number, n, of individuals, In, each having a
particular set of parameters (genotype). In this particular example we have 25
individuals in one generation, represented by a 5 by 5 matrix. Each individual
genotype is described by four imaging parameters Inpi, V,GI , GP q where i, V ,
GI , and GP are the tunnel current setpoint, the sample bias voltage, integral
gain, and proportional gain respectively.

One image per individual is collected and given a fitness score describing
the image quality. During the selection and reproduction phase of the genetic
algorithm each individual is compared to its neighbours. If the individual is
fitter than its neighbours its genotype remains unchanged, however, if any of
its neighbours have a higher fitness score it inherits the genotype of its fittest
neighbour, plus a random mutation to allow it to explore a new area of the local
parameter space.

Good images can evolve quite quickly, and it is interesting to note that the
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final generation shown here has ‘pockets’ of particular image, or phenotype. Once
the desired level of image quality and type is achieved the cGA ends.
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An individual cell, I, with imaging 
parameters specified by its genotype.

The initial population is seeded with
parameters from the previous stage
of the optimization algorithm. Every
parameter is mutated in all but the
first individual to give the initial
spread across parameter space.

Individuals in the next generation
inherit genes only from their fittest
neighbors (as indicated by the 
arrows). Locally fittest individuals
(shaded green) do not change
between generations.

The resultant images are scored 
and are given a fitness value
according to their likeness to a 
target image.

Generation 1

Generation 2

Generation 3

Generation 4

Generation 5
A number of individuals in the fifth 
generation exhibit a satisfactory
level of fitness.

The imaging parameters (genotype) are passed to the
STM so that the images (phenotypes) can be collected.

This process continues from one
generation to the next until a 
particular individual obtains an image
of the desired quality, and thus has
acquired adequately optimized
imaging parameters.

Figure D.1: Typical evolution of a cGA run showing the progression towards a
good quality image as defined by a target. The initial population’s parameters
are seeded from a set of parameters that lie within the physical boundaries of the
system. After 5 generations the desired image quality is obtained and thus so are
the ‘ideal’ imaging parameters.
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