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Abstract

Osteoarthritis (OA) is expected to become the fourth leading cause of disability worldwide by

2020. There is no cure, and joint replacement surgery becomes a final resort. Chronic pain

associated with OA is poorly controlled by current treatments, and often involve chronic use of

non-steroidal anti-inflammatory drugs (NSAIDs), which is associated with serious side-effects.

OA is associated with alterations in endocannabinoid (EC), an attractive target for the control of

pain. ECs are rapidly degraded by a number of enzymes, including cyclooxygenase-2 (COX-

2), the major target of NSAIDs. However, the role of COX-2 in EC-mediated effects on

nociceptive transmission is not fully understood. The aims of this thesis were to investigate

peripheral and spinal pain responses in a model of OA pain, understand the role of COX-2

inhibition on neuronal responses and the potential role of ECs in mediating these effects, and

to establish the functional effects of the EC system in a model of OA pain.

Effects of spinal and peripheral administration of the COX-2 inhibitor nimesulide (1-1 OOlJgin

501JL)on mechanically evoked responses of dorsal horn neurones in the naive, anaesthetised

rat were measured, and the contribution of the CB1 receptor was determined with the

antagonist AM251 (11Jgin 50IJL). Effects of nimesulide on spinal levels of ECs and related

compounds were quantified using liquid chromatography-tandem mass spectrometry. Spinal,

but not peripheral, injection of nimesulide significantly reduced mechanically evoked responses

of dorsal horn neurones. Inhibitory effects of spinal nimesulide were blocked by the CB1

receptor antagonist AM251, but spinal EC levels were not elevated. Indeed, both anandamide

and N-oleoylethanolamide were significantly decreased by nimesulide, highlighting a putative

role for other oxidative enzymes of ECs in the generation of CB1-active metabolites.

The monosodium-iodoacetate (MIA) model of OA pain has recently received much interest, but

is not yet fully defined. Work in this thesis sought to further characterise this model. Cytokine

levels in synovial fluid, spinal cord and hindpaw skin at early time-points post- intra-articular

injection (1mg MIA in 50IJL, P.O. 3-24hr) were measured, and the later (P.O. day 28-31) effects

on neuronal responses and pain behaviour were determined. Intra-articular injection of 1mg

MIA produced stable and robust changes in two measures of pain relevant to clinical OA, and

evidence for the presence of central sensitisation was demonstrated. It was also demonstrated

that early-stage painful responses in this model are not associated with changes in cytokines in

the joint.

Effects of spinal and systemic administration of nimesulide (3-100IJg in 501JL)on mechanically

evoked and post-stimulus responses of dorsal horn neurones in MIA-treated rats were also

measured, as were the effects of spinal cannabinoid receptor antagonism with AM251 (0.1-

10IJg in 501JL)and the CB2 receptor antagonist SR144528 (0.001-0.1IJg in 50IJL). Spinal and
systemic COX-2 inhibition in the MIA model attenuated spinal neuronal responses to both

noxious and innocuous stimuli, demonstrating the importance of both spinal and peripheral

COX-2 products in mediating neuronal responses in this model. Antagonism of the spinal
cannabinoid receptors resulted in elevated spinal neuronal responses in MIA-treated rats,
demonstrating a functional role for spinal EC-mediated modulation of nociceptive transmission

in the MIA model, expanding on work in this lab which showed elevated spinal ECs in the MIA

model of OA pain. This work therefore demonstrates that the central EC system may be an
important target for the treatment of OA pain.
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Chapter 1 General Introduction

1.1. Pain

Arthritic disorders, such as osteoarthritis (OA) are a leading cause of work-related

disability in men and women, aged 16-72, and is expected to affect 59.4 million

(18.2%) Americans by the year 2020 (Lawrence et al., 1998). It is expected that over

half of individuals over the age of 85 will suffer symptomatic knee OA (Murphy et a/.,

2008). In the U.K., OA currently affects approximately 8.5 million people, and with no

cure available, symptomatic treatment is of vital importance. OA occurrence may be

secondary to an underlying joint problem such as physical trauma, crystal deposition

disorders such as gout, and rheumatoid arthritis (RA), or it may be idiopathic. In

idiopathic cases, while the exact cause is unknown, it is thought to be a disease of

cartilage or subchondral bone, with widespread disruption of normal turnover systems

reported (see section 1.2.1). Prevalence is higher in those over 40, particularly

women, and those who are overweight (for review, see Das & Farooqi, 2008). There

is also a genetic trait, with presence of OA within the family increasing individual risk.

Symptoms of OA include stiff, swollen and possibly unstable joints which may creak

(crepitus), with pain that may worsen following exercise, or inactivity. Levels of pain

and stiffness may vary with seasonal weather changes, and may vary throughout the

day, with many patients reporting symptoms to be worse in the morning (after

inactivity). In joints other than the knee and hip, OA can cause additional problematic

symptoms, e.g. OA in the neck and back (spondylosis) can cause outgrowths from the

vertebrae and joints with pain and numbness spreading down the arm, while in the

foot OA may affect the big toe causing problems with walking. The most troublesome

aspect of OA producing a reduction in quality of life for patients is the associated pain

(for reviews see Brandt, 2002; Curatolo & Bogduk, 2001).

Pain is defined by the International Association for the Study of Pain (IASP) as "an

unpleasant sensory and emotional experience associated with actual or potential

tissue damage, or described in terms of such damage." Pain is therefore not only a

physical event but importantly, comprises an emotional component, and as a result

the perception of pain varies from person to person. Nociception comprises the
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Chapter 1 General Introduction

physical aspect of pain, and is the result of a complex interplay between specialised

primary afferents in the periphery, the dorsal horn of the spinal cord, and spinal

pathways that ascend to, and descend from, higher pain centres in the brain.

1.1.1. Nociceptive primary afferents

Primary afferents which respond preferentially to stimuli that can, or do cause, tissue

damage are termed "nociceptors" (Sherrington, 1906), and may be myelinated by

Schwann cells surrounding their axons (A fibres) or unmyelinated (C fibres). Fibres

arise from cell bodies in the trigeminal and dorsal root ganglia, terminate in the spinal

cord (see later), and are classified into 3 subgroups: AJ3-,AtJ- and C-fibres, typically

existing in ratios of 20%:10%:70% in the skin (for review, see Millan 1999). AJ3-fibres

are of large diameter (>1Oprn) and are thickly myelinated, classically thought to

transmit signals only from non-noxious stimuli such as touch, vibration and pressure

(Millan et al., 1999) with a fast conduction velocity of 30-100m/sec. Some nociceptors

have been shown to conduct in the AJ3-fibre conduction velocity (CV) range (Ojouhri &

Lawson, 2004), and so the status of AJ3-fibres as solely non-noxious mediators is

undergoing scrutiny. AJ3-fibres may be particularly important in neuropathic pain-

related allodynia, where normally innocuous stimuli are perceived as painful. AtJ-

fibres are of medium diameter (2-6IJm), thinly myelinated and respond to nociceptive

mechanical, thermal and chemical stimuli with an intermediate conduction velocity of

12-30m/sec. Ao-fibres are thought to be responsible for the initial phase of

nociception, producing a sharp, pricking sensation (Meyer et al., 2006; Milan et al.,

1999), and may be subdivided into two subgroups, type I and type II. Type I AtJ-fibres

respond to mechanical stimuli and intense heat (-53°C; Willis & Coggeshall, 2004),

while type II AtJ-fibres are mechanically insensitive but have a lower thermal threshold

(-43°C; Treede et al., 1998). C-fibres are of small diameter (0.4-1.2IJm),

unmyelinated and slow (0.S-2m/sec) conducting, and are responsible for the dull

aching, second slow wave of pain following noxious stimulation (Meyer et al., 2005;

Millan et al., 1999). C-fibres respond to both innocuous and noxious stimuli and may

be subdivided into CH - heat sensitive; CM - mechano-sensitive; CMH - those

sensitive to both mechanical and heat stimuli (and almost always also to chemical
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Chapter 1 General Introduction

stimuli: "Polymodal"; Davis et al., 1993), and "silent nociceptors" which are

unresponsive to (or responsive only to intense) mechanical and heat stimuli under

normal conditions. Of particular importance in neuropathic pain are polymodal and

silent nociceptors. Polymodal fibres are thought to trigger sensitisation of spinal

neurones (see later, and review, Millan, 1999), while silent nociceptors may become

sensitive to mechanical and thermal stimuli after sensitisation, for example by irritant

chemical application such as capsaicin or mustard oil (Schmidt et al., 1995). Silent

nociceptors are thought to become active in cases of nerve damage or after

inflammation, contributing to hyperalgesia in these cases (Schmidt et al., 1995; Millan

et et.; 1999).

Receptors and neurotransmitters associated with nociceptive

transmission

The most prevalent neurotransmitter used in primary afferent fibres (both non-

nociceptive and nociceptive) is glutamate, allowing rapid transmission of excitatory,

pronociceptive neurotransmission in the spinal cord (Coderre & Melzack, 1992;

Malmberg & Yaksh, 1992; Kontinen & Meert, 2002). Glutamate and glycine, another

important excitatory amino acid, act at the ionotropic glutamate receptors AMPA (0-

amino-3-hydroxyl-5-methyl-4-isoxazole-propionate), kainate and NMDA (N-methyl-D-

aspartic) receptors, which couple cation channels, as well as metabotropic glutamate

receptors (mGluRs) - G-protein coupled receptors linked to second messenger

systems (see Mayer & Armstrong, 2004).

AMPA receptors are densely located in the superficial dorsal horn, and transmit

signals between primary afferent fibres and dorsal horn neurones (Yoshimura &

Jessell, 1990; Randic et al., 1993; Seagrove et al., 2004). Activation results in

increased sodium conductance and is involved in the transmission of acute noxious

and thermal stimuli (Dougherty et al., 1992; King & Lopez-Garcia, 1993).

Kainate receptors are found both pre- and post-synaptically in the dorsal horn and

modulate and transmit nociceptive information from primary afferent fibres to the
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Chapter 1 General Introduction

spinal cord in both acute and chronic pain states (Advocat & Rutherford, 1995;

Szekely et al., 1997; Okano et al., 1998). Pre-synaptically they modulate glutamate

release (Frerking & Nicoll, 2000; Kerchner et al., 2001), and may also modulate

substance P release as in the trigeminal dorsal horn they are found post-synaptically

to substance P-containing primary afferents (Hegarty et al., 2007).

NMDA receptors are present both pre- and post-synaptically at the junctions between

primary afferent fibres and spinal dorsal horn neurones (Coggeshall & Carlton, 1997;

Lu et al., 2003). They are quiescent under normal conditions, requiring both glycine

binding and alleviation of Mg2+block for activation. Pre-synaptically, activation results

in excitatory amino acid and substance P release from primary afferent fibres. Post-

synaptically, activation results in large neuronal depolarisations that greatly increase

neuronal excitability, a phenomena known as wind-up. (Heppenstall & Fleetwood-

Walker, 1997; Kleckner et al., 1988; Urch et al., 2001).

There are 8 subtypes of metabotropic glutamate receptors, falling into 3 groups.

Group I mGluRs include mGlu1+s, positively coupled to PLC and possibly NO

synthase, and elicit pronociceptive effects, while Group II (mGlu2+3) and Group III

(mGlu1,6.7+s)mGluRs are negatively coupled to AC and act to inhibit Ca2+currents and

enhance K+currents (Nakanishi, 1994; Millan, 1999).

Different primary afferent fibres are associated with a range of varying

neurotransmitters involved in the conduction of information. C fibres are associated

with substance P/Neurokinin A (NKA), calcitonin gene related peptide (CGRP) and

other excitatory amino acids, the receptors NK1I2, CGRP1/2, NMDAIAMPA and

metabotropic glutamate receptors (mGlu). AI3 fibres are most typically associated with

excitatory amino acids and the AMPA receptor (see review, Millan et aI., 1999). In

reality there is a plethora of substances synthesised in addition to those mentioned

above, which are involved in the central transmission and modulation of nociceptive

information, including adenosine triphosphate (ATP), nitric oxide (NO), phospholipid

metabolites, prostaglandins (PGs), neurotrophins (growth factors), and a range of

other neuropeptides, lectins and enzymes. These substances colocalise in a variety

5



Chapter 1 General Introduction

of ways in different tissue types such as skin, muscle, joints and viscera; various

tissue states Le. physiological versus pathophysiological; between different fibre

types, e.g. C versus Aj3 fibres; and even within fibre types, for example the smaller

primary afferent neurones may be classified as peptidergic or non-peptidergic.

Peptidergic neurones express peptides such as substance P, CGRP-, and

somatostatin (Averill et al., 1995; Molliver et al., 1997; Willis et al., 2004), as well as

the TrkA receptor, a high affinity receptor for nerve growth factor (NGF - Molliver et

al., 1997). Peptidergic neurones require NGF for development, as well as survival

(Averill et al., 1995; Bennett et al., 1998). In the first 3 weeks of development, around

half of the neurones cease to express TrkA, and become non-peptidergic (Molliver et

al., 1997). Non-peptidergic neurones express growth factor receptor GFRo1-4

receptors and so become sensitive to glial cell line derived neurotrophic factor (GDNF

- Molliver et al., 1997; Bennett et al., 1998; Willis et al., 2004). They also bind lectin

IB-4, and express the adenosine triphosphate (ATP) receptor, P2X3 (Millan et al.,

1999; Meyer et al., 2006).

Actions of pro-nociceptive mediators

Nitric oxide and prostaglandins playa large role in mediating nociception. NO is not

only constitutively active but is also enhanced by an increase in intracellular Ca2+

current, brought about by NMDA receptor activation, as well as cytokine, neurotrophin

and prostaglandin release (for review, see Millan, 1999). The actions of NO include

enhancement of the release of pro nociceptive mediators such as glutamate,

substance P and CGRP from primary afferent fibre terminals, as well as enhancement

of prostaglandin and cytokine synthesis, positively feeding back into its own activation.

NO also has more long-term effects, activating protein kinase G (PKG), thus resulting

in neuronal sensitisation through cyclic guanosine monophosphate (cGMP}-mediated

phosphorylation of GABAergic (gamma Aminobutyric acid) and glycinergic receptors.

Like NO, prostaglandin synthesis is accelerated via an increase in intracellular Ca2+

current following NMDA receptor activation (Beiche et al., 1996; Willingale et al.,

1997).
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PGs are formed by the actions of cyclooxygenases (COX) on arachidonic acid. The

COX-2 isoform is of particular importance as it has been shown to be constitutively

active in the spinal cord (Ghilardi et al., 2004) and is induced peripherally following

injury and/or inflammation. In the spinal cord, COX-2 is found in laminae I, II and X,

which receive nociceptive input (see later), and in primary afferent fibre dorsal root

ganglia (DRGs - Seiche et al., 1996; Willingale et al., 1997). It is unclear how

prostaglandins induce nociception, but may involve enhanced glutamate and

substance P release from primary afferent neurones (Ferreira and Lorenzetti, 1996;

Minami et al., 1997a) following enhanced cAMP and Ca2+/Na+ conductance (White,

1996; Minami et al., 1997a; 1997b), as well as direct activation of several G-protein

coupled prostanoid receptors. The prostanoid receptors include prostaglandin D2

(PGD2) and PGI2, positively coupled to AC, PGF2, coupled to PLC and resulting in

increased intracellular Ca2+ currents, and PGE2 (Taiwo and Levine, 1986; Coleman et

al., 1994; Mnich et al., 1995). PGE2 is thought to be the most important pro-

nociceptive prostaglandin in the periphery, with actions on 4 types of EP receptors

with differential actions on intracellular Ca2+ currents, AC, and phosphoinositol (PI)

production (Coleman et al., 1994; Bole et al., 1997). EP2 mRNA is found mostly in

laminae I and II while mRNA for EP1 and EP3 are found on sensory neurones

(Sugimoto et al., 1994; Kawamura et al., 1997). It has been suggested that EP1

activation is involved with allodynia while activation of EP2+3 is involved with

hyperalgesia (Minami et al., 1994).

The pro nociceptive tachykinins, substance P and NKA, act on NK1+2 receptors,

positively coupled to phospholipase C (PLC) (Catalioto et al., 1993; Fukuhara et al.,

1998), while pronociceptive neuropeptides CGRP 0+(3act on CGRP1+2 receptors,

positively coupled to adenylyl cyclise (AC) (see van Rossum et al., 1997, Millan et al.,

1999). Their activity contributes significantly to nociceptive transmission in both

physiological and pathophysiological conditions, where they may be abnormally

expressed. Pronociceptive substances act synergistically to elicit excitatory post-

synaptic potentials (EPSPs) in dorsal horn (DH) neurones, initially proposed to be

caused by AMPA receptor activation which brings about a rapid and transient (lasting

only a few milliseconds) EPSP (see Millan; 1999). These are then sustained for tens
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of seconds by NMDA, Group I mGlu, NK1+2and CGRP receptor activation. These

actions are enhanced by ATP, NO and prostaglandins. ATP acts on P2xreceptors,

resulting in glutamate release (Inoue et at., 1995), and P2yreceptors, positively

coupled to PLC, resulting in enhanced excitatory amino acid (EM) release (Vaziri &

Downes, 1992). ATP may also exert antinociceptive effects as it is metabolised to

adenosine, which interacts with both opioids and monoamines to decrease nociceptive

transmission through negative coupling to AC (Reeve and Dickenson, 1995; Cui et al.,

1997).

1.1.2. The dorsal horn of the spinal cord

The grey matter of the spinal cord was first described in terms of 10 laminae, based

on their size and packing density, by Rexed in 1952 (cited in Willis et al., 2004).

Laminae I-VI comprise the dorsal horn, lamina VII the intermediate grey matter,

laminae VIII and IX the medial and ventral horn, while lamina X surrounds the central

canal (Millan, 1999) (Figure 1.1).

Figure 1.1 Arrangement of the Rexed laminae within the grey matter of the
spinal cord. Laminae I-VI comprise the dorsal horn, laminae VII-IX comprise the
ventral horn, and lamina X surrounds the central canal. Laminae I-VI and X process
nociceptive information with input from AJ3-(blue), AC5-(orange), and C-fibres (red).

Motor neurones typically originate in laminae VII, VIII and IX, while nociceptive

neurones predominantly terminate in the dorsal horn, with A13fibres terminating in

laminae II-VI and X, Aa fibres terminating in laminae I-V, and C fibres terminating in

laminae I, II, VI and X (Todd & Koerber, 2006). Laminae I, V, VI, X and the outer part

of lamina II (110) are associated with the processing of nociceptive information.
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Within the dorsal horn, three types of neurone are associated with sensory

processing: non-nociceptive, nociceptive-specific (NS), and wide dynamic range

(WDR). Non-nociceptive neurones are found in laminae II, III and VI, receive input

from AI3 fibre primary afferents, and are activated by innocuous stimuli. NS neurones

receive input from Aa and C fibre primary afferents, and are activated solely by high

intensity, noxious input (Willis, 2004). NS neurones are found predominantly in

laminae I and 110, with some also being found in laminae V and VI. WDR neurones

receive input from all primary afferent fibre types and respond in a graded fashion to

both noxious and non-noxious stimuli (Millan, 1999). They are found mostly in

laminae IV, V and X, and some in I and 110 (Figure 1.1). Based on their output, these

neurones may be classified as interneurones, propriospinal neurones or projection

neurones. Interneurones modulate (in both an inhibitory and excitatory manner) input

from primary afferent fibres both intra- and inter-lamina. Propriospinal neurones

communicate between the two sides of the dorsal horn. Projection neurones are

found mostly in laminae I, V and VI and some in laminae II and X, and are involved in

nociceptive processing and project to the higher centres.

1.1.3. Ascending pathways of pain

Many ascending pathways are thought to be involved in the relay of pain. Those

projecting directly to the brain-stem and thalamus, and those projecting to the

forebrain via the brainstem are thought to be the most important. Pathways may be

polysynaptic, with synapses in the dorsal column nuclei and the lateral cervical

nucleus (Willis et al., 2004), or monosynaptic. Monosynaptic pathways include the

much-studied spinothalamic tract (STT), spinoparabrachial (SPBT),

spinomesencephalic (SMT), spinoreticular (SRT) and spinohypothalamic (SHT) tracts.

Polysynaptic tracts include the spinocervicalthalamic tract (SCT) and the postsynaptic

dorsal column (PSDC) (Millan 1999; Willis et a/., 2004; Dostr'ovsky & Craig, 2006).

The pathways considered to be the most important are the spinothalamic and

spinoparabrachial (within the spinobulbar projections) tracts, with lesions in the STT

shown to cause contralateral loss of sensation (White and Sweet, 1969; Craig et a/.,

2002). Nociceptive input from the PSDC and SCT has also been recognised.
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The STT originates from three regions in the spinal grey matter, with approximately

50% of cells in primates coming from lamina I, 25% from laminae IV-V and 25% from

laminae VII-VIII (Dostrovsky et ai, 2006). A total of approximately 10,000 STT cells

project to the thalamus from one side. Axons cross in dorsal and ventral spinal

commisures to the white matter of the contralateral spinal cord within 1-2 segments

rostral of their point of origin, in the lateral and anterior funiculi. Lateral STT neurones

originate in lamina I and encode pain and thermosensation, and anterior STT

neurones originate in laminae V and VI and encoding crude touch and movement.

The STT projects directly to areas of the thalamus such as the ventral posteriomediall

posteriolateral nuclei, and then onto the cerebral cortex (Figure 1.2). Most of the

neurones in the STT are nociceptive, with some neurones receiving input from WDR

neurones, and others from NS neurones (for review, see Willis and Coggeshall, 2004).

The spinobulbar projections convey nociceptive information to the forebrain via the

brainstem. Spinobulbar projections contain many tracts including the

spinoparabrachial tract, and have origins in laminae I, V and VII, similar to STT cells.

It has been suggested that that spinobulbar projections and STT cells could originate

from the same cells. They terminate in the brainstem in four distinct areas; regions of

catecholamine cell groups, parabrachial nucleus, periaqueductal grey (PAG), and

brain stem reticular formation, from where they project to the hypothalamus,

amygdala, medial thalamus and reticular formation (Mantyh et al., 1983, Basbaum &

Fields 1978) (Figure 1.2). Their input is thought to encode largely for the motivational-

affective component of pain rather than the sensory component (Dostrovsky & Craig,

2006).

The PSDC and SCT originate primarily from laminae IV-VI, and also lamina X. While

the majority of input comes from low-threshold, non-nociceptive mechanoreceptors,

some input is from nociceptive neurones. PSDC axons transmit nociceptive

information to the dorsal column nuclei (DCN) in the rat, and possibly primates and

humans (AI-Chaer et al., 1998), areas involved in nociception. The DCN, consisting of

gracile and cuneate nuclei, contain GABAergic interneurones and so may be involved

in inhibitory action on mechanoreceptive relay cells (Dostrovsky & Craig, 2006).
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Midbrain

Adapted from Hunt & Mantyh, 2001
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Figure 1.2 The spinothalamic tract (STT, red) and the spinoparabrachial tract
(SPBT, blue) are the main ascending nociceptive pathways. The STT originates
in the deep dorsal horn and projects to the cortex through the thalamus, while the
SPBT originates in the superficial dorsal horn and projects to the parabrachial nucleus
(PB) from where they project to the ventromedial hypothalamus (VMH) and the
amygdala. RVM, rostroventral medulla;PAG, periaqueductal grey.

1.1.4. Descending control of pain

The brain not only receives and interprets nociceptive signals from the spinal cord, but

has a vital role in their modulation, both positively and negatively, through numerous

descending pathways. Actions may be on DH neurones or on primary afferent fibre

terminals, where neurotransmitter release can be inhibited or facilitated (Millan, 1999).
,

Critically important areas of the brain in downstream modulation of nociception include

the periaqueductal grey (PAG) and rostroventral medulla (RVM) (Fields et al., 2006,
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1991; Millan, 2002), forming an important descending pathway which originates in the

hypothalamus and amygdala, and projects to the dorsal horn (Figure 1.3).

The importance of the PAG in descending control of pain was first discovered in rats

(Mayer and Price, 1976) and has since been demonstrated in humans (see Baskin et

al., 1986). The PAG and RVM are integrated in complex pathways, receiving input

reciprocally, as well as from multiple other sites. The PAG receives input from the

dorsal horn, brainstem, medial prefrontal areas, the limbic forebrain, the amygdala

(which in turn receives nociceptive input from the hippocampus, neocortex and spinal

cord - both directly and via the parabrachial nucleus (Burstein & Potrebic, 1993;

Gauriau & Bernard, 2004), and diencephalic structures such as the hypothalamus,

and the nucleus accumbens via the amygdala and the lateral hypothalamus (Bander &

Keay, 1996; Beitz et al., 1982; Herbert & Saper, 1992) (Figure 1.4). The PAG has

minimal projections directly to the spinal cord, transmitting instead via excitatory

projections to the RVM (Fields et al., 2006) and the brainstem neurones involved in

descending inhibition. These projections are under inhibitory control of GABAergic

interneurones and their disinhibition by molecules such as IJ opioids (Mitchell et al.,

1998) and cannabinoids (Meng et al., 1998) has anti nociceptive effects.
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Adapted from Hunt & Mantyh, 2001

Figure 1.3 The main descending pathway in nociceptive processing. Input from
the amygdala and hypothalamus project to the periaqueductal grey, and on to
the rostroventral medulla which projects to the dorsal horn. PAG, periaqueductal
grey; RVM, rostroventral medulla; VMH, ventral medial nucleus of the hypothalamus.
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nucleus
accumbens

Figure 1.4 Complex interactions involved in the PAG-RVM pathway of
descending modulation of nociception. The PAG receives input from multiple sites
involved in nociception and projects to the RVM, from where projections are sent to
the spinal cord. OH. Dorsal horn; PAG, periaqueductal grey; RVM, rostroventral
medulla.

Much of the nociceptive input from the spinal cord arrives at the RVM through the

PAG, the medullary nucleus reticularis gigantocellularis, and also from the nucleus

cuneiformis. Very little input arrives directly from the spinal cord. The RVM sends out

projections that terminate in laminae I, II, V, VI and VII (Fields et al., 1991; Vanegas &

Schaible,2004). Three types of cells that contribute to nociceptive processing project

from the RVM to the OH: ON, OFF and NEUTRAL cells. ON cells have a facilitatory

effect on nociception, and fire rapidly just before a withdrawal reflex from noxious heat

is elicited. OFF cells have inhibitory effects on nociception and cease firing prior to

withdrawal, while the activity of NEUTRAL cells does not alter prior to, or during, the

withdrawal reflex (Fields et al., 2006).

Many neurotransmitters are involved in the inhibitory and facilitatory effects of the

RVM upon the spinal cord, including serotonin (5-HT), noradrenaline, substance P,

cholecystokinin endogenous opioids and endocannabinoids (Fields, 2006; Millan,

1999; 2002,), with one neurotransmitter capable of producing both anti- and pro-

nociceptive effects. For example, serotonin exerts its actions on 5-HT receptors, of

which there are several subtypes. 5-HT1A receptor activation results in opening of K+

channels and so causes cellular hyperpolarisation. These receptors are also

negatively coupled to AC and so decrease nociception in this way. 5-HT2+3receptor

activation results in cellular depolarisation through closure of K+ channels, as well as
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opening of cation permeable channels and voltage-dependent calcium channels.

These receptors also couple positively to PLC, increasing nociception (Boess &

Martin, 1994; Millan, 1995). The overall effect of 5-HT is therefore dependent upon

the cell type on which these receptors are found. This duality of effect is mirrored in

the actions of dopamine and noradrenaline, with D1 and D2 receptors on projection

neurones causing increased or decreased nociception through positive and negative

AC coupling respectively, and o1-AR and orAR on projection neurones by positive

and negative actions on PLC and AC, respectively (Millan, 1997).

Descending pathways therefore provide numerous targets for therapeutic intervention,

and may be of particular interest in the treatment of chronic pain.

1.1.5. The use of animals for the study of pain mechanisms

Much research in experimental models of pain has sought to elucidate how pain is

encoded from stimulus to sensation. Most of our knowledge of pain mechanisms has

come from work in models of neuropathic pain in rodents, although models for acute,

inflammatory and chronic pain, including several models of osteo- and rheumatoid-

arthritic pain, have also been employed. Models of osteoarthritic pain will be

discussed more fully throughout this thesis.

1.1.6. Central sensitisation

Following peripheral inflammation, responses of primary afferent fibres may become

altered due to an increase in release of inflammatory mediators. This may result in

nerve injury, and chronic pain, thought to occur due to a combination of sensitisation

of peripheral neurones by inflammatory mediators, and sensitisation of spinal

neurones and involvement of higher areas, known as "central sensitisation". Central

sensitisation is characterised by both hyperalgesia and allodynia, and develops

following a primary afferent barrage, producing a sustained activation of WDR

neurones in the spinal cord. Following this barrage, dorsal horn neurones in the spinal

cord become sensitised, and input from primary afferent neurones is no longer
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necessary to elicit responses from dorsal horn neurones. This was demonstrated by

the block of mechanical hyperalgesia following intradermal capsaicin injection by a

pre-treatment of local anaesthetic (La Motte et a/., 1991). However, if anaesthetic

injection was delayed until after the onset of hyperalgesia, it could not be reversed,

thus demonstrating that input from the periphery is necessary for onset but not

maintenance of hyperalgesia.

Central sensitisation has been shown to be due to a number of mechanisms and

involves both presynaptic increases in activity from primary afferent neurones,

postsynaptic increases in activity of dorsal horn neurones, and loss of inhibitory

interneurones. Several receptor systems are involved, including GABA, VGCC

(voltage-gated calcium channel), NMOA, AMPA, 5-HT, and chemokine.

GABAergic interneurones are involved in both pre- and post-synaptic inhibition of

responses of spinal OH neurones. Blocking GABAergic interneurone function caused

symptoms of central sensitisation to occur in natve rats (Malan et a/., 2002), which

began to display mechanical allodynia and thermal hyperalgesia following intrathecal

administration of GABAAIB receptor antagonists. The converse was seen with

GABAAIB receptor agonists in the spinal nerve ligation (SNL) model (Kim & Chung,

1992) of neuropathic pain, with previously present mechanical allodynia and thermal

hyperalgesia being abolished (Malan et a/., 2002). Changes in VGCC may playa role

in the effects of GABAergic neuronal function. In the monosodium-iodoacetate (MIA)

model of osteoarthritic pain, with which this thesis is concerned, 0215-1subunit mRNA

levels were upregulated in L3-6 ORG (Rahmann et a/., 2009). Upregulation was

associated with peripheral nerve injury-associated pain (Luo et a/., 2001; Li et a/.,

2004), and the analgesic effects of gabapentinoids (Luo et a/., 2002; Maneuf et a/.,

2006). The loss of inhibitory interneurones causes disinhibition of spinal OH

neurones, thus increasing neurotransmission and contributing to central sensitisation.

Pre-synaptically, the involvement of increased C-fibre activation and phenotypic

changes and recruitment of Aj3-fibres has been implicated in the development of

central sensitisation. Spontaneous activation of primary afferent fibres in both injured
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and non-injured nerves may occur (Wu et al., 2001), and C fibres insensitive to heat or

mechanical provocation under baseline (non-inflamed, uninjured) conditions (CMiHi,

also known as "silent nociceptors"), may become responsive to both mechanical and

heat stimuli, adding to the primary afferent barrage (Schmidt R et al., 1995). Altered

release of pro-inflammatory substances from primary afferent fibres may occur, for

example, A[3-fibres have been shown to start releasing excitatory amino acids and the

neuropeptide substance P, in models of neuropathic pain (Noguchi et al., 1995;

Malcangio et al., 2000). Substance P release is normally associated with C-fibres,

and results in activation of post-synaptic NK1 receptors. NK1 receptor activation

results in downstream activation of intracellular signalling pathways such as that of

mitogen-activated protein kinase (MAPK) and extracellular signal-related kinase

(ERK). Ultimately this results in activation of NMDA receptors and contributes to

hyperexcitability of DH neurones (Woolf & Salter, 2000). The importance of NMDA

receptor activation in the development of central sensitisation is further supported by

reports that NMDA receptor phosphorylation coincides with the development of

mechanical allodynia (Gao et al., 2005), while the NMDA receptor antagonist ketamine

inhibits painful symptoms in post-herpetic neuralgia (Eide et al., 1994). Nerve injury

also causes the release of other excitatory substances such as glutamate, ATP, NO

and prostaglandins. Together with substance P, these substances cause glial cell

activation. Glial cell activation has been shown to be crucial in the development of

hyperalgesia (Meller et al., 1994) and central sensitisation (Marchand et al., 2005).

Upregulation of expression of the fractalkine receptor CX3CR1 has been shown to

mediate glial activation in the complete Freund's adjuvant (CFA) inflammatory model

of arthritis (Sun et al., 2007), in which a CX3CR1-neutralising antibody not only

reversed established pain facilitation but delayed the development of mechanical

allodynia and thermal hyperalgesia.

AMPA receptor trafficking to the cell surface has been implicated in the development

of central sensitisation, with the time course of trafficking coinciding with the

development of mechanical and thermal hyperalgesia in a model of neuropathic pain,

peaking at 14 days and decreasing from day 35 onwards (Harris et al., 1996). Finally,

descending serotonergic facilitation from the brainstem may also be involved in central
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sensitisation, and is a key mechanism underlying some chronic pain states (see

Rahman et aI., 2009). It has also been shown to playa role in mediating neuronal

responses to non-noxious stimuli in the MIA model (Rahman et al., 2009), where 5HT3

subunit mRNA is upregulated.

1.2. Osteoarthritis

1.2.1. Pathophysiology of osteoarthritis

Osteoarthritis can affect any synovial joint in the body but is most commonly seen in

the knee. In terms of gross morphology, OA of the knee can be thought of as a "wear

and tear" process, affecting the cartilage and other knee components (Figure 1.5).

Imaging is commonplace in the diagnosis of OA, and in magnetic resonance imaging

(MRI) analysis, changes to joint structures including the cartilage, synovium, and the

bones themselves, are commonly visible (Guermazi et el., 2005). \

Normal knee Knee with osteoarthritis

Cal)sllie thickened
and stretched

synovilllll thickened
and inflamed

ligament
capsule
svnovium

catrilage worn down

joint space narrowed

osteophyte formation

bone becomes sclerotic

tibia

Figure 1.5 Gross morphological changes in the osteoarthritic knee.
Osteoarthritis of the knee causes thinning of the cartilage and underlying bone, bony
outgrowths (osteophytes), narrowing of the joint space, inflammation and thickening of
the synovium and thickening and stretching of the joint capsule.

The importance of cartilage in normal joint function is well known, and its destruction is

a key feature in OA. Articular (hyaline) cartilage covers the ends of the bones and

functions to allow smooth gliding of the two joint surfaces, with the highly viscous

synovial fluid reducing friction and minimising wear (Figure 1.6 A). In addition, a layer
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of fibro-cartilage (the meniscus) is present in the knee joint and serves to distribute

load across bone surfaces. In OA, articular cartilage degenerates, roughens, thins

dramatically and is lost, exposing the underlying bone (Figure 1.6 8, C). Osteophytes

(bony outgrowths) and subchondral bone sclerosis occur (Figure 1.6 C) In addition,

meniscal tears occur in approximately 50% of patients with knee OA, confounding

these issues (Figure 1.6 D). Articular cartilage is avascular, aneural and alymphatic,

and does not heal (Felson et al., 2001).

A. B.

c. www.arc.org.uk D. Eckstein et et., 2006

courtesy of Brigitte Scammell www.americanradiology.com

Figure 1.6 MRI (A, B and D) and X-ray (C) images of the knee. A, healthy knee; 8,
knee from a patient with severe OA; cartilage loss can be seen together with
subchondral bone marrow lesions (arrows), adjacent to the joint a synovial cyst (white
mass) is visible; C, antero-posterior (AP) view of right knee, showing bilateral medial
joint space narrowing (JSN), marginal osteophytes (a) and subchondral bone sclerosis
(b); D, a vertical peripheral tear (arrows) in the posterior horn of the lateral meniscus
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Cartilage degeneration in OA is partly due to increased synthetic activity of articular

chondrocytes, which results in rapid enzymatic degradation of articular cartilage

tissue. The rate of synthesis of matrix components by remaining cartilage cells is

increased, presumably as a reparative response, but cannot match the rate of

cartilage loss (Mankin et al., 1981). At the cellular level, visually intact OA cartilage is

similar to non-OA cartilage. Cartilage water content, proteoglycan composition and

structure, sulphate incorporation, glycosaminoglycan synthesis rates and cell content

remain unchanged (for review, see Brocklehurst et al., 1984). However, following

serious damage, cellular changes become evident. Changes include decreases in

glycosaminoglycan content, chondroitin sulphate chain length and keratan sulphate

content (Bayliss et al., 2001; Bollet et al., 1963; Brocklehurst et al., 1984).

In addition to changes in cartilage morphology, changes to the underlying bone

contribute to OA pathophysiology. Articular bone surfaces may flatten and depress

(attrition), most common in cases of severe OA where cartilage erosion is extensive.

In such areas, physical stress on the bone results in inflammation and oedema of the

bone (Bollet, 2001), as well as bone marrow lesions (for review, see Wenham &

Conaghan, 2009). In cases of full or near-full thickness articular cartilage defect, the

subchondral bone thickens and grows upwards with bony outgrowths (osteophytes)

both in marginal and non-marginal (central) locations (McCauley et al., 2001). A

reduction in space between the joints is observed following osteophyte formation.

Sub-articular cysts may form, either fluid- or fibrous tissue-filled, with a sclerotic

margin. In addition to sub-articular cysts, intra-articular periarticular cysts, may form,

most of which are small. These may have haemorrage, loose bodies and debris

present within them (Janzen et al., 1994).

The synovial intima thickens (Figure 1.7, Richardson et al., 2008) and becomes

inflamed in approximately 73% of cases (Fernandez-Madrid et al., 1995). This

inflammation of the synovium affects its ability to control diffusion, ingest debris and

secrete a number of substances such as hyaluronate, immunoglobulins, and

lubricating glycoproteins which act to reduce friction in the joint. As a result, joint

effusion, or "fluid on the knee" can occur. Moderate to large effusions are associated
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with well-progressed, severe forms of OA (Fernandez-Madrid et al., 1994). The joint

capsule is also altered. It normally functions to seal the joint space and provide

stability not only by limiting movement but also through the presence of proprioceptive

nerve endings within. In OA the joint capsule thickens and stretches, resulting in joint

instability and. leakage of synovial fluid, diminishing cushioning and lubrication within

the joint.

Richardson et al., 2008

Figure 1.7 Haematoxylin and eosin micrographs of synovium biopsies taken at
osteoarthritis total knee arthroplasty. A, mild inflammation: synovial intima three to
five cells thick, slight increase in cellularity with few inflammatory cells; S, moderate
inflammation: synovial intima four to six cells thick, dense cellularity with inflammatory
cells, may exhibit as small lymphoid aggregates; C, severe inflammation: synovial
intima five to seven or more cells thick, dense cellularity with inflammatory cells,
containing many or large perivascular lymphoid aggregates. I, synovium intima; L,
lymphoid body; SV, small vessel; V, villus.

1.2.2. Origins of pain in OA

Although pain is the most troublesome complaint for sufferers of OA, the causes of

OA-related pain are still unclear. It has been shown that radiographically observed

damage to the knee joint does not correlate with the pain experienced by sufferers

(Lawrence et al., 1966), with approximately half of over-55's ,reporting knee pain

lacking signs of radiographic OA (McAliindon et al., 1992). Studying the structure-pain

relationship in OA is, however, complicated. The subjective nature of pain results in a

wide range of pain severity being reported, and is particularly complicated where there

is a co-morbidity of events such as depression. Its episodic nature adds difficulty to
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the assessment of the structure-pain relationship. The techniques commonly used to

assess OA also have their faults (see below), making it difficult to assess structural

abnormalities. Many conventional radiographic studies image only the tibiofemoral

joint and not the patellofemoral joint (as cited by Wenham & Conaghan, 2009),

decreasing the likelihood that structural changes will be detected. One report

suggested that the number of views assessed radiographically increases the likelihood

of a diagnosis of OA, with the use of just the postero anterior view alone identifying

only approximately half of cases of radiographic OA in patients with knee pain, the use

of two views increasing the rate to 87%, and all three views (postero anterior, supine

skyline and supine lateral) raising the rate of identification to 98% (Duncan et al.,

2006). In addition, radiographic OA pathology is most commonly quantified using the

Kellgren-Lawrence (KlL) grading system (Lawrence et al., 1966), which assesses only

the presence of osteophytes, joint space width and bone sclerosis. While the

presence of osteophytes has been shown to correlate to the occurrence of knee pain

(Lanyon et al., 1998; Spector et aI, 1993), joint-space narrowing has proved to be an

inconsistent indicator of pain. This is due partly to the lack of a clear threshold of joint-

space loss beyond which OA pain incidence increases (Lanyon et al., 1998), and large

intra- and inter-observer variation in joint space measurement, bringing into question

the reproducibility of such a measure (Spector et al., 1993). MRI analysis is

improving, becoming more accurate and reliable with regards to measurements of

cartilage volume and thickness (Eckstein & Glaser, 2004), and work into validation of

a number of semi-quantitative scores is currently underway (Hunter et al., 2008).

Although the causes of OA-related pain are unclear, the integrity of structures

surrounding the knee have been found to be of importance (Hill et al., 2003; 8ajaj et

al., 2001). Within the joint structure itself, candidate sources of OA pain have been

proposed, and include the subchondral bone (Gronblad et al., 1984) and the synovium

(Smith et al., 1997). As mentioned previously, the presence of osteophytes correlates

with the occurrence of knee pain. In addition, in subjects diagnosed with knee OA,

bone marrow lesions were found more commonly in painful knees than non-painful

knees (77.5% and 30% respectively), with large lesions almost exclusively in painful

knees (35.9% of painful knees versus just 2% of non-painful knees - Felson et al.,
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2001). The thickness of the synovium was correlated to pain severity in OA sufferers

(Hill et a/., 2001, Fernandez-Madrid et a/., 1994), particularly when synovitis was found

to occur in the infrapatellar fat pad (Hill et a/., 2007). While synovitis extent did not

correlate to cartilage loss (Hill et a/., 2007), the cartilage has been identified as a

possible source of pain. Healthy cartilage is aneural, however it has been suggested

that in damaged areas of OA cartilage, nerve and vascular ingrowth occurs (Ashraf &

Walsh, 2008).

Beyond peripheral mechanisms, it has been suggested that central mechanisms

contribute to OA pain propagation (Farrell et a/., 2000a). Following increased input to

the spinal cord from the periphery owing to structural abnormalities, central

sensitisation occurs, magnifying nociceptive transmission and sensations of pain. In

OA of the hand, patients with persistent pain displayed decreases in thermal and

mechanical thresholds in the thumb compared to the forearm, while patients who did

not have pain, or in those suffering only from incident-related pain, no difference in

thresholds were observed (Farrell et a/., 2000b). The decrease in mechanical and

thermal thresholds correlated to variance in ratings of movement pain, further

supporting the proposed involvement of central mechanisms. In the MIA model of OA

pain in the mouse (see Chapter 4 for details), increases in responses of A- and C-

fibres following electrical stimulation was observed (Harvey & Dickenson, 2009)

together with hyperalgesic responses to mechanical, but not thermal stimuli. Ar3-fibres

have been implicated in the alteration of stimulus response characteristic of OA

sufferers, with a hyperalgesic state abolished by the tying of a ribbon around the

affected wrist (Farrell 2000a, 2000b). The endocannabinoid system has also been

found to be altered in OA and may playa role in mediating painful responses

(Richardson et a/., 2008). This will be described in more detail in section 1.3.5.

1.2.3. Experimental models of OA

Models commonly used for the study of OA (reviewed by Pritzker, 1994, Jouzeau et

a/., 2000) are classified into two main groups; those brought about by structural

alteration of the joint by physical or enzymatic means; and those brought about by a

23



Chapter 1 General Introduction

disturbance of chondrocyte metabolism. Examples for physical structural alteration

include patellectomy, ligament transection, meniscectomy, myectomy, denervation,

and displaced loading such as by osteotomy and immobilisation, local abrasion or

external contusion. Enzymatic structural alteration examples include intra-articular

injection of papain or bacterial collagenase, and models that act by disruption of

chondrocyte metabolism include intra-articular injection of vitamin A. Models

employing spontaneous and structural alteration of the joint have the advantage of

mimicking the causes of human OA more closely than chemical or enzymatic

intervention, but the disadvantage that unlike chemical intervention, it is difficult or

impossible to influence their onset and course in terms of time required for the model

to develop and severity of damage (Burton-Wurster et al., 1982, Evans et al., 1994,

Smaleet al., 1995). Models currently available are good in terms of histological

appearance and progression of disease, but there are a variety of problems with their

use, including difficulties in reproducibility and slow onset times (spontaneous

degeneration models in guinea pigs take 3-18 months to set up - Bendele and

Hulman, 1988). In addition, these models tend to focus on structural damage, and

pain paradigms in these models are poorly studied. Clinically, while the extent of

damage often correlates with pain, pain also occurs when there is no radiographically

detectable damage, and in some cases pain does not occur even if there is severe

damage (Lawrence et al., 1966, McAliindon et al., 1992), highlighting a complex

relationship between OA and its associated pain. Therefore, in order to be clinically

relevant, models used to study OA must not rely solely on OA-like histology but must

also take pain into account. In addition, it must be easily reproducible and have

controllable severity. At present, no such model exists, making the search for novel

analgesics for use in OA difficult. A model of OA pain that could be quickly

implemented and controlled would therefore be of great benefit in the search for novel

treatments. The possibility of such a model in the intra-articular injection of

monosodium iodoacetate (MIA) has been widely studied and looks promising (see

Chapter 4).
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1.3. The endocannabinoid system

1.3.1. History

Cannabis sativa has been used medicinally for thousands of years for its treatment of

rheumatic pain, malaria and constipation (Felder et aI., 1998). The first active

constituent of the Cannabis sativa plant to be identified and purified was ~9_

tetrahydrocannabinol (~9-THC, Gaoni and Mechoulam, 1971), although it was several

years before a binding site was identified for it in the central nervous system (Devane

et a/., 1988). This receptor was designated cannabinoid-1 (CB1), and the discovery of

endogenous substances that act at the same receptors followed shortly after (Devane

et a/., 1992). A second site of action was discovered shortly thereafter in myeloid cells

and was designated the cannabinoid-2 (CB2) receptor (Munro et a/., 1993). The

orphan G protein-coupled receptor GPR55 which is linked to G12 proteins, negatively

coupled to adenylyl cyclase, activates rhodopsin A and mobilises intracellular calcium,

is another, albeit controversial CB receptor candidate (for review, see Ross, 2009).

1.3.2. Cannabinoid synthesis

The most widely studied endocannabinoids (ECs) are the N-acylethanolamine

anandamide (AEA - Devane et a/., 1992), and 2-acylglycerol (2-AG, Mechoulam et aI.,

1995, Sugiura et a/., 1995). They are derivatives of arachidonic acid conjugated with

ethanolamine or glycerol, respectively, with differing mechanisms of synthesis. Other

putative EC compounds include N-arachidonolyglycerol (noladin ether), N-

arachidonoyl dopamine (NADA), O-arachidonoyl ethanolamine (virodhamine), N-

dihomo-y-lionlenoyl ethanolamine, N-docosatetraenoyl ethanolamine, oleamide, N-

oleoyldopamine (OlDA). The EC system could also be said to include N-

acylethanolamines such as oleoylethanolamide (OEA) and palmitoylethanolamide

(PEA) which do not bind cannabinoid (CB) receptors, but exert EC-like effects, and

are termed endocannabinoid-like compounds (ECls, Pertwee, 2006). The ECs and

ECls with which this thesis is most concerned are 2-AG, and the N-

acylethanolamines AEA, OEA and PEA (Figure 1.8).
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Figure 1.8 The structure of commonly studied molecules in the
endocannabinoid system. Top left, 2-arachidonoylglycerol (2-AG); top right, bottom
left and bottom right, the N-acylethanolamines anandamide (AEA),
oleoylethanolamide (OEA) and palmitoylethanolamide (PEA).

AEA and other N-acylethanolamines (NAEs) are widely believed to be produced on

demand from the cleavage of membrane-bound precursors in response to specific

signals such as raised intracellular calcium concentration and membrane

depolarisation (Figure 1.9A). AEA is cleaved from its membrane phospholipid

precursor N-arachidonoyl-phosphatidylethanolamine (NAPE) by phospholipase D

(PLD, Okamoto et al., 2004) in a cAMP- and calcium-dependent manner (Cadas et al.,

1996; Piomelli et al., 2003). PLD activity is, therefore, potentially regulated by

activation of a number of neurotransmitter receptors, such as dopamine, glutamate

and acetylcholine receptors (Stella and Piomelli, 2001; Piomelli et al., 2003; Giuffrida

et al., 1999; Varma et al., 2001; Kim et al., 2002). Synthesis of 2-AG may occur via a

number of mechanisms (Figure 1.9B). Phospholipase A1 (PLA1)-mediated hydrolysis

of membrane phosphatidylinositol produces Iyso-phosphoinositol (lysoPI), which is

hydrolysed by phospholipase C (PLC) to 2-AG (cited by Sugiura and Waku, 2000).

PLC may also hydrolyse inositol phospholipids in a calcium-dependent process to

diacylglycerol (DAG), which is then metabolised to 2-AG by sn-1-DAG lipase (Stella et

al., 1997; Bisogno et al., 2003; and for review, see Piomelli et al., 2003).
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Figure 1.9 A simplified schematic of endocannabinoid synthesis. A, routes of
synthesis of AEA; B, synthesis of 2-AG. AEA is synthesised from NAPE by the
actions of PLC and other phosphatases, NAPE-PLD or PLA 1PLA2 and LysoPLD. 2-
AG is synthesised from its precursor phosphatidylinositol 4,5-bisphosphate by PLC
and DAGL. 2-AG, 2-arachidonoylglycerol; AEA, anandamide; DAGL, diacylglycerol
lipase; EA, ethanolamine; LysoPLD, Iyso-phospholipase D; NAPE, N-
acylphosphatidylethanolamine; NAPE-PLD, N-acylphosphatidylethanolamine-
phospholipase D; PE, phosphatidylethanolamine; PLA, phospholipase A; PLC,
phospholipase C.

In the brain, 2-AG is present in approximately 200-fold higher concentration than AEA

(Sugiura et al., 1995; Stella et al., 1997). In unstimulated tissue, levels of AEA are

also typically 10 fold less than those of classical neurotransmitters. However, some

studies have shown AEA levels to increase 5-12 -fold after depolarisation or receptor

stimulation. Levels also increase post-mortem in the rat, and molluscs, and in vitro in

rat tissues (Schmid et al., 1995; Felder et al., 1996; Kempe et al., 1996; Sepe et el.,

1998; Kim et al., 2002). 2-AG levels also increase rapidly post-mortem (Sugiura et al.,

2001), supporting the theory that ECs are produced on demand. N-(2-

Hydroxyethyl)hexadecanamide (Palmitoylethanolamide, PEA) is a naturally occurring,

shorter chain, fully saturated structural analogue of AEA. It is found in soya bean

lecithin, egg yolk, peanut meal (cited in Lambert et el., 2002), marine species and the

leech (Sepe etal., 1998, Bisogno etal., 1997, Matias etal., 2001) and most

mammalian tissues (Bachur et al., 1965, Schmid et al., 1997, Calignano et al., 1998,

Kondo et et., 1998, Baker et al., 2001). Its production is again thought to be activity-

dependent, as for AEA and 2-AG (DiMarzo et al., 1998; Cadas et al., 1997; Hansen et

al., 1997), and it has been found to be co-synthesised with AEA in leukocytes and
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RBL-2H3 cells (Bisogno et a/1997, Lambert & Oi Marzo, 1999). OEA is naturally

present in low concentrations «2I-1g/g) in foods such as cocoa powder, oatmeal and

nuts (Astarita et al., 2006; Oi Marzo et al., 1998). A role for OEA in pain has been

suggested, having both pro- and anti-nociceptive effects via action at different

receptors (see section 1.3.5) (Wang et al., 2005; Suardiaz et al., 20Q7). Both PEA

and OEA are synthesised by NAPE-PLO, and over-expression of NAPE-PLO in vitro

results in elevated NAE levels (Okamoto et a/., 2005). NAPE-PLO-null mice have

decreased levels of OEA and PEA, but not AEA in the brain (Leung et al., 2006),

highlighting the importance of this synthetic route for OEA and PEA, but suggesting

other routes predominate in the synthesis of AEA. PEA can also be formed by

condensation of ethanolamine and palmitic acid in an ATP and coenzyme A-

independent fashion (Schmid PC et al., 1985), and OEA may also be formed from

oleic acid and phosphatidylethanolamine (see Thabuis et al., 2008).

1.3.3. Cannabinoid action and effect

Cannabinoids act primarily on CB1 and CB2 receptors. CB1 is present presynaptically

on axons and terminals of neurones centrally and peripherally, with little or no

expression on dendrites or soma (Egertova & Elphick, 2000; Herkenham et al., 1991 a;

1991 b; Mailleux et al., 1992; Tsou et al., 1998). Here, it is ideally located for pre-

synaptic modulation of neurotransmitter release, by retrograde release of ECs from

post-synaptic terminals, where NAPE-PLO is located. The CB1 receptor is also

expressed by glial cells, cells in the reproductive system, some endocrine glands, and

the microcirculation (Oevane et al., 1988; Howlett et al., 1990, Wagner et al., 1997;

Batkai et al., 2001). In the brain, the CB1 receptor is the most abundant G-protein-

coupled receptor (Herkenham et al., 1991c). Receptor density is particularly high in

the striatum, cerebellum, basal ganglia, cerebral cortex and hippocampus (Herkenham

et al., 1990; Herkenham et al., 1991c), and is moderate to high in areas involved in

pain processing such as the thalamus, PAG, RVM, amygdala, superficial laminae of

the spinal cord, and dorsal root ganglion (ORG) neurones (Herkenham et al., 1991,

1990; Mailleux et al., 1992; Tsou et al., 1998). Its wide distribution is consistent with

cannabinoid effects on nociception, learning and memory, satiety, mood and anxiety,
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and psychotropic effects. The CB2 receptor was originally thought to be expressed

only in immune cells (Facci et a/., 1995; Munro et a/., 1993) and is found in lymphoid

organs and microglial cells (Munro et a/., 1993, Galiegue et el., 1995; Piomelli et a/.,

2003). However, its expression has also been shown in the CNS, with mRNA

expression demonstrated in the spinal cord in a model of neuropathic pain (Beltramo

et a/., 2006; Zhang et a/., 2003), the brain stem (Van Sickle et a/., 2005), cortex,

striatum, thalamus, PAG, hippocampus and amygdala (Gong et a/., 2006). Its function

in the CNS remains unclear. AEA is a partial agonist at both receptors with a 4-30 fold

preference for CB1 compared with CB2. 2-AG is a full agonist at both receptors but

with lower affinity than AEA (Stella et et., 1997; Hillard et a/., 1999; Howlett et a/.,

2002).

The CB1 and CB2 receptors are coupled negatively to AC through Gila proteins,

resulting in decreased levels of cAMP, and positively to mitogen-activated protein

kinase (MAPK) (Howlett et a/., 2002; Howlett, 2005). In addition, CB1 receptors may

also activate Gs proteins which are positively coupled to AC and A type inward

rectifying potassium channels, and negatively coupled to N type and P/Q type calcium

channels (Pertwee, 1997; Howlett et a/., 2002; Howlett et a/., 2005; Mackie & Hille,

1992; Twitchell et a/., 1997). This results in neuronal hyperpolarisation, pre-synaptic

inhibition of the release of neurotransmitters such as GABA, glutamate, acetylcholine

and noradrenaline (Schlicker and Kathman, 2001; Piomelli et a/., 2003) and

neuropeptides such as corticotrophin releasing factor and cholesystokinin (Rodriguez

de Fonseca et el., 1997; Beinfeld and Connolly 2001). Post-synaptically, effects

counteract excitatory inputs from neurotransmitters, preventing the propagation of

action potentials (Felder et a/., 1998; Rodriguez de Fonseca et a/., 1998; Giuffrida et

a/., 1999).

The inhibitory effects of cannabinoid receptor activation on GABA and glutamate

release in the hippocampus cause phenomena termed depolarisation-induced

suppression of inhibition (OSI - Wilson and Nicoll 2001) and depolarisation-induced

suppression of excitation (OSE -Diana and Marty, 2004), respectively. OSI and OSE

are short-term forms of synaptic inhibition and excitation (Freund et a/., 2003), and act
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oppositely to modulate neurotransmission. While this mechanism has not been

demonstrated in the spinal cord, it is likely to contribute to antinociceptive properties of

ECs. Through OSI and OSE, CBs have been shown to prevent the induction of long-

term potentiation (LTP - Stella et al., 1997) and to facilitate long-term depression (LTD

- Gerdeman et al., 2002, Robbe et al., 2002), including that of inhibitory GABAergic

neurones. Thus, activation of presynaptic CB1 receptors may cause neuronal

excitation, although effects are mostly inhibitory.

Cannabinoids also act on other receptor systems, including the transient receptor

potential vanilloid type-1 (TRPV1) cation channel, the nuclear peroxisome-proliferator

activated receptors (PPAR), and "CB-like" receptors (for reviews, see Ross, 2003;

Burstein, 2005; Kreitzer & Stella, 2009). TRPV1 is a non-selective ligand-gated

cationic channel at which capsaicin exerts its effects (for review, see Palazzo et al.,

2008). TRPV1 activation causes excitation of C-fibres and results in nociceptive

behaviour (Potenzieri et al., 2009). While the concentration of AEA required for

activation of TRPV1 receptors is greater than that required to activate CB receptors,

inflammatory mediators such as bradykinin increase the sensitivity of TRPV1 receptors

to AEA (Singh-Tahim et al., 2005). Activity of endocannabinoids and related

compounds at PPARs, which have roles in inflammatory and pain processes, and

neuroprotective properties have been widely studied (Cuzzocrea et al., 2006;

Rockwell et al., 2006; Sun et al., 2007; O'Sullivan & Kendall, 2009). Antinociceptive

effects of PPAR activation by cannabinoids and related compounds has been

observed in models of inflammatory pain (Jhaveri et al., 2008; Sagar et al., 2008).

The synergistic effects of the PEA and AEA (see later) are thought to be partly

mediated via PPARs (Russo et ai, 2007; Costa et al., 2008). Residual effects of

cannabinoids in the presence of CB1I2 antagonists and in CB receptor knockout mice

has led to the proposal of additional receptors (for review, see Howlett et al., 2002).

These "CB-like" receptors have been described in the vasculature and the terminals of

glutamatergicaxons in the hippocampus, and are activated by both thermal and

chemical stimuli (Hajos et al., 2001, Kunos et al., 2002).
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PEA was initially thought to act as a selective CB2 receptor agonist (Facci et al., 1995;

Sheskin et al., 1997). It is now accepted that PEA is inactive at the cannabinoid

receptors at concentrations :0;1Of.tM. Above this, PEA is a weak ligand at the CB2

receptor (Lambert et al., 2002). PEA inhibits lipopolysaccharide-induced nitric oxide

production independently of CB2R activation (Ross et al., 2000) and some evidence

exists to suggest that PEA is a ligand for GPR55 (Calignano et a/., 2001; Griffin et al.,

2000). The anti nociceptive effects of PEA have been demonstrated to be mediated

via the PPARa receptor (LoVerme et al., 2006).

There is also evidence that PEA acts as an "entourage" endocannabinoid, indirectly

enhancing the effects of AEA (supported by the finding of co-synthesis in some cells),

at the CB1R (Lambert and DiMarzo, 1999). In Human Embryonic Kidney cells over-

expressing TRPV1, PEA enhances the effect of AEA effect on TRPV1 mediated

increase in intracellular calcium concentration. The mechanism by which this occurs

is unclear, however inhibition of AEA hydrolysis or binding to non-specific sites has

been ruled out (De Petrocellis et al., 2001).

OEA does not act at classical CB receptors, but it does have agonist actions at

PPARa (Fu et a/., 2003), and the orphan receptor GPR119 (Cluny et al., 2009;

Overton et al., 2006). GPR 119 is a 335 amino acid protein encoded on chromosome

X (Fredriksson et al., 2003; Takeda et al., 2002), and is distributed predominantly in

intestinal and pancreatic tissues. It is also found in brain regions such as the

substantia nigra in rodents (Overton et a/., 2008; Soga et al., 2005; Chu et al., 2007;

Lauffer et al., 2009; Lan et al., 2009). Its activation results in increases in intracellular

cAMP (Chu et al., 2007), implying its coupling to Gs. Through its actions on PPARa,

OEA has an important role to play in satiety and limiting food intake, and it is a

possible target in the treatment of obesity (Fu et al., 2003, 2008; Lan et al., 2009).

Through actions on PPARa, OEA also has roles in stimulating lipolysis and protection

of dopaminergic neurones in the substantia nigra (Guzman et a/., 2004; Sun et al.,

2007; Galan-Rodriguez et al., 2009), and it has antinociceptive effects through

PPARa-independent mechanisms (Suardiaz et al., 2007). It has been suggested that

altered glutamatergic transmission may be involved in the anti nociceptive effects of
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OEA (Suardiaz et al., 2007). OEA has also been suggested have action at TRPV1

receptors (Wang et al., 2005), with pronociceptive effects that can be inhibited by

capsazepine, a TRPV1 receptor antagonist.

1.3.4. Cannabinoid metabolism

2-AG, AEA and related NAEs are accumulated in cells, although the nature of this

trans-membrane transport is unclear (see reviews Hillard & Jarrahian, 2003; Hermann

etal.,2006). The NAEs are mainly metabolised by fatty acid amide hydrolase

(FAAH), an intracellular-bound 63kDa serine hydrolase with broad substrate specificity

(Deutsch and Chin, 1993; Cravatt & Lichtman, 2002 Natarajan et ai, 1984). NAE

metabolism is through the hydrolytic cleavage of the amide bond, producing

arachidonic acid and assorted ethanolamines (Cravatt et al., 1996; Vandevoorde &

Lambert, 2007; Deutsch & Chin, 1993). FAAH acts on PEA at a much lower rate than

on AEA, due to FAAH having higher catalytic efficiency on shorter molecules with a

less saturated fatty acid chain (Bisogno et al., 1997, Desarnaud et al., 1995, Ueda et

al., 1995, Matsuda et al., 1997, Katayama et al., 1999). FAAH has also been

implicated in 2-AG inactivation (Goparaju et al., 1998; Di Marzo et al., 1998),

producing arachidonic acid and glycerol (for review, see DiMarzo, 1999). But

approximately 50% of 2-AG metabolism is under the control of monoacylglycerol

lipase (MAGL), a 33kDa serine hydrolase which metabolises 2-AG to arachidonic acid

and glycerol (Dinh et al., 2002a; Karlsson et al., 1997; Tornqvist & Belfrage, 1976)

(Figure 1.10).

AEA and 2-AG also undergo oxidation by the cyclooxygenases COX-1 and COX-2

(Kozak et al., 2004; Vu et al., 1997), lipoxygenases (LOX - Edgemond et al., 1998;

Hampson et al., 1995; Ueda et al., 1995a) and cytochrome p450s (cP450 - Bornheim

et al., 1993; Snider et al., 2008), resulting in the production of a number of biologically

active substrates such as prostaglandins, leukotrienes and thromboxanes, as well as

prostaglandin ethanolamides (prostamides) (Figure 1.10). The importance of EC

inactivation by these oxidative pathways is beginning to be understood and has

potential implications for the antinociceptive effects of the endocannabinoid system
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(for details, see Chapter 3). COX-2 metabolises AEA to biologically active

prostaglandin ethanolamides (prostamides, PG-EAs), some of which show activity at

CB1 and CB2 receptors, as well as TRPV1 receptors, thus potentially enhancing

cannabinoid action (Matias et al., 2004; and for review see Fowler et al., 2007). COX-

2 action on 2-AG produces the biologically active prostaglandin glyceryl esters (PG-

Gs) (Kozak et al., 2001; Kozak & Marnett, 2002), which may have pro-nociceptive

effects (for review, see Sagar et al., 2009). Biological effects of PG-Gs have also

been demonstrated in the hippocampus, where they may decrease GABAergic

transmission (Sang et al., 2006) and enhance glutamatergic neurotransmission and

neurotoxicity (Sang et al., 2007). COX-2 is constitutively expressed in the kidney,

spinal cord, hippocampus, cortex and hypothalamus (Vandevoorde & Lambert, 2007)

and is upregulated under pathological conditions including inflammatory pain (Samad

et al., 2001). Metabolism of AEA and 2-AG by the S-, 12- and 1S- isoforms of LOX

produces hydroxyperoxyeicosa-S, 8,10, 14-tetraenoic acid ethanolamides (HPETE-

EAs) and hydroxyperoxyeicosa-S,8,1 0, 14-tetraenoic acid glycerol esters (HPETE-Gs),

respectively. Of these, the 12-LOX metabolite of AEA has activity at the CB1 receptor

(Hampson et al., 1995; Edgemond et aI., 1998). Several isoforms of cP4S0 are

capable of metabolising ECs, AEA to hydroxyeicosatetraenoic acid ethanolamide

(HETE-EA) and epoxyeicosatrienol ethanolamide (EET-EA), and 2-AG to glycerated

epoxyeicosatrienoic acid (GEET) (Chen et al., 2008; Awumey et al., 2008), several

forms of which have activity at CB1 and CB2 receptors (see Chapter 3)(Figure 1.10).
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Figure 1.10 Metabolic pathways of endocannabinoids. AEA ~'etabolism is largely
under the control of FAAH, however, oxidative metabolism by cytochrome P450, COX-
2 and LOX produces biologically active metabolites which may be important in
contributing to antinociceptive effects of endocannabinoids. MAGL is the main
enzyme responsible for 2-AG metabolism, however, FAAH and the oxidative enzymes
also have a role to play. 2-AG, 2-arachidonoyl glycerol; AA, arachidonic acid; AEA,
anandamide; COX-2, cyclooxygenase-2; cP450, cytochrome P450; EA, ethanolamide;
EET, epoxyeicosatetraenol; FAAH, fatty acid amide hydrolase; HETE,
hydroxyeicosatetraenoic acid; HPETE-G, hydroxyperoxyeicosa-5,8, 10, 14-tetraenoic
acid glycerol ester; GEET, glycerated epoxyeicosatrienoic acid; LOX, lipoxygenase;
MAGL, monoacyl glycerol lipase; PG-G, prostaglandin glyceryl esters.

1.3.5. Cannabinoid-mediated antinociception

The endocannabinoid system is altered by nociceptive stimuli. Noxious-evoked

endocannabinoid release was first reported in the rat peri-aqueductal gray (PAG), a

key pain-processing structure in the midbrain (see Walker et al., 1999). In animal

models of chronic pain (CCI and SNL in the rat), endocannabinoid (particularly AEA)

levels have been shown to be elevated spinally, and supraspinally in several brain

regions including the PAG and rostroventral medulla (RVM) (Pallazo et al., 2006;

Petrosino et al., 2007). Changes in endocannabinoid levels in human disease states

have also been reported, with levels of AEA and 2-AG undetectable in healthy (non-

inflamed) synovial fluid but present in the synovial fluid of subjects with rheumatoid
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and osteoarthritis (see below) (Richardson et a/., 2008). The anti nociceptive effects of

AEA and 2-AG have been well described in animal models of acute and chronic pain

(for reviews, see Iversen et aI., 2002; Pertwee, 2001; Walker & Huang, 2002), as well

as in humans (Am mar, 1998, Wade et a/., 2003), and involve experiments modulating

CB receptors and experiments changing EC levels.

Modulating cannabinoid receptors

Activation of the cannabinoid receptors has antinociceptive effects in both behavioural

and electrophysiological paradigms. Activation of supraspinal CB receptors was

shown to diminish second phase formalin-evoked inflammatory nociceptive behaviour,

with the use of HU21 0, a non-selective cannabinoid receptor agonist, injected directly

into the PAG (Finn et a/2003). This also diminished spinal and thalamic neuronal

responses following noxious stimuli (Buxbaum et a/., 1972, Hohman et a/., 1995,

Martin et a/., 1996). In addition, the synthetic cannabinoid WIN55,212-2 produced

CB1- and CB2-mediated antinociception when given as a pre-treatment in the SNL

model of neuropathic pain (Guindon et a/., 2007). The importance of

endocannabinoids in nociception has also been shown by blockade of the CBI

receptor with the antagonist rimonabant, which results in enhanced nocifensive

responses to formalin injection (Strangman et a/., 1998). However, these results are

contradictory to data obtained in mice, in which significant increases in nocifensive

behaviour or tissue endocannabinoid levels following CBI (rimonabant) or CB2

(SR144528) receptor antagonist application was not observed (Beaulieu et a/., 2000).

Effects of modulating endocannabinoid levels

Modulation of endocannabinoid levels by injection of exogenous endocannabinoids or

by blocking uptake and/or metabolism of endogenous endocarmabinoids have been

investigated in models of pain. In the carrageenan model of acute inflammation in the

rat, injection of AEA, either alone or with PEA into the hindpaw, decreased thermal

hyperalgesia and nociceptive behaviours, an effect shown to be through actions on

the peripheral CBI receptor (Richardson et a,/., 1998, Calignano et a/., 1998).
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Inhibitory effects on the inflammatory responses of oedema, plasma extravasation and

neuropeptide release were also observed in inflammatory pain models using formalin

and carrageenan (Calignano et al., 1998, Richardson et al., 1998). PEA alone

produces similar anti nociceptive effects, although in this case they are mediated via a

peripheral, CB2-like receptor (Calignano et al., 1998; Malan et al., 2001). Application

of exogenous ECs also inhibited mechanically evoked responses in chronic

inflammatory models (Sokal et al., 2003).

Recently, there has been much interest in targeting the metabolism of

endocannabinoids in vivo as a mechanism of achieving analgesia without the

psychotropic side effects seen with direct agonist-mediated CB1 receptor activation

which limits the use of endocannabinoids in the clinic (for review, see Jhaveri et al.,

2007). The analgesic potential of preventing the catabolism of endocannabinoids has

been studied by blocking EC uptake, and by inhibiting FAAH pharmacologically or by

gene deletion. Blocking AEA transport with the anandamide membrane transporter

(AMT) blocker AM404, and its analogues UCM707 and LY2183240, dose-dependently

reduces nociceptive behaviour following thermal and mechanical stimuli. This is

mediated by the CB1 receptor in models of acute, inflammatory and chronic pain,

using formalin, CFA, and surgical methods of SNL and CCI, respectively (LaRana et

al.,2006).

Endocannabinoid breakdown may also be prevented by FAAH knockout and by use of

specific inhibitors. In FAAH knockout mice, this prevention of endocannabinoid

breakdown in the brain results in local increases (15-fold) in levels of AEA in the

hippocampus, and displays a trend to do so in the cortex and cerebellum. Levels of

PEA and OEA were also greatly elevated in these regions, although this did not reach

statistical significance (Clement et al., 2003). FAAH knockouts are associated with

CB1-mediated antinociceptive behaviour in the tail-flick and hot-plate tests of

nociception, in addition to other CB1 receptor mediated effects such as hypothermia,

catalepsy and hypomotility (Cravatt et a/2001, Lichtman et a/2004a). Systemic

pharmacological inhibition of FAAH with URB597, OL-92 and OL-139 raised EC levels

and produced anti nociceptive effects in models of chronic pain in rats, as well as acute
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pain in mice (Jhaveri et al., 2006; Lichtman et al., 2004b). Application of the most

selective FAAH inhibitors a-ketoheterocytes OL-92 and OL-135 result in anxiolytic and

anti nociceptive effects in rodents in thermal and formalin-induced paradigms of pain.

This too is mediated via the CB1 receptor and is accompanied by an increase in levels

of AEA, PEA and OEA throughout the CNS (Kathuria et el., 2003, Lichtman et al.,

2004b). At therapeutic doses, most NSAIDs have been shown to inhibit FAAH activity

(Fowler et al., 1997, 1999) and their use is associated with increased levels of AEA,

OEA and PEA (Guindon et al., 2006b).

Antinociceptive effects of PEA and OEA

In models of acute pain, PEA acts synergistically with AEA to attenuate pain behaviour

with 100 times more potency than with each compound alone, in both phases of

formalin and turpentine-induced C fibre activation, sensory fibre inflammation and

central sensitisation (Calignano et al., 1998). AEA alone attenuated pain behaviour in

the first, but not the second phase, perhaps as a result of its rapid inactivation (Cravatt

et a/1996, Beltramo et a/1997). Co-administration of AEA together with PEA results

in a longer duration of anti nociceptive effect, with PEA inhibiting FAAH activity (Di

Marzo et al., 2001). The long-lasting effects of PEA alone and in combination with

AEA make it an attractive subject for further study. In chronic pain states, PEA levels

have been shown to be altered in a mouse model of diabetic neuropathic pain and in

human patients with migraine and probable analgesic overuse headache (Sarchielli et

al., 2007), ulcerative colitis, chronic lower back pain after osteopathic manipulative

treatment (Reviewed by Darmani et al., 2005). However, in the chronic constriction

injury model of the rat, AEA and 2-AG levels are increased spinally and supra-spinally,

while levels of PEA are decreased (Petrosino et al., 2007). Administration of PEA in

this model leads to anti nociceptive responses (Helyes et al., 2003). This discrepancy

between PEA increase and decrease may be explained by the ~bservation that PEA

and other EC levels change in degenerating tissues and cells in a specific manner,

depending on the physiological stimuli / pathological conditions (Epps et al., 1979;

Natarajan et a/,. 1986; Hansen et al., 1995; Schmid et al., 1995; Kondo et al., 1998;

Giuffrida et al., 1999; Berdyshev et al., 2000; Hansen et al., 2000; Franklin et al.,
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2003). In humans, the analgesic properties of PEA have been demonstrated when

given as an epidural injection to relieve postoperative pain (Ammar, 1998).

In 'addition to its putative entourage effects, PEA has distinct anti nociceptive properties

in inflammatory, acute, and chronic pain states. Its effects on inflammatory pain are

mostly due to its anti-inflammatory properties. PEA results in decreased substance P-

induced mast cell degranulation in vivo (Aloe et el., 1993), although this is disputed by

in vitro work in human mast cells (Maccarrone et al., 2000). PEA also results in

attenuated oedema and associated inflammatory hyperalgesia by reducing mast cell

activation (Mazzari et el., 1996), and it inhibits lipopolysaccharide-induced nitric oxide

generation in macrophages (Ross et al., 2000). PEA also decreases neutrophil

accumulation in cells (Farquhar-Smith & Rice, 2003), the cause of NGF-induced

inflammatory pain (Bennett et al., 1998, Shu and Mendell, 1999). In animals, PEA

inhibits inflammation and the sensitising effects of inflammatory products on the

nociceptive processes via autacoid local inflammation antagonism (ALIA) - local

antagonism by PEA on inflammation via control of mast cell activity and reduction of

mast cell degranulation (Aloe et al., 1993; Levi-Montalcini et al., 1996; Mazzari et al.,

1996). This is mediated by PPAR-a activation (LoVerme et al., 2005). PEA has been

shown act as a PPAR- a ligand, and decreased nocifensive behaviour in formalin and

magnesium sulphate-injected mice is PPAR- a mediated (Lo Verme et al., 2005).

OEA also has roles in antinociception in visceral and inflammatory pain models,

abolishing antinociceptive behaviours following acetic acid, or formalin administration

in the rat (Suardiaz et al., 2007).

Involvement of the endocannabinoid system in clinical pain

While CB receptor activation by HU210 has been shown to decrease acute capsaicin-

evoked pain in humans (Rukwied et el., 2003), clinical trials activating cannabinoid

receptors with the use of cannabis cigarettes, oral-mucosal sprays and rectal

suppositories in acute, post-operative and neuropathic pain states, have shown the

greatest antinociceptive efficacy of cannabinoids to be in neuropathic pain conditions

(as reviewed by Rahn and Hohmann, 2009). Cannabinoid efficacy in suppressing

38



Chapter 1 General Introduction

pain has been shown in a number of clinical conditions, including HIV associated

neuropathy (Abrams et al., 2007, Ellis et al., 2009), MS-induced neuropathic pain

(Svendsen et al., 2004, Rog et al., 2005), brachial plexus avulsion (Berman et al.,

2004) and mixed neuropathies (Wilsey et al., 2008). In arthritic conditions, current

trials with Sativex, an oral1:1 b,9-THC and cannabidiol compound, has shown positive

results in the treatment of rheumatoid arthritis pain (Blake et al., 2006). Illicit self-

administration of cannabis has self-reported beneficial effects in the treatment of pain

associated with both rheumatoid- and osteo-arthritis (Wright et al., 2006). In a study

of 21 patients with generalized neuropathic pain, displaying symptoms of hyperalgesia

and allodynia, the cannabinoid receptor agonist CT-3 decreased perceived pain (Karst

et al., 2003). Cannabinoid-based medicines have also been used in the treatment of

cancer pain, with mixtures of THC and CBD showing positive effects on pain

management but a worsening of associated nausea and vomiting (Johnson et al.,

2009). These negative effects contribute to the primary cannabinoid side effect of

psychoactivity, restricting the use of cannabinoid-based medicines in the clinic. As a

result, they are usually given after opioid treatments have failed (Turcotte et al., 2010).

The endocannabinoid system has been found to be altered in chronic pain conditions.

In a study by Richardson et al. (2008), AEA and 2-AG were found in the synovial fluid

of 32 OA and 13 RA patients undergoing total knee arthroplasty, but not in that of

healthy volunteers. Synovia of these patients were found to contain both CB1 and CB2

receptor protein and RNA, as well as active FAAH. Interestingly, these findings were

associated with a decrease in synovial fluid levels OEA and PEA compared to that of

healthy volunteers, further supporting the proposed role of PEA and OEA as

"entourage" compounds to ECs.
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1.4. Aims of thesis

The aim of this thesis was to further investigate the usefulness of the MIA model of OA

joint pathology as a model of pain associated with OA, and to determine the potential

role(s) of the endocannabinoids in the modulation of these responses. The objectives

of this thesis were to: 1, investigate peripheral and spinal pain responses, both in

terms of behaviour and neuronal responses, in a model of OA pain. To this end the

effect of MIA on the release of cytokines in the joint, and neuronal activity in the spinal

cord was determined (see Chapter 4); 2, to determine the effects of COX-2 inhibition

on neuronal responses and the potential role of endocannabinoids in mediating these

effects (see Chapters 3 and 5); 3, to investigate whether the endocannabinoid system

is upregulated in the spinal cord in a model of OA pain, and the functional effects of

such upregulation (see Chapter 6).
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2.1. In vivo electrophysiology

All experiments were carried out on male Sprague-Dawley rats (Charles River U.K.)

weighing 200-220g for studies in narve rats, 160-190g at the time of injection for

studies on the MIA model of OA pain. Rats were group-housed in a temperature

controlled (20-22°C) environment with a 12hr lighUdark cycle (lights on at 7am) with ad

libitum access to food and water. Experimental procedures were carried out under

Personal Home Office Licence 40/8536, and project licences 40/2564, and 40/3124.

All experimental procedures were carried out in accordance with the Animals

(Scientific Procedures) Act 1986 and International Association for the Study of Pain

(IASP) guidelines.

2.1.1. Anaesthetic system

The anaesthetic system used throughout electrophysiological studies presented

herein consisted of the inhalation anaesthetic isoflurane (Abbott, Kent, U.K.), delivered

in a mixture of 33% oxygen (200cm3/mm) and 67% nitrous oxide (300cm3/mm) (both

BOC gases, U.K.). A Vapotech series 3 vapouriser was used, delivered to the rat

using silicone rubber tubing (5mm inner diameter, 7mm outer diameter) and a Y-

connector. Expelled gases were removed via a Cardiff aldasorber (Datesand ltd,

Manchester, U.K.). Anaesthesia was induced by placing the rats in an induction

chamber with 3% isoflurane in 33%: 66% oxygen: nitrous oxide. Once the righting

reflex was lost, the rat was removed from the induction chamber, placed on its front,

and a nose cone used to supply anaesthetic and gases at 2% isoflurane.

2.1.2. Surgical procedures

Once areflexia (no withdrawal reflex to hindpaw toe pinch) was achieved, the rat was

placed on its back and tracheal cannulation was performed. Skin on the underside of

the neck was lifted and cut to expose the underlying muscle layers, which were teased

apart bilaterally to expose the trachea. Two lengths of suture (Pearsall's Sutures ltd.,

U.K.) were passed underneath the trachea and tied loosely. An incision was made in
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the trachea between two cartilage rings, and a bevelled-edged 5cm piece of polythene

tubing (inner diameter 1.57mm, outer diameter 2.08mm) was inserted approximately

5mm and secured in place above and below the point of insertion with the suture.

Anaesthetic was then delivered directly to the cannula through the V-connector for the

duration of the study.

The rat was placed on its front on a stereotaxic frame (University of Nottingham,

Medical Faculty Workshop) and placed into ear bars to maintain a fixed head position

throughout the study. Core body temperature was maintained at 36.5-37SC via a

heating blanket receiving feedback from a rectal thermal probe. A midline incision

approximately 5cm in length was made through the skin overlying the spine from

approximately 2cm above the base of the ribs. Longitudinal incisions were made

close to the bone into the muscle on either side of the vertebral column, and a clamp

inserted and tightened around the vertebral column on the rostral side of the incisions.

A tear-drop shaped incision was made approximately 1.5-2cm in length, into the

connective tissue overlying the vertebral column, such that the centre of the incision

layover the base of the ribs, the approximate location of spinal segments L4-L5.

Connective tissue was removed to expose lumbar vertebrae L1-L3, creating a well for

spinal applications of saline, and where applicable, drug or vehicle solutions

throughout the course of the experiment. Rongeurs were then inserted gently into the

gap between vertebrae, which were removed to expose spinal segments L4-L5

through an opening approximately 1-2mm either side of the central vessel. The dura

mater was carefully removed using painted forceps, leaving the pia mater intact, and a

second clamp secured around the vertebral column rostral to the incision, holding the

spinal cord in a fixed position throughout the study. The well was filled with sterile

saline to maintain the exposed spinal cord in a moist environment, and the skin was

pulled taut and held together with a crocodile clip throughout the study, minimising

dehydration of the rat. Anaesthesia was lowered to approximately 1.5% isoflurane,

and areflexia (lack of blink reflex and response to hind paw toe pinch) maintained

throughout the study. At the end of the study, anaesthetic levels were increased to

5% until the rat stopped breathing and no pulse was felt. The neck was then broken

to ensure termination. For tissue collection killing procedures, see section 2.3.1.
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2.1.3. Electrophysiological recordings

Spike discrimination and audio monitoring was conducted with a Neurolog system

(Oigitimer, Welwyn Garden City, U.K.), using glass-coated tungsten electrodes (see

later). The system was grounded through the stereotaxic frame. Differential

recordings between the electrode, and an indifferent electrode (crocodile clip)

attached to the skin of the rat, were made (Neurolog headstage NL1OOAK in A-B

position). The voltage signal was amplified (Neurolog NL104 x 2K, Neurolog 106 x

80) and filtered through low and high-pass filters (Neurolog NL125, low frequency cut-

off at 300Hz, high frequency cut-off of 5KHz). The signal was displayed on a

Tektronix TDS 210 digital oscilloscope allowing visual discrimination of spikes, and

audio monitoring was achieved via an audio amp module (Neurolog NL120) and

loudspeaker. Analogue spike signals were converted to a digital signal by the spike

trigger (Neurolog NL201) with variable threshold, allowing action potentials above

certain amplitudes only to be counted, thereby ensuring that only responses from the

neurone of interest were being counted and analysed. A typical signal:noise ratio of

5:1 was used. Signals were digitised and analysed using aCED micro1401 interface,

a Pentium II PC and Spike 2 data acquisition software (Cambridge Electronic Design,

Cambridge, UK).

The electrode was lowered into the spinal cord by hand and input from the ipsilateral

hind paw was confirmed by tapping the toes. The electrode was slowly withdrawn to

the surface of the cord (signalled by cessation of input from tapping of the toes) and

lowered in 10IJm steps using a SCAT-01 microdrive and Epson HX210 Stepper

(Digitimer) to a depth of 500IJm from the surface. The electrode was then lowered

whilst stimulating the toes (brush and pinch stimuli to identify neuronal response to

AI3-, Ar.,- and C-fibre input) to a depth of 1200lJm. Candidate WDR neurones for

further characterisation were selected on the basis of response to both brush and

pinch stimuli, as well as continued firing after stimulus cessation. The receptive field

was located by the use of von Frey monofilaments ranging from 8-60g, and marked

using a fine permanent marker pen to allow accurate stimulation of the identified area

throughout the course of the experiment. Candidate WDR neurones were
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characterised by electrical stimulation, through two metal pins (26 gauge syringe

needles) inserted into the toe around the identified receptive field, ensuring there was

no contact between the pins. Pins were connected to a stimulator isolator and single

pulses were given, starting at 1mA and increasing by 0.1mA per pulse to a maximum

of 3.0mA, until response with C-fibre evoked latency (90-300ms after stimulus) was

obtained. If a 1mA pulse generated such a response, the starting input stimulus was

reset to 0.5mA. Once the threshold for C-fibre-evoked response was determined, a

train of 16 pulses at 3x the C-fibre threshold was delivered using the period generator

at a frequency of 0.5Hz in order to stimulate neuronal wind-up. The response of each

primary afferent fibre type was determined by the number of responses recorded

within each fibres conduction velocity range (AI3-fibres, 0-20ms; Ao-fibres, 20-90ms;

C-fibres, 90-300ms post-stimulus). The number of post-discharge responses

(latencies between 300-800ms post-stimulus), which arises from C-fibre

hyperexcitability following repetitive stimulation (i.e. wind-up) were also determined.

Mechanically evoked responses of neurones to punctate stimuli were characterised

using von Frey monofilaments (Semmes-Weinstein monofilaments, North Coast

Medical Inc, USA, via Linton Instrumentation, Norfolk, UK) applied to the centre of the

receptive field on the toes of the hindpaw in ascending (8, 10, 15, 26 and 60g)

bending force order, representing both non-noxious (8 and 10g) and noxious (15, 26

and 60g) stimuli (Chaplan et al., 1994). Monofilaments were applied every 10 minutes

for 10 seconds with 10 seconds between each monofilament, to the centre of the

receptive field. WDR neurones exhibit a graded response to ascending bending-force

von Frey filaments (Willis et al., 2004). Stable responses «10% variation between

stimuli) were obtained before drug administration, and quantified by the compilation of

stimulus-evoked histograms and analysis of the mean firing rate during application.

2.1.4. Drugs

Nimesulide, AM251 and SR144528 (Tocris Bioscience, Bristol, UK), were dissolved

and kept in a stock solution in 100% ethanol at -20°C. For spinal or peripheral

administration, nimesulide, AM251, and SR144528 were dried and reconstituted in 3%
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polyethylene glycol sorbitan monooleate (Tween 80; Sigma-Alrdich, Dorset, UK) in

physiological saline (together constituting the vehicle) on the day of use. For studies

involving subcutaneous administration, nimesulide was dissolved directly in 3% Tween

80, without first being made up to an ethanol stock solution, on account of the larger

amount of drug used.

All drug preparations were pipetted vigorously, vortexed and ultrasonicated to ensure

dissolution. Prepared solutions were kept at 4°C until use.

The effects of drug administration on mechanically evoked responses of WDR

neurones were measured as a percentage change of firing rates compared to pre-

drug control values. For spinal administration studies, drugs were administered

directly onto the exposed spinal cord using a 50IJL Hamilton syringe (Hamilton-

Bonaduz, Bonaduz, Switzerland). Each dose was studied for between 40-60 minutes

and followed by a higher dose after careful removal of fluid from the well using tissue

paper, up to a maximum of 4 doses per rat. For peripheral administration studies,

drugs were injected under the skin of the hind paw, directly above the receptive field, in

a 50IJL volume using a 25 gauge needle (BD Microlance, Drogheda, Ireland). For

systemic administration studied, drugs were injected in a 250IJL volume under the

scruff of the neck using a 25 gauge needle (BD Microlance, Drogheda, Ireland).

2.1.5. Glass-coated tungsten electrodes

Glass-coated tungsten microelectrodes were produced in a 3-stage process involving

etching, glass coating, and removal of glass tip from the coated electrode (Bullock et

al., 1988).

Etching

A perspex jig (75 x 50mm, University of Nottingham, Medical Faculty Workshop) was

loaded with 30 lengths of tungsten wire (Harvard Apparatus, Kent, UK) and brushed

with 100% acetone to remove dirt. The brass barrel used for etching was cleaned

thoroughly with sandpaper to ensure good contact between the barrel and electrodes.

46



Chapter 2 Materials and Methods

The electrodes were transferred from the jig to the barrel using a length of sellotape

equivalent to the barrel circumference, taped over half the length of the tungsten wire

and firmly pressed in place to ensure good contact between the barrel and electrodes.

3-4cm of the lengths of wire protruded beyond the edge of the barrel, which was fixed

onto the arm of the etching unit (University of Nottingham, Medical Faculty Workshop).

The etching bath contained a solution of 90g potassium nitrate (KN02, Sigma-Aldrich)

in 80mL distilled water, filled to a level such that when the arm of the etching unit was

lowered, 10 of the lengths of wire were in contact with the solution. A carbon

electrode connected to the etching unit was placed in the solution to complete the

circuit and allow current flow. Current was initially set to flow at 250mA while the

barrel rotated, and etching was complete once the current dropped to 200mA,

approximately 20-25 minutes later.

Glass coating

Glass capillaries (Harvard Apparatus) were stoppered at one end with plasticine and

held in place in the jaws of an electrode puller (University of Nottingham, Medical

Faculty Workshop). A length of etched tungsten wire was gently cut from the etching

barrel and passed through a flame to remove residual adhesive, and dropped blunt

end first into the stoppered capillary tube. The lower, weighted jaw of the electrode

puller was lifted and clamped around the lower portion of the capillary tube. Current

flowing through a coil around the capillary tube between the two jaws melted the

glass, and the weighted jaw containing the etched wire dropped, coating the wire with

glass.

Removal of glass tip from the coated electrode

The glass-coated electrode was secured on the microscope platform by placement of

the glass butt in a v-clamp. The electrode was moved in the plane of view until both

the electrode tip and a borax bead on a cauterising wire on the microscope platform

were in sharp focus. Current was passed through the cauterising wire to melt the

borax bead and the electrode was advanced towards it until the meniscus of the bead
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was broken, at which point the current was switched off. The borax bead contracted,

removing the glass tip from the electrode and exposing 1-2mm of tungsten wire. Only

electrodes that had a smooth transition from the glass coating to the exposed wire (i.e.

no protruding glass that could potentially damage the spinal cord), and electrodes with

a straight, well-etched tip were used.

2.1.6. Choice of anaesthetic

General anaesthetics have been shown to have inhibitory effects of dorsal horn

neuronal excitability (Collins et al., 1995). It is therefore important to carefully consider

the anaesthetic used when conducting electrophysiological studies, to minimise

impact on neuronal responses. Many studies have avoided this issue with the use of

decerebrate rats in order to investigate pain processing (Kawamata et al., 2005; Silva

et al., 1997), however this has the disadvantage of also removing descending pain

pathways which modulate spinal dorsal horn neuronal responses, and thus is not

ideal.

Inhalation anaesthetics are a popular choice as they allow full control over the level of

anaesthesia, an effect more difficult to achieve with injectable anaesthetics. Their

mechanism of action is not entirely clear but they are thought to act on ion channels

and involve augmentation of GABAA mediated transmission, decreasing spinal dorsal

horn neuronal excitability (Wakai et al., 2005). Until a few years ago, halothane and

isoflurane were the most popular choices, however, the use of halothane is associated

with hepatotoxicity and its use has all but ceased. Isoflurane, while slower in onset of

anaesthetic action than halothane, has lower depressant effect on dorsal horn

neuronal responses compared to halothane (Antognini & Carstens, 1999). Isoflurane

is therefore used throughout the studies presented here, as it allows rapid and

controllable anaesthesia, with minimal impact on neuronal responses. In addition, its

popularity makes results obtained in these studies more readily comparable to more

widespread literature.
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2.2. The MIA model of CA pain

2.2.1. Anaesthetic system and surgical procedures

The anaesthetic system used was similar to that used for electrophysiological studies,

except that a non-rebreathing tube was used, through which 3% isoflurane was

delivered in 33% oxygen and 67% nitrous oxide, and expelled gases removed to a

Cardiff aldasorber. The rat was held at the nosepiece and gently swayed until loss of

consciousness (approximately 30 seconds). It was then placed on a heated blanket

on its front, until deep anaesthesia (loss of withdrawal reflex to hindpaw toe pinch) had

been achieved. The rat was then placed on its back and the knees were shaved with

a hair clipper, and the knees and paws wiped clean with chlorhexidine. The ipsilateral

paw was then extended, the base of the patella located and 1mg MIA (Sigma-Aldrich,

Steinheim, Germany) in 50IJL saline or saline alone was injected into the intra-articular

space using a 29gauge insulin Kendall Monoject insulin syringe (Tyco Healthcare

Group LP, Mansfield, MA, USA). MIA was made up fresh on the day of use by

dissolution in saline, with vortexing. The experimenter was blinded to all treatments.

Once the solution had been injected, the rat was placed on a veterinary bed until

consciousness had been regained, before it was placed back in its cage and checked

for signs of discomfort. Rats were checked again in the middle of the day and at the

end of the working day. Vet beds were placed inside the cages, which were kept half

on heated blankets in a quiet room with low level lighting for the remainder of the

working day, before being returned to the holding rooms (vet bed removed). Rats

were given ad libitum access to food mash (normal food pellets softened with water) in

addition to their normal food and water for three days following injection. Weight and

general health condition was checked daily for the following three days and then twice

weekly (before behavioural testing, see below) until use in electrophysiological

studies. Weight gain and general health condition did not vary between the treatment

groups.
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2.2.2. Behavioural testing

Behavioural tests were conducted 1 day before, on the day of injection, and 2, 3,7,9,

14, 16,21,23 and 28 days after injection of MIA or saline. Behavioural tests on the

day before were primarily to allow acclimatisation of the rats to the behavioural

equipment and methods. Behavioural tests were always conducted before midday,

and usually between 7-9am, to minimise alterations in responses caused by time

differences (and noise levels) between study days. Rats were tested for alterations in

weight-bearing between ipsilateral and contralateral hind limbs, and differences in paw

withdrawal thresholds between ipsilateral and contralateral hindpaws.

Changes in weight-bearing between hindpaws is an indicator of joint discomfort and

associated pain in an injured knee (Bove et al., 2003; Clayton et al., 1997; Kobayashi

et al., 2003). NaIve or saline-treated rats evenly distribute their weight between the

hindpaws. The effects of joint damage caused by intra-articular injection of MIA were

assessed using an incapacitance tester (Linton Instrumentation, Norfolk, U.K.). Rats

were placed in a Perspex chamber with the two hindpaws on separate sensors. Once

the rat was settled and positioned correctly with a forward facing posture, the mean

force (in grams) exerted by each hindlimb over a 3-second period was calculated

(Clayton et al., 1997). Three readings were taken per rat and the average of these

readings was calculated. Weight borne on the ipsilateral hindlimb is expressed as a

percentage of the weight borne on the contralateral hindlimb, i.e.:

Weight-bearing = weight (g) borne through ipsilateral hindlimb x 100

weight (g) borne through contralateral hindlimb

For testing of mechanical allodynia, rats were placed in individual Perspex boxes with

wire mesh floors (Medical Engineering Unit, University of Nottingham). Once rats

were settled (sitting, approximately 10 minutes), mechanical sensitivity of both

ipsilateral and contralateral paws were determined with the use of a range of von Frey

monofilaments exer:ting forces ofO.4g, 0.6g, 19, 1.4g, 2g, 4g, 6g, 8g, 10g, and 15g.

Each von Frey monofilament was applied in ascending order to the plantar surface of
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the hind paw for 3 seconds, 3 times, with a minimum of 3 seconds rest between each

stimulus. If 4g did not elicit a response, the next highest weight was tested, up to a

maximum of 15g (considered noxious in awake, freely moving adult rats - Chaplan et

el., 1994). Upon a withdrawal response, the paw was tested again with the next

descending von Frey monofilament until no response occurred. The lowest weight of

monofilament tested which elicited a withdrawal reflex was noted as the paw

withdrawal threshold. In the case of no response following a 15g stimulus, a value of

16g was assigned as the paw withdrawal threshold for the purpose of analysis. Data

were expressed as the difference in grams in withdrawal responses between

ipsilateral and contralateral hindpaws, Le. withdrawal threshold contralateral hindpaw

(g) minus withdrawal threshold ipsilateral hindpaw (g).

2.3. Tissue analysis - EC and cytokine levels

levels of ECs and ECls, as well as cytokines were analysed in spinal cord, hindpaw

skin and synovial fluid of natve and MIA- or saline-treated rats. For materials and

methods employed for the analysis of cytokine levels in these tissues, see Chapter 4,

section 4.2.4.

2.3.1. Tissue collection

In the case of analysis of endocannabinoid levels where rats had been prepared

surgically and a laminectomy performed for spinal drug administration as described

above, rats were killed by anaesthetic overdose (5% isoflurane in a mix of 33%

oxygen, 67% nitrous oxide until cessation of breathing) and decapitation. In the case

of analysis of cytokines where no laminectomy had been performed, rats were killed

by stunning and decapitation. The laminectomy was extended (in the former case) or

performed and extended (in the latter case) to allow an approximately 3cm section of

spinal cord, spanning from the lumbar enlargement upwards, to be removed. The

spinal cord was then separated into ipsilateral and contralateral segments and snap-

frozen on dry ice and stored at -80°C until analysis. An approximately O.5-1cm2

51



Chapter 2 Materials and Methods

section of paw skin was also removed, snap-frozen on dry ice and stored at -80°C

until analysis. Synovial fluid was removed using a method described by Barton et al.,

(2007), with some alterations as described below. A needle perfusion system was

constructed with a 25- and a 23-gague needle tips (BD Biosciences, Drogheda,

Ireland) pulled apart from their plastic syringe-connectors. Firstly, the upper end of the

25-gague needle tip was bent approximately 135°, towards the bevel. The needles

were bound with their tips 1-1.5mm apart, bevels facing away from each other, using

epoxy resin (see Figure 2.1). The connector-portion of the 23-gague needle was

attached to a length of flexible grade Portex nylon tubing, inner diameter 0.58mm,

outer diameter 1.02mm, connected to a 1mL syringe filled with physiological saline,

connected to a syringe pump (Harvard Apparatus, Kent, UK). The rat was placed on

its back with the patella facing directly upwards for insertion of the perfusion needles

into the joint space through the patella tendon. Physiological saline was infused at a

constant rate of 400IJUminute until outflow of fluid through the 25-gague needle was

achieved, which was collected into a 2mL glass vial (SLS, Nottingham, UK) for a

period of 30 seconds. Fluid was immediately snap frozen on dry ice and stored at -

80°C until analysis.

saline inflow tube ~
O.58mm inner diameter
1.02mm outer diameter

23-gague needle _____
25-gague need le

collecting vial

Figure 2.1 Perfusion system for synovial fluid removal from a rat knee. Saline
was infuled at 400IJUminute into the joint space, forcing outflow of synovial fluid and
saline through the 25-gague needle, collected in a 2mL glass vial for 30 seconds.
Adapted from Barton et al., 2007.
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2.3.2. Liquid chromatography - tandem mass spectrometry

Analysis of tissue samples for levels of AEA, OEA PEA and 2-AG was with a validated

liquid chromatography tandem mass spectrometry (LC/MS-MS) analytical method of

extraction and quantification (Richardson et al., 2007). The assay method is in routine

use and has been fully validated, demonstrating intra- and inter-day precision and

accuracy of :=:;15%RSD (relative standard deviation).

Extraction

All solvents and chemicals used were of HPLC grade or higher. First, all glassware

was silanised using trichlorotrimethyl silane (Sigma-Aldrich, Steinheim, Germany),

washed with toluene and methanol (both Fisher Scientific, Loughborough, UK). All

tissues were kept on ice throughout. Tissues were weighed and homogenised in a

hand-held glass homogeniser with 5mL 9:1 ethyl acetate: hexane (both Fisher

Scientific, Loughborough, UK) mixture, 1mL high-performance liquid chromatography

(HPLC)-grade water (Elga, High Wycombe, UK), and the internal standards

deuterated anandamide (AEA-d8, Cayman Europe, Tallinn, Estonia, 151..lLof 281..lM=
0.42nmol prepared in ethanol- Fisher Scientific, Loughborough, UK) and deuterated

2-AG (2-AG-d8, Cayman Europe, Tallinn, Estonia, 100l..lLof 10l..lM= 1nmol prepared

in acetonitrile - Fisher Scientific, Loughborough, UK), added to allow and correct for

differences in recovery. Paw tissue was allowed to sit in this mixture for 1hour prior to

homogenisation to soften the tissue and maximise recovery of the endocannabinoids.

Synovial fluid was mixed rather than homogenised and the full volume recovered was

noted and used. The homogenised mixture was transferred to a centrifugation tube,

samples centrifuged (7000G, 15 minutes at 4°c) and supernatants collected in clean

tubes. To optimise EC and ECL compound recovery, homogenisation and

centrifugation was repeated two more times, using 2.5mL 9:1 ethyl acetate: hexane,

and the supernatants pooled. Pooled supernatants were evaporated under nitrogen at

35°C. The supernatants were reconstituted in 1mL anhydrous'chloroform (Fisher

Scientific, Loughborough, UK) and vortexed for 1 minute, before undergoing solid

phase extraction (SPE) for purification. Reconstituted samples were loaded into

100mg silica solid phase extraction cartridges (Phenomenex, Macclesfield, UK) placed

in a Cerex SPE nitrogen positive-pressure ~anifold (Varian, UK). Cartridges were
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washed with a further 3 additions of 1ml anhydrous chloroform, before elution into

clean silanised glass tubes using 2x1 ml 2% methanol in anhydrous chloroform,

4x1ml 2% methanol with 0.2% triethylamine (TEA, Fisher Scientific, loughborough,

UK), in anhydrous chloroform, and 4x1 ml 2% methanol with 0.2% trifluoroacetic acid

(TFA, Fisher Scientific, loughborough, UK). Eluates were evaporated under nitrogen

at 3Socand stored at _80°c until analysis, whereupon samples were reconstituted in

200j..ll acetonitrile, vortexed for 1 minute and transferred into 2ml glass vials (SlS,

Nottingham, UK).

For calculation of EC and ECl concentrations in the extracted samples, EC and ECl

compound extracted standards were prepared alongside tissue samples in the same

manner as described above, in addition to non-extracted standards which bypassed

extraction and SPE procedures, undergoing only evaporation under nitrogen at 3Soc

and reconstitution in 200j..ll acetonitrile prior to use in lC/MS-MS. Standards

consisted of the following ECs and ECls: AEA, 2-AG, noladin ether, Virodhamine (a"

from Tocris Cookson, Bristol, UK), OEA, PEA, 2lG, N-arachidonoyl dopamine

(NADA), Arachidonyl Glycine, (a" from Cayman Chemicals/Alexis, Nottingham, UK).

2-AG and 2lG were diluted in acetonitrile while a" other compounds were diluted in

ethanol, and made up to a 1mM stock standard stored at _80·c until use and dilution to

include at least 8 concentrations covering the range of concentrations expected from

the samples based on previous work, including 0.1nM, O.SnM, 1nM, SnM, 10nM,

SOnM, 0.1j..1M,O.Sj..IM. In addition to extracted and non-extracted standards, quality

control standards of human plasma were made up alongside extracted standards to

allow intra-run comparison of lC/MS-MS system functionality and reproducibility.

Quantification

Mobile phases at pH 3.6 used throughout lC/MS-MS were made up as follows:

Mobile phase A = HPlC grade water + 1gIL ammonium acetate + 0.1% formic acid

(both Fisher SCientific, loughborough, UK).

Mobile phase B = acetonitrile + 1gIL ammonium acetate + 0.1% formic acid, and a

little (-3ml /l) HPlC grade water to help dissolution of ammonium acetate).
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Both mobile phases were filtered using 0.471-lm nylon filters (Whatman, Maidstone,

UK) before use.

A triple quadropole Quattro Ultima mass spectrometer (Waters Micromass,

Manchester, UK) was used in conjunction with an Agilent 1100 LC system (Agilent

'CTechnologies, Waldbron, Germany). Source and desolvation temperatures of 125

and 350'c, respectively, were used. A tuning solution consisting 10l-lM AEA and 2AG

in mobile phases A and B in a 1:1 ratio was infused at 250I-lL/minute into the mass

spectrometer and source parameters (cone and desolvation gas flow rates) were

optimised (typically around 200 and 800L/hour respectively), and the probe

adjustment flange was adjusted to give the most intense signals for AEA and 2-AG.

These settings were then maintained throughout analysis.

Samples were drawn and injected in a 51-lLvolume at 200I-lL/minute, from a cooled

autosampler kept at 4'c through a liquid chromatography column (Thermo Hypersil-

Keystone HyPurity Advance Column) with pre-column (1OOx2.1mm internal diameter,

31-lmparticle size), kept at 40'c and 250bar pressure with mobile phases A and B

flowing at 300I-lL/minute used for a gradient elution. Gradient elution occurred over a

15 minute time-frame as follows: 55% A, 45% B initially, increasing linearly to 55% B

at 2 minutes and 65% B at 6.Sminutes, maintained until 9 minutes, followed by re-

equilibration with 45% B for a further 6 minutes. Analyte quantification was

undertaken using tandem electrospray mass spectrometry in positive mode (ES+).

The dominant product ion for each compound was selected for monitoring in multiple

reaction monitoring (MRM) mode, and were subjected to dissociation by argon gas-

induced dissociation in a collision reaction, to reveal product (daughter) ions.

Compounds in the tissue samples were identified by comparison of on-column

retention times and precursor (parent) and product ion mass: charge (m/z) values to

that of compounds in the extracted and non-extracted standards prepared alongside

tissue samples (see section 3.2.4.2). Typical precursor and product ion m/z values

and on-column retention times are listed in Table 2.1. Entry and exit energies of 0 and

35eV respectively were used, with collision energies as listed in Table 2.1.
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The injector was set to wash 3 times with 1:1 methanol to water between each

sample, and two blank samples of 1:1 mobile phase A to mobile phase B were placed

between each group of samples (Le. ipsilateral spinal cord and contralateral spinal

cord, or between treatment groups) to minimise carry-over between samples.

Quantitative analysis was performed using the Quanlynx PLC system version 4

(Waters, Kilford, MA,USA). EC and ECl compound levels were calculated by

comparing recovery of compounds in samples to those in the extracted and non-

extracted standards, using the area under the curve for each analyte, and producing a

concentration-response chart from which EC and ECl compound concentrations in

samples could be extrapolated, taking into account the initial amount of tissue

analysed. The area under the curve was also calculated for the internal (deuterated)

standards, and corrections to EC and ECl compound levels were made accordingly.

Table 2.1 Typical parameters of selected EC and ECl compounds identified
using lC-MS/MS. Typical retention times, precursor and product ion mass:charge
(m/z) values, cone voltages and collision voltages used in identification and

ffi f f EC d ECl ds m soi I d ti d . I fl idcuan mea Ion 0 an compoun s m soma cor ,Q_aw Issue an synovia UI
Analyte Retention Precursor Product Cone Collision

time (min) Ion (m/z) Ion (m/z) Voltage Energy
.(eV) {eVl

AEA 5.43 348.33 62.00 35 11

AEA-dB 5.43 356.33 62.00 48 21

2-AG 6.26 379.24 287.02 55 15

2-AG-dB
6.26 387.35 96.17 43 34

Palmitoyl 6.13 300.26 62.00 35 15
ethanolamide
Oleoyl 6.51 326.39 62.00 60 20
ethanolamide

Virodhamine 1.79 348.33 62.00 35 11

2-linoleoyl 6.32 355.52 263.18 55 15
glycerol
Arachidonyl 7.85 362.24 287.11 50 15
glycine

Noladin ether 6.51 365.20 273.17 63 14

Heptadecanoyl 7.15 314.47 62.00 60 20
ethanolamide
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2.4. Statistical analyses

Data were analysed using GraphPad Prism software, version 4.0. Details of statistical

analyses used will be described in each results chapter (Chapters 3-6).
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3.1. Introduction

3.1.1. The role of COX-2 in endocannabinoid metabolism

The anti nociceptive effects of the endocannabinoids (ECs) anandamide (AEA) and 2-

arachidonoylglycerol (2-AG) have been well described in animal models of pain (see

Chapter 1). Their therapeutic use is limited somewhat by a short-lived time of action,

due to rapid metabolism. As a result, much study has centred on anti nociceptive

properties of inhibitors of the major NAE metabolic enzyme, FAAH (see Chapter 1). In

addition to FAAH, NAEs are also substrates for catabolism by N-acylethanolamine-

hydrolysing acid amidase (NAAA - Tsuboi et al., 2007, Sun et aI, 2005), and

oxygenation by cyclooxygenase-2 (COX-2) (Kozak et al., 2004; Yu et al., 1997),

lipoxygenases (LOX) (Edgemond et al., 1998; Hampson et al., 1995; Ueda et al.,

1995a) and cytochrome P450 (cP450 - Bornheim et al., 1993; Snider et al., 2008).

The role of COX-2 in the metabolism of endocannabinoids is of particular relevance to

pain processing as this enzyme is constitutively expressed in the spinal cord (Ghilardi

et al., 2004) and induced in chronic pain states. COX inhibitors are commonly used in

the treatment of chronic pain states, but the role of endocannabinoids in mediating

these effects is unclear. COX-2 has also been shown to contribute to the metabolism

of 2-AG, which it metabolises as effectively as it does arachidonic acid, to biologically

active metabolites such as prostaglandin H(2) glycerol ester (PGH(2)-G), which can

further be processed further to form new prostaglandins (Kozak et al., 2000,

Prusakiewicz et al., 2009).

Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to raise levels of

endocannabinoids. Previous studies have demonstrated that ibuprofen can inhibit

AEA hydrolysis in rat brain membrane preparations with a potency of the same order

of magnitude as required for inhibition of COX-2, and at concentrations comparable to

peak plasma concentrations following therapeutic dosing (Fowler et al., 1999; Fowler

et al., 1997). The inhibitory effects of NSAIDS are blocked by CB1 receptor

antagonists, implicating a role of the endocannabinoids in mediating these effects

(Guhring et al., 2002; Telleria-Diaz et al., 2009). NSAID-mediated increases in
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endocannabinoid levels have been suggested to occur through a number of

mechanisms; radioligand binding studies have shown that ibuprofen, ketorolac and

flurbiprofen can block AEA metabolism, most likely by inhibiting FAAH activity,

(Fowler et al., 1997, 1999), while in vivo work with indomethacin has shown that

NSAIOs reduce reuptake of endocannabinoids by decreasing levels of spinal nitric

oxide, and shifting metabolism of the endocannabinoid precursor arachidonic acid

towards endocannabinoid synthesis (Guhring et al., 2002). As COX-2 is also

responsible for EC metabolism, NSAIOs may raise EC levels independently of their

actions on FAAH. Specific inhibition of the COX isoform COX-2 in vivo with rofecoxib,

raised local levels of AEA, as well as that of the endocannabinoid-like compounds

(ECls) PEA and OEA in the formalin model of inflammation, an effect concurrent with

anti nociceptive effects (Guindon et al., 2006b). Rofecoxib does, however, also have

weak inhibitory effects on FAAH and so the contribution of COX-2 to

endocannabinoid-mediated analgesia induced by NSAIOs remains unclear.

It has recently been shown that the COX-2 inhibitor nimesulide does not inhibit FAAH

(Fowler et al., 2003; Kim et al., 2004) and so investigations with this drug would allow

elucidation of the role of COX-2 in endocannabinoid metabolism, as well as the effect

of this pathway in NSAIO-mediated analgesia.

3.1.2. Nimesulide - effects on endocannabinoids and

endocannabinoid-like molecules

The effects of nimesulide on ECs and ECls have recently been studied both in vitro

and in vivo. In rat hippocampal slices, nimesulide prolonged depolarisation-induced

suppression of inhibition (OSI), an effect blocked by AM251 pre-treatment but not

URB597, showing that the actions of nimesulide are mediated by the CBl receptor

and are not mediated by FAAH (Kim et al., 2004). In the carageenan model of acute

inflammation, an intraplantar injection of 50~g nimesulide administered in a 50~l

volume of saline significantly raised levels of PEA. AEA levels were also elevated,

albeit non-significantly (Jhaveri et al., 2008). These effects were blocked by the

PPARa antagonist GW6471, suggesting that PEA acts at the PPARa receptor. Unlike
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many COX-2 inhibitors and acidic NSAIDs which inhibit FAAH activity in the rat brain

in a pH dependent manner, nimesulide does not inhibit FAAH at either pH6 or 8,

consistent with the conclusion that non-ionised forms of the acidic NSAIDs are

responsible for FAAH inhibition (Fowler et aI., 2003). This lack of action on FAAH

makes nimesulide a good choice for the study of the effects of COX-2 inhibition on

endocannabinoids.

3.1.3. Nimesulide - structure and selectivity

Nimesulide (4-nitro-2-phenoxymethanesulphonanilide - Figure 3.1) is a weak acid

(pKa 6.5) which was first introduced in 1985 and belongs to the sulfonanilide group

(see Rao, 2005). It is this group that confers its acidic nature, rather than by the

presence of a carboxylic acid group which confers acidity in many of the NSAIDs (for

review see Singla, 2000). It is a yellow, crystalline powder, with poor solubility in

aqueous solutions - 0.01 mg/mL (Piel et al., 1997) which may cause bioavailability

problems in vivo. However, this may be overcome by the formation of inclusion

complexes with ~-cyclodextrin. Nimesulide is readily soluble in acetone, chloroform

and ethyl acetate, and slightly soluble in ethanol (Sing la, 2000).

o

Figure 3.1 Nimesulide; 4-nitro-2-phenoxymethanesulphonanilide

Nimesulide was first shown to have higher selectivity for COX-2 over COX-1 in human

leukocytes and in isolated gastric mucosal tissue (Tavares 1995). Since then, both in

vivo and in vitro studies have shown that nimesulide is a relatively selective COX-2,

versus COX-1 inhibitor at therapeutic doses (for review, Famaey, 1997; Kerola et al.,

61



Chapter 3

2009; Shah et al., 2001). Analogues include; NS-398, flosulide (CGP-28238), T-614,

Fk-3311, L-745337 and MK-966 (rofecoxib), which was in use in the clinic for the

treatment of symptoms of arthritis, including pain, inflammation, swelling and stiffness,

but was withdrawn in 2004 due to safety concerns pertaining to toxic cardiac effects.

Nimesulide's selectivity for COX-2 is conferred via a good binding affinity, due to the

isoleucine at the 253 position in COX-2, which in COX-1 is replaced by valine. The

presence of isoleucine at this position results in a larger binding site which nimesulide

can take advantage of (Garcia-Nieto et al., 1999). In humans, selectivity has been

shown in an acute dosing study (Kerola et al., 2009), in which 100mg nimesulide was

administered to 15 healthy, non-smoking volunteers (8 male) between the ages of 21

and 30 with a BMI <30, with blood analysis occurring before and after administration

at 1, 3, 6, 24 and 48 hours. COX activity was measured indirectly, COX-1 via the

measure of thromboxane-2 production during blood clotting, and COX-2 via endotoxin-

induced PGE2 synthesis in blood leukocytes. Nimesulide resulted in almost complete

COX-2 suppression and only a partial attenuation of COX-1 activity. Nimesulide has

also been shown to have little effect on haemostatic activity, as well as lower levels of

gastrointestinal damage and kidney toxicity, when compared to other NSAIDs such as

naproxen (Bennett & Villa, 2000). Other evidence of the COX-2 selectivity of

nimesulide has been demonstrated in a number of paradigms as reviewed by Famaey

(1997):

Prostaglandin synthesis is more effectively inhibited by nimesulide in inflammatory

areas than in gastric mucosa

Nimesulide inhibits COX-2 in preference to COX-1 with a ratio of 0.76 to 0.0004,

conferring a 1.3-2,512 times higher selectivity for COX-2. This large variation in

selectivity is largely due to variation in experimental conditions, including tissue type

and preparation

In humans, following a dose of 100mg twice daily for two weeks (Bourgeois et al.,

1994), blood assays showed significantly lower COX-2-mediated PGE2 production

without effect on COX-1-mediated thromboxane TXB2 production
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3.1.4. Aims

Since many previous studies on the effects of NSAIDs on the EC system have used

NSAIDs that inhibit both COX-2 and FAAH, the role of COX-2 in regulating levels of

endocannabinoids and the contribution of endocannabinoids to the analgesic effects

of NSAIDs in vivo is still unclear. The aim of this study was to determine whether the

inhibition of COX-2 by nimesulide, which does not alter FAAH activity (Fowler et al.,

2003), attenuates innocuous and / or noxious-evoked responses of spinal neurones,

and the contribution of CB1 receptors in mediating these effects. Levels of

endocannabinoids and related compounds in the spinal cord following treatment with

nimesulide were also determined, using liquid chromatography-tandem mass

spectrometry (LC-MS/MS) techniques.
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3.2. Methods

3.2.1 111vivo electrophysiology and data acquisition

For detailed methodology of anaesthesia, surgery and identification of WDR neurones

see Chapter 2. For most of the experiments in this chapter, one WDR neurone from

the dorsal horn of the spinal cord was studied per rat. Where more than one neurone

was studied, this has been stated.

3.2.2 Spinally administered nimesulide and mechanically evoked

responses of WDR neurones in naIve rats

The effects of spinal nimesulide, prepared as described in Chapter 2, section 2.1.4, on

mechanically evoked responses of WDR neurones were measured as a percentage

change in firing rates compared to pre-drug control values. Previous studies with

nimesulide include intraperitoneal, oral and intrathecal administration. Doses for the

intraperitoneal route of administration were 2.5 and 3mg/kg (Tassorelli et al., 2003,

Gineste et al., 2003), whereas the oral route used 5mg/kg (Bianchi et al., 2007), which

equates to a 1000tJg dose for a 200g rat. Intrathecally the doses are much smaller, as

is the volume of asministration - typically between 3 and 5tJL fluid per rat or mouse,

with the ED50found to be around 9tJg nimesulide in 5tJL (Bujalska et al., 2003,

Miranda et al., 2009, Pinardi et al., 2005). Because nimesulide has not previously

been applied to the spinal cord under similar conditions, a pilot study was conducted

with a number of different doses to determine the appropriate range. Data in this

chapter are presented from a range of doses; 1, 2, 3, 10, 25, 50 and 100tJg/50tJL (65

tJM-6.5 mM) and all rats per dosing group (n=6) received the same combination of 2 or

3 doses. Although the actual doses of drug which bathes the surface of the spinal

cord are high, the amount of drug which reaches the intracellular targets within

neurones in the cord and the enzymes therein is likely to be far lower, especially given

the distance of wide dynamic range neurones from the surface of the cord.
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Each dose of nimesulide (or vehicle, n=6) was administered directly onto the exposed

spinal cord using a 50JJLHamilton syringe (Hamilton-Bonaduz, Bonaduz, Switzerland)

and was studied for 60 minutes before removal with absorbent paper and application

of the next (higher) dose. Up to three doses were studied per rat, with 6 rats per dose

expressed (total = 18 neurones from 18 rats). In a separate group of rats, the effects

of spinal CB1 receptor blockade on nimesulide-mediated effects were determined.

The CB1 antagonist AM251 (1JJg/50JJL(36JJM), spinal, n=6) was administered directly

onto the exposed spinal cord using a 50JJLHamilton syringe, 30 minutes before

nimesulide (25JJg/50JJL). The dose and timepoint of administration of AM251 used

was based on previous studies (Jhaveri et al., 2006; Johanek & Simone, 2004).

3.2.3 Peripherally administered nimesulide and mechanically

evoked responses of WDR neurones in nalve rats

Nimesulide (50 and 100JJg/50JJL)was prepared as above. Following identification,

characterisation and the recording of stable control responses of WDR dorsal horn

neurones as before, nimesulide (50JJg n=8 neurones in 7 rats, 100JJgn=12 neurones

in 10 rats) or vehicle (50JJL, 13 neurones in 13 rats) was injected slowly under the skin

of the plantar surface of the paw using a 25 gauge needle (BD Microlance, Drogheda,

Ireland). Care was taken to ensure the infused volume remained in the paw after

withdrawal of the needle. Effects of nimesulide on mechanically evoked responses of

neurones were studied for 60 minutes.

3.2.4 Spinally administered nimesulide and levels of

endocannabinoid and endocannabinoid-like molecules in spinal

cord and paw in the naive rat

Rats were anaesthetised and surgically prepared as described above. On two

separate occasions, nimesulide (25JJg/50JJL,n=8, 100JJg/50JJL,n=6), or vehicle

(n=14), was applied to the spinal cord as described above. The maximal effect of

nimesulide on mechanically evoked neuronal responses occurred 30 minutes post-
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administration (see section 3.3.2) and so tissue was collected at this time point. Rats

were killed by anaesthetic overdose with 5% isoflurane in 33.3% O2 and 66.6% N20.

The spinal cord and, in the case of the 25IJg dose, skin from the plantar surface of the

hindpaw were rapidly removed. The spinal cord was separated into ipsilateral and

contralateral segments, and both spinal cord and hind paw skin were snap-frozen on

dry ice and stored at -80°C until analysis. For analysis of the effects of 251Jg/501JL

nimesulide versus vehicle, (50IJL, n=8 in each group), a validated liquid

chromatography tandem mass spectrometry (LC/MS-MS) analytical method

(Richardson etal., 2007) was used to extract and measure levels of AEA, OEA PEA

and 2-AG, as described in detail in Chapter 2. The assay method is in routine use and

has been fully validated, demonstrating intra- and inter-day precision and accuracy of

s15% relative standard deviation. For the analysis of the effects of 1001Jg/501JL

nimesulide versus vehicle (50IJL, n=6 in each group), tissue was analysed by Leonie

Norris, School of Biomedical Sciences, with some alterations to the method as

described below.

Briefly, tissue was weighed, finely minced and homogenised in 5mL acetonitrile (rather

than 9:1 ethyl acetate: hexane) with 15IJL of 28IJM AEA-d8 and 100IJL of 10IJM 2-AG-

d8 internal standards as before. The homogenised mixture was centrifuged, the

supernatant collected, and the remaining pellet re-homogenised in 2.5mL acetonitrile

before further centrifugation and collection. The solvent was evaporated and the

remaining material reconstituted in 200IJL acetonitrile before analysis by liquid

chromatography-tandem mass spectrometry, by-passing the SPE stage, thus

maximising recovery.

3.2.5 Statistical analysis

Data from electrophysiological studies are expressed as a percentage of the pre-drug

control ± SEM. Statistical analyses comparing effects of different doses of spinal or

peripheral nimesulide to vehicle were performed with a one-way ANOVA (Kruskal-

Wallis) with post-hoc Dunn's test. Statistical analysis comparing effects of 25IJg spinal

nimesulide to that of 25IJg spinal nimesulide with CBl antagonist pre-treatment were
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performed using a non-parametric Mann-Whitney test. Comparisons of the effects of

treatment versus pre-drug controls were performed on raw data, using repeated

measures ANOVA with post-hoc Dunnet's test. Data from analysis of the effects of

nimesulide on levels of endocannabinoids and related compounds are expressed as

nmol or pmol / g tissue. Statistical analyses comparing the effects of nimesulide

versus vehicle on EC and ECl levels were performed using non-parametric Mann-

Whitney test. In all cases, differences between data sets where P<O.05 were deemed

to be statistically different. Data deviating from the mean by more than 2 standard

deviations were excluded.
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3.3. Results

3.3.1 Mechanically evoked responses of WDR neurones in the

dorsal horn of naive rats

In the studies for this chapter, a total of 101 neurones were studied

electrophysiologically (including pilot studies) following spinal and peripheral

nimesulide / vehicle administration. Mechanically evoked responses of WDR

neurones to increasing intensities of mechanical stimuli were graded (n=1 01, Figure

3.2). A typical response of WDR neurones to von Frey stimulation of the receptive

field can be seen in the example trace in Figure 3.3. The mean depth of WDR

neurones studied was 960.2 ± 20.52j.Jm from the dorsal surface, corresponding to

laminae V-VI (n=94).

cuc:o...
:::l
Cl)
c:

von Frey stimulus (9)

Figure 3.2 Graded responses of WDR neurones in na"ive rats (n=101) following
mechanical stimulation of the hindpaw receptive field. Data are expressed as the
mean firing rate of the neurone per second (spikes/s) over a 10s stimulation, ± SEM.

1.5 ~
discriminateds pikes

{eve.nts)1.0 signal

Figure 3.3 A spike train response of a WDR neurone following mechanical
stimulation of the hindpaw receptive field with a von Frey monofilament (26g,
pre-amp gain x1000).
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3.3.2 Effects of spinally administered nimesulide on mechanically

evoked responses of WDR neurones in naive rats

Spinal nimesulide (1-100fJg/50fJL) dose-dependently attenuated mechanically evoked

responses of WDR dorsal horn neurones compared to vehicle, both in the non-

noxious (8 and 10g) and noxious (15, 26 and 60g) range (Figure 3.4). The maximal

attenuation of mechanically evoked responses was produced by 25fJg of nimesulide,

maximal effects were observed at 34.6 ± 5.0 minutes post-drug administration. A

typical single-unit response to nimesulide can be seen in Figure 3.5.
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Figure 3.4 Mean maximal effects of spinal nimesulide on mechanically evoked
responses of WDR dorsal horn neurones in naive anaesthetised rats.
Responses to both non-noxious (A; 8g, 10g) and noxious (8; 15g, 26g, 60g) von Frey
stimuli were tested. Nimesulide reduced mechanically evoked responses in a dose-
dependent manner. Statistical analyses were performed with one-way ANOVA
(Kruskal-Wallis) with post-hoc Dunn's test; single symbol (#,$,&), P<0.05; double
symbol (**, ##, ++, $$), P<0.01 versus vehicle-mot shown, no significant difference to
pre-drug controls) Data are expressed as a percentage of the pre-drug control ± SEM.
(n=6 rats per dose, total n=18 rats)
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lOs

8g von Frey 109 15g

CJ pre-druq response
_+251'9 Nimesulide

26g

time (s)

Figure 3.5 Example trace of mechanically evoked responses of a single WDR
dorsal horn neurone in a naiVe anaesthetised rat before (pre-drug response) and
after spinal administration of nimesulide (25~g/50~L).

In the next series of experiments, the potential involvement of the cannabinoid

receptor system in nimesulide-mediated effects at the level of the spinal cord was

determined. The ability of spinal pre-administration of the CB1 receptor antagonist

AM251 (1IJg/50IJL) to modulate nimesulide (25IJg/50IJL)-mediated inhibition ~f

neuronal response was determined. AM251 alone did not alter mechanically evoked

responses of dorsal horn neurones in the 30 minute pre-administration period (Figure

3.6). AM251 pre-administration blocked the inhibitory effects of nimesulide on

mechanically evoked responses of WDR dorsal horn neurones (Figure 3.7).

150-

__L ---:(

c::::::110 minutes
20 minutes

_30 minutes

---l ___I

8 10 6015 26
von Frey stimulus (g)

Figure 3.6 The CB1 antagonist AM251 (1~g/50~L) alone had no effect on
mechanically evoked (8-60g) responses of dorsal horn wide dynamic range
neurones in na'lve anaesthetised rats compared to pre-drug controls (n=6). Data
are expressed as a percentage of the pre-drug control ± SEM. Statistical analyses
were performed with a repeated-measures ANOVA with post-hoc Dunnet's test (all
P>0.05). Dashed line = 100% (i.e. no change) of pre-drug control responses.
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Figure 3.7 Spinal pre-treatment with the CB1 receptor antagonist AM251
(1IJg/50IJL) blocked the inhibitory effects of nimesulide (25IJg/50IJL) on
mechanically evoked (8-60g) responses of WDR dorsal horn neurones in na"ive
anaesthetised rats in vivo (n=6). Statistical analyses were performed with non-
parametric Mann-Whitney test; *, P<0.05; **, P<0.01 versus vehicle; # , P<0.05; ##,
P<0.01 versus 25jJg nimesulide. Data are expressed as a percentage of the pre-drug
control ± SEM. Dashed line = 100% (i.e. no change) of pre-drug control responses.

3.3.3 Effects of peripherally administered nimesulide on

mechanically evoked responses of WDR neurones in naive rats

In this study, the effects of intraplantar nimesulide (50jJg/50jJL, n=8 neurones in 7 rats;

100jJg/50jJL, n=6 neurones in 5 rats) or vehicle (50jJL, n=7 neurones in 7 rats) were

studied. Two rats used in the study of the 50jJg nimesulide dose had previously had a

100jJg dose of nimesulide, also peripherally, given in another toe in the study of a

separate WDR neurone, one of which had also had three spinal (25jJg, 50jJg and

100jJg) doses of nimesulide for studies described in section 3.3.2. These had been

allowed to wash out over a period of 2 hours prior to further investigation with this rat.

Vehicle caused a trend (but did not reach significance, repeated measures ANOVA

with post-hoc Dunnet's test, all P>0.05) to facilitate mechanically evoked responses of

WDR neurones compared to pre-drug responses, with maximal facilitation occurring at

37 ± 3 minutes after administration. This facilitation is particularly evident in the time-

course for 15g-evoked responses (Figure 3.8C), and when maximal effects are

compared to time-matched nimesulide doses, is statistically significant (one way

ANOVA (Kruskal-Wallis) with post hoc Dunn's test; P<0.05 and P<0.01) (Figure 3.9A).

The difference is abolished when comparison between the effects of vehicle and

nimesulide involve the maximal facilitation seen in both cases (Figure 3.98).
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Figure 3.9 Mean maximal effects of intraplantar vehicle (n=8 neurones in 7 rats)
and nimesulide (50J.lg/50J.lL (n=8), 100J.l9/50J.lL (n=6)) on mechanically evoked
responses of WDR dorsal horn neurones in naive rats compared to; A, time-
matched effects of nimesulide; B, maximal effects of nimesulide. Data are expressed
as mean percentage of pre-drug firing rates ± SEM. Statistical analyses comparing
effects of nimesulide versus vehicle were performed with one-way ANOVA (Kruskal-
Wallis) with post-hoc Dunn's test; *, P<0.05; **, P<0.01. Dashed line = 100% (i.e. no
change) of pre-drug control responses. Dashed line = 100% (i.e. no change) of pre-
drug control responses.

To clarify these results, the experiment was repeated with an intraplantar injection of

100l-1g/50l..lLnimesulide (n=6 neurones in 5 rats) or 50l..lLvehicle (n=6 neurones in 6

rats), over a year after the initial study. In one rat, a 100l-1gdose nimesulide was

administered peripherally twice, in separate toes studying a separate WDR neurone,

and after a period of rest following the end of the first experiment. Data from this rat
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were consistent with those obtained from other rats in this experiment. Neither

nimesulide nor vehicle had any effect on mechanically evoked responses of WDR

dorsal horn neurones compared to pre-drug responses (repeated measures ANOVA

with post-hoc Dunnet's test, all P>0.05, Table 3.1), and no differences between effects

of nimesulide versus vehicle were observed (non-parametric Mann-Whitney test, all

P>0.05).

Table 3.1 Effects of peripherally administered nimesulide (100jJg/50jJL, n=6) or
vehicle (n=6, 50jJL) on mechanically evoked responses of WDR dorsal horn
neurones in na"iveanaesthetised rats. Data are expressed as a percentage of the

d SEMpre- rUQresponse ±
Vehicle (3% Tween 80 in Saline) Nimesulide 100jJg
(percentage pre-drug response) (percentage pre-drug response)

von
Frey 10 min 30 min 50 min 10 min 30 min 50 min
stimulus
8g 112.9 ± 103.5 ± 97.8 ± 141.3± 138.0 ± 163.6 ±

41.7 7.8 8.8 53.9 19.1 35.2
\

10g 143.5 ± 112.4± 106.3 ± 168.8 ± 118.2 ± \87.8 ±

38.8 15.3 20.5 18.9 16.9 15.3

15g 128.2 ± 104.1 ± 138.8 ± 117.5± 104.9 ± 77.4±

26.6 13.0 39.6 19.9 16.8 9.8

26g 97.9 ± 102.7 ± 123.2 ± 107.4± 111.8 ± 103.8 ±

20.6 17.9 21.6 16.7 15.4 12.8

60g 99.2 ± 95.7 ± 101.9± 95.4 ± 95.4 ± 100.5 ±

17.1 9.5 15.3 8.9 9.2 9.7

3.3.4 Effects of spinally administered nimesulide on central and

peripheral levels of endocannabinoid and endocannabinoid-like

molecules in the nalve rat

To determine the potential contribution of changes in levels of endocannabinoids and

endocannabinoid-like (ECl) molecules to the CB1 receptor mediated effects of

nimesulide, effects of spinal nimesulide (25~g/50~l, n=8; 100~g/50~l, n=8) versus

vehicle (50~l, n=16) on spinal levels of endocannabinoids and related molecules in

vivo were determined.
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Spinal nimesulide (25I-1g)caused a decrease in spinal levels of AEA and PEA

ipsilaterally (P<0.005), and a decrease in PEA levels contralaterally (P<0.01), without

altering levels of 2-AG or OEA (Figure 3.10).
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Figure 3.10 Effects of spinal nimesulide (25~g/50~L, n=8) on levels of; A,
anandamide (AEA); B, N-oleoylethanolamine (OEA); C, N-palmitoylethanolamine
(PEA; and D, 2-arachidonoylglycerol (2-AG) in spinal cord of na'ive
anaesthetised rats. Statistical analyses were performed with non-parametric Mann-
Whitney test; **, P<0.01, "", P<0.005 nimesulide versus vehicle (n=B), Data are
expressed as individual values and median value is depicted by the line.
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Quantification of spinal EC and ECl levels following a supramaximal dose of

nimesulide (1001Jg/50lJl, n=8) versus vehicle (50lJl, n=8) used a slightly different

extraction method (see section 3.2.4). Data varying from the mean by more than 2

standard deviations were excluded. In total this occurred in 3 out of 24 instances for

AEA, 2 out of 24 for OEA, and 2 out of 24 instances for PEA. As seen with the 25IJg

dose, 100IJg nimesulide decreased levels of AEA in the spinal cord, seen both

ipsilaterally (P<0.01) and, as a trend contralaterally. In addition to effects on AEA, a

decrease in ipsilateral OEA levels was also observed (P<0.01), but no changes were

seen in spinal levels of PEA, in contrast to effects seen following 25IJg nimesulide. As

before, 2-AG levels remained unchanged (Figure 3.11).
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Figure 3.11 Effects of spinal nimesulide (100J.J9/50J.JL,n=6) on levels of; A,
anandamide (AEA); B, N-oleoylethanolamine (OEA); C, N-palmitoylethanolamine
(PEA; and D, 2-arachidonoylglycerol (2-AG) in spinal cord of na"ive
anaesthetised rats. Statistical analyses were performed with non-parametric Mann-
Whitney test; **, P<0.01 nimesulide versus vehicle (n=6). Data are expressed as
individual values and median value is depicted by the line.
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To determine if spinal COX-2 inhibition altered peripheral levels of ECs and ECls,

effects of spinal nimesulide (25IJg/50IJl, n=8) versus vehicle (50lJl, n=8) on levels of

ECs and ECls in the ipsilateral hind paw in vivo were determined. levels of AEA fell

below limits of quantification and could not be determined. For 2-AG, OEA and PEA,

at least 5 samples per group fell within the limits of quantification. Spinal nimesulide

did not alter levels of OEA, PEA or 2-AG in the ipsilateral paw (Figure 3.12).
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Figure 3.12 Effects of spinal nimesulide (25IJg/50IJL, n=8) on levels of; A, N-
oleoylethanolamine (OEA); B, N-palmitoylethanolamine (PEA); and C, 2-
arachidonoylglycerol (2-AG) in the ipsilateral paw of na"ive anaesthetised rats.
Statistical analyses comparing the effects of nimesulide to vehicle were performed
with non-parametric Mann-Whitney test, all P>O.05. Data are expressed as individual
values with median value depicted by the line. n.d. = number of samples falling below
detection limits.
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3.4. Discussion

3.4.1. C'B1-receptor-mediated attenuation of mechanically evoked

responses of wide dynamic range dorsal horn neurones following

spinal COX-2 inhibition

In the present study, spinal, but not peripheral, administration of the COX-2 inhibitor

nimesulide reduced mechanically evoked responses of WDR dorsal horn neurones in

the anaesthetised rat, in a dose-dependent manner. This reduction was in response

to both non-noxious and noxious stimuli, compared to both pre-drug responses and

vehicle administration. Maximal inhibitory effects of nimesulide were reached with a

dose of 25jJg, and occurred 30 minutes post-administration. These data are

consistent with constitutive expression of COX-2 in the spinal cord, as previously
/
I

established (Ghilardi et al., 2004). The inhibitory effects of nimesulide were blocked

by pre-administration of a CB1 receptor antagonist, AM251, and were accompanied by

a decrease in spinal levels of AEA, OEA and PEA, but not 2-AG, The

pharmacological data support the proposal that COX-2-mediated analgesia is

mediated at least in part by CB1 receptor activation, however, the association of the

inhibitory effect of nimesulide with a decrease in the levels of NAEs suggests that

there are complex interactions between the effects of metabolising enzymes and

levels of endocannabinoids and related compounds in vivo.

The electrophysiological data are consistent with the report that the inhibitory effects

of spinal administration of indomethacin are also blocked by AM251 (Guhring et al.,

2002). It is important to note, however, that unlike indomethacin (Fowler et al., 2003;

Holt et al., 2007), nimesulide does not inhibit FAAH (Fowler et al., 2003) and,

therefore, the data presented here implicate a direct role of COX-2 in the regulation of

endocannabinoid function in vivo. Recently, the effects of two COX-2 inhibitors

(NS398 and L-745,337) on evoked neuronal responses in narve rats and in a model of

joint inflammation have been reported (Telleria-Diaz et al., 2009). In this study, spinal

administration of the COX-2 inhibitor L-745,337 did not alter evoked neuronal

responses in narve rats, but attenuated responses following inflammation-induced

78



Chapter 3

spinal hyperexcitability. Although this previous study only investigated the effects of

the COX-2 inhibitor NS398 on the spinal release of 2-AG, it is of interest to note that

spinal NS398 did not alter spinal release of 2-AG compared to the pre-drug application

period (Telleria-Diaz et al., 2009). These data are consistent with the observation that

spinal nimesulide, at doses which attenuate evoked neuronal responses in a CB1

receptor-dependent manner, does not alter levels of 2-AG in the spinal cord.

Data showing the effect of AM251 administration alone over the 30-minute pre-

administration go some way to showing that AM251 does not act as an inverse

agonist in this situation and, thus, that results showing that the effects of nimesulide

were in part mediated by the CB1 receptor were consistent. No data on the effects of

spinally administered AM251 alone on mechanically evoked responses in naive rats

beyond the 30 minute pre-drug administration period (shown here in Figure 3.6)

exists. However, in sham operated neuropathic rats, cumulative dosing with spinally

administered AM251 (0.1, 1 and 10j.Jg/50j.JL,50 minutes per dose) does not

significantly alter mechanically evoked neuronal responses from pre-drug control

values (unpublished in-house data, Maulik Jhaveri).

Intra-plantar injection of maximal and supramaximal doses of nimesulide did not alter

mechanically evoked responses of WDR dorsal horn neurones compared with vehicle

administration in narve rats, consistent with the established literature that COX-2 is not

constitutively expressed in peripheral tissue under basal (non-inflamed) conditions (for

review see Vane et al., 1998). By contrast, COX-2 has been shown to be active in

inflammatory states using the formalin model of inflammatory pain, where hindpaw

injection of the COX-2 inhibitor rofecoxib enhanced inhibitory effects of AEA on pain

behaviour, and elevated hindpaw levels of AEA, OEA and PEA (Guindon & Beaulieu,

2006).

The first time the effects of intraplantar nimesulide on mechanically evoked neuronal

responses were studied appeared to reveal a facilitatory effect of vehicle which was

not seen in the nimesulide-treated rats. It was, supposed that the nimesulide was

counteracting an inflammatory response brought about by an injection of liquid into the
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toe and further application of the von Frey monofilaments. In addition to this, control

mechanically evoked WDR responses in these rats were not very stable, an effect

maqnifiedin the lower intensity stimuli tested, and cells were typically found late in the

day due to inexperience both in searching for WDR neurones and the surgical

techniques involved, resulting in an unstable setup. Together, these factors may have

contributed to the unexpected results seen with peripheral injection of nimesulide and

vehicle, and so the experiment was repeated over a year later, once experience in the

technique had been gained, using only the higher dose (100jJg/50jJL), to ensure that

maximal inhibition of COX-2 (if any was to be found peripherally) could be achieved.

In this repeated experiment, responses to lower intensity stimuli again showed a trend

towards being facilitated when compared to pre-drug responses, but there was no

difference between treatment groups (nimesulide versus vehicle), showing that COX-2

is not constitutively active in the periphery. The facilitatory trend could be a result of

irritation and sensitisation in the periphery following the injection and further

stimulation, coupled with the pressure exuded on surrounding tissue by the volume of

liquid injected. The greater magnitude of this effect in response to lower-intensity

stimuli suggests a possible increase in Af3-fibre responsiveness rather than C-fibres.

3.4.2. A putative role for CB1-receptor-active metabolites of

endocannabinoids in the modulation of nociceptive transmission

COX-2 promotes the production of the hyperalgesic prostanoids PGE2 and PGI2 from

arachidonic acid (Taiwo and Levine, 1990), and it is widely accepted that COX-2

inhibitors exert their anti-inflammatory and anti-nociceptive actions via this pathway.

However, NSAIDs have been shown to alter EC levels at clinically relevant doses

(Guindon & LoVerme, 2006), although this effect is thought to be mediated largely by

the inhibitory actions of NSAIDs on FAAH, and the contribution of COX-2 is not so

clear. It is established from in vitro studies that COX-2 can metabolize AEA and 2-AG

(for review see Kozak et al., 2004; Yu et al., 1997; Hu et al., 2008). Furthermore, the

physiological relevance of COX-2 regulation of endocannabinoids has been

demonstrated in work using the hippocampal slice preparation, although levels of

endocannabinoids were not measured (Slanina & Schweitzer, 2005). Evidence for a
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role of COX-2 metabolism of endocannabinoids is further supported by the detection

of COX-2 metabolites of AEA in FAAH knockout mice dosed with AEA (Weber et al.,

2004) and the presence of COX-2 metabolites of 2-AG in the rat (Hu et al., 2008).

Clearly, the data presented here, demonstrating a mismatch between the

pharmacological effects of nimesulide mediated by the CB1 receptor and levels of

endocannabinoids suggest that, at least at the level of the spinal cord, COX-2

regulation of endocannabinoids is complex.

The mechanism by which inhibition of COX-2 by nimesulide can produce CB1

receptor-dependent effects in the absence of overt increases in levels of AEA or 2-AG

is unclear, but may involve catabolism via other pathways. COX-2 metabolises ECs

via oxygenation (Yu et al., 1997, Kozak et al., 2004), a mechanism it shares with

cytochrome P450 enzymes (Awumey et al., 2008; Snider et al., 2007; Snider et al.,

2009; Snider et al., 2008; Stark et al., 2008) and lipoxygenases (Hampson et aI.,

1995; Ueda et al., 1995b). Recently, a number of cP450- and lOX-metabolites of the

endocannabinoids and their precursor, arachidonic acid, have been shown to have

activity at the CB1 receptor (Figure 3.13), and so one possible explanation for the data

reported here is that COX-2 inhibition diverts metabolism of ECs and ECls down

cP450-and lOX-pathways, producing CB1-active metabolites.

2-AG GEET-14,15-GEET

AEA 5,6-EET-EA

'-'+------12-HAEA

Figure 3.13 Production of CB1 receptor ligands by metabolism of the
endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and
their precursor arachidonic acid, by the oxidative enzymes cytochrome P450
(cP450) and lipoxygenase (LOX). EET, epoxyeicosatrienoic acid; EG,
epoxyeicosatrienol glycerol; EET-EA, epoxyeicosatrtenol ethanolamide; GEET,
glycerated epoxyeicosatrienoic acid; HAEA, hydroxyarachidonoylethanolamide.
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Cytochrome P450 metabolism of AEA and its precursor arachidonic acid, results in the

formation of eicosatrienoic acids (EETs), in particular the 2-epoxyeicosatrienol

glycerols (2-EG) 2-(11, 12-epoxyeicosatrienol)glycerol (2-11, 12-EG) and 2-(14,15-

_epoxyeicosatrienol)glycerol (2-14, 15-EG) from arachidonic acid (Chen et al., 2008),

and 2-(5,6-epoxyeicosatrienol)ethanolamide (5,6-EET-EA) from AEA (Snider et al.,

2009; Stark et al., 2008), which are agonists at CB1 receptors with comparable or

greater binding affinity than 2-AG (Chen et al., 2008). Although no involvement of

cP450 in the metabolism of OEA has been reported, the structure of OEA contains

one double bond (see figure 1.8, section 1.3.2, chapter 1) and may, therefore, also

undergo oxidation by cytochrome p450. Metabolism of 2-AG by cP450 also produces

EETs, of wh ich 14, 15-g Iycetated epoxyeicosatrienoic acid (14, 15-G EET) shows

agonist activity at the CB1 receptor (Awumey et al., 2008). The activity at CB

receptors of many of these cP450 metabolites of ECs, ECls and their precursor

arachidonic acid, is comparable to, or greater than that of the endocannabinoids. The

2-EGs have comparable binding affinities to 2-AG for the CB1 and CB2 receptors, and

in vivo studies show 2-14, 15-EG to have greater activity at both CB1 and CB2

receptors than 2-AG (Chen et al., 2008). 5,6-EET-EA is 300-fold more selective for

CB2 than CB1 receptors, with a CB2 receptor affinity 1000-times higher than that of

AEA (Snider et al., 2009). Its activity, as well as that of 14,15-GEET, relative to AEA

at the CB1 or CB2 receptors is unknown. lOX-12 can metabolise AEA to produce 12-

(S)-hydroxyarachidonoylethanolamide (12-hydroxyanandamide, 12-HAEA), capable of

binding to and activating the CB1 receptor (Hampson et al., 1995; Edgemond et al.,

1998). The affinity of 12-HAEA for the CB1 receptor shows variability between

studies, with some showing similar affinity to that of AEA (Edgemond et al., 1998),

while others show it is two-fold higher (Hampson et al., 1995).

In addition to the diversion of EC and related compound metabolism down cP450 and

lOX-pathways in the case of COX-2 inhibition, the inhibition of COX-2 may cause an

upregulation in cP450 and lOX activity. There appears to be a strong link between

COX-2 inhibition by NSAIDs and the specific COX-2 inhibitor SC-236, and

upregulation of 15-l0X activity (Shureiqi et al., 2000, Wu et al., 2003). It is unknown

whether nimesulide can produce this effect, or whether 12-l0X may also be
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upregulated in this way, which would result in increased AEA metabolism, and an

increase in the production of the CB1-active AEA metabolite, 12-HAEA.

In light of the still recent discovery of biological activity of cP450 and lOX-mediated

EC metabolites at CB receptors, it is also important to consider the possibility that

some of these metabolites, as well as those via COX-mediated metabolism, may

interfere with, or enhance, EC and ECl synthesis. This is of importance particularly in

light of the changes seen in PEA levels in experiments presented here, as the

structure of PEA does not contain a double bond and so it cannot be a substrate for

oxidation by cP450 or lOX (Chapman, 2004), and yet PEA levels in the spinal cord

decreased following spinal application of 25iJg, but not 100iJg nimesulide. If COX-2·

metabolites were to playa role in PEA synthesis then inhibition with nimesulide would

cause a decrease in synthesis, and decreased PEA levels as seen following 25iJg

nimesulide. However, if this was the case, one might expect that increasing the

amount of nimesulide administered would also cause a decrease in spinal PEA levels,

which did not occur. Another possibility is that cP450/l0X-mediated metabolites of

EC and ECls inhibit PEA synthesis, and so if COX-2 inhibition pushes EC and ECl

metabolism down cP450/l0X pathways as proposed above, PEA synthesis would be

inhibited, possibly in a dose-dependent manner.

The lack of change in spinal levels of 2-AG by COX-2 inhibition seen in these studies

supports work reviewed by Gaetani et al (2009) showing that 2-AG levels did not alter

in the brain following FAAH inhibition, as well as data from Telleria-Diaz et al., (2009)

showing that spinal application of the COX-2 inhibitor NS398 did not alter spinal

release of 2-AG compared to the pre-drug application period. 2-AG and its

metabolites are engaged in complex feedback mechanisms that control 2-AG

synthesis and metabolism, and their resulting levels in tissues, suggesting that

inhibition of metabolism via COX-2 is compensated for by other metabolic pathways.

I therefore propose that metabolism of endocannabinoids via cP450 and lOX-

pathways increases when COX-2 is inhibited by nimesulide. Increased catabolism of

the NAEs AEA and OEA, as well as 2-AG via these additional metabolic pathways
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may then result in the generation of alternative CB, receptor ligands which underpin

the CB, mediated inhibition of neuronal responses, and occurs alongside the

decreased Jevels of AEA and OEA observed in the spinal cord following treatment with

nimesulide. At the present time it is not possible to confirm this hypothesis as

deuterated standards for these proposed CB ligands are not currently available. The

generation of these standards is crucial for further elucidation via LC/MS-MS

techniques, of the role of these pathways in endocannabinoid regulation in vivo.

3.4.3. Conclusions

The data presented here establish a role for an endocannabinoid component in

NSAID-mediated analgesia, mediated by the CB, receptor. It is proposed that COX-2

inhibition by NSAIDs shunts metabolism of endocannabinoids and their precursor

arachidonic acid, down LOX and cytochrome p450 oxidative pathways, gener§lting

high affinity/efficacy CB, receptor ligands.
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Chapter 4

4.1. Introduction

4.1.1. The MIA model of osteoarthritis

As described in Chapter 1, animal models currently in use for the study of

osteoarthritis include those brought about spontaneously, or by means of surgical or

chemical alteration of the joint. These models have their merits and uses, but, as

described previously, the mechanisms underlying the pain associated with these

models have not been widely studied. Interest in monosodium iodo-acetate (MIA) as

a model of osteoarthritic symptoms in animals dates back to 1977 (Kalbhen and

Blum), when it was injected into the knee of a chicken. The effects of MIA have also

been studied in mice (Van der Kraan et al., 1989) and horses (Penraat et al., 2000)

however, in horses it was deemed unsuitable as an experimental model of OA due to

high rates of complication and the lack of bony fusion. \
(,

MIA is a metabolic inhibitor of chondrocyte glyceraldehyde-3-phosphate

. dehydrogenase, disrupting glycolysis and resulting in cell death (Kalbhen, 1987, Van

der Kraan et al., 1989). The MIA model of osteoarthritis has been extensively studied

in the rat (Table 4.1) with doses ranging from 0.01 - 3mg. Doses of 0.1mg and above

cause chondrocyte loss, which, together with decreases in proteoglycan

concentration, produces many histopathological features of the clinical condition

quickly (within 28 days) and in a dose-dependent manner (Guingamp et al., 1997).

Importantly, this model is associated with cartilage fibrillation and thinning (Janusz et

al., 2001) and subchondral bone changes, thought to be an important factor

contributing to OA pain (see Chapter 1). Changes in subchondral bone include

exposure, swelling and thickening, sclerosis, decrease in mineral content and density

- indicative of chronic joint degeneration (Pomonis et al., 2005), and the presence of

osteophytes and cysts (Table 4.1). Changes in levels of osteoclasts and osteoblasts

were evident from 7 days post-MIA injection, while degenerative changes such as

collapse of bony traberculae appeared from 28 days onwards (Guzman et al., 2003).

These degenerative changes progressed with time, eventually showing large areas of

bone remodelling, and loss of marrow hematopoietic cells at day 56 post-MIA injection
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(Guzman et al., 2003), indicating the MIA model to be one of progressive

degeneration.

Functional effects following intra-articular injection of MIA are also evident, with

decreases in motility (Guingamp et al., 1997), weight-bearing (Bove et al., 2003;

Pominis et al., 2005), and the presence of thermal hyperalgesia and tactile allodynia

(Fernihough et al., 2004). These behaviours have been shown to be pain-related, as

morphine was able to attenuate mechanical hyperalgesia at days 3, 14 and 28 post-

MIA injection, and reverse tactile allodynia at days 14 and 28 (Fernihough et al.,

2004). Changes in weight-bearing on the hindlimb following MIA injection occurs in

two phases. The first phase peaks at day 3 or 4, and reverted to normal by day 7, .

while the second phase occurred from day 14 onwards (Pomonis et al., 2005; Bove et

al.,2003). The biphasic nature and timing of changes in weight-bearing have been

suggested to arise from different mechanisms. Nociceptive responses in the first

phase are thought to result from an inflammatory response, while the second phase

response is expected to be due to joint damage, based on their susceptibility to

attenuation by analgesics (Fernihough et al., 2004; Bove et al., 2003). NSAID

treatment (diclofenac and paracetamol) attenuated hyperalgesia and allodynia only in

the earlier timepoints (3 days), coinciding with swelling on the knee, and not at day 14

or 28 post-MIA injection (Fernihough et al., 2004). Radiographic evidence confirmed

that MIA-treated joints had sustained damage, although no radiographic evidence

exists to confirm that the first phase of altered weight-bearing is due to inflammation

alone. Nevertheless, changes in levels of macrophage, neutrophil, plasma cell and

lymphocyte infiltration, which cause synovial membrane expansion is present at earlier

time-points and is largely resolved by day 7 (Bove et al., 2003).
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Chapter 4

The MIA model in the rat is now often used for OA studies involving changes in

cytokine levels (Pelletier et al., 1995; Caron et aI., 1996), and for testing

pharmacological agents for cartilage preservation properties (Gencosmanoglu et al.,

2001; Janusz et al., 2001). However, while the MIA model is excellent in terms of the

clinically relevant histopathology, reproducibility, fast onset time, controllable severity

and sensitivity to clinically used analgesics such as morphine, a dosing regime and

onset period that produced both clinically relevant histology and behavioural changes

consistently had not yet been fully established. This lab sought to establish such a

dosing regime, in a study employing a range of doses from 0.3-3mg MIA, studying

behavioural, electrophysiological, and histolopathological changes for up to 31 days

after injection, in rats of different weights. An intra-articular dose of 1mg MIA in 50~L

saline in 160-190g male Sprague-Dawley rats followed for 28 days was finally chosen.

This dosing regime was found to produce time-dependent changes in pain behaviours

(weight-bearing and allodynia), which will be discussed in more detail throu~hout this

chapter (and see appendix).

4.1.2. The role of inflammation in cartilage pathology of OA

The role of inflammation in the progression of OA has been widely studied, and

several clinical studies suggest an important association between inflammation of the

synovial structures (synovitis), OA-associated inflammation, and the progression of

structural changes. Several markers of synovial inflammation in OA have been

studied, including cartilage oligomeric protein (COMP, Clark et a/1999, Sharif et al.,

1995), and changes in serum levels of C reactive protein (CRP - Spector, 1997) and

hyaluronic acid (HA - Goldberg, 1991), however, at present the interest in such

biomarkers is far outstripped by interest in the role of inflammatory mediators.

Inflammatory mediators associated with OA pathophysiology appear initially to be

produced by the synovial membrane, from where they diffuse into the cartilage

through the synovial fluid, activating the cartilage cells (chondrocytes) which then

produce, and are the main source responsible for, these mediators (see Pelletier et

al., 2001). The location of chondrocytes in lacunae of articular cartilage, an avascular
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and aneural tissue means that such production of inflammatory mediators is not

associated with classic signs of inflammation (see Pelletier et et., 2001). Inflammatory

mediators produced by chondrocytes include matrix metalloproteases (MMPs) which

are involved in the digestion of cartilage collagen (see Smith, 2006), and other

members of serine- and cysteine-dependent protease families such as plasminogen-

activating factor (PAF) and cathepsin P (but their involvement is primarily as activators

of MMPs). Excessive amounts of cytokines and growth factors are also produced

(see below), and play an important role in OA pathophysiology, acting within cartilage

in an autocrine and paracrine manner to promote cartilage damage (Attur et et., 1998).

They are also associated with functional alterations in the synovium and subchondral

bone. Chondrocytes from OA patients produce large amounts of nitric oxide (Arnin et

el., 1995, Amin et al., 1998, Pelletier et al., 1996), prostaglandins (Pelletier et ei.,

1998), and a vast array of pro-inflammatory cytokines including IL-1f3, TNFa, IL-17

and IL-6 (Caron et et., 1996; van de Loo et et., 1995; Van bezooijen et al., 1999;

Goldring et al., 1999).

Nitric oxide and osteoarthritis

Nitric oxide (NO) is very likely to playa role in cartilage catabolism seen in OA NO is

present at high levels in OA cartilage and synovium (Amin et a/1995, Pelletier et ai,

1996), with serum and synovial fluid collected from arthritic patients revealing high,

levels of nitrites and nitrates (Farrell et al., 1992). Ex vivo, OA cartilage produces NO

without stimulation by typical inflammatory mediators such as IL-1. NO acts to inhibit

proteoglycan synthesis, and causes chondrocyte cell death by apoptosis and necrosis,

as well as increasing MMP and cytokine synthesis, while decreasing synthesis of IL-

1Ra, a competitive antagonist of the cytokine IL-1 receptor (for review, see Amin et el.,

1998) (Figure 4.1).

Prostaglandins and osteoarthritis

Prostaglandins are produced by COX-2, which is upregulated in cartilage of OA

patients (Amin et et., 1997); OA cartilage produces 50x the levels of PGE2 than normal
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cartilage ex vivo. COX-2 upregulation and related increases in PGE2 have also been

observed in a canine model of OA (Pelletier et a/., 1998). Prostaglandins are not only

involved in inflammation and pain but may also bring about structural changes seen in

OA (see below, and Figure 4.1).

Prostaglandin PGE2 is the best characterised in terms of OA, is primarily produced by

osteoblasts (Pilbeam et a/., 2002) and has long been recognised as being important in

joint pathology. Its production is stimulated by a rise in intracellular calcium which

increases COX-2 expression via PKA pathways (Choudhary et a/., 2004). Its

synthesis is enhanced by many cytokines such as IL-1 and IL-6, growth factors and

hormones (Kwan et a/., 2004). PGE2 also autoamplifies, stimulating its own

production by cAMP-dependent activation of PKA which induces COX-2 mRNA

transcription (Sakuma et a/., 2004), and in human OA has been shown to regulate the

production of IL-1 and IL-6, adding further to its autoamplification (Arnano er a/., 1996;

Park et a/., 2004; Inoue et a/., 2002). In osteoblasts, PGE2 acts on EP receptors, of

which there are 4 subtypes, EP1-4 (Narumiya et a/., 1999). In humans, only the

presence of EP3 and 4 have been shown immunohistochemically (Fortier et a/., 2004),

while EPs 1, 2 and 4 have been shown in mice (Suda et a/., 1996). EP receptors have

differential actions, involving cAMP and intracellular calcium pathways, mediating its

many actions (see below, and for review, see Hikiji et a/., 2008).

PGE2 has been shown to mediate bone resorption via cAMP signalling (Miyaura et a/.,

2000) and stimulation of osteoclast formation (see Hikiji et a/., 2007). Osteoclast

formation is stimulated by PGE2 via induction of receptor activator of nuclear factor

kappa B ligand (RANKL), a ligand for nuclear factor kappa B (NF-KB) (Krieger et a/.,

2000; Yasuda et a/., 1998; Fuller et a/., 1998), the activation of which mediates

osteoblast differentiation (Wu et a/., 2007; Suda et a/., 1996; Wani et a/., 1999). The

role of PGE2 in osteoclastic formation in humans is controversial, and seems to be

dependent on the EP receptor subtype expressed by the cells (see Hikiji et a/., 2008).

PGE2 has also been implicated in OA-related loss of cartilage, by sensitising human

OA chondrocytes to iNOS-mediated cell death in vitro (Notoya et a/., 2000).
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PGE2 not only has important roles in bone degradation, but has also been shown to

be important in bone formation both in vitro and in vivo, by stimulating fibronectin

synthesis, important in early bone formation (Tang et al., 2005; Li et al., 2003). PGE2

has also been implicated in fracture healing and suppression of bone loss (see Hikiji et

el., 2008). PGE2 also stimulates the formation of mineralised bone nodules, an in vitro

indicator of in vivo calcification (Flanagan & Chambers, 1992; Nagata et al., 1994; Wu

et al., 2007).

A large number of other prostaglandins have been implicated in bone metabolism and

disease, including PGI2, PGF2a, PGD2, PGE1 and thromboxane A2 (TxA2). However,

much less is known about their possible role in OA (for review, see Hikiji et al., 2008).

cal cifi cati 0n

~--------------------~MMP----------------------_, collagen

CARTILAGE
DESTRUCTION

chondrocyte
apoptcsis/
necrosis

proteoglycan
synthesis

Figure 4.1 A summary schematic of the roles of NO and PGE2 in bone and
cartilage degradation in osteoarthritis. [Ca2+1i, intracellular calcium; cAMP, cyclic
adenosine monophosphate; COX-2, cyclooxygenase 2; IL, interleukin; IL-1 Ra,
interleukin-1 receptor antagonist; MMP, matrix metalloprotease; NO, nitric oxide; PKA,
protein kinase A; RANKL, receptor activator of nuclear factor kappa B ligand.

Pro-inflammatory cytokines and osteoarthritis

Cytokines are non-immunoglobulin soluble glycoproteins which non-enzymatically

regulate host-cell function (Nathan and Sporn, 1991). Several cytokines have been

implicated in the maintenance of cartilage loss. These include, in particular, IL-1 ~ and

TN Fa, which in OA are mainly produced from synovial fibroblasts, in contrast to
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cytokine production in RA, which originates from infiltrating monocytes and

macrophages (Alaaeddine et aI., 1999). These cytokines are pivotal in the

development of OA through their destructive effects on cartilage, with TNFa having a

crucial role in the early stages and IL-113throughout the disease (Caron et al., 1996,

van de Loo et al., 1995). Sequestration of TNFa in early stage (but not established)

collagen-induced arthritis in mice decreased joint pathology, determined by infiltration

of inflammatory cells, cartilage damage and histological analysis (Joosten et al.,

1996). This early stage effect was independent of IL-1 receptor block, while anti-IL-

1a/IL-1~ was capable of suppressing damage in early phase and established arthritis,

confirming the importance of their role throughout the disease (Joosten et al., 1996).

IL-113acts to stimulate proteolytic pathways of extracellular matrix degradation, for

example by stimulating collagenase and PGE2 production, and inhibiting the formation

of new matrix (Wood et al., 1983, Dayer et aI, 1986).

IL-113and TNFa can stimulate their own production, thus magnifying their functional

effects, synergise to cause cartilage degradation, and are capable of stimulating the

production of proteases, prostaglandins, and other pro-inflammatory cytokines such as

IL-6 and IL-8 by chondrocytes and synovial cells (Figure 4.2).

IL-1f3

In addition to an established role in inflammation and pain (for review, see Ren and

Torres, 2009), IL-113has an established role in cartilage and bone destruction, largely

due to the dys-regulation of the metabolic processes of chondrocytes, causing an

increase in MMP-1, and MMP-13 expression which degrade components of cartilage

including type I collagen (Holliday et al., 1997). These events result in the initiation of

osteoclast activation and the consequent bone resorption. The effects on MMPs were

first noted as a correlation between the presence of IL-1 and MMP activity in OA

synovium (Martel-Pelletier et al., 1986, Wood et al., 1983). Later, it was shown that

OA chondrocytes have a higher sensitivity to IL-113mediated production of MMP than

non-OA chondrocytes, which is due to an increase in IL-1 receptor numbers (Pelletier

et al., 1993). In addition to effects on MMPs, IL-113has other effects important in OA:
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- stimulating the release of collagenase and plasminogen activator from cartilage and

synovial cells (Dayer et a/., 1986, McCroskery 1985)

- suppressing cartilage-specific expression of type II and IX collagen (Goldring et al.,

1988), and increasing type I (the main component of bone) and III collagens in human

articular cartilage cell cultures (Goldring et a/., 1988), causing changes in bone

structure and bone remodelling

- mediating erosive processes in chronic arthritis, as shown by PGEr and

leukotrieneB4-independent induction of cartilage proteoglycan degradation, and

polymorphonuclear and mononuclear leukocyte infiltration in the synovial joint

following intra-articular IL-1 injection into the rabbit knee (Pettipher et a/., 1986).

Supportive in vitro studies have shown that IL-1-like factor stimulates bone resorption

(Gowen et a/., 1983)

-IL-1~ can induce chondrocyte-mediated production of additional catalytic mediators

such as chemokines, NO - (especially inducible nitric oxide synthase - iNOS),

prostaglandins and collagenases (Borden et a/., 1996)

IL-1 ~ is synthesised as a precursor which matures following IL-1 receptor activation by

actions of IL-1~ converting enzyme (ICE) found in the plasma membrane (Kronheim et

a/., 1992). Two types of receptor exist, type I and type II (Saha et a/., 1999). Type I

IL-1R has the higher affinity for IL-1~, and is the isotype responsible for signal

transduction. Not only are increases in levels of IL-1 ~ seen in OA chondrocytes, but

levels of the type I receptor are also elevated in OA chondrocytes and synovial

fibroblasts (Martel-Pelletier et aI., 1992, Sadouk et al., 1995), resulting in an increased

sensitivity of the cell to stimulation by already-elevated levels of IL-1 ~ (Martel-Pelletier

et a/., 1992).

TNFa induces osteoclastic bone resorption in vitro (Kronheim et a/1992) and as such,

may be involved in remodelling of OA subchondral bone. This cytokine is less well

-
studied than IL-1, but has been shown to have many effects that overlap with IL-1,

namely the stimulation of collagenase and PGE2 production by synovial fibroblasts
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(Alaaeddine et al., 1999), and can stimulate IL-1 and IL-6 production (for review, see

Brouckaert et aI., 1993).

TNFa activates TNFR55 and TNFR75 receptors on the cell membrane (Loetscher et

al., 1990, Schall et al., 1990). TNFR55 is the dominant form responsible for mediating

TNFa activity in chondrocytes and synovial cells in OA, where it is upregulated

(Alaaeddine et al., 1997, Westacott et al., 1994). TNFRs can be cleaved to form

soluble TNFRs (sTNFR) which although themselves confer no effect, their presence

has an effect which varies dose-dependently; at low concentrations sTNFR is

postulated to stabilise the trimeric structure of TNFa thus prolonging its half-life;

whereas at high concentrations sTNFR can decrease the half-life of TNFa by

competing with membrane-bound receptors for TNFa binding (Loetscher et al., 1990,

Schall et al., 1990). Release of STNFR75 from OA synovial fibroblasts and
\

chondrocytes are elevated (Alaaeddine et al., 1997, Brennan et al., 1995), O:utare still

considered to be at "low" concentrations, and thus the effect is to prolong the half-life

of TNFa in OA, potentiating its effects. TNFa effects are also prolonged in OA by

.. upregulation of TNFa converting enzyme (TACE - Amin 1999), a member of the

adamalysin family of metalloproteinases responsible for activating TNFa by proteolytic

cleavage from its proform at the cell surface (Black et al., 1997).

IL-17

IL-17 is produced almost solely by T-Iymphocytes, unlike other cytokines which are

commonly produced by monocytes and other innate cells, suggesting a role in

adaptive or memory immune responses (Fossiez et al., 1996). It has opposing roles

in bone turnover, inferring protective roles by stimulation of various mediators involved

in bone protection, and synergising by unknown mechanisms with IL-113and TNFa to

drive expression of inflammatory mediators including IL-6, PGE2, NO, and IFNy,

promoting bone loss (Jovanovic et al., 1998a; and for review, see Gaffen, 2004).

Studies suggest that IL-17 may act through induction of membrane-bound and soluble

Receptor Activator for Nuclear Factor K B Ligand (RANKL - Nakashima et al., 2000),

an activator of osteoclasts which results in bone resorption. Levels of IL-17 are
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elevated in a number of joint disease conditions including osteoarthritis (Van bezooijen

et a/., 1999), rheumatoid arthritis, and periodontitis, where it has been implicated in

contributing to bone destruction (Johnson 2004).

IL-6

IL-6 is known to be of importance in OA, with regulatory functions (Goldring et a/.,

1999), and is a downstream effector of IL-17 (for review, see Gaffen, 2004). It is

upregulated by IL-1 and PGE2, and is synthesised and secreted by chondrocytes

(Nietfeld et a/., 1990, Bender et a/., 1990). It confers both anti- and pro-inflammatory

properties, and while it has no direct effects on the synthesis of prostaglandins,

proteases, or matrix proteins, it has been shown to stimulate synthesis of tissue

inhibitors of metalloproteases (TIMP, Lotz and Guerne, 1991, Shingu et a/., 1993,

Shingu et a/., 1995) and thus result in a reduction of MMPs. Other actions of IL-6

include:

stimulation of bone resorption (Ishimi et a/., 1990, Palmqvist et a/., 2002), an effect

involving PGE2and effects on IL-1 and IL-17-mediated osteoclast formation (Devlin et

a/., 1998)

co-administration (but not administration of IL-6 alone) with its soluble receptor sIL-6R

(Taga et al., 1989) also triggers osteoclast formation in mouse primary osteoblasts,

which themselves confer low levels of membrane bound IL-6R mRNA (Udagawa et

a/., 1995)

inhibiting proteoglycan synthesis in human cartilage (Nietfield et a/., 1990) and

enhancing proteoglycan metabolism by enhancing catabolic effects of IL-113and TNFa

(Jikko et a/., 1998; Flannery et a/., 2000)

enhancing chondrocyte proliferation (Namba et a/2007), thus increasing synthesis of

inflammatory mediators and degradative enzymes.

IL-6 is increased in early stage OA tissue (Scanzello et a/., 2009), particularly in

synovial fluid, and is also found to be elevated throughout OA in synovial membranes

and chondrocytes in equine OA (Ley et a/., 2009). There is evidence for a synergistic

role for IL-6 with other pro-inflammatory cytokines in OA, in synovial fluid from early

stage OA, IL-6 elevation is concomitant with an elevation in IL-15 levels (Scanzello et
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a/., 2009), and in blood serum from patients with active OA it is elevated alongside

TNFa (Toncheva et al., 2009). In an in vitro model of compression using primary

calvaria osteoblasts from newborn mice, IL-6 mRNA was elevated alongside that of

COX-2 (Sanchez et al., 2009), which is known to be upregulated in human OA

cartilage (Amin et a/., 1997), and in a canine model of OA (Pelletier et a/., 1998).

Anti-inflammatory cytokines and osteoarthritis

The anti-inflammatory cytokines IL-4, IL-10 and IL-13 act to decrease production of IL-

113,TNFa and the MMPs, and together with IL-6, increase synthesis of tissue inhibitor

of MMP-1 (TIMP-1) and the IL-1 receptor antagonist, IL-1 Ra (Hart et al., 1989, Essner

et a/1989, Vannier et a/., 1992, Hart et a/., 1995, Jovanovic et ai, 1998b). These

effects have been demonstrated both in vitro in cell lines, and ex vivo in cells cultured

from OA patients. The effect of these mediators is to block a number of catalytic

pathways associated with OA such as PGE2 synthesis, and chondrocyte mediated

production of collagenase and nitric oxide (Figure 4.2). The anti-inflammatory

cytokines are spontaneously produced in OA synovial membrane and cartilage, and

increased levels have been shown in synovial fluid (but not in the synovial membrane

- Farahat et al., 1993, Smith et a/., 1997, Pelletier et a/., 1995) of patients with OA

(Schlaak et a/., 1996, Martel-Pelletier et a/1999), possibly as a response to the

increased presence of the inflammatory mediators. However, the increased levels of

anti-inflammatory cytokines are not concomitant with decreases in levels of the

inflammatory cytokines (Schlaak et ai, 1996), and while a high ratio of IL-1Ra: IL-1 is

found in synovial fluid of patients with OA (Richette et a/., 2008), it is considered to be

insufficient to negate the effects of the increased levels of IL-113.
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4.1.3. Aims

In osteoarthritis, the imbalance between anabolic and catabolic events in

chondrocytes and a dysregulation of metabolic events, result in progressive

destruction of the joint structure. The overproduction of pro-inflammatory cytokines by

cartilage and the synovium is particularly characteristic of this dysregulation in

patients. The MIA model of OA shows sensitivity to the clinically used analgesic

morphine, as well as clinically relevant histopathology. Its reproducibility, fast onset

time and controllable severity makes it an ideal model of OA pain. Although the [oint

pathology associated with the MIA model of OA is well described, the potential

changes in levels of pro- and anti-inflammatory cytokines in early stages have yet to

be described. The aim of this chapter was to further characterise the peripheral and

central events associated with pain behaviour induced by MIA. Cytokine levels in

synovial fluid, spinal cord and hindpaw skin at varying, early time-points post-MIA

injection were measured, and the later (day 28-31) effects of intra-articular MIA

injection on neuronal responses were determined.
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4.2. Methods

4.2.1. Induction of the MIA model of osteoarthritis pain

For intra-articular injection, sodium iodoacetate (MIA, Sigma-Aldrich, Dorset, UK), was

prepared freshly on the day of injection by dissolution in sterile saline. A dose of

1mg/501JL sterile saline, or 50IJL sterile saline alone for control groups, was

administered per rat, based on work in this lab. Male Sprague-Dawley rats weighing

160-190g at the time of injection were used. For detailed methodology of anaesthesia

and injection of MIA see Chapter 2. The experimenter was blinded to all treatments.

4.2.2. Intra-articular injection of MIA or saline and nociceptive

behaviour in the awake rat

Rats underwent testing for nociceptive behaviour both 1 day before injection, on the

day of injection, and on days 2,3, 7, 9, 14, 16, 21,23 and 28 following injection of MIA

(n=63) or saline (n=62) injection. Data from behavioural studies herein are expressed

in two groups, the first containing data from rats from which electrophysiological data

is presented elsewhere in this thesis (Chapters 5 and 6, saline n=36, MIA n=36), and

the second group containing data from rats from which electrophysiological data has

not been presented elsewhere in this thesis (saline n=26, MIA n=27). Nociceptive

responses for both mechanical loading and mechanical allodynia were tested, through

the measurement of weight-bearing on the hind limbs and von Frey monofilament

withdrawal thresholds. Where withdrawal was not achieved with a stimulus of 15g, in

statistical analysis and graphical representation a value of 16g was assigned. For a

detailed methodology of behavioural apparatus acclimatisation and behavioural testing

techniques used, see Chapter 2.

Changes in weight-bearing on the ipsilateral hindpaw between MIA and saline treated

rats are expressed as a percentage of weight placed on the contralateral paw in the

same rat. Responses to application of von Frey monofilaments to the plantar surface

of the hind paw are expressed as the difference between withdrawal thresholds of
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ipsilateral paw, compared to the contralateral paw, in grams. Statistical analysis

comparing the effects of intra-articular injection of MIA and saline in both weight-

bearing and withdrawal threshold measurements were performed using a one-way

ANOVA Kruskal-Wallis, with post-hoc Dunn's test.

4.2.3. Intra-articular injection of MIA or saline and electrically and

mechanically evoked responses of WDR neurones in the

anaesthetised rat

For detailed methodology of anaesthesia, surgery, and identification and recording of

WDR neuronal responses, see Chapter 2. In many of the experiments in this chapter,

data from more than one WDR neurone from the dorsal horn of the spinal cord was

studied per rat, thus maximising the obtainable data from the animals used. The

responses of neurones to electrical and mechanical stimulation of the hindpaw were

characterised. For electrical characterisation, the threshold (mA) and latency (ms) of

electrical stimulation of C fibres (as described in Chapter 2) were compared between

rats receiving an intra-articular injection of MIA (n=70 neurones in 58 rats) and those

receiving saline alone (n=66 neurones in 47 rats). The number of action potentials of

Aj3-, AfJ-, and C-fibres, as well as the total action post-discharge (as defined in

Chapter 2) was also compared between the groups, following a train of 16 stimulations

at 3x the C-fibre threshold, delivered at a rate of 0.5Hz, as described in Chapter 2

(saline n=70 neurones in 47 rats, MIA n=80 neurones in 58 rats). In all of the

electrical characterisation of neurones, statistical comparisons were performed using a

non-parametric Mann-Whitney test.

The effects of intra-articular injection of MIA or saline on mechanically evoked

responses were studied as described in Chapter 2. In addition, post-stimulus

neuronal responses were studied following mechanical stimulation with each of the

von Frey stimuli presented, and the effects of intra-articular injection of MIA or saline

on post-stimulus responses were compared. Four measures of post-stimulus

response were studied: the duration of post-stimulus neuronal response (s), the post-
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stimulus neuronal response count, the average rate of post-stimulus neuronal

response (spikes per second) for the first 10s after stimulus removal (regardless of

whether or not the response had ceased before that time had passed), as well as the

rate of post-stimulus neuronal response (spikes per second) over the total duration of

post-stimulus response (Figure 4.3, located at end of section 4.2). Statistical

comparisons of the effects of MIA- and saline-injection on during- and post-stimulus

responses were performed using non-parametric Mann-Whitney test.

4.2.4. Intra-articular injection of MIA or saline and levels of

cytokines in the synovial fluid, hindpaw skin and spinal cord

In a separate group of rats to those used for behavioural and electrophysiological

characterisation of the MIA model of OA pain, the effects of intra-articular injection of

MIA or saline on levels of cytokines in the synovial fluid, hindpaw skin and spinal cord

of the rat were analysed, on two separate occasions.

On the first occasion, the effects were studied at 6 and 24 hours post injection. A total

of 32 Male Sprague-Dawley rats weighing 130-150g were used, 16 rats received 1mg

MIA in 50IJL sterile saline, prepared and injected as described above, and 16 rats

received 50IJL sterile saline alone, acting as controls. Six or 24 hours after injection

(n=8 rats MIA and 8 rats saline per time-point), rats were killed by stunning and

decapitation, and the synovial fluid, hind paw skin and spinal cord (ipsilateral and

contralateral) were collected as described in Chapter 2, and stored at -80°C until

further analysis. Not all tissue was analysed, due to difficulty in removal of tissue

(particularly synovial fluid), as well as limitations of the analytical technique used (96

well plate with space for 88 samples). The analysis groups consisted of the following:

MIA treated, 6 hours post-injection, n=7 rats; MIA treated, 24 hours post-injection, n=7

rats; saline treated, 6 hours post-injection, n=6 rats; saline treated, 24 hours post-

injection, n=6 rats. From each rat, ipsilateral and contralateral synovial fluid, hindpaw

skin and spinal cord samples were analysed by electrochemiluminescence, using the

MSD® 96-well MULTI-SPOT® Standard MS6000. "Rat Demonstration 7-PlexUltra-

Sensitive Kit" (Meso Scale Discovery, Maryland, US), a cytokine assay kit allowing
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simultaneous analysis of the cytokines IL-1(3, TNFa, IL-13, IL-4, IL-5, IFNy and

GRO/KC, of which the pro-inflammatory IL-1 (3and TNFa, and the anti-inflammatory IL-

13 were of particular interest.

Samples were prepared for analysis as follows:

Spinal cord samples were weighed, thawed and agitated using a pipette in 100IJL

High Performance ELISA buffer (Europa Bioproducts Ltd., Ely, Cambridge, UK) with

Complete EDTA protease inhibitor (Roche Diagnostics GmbH, Mannheim, Germany),

sonicated on ice and centrifuged for 14,000xg for 15 minutes at 4°C, and the

supernatant collected for analysis.

Paw tissue was prepared using cryogenic pulverisation: samples were frozen further

in liquid nitrogen and pulverised using the CryoPrep TM apparatus (Covaris,

Massachusetts, US). Samples were weighed, before pipette-agitation, sonication and

centrifugation, in 100IJL ELISA buffer, as described above, and the supernatant

collected for analysis.

Synovial fluid was used neat, without processing.

Samples were analysed using the "tissue culture protocol" recommended with the kit,

using kit reagents, as follows:

25IJL of each sample (synovial fluid) or supernatant (spinal cord and paw tissue) was

pipetted into a well on the 96 well plate along with standard concentration curve

samples spanning cytokine concentrations of 0-10,000pg/mL over 8 wells. The plate

was then sealed with an adhesive plate seal and incubated on a shaker at 800 r.p.m.

for 1.5hours at room temperature. 25IJL of the secondary antibody (detection antibody

solution) was then added to each well, the plate re-sealed and incubated as above for

a further 1.5 hours. Each well was then washed three times with 1OOIJL0.05% Tween

20 in PBS (NaCI137mM, KCI2.7mM, Na2HP04, 8.1mM, KH2P041.5mM; pH7.3) and

150IJL of the 2x Read Buffer provided in the kit was added to each well. After careful

removal of any bubbles with a sterile needle tip, luminescence was analysed in the

SECTOR® Imager 6000 (Meso Scale Discovery, Maryland, US).

Results are expressed as raw concentrations of cytokine (ng or pg) per mL (synovial

fluid) or gram (hindpaw skin, spinal cord) of tissue. The lower limits of detection of the
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cytokines analysed were as follows: rIL-113,25pg/mL; rTNFa, 10pg/mL; rIL-13,

6pg/mL. Statistical analyses were performed using a non-parametric Mann-Whitney

test, or one way ANOVA Kruskal-Wallis test with post-hoc Dunn's test, where

appropriate.

Following the results of this analysis (section 4.3.4) the study was repeated with some

alterations. The range of time-points post-injection was increased to include tissue

collection 3 hours post-injection, in recognition of early inflammatory events in OA.

Analysis switched to a Bio-plex I" cytokine assay system (Bio-Rad Laboratories Inc.,

California, US), with higher sensitivity and flexibility over which cytokines could be

analysed. In light of this, the focus was on the cytokines IL-113and TNFa as before,

with the addition of IL-6, which could not be analysed using the MSD multi-spot assay

system. Samples analysed were also scaled back to include only synovial fluid

samples, which in human OA conditions has frequently been found to contain elevated

levels of cytokines (see section 4.1.2) and spinal cord samples, as injection of the

Feline Immunodeficiency Virus (FIV) into mouse temporomandibular joint, or cisterna

magna, induced IL-113expression in the dorsal horn and spinal horn respectively,

coinciding with arthritic behaviour (Fiorentino et al., 2008), lending credence to the

hypothesis that central changes in cytokines may contribute to the progression of OA.

A total of 91 male Sprague-Dawley rats weighing 130-150g were used, 42 received

1mg MIA in 50IJL sterile saline, prepared and injected as described above, and 49 rats

received 50IJL sterile saline alone, acting as controls. 3, 6 or 24 hours after injection,

rats were killed as above, and the ipsilateral and contralateral spinal cord and synovial

fluid were collected and stored at -80°C until further analysis, as above. For analysis,

at least 6 samples per group (treatment group and per time-point) were studied.

Samples were analysed using immunosorbence assay, by Ian Spendlove, City

Hospital, Nottingham UK following the protocol supplied for the Bio-Plex Cytokine

Assay kit (Bio-Rad Laboratories Inc., California, US). Spinal cord samples were

weighed, thawed and agitated using a pipette in .1mL 1% Bovine Serum Albumin (BSA

- Sigma-Aldrich, UK) in PBS, sonicated and centrifuged at 14,000xg for 15 minutes at
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4°C and the supernatant collected. Synovial fluid samples were used neat, without

processing.

Samples were analysed using the "tissue culture protocol" recommended with the kit,

using kit reagents, as follows:

Vacuum pressure under a flat-bottomed 96-well plate was set to 2 inches Hg, and the

filter plate pre-wet with 100IJL Bio-Plex assay buffer as supplied in the kit. Anti-

cytokine (IL-1~, TNFa and IL-6) beads prepared in Bio-Plex Assay Buffer A were

added to each well in a 50IJL volume, followed by 1x vacuum filtration and 2x filter

wash with 100IJL Bio-Plex wash buffer. 50IJL of each sample (synovial fluid) or

supernatant (spinal cord) was pipetted into a well, along with standard concentration

curve samples spanning cytokine concentrations of 0-20,000pg/mL over 9 wells. The

plate was then sealed with an adhesive plate seal, covered with foil and incubated on

a shaker at 1100 r.p.m for 30 seconds decreasing to 300 r.p.m. for a total of 30

minutes. Next, the plates were filter washed 3x 1OOIJLBio-Plex wash buffer, followed

by addition of 25IJL of the secondary, detection antibody, prepared in Bio-Plex

Detection Antibody Diluent, from the antibody stock solution, into each well. Plates

were re-sealed and incubated as above for a further 30 minutes before filter washing

3x with 100IJL Bio-Plex wash buffer, and addition of 50IJL Streptavadin-PE, prepared

in Bio-Plex Assay buffer, into each well. Plates were re-sealed and incubated as

above for a further 30 minutes, then washed as before and the beads resuspended in

125IJL Bio-Plex Assay Buffer, re-sealed and shaken at room temperature for 30

seconds at 1100 r.p.m, before luminescence was measured in the Bio-Plex reader.

Results are expressed as raw concentrations of cytokine (ng or pg) per gram spinal

cord or mL synovial fluid. Statistical analyses were performed using a non-parametric

Mann-Whitney test.

Throughout the studies presented herein, data deviating from the mean by more than

two standard deviations were excluded. For statistical comparisons, statistical

significance was accepted at P<0.05.
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4.3. Results

4.3.1. Effects of intra-articular injection of MIA or saline on

nociceptive responses of awake rats

The effects of intra-articular injection of 1mg MIA in SOIJL saline, or saline alone, on

weight-bearing through the ipsilateral hindlimb, and withdrawal threshold of the

ipsilateral hindpaw in response to punctuate mechanical stimuli on the plantar surface

of the foot, were studied over a 28 day period. MIA caused a significant drop in weight

borne on the ipsilateral hindlimb (Figure 4.4; saline, n=62; MIA, n=63, one-way

ANOVA Kruskal-Wallis with post-hoc Dunn's test). Diminished weight-bearing on the

ipailateral hindlimb was biphasic, with the first, more pronounced phase reducing by

day 9. Weight-bearing on the ipailateral hindlimb remained reduced throughout the

duration of the 28-day study period post-injection. MIA also caused a significant

decrease in the withdrawal threshold of the ipsilateral hindpaw (Figure 4.S; saline,

n=62; MIA, n=63, one-way ANOVA Kruskal-Wallis with post-hoc Dunn's test) from day

2 after injection. The withdrawal threshold remained significantly lower than in saline-

treated rats for the duration of the study.
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Figure 4.4 Reduced weight-bearing on the ipsilateral hindlimb of rats receiving
intra-articular injection of 1mg MIA in 50~L saline (black squares, n=63) versus
50~L saline alone (open circles, n=62), over a 28-day period post-injection. A,
Data from rats used in electrophysiological studies described in Chapters 5 and 6; B,
Data from rats not used in electrophysiological studies elsewhere in this thesis.
Statistical analysis comparing the effects of saline to MIA on weight-bearing through
the ipsilateral hindlimb was performed using a one-way ANOVA Kruskal-Wallis, with
post-hoc Dunns test, **P<0.01; ***, P<0.005. No statistically significant differences in
weight-bearing deficiencies were seen between data presented in panels A and B
(one-way ANOVA Kruskal-Wallis, with post-hoc Dunns test). Weight-bearing through
the ipsilateral hindlimb is expressed as a mean percentage of the weight borne on the
contralateral hindlimb, averaged from 3 readings per rat, per time-point, ± SEM.
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Figure 4.5 Reduced withdrawal thresholds to mechanical stimuli of the
ipsilateral hindpaw of rats receiving intra-articular injection of 1mg MIA in 50 ...L
saline (black squares, n=63) versus 50 ...L saline alone (open circles, n=62), over
a 28-day period post-injection. A, Data from rats used in electrophysiological
studies described in Chapters 5 and 6; B, Data from rats not used in
electrophysiological studies elsewhere in this thesis. Statistical analysis comparing
the effects of saline to MIA on withdrawal threshold differences between ipsilateral and
contralateral hindpaws was performed using a one-way ANOVA Kruskal-Wallis, with
post-hoc Dunns test; "". P<0.005. No statistically significant differences in withdrawal
thresholds were seen between data presented in panels A and B (one-way ANOVA
Kruskal-Wallis, with post-hoc Dunns test). Data are expressed as the mean difference
in grams between withdrawal thresholds of the ipsilateral and contralateral hindpaws ±
SEM.
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4.3.2. Effects of intra-articular injection of MIA or saline on

electrically evoked responses of WDR dorsal horn neurones 28-31

days post-injection

The effects of intra-articular injection of 1mg MIA in 50IJL saline, or saline alone, on

the electrical threshold (mA) and latency of C fibre-evoked responses of WDR dorsal

horn neurones were studied. There were no differences in the electrical threshold for

C fibre activation of WDR neurones in saline- versus MIA-treated rats (saline, 1.17 ±

0.03mA, n=66 neurones in 47 rats; MIA, 1.25 ± 0.04mA, n=70 neurones in 58 rats,

non-parametric Mann-Whitney, P>0.05). There was, however, a decrease in the

latency of C fibre-evoked responses of WDR neurones in MIA-treated rats: saline,

204.7 ± 7.19ms, n= 70 neurones in 47 rats; MIA, 186.76 ± 7.49, n=79 neurones in 58

rats, *P<0.05, non-parametric Mann-Whitney test.

AI3, Aa, C fibre and post-discharge responses of WDR neurones during a train of 16

electrical stimulations, given at 3 times the C fibre threshold at a rate of 0.5Hz into the

toes of the hind paw, were also compared between the two treatment groups. No

differences were observed (Table 4.2.). The mean depths of recording of WDR

neurones in saline- and MIA-treated rats are indicated in Table 4.2.

Table 4.2 Mean depth of recording and number of action potentials evoked by
supramaximal electrical stimulation of C fibres in the AP, AlS, C fibre and post-
discharge latency bands. Statistical comparisons between the treatment groups
were performed using a non-parametric Mann-Whitney test, no significant differences
were observed (all P>0.05). Data are expressed as mean evoked spike count ± SEM.

Firing (count)
Saline-treated MIA-treated
(n=70 neurones, 47 rats) (n=80 neurones, 58 rats)
Mean depth = 839.0 ± Mean depth = 834.8 ±
23.0 IJm 24.71Jm

AI3 (0-20ms) 187.5 ± 6.3 190.5 ± 5.6

Aa (20-90ms) 157.6 ± 9.2 148.6 ± 8.59

C fibre (90-300ms) 346.2 ± 29.2 326.5±19.1

post-discharge (>300ms) 347.0 ± 37.2 313.87 ± 27.35
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4.3.3. Effects of intra-articular injection of MIA or saline on

mechanically evoked responses of WDR dorsal horn neurones

The effects of intra-articular injection of 1mg MIA in 50IJL saline, or saline alone, on

hindpaw mechanically evoked responses of WDR dorsal horn neurones, were studied

using data from a total of 42 neurones in 41 saline-treated rats 48 neurones in 47 MIA-

treated rats. Data deviating from the mean by more than two standard deviations

were excluded, in total11 out of 210 neurones were excluded from saline-treated rats,

and 10 out of 240 neurones were excluded from MIA-treated rats. Mechanically

evoked responses of neurones were graded to increasing stimuli applied to the

hindpaw, and there was a trend for responses in MIA-treated rats to be higher than in

saline-treated rats. Significant differences between the treatment groups were

observed for the noxious 15g and 26g-evoked responses (Figure 4.6). An example of

a typical trace obtained from saline- and MIA-treated rats is shown in Figure 4.7, with

an arrow indicating the visible increase in post-stimulus response of WDR neurones in

MIA-treated rats.

~ 1
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_ MIA-treated

von Frey stimulus (g)

Figure 4.6 Graded responses of WDR neurones in saline (white bars, n=42) and
MIA- (black bars, n=48) treated rats, following mechanical stimulation of the
hindpaw receptive field. Statistical analysis comparing responses in saline- versus
MIA-treated rats were performed using a non-parametric Mann-Whitney test; .,
P<0.05. Data are expressed as the mean firing rate of the neurone per second
(spikes/s) over a 10 second stimulation period, ± SEM.
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The post-stimulus responses of neurones were compared in MIA- and saline-treated

rats. Data are from 36 MIA- and 36 saline-treated rats, used in studies outlined in

Chapters 5 and 6. Data points more than 2 standard deviations from the mean of the

group we're excluded; in total for the four paradigms this meant exclusion of 47 out of

360 data points for the duration of post-stimulus neuronal firing; 53 out of 360 data

points for the total post-stimulus neuronal firing count; 56 out of 360 data points for the

average rate of neuronal firing over the total duration of firing; and 48 out of 360 points

for the average rate of neuronal firing over the first 10s period following stimulus

removal. MIA injection was associated with an increase in the duration of post-

stimulus neuronal response in the MIA-treated rats compared to saline-treated rats

(Figure 4.8, A), which reached significance for all von Frey weights, with the exception

of the 8g stimulus. MIA injection also caused an increase in the number of post-

stimulus neuronal events (Figure 4.8 B) following innocuous and noxious stimulation,

although this did not reach significance for 8g and 60g stimuli. The rate of post-

stimulus action potential firing was also calculated, both for the duration of post-

stimulus response (Figure 4.8 C) and for the first 10 seconds once stimulation had

ceased, regardless of whether or not the neuronal response continued up to, and

beyond that duration, as a measure of post-stimulus neuronal response intensity

(Figure 4.8 0). MIA injection caused an increase in the rate of post-stimulus neuronal

response to all stimuli intensities, with significant effects observed for all weights apart

from the 8g evoked response over the first 10 seconds, and the 60g evoked response

for the duration of response.
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Figure 4.8 Post-stimulus responses of WDR neurones in saline (white bars,
n=36) and MIA- (black bars, n=36) treated rats, following removal of mechanical
stimuli from the hindpaw receptive field. A, duration of post-stimulus neuronal
response; B, post-stimulus neuronal response count; C, rate of post-stimulus neuronal
response over total duration of post-stimulus response; 0, rate of post-stimulus
neuronal response in the first 10-second post-stimulus period. Statistical analysis
comparing the effects of saline to MIA were performed using a non-parametric Mann-
Whitney test; *, P<O.05; ". P<O.01. Data are expressed mean ± SEM.

4.3.4. Effects of intra-articular injection of MIA or saline on levels

of cytokines in the synovial fluid, hindpaw skin and spinal cord

The effects of intra-articular injection of 1mg MIA in 50IJL saline, or saline alone, on

levels of cytokines in synovial fluid, spinal cord and paw tissue within the first 24 hours

after injection, were studied in two separate studies.

In the first study, MIA caused a decrease in levels of the anti-inflammatory cytokine IL-

13 in synovial fluid 6 hours post-injection, compared to saline-treated controls (Saline

6hr n=6, MIA 6hr n=6) (Figure 4.9, left panel). By contrast, levels of IL-13 in the

synovial fluid were comparable at 24 hours post-injection (Saline 24hr n=6, MIA 24hr

n=7). Levels of the pro-inflammatory cytokines IL-113or TNFa in synovial fluid were

comparable in MIA- and saline-treated rats at 6 and 24 hours post-injection. An
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important observation was that levels of cytokines in the ipsilateral joint were

differentially influenced at 6 hours and 24 hours after intra-articular injection of saline

(Figure 4.9, left panel), this was significant for IL-13 (Figure 4.9A). Thus comparisons

between MIA-treated groups at 6 and 24 hours post-injection are not readily

interpretable. Nevertheless, it is worth noting that there were significant differences

between levels of IL-113and TNFa at 6 and 24 hours post-MIA injection (Figure 4.98,

C). In synovial fluid from the contralateral joint, cytokine levels did not differ between

the two treatment groups, or between the two time-points studied (Figure 4.9, right

panel). Comparison of ipsilateral and contralateral synovial fluid indicates that

injection per se causes rapid, transient changes in levels of the pro-inflammatory

cytokines: in both MIA- and saline-treated rats, IL-113levels were higher in the

ipsilateral joint than in the contralateral joint 6 hours after injection (Saline, P<0.05;

MIA, P<0.01), and TNFa levels were higher ipsilaterally in MIA-treated rats (P<0.01),

with a trend towards higher ipsilateral TNFa levels in saline-treated rats. After24

hours, no differences in cytokine levels were observed ipsilaterally versus

contralaterally for either treatment group. There were no differences between

ipsilateral and contralateral levels of IL-13 in either treatment group, at either time-

point (Figure 4.9).

MIA treatment did not alter levels of IL-113in the hindpaw, compared to saline controls,

ipsilaterally or contralaterally, at either time-point. Levels of IL-113however,

significantly higher at 24 hours compared to 6 hours following MIA injection for both

the ipsilateral and contralateral hindpaw. Note however, that in saline-treated rats,

levels of IL-113were also higher in the contralateral hindpaw at 24 hours following

injection, compared to 6 hours (Figure 4.10 A). 6 hours after MIA injection, TNFa and

IL-13 levels were below the limits of detection in the hindpaw of MIA treated rats, but

was detectable at 24 hours, both ipsilaterally and contralaterally (Figure 4.10). There

were no significant differences between ipsilateral and contralateral levels of cytokines

at any time-point studied.

Levels of all cytokines in the spinal cord were below detection limits for both MIA- and

saline-treated groups at both time-points studied (data not shown).
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Figure 4.9 Cytokine levels in ipsilateral (left panel) and contralateral (right panel)
synovial fluid 6- and 24-hours after injection with MIA (n=13 rats) or saline (n=12
rats). A, IL-13 B, IL-1[3; C, TNFo. Statistical analyses comparing effects of MIA to
those of saline at each time-point (*, P<O.05), and comparing the effects at 6h versus
24h intra-treatment; (**, P<O.01) were performed using a non-parametric Mann-
Whitney test. Data are expressed as individual values and the line indicates the mean
value.
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Figure 4.10 Cytokine levels in ipSilateral (left panel) and contralateral (right
panel) hindpaw skin 6- and 24-hours after injection with MIA (n=13 rats) or saline
(n=12 rats). A, IL-113;B; TNFa; C, IL-13. Statistical analyses were performed
comparing effects of MIA to those of saline at each time-point, and comparing the
effects at 6h versus 24h intra-treatment, were performed using a non-parametric
Mann-Whitney test; *, P<O.05. There were no differences in cytokine levels between
the ipsilateral and contralateral joints within time-points and treatment groups studied.
Data are expressed as individual values and the line indicates the mean value. n.d.=
number of samples with levels of cytokines out of range of detection.
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In the second study, focussing on synovial fluid, effects of MIA injection on IL-1j3,

TNFa, and also IL-6 levels, at more timepoints (3 hours n=14; 6 hours n=14; 24 hours

n=14; total n=42 rats) were studied. Due to analystical constrictions (96-well plate),

not all samples were analysed. The numbers of samples analysed per treatment

group and per time-point are indicated below.

Treatment Time post- Synovial fluid Spinal cord
group injection (no. of samples) (no. of sam_pJesl

(hours) lI>_silateral contralateral lI>_silateral contralateral
MIA 3 7 7 6 6

6 6 6 6 6
24 7 7 7 7

saline 3 7 7 7 7
6 6 7 7 7
24 6 7 7 7

There were no differences in levels of IL-1j3 in the synovial fluid between MIA- and

saline-treated rats at any timepoint, except after 6 hours in the contralateral joint.

However, there was a trend towards a decrease in synovial fluid levels of IL-1j3 in both

treatment groups over time (Figure 4.11 panel A). Levels of IL-113exhibited a trend

towards being lower in ipsilateral synovial fluid than in the contralateral side,

significantly so in saline-treated rats 6h, and MIA-treated rats 24h after injection.

Effects of MIA or saline on levels of TNFa in the synovial fluid could not be

ascertained using this method, as only 15 out of 80 samples reached detectable levels

(Figure 4.11, panel B).

A trend towards an increase in IL-6 levels in synovial fluid of MIA- versus saline-

treated rats was observed ipsilaterally at 3- and 6-hours post-injection (Figure 4.11,

panel C), although this did not reach significance, and only 3 or 4 samples in each

group were detectable (saline: 3h = 5 of 7 samples detectable, 1 value excluded; 6h =

5 of 6 detectable, 1 excluded; 24h = 2 of 6 detectable. MIA: 3h = 5 of 7; 6h = 3 of 6;

24h = 1 of 6). There was a trend towards decrease (non-siqruficant) in IL-6 levels in

ipsilateral synovial fluid with time in both treatment groups, most notably with fewer

samples reaching detection limits at later time-points, and very few samples (saline,

n=2; MIA, n=1) reaching detectable limits 24 hours after injection. Ipsilateral synovial

fluid levels of IL-6 tended to be higher than contralateral levels, although this did not

reach significance.
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Figure 4.11 Cytokine levels in ipsilateral (left panel) and contralateral (right
panel) synovial fluid 3-, 6- and 24-hours after injection with MIA (n=20) or saline
(n=21). A, IL-113;B, TNFa; C, IL-6. Statistical analyses comparing effects of MIA to
those of saline at each time-point (*, P<0.05), and comparing the effects ipsilaterally
versus contralaterally; (#, P<0.05; ##, P<0.01), were performed using a non-
parametric Mann-Whitney test. Statistical analysis comparing cytokine levels between
different time-points (3h versus 6h versus 24h) for MIA- and saline-treated rats were
performed using non-parametric Kruskal-Wallis with post-hoc Dunn's test - no
statistical differences were observed. Data are expressed as individual values and the
line indicates the mean value. n.d. = number of samples with levels of cytokines out of
range of detection.
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In the spinal cord, IL-113could not be detected with this method. For TNFa and IL-6,

all samples in all groups fell within detectable limits. No effect of MIA was observed

on spinal cord IL-6 or TNFa levels at any time-point.
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Figure 4.12 Cytokine levels in ipsilateral (left panel) and contralateral (right
panel) spinal cord 3-, 6- and 24-hours after injection with MIA (n=19) or saline
(n=21). A, TNFa; B, IL-6. Statistical analyses were performed comparing effects of
MIA to those of saline at each time-point, and comparing the effects ipsilaterally
versus contralaterally were performed using a non-parametric Mann-Whitney test (no
significant differences). Statistical analysis comparing cytokine levels between
different time-points (3h versus 6h versus 24h) for MIA- and saline-treated rats were
performed using a non-parametric Kruskal-Wallis with post-hoc Dunn's test (no
statistical differences). Data are expressed as individual values and the line indicates
the mean value.
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4.4. Discussion

The present study aimed to further characterise the MIA model of osteoarthritis pain

with respect to behavioural and neurological responses, and the early changes in

levels of cytokines of notable importance in the human condition (for review, see

Pelletier et al., 1991). Intra-articular injection of 1mg MIA brought about a robust,

reproducible change in nociceptive responses, in two paradigms of nociception in the

awake rat. Changes in withdrawal thresholds to punctuate mechanical stimuli were

observable by the second day following injection of MIA, and were maintained, without

sign of recovery, throughout the 28-day study period. Similarly, changes in hindlimb

weight-bearing were observed. Changes in weight-bearing were biphasic, suggesting

an initial inflammatory response following injection of the metabolic inhibitor, which is

succeeded by structural changes within the knee joint itself (Guzman et al., 2003;

Ivanavicius et al., 2007; Clements et al., 2009) to produce a disease state in the knee

similar to that seen in human OA. MIA injection was associated with neuronal

hyperactivity in several paradigms of electrophysiological study. These data suggest

changes in central mechanisms of nociception may be partly responsible for the

. nociceptive behaviour observed in the period preceding the electrophysiological

studies. Increased responsiveness of WDR dorsal horn neurones in response to

mechanical stimuli were observed, both during and after the period of stimulation.

However, there were no alterations in responses to supra-maximal electrical

stimulation of the receptive field, which may be due to a number of factors (see later).

Injection into the knee was followed by time-dependent alterations in levels of some

cytokines in the synovial fluid and putatively in the hindpaw skin and spinal cord,

although these events appear to be due to the trauma of injection rather than an effect

of MIA, as similar changes were evident in saline-treated controls. The work outlined

here, together with previous studies studies using MIA (Guingamp et al., 1997; Sove

et al., 2003; Fernihough et al., 2004; Pomonis et al., 2005), supports the use of MIA as

a pre-clinical model of osteoarthritis pain, and suggests that central mechanisms may

be partly responsible for underlying chronic pain responses.
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4.4.1. MIA injection caused behavioural deficits translatable to

human OA pain

MIA caused a decrease in weight borne on the ipsilateral hindlimb, as well as a

decrease in the withdrawal threshold in response to punctuate mechanical stimuli.

These changes in behavioural responses were rapidly induced, present from day 2

after injection. In weight-bearing studies, the weight borne on the ipsilateral hindlimb

is initially reduced to approximately 55% of that borne on the contralateral hindlimb on

the second day following injection, recovering to between 70 and 80% over the next

few days, and remaining there from 9 days post-injection onwards. The short-lasting

nature of this initial drop in weight-bearing suggests it may, at least in part, be

mediated by an inflammatory response (Save et al., 2003). This biphasic nociceptive

response was not observed following punctuate stimulation of the plantar surface of

the hindpaw, suggesting the inflammation may be localised to the knee joint itself.

These behavioural responses are comparable to other studies assessing behavioural

deficits in the MIA model. Similar to the results presented here, 1mg MIA produced a

biphasic change in weight-bearing through the hind limbs which was maximal within 3

days of injection and somewhat recovered by day 7 (Save et al., 2003; Pomonis et al.,

2005). Siphasic functional impairment was also seen in a functional telemetry test

(Guingamp et aI., 1997), with loss of mobility peaking at days 1-2, recovering slightly

over the next 7 days and then maintaining at a steady, impaired state. Similar to

results presented herein, withdrawal thresholds to punctate stimulation of the plantar

surface of the hindpaw, following a 2mg dose of MIA, decreased in a monophasic

fashion, with impairment seen on the first day of testing (Day 3) after injection,

dropping further by day 5 and maintaining that level of impairment over a 32 day study

period (Fernihough et al., 2004). In human OA, changes in weight-bearing are

frequently reported (see JOni et al., 2006) and patients often also report referred pain

(pain in non-injured areas) and touch hypersensitivity. The deficits in behavioural

responses presented herein are therefore clinically relevant in the study of OA-related

pain syndromes, and may provide a useful tool in research into pharmacological

management of OA-pain syndromes, and studies could be improved by the inclusion

of more spontaneous pain measures. Locomotor behaviour is frequently measured in
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the study of spontaneous pain, and gait analysis, stride frequency, and travel distance

in over-ground and in running-wheel conditions have been used to study impaired

mobility in a mouse strain susceptible to OA (Costello et al., 2010). The inclusion of

such locomotor tests in future work could help to further characterise behavioural

changes in the MIA model of OA pain.

4.4.2. Are changes in cytokine levels in synovial fluid and paw

tissue contributing to MIA-related pain behaviour?

In the present study, the only changes in cytokine levels following MIA treatment were

a decrease in anti-inflammatory IL-13 in ipsilateral synovial fluid at 6 hours following

MIA injection compared to saline-treated controls. In addition, I observed a decrease

in levels of IL-113in the contralateral synovial fluid at 6 hours post-MIA injection versus

saline-treated controls. However, while levels of IL-113were analysed in both studies,

this result was only obtained in the second study, and not seen at all in the first. This

discrepancy makes understanding what effect if any, injection of MIA has on cytokine

levels in synovial fluid, based on the studies herein, impossible, and may be explained

by a number of factors, which will be discussed in more detail in section 4.4.5.

While no changes were observed in cytokine levels between MIA- and saline-treated

rats in synovial fluid, hindpaw skin or spinal cord, differences in cytokine levels

measured at different time-points was frequently evident. In the first study, synovial

fluid levels of IL-113,TNFa and IL-13 were lower at 24 hours compared to 6 hours

post-MIA injection. This effect was most evident in MIA treated-groups where

statistical significance was reached, except for in the case of IL-13, where levels in

synovial fluid of rats treated with MIA was already lower at 6 hours than in saline-

treated rats. However, a trend was visible in saline-treated rats. The presence of

these time-dependent changes in cytokine levels in both MIA-treated rats and the

saline-treated controls, and the lack of such overtly visible trends in synovial fluid

removed from the contralateral knee, suggests injection per se has marked effects on

the levels of cytokines, which then rapidly resolve. It is important to note that saline

injection does not produce significant changes in weight-bearing or allodynia even at
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day 2 and, therefore, the changes in cytokines observed in saline-treated rats appear

to have negligible effect on early stage pain behaviour. This effect extended to other

tissues analysed, although rather than a decrease in levels, an increase in paw tissue

levels of IL-1~ was observed between 6 hours and 24 hours post-injection, in MIA-

treated rats ipsilaterally, and both MIA- and saline-treated rats contralaterally. The

rise in cytokine levels so soon in tissues away from the site of trauma suggests an

inflammatory response that does not remain localised. These increases in paw tissue

cytokine levels may be extended to TNFa and IL-13 as well. Although levels 6 hours

post-injection are below detection limits, a few paw tissue samples from saline-treated

rats. Most, if not all samples from MIA-treated rats taken 24 hours post-injection, have

levels of these cytokines within the detectable range. This suggests the possibility

that injection causes either an immediate decrease in levels of paw tissue cytokines

which recover with time, occurring sooner in MIA-treated rats than in saline-treated

rats, or that injection causes a slow increase in these cytokines in the paw, with MIA-

treated rats displaying a more rapid response than saline-treated rats. Unfortunately,

as no samples from natve rats were obtained and thus pre-injection levels are

unknown, it is not possible to ascertain which of these is the case. However, once

again, due to the presence of this trend in both MIA- and saline-treated rats, and in

both ipsilateral and contralateral hindpaw skin tissue, it appears that these changes in

cytokine levels have negligible effects on early stage pain behaviour, but the effects

on late stage behaviour, and neuronal responses, are unknown. The changes in

cytokine levels in contralateral hind paw skin, suggests that injection may cause

peripheral systemic effects on cytokines. Analysis of cytokine levels in the fore-paws

could help to ascertain whether this is the case.

The trend for time-dependent changes in cytokine levels does not appear to be

present in the spinal cord, as no patterns in levels of TNFa or IL-6 over time emerged

(IL-1 ~ in the spinal cord were below limits of detection). This suggests the possibility

that an inflammatory reaction beyond the site of injection may be restricted

peripherally, and enhanced as a result of repetitive use, as, following recovery from

injection anaesthesia, the rats are freely moving.
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Cytokine levels have not previously been analysed in the MIA model of OA. In the

aged guinea pig model, levels in blood serum have been analysed and are

approximately 2-100 fold higher than levels seen in the synovial fluid in the present

study (Huebner & Kraus, 2006; Huebner et al., 2007). Cytokine levels in synovial fluid

have, however, been measured in human OA (Scanzello et al., 2009). Levels of

cytokines observed in the synovial fluid in this study are comparable to those in

human OA synovial fluid, although variations in levels between the two separate

analyses in this study are large. In human OA, changes in levels of cytokines are

observed in several joint structures such as synovial fluid, synovial fibroblasts and

chondrocytes .. Much of the research in this area has focused on end-stage OA, and

as such, very little is known about cytokines in early OA. However, in the synovial

fluid, IL-6 has been shown to be elevated in both early and end stage OA, with a trend

to being higher in early stage OA (Scanzello et al., 2009). Both TNFa and IL-113have

also been observed in both early and endstage-OA synovial fluid, with levels, of TNFa

similar at both timepoints while IL-113is more predominantly seen in endstage OA

(Scanzello et al., 2009). However, IL-113was observed in only one out of fifteen early

stage OA synovial fluid samples, and four out of ten endstage-OA synovial fluid

samples. In endstage OA, IL-1 is increased in synovial fibroblasts (Sadouk et al.,

1995), and in ex vivo OA chondrocyte explants, a two-fold increase in IL-1 receptor

density is concomitant with a 3-4 fold decrease in the concentration of IL-1required for

half-maximal stimulation of MMP (Martel-Pelletier et al., 1992). TNFa and TNFa

convertase (TACE - an activator of TNFa) are elevated in endstage-OA cartilage

(Amin et al., 1999), while in the synovial joint cell cultures from end-stage OA patients,

TNFa elevations were present together with increased levels of soluble TNF receptors

(sTNFR) - endogenous inhibitors of TN Fa (Brennan et al., 1995). Changes in cytokine

levels have also been observed in a spontaneous murine model of OA, where IL-6

and IFNy were upregulated in the cartilage of an OA-susceptible strain of mouse

versus a closely related strain, not overly susceptible to development of OA

(Takahashi et al., 1997).
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4.4.3. Elevated mechanically evoked responses of WDR dorsal

horn neurones in MIA-treated rats are indicative of central

sensitisation

Punctuate stimulation of the hindpaw by von Frey monofilaments in

electrophysiological studies outlined here have shown mechanically evoked WDR

neuronal responses in MIA-treated rats to be higher than in saline-treated rats, and

while this did not reach significance in response to lower (8g and 10g) stimuli, a trend

is clearly visible. Indeed, this lack of statistical significance may be explainable by the

observation that treatments eliciting a facilitatory effect in neuronal responses outlined

in this thesis tended to do so with greater variation in intensity than treatments eliciting

an inhibitory effect, thus increasing the range and standard error of values obtained.

While it is still unclear how nociceptive mechanisms relate to nociceptive behaviours

(Costigan et al., 2009), the correlation between neuronal responses and pain

behaviours in a number of studies strongly suggests that elevated sensory neuronal

responses translates to increases in pain-related behaviours (Guindon & Hohmann,

2008; Asiedu et al., 2010; Radtke et al., 2010). Increases in spinal and peripheral

neuronal activity, both spontaneous and evoked, have been described in several

models of OA and RA, including the MIA model itself (Kelly et al., 2007; Kelly et al.,

2008; McDougall et al., 2009; Schuelert & McDougall, 2009).

The presence of both punctuate allodynia and mechanical hyperalgesia in MIA-treated

rats, together with increased mechanically evoked responses of WDR neurones in

these rats suggests that central events may contribute to the changes in hindpaw

withdrawal responses described in the MIA model. Structural alterations in the knee

joint caused by intra-articular injection of MIA may produce changes in sensory input

from mechanical stimulation of the hindpaw. Together with the presence of punctuate

allodynia in the awake rat, the changes in neuronal responses are indicative of the

phenomena of referred pain, frequently observed in human OA in the thigh, leg and

foot following knee-OA, and a phenomenon of central sensitisation (Farrell et al.,

2000; 8ajaj et al., 2001). It is thought that referred pain may be a result of crosstalk
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between afferents from the knee and hindpaw, the cell bodies of which co-localise in

DRGs of L3-L5 (Salo & Theriault, 1997; 8ajrovic & Sketelj, 1998).

Central sensitisation occurs due to a number of mechanisms involving both pre-

synaptic and post-synaptic events (see Chapter 1). Pre-synaptically, the involvement

of increased C-fibre activation and recruitment of AI3-fibres has been implicated.

While no changes in electrically evoked responses of these fibre types were observed

between MIA- and saline-treated rats, this may be because facilitatory effects of MIA

treatment may be difficult to discern following such a large stimulus, particularly with

smaller sample sizes. It may also suggest the activation of descending inhibitory

control of neuronal responses or that sensitisation at the level of peripheral nerve

endings contribute to elevated responses. In the studies presented herein, supra-

maximal electrical stimulation is primarily given to establish that the neurone of

interest is WDR, and so the lack of observed difference between MIA- and saline-

treated rats may be due to the lack of suitability of this type of stimulus for the study of

electrically evoked responses. Electrically evoked responses of sensory neurones

have been demonstrated in the aged (36 months) guinea pig model of OA (McDougall

et al., 2009), as well as in the MIA model itself, with data in the mouse showing

increased electrically evoked responses of A- and C-fibre (Harvey & Dickenson,

2009), and from the rat demonstrating increased mechanical responses of C and Af>-

fibres 14 days after MIA treatment (Schuelert & McDougall, 2008; Kelly et al., 2008).

Phenotypic changes in AI3-fibres have been implicated in the development of central

sensitisation, and after nerve injury these fibres release excitatory amino acids such

as substance P (Noguchi et al., 1995; Malcangio et al., 2000), the expression of which

is usually localised to C-fibres. Elevations in levels of excitatory amino acids (EAAs)

and substance P has been observed in human OA joints, as have altered levels of

receptor expression. Levels of substance P were found to be higher in synovial fluid of

patients with endstage OA than non-OA control subjects (Marshall et al., 1990).

Substance P expression has also been found in subchondral bone sensory nerve

fibres taken from endstage OA (Ogino et al., 2009). Glutamate and aspartate levels

are elevated in synovial fluid in endstage OA (McNearney et al., 2000), and elevated
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levels of these excitatory substances have been shown to be crucial in the

development of hyperalgesia in models of neuropathic pain (Meller et al., 1994).

The NMDA receptor is naturally present in human articular cartilage in vivo (Salter et

al., 2004), however, differences in the receptor subtypes present in normal and

endstage human OA chondrocytes have been observed, resulting in altered receptor

activity (Salter et al., 2004; Ramage et al., 2008). In OA chondrocytes, altered NMDA

receptor activity results in downstream activation of tetrodotoxin-sensitive Na+and

small conductance Ca2+-activated potassium (SK) channels, which does not occur in

normal chondrocytes (Ramage et al., 2008). Increased activation of NMDA receptors

through altered expression and elevated levels of excitatory amino acids (EMs) and

substance P, results in reductions in fibre thresholds, thus increasing neuronal

hyperexcitability (peripheral sensitisation), and has been shown to be of importance in

the development of central sensitisation (Woolf & Salter, 2000) and associated

behavioural deficits (Gao et al., 2005). Upregulation of other receptor types is also

thought to contribute to central sensitisation, including expression of the ion channel

TRPV1 on A- and C-fibres (Hudson et al., 2001; Hong & Wiley, 2005). While the

TRPV1 receptor is typically associated with heat and chemically induced hyperalgesia,

after activation it has been shown to playa role in mechanical hyperalgesia,

particularly in chronic pain states (Ro et al., 2009). Backlabelling staining techniques

have shown an increase in TRPV1-positive cells in L4 DRG in the MIA model

(Fernihough et al., 2005). TRPV1 expression has also been observed in synovial

fibroblasts from patients with symptomatic (endstage) OA, and stimulation of these

synovial fibroblasts in vitro with the TRPV1 receptor agonist capsaicin resulted in

increased IL-6 mRNA expression and protein presence in cell culture supernatants

(Engler et al., 2007).

While it is unknown whether changes in EMs and the NMDA receptor occur following

MIA- injection, it has been shown to occur in other models of OA, including the

anterior cruciate ligament transaction (ACL T) model in rabbits (Jean et al., 2008). In

this model, levels of glutamate and aspartate were elevated (compared to sham)

approximately 2-fold in knee joint dialysates. Protein expression of the
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glutamate/aspartate transporter GLAST, and the glutamate transporter GLT-1 were

also elevated in chondrocytes from ACLT knees (Jean et al., 2008).

4.4.4. Post-stimulus neuronal responses in the MIA model

Anecdotal evidence from human OA sufferers suggests that after painful stimulus, the

sensation of pain lasts longer than in healthy subjects (Parks et al., 2009). To test

whether mechanical stimuli had a longer-lasting post-stimulus effect in the MIA model,

baseline responses of dorsal horn WDR neurones to hind paw stimulation of the

receptive field were characterised in MIA- and saline-treated rats. MIA not only

caused an increase in the total number and duration of post-stimulus events, but also

increased the rate of events, both in the first 10 seconds after stimulation and for the

duration of post-stimulus response, thus making the increase in the number of events

a result not only of the increase in duration but also an increase in response rate.

These increases were seen following stimulation across the whole range of stimulus

intensities used, although significance was not reached for the lowest (8g) weight, and

in some cases following stimulation by the highest, 60g weight. A possible reason for

, this is that following higher intensity noxious stimuli, descending inhibitory controls

play a large role in modulating responses of WDR dorsal horn neurones, preventing

further facilitation of response. Descending inhibition may be stimulated by increased

neurotransmitter release following higher intensity noxious stimuli, and the activation

of different receptor subtypes by these neurotransmitters at higher concentrations,

which can result in anti-nociceptive effects, as outlined in Chapter 1, section 1.1.4.

The increase in post-stimulus responses seen here further implies that central

sensitisation may be responsible in the development of nociceptive responses in this

model. It is also possible that these increases in post-stimulus responses may be

observable and characterised as behavioural changes in the awake rat. Certainly,

during behavioural tests outlined here, it was noticed that rats with lower withdrawal

thresholds to punctuate stimuli also tended to display nociceptive and nocifensive

responses following stimulation, for greater periods of time than rats with withdrawal

thresholds at 15g or even 10g. This was evident by increased shaking, licking and
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general guarding of the paw, displayed by a curled paw position. These rats also

appeared to be slower to replace the paw on the testing cage floor following

withdrawal; unfortunately, this behaviour was not quantified during the study, and

exists only as anecdotal observations. It could however be a viable addition to the

behavioural tests employed in such studies, and has frequently been used in other

pain models as a measure of nociception, including in the formalin model of

inflammatory pain (Roussy et al., 2009) and following intrathecal administration of

excitatory amino acids (Osborne & Coderre, 2003).

4.4.5. Experimental limitations

Analysis of cytokine levels in synovial fluid, hindpaw skin and spinal cord of MIA- and

saline-treated rats proved problematic, with varying levels of cytokines, particularly IL-

113recorded between assays. A number of factors may have contributed to these

disparities in absolute levels, and may go some way to explaining the different results

obtained from the analyses:

Processing and analysis conditions between assays varied. In the first, tissue

samples travelled overnight, unprocessed, on dry ice prior to processing and analysis.

In the second analysis, sample supernatants were prepared (in the case of spinal

cord, while synovial fluid samples were used neat) on the morning of use and

transported for a short period of time «2hours) on dry ice before analysis. While it is

unlikely that these minor differences and temperature fluctuations will be solely

responsible for the variability of results obtained here, they may have been a

contributing factor. Of particular note is that samples in the first analysis were split

over two plates, and fluorescence readings from the control standard concentrations

varied between these two plates. In addition, the levels of cytokines in many of the

samples were below the lowest concentration used for preparation of the standard

curve, so that the vast majority of samples had their cytokine concentrations deduced

by extrapolation of the curve. Whilst the levels presented were within the limits of

detection for the relevant analysis method, extrapolation is subject to the assumption

that the standard curve does not vary below the lowest concentration used to create it
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and that accuracy of fluorescence readings is equal between high and low

concentrations. It is recommended that in future, a number of test runs be conducted

to ascertain the likely cytokine concentrations in tissue samples, and the

concentrations used for preparation of standard curves be adjusted accordingly.

A major source of variability with the synovial fluid samples comes from the method of

synovial fluid withdrawal (see Chapter 2 for details, Barton et al., 2007). Synovial fluid

is a viscous substance, and the small joint space in the knee of a rat made it

impossible to withdraw without an infusion to counteract the vacuum-like conditions. It

was not possible to ascertain what proportion of the extracted liquid was synovial fluid

versus saline, which was used as the infusion agent. It is also a particularly difficult

technique with regards to reproducibility, and time between starting saline infusion and

obtaining synovial fluid outflow can vary considerably, adding to the variation in

synovial fluid: saline proportions in the final obtained samples. Together wit~ the

small sample sizes, this variability caused difficulties in comparisons between the

effects of treatments, particularly as the changes, if any, appear to be very small. It is

therefore recommended that some method development on the technique of synovial

fluid removal should be undertaken to allow reproducible withdrawal of a quantifiable,

undiluted volume of synovial fluid, or ensure complete removal of fluid in a known

amount of diluent. It is also possible that removal and analysis of the entire knee may

prove to be a beneficial in this case, as in the human condition, cytokine level changes

are not only seen in the synovial fluid but also in other knee structures, such as the

chondrocytes and synovial fibroblasts. This technique however, would incur the

obvious disadvantage that analysis of a larger selection of tissue incurs; changes in

analyte levels may occur in discrete regions, and at such low levels that distinguishing

an alteration amongst possibly larger, naturally occurring background levels would not

be possible. It is also recommended that any future analysis in the same vein make

use of more sensitive analytical techniques, possibly with the amplification power

provided by PCR, with larger sample sizes to counter the effects of variability between

a minority of samples on the analytical comparison of particularly small changes.
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4.4.6. Conclusions

Intra-articular MIA injection causes behavioural pain responses representative of the

symptoms reported by OA patients (Hendiani et al., 2003). MIA-treated rats displayed

decreased nociceptive thresholds, changes in weight-bearing and increased

responses of spinal neurones innervating sites distal from the site of injury. The

behavioural data together with electrophysiological data demonstrating increased

mechanically evoked and post-stimulus responses in MIA-treated rats suggests that

central sensitisation contributes to the development of behavioural deficits. This is the

first time that post-stimulus responses of WDR dorsal horn neurones have been

studied in this, or any other model of OA, and its use may prove a useful

pharmacological and experimental paradigm in future work.

I was unable to detect any changes in levels of cytokines that have been highlighted to

be of importance in human OA, in the synovial fluid, hindpaw skin or spinal cord in the

first 24 hours following MIA-injection. Analysis of cytokine levels throughout the

development of the MIA model may provide more insight into any role of cytokines in

pain behaviour. In addition, it is important to remember that cytokine effects can be

altered by levels of soluble receptors, and so quantification of their presence would

also be required to make a rounded judgement on the effects of cytokines in the MIA

model of OA pain. Nevertheless, the data presented suggests that the rapid

development of tactile allodynia and weight-bearing deficits is independent of effects

on those cytokines studied.
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Chapter 5

5.1. Introduction

5.1.1. Effects of spinal COX-2 inhibition on pain processing

COX-2, typically thought of as the inducible isoform of COX, has long been known to

be induced in tissues following inflammation or injury (Xie et al., 1991; Kujubu et al.,

1991; Sirois & Richards, 1992). COX-2 is important in the development of associated

pathologies, such as oedema and pain; peripheral inflammation following intraplantar

injection of complete Freund's adjuvant (CFA) or carrageenan is accompanied by an

increase in local COX-2 mRNA, COX products such as prostaglandins and local

oedema which is COX-2 dependent (Seibert et aI, 1994). COX-2 inhibition can

abolish inflammatory pathologies such as oedema, and abolish acute nociceptive

transmission. Thermal hyperalgesia following intraplantar carrageenan administration

or spinal delivery of substance P or NMDA is suppressed by intrathecal or systemic

inhibition of COX enzymes (Yaksh et al., 2001).

5.1.2. Upregulation of spinal COX-2 and the development of central

pain

Following peripheral inflammation, COX-2 mRNA has been shown to be upregulated

in the spinal cord and dorsal root ganglion (DRG), in a number of animal models,

including the MIA model (Seibert et al., 1994; Hay et al., 1997; Hay & de Belleroche,

1997; Ghilardi etal., 2004; Beloeil etal., 2009; Vanegas & Schaible, 2001;

Prochazkova et al., 2009). Spinal COX-2 upregulation can be rapid, occurring within

the first few hours after inflammation (Vanegas & Schaible, 2001). COX-2 mRNA

upregulation is also observed in DRGs following TNFo and IL-113application in vitro

(Fehrenbacher et al., 2005). Spinal prostaglandin synthesis and activation of a

number of neuropeptides including dynorphin, enkephalin (also preprodynorphin and

preproenkephalin) and c-fos are also increased following peripheral inflammation

(Iadarola et al., 1988; Draisci & ladarola, 1989; Ruda et al., 1988). The increased

levels of COX products, particularly PGE2, is thought to contribute significantly to the

development of spinal hyperexcitability (Ghilardi et al., 2004; Samad et al., 2001,
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Svensson & Yaksh, 2002; Vanegas & Schaible, 2001}. Increases in spinal COX-2 and

prostaglandin synthesis have been shown to be responsible for the rapid (maximal at

6h) development of allodynia in the complete Freund's adjuvant (CFA) model of OA

(Hay et al., 1997), with COX-2 inhibition abolishing the development of allodynia in

these models. Hyperalgesia following intraplantar carrageenan is also COX-2

dependent, and follows increased COX-2 mRNA levels and prostaglandin synthesis in

the lumbar spinal cord within 4h (Hay & de Belleroche, 1997).

Direct application of PGE2 to the spinal cord results in inflammatory-mediated

generation of spinal hyperexcitability (Vasquez et al., 2001). COX inhibitors (non-

specific and both COX-1 or COX-2 specific) block the generation of spinal

hyperexcitability when administered during the development of inflammation,

suggesting that prostaglandins playa vital role in its development. The importance of

COX-2 in this process is evident by the development of behavioural deficits associated

with spinal hyperexcitability; pre-administration of the COX-2 selective inhibitor SC398

prevented the development of both mechanical allodynia and thermal hyperalgesia

following contusion of the T13 spinal segment, over a 4-week course following injury

(Hains et al., 2001). In addition, in neuronal and glial COX-2 knockout mice, while the

extent of peripheral inflammation was unchanged, inflammation-induced COX-2

expression was reduced and mechanical hypersensitivity was abolished (Vardeh et

al.,2009).

5.1.3. The importance of spinal COX-2 in the maintenance of

central pain

Once neuronal hyperexcitability has been established, COX-2 is important in its

maintenance, but these effects are not solely prostaglandin dependent. This has been

demonstrated by a number of studies showing varying efficacy of COX-1 and COX-2

inhibitors on neuronal hyperexcitability following inflammation, irrespective of their

ability to reduce prostaglandin production; in the CFA and kaOlin/carrageenan models

of joint inflammation, once inflammation had been established, only specific COX-2

inhibitors (and not non-specific COX inhibitors, or specific COX-1 inhibitors) were able
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to reduce neuronal hyperexcitability, even though the reduction in spinal PGE2 by

various specificities of COX inhibitor was equal, and did not vary between pre- and

post-development of inflammation (Telleria-Diaz et al., 2010). The lack of effect of

COX-1 inhibition or non-selective COX inhibition on spinal hyperexcitability in

established inflammation was also observed in vivo following spinal PGE2 application

(Vasquez et al., 2001) and in rat spinal cord preparations taken following intraplantar

carrageenan-induced inflammation (Lopez-Garcia & Laird, 1998). It is also

demonstrable in behavioural paradigms - in LPS-induced reactive arthritis, only a

specific COX-2 inhibitor (etoricoxib, oral dose) was able to reduce nociceptive

responses (Bressan & Tonussi, 2008).

In both the CFA and kaolin/carrageenan models of joint inflammation, the importance

of rapid endocannabinoid breakdown by elevated COX-2 expression in increased

neuronal responses has been demonstrated in vivo (Telleria-Diaz et a/., 2010). L-

745,337 (COX-2 inhibitor)-mediated reduction in neuronal response was abolished

with co-administration of the CB1 antagonist AM251 (Telleria-Diaz et al., 2010). Spinal

AM251 alone in these models did not alter spinal neuronal responses, suggesting

either the lack of endocannabinoid tone in this model, or its presence concomitant with

an increased rate of endocannabinoid metabolism, possibly by the upregulation of

COX-2 (Telleria-Diaz et al., 2010; Jhaveri et al., 2007).

Nimesulide, which preferentially inhibits COX-2 and importantly does not inhibit FAAH,

would be useful in elucidating the importance of COX-2-mediated endocannabinoid

metabolism in central sensitisation. Many of the studies conducted with nimesulide

focus on its anti-inflammatory effects, however, some research focussing on

anti nociceptive properties have also been published, using the CFA model and

formalin models of inflammatory pain (Gineste et al., 2003, Bianchi & Broggini, 2002).

Given intra peritoneally, 2.9mg/kg nimesulide completely inhibited thermal hind paw

hyperalgesia following intravenous administration of formalin through the tail vein, and

reduced mechanical hyperalgesia following intraplantar injection of CFA (Gineste et

al.,2003). Nimesulide also showed significant analgesic effects in tail-flick and
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formalin tests under baseline conditions, and counteracted nitroglycerin-induced

hyperalgesia in both tests in the rat (Tassorelli et al., 2003).

5~1.4.Aim

The aim of this chapter was to compare the effects of spinal and systemic nimesulide

on mechanically evoked responses of WDR neurones in a model of chronic pain,

using the MIA model of osteoarthritis pain in vivo.
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5.2. Methods

5.2.1. Induction of the MIA model of osteoarthritis pain

For intra-articular injection, sodium iodoacetate (MIA, Sigma-Aldrich, UK), was

prepared freshly on the day of injection by dissolution in sterile saline. A dose of 1mg

MIA in 50l-lL sterile saline or 50l-lL sterile saline alone for control groups was

administered per rat, based on previous work done in this lab (see appendix). The

experiments were carried out on male Sprague-Dawley rats weighing 130-150g at the

beginning of the study. For detailed methodology of anaesthesia and injection of MIA

see Chapter 2. The experimenter was blinded to all treatments.

5.2.2. In vivo electrophysiology and data acquisition

For detailed methodology of anaesthesia, surgery and identification and recording of

WDR neurone responses, see Chapter 2. For most of the experiments in this chapter,

one WDR neurone from the dorsal horn of the spinal cord was studied per rat. Where

more than one neurone was studied, this has been clearly stated. Effects of

nimesulide on both during- and after-stimulus neuronal responses were studied.

5.2.3. Spinally administered nimesulide or vehicle and

mechanically evoked WDR neurone responses in MIA- and saline-

treated rats

Nimesulide was freshly prepared in 3% Tween in physiological saline in doses of 3,

10, 25 and 1001-19/501-lL.Doses were chosen to allow comparison to the range of

doses studied in the narve preparation (Chapter 3), including a low, minimally-effective

dose in the natve rat (3I-1g),a maximal and supramaximal dose (251-1gand 100l-lg), and

an intermediary dose (1Ol-lg)sufficiently distant from the 3 and 251-1gdoses so to avoid

interference between doses. Nimesulide or vehicle was administered directly to the

spinal cord as described previously (Chapter 2). The effects of nimesulide on

mechanically evoked responses of WDR neurones were examined every 10 minutes
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for 40 minutes, based on findings of the mean time point of maximal effect of spinally

administered nimesulide in narve rats occurring 30 minutes post-administration

(Chapter 3). The drug was then carefully removed from the cord using tissue paper

and a higher dose of nimesulide (or sequential dose of vehicle) was added. Results

from saline-treated rats with spinal vehicle (n=6) were also used for experiments

detailed in Chapter 6 to reduce the total number of rats used and avoid replication of

experiments inline with the 3R principle (reduce, reuse, refine). For these

experiments, each spinal application of vehicle was followed for 60 minutes before

removal and application of the next dose. Assurances were made that this did not

affect experimental data (see results, section 5.3.4). In total, four groups of rats were

studied; MIA-treated rats dosed with spinal nimesulide (n=6), or vehicle (n=6), saline-

treated rats dosed with spinal nimesulide (n=6) or vehicle (n=6).

5.2.4. Subcutaneous nimesulide or vehicle and mechanically

evoked responses of WDR neurones in MIA and saline-treated rats

For subcutaneous administration, nimesulide was prepared freshly on the day of

study. Nimesulide was dissolved directly in 3% Tween in physiological saline, to

create 1mg/kg and 10mg/kg doses, vortexed and ultrasonicated for 15 minutes,

ensuring it had entered solution. Drugs were administered subcutaneously under the

scruff of the neck in a 2.5mL volume, using a 25 gague needle (BD Microlance,

Drogheda, Ireland). No studies with subcutaneous administration of nimesulide have

been reported, however, the ED50 of oral nimesulide on hyperalgesia in the adjuvant

arthritis model in rats is 2.4mg/kg. Recommendations for studies with systemic use of

nimesulide in arthritic pain are for dosing between 1-1Omg/kg/day (Prof K.D.

Rainsford, Shefield Hallam University, personal communication). Since nimesulide

has not previously been applied subcutaneously under similar experimental

conditions, a pilot study was performed in MIA- and saline-treated rats (n=8, 5 of

which had been used earlier in the day for study into the effects of spinally

administered CB1- or CB2-receptor antagonist (Chapter 6) following a 1-2 hour

washout period, and after stable mechanically evoked responses of WDR neurones

had again been obtained, and 3 MIA-treated rats which had not previously been used
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in any other study), 2 hours per dose. 1mg/kg and 10mg/kg doses were then chosen

for further study. Nimesulide was injected subcutaneously as described before, and

the effects on mechanically evoked responses of WDR neurones were examined

every 10 minutes for 120 minutes, based on findings of the mean time point of

maximal effect from the preliminary study. The higher dose of nimesulide (or

sequential dose of vehicle) was then administered. Four groups of rats were studied;

MIA-treated rats dosed with subcutaneous nimesulide (n=6), or vehicle (n=6), saline-

treated rats dosed with subcutaneous nimesulide (n=6) or vehicle (n=6). The

clearance of intravenously- and orally administered nimesulide is much slower than

the time between doses in this study (Rainsford et el., 2005), and is unlikely to be

much faster following subcutaneous administration. To reflect this fact, doses of

1mg/kg and 11mg/kg are displayed on graphical representations of these data.

5.2.5. Spinal or subcutaneous nimesulide and post-stimulus WDR

neuronal responses in MIA- and saline-treated rats

The effects of both spinal and subcutaneous nimesulide on post-stimulus responses

was also studied, comparing effects to pre-drug post-stimulus duration of response,

response count, and response rate, as described in Chapter 4. The total duration of

post-stimulus response, rate of post-stimulus response over the entire response

duration, rate of post-stimulus response over the first 10 seconds after stimulus

removal, and total stimulus count were analysed.

5.2.6. Statistical analyses

Data are expressed as a mean percentage of the pre-drug response ± standard error

of the mean (SEM). Statistical analyses were performed using a non-parametric

Mann-Whitney test or Kruskal-Wallis test, where appropriate. Differences with P

values <0.05 were considered statistically significant.
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5.3. Results

Mean depths of recordings were as follows: spinal nimesulide studies = 843 ± 34IJm

for saline-treated rats (n=11) and 785 ± 46IJm for MIA-treated rats (n=11);

subcutaneous nimesulide studies = 876 ± 30IJm for saline-treated rats (n=11-) and 906

± 35IJm for MIA-treated rats (n=11). There were no significant differences between

the depths of recording in any of the groups of neurones studied (non-parametric

Mann-Whitney test, all P>0.05).

5.3.1. Effects of intra-articular injection of MIA or saline on

nociceptive responses in awake rats

In order to ensure that intra-articular injections of MIA were correctly placed and that

the MIA model of OA pain progressed as previously described (Chapter 4), the

behavioural responses of each rat was compared to that of all MIA- and saline-treated

rats used throughout this thesis (presented together in Chapter 4, section 4.3.1).

Injection of 1mg MIA in 50IJL saline significantly reduced weight borne on the

"ipsilateral hindlimb, compared to saline-treated rats (Figure 5.1A and 8) in a biphasic

manner, with the first phase clearing by day 9 post-injection. MIA also caused a

significant decrease in withdrawal threshold to punctuate stimuli of the plantar surface

of the ipsilateral hindpaw versus contralateral, whilst there was no difference in

withdrawal thresholds of saline ipsilateral hindpaw versus contralateral (Figure 5.2A

and 8). There were no differences in behaviour for groups of rats which subsequently

received spinal or subcutaneous nimesulide (one-way ANOVA (Kruskal Wallis) with

post-hoc Dunn's test, all P>0.05). Results from both weight bearing and withdrawal

threshold studies were comparable to those obtained from all MIA- and saline-treated

rats presented in Chapter 4 (one way ANOVA (Kruskal-Wallis) with post-hoc Dunn's

test, all P>0.05).
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Figure 5.1 Reduced weight-bearing on ipsilateral hindlimb of rats receiving
intra-articular injection of 1mg MIA in 50IJL saline (black squares, n=12 per
electrophysiological study group) versus 50IJL saline alone (open circles, n=12
per electrophysiological study group), over a 28-day period post-injection. A,
rats used in spinal nimesulide electrophysiological studies; B, rats used in
subcutaneous nimesulide electrophysiological studies. Statistical analysis comparing
the effects of saline to MIA on weight-bearing through the ipsilateral hindlimb was
performed using a one-way ANOVA Kruskal-Wallis, with post-hoc Dunns test, *,
P<O.05; **, P<O.01; ***, P<O.005. Weight-bearing through the ipsilateral hindlimb is
expressed as a mean percentage of the weight borne through the contralateral
hindlimb, averaged from 3 readings per rat, per time-point, ± SEM. There were no
significant differences in weight-bearing between rats used in spinal studies and those
used in subcutaneous studies.
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Figure 5.2 Reduced thresholds for withdrawal to mechanical stimuli of the
ipsilateral hindpaw of rats receiving intra-articular injection of 1mg MIA in 50jJL
saline (black squares, n=12 per electrophysiological study group) versus 50jJL
saline alone (open circles, n=12 per electrophysiological study group), over a
28-day period post-injection. A, rats used in spinal nimesulide electrophysiological
studies; B, rats used in subcutaneous nimesulide electrophysiological studies.
Statistical analysis comparing the effects of saline to MIA on withdrawal thresholds of
ipsilateral and contralateral hindpaw was performed using a one-way ANOVA Kruskal-
Wallis, with post-hoc Dunns test, **, P<O.01; ***, P<O.005. Data are expressed as the
mean difference in grams between withdrawal thresholds of the ipsilateral and
contralateral hind paws ± SEM. There were no significant differences between
ipsilateral thresholds of MIA-treated rats used in spinal studies and those used in
subcutaneous studies.
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5.3.2. Effects of intra-articular injection of MIA on mechanically

evoked responses of WDR dorsal horn neurones in the spinal cord

To further ensure the integrity of induction of the MIA model of OA pain in the rats

used in electrophysiological studies in this chapter, the effects of MIA and saline

injection on baseline mechanically evoked responses of WDR dorsal horn neurones of

each rat was compared to that of all MIA- and saline-treated rats used throughout this

thesis (presented together in Chapter 4, section 4.3.1). MIA caused a trend to

increase evoked responses of WDR neurones (Figure 5.3), particularly in response to

higher stimuli, which reached significance following 26g stimulation in the group used

for subcutaneous nimesulide electrophysiological studies (Figure 5.38, non-parametric

Mann-Whitney, P<0.05). Neuronal responses differing by more than 2 standard

deviations from the mean were excluded from analysis. In total this happened in 4

instances of 120 values obtained from saline-treated rats, and 4 instances of 120

values obtained from MIA-treated rats. There were no significant differences between

these data and those presented in Chapter 4 (non-parametric Mann-Whitney test,

P>0.05).
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Figure 5.4 Post-stimulus responses of WOR dorsal horn neurones in saline-
(n=12) and MIA- (n=12) treated rats, following the removal of mechanical stimuli
from the hindpaw receptive field. A, duration of post-stimulus neuronal response
(s); B, rate of post-stimulus neuronal response (spikes/s) for the total duration of
response; e, rate of post-stimulus neuronal response (spikes/s) in the first 10 seconds
following stimulus removal; 0, total post-stimulus neuronal response count. Left
column ("spinal studies') shows data from rats used in spinal nimesulide
electrophysiological studies; right column ("subcutaneous studies") shows data from
rats used in subcutaneous nimesulide electrophysiological studies. Data are
expressed as mean ± SEM. Statistical comparisons were performed using a non-
parametric Mann-Whitney test; *, P<O.05; **, P<0.01.
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Chapter 5

5.3.4. Effects of spinal nimesulide or vehicle on mechanically

evoked responses of WDR neurones in MIA- and saline-treated

rats

In this study, 24 neurones from 27 rats were studied. Data from 3 experiments were

excluded: Neurone 1, a blood clot on the cord could not successfully be removed,

obscuring access of the drug to the spinal cord; neurone 2, behavioural data

suggested that the MIA injection was misplaced; neurone 3, as the experiment

progressed it became apparent that two cells were being detected.

Spinal nimesulide dose-dependently attenuated 8-26g-evoked responses of WDR

dorsal horn neurones in MIA-treated rats compared to time-matched vehicle controls

(Figure 5.5). Spinal nimesulide did not attenuate 60g-evoked responses of spinal

neurones (Figure 5.5E), however, earlier in the course of the experiment (lower doses)

nimesulide prevented the increase in response following repeated stimulation (P<0.05,

10l-lg nimesulide versus vehicle alone). Maximal effects of nimesulide in MIA-treated

rats occurred at 31.3 ± 0.7 minutes post-drug administration.

In saline-treated rats, spinal nimesulide produced a trend to attenuate all mechanically

evoked responses of WDR neurones compared to vehicle controls, significantly so

following 15, 26 and 60g stimuli (Figure 5.6). Maximal effects of nimesulide occurred

at 32.8 ± 0.7 minutes. Effects of spinal nimesulide on 8-26g-evoked responses were

comparable in saline- and MIA-treated rats. However, 60g-evoked responses of

neurones were attenuated by nimesulide in saline- but not MIA-treated rats (Figure 5.6

inset). The maximal effect of nimesulide was observed with 251-1gin both groups.

Spinal administration of vehicle had no effect on mechanically evoked responses of

WDR neurones in either saline- or MIA-treated rats. In MIA-treated rats, each vehicle

dose was administered for 40 minutes while in saline-treated rats each dose was

administered for 60 minutes. Nevertheless, no differences were observed in their

time-courses (Figure 5.7).

149



Chapter 5

Ispinal studiesl

A.
c::::Jsaline (n=12)
_MIA (n=12)

von Frey stimulus (g)

c::::JsaRne(n=12)
_MIA (n=12)

von Frey stimulus (g)

c::::Jsaline (n=12)
_MIA (n=12)

D.
c::::Jsaline (n=12)
_MIA (n=12)

8 10 6015 26
von Frey stimulus (g)

Isubcutaneous studiesl

A.

26
von Frey stimulus (g)

~iB.
0'"
~ Q. 15.0
Cl> "'Cc 12.
., 0
:>;0
"5 I! 10.
E :>
U ~ 7.• ca
'fi S 5.
Q.-'0: 2.Sa
E ~ o. 8

*

10 15 26

c::::Jsaline (n=12)
_MIA (n=12)

60

c::::Jsaline (n=12)
_MIA (n=12)

von Frey stimulus (g)

von Frey stimulus (g)

D.

*

60

c::::Jsaline (n=12)
_MIA (n=12)

c::::Jsaline (n=12)
_MIA (n=12)

60

Figure 5.4 Post-stimulus responses of WDR dorsal horn neurones in saline-
(n=12) and MIA- (n=12) treated rats, following the removal of mechanical stimuli
from the hindpaw receptive field. A, duration of post-stimulus neuronal response
(s); B, rate of post-stimulus neuronal response (spikes/s) for the total duration of
response; C, rate of post-stimulus neuronal response (spikes/s) in the first 10 seconds
following stimulus removal; 0, total post-stimulus neuronal response count. Left
column ("spinal studies') shows data from rats used in spinal nimesulide
electrophysiological studies; right column ("subcutaneous studies") shows data from
rats used in subcutaneous nimesulide electrophysiological studies. Data are
expressed as mean ± SEM. Statistical comparisons were performed using a non-
parametric Mann-Whitney test; *, P<0.05; **, P<0.01.
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Chapter 5

5.3.4. Effects of spinal nimesulide or vehicle on mechanically

evoked responses of WDR neurones in MIA- and saline-treated

rats

In this study, 24 neurones from 27 rats were studied. Data from 3 experiments were

excluded: Neurone 1, a blood clot on the cord could not successfully be removed,

obscuring access of the drug to the spinal cord; neurone 2, behavioural data

suggested that the MIA injection was misplaced; neurone 3, as the experiment

progressed it became apparent that two cells were being detected.

Spinal nimesulide dose-dependently attenuated 8-2Sg-evoked responses of WDR

dorsal horn neurones in MIA-treated rats compared to time-matched vehicle controls

(Figure 5.5). Spinal nimesulide did not attenuate SOg-evoked responses of spinal

neurones (Figure 5.5E), however, earlier in the course of the experiment (lower doses)

nimesulide prevented the increase in response following repeated stimulation (P<0.05,

10l-lg nimesulide versus vehicle alone). Maximal effects of nimesulide in MIA-treated

rats occurred at 31.3 ± 0.7 minutes post-drug administration.

In saline-treated rats, spinal nimesulide produced a trend to attenuate all mechanically

evoked responses of WDR neurones compared to vehicle controls, significantly so

following 15, 2S and SOgstimuli (Figure 5.S). Maximal effects of nimesulide occurred

at 32.8 ± 0.7 minutes. Effects of spinal nimesulide on 8-2Sg-evoked responses were

comparable in saline- and MIA-treated rats. However, SOg-evoked responses of

neurones were attenuated by nimesulide in saline- but not MIA-treated rats (Figure 5.S

inset). The maximal effect of nimesulide was observed with 251-1gin both groups.

Spinal administration of vehicle had no effect on mechanically evoked responses of

WDR neurones in either saline- or MIA-treated rats. In MIA-treated rats, each vehicle

dose was administered for 40 minutes while in saline-treated rats each dose was

administered for SOminutes. Nevertheless, no differences were observed in their

time-courses (Figure 5.7).
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Chapter 5

5.3.5. Effects of spinal nimesulide on post-stimulus WDR neuronal

responses in MIA-treated rats

The variability of pre-drug post-stimulus responses of MIA- and saline-treated rats

used in this study highlighted problems with low sample sizes when studying post-

stimulus responses (Figure 5.4). Overall, there were no differences in the effects of

nimesulide on any of the post-stimulus response paradigms (duration of response,

rate of response over total duration, rate of response in first 10s, and total response

count) in MIA- or saline-treated rats. The effects of nimesulide versus vehicle on post-

stimulus responses in MIA- and saline-treated rats are shown in Figure 5.8.
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Chapter 5

5.3.6. Effects of subcutaneous administration of nimesulide or

vehicle on mechanically evoked responses of WDR neurones in

MIA- and saline-treated rats

In MIA-treated rats, subcutaneously administered nimesulide significantly attenuated

mechanically evoked responses of WDR dorsal horn neurones compared to time-

matched vehicle controls (Figure 5.9). Responses to all intensities of von Frey stimuli

were robustly and dose-dependently attenuated. 1mg/kg nimesulide produced its

maximal effect 84.83 ± 5.72 minutes post-drug administration, while the maximal

effect of 10mg/kg nimesulide occurred 95.67 ± 4.98 minutes post-drug administration.

The 80- and 1OO-minute time point of the first and second dose of vehicle respectively,

were used for comparison.

As can be seen from a time-course comparing the effects of subcutaneous nimesulide

to that of vehicle in MIA-treated rats, nimesulide appears to have a biphasic effect,

seen particularly clearly in response to lower stimuli (8, 10 and 15g, Figure 5.10).

Peak effects occurred 34.67 ± 2.24 minutes and 32.33 ± 1.96 minutes after

administration in the first phase, and 97.50 ± 3.19 minutes and 103.83 ± 1.97 minutes

after administration in the second phase, for the 1mg/kg and 10mg/kg doses

respectively. The inhibitory effects of nimesulide were higher in the second phase

than in the first, although this difference did not reach significance (non-parametric

Mann-Whitney, all P>0.05).

In saline-treated rats, both subcutaneous nimesulide and vehicle treatments facilitated

8-15g-evoked WDR dorsal horn neurones from pre-drug responses (repeated

measures ANOVA with post-hoc Dunnet's test, Figure 5.11). There were no

significant differences between the effects of nimesulide versus vehicle (area under

the curve, non-parametric Mann-Whitney test, all P>0.05) on evoked responses

(Figure 5.12).
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*
c::J saline + vehicle dose 1

Q)
• ,@saline + nimesulide 1mg/kgtI> tt::

0 t * t c:::J saline + vehicle dose 2c. ttI>
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von Frey stimulus (9)

Figure 5.11 Mean maximal facilitatory effects of subcutaneously administered
nirnesulide or vehicle on mechanically evoked responses of WDR dorsal horn
neurones in saline-treated compared to pre-drug responses (dashed line). Data
are expressed as mean percentage of pre-drug rate of response ± SEM.
Comparisons of the effects of nimesulide or vehicle to pre-drug responses were
performed using repeated measures ANOVA with post-hoc Dunnet's test, *, P<O.05;
**, P<O.01. n=6 neurones in 6 rats per group.
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Figure 5.12 Area under curve of time-courses of subcutaneous nimesulide
versus vehicle on mechanically evoked responses in saline-treated rats.
Responses to both non-noxious and noxious von Frey stimuli were tested. Data are
expressed as an area under the curve of the mean percentage of pre-drug firing rates
± SEM. Statistical analyses comparing the effects of nimesulide to vehicle treatment
were performed using a non-parametric Mann-Whitney test (all P>O.05), n=6
neurones in 6 rats per group.
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5.3.7. Effects of subcutaneous nimesulide or vehicle on post-

stimulus responses of WDR neurones in MIA- and saline-treated

rats

In MIA-treated rats, nimesulide attenuated post-stimulus responses in all four

paradigms compared to pre-drug controls (repeated measures ANOVA with post-hoc

Dunnet's test, Figure 5.13). The mean times of maximal effect of nimesulide in MIA-

treated rats in all four paradigms of post-stimulus response are shown in Table 5.1. In

many cases, post-stimulus responses following nimesulide administration fell to zero

over the course of the study. Following subcutaneous administration of vehicle, post-

8+10g-stimuli responses were facilitated, compared to pre-drug control values for all 4

measures, although these also did not reach significance (repeated measures ANOVA

with post-hoc Dunnet's test). Higher weight evoked responses following 15-60g

stimuli were not altered by vehicle, compared to pre-drug values. The effects of

subcutaneous nimesulide and vehicle on post-stimulus responses in MIA-treated rats

are shown in Figure 5.13. The results from all four measures of post-stimulus activity

are presented in Table 5.2.

Table 5.1 Mean time of maximal effect of nimesulide on post-stimulus responses
of WDR dorsal horn neurones in MIA-treated rats.

nimesulide Time
.(mg/kg) (minutes}_

Duration of post-stimulus 1 80.6 ± 6.1

neuronal response 11 73.5 ± 4.5

Rate of post-stimulus neuronal 1 83.5 ± 4.7

response (total duration) 11 75.1 ± 4.9

Rate of post-stimulus neuronal 1 83.8 ± 4.8

response (first 10 seconds) 11 73.6 ± 4.6

Post-stimulus neuronal response 1 81.0 ± 4.9

count 11 72.5 ± 4.7
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Cl) 100 c::::::::J vehicle dose 1-CIS _ nimesulide 1mg/kg...
Cl)
t/) 1::::::-1 vehicle dose 2c
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Figure 5.13 Rate of post-stimulus neuronal response (total duration) ofWDR
neurones in MIA-treated rats following subcutaneous administration of
nimesulide or vehicle. After nimesulide administration, post-stimulus responses
were attenuated compared to pre-drug responses (dashed line). After vehicle
administration, post-8+10g-stimulus responses showed a trend towards facilitation
compared to pre-drug responses. Data are expressed as mean percentage of pre-
drug rate of response ± SEM. Comparisons of the effects of nimesulide or vehicle to
pre-drug responses were performed using repeated measures ANOVA with post-hoc
Dunnet's test, *, P<O.05; **, P<O.01. Comparisons of the effects of nimesulide versus
vehicle were performed using a non-parametric Mann Whitney test, #, P<O.05; ##,
P<O.01. n=6 neurones in 6 rats per group.
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Chapter 5

In saline-treated rats, as with mechanically evoked responses, both subcutaneous

nimesulide and vehicle facilitated all four measures of post-stimulus responses

compared to pre-drug responses. This effect was greatest following 8-15g stimuli,

corresponding with observations in stimulus-evoked responses. The effects of

nimesulide on post-stimulus response in saline-treated rats are shown in Figure 5.14.

There were no differences between the maximum facilitation of post-stimulus neuronal

responses after subcutaneous nimesulide compared to the effects of time-matched

vehicle controls (Kruskal-Wallis, all P>O.05). Effects of subcutaneously administered

nimesulide and vehicle in MIA- and saline-treated rats on post-stimulus responses of

WDR neurones were comparable to effects seen on stimulus-evoked response.

*Cl)-ca...
Cl)
o
g 4000c.
o
~ 3000
tn
2 2000
'C
I

~ 1000~ O'~--~--~~--~--~--~~~~~~~
*

c::J vehicle dose 1
nimesulide ~mg/kg

c:::J vehicle dose 2
_ nimesulide 11mg/kg

* .*

*
*

8 10 15 26 60
von Frey stimulus (g)

Figure 5.14 Mean maximal effects of subcutaneous nimesulide or time-matched
vehicle on post-stimulus responses of WDR neurones in saline-treated rats.
After both nimesulide or vehicle administration, post-stimulus responses were
facilitated compared to pre-drug responses. Data are expressed as mean percentage
of pre-drug rate of response ± SEM. Comparisons of the effects of nimesulide or
vehicle to pre-drug responses were performed using repeated measures ANOVA with
post-hoc Dunnet's test, *, P<O.05; **, P<O.01. Comparisons of the effects of
nimesulide versus vehicle were performed using a non-parametric Mann-Whitney test,
with no significant differences observed. n=6 neurones in 6 rats per group.
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5.4. Discussion

The present study aimed to determine the effects of spinal and subcutaneous

application of nimesulide on WOR dorsal horn neuronal responses in saline- and MIA-

treated rats. Spinal nimesulide dose-dependently attenuated innocuous and noxious

mechanically evoked responses of neurones in both saline- and MIA-treated rats.

Subcutaneous nimesulide dose-dependently attenuated innocuous and noxious

mechanically evoked responses in MIA-treated rats, and also produced a trend to

reduced post-stimulus responses. However, in saline-treated rats, subcutaneous

nimesulide did not attenuate mechanically evoked responses of OH neurones, in fact,

both nimesulide and vehicle facilitated evoked- (Significantly) and post-stimulus- (non-

significantly) responses of OH neurones.

5.4.1. Validation of model induction

In order to ensure that MIA injections were correctly placed, and in order to ascertain

that electrophysiological studies in MIA rats were a true representation of the model,

behavioural and electro physiological characteristics of these rats were compared to

those from all MIA- or saline-treated rats used throughout this thesis (see Chapter 4).

Behavioural data from hind paw weight-bearing and von Frey withdrawal thresholds

from each rat used were comparable to, and did not differ statistically from, the mean

response seen within their group. Neuronal responses in saline- and MIA-treated rats

were also comparable to those seen previously, both during stimulation and in the four

paradigms of post-stimulus response, with MIA-treated rats displaying higher

responses than saline-treated rats. The similarity between data obtained from saline-

and MIA-treated rats used for study in this chapter to those used throughout the thesis

show them to be representative of the MIA model of OA pain, and their controls.
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5.4.2. Mechanisms of attenuation of neuronal responses following

spinal COX-2 inhibition

Mechanically evoked responses of WDR dorsal horn neurones before spinal

nlrnesulide or vehicle application were larger in MIA-treated rats, compared to saline-

treated rats. In MIA-treated rats, spinal nimesulide dose-dependently attenuated 8-

2Bg-evoked responses of WDR dorsal horn neurones compared to time-matched

vehicle controls, while in saline-treated rats nimesulide attenuated 8-BOg-evoked

responses of neurones. The relative levels of inhibition of neuronal responses by

spinal nimesulide following 8-2Bg stimuli were comparable in MIA- and saline- treated

rats, as well as in narve rats as seen in Chapter 3 (Table 5.3).

Table S.3 Mean maximal effects of spinal nimesulide on 10+60g-evoked
r f WDR d I h ". r d MIA t t d tesponses 0 orsa orn neurones In naive, sa me, an - rea e ra s.

% pre-drug control with
Stimulus Treatment spinal nimesulide 100J.l9/SOJ.lL
10g nalve 37.5 ± 8.0

saline 5B.5 ± 1B.5
MIA 41.3±B.7

60g na'ive 57.2 ± 9.2
saline 55.5 ± 4.0
MIA 82.8 ± 7.B *..Data are expressed as mean percentage of pre-drug firing rates ± SEM. Statistical

analyses comparing the effects of nimesulide in saline- and MIA-treated rats to the
effects in natve rats were performed using one-way ANOVA (Kruskal Wallis) with post-
hoc Dunn's test; *, P<0.05. n=B neurones in B rats per group.

The inhibitory effects of nimesulide support a role for COX-2 products in mediating

responses to both innocuous and noxious stimuli. The lack of effect of nimesulide on

BO-g evoked responses in MIA-treated rats suggests that COX-2 inhibition is unable to

modulate the responses following frank noxious stimuli. The reason for this may be

that higher doses of nimesulide are required to block the contribution of COX-2 in

mediating this response. However, it may also suggest that COX-2 products increase

neuronal responses to low-intensity stimuli but have little effect on already high

neuronal responses following supramaximal-intensity stimuli. The ability of blockade

of COX-2 to alleviate low weight evoked responses indicates a role of COX-2 products

in the facilitation of 8-2Bg, but not Bag-evoked responses. This may be due to a

sensitising effect of COX-2 on low threshold Aj3, A"6and C-fibres.
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Chapter 5

Upregulation of low threshold mechanoreceptor activity is commonly seen in many

models of chronic pain (see Chapter 1) and has been attributed to a number of factors

including increased expression of sodium channels, voltage gated calcium channels -

particularly the a20-1 subunit (Matsumoto et al., 2006; Luo et al., 2002), and vanilloid

receptors, as well as the increased production and release of several neuropeptides

including CGRP and substance P (Noguchi etal., 1995; Miki etal., 1998; Ma etal.,

1999). However, much conflicting evidence exists in this area (Alien et al., 1999;

Malcangio et al., 2000; Hughes et al., 2007) suggesting that the effects are specific to

the type of nerve injury sustained (Malcangio et al., 2000, Devor et al., 2005). The

data presented here suggests that nimesulide has an inhibitory effect on central

sensitisation, reducing responses of post-synaptic neurones to elevated primary

afferent fibre inputs. COX-2 inhibition has previously been shown to reverse

behaviours associated with central sensitisation in several models, including chronic

constriction injury and partial ligation models of neuropathic pain (Bingham et al.,

2005).

5.4.3. Peripheral COX-2 upregulation contributes to pain

mechanisms in the MIA model of OA

In MIA-treated rats, subcutaneous nimesulide dose-dependently inhibited

mechanically evoked responses of WDR dorsal horn neurones compared to time-

matched vehicle controls. Subcutaneous nimesulide did not have an inhibitory effect

in saline-treated rats. These novel effects of systemic nimesulide in MIA- versus

saline-treated rats would suggest that effects are unlikely to be mediated by a spinal

site of action, as spinal nimesulide attenuated neuronal responses equally in MIA- and

saline-treated rats. A possible explanation is that subcutaneously administered

nimesulide acts to inhibit COX-2 in the joint, where COX-2 is upregulated following

MIA injection (Dumond et al., 2004). COX-2 is also upregulated in human end-stage

OA within the joint tissues, including cartilage, synovial tissue and subchondral bone

(Brenner et al., 2004; Amin et al., 1997; Ogino et al., 2009), and in subchondral bone

in a naturally occurring canine model of OA (Lascelles et al., 2009). The findings
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presented in this thesis support a role for non-spinal COX-2 in contributing to

established pain mechanisms in the MIA model.

It is also' possible that following subcutaneous administration, some of the nimesulide

reaches the spinal cord, where COX-2 is upregulated in MIA-treated rats, reaching a

maximum at day 5 and maintaining thereafter (Prochazkova et a/., 2009). A spinal site

of action for subcutaneously administered nimesulide together with spinal COX-2

upregulation in MIA-treated rats may explain the differential effects of nimesulide on

neuronal responses seen in MIA- and saline-treated rats. Subcutaneously

administered nimesulide may also act supraspinally to attenuate neuronal responses.

Systemically administered nimesulide has been shown to reach the brain (see section

5.4.4), where COX-2 is expressed by excitatory neurones, and is found post-

synaptically in several areas including the cerebral cortex, amygdala, hippocampus,

brainstem, and dorsal raphe nucleus (Breder et a/1995; Kaufmann et a/., 1996).

COX-2 is a common target for OA-pain treatments, with the use of celecoxib and

lumiracoxib commonplace in the clinic (Stengaard-Pedersen et a/., 2004; Tannenbaun

et a/., 2004). COX-2 inhibition has also been shown to attenuate OA-related pain

behaviour in the MIA model, with repeated dosing with the COX-2 inhibitor celecoxib

and the non-selective COX-inhibitor indomethacin reducing alterations in weight-

bearing on the ipsilateral side (Pomonis et a/., 2004). However, in this previous study,

acute systemic administration did not alleviate weight-bearing deficiencies, suggesting

that the effects of peripheral COX-2 upregulation on nociceptive transmission of

primary afferent fibres do not contribute greatly to behavioural deficits. Chronic dosing

may allow drug accumulation and COX inhibition at more central sites such as the

brain or spinal cord. Here, upregulation of COX-2 contributes to central sensitisation

mechanisms, with the time-course of COX-2 gene expression in the spinal cord

following intra-articular MIA injection mirroring that of the development of pain

behaviours (Prochazkova et a/., 2009)(see next section).
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5.4.4. Possible secondary mechanisms of subcutaneous-

nimesulide-mediated attenuation of evoked responses of WDR

dorsal horn neurones in the MIA model of OA

Visual examination of the time-courses of subcutaneously administered nimesulide

reveals a possible two-phase mode of action of nimesulide on mechanically evoked

responses of WDR dorsal horn neurones in MIA-treated rats. While these

observations were not statistically significant, the errors (particularly following 26-60g

stimuli) at each timepoint following the second dose of nimesulide are quite small,

suggesting this trend to be a real effect of nimesulide and not due to variability. It

suggests that nimesulide may act in two distinct compartments and the time between

phases of inhibitory action is a factor of nimesulide's latency of distribution. Based on

what is known of the distribution of nimesulide throughout tissues following i.v. and p.o

administration, it is expected that following subcutaneous administration, nimesulide

distributes throughout peripheral tissues over a period of 1-4 hours (Rainsford, 1999,

and personal communication). Data on its distribution within the spinal cord following

systemic administration is unavailable, however as the volume of distribution of

nimesulide is quite low (-10% body weight, Bernareggi & Rainsford, 2005), and

following the observation in these studies that at these doses, subcutaneous

nimesulide does not produce an effect at the spinal cord within 4 hours, it is expected

that the primary effects of nimesulide under the current study conditions will occur in

the periphery. After systemic administration very low concentrations of nimesulide can

be found in the brain (Bernareggi & Rainsford, 2005), and nimesulide has been shown

to inhibit neuronal activation in the brain after systemic (i.p.) administration, in

nociceptive areas such as the PAG and locus coeruleus (Tassorelli et al., 2003). The

second phase of inhibitory effect of nimesulide could be due to the time taken for

nimesulide to reach the brain after systemic administration, and suqqests that

nimesulide may modulate both peripheral and central mechanisms of nociceptive

transmission in the MIA model. An alternative explanation (which is not mutually

exclusive of a putative central site of action for nimesulide) is that nimesulide may act

on two distinct molecular systems. One would certainly be the classical prostaglandin

inhibition pathway (although the actions of nimesulide here are relatively weak - for
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review see Bevilacqua & Magni, 1993) and therefore also effects on the synthesis of

cytokines and other inflammatory mediators (see Chapter 4), and the other could

possibly be via the endocannabinoid system, with an increased production of CB1-

receptor ligands through a shunting of endocannabinoid metabolism through LOX and

cP4S0 metabolic pathways as outlined in Chapter 3. Nimesulide has also been shown

to have anti-inflammatory actions by inhibiting oxidant release from activated

neutrophils; reducing histamine release from mast cells; inhibiting production of

platelet activating factor from basophils; and in cartilage, inhibiting stromelysin release

and blocking MMP activity (Bevilacqua & Magni, 1993; Bennett & Villa, 2000).

Interestingly, at low concentrations, nimesulide was shown to increase nitric oxide

production in vitro in an inflammatory model (Boje et al., 2003), and as a result it has

been suggested that in vivo, inhibition of COX-2 alone may promote NO toxicity. The

mechanisms for this action are unclear but COX-2 products may contribute to an

inhibitory feedback loop for iNOS under inflammatory conditions, modulating NO

synthesis. The importance of endocannabinoid modulation of several nociceptive

mediators including NO is known (for review, see La Rana et al., 2008), and it has

been shown that prolonging endocannabinoid action reduces NO release (Ortega-

Gutierrez et al., 2005) in a CB1-receptor-dependent manner (Molina-Holgado et al.,

2002; Waksman et al., 1999). It is possible in the studies outlined in this chapter, that

after COX-2 inhibition by nimesulide, inhibition of prostaglandin synthesis accounts for

the initial attenuation of WDR mechanically evoked responses observed within the first

hour, while an increase in NO synthesis triggered by COX-2 inhibition results in the

recovery of neuronal response from this first phase. The increase in CB1-receptor

activation following nimesulide administration (as described in Chapter 3, results

section 3.3.2) could feedback on this increased NO synthesis and result in the second

phase of attenuative effect of nimesulide on evoked responses of WDR dorsal horn

neurones in the MIA-treated rat. This possibility is especially attractive in light of

findings that the endocannabinoid system is upregulated in the MIA model (see

Chapter 6),
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5.4.5. Vehicle induced facilitation

In saline-treated (as opposed to MIA-treated) rats, not only did subcutaneous

nimesulide fail to attenuate stimulus-evoked responses, but both subcutaneous

nimesulide and vehicle increased mechanically evoked neuronal responses from pre-

drug responses, and produced a trend towards increase post-stimulus responses.

The effect was most pronounced in response to low-weight stimuli suggesting the

involvement of AI3 fibres. The basis for vehicle mediated facilitation of neuronal

responses is puzzling. The facilitatory effect on evoked responses of WDR dorsal

horn neurones did not occur in saline-treated rats receiving spinal nimesulide or

vehicle, indicating that this response is due to the model. If it were, we might expect

that in saline-treated rats, this rise in evoked-responses throughout the course of the

experiment would also be evident in rats receiving spinal vehicle, but this is not the

case. The effect could be due to the solubilising agent for nimesulide in these

experiments - Tween80, and specifically, its effects in peripheral tissues. Tween has

previously been shown to be associated with several hypersensitivity reactions

(Gelderblom et al., 2001), including pain phenomena such as itch and burning

sensations, and so may be a candidate for the phenomena seen here.

5.4.6. Conclusions

Data presented here suggest a role for both peripheral and spinal upregulation of

COX-2 expression in the increase of nociceptive transmission in the MIA model of

pain. Spinal COX-2 upregulation contributes to central sensitisation in this model,

increasing spinal excitability of WDR dorsal horn neurones to normally non-noxious

events, while peripheral COX-2 upregulation appears to be responsible for increasing

both non-nociceptive and nociceptive input from the periphery to the dorsal horn.

Spinal actions of nimesulide in the studies presented here, togettier with the findings

of a CB1 receptor-dependent mechanism of spinal nimesulide activity in narve rats

suggest a role for the endocannabinoid system in the modulation of aberrant

nociceptive transmission in the MIA model. The role of the endocannabinoid system

in the MIA model will be discussed further in Chapter 6.
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Chapter 6

6.1. Introduction

As described in Chapter 1, the involvement of the EC system in pain has been well

established both in human painful human conditions and in animal models. Studies

into its involvement in neuropathic and chronic pain have been conducted in various

models including nerve injury, disease-related models including diabetes, cancer- and

HIV-treatment-related pain, demyelination disorders, multiple sclerosis and

postherpetic neuralgia, with anti nociceptive effects observed following prevention of

EC metabolism, or receptor stimulation by exogenous compounds (for an in-depth

review, see Rahn and Hohmann, 2009). Studies have involved the use of exogenous

CB receptor ligands including endocannabinoid and fatty acid amide compounds,

herbal cannabis constituents such as ~9-THC and synthetic analogues thereof, and

synthetic agonists, both receptor subtype specific and mixed. Studies have also been

undertaken with inhibitors of endocannabinoid transport and metabolism. Both

exonegous application of CB receptor ligands and modulation of EC metabolism were

able to suppress or reverse established mechanical hyperalgesia and allodynia, and

thermal hyperalgesia and cold allodynia in a number of chronic pain models including

the nerve injury models (for an in-depth review, see Rahn and Hohmann, 2009). For

example, in the chronic constriction injury (CCI) model of neuropathic pain,

nociceptive behaviours were blocked with mixed CB receptor agonists, CB2 receptor-

selective agonists, and FAAH/MAGL inhibitors. Suppression of nociception in these

models was mediated not only by the CB receptors, but also (and in some cases,

solely) by the TRPV1 receptor. In the CCI model, antihyperalgesic effects of

cannabidiol, a non-psychoactive component of marijuana, were blocked by co-

administration with the TRPV1 receptor antagonist capsazepine, but not by CB1 or

CB2 receptor antagonists (Costa et et., 2007; Comelli et el., 2008). Antinociceptive

effects of CB receptor activation accompanied neurophysiological changes, with the

CB receptor agonist WIN 55,212-2 dose-dependently inhibiting neuronal wind-up

(Strang man & Walker, 1999) and reversing elevated spontaneous activity of WDR

dorsal horn neurones associated with the CCI model (Liu & Walker, 2006) in a CB1-

dependent manner.
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6.1.1. Alterations in the cannabinoid system brought about by

experimental models of chronic pain

Not only have the anti nociceptive effects of endocannabinoid system manipulation in

models of neuropathic pain been evaluated, but the effects of neuropathic pain models

on the endocannabinoid system, particularly CB receptor expression and

endocannabinoid levels, have also been studied. Endocannabinoid levels in some

models were altered, for example in Theiler's murine encephalomyelitis viral infection,

a model of MS, upregulation of CB2 receptor mRNA was observed, as were elevated

levels of 2-AG and PEA (Loria et al., 2008). Increased CB2 receptor expression in the

spinal cord has also been shown in other models of neuropathic pain, including spinal

nerve transection (Romero-Sandoval et al., 2008), CCI and spinal nerve ligation (SNL)

(Zhang et al., 2003), in which activation of CB2 receptors attenuated neuronal activity

(McGaraughty et al., 2009) and capsaicin-evoked calcium responses (Sagar et al.,

2005). Changes in spinal and supraspinal levels of endocannabinoids and fatty acid

amides in the CCI model of neuropathic pain have also been observed, with 2-AG and

AEA levels elevated in spinal cord and PAG three days postoperatively, and also in

the rostro-ventral medulla (RVM) at day seven, when thermal hyperalgesic and

mechanical allodynic responses are at a maximum, while levels of PEA were

decreased in the spinal cord at post-operative day three, and also in the dorsal raphe

and RVM at day seven (Petrosino et al., 2007). The SNL model of neuropathic pain

has also been linked with increases in AEA levels in dorsal root ganglion (DRG,

Mitrirattanakul et al., 2006), and the spinal cord (Guasti et al., 2009).

Endocannabinoid tone has also been demonstrated in models of both acute

(kaolin/carrageenan) and chronic (Freund's complete adjuvant) joint inflammation, with

the use of CB2 receptor agonists JWH015 and JWH133. In natve rats, these agonists

caused CB2 and TRPV1 receptor-mediated increase in synovial blood flow, whereas

in acute and chronic joint-inflamed rats, this reaction was attenuated, possibly due to

receptor internalisation following prolonged exposure to elevated endocannabinoid

levels (McDougall et al., 2008).
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6.1.2. The endocannabinoid system in the MIA model of

osteoarthritic pain

Peripheral endocannabinoid tone has been demonstrated in the MIA model of OA,

with CB1 receptor antagonist application directly to the knee increasing neuronal

responses to non-noxious knee rotation in MIA- but not saline-treated rats (Schuelert

& McDougall, 2008). In addition, CB1 receptor agonists reduced neuronal responses

to noxious rotation with greater antinociceptive effects in MIA-treated than control rats

(Schuelert & McDougall, 2008). Work from our laboratory has shown that the MIA

model of osteoarthritic pain is associated with elevated levels of the endocannabinoids

AEA and 2-AG, and the related molecules PEA and OEA, in the spinal cord and in the

hindpaw (see appendix). Interestingly, while levels of the N-acylethanolamines are

elevated both ipsilaterally and contralaterally in the spinal cord, levels of 2-AG

contralaterally remain unaltered. This suggests that not only are afferent inputs are

involved in central sensitisation, but that descending nociceptive pathways also playa

role in the neuronal plasticity seen in this model.

6.1.3. Aims

Mounting evidence from our group strongly supports a role of endocannabinoids in the

MIA model of osteoarthritic pain. The aim of work presented here was to determine

whether the elevated levels of endocannabinoids and related compounds act tonically

to modulate the responses of WDR dorsal horn neurones in the MIA model of

osteoarthritic pain, via the activation of CB1 or CB2 receptors.
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6.2. Methods

6.2.1. Induction of the MIA model of osteoarthritis pain

For intra-articular injection, monosodium iodoacetate (MIA, Sigma-Aldrich, UK), was

prepared freshly on the day of injection by dissolution in sterile saline. A dose of 1mg

MIA in 50IJL sterile saline (n=18) or 50IJL sterile saline alone for control groups (n=18)

was administered per rat, based on work done in this laboratory (see Chapter 4).

Male Sprague-Dawley rats weighing 160-190g at the time of injection were used. For

detailed methodology of anaesthesia and injection of MIA, refer to Chapter 2. The

experimenter was blind to all treatments.

6.2.2. Ensuring correct placement of injection and development of

MIA-induced changes in nociceptive behaviour

To ensure that MIA- or saline- treated rats used in electrophysiological studies were

true representations of their treatment groups, rats underwent testing for nociceptive

behaviour encompassing changes in hindlimb weight-bearing and von Frey

monofilament withdrawal threshold, both before injection and for 28 days thereafter.

Data were gathered and analysed in an identical manner to that described in Chapter

4, and compared with data therein at the end of the experiment.

6.2.3. Measuring functional effects of EC tone in the spinal cord on

neuronal responses following intra-articular MIA injection

For detailed methodology of anaesthesia, surgery, and identification and recording of

WDR neuronal responses, refer to Chapter 2. One WDR neurone from laminae V and

VI of the dorsal horn of the spinal cord was recorded per rat for all of the data

presented in this chapter. The depth of neurones was recorded and checked at the

end of the experiment. Effects of intra-articular injection of MIA (versus saline) on

endocannabinoid tone of the spinal cord were evaluated with the CB1 receptor

antagonist AM251 (n=12 rats: 6 in MIA-treated rats; 6 in saline-treated rats), and the
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CB2 receptor antagonist SR144528 (n=12: 6 in MIA-treated rats; 6 in saline-treated

rats), and compared to the effects of the vehicle alone (3% Tween 80/ physiological

saline, n=12: 6 in MIA-treated rats; 6 in saline-treated rats) on mechanically evoked

responses of WDR dorsal horn neurones in the spinal cord. Data are expressed as a

percentage of the average pre-drug neuronal response over the 10 second stimulation

period. The effects of the antagonists on post-stimulus responses were also studied,

comparing effects to pre-drug post-stimulus duration of response, firing count, and

firing rate, as described in Chapter 4. The same vehicle was used for studies of both

AM251 and SR144528. In order to minimise the number of animals used, data

gathered from vehicle treatments in MIA- and saline-treated rats used in this study

were also used in studies outlined in Chapter 5. AM251 and SR144528 were

prepared freshly on the day by dissolution in the vehicle to give final concentrations of

0.1, 1, and 101l9/50IlL (3.6, 36 and 360JlM) for AM251, and 0.001, 0.01 and

0.1Ilg/50IlL (42nM, 420nM and 4.2JlM) for SR144528. Doses were based on previous

literature which administered these antagonists spinally in narve rats and models of

neuropathic pain in rats (AM251 - Jhaveri et al., 2006, Johanek and Simone, 2004;

SR144528 - Sagar et al., 2005), and were administered directly onto the exposed

spinal cord using a 50llL Hamilton syringe (Hamilton-Bonaduz, Switzerland). Drugs

were applied for 60 minutes to the spinal cord, before removal and application of the

next (higher) dose. In saline-treated rats, vehicle was also applied for 60 minutes per

dose whereas in MIA-treated rats each dose of vehicle was applied for 40 minutes, as

these data were gathered in earlier experiments outlined in Chapter 5. Assurances

were made that this did not affect experimental data, see Chapter 5, section 5.3.4.
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6.3. Results

Mean depths of recordings were as follows: AM251 = 793 ± 39j.lm in MIA-treated rats,

891 ± 541..lmin saline-treated rats, n=6 neurones in 6 rats per group; SR144528 = 807

± 82j.lm in MIA-treated rats, 898 ± 781..lmin saline-treated rats, n=6 neurones in 6 rats

per group; vehicle = 812 ± 70j.lm in MIA-treated rats, 790 ± 361..lmin saline-treated

rats, n=6 neurones in 6 rats per group.

6.3.1. Effects of intra-articular injection of MIA or saline on

nociceptive responses of awake rats

In order to ensure that intra-articular injections of MIA were correctly placed and that

the MIA model of OA pain progressed as previously described, the behavioural

responses of each rat were compared to that of all MIA- and saline-treated 'rats used

throughout this thesis (presented together in Chapter 4, section 4.3.1). Injection of

1mg MIA in 50l..lLsaline significantly reduced weight borne on the ipsilateral hindlimb,

compared to saline-treated rats (Figure 6.1; saline, n=18; MIA n=18, one way ANOVA

Kruskal-Wallis with post-hoc Dunn's test) in a biphasic manner, as previously

described. MIA also caused a significant decrease in withdrawal threshold to

punctuate stimulation of the plantar surface of the ipsilateral hindpaw compared to the

contralateral hind paw, whilst there was no difference between ipsilateral and

contralateral hind paw withdrawal thresholds in saline-treated rats (Figure 6.2; saline,

n=18; MIA, n=18). Results from both weight -bearing and withdrawal threshold

studies were comparable to those obtained from all MIA- and saline-treated rats

presented in Chapter 4, with no statistically significant differences existing between

them (one way ANOVA (Kruskal-Wallis) with post-hoc Dunn's test, all P>0.05)
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Figure 6.1 Reduced weight-bearing on the ipsilateral hindlimb of rats receiving
intra-articular injection of 1mg MIA in 50jJL saline (black squares, n=18) versus
50jJL saline alone (open circles, n=18), over a 28-day period post-injection.
Statistical analysis comparing the effects of saline to MIA on weight-bearing through
the ipsilateral hindlimb was performed using a one-way ANOVA Kruskal-Wallis, with
post-hoc Dunns test, "', P<O.01; "". P<O.005. Weight-bearing on the ipsilateral
hindlimb is expressed as a mean percentage of the weight borne on the contralateral
hindlimb, averaged from 3 readings per rat, per time-point, ± SEM.
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Figure 6.2 Reduced withdrawal thresholds to mechanical stimulation of the
ipsilateral hindpaw of rats receiving intra-articular injection of 1mg MIA in 50jJL
saline (black squares, n=18) versus 50jJL saline alone (open circles, n=18), over
a 28-day period post-injection. Statistical analysis comparing the effects of saline
and MIA on hindpaw withdrawal thresholds of the ipsilateral and contralateral
hindpaws was performed using a one-way ANOVA Kruskal-Wallis, with post-hoc
Dunns test, *, P<O.05; "', P<O.01; ***, P<O.005. Data are expressed as the mean
difference in grams betweenwithdrawal thresholds of the ipsilateral and contralateral
hindpaws ± SEM.
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6.3.2. Effects of intra-articular injection of MIA on mechanically

evoked responses of WDR dorsal horn neurones in the spinal cord

To further ensure the integrity of induction of the MIA model of OA-like pain in the

MIA-treated rats used in electrophysiological studies in this chapter, the effects of MIA

and saline injection on baseline mechanically evoked responses of WDR dorsal horn

neurones of each rat were compared to those of all MIA and saline-treated rats used

throughout this thesis (presented together in Chapter 4, section 4.3.1). MIA caused a

trend to increased evoked responses of WDR neurones, particularly in response to

higher weight stimuli, although this did not reach statistical significance (non-

parametric Mann-Whitney, P>0.05). Neuronal responses greater that 2 standard

deviations from the group mean response to any stimulus, per group, were excluded

from analysis. In total this happened in 6 instances of 90 values obtained from saline-

treated rats, and none from MIA-treated rats. There were no significant differences in

these data and those presented in Chapter 4 (non-parametric Mann-Whitney test,

P>0.05).

c:::::J saline-treated
_ MIA-treated

mcoc.
m..
'iic
o..
:::J
Q)
C

von Frey stimulus (g)

Figure 6.3 Graded responses of WDR neurones in saline (white bars, n=18) and
MIA- (black bars, n=18) treated rats following mechanical stimulation of the
hindpaw receptive field, between 28 and 31 days after injection. Statistical
analyses comparing the effects of saline to MIA on evoked responses were performed
using a non-parametric Mann-Whitney test (all P>0.05). Data are expressed as the
mean firing rate of the neurone per second (spikes/s) over a 10 second stimulation
period, ± SEM.
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6.3.3. Effects of intra-articular injection of MIA on post-stimulus

responses of WDR dorsal horn neurones in the spinal cord

The effects of MIA and saline injection on post-stimulus responses of WDR dorsal

horn neurones from the current study were also compared to that of all MIA and

saline-treated rats used throughout this thesis. In the present study, post-stimulus

responses of WDR neurones in MIA-treated rats were not always elevated compared

to saline-treated rats; however, significant elevation was observed following 60g

stimuli in 3 of the 4 parameters (Figure 6.4, Left panel A, C, and D), while the

remaining parameter (rate of response over the total duration) showed a trend towards

greater responses in MIA-treated rats (Figure 6.4, Left panel B). However, following

10, 15 and 26g stimuli, the post-stimulus response in MIA-treated rats was often lower

than in saline-treated rats, and much lower than the average of all rats used

throughout the thesis. There were significantly lower responses in MIA-treated rats

used in this study versus all MIA-treated rats presented throughout this thesis, in 3 out

of 4 parameters, following the 15g stimulation (Figure 6.4, Right panel). Statistical

comparisons between responses in MIA- and saline-treated rats within this study, and

between these data and those presented in Chapter 4 were performed using a non-

parametric Mann-Whitney test; *, P<0.05, **, P<0.01.
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Figure 6.4 Post-stimulus responses of WDR dorsal horn neurones in saline- and
MIA-treated rats following the removal of mechanical stimuli from the hindpaw
receptive field. A, duration of post-stimulus neuronal response (s); B, rate of post-
stimulus neuronal response for the total duration of response (spikes/s); C, rate of
post-stimulus neuronal response in the first 10 seconds following stimulus removal
(spikes/s); D, post-stimulus neuronal response count. Left panel ("CB tone study")
shows data from rats used in the present study; right panel ("All studies") shows data
from the present, CB tone study compared to data from all MIA- and saline-treated
rats used throughout this thesis (including CB tone study data). N.B. difference in
scales between left and right panels. Data are expressed as mean ± SEM. Statistical
comparisons were performed using a non-parametric Mann-Whitney test; *, P<0.05,
**, P<0.01.
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Post-stimulus responses in MIA- and saline-treated rats showed differential effects to

repeated hindpaw stimulation following spinal vehicle administration. In saline-treated

rats, following spinal administration of vehicle, post-stimulus responses remained at

around 100% of the pre-vehicle control values. However, in MIA-treated rats, post-

stimulus responses often fell to zero following spinal administration of vehicle.

Comparison of the area under the curves for the time-courses of effects of spinal

vehicle in MIA- and saline-treated rats revealed a decrease in post-8g neuronal

responses of MIA-treated rats following spinal vehicle administration in all four post-

stimulus paradigms tested, compared to saline-treated rats, and there was a trend for

decreased 15-60g post-stimulus neuronal responses in MIA-treated versus saline-

Whitney test, Figure 6.5).

treated rats following spinal vehicle in some paradigms (non-parametric Mann-
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von Frey stimulus (9)

CRate of post-stimulus neuronal
• response(first 10s)

6000

8 10 15 6026

von Frey stimulus (9)

B Rate of post-stimulus neuronal
• response(total duration)

30000

c:::Jsaline + Vehicle
_ MIA + Vehicle

Cl>e
~ 20000- I,~
"-
Cl>
"0

Ii:c:
"to 10000 *e * I I~to iii I'}

!i.

8 10 15 26 60

von Frey stimulus (9)

D Post-stimulus neuronal
• response count

60000

'" 50000e
~ 40000

~ 30000
c:
;;: 20000
Cl>

:;; 10000

8 6010 15 26

von Frey stimulus (9)

Figure 6.5 Post-stimulus responses of WDR dorsal horn neurones in saline- and
MIA-treated rats following vehicle application. A, duration of post-stimulus
neuronal response (s); B, rate of post-stimulus neuronal response for the total
duration of response (spikes/s); C, rate of post-stimulus neuronal response in the first
10 seconds following stimulus removal (spikes/s); D, post-stimulus neuronal response
count. Data are expressed as the area under the curve for the duration of the testing
period ± SEM. Statistical analyses were performed using non-parametric Mann-
Whitney test, *, p<0.05; "", P<0.01. n=6 neurones in 6 rats per group.
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6.3.4. Effects of intra-articular injection of MIA on endocannabinoid

tone in the spinal cord: mechanically evoked responses of WDR

dorsal horn neurones

The effects of the CB1 and CB2 receptor antagonists AM251 and SR144528-on

mechanically evoked responses of WDR dorsal horn neurones in MIA- and saline-

treated rats were evaluated using 3 consecutive, increasing doses of the antagonist in

50~L vehicle (3% Tween in saline, n=6 neurones per antagonist in 6 saline-treated

rats, n=6 neurones per antagonist in 6 MIA-treated rats), and compared to the effects

of 50~L vehicle alone (n=6 neurones in 6 saline-treated rats, n=6 neurones in 6 MIA-

treated rats). Spinal AM251 caused dose-dependent increases (peaking with the 1~g

dose) in mechanically evoked responses of WDR neurones in MIA-, but not saline-

treated rats (Figure 6.6, Figure 6.7, non-parametric Mann-Whitney test). The

facilitation produced by spinal AM251 in MIA-treated rats was most pronounced for the

responses evoked by 8-15g hindpaw stimulation but was also present following 26g

and 60g hindpaw stimulation. The maximum effect of AM251 in MIA-treated rats

occurred at 39.4 ± 4.5 minutes after application of the first dose (0.1 ~g/50~L), 41.7 ±

4.1 minutes after application of the second dose (1~g/50~L) and 27.2 ± 3.2 minutes

after application of the third dose (10~g/50~L). Maximal effects of AM251 were

compared to time-matched effects of vehicle for each dose of drug.

SR144528 caused dose-dependent increases in mechanically evoked responses of

WDR neurones versus vehicle in MIA-, but not saline-treated rats (Figure 6.8, Figure

6.9, non-parametric Mann-Whitney test). This facilitatory effect was more pronounced

when considering the response to non-noxious stimuli (8g and 10g von Frey

monofilaments), but was also present in response to 15g and 26g stimuli. The

maximum effect of SR144528 in MIA-treated rats occurred at 32.6 ± 3.1 minutes after

application of the first dose (0.001 ~g/50~L), 37.8 ± 3.6 minutes after application of the

second dose (0.01 ~g/50~L) and 35.6 ± 3.3 minutes after application of the third dose

(0.1 ~g/50~L). Maximal effects of SR144528 were compared to time-matched effects

of vehicle for each dose of drug.

182



.m~ oo..,
esucdsai finJp-9Jd %

g.., g~
asuodsar finJp-9Jd %

o~

o

o
-e-

-e-
ci

.
W~

esuodsar finJp-9Jd %

Cl
CD
N

oo.., oo
'"esuodsai finJp-9Jd %

.
O~

asuodsai finJp-9Jd %

s~

oo~

o

o

o~

~
ci

o

:r
:::I.

CO
III

Cl
2;
.,...
Il)

~

:r
:::I.
co
III

Cl
2;
.,...

~



OJ
o-£Xi

8suodseJ 6nJp-8Jd 0/0

~u;
:c~!!le(
+ +
Cl) Cl)c: c:......
Cl] Cl]

'" '"9 + .....

..
c:i

esuodseJ 6nJp-8Jd "10

OJ
o
CD.
w

esuodseJ 6nJp-8Jd "10

..
e-

OJ
CD
N.c

esuodseJ 6nJp-8Jd "10

.....

OJ
It)-.o

8suodS8J 6nJp-8Jd "10



0')
o-.
III ~ 8,.. o

esuodsas 6nJp-aJd %

-e-
d

....oo
d

8
M

8
N

<>

asuodsar 6nJp-aJd %

...
d

:;
::t
0
!!!
Cl... ::t

<>
d DO

N

'";....
II:
II)

0')
....
<>

0
0

(.0
d.

W ~
0 <> 0 '"<> <> <>..., N e-

aSUOdS8J6nJp-aJd %

<X>
N
I()

J!! ;0
E ers Cl)

+ +
<X: <X:
::E::E

? + ....
d

:;
::I.
0

~... ::I.
0
d DO

N

~
e-
II:
II)

0')
....
<>

(.0 <>

N
ci

cl 0 <> <> <> 0<> g <> ~-t '"esuodsas 6nJp-aJd %

<X>
N
I()

J!! ~0
E er!!! Cl)

+ +
««
~~
? +
"* ....

d

:;
::t
0
!!!
Cl

e- ::t
<>
d DO

N

'":i....
II:
II)

0') ....
0

It) <>
d-.

0 <> <> <> <> <>~ 0 ~ <>..., ....
asuodsaJ 6nJp-aJd %



CS)
o
"'".
DJ

esuodseJ 6nJp-eJd %

~!
esuodseJ 6nJp-eJd %

....
ci

8....

....g
d

....
d

.
W§

CS)
CO
N.
C§

CS)
&t')

"'".
O~

esuodseJ 6nJIHUd %

esuodseJ 6nJp-eJd %

..,
esuodseJ 6nJp-eJd %

g....

o

....
d

~s
~....o

d co

i...
0::
II)....oo

d

o

....
d

....
g
d

....
d

....
~o



Chapter 6

6.3.5. Effects of intra-articular injection of MIA on endocannabinoid

tone in the spinal cord: effects on post-stimulus responses of

WDR dorsal horn neurones

The effects of AM251 and SR 144528 on post-stimulus responses of WDR dorsal horn

neurones in MIA- and saline-treated rats presented in section 6.3.4 were also

evaluated. The effects on four parameters were studied as described in chapter 4.

Data from each neurone are expressed as a percentage of the average pre-drug

responses from three sets of control values.

In MIA- (but not saline-) treated rats, AM251 increased post-stimulus neuronal

responses in all four measures evaluated. AM251 had greatest effect following lower-

intensity (8-15g) stimuli. An example can be seen in Figure 6.10 and shows the

effects of spinal AM251 compared to vehicle on the average rate of neuronal response

over the total duration of post-stimulus response in MIA-treated rats. The time at

which AM251 had a maximal effect on each post-stimulus response parameter is

presented in Table 6.1. AM251 had no effect on post-stimulus neuronal responses in

saline-treated rats compared to the effects of vehicle, on any of the parameters tested

(data not shown). Statistical comparisons were performed with a non-parametric

Mann-Whitney test.

Table 6.1 Average time (minutes) of maximal effect of spinal application of
AM251 in MIA-treated rats (n=6) on four measures of_£_ost-stimulus res_£_onse

Time following Time following Time following
0.11JgAM251 1IJgAM251 10IJg AM251
(minutes) (minutes) Iminutesl

Duration of post-stimulus
neuronal response 36.2 ± 3.23 37.1 ± 3.51 33.0 ± 2.47
Rate of post-stimulus
neuronal response 35.6 ± 3.61 36.8 ± 3.08 33.0 ± 3.0
(total duration)
Rate of post-stimulus
neuronal response 34.2 ± 3.46 33.2 ± 3.2 34.6 ± 2.76
(first 10 seconds)
Post-stimulus neuronal
response count 34.2 ± 3.36 32.8 ± 3.9 34.6 ± 2.3

187



-I/)ca ::l iiis·Q "0 Q)...x Q) ::l::soEmCD I::'- >.. ~ C:"OO-0'" enl::'t:o~~ ::sroQ)~
+ +

__ 0..1::
ss ::S0>Q)0
:;;:;; E°'-O9+ ._ ......Q)o>

u;af~2• I/)"0- ._ Q) •
0 en 0> I/)Q)... 000 »'-Q. _- 0.....«ro.,_

::J' 0-1::0
:I. I/)ro_
0 CD::l-Q)on -oroo>a, l!·x.Q I::.. ~ "'-Ie 2: c:owro"u'" .... I::.-.J::.j~ on o • co 0
! -1::--0+ + CDoCl)I::ss II I:::;;:;;

C:.J::.~ cD9+ C) ...
.; u)C5w60 .!!.oCl)~CD e.9+1o. ._ 1::0W 0 U~O"""." N C:I/)+:lll...

8JeJ 8suodS8J 6nJp-8Jd 0/0 CD I::e!Q)Q.0::ll::
::J' ~~"O=:I. en Q) 0>"00a, ., ~ -0:::::lQ):il~ o '- .J::..... "0 I/)2: ~~ 1:Scbro.... + + oca'-CIon SS! :;;:;; u ...a.9+ CD~O ci.

-U.!Q)::l._ ca 0> eC) ... ,cCDroo>.;0
"'-Ie 0 CD ...__ ,-... >-I::Q)""" ~cCQ)o... CD- eID ::J' ,c:IEQ)JB:I.0

Cl U c: 0..e!N N

'a, -._ I::8JeJ 8suodseJ 6nJp-8Jd 0/0 caenro<O-Ie-le 2: ECDQ)I::.... cl> c: E·;;;
~ EeenQ).. ~ cc ._ ::sro I::"U'" -CD 0

~~ ~ c: ~ :;C) ... c:.; ca c: I/)Q)+ + CD ... I/)I::ss N CDo ~<O:;;:;;
II .c 0..119+ d c:- ~I::ca

N ril!Q)~~ 8JeJ esuodseJ 6nJp-eJd 0/0 CDO'-o...~ ro .ca ro °
::J' ::so:::--vere roQ:I. Q)~ en ~ Cl., _0 0'"on

~~ .:re: . .,a,
g'O~Lo-2: + +.... ss :a-woon :;;:;; _ CD Q) c::i

! 9+ "'"
en--v

U) C:Q)Qo '-N Q. Q) _...
"'''' Cl :IE en~~_C) .; ... cC !=wco 'O"'E2::J' 0._ »<i. :I. SC:wQ)~ U 0 I::N a, CD:w iV~8JeJ 8suodS8J 6nJp-8Jd 0/0 2: :t:ca'-.J::..... CD"'u..3:on _::SI::'

~
ca~ol::E- > I::._ ca ro
>< '0 Ci:EC) -Ie ... ca-oo

It) .; E CD <0 ·c
""" m ~~~~.
0 ~ ~ ~ ~

." :lECDO>ro> <0 '-
N ... Q~Ng_
8JeJ esuodseJ 6nJp-8Jd 0/0 ~CD6cCD en ._ 0CD c: 0> I::...0100>::sQ. ......I::

0) en -.-._ CD () I/)u.. ... _::l



Chapter6

Post-stimulus neuronal responses following spinal SR144528 administration were

similar to those observed following AM251. In MIA- (but not saline-) treated rats,

SR144528 increased the post-stimulus responses in all four measures, particularly

following low-intensity stimuli. An example can be seen in Figure 6.11 and shows the

effects of spinal SR144528 compared to vehicle on the average rate of neuronal

response over the total duration of post-stimulus response in MIA-treated rats. The

time at which SR 144528 had its maximal effect on each post-stimulus response

parameter is presented in Table 6.2. SR144528 had no effect on post-stimulus

neuronal responses in saline-treated rats compared to the effects of vehicle, on any of

the parameters tested (data not shown). Statistical comparisons were performed with

a non-parametric Mann-Whitney test.

Vehicle control data presented for comparison with effects of SR144528 are from the

same neurones as the data presented previously for comparison with effects of

AM251, but from different time-points (time-matched to the maximal effects of

SR144528 on post-stimulus neuronal responses in each paradigm).

Table 6.2 Average time (minutes) of maximal effect of spinal application of
SR144528 in MIA-treated rats (n=6) on four measures of post-stimulus response

Time following Time following Time following
0.0011-1gSR144528 0.011-1gSR144528 0.11-1gSR144528
(minutes) (minutes) (minutes)

Duration of post-stimulus
neuronal response 33.6 ± 2.9 41.4 + 3.4 39.0 + 3.0
Duration of post-stimulus
neuronal response 33.1 ± 2.9 38.4 ± 3.4 37.8 ± 3.1
(total duration)
Rate of post-stimulus
neuronal response 36.0 ± 2.6 44.4 ± 3.1 38.7 ± 3.3
(first 10 seconds)
Post-stimulus neuronal
response count 34.4 ± 3.1 42.6 ± 2.7 37.1 ± 3.0
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Chapter 6

6.4. Discussion

The present study aimed to determine the effects of intra-articular MIA injection on

endocannabinoid tone in the rat spinal cord, following reports of altered

endocannabinoid levels in both animal models of neuropathic pain and in human OA.

6.4.1. Validation of model induction

In order to ensure that MIA injections were correctly placed and that data from the

electrophysiological studies in MIA rats were a true representation of the model,

behavioural and electro physiological characteristics of these rats were compared to

those from all MIA- or saline-treated rats used throughout this thesis. Behavioural

data from hindpaw weight-bearing and von Frey withdrawal threshold tests from each

rat were comparable to, and did not differ statistically from, the mean response seen

within their group. This was also true for pre-drug mechanically evoked responses of

neurones: however, differences between the MIA- and saline-treated rats used in the

studies outlined in this chapter did not reach statistical significance as previously

observed. A tendency for higher responses in the MIA-treated rats was still observed,

and the smaller sample size (18 per group in this study versus 42 saline and 48 MIA

previously used) may account for the greater variation in response, and thus the lack

of statistically significant differences between evoked responses in the MIA versus

saline-treated rats. Post-stimulus responses were, however, not always comparable

to those seen in other rats used throughout this thesis: in MIA-treated rats, response

rates and total response count were lower in this study than the average for all rats

used throughout the thesis, significantly so for 15g-evoked responses. Post-stimulus

responses in MIA-treated rats also showed a trend to being lower than post-stimulus

responses in saline-treated rats, particularly following 8-15g stimuli. The evoked

responses of neurones in saline-treated rats used in this study were comparable to

previous studies. These differences in the magnitudes and duration of the post-

stimulus response in this sub-group of MIA-treated rats may arise as a result of the

smaller sample size of neurones studied and the inherent variation between neuronal

responses between different cells in an animal and between individual animals.
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Other parameters of neuronal response (other than spikes per second) may better

highlight the difference in stimulus-evoked responses of MIA- versus saline-treated

rats, particularly in cases of smaller sample size. Possible parameters of analysis

include interspike interval, and the peak rate of response (spikes per second) over a

1s bin-period from a total 10s stimulation period.

6.4.2. Possible differences in neuronal desensitisation between

MIA- and saline-treated rats

In MIA-treated rats, following spinal administration of vehicle alone, post-stimulus

responses decreased, while in saline-treated rats, no change compared to pre-vehicle

administration was observed. This suggests there may be a difference in mechanisms

of desensitisation of spinal neurones in MIA-treated versus saline-treated rats. A

possible explanation is that elevated stimulus-evoked responses in MIA-treated rats

due to sensitisation of spinal neurones cause rapid and transient desensitisation of

post-synaptic ion channels, thus reducing the generation of post-stimulus post-

synaptic action potentials. This may also explain why post-stimulus responses in the

MIA-treated rats used in the studies presented here had lower post-stimulus

responses than saline-treated rats even before spinal administration of vehicle.

Another possibility is that upregulation of cannabinoid receptors in MIA-treated rats

acts to attenuate post-stimulus responses following repeated stimulation. The CB2

receptor has been shown to be upregulated in the spinal cord in models of

neuropathic pain (see section 6.4.3) with the functional effect of attenuating neuronal

responses in these animals (McGaraughty et al., 2009).

6.4.3. Endocannabinoid tone in the MIA model of OA

Previous work from this group has shown that endocannabinoid levels are elevated in

the spinal cord of MIA-treated rats (see appendix). In order to establish whether the

increased endocannabinoid tone in the spinal cord functionally impacts upon neuronal

responses in MIA-treated rats, effects of blockade of spinal cannabinoid receptors with

the CB1 and CB2 receptor antagonists AM251 and SR144528, on neuronal responses
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both during and immediately after hindpaw stimulation were studied. Both AM251 and

SR144528 facilitated stimulus-evoked responses, and post-stimulus responses of

WDR dorsal horn neurones, to varying degrees in MIA- and saline-treated rats.

Stimulus-evoked responses

Spinal administration of the CB1 receptor antagonist AM251 (0.1-1 0IJg/50IJL) caused a

trend to facilitate non-noxious (8g and 10g) mechanically evoked responses, and

significantly facilitated noxious (15g and 26g, but not 60g) mechanically evoked

responses of WDR dorsal horn neurones in the spinal cord of MIA-treated treated rats,

compared to spinal vehicle administration. In saline-treated rats, the highest dose of

AM251 also had a facilitatory effect on mechanically evoked responses to 8, 10 and

15g stimuli, however this did not reach significance when compared to vehicle. Spinal

administration of the CB2 receptor antagonist SR 144528 (0.001-1 IJg/50IJL) also

significantly facilitated evoked responses of WDR neurones in MIA- but not saline-

treated rats, following both non-noxious and noxious stimuli. The facilitatory effects of

both AM251 and SR144528 were most pronounced following stimulation by the lower

weight von Frey monofilaments (8, 10, 15g) than by the higher weights (26, 60g).

Post-stimulus responses

In MIA- (but not saline-) treated rats, spinal administration of the CB1 and CB2 receptor

antagonists greatly facilitated post-stimulus responses of WDR dorsal horn neurones

in all paradigms of post-stimulus response. The effect was most clearly seen following

lower-intensity stimuli (8-15g). Responses were elevated to a lesser extent following

stimulation by 26 and 60g filaments, but they were still significantly higher than

following vehicle administration. Neither AM251 nor SR144528 had any effect on

post-stimulus responses in saline-treated rats, for any of the parameters measured,

mirroring the lack of effect on evoked-responses.

The level of facilitation observed (typically between 200% and 2000%) is perhaps

surprising, given that stimulus-evoked responses were typically "only" around 150-

300% larger than pre-drug responses. It is not possible to compare these data to

those of other groups as no studies investigating post-stimulus neuronal responses
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following mechanical stimulation have been published. However, taking into account

the finding that post-stimulus responses before antagonist administration were usually

far lower than responses evoked during stimulus application, it is possible to see how

an elevation of post-stimulus response would have a much greater proportional effect.

6.4.4. Endocannabinoid modulation of neuronal excitability

The work presented here demonstrates a functional role of endocannabinoids in

limiting hyperexcitability of spinal neurones in the MIA model, via CB1 and CB2

receptors. The effects are particularly apparent following low-weight evoked

responses, supporting a functional role for the upregulated endocannabinoid system in

modulating allodynic behavioural responses seen in the MIA model of OA pain. The

anti-allodynic effects of CB receptor activation have long been recognised (Herzberg

et al., 1997; Bridges et al., 2001; Guindon & Beaulieu, 2006), although the

mechanisms by which this occurs are still not fully understood. A possible mechanism

is via the effects of endocannabinoids on inhibitory GABA circuits, changes to which

are known to underpin allodynia in neuropathic pain states. Inhibitory GABAergic

interneurones are lost from the dorsal horn following nerve injury (Scholz et al., 2005),

and altered synthesis, storage and release of GABA has been shown in neuropathic

spinal dorsal horn neurones, particularly in lamina II (Castro-Lopes et al., 1993, 1995;

Eaton et al., 1998; Moore et al., 2002). GABAB receptors co-localise with CB1

receptors in the brain (Katona et al., 1999,2001; Hajos et al., 2000; Nyiri et al., 2005)

where it is established that cross-talk between these two systems occurs (Cinar et al.,

2008). Colocalisation between CB1 and GABAB receptors has also been

demonstrated in the dorsal horn of the spinal cord (Salio et al., 2002), where the

antinociceptive effects of intrathecal administration of the GABAB agonist baclofen

have been shown to be mediated, in part, by the CB1 receptor (Naderi et al., 2005). It

is possible that in the present study, intrathecal MIA-injection may cause disinhibition

of spinal neurones by decreased GABA synthesis or release, contributing to increased

neuronal transmission following low-weight stimulation of the hindpaw. The facilitatory

effect of spinal CB antagonists on WDR neuronal responses following low-weight

stimulation may indicate a role for endocannabinoid tone in the MIA model in
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stimulating GABAB receptors, activating inhibitory interneurones and counteracting a

putative loss in inhibitory GABAergic transmission.

Upregulation of CB1 receptor expression in the ipsilateral spinal cord has been

demonstrated following central sensitisation, in neuropathic pain models such as CCI

(Lim et al., 2003, Wang et al., 2007). While the CB2 receptor has been found to be

expressed in the brain under normal conditions (see Chapter 1), there are no reports

to suggest that it is constitutively expressed in the spinal cord. Whilst further work is

needed for confirmation, the elevation in neuronal response following spinal CB2

receptor blockade seen in the studies presented herein demonstrates, for the first

time, a functional role of the CB2 receptor in the spinal cord of MIA-treated rats.

Elevation of cannabinoid receptor expression has been reported in models of

neuropathic pain, and spinal expression of the CB2 receptor has been shown following

SNL (Romero-Sandoval et al., 2008; Wotherspoon et al., 2005; Zhang et al., 2003),

and CCI (Zhang et al., 2003). In these models, CB2 receptor activation is restricted to

non-neuronal cells such as activated microglia (Zhang et al., 2003) but it has been

shown to attenuate neuronal activity (McGaraughty et al., 2009). Activation of

inflammatory cells following intra-articular injection of MIA has been demonstrated in

the rat spinal cord (Hsieh et al., 2010) and so it is possible that the CB2 receptor

expression in the spinal cord of MIA-treated rats observed here, as in models of

neuropathic pain, is microglial.

Together with upregulation of CB receptor expression, levels of endocannabinoids and

related molecules have been shown to be elevated in neuropathic pain models.

These include 2-AG and AEA in the CCI model (Petrosino et al., 2007), AEA in the

SNL model (Guasti et al., 2009), and 2-AG and PEA in a model of MS (Loria et al.,

2008). In osteoarthritis, levels of endocannabinoids and related compounds are found

to be elevated in the synovial fluid of patients with osteoarthritis compared to healthy

volunteers (Richardson et al., 2008). Levels of endocannabinoids and related

compounds in the spinal cord of MIA- and saline-treated rats were investigated by our

group (see appendix), and were found to be elevated following injection of MIA, from

14 days post-injection onwards, 2-AG ipsilaterally and AEA, PEA and OEA bilaterally.
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It is likely that CB-receptor mediated suppression of neuronal hyperexcitability seen in

the MIA model is a combination of elevated spinal CB receptor expression and

elevated levels of spinal endocannabinoids and related compounds.

EC synthesis has long been known to be stimulated by neuronal activation, first shown

in brain neurones (Giuffrida et al., 1999; Stella & Piomelli, 2001; Stella et al., 1997),

and activity-dependent EC synthesis may be partly responsible for the elevated EC

levels seen in the MIA model of OA pain. Endocannabinoid synthesis can be

stimulated by several mechanisms, including post-synaptic depolarisation (Le. Ca2+

dependent EC synthesis), activation of post-synaptic Gq-coupled receptors and

synergism between these two mechanisms (for review, see Hashimotodani et al.,

2007). EC synthetic enzymes have been located in the rat spinal cord, with OAGL

mRNA identified post-synaptically by in situ hybridization in nociceptive primary

afferents in the superficial dorsal horn (Nyilas et al., 2009) and upregulated microglia

after spinal cord injury (Garcia-Ovejero et al., 2009). NAPE-PLO expression has

recently been demonstrated in a subset of capsaicin-sensitive dorsal root ganglion

neurones, indicating that AEA production may occur in sensory neurones of the spinal

cord, although its expression here is yet to be described (Nagy et al., 2009). CB

receptor mRNA has also been located in the spinal cord, with the CB1 receptor

present in abundance in the superficial laminae of the spinal cord, known to be of

importance in nociceptive processing, being the locus of termination of primary

nociceptive AfJ - and C-fibre afferents (Lever & Malcangio, 2002).

The increased levels of endocannabinoids and their increased functional role in the

MIA model as shown by the experiments presented here support the role of ECs as a

useful target for the treatment of pain. Given their rapid metabolism, a possible target

would be EC metabolic enzymes. Much research has been conducted into the

anti nociceptive effects of FAAH inhibitors in models of neuropathic pain, proving its

inhibition to be a viable, effective target in pain (see Chapter 1).

Finally, in relation to the work presented here, the EC system has been shown to have

important roles in regulation of bone mass, bone loss and osteoclast activity (Idris et
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al., 2005), and so the upregulation of the EC system in the MIA model of OA might

have functions in protection of structural integrity of the joint as well as suppression of

neuronal responses. Both receptor genes (Cnr1 and Cnr2) are associated with

human osteoporosis, with a large number of incidences of single polymorph isms and

haplocytes on the Cnr2 gene seen in postmenopausal osteoporosis (Karsak et al.,

2005). Deletion of either of these in the mouse results in alteration of bone mass

(Karsak et al., 2005). Osteoclast activity and bone mineral density may be regulated

by agonists of CB1 and CB2 receptors (Karsak et al., 2005) and may prevent

ovariectory-induced bone loss in mice by promoting osteoclast apoptosis and by

inhibiting the production of several osteoclast survival factors (Idris et al., 2005).

6.4.5. Conclusions

In summary, data from these studies have demonstrated a functional role of

endocannabinoid receptors in the modulation of neuronal activity following intra-

articular injection of MIA. This is supported by work in this lab demonstrating changes

in levels of endocannabinoids in MIA-treated rats. The functional effects of EC tone to

decrease hyperexcitability of spinal neurones, both during and after stimulation,

particularly following low-intensity stimuli, suggests that endocannabinoid tone in this

model may also be important in modulation of allodynic behaviours in the MIA-treated

rat. Taken together with observations of altered endocannabinoid levels and receptor

expression in human OA patients, the possible implications of these findings are that

the endocannabinoid system may modulate painful experience in the human OA

condition, supporting the validity of the endocannabinoid system as a clinical target.
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The work presented in this thesis has demonstrated an important modulatory role of

the endocannabinoid system in the MIA model of OA. The contribution of oxidative

metabolism of endocannabinoids by COX-2 has also been demonstrated.

The sensitivity of neuronal responses to COX-2 inhibition by nimesulide in natve,

saline- and MIA-treated rats suggests that the products of COX-2 influence responses

of spinal neurones. Traditionally, COX-2 is thought to enhance neuronal responses

due to the production of pro-nociceptive substances such as prostaglandins. Work in

this thesis demonstrated that COX-2 effects on neuronal responses are also mediated

by the catabolism of inhibitory compounds such as endocannabinoids. Analgesic

effects of COX-2 inhibition by nimesulide were blocked by AM251, showing them to be

mediated by CB1 receptor activation, and suggesting that COX-2 inhibition caused an

increase in CB1 ligands. levels of ECs and ECls in the spinal cord, however,

decreased following spinal administration of nimesulide. This work suggested that

following COX-2 inhibition, EC and ECl oxidation is shunted down lOX and cP450

metabolic pathways, with the production of CB1-active metabolites.

A major finding of this thesis is that the endocannabinoid system is dynamically

regulated in a model of chronic pain and that the alteration in levels of

endocannabinoids has functional consequences on neuronal responses and by

extension may influence pain behaviour. The work in this thesis has expanded our

understanding of the role of spinal endocannabinoids and provides evidence for their

complex regulation by COX-2, as well as the more traditional routes of catabolism.
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7.1. Clinical relevance of the MIA model of CA pain

The MIA model is a well-described model of OA pain, allowing the study of analgesic

potential of pharmacological interventions. There is also the potential for its use in the

study of causes of OA-induced pain. The poor relationship between structural

damage and pain in clinical OA make clinical rationale of any model difficult.

Nevertheless, the MIA model produces both clinically relevant structural changes as

well as clinically relevant and reproducible changes in behavioural paradigms

indicative of OA-related pain. Other models of OA have been well described in terms

of structural changes (see Chapter 1), however, of those, only the meniscectomy

(MNX) model have also been described in terms of OA-related pain. The MNX model

is a mechanical joint alteration model employing surgical techniques to accelerate the

course of spontaneous OA (Bendele et al., 1987). It reproduces all of the structural

features of spontaneous OA pathology in the guinea pig, but at a much faster rate. A

comparison of the MIA, MNX and spontaneous degeneration models may be seen in

Table 7.1 (page 204).

Intra-articular injection of 1mg MIA produces robust, reproducible behavioural changes

in hindpaw weight-bearing and paw withdrawal thresholds ipsilaterally versus

contralaterally. These behaviours are indicative of pain associated with knee joint

damage which in clinical OA manifests itself as pain on standing, walking or other

weight-bearing exercises, as well as secondary allodynia - allodynia at a site distal to

the site of initial damage, indicative of the phenomena of central sensitisation. While

both the MIA and MNX model have previously demonstrated rapid and sustainable

asymmetry in hindlimb weight-bearing (peaking at day 3 and maintaining throughout

the study period and sensitive to morphine treatment), the MIA model holds advantage

over the MNX model with regards to the reproducibility of these behaviours. In the

studies presented here, all MIA-treated rats developed weight-bearing deficiencies,

while in the MNX model, results are conflicting, with one study showing changes from

as early as 7 days post-operatively onwards, another from 21 days PO onwards, while

another failed to see any alteration in weight-bearing at any time-point studied (Bove

et al., 2006; Mapp et al., 2010; Fernihough et al., 2004). Intra-articular MIA also
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produced rapid and sustainable mechanical hyperalgesia and tactile allodynia, while in

the MNX model no mechanical hyperalgesia was observed (Fernihough et al., 2004),

and only a subset of animals developed mechanical allodynia - 50% of animals

displaying changes at day 3,70% at day 21 (Bove et al., 2006). The "subset" nature

of development of secondary allodynia is similar to the clinical condition, where only a

subset of patients report the presence of pain distal to the original site of OA (Kosek &

Ordeberg, 2000; Bajaj et al., 2001). However, to minimise the numbers of animals

used in research and maximise obtainable results from studies, it is important that the

relevant pathologies in which we are interested are robust and reproducible, making

the MIA model a better choice. In addition to tactile allodynia, thermal hyperalgesia is

present in the MNX model, but lacking in the MIA model, although cooling

hypersensitivity has been observed (Bove et al., 2006; Vermeirsch et al., 2007;

Harvey & Dickenson, 2009; Vonsy et al., 2009). The presence, or lack thereof, of

thermal hyperalgesia in human OA patients has not been quantified and so while this

lack of thermal hyperalgesia in the MIA model may indicate a difference in

hyperalgesic mechanisms to that seen in the MNX model, it does not diminish the

clinical relevance of the MIA model.

The spontaneous model of degeneration in the guinea pig resembles the human OA

condition very closely with respect to structural alterations and time-course,

developing over the life-span of the animal (McDougall, 2009). While nociceptive

behaviours have not been studied in this model, nociception has been studied

electrophysiologically with peripheral nerve recordings. Like the MIA model, where

responses of spinal neurones are recorded, neuronal responses to both innocuous

and noxious mechanical stimuli were higher in OA than non-OA animals. The

similarity of results obtained from the MIA- and spontaneous degeneration models

support the validity of the MIA model as a clinically relevant model of OA pain.

The ease of model induction is of important consideration. The MNX model involves

exposure and transection of the medial collateral ligament (Mel) and the meniscus.

Sy contrast, the MIA model requires one intra-articular injection which is much simpler

to perform, quicker (typically taking between 20-30 seconds per rat once
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anaesthetised), and causes much less damage to the joint capsule. The added

complication of induction of the MNX model not only adds to experimental

considerations of time and expertise required to set up a study, but adds to inter-study

variability between different laboratories, highlighted by the difference in observations

regarding weight-bearing asymmetry described above. One study attributed weight-

bearing asymmetry 7 days post-operatively to the effects of the surgical technique

itself with respect to capsular damage and ensuing synovitis (Mapp et al., 2010)

highlighting the extent of damage caused by MNX model induction, and suggests that

inflammatory mediators could playa large role in the development of related

pathologies. This is in contrast to the MIA model, in which all inflammatory effects of

the effects of injection are cleared within 7 days (Bove et al., 2003; Pomonis et al.,

2005). The spontaneous degeneration in the guinea pig model requires no

intervention and therefore is not associated with inter-experimental differences in

damage caused upon induction, and is the easiest to setup. However, owing to the

time required for generation of disease pathology, it is more costly and labour-

intensive in terms of animal care, than either the MIA or MNX models. In addition, the

spontaneous nature of disease progression means that not all animals will develop

structural abnormalities, and the sheer length of time required for maturation of the

model means that some animals may die before data is obtained.

Models that bring about OA-like structural changes by enzymatic means may be

criticised for being aetiologically irrelevant to the clinical condition. The disease

progression of human OA is also much longer than the time-course of MIA-model

induction. It is important to weigh up the benefits of a model versus its failings, and in

the case of the MIA model, while the starting point may not be clinically relevant, and

the disease progression much faster than in the clinical condition, the end-point is

clearly sympathetic to clinical OA with respect to both structural and behavioural

deficits. In this case, one must ask if the starting-paint and speed of onset should be

considered an important factor, given the late-stage close-resemblance of this model

to the clinical condition.
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Taking into account the reproducibility and speed of model induction, as well as the

presence of structural, behavioural and electrophysiological alterations, I conclude that

the MIA model of OA is a robust, reproducible, quick, relatively simple, and above all,

clinically relevant model of OA. Its use could be of great value not only in the

elucidation of effects of pharmacological intervention on OA pain, but also in the

understanding of the causes of pain in this disease state.
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Chapter 7 General Discussion

7.2. Mechanisms of nociception in the MIA model of OA

pain

7.2.1. Intra-articular injection of MIA causes central sensitisation

The work carried out in this thesis demonstrated the presence of central sensitisation

in the MIA model of OA pain. The evidence for this central sensitisation was the

presence of allodynia and increased neuronal responses following stimulation of the

ipsilateral hind paw. As described earlier, central sensitisation has been shown in OA

patients and, therefore, these novel data further support the clinical validity of this

model. There are several potential mechanisms for the central sensitisation observed

in these studies. The NMDA receptor is known to be involved in central sensitisation

and alterations in receptor subtype expression is known to occur both in human OA

chondrocytes (Salter et al., 2004; Ramage et al., 2008) as well as in experimental

models of OA (Jean et al., 2008). Other likely candidates for alteration in MIA-induced

central sensitisation include the TRPV1, PPAR, and GABA receptor systems. The

TRPV1 receptor system (pro-nociceptive) is known to be elevated pre-synaptically in

both the MIA model of OA pain and in human OA (see Chapter 1). The PPAR

receptor system (anti-nociceptive) is peripherally downregulated in human OA

cartilage, and PPAR activation in the guinea pig partial meniscectomy model has been

shown to reduce the progression of experimental OA (Afif et al., 2007; Kobayashi et

al., 2005), however, it is unknown if PPARs are altered in the MIA model of OA, and

characteristics of this receptor system in the spinal cord, particularly in chronic pain

states, remain to be elucidated. Intra-articular injection of MIA may also alter GABA

synthesis/ release, causing disinhibition of WDR neuronal responses. GABA receptor

activation attenuates neuronal responses and nociceptive behaviours in MIA-treated

rats (Rahman et al., 2009; Vonsy et al., 2009), possibly by inhibition of increased

descending serotonergic facilitation (Chapter 1).
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7.2.2. The importance of microglia in central sensitisation

It is known that following increased neuronal activity, microglia and astrocytes are

activated (McMahon et al., 2005; Hansson, 2006). Activated microglia release pro-

nociceptive substances such as nitric oxide, ATP and pro-inflammatory cytokines,

which modify neuronal signalling. Activated astrocytes express inflammatory markers

such as nitric oxide synthase and COX-2, as well as proteases, protease inhibitors,

growth factors and cytokines, which contribute to neuronal sensitivity (Anneser et al.,

2001; Sasaki et al., 2001; Maihbfner et al., 2003; Dong & Benveniste, 2001; Ridet et

al., 1997). Whilst it is unknown whether microglial and astrocyte activation occurs in

the MIA model of OA, microglial activation has been proposed in the CFA model of

joint pain (Sun et al., 2007). It is also known that microglial and astrocyte activation is

crucial to the initiation and maintenance of central sensitisation and related behaviours

(Marchand et al., 2005; Meller et al., 1994), and so may play a role in the elevated

neuronal responses seen in MIA-treated rats in this thesis. Of important consideration

to the studies herein, is that inhibitory effects of nimesulide on microglial activation

have been described (Scali et al., 2000). Inhibitory effects of nimesulide on evoked

responses of spinal WDR neurones may, therefore, be partly mediated by inhibitory

effects on microglia themselves, resulting in decreased release of neuronal excitatory

substances, as well as direct inhibition of astrocyte and microglial COX-2.

7.2.3. Interactions between microglia and the EC system

The importance of the endocannabinoid system in the function of activated microglia

has been established, and work from this laboratory has demonstrated EC

upregulation in the MIA model (see Appendix). The expression of CB2 receptor

mRNA by activated spinal cord microglia in neuropathic pain models has been shown

(Zhang et al., 2003), and may be up- or down-regulated by the actions of certain

pathogens and cytokines (for review, see Stella, 2009). The expression of CB1

receptors and orphan (cannabinoid) receptors on microglia has also been suggested

(see Stella, 2009). The relationship between ECs and microglia are complicated, and

endocannabinoid action on microglia has both pro- and anti-inflammatory effects.
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Activation of microglial CB2 receptors by 2-AG results in microglial migration and

proliferation (Carrier et a/., 2004), while inhibiting release of detrimental factors such

as TNFa and free radicals (Eljaschewitch et a/., 2006; Ramirez et a/., 2005). Thus it

has been hypothesised that stimulation of the CB2 receptor on microglia results in an

accumulation of the anti-inflammatory (M2) microglial phenotype at the site of lesion

(Stella, 2009). 2-AG has also been shown to suppress COX-2 elevation in vitro

following excitatory or cytotoxic stimulation by glutamate or Il-1 ~ in microglia, an

effect mediated through CB1 and MAPKlNF-KB signalling pathways (Zhang & Chen,

2008). In this way, 2-AG limits COX-2-elevation-enhanced glutamatergic

transmission. Differential actions of other endocannabinoids on microglia have also

been described, with NADA inhibiting and AEA enhancing microglial production of

PGE2 and PGD2 (Navarette et a/., 2009) while inhibiting NF-KB activation (Correa et

a/.,2010). AEA also enhances microglialll-10 production, which retrogradely inhibits

microglial activation (Correa et a/., 2010). In addition, activated microglia playa role in

endocannabinoid turnover, and in vitro are involved in both EC synthesis and

catabolism (Carrier et a/., 2004; Muccioli et a/., 2007). In neuropathic rats, following

inhibition of microglial activation using minocycline, spinal EC and ECl levels were

altered (Guasti et a/., 2009). levels of 2-AG were decreased while PEA was

increased, and AEA remained unchanged. Given the putative entourage effects of

PEA (see Chapter 1), increases in PEA levels here may serve to enhance AEA activity

at microglia, thus further regulating their activation.

7.2.4. Endocannabinoid tone modulates neuronal responses in the

MIA model of OA pain

A functional role for endocannabinoid tone in the MIA model to modulate neuronal

responses has been demonstrated by the studies described in this thesis. The

comparable effects of spinal nimesulide in MIA-treated, saline-treated and natve rats

(Chapters 3 and 5) indicates that there are no additional spinal mechanisms of

nimesulide-mediated attenuation of neuronal response in MIA-treated rats over and

above that which is already present in controls. In light of the evidence of a CB1-

dependent effect of spinal nimesulide in natve rats (Chapter 3), the data presented in
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this thesis support a role for the endocannabinoid system in spinal nimesulide-

mediated inhibition of WDR dorsal horn neurones in this model. In MIA-treated rats,

mechanically evoked and post-stimulus WDR neuronal responses were elevated

following spinal AM251 and SR144528 administration (particularly following lower

weight stimuli, Chapter 6), and by extension, these data may indicate a role of

endocannabinoid tone for modulation of mechanical allodynia behaviour in this model.

Given also that spinal nimesulide attenuated lower weight evoked responses but not

60g evoked responses (Chapter 5), the data presented in this thesis could indicate

that post-synaptic increases in CB1 receptor ligands following nimesulide

administration act in a retrograde fashion to reduce excitatory transmission from

primary AI3-fibre (as well as C fibre) inputs to the spinal cord in the MIA-treated rat.

AEA and 2-AG levels have been shown to be elevated in the spinal cord (and some

areas of the brain, including the PAG) in models of neuropathic pain (Petrosino et al.,

2007). In-house data from studies manipulating the endocannabinoid system in

experimental models of neuropathic pain using FMH inhibitors or CB receptor

agonists frequently show inhibitory effects only on responses to lower intensity stimuli

(data not shown), suggesting the EC system is upregulated in central sensitisation to

counteract abnormal input from low-threshold mechanoreceptors, and while it can

alleviate some C fibre responses, it cannot alleviate very high stimulus C-fibre

responses. A recent study suggests that spinal endocannabinoids potentiate C-fibre-

induced nociception following nociceptive stimuli, by activating CB1 receptors on

dorsal horn neurones, reducing GABAergic and glycinergic transmission (Pernla-

Andrade et al., 2009). An upregulation of spinal endocannabinoids in the MIA model

therefore may well serve to decrease nociceptive input from traditionally non-

nociceptive fibres and increase input from nociceptive sources via C-fibre activation,

resulting in decreased low- but not high-intensity-evoked responses, as seen here.

The endocannabinoid system is known to modulate pre-synaptic neurotransmitter

release. It is also involved in pre- and post-synaptic activation of inward rectifying K+

channels and inhibition of Ca2
+ channels, thus further inhibiting pre-synaptic

neurotransmitter release, and reducing post-synaptic neuronal responsiveness. High

concentrations of AEA are also known to activate TRPV1 and so the anti-nociceptive
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effects of increased endocannabinoid tone in the MIA model, while robust, may have

limits, supported by the observation of increased baseline WDR neuronal responses in

MIA- versus saline-treated rats. However, this baseline elevation of WDR neuronal

responses may have been greater without the putative upregulation of the

endocannabinoid system in this model, supported by the data herein, describing

elevated responses following spinal CB receptor blockade. Interactions between the

endocannabinoid and GABA receptor systems have prevously been demonstrated

(see Chapter 1). Elevated endocannabinoid tone may act to stimulate GABAergic

neurones, counteracting the putative loss in GABAergic function and increase in

descending serotonergic facilitation.

7.2.5. Proposed central mechanisms of nociception in the MIA

model of OA pain

I propose that following intra-articular administration of MIA, joint damage causes

increased input from afferent fibres in the joint and paw to the spinal cord, supported

by work in the spontaneous degeneration model of OA (McDougall et al., 2008;

McDougall et al., 2009). The increased spinal activity and central sensitlsation is

associated with activation of microglia and astrocytes, and may involve changes in

receptor systems such as NMDA, TRPV1, PPAR, GABA and 5-HT. Increased

expression of enzymes such as COX-2 may also occur, resulting in the release of pro-

nociceptive mediators which positively feed back into increased neuronal activity. The

endocannabinoid system is also upregulated, the functional effects of which are to

modulate the increase in neuronal responses. However, due to rapid metabolism by

the proposed increased activity of COX-2, the modulatory effects of elevated spinal

endocannabinoids on neuronal responses may have limits, and so neuronal

responses in MIA-treated rats are higher than in saline-treated rats. Spinal

administration of nimesulide reduces neuronal responses, due to inhibition of COX-2

mediated synthesis of nociceptive substances such as prostaglandins, the putative

shunting of endocannabinoid oxidation through LOX and cP450 pathways to produce

CB1-active metabolites, as well as putative off-target effects such as inhibiting the

activation of microglia (Figure 7.1).
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joint paw
afferent input

activation

IL-10

Figure 7.1 Proposed effects of intra-articular MIA injection on neuronal activity
and the involvement of the endocannabinoid system. MIA injection causes joint
damage, resulting in an increase in afferent input from the joint and paw and
increasing neuronal activity. Increased neuronal activity putatively activated microglia
and astrocytes, which express or release pro-nociceptive mediators such as COX-2,
cytokines, nitric oxide (NO), ATP, proteases and growth factors. Upregulation of
enzymes involved in pro-nociception such as COX-2 also occurs as a direct result of
increased neuronal activity, causing further release of pro-nociceptive mediators such
as prostaglandins. The endocannabinoid system (blue) is also upregulated, and has a
functional role to limit baseline neuronal activity. Pink = effects of the COX-2 inhibitor
nimesulide. Inhibition of COX-2 by nimesulide reduces prostaglandin production as
well as inhibiting COX-2-mediated metabolism of endocannabinoids. This decreased
COX-2 oxidation of endocannabinoids putatively shunts oxidation through LOX and
cP450 pathways, resulting in CB1-receptor mediated attenuation of neuronal
responses. Nimesulide may also have off-target effects, e.g. direct inhibition of
microglial activation.
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7.3. Conclusions

The work presented in this thesis has demonstrated that peripheral structural changes

in the joint cause changes in central nociceptive processing in the MIA model of OA

pain, and that endocannabinoid tone in this model has a functional role to modulate

elevated neuronal responses. It has been demonstrated that changes in cytokine

levels associated with clinical OA are not responsible for early-stage pain behaviours

in the MIA model, however, the importance of cytokines in the developed disease

state is still unclear. Quantifiable post-stimulus neuronal responses in the MIA model

have also been demonstrated, for the first time, however, the association between

post-stimulus neuronal responses and post-stimulus pain behaviours is yet to be

quantified.

The work carried out in this thesis has also demonstrated the importance of COX-2 in

endocannabinoid metabolism, and highlighted a potential role for LOX and cP450

enzymes in the production of CB1-active metabolites under COX-2 inhibition. Further

work is necessary to confirm the generation of these metabolites and establish the

importance of LOX- and cP450- mediated endocannabinoid metabolism under control

conditions and in models of chronic pain. The work presented herein has highlighted

the pharmacological potential of the EC system as a target in OA pain.
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Characterising the MIA model of CA pain

Work carried out in this lab sought to establish a dosing regimen of intra-articular MIA

to produce robust behavioural changes and structural alterations comparable to the

human OA condition. Doses of 0.3-3mg MIA in 50IJL saline were injected into rats

weighing 160-190g, one dose per rat, and studied for up to 28 days. Weight-bearing

and mechanical withdrawal thresholds were ascertained, as previously described

(Chapter 2), and joint pathology was analysed (see later). In addition,

endocannabinoid levels in the spinal cord of MIA- and saline-treated rats were

measured, as previously described (Chapter 2).

Methods: joint histology

For the analysis of joint pathology, joints were studied at PO days 14-17 and 28-31.

Knee joints were removed and fixed in 10% formal saline before decalcification in an

aqueous ethylenediaminetetracetic acid (EDTA) solution (14% in distilled water; pH

7.0, 20°C). Samples were embedded in paraffin wax, sectioned in the coronal plane

in 5-81Jmsections, and stained with Safranin-O (red) and fast green. Scoring of

medial and lateral knee compartment tibial plateaux cartilage, tibial subchondral bone

and joint synovium were undertaken, ensuring a comprehensive histopathological

analysis of MIA-induced joint pathology. The Osteoarthritis Research Society

International (OARSI) Cartilage Histopathology Assessment System (OOCHAS)

(Mainil-Varlet et al., 2003) was used, and consists of a grade (0-6) which defines the

depth progression of OA histopathology features into the cartilage (0, normal; 1,

surface intact; 2, surface discontinuity; 3, vertical fissures; 4, erosion; 5, denudation; 6,

deformation) and a stage (0-4) which defines the surface extent of joint involvement;

0, no activity; 1, <10%; 2, 10-25%; 3, 25-50%; 4, >50%. Since this system does not

assess the histopathological features of subchondral bone or synovium, these were

scored separately. Subchondral bone lesions were assessed using an established

method (Janusz et al., 2001) with a scale of 0-4; 0, no subchondral lesions with
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cellular infiltration; 1, minimal subchondral lesions (1-2): <5% of the tibial plateau

involved; 2, mild subchondral lesions (2-3): <15% of the tibial plateau involved; 3,

moderate subchondral lesions (4-5): <25% of the tibial plateau involved; 4, severe

subchondral lesions (5 or more): >25% of the tibial plateau involved. The synovium

scoring assessed the level of hyperplasia in the synovium, hypercellularity was

indicative of synovitis. The synovium scoring system produced a mean score for the

medial and lateral knee joint compartments and consisted of: 0, lining cell layer 1-2

cells thick; 1, lining cell layer 3-5 cells thick; 2, lining cell layer 6-8 cells thick and / or

mild increase in cellularity; 3, lining cell layer >9 cells thick and/or severe increase in

cellularity as previously described (Mapp et al., 2008).

Results

MIA caused time-related asymmetry between ipsilateral and contralateral weight-

bearing, and decreases in mechanical withdrawal thresholds (Figure 8.1 A, B).

A 1mg dose significantly increased noxious von Frey evoked responses of single

WDR dorsal horn neurones at 28 days (but not 14 days - data not shown) post-

injection (Figure 8.2), and was associated with increased levels of endocannabinoids

and related compounds in the hindpaw and spinal cord, compared to saline-treated

rats (Figure 8.3).

Joint pathology was dose-dependent. 1mg MIA produced pathology comparable to

joint degeneration seen in OA patients; articular cartilage exhibited hypocellular focal

lesions with reduced glycosaminoglycan content, identified by reduced safranin 0

staining. These lesions were often associated with a horizontal subchondral cleft. In

addition, fibrous tissue interspersed the subchondral bone trabeculae (Figure 8.4).

MIA caused dose-dependent changes in cartilage and subchondral bone at days 14

and 28, and was accompanied by mild synovitis at day 14, which was cleared by day

28 following a 1mg, but not 3mg, dose of MIA (Table 8.1).
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Figure 8.1 Time course of the changes in (A) weight distribution on the
ipsilateral hindlimb and (8) hindpaw withdrawal thresholds of the ipsilateral
hindpaw following intra-articular injection of MIA (0.3-3mg/50IJL) in rats.
Statistical analyses comparing MIA-treated rats to saline-treated rats were performed
using a 2-way ANOVA with a Bonferroni post hoc test #, P<0.05; ##, P <0.01 for
0.3mg MIA; +, P <0.05; ++, P <0.01 and +++, P <0.001 for 1mg MIA; *, P <0.05; ": P
<0.01 and ***, P <0.001 for 3mg MIA- versus saline-treated rats.
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Figure 8.2 Mechanica"y evoked responses of WDR neurones in saline- and MIA
(0.3-3mg) -treated rats following punctate stimulation (10-26g) of the hind paw
28-31 days after intra-articular injection. Statistical analyses comparing neuronal
responses in MIA-treated rats and saline-treated rats were performed using a 2-way
ANOVA with a Bonferroni post hoc test: *, P<0.05, **; P <0.01; r: P <0.001.
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Figure 8.3 Levels of endocannabinoids and related compounds in the spinal
cord of MIA-treated (1mg) and saline-treated rats 14 and 28 days after intra-
articular injection. Statistical analysis comparing MIA-treated rats and saline-treated
rats were carried out using a Mann Whitney test: *, P<O.05; **, P<O.01; ***, P<O.001.
AEA, anandamide; 2-AG, 2-arachidonyl glycerol; OEA, oleoylethanolamide; PEA,
palmitoylethanolamide.
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Day14 Day 28

Saline

MIA 1mg

Figure 8.4 Coronal sections through knee joints of saline- and MIA (1mg)-
treated rats, 14 and 28 days post injection. Decreased glycosaminoglycan content
of cartilage evident through decreased Safranin-O (red) staining. Double-headed
arrow (MIA, day 14) indicates reduced cartilage thickness; single-headed arrow (MIA,
day 28) indicates cartilage delamination; SBe (MIA, day 14), subchondral bone cleft.
Bar = 500lJm.
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Table 8.1 Scoring of OA-associated features of the cartilage, subchondral bone
and synovium of the ipsilateral knee, 14 and 28 days following intra-articular

. f S u 0 3 MlA 1 MlA 3 MlAinjection 0 a me, mg , mg or mg
Day 14 Day 28

Saline MIA MIA Saline MIA MIA MIA
1mg 3mg O.3mg 1mg 3mg

n=4 n=6 n=4 n=4 n=8 n=8 n=3

Cartilage 0 7.75 11 0 6.5 6.13 24
(0) (0-24) (0-24) (0) (0.75-19) (0-24) (6-24)

Subchondral 0 1.42 1.50 0 0.83 1.0 3.75

bone (0-0.25) (0-3) (0-3.5) (0) (0.25-2.75) (0-3.5) (1.0-3.75)

Synovium 0 0.75 0.25 0 0.5 0 2.75
(0-0.25) (0-2) (0-2) (0) (0-1 ) (0-2) (0-3)
..

Intra-articular injection of 1mg MIA produced marked changes In the cartilage and
subchondral bone at day 14 and day 28. The severity of the changes in cartilage,
subchondral bone and synovium produced by intra-articular injection of 3mg MIA
increased from day 14 to day 28. Synovitis was mild following either a 0.3mg or 1mg
dose at day 28, and was also mild at day 14 following the 3mg dose. Synovitis was,
however, evident 28 days following the 3 mg dose of MIA. n.b. since 0.3mg MIA
produced no change in pain behaviour at day 14, joints were not collected at this
timepoint and data are not available. Data are presented as median and, in brackets,
the range.
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