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Abstract

This thesis is concerned with the propagation of elastic waves in polycrystalline
materials. In particular, in establishing a relationship between the statistical prop-
erties of the wavefield and the statistical properties of the material via a correlation
function. Here the study of elastic waves has been restricted to surface acoustic
waves (SAWs), mainly because they are readily accessible using an optical scanning
acoustic microscope (OSAM).

Polycrystal materials considered as stochastic media exhibit random properties
at some scale. This generally includes most common engineering materials such as
metals which are constituted by anisotropic regions known as grains. This thesis
uses a stochastic model for both microstructure and wave propagation in polycrys-
tals based on the stochastic Helmholtz equation. The main objective of the model
proposed is to obtain a correlation theory that best characterises aberrations in
acoustics due to microstructure in polycrystals. The model has been built upon the
existent theoretical background around scalar theory for waves in inhomogeneous
media in order to find an expression for the correlation function I', of the field.

The interaction of SAW and microstructure is experimentally observed as devia-
tions or aberrations of the wavefront by imaging the acoustic field as it propagates in
polycrystals using the OSAM. The aberrations regarded as random process are sta-
tistically analysed from an ensemble of acoustic fields built upon performing multiple
measurements on the surface of a sample, thus measuring a transverse correlation
r..

The mean grain size and the correlation length are connected through the second
moment ['y of the wave number. The theoretical model predicts that I', depends
exponentially on I'y. A comparison of I', and I, provides a relationship between I',
and 'y, therefore an indirect way of measuring mean grain size. The theoretical-
experimental analysis has been supported with simulated acoustic propagation on

simulations of grain growth for real microstructure.
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Chapter 1

Introduction

The research presented in this thesis is concerned with elastic waves in polycrys-
talline materials and the effect that the materials have on wave propagation. Specif-
ically, the interaction of surface acoustic waves (SAWs) and materials composed
of non-intersecting anisotropic regions or grains, such as aluminium. The over-
all geometric properties, such as shape and spatial arrangement of grains within a
polycrystalline material shall be termed microstructure.

The interaction of SAW with microstructure results in deviations or aberrations
of the wavefront causing the amplitude and phase of the wave to spread transversally
along the direction of propagation. The aberrations or deviations of the wavefront
can also be observed in other types of waves, such as electromagnetic waves. For
instance, rays of light entering to the earth emanating from a distant object, such
as a star, are deviated by the atmosphere |1|. Aberration of light by the atmosphere
is at a very advanced stage of research compared to aberration in acoustics. The
reference [1] just mentioned is a review on what is known as Adaptive Optics, which
deals with the problem of aberrations of light affecting the performance on ground-
based telescopes.

In this chapter acoustic aberrations are introduced and compared to methods
used in Adaptive Optics. One thing they have in common, is that one wishes to cor-
rect or to minimise the effects caused by aberrations of waves. Many mathematical

techniques in Adaptive Optics can also be applied to explain aberration in acoustics
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as discussed later. The temporal and spatial correlation of light plays a fundamental
role in adaptive optics [1]. This would also apply to acoustic aberrations as this work
deals with the moments of the acoustic field. That is, the second moment of SAW
is of great importance in studying acoustic aberrations since it is directly related to
the spatial correlation of microstructure.

From the theoretical point of view, aberrations caused by material microstructure
are studied within stochastic calculus because of the stochastic nature of microstruc-
ture in polycrystalline materials. This, in turn, implies the use of the theories of
elasticity in polycrystalline materials, which is rather similar to linear elastic theory
for non-polycrystalline materials.

Experimental evidence of aberration in acoustics is demonstrated using an imag-
ing system developed at the University of Nottingham. The system is an optical
scanning acoustic microscope (OSAM) that fundamentally generates and detects
SAW using lasers for both generation and detection of SAWs. The OSAM system is
capable of performing measurements at many positions of SAW in stochastic media,
thus being able to produce an ensemble of SAW. This way, it is possible to statisti-
cally assess the effect that microstructure has on a SAW travelling in such medium.
As a consequence of this procedure, it is possible to measure a correlation function

from the experimental ensemble that quantifies aberrations.

1.1 Background and Motivation

The term ultrasound refers in general to sound at high frequencies or above 20kHz
which is the normal frequency that the human ear can detect. The experimental
work is carried out in the high frequency regime (82MHz) which is the fundamental
frequency at which the OSAM generates ultrasound. In the theoretical framework,
ultrasound can be described by the linear elastic theory for solids. This theory pre-
dicts many types of wavemodes that have a wide range of applications in industry
and /or medical diagnostics. Common wavemodes could be longitudinal, shear and

Rayleigh or SAW depending on particular applications or boundary conditions. Ul-
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trasound and SAWs will be synonymous in this thesis since the experimental work
has been carried out using SAWs.

For instance, in medical ultrasound |2, 3| advantage is taken of the scattering
process occurring in tissue, muscles, etc. to image objects within the human body for
medical diagnostics, an example of this, is fetal imaging [4, 5|. Lamb and Rayleigh
waves, in particular can have a variety of applications. Lamb waves are useful in
locating and sizing flaws in pipes |6, 7, 8| as well as in assessing train rails [9].
Other applications of Rayleigh waves is the characterisation of cracks on complex
geometries [9]. In the area of sensors, acoustic-wave devices have gained importance
in the design of transmitting and receiving inter-digital transducers using Rayleigh
waves [10].

Ultrasound is one of the many techniques that can be used to image objects such
as micro-cracks [11]. Other methods include X-ray tomography [12], electromagnetic
waves and radio waves [13]. The main motivation of this work is to say that aber-
ration of SAWs can be used to indirectly extract information from the medium in
which the wave is travelling. In the next paragraph, a more precise meaning of
acoustic aberrations is introduced.

Many engineered materials such as aluminium are composed of anisotropic grains
with random spatial orientation. This type of solid is polycrystalline. They can have
grains of different shapes and the degree of anisotropy will depend on the type of
metal considered. The important point at this stage is what happens with SAWs
propagating in polycrystalline materials.

Let us consider an experiment which measures the field of a plane wave propa-
gating in a polycrystal. As the wave propagates away from the source, the phase
and amplitude of the wave would experience changes due to the anisotropy of grains.
The random orientation of grains and the fact that in anisotropic solids the wave ve-
locity is highly dependent on angular direction, is the main cause of those changes.
These changes can be observed as deviations in the amplitude and phase of the
field as it propagates from one grain to another in a random fashion. Those ef-

fects were observed and postulated to be the cause of erratic performance in surface
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wave velocity measurements in [14]. The effects, now known as acoustic aberrations,
can be observed in polycrystalline materials or in media which have a random mi-
crostructure. As the research went further it was necessary to systematically study
aberration phenomena since it became important for improving the performance of
the OSAM system. The other reason why aberration became an interesting subject
is the intrinsic relationship between the statistics of aberrations and microstructure
of polycrystalline materials. Perhaps, one of the first works to appear on this subject
was [15], where the authors took a two-dimensional image of SAW wavefront distor-
tions as they travelled in stochastic media. By using an optical beam deflection|16|
technique for detecting small displacements on the surface of the sample, they were
capable of showing many interesting features inherent to the sample. The most
significant is that aberrations are clearly seen on a piece of titanium using 10MHz
Rayleigh waves.

The acoustic aberration can be quantified by a transverse correlation of the
acoustic field. This in turn is related to the correlation of the stochastic medium
by means of a scalar theory for SAWs. From this relationship, characteristics of
the medium, such as mean grain size as well as the degree of anisotropy can be

extracted.

1.2 Imaging acoustic aberrations

The OSAM system has been used to image and measure the acoustic deviations in
polycrystalline materials. The preliminary results presented in this section were car-
ried out in aluminium. Let us denote the acoustic field as U(z, z) = A(z, 2)e'®®2),
where A denotes amplitude and ® phase. U is the displacement normal to the plane
where the wave propagates. The scan has been performed in the zz plane measuring
the normal displacement point by point. It is a plane wave that propagates from left
to right on the surface of an aluminium sample, Fig. (1.1). Both the amplitude and

phase distributions are shown and it can be observed how the wavefront changes

in both images as the wave propagates away from the source. Several processes
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Figure 1.1: The image on top is the amplitude distribution A whereas the image on
bottom is the phase distribution ® of a plane wave at 82MHz, travelling from left to
right on an aluminium sample. The two images were obtained with OSAM system.

may be involved to cause acoustic deviations, as observed in Fig. (1.1). Every point
belonging to the wavefront interacts with grains causing the phase to deviate from
what would expected to be if there were no grains, i.e. non-polycrystalline mate-
rial. The cause of those aberrations is due to the anisotropy and orientation of each
grain. Whatever the process involved it is desirable to characterise overall aberra-
tions from a statistical point of view. It is clear that aberrations depend somehow
on microstructure of the sample under consideration. This dependency can carry
considerable information and presents difficulties for a theoretical description of the
system.

Statistical analysis of aberrations requires multiple measurements of the acous-
tic field over the microstructure, to obtain unbiased estimation of aberrations in
polycrystalline materials. This is because grain characteristics vary randomly. That
is to say, grain orientation, anisotropy and grain topology have to be described by
stochastic processes. Fig. (1.1) is the acoustic field measured on a particular location
on the surface of the sample. Consider the experiment of measuring the acoustic

field with the source located at two two different locations on the surface of the same



Introduction 15

sample, such that the scanning areas do not overlap, then because of the stochastic
nature of microstructure, it is expected to obtain a different deviation pattern for
each measured field. That is, the acoustic deviations as shown in the amplitude
distribution in Fig. (1.1) would follow different paths. The reason for this is as one
changes source and scanning location the wave is propagated in a different reali-
sation of the ensemble of processes describing microstructure. Continuing in this
way one would be able to build an ensemble of the acoustic fields and be able to
make a statistical characterisation of acoustic aberrations, which would depend on
the ensemble of microstructure.

Acoustic aberrations are absent in non-polycrystalline materials, such as glass
or any other solid with no microstructure, as stated before. The word homogeneous
medium is sometimes used in this thesis as synonymous for non-polycrystalline ma-
terials. But a polycrystalline material can also be considered as a homogenous
medium if the wavelength is relatively bigger than the scale of the inhomogeneities.
At this scale elastic waves, such as SAWs do not interact with the microstructure,
so aberrations are wavelength dependent.

The object of study will be images of the acoustic field in a form presented in

Fig. (1.1) for the statistical study of acoustic aberrations.

1.3 Effects of aberrations and adaptive acoustics

Aberrations can be undesirable since they affect the accurate measurement of mean
wave velocity [14]. The problem of compensating for aberrations requires knowledge
of the stochastic Green’s function of the system. One method in dealing with this
problem is presented in [14], where the author realised that by improving the correla-
tion of the acoustic field with an optimised Green’s function measured directly from
the specimen, the accuracy of wave velocity measurements in the region of interest
could in theory be improved. This section explains fundamentally the problem for
compensating aberrations in acoustics arising in the OSAM system. As this work

advances, it will be seen that it is possible to exploit this phenomenon to gather
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information about solid microstructure.

1.3.1 Correcting for acoustic aberration

This section explains the mechanism for correcting acoustic aberrations in polycrys-
talline materials, which is an integral part of the OSAM system. The OSAM system
uses a spatial light modulator (SLM) to project a light pattern onto the surface of
the sample. This acts as a thermoelastic ultrasonic source for SAW generation [17].

Consider the experiment of exciting a focused acoustic wave to a point by deliv-
ering a series of arcs onto the surface using the SLM. Two things will happen if one

measures the point spread function (PSF) of the system at the focus point.

a) The PSF is the amplitude of a wave with undistorted spherical
wavefronts. Acoustic aberrations are absent if the sample is an isotropic
material Fig. (1.2)(a).

b) The PSF is the amplitude of a wave with distorted spherical wave-
fronts. Acoustic aberrations are present if the sample is a polycrystalline

material Fig. (1.2)(bh).

To compensate for aberration in this context would mean to backpropagate the
distorted PSF, Fig. (1.2)(b) to the zone of ultrasound generation where the phase
error is calculated by comparison with the non-distorted PSF as in Fig. (1.2)(a). This
procedure is equivalent to feeding the SLM with an optimised source that depends
on the characteristics of the medium. The distorted PSF is back propagated to the
source in a homogeneous half space using an angular representation of the field to
feed the SLM with the new pattern [18|. The resulting PSF at the focus point would
be as if there were no microstructure to interact with as illustrated in Fig. (1.2)(c).
The correlation of the acoustic field is an important part in correcting for aberrations
and also the core of this thesis for other reasons which are explained later. There are
some hardware issues to deal with in order to succeed in correcting for aberrations,

specifically how to detect them, and these are carefully reviewed in [19].
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lluminated area lluminated area lluminated area
by S‘LM by S‘LM by SLM
ﬁ‘
+
a) Non—polycrystalline b) Polycrystalline c¢) Polycrystalline
Undistorted PSF Distorted PSF Corrected PSI

Figure 1.2: Schematic representation of the mechanism in correcting for aberrations.
a) It shows a focused SAW in non-polycrystal material by projecting arcs of light
onto the sample through SLM. Below it, is the graph of the PSF at the focus point.
b) Similar situation as in (a), but the medium is a polycrystal, showing also the
distorted PSF at the focus point. c¢) Similar experiment as in (b) but the arcs
this time are distorted by feeding the SLM with the back-propagated waveform
in a homogeneous half space from (b). The undistorted PSF is also shown in (c)
illustrating the corrected aberrations.
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The above procedure is similar to the one followed in optics for correcting aber-

rations of light for ground-based telescopes [1|. Light passing through a turbulent
* Object

Turbulene

System
Pupil

Wave Front
Sensor

\\
" Deformable
Mirror (DM)
. Focusing
E Z Lens

Image|Plane Detector

Control
System —

Figure 1.3: A simplified optical configuration of an adaptive optical imaging system,
redrawn from |[1].

medium such as the atmosphere with a variable index of refraction, is spatially
aberrated in a random fashion causing images from distant objects, e.g. stars, to be
distorted. The problem is how to correct these deviations or aberrations in order
to get an accurate image of the object. The area dedicated to this type of problem
is Adaptive Optics and is a very active subject since aberrations are an undesirable
effect in gathering information. Many sophisticated instruments have been built in
order to correct or minimise this effect. Fig. (1.3) shows a simplified version of a typ-
ical optical imaging system |1]|. This type of instrument corrects for the aberrations
using a hardware, deformable mirror(DM), shown in Fig. (1.3). The OSAM system
works in a similar way in the sense that it is also capable of correcting aberrations

arising in solids.

1.4 Aberrations and scattering of waves

Theoretically speaking aberration in polycrystalline materials could be described in a

more general theory for waves in media with variable characteristics, specifically the
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scattering of elastic waves by microstructure. The process of scattering is far more
complex than aberrations, since acoustic aberrations could simply be described as
distortion of the wavefront of forward scattering of elastic waves. A wave can travel
in the forward and backward direction due to interactions with the scatterers or
grains in polycrystals. For instance, let us imagine a vector normal to the wavefront
travelling in the forward direction within a polycrystalline material. The vector
will change direction, but still part of the forward field by interacting with grains
(aberrations). It can, however, be reflected and reflected again by grain boundaries.
This process is repeated for all points belonging to the wavefront, This is what we
mean by multiple scattering, causing the field to be extremely complex and usually
randomised. In the very specific case of a SAW in a polycrystal, waves can be
reflected by grain boundaries and forward reflected again causing a complicated
wave interaction, even mode conversion.

All energy carried by elementary waves travelling in the direction of propaga-
tion constitute the so called forward scattering whereas backward scattering is the
opposite. In many practical applications forward scattering is stronger than its coun-
terpart and therefore backscatter very often is neglected. As shown in Fig. (1.1),
aberrations are the wavefront distortions of the field in the forward direction.

The scattering theory of waves in polycrystalline materials is described by the
theory of elastic waves in random media. This theory is an extension of linear
elastic theory for homogeneous solids, in the sense that elastic characteristics via
elastic moduli is a spatial random tensor that depends on position [20]. The elastic
characteristics of each grain is a major problem in this theory since each grain is an
anisotropic solid in its own right. Therefore, the theory can get very complicated if
considering all the right elastic properties of each of the grains. It is well known that
anisotropic single grains are difficult to study not because of the number of elastic
constants involved but also of the complication in obtaining the displacements. The
authors in |21, 22| have studied solids of general anisotropy, for instance. On top
of that, one still has to consider the orientation of the grains with respect to each

other. In would be seen that some approximations in grain anisotropy have to be
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introduced in order to get useful results about the elastic response of a polycrystal.

In this thesis the elastic model for SAWs is replaced by the stochastic scalar
model, where the medium is described by a single scalar random process simplifying
the mathematical development. This avoids the use of a tensor random process

necessary in the full theory.

1.4.1 Modelling the medium

Modelling or specifying the medium is part of the problem of wave propagation
in polycrystals. It is a complicated problem in the theory of wave propagation in
polycrystals since microstructure of the polycrystal can have complicated geomet-
rical forms. In the theory all the geometric and elastic properties are embedded
in the elastic moduli ¢. Thus, the specification of tensor ¢ is important in wave
propagation, where c is a tensor that depends on position.

The theoretical description is greatly simplified by modelling the elastic moduli
as c(r) = co + '(r) |23, 24, 25, 26|, where ¢ is a stochastic process representing the
fluctuation with respect to ¢g. The process ¢ accounts for wave velocity variations
within grains due to the anisotropy and random orientation of grains. The simpli-
fication is introduced by imposing simplified constraints as a random process, for
instance, using known correlation functions, ('), (¢(r)c(r’)), ... where the broken
brackets represent an ensemble average. The ¢y elastic moduli is the average over
orientation and number of grains within a volume. The constants ¢y correspond to
the elastic moduli for homogenous solids. This model can equally be applied to the
scalar approach, in the sense that the wavenumber is modelled as k = ko(1 + p)
where p is the fluctuating part. It will be seen that by specifying the second order
moments for p as being exponential form, many polycrystals with mainly convex
grains can be modelled. This model will allow a formulation of a theoretical descrip-
tion for the correlation of the field to be obtained. Experimental results will show

how this is related to the actual material.
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1.5 Aim and contributions of the work

One of the purposes of this work it to provide a tool for a statistical study of
aberrations based on correlation of the acoustic field. The work is aimed not only
for the likely use in material characterisation but also to aid in the problem of
compensating for aberrations in acoustic propagation.

The correlation of the field is measured using a transverse correlation. This
function is to be related to the second order moments of the process characterising
the medium via a scalar theory. From this relationship, some characteristics of the
investigated polycrystals are obtained such as the mean grain size. The knowledge
of mean grain size is an important parameter in material characterisation. The
NDE methods applied in this thesis for testing materials indirectly measure material
characteristics. There is still a lot of work to do, but it is believed that this work
will be valuable in reaching that point.

The aberrations of the field, regarded as a random process, are statistically
analysed from an ensemble of acoustic fields built up by performing multiple mea-
surements on the surface of a sample. This analysis permits the measure of the
transverse or two-point correlation I', directly from measurements with the purpose
of comparing it to a theoretical model which is able to extract the mean grain size.
The theoretical work is based on stochastic waves in inhomogeneous media. The
purpose is not to give a general treatise on the subject but a useful theoretical
treatment applicable to aberrations. This is done by approximating second mo-
ments within the framework of a stochastic process, despite the apparent restrictive
assumption on microstructure.

In summary, the contribution of this work is the establishment of a wave cor-
relation function that quantitatively describes the local anisotropy and mean grain
size of a certain polycrystalline materials. This provides a relatively simple way of
understanding wave propagation in inhomogeneous media and its direct relationship
to actual microstructure.

The statistical properties of SAWs in polycrystalline materials are defined by
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second order moments of the acoustic fields and these relate to material grain size

and anisotropy via the wave correlation function.

1.6 Objectives and thesis layout

This thesis has been organised into three main parts comprising seven chapters that
contain theoretical aspects of waves in inhomogeneous media, experimental work in
solids with microstructure and simulations.

The literature review, is carried out in chapter (2) focusing on waves and aberra-
tions from 1900 up to the present in inhomogeneous media. This review emphasises
the importance of the first and second moments of random fields applied to ultra-
sonic propagation. It covers both elastic and scalar waves which are later used for
the theory of SAWs in polycrystals.

A number of the articles come from a different area such as the stochastic wave
equation that has extensively been applied there. A few articles on the importance
of numerical techniques used in metallographic studies are mentioned. These are
later used to study the anisotropy of polycrystals in simulated media.

The theoretical aspects of wave propagation are covered in chapter (3) based on
elastic waves and scalar waves. The methodology is to reduce the full wave theory to
the scalar approach for SAWs in polycrystals. The elastic properties of polycrystals
are discussed connecting the anisotropy of the grains to local geometric features of
the microstructure.

The following diagram, Eq. (1.4) shows schematically the main parts of the thesis.
The starting point is a polycrystal as the object of study. As the diagram (1.4) shows,
the important aspect in this part will be the second order moments I'y, from which
the geometric characteristics of the microstructure can be modelled. A prescribed
exponential form of I';, is discussed as a possibility to approximate microstructure
for the type of polycrystals investigated in this thesis. Towards the end of chapter
(3) numerical techniques are introduced for microstructure simulation. Also a simple

model to simulate wave velocity variations in polycrystals is discussed. Realisation
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Figure 1.4: Chart showing schematically the thesis layout, highlighting the most
important aspects of thesis and chapters where they are discussed.
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of phase variation of the phase screen model were modelled using this technique to
give realisations of the field.

Chapter (3) was intended to deal not only with microstructure but also with
acoustic simulation. The Voronoi tessellation is briefly discussed and is used to sim-
ulate real microstructure. The wave number in a discrete medium is modelled based
on this. This simple algorithm used to evaluate the multiple integral representation
of the field based on the discrete Fourier transform is given in appendix (A.5). The
correlation length of the random precess representing the inhomogeneities and its
relationship to the mean caliper diameter of grains is also discussed.

Chapter (4) introduces the SAWs in the half space and its relation to the well
known angular spectral representation of a field discussing briefly SAW generation
from a line source. This chapter also introduces and develops the phase screen
model for wave propagation in random media which will be a fundamental part in
the study of correlation of the field. The overall aim of the chapter (4) is to give an
expression for the acoustic field which allows us to calculate the correlation function
of the field in chapter (5).

The quantification of aberrations is based on the correlation of the field. It is the
most important part of the thesis, thus correlation of the field is discussed in chapter
(5). This quantification is made by means of a transverse correlation function and
is the main contribution of this work. Therefore, chapter (5) is dedicated to the
calculation of this function from two methods. The first approximation is given
based on the expression calculated in chapter (4). This is presented on the first half
of the chapter leaving the mathematical details for the appendix (A.1). The other
half is dedicated to give an alternative approximation to the correlation function
based entirely on the Helmholtz equation.

The experimental work is presented in chapter (6) along with the instrumenta-
tion. In the first part of this chapter the main components of the OSAM system
are presented, which is followed by a section explaining in great detail the prepara-
tion and characterisation of samples. The aberrations investigated on these samples

are given in a separate section along with the methodology to carry out the ex-
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perimental work. The statistical procedure is given by introducing the correlation
and arithmetic average for finite sequences. Finally, the main result of this thesis is
presented in a graph comparing the theoretical and observed correlation function.
The aberrations are statistically analysed from an ensemble of acoustic fields built
upon performing multiple measurements on the surface of a sample. The analysis
permits an estimation of I',, a transverse 2-point correlation from the acoustical
ensemble. This experimental correlation function is compared to a theoretical cor-
relation 'y, given in chapter (5) from which, by solving a non-linear fitting, the
degree of anisotropy as well as mean grain size are obtained, see diagram (1.4).

The final part of chapter (6) is intended to corroborate the theoretical and experi-
mental aspects of this work. The analysis of chapter (6) is repeated here using purely
the acoustic field in a simulated microstructure. The simulation of microstructure
is from an independent source and unrelated to the point of view presented in (4).
The very last part of chapter (6) is to do with the noise present in measurements
and the filter for de-noising the signal is discussed.

The final part of the thesis comprises chapter (7) and the appendices (A). The
former is dedicated to conclusions and future work whereas the latter are appendices

complementing the theoretical work developed in earlier in chapters (4) and (5).



Chapter 2

Literature Review

Introduction

This a brief review of the existing theoretical and experimental methods of elasticity
in materials that are an aggregate of grains randomly orientated in space. This
includes any engineering material, with special attention to aluminium and titanium.
It also reviews some aspects of material characterisation as it is partially the subject
of this thesis. The mechanical properties and material characterisation with methods
not related to ones treated here can be seen as further reading into the theory of
waves in media with random characteristics, especially scalar theories. Much of the
methods mentioned below were developed in areas other than acoustics in solids,
especially correlation theory which fundamentally belongs to the theory of light

propagation.

2.1 Elastic waves in inhomogeneous medium

Polycrystals

A polycrystalline material, roughly speaking, is an aggregate of grains with different
geometric features and highly correlated elastic properties. The geometry of grains,
or whole microstructure, is characterised in terms of grain orientation, grain bound-

aries, subdivision of grains, shape and texture [27|, to mention just a few. Grains
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as entities can be a single or a subdivision of crystals. These clusters of crystals
are sometimes part of a subgrain and can be transformed to form entirely a new
grain [28|. Thus, the crystalline structure determines the anisotropy or isotropy of
individual grains.

The orientation of grains is measured with respect to the orientation of crystals
forming the actual grain. One would have multiple orientation in those cases where
the grains contain more that one crystal. The crystallinity and orientation have to be
taken into account in establishing the anisotropy of grains [29] because of the effect
on wave attenuation. Different grains have different degrees of anisotropy and from
a theoretical point, those differences are considered to be a random process [30|. In
some cases grain boundaries can take any geometric form depending on the material.
For instance, at some scale pure aluminium contains elongated grains with well
defined grain boundaries but can have complicated geometric characteristics during
recrystallisation [27|. The recrystallisation and boundary formation occurs when,
for instance a refiner [31, 32| is added to the melted material (aluminium), during
heat treatment. Pressure is another well known process to modify the mechanical
properties of metals because recrystallisation may occur. Polycrystals can have
multiple phases, that is a grain need not be of the same material or they could have
a mixture of two or more elements [27]. Because of the simplicity in microstructure,
single-phased polycrystals are the subject of this work, in particular aluminium.

The grains in a polycrystal are in reality three dimensional |33|; characterisa-
tion, however, is performed in a plane that shows a cross section of each grain along
the plane. Characterisation in this thesis means estimation of the grain size of the
polycrystal. The statistical estimation of the diameter of the crystals have been
developed [34] to obtain a realistic estimation of diameter of the grains. From a
two dimensional cross section (photomicrograph) of polycrystals. Geometric fea-
tures of grains in polycrystals can vary in complexity, it can take any shape such
as polygonal as well as elongation in preferred or multiple directions 34| (textured
polycrystals). The characterisation of textured polycrystals is slightly more com-

plicated than polycrystals with polygonal grain shape. Equiaxed grains are those
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in which the diameter of individual grains is independent of direction so they can
be characterised by a single parameter unlike elongated grains where more than
one parameter is needed. Polycrystals with equiaxed grains were preferred in this

research because of the simplicity in their characterisation.

Elastic properties of grains

Homogeneous media is used here to define any single-phase elastic material with
well-ordered atomic structure, e.g. silica; that is, materials with no polycrystalline
structure. Polycrystals can be considered as homogeneous media at certain scales.
This homogeneous property of the polycrystals is wavelength dependent, in the sense
that if the wavelength of a elastic wave propagating in a polycrystals is much bigger
than the mean grain size then the polycrystals are considered as homogeneous media
since the wave does not interact with microstructure. On the other hand, if the
wavelength is smaller than the scale of the inhomogeneity then the polycrystals are
considered to be inhomogeneous media. The grains, in particular at certain scales are
considered to be a homogeneous medium showing the same sorts of elastic properties
as any other solid, such as glass. In fact, most of the elastic properties of the
polycrystals are described in terms of the elasticity of grains. The orientation of the
crystals is important for describing many of the elastic properties as a homogeneous
medium. The orientation is determined by the orientation of the crystal or crystals
of which the grain is conformed. A principal axis can be assigned to each grain from
which all symmetries and orientation of the grain are defined [35|. Crystals can show
cubic, triclinic, orthorhombic, etc. symmetries as defined in [36]. In a polycrystal
grain orientation may be clustered round a specific direction (preferred orientation),
or they can have no-preferred orientation. In the latter, one speaks of polycrystal
with grains randomly orientated with respect to the crystallographic axis [27, 35|.
On this basis, each grain is seen as a linear elastic solid and can be isotropic or
anisotropic |37]. Their anisotropy here would be measured in terms of the elastic
moduli [35]. Thus, the elastic properties in a polycrystal are characterised by a

tensor of rank four being denoted by c¢;j;;, which in general will be a function of



Literature Review 29

position or a function of the angle of orientation |29, 35|. To avoid writing the
sub-indices every time one refer to it, the elastic moduli are denoted by the single

character c.

2.1.1 The elasticity equations

The elastic response from a theoretical point view considers the polycrystal as a
medium with stochastic characteristics. That is, its inner spatial structure follows
a stochastic or random pattern. Therefore propagation of elastic waves in materials
with such properties is studied from probability theories for elastic waves in the
sense that ¢ not only depends on position but it is also a tensor process [24, 25, 30].
That is, ¢ (r) are random processes for each 4, j, k,[—1,2,3, ci111(r) would be a
random field, for instance.

A comprehensive list of references from 1800 on elasticity of polycrystals can
be found in [20], this includes W. Voigt [38] and A. Reuss, pioneers in elasticity
theory in polycrystalline materials. The review is on the foundations of elastic
propagation in polycrystals and a precise stochastic definition of the meaning of
mean fluctuations, and mean stresses of crystallites based on these theories. The
authors also emphasises the importance of quantities such as mean and n-point
correlation function.

In most applied works in acoustics the above mentioned theories focused mainly
on the solution of stochastic differential equations describing the system. There is
a very well founded mathematical background on stochastic systems and its formal
solution [39|. Here, however, the meaning of obtaining a solution will be simply
the calculation of the n-point correlation function if possible, and in particular for
n = 2, which is the subject of this work.

The elasticity equations are presented without any discussion with the sole pur-
pose of presenting theoretical methods for studying elasticity in polycrystals.

The elastic response of a polycrystals under stress in terms of displacements uy
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in all directions of a three dimensional body is governed by

0

8—%(cijkz(r,ﬁ)uk,l(r,é))+pw2ui(r,£) =0 (2.1)

For simplicity the displacements are assumed monochromatic of frequency w. The
density p is considered constant, thus considering only polycrystals with no voids or
inclusions. Many authors consider the density to be a random process |40]| as well.

Note that £ indicates that u should be regarded as a stochastic field since c;;y; is
a spatial random process, that is, each grain has its own elastic properties. Equation
Eq. (2.1), is extremely difficult to solve and to the authors knowledge there is no
general solution for it; therefore the theory of wave propagation breaks into many
approximations depending on the application or boundary conditions.

Before giving the methods for solving Eq. (2.1) we briefly explain the meaning
of giving a solution.

The question is, given Eq. (2.1), how does one obtain an expression for (u(r)),
(u(r)u(r’)), etc. or 1-point, 2-point correlation in terms of the statistical properties
c(r)? To begin with one has first specify the statistical properties of ¢. This is a
major problem and is the subject of intense research as described below. The other
alternative would be purely in terms of probability distribution from the probability
laws for ¢ but this point of view is beyond the scope of this work. Now, in practice
it would be virtually impossible to give an expression for the moments of all orders
for the field u since there is an infinite number of them, although their importance

diminishes as the order increases.

The effective parameters

To begin with, in order to even start dealing with a solution to Eq. (2.1) one has to
know the stochastic properties of the elastic moduli ¢(r). The direct answer would
be to to measure it from the specimen. This, as it is obvious would be a difficult task
not only because one would have to measure random processes defining ¢ but also

because of the number of them involved. Nevertheless, in some special cases it is
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possible to do the inverse problem by assuming that c is a function of the orientation
angle [41] measured with respect to a fixed axis of symmetry. The authors assume
that Hooke’s law or the strain-stress relationship is o;; = ¢;x(0)ep and develop a
formalism to extract the angle defining ¢. A more general statement is given in
[42] where the Taylor series expansion for the elastic moduli is obtained from values
of the displacement vectors. This formalism is applied to inhomogeneous isotropic
media but the two-dimensional anisotropic case is also considered. Others have also
studied the effective elastic moduli in composite materials [43].

The other alternative is to homogenise the elastic response of the polycrystals by
finding effective elastic moduli so the polycrystals could be studied as if they were
homogeneous. These theories were first proposed by Voigt and later on by Reuss
[20].

Here we reproduce the definition of Reuss’s average as it will be instructive and

useful in other parts of the thesis as it appears in [44|, thus
1 2w
L = —/ T'cTdo (2.2)
21 Jo

where 7' is the matrix that rotates the elastic moduli an angle 6 with respect to the
principal axis attached to each grain and 7" denotes the transpose of the matrix 7T'.
Later research showed that average Eq. (2.2) is only bound for the true elastic moduli
as reviewed in [20]. Thus, homogenisation would lead to erroneous descriptions of
the elastic response of a polycrystal. The average is a very general expression for
the average moduli over orientation since ¢ could in principle have any symmetry.
A more quantitative expression for the average moduli over the orientation of the
grain 37| with hexagonal symmetry aligned with the degree of preferred orientation

is given by
0 ab
c = 1+ ?cos%b (2.3)

where a is the anisotropy degree and b the degree of preferred orientation. The angle

® is the angle between the crystallographic axis and a fixed coordinate system. With
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average Eq. (2.3) the authors in [29] studied how the scattered energy is affected by
parameters a and b causing attenuation of the wave.

The first step in giving a solution to Eq. (2.1) is to model ¢ as a constant part
& plus a fluctuating part ¢. That is ¢ = ¢ + ¢/, where ¢ is random tensor of
zero mean and c” is some sort of average that could be well defined by Eq. (2.2) as
a good approximation. Or Eq. (2.3) could be used if the crystals have hexagonal
symmetry within the polycrystals. Polycrystals based on the above model are also
called random media in the sense that their properties differ randomly from the
homogeneous medium. The elastic moduli will have from now on, after averaging,
the meaning that they have for linear elastic theory in homogeneous media. Then

O would be completely determined from the specimen in question. This

the form ¢
model is the starting point for many authors in giving approximated solutions for

the displacements in Eq. (2.1) which are reviewed below.

2.1.2 Survey on some methods of solution

In most applications the important quantity is the mean response (uy(r)) for the
displacement and many articles have been written on the subject. The purpose of
many of the articles mentioned below is to solve the scattering problem posed by
Eq. (2.1) by obtaining the average (uy(r)) as a function of the statistical properties
of the elastic tensor c. The aim is to obtain a quantitative measure of the attenuation
coefficient as a function of the mean grain size. This is an important point of interest

for this work so is reviewed separately.

Perturbation theory

Perturbation theory roughly speaking assumes that fluctuating part ¢’ in Eq. (2.1)

0 50 ¢ can be expressed as ¢ =  + e where € is a small

differ slightly from c
parameter characterising the degree of inhomogeneity. Under these circumstances

the displacement can be expanded as a series

u = upteug+---
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in terms of the parameter € to be able obtain an approximated expression for (u)
up to second order [30]. These authors additionally assume that ¢ can be described
by two scalar process A(r), p(r) and the density is also a scalar random field, this
assumption sometimes is termed [local isotropy. The local anisotropy of the grain
complicates greatly the theoretical development of elastic response of a polycrys-
talline material so additionally one has to assume local isotropy but this is only an
approximation to real polycrystals.

Local anisotropy can also be accurately described by geometric optics [45] in the
sense that the theory describes the evolution of rays locally. The theory reduces to
the eikonal equation but other methods have been shown to have a wider range of
practical applicability [46, 47]. The authors in [30] have also applied perturbation
theory to scalar and electromagnetic waves and have given a quantitative measure of
energy lost in the propagation by obtaining an attenuation coefficient. Others have
applied perturbation techniques |25| to obtain the mean displacement in textured
polycrystals. A slightly more general account of elastic propagation in heterogeneous
media within the framework of perturbation theories is given in [24|. The authors
take into account the anisotropy of the individual grains with cubic symmetry, that
is the, elastic moduli are expressed by three scalar random processes, ¢11(r), ¢12(r)
and cyy(r) approximating (u) satisfying Eq. (2.1). In the case of anisotropic (ran-
dom processes context) moduli the attenuation depends on the propagation distance
[48]; grains are no longer equiaxed so texture has to be taken into account. This
author has solved the scattering problems under more general circumstances than
the authors already mentioned. His approach is to use a Green’s function, allowing

him to give general expressions for attenuation coefficients for different wave modes.

Parabolic approximation and perturbation theory

Perturbation theory and parabolic approximation can be combined to obtain ap-
proximated solutions to Eq. (2.1)) for locally isotropic polycrystals [49]. The authors
assume that the field is a slowly varying function along the propagation path and

make the following substitution u = Ue*?1. That is the field U varies more slowly
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in the direction x; than that in the x4, x5 planes. This approximation is well known
in scalar theory [47, 50| and it will be used in the forthcoming chapter (4) to approx-
imate the acoustic field. They give a series of equations for u; without explicitly
solving them. These approximated equations for displacements are given in the first
order approximation that allows them to propagate in the forward direction.

A theory developed for linearly elastic solids in which the scales of inhomo-
geneities are very large relative to wavelength is given in |40| and could be well
applied to the case of SAWs in polycrystalline materials solids considered here. The
range of applicability is when A\ << [, where X is the mean wavelength and [ is the
scale of the inhomogeneity. There are some constraints imposed in this development
such as only forward propagation can be handled by this theory. The author derives
a vectorial differential equation based on a range-increment procedure that solves
the full vectorial equation within a slab. By dividing the region of interest into slabs
this procedure allows the author to obtain local solutions to finally assemble the
results into a vectorial equation. From this reference, it is interesting to note that
the author concludes that for two dimensional problems, the aforementioned equa-
tions are reduced to the well known stochastic Helmholtz equation in its parabolic
form. More work was published on the subject [49] on the potential of the parabolic
approximation for a system described by Eq. (2.1)). Another interesting reference
in the same direction for surface waves in heterogenous media is [51|. More meth-
ods have been successfully applied to the scattering problem and these are reviewed
below where the relationship between mean grain size and attenuation has been

established.

2.2 Mean grain size and attenuation

The mean grain size is a useful parameter for material characterisation in many
applications of scattering theory governed by equation Eq. (2.1) and scalar theories.
The aim of many authors was to solve the scattering problem posed by Eq. (2.1),

approximating the mean field (u) and extracting an attenuation coefficient from
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there. This in turn is related to mean grain size, and thus, microstructure has direct
consequences on wave propagation [23, 25, 24].

The correlation length is the distance at which two points r, r’ are no longer
statistically correlated. This property is defined in terms of the moments of ¢ or the
wave number in the scalar theories. The (u) is expressed in terms of the correlation
I'. = (c(r)c(r’)) or possible higher orders. This function assesses whether or not two
points are in the same grain, thus it relates to the mean grain size. The problem
here is that the grain shape may have complicated geometric features. The overall
geometrical features of the microstructure, in order to fit the theory is approximated
by assuming that the diameter of the grain is independent of the direction. Some
authors referred to it as grains with spherical properties [25]. In this case, ', will
depend on a single parameter or one correlation length. A extension when it is so
evident that the grains do not have spherical symmetries is to allow I's to depend on
one or more parameters, perhaps direction. This extended model generally applies
to polycrystalline metals with elongated grains or texture. In general terms, the
correlation function I', cannot describe all the relevant properties of microstructure
so the elastic response in terms of the statistics of the field displacements is affected
by this.

Under the above circumstances, it is expected to obtain a quantitative measure of
mean grain size by solving the scattering problem posed by Eq. (2.1)). The scatter-
ing coefficient quantitatively measures the amount of energy removed by individual
grains [24] from the forward scattering field of a travelling wave within the medium.
It depends on frequency and it is proportional to mean grain size |24, 25, 23|. In the
above paper the authors considered polycrystals with cubic symmetry but others
have considered triclinic symmetry [52]. More, recently [48] has considered tex-
tured polycrystals and was able to express attenuation coefficients for different wave
modes. A review of how attenuation is related to mean grain size for polycrystals

of different symmetries is given in [29].
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2.3 Scalar acoustic waves (SAW)

The discussions below are based on the stochastic Helmholtz equation and its
parabolic form. To avoid repeatedly referring to it in words the equation and the
parabolic approximation are written without any derivation. Let us denote the
wave number by k which is a stochastic process with certain statistical properties.
It is customary to denote the three dimensional Laplacian by A = ;—;2 + aa—; + %.
The transverse Laplacian shall be denoted by A’ = 88—;2 + g—;?. Thus the Helmholtz

equation is
Au+FKku = 0 (2.4)
and in the parabolic form
Qik% +Au+ku = 0 (2.5)

where k = 27r/5\ is the mean wave-number over all possible realisations of the process
k(r) and r = (z,y, z). The first thought to theoretically describe SAWs in polycrys-
tals would be to consider Eq. (2.1). Equation (2.4) looks simpler than Eq. (2.1) but
unfortunately it is not so simple to obtain a solution. Since the primary interest is to
use SAWs one would like to have a way of explaining SAWs setting the appropriate
boundary conditions for Eq. (2.1) by reducing the problem to Eq. (2.4). The author

|40] already mentioned, concluded that it is possible under certain conditions.

2.3.1 Methods of solution for scalar waves

The first step in obtaining a solution to the stochastic equation (2.4) is to reduced
it to Eq. (2.5) by neglecting 0,,u along the propagation distance. The parabolic
equation Eq. (2.5) considers only the forward scattering because of the neglected
terms leading to one way propagation only. In order to include the back-propagated
field the equation is solved for the incident and reflected field [53], separately. Using
ray tracing theory it is possible [54] to consider the reflected field in Eq. (2.5).
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The difference between equation (2.5) and the one presented in [54] is that the
factor 2ik is replaced by 2ik expli(3/a) exp(2ikz)] where « is the amplitude of the
incident wave and ( the amplitude of the reflected wave with | 5 |<| a |. The
parabolic version of the Helmholtz equation is well known in underwater acoustics
[50] where it was first proposed. An overview of the approximation and the range
of applicability can be found in [55|. For an update review up to the year 2000 on
the importance of the parabolic equation (2.5) and its applications to other areas
[56] is a good reference. The authors reviewed most of existing methods of solution
to equation (2.5), including numerical methods and extensions made to the theory
to include wide angles in wave propagation using paraxial approximations.

The equation (2.5) is confined to narrow angle propagations but authors have
improved these limitations by proposing wide angle approximations [57, 56]. More
recent methods to study approximated solutions to Eq. (2.4) are efficiently imple-
mented in [58| using the boundary element method. Perturbation theories have also

been applied to equation (2.4) for obtaining the mean field [30].

2.3.2 Phase screen method

The phase screen method is widely used in optics for a wide range of applications
including propagation of light through aberrating media such as the atmosphere,
see [59] and references therein. Strong fluctuations arising from propagation of light
through the turbulent atmosphere are studied within the framework of equation
(2.5) and the phase screen method in [60]. The formal solution to Eq. (2.5) and the
phase screen method is that the integrals representing the field in the former are
written in ordinary integrals [60] rather than continual integrals. The analysis in
the article is probably the formal justification of the suitability of the phase screen
method to wave propagation.

Application of the phase screen method in imaging objects through the atmo-
sphere is given in [61], where the author calculates the statics of intensity from an
object behind a random screen. This article is instructive to look at because of the

statistical analysis of propagation involving a phase screen from sources of arbitrary
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correlation.

Among the important approximations of practical interest to equation Eq. (2.4)
related to phase screen, one could mention the Rytov and Born method among
others which are well known in optics and reviewed in [47, 46, 26], for both elastic

and scalar waves.

The approximated solution by phase screen

Roughly speaking if one would want to solve Eq. (2.4) within a slab and under the
assumption that forward propagation is larger that the backward field, the phase
screen is a good approximation. Under these circumstances, the phase of the field is
the only modified aspect, having the amplitude field unchanged. This modification
simulates the effect of the medium. Usually the amplitude is not modified since
the medium is usually considered as a pure phase object but the screen can be an

arbitrary transmission object. The field, within the slab is approximated by

u(r) = / v(0)Golr, p)ePdp (2.6)

This expansion is analogous to Huygens’s expansion |62| for extended sources but
with an extra term ¢ which represents the medium. The function v is the incident
field to the slab, Gy is the Green’s function of Eq. (2.4) with k = k, and ¢ is a
zero mean Gaussian process with known structure function Dy which is defined as
Dy(p—p') = ([o(p) — ¢(p')]*), where p denotes the transverse coordinate. That
is, D, is the variance of the difference of ¢ at two arbitrary points p and p’ in the
transverse direction. The Limit of integration in Eq. (2.6) is over the spatial domain
of definition of the incident field v passing through the screen.

Taking Eq. (2.6) as the starting point of propagation in a random medium many
statistical properties can be obtained such as the spatial correlation function, as one
will see in the forthcoming chapters, where Eq. (2.6) is taken as the basic model for
propagation.

The statistics of the field u given by Eq. (2.6) depend on the statistical properties
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of the processes v and ¢. In the case when both processes are Gaussian the field u is
Gaussian under certain conditions. The authors in [62]| have studied the evolution of
a Gaussian field under this operation by arbitrary random operators, in particular
for operator Eq. (2.6). The authors quantify the strength of operator Eq. (2.6) by
means of the variance 02 = (¢?), being a weakly fluctuating operator when o2 << 1.
Denoting the correlation length of the incident field by [, if | << \/2/7 where z is
direction of propagation and £ is the mean wave-number, then the field u can be
considered a Gaussian process behind the screen, but with a modified correlation
function. Other analyses of the evolution of Gaussian fields in random media are
revisited in [63]. The authors studied under which conditions a field w, satisfying

Eq. (2.4) follows Gaussian statistics for large propagation distances.

2.4 The mutual correlation function

The concept of correlation in acoustics is analogous to coherence in light propaga-
tion. The physical meaning is similar to the coherence of light, and its definition
is established mathematically as the second order moment of the field. The second
order moment of the field is also called the mutual correlation function. There is
spatial correlation or temporal correlation whether the field is spatially correlated
or temporally correlated according to certain mathematical definitions taken from
[64, 47].

The mathematical formalism to derive an equation for the moments I',, for
Eq. (2.4), Eq. (2.5) is difficult and more challenging for Eq. (2.1) where one has
to take into account not just the moments of one scalar process but several, depend-
ing on the complexity of the moduli ¢(r). A mathematical formalism was developed
in [65] to express the second moments of the process involved in Eq. (2.1)). That is,
an expression for quantities characterising the elastic response of a polycrystalline
materials such as (o;;(r)ou(r’), (&;(r)en(r)), (wi;(r)un(r’)) (o, (r)un(r)),....etc.,
where 0,5, €; and u;; denotes stress, strain and displacement respectively. But, the

formulation leads to a complicated expression which is an infinite series, which is at
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best difficult and of worst impossible to develop further.

2.4.1 Correlation for a scalar field

The mutual correlation function is nothing else but the second order moment of the
field seen as a stochastic process in time and space. Denoting the mutual correla-
tion function or correlation function of the acoustic or electromagnetic field u by
[y(r1,re, t1,te) = (u(ry,t)u*(ra,tz)), one can define that the field u as spatially cor-
related at r1,ra if |I'y| = 1 and spatially uncorrelated or not correlated if |I',| = 0. If
it happens that 0 < |I',| < 1 then the field said to be partially-correlated. Analogous
definitions follow for the temporal variable or temporal correlation.

The above definition describes the correlation of electromagnetic or acoustic fields
by means of an ensemble average for the random process u. Thus, the definition
could in principle be applied to any random process representing something com-
pletely different. Let us denote by I', the correlation function representing geometric
characteristics in a polycrystal. Consider two different points r, r’ in a hypothetic
polycrystal, Fig. (2.1). The function I, will tell whether or not r, ' belong to the
same region. In the situation shown in Fig. (2.1), r belongs to D whereas r’ to D’
so in this particular situation the field is expected to be uncorrelated because I',
will be zero. For the rest of this thesis the 2-point correlation function or simply the

correlation function is equivalent to 2-point or second order correlation function. A

Figure 2.1: The correlation of the field at two different grains in polycrystalline
materials.
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mathematical theory of the coherence of light has been developed over the years by
several authors. In [64] and references therein, the theoretical description is based
on the propagation of light using the angular spectral representation or Sommerfeld
expansion. Many concepts and developments from this reference have been suitably
adapted to suit our needs in SAW propagation. The theory of coherence is not
restricted to the second order moments. Other moments such as the fourth moment
are also important in atmospheric propagation because it gives a measure of scintil-
lation for stars, [66, 67|. The authors provide an analytical solution for the fourth

moment based on Eq. (2.5).

2.4.2 Survey on correlation function

Let us start by introducing the equation for the second order moments in the

parabolic approximation. Hence,
~*8F2 / 7. /
2ik—= + ATy + k[u(p) —u(p)T = 0 (2.7)

The above equation is derived in [47] from Eq. (2.5). The contribution to the theory
of correlation in a random medium is vast and just a few of them will be reviewed
here. In what follows, the m-point correlation function is the m-point moment of
the acoustic or electromagnetic field that satisfies the stochastic wave equation.
One of the difficult parts in obtaining the m-point correlation function, which
temporally will be denoted by I',,, is to find a suitable differential equation that is
solvable under general terms. Many authors have used some approximations to the
wave number characterising the inhomogeneities, in order to obtain useful solutions.
The Markov approximation, as it is called, has shown to be the best approximation
in many practical applications [47, 68, 63]. To be more specific, the 2-point moment
of k bears the following form (k(r,&)k(r',€)) = 0(z — 2’) f, where f is an arbitrary
function on the remaining coordinates and very often considered to be isotropic,
that is, it depends on a single parameter. The other condition is on the probability

law for k£ where many authors assumed, very often, a Gaussian distribution.
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In reference [47|, an equation for I';, is derived under the Markov approximation.
The technique, used in this reference, makes use of the Furutsu-Novikov formula
for functionals that depend on processes with Gaussian statistics. The differential
Eq. (2.7) is a particular case of this general development. Another derivation of an
equation for the moments of arbitrary order is given in [63]. The authors in [47]
give a solution for m = 2 and discusses possible approximate solutions for m = 4.
A few years later a solution of the fourth moment equation was presented in |66| for
an incident plane wave.

The conditions under which the equation for the moments, in particular equation
Eq. (2.7), is obtained are entirely based on the parabolic approximation that begun
with the work of [50], where paraxial approximation was first proposed. This approx-
imation has evolved and been used ever since, as reviewed in [56]. A more general
development is presented in |[69| where the author obtains a differential equation for
I, for different wave numbers under the Markov approximation but the Gaussian
statistics condition for the wave number has been removed. As the author pointed
out, the equation for m = 2 is the same as in [47|, Eq. (2.7).

Moment equations will be useful in understanding correlation in forthcoming
chapters, where the aim will be to give an approximate solution to the second
moment with the aid of phase screens. It is worth mentioning that an approximate
solution to I'y is given in |67] for an incident plane wave as its solution is related to the
phase screen concept used in this work. In the article |70|, an approximate solution
of the second moment is given by formally approximating a differential operator.
The two-frequency mutual correlation function is given in |71| establishing a general
power law for the correlation function. The general solution to Eq. (2.7) is given
using the method of separation of variables and a modal approach for the differential
Eq. (2.7). Other expressions equally important for the correlation function is given
in |72], in the case of & a complex process. The important point here is that an

explicit form for the correlation is given.
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2.5  Simulation of microstructure

The stress-strain behaviour of polycrystalline metals is complicated and difficult to
model due to the plastic deformation of grains which can be superimposed on linear
Hookean behaviour. The elastic response of polycrystalline materials, expressed ei-
ther as a solution of Eq. (2.4) or integral representation Eq. (2.6) depends strongly
on the statistical properties of the medium. This, on one hand is difficult to predict
because of the complexity of real microstructure, whereas on the other, the direct
methods for investigating the morphology and statistics of the actual microstruc-
ture can be lengthy. Numerical simulation could well provide quicker answers in
investigating the elastic response of polycrystalline materials. The authors [44] have
simulated microstructure using Voronoi tessellation and comparatively investigated
the Reuss and Voigt averages for the effective elastic moduli against the number
of simulated grains. The authors concluded that the Reuss and Voigt averages are
unaffected by the number of grains considered for the estimation as they closely
coincide. The Voronoi tessellation is explained in great detail in the main body of
the thesis and how it has been used to obtain realisations of the stochastic phase
variation according to formulation Eq. (2.7).

An application of Voronoi tessellation to modelling of grain growth in minerals
can be found in |73|, and references therein. The analysis of grain growth under
mechanical or chemical processes is beyond the scope of this work since one is in-
vestigating time-independent configuration of microstructure.

Ultimately, the study of elasticity in polycrystalline materials aims to replace lo-
cal by global elastic properties and to be able to study the solid macroscopically. The
authors in [74] make extensive use of a micro-mechanical model based on Voronoi

cells to model elastic properties to obtain the effective parameters.

2.6 Ultrasonics

Ultrasound generally has a broad range of applications. It can be bulk, Rayleigh

or Lamb waves. It all depends on the specific application. Guided waves can be
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used to inspect for metal damage such as corrosion and erosion in pipes in places
of difficult access, for instance. A very interesting application of Rayleigh waves
is where one can make a map of the actual crystallite structure |75 by measuring
the velocity variations within a region on the surface of a polycrystalline materials
. This application is in fact directly related to this work and it will be discussed.
Accurate description is therefore important for most applications.

Ultrasound, both theoretical and experimental has occupied the scientific com-
munity for a long time. A short, but very useful introduction to Rayleigh waves can
be found in |76] whereas a more general treatment of elastic waves can be found in

77, 78]

2.6.1 Point sources

The study of point sources over a free surface or half space has been studied exten-
sively. Most of the theoretical descriptions are based on the mathematical theory
of Green’s function for boundary problems for either partial or ordinary differential
equations. This problem goes back to more fundamental problems addressed by
many authors such as Lamb at the beginning of the 20th century [79].

One fundamental problem related to ultrasound and surface acoustic waves re-
gardless of source is the calculation of the Green’s function for a point source on the
surface of a half space. This problem has an answer which is reviewed in [78] among
other interesting problems related to different sources.

From the mathematical stand point, the problem of point sources either in three
dimensional or half space anisotropic solids has caught the attention of many re-
searchers. The importance of the Green’s function has been long recognised to be
the answer to many elastic problems such as SAW propagation. There are several
methods for obtaining the Green’s function of the system. The author in [80] has
used Fourier integral representation for an anisotropic elastic half-space. Others

have given explicit expressions for the Green’s function [81, 22, 21].
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Thermoelastic source as point source

A thermoelastic source, such as the one produced by an incident laser beam on a
metallic surface can produce elastic waves. SAW waves due to a thermoelastic source
have been studied extensively. The author [82] considered transient heating on the
surface and studied sources with harmonic variations. Years later, |17] considered
the light distribution of an incident pulse laser onto metallic surfaces, as a point
source and developed an explicit expression of the Green’s function for SAWs.

This theoretical aspect is taken to propagate ultrasonic plane waves in a homo-
geneous medium. Green’s functions give the theoretical advantage of being inde-
pendent of ultrasound generation. One of the problems is that Green’s functions
are in general rather difficult to find and when known difficult to implement. In the
case of the SAW, the Green’s function is known and it can be expanded into plane
waves, and is extensively used in this thesis.

The author in [83, 84|, however realises that a more accurate description of elastic
waves from laser pulse would follow if the spot size is considered as an extended
source. The author’s motivation was that there is an extra spike in the waveform

that the theory in [17] could not satisfactorily explain.

SAW waves from extended sources

The theory of extended sources would follow from that for a point source because
it is just an integral over the region occupied by the source. In practice this can
represent difficulties. For instance, in the OSAM system one would use arcs for
ultrasonic generation of acoustic waves and the integration over such sources can
be difficult. There has been a lot of attention to the problem of ultrasound from
extended sources, [83, 85|.

Analysis of extended sources closer to one used by the OSAM have appeared in
[86]. The authors have carried out the calculations of Rayleigh waveforms from a
thermoelastic line source. They gave an exact expression for the normal displace-
ment. In order to find mechanical displacement, the authors assumed that the main

contribution comes from the centre of the line by assuming the width of line in the
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direction of propagation infinitely small and thus integration is reduced to one vari-
able across the line source. The authors in [87] studied similar sources delivered by
the SLM in the OSAM system. They used a four-element laser line array cut from

a cylindrical lens.

2.6.2 Ultrasonics generation

Ultrasound or SAW waves can be generated from a wide variety of devices. The
piezoelectric transducer is commonly use as a device for detection of sound as well as
source generation. Fig. (2.2) shows a simplified version of typical experimental setup
for SAWs using a transducer to generate ultrasound. The transducer is attached to
a wedge, normally made of perspex, using a water based couplant. The author in
[76| discusses some of the common transducer and boundary conditions to generate

SAWs in this geometry.

Optical
detection
system
Transducer /Q’QD
SAW
—
N —
|
Sample

Figure 2.2: Simplified representation of a typical experimental setup SAW generation
using a transducer as source of ultrasound. The detection system can vary but it
could be used the knife-edge detection system.

The detection system can vary from system to system, so it could well be another
transducer. The optical detection of system used in this thesis for the experimental

work is based on the knife-edge technique [16] for detecting small displacements by
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using a laser as probe.

Laser ultrasonics

Lasers are preferred in many applications for both ultrasonic detection and gen-
eration due to their non-contact nature. Sometimes this can be disadvantageous
because ultrasound-laser generation prototype systems can be expensive and dif-
ficult to operate because they require highly accurate optical arrangements. This
technique requires the surface of the sample to be polished to a mirror finish in order
for the detection system to efficiently work. A good reference for laser ultrasonics
would be [88].

An Optical Scanning Acoustical Microscope (OSAM) was used in this thesis for
imaging SAW waves in metals. This system uses a Spatial Light Modulator (SLM)
to image a pattern of light onto the surface of the sample for ultrasound generation.
The pattern is modified to either focused SAW or to simply propagate a plane surface
wave. The development of the OSAM has been published in a series of articles by
the Applied Optics Group, at the University of Nottingham [89, 19, 14]. The main

optical parts of the system are shown in chapter (6).



Chapter 3

Waves in polycrystalline materials

Introduction

The aim of this chapter is to introduce SAWs in polycrystalline materials by means of
a general formulation for elastic waves in inhomogeneous media. The theory is first
introduced trying to keep genereality to include linear elastic theory for homogeneous
medium. The theory is applied to materials with observable microstructure, that
is, those one-phased materials composed of grains that can have an effect on elastic
propagation at a certain scale. The theoretical model is based on stochastic process
representing physical microscopical variations as well as elastic properties of the
material.

In order to describe microscopic and macroscopic characteristics a brief intro-
duction to stochastic processes is given. This is the first part of the chapter which
briefly introduces many of the tools needed for elastic propagation.

The elasticity theory for polycrystals is then introduced for elastic wave modes
that may arise in this type of medium , in particular to problems in a half space. The
use of the full wave theory is rather complicated even for solids with no microstruc-
ture, so a connection is made to the scalar theory to describe SAWs in random
media. The scalar theory uses the stochastic wave equation for waves in random
media which is normally presented as the Helmholtz equation.

In most stochastic models describing physical quantities, such as geometric char-
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acteristics of polycrystals , first and second order moments are the most important
quantities. In particular the second moment, since it is related to the correlation of
the acoustic field, is emphasised in this thesis.

The stochastic wave equation is a widely and well accepted model for sound
propagation in other areas, such as underwater acoustics. There are certain limi-
tations on its use as a general solution which has not yet been established. One
important approximation, called the parabolic or paraxial approximation has been
widely used in underwater acoustics. Its range of applicability is given in [50, 56].
This approximation has been used here to obtain an approximated description of
SAW propagation in random media combined with a phase screen model used in

optics, which is developed in [59].

3.1 Theory of elastic waves in stochastic media

The notion of mean, second and higher order moments is defined in terms of proba-
bility theory. This introduction is rather brief but an extended introduction can be
found in any book on stochastic processes [90, 39]. For a more physical exposition

and application of stochastic processes, 64, 46| are good references.

Preliminary on random processes

The probability space is a class { P, p} where P is the space of events and p is a set
function taking values in the interval [0, 1]. A random variable in {P, p} is a set of
real or complex numbers {x(§)}ccp with probability distribution p. The set P can
be either a countable or uncountable set, and so z(§) is a discrete or continuous
random variable, respectively.

A random process or random field is a family of spatial functions pu(r, &), where
u is a random variable for each r € R®. This means that p has its own probability
distribution p,,, for every r from which moments can be defined. These random vari-
ables belong to the same probability space P. The set u(r, &) is called an ensemble

and realisation for a fixed &.



Waves in polycrystalline materials 50

In order to fully describe a physical phenomenon represented by a process p it is
necessary to specify the distributions p,,. There is a large list of probability distribu-
tions to describe physical phenomena. In [90|, a vast list of probability distribution
and their main properties are given. In particular, the Gaussian distribution would
be of interest for modelling wave propagation in random media. As an example, the
multivariable Gaussian distribution is presented. Let x; = x(r1,§), ..., x, = z(r,, §)

be n random variables thus its n-fold distribution is

p= G oo, exp [—5 Z 207 } (3.1)

This probability distribution will be useful in obtaining the mean correlation of the
field in forthcoming chapters. Here, y; are arbitrary variables indicating that p is

function in several variables. The parameters o7, ..., 02

completely characterise the
random variables z;(r;). These parameters are in fact the variance of the random
processes z;, which are defined below using the distribution Eq. (3.1).

The properties of a process, such as the mean defined below, are defined in terms
of distributions. Such definitions can be found in any standard book on stochastic
processes such as the ones already mentioned.

As matter of introduction the 1-point moment of order k is defined and denoted

as

mﬁr’ = <Hk(r>€)> = / urpurdur (32)

Here w, is a dummy variable. The first moments bear special names, k£ = 1 gives
the mean value whereas k& = 2 corresponds to the variance. These are the most
important moments as many random process can be described solely by these two
parameters. If one would like to extend the above definition for the 2-point or second

moment, the definition will read

(H(r, g)a H(r,, €> = /Hrur’purpr/durur’ (33)

Here p,, .., denotes the two-fold probability density. In general p,, . , is a interlinked
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function of two variables that allows to calculate integral Eq. (3.3). It is difficult
very often in practice to know an expression for py,, ,. A random processes is said
to be statistically independent if its two-fold distribution splits as py,.., = pu,pu,
Analogously for any finite number w; = w(ry,§), ..., up = w(r,, &) of random pro-
cesses, they become statistically independent if their n-fold distribution decompose
as Puy-pn = Pui *° * Pu,,- Random processes of this type are easily handled especially
if the p(r) are Gaussian variables.

In forthcoming sections the above definitions on stochastic process will be used
to describe the theory of elastic waves in polycrystalline materials. The stochastic

process will be used without specifying a probability distribution.

3.2 Elastic waves in polycrystals

A polycrystalline material is any material that is composed of anisotropic grains
with highly correlated elastic and geometric properties, e.g. aluminium. The grains
have random orientation with respect to each other as well as random spatial distri-
bution. Among other properties of grains in polycrystals, there is crystal plasticity
and atomic lattice evolution of polycrystalline metals. Materials subjected to time
dependent processes were not studied in this work, but good references on the sub-
ject are |73, 39]. In this thesis, the beginning is to describe elastic wave propagation
in a given random spatial grain configuration.

The theory is based on the classical approach for elastic waves, the main differ-
ence being that the elastic moduli ¢;j;(r), which are tensor functions that charac-
terise the elastic properties of polycrystals, are assumed to vary randomly through
space, |40, 49|. The theory is defined, in principle for any polycrystal. There are
some constraints imposed on the polycrystals in order to simplify theoretical aspects
of elastic waves. Here we reproduce some of the assumptions, which are very often
used for theoretical prediction of waves modes in polycrystals , which appeared in

191].

1. Linear elasticity holds.
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2. The anisotropy is small within individual grains or grains can be considered

locally isotropic.

3. The grains are mainly convex regions and equiaxed. Equiaxed means that the
diameter of the grain in each direction and the mean calliper diameter differ

slightly.

4. The crystallographic axes of the individual grain has no preferred orientation;

all orientations are equally likely.

5. The polycrystalline materials is single-phased with no voids or inclusions.

The aluminium samples analysed in this work, which are presented in chapter (6),
hold condition (3), (5). The hypothesis (2) quite possible since aluminium shows
relatively small elastic anisotropic behaviour. In this thesis an extra hypothesis
or statement will be necessary in order to describe SAWs in polycrystalline mate-
rials. That is, the stochastic scalar approximation will suffice to describe SAWs.
This is discussed in section (3.3.1) since it requires some explanation. From now
on, the terms inhomogeneous or heterogenous media will be used as synonymous,
and assumed to refer to any polycrystal or medium with random characteristics.
Homogeneous is the opposite to inhomogeneous material, which is relative to wave-
length. For instance, a polycrystal could be considered elastically homogenous if
the wavelength is greater than the largest scale of grains within the polycrystals. A

homogenous material at all scales relative to wavelength would be glass, for instance.

3.2.1 Linear elastic polycrystal

The theory of elastic waves in heterogeneous media is entirely analogous to the
theory of linear elasticity for homogeneous solids. There is no surprise that the gov-
erning equation looks similar. In the discussion that follows, Einstein’s summation
convention is assumed; i.e. the summation over repeated indices is implied. Let us
denote a point in the three dimensional space by r = (x1,x9,23), and the broken

brackets (...) denote ensemble average.
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The theory of elasticity in polycrystalline materials is based on the following

model, known as Hooke’s law:

0ii = Cijim(T)€m (3.4)

where o;; denotes the stress tensor and ¢, the strain tensor; cju, is the tensor
random field characterising the elastic properties of the medium. The obvious dif-
ference here to the stress-strain relationship for non-polycrystalline materials is that
the elastic moduli c;ji,, is a random tensor field. The indices runs from 1 to 3 so
one has 81 random process describing local elastic properties of the polycrystal as a
linear elastic homogenous material.

The statement for linear elastic homogenous materials of Hooke’s law is recov-
ered by taking the ¢;;i; to be independent of r in Eq. (3.4). The macroscopic elastic
properties of polycrystalline materials are measured by measuring the elastic moduli
which can be found reported elsewhere for a great variety of materials. The micro-
scopic elastic properties for polycrystalline materials, that is, taken into account
microstructure, is obviously a much harder task since one would have to measure a
random field; possibly by empirically specifying the probability distribution. One
alternative for specifying the ¢;;x(r) is to measured what is called the effective pa-
rameters based on certain spatial averages along grain orientations. Thus, the elastic
moduli are specified as an average along grain orientation plus a fluctuating part.
This is a very important point that will be discussed more broadly in section (3.2.2).

The effective parameters theory intended to explain the elastic response of poly-
crystals by homogenising the system. That is, replacing the overall elastic response
for one that behaves as it were homogeneous. One of the difficulties is how to express
the effective parameters as a function of the moments (¢;;5(r)), (Cijrui(r)cpgrs(r)),-.
of individual components of the elastic moduli. Some authors have found bounds for
effective bulk modulus [92]. A brief introduction to the subject and list of references
can be found in [26]. The effective parameter theory is not reviewed in this work but

it will use some of the well established theoretical aspects for averaging the elastic
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moduli based on the micro-characteristics of polycrystals.

3.2.2 The effective parameters

The effective parameters are important in specifying the elastic moduli ¢;j/(r).
These parameters are defined in terms of certain averages over the orientation. To
avoid writing every time the sub-indices ;;;, the elastic moduli are also written by
the single character c(r).

Let us first review single grains characterised by assuming that the tensor ¢(r) is
constant. If a non-singular linear transformation 7" is applied to ¢, therefore changing
their numeric values, the grain is said to be anisotropic. The transformation would

be an axis rotation since the ¢ are invariant under translations. Let us consider

Figure 3.1: Anisotropy of polycrystalline materials

two adjacent grains belonging to a certain polycrystalline material. Denoting the
stiffness by c¢ in the coordinate system e = (e, €2) attached to grain D and by ¢ in
the new system €’ attached also to D’. The axes e are called crystallographic axes
that define a coordinate system within the grain. These axes are chosen in terms of
the lattice and symmetries of the grain. In general, depending on the complexity of
the grain, the crystallographic axes are not orthogonal systems and sometimes the
number of axes needed exceed the dimension of the grain. Here for simplicity, two
orthogonal axes define a coordinate system within the grain, Fig. (3.1).

If one performs the experiment of measuring ¢ and ¢ independently in the di-

rection indicated by the arrows on top of D and D', Fig. (3.1) then ¢ = ¢/. This is
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because D, D' have identical elastic characteristics but different shape and different
orientation relative to each other. Now, if one fixes a coordinate system, let say
e and 7T'(f) denotes the transformation between the coordinate system e, e’ thus
¢ =T(0)c. What makes a polycrystalline material a special type of medium is that
f is a random variable, therefore one speaks of materials composed of anisotropic
grains with random orientation. The macroscopic elastic response of polycrystalline
materials is characterised by the effective parameters defined as &® = (T'(0)c(r)),,
where (-), is the average over the orientation. The average could be well defined
using Reuss’s average Eq. (2.2). This, average or effective parameters, coincides
with the elastic moduli for homogenous solids.

Based on this average, the elastic response of a polycrystalline material is mod-
elled as random fluctuations with respect to ¢, that is ¢(r) = & + ¢(r) where ¢ is a
zero mean random tensor. Grains have their own symmetry, depending on their lat-
tice that generates the grain itself. In terms of ¢ they are classified as: monoclinic,
orthorhombic, cubic, etc., depending on the symmetry and form of . We shall take
here, grains with cubic symmetry since aluminium can be considered to have this
type of symmetry as an anisotropic solid. Then a grain having cubic symmetry is

characterised with elastic moduli having the following form

cp ci2 c2 00 0
ci2 ci1 c2 0 0 0
O = ¢z ¢z en 0 0 0 (3.5)
0 0 0 Cq4 0 0
0

0 0 0 0 Cq4
0 0 0 0 0 Cq4

Thus, three scalar random processes ¢11(r), c12(r), caa(r) are needed for an elastic

description of a polycrystalline material with cubic symmetry.
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3.2.3 The anisotropy of the grains

In theory the main contribution to of aberrations is the anisotropy of the individual
constituents of the polycrystal. The degree of anisotropy of polycrystals shall be
described in terms of the elastic moduli ¢(r), where the non-fluctuating part ¢® will

have the form Eq. (3.5). The anisotropy of each grain is given as [23, 24|

B(r) = c1(r) — c1a(r) — 2c44(r) (3.6)

It is understood that all the quantities here depend on position including 3, so it will
not be written in the next paragraph. If grains within the polycrystalline materials
were isotropic, i.e. = 0 then ¢yy = (c11 — ¢12)/2, ¢11 = A+ 2p and ¢;5 = A
where A, p are constants within grains which correspond to Lamé constants [36] for
isotropic solids. Thus, in this case the overall aberrations or deviation of the acoustic
field would come purely from scattering at grain boundaries with no contribution
from the anisotropy of individual grains. In the same sense, if § is a small varying
parameter, the polycrystalline materials are considered as being locally isotropic or
weakly anisotropic.

The type of material studied in this thesis could be well considered as being
macroscopically isotropic or that the anisotropy is weak from one region into another;
it seems plausible to assume that ¢(r) depends on only two scalar random fields A(r),

i(r), thus ¢(r) could have the form |93, 26|,
c(r) = Ar)di;om + w(r)(dwdji + dudjn) (3.7)

where 9;; is Kronecker’s delta function.

This is the familiar form of the elastic moduli for isotropic linear elastic solids
with A, 1 set to constants; which are termed Lam'ig}%constants or elastic constants for
isotropic solids. The local isotropy or weak anisotropy will be useful for theoretical
purposes since SAWs in polycrystalline materials can be reduced to scalar theory by

using Eq. (3.5) for the elastic moduli [40].
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3.2.4 The elastodynamics equations

In this section the elastodynamics equations are presented for a three dimensional
body and later are specialised for SAWs. The displacement occurring in all directions
of the body under stress are being denoted by U;, ¢ = 1,2,3. In the presence
of external forces F' the stress and strain tensors are dynamically related to the

displacement Uj(r,t) occurring within the medium by

0%U;
oiji+Fi = pgn (3:8)
1
€j = §(Uz’,j+Uj,z') (3.9)

Combining Eq. (3.4), Eq. (3.8), Eq. (3.5) and assuming U;(r, ) = u;(r,w)e”*t ..
assuming that the displacement are monochromatic fields for simplicity, gives the

governing equations for an polycrystalline material and no external forces as

0

a—xj(C(L&)uk,z(r,&))+Pw2ui(r,§) = 0 (3.10)

The density p is assumed to be constant. This is equivalent to hypothesis (5) in

section (3.2), where the polycrystal is assumed with to have no voids or inclusions.

ouy, —

In Eq. (3.10) the following convention is used g

uy s for short.

Equations Eq. (3.10) give the elastic displacement ug, k = 1,2, 3 in all directions
in the polycrystal. This means, in terms of probability theory, finding the probability
distributions which define entirely the displacements u; as random fields. From these
probability distributions, it is possible at least in theory, to calculate all moments
of the random field u,. This approach is beyond the scope of this thesis, so the
solution is formulated in terms of moments of the random fields involved, which is
described below.

Ultimately, the important part in the problem are the moments of the random
field displacements, therefore the problem can be put in the following way: given
the moments Tijr = (cijr(r)), TEM = (¢ijri(r)cpgrs(r)) ... of elastic moduli or

in terms of two scalar random fields A(r), u(r) if ¢4 is given by Eq. (3.7), I'y =
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(A()), Do (A)A(X)), ... Iy = (u(r)), I'yw = (u(r)p(r’)), .. .., the problem is to
find the corresponding moments I'y, = (ug(r)), I'yw, = (ur(r)u,(r')),... for the
displacement in terms of T, Ff;’gls, ...or I'y,T'y,.... The most direct method in
obtaining this relationship is to find a differential equation for all the moments I',,, ,
Iy, - - - which has been proved to be an extremely difficult problem. Nevertheless,
the authors in [93| derived an equation for the first moment I, in terms of a infinite
series which contained all the moments of the elastic moduli.

For the particular case of SAWs in polycrystalline material , the above formula-
tion will be reduced to find the moments for the displacement in one single direction.
Since this is a special case of a more general formulation, the SAW case is refor-
mulated using the two dimensional stochastic wave in section (3.3). The above
formulation applies equally to scalar theory governed by the stochastic Helmholtz
equation in the sense that an equation for the correlation function can be obtained
under certain conditions. This is explained in detail in chapter (5).

The anisotropy can also be described in terms of velocity variations within grains.
Thus, locally the longitudinal and transverse velocity in terms of the elastic moduli
are given [24] as v(r) = /e (r)/p and vs(r) = /cua(r)/p, where v, v, is the
longitudinal and shear velocity, respectively in a polycrystalline material. The degree
of inhomogeneity in the scalar description is also given in terms of these velocities
as Rayleigh wave velocity is a function of the shear and longitudinal wave velocities.
The development of this relationship is given in section (3.3.2).

The type of problem that concerns this work is two dimensional. The full wave
theory would describe wave modes of any type as stated in Eq. (3.10), in particular
SAWs. However, it is complicated to establish a solution under the boundary con-
ditions for a SAW. A more precise meaning of the above problem formulation for

SAW is given section (3.3).
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3.3 SAWs in polycrystalline materials

In chapter (4) a theoretical description of SAWs is developed for the homogeneous
medium, governed by Eq. (3.10) when ¢ = 0. A concise description of a SAW source
and SAW devices is also presented. For the time being, an approximate solution
for SAW is given below where the full wave is reduced to the stochastic Helmholtz
equation in two dimensions.

The term SAWSs has been used to stand for surface acoustic waves without stating
precisely what they are. One would simply say that SAW is a two-dimensional wave
travelling near or at the surface of a sample or half space as shown in Fig. (3.2).

This wave emanates from a finite line source along x travelling in direction z. The

Uo
SAW
W
r @ z
Sample

Y

Figure 3.2: Geometry of SAW in polycrystals. The vertical arrows pointing down-
wards indicate the location of the initial field displacement ug. The horizontal arrow
is indicating the direction in which a SAW propagates.

use of a finite line source is simply because the experimental setup uses a source of
this type, but SAWs are not restricted to this geometry.

Formally, ultrasound on the surface is a Rayleigh wave. Thus, the particle motion
is confined to the yz plane being motionless in x direction. Rayleigh waves, strictly
speaking depend on depth, y in this case but decay rapidly [76]. In the type of
SAW studied here, depth is unimportant but what is really important is the normal
displacement to the plane xz, which shall be denoted by w, or simply u. The

Rayleigh wave motion is described simultaneously by the displacement in the other
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directions which describe an elliptic particle motion.

The statement of the problem in general terms is to find a single random field
that satisfies Eq. (3.10), with boundary conditions u(xz,y,0) at z = 0. In fact, the
main interest is the second order moment (u(r)u(r’)) and to the author’s knowledge,
it has not been reported in the literature. Many articles, however have written on
the first moments of the field satisfying Eq. (3.10) for different wave modes and
crystals symmetries |48].

Since one single field is needed to describe a SAW in the geometry of Fig. (3.2),

it seems that scalar approximations would be appropriate for the present problem.

3.3.1 The scalar approximation

The boundary problem established in section (3.3) in elasticity terms is a lateral
shear motion. That is, the particle motion is perpendicular to the plane xz. If
one assumes local isotropy, that is the elastic moduli has the form Eq. (3.7), the
mathematical formulation developed in |40]| establish that SAW in polycrystals can
be described by a stochastic scalar equation. That is, u satisfying Eq. (3.10) can
be described by a single stochastic scalar equation. The author has reduced the
problem to the parabolic version of the stochastic Helmholtz equation. There is no
way of proving at present that Eq. (3.10) can always be reduced to a scalar equation
for the normal displacement u, for polycrystals of general anisotropy, that is those
polycrystals with elastic moduli not of the form Eq. (3.7). Therefore, the additional
hypothesis to the ones introduced in section (3.2), is that a SAW can be described
by a stochastic scalar equation which corresponds to the Helmholtz equation. From
now on, ky = 27/ will denote a mean wave number where X is the mean Rayleigh
wavelength, A the Laplacian operator in two dimensions and v is the mean Rayleigh
wave velocity. Thus, SAW in a polycrystal for the geometry depicted in Fig. (2.1)
can be described by

Au(r, &)+ kiu = —k3u(r,u(r,§)
u(z,0) = w(z) (3.11)
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where

B = 1 (g ) = R0+ o) (312

and n would be a zero mean Gaussian random function that relates to the inhomo-
geneity of the medium. The boundary problem Eq. (3.10) has been reduced to the
boundary problem Eq. (3.11) with initial boundary condition w(z) in the plane z. u
is a scalar that corresponds to normal displacement, in practice the displacement is
a vector within plane components. Here, we neglect the effect of these on the basis
that normal(scalar) displacements exhibit the statistical behaviour characteristic of
the full displacement field.

Based on this model for SAW in polycrystals the problem will be to obtain an
expression for the mean correlation function (uu*), which is the subject of chapter
(5). The first thing to do would be to construct an approximate solution to Eq. (3.11)
based on a screen model. But first, one has to specify moments of the random process
i and certain conditions where it is possible to give an approximate solution of the

boundary problem.

3.3.2 The degree of inhomogeneity

The scalar theory does not distinguish between the elastic properties of the grains.
The grains, in this theory are considered random scatterers characterised by a wave
number which is a random function of position and characterised by the stochastic
equation, in particular the first and second moments. The wave number is mod-
elled as fluctuations with respect to the background wave number, this is the mean
along the ensemble of scatterers. The wave number, which is normally expressed
in terms of a zero mean function p in Eq. (3.12), which is the random fluctuations
of the acoustic field. Those random fluctuations are quantified by the degree of

inhomogeneity defined as

o = —V([kr) = kl?) (3.13)
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Eq. (3.13) measures the random fluctuation with respect to the mean wave number
ko. The brackets here denote an ensemble average. The average is taken along all
realisations for the spatial grain configurations.

The ultrasound considered here is a SAW that travels with the Rayleigh wave
velocity. It is well known that, this velocity in terms of the Poisson ratio v is

approximately given by |76]

0.862 + 1.14v
v = —,
1+v

= p(v)vs (3.14)

The velocity at which the SAW is travelling in a polycrystalline material can there-
fore be given as p(v)vs(r), where vg(r) is the velocity for shear waves previously
defined for polycrystalline materials. Thus, the wave number in terms of v, has the

form

k(r) = — (3.15)

The inhomogeneity degree defined in Eq. (3.13) relates in an obvious way to the
variance of process p. The standard deviation for wp is defined as o = /(u?);
it shall be seen that ¢ is important in the correlation of the field. The second
moments of £ are defined in terms of this parameter. From now on, ¢ and the
degree of inhomogeneity would mean exactly the same quantity. The parameter o
can be expressed in terms of the fluctuations of the elastic moduli in polycrystalline
materials. Recalling that vy(r) = \/m is defined in terms of the scalar process

Cas, let ¢ denote the fluctuations with respect to the mean c,; thus

0
¢, = b= (3.16)
Cyy

From Eq. (3.15), after inserting the definition for the velocity v, the ratio (k(r) —
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ko)/ko in terms of cyy and ¢}, is given by

k’—k’o \/74 \/044 )

ko cas (1)

-

44
44

—1 (3.17)

c 1

If the fluctuations within a grain are small, that is ||c},|| < 1, the term on the right
hand side in Eq. (3.17) is approximated by the linear term of its Taylor expansion

around zero. In doing so,

1 1 3
1 = (I—=dy () ) =1
— (1= 5+ 5 () +-+)
1

Squaring both sides of Eq. (3.17) and inserting Eq. (3.18) in the expression, the stan-
dard deviation or degree of inhomogeneity ¢ in terms of the anisotropy fluctuation
within grains is given by

{(cha)?)

S 3.19
o - (319

The physical meaning of the standard deviation is now clear from Eq. (3.19). The
standard deviation is half the standard deviation of one entry of the elastic moduli
matrix. This entry accounts for wave velocity fluctuations with the grains. Thus,
the standard deviation o measures the overall degree of anisotropy of polycrystalline
materials. The standard deviation can also be related to statistical geometrical
characteristics of polycrystals via a correlation function of the wave-number. In the

following section it will be seen in which way o relates to the correlation function of

k.
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3.3.3 The statistical characteristics of the medium

Real materials can have very complicated microstructures, so an approximate de-
scription is potentially susceptible to large errors. In general, grains can be con-
sidered as randomly distributed spatially with preferred or random orientation, and
macroscopically the material can be isotropic or anisotropic. “Randomly distributed”
or just “randomly” is being used here as a generic word; so the spatial arrangement of
grains may follow any probability distribution. Here, for theoretical simplifications
the sample is considered as being composed of randomly oriented scatterers which
are either isotropic or weakly anisotropic. This is a restrictive approximation but it
appears to be justified as it explains many of the observed phenomena.

At this stage, no progress can be made without assuming statistical properties
for u. There is experimental evidence, which is the subject of chapter (6), to assume
i to be Gaussian and locally isotropic. By local isotropy (isotropy in the stochastic
processes context), it means that D, = ([u(r) — u(r')]?>) depends only on the differ-
ence r = ||r — r’|| and that the correlation of p is invariant under translations. This
assumption is necessary in order to give an approximated solution to (u(r)u(r’)).

Another important point is the grain shape, which can be described based
on the scale length [. This length explicitly describes the form of correlation
I, = (k(r)k(r’)), which also fully describes p. A single model is being used which
characterises p statistically in terms of o and [. This is a fair representation of met-
als with equiaxed grains whose spatial distribution can be described by an isotropic
random function. Complex structures such as inhomogeneous grain size distribu-
tion -elongated grains- will require a more sophisticated model. Micro-structures
with grains elongated in a preferred direction can experimentally be investigated by
propagating ultrasound at multiple directions.

Moreover, in what follows the second order moment I'y = (pu(r)u(r’)) can take
any form as long as it is a function of r —r’ only. But the exponential form I';, =
o? exp[—|r — 1/|?/I?] has been shown to be useful in other areas to describe real
physical phenomena, [47]. The function T', will depend on two parameters in this

approximation: the degree of anisotropy and a correlation length [. The correlation
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[ indicates the distance where two points bear no statistical correlation, that is for
two points, such that |[r —r’|| > [ then Iy — 0 . This correlation distance is closely
related to the mean diameter of the grains. They are, in fact the same quantity as
shown in section (3.3.3) below, where a precise meaning of the diameter of the grain

is also introduced.

Mean grain size

The mean grain size or more general geometric features of microstructure are im-
portant parameters in material characterisation. There is no simple method or even
a simple number that best describes geometrical features of grains. There are sev-
eral standards for measuring grain size used in industry. One very popular among
metallurgists that uses a statistical estimation of mean grain diameter by laying out
line segments of random length on a micrograph and counting the number of grain
boundary intersections [94] within segments.

Many other important stereological methods are available to describe geometric
features for a given configuration of microstructure which are reviewed in [34]. The
mean calliper diameter b is discussed, for any geometric object X C R?, defined as

7 1

_ 1 / " B(X,)do (3.20)

™

where b(Xjy) is the projection of Xy onto the y axis, see Fig. (3.3). Xj is the same
object X but rotated an angle # around zero, that is Xy = M - X is a rotation
of X around the origin. The integral in Eq. (3.20) averages the length of all lines
that connect two points in X that are diametrically opposed with respect to M.
The symbols 0X stand for the boundary of the object X. For a polygonal X with
vertices v, = {z, | 2, € C}, M = ¢ and M - X becomes the convex hull of {¢“v,,}.
The convex hull of {v,} is the minimum closed polygon containing the points v,.
The mean calliper diameter is a measure of the “average” diameter of a shape. It
is determined by taking the average, over angle (or solid angle), of the distance

between two limiting lines (or planes) bounding the extremities of the shape as the
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Figure 3.3: Rotation of object X around zero, which represents grain around. The
matrix M rotates X by an angle 6, the calliper diameter is the distance between the
points intersecting the vertical axis as indicated by b(X) and b(Xx/2).

shape is rotated, see Fig. (3.3). Therefore, b is defined as the average of b over
the number of shapes X. If X is convex L(X) = wb(X) where L(X) = [, ds is
the length of the boundary dX. The above is a good theoretical definition, and it
was used to characterise the aluminium samples for the experimental work. The
connection between the correlation length [ and the mean calliper diameter is done
by simulating grain spatial configuration using Voronoi cells as will be shown in

section (3.3.4).

3.3.4 Simulating the microstructure of polycrystals

In order to generate realisations of the phase variation ¢ one needs to know precisely
the properties of the polycrystal. This, as has been discussed in section (3.3.3) is
difficult in general. The wave number k was expressed as mean kg plus a fluctuating
part 1 in Eq. (3.12), and some assumptions were introduced for the process p, such
as the correlation function I', to describe the medium. Realisations of the process

¢ can be given if I'; is known as explained below. Another method is by simulating
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the actual microstructure of the polycrystals by using Voronoi cells. This method
will be explained first by introducing the Voronoi cells.

The simulation of microstructure is a common practice in the area of material
characterisation for theoretical and practical reasons [44, 34]. One of the most widely
used not only for its mathematical simplicity but for its closest resemblance to real
microstructure is the Poisson Voronoi tessellation. Here, in this chapter only brief
introduction of its potential is given. The aim here was to simulate wave velocity
variations within the material as well as to investigate the relationship between the
mean grain size Eq. (3.20) and the correlation length [ of the process p introduced

earlier in section (3.3.3).

The Voronoi cells

The Voronoi tessellation is based on a Poisson random process in space. This process
places a number of random points that serve as seeds for the regions that define the
tessellation of the space. To begin with, consider a domain B C R? in the two
dimensional Euclidean space. A Poisson process N(B) in the domain B is a random
process that generates N pairs of points within B, with Poisson statistics. In fact,
N(B) gives the number of regions in which B is going to be divided thus the average
size of each region. This implies that the size distribution and mean size of each
region is a statistical estimation that depends on how the seeds are generated.

The starting point to generate the seeds in B that predetermine the tessellation is
by generating samples of the random variable N(B). Let us generate a number N (B)
with Poisson statistics. The seeds in B are obtained by generating N (B) points in B,
that is (x1,%1), ..., (Tn(B), Yn(B)) € B, where x, y;, are uniformly distributed random
variables. The pairs {x}, {yx} are arbitrary random variables and to ensure all the
points belong to the domain B, a simple linear transformation is applied.

The statistical properties of the random variable N(B) are weighted via a con-
stant A and the volume of the cells but can be generalised with A as a function of
position. Thus, the first moment takes a simple form , i.e. (N(B)) = Avp, see [39]

for more details. In the case of the generalised Poisson process, that is when A(r),
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r € B, the seeds cluster together on specific regions in B depending on the form of
A. This type of process is particularly useful if one is interested in an inhomogeneous
distribution of the regions. For simplicity we have taken A to be constant since it
serves to our purposes.

In order to define Voronoi tessellation from samples of N(B), N(B) uniformly
distributed points by, ..., by(p) in B are generated.

The regions that define the Voronoi tessellation as subsets of the Euclidean space

are defined as the open convex sets

Bi={z €R?| |z — byl < |lx — byl k £} (3.21)

Geometrically the regions By that tile the entire space are constructed by finding
the line perpendicular to the segment that connects two adjacent seed point by.
This construction is also valid for generation of polytopes in three dimensions where
planes are to be found instead of lines. By definition of tessellation B, N B; = @ for

k # 1. The above construction is the simplest version of Voronoi tessellation but it

Figure 3.4: The Poisson Voronoi tessellation simulating microstructure of polycrys-
tals. Only a few regions are being showed for illustration purposes. The dots inside
the regions are the seeds from which regions are grown.

can be generalised almost arbitrarily [34], where a full range of statistical estimators
of geometrical features is also reviewed. It is a simple task using open source soft-
ware! to generate Voronoi tessellation. Fig. (3.4) shows the regions tessellating the

set B = [0,1] x [0,1] by generating N(B) uniformly distributed random variables

lghull http://www.qhull.org/
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by = (zx,yx) € B. By construction, almost everything is known using this numeri-
cal technique for microstructure simulation, namely area and size distribution of the
regions and also their statistical properties. The unitary polytope has been chosen
because real areas can always be normalised.

The simulated microstructure had two purposes: (1) phase screens were designed
to obtain the representation for the acoustic field in chapter (3). (2) it has helped
in making a better first estimate for the correlation function I';, characterising the
inhomogeneities as well as the relationship between the correlation length and the

mean grain size for real microstructure.

Wave velocity variations

The idea is to replace the continuous model for velocity variation for a discrete
version, the two being statistically equivalent in the second order sense, that is, two
processes that have same or similar correlation function. Let o2 be the variance of
w and let us simulate the wave number in simulated media as follows: If B, are
the polygons tiling randomly the entire space and ¢, are independent zero mean

Gaussian variables with variance 1, hence k£ can be simulated as

k(r) = ko+ko»  calp,(r) (3.22)
Here 15 denotes the function

1 reB,
1p, =

n

0 otherwise

The wave number defined in this way relates directly to the defining microstructure.
The regions B,, were generated using Voronoi tessellation enabling samples for the
wave number to be reproduced by the algorithm presented in appendix (A.4). The
algorithm gives the coordinates of the vertices defining the polytope of the simulated
microstructure and this can be used to fill the regions with normal random variables

using Eq. (3.22).
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15

Figure 3.5: a) Realisation of the wave number k in a simulated microstructure show-
ing deviations from mean value in arbitrary units. b) A realisation of ¢ generated
using Eq. (3.22) by generating the Gaussian variables c¢,.

The spatial correlation of grain distribution

At this point nothing has been said about the correlation length [ of the process pn
and its relationship to the mean grain size of polycrystalline microstructure.

The process in Eq. (3.22) depends on two random processes simultaneously,
namely the Poisson variable N(B), the uniform variables giving the actual position
of the seed and finally the Gaussian process that models velocity fluctuation within
the grains. This dependence complicates the calculation of the correlation I';, defined
in this form. One would be tempted to compute an exact expression but that is
not as straightforward as it may look. For the purpose of simulating the acoustic
field this was not necessary but one needs to find a relationship between the mean
grain size and correlation length for the process defining the inhomogeneities where
the wave is to propagate. This relationship is found by the two-dimensional Fourier
transform of Eq. (3.22) and fitting an appropriate function to the result.

Using the well known Wiener-Khinchine theorem which says that the autocor-
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Figure 3.6: a) Simulated microstructure using Voronoi cells. b) The two-dimensional
Fourier transform of M normalised to maximum value. ¢) Comparison of the trans-

-2
verse correlation function I'y; as indicated by the dashed line in (b) to I', = et
to obtain { or b.
relation is the inverse Fourier transform of power correlation,

Iy = /MM*e_mdt (3.23)

Here M = Ui By, is the union of the region that composed B. This method directly
measures the correlation that two points ri, ro € M may have, that is I', shows
whether or not ry, ry are in the same region. I';, turned out to be symmetric with
respect to zero as as it can be seen in Fig. (3.6)(b).

The Fig. (3.6)(a), shows a simulated grain structure with N regions. Fig. (3.6)(b)
is the two dimensional Fourier transform of M, i.e. I'j; which is a symmetric func-

tion that clearly resembles an exponential function. The size of the spot of I'y; is
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proportional to the mean caliper diameter of the regions as shown on the right hand
side of Fig. (3.6)(c).

This simulation shows that for microstructure with equiaxed grains the expo-
nential function I', = 6_%2 can be used as a good approximation for the correlation
function of the process accounting for the wave velocity fluctuations. The mean

calliper diameter b was obtained from M and substituted into Iy showing the result

in Fig. (3.6)(c).

3.4 Concluding remarks

A theoretical description of SAWs in polycrystalline materials has been presented
based on the full wave theory for elastic polycrystals. The normal displacement
given by the full theory was reduced to a scalar description as a limiting case. The
advantages of the scalar description over the full vectorial theory is the simplified
mathematical description of SAWs in polycrystalline materials. In this description,
velocity variations within grains can be simply described by a single stochastic pro-
cess avoiding the complicated expression arising from tensor processes. The degree
of inhomogeneity and correlation length in the scalar approach have a direct physical
meaning in relation to microstructure of the polycrystal.

The description of SAWs in polycrystals using a scalar theory has been done
within the paraxial approximation; this appeared a very restrictive approximation
but it will be seen that most of the experimental phenomena observed can be ex-
plained within the framework of this approximation.

The anisotropy or degree of anisotropy is described in terms of the elastic moduli
but it has been related to the standard deviation of the wavenumber in the scalar
description in such a simple way that the standard deviation has clearly a physical
meaning. The correlation length of the wavenumber could also be directly related
to the mean grain size of the polycrystal. This relationship is not so obvious as
with the standard deviation because it uses the hypothesis that the random wave

velocity fluctuation is an isotropic random process with a Gaussian correlation func-
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tion. This assumption appears very restrictive since real microstructures may be far
more complicated. To support this idea, a Voronoi model for simulating real mi-
crostructure was used to investigate the correlation function of the wave velocity
fluctuation in polycrystalline microstructures. The results showed that for polycrys-
tals with mainly convex equiaxed grains the assumption of Gaussian correlation is a
good approximation. The relationship between the correlation length of the process
modelling the characteristics of the medium was also numerically investigated. This
was necessary to corroborate that the correlation length is in fact proportional to

the mean grain size.



Chapter 4

SAW waves in polycrystalline

materials

Introduction

In chapter (3) was stated that SAW in inhomogeneous media can be described
by the stochastic wave equation to a good approximation. This chapter is the
continuation of the statement in that an approximate solution to the stochastic
equation is presented. The solution is given in two stages. The first one will comprise
the propagation of SAWs in homogenous media. This will follow from theory for
SAW in isotropic solids by means of Green’s function theory. The acoustic field on
the homogenous half-space is approximated using the angular spectral expansion
for fields that satisfy the Helmholtz equation in a homogeneous half space with no
boundaries. This result is used in the second stage in conjunction with a phase
screen model for waves in random media to give an approximate solution to the
stochastic wave equation.

The idea of using the phase screen model is to approximate the variations of the
acoustic field caused by the microstructure using a simple model rather than solving
the stochastic wave equation. This approximation consideraby reduces the math-
ematical calculations involved and gives a direct way for obtaining the correlation

function of the field. The aberrations of the field strongly depend on the charac-
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teristics of the medium. These, were described in section (3.3.3) by the stochastic
process that characterises wave velocity fluctuation; thus phase screens and wave ve-
locity fluctuations are functionally interlinked. This functional dependency, comes
naturally since the phase screen model and the Helmholtz equation in its parabolic
form are related.

The overall approach is to divide the region of interest, a slab in this case, along
one of the axes, and into many layers of equal thickness thus approximating the field
within each layer by means of a phase screen and half space propagation. The total
acoustic field is then given as a multiple integral. The objective and convenience
of this integral representation is to facilitate or be able to calculate second order
moments of the field. These calculations are part of chapter (5) and will not be
discussed here.

At the end of this chapter some numerical implementations are discused as part
of the overall development. Generation of realisations of the acoustic field in random
media implies necessarily generation of a realisation of the process accounting for
the aberrations. The numerical implementation of phase screens is done by using
two methods. The first one has already been introduced in section (3.3.4) as part of
microstructure simulation. The second one, which is used in this chapter, generates
realisations by using the correlation I';, of process p, discussed in chapter (3.3), by
means of the Fourier transform. A brief discussion of the development of a SAW
from a series of straight lines evenly distributed is also presented. This type of source
is related to the instrument used in the experimental work presented in chapter (6).
A more detailed description of ultrasound generation from this type of source is

included in the appendix.

4.1 Propagation in random media

The full wave theory presented in chapter (3) includes SAWs in inhomogeneous as
well as homogeneous media. The homogeneous media is included in the theory by

setting the fluctuating part ¢’ to zero of the elastic moduli in the stress-strain rela-
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tionship Eq. (3.4). The homogeneous medium, in principle, includes both anisotropic
and isotropic materials, but to a good approximation in this thesis the theory is only
considered for the isotropic case. Thus, from the elasticity Eq. (3.10) it is possible to
describe SAWs in a homogeneous isotropic material. This is done by providing ex-
plicitly the Green’s function of Rayleigh waves developed in [17] for the point source
expansion. The explicit description of SAWs in homogenous media is important for
the approximation of SAWs in the inhomogeneous case, so it will be developed first.
An important point, which will demonstrated, is that SAWs can also be given as
a solution of the Helmholtz Eq. (3.11) in the homogeneous half space. From this,
and some intuition, it is possible to conclude that SAWs in the inhomogeneous case
are also given by Eq. (3.11) using the phase screen model. Although, a mathemat-
ical justification is not as simple as for the homogenous case, it is important to
show that a description of SAWs in inhomogeneous media can also be given by the
stochastic equation, Eq. (3.11). This is because second order moment or correlation
function theory of the scalar acoustic field is mostly based on Eq. (3.11). Most of
the mathematical development in this chapter is left for an appendix, specially the

calculations of the field using phase screens.

4.1.1 Displacement from a line source in the half space

The theoretical development presented in this section by means of Green’s func-
tions applies to any type of sources for SAW generation. The Green’s function is
independent of the source utilised for SAW generation. In this section however,
the normal displacement depends on a laser profile. The reason for that is because
the mathematical development to represent point sources has been done within the
framework of SAW generation by thermal expansion using lasers in [17|. This could
have been removed for the sake of generality in this thesis but it is important to keep
it that way because experimental work is mainly concerned with laser ultrasonics.
The descriptions of line sources are required because the instrument to carry out the
experimental work uses a line source for SAW generation. But again, the approach

is not confined to line sources.
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The source S is assumed to lie within the plane zz and finite in the x, z axis as
depicted in Fig. (4.1). Thus, the (z,y,z > 0) coordinate system will represent the
half-space of a homogenous or inhomogeneous material. The elastic wave Eq. (3.10)
give as a result the displacement in every direction. For the geometry being con-
sidered, the SAW will be the normal displacement to the xz plane. This is the
displacement in direction y.

The position of the source is in the plane xy at z = 0. The source region S is
represented by a different set of coordinates («, 3) and its dimension is completely
determined by a, b. The additional coordinate system («, 3) is necessary to integrate
all the contributions from point sources contained within the region S generating the

SAW. In the geometry of Fig. (4.1) particles within the material are supposed to be

X

Figure 4.1: Geometry of SAW on the half-space generated by a line source S.

motionless along the z-direction. The only motion that matters in SAW waves is the
direction of propagation along z and the upwards and downwards particle motion
along y—axis. In the general case one would have displacement in all directions
and the boundary problem is solved by giving an appropriate Green’s function that
represents displacements in each direction.

Let u,o be the normal displacement given by solving equations Eq. (3.10) of a
point source for the geometry shown in figure Fig. (4.1). The Green’s function for a

linearly elastic isotropic material from a point source is developed in [17|, thus the
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normal displacement w,, due to a point source is given by

H(t — SRR)

where A is a constant that depends on the material properties. All the constants

Uyo(r,t) = Aq(t) ® (4.1)

involved in defining A are given in appendix (A.6). The function ¢(¢) is the laser
envelope used to generate a point source on the surface of the materials. H is the
step function and s = é, with cp being the mean Rayleigh wave velocity. Here,
the variable ¢ represents time.

Adding all the contributions emanating from each point with the region occupied
by the source S is equivalent to integrating wu,, over the region S weighted with an
appropriated function representing the spatial energy distribution. Let w(a, §) be
that spatial laser profile, then the displacement, denoted by u,(r,t) at r = (z, 2)

away from the source is

uy(r,t) = //Sw(oz,ﬂ)uyo(R,t)dadﬁ
= //_C: Hapw(a, B)uyo(R, t)dads (4.2)

where R = /(x — a)2+ (2 — $)% In order to be able to integrate Eq. (4.2) it is
necessary to know w explicitly. A very detailed discussion of the function w is given
in section (4.1.5) where u, will be plotted in the frequency domain.

The integration over the source was changed to infinity and this is possible, only
in this case that S is a line, because of the introduction of the step function in two

dimensions, that is
1 |al<a
Myp=9 1 |8 <D (4.3)
0 otherwise
where a , b is the width and length of S, respectively.

A further step in this development is to substitute the expression for u, in the

above integrals and transformed into the frequency domain. The transformation
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from the temporal to the frequency domain is both for mathematical convenience and
also because the experimental work was carried out at a single frequency. Therefore,
the displacement is transformed into the frequency domain by taking the Laplace
transform on both sides of Eq. (4.2). The transformation is simplified by using the

convolution theorem. In doing so one has

Lluy] = AL[g]L]g] (4.4)

H(t—srR)

2_42 p2’
ViE—sp R

Before proceeding any further let us recall that the Laplace transform of the
1)

where L is the symbol denoting the Laplace transform and g =

Green’s function is the modified Hankel function Hé , hence

Llg(e,z0.9) = 5 HP(R) (4.5

where k = =, see [ 78] page 288.
Denoting the Laplace transform of u, by w and applying the Laplace operator £
to both sides Eq. (4.2) after inserting Eq. (4.4),Eq. (4.5) gives

s = s ff e [; -
= zw7‘+1 / / Y(kR)dadp (4.7)

——, with s = iw and w is the angular frequency.

dadp (4.6)

Note that L[g(t)] =

1
(s741)

The above representation for the displacement can be easily evaluated since the

Hankel function has been numerically implemented elsewhere. However, a better
1)

representation for numerical evaluation is to expand Hé in plane waves.

(1)

This can be accomplished by recalling that H;’ can be expanded in plane waves

in the same manner as u. After the insertion of this expansion for the Hankel
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functions v becomes

imA iRz —a)p+ik(z—B)/1-p?
u(r,w) = Sler 11 /// apw(a, B) Vi dadfBdp

— / a(p’ w)éfc:cp—l—ifczy/ 1—p2dp (48)

where

zkap—l—zkﬁ\/—
a(p,w) = Hiwsr T 17 // s (e, ) i ——————dadp (4.9)

and the variable p denotes spatial frequencies. The function a looks complicated
because of the double integration over the weight function w and plane waves. This

apparent complication can be overcome by simply realising that

u(z,0,w) = /a(p)eikpdp (4.10)

In other words, the angular spectral representation is the Fourier transform of the

initial displacement evaluated at the spatial frequencies kp. In summary, the calcu-

0 0.05 0.1

z(mm)

Figure 4.2: a) Amplitude of the complex normal displacement (arbitrary units). b)
Phase distribution (radians)

lation of the normal displacement from a line source has been reduced to the angular
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expansion of the field and the frequency components of the laser are the frequency
components of the displacements. As it can be seen the important quantity here is
the initial displacement at z = 0. In the experimental setup the idea was to propa-
gate a plane wave but because of the finite size of the source it becomes a truncated
plane wave. Thus, ideally the normalised initial displacement would be

I ze [_%7%]

u(z,0,w) = (4.11)

0 otherwise

Using this in Eq. (4.8) the resulting displacement of the field is shown in Fig. (4.2).
Fig. (4.2)(a) is the amplitude of the normal displacement and initial displacement
given by Eq. (4.11) whereas Fig. (4.2)(b) shows the phase. The wave propagates
from left to right.

[t is now easy to recognise that the last expression in Eq. (4.8) is the angular
spectral representation of the normal displacement u(r,w), as developed in [70]. Tt
is straightfroward to check that u(r,w) satisfy Eq. (3.11) since eikeptiba/1-9% §g o

plane wave satisfying the Helmholtz equation.

4.1.2 Propagation through a random thin layer

In section (4.1.1) the normal displacement or SAW was developed for homogenous
isotropic materials. This result is used in the present section for SAWs in inhomo-
geneous media. Specifically, an approximation for the acoustic field will be given in
the slab (z,0 < z < L) containing inhomogeneities. In order to achieve that, the
region of interest is divided in layers of equal thickness §z along the propagation
distance, in this case the z axis. Thus, the geometry will be as in (4.1.1), figure
Fig. (4.1).

The displacement u(r,w) in Eq. (4.8) is frequency dependent. In this thesis, a
single frequency will be needed for comparison with the experimental work. The
description of the SAW in this section therefore will be in the frequency domain.

The frequency will be dropped from the notation for the rest of the chapter as it
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will be understood that the displacement depends on it. The first step in achieving
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Figure 4.3: Schematic representation of ultrasonic propagation in a random medium
using phase screen theory.

propagation in a random slab is to consider a thin layer of thickness dz and incident
field v = u(x,0) to the layer, as shown in Fig. (4.3)(a). Some assumptions have to
be made in order for this approximation to work. Firstly, that forward scattering
within the layer is stronger than backward scattering so it can be neglected to a
good approximation. As a result, the phase of the field will be the only one affected
leaving the amplitude unchanged. Secondly, the layer is thin enough for all points
belonging to the wavefront of the field to follow approximately straight lines. This
means that the phase changes can be represented by a phase screen. Essentially, a
phase screen is a complex number e® where ¢ is a random process representing the
characteristic of the medium. Below, it will be seen how the process ¢ is related
to process pn accounting for wave velocity fluctuations, which was first mentioned in
section (3.3.1).

Let us consider the situation as shown in Fig. (4.3). The idea is to substitute
the field within the inhomogeneous region Fig. (4.3)(a) by the incident field to the
layer times a complex number or phase screen that depends on the characteristics
of the medium. The phase screen is located in the middle of the layer as shown in
Fig. (4.3)(b). The approximation is as follows: instead of solving Eq. (3.11) within
the random layer, the incident field v is propagated in a half space using Eq. (4.8)
to a distance %Z, then the resultant field is multipled by a phase screen ¢, which

gives the normal displacement u(z, %Z) behind the screen.
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Let us denote by u;, the field from 0 to %’ in half space having v as source at

z = 0, thus the field behind the screen can be written as
w(x,z) = upm(z, 2)e® (4.12)

The inhomogeneous medium has been replaced by a phase screen that modifies the
phase leaving the amplitude unchanged. The situation is depicted in Fig. (4.3)(b)
where the screen is being represented by a thin box. The phase screen has been
allocated in the middle of the slab but it could have been at the entrance of the
layer.

In the continuous model v is expected to follow random paths which depend
on the statistics of the medium, in this case the process pu, whereas in the present
situation, the implicit assumption is that those paths are indeed straight lines. The

phase ¢, therefore, has the following functional dependence |95, 57, 60| as

ko

0z
() = 2/0 w(z, 2" )dz' (4.13)

The Eq. (4.13) indicates that the overall phase change experienced by the field is in
fact the integrals of all possible changes induced by the inhomogeneities within the
layer. Again, the reason for the appearance of the process p in Eq. (4.13) is because
it has been assumed that v within the layer is approximately given by solving the
stochastic Eq. (3.11). It has to be said, that the functional dependency Eq. (4.13)
is only valid in case of weak backscattering or equivalently if the field is given by
the parabolic form of Eq. (3.11), see [60].

To end this, the field u in Eq. (4.12) is again propagated in the half space to a
distance %Z. Thus, by taking the Fourier transform with respect to x of Eq. (4.12)
and using Eq. (4.8), and reverting back again to the spatial domain by performing
the inverse transform gives the angular representation for v in a random medium as

follows:

u(r) = / )R, 2) @ s h(p, L) dp (4.14)
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Here 9, § denote the spatial Fourier transform of v and s = €', respectively. The
following substitution has been made, h = etkprtikay/1-p ¢ represent the function
propagator to simplify Eq. (4.14). The symbol ® stands for spatial convolution
between two functions. A field propagating through an inhomogeneous layer has
therefore been approximated by distorting the phase of its elementary components
by ¢. In order to extend the above development to the entire domain (z,0 < z)
the field is expressed in the Fourier domain by relabelling the field to indicate the
number screens and their precise location within the region (z,0 < z). This is
explained in great detail in the following section.

There is an important point to bear in mind. The thickness 0z is taken to be of
the order of the correlation length of k(r), see section (3.3.3) for a precise meaning

of the correlation length.

4.1.3 Propagation through many layers

Let us divide the slab D = (2,0 < z) in N layers of thickness 0z and let us assume,
for the sake of symmetry, that the screens are located at %Z. The phase change for
each screen is relabelled as ¢, (z), let 4, be the Fourier transform of s = e*n(®).
The situation within the nth layer is schematically showed in Fig. (4.4). In order to
approximate the field within the slab D formulation Eq. (4.14) is applied recursively
for each layer. As the incident field v is propagated from one layer into another
the phase screen recursively multiplies as well as the function h. Because u has
been expressed as a integral as well as a convolution, equation Eq. (4.14), the final
expression would be given as a multiple integral. To express the long representation
in a single expression let us label the field with each layer by wu,, thus u, represents
the field at distance ndz away from the source. For each layer, one needs a set of
different dummy variables to represent the field as in Eq. (4.14), thus let p, be that
variable and making h,, = h(p,, Z).

Assuming that v propagates to a distance ndz, and taking into account that

Flun(x,n02)e" @] = i, (py, ndz) @ 3(py) (4.15)
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Figure 4.4: Schematic representation of the nth layer replaced by the phase screen
system. The screen s = " is being allocated in the middle of the layer.

where F is the Fourier transformation operator, by using Eq. (4.14), the field in the

frequency domain at the exit of the nth layer can be expressed as

ﬂn+1 == [anhpn@)én]hpnﬂ

The convolution is the operation of propagating the field through a random screen
and multiplication again by h,, ., propagates i,h,, ® s, to the entrance of the next
screen thus becoming the new incident field. In appendix (A.2), it is shown how
to express the field in the following multiple integral representation by substituting
the recurrent integral representation Eq. (4.16) for u,, , thus the total field u = u, 41

can be expressed as

uwz) = [+ [ @(q())i[:hzj@(qm ~ )

x e dgq ... dg, (4.17)

Equation Eq. (4.17) represents the ensemble of acoustic fields in a random medium.
The dependency on s makes u a random process that depends on the statistical
properties of p because of the functional dependency Eq. (4.13). Equation Eq. (4.17)

will serve as a basis to calculate the second moments (uu*) of the field. It is a
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multiple integral and there are as many integrals as there are screens used for the
approximation, however it is computationally efficient as these can be implemented
using the FFT algorithm.

The field u is a random process that depends entirely on the statistical properties
of the process ¢; thus generation of realisations of the field within the slab D will
follow from the realisation of ¢. The realisation of ¢ in turn depends on the statistics
of u via the relation Eq. (4.13). The construction of the realisation for ¢ is based on
a given correlation function for p which is discussed in the next section. A realisation
of w will then be given by evaluating Eq. (4.17) by substitution of the appropriate

realisation of screens.

4.1.4 Realisation of phase variations

The realisation of the field v depends on the process ¢ accounting for phase varia-
tions. This process depends directly on the properties of the medium, which is being
represented by the process p earlier introduced in section (3.3.3).

In section (3.3.4) a method was then introduced to generate realisations of the
process ¢. It was based on simulation of wave velocity variations within microstruc-
ture by constructing a process p that depends on geometric characteristics. The
correlation function of w was also investigated, with the conclusion that as a good
approximation it could well be considered to have an exponential form. This is the
starting point to generate a realisation of the phase ¢ in this section. That is, it
will assume a known correlation function for p and from this the required phase

realisations will be generated by using the Fourier transform method.

Fourier method for phase generation

Let us start by assuming the process pu has the known correlation function I'y,
having the exponential form o2~/ where again o2 is the variance of u and [ is
the correlation length. Therefore, generation of realisations of ¢ is equivalent to the
generation of realisation of the process u by means of correlation I', and relation

Eq. (4.13). Although, not essential for the present development, it is important to
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mention that, in chapter (5), the relationship between the structure function of ¢
and the correlation function I', is investigated.

The Fourier method for generating a realisation of a process is as follows: Let
us denote the power correlation of p by S, and let W(w) be complex white noise,
i.e. a complex zero Gaussian process with correlation (W (w)W*(w')) = §(w — w').

Then p admits the following spectral representation

wz) = /W(w)\/Su(w)e"wdw (4.18)

Thus, realisations are simply given by taking the Fourier transform of the product of
a Gaussian noise and the square root of the power correlation of . This method has
the advantage of being easily implemented by using the discrete fourier transform.
Generation of realisation from Eq. (4.18) acts as a filter for W giving a smooth
realisation compared to Eq. (3.22), in Fig. (3.5). The fact that the process p has
I, as correlation function follows from the Wiener-Khinchine theorem for random

process, thus

(@) = [[ W)W @)y/Su@)Ss e dods
[ @ - fsu@swe dots

= /Su(w)e“(x_x/)dw

In chapter (3) it was stated that a good approximation in representing microstruc-
ture of certain polycrystals is when I', has exponential form. Taking this into
account, realisations for ¢ are generated using the discrete Fourier transform from
Eq. (4.18). Fig. (4.5) shows the correlation I'; (top graph), a single realisation of
the white noise VV\/kSTH and a superimposed plot of the profile \/57PL On the bottom
of Fig. (4.5), is shown a realisation of ¢ using this method.

In section (3.3.4) we showed how to generate microstructure using Voronoi tes-

sellation. This method also give a straightforward way to generate realisations of the
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Figure 4.5: Generation of realisation of ¢
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process ¢, as shown in the same section. It was also shown that the autocorrelation
of the generated microstructure is an exponential function. Therefore, the Fourier
method with exponential autocorrelation and the one described in section (3.3.4),
for generating realisation of the process ¢ are equivalent. In the former, it is only
necessary to calculate the Fourier transform of a known function whereas in the
latter it is necessary to build the tessellation and colour the regions. Colouring the
regions in this context means specifying the velocity variations within regions, as
explained in section (3.3.4). The algorithm for tesellating the space and definition
of wave velocity variations within the regions is a slow process. This is why the
Fourier method was preferred, since it is simple and fast. This method will be used

for the rest of the thesis for generating realisations of the process ¢.

4.1.5 Realisation of the acoustic field

Before showing a realisation of the field based on Eq. (4.17) it is necessary to specify
the incident field. It was said in section (4.1.1) that the Fourier transform of the
incident field is the angular spectrum of u. But the angular spectrum a, Eq. (4.9)
is an integral over a laser spatial profile w(r) which was not specified. Here for
completeness a Gaussian profile is presented, although already mentioned in section
(4.1.1), it is not necessary to specify the incident field. The (4.6) shows a plot of
[T, (r)w(r); note that I1,,w is rounded on top, this is because w has been assumed
to be a Gaussian profile, i.e. w = e“‘"‘z/cz, where c is a parameter defining the width
of w. Many lasers have Gaussian distribution |64], so w can fairly be described with
a Gaussian profile. Here, again for practical purposes the incident field is taken to
be of the form Eq. (4.11). Thus, by using Eq. (4.17) and realisations of ¢ already
generated in section (4.1.4) is possible to give a realisation of the field u which
is shown in Fig. (4.7). Fig. (4.7) shows the amplitude distribution numerically
implemented from Eq. (4.17). It is a truncated plane wave propagating in the
simulated inhomogeneous medium characterised by standard deviation o = 0.02. As
the wave travels from left to right (z-direction) the phase is being altered by screens

placed to approximate the field within a layer. The overall phase is distorted as well
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Figure 4.6: Plot of the transverse light distribution Il (r)w(r), where w has a

Gaussian envelope.

Figure 4.7: Amplitude distribution according to Eq. (4.17). The simulation is based
This can be compared with the

on real parameters and a numerical procedure.
experimental amplitude distribution shown in Fig. (1.1).
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as the amplitude distribution breaking up as it can be seen in the Fig. (4.7). This
shows what to expect to happen to the acoustic surface waves propagated in real

polycrystals, which can be compared to Fig. (1.1) showing aberrations in aluminium.

4.1.6 Solids in general

So far the theory just developed applies mainly to isotropic solids. The angular
spectrum representation is a powerful tool that can even be extended to more general
type of solids.

In the article 96|, a paraxial theory for ultrasonic beams was developed for
anisotropic solids. The integral representation of the field is basically an angular
expansion based essentially on Taylor series expansion of the slowness surface. The
argument in the exponential function of the integrand in Eq. (4.9), however, involves
crossed and quadratic terms leading to a complicated angular expansion. The ad-
vantage of that formulation is that the isotropic case is easily obtained as a limiting
case.

Here, for simplicity the isotropic case was only considered since the anisotropic
parameter is lost in polycrystalline materials as part of a random effect from mi-

crostructure.

4.2 Conclusions

A model that accurately represents line sources for ultrasound generation has been
presented. The mathematical development uses the method of Green’s function to
express the elastic response of a homogenous medium. This mathematical formula-
tion gives explicitly the Green’s function of the normal displacement for a thermoe-
lastic point source. By integrating the Green’s function across the area occupied by
a line on the sample surface, an expression for the normal displacement is given as
a plane expansion. This representation was later used in section (4.1.2) to approxi-
mate the field in an inhomogeneous medium using a phase screen model.

One of the parameters directly involved in the description of screens to ap-
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proximate the field is the standard deviation. This parameter in the scalar model
developed in section (3.3.2) is directly related to the anisotropy of the grains which
in turn describes the strength of the screens.

The expression obtained for the field is given as multiple integrals that can
be efficiently implemented using the FFT. The other important property of this
representation is the possibility of calculating the second order moments of the field
by using Eq. (4.17), which is developed in great detail in chapter (5).

It is believed that the representation Eq. (4.17) is a fair approximation since
it explains most of the observed phenomena in polycrystalline materials with mi-
crostructure characterised by an exponential correlation function. Naturally, this
must be combined with the general assumption listed in section (3.2).

The representation (4.17) is assessed by comparison via the second order mo-

ments of the field in chapter (6).



Chapter 5

Propagation of correlation function

Introduction

This chapter describes the theory of propagation of the correlation function or, in
terms of stochastic process, the second order moments. The aim is to determine
an expression for the ensemble average I', = (u(r)u*(r’)), where u is the process
representing the acoustic field. The correlation function is important since it is
directly related to the geometric characteristics of the medium. In chapter (3.2),
grain structure was described via the correlation function of the wave number. This
correlation will be seen to be directly related to the correlation I', of the field by
calculating the ensemble average using Eq. (4.17), in the first place.

The propagation and the determination of this function through random media
have been given in the literature |70, 97, 47|. In these papers, many constraints
are imposed on processes defining the medium in order to approximate (u(r)u*(r’)).
The assumptions introduced here are not that different from the ones proposed in
the literature, in particular that p is isotropic in transverse directions and almost
delta correlated in the direction of propagation. By definition a process u is delta
correlated if its correlation is of the form I'y = 6(z — ') f(z — '), where ¢ is the
Dirac delta function and f is an arbitrary function. Other assumptions have been
already introduced in the previous chapter (3), sections (3.3.2) and (3.3.3) and they

will continue to hold.
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The expression for (u(r)u*(r’)) is given by two different points of view that differ
in the way the ensemble average is obtained. The first one is a direct application of
phase screens to obtain an approximate solution to I', using the integral represen-
tation for the field Eq. (4.17).

The assumption on the process p of the inhomogeneity fluctuations, is that the
phase fluctuations ¢ are Gaussian. This property is used to calculate the ensemble
average of the field based on a standard result in multivariate statistics that is
valid for the Gaussian stochastic processes. The correlation, however, is calculated
transversally, which is defined as the ensemble average (u(x, z)u*(2’, z)) for each z.
The variable z here denotes propagation distance.

The second point of view uses the Helmholtz equation to approximate I',,, which
satisfies a differential equation derived in the literature [47]. There are some technical
problems within the phase screen technique that cannot easily be solved. The strong
assumption that rays do not bend considerably within a layer not only restricts the
suitability of the method but also the correlation function depends on the number
of screens used to approximate the field within the slab.

To remedy this in some way the correlation function of the field, based entirely
on the stochastic equation, is given in a heuristic manner in section (5.2). This al-
ternative approximation would also justify the feasibility of the phase screen method
in approximating the correlation function since the two coincide.

One of the reasons for obtaining the correlation function of the field is to relate
it to the correlation of the medium. The grains are assumed to be equiaxed, thus a
measure in any direction would give a reliable quantification of the mean grain size.

The importance of the correlation function I',, is that aberrations can be quanti-
fied by means of this function, which is determined by two main parameters defining
the medium. These are the correlation length and the standard deviation of pu that

measures the degree of inhomogeneity.
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5.1 Moments of the acoustic wave field

The second moment of the acoustic field by definition is the ensemble average
(u(r)u*(r’)), where r = (x,z) will denote a point in the two dimensional coordi-
nate. The second moment for any stochastic process will be denoted by I', if u is
the process being considered. Thus, for instance the second moment for the process

i is already defined and necessary in what follows

Py = (u(r)u()) (5.1)

The rest of the notation necessary for the mathematical development will be intro-

duced within the text.

5.1.1 Initial correlation function

The starting point in calculating the correlation function is to introduce the corre-
lation of the incident field v to a slab as in the boundary problem Eq. (3.11). This
initial value for the field at z = 0 could, in principle, be a random process with pre-
scribed statistical properties. What is needed here in order give an approximation
to I, is the initial form of I',. The process v(x) can be non-stationary or a wide
sense stationary random process. If v is non-stationary, the correlation function I,
will not be independent under translation, specifically (v*(x)v(x + 7)) will depend
in general on the point z in space, where 7 = x — 2/. Thus, I', is defined as the

energy correlation function of a random process as

Ly(r) = /OO v (x)v(x + 7)dx (5.2)

—00

It is well known that under stationary conditions the average I', is infinite. In this

case it is meaningless to consider Eq. (5.2); the power correlation function

r, = lim %/;XU*(I)U(I—FT)CLZ’ (5.3)

X—o0
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has to be considered, instead. The integral in Eq. (5.2), is known as the autocor-

_ T

0

SIS
[SlS]

Figure 5.1: Idealised correlation function of the field at 2 = 0. The width a deter-
mines the size of the source

relation function in signal processing for complex signals. For comparison with the
experimental work it is sufficient to give the initial form of I', as a function of 7
only. This function will be the autocorrelation of the initial displacement Eq. (4.11)

considered in section (4.1.1). Thus, I', has a triangular form as shown in Fig. (5.1).

5.1.2 The structure function of the medium

The structure function of a process is of great importance in optics and atmospheric
calculations |47|. Here it is introduced as it arises in the calculation of the correlation
function.

The statistical characteristics for the process pu have already been introduced
in chapter (3) where it was needed for building ensembles of the process. The
correlation I', was then used to build realisations of the phase fluctuations ¢. The
structure function of ¢ is introduced as it will be used for the calculations of I',
in the following section. This is defined as the ensemble average of the squared

difference of ¢ at two different points in the transverse axis of coordinates, thus

Dy = ([6(z) — o(2")]*) (5.4)
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The process ¢ has a functional dependence on p, equation Eq. (4.13), and hence one
would expect to be able to express Dy in terms of p. This can only be done if u holds
certain properties. Let us suppose that I'y can be split as 'y, = f(x, 2')g(z, 2’) where
f, g are arbitrary functions that depend on x — 2/, z — 2/, respectively. The reason
for splitting I';, in the above form comes from the fact that in the end an exponential
for T, is taken since it could accurately represent the measured correlation of the
acoustic field. The exponential form would trivially satisfy this condition. It is
clear from the above definition that f is the correlation of two points along the
axis x, whereas g is the correlation of w at two arbitrary points along axis z. The
functions f and g in general would be determined by different correlation lengths that
determine the scale of the grains along z, z axes, respectively. Earlier in chapter (3),
the grains were assumed to be equiaxed, and so to speak of two different correlations
is meaningless at this point.

Here, the process ¢ has the same meaning as in Eq. (4.13) but without the factor

ko/2 and the limits of integration are from 0 to z, hence

¢ = /OZ w(zx, 2")dz' (5.5)

Inserting Eq. (5.5) in definition Eq. (5.4) after using the assumption on I', the

structure function Dy is given by

Dy = //q“(‘”bz/) — w(wy, [y, 2") — o, 27)]) d2'd2”

_ / Fan, 20)g(# 2) — flar, 22)g(, 2")
 F(wa,2)9(2, ) + f (v, w2)g (7, 2)d d2" (5.6)

Since f depends on the difference at two different points it follows that f(0) =
f(z1,21) = f(xe,22), f(x1,22) = f(22,21) and is obviously independent of 27, 2”,

thus the structure takes the final form

Dy = 2[f(0) — f(z1,22)]¥(z) (5.7)



Propagation of correlation function 98

where W(z) = [ [ g(2/,2")dz'd=".

The integrals defining W can only be calculated in a specific form if g is assumed.
In the paragraphs below Dy is specified for the case when g bears an exponential
form. To be consistent with notation for the rest of the calculation f is again denoted

by 'y, even when it only represents transverse correlation.

The exponential correlation

Ultimately, the final form of I', used for comparison with the measured correlation

function has the following form I', = exp[—W#ﬁ], thus g(z,2') = exp|(z —
2)?/1?] and ¥ after substitution of g following a change of variable I§ = 2/ — 2" |

In = 2"+ 2" takes the form

U(z) = // e~ g g
0
— E//%_Z —Engd

Vrlz 2z
= 3 erf(T) (5.8)

The function erf() introduced in the last step above is the familiar error function,
which is basically ¥ up to some constant factors. Substituting the above integral in

Eq. (5.7) one gets
D, — ﬁlzerf(Ql—Z)[Fu(O) (2, 29)] (5.9)

The relationship between the structure function of the process ¢ and material prop-
erties is evident from Eq. (5.9). As presented in section (3.3.3), the correlation I,
directly characterises properties of the medium, which defines the structure function
Dy of the process ¢ in Eq. (5.9). A plot of Dy is shown in Fig. (5.2) at arbitrary

distances. The shape is given by the normalised correlation function

(5.10)
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Figure 5.2: The structure function Dy plotted over the normalised axis 7 propagation
distances z = 1/31, 1/2l, 1/1.

As shown in the graph the function ~, narrows as the multiplicative factor \/7lz®(2)I',(0)
increases for different z = 1/31,1/21,1/l. The values for z were chosen arbitrarily.
The behaviour of this function is dictated mainly by the parameters [, I';,(0) that
are kept constant in plotting this graph. As we shall see these parameters will

completely define the correlation function of the field I',,.

5.1.3 Multiple screens

The calculation of the correlation I', requires integration on several variables, so
an independent coordinate system is attached to each screen. Since the correlation
involves the averages at two arbitrary points in the transverse coordinates let us
denote them by x and y leaving z for the direction of propagation as before. Let
X = (Toy ..y T ), Z = (20, .., 2n) and denote their coordinate differences by x= =(z1 —
X0, ey T — Tp_1); the same definition would apply for y~ and z~ as well. The phase

variations at each screen are labelled by sub-indices to indicate which screen they
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belong to. If ¢g(xo), ..., dn(x,) are the phase variation at each screen, then

DS(TS) = <[¢s($s)—¢s(ys)]2> (5.11)

will denote the structure function for phase variations at each screen. An extra
variable y is needed since the structure function is calculated at two different points
in the transverse direction. In general D, is not a function of the difference 7, =
xs — 1Ys but one has to assume this in order to calculate I',. This point has already
been discussed in section (5.1.2). The Dy, s = 1,2,... are essentially the same
function but defined on different coordinate systems for technical reasons.
Following this notation and according to phase screen approximation the multi-

variate screen would be
s(x) = ez (5.12)

The process of propagating v from one screen into another according to Eq. (4.14) is
that every time the field is distorted by a screen the phase variation adds up resulting
in Eq. (4.17) if written in several variables. One could call s a multivariable screen;
s is a random process determined completely by the processes ¢. In the case when
the ¢, are Gaussian processes, it is possible to obtain the second moment of s as
a function of the structure functions D,. In appendix (A.1l) it is shown how the
ensemble average (s(x)s*(y)) is related to the structure function Eq. (5.4) by using

a standard result in multivariate statistics [64]; in doing so
(s(x)s*(y)) = e =D (5.13)

The average Eq. (5.13) will be in the end an exponential function but it will be seen
that for calculating I',, it suffice for D, to depend on the difference x, —y,; processes

with this property are called locally isotropic.
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5.1.4 Correlation function by averaging over the ensemble

The field at the entrance of each screen shall be denoted by wu, and the Fourier
transform for all the functions considered here is denoted by the hat symbol, so for
instance 1, is the Fourier transform of wu,,.

In general, u,, may be statistically related to ¢ for a single layer, because as v
propagates from layer to layer, u,, depends on ¢. It will be shown that it is possible,
at least mathematically, that the energy correlation of the field can be calculated if

the medium is statistically independent of the incident field.

The Green’s parabolic function

The Green’s function for the Helmholtz equation is well known, and in appendix
(A.3) the Green’s function for the Helmholtz equation in the paraxial approximation
is given and has the following form

k ik (z—a")?

glx—2',2—2") = (1+1) me 2G=20 (5.14)

The Eq. (4.17) is written in the spatial frequency domain and the actual calculation
of I, is performed in the spatial domain. Hence rewriting Eq. (4.17) in the spatial
domain the function g arises acting as a propagator. For a derivation of the Green’s
function g from the angular representation of the field see [64].

As in the case of the screens, the multiple propagation through screens re-
sults in multiplicative functions if written using several variables. That is, at
each screen, let us say the s-th screen, one has to consider the following product
9(Ts —xs_1,25)9%(Ys — Ys—1, 2s). Multiplied altogether one has to define a multivari-
able Green’s function.

The function propagator in several variables or the multivariable Green’s function

is simply the multiplication of the Green’s function Eq. (5.14) by its conjugate
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evaluated at every single coordinate x,, thus
G(x,z) = [ [ 9(as, %) (5.15)

where x; =z, — x5_;. The function G is a deterministic function bearing no rela-
tion with the ensemble average but the fact that it is a multidimensional Gaussian
function consideraby simplifies the integration. This is one of the reasons in making
the parabolic approximation since it is possible to give a simple expression for the

correlation function.

Calculation of T',

To calculate the transverse correlation of the field, i.e. T'y(z, 2/, 2) = (u(x, z)u*(x/,z))
at distance z away from the source, is necessary to take the ensemble average of
Eq. (4.17) in the spatial domain. In achieving this, let us set H(x,y) = G(x,2z)G*(y, z)
and define the ensemble average of vs as f = (v(x0)v(yo)){s(x)s*(y)), the ensemble
splits because v and s are statistically independent. Thus the ensemble average

(un(xn)ul (y,)) using Eq. (4.17) is given by

L= [ [ oyt y)dxdy (5.16)

To be able to integrate Eq. (5.16) one would need to calculate the average f but
this is not necessary as long as f is a function of the difference x — y only. This
is a consequence of ¢ being a Gaussian and locally isotropic process. Thus, using

Eq. (5.13), f takes the form

[= (xo)v(yo)e T Delem) (5:17)

To continue the evaluation of integral Eq. (5.16) more notation is introduced to

shorten the length of the equations. Let A = w and r, = (vy — w,_1)% —

(ys — ys—1)* be with obvious definition in vectorial form. Then Eq. (5.16) can be
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Fu:b/~-~/f(x,y)H{%}dxdy (5.18)

where b = (—;)N. A step further in calculating the above integral follows by

rewritten as

making the following change of variables: 2x = p 4+ q, 2y = q — p, therefore
rs = (ps — Ps—1)(¢s — ¢s—1) or rs = p; q; . Thus, I, in the new coordinate system is

ip{q;

Fuzb/~-~/f(p,<1)H w dpdq (5.19)

Now, using that, Eq. (5.17) depends only on the difference of its coordinates, f
would be a function of p only, and so it is possible to integrate with respect to q.
Recognising, that the function to be integrated in Eq. (5.19) is the Fourier transform
of the identity thus resulting in a product of delta functions. But first, let us express

the term appearing inside the exponential function as
Dsls _ . Ps  Pst
Ay Z {As_ As_+1:| (5:20)
S

with p;” = p,.; = 0, since we have added extra terms for convenience. After inserting
Eq. (5.20) in Eq. (5.19)and performing integration with respect to q, except for the

single variable gy, we have

i A p. N
r, = /f(p,qo)HA§5 (ps_ - j\f“) Hdequ (5.21)
s=1 s=2 8

s+1

where 0 is the Dirac function delta. In the above expression N is an even integer
otherwise one would have to multiply the term on the right by (—1)".
Finally, integration can be completed by noting that if A7 = A, for all s, i.e.

all screens are allocated at equal distance in space then we have

N
ASp;
(R, @0 H /f P; 4o HA 5( A= +1)dp (5.22)
=2 s+1
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Here, py = (pn,...,pn). The final expression for I', is obtained by inserting

Eq. (5.17) and Eq. (5.22) into Eq. (5.21), in doing so

2 2
e NDeNIT (py) (5.23)

Fu = €_ND¢>(pN) /<,U(pN +qo)v*(pN _q0)>dq0

where D, is given in Eq. (5.9) by changing to the new variable py = 7. The above
calculations show that the energy function at distance L is equivalent to the product
of individual energy functions at the exit of each layer. Letting N tend to co ',
approximates to a continuous solution of second order moment of the Helmholtz’s
equation. An approximate solution for the second order moment of Eq. (3.11) is
given in |[70] and closely coincides with I';,. An expression for the correlation function
of the backscattering field is also given in that paper. An example of the energy
correlation over a distance corresponding to several grains, as calculated according
to Eq. (5.23), is illustrated in Fig. (5.3). The decay and width as it propagates is
determined by ¢ and [, respectively. As a reminder, o is the standard deviation of
the process pu characterising microstructure and [ is correlation length proportional
to grain size in polycrystalline materials.

The extreme case, i.e. for a highly aberrated medium, that is, 0 — 1 and small
[ -small grains- then the function Eq. (5.23) decays rapidly having a narrow tail.
The ideal case occurs when p = 0, that is a homogeneous medium, I', so does not
change with the propagation distance.

The chart shows a series of images of the correlation function for different values
of o and [. From the chart one can observe the behaviour of this function as the
parameters are varied. The very first row shows the correlation of the field in a
homogeneous medium. The row on the bottom line shows the behaviour of I', for
larger values, that is 0 — 1 and | — oo which represent a medium with strong

anisotropy and large mean grain size.
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Figure 5.3: Images of the energy correlation propagating in a random medium -z-
direction- as a function of ¢ and [, Eq. (5.21). The correlation function has been
plotted in arbitrary normalised units.
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5.2 Using a derived differential equation

The calculation of the second order moment of the field in a random medium is not
straightforward as the last section has shown. Even for the case of single scattering.
Many authors had dealt with second order moments, [70, 59, 49, 40, 98, 97, 24, 60],
of solutions of the stochastic wave equations with applications to different areas,
such as optics, and acoustics as well as elasticity. Some have given approximate
solutions under the assumption that the random process characterising the medium
is delta correlated in the direction of propagation, or the Markov approximation as
it is also known. In references |47, 46|, an equation for the second order moment is
obtained and its solution is shown under the Markov approximation. It was found
that this solution is basically the second moment previously obtained in (5.1.4),

using the spectral representation of the field.

5.2.1 Equation for the second moment

The equation derived in [47, 46|, is presented with the aim of giving an alternative
approximation to I'(z,2’, z) already given in the previous section.
Following the development in [47, 46], although it is easy to derive from Eq. (3.11)

in its paraxial version, the equation for Z(x,2', 2) = u(z, z)u(2’, 2) is given by
2ik0.7Z + [Ny — Ap)Z + B [u(x, 2) — w(@',2)]Z = 0 (5.24)

Note that the ensemble average has not been taken yet, which means that the
equation for second moment is far from complete. In order to find an equation for
(Z) the average of the third term in Eq. (5.24) has to be calculated. But this is
difficult, without assuming that p is delta correlated, that is, its correlation satisfies
(W(z, 2)u(a’, 2")) = d(z — 2') f(x — '), f an arbitrary function and § the Dirac delta
function. Using this condition, and the assumption about the incident field, which
is that its correlation function depends only on its difference, it is possible to define

a random process that satisfies Eq. (5.24) after taking the mean.
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Let the following process
Zo(x,a! 2,8) = Zo(z,2,7) 19 (5.25)

be where g(z, 2/, 2,&) = [ [u(z, 2, &) —w(@/, 2/€)|dz’ and Zy = v(z,7)v(2/, 7). Since
v is fixed it is obvious that g must meet certain conditions so Z,(x,2',2,§) is a
solution of Eq. (5.22) for all £. One could try to find those conditions but since the
important quantity here is the mean over an ensemble, that will not be necessary.
The initial condition at z = 0 is indicated with the product of the incident random
processes v(+,y) and its conjugate. The 7 is aimed to indicate that v belongs to a
different ensemble which implies that Z,(-,£) has to be averaged twice. This does
not represent a problem since the process v and p are statistically independent.

Taking the average in Eq. (5.24) results in
2ik0, (Z,) + [Ay — A ) (Z,) + K ([w(x, 2,€) — w(2',2,€)]Z,) = 0 (5.26)

One still has to find a random process that satisfies Eq. (5.26) and there is no way
to prove that process Eq. (5.25) satisfies Eq. (5.26). Obviously

2’&]{38 < >+k2 <[ (ZL’, 276)_u(x/az>€)]z’\/> =0 (527)

is satisfied for the process of the form Eq. (5.25)). Therefore, the solution to
Eq. (5.26)) reduces to finding processes of the form Eq. (5.25)) that satisfy the

condition
A, — Ay <Zﬁ,> =0 (5.28)

The realisations of the process Z, are defined by the realisations of the process u.
This means that the mean (Z.) is completely determined by the statistical properties
of w. In principle, all processes satisfying Eq. (5.28) would solve Eq. (5.26) but the

derivation here is in more elementary terms. One of the assumptions is that wis a
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Gaussian process, besides being transversally isotropic, and almost delta correlated
in the direction of propagation, thus the mean (Z,) is a function of the mean (g?).
Let us first average Z, with respect to ensemble 7, that is, using the same
letter to average the initial condition one has Zy(z — ) = (v(x,v)v(2’, 7)), . Hence
the average (Z) over the ensemble is equivalent to obtaining <e%g(m’m”z)>, which is
something that can be achieved if g is a Gaussian process.
The process g(x,2’, z,&) is Gaussian since p is a Gaussian process. It is well

known that for any GGaussian process g
<e%g(m’m/’z)> = e 5 (o) (5.29)

so it remains to calculate (g?). Now, the mean (¢g?) is in fact the structure function
D, already introduced in section (5.1.2) for Gaussian statistics. After inserting Z

and (g?) into Eq. (5.29) the ensemble average (Z(x, ', 2,£)) of Eq. (5.25) is

T2

(Z(2,2,2,€)) = Zpe T HO-Tule—s) (5.30)

Now, expression on the right hand side of Eq. (5.30) is a function of the difference
x—1a' sois ' = (Z(x,2',2,£)). Tt is now straightforward to check that Eq. (5.28)
holds true by substituting Eq. (5.30) in Eq. (5.28). Therefore, processes Z(x, 2, z)
of the form Eq. (5.25) satisfy equation Eq. (5.26).

In this section a random process has been derived such that its 2—point corre-
lation satisfies Eq. (5.26) and this coincides with Eq. (5.23) previously developed in

section (5.1.4) using a different method.

5.3 Concluding remarks

The calculation of the average correlation function of the field has been given first
by the phase screen method and derived from a differential equation in a separate
section. The integral representation given in chapter (4), Eq. (4.17) was used to ap-

proximate the average correlation function, by directly calculating the cross average
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of the field. The paraxial assumption allowed us to integrate the resulting multiple
integral. The average of the multiple phase screen in the integrand of Eq. (5.16)
could have been calculated because of the Gaussian assumption on the process p,
that follows from a standard result for multivariate Gaussian processes. It is possible
that in the future these conditions could be removed so as to include processes with
more general characteristics, thus representing other types of polycrystals.

The resulting correlation depends on the number of screens used to approximate
the field, thus giving a discrete approximation of the correlation. The section where
we have derived the correlation from an differential equation was intended in a way
to alleviate this limitation. The resulting correlations are essentially the same if
one uses an exponential function for the process w. It has to be observed that the
same result is obtained if one assumes from the beginning that u is statistically
independent, under which condition the operator [A, — A,] is eliminated from the
equation. At any rate, any of the Eq. (5.23) or Eq. (5.30) can be used for theoretical

purposes as will be seen in chapter (6).



Chapter 6

Experimental methods and results

Introduction

In the previous chapters a theoretical model for SAWs in polycrystals was devel-
oped. The aim was to derive a correlation function for the field which relates the
statistical properties of the medium to the statistical properties of the field. This
correlation was the transverse correlation of the field and was dependent on the de-
gree of inhomogeneity and the correlation length of the medium. In this chapter this
is investigated experimentally by imaging the deviation of an plane acoustic wave on
the surface of the polycrystal. Aluminium and titanium were used as media because
they have relevance to industrial measurements and exhibit well defined properties.

In order to measure the correlation function, which is stochastic , it is necessary
to measure an ensemble of independent samples of the medium. So multiple mea-
surements were carried out on the surface of the samples to get an experimental
ensemble of the acoustic field. A procedure based on the estimator of the mean cor-
relation for a finite sequence is given to study the acoustical ensemble statistically.
From this analysis a transverse correlation function can be measured for each sample
with the aim of comparing it to the theoretical correlation to obtain the degree of
inhomogeneity and the mean grain size of the samples. Material characteristics, such
as mean grain size, are obtained by numerically solving a nonlinear fitting problem

for the measured and theoretical correlation function.
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The instrumentation is briefly introduced describing the main characteristics of
the OSAM system on which the experiments were carried out. Part of the experimen-
tal work was the selection and preparation of the samples and their metallographic
characterisation. This is explained in detail as is their characterisation by the direct
measures of the grain size from photomicrographs.

The results comparing the theoretical and measured correlation function of the
ultrasonic ensemble are presented at the end of this chapter together with some

conclusions.

6.1 Sample selection

Two different metals were selected, aluminium and titanium. Aluminium was se-
lected because is extensively studied in the literature, both ultrasonically as well as
mechanically. The other reason was because of the well understood technique to pro-
duce samples with different grain sizes and a certain degree of spatial randomness of
the grains. Aluminium naturally shows grain structure as shown in Fig. (6.1). The
photomicrograph, clearly shows huge elongated grains and the regions have certain
degree of spatial orientation. From theoretical and experimental points of view these
types of samples were not of interest for the present research, mainly because of the
elongated grain shape, which is extremely difficult to model. The microstructure of
aluminium in Fig. (6.1) can be modified by adding a refiner. Using the refiner the
grains tend to become mainly convex, and spatially distributed at random.
Titanium metal was selected mainly because of increasing interest in determining
its properties non-destructively in industry. The titanium sample, widely used in

aeroplane, engines was provided by Rolls Royce.

6.2 Sample preparation

Three different aluminium samples were created, A, B and C, each with a different

mean grain size, and one block of titanium. The grain size distribution in aluminium
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Figure 6.1: Photomicrograph showing individual elongated grains in an aluminium
sample. The photomicrograph was obtained in a conventional microscope under
cross-polarised light.

was selected by varying the concentration of the refiner. The procedure is similar

for all of them so only a detailed description for one sample is described here.

6.2.1 Procedure for refining grains in Al

An Al (99.9%) charge of 500gr, contained in a clay bonded SiC crucible, was heated
to 730°C" in a muffle furnace. After melting the Al charge and in order to obtain
a lightly refined Al ingot, 0.2wt.% of an Al-titanium-B commercial grain refiner
was added and dissolved into the melt. Prior to removal of the oxide skin from the
surface of the molten metal, the melt was cast into a rectangular steel mold in which
it was allowed to solidify naturally. The Al ingot was released from the mold and
sectioned with a band saw. Due to the geometry of the steel mold, a coarse columnar
grain structure is expected in the top part of the Al ingot. For this reason, that
section was removed and four useful blocks were obtained. Owing to the symmetry
of the ingot, only three blocks were used; one for the counter part for metallographic
characterisation and the third was subjected to macro etching to reveal the overall

grain structure. The macro etching is simply the immersion of the sample in a
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solution to reveal the microstructure and to be able to observe it with the naked
eye. Samples for metallography were taken from one block and were mounted,
ground and polished down to 1um following standard polishing procedures. The
same preparation was given to the counter face of the other block. To reveal the
grain structure, the Al block was repeatedly immersed into a solution (38% H,O,
45%HCI, 15% HNO3 and 2%HF) and washed until a good contrast was achieved.
Also, the Al polished samples were anodised in a 2% solution of KBF, in water for 1
min at 25V [31]. After washing and drying, the samples were viewed and imaged in
an optical microscope, equipped with a digital camera, under cross-polarised light.

The idea with this technique was to create samples with different grain sizes,
mainly convex grains and spatial random distributions [31]|, by refining the grain
size by adding small quantities of the refiner, Al-Ti-B, to the aluminium. This tech-
nique did work well for high concentrations of Al-Ti-B in the mixture which has
produced samples, identified as Mp, Mo below, with the required characteristics.
The technique is probably not suitable for producing samples with those character-
istics and grain mean sizes bigger than 1000um, as it was the case for the other two
samples.

Finally, the samples were polished to a mirror-like finish for ultrasonic inspection

using standard techniques.

Ti preparation

One single block of titanium was prepared for ultrasonic inspection. The metal
block was polished to a mirror-like finish for inspection. Immediately after the
ultrasonic experimentation was complete a small piece of the corner, lemxlcm
in size, of the sample was cut-off for metallographic characterisation. This small
section was etched with the purpose of revealing the microstructure, but most of the
standard techniques did not reveal clearly the microstructure as with the aluminium
samples. Nevertheles, a photomicrograph is presented in section (6.3.1) where it can

be appreciated that the microstructure of the Ti sample is complicated.
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6.3 Metallographic characterisation

Characterisation of a metal, in particular Al, means more than just measuring the
grain size of the microstructure. Other properties inherent to metals like mechanical,
optical or physical characteristics, to mention just a few, are beyond the scope of
this work. However, the optical properties of the surface of the sample are important
since this technique requires samples with well polished surfaces for laser ultrasonic
analysis. The metallographic analysis or characterisation of samples means, in this
context, the estimation of the grain size distribution expressed in terms of a mean
grain size and a standard deviation. The unit chosen for these quantities was the
micrometre.

The characterisation of the aluminium is presented first, followed by the titanium

sample.

6.3.1 Digital characterisation

The grain size distribution was measured directly from a digital image for each block.
The image corresponding to block A will be referred as My, Mg for block B and so
on.

Using open source software! the perimeter was measured for each region con-
tained within each micrograph and stored in a file for mean estimation. The mean
calliper diameter, as defined by Eq. (3.20), was obtained by dividing the mean di-

ameter of each region 34| by 7.

Characterisation of block A

For block A, M, is not a single image but several pictures stitched together. This
procedure was necessary due to the optical limitation of the microscope used at the
time of imaging the samples. The image in Fig. (6.2) does not contain a sufficient
number of grains for statistical estimation. A sensible number in the population of

the grains would be at least fifty.

ImageJ http://rsb.info.nih.gov/ij/
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To minimise the error, software was used to identify similar points of adjacent
images and it was possible to stitch them together. In this way an image containing

more that enough regions for metallographic characterisation was created. The im-

A

0 by = 1345 + 98(um)
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um
oy 718
Figure 6.2: A histogram of the grain size distribution for M, is showed on the left
hand side, where o4 is the standard deviation of the grain size distribution. To the
right hand side, the photomicrograph of the aluminium sample is shown, under-cross
polarised.

age M, corresponding to block A has a more complicated microstructure compared
to Mg, M¢, in that it contains non-convex regions. The other problem was that the
contrast in some regions of the etched surface was very poor, so quite a few grains
were merged into one. Additionally, some of the grains were completely embedded
within larger grains, in which only the big ones are counted. This feature made
characterisation difficult.

The complication with grain characterisation can be seen in Fig. (6.2), where the
distribution does not uniformly accumulate around a central value. Nevertheless,
the results were approximately Z:)A ~ 1345um for the mean grain size, standard
deviation o4 = 718, and the number of grain considered was N4 = 54. The mean
calliper diameter number was roughly checked with a different method by measuring

the number of visible grains within an square and dividing the area of the square
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by number of grains, results were comparable with both techniques.

Characterisation of block B

For the second piece a similar procedure was applied as described in previous para-
graphs, but the number of regions present in one image was far greater than in M4
in Fig. (6.3). The difference with My is that it has a homogeneous distribution of
mainly convex grains. In the sense that the size distribution is more evenly dis-
tributed, unlike A, making the estimation of the length of the boundary for each
region easier. Strictly speaking, neither M4 nor Mg have microstructure completely
populated with convex regions. To make characterisation easier, grains which are
mainly concave are being thought as convex when estimating the mean calliper di-
ameter. On average grains mainly convex outnumber grains mainly concave for

aluminium sample Mp. Fig. (6.3) shows the results of measuring grain size distribu-

B
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op =444

Figure 6.3: A histogram of the grain size distribution for Mp showed on the left

hand side, where op is the standard deviation of the grain size distribution. To

right hand side, the photomicrograph of aluminium sample is shown, under-cross

polarised.

tion for each region by measuring their perimeters. The mean calliper diameter was

obtained under similar conditions from equation Eq. (3.20) with an approximate
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value of l:)B ~ 785um. The numerical values for the standard deviation op and the

number of regions Np considered in this case are also shown in Fig. (6.3).

Characterisation of block C

A third sample aluminium Mg was characterised with encouraging results. This
sample has the smallest grain sizes compared to the other two so one could see high
number of grains in a single image. It was not necessary to take several images and
stitch them together. The interesting feature of this sample is the evenly distributed

grain configuration. The frequency of grains of size of approximate mean value

C
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Figure 6.4: A histogram of the grain size distribution for M showed to the left hand
side, where o¢ is the standard deviation of the grain size distribution. To right hand
side, is the photomicrograph of the aluminium sample showing, under-cross polarised
light the grain for block Mp.

l:)C ~ 134um is high, making a good distribution as shown in the histogram in
figure Fig. (6.4). The high contrast between regions in this sample made perimeter

measurement easier, considerably reducing the error.
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Characterisation of Ti

The characterisation of this sample was difficult. At the beginning it was thought
it was titanium but most of the standard techniques for etching titanium to reveal
the microstructure did not show the expected result, so an alloy must have been
present. Below, in figure Fig. (6.5), is shown the photomicrograph of a section of
titanium sample etched to reveal the microstructure. It was obtained in a standard
microscope equipped with a digital camera after etching the surface of the metal

with standard techniques. There are certain regions that could correspond to grains

Figure 6.5: Photomicrograph of the surface of titanium etched by standards proce-
dures to reveal the microstructure.

but it is difficult to conclude that they actually correspond to grains. Therefore, the
estimation of the mean grain size was not possible for this particular sample. The
complicated microstructure made the discussion about the observed aberrations in

this sample difficult as well.

6.3.2 Error in characterisation

The perimeter was measured by using graphical interpretation using the open source

software as before. A source of error is then how accurately a normal human being
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can measure the perimeters of regions composed entirely of pixels with the aid of a
computer mouse. The other possible source of error is in the procedure of taking
several digital pictures by mechanically moving the sample to a different position,
with the possibility of the microscope being out of focus.

A more quantitative error is given in terms of the standard deviation and the
number of regions considered for each block, i.e. E, = 0,/v/N, where s = A, B, C,
showed in Fig. (6.2), Fig. (6.3) and Fig. (6.4). This is the standard error [99],
which measures the difference between the estimated and the true values for the
diameter of the grains. The units of the standard deviation o, are the units used
for estimating the mean size distribution, therefore the units of E,. The mean grain

distribution was estimated in micrometres.

6.4 Experimental setup

Over the past few years an Optical Scanning Acoustic Microscope (OSAM) has
been developed [89]. This highly flexible instrument can be fully automated and is
capable of performing multiple acoustic measurements over the surface of a sample.
Advantages has been taken of these capabilities to build up an ensemble of the

acoustic field over the surface of aberrating materials.

6.4.1 SAW generation systems

Two different type of devices were used for SAW generation in the experimental
work. The first one is a spatial light modulator (SLM) being part of the OSAM
system, which is briefly presented below, and a 10MHz transducer, which replaced

the SLM as source of SAWs for the titanium sample.

The OSAM system

The main components of the OSAM are shown in Fig. (6.6). It uses a Q-switched

mode locked Nd-YAG laser for SAW generation, by using a spatial light modulator
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(SLM) to image any desirable pattern typically a set of arcs or straight lines

onto the surface of the material under investigation. This image, illuminated by the
pulsed laser, acts as the source of the surface waves. The fundamental frequency at
which the OSAM generates ultrasound is 82MHz, but multiples of that frequency

can be also generated.

Sample

Probe lase

Photo—detection
system

Figure 6.6: A pattern generated by a spatial light modulator is imaged onto the
sample using a pulsed laser. This pattern acts as the source of the surface acoustic
waves. The waves are detected by another laser, using an optical beam deflection
technique [19].

SAW generation using a transducer

The ultrasonic inspection of titanium was performed by generating SAWs using a
standard 10MHz transducer. In this experiment, the SLM was replaced by the
transducer as the source to generate SAWs on titanium as shown in Fig. (6.7). The
same probe and capabilities of the OSAM were used, so it uses the mechanical
and optical setup of OSAM system to detect SAWs in titanium. Two things were
taken into consideration for changing devices for SAW generation. Firstly, and most
important, is that it was not possible to launch a SAW in titanium at 82MHz, which
is the fundamental frequency of the OSAM and actively uses the SLM to achieve
it. Secondly, the idea was to have a broadband source to test the microstructure of

titanium at different scales relative to the wavelength. The transducer was a 10MHz
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Figure 6.7: Sample and transducer array for SAW generation. The probe and the
whole detection system in this experimental setup correspond to the OSAM system.

|[Panametrics, A544S-SM]|, so one can take the amplitude and phase measurement
above and below this frequency to see how it interacts with the grain structure of
the material. The bandwidth of the transducer allowed one to measure frequencies
+2MHz from the centre frequency. The frequency of the transducer was selected
simply on the basis that the transducer was readily available, although it would have
been interesting to experiment with other frequencies; unfortunately there was no

time for more experiments.

6.4.2 Detection system

A continuous wave laser is used to detect the propagating surface waves using an
optical beam deflection technique. Both the detection system and the sample are
mounted on computer-controlled automated stages, and so the OSAM is capable of
rapidly imaging, due to the analogue data capture system, the propagating wavefront
at any position on the sample. A comprehensive overview and technical details are
given in |89].

A complete set of software and electronics has been developed for gathering
information at high speed. Typically, an amplitude and phase c-scan over an area

of 1.5cmx1.5cm with a resolution of 10pum can be taken within a matter of minutes.
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6.5 Measurements

The ultrasonic investigations on aluminium and titanium samples are presented in
this section as a fundamental part of the experimental work. In order to measure
the mean correlation function, it is necessary to have multiple independent measure-
ments of the acoustic field across the ensemble of the sample. Fig. (6.8) shows the
schematics of the multiple location on the surface of the sample where multiple mea-
surements were performed. It is important to highlight here that the procedure is
fully automated so it was only necessary to create a single script in order to perform

all the measurements. The materials tested were aluminium blocks, labelled My,

SLM pattern c-scan area

= = =\=
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o [

I D

Sample

Figure 6.8: Schematic representation of scanning area and source locations to built
up an ultrasonic ensemble. At each position of the SLM, marked with a series of
black and white stripes, a c-scan was performed across x and z direction. The
direction of propagation is along the z axis.

Mp and Mg already introduced and titanium. The measured fields are labelled at
each location by u? where A indicates the block it belongs to, in this case to block
A, n is the number of c-scans performed in that particular block.

The dimensions of each metal block were approximately 6¢cmx4cmx1cm, which
gives sufficient room for multiple measurements since the scanning area is typically
3mmx10mm. This area was chosen so the size of the SLM or equivalently the width
of the source as well as the spread of the ultrasonic beam was entirely scanned as
the SAW propagates in the material. The length of 10mm along the propagation

distance was also carefully chosen so to be able to detect SAWs until the acoustic
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field became undetectable or the knife-edge was detecting only noisy signals.

The images are presented separately since the grain size distributions are differ-
ent for each block to give different aberration patterns. In all cases, the SLM was
programmed to project a series of straight lines onto the surface of the sample, each
line separated from its nearest neighbour by a distance equal to the mean Rayleigh
wavelength in aluminium. The waves are generated at 82MHz, which is the funda-
mental frequency of the excitation laser in the OSAM system, which corresponds to

a line spacing of approximately 37um in this material. For the titanium sample a

(a) Source (b)

G,
Lo
TIT

Figure 6.9: (a) Area in zz plane which c-scan has been performed. (b) The black
square represents the multiple positions where the transducer has been located to
perform a c-scan according diagram (b); whereas arrows indicate the direction of
propagation.

X

similar procedure was carried in order to obtain multiple measurements. The only
difference was in the areas chosen within which to perform the scanning. This was
mainly because the transducer could only physically be fitted to the edge of the
sample. The situation of the scanning areas chosen for this particular experiment
is schematically represented in Fig. (6.9)(b). Fig. (6.9)(a) shows the source and the
area to perform c-scan for each black square in Fig. (6.9)(b).

The relocation of the source was done manually by moving the transducer to
a new location and making sure the contact medium was in good condition at all
times. The contact medium was a water based couplant that dries very quickly, so
the c-scan had to be done very quickly before the couplant became hard, changing

the pattern. The effect of dried couplant could not entirely be avoided, and this can
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be noticed in the measured fields which will be presented at the end of this section.

In both experiments, the location of the source is unimportant as long as the
areas chosen do not overlap, and the detected acoustic fields remain independent.
This was to ensure that every SAW propagated in the samples travelled through
different samples of the ensemble of local microstructures. The basic assumption is
that each area chosen to perform the scanning represents an independent realisation
of the microstructure ensemble which is equivalent to having many independent

samples with the same statistical properties.

Case A

Block A has large grains compared to mean Rayleigh wavelength, and so they have a
relatively small effect on the wave in the direction of propagation. In this particular
case, the acoustic field could not be measured until it became uncorrelated because
of mechanical limitations of the system. This can be seen in Fig. (6.10), where
the signal at 6mm remains strong in some cases and so could have propagated even
further. Thus the effect of microstructure on the acoustic field could only be partially
observed. Fig. (6.10) shows the amplitude and phase distributions of a plane wave
travelling from left to right on different locations in sample A. The images show the
deviations caused by the microstructure to the wavefront of the acoustic wave. The
transverse size of the field is determined by the size of the SLM. The propagation
resembles an optical diffraction pattern through a slit since the SLM has a finite
aperture. The effects of the corners of the SLM are not observed in this particular
experiment.

The images have a typical plane wave pattern propagating in a medium with
inhomogeneities such as polycrystals. The wavefront breaks up due to aberration
caused by the grain structure, leading to transverse variations in the amplitude. The
same effect can be observed in the phase distribution; the wavefront is not flat as
one would expect in a homogeneous medium.

One possible cause for the relatively small effect in this experiment is that the

grain size is reaching the size of the SLM (& 2mm), so the beam behaves as it was
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Figure 6.10: The first column is the plot the amplitude distribution of u;? at different
instances across the sample. The second column shows the phase distribution for
each field on the left. The wave propagates from left to right as indicated by the
arrow on top of the first column.
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propagating in a homogeneous medium.

By comparing the different amplitude images in Fig. (6.10), one can observe that
they are different from each other. As the source changes location, one is in fact
measuring the acoustic field in a different realisation of the microstructure ensemble.
The source position was chosen in such way that the scans of adjacent areas were
not overlapping, see Fig. (6.8); thus the family {u,‘f} for different n is an ensemble
of acoustic fields since different scanning areas correspond to different realisations

of the microstructure.

Case B

Under similar experimental circumstances as with block A, the sample B was inves-
tigated. Block A and B have similar dimensions, grain size being the only difference
between them. The ensemble of acoustic fields was built up by moving the source at
different locations and performing a c-scan every time. Fig. (6.11), shows a number
of phase and amplitudes images, once again at different locations on sample B. The
mean wavelength is still smaller that the grain size distribution, but the grains are
smaller compared to the previous case. In this case, it is expected that there would
be a stronger interaction between SAWs and grains compared to the one observed
previously with sample A. This can be observed as the amplitude decays faster and
the field becomes diffuse at propagation distances less than 6mm. By diffuse we
mean that the energy of the wave has spread transversally due to aberrations and
the acoustic field becomes uncorrelated in the sense that the transverse correlation
function tends to a delta function. The phase changes are slightly more difficult to
observe here because of the resolution limitations. A comparison can be made with
Fig. (1.1) in chapter (1), where the scanning was performed at higher resolution in

both directions.

Case C

Finally, sample C' was also ultrasonically investigated showing the amplitude and

phase distributions of a number of realisations of the acoustic ensemble in Fig. (6.12).
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Figure 6.11: The first column is the plot the amplitude distribution of uZ at different
instances across the sample B. The second column shows the phase distribution for
each field on the left. The wave propagates from left to right as indicated by the
arrow on top of the first column.
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As expected, the wave became diffuse very quickly due to multiple interactions
with the grains.
Summary on the values obtained and used previously

The following table summarises the various values obtained and used in the whole

experiment.

Aluminium ‘ b(pum) ‘ Ag(pum) ‘ n ‘ Pz X po(Um X pum) ‘

My 1345 £ 98 35.5 o4 ax 200
Mp 785 £ 42 35.9 118 5x2000
Mc 134 +£5 35.5 96 5x100

Table 6.1: Summary of some of the values used and obtained for mean caliper
diameter b, mean Rayleigh wavelength \g, and the number if images n in aluminium
samples at 82MHz. p,, p. denotes pixel size in x and z, respectively.

The low resolution chosen in the direction of propagation (z—axis) in comparison
to the transverse axis is partly due to the relatively small variations of the correlation
function field for short propagation distances. So for instance, block Mp has a
resolution of 2000um giving as a result a total of eleven slices of the field along
the axis of propagation. This is why aberrations cannot visually be observed in
Fig. (6.11). The resolution on the rest of samples was increased only for aesthetic
purposes to show the variations of the wavefront. It is believed that a minimum
of three slices along the propagation direction would be sufficient to observe the
overall behaviour of the correlation function. It was important to keep the transverse
resolution high since the width of the correlation function will be an estimator of
the mean grain size, which is presented in section (6.6). As regards the number
n of fields measured, it is believed that n > 50 would be a sensible number for
obtaining an average correlation function. The procedure for obtaining the average
correlation is explained in detail in section (6.6). To make sure this was the case,
n was increased to 118 for block Mp, making a small difference on average for the
correlation function. The other reason, perhaps less important, in keeping n around

50 in blocks Mp and My was to speed up the process of gathering data.
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Figure 6.12: The right column is an image of the amplitude distribution of u¢ at
different instances across the sample C'. The second column shows an image of the
phase distribution for each field to left. The wave propagates from left to right as
indicated by the arrow on top of the first column.
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The values for the mean wavelength are only approximations for aluminium.
The OSAM system is wavelength tunable in order to generate ultrasound so a value
of 35.5um for the Rayleigh wavelength, gave the maximum signal that could be

observed using a standard oscilloscope for the normal displacement signal.

6.5.1 Measurements in Ti

This section discusses the experiment carried out in the titanium sample; the pro-
cedure is similar to the one for the aluminium specimen already discussed. The
experimental setup and SAW generation as well as the procedure for the experi-
ment has been discussed in section (6.4). The important point here is to observe
how the amplitude breaks up with distance as well as the phase variations. The
propagation is from left to right. As it can be observed the speckle patterns are
slightly different to each other as the acoustic field interacts at different frequencies
with the grains. The purpose of this experiment was to make the ultrasonic field
interact with different grain sizes and to build an ensemble of the acoustic field at
multiple frequencies. Therefore, for each point r = (x, z) and fixed source position
a time waveform, u(r,t), for the normal displacement was obtained. The waveform

u(r, t|y) has been transformed to the frequency domain using the Fourier transform,

u(r,wly) = /uy(r,t|fy)e_i“’tdt (6.1)

where 7y represents a sample of the acoustic ensemble across a microstructural en-
semble.

The fundamental frequency of the transducer is 10MHz so analysis of the speckle
pattern at that frequency was expected to provide the most accurate estimation of
the material characteristics.

In Fig. (6.13) there are some noticeable deviations of the acoustic field that are
possibly not to due to the interaction of the acoustic field with the microstructure.
These latter observations, by looking at images in Fig. (6.13), were partly due to

the observed microstructure, shown in Fig. (6.5) after etching the titanium sample
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Figure 6.13: Amplitude and phase distribution of the acoustic field u(r, w|y) showing
aberrations in titanium at different frequencies. The propagation is from left to right.
The right side column shows the amplitude of the field whereas the other column
the residual phase.
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for characterisation. To assess and to make sure that those deviations were caused
by the interaction with the microstructure an experiment in a homogenous isotropic
medium was carried out. The findings are presented in the next section for glass. It

was found that the couplant was partly responsible for the deviations.

The acoustic field in a homogeneous medium

The purpose of this experiment was to assess the output of the transducer in a
non-polycrystalline medium and experimentally assess the weak contributions of
the microstructure to the aberrations caused in the acoustic field. The resultant

acoustic field is shown in Fig. (6.14) below. Comparisons can be made with the

f = 10MHz f = 10MHz

x(mm)

z(mm)

o 5 10 15 20

Figure 6.14: Amplitude and phase distribution of the acoustic field at 10MHz on an
ideal sample (Glass) with no microstructure. The transducer output is not a single
beam as one might expect.

amplitude and phase in Fig. (6.13). It can be clearly seen in Fig. (6.14) the effect
that the couplant is having to the beam. This problem could have been avoided by
using a different couplant but this was learned later on that there was not time to
repeat the whole experiment. Nevertheless, by comparing Fig. (6.13) and Fig. (6.14)
there are some deviations to the wavefront that can be observed but turned out to
be very weak. This is assessed by looking at the correlation function of the field in

section (6.6).
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6.6 Analysis of experimental data

6.6.1 Procedure for spatial correlation

The statistical analysis of aberrations was made on the basis of statistical concepts
such as the second order moment or energy correlation function for finite sequences.
Notation is introduced to explain some of concepts and be able to compare them
with the theory earlier developed in previous sections of chapter (5).

The measured acoustic field in all the samples is being denoted by u7,. Thus,
ul, will represent any of the fields shown in Fig. (6.10), Fig. (6.11), Fig. (6.12)
and Fig. (6.13). The acoustic field is a two dimensional scan in the xz axis, so
r = 1,..., K, where K is the number of measurements in the z direction whereas
z =1,...,L being L the number of measurements in the z direction. The numbers
K and L are determined by the resolution of the c-scan taken in both directions.
The index runs as n = 1,..., N , where N is the number of c-scans performed on
each sample.

The aberrations are being quantified by the transverse correlation of the field.
Hence, the transverse correlation is calculated from the acoustic ensemble at each
plane along the direction of propagation.

We define the cross-correlation as (ul,u”) where (—) denotes the ensemble

. o no
average for finite sequences. The estimation of the ensemble average of Z7 , =u” ul\,

is rather complicated since there is little statistical information about u,. Instead,

two different averages will be performed. By making 7 = = — 2/, Z7,, can be

rewritten as 2" Since there is a transverse waveform for each 7,

z(x+71)z U u(

T+7)z"

the average over x is performed as well as the ensemble average, leading to

1 N K
Zrs “NK Z Z Zp(atr)z (6.2)
n=1 z=1

The average Z is an average transverse correlation for each measured realisation
of the acoustic field. The discrete function Z remains a complex function so its

modulus will be considered, and it will be termed correlation or the energy correla-
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tion function. The average correlation function is denoted by I'. where sub-index e

indicates measurement, thus

Le(m,2) = |2z (6.3)

The average Eq. (6.2) is simply the arithmetic average of the discrete correlation for
each realisation of the acoustic ensemble measured on each sample. As pointed out

in section (6.5), if N > 50 Eq. (6.3) would give a good estimation for T'..

6.6.2 Results

The estimated correlation function is presented in this section. It has been numer-
ically estimated using Eq. (6.3) for one instance of the acoustic field. The main
properties of this function are described in the next section where it will be com-
pared to Eq. (5.23). Only a single image of the correlation function, in particular
for aluminium, will be presented as they all look similar. A more detailed version
for both aluminium and titanium will be described in section (6.7).

The correlation I', in a aluminium sample numerically implemented is shown
in Fig. (6.15). The function has been normalised so the value of each transverse
correlation at 0 along the propagation axis is 1. The important characteristics of
this function will be the width of the central tail which will be related to the mean
grain size. The second most important characteristic of the correlation function
is that it decays away from the source. This decay is also directly related to the
strength of the aberration measured via the standard deviation that characterises the
degree of inhomogeneity. The correlation function at z = 0 has a wide base and tail
(brightest areas in Fig. (6.15), near 0), but narrower away form the source. The base
corresponds to the non-zero values of the correlation function. The width of the base
is completely determined by the size of the source, in the case of aluminium, the size
of the SLM. As the correlation function propagates away from the source, it decays so
the base disappears as can be seen in Fig. (6.15) at distance z = 8, for instance. The

reason for that to happen is because the acoustic field at those propagation distances
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0.5

Figure 6.15: One single instance of measured correlation function in aluminium
sample according to Eq. (6.2). The width of this function is an estimator of the
mean grain size in polycrystals.

is transversally uncorrelated, thus giving as a result almost a delta correlation.
This transverse property of the field depends entirely on the microstructure of the
sample under investigation. Therefore, the correlation function behaves differently
on samples with different microstructural properties. In theory, each specimen would
correspond to a unique correlation function, each one being characterised by two
parameters such as correlation length and degree of inhomogeneity. For instance,
the correlation function is expected to have small variations both on the decay and
width for aluminium sample M, compared to Mp and My at equal propagation
distance away from the source. This is because M4 has larger grains relative to the
wavelength compared to Mp and M¢. In the latter case there is a greater number of
interactions between grains and the acoustic field and so the field becomes rapidly
uncorrelated.

In order to have a global behaviour of the correlation function in both directions,
transverse and in the direction of propagation, the field was observed until it became
vanishingly uncorrelated or diffuse, that it is I'c — 0. These properties are discussed
in the next sections, which is dedicated to correlation of the acoustic field and its

relation to the theoretical counterpart.
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6.7 Comparison

This section presents the main results concerning the measured correlation function
on aluminium and titanium samples. The statistical analysis of the acoustic fields
measured on each sample was performed according to analysis described in section
(6.6.1), which culminates in the estimation of an average correlation function for each
sample. So, the main result is the comparison between theory and the measured
correlation function. The averaged measured correlation function for each case, that
is for A, B, C' and the titanium sample, was estimated from Eq. (6.2) in all cases for
comparison to Eq. (5.21). From this comparison, two parameters characterising the
overall behaviour of the correlation function are estimated. These, as it will be seen,
correspond to the degree of inhomogeneity and the mean grain size. To continue
with the same order as in previous sections the results for aluminium are presented

first.

6.7.1 Comparison for Al

The experimental data acquired by the OSAM instrument were processed in the way
described in section (6.6.1) which discussed correlation for finite sequences, and com-
parisons are made between the measured I', and predicted ', in Eq. (5.21); these are
the energy correlation functions at various propagation distances. Fig. (6.16) shows
the comparison of the measured I', and predicted I', energy correlation functions
where I, is shown as solid lines—for samples A, B and C. In each case, it is shown
at three different propagation distances, in order to illustrate the decay of the cor-
relation function with distance.

The dashed lines in Fig. (6.16) represent the measured energy correlation func-
tion on the samples at the same propagation distances, derived from the acoustic
ensemble in samples A, B and C. There is good agreement for samples B and C.

There are two parameters which are free in Eq. (5.23), being o and [. These
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Figure 6.16: Comparison of theoretical and experimental correlation functions, I,
and I, for the three blocks A,B, C' of aluminium. The dashed lines is ', at several
distances whereas the continuous line is I', at same distances. The half-width of
the plotted functions is proportional to mean grain size. The numerical values for

o and [ are given for each of the three cases.
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have been obtained by fitting I', to I', by minimising the following function

(o) = ) [T, (6.4)
Tk,

The values obtained for o and [ from Eq. (6.4) were obtained by nonlinear minimi-
sation of the square difference between the experimental and predicted correlation
function. The above non-linear fitting problem is numerically implemented else-
where. The standard deviation which measures the velocity variations from grain
to grain, Eq. (3.19), used in Fig. (6.16) for comparison; average this ¢ ~ 0.015,
which is a value that one would expect for aluminium |23|. For comparison between
I, and I'; in Fig. (6.16), the values for the correlation length [ were taken as the
mean grain size from the characterisation of the specimens in section (6.3). This is
to illustrate that the theoretical correlation I',, is indeed reproducing the measured

correlation function using real values.
The estimated values o and [ from I', obtained by minimising Eq. (6.4) are shown

in table (6.2). It should be remembered that the standard deviation o, and the

M, Mp Me
o | 0.0104+0.002 | 0.014 4 0.003 | 0.021 4+ 0.004
) 686 £+ 137 678 £+ 136 165 + 33

Table 6.2: Experimental values for o, [ obtained by minimising Eq. (6.4) for the
aluminium samples A, B, C. The spread in both quantities o, [ indicates that they
are to be found within a 20% accuracy.

correlation length [ in table (6.2), have no relationship with the standard deviation
and mean calliper diameter b in Fig. (6.2), Fig. (6.3) and Fig. (6.4). It would be
desirable, however, that [ and b have the same value, so the correlation length is a
good estimation of the mean grain size. The definition and physical meaning of o
or degree of inhomogeneity has been given in detail in section (3.3.2). The spread
in both quantities, o and [ in table (6.2) indicates that they are to be found within
a 20% accuracy according to analysis presented in section (6.8) for the best fitting.

The estimation of ¢ is reasonable in all cases, compared to the value reported in

[23|, however, the estimated correlation length for sample A is significantly different
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from the values obtained visually, which are approximately 1345um, 785um and
134pm, as shown in Fig. (6.10), Fig. (6.11) and Fig. (6.12), respectively.

Possible reasons for this are as follows. Firstly, due to mechanical limitations in
the OSAM instrument, the acoustic field on sample A could not be mapped in its
entirety. This effectively truncated the available dataset from which an estimation
could be made. Secondly, we note that the measured mean grain size (1345um), is
approaching the width of the acoustic source (= 2mm). This is significant, because
I'. is influenced more by the acoustic aperture in this case than by the correla-
tion length. Finally, as noted in section (6.3.1), the large grains in sample A have

complicated form in that many of the grains are non-convex.

6.7.2 Comparison for Ti

The analysis of the ensemble acoustic field was identical to that of aluminium, in
the sense that the energy correlation function was obtained using the same method.
The results for some representative frequencies are presented in table (6.3) below

Fig. (6.17) shows a comparison of the predicted and measured power correlation

\ f(MHz) \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 H \
o 0.024 | 0.025 | 0.028 | 0.028 | 0.026 | 0.027 || £0.150
I(um) 351 399 | 368 | 428 | 424 | 424 || +0.15]

Table 6.3: Parameter values used for comparison of the predicted and measured
correlation function.

function with values according to table (6.3). The weak aberrations observed in
section (6.5.1) is reflected in the energy correlation where the decay is slow along
the propagation distance, Fig. (6.17). It should be expected, at least theoretically
in highly aberrated materials, that the energy correlation decays and gets narrow
as it propagates. It can be said that the acoustic field is interacting with grains.
Otherwise, the propagation will imitate propagation in homogeneous materials.
The parameter [ characterises material microstructure but the metallographic
study of the sample tested did not clearly reveal the grain boundaries so the values

in table (6.3) could not be satisfactorily validated using standard techniques. This
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Figure 6.17: Correlation function measured from the acoustical ensemble in titanium
showing the decay at different frequencies and distances. The dashed lines corre-
spond to I', whereas the continuous ones correspond to I', at different distances.
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compares to the results for aluminium where the parameters are in satisfactory

agreement with the actual measured microstructure.

6.8 Analysis of the best fitting procedure

The values for o and | were obtained numerically by minimising x? in Eq. (6.4).
This section discusses the range over which values obtained can be considered to
be the best. The analysis has been done for the results shown in Fig. (6.16) for
aluminium, in particular for the sample C'. This sample was chosen arbitrarily as
the others show similar behaviour.
Let us define the following function
%

o) = 1= (6.5)

where s* = 37 f2., fo. = uf, and u, is the field shown in Fig. (6.12). The function
r depends on ¢ and [. Let us also denote the best values for the standard deviation
and correlation length by o, and [,, respectively. These values will correspond to
the values used in graph Fig. (6.16). The correlation r is calculated when a pair of
values o, [ best fit and r(oy, () is expected to be very close to 1. The plot on the
right in Fig. (6.18) shows that for values smaller and larger than o}, the function 7 is
far less than 1. A similar situation is shown on the left plot in the same figure. The
function r is smaller than 1 for values smaller and larger than the best. In summary,
the best values that minimise x? can be found within 20% of the best values o} and
Iy used in Fig. (6.16) for comparison.

The estimation of the parameters is affected by the noise generated by the system
and is reflected in the correlation function. The additive noise goes away when the

correlation function is estimated but the noise remains affecting mainly the width

of the correlation function which is proportional to the mean grain size.
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Figure 6.18: Plot of the function r as a function of o, [. On the right side is r as a
function of [ for three different values of o whereas on the left r is plotted as function
o at different values of [.

6.8.1 Noise in measurements

One of the difficulties with this technique is that the sample surface has to be
polished to a mirror-like finish so “valleys” and “hills” on the sample surface are
minimised with respect to the laser probe. Otherwise high levels of optical noise
will arise. This in most cases can be accomplished if the right polishing technique
is applied. Assessing the quality of the surface is achieved with an optical image
of the surface by c-scanning the surface in the absence of ultrasound. Most surface
features can be seen, e.g. scratches, by looking at the optical field. Another source
of noise comes from the electronics in the detection system. This noise can vary
from system to system so special filters have to be designed accordingly.
Accumulated noise at the central peak of the energy function gives a very sharp
peak affecting the overall decay of the function, and therefore the estimated values of
o, l. The data was filtered assuming a linear model [100] of the form y; = yo+e where
e is white noise statistically uncorrelated to y;, and y is data free of noise. When

filtered with an optimum filter the residual is delta correlated, which corresponds to
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noise. This can be removed by a filter based on wavelets with the retention of the
desired signal. This very simple model considerably reduces the central peak due to
noise.

The following table summarises the values obtained by minimising x? using raw

data without a filter. From table (6.4), it can be concluded that the most affected is

M, Mp Me
o | 0.01140.002 | 0.021 4 0.004 | 0.029 4 0.006
l 404 + 81 176 £ 35 112 £ 22

Table 6.4: Parameter estimated by minimising x? without filtering the data

the correlation length for block B as the standard deviation remains constant within
certain limits, compared the values for o and [ in table (6.2). Thus, in order to
estimate parameters with acceptable accuracy it is necessary to gather data almost

free of noise or apply a filter where possible.

6.9 Comparison of simulated microstructure

In sections (6.7.1), (6.7.2) a link was made between a theoretical and measured
correlation function obtained from an ensemble of acoustic fields measured on real
polycrystalline materials. The analysis showed that it is possible to relate this
function to the actual properties of the polycrystal investigated.

In order to corroborate the analysis of this measured data, the phase screen ap-
proximation model described in section (4.1) was used to simulate a set of ultrasonic
fields propagating through a simulated aberrating medium of known statistical prop-
erties. Each of these fields propagated through different simulated grain structures,
and their corresponding propagating correlation functions were combined into an
ensemble average as described by the average Eq. (6.3).

The symbols Is, o, stand for correlation length and standard deviation used in
the simulations, respectively. Whereas [, o, will stand for the best values obtained

by minimising x?, Eq. (6.4) for each simulation.
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6.9.1 Simulated degree of inhomogeneity o

The statistical analysis described in section (6.6.1) was performed and the results
for standard deviation (¢) and mean grain size (I) were compared to the values
used to generate the ultrasonic fields. The simulations were repeated for different
values of standard deviation and mean grain size, and the results are illustrated in

Fig. (6.19). In Fig. (6.19) o, denotes the standard deviation fed into the simulation
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Figure 6.19: Comparison of the best value o, (dots on the graph) on simulated
microstructure. The symbol o, stands for the standard deviation used to simulate
the medium. The plot is a comparison between the standard deviation estimated
by solving the minimisation problem Eq. (6.4), for the simulated acoustic fields in
a simulated media with standard deviation o, represented by a small square.

to generate different velocity variations on different simulated microstructures. The
0y, is obtained by minimising x? in Eq. (6.4) with the simulated acoustic field. The
small squares in the graph correspond to o whereas the points correspond to the
best fit.

In Fig. (6.19), o, is used for the abscissa as well as the ordinate, that is (o, o).
In the same graph, o, is plotted against o, so the plot should be a straight line
coinciding with the line composed by squares, if they were equal. One can see that

there are certain discrepancies for high values of deviation.
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6.9.2 The correlation length [

Fig. (6.20) shows the result for the correlation length of the medium. The parameter
oy and [, were obtained by solving simultaneously the minimisation of x? but shown
on different graphs.

The agreement between the values used to simulate the random microstructure
and the values obtained from statistical analysis of the ensemble autocorrelation

functions is very good.
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Figure 6.20: Comparison of the best value [, (dots on the graph) on simulated
microstructure. The symbol [ stands for the mean grain size used to simulate the
medium. The plot is a comparison between the correlation length [, estimated by
solving the minimisation problem Eq. (6.4), for the simulated acoustic fields in a
simulated media with average grain size [, represented by small squares.

Acoustic field simulations

One hundred different media were simulated by feeding the algorithm with ten values
for o, and ten for [, varying o, from 0.01 to 0.1, and [, from 51 to 512. For each
pair (os,ls), one hundred fields were generated in order to give a good estimation
of the average, Eq. (6.2). The agreement between the values used to simulate the

random microstructure, and the values obtained from statistical analysis of the
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ensemble autocorrelation functions is good, particularly for the standard deviation.
The spread on the estimated grain size according to Eq. (6.4) is probably due to the
fact that the mean grain sizes are reaching the size of the SLM, and the function
Eq. (5.23) becomes complicated in that region. Thus, the spread will be reduced by

choosing a wider aperture for the initial field.

Remarks on simulation

The microstructure was simulated using a different method from that of Voronoi
cells. The Voronoi analysis for microstructure simulation was not available at the
time of writing the paper [101], which was part of the results, so it was decided to
use the algorithm already developed by the first author in [14]. Besides, the grain
growth model used is equivalent to Voronoi tesellation for many pixels and is much
faster.

The method used for simulating microstructure has no effect on the final result.
The correlation function of the field coincides by using different methods as long as
the simulated microstructure contains convex regions. All simulated methods lead
to an exponential function which is the requirement of the analysis presented in
chapter (4).

The above statement is equivalent to saying that as long as the simulated medium
can be characterised by an exponential correlation function it will then approximate
the case of Voronoi cells.

One of the reasons for the simulation not being repeated using Voronoi cells can
be inferred from section (3.3.4), chapter (4) and chapter (5) as follows: The results
showed in Fig. (6.19), Fig. (6.20) that by comparing an estimated to a theoretical
correlation function, Eq. (6.3) and Eq. (5.23) respectively, then the input values o
and [, correspond to those obtained by minimisation of x? Eq. (6.4). Now, it is known
from section (3.3.4) that the mean grain size actually corresponds to the correlation
length of an exponential correlation function. It is also known that by using this
correlation it is possible to generate realisations of the field, as it has been done in

chapter (4) by using Eq. (4.17), based on Voronoi cells. By generating as many fields
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as necessary a simulated ensemble can be generated, an also an estimated correlation
function in a simulated medium. However, since the mean cross-correlation of the
field in chapter (5) uses Eq. (4.17) to obtain the theoretical correlation field used for
comparison in both experiments and simulations, the simulation of the field would

be unnecessary.

6.10 Conclusions

In this chapter the experimental work carried out on two different polycrystalline
materials, aluminium and titanium has been presented. Four specimens were pre-
pared, three blocks of aluminium with different grain sizes and one piece of titanium.
The aluminium samples were specially built to have mainly convex grains with ran-
dom spatial distributions and to enable testing of the theoretical development as
well as to give a better experimental understanding of aberrations in relation to
microstructure. The titanium sample on the other hand was provided by industrial
staff, so it was only necessary to polish it for ultrasonic testing. The etching of
all specimens was performed by using standard techniques for both aluminium and
titanium. In the case of aluminium, the procedure showed the required characteris-
tics so the characterisation was performed as presented in section (6.3) by obtaining
the mean grain size for all specimens. The etching of titanium proved to be more
difficult than expected, thus characterisation of this specimen was not possible.

In order to measure the aberrations in all the specimens SAWs at frequencies
of 82MHz were propagated in all the aluminium specimens. The acoustic field in
each case was obtained by performing a c-scan to obtain a two dimensional image
to show the deviations of the wavefront. The results were presented as a series of
images in section (6.5). The aberrations are clearly seen in aluminium, especially
in sample My, for which the acoustic field was taken at high resolution. The ul-
trasonic testing of titanium at 82MHz using SAW waves was not possible so it was
necessary to change the method for SAW generation. It proved difficult to generate

SAW in titanium using laser ultrasonics. A standard 10MHz transducer was used
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instead. By applying the same procedure as with the aluminium samples the acous-
tic field was obtained. The aberrations in this particular sample were weak and later
corroborated by looking at the correlation function of the field.

The aberrations of the acoustic field were statistically analysed so it was neces-
sary to perform multiple measurements at different locations in the specimen. The
aim was to measure a correlation function of the field. This correlation function
needs a set of independent measures in the specimen with same statistical charac-
teristics for microstructure. This was performed by scanning at different areas over
the surface of each sample, thus building up an ensemble of acoustic fields. The pro-
cedure was repeated for each specimen under investigation thus obtaining a mean
correlation function for each sample.

The importance of measuring a correlation function can be seen in the compari-
son of the theoretical against the experimental correlation function, which has been
made in section (6.7) for the aluminium and titanium samples. From this compar-
ison, it was possible to obtain two parameters that determine the behaviour of the
correlation function. Theoretically, as shown in chapter (3) and (5) these parame-
ters are the correlation length [, which is directly related to mean grain size of the
polycrystal under investigation, and the degree of inhomogeneity 0. The estima-
tion of the parameters from the measured correlation proved to be accurate only for
samples Mp and Mes but not for My since the value of mean grain size obtained
from the fitting did not agree with the value estimated from the characterisation of
the sample. This does not conclusively mean that the theory is wrong since there
were other factors involved in obtaining those results, such as the mean grain size
of the specimen. The other reason was that, due to system limitations, it was not
possible to measure completely the acoustic field along the axis of propagation.

As regards to the titanium sample, the values obtained for the degree of anisotropy
and mean grain size unfortunately could not be corroborated since the photomicro-
graph does not show the grains as in aluminium samples; it was thus impossible to
conclude anything about the microstructure of the sample.

In order to asses the technique even further a set of polycrystalline environments
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were simulated to show how SAWs propagate in a polycrystalline material. From
the simulated aberrations the mean correlation function was obtained showing en-
couraging results despite the spread in agreement for values close to 0.05 and 500pum
for the standard deviation and correlation length, respectively.

The overall procedure for obtaining the mean grain size from a measured corre-
lation function can conclusively be used for polycrystalline material with relatively
simple microstructures. It is believed that the technique could be a valuable tool in

material characterisation.



Chapter 7

Discussions and further work

Introduction

The theoretical model and experimental work presented in this thesis covered in
great detail the statistics of acoustic aberrations in polycrystalline materials. How-
ever, there is still research to do, specially in the theoretical part.

The combination of NDE methods such as the OSAM system together with
the statistical technique developed in chapter (6) could well be serve as a tool in
materials characterisation. The statistical analysis of aberrations could also aid
in the ongoing research of correcting aberrations which is part of the continuous
development of the OSAM system. There are several problems to be addressed
concerning the work presented in this thesis along with some conclusions which will

be discussed in the rest of the chapter.

7.1 The scalar model

Many aspects of the presented theoretical model are based on the elasticity of poly-
crystals modelled within the framework of stochastic processes. This theory makes
use of the full vectorial equations for polycrystalline materials. It was shown in
chapter (3), than in the very particular case of SAW propagation in polycrystalline
material the full vectorial theory, governed by the elasticity Eq. (3.10), can be re-
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duced to a scalar approximation to simplify the description of wave propagation in
polycrystals. The elasticity theory in polycrystalline materials helped to establish
many of the important characteristics of the materials, such as the anisotropy of the
grains discussed in section (3.2.3).

The scalar model was shown to accurately describe acoustic aberrations of SAWs
in polycrystals. The quantification of the aberrations was made through the two-
parameter estimation in section (6.9), by comparison to the measured correlation
function in chapter (6.6). These parameters relate to the statistics of the actual mi-
crostructure of polycrystals through the correlation of the acoustic field, developed
in detail in chapter (5). The model gives an explicit expression for the correla-
tion function, Eq. (5.23), being able to estimate standard deviation and correlation
length.

The standard deviation was shown to be accurate when compared to values re-
ported in the literature [23]. The model of the medium in section (3.3.3) also showed
that, even under very restrictive circumstances, the correlation length obtained by
comparison in (6.7) can realistically represent the mean grain size for polycrystals
with mainly convex regions.

The scalar theory in chapter (3) was based on existing models already in use in
other areas such as turbulence theory and underwater acoustics. Most of the ap-
proximations and mathematical methods were imported into this field and adjusted
so they could be used to explain aberrations. The mathematical development was
limited then to approximations already in use, although an attempt was made to
improve them. For instance, in the chapter (5) the calculations for the correlation
function were made without assuming that I', is delta correlated in the direction of
propagation.

As far as the model presented in chapter (3) for SAW in polycrystalline materials
is concerned, it only takes into account homogeneous isotropic solids. This way, it
was possible to express the acoustic field in an isotropic medium as a plane wave
expansion in chapter (4), which was later used in section (4.1.2) to approximate

the acoustic field in a random medium. In order to extend the development in
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chapter (4) to materials of general anisotropy, it is necessary to calculate the Green’s
function of the normal displacement for materials of general anisotropy. The Green’s
function for solids of general anisotropy has been reported in |21]|. This, added to
the development in chapter (4), would improve the theoretical description of the
acoustic field in random media. A major improvement to the present research would
be to describe SAWs in polycrystalline materials by removing the hypothesis of local
isotropy, Eq. (3.7), on the elastic moduli, which means a complete description of a
SAW based entirely on the elasticity Eq. (3.10) for polycrystals, without relying on

a scalar description.

7.1.1 Modelling the medium

The most limited assumption was in modelling the medium. It has been assumed
in section (3.3.1) that p follows Gaussian statistics and is transversally isotropic.
Without this assumption, the theoretical correlation of the field in chapter (5) could
have been more difficult to calculate. This model works well with grains that behave
on average as if they were spheres. However, as seen in the experimental work in
Fig. (6.16), the assumption could lead to problems as was the case for the aluminium
sample for which Fig. (6.2) in section (6.3.1) presented complicated geometrical
features, as showed in the photomicrograph. A more realistic model would be to
consider a more general expression for I';, in the sense that it would depend on two
correlation lengths, i.e. in z and z directions so to model elongated grains. The
anisotropy would also have to be taken into account, that is, I', would also depend
on direction. This implies that the whole theoretical development would have to be
reformulated to include this type of microstructure.

The scalar wave approach in section (3.3.3) will have to be modified so as to
include a more general process to model the medium rather than simply assuming a
process with a Gaussian correlation function. In addition, modelling microstructure
within the approximations in section (3.3.4), where grains of similar size cluster
together in certain areas in the sample, not to mention elongated and non-elongated

grains within the cluster, would be prohibited. This behaviour did occur near the
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walls of the container when preparing the aluminium samples, see section (6.2.1).
The grains of different sizes were cut off by slicing the edges of the sample as they
were of no interest for the current research.

Thus, future work in relation to microstructure and anisotropy within the frame-
work of scalar approximation will be to find a more suitable process for describing
microstructure. This means finding a random process to describe general anisotropy
within grains as well as more complicated grain shape rather than mainly convex

regions.

7.2 The phase screen model

The phase screen model, alongside the stochastic wave equation in chapter (3) and
(4), has been developed to simulate ultrasound propagation through random me-
dia. This model has been used to corroborate the technique of statistical analysis
of the propagating energy correlation function, and provides a useful test bed for
developing the theory, alongside the experimental work.

One of the problems with the phase screen approximation is that it can only
handle the forward field, although the same model could be used to forward and
backward propagate the field to accommodate backscatter. This was not attempted
since the primary interest was to assess the transverse correlation of the field, which
resulted in the expression Eq. (5.23). The other problem is the mathematical jus-
tification to represent a “good” approximation to the paraxial approximation of the
Helmholtz equation. This can only be done using continual integrals [60] that in
practice are extremely difficult to evaluate. Nevertheless, the model was shown
to be useful in obtaining an approximated expression for the correlation function
with similar results if I';, is assumed to be delta correlated along the propagation
direction.

The phase screen model makes use of the angular spectral representation of the
field, see section (4.1.3). In the actual calculation of the correlation of the field, a

parabolic approximation was used by approximating the radical appearing in the
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function propagator of the expansion. That is the function h = exp[izﬂ] was
approximated by h =~ expliz — %z’zp2], making possible the calculation of integrals
in chapter (5). This was one of the key points in making use of the approximation.
The numerical simulation showed that under the conditions used in this work the
original or the approximated expansion does not make a significant difference to
the final result. The other interesting feature of this model is that it is possible to
efficiently build realisations of the acoustic ensemble using the FFT algorithm, so it
is possible to compare them to the measured aberrations in real samples. Looking
into the future, it would be desirable to remove the dependence on the number of
screens in Eq. (4.17) by replacing the multiple integrals by a continual integral so

as to include propagation paths other than straight lines.

7.3 Experimental work

Two different materials or polycrystals were ultrasonically analysed using different
ultrasonic sources, aluminium and titanium. In the aluminium sample the OSAM
system was used whereas in the titanium sample a contact transducer technique was
used as the ultrasonic source. The idea with the transducer was to test the model at
different frequencies limited to the narrow frequency bandwidth of the transducer.
Unfortunately, the titanium sample proved to be a difficult sample in the sense that
the microstructure was unexpectedly complicated. So the mean grain size was not
estimated. As a consequence, the correlation length obtained in (6.3) could not be
demonstrated to correspond to the mean grain size of the material.

The technique for aluminium samples, on the other hand, both for preparation
and characterisation of the samples generally fulfilled expectations.

The objective of the experimental work was to measure the deviations of the
acoustic field caused by the grains within the material by looking at the forward
propagating field. However, it appears that SAW reflection at grain boundaries
can also be a source of deviations in the acoustic field, see section (3.2.2). Thus,

from the experimental point of view it would be interesting as a part of further
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research to measure the reflected field at grain boundaries. These reflections possibly
would involve mode conversion complicating even further a theoretical description
of acoustic propagation. It would be useful to modify the OSAM system so that it
could look at backscatter to examine the reflected field at grain boundaries using
the OSAM system.

The procedure used in this work to obtain parameters characterising materials
by minimising Eq. (6.4) needs to be reviewed if the technique is to be used routinely
for materials characterisation. That is, it will be necessary to design a better filter
to process the data so that reliable and accurate estimation of parameters will be
possible. It is a very important point to establish to what extent the level of noise
affects the estimation of the parameters and how to remove it. The filter applied

for the comparison in Fig. (6.16), did work well in general terms.

7.4 Final comments

The theoretical development of SAWs in polycrystalline materials presented in chap-
ter (3) and (4), which culminates with the calculation of the correlation function of
the acoustic field in chapter (5), proved to work very well in aluminium samples with
mainly convex regions. This was demonstrated by comparing the measured correla-
tion function to the theoretical one in chapter (6), with good agreement. Even when
the value of the correlation length obtained by performing the inverse problem for
sample M, did not match the mean grain size in Fig. (6.2), it is believed that the
technique as a whole can be a valuable tool for material characterisation, provided
the conditions discussed in the thesis are met.

In summary, this work has contributed to the establishment of a wave correlation
function that quantitatively describes the local anisotropy and mean grain size of
polycrystalline materials with certain characteristics.

The statistical properties of SAWs in polycrystalline materials were defined by
second order moments of the acoustic fields and these relate to material grain size

and anisotropy via the theoretical correlation function developed in chapter (5).
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Originality of the work

Part of the work done in this thesis has been presented in a series of conferences

and has been published articles on acoustic aberrations [101, 102, 103, 104, 105].
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Appendix

A.1 Multivariate propagation function

In this appendix a certain type of multiple integrals that arise in propagation of
correlation function will be discussed. It will be shown that for very special cases
those integrals can be evaluated for arbitrary function by making a simple change
of variable.

Let x = (xq,...,Zs), 2 = (20,...,2,) be and denote the vector coordinate dif-
ference by x~ = (21 — zg, ..., xp, — Tp_1) and 2z~ = (z; — 2o, ...), respectively. The

multidimensional Green’s function is defined as

Gx",z7) = [[GGy, %) (A1)

g e=a)?
where G(z — ',z —2') = (1 + 1),/ 47r(zl‘z_,z,)e“”e“l‘C 2=27) is the Green function of the
Helmholtz’s equation in two dimensions. Some definitions are introduced in order
to avoid lengthy equations, so let us say C, = (1+i)"(£)"/?, A; = W and
re = (s — 2s_1)% — (ys — ys_1)* with obvious definition for vectorial form.

Consider the following integral

[ = (-%)n/.-./f(x,y,z)f[{%}dxdydz (A.2)

s=1
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where dx indicates that integration has to be performed on variables xzq, ..., z,,_; and
f is an arbitrary function.

If f is a function of x —y, z~ only then I can be expressed in the following form

_1)n/f($n —Yny s Tn — Yn, Z)dZO,n—l (AS)

where dy,—1 = dzo - - - dzp—1
Let us make the following change of variable p=x—y, q=x4+y so p+q =2x

and q — p = 2y therefore their quadratic differences can be expressed as follow

(zs — 555—1)2 — (ys — ys—l)2 = (ps — Ps—1)(qs — @s-1)- (A4)

Also note that dz,dy, = %dqsdps then dxg ,—1dyon—1 = dxo - - dr,—1dyo - - - dyp—1 =
2inalqalp.
Substitution of Eq. (A.4) into Eq. (A.2) after using the assumption on f gives

ps QS]

I = <——> /f p.z li[1 el & % dpdqdz
_ (__) / F(p, ) exp [—zzpsqs]ﬁ L dpdadz (A.5)

Since f is independent of q the integral with respect a q follows by expressing the
argument in such way that it is possible to integrate with respect to the variable q,

hence
~pids 1
s As_ - ZSZ::[A_S_ps A— ps—i—l] (A6)

with p; = p, ., = 0; section (A.1.1) shows how to obtain Eq. (A.6). Then integral
Eq. (A.4) after inserting Eq. (A.6) and performing integration with respect to dqy 5,1,
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we have
n - As_ - n 1
I =0 f(p7 Z) H As 6(ps - Fps—l—l) H deo,n—ldzo,n—l (A7)
s=1 s+1 s=2 S
where b = (—%) (227;):71.
It is not difficult to realise that
n - n - - As_ -
f(pn7 <oy Py Z) H As = f(p7 Z) H As 5(p5 - Flps—i-l)dpo,n—l (A8)
s=2 s=1 s+

Therefore the integral reduces to

I = (0" [ fonpn i (A.9)
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Equation Eq. (A.6) is revisited step by step to show how it was obtained by rear-

ranging the sums. Thus,

n -

. Ps qs

i 5
5=2 s

iZAis(ps

- ps—1)<qs - qs—l)

n

—1 Z _(ps - ps—l)qs—l + _(ps—l - ps)QS]
Ls=2 As 5=2 As
—i o Pt = P )@+ ) 5 (s—1 = Ps)ds
Lm=1 m+l s=2 ¢
» B 1 n—1 1
—i | (p2 — Pl)Q1A— +2.% (Ps41 — Ps)qst
L 2 5—9 s+1
S Ja. + )
A Ps—1 Ps)ds A Pn—1 — Pn)dn

+1 ) 1 _
Asps_l QS Anann

R
i) s - Epsﬂ]qs (A.10)

where p;” = p,; = 0 has been made to complete the sum from s =1 to n.

A.1.2 The mean for multiple phase screens

Let us denote the phase differences by w;; = ¢(x;) — ¢(x;) and the variance of the

their difference by ¢ = {¢;;} = {<W12J>}, which is the matrix of covariances

w11 P(z1) — (Y1)

w={ugt=| i |= e (A1)

Wnn ¢(xn) - ¢(yn)
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and

&n

an arbitrary vector variable. The mean Eq. (5.13) considered in chapter (5) follows
by using the cumulative generating function for multivariable Gaussian variables

[64], thus the ensemble average Eq. (4.14) can be expressed as,

(s(x)s*(y)) = <ei2? ¢(Ij)—¢(yj)>
= <6i2¥wﬁ>
= C(1,..,1)

= <eiZ€jw3'j >5_1

- <ei2€t7ﬂ>gzl (A.12)

= wemad| (A.13)

= e 2 Ts(0)-Ty(wj~y))

— e 2 Dolzj—y;) (A.14)

where Dy(z; — y;) = I'y(0) — I'y(z; — y;). The equivalence between Eq. (A.12)
and Eq. (A.13) follows from the well known result for Gaussian variables; the en-
semble average of an exponential random variable is the ensemble average of its
argument. After some algebra Eq. (A.14) follows, which is the desired equivalent
form for (s(x)s*(y)). Thus, the mean (s(x)s*(y)) is an exponential sum of struc-
ture functions. Each structure function Dy(x; — y;), corresponds to the structure
function of the phase screen at position j. It has to be said that the above result is

only valid for Gaussian variables.
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A.2 The angular representation in inhomogeneous

medium

The long expression obtained in section (4.1.3) is developed in this appendix step
by step. The development of the expression is based on the angular representation
of the field and the linearity of convolution and Fourier transform.

Let us first introduced the definition of convolution of two functions. It is cos-
tumery to use t as the independent variable, thus the convolution of two functions

f and g is defined as

f) @ glt) = / F(r)glt — )dr (A15)

The starting point for writing the field representation in random media will be the
recursive relationship Eq. (4.16) between the values of the field in each screen.
For instance, using the recursive relation Eq. (4.16) and Eq. (A.15) the field value

at layer n =0, n =1, n = 2, ... are given by

n=>0 Uy = hpl /ﬂohpoéo(pl — po)dpo (A16)
n=1 Uy = hp2 /’Eblhplg’l(pg — p1>dp1 (Al?)
n=2 Uus = hp3 /ﬁghngg(pg — pg)dpg (A18)

Up = hpn /an—lhpnlgn—l(pn _pn—l)dpn—l (Alg)

The field us depends on the values of the Fourier transform of u; from the previous
layer, which in turn depends on the Fourier transform of uy. The process is continued
until one reaches u,, then back substitution is performed to be able to express u,
as a function of ug which is the incident field v as an special case in this notation.
In the recursive relation above there is the Fourier transform involved both for u,,

and the screens s. To make things easy in writing successively w, let us recall
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that kt,(kopn) = an(pn) for all n, where a, is the angular representation of w,
within layer n. Moreover, it is understood that whenever s, appears in the following
expressions what it really means is 8, (pny1 — pn)-

Thus, using Eq. (A.16) to Eq. (A.19) by starting with u,, and substitution of the

integral representation for a,_; and a,,_» one has

U, = hpn/an_lhpn1§n_1dpn_1 (A.20)
= hpn/ (hpn1/an_2hpn2§n_2dpn_2) Py, 1 8n—1dPn—1 (A.21)

= h, // Ap—2hyp, zhf, Sn—28ndpp_1dp,_2 (A.22)

= hy, //( Pr— z/a'n 3hp, s Sn—3dpn— 3) (A.23)
Rpp—s i, Sn—28n-1dpn-1dpn—s (A.24)

— hpn /// an—3hpn 3h§ 2h’?)n,l‘§n—3§n—2‘§n—ldpn—3dpn—2dpn—1 (A25)

Now it is clear from the above relationship that every time one substitutes a,, for its
integral representation, the Fourier transform of each screen forms a multiplicative
series. The same happens with the functions h,, inside the integral. Successive
integration is possible because h,, and §, are independent for every n. The field
u,, is now expressed as a function of a,_3 in Eq. (A.25). To end this, is necessary
to substitute the representation for ao, ..., a,_3 as it has been done in Eq. (A.21),
Eq. (A.24) for a,,_; and a,_», respectively. Allowing j to run from 0 to n the product

series in Eq. (A.25) can be rewritten using a short notation, hence

n—1

2 4 _ 2 2 4 A A A
IT %28 = o hoa skl 2 B0+ 8n_38n—28n1 (A.26)
J=0

Using Eq. (A.26) the field u,, can be expressed as

n—1
j=0

which Eq. (4.17) written in the spatial frequency.
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A.3 The Green’s function for the correlation equa-
tion
A.3.1 Helmholtz’s equation
This appendix is dedicated to the calculation of the Green function for the operators
1. L=2ikZ + )
2. D= 2@'1{:% + Ay — Ay where Ay = a%

Case 1.
The Green’s function for operator L is a function G which satisfy the following
differential equation

2ik§G FAG = —5(z—¢) (A.28)
V4

where § is the delta of Dirac and X\ an arbitrary parameter.
There is a straightforward method of finding G' by using Fourier’s transform.

Thus, in taking Fourier transform on both sides of Eq. (A.28) one gets

1

—2wkG + NG = ——e 8
w 27Te
R 6—iw§
G = (A.29)

V21 (—2kw + \)

Taking the inverse Fourier transform of the above relation gives

1 , 1 e dw
— [ Ge¥*dw =
V2 V2 ) V2r(—2kw 4+ N)
1 e~ w(z=¢)
G = e el (A.30)

CN2rki ) V2w + )

Using one of the integrals from table in appendix (A.7) G takes the form

1 A
- _ H(z — €)eisr(==9) A.31
W Gl (4.31)
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H the Heaviside function.

The following function is also solution
G = H(z—- f)eiﬁ(z_g) (A.32)

Case 2.
Once again in order to find the Green’s function for D or a solution to the

following differential equation
DG = —6(x; —a)d(xzy —b)d(z —c) (A.33)

the Fourier transform technique is applied. The above problem is reduced to first
case by taking
Fourier transform with respect to xy, x5, in doing so, equation Eq. (A.33) on the

frequency domain takes the form

1 . )
—eamiwabs(p  c) (A.34)

2kG, + w2 — WG = — 5
™

Obviously, the above differential equation falls in the first case. In using this result

a solution can be obtained for @,

R 1
G(wl,wg, Z) = —%

w22
e B (5 )t ) (A.35)

The result follows after taking the inverse Fourier transform and using, once again

one of the integrals in appendix (A.7), therefore by taking the inverse Fourier trans-
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form of Eq. (A.35) we have

_ 1(,2 c)
¢ 47?2//

x glwr(@i—a)tiwa(@2=b) g, i (A.36)

G = —13 / / —Prd = o (A.37)

zwl(xl a)+iwa (r2—b) dwldwg

_ _LL€—<w1—a>2/4ﬁ%e—(mz—b>2/46%

4m? 5152
2
_ 1 2mk gl oaey
472 (z — ¢)
(z1-a)2 . (xg—b)?
G — _L i st—ay —ih 5t (A.38)
27(z — c)

where 31 = 21/55(1 +14), B2 = 4/ 55(1 — 1)

A.4 Colouring Voronoi cells

The algorithm for colouring Voronoi cell is based on expressing the function 15, into
the complex version. The vertices that define each region B,, are irregular polygons
and its vertices can be expressed in complex numbers denoted by wy, ..., w,, w; € C.
Also points belonging to B are written in its complex version. In complex variable

the wind number is defined as

) o= b [d
n(w;y) = omi ) e—w (A.39)

The function n(w;~y) has the wonderful property that n(w;~y) = 1 if z belongs to
the interior of v and zero otherwise.

The path v defining entirely a region B, is defined piecewise by the vertices as
Y=t (A.40)

where v, = wy + t(wy, — wi—1), t € [0,1]. The function n(w;~y) counts how many

times 7 wraps around a point w € B. It takes the value 1 because 7 is a close
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polygon that winds up only once around z.

The integral Eq. (A.39) is a line integral and since & — 2 — 21, Eq. (A.39) is

dt

equivalent to

d§
nw,7) mz/g .
N 2@7?2/ wll—w+t(wZ w;_1)

1 Z /1 dt
= — 2
2im = 0 Wi—1 —w +t(w; — w;_1)

_ b S {u} (A.41)

So the wind number is the logarithm evaluated at the vertices forming a region. In
order to define k(r) is to enough to determine the second term in Eq. (3.22). Let us
denote v, = 51 + - - - V5 be the close curve each Voronoi cell B, has for boundaries,

s=1,..,N(B) and [ is determine by the Voronoi construction then
Z csn(w; 7s) (A.42)

This a Gaussian process simulating the wave number that relates the wave velocity

to the statistics of the microstructure.

A.5 Algorithm for wave propagation

This section presents the algorithm to numerically implement the long Eq. (4.17).

An image showing the simulated field has been already shown in chapter (4), Fig. (4.7).

A.6 Principle of laser-generation

The simplest and most direct way of generating ultrasound using a laser is by direct-

ing the beam onto the surface of a specimen [88]. The absorbed light energy cause
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Algorithm 1 Calculate u(z, 2)
Star with:
N «— Number of screens
A «— Wavelength
¢j < Random processes, j =1,..., N,
v «— Incident field
forj=1toj=N do
5« %
W [(vs)e™dx
Progate w to a distance 0z:

@ — [wh(q, %) ® §]h(q, %)

u «— [ue~"™4dq Back to spatial domain
Store u and make it the new incident field v
Ve—u

end for

strain to the material thus generating ultrasound. The physics and the mathematics
behind this process is carefully considered in [106], for instance. The author gives
a relation between the rise in temperature due to a pulsed laser hitting the surface
and Rayleigh waves.

In this appendix the formulation of the thermal expansion boundary problem
due to a laser is reproduced only for completeness. Nothing has been added to its
solution nor its formulation.

The spatial and temporal temperature distribution is governed by the heat equa-
tion. If @) represents the total input heat due to a pulse laser, w(r) the normalised
spatial distribution of the laser onto the surface and ¢(t¢) the temporal profile of the
laser, the appropriate boundary problem heating a free surface of sample is given

by, [17, 106]

oT
AT + XE = Qu(r)q(t)
oT
- = < .
T T 0 t<0 (A.43)

where x is the temperature conductivity.

As the temperature rises (above ambient temperature) at (r, ¢) the absorbed light
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produces stress-free strain. The author in [17|, considers the additional boundary

condition
n-V7T(r,t)=0, re S, t>0. (A.44)

This condition establishes that no heat is lost by conduction or radiation as pointed

out by the author. Since strain is related to the temperature by the following relation
ekl(r, t) = aéle(r, t) (A45)

Here « represents the thermal conductivity and d;; the Kronecker delta. One of
the remarks in [17] is that the displacement can be directly related to displacement

generated by thermal expansion as
u(r,t) = Aq(t)®g(r,0,t) (A.46)

where A is a constant that depends on material characteristics and g is the Green’s
function that gives the normal displacement due to a point source. The displacement
represented as a convolution of the Green’s function and the laser pulse is very
convenient for extended sources. The constant A is important for theoretical and
practical purposes but in this work is less important since we are mostly considering
normalised quantities.

For the sake of completeness the definition of the constant A is given, that is

1 & EakQ
8 muck (1 —2v)K

A= S (A.47)

where

E, pn = Young and shear modulus, respectively
cr, cr— Longitudinal and transverse wave speeds, respectively
v — Poisson ratio

k, K =The thermal diffusivity and conductivity, respectively
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a—linear coefficient of thermal expansion

2
C

— ‘T

K = .
o2

The whole article [17] is dedicated to the calculation of g for different source locations
including the case when the source lies on the surface. This representation for g is
the one that is used in this thesis to theoretically represent SAW in homogeneous
materials. The function ¢ depends on the laser used. In the experimental work an
Nd:YAG laser was used that has ¢ = Tt—ge—t/T as temporal profile. Here, 7 is the
pulse duration which is approximately 12ns for Nd:YAG Laser.

A.6.1 Displacement from an array of lines

The pattern delivered onto the surface by the SLM is a series of straight lines,
Fig. (A.1). The displacement for an array of N straight lines evenly distributed
is easily extended using the development in section (4.1.1) in chapter (4). Thus,
once again if u, is the displacement for a single line, the displacement of a source

composed of N lines is given by

u = Zuy(t—nAt) (A.48)

The differential time is At = 2‘—2 where A\g is the wavelength of the Rayleigh wave.
The reason for appearance of the ultrasonic wavelength in the separation of the
lines is because this the only way to generate SAW using this type of sources. Thus
previous knowledge of the wave velocity in the material to investigate is required
or at least a good guess in order to generate SAW with the OSAM system. A
typical value for Ay in aluminium would be 35.5um approximately for ultrasound
generation at the frequency of 82MHz. The size of the SLM is fixed, so is a with
an approximated value of 2mm. The value b is a function of Az and the number of
lines.

The sum above is easier to look in the w-domain; thus, performing Fourier trans-
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Figure A.1: Array of N illuminated lines by a laser. a, b are the width and length,
respectively of the lines and Ag is the Rayleigh wavelength which is the distance of
separation between adjacent lines.

form gives

u(r,w) = uy(r,w) Z g2rivnit

miw(N+1)At sin(rwNA?) A 49
sin(rwAt) iy (r, ) (4.49)

= €

where 4, is the Fourier transform of w,,. Here, w is the angular frequency w = 27 f, f
the normal frequency. Looking at the Eq. (5.13), one can observe that the amplitude

sin(rwN At

of displacement due to a line source is being modulated by sin(muAt)) and the phase

by an amount of 7w(N + 1)At for each frequency component. For a more detailed

analysis of sources of the this type [107] is suggested.

A.7 Useful integrals

Useful integral used within the text

/ o~ —igt Jp — %6_‘12/462 RB >0 | [70]
T e ™dt = 2md(w)

= | ey = H(t)e 78]

Table A.1: Useful integrals
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