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Abstra
tThis thesis is 
on
erned with the propagation of elasti
 waves in poly
rystallinematerials. In parti
ular, in establishing a relationship between the statisti
al prop-erties of the wave�eld and the statisti
al properties of the material via a 
orrelationfun
tion. Here the study of elasti
 waves has been restri
ted to surfa
e a
ousti
waves (SAWs), mainly be
ause they are readily a

essible using an opti
al s
anninga
ousti
 mi
ros
ope (OSAM).Poly
rystal materials 
onsidered as sto
hasti
 media exhibit random propertiesat some s
ale. This generally in
ludes most 
ommon engineering materials su
h asmetals whi
h are 
onstituted by anisotropi
 regions known as grains. This thesisuses a sto
hasti
 model for both mi
rostru
ture and wave propagation in poly
rys-tals based on the sto
hasti
 Helmholtz equation. The main obje
tive of the modelproposed is to obtain a 
orrelation theory that best 
hara
terises aberrations ina
ousti
s due to mi
rostru
ture in poly
rystals. The model has been built upon theexistent theoreti
al ba
kground around s
alar theory for waves in inhomogeneousmedia in order to �nd an expression for the 
orrelation fun
tion Γu of the �eld.The intera
tion of SAW and mi
rostru
ture is experimentally observed as devia-tions or aberrations of the wavefront by imaging the a
ousti
 �eld as it propagates inpoly
rystals using the OSAM. The aberrations regarded as random pro
ess are sta-tisti
ally analysed from an ensemble of a
ousti
 �elds built upon performing multiplemeasurements on the surfa
e of a sample, thus measuring a transverse 
orrelation
Γe. The mean grain size and the 
orrelation length are 
onne
ted through the se
ondmoment Γk of the wave number. The theoreti
al model predi
ts that Γu dependsexponentially on Γk. A 
omparison of Γu and Γe provides a relationship between Γeand Γk, therefore an indire
t way of measuring mean grain size. The theoreti
al-experimental analysis has been supported with simulated a
ousti
 propagation onsimulations of grain growth for real mi
rostru
ture.
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Chapter 1
Introdu
tion
The resear
h presented in this thesis is 
on
erned with elasti
 waves in poly
rys-talline materials and the e�e
t that the materials have on wave propagation. Spe
if-i
ally, the intera
tion of surfa
e a
ousti
 waves (SAWs) and materials 
omposedof non-interse
ting anisotropi
 regions or grains, su
h as aluminium. The over-all geometri
 properties, su
h as shape and spatial arrangement of grains within apoly
rystalline material shall be termed mi
rostru
ture.The intera
tion of SAW with mi
rostru
ture results in deviations or aberrationsof the wavefront 
ausing the amplitude and phase of the wave to spread transversallyalong the dire
tion of propagation. The aberrations or deviations of the wavefront
an also be observed in other types of waves, su
h as ele
tromagneti
 waves. Forinstan
e, rays of light entering to the earth emanating from a distant obje
t, su
has a star, are deviated by the atmosphere [1℄. Aberration of light by the atmosphereis at a very advan
ed stage of resear
h 
ompared to aberration in a
ousti
s. Thereferen
e [1℄ just mentioned is a review on what is known as Adaptive Opti
s, whi
hdeals with the problem of aberrations of light a�e
ting the performan
e on ground-based teles
opes.In this 
hapter a
ousti
 aberrations are introdu
ed and 
ompared to methodsused in Adaptive Opti
s. One thing they have in 
ommon, is that one wishes to 
or-re
t or to minimise the e�e
ts 
aused by aberrations of waves. Many mathemati
alte
hniques in Adaptive Opti
s 
an also be applied to explain aberration in a
ousti
s



Introdu
tion 11as dis
ussed later. The temporal and spatial 
orrelation of light plays a fundamentalrole in adaptive opti
s [1℄. This would also apply to a
ousti
 aberrations as this workdeals with the moments of the a
ousti
 �eld. That is, the se
ond moment of SAWis of great importan
e in studying a
ousti
 aberrations sin
e it is dire
tly related tothe spatial 
orrelation of mi
rostru
ture.From the theoreti
al point of view, aberrations 
aused by material mi
rostru
tureare studied within sto
hasti
 
al
ulus be
ause of the sto
hasti
 nature of mi
rostru
-ture in poly
rystalline materials. This, in turn, implies the use of the theories ofelasti
ity in poly
rystalline materials, whi
h is rather similar to linear elasti
 theoryfor non-poly
rystalline materials.Experimental eviden
e of aberration in a
ousti
s is demonstrated using an imag-ing system developed at the University of Nottingham. The system is an opti
als
anning a
ousti
 mi
ros
ope (OSAM) that fundamentally generates and dete
tsSAW using lasers for both generation and dete
tion of SAWs. The OSAM system is
apable of performing measurements at many positions of SAW in sto
hasti
 media,thus being able to produ
e an ensemble of SAW. This way, it is possible to statisti-
ally assess the e�e
t that mi
rostru
ture has on a SAW travelling in su
h medium.As a 
onsequen
e of this pro
edure, it is possible to measure a 
orrelation fun
tionfrom the experimental ensemble that quanti�es aberrations.1.1 Ba
kground and MotivationThe term ultrasound refers in general to sound at high frequen
ies or above 20kHzwhi
h is the normal frequen
y that the human ear 
an dete
t. The experimentalwork is 
arried out in the high frequen
y regime (82MHz) whi
h is the fundamentalfrequen
y at whi
h the OSAM generates ultrasound. In the theoreti
al framework,ultrasound 
an be des
ribed by the linear elasti
 theory for solids. This theory pre-di
ts many types of wavemodes that have a wide range of appli
ations in industryand/or medi
al diagnosti
s. Common wavemodes 
ould be longitudinal, shear andRayleigh or SAW depending on parti
ular appli
ations or boundary 
onditions. Ul-



Introdu
tion 12trasound and SAWs will be synonymous in this thesis sin
e the experimental workhas been 
arried out using SAWs.For instan
e, in medi
al ultrasound [2, 3℄ advantage is taken of the s
atteringpro
ess o

urring in tissue, mus
les, et
. to image obje
ts within the human body formedi
al diagnosti
s, an example of this, is fetal imaging [4, 5℄. Lamb and Rayleighwaves, in parti
ular 
an have a variety of appli
ations. Lamb waves are useful inlo
ating and sizing �aws in pipes [6, 7, 8℄ as well as in assessing train rails [9℄.Other appli
ations of Rayleigh waves is the 
hara
terisation of 
ra
ks on 
omplexgeometries [9℄. In the area of sensors, a
ousti
-wave devi
es have gained importan
ein the design of transmitting and re
eiving inter-digital transdu
ers using Rayleighwaves [10℄.Ultrasound is one of the many te
hniques that 
an be used to image obje
ts su
has mi
ro-
ra
ks [11℄. Other methods in
lude X-ray tomography [12℄, ele
tromagneti
waves and radio waves [13℄. The main motivation of this work is to say that aber-ration of SAWs 
an be used to indire
tly extra
t information from the medium inwhi
h the wave is travelling. In the next paragraph, a more pre
ise meaning ofa
ousti
 aberrations is introdu
ed.Many engineered materials su
h as aluminium are 
omposed of anisotropi
 grainswith random spatial orientation. This type of solid is poly
rystalline. They 
an havegrains of di�erent shapes and the degree of anisotropy will depend on the type ofmetal 
onsidered. The important point at this stage is what happens with SAWspropagating in poly
rystalline materials.Let us 
onsider an experiment whi
h measures the �eld of a plane wave propa-gating in a poly
rystal. As the wave propagates away from the sour
e, the phaseand amplitude of the wave would experien
e 
hanges due to the anisotropy of grains.The random orientation of grains and the fa
t that in anisotropi
 solids the wave ve-lo
ity is highly dependent on angular dire
tion, is the main 
ause of those 
hanges.These 
hanges 
an be observed as deviations in the amplitude and phase of the�eld as it propagates from one grain to another in a random fashion. Those ef-fe
ts were observed and postulated to be the 
ause of errati
 performan
e in surfa
e
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tion 13wave velo
ity measurements in [14℄. The e�e
ts, now known as a
ousti
 aberrations,
an be observed in poly
rystalline materials or in media whi
h have a random mi-
rostru
ture. As the resear
h went further it was ne
essary to systemati
ally studyaberration phenomena sin
e it be
ame important for improving the performan
e ofthe OSAM system. The other reason why aberration be
ame an interesting subje
tis the intrinsi
 relationship between the statisti
s of aberrations and mi
rostru
tureof poly
rystalline materials. Perhaps, one of the �rst works to appear on this subje
twas [15℄, where the authors took a two-dimensional image of SAW wavefront distor-tions as they travelled in sto
hasti
 media. By using an opti
al beam de�e
tion[16℄te
hnique for dete
ting small displa
ements on the surfa
e of the sample, they were
apable of showing many interesting features inherent to the sample. The mostsigni�
ant is that aberrations are 
learly seen on a pie
e of titanium using 10MHzRayleigh waves.The a
ousti
 aberration 
an be quanti�ed by a transverse 
orrelation of thea
ousti
 �eld. This in turn is related to the 
orrelation of the sto
hasti
 mediumby means of a s
alar theory for SAWs. From this relationship, 
hara
teristi
s ofthe medium, su
h as mean grain size as well as the degree of anisotropy 
an beextra
ted.1.2 Imaging a
ousti
 aberrationsThe OSAM system has been used to image and measure the a
ousti
 deviations inpoly
rystalline materials. The preliminary results presented in this se
tion were 
ar-ried out in aluminium. Let us denote the a
ousti
 �eld as U(x, z) = A(x, z)eiΦ(x,z),where A denotes amplitude and Φ phase. U is the displa
ement normal to the planewhere the wave propagates. The s
an has been performed in the xz plane measuringthe normal displa
ement point by point. It is a plane wave that propagates from leftto right on the surfa
e of an aluminium sample, Fig. (1.1). Both the amplitude andphase distributions are shown and it 
an be observed how the wavefront 
hangesin both images as the wave propagates away from the sour
e. Several pro
esses
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Figure 1.1: The image on top is the amplitude distribution A whereas the image onbottom is the phase distribution Φ of a plane wave at 82MHz, travelling from left toright on an aluminium sample. The two images were obtained with OSAM system.may be involved to 
ause a
ousti
 deviations, as observed in Fig. (1.1). Every pointbelonging to the wavefront intera
ts with grains 
ausing the phase to deviate fromwhat would expe
ted to be if there were no grains, i.e. non-poly
rystalline mate-rial. The 
ause of those aberrations is due to the anisotropy and orientation of ea
hgrain. Whatever the pro
ess involved it is desirable to 
hara
terise overall aberra-tions from a statisti
al point of view. It is 
lear that aberrations depend somehowon mi
rostru
ture of the sample under 
onsideration. This dependen
y 
an 
arry
onsiderable information and presents di�
ulties for a theoreti
al des
ription of thesystem.Statisti
al analysis of aberrations requires multiple measurements of the a
ous-ti
 �eld over the mi
rostru
ture, to obtain unbiased estimation of aberrations inpoly
rystalline materials. This is be
ause grain 
hara
teristi
s vary randomly. Thatis to say, grain orientation, anisotropy and grain topology have to be des
ribed bysto
hasti
 pro
esses. Fig. (1.1) is the a
ousti
 �eld measured on a parti
ular lo
ationon the surfa
e of the sample. Consider the experiment of measuring the a
ousti
�eld with the sour
e lo
ated at two two di�erent lo
ations on the surfa
e of the same
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h that the s
anning areas do not overlap, then be
ause of the sto
hasti
nature of mi
rostru
ture, it is expe
ted to obtain a di�erent deviation pattern forea
h measured �eld. That is, the a
ousti
 deviations as shown in the amplitudedistribution in Fig. (1.1) would follow di�erent paths. The reason for this is as one
hanges sour
e and s
anning lo
ation the wave is propagated in a di�erent reali-sation of the ensemble of pro
esses des
ribing mi
rostru
ture. Continuing in thisway one would be able to build an ensemble of the a
ousti
 �elds and be able tomake a statisti
al 
hara
terisation of a
ousti
 aberrations, whi
h would depend onthe ensemble of mi
rostru
ture.A
ousti
 aberrations are absent in non-poly
rystalline materials, su
h as glassor any other solid with no mi
rostru
ture, as stated before. The word homogeneousmedium is sometimes used in this thesis as synonymous for non-poly
rystalline ma-terials. But a poly
rystalline material 
an also be 
onsidered as a homogenousmedium if the wavelength is relatively bigger than the s
ale of the inhomogeneities.At this s
ale elasti
 waves, su
h as SAWs do not intera
t with the mi
rostru
ture,so aberrations are wavelength dependent.The obje
t of study will be images of the a
ousti
 �eld in a form presented inFig. (1.1) for the statisti
al study of a
ousti
 aberrations.1.3 E�e
ts of aberrations and adaptive a
ousti
sAberrations 
an be undesirable sin
e they a�e
t the a

urate measurement of meanwave velo
ity [14℄. The problem of 
ompensating for aberrations requires knowledgeof the sto
hasti
 Green's fun
tion of the system. One method in dealing with thisproblem is presented in [14℄, where the author realised that by improving the 
orrela-tion of the a
ousti
 �eld with an optimised Green's fun
tion measured dire
tly fromthe spe
imen, the a

ura
y of wave velo
ity measurements in the region of interest
ould in theory be improved. This se
tion explains fundamentally the problem for
ompensating aberrations in a
ousti
s arising in the OSAM system. As this workadvan
es, it will be seen that it is possible to exploit this phenomenon to gather
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rostru
ture.1.3.1 Corre
ting for a
ousti
 aberrationThis se
tion explains the me
hanism for 
orre
ting a
ousti
 aberrations in poly
rys-talline materials, whi
h is an integral part of the OSAM system. The OSAM systemuses a spatial light modulator (SLM) to proje
t a light pattern onto the surfa
e ofthe sample. This a
ts as a thermoelasti
 ultrasoni
 sour
e for SAW generation [17℄.Consider the experiment of ex
iting a fo
used a
ousti
 wave to a point by deliv-ering a series of ar
s onto the surfa
e using the SLM. Two things will happen if onemeasures the point spread fun
tion (PSF) of the system at the fo
us point.a) The PSF is the amplitude of a wave with undistorted spheri
alwavefronts. A
ousti
 aberrations are absent if the sample is an isotropi
material Fig. (1.2)(a).b) The PSF is the amplitude of a wave with distorted spheri
al wave-fronts. A
ousti
 aberrations are present if the sample is a poly
rystallinematerial Fig. (1.2)(b).To 
ompensate for aberration in this 
ontext would mean to ba
kpropagate thedistorted PSF, Fig. (1.2)(b) to the zone of ultrasound generation where the phaseerror is 
al
ulated by 
omparison with the non-distorted PSF as in Fig. (1.2)(a). Thispro
edure is equivalent to feeding the SLM with an optimised sour
e that dependson the 
hara
teristi
s of the medium. The distorted PSF is ba
k propagated to thesour
e in a homogeneous half spa
e using an angular representation of the �eld tofeed the SLM with the new pattern [18℄. The resulting PSF at the fo
us point wouldbe as if there were no mi
rostru
ture to intera
t with as illustrated in Fig. (1.2)(
).The 
orrelation of the a
ousti
 �eld is an important part in 
orre
ting for aberrationsand also the 
ore of this thesis for other reasons whi
h are explained later. There aresome hardware issues to deal with in order to su

eed in 
orre
ting for aberrations,spe
i�
ally how to dete
t them, and these are 
arefully reviewed in [19℄.
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Iluminated area
by SLM

Iluminated area
by SLM

Iluminated area
by SLM

a) Non−polycrystalline b) Polycrystalline c) Polycrystalline

Distorted PSF Corrected PSFUndistorted PSFFigure 1.2: S
hemati
 representation of the me
hanism in 
orre
ting for aberrations.a) It shows a fo
used SAW in non-poly
rystal material by proje
ting ar
s of lightonto the sample through SLM. Below it, is the graph of the PSF at the fo
us point.b) Similar situation as in (a), but the medium is a poly
rystal, showing also thedistorted PSF at the fo
us point. 
) Similar experiment as in (b) but the ar
sthis time are distorted by feeding the SLM with the ba
k-propagated waveformin a homogeneous half spa
e from (b). The undistorted PSF is also shown in (
)illustrating the 
orre
ted aberrations.
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edure is similar to the one followed in opti
s for 
orre
ting aber-rations of light for ground-based teles
opes [1℄. Light passing through a turbulent
Deformable
Mirror (DM)

Focusing 
Lens

Wave Front
Sensor 

System
Pupil

Turbulence

* Object

Image Plane Detector

Control 
SystemFigure 1.3: A simpli�ed opti
al 
on�guration of an adaptive opti
al imaging system,redrawn from [1℄.medium su
h as the atmosphere with a variable index of refra
tion, is spatiallyaberrated in a random fashion 
ausing images from distant obje
ts, e.g. stars, to bedistorted. The problem is how to 
orre
t these deviations or aberrations in orderto get an a

urate image of the obje
t. The area dedi
ated to this type of problemis Adaptive Opti
s and is a very a
tive subje
t sin
e aberrations are an undesirablee�e
t in gathering information. Many sophisti
ated instruments have been built inorder to 
orre
t or minimise this e�e
t. Fig. (1.3) shows a simpli�ed version of a typ-i
al opti
al imaging system [1℄. This type of instrument 
orre
ts for the aberrationsusing a hardware, deformable mirror(DM), shown in Fig. (1.3). The OSAM systemworks in a similar way in the sense that it is also 
apable of 
orre
ting aberrationsarising in solids.1.4 Aberrations and s
attering of wavesTheoreti
ally speaking aberration in poly
rystalline materials 
ould be des
ribed in amore general theory for waves in media with variable 
hara
teristi
s, spe
i�
ally the
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attering of elasti
 waves by mi
rostru
ture. The pro
ess of s
attering is far more
omplex than aberrations, sin
e a
ousti
 aberrations 
ould simply be des
ribed asdistortion of the wavefront of forward s
attering of elasti
 waves. A wave 
an travelin the forward and ba
kward dire
tion due to intera
tions with the s
atterers orgrains in poly
rystals. For instan
e, let us imagine a ve
tor normal to the wavefronttravelling in the forward dire
tion within a poly
rystalline material. The ve
torwill 
hange dire
tion, but still part of the forward �eld by intera
ting with grains(aberrations). It 
an, however, be re�e
ted and re�e
ted again by grain boundaries.This pro
ess is repeated for all points belonging to the wavefront, This is what wemean by multiple s
attering, 
ausing the �eld to be extremely 
omplex and usuallyrandomised. In the very spe
i�
 
ase of a SAW in a poly
rystal, waves 
an bere�e
ted by grain boundaries and forward re�e
ted again 
ausing a 
ompli
atedwave intera
tion, even mode 
onversion.All energy 
arried by elementary waves travelling in the dire
tion of propaga-tion 
onstitute the so 
alled forward s
attering whereas ba
kward s
attering is theopposite. In many pra
ti
al appli
ations forward s
attering is stronger than its 
oun-terpart and therefore ba
ks
atter very often is negle
ted. As shown in Fig. (1.1),aberrations are the wavefront distortions of the �eld in the forward dire
tion.The s
attering theory of waves in poly
rystalline materials is des
ribed by thetheory of elasti
 waves in random media. This theory is an extension of linearelasti
 theory for homogeneous solids, in the sense that elasti
 
hara
teristi
s viaelasti
 moduli is a spatial random tensor that depends on position [20℄. The elasti

hara
teristi
s of ea
h grain is a major problem in this theory sin
e ea
h grain is ananisotropi
 solid in its own right. Therefore, the theory 
an get very 
ompli
ated if
onsidering all the right elasti
 properties of ea
h of the grains. It is well known thatanisotropi
 single grains are di�
ult to study not be
ause of the number of elasti

onstants involved but also of the 
ompli
ation in obtaining the displa
ements. Theauthors in [21, 22℄ have studied solids of general anisotropy, for instan
e. On topof that, one still has to 
onsider the orientation of the grains with respe
t to ea
hother. In would be seen that some approximations in grain anisotropy have to be
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ed in order to get useful results about the elasti
 response of a poly
rystal.In this thesis the elasti
 model for SAWs is repla
ed by the sto
hasti
 s
alarmodel, where the medium is des
ribed by a single s
alar random pro
ess simplifyingthe mathemati
al development. This avoids the use of a tensor random pro
essne
essary in the full theory.1.4.1 Modelling the mediumModelling or spe
ifying the medium is part of the problem of wave propagationin poly
rystals. It is a 
ompli
ated problem in the theory of wave propagation inpoly
rystals sin
e mi
rostru
ture of the poly
rystal 
an have 
ompli
ated geomet-ri
al forms. In the theory all the geometri
 and elasti
 properties are embeddedin the elasti
 moduli c. Thus, the spe
i�
ation of tensor c is important in wavepropagation, where c is a tensor that depends on position.The theoreti
al des
ription is greatly simpli�ed by modelling the elasti
 modulias c(r) = c0 + c′(r) [23, 24, 25, 26℄, where c′ is a sto
hasti
 pro
ess representing the�u
tuation with respe
t to c0. The pro
ess c′ a

ounts for wave velo
ity variationswithin grains due to the anisotropy and random orientation of grains. The simpli-�
ation is introdu
ed by imposing simpli�ed 
onstraints as a random pro
ess, forinstan
e, using known 
orrelation fun
tions, 〈c′〉 , 〈c′(r)c′(r′)〉 , ... where the brokenbra
kets represent an ensemble average. The c0 elasti
 moduli is the average overorientation and number of grains within a volume. The 
onstants c0 
orrespond tothe elasti
 moduli for homogenous solids. This model 
an equally be applied to thes
alar approa
h, in the sense that the wavenumber is modelled as k = k0(1 + µ)where µ is the �u
tuating part. It will be seen that by spe
ifying the se
ond ordermoments for µ as being exponential form, many poly
rystals with mainly 
onvexgrains 
an be modelled. This model will allow a formulation of a theoreti
al des
rip-tion for the 
orrelation of the �eld to be obtained. Experimental results will showhow this is related to the a
tual material.
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ontributions of the workOne of the purposes of this work it to provide a tool for a statisti
al study ofaberrations based on 
orrelation of the a
ousti
 �eld. The work is aimed not onlyfor the likely use in material 
hara
terisation but also to aid in the problem of
ompensating for aberrations in a
ousti
 propagation.The 
orrelation of the �eld is measured using a transverse 
orrelation. Thisfun
tion is to be related to the se
ond order moments of the pro
ess 
hara
terisingthe medium via a s
alar theory. From this relationship, some 
hara
teristi
s of theinvestigated poly
rystals are obtained su
h as the mean grain size. The knowledgeof mean grain size is an important parameter in material 
hara
terisation. TheNDE methods applied in this thesis for testing materials indire
tly measure material
hara
teristi
s. There is still a lot of work to do, but it is believed that this workwill be valuable in rea
hing that point.The aberrations of the �eld, regarded as a random pro
ess, are statisti
allyanalysed from an ensemble of a
ousti
 �elds built up by performing multiple mea-surements on the surfa
e of a sample. This analysis permits the measure of thetransverse or two-point 
orrelation Γe dire
tly from measurements with the purposeof 
omparing it to a theoreti
al model whi
h is able to extra
t the mean grain size.The theoreti
al work is based on sto
hasti
 waves in inhomogeneous media. Thepurpose is not to give a general treatise on the subje
t but a useful theoreti
altreatment appli
able to aberrations. This is done by approximating se
ond mo-ments within the framework of a sto
hasti
 pro
ess, despite the apparent restri
tiveassumption on mi
rostru
ture.In summary, the 
ontribution of this work is the establishment of a wave 
or-relation fun
tion that quantitatively des
ribes the lo
al anisotropy and mean grainsize of a 
ertain poly
rystalline materials. This provides a relatively simple way ofunderstanding wave propagation in inhomogeneous media and its dire
t relationshipto a
tual mi
rostru
ture.The statisti
al properties of SAWs in poly
rystalline materials are de�ned by
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ond order moments of the a
ousti
 �elds and these relate to material grain sizeand anisotropy via the wave 
orrelation fun
tion.1.6 Obje
tives and thesis layoutThis thesis has been organised into three main parts 
omprising seven 
hapters that
ontain theoreti
al aspe
ts of waves in inhomogeneous media, experimental work insolids with mi
rostru
ture and simulations.The literature review, is 
arried out in 
hapter (2) fo
using on waves and aberra-tions from 1900 up to the present in inhomogeneous media. This review emphasisesthe importan
e of the �rst and se
ond moments of random �elds applied to ultra-soni
 propagation. It 
overs both elasti
 and s
alar waves whi
h are later used forthe theory of SAWs in poly
rystals.A number of the arti
les 
ome from a di�erent area su
h as the sto
hasti
 waveequation that has extensively been applied there. A few arti
les on the importan
eof numeri
al te
hniques used in metallographi
 studies are mentioned. These arelater used to study the anisotropy of poly
rystals in simulated media.The theoreti
al aspe
ts of wave propagation are 
overed in 
hapter (3) based onelasti
 waves and s
alar waves. The methodology is to redu
e the full wave theory tothe s
alar approa
h for SAWs in poly
rystals. The elasti
 properties of poly
rystalsare dis
ussed 
onne
ting the anisotropy of the grains to lo
al geometri
 features ofthe mi
rostru
ture.The following diagram, Eq. (1.4) shows s
hemati
ally the main parts of the thesis.The starting point is a poly
rystal as the obje
t of study. As the diagram (1.4) shows,the important aspe
t in this part will be the se
ond order moments Γµ from whi
hthe geometri
 
hara
teristi
s of the mi
rostru
ture 
an be modelled. A pres
ribedexponential form of Γµ is dis
ussed as a possibility to approximate mi
rostru
turefor the type of poly
rystals investigated in this thesis. Towards the end of 
hapter(3) numeri
al te
hniques are introdu
ed for mi
rostru
ture simulation. Also a simplemodel to simulate wave velo
ity variations in poly
rystals is dis
ussed. Realisation
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Introdu
tionChapter 1
Literature reviewChapter 2
Modelling themi
rostru
ture ofpoly
rystals via Γµ

Chapter 3
Propagation ofSAW in sto
hasti
mediaChapter 4 Theoreti
al modelof the propaga-tion of statisti
alproperties (Γu) insto
hasti
 media

Chapter 5
Experimentson sto
hasti
materials andmeasurementsof the statisti
alproperties of themedium. Compar-ison of 
orrelationfun
tion Γu and Γe

Chapter 6

Con
lusionsChapter 7
Figure 1.4: Chart showing s
hemati
ally the thesis layout, highlighting the mostimportant aspe
ts of thesis and 
hapters where they are dis
ussed.
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reen model were modelled using this te
hnique togive realisations of the �eld.Chapter (3) was intended to deal not only with mi
rostru
ture but also witha
ousti
 simulation. The Voronoi tessellation is brie�y dis
ussed and is used to sim-ulate real mi
rostru
ture. The wave number in a dis
rete medium is modelled basedon this. This simple algorithm used to evaluate the multiple integral representationof the �eld based on the dis
rete Fourier transform is given in appendix (A.5). The
orrelation length of the random pre
ess representing the inhomogeneities and itsrelationship to the mean 
aliper diameter of grains is also dis
ussed.Chapter (4) introdu
es the SAWs in the half spa
e and its relation to the wellknown angular spe
tral representation of a �eld dis
ussing brie�y SAW generationfrom a line sour
e. This 
hapter also introdu
es and develops the phase s
reenmodel for wave propagation in random media whi
h will be a fundamental part inthe study of 
orrelation of the �eld. The overall aim of the 
hapter (4) is to give anexpression for the a
ousti
 �eld whi
h allows us to 
al
ulate the 
orrelation fun
tionof the �eld in 
hapter (5).The quanti�
ation of aberrations is based on the 
orrelation of the �eld. It is themost important part of the thesis, thus 
orrelation of the �eld is dis
ussed in 
hapter(5). This quanti�
ation is made by means of a transverse 
orrelation fun
tion andis the main 
ontribution of this work. Therefore, 
hapter (5) is dedi
ated to the
al
ulation of this fun
tion from two methods. The �rst approximation is givenbased on the expression 
al
ulated in 
hapter (4). This is presented on the �rst halfof the 
hapter leaving the mathemati
al details for the appendix (A.1). The otherhalf is dedi
ated to give an alternative approximation to the 
orrelation fun
tionbased entirely on the Helmholtz equation.The experimental work is presented in 
hapter (6) along with the instrumenta-tion. In the �rst part of this 
hapter the main 
omponents of the OSAM systemare presented, whi
h is followed by a se
tion explaining in great detail the prepara-tion and 
hara
terisation of samples. The aberrations investigated on these samplesare given in a separate se
tion along with the methodology to 
arry out the ex-
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al pro
edure is given by introdu
ing the 
orrelationand arithmeti
 average for �nite sequen
es. Finally, the main result of this thesis ispresented in a graph 
omparing the theoreti
al and observed 
orrelation fun
tion.The aberrations are statisti
ally analysed from an ensemble of a
ousti
 �elds builtupon performing multiple measurements on the surfa
e of a sample. The analysispermits an estimation of Γe, a transverse 2-point 
orrelation from the a
ousti
alensemble. This experimental 
orrelation fun
tion is 
ompared to a theoreti
al 
or-relation Γu, given in 
hapter (5) from whi
h, by solving a non-linear �tting, thedegree of anisotropy as well as mean grain size are obtained, see diagram (1.4).The �nal part of 
hapter (6) is intended to 
orroborate the theoreti
al and experi-mental aspe
ts of this work. The analysis of 
hapter (6) is repeated here using purelythe a
ousti
 �eld in a simulated mi
rostru
ture. The simulation of mi
rostru
tureis from an independent sour
e and unrelated to the point of view presented in (4).The very last part of 
hapter (6) is to do with the noise present in measurementsand the �lter for de-noising the signal is dis
ussed.The �nal part of the thesis 
omprises 
hapter (7) and the appendi
es (A). Theformer is dedi
ated to 
on
lusions and future work whereas the latter are appendi
es
omplementing the theoreti
al work developed in earlier in 
hapters (4) and (5).



Chapter 2
Literature Review
Introdu
tionThis a brief review of the existing theoreti
al and experimental methods of elasti
ityin materials that are an aggregate of grains randomly orientated in spa
e. Thisin
ludes any engineering material, with spe
ial attention to aluminium and titanium.It also reviews some aspe
ts of material 
hara
terisation as it is partially the subje
tof this thesis. The me
hani
al properties and material 
hara
terisation with methodsnot related to ones treated here 
an be seen as further reading into the theory ofwaves in media with random 
hara
teristi
s, espe
ially s
alar theories. Mu
h of themethods mentioned below were developed in areas other than a
ousti
s in solids,espe
ially 
orrelation theory whi
h fundamentally belongs to the theory of lightpropagation.2.1 Elasti
 waves in inhomogeneous mediumPoly
rystalsA poly
rystalline material, roughly speaking, is an aggregate of grains with di�erentgeometri
 features and highly 
orrelated elasti
 properties. The geometry of grains,or whole mi
rostru
ture, is 
hara
terised in terms of grain orientation, grain bound-aries, subdivision of grains, shape and texture [27℄, to mention just a few. Grains
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an be a single or a subdivision of 
rystals. These 
lusters of 
rystalsare sometimes part of a subgrain and 
an be transformed to form entirely a newgrain [28℄. Thus, the 
rystalline stru
ture determines the anisotropy or isotropy ofindividual grains.The orientation of grains is measured with respe
t to the orientation of 
rystalsforming the a
tual grain. One would have multiple orientation in those 
ases wherethe grains 
ontain more that one 
rystal. The 
rystallinity and orientation have to betaken into a

ount in establishing the anisotropy of grains [29℄ be
ause of the e�e
ton wave attenuation. Di�erent grains have di�erent degrees of anisotropy and froma theoreti
al point, those di�eren
es are 
onsidered to be a random pro
ess [30℄. Insome 
ases grain boundaries 
an take any geometri
 form depending on the material.For instan
e, at some s
ale pure aluminium 
ontains elongated grains with wellde�ned grain boundaries but 
an have 
ompli
ated geometri
 
hara
teristi
s duringre
rystallisation [27℄. The re
rystallisation and boundary formation o

urs when,for instan
e a re�ner [31, 32℄ is added to the melted material (aluminium), duringheat treatment. Pressure is another well known pro
ess to modify the me
hani
alproperties of metals be
ause re
rystallisation may o

ur. Poly
rystals 
an havemultiple phases, that is a grain need not be of the same material or they 
ould havea mixture of two or more elements [27℄. Be
ause of the simpli
ity in mi
rostru
ture,single-phased poly
rystals are the subje
t of this work, in parti
ular aluminium.The grains in a poly
rystal are in reality three dimensional [33℄; 
hara
terisa-tion, however, is performed in a plane that shows a 
ross se
tion of ea
h grain alongthe plane. Chara
terisation in this thesis means estimation of the grain size of thepoly
rystal. The statisti
al estimation of the diameter of the 
rystals have beendeveloped [34℄ to obtain a realisti
 estimation of diameter of the grains. From atwo dimensional 
ross se
tion (photomi
rograph) of poly
rystals. Geometri
 fea-tures of grains in poly
rystals 
an vary in 
omplexity, it 
an take any shape su
has polygonal as well as elongation in preferred or multiple dire
tions [34℄ (texturedpoly
rystals). The 
hara
terisation of textured poly
rystals is slightly more 
om-pli
ated than poly
rystals with polygonal grain shape. Equiaxed grains are those
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h the diameter of individual grains is independent of dire
tion so they 
anbe 
hara
terised by a single parameter unlike elongated grains where more thanone parameter is needed. Poly
rystals with equiaxed grains were preferred in thisresear
h be
ause of the simpli
ity in their 
hara
terisation.Elasti
 properties of grainsHomogeneous media is used here to de�ne any single-phase elasti
 material withwell-ordered atomi
 stru
ture, e.g. sili
a; that is, materials with no poly
rystallinestru
ture. Poly
rystals 
an be 
onsidered as homogeneous media at 
ertain s
ales.This homogeneous property of the poly
rystals is wavelength dependent, in the sensethat if the wavelength of a elasti
 wave propagating in a poly
rystals is mu
h biggerthan the mean grain size then the poly
rystals are 
onsidered as homogeneous mediasin
e the wave does not intera
t with mi
rostru
ture. On the other hand, if thewavelength is smaller than the s
ale of the inhomogeneity then the poly
rystals are
onsidered to be inhomogeneous media. The grains, in parti
ular at 
ertain s
ales are
onsidered to be a homogeneous medium showing the same sorts of elasti
 propertiesas any other solid, su
h as glass. In fa
t, most of the elasti
 properties of thepoly
rystals are des
ribed in terms of the elasti
ity of grains. The orientation of the
rystals is important for des
ribing many of the elasti
 properties as a homogeneousmedium. The orientation is determined by the orientation of the 
rystal or 
rystalsof whi
h the grain is 
onformed. A prin
ipal axis 
an be assigned to ea
h grain fromwhi
h all symmetries and orientation of the grain are de�ned [35℄. Crystals 
an show
ubi
, tri
lini
, orthorhombi
, et
. symmetries as de�ned in [36℄. In a poly
rystalgrain orientation may be 
lustered round a spe
i�
 dire
tion (preferred orientation),or they 
an have no-preferred orientation. In the latter, one speaks of poly
rystalwith grains randomly orientated with respe
t to the 
rystallographi
 axis [27, 35℄.On this basis, ea
h grain is seen as a linear elasti
 solid and 
an be isotropi
 oranisotropi
 [37℄. Their anisotropy here would be measured in terms of the elasti
moduli [35℄. Thus, the elasti
 properties in a poly
rystal are 
hara
terised by atensor of rank four being denoted by cijkl, whi
h in general will be a fun
tion of
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tion of the angle of orientation [29, 35℄. To avoid writing thesub-indi
es every time one refer to it, the elasti
 moduli are denoted by the single
hara
ter c.2.1.1 The elasti
ity equationsThe elasti
 response from a theoreti
al point view 
onsiders the poly
rystal as amedium with sto
hasti
 
hara
teristi
s. That is, its inner spatial stru
ture followsa sto
hasti
 or random pattern. Therefore propagation of elasti
 waves in materialswith su
h properties is studied from probability theories for elasti
 waves in thesense that c not only depends on position but it is also a tensor pro
ess [24, 25, 30℄.That is, cijkl(r) are random pro
esses for ea
h i, j, k, l=1,2,3, c1111(r) would be arandom �eld, for instan
e.A 
omprehensive list of referen
es from 1800 on elasti
ity of poly
rystals 
anbe found in [20℄, this in
ludes W. Voigt [38℄ and A. Reuss, pioneers in elasti
itytheory in poly
rystalline materials. The review is on the foundations of elasti
propagation in poly
rystals and a pre
ise sto
hasti
 de�nition of the meaning ofmean �u
tuations, and mean stresses of 
rystallites based on these theories. Theauthors also emphasises the importan
e of quantities su
h as mean and n-point
orrelation fun
tion.In most applied works in a
ousti
s the above mentioned theories fo
used mainlyon the solution of sto
hasti
 di�erential equations des
ribing the system. There isa very well founded mathemati
al ba
kground on sto
hasti
 systems and its formalsolution [39℄. Here, however, the meaning of obtaining a solution will be simplythe 
al
ulation of the n-point 
orrelation fun
tion if possible, and in parti
ular for
n = 2, whi
h is the subje
t of this work.The elasti
ity equations are presented without any dis
ussion with the sole pur-pose of presenting theoreti
al methods for studying elasti
ity in poly
rystals.The elasti
 response of a poly
rystals under stress in terms of displa
ements uk
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tions of a three dimensional body is governed by
∂

∂xj
(cijkl(r, ξ)uk,l(r, ξ)) + ρω2ui(r, ξ) = 0 (2.1)For simpli
ity the displa
ements are assumed mono
hromati
 of frequen
y ω. Thedensity ρ is 
onsidered 
onstant, thus 
onsidering only poly
rystals with no voids orin
lusions. Many authors 
onsider the density to be a random pro
ess [40℄ as well.Note that ξ indi
ates that u should be regarded as a sto
hasti
 �eld sin
e cijkl isa spatial random pro
ess, that is, ea
h grain has its own elasti
 properties. EquationEq. (2.1), is extremely di�
ult to solve and to the authors knowledge there is nogeneral solution for it; therefore the theory of wave propagation breaks into manyapproximations depending on the appli
ation or boundary 
onditions.Before giving the methods for solving Eq. (2.1) we brie�y explain the meaningof giving a solution.The question is, given Eq. (2.1), how does one obtain an expression for 〈u(r)〉,

〈u(r)u(r′)〉, et
. or 1-point, 2-point 
orrelation in terms of the statisti
al properties
c(r)? To begin with one has �rst spe
ify the statisti
al properties of c. This is amajor problem and is the subje
t of intense resear
h as des
ribed below. The otheralternative would be purely in terms of probability distribution from the probabilitylaws for c but this point of view is beyond the s
ope of this work. Now, in pra
ti
eit would be virtually impossible to give an expression for the moments of all ordersfor the �eld u sin
e there is an in�nite number of them, although their importan
ediminishes as the order in
reases.The e�e
tive parametersTo begin with, in order to even start dealing with a solution to Eq. (2.1) one has toknow the sto
hasti
 properties of the elasti
 moduli c(r). The dire
t answer wouldbe to to measure it from the spe
imen. This, as it is obvious would be a di�
ult tasknot only be
ause one would have to measure random pro
esses de�ning c but alsobe
ause of the number of them involved. Nevertheless, in some spe
ial 
ases it is



Literature Review 31possible to do the inverse problem by assuming that c is a fun
tion of the orientationangle [41℄ measured with respe
t to a �xed axis of symmetry. The authors assumethat Hooke's law or the strain-stress relationship is σij = cijkl(θ)ǫkl and develop aformalism to extra
t the angle de�ning c. A more general statement is given in[42℄ where the Taylor series expansion for the elasti
 moduli is obtained from valuesof the displa
ement ve
tors. This formalism is applied to inhomogeneous isotropi
media but the two-dimensional anisotropi
 
ase is also 
onsidered. Others have alsostudied the e�e
tive elasti
 moduli in 
omposite materials [43℄.The other alternative is to homogenise the elasti
 response of the poly
rystals by�nding e�e
tive elasti
 moduli so the poly
rystals 
ould be studied as if they werehomogeneous. These theories were �rst proposed by Voigt and later on by Reuss[20℄.Here we reprodu
e the de�nition of Reuss's average as it will be instru
tive anduseful in other parts of the thesis as it appears in [44℄, thus
c0 =

1

2π

∫ 2π

0

T tcTdθ (2.2)where T is the matrix that rotates the elasti
 moduli an angle θ with respe
t to theprin
ipal axis atta
hed to ea
h grain and T t denotes the transpose of the matrix T .Later resear
h showed that average Eq. (2.2) is only bound for the true elasti
 modulias reviewed in [20℄. Thus, homogenisation would lead to erroneous des
riptions ofthe elasti
 response of a poly
rystal. The average is a very general expression forthe average moduli over orientation sin
e c 
ould in prin
iple have any symmetry.A more quantitative expression for the average moduli over the orientation of thegrain [37℄ with hexagonal symmetry aligned with the degree of preferred orientationis given by
c0 = 1 +

ab

2
cos 2Φ (2.3)where a is the anisotropy degree and b the degree of preferred orientation. The angle

Φ is the angle between the 
rystallographi
 axis and a �xed 
oordinate system. With



Literature Review 32average Eq. (2.3) the authors in [29℄ studied how the s
attered energy is a�e
ted byparameters a and b 
ausing attenuation of the wave.The �rst step in giving a solution to Eq. (2.1) is to model c as a 
onstant part
c0 plus a �u
tuating part c′. That is c = c0 + c′, where c′ is random tensor ofzero mean and c0 is some sort of average that 
ould be well de�ned by Eq. (2.2) asa good approximation. Or Eq. (2.3) 
ould be used if the 
rystals have hexagonalsymmetry within the poly
rystals. Poly
rystals based on the above model are also
alled random media in the sense that their properties di�er randomly from thehomogeneous medium. The elasti
 moduli will have from now on, after averaging,the meaning that they have for linear elasti
 theory in homogeneous media. Thenthe form c0 would be 
ompletely determined from the spe
imen in question. Thismodel is the starting point for many authors in giving approximated solutions forthe displa
ements in Eq. (2.1) whi
h are reviewed below.2.1.2 Survey on some methods of solutionIn most appli
ations the important quantity is the mean response 〈uk(r)〉 for thedispla
ement and many arti
les have been written on the subje
t. The purpose ofmany of the arti
les mentioned below is to solve the s
attering problem posed byEq. (2.1) by obtaining the average 〈uk(r)〉 as a fun
tion of the statisti
al propertiesof the elasti
 tensor c. The aim is to obtain a quantitative measure of the attenuation
oe�
ient as a fun
tion of the mean grain size. This is an important point of interestfor this work so is reviewed separately.Perturbation theoryPerturbation theory roughly speaking assumes that �u
tuating part c′ in Eq. (2.1)di�er slightly from c0 so c 
an be expressed as c = c0 + ǫc′ where ǫ is a smallparameter 
hara
terising the degree of inhomogeneity. Under these 
ir
umstan
esthe displa
ement 
an be expanded as a series

u = u0 + ǫu1 + · · ·



Literature Review 33in terms of the parameter ǫ to be able obtain an approximated expression for 〈u〉up to se
ond order [30℄. These authors additionally assume that c 
an be des
ribedby two s
alar pro
ess λ(r), µ(r) and the density is also a s
alar random �eld, thisassumption sometimes is termed lo
al isotropy. The lo
al anisotropy of the grain
ompli
ates greatly the theoreti
al development of elasti
 response of a poly
rys-talline material so additionally one has to assume lo
al isotropy but this is only anapproximation to real poly
rystals.Lo
al anisotropy 
an also be a

urately des
ribed by geometri
 opti
s [45℄ in thesense that the theory des
ribes the evolution of rays lo
ally. The theory redu
es tothe eikonal equation but other methods have been shown to have a wider range ofpra
ti
al appli
ability [46, 47℄. The authors in [30℄ have also applied perturbationtheory to s
alar and ele
tromagneti
 waves and have given a quantitative measure ofenergy lost in the propagation by obtaining an attenuation 
oe�
ient. Others haveapplied perturbation te
hniques [25℄ to obtain the mean displa
ement in texturedpoly
rystals. A slightly more general a

ount of elasti
 propagation in heterogeneousmedia within the framework of perturbation theories is given in [24℄. The authorstake into a

ount the anisotropy of the individual grains with 
ubi
 symmetry, thatis the, elasti
 moduli are expressed by three s
alar random pro
esses, c11(r), c12(r)and c44(r) approximating 〈u〉 satisfying Eq. (2.1). In the 
ase of anisotropi
 (ran-dom pro
esses 
ontext) moduli the attenuation depends on the propagation distan
e[48℄; grains are no longer equiaxed so texture has to be taken into a

ount. Thisauthor has solved the s
attering problems under more general 
ir
umstan
es thanthe authors already mentioned. His approa
h is to use a Green's fun
tion, allowinghim to give general expressions for attenuation 
oe�
ients for di�erent wave modes.Paraboli
 approximation and perturbation theoryPerturbation theory and paraboli
 approximation 
an be 
ombined to obtain ap-proximated solutions to Eq. (2.1)) for lo
ally isotropi
 poly
rystals [49℄. The authorsassume that the �eld is a slowly varying fun
tion along the propagation path andmake the following substitution u = Ueikx1 . That is the �eld U varies more slowly
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tion x1 than that in the x2, x3 planes. This approximation is well knownin s
alar theory [47, 50℄ and it will be used in the forth
oming 
hapter (4) to approx-imate the a
ousti
 �eld. They give a series of equations for uk without expli
itlysolving them. These approximated equations for displa
ements are given in the �rstorder approximation that allows them to propagate in the forward dire
tion.A theory developed for linearly elasti
 solids in whi
h the s
ales of inhomo-geneities are very large relative to wavelength is given in [40℄ and 
ould be wellapplied to the 
ase of SAWs in poly
rystalline materials solids 
onsidered here. Therange of appli
ability is when λ̄ << l, where λ̄ is the mean wavelength and l is thes
ale of the inhomogeneity. There are some 
onstraints imposed in this developmentsu
h as only forward propagation 
an be handled by this theory. The author derivesa ve
torial di�erential equation based on a range-in
rement pro
edure that solvesthe full ve
torial equation within a slab. By dividing the region of interest into slabsthis pro
edure allows the author to obtain lo
al solutions to �nally assemble theresults into a ve
torial equation. From this referen
e, it is interesting to note thatthe author 
on
ludes that for two dimensional problems, the aforementioned equa-tions are redu
ed to the well known sto
hasti
 Helmholtz equation in its paraboli
form. More work was published on the subje
t [49℄ on the potential of the paraboli
approximation for a system des
ribed by Eq. (2.1)). Another interesting referen
ein the same dire
tion for surfa
e waves in heterogenous media is [51℄. More meth-ods have been su

essfully applied to the s
attering problem and these are reviewedbelow where the relationship between mean grain size and attenuation has beenestablished.2.2 Mean grain size and attenuationThe mean grain size is a useful parameter for material 
hara
terisation in manyappli
ations of s
attering theory governed by equation Eq. (2.1) and s
alar theories.The aim of many authors was to solve the s
attering problem posed by Eq. (2.1),approximating the mean �eld 〈u〉 and extra
ting an attenuation 
oe�
ient from



Literature Review 35there. This in turn is related to mean grain size, and thus, mi
rostru
ture has dire
t
onsequen
es on wave propagation [23, 25, 24℄.The 
orrelation length is the distan
e at whi
h two points r, r′ are no longerstatisti
ally 
orrelated. This property is de�ned in terms of the moments of c or thewave number in the s
alar theories. The 〈u〉 is expressed in terms of the 
orrelation
Γc = 〈c(r)c(r′)〉 or possible higher orders. This fun
tion assesses whether or not twopoints are in the same grain, thus it relates to the mean grain size. The problemhere is that the grain shape may have 
ompli
ated geometri
 features. The overallgeometri
al features of the mi
rostru
ture, in order to �t the theory is approximatedby assuming that the diameter of the grain is independent of the dire
tion. Someauthors referred to it as grains with spheri
al properties [25℄. In this 
ase, Γc willdepend on a single parameter or one 
orrelation length. A extension when it is soevident that the grains do not have spheri
al symmetries is to allow Γ2 to depend onone or more parameters, perhaps dire
tion. This extended model generally appliesto poly
rystalline metals with elongated grains or texture. In general terms, the
orrelation fun
tion Γc 
annot des
ribe all the relevant properties of mi
rostru
tureso the elasti
 response in terms of the statisti
s of the �eld displa
ements is a�e
tedby this.Under the above 
ir
umstan
es, it is expe
ted to obtain a quantitative measure ofmean grain size by solving the s
attering problem posed by Eq. (2.1)). The s
atter-ing 
oe�
ient quantitatively measures the amount of energy removed by individualgrains [24℄ from the forward s
attering �eld of a travelling wave within the medium.It depends on frequen
y and it is proportional to mean grain size [24, 25, 23℄. In theabove paper the authors 
onsidered poly
rystals with 
ubi
 symmetry but othershave 
onsidered tri
lini
 symmetry [52℄. More, re
ently [48℄ has 
onsidered tex-tured poly
rystals and was able to express attenuation 
oe�
ients for di�erent wavemodes. A review of how attenuation is related to mean grain size for poly
rystalsof di�erent symmetries is given in [29℄.
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alar a
ousti
 waves (SAW)The dis
ussions below are based on the sto
hasti
 Helmholtz equation and itsparaboli
 form. To avoid repeatedly referring to it in words the equation and theparaboli
 approximation are written without any derivation. Let us denote thewave number by k whi
h is a sto
hasti
 pro
ess with 
ertain statisti
al properties.It is 
ustomary to denote the three dimensional Lapla
ian by ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂
∂z2 .The transverse Lapla
ian shall be denoted by ∆′ = ∂2

∂x2 + ∂2

∂y2 . Thus the Helmholtzequation is
∆u + k2u = 0 (2.4)and in the paraboli
 form

2ik̄
∂u

∂z
+ ∆′u + k2u = 0 (2.5)where k̄ = 2π/λ̄ is the mean wave-number over all possible realisations of the pro
ess

k(r) and r = (x, y, z). The �rst thought to theoreti
ally des
ribe SAWs in poly
rys-tals would be to 
onsider Eq. (2.1). Equation (2.4) looks simpler than Eq. (2.1) butunfortunately it is not so simple to obtain a solution. Sin
e the primary interest is touse SAWs one would like to have a way of explaining SAWs setting the appropriateboundary 
onditions for Eq. (2.1) by redu
ing the problem to Eq. (2.4). The author[40℄ already mentioned, 
on
luded that it is possible under 
ertain 
onditions.2.3.1 Methods of solution for s
alar wavesThe �rst step in obtaining a solution to the sto
hasti
 equation (2.4) is to redu
edit to Eq. (2.5) by negle
ting ∂zzu along the propagation distan
e. The paraboli
equation Eq. (2.5) 
onsiders only the forward s
attering be
ause of the negle
tedterms leading to one way propagation only. In order to in
lude the ba
k-propagated�eld the equation is solved for the in
ident and re�e
ted �eld [53℄, separately. Usingray tra
ing theory it is possible [54℄ to 
onsider the re�e
ted �eld in Eq. (2.5).
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e between equation (2.5) and the one presented in [54℄ is that thefa
tor 2ik is repla
ed by 2ik̄ exp[i(β/α) exp(2ik̄z)] where α is the amplitude of thein
ident wave and β the amplitude of the re�e
ted wave with | β |<| α |. Theparaboli
 version of the Helmholtz equation is well known in underwater a
ousti
s[50℄ where it was �rst proposed. An overview of the approximation and the rangeof appli
ability 
an be found in [55℄. For an update review up to the year 2000 onthe importan
e of the paraboli
 equation (2.5) and its appli
ations to other areas[56℄ is a good referen
e. The authors reviewed most of existing methods of solutionto equation (2.5), in
luding numeri
al methods and extensions made to the theoryto in
lude wide angles in wave propagation using paraxial approximations.The equation (2.5) is 
on�ned to narrow angle propagations but authors haveimproved these limitations by proposing wide angle approximations [57, 56℄. Morere
ent methods to study approximated solutions to Eq. (2.4) are e�
iently imple-mented in [58℄ using the boundary element method. Perturbation theories have alsobeen applied to equation (2.4) for obtaining the mean �eld [30℄.2.3.2 Phase s
reen methodThe phase s
reen method is widely used in opti
s for a wide range of appli
ationsin
luding propagation of light through aberrating media su
h as the atmosphere,see [59℄ and referen
es therein. Strong �u
tuations arising from propagation of lightthrough the turbulent atmosphere are studied within the framework of equation(2.5) and the phase s
reen method in [60℄. The formal solution to Eq. (2.5) and thephase s
reen method is that the integrals representing the �eld in the former arewritten in ordinary integrals [60℄ rather than 
ontinual integrals. The analysis inthe arti
le is probably the formal justi�
ation of the suitability of the phase s
reenmethod to wave propagation.Appli
ation of the phase s
reen method in imaging obje
ts through the atmo-sphere is given in [61℄, where the author 
al
ulates the stati
s of intensity from anobje
t behind a random s
reen. This arti
le is instru
tive to look at be
ause of thestatisti
al analysis of propagation involving a phase s
reen from sour
es of arbitrary
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orrelation.Among the important approximations of pra
ti
al interest to equation Eq. (2.4)related to phase s
reen, one 
ould mention the Rytov and Born method amongothers whi
h are well known in opti
s and reviewed in [47, 46, 26℄, for both elasti
and s
alar waves.The approximated solution by phase s
reenRoughly speaking if one would want to solve Eq. (2.4) within a slab and under theassumption that forward propagation is larger that the ba
kward �eld, the phases
reen is a good approximation. Under these 
ir
umstan
es, the phase of the �eld isthe only modi�ed aspe
t, having the amplitude �eld un
hanged. This modi�
ationsimulates the e�e
t of the medium. Usually the amplitude is not modi�ed sin
ethe medium is usually 
onsidered as a pure phase obje
t but the s
reen 
an be anarbitrary transmission obje
t. The �eld, within the slab is approximated by
u(r) =

∫

v(ρ)G0(r, ρ)eiφ(ρ)dρ (2.6)This expansion is analogous to Huygens's expansion [62℄ for extended sour
es butwith an extra term φ whi
h represents the medium. The fun
tion v is the in
ident�eld to the slab, G0 is the Green's fun
tion of Eq. (2.4) with k = k̄, and φ is azero mean Gaussian pro
ess with known stru
ture fun
tion Dφ whi
h is de�ned as
Dφ(ρ − ρ′) = 〈[φ(ρ) − φ(ρ′)]2〉, where ρ denotes the transverse 
oordinate. Thatis, Dφ is the varian
e of the di�eren
e of φ at two arbitrary points ρ and ρ′ in thetransverse dire
tion. The Limit of integration in Eq. (2.6) is over the spatial domainof de�nition of the in
ident �eld v passing through the s
reen.Taking Eq. (2.6) as the starting point of propagation in a random medium manystatisti
al properties 
an be obtained su
h as the spatial 
orrelation fun
tion, as onewill see in the forth
oming 
hapters, where Eq. (2.6) is taken as the basi
 model forpropagation.The statisti
s of the �eld u given by Eq. (2.6) depend on the statisti
al properties
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esses v and φ. In the 
ase when both pro
esses are Gaussian the �eld u isGaussian under 
ertain 
onditions. The authors in [62℄ have studied the evolution ofa Gaussian �eld under this operation by arbitrary random operators, in parti
ularfor operator Eq. (2.6). The authors quantify the strength of operator Eq. (2.6) bymeans of the varian
e σ2 = 〈φ2〉, being a weakly �u
tuating operator when σ2 << 1.Denoting the 
orrelation length of the in
ident �eld by l, if l <<
√

z/k where z isdire
tion of propagation and k is the mean wave-number, then the �eld u 
an be
onsidered a Gaussian pro
ess behind the s
reen, but with a modi�ed 
orrelationfun
tion. Other analyses of the evolution of Gaussian �elds in random media arerevisited in [63℄. The authors studied under whi
h 
onditions a �eld u, satisfyingEq. (2.4) follows Gaussian statisti
s for large propagation distan
es.2.4 The mutual 
orrelation fun
tionThe 
on
ept of 
orrelation in a
ousti
s is analogous to 
oheren
e in light propaga-tion. The physi
al meaning is similar to the 
oheren
e of light, and its de�nitionis established mathemati
ally as the se
ond order moment of the �eld. The se
ondorder moment of the �eld is also 
alled the mutual 
orrelation fun
tion. There isspatial 
orrelation or temporal 
orrelation whether the �eld is spatially 
orrelatedor temporally 
orrelated a

ording to 
ertain mathemati
al de�nitions taken from[64, 47℄.The mathemati
al formalism to derive an equation for the moments Γn forEq. (2.4), Eq. (2.5) is di�
ult and more 
hallenging for Eq. (2.1) where one hasto take into a

ount not just the moments of one s
alar pro
ess but several, depend-ing on the 
omplexity of the moduli c(r). A mathemati
al formalism was developedin [65℄ to express the se
ond moments of the pro
ess involved in Eq. (2.1)). That is,an expression for quantities 
hara
terising the elasti
 response of a poly
rystallinematerials su
h as 〈σij(r)σkl(r
′〉, 〈ǫij(r)ǫkl(r

′)〉, 〈uij(r)ukl(r
′)〉 〈σij(r)ukl(r

′)〉,...,et
.,where σij , ǫil and uij denotes stress, strain and displa
ement respe
tively. But, theformulation leads to a 
ompli
ated expression whi
h is an in�nite series, whi
h is at
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ult and of worst impossible to develop further.2.4.1 Correlation for a s
alar �eldThe mutual 
orrelation fun
tion is nothing else but the se
ond order moment of the�eld seen as a sto
hasti
 pro
ess in time and spa
e. Denoting the mutual 
orrela-tion fun
tion or 
orrelation fun
tion of the a
ousti
 or ele
tromagneti
 �eld u by
Γu(r1,r2, t1, t2) = 〈u(r1,t1)u

∗(r2,t2)〉, one 
an de�ne that the �eld u as spatially 
or-related at r1, r2 if |Γu| = 1 and spatially un
orrelated or not 
orrelated if |Γu| = 0. Ifit happens that 0 < |Γu| < 1 then the �eld said to be partially-
orrelated. Analogousde�nitions follow for the temporal variable or temporal 
orrelation.The above de�nition des
ribes the 
orrelation of ele
tromagneti
 or a
ousti
 �eldsby means of an ensemble average for the random pro
ess u. Thus, the de�nition
ould in prin
iple be applied to any random pro
ess representing something 
om-pletely di�erent. Let us denote by Γµ the 
orrelation fun
tion representing geometri

hara
teristi
s in a poly
rystal. Consider two di�erent points r, r′ in a hypotheti
poly
rystal, Fig. (2.1). The fun
tion Γµ will tell whether or not r, r′ belong to thesame region. In the situation shown in Fig. (2.1), r belongs to D whereas r′ to D′so in this parti
ular situation the �eld is expe
ted to be un
orrelated be
ause Γµwill be zero. For the rest of this thesis the 2-point 
orrelation fun
tion or simply the
orrelation fun
tion is equivalent to 2-point or se
ond order 
orrelation fun
tion. A
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Figure 2.1: The 
orrelation of the �eld at two di�erent grains in poly
rystallinematerials.
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al theory of the 
oheren
e of light has been developed over the years byseveral authors. In [64℄ and referen
es therein, the theoreti
al des
ription is basedon the propagation of light using the angular spe
tral representation or Sommerfeldexpansion. Many 
on
epts and developments from this referen
e have been suitablyadapted to suit our needs in SAW propagation. The theory of 
oheren
e is notrestri
ted to the se
ond order moments. Other moments su
h as the fourth momentare also important in atmospheri
 propagation be
ause it gives a measure of s
intil-lation for stars, [66, 67℄. The authors provide an analyti
al solution for the fourthmoment based on Eq. (2.5).2.4.2 Survey on 
orrelation fun
tionLet us start by introdu
ing the equation for the se
ond order moments in theparaboli
 approximation. Hen
e,
2ik̄

∂Γ2

∂z
+ ∆′Γ2 + k̄[µ(ρ)− µ(ρ′)]Γ2 = 0 (2.7)The above equation is derived in [47℄ from Eq. (2.5). The 
ontribution to the theoryof 
orrelation in a random medium is vast and just a few of them will be reviewedhere. In what follows, the m-point 
orrelation fun
tion is the m-point moment ofthe a
ousti
 or ele
tromagneti
 �eld that satis�es the sto
hasti
 wave equation.One of the di�
ult parts in obtaining the m-point 
orrelation fun
tion, whi
htemporally will be denoted by Γm, is to �nd a suitable di�erential equation that issolvable under general terms. Many authors have used some approximations to thewave number 
hara
terising the inhomogeneities, in order to obtain useful solutions.The Markov approximation, as it is 
alled, has shown to be the best approximationin many pra
ti
al appli
ations [47, 68, 63℄. To be more spe
i�
, the 2-point momentof k bears the following form 〈k(r, ξ)k(r′, ξ)〉 = δ(z − z′)f , where f is an arbitraryfun
tion on the remaining 
oordinates and very often 
onsidered to be isotropi
,that is, it depends on a single parameter. The other 
ondition is on the probabilitylaw for k where many authors assumed, very often, a Gaussian distribution.
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e [47℄, an equation for Γm is derived under the Markov approximation.The te
hnique, used in this referen
e, makes use of the Furutsu-Novikov formulafor fun
tionals that depend on pro
esses with Gaussian statisti
s. The di�erentialEq. (2.7) is a parti
ular 
ase of this general development. Another derivation of anequation for the moments of arbitrary order is given in [63℄. The authors in [47℄give a solution for m = 2 and dis
usses possible approximate solutions for m = 4.A few years later a solution of the fourth moment equation was presented in [66℄ foran in
ident plane wave.The 
onditions under whi
h the equation for the moments, in parti
ular equationEq. (2.7), is obtained are entirely based on the paraboli
 approximation that begunwith the work of [50℄, where paraxial approximation was �rst proposed. This approx-imation has evolved and been used ever sin
e, as reviewed in [56℄. A more generaldevelopment is presented in [69℄ where the author obtains a di�erential equation for
Γm for di�erent wave numbers under the Markov approximation but the Gaussianstatisti
s 
ondition for the wave number has been removed. As the author pointedout, the equation for m = 2 is the same as in [47℄, Eq. (2.7).Moment equations will be useful in understanding 
orrelation in forth
oming
hapters, where the aim will be to give an approximate solution to the se
ondmoment with the aid of phase s
reens. It is worth mentioning that an approximatesolution to Γ4 is given in [67℄ for an in
ident plane wave as its solution is related to thephase s
reen 
on
ept used in this work. In the arti
le [70℄, an approximate solutionof the se
ond moment is given by formally approximating a di�erential operator.The two-frequen
y mutual 
orrelation fun
tion is given in [71℄ establishing a generalpower law for the 
orrelation fun
tion. The general solution to Eq. (2.7) is givenusing the method of separation of variables and a modal approa
h for the di�erentialEq. (2.7). Other expressions equally important for the 
orrelation fun
tion is givenin [72℄, in the 
ase of k a 
omplex pro
ess. The important point here is that anexpli
it form for the 
orrelation is given.
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rostru
tureThe stress-strain behaviour of poly
rystalline metals is 
ompli
ated and di�
ult tomodel due to the plasti
 deformation of grains whi
h 
an be superimposed on linearHookean behaviour. The elasti
 response of poly
rystalline materials, expressed ei-ther as a solution of Eq. (2.4) or integral representation Eq. (2.6) depends stronglyon the statisti
al properties of the medium. This, on one hand is di�
ult to predi
tbe
ause of the 
omplexity of real mi
rostru
ture, whereas on the other, the dire
tmethods for investigating the morphology and statisti
s of the a
tual mi
rostru
-ture 
an be lengthy. Numeri
al simulation 
ould well provide qui
ker answers ininvestigating the elasti
 response of poly
rystalline materials. The authors [44℄ havesimulated mi
rostru
ture using Voronoi tessellation and 
omparatively investigatedthe Reuss and Voigt averages for the e�e
tive elasti
 moduli against the numberof simulated grains. The authors 
on
luded that the Reuss and Voigt averages areuna�e
ted by the number of grains 
onsidered for the estimation as they 
losely
oin
ide. The Voronoi tessellation is explained in great detail in the main body ofthe thesis and how it has been used to obtain realisations of the sto
hasti
 phasevariation a

ording to formulation Eq. (2.7).An appli
ation of Voronoi tessellation to modelling of grain growth in minerals
an be found in [73℄, and referen
es therein. The analysis of grain growth underme
hani
al or 
hemi
al pro
esses is beyond the s
ope of this work sin
e one is in-vestigating time-independent 
on�guration of mi
rostru
ture.Ultimately, the study of elasti
ity in poly
rystalline materials aims to repla
e lo-
al by global elasti
 properties and to be able to study the solid ma
ros
opi
ally. Theauthors in [74℄ make extensive use of a mi
ro-me
hani
al model based on Voronoi
ells to model elasti
 properties to obtain the e�e
tive parameters.2.6 Ultrasoni
sUltrasound generally has a broad range of appli
ations. It 
an be bulk, Rayleighor Lamb waves. It all depends on the spe
i�
 appli
ation. Guided waves 
an be
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t for metal damage su
h as 
orrosion and erosion in pipes in pla
esof di�
ult a

ess, for instan
e. A very interesting appli
ation of Rayleigh wavesis where one 
an make a map of the a
tual 
rystallite stru
ture [75℄ by measuringthe velo
ity variations within a region on the surfa
e of a poly
rystalline materials. This appli
ation is in fa
t dire
tly related to this work and it will be dis
ussed.A

urate des
ription is therefore important for most appli
ations.Ultrasound, both theoreti
al and experimental has o

upied the s
ienti�
 
om-munity for a long time. A short, but very useful introdu
tion to Rayleigh waves 
anbe found in [76℄ whereas a more general treatment of elasti
 waves 
an be found in[77, 78℄.2.6.1 Point sour
esThe study of point sour
es over a free surfa
e or half spa
e has been studied exten-sively. Most of the theoreti
al des
riptions are based on the mathemati
al theoryof Green's fun
tion for boundary problems for either partial or ordinary di�erentialequations. This problem goes ba
k to more fundamental problems addressed bymany authors su
h as Lamb at the beginning of the 20th 
entury [79℄.One fundamental problem related to ultrasound and surfa
e a
ousti
 waves re-gardless of sour
e is the 
al
ulation of the Green's fun
tion for a point sour
e on thesurfa
e of a half spa
e. This problem has an answer whi
h is reviewed in [78℄ amongother interesting problems related to di�erent sour
es.From the mathemati
al stand point, the problem of point sour
es either in threedimensional or half spa
e anisotropi
 solids has 
aught the attention of many re-sear
hers. The importan
e of the Green's fun
tion has been long re
ognised to bethe answer to many elasti
 problems su
h as SAW propagation. There are severalmethods for obtaining the Green's fun
tion of the system. The author in [80℄ hasused Fourier integral representation for an anisotropi
 elasti
 half-spa
e. Othershave given expli
it expressions for the Green's fun
tion [81, 22, 21℄.
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 sour
e as point sour
eA thermoelasti
 sour
e, su
h as the one produ
ed by an in
ident laser beam on ametalli
 surfa
e 
an produ
e elasti
 waves. SAW waves due to a thermoelasti
 sour
ehave been studied extensively. The author [82℄ 
onsidered transient heating on thesurfa
e and studied sour
es with harmoni
 variations. Years later, [17℄ 
onsideredthe light distribution of an in
ident pulse laser onto metalli
 surfa
es, as a pointsour
e and developed an expli
it expression of the Green's fun
tion for SAWs.This theoreti
al aspe
t is taken to propagate ultrasoni
 plane waves in a homo-geneous medium. Green's fun
tions give the theoreti
al advantage of being inde-pendent of ultrasound generation. One of the problems is that Green's fun
tionsare in general rather di�
ult to �nd and when known di�
ult to implement. In the
ase of the SAW, the Green's fun
tion is known and it 
an be expanded into planewaves, and is extensively used in this thesis.The author in [83, 84℄, however realises that a more a

urate des
ription of elasti
waves from laser pulse would follow if the spot size is 
onsidered as an extendedsour
e. The author's motivation was that there is an extra spike in the waveformthat the theory in [17℄ 
ould not satisfa
torily explain.SAW waves from extended sour
esThe theory of extended sour
es would follow from that for a point sour
e be
auseit is just an integral over the region o

upied by the sour
e. In pra
ti
e this 
anrepresent di�
ulties. For instan
e, in the OSAM system one would use ar
s forultrasoni
 generation of a
ousti
 waves and the integration over su
h sour
es 
anbe di�
ult. There has been a lot of attention to the problem of ultrasound fromextended sour
es, [83, 85℄.Analysis of extended sour
es 
loser to one used by the OSAM have appeared in[86℄. The authors have 
arried out the 
al
ulations of Rayleigh waveforms from athermoelasti
 line sour
e. They gave an exa
t expression for the normal displa
e-ment. In order to �nd me
hani
al displa
ement, the authors assumed that the main
ontribution 
omes from the 
entre of the line by assuming the width of line in the
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tion of propagation in�nitely small and thus integration is redu
ed to one vari-able a
ross the line sour
e. The authors in [87℄ studied similar sour
es delivered bythe SLM in the OSAM system. They used a four-element laser line array 
ut froma 
ylindri
al lens.2.6.2 Ultrasoni
s generationUltrasound or SAW waves 
an be generated from a wide variety of devi
es. Thepiezoele
tri
 transdu
er is 
ommonly use as a devi
e for dete
tion of sound as well assour
e generation. Fig. (2.2) shows a simpli�ed version of typi
al experimental setupfor SAWs using a transdu
er to generate ultrasound. The transdu
er is atta
hed toa wedge, normally made of perspex, using a water based 
ouplant. The author in[76℄ dis
usses some of the 
ommon transdu
er and boundary 
onditions to generateSAWs in this geometry.
�
�
�
�PSfrag repla
ements
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Opti
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Figure 2.2: Simpli�ed representation of a typi
al experimental setup SAW generationusing a transdu
er as sour
e of ultrasound. The dete
tion system 
an vary but it
ould be used the knife-edge dete
tion system.The dete
tion system 
an vary from system to system, so it 
ould well be anothertransdu
er. The opti
al dete
tion of system used in this thesis for the experimentalwork is based on the knife-edge te
hnique [16℄ for dete
ting small displa
ements by
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sLasers are preferred in many appli
ations for both ultrasoni
 dete
tion and gen-eration due to their non-
onta
t nature. Sometimes this 
an be disadvantageousbe
ause ultrasound-laser generation prototype systems 
an be expensive and dif-�
ult to operate be
ause they require highly a

urate opti
al arrangements. Thiste
hnique requires the surfa
e of the sample to be polished to a mirror �nish in orderfor the dete
tion system to e�
iently work. A good referen
e for laser ultrasoni
swould be [88℄.An Opti
al S
anning A
ousti
al Mi
ros
ope (OSAM) was used in this thesis forimaging SAW waves in metals. This system uses a Spatial Light Modulator (SLM)to image a pattern of light onto the surfa
e of the sample for ultrasound generation.The pattern is modi�ed to either fo
used SAW or to simply propagate a plane surfa
ewave. The development of the OSAM has been published in a series of arti
les bythe Applied Opti
s Group, at the University of Nottingham [89, 19, 14℄. The mainopti
al parts of the system are shown in 
hapter (6).



Chapter 3
Waves in poly
rystalline materials
Introdu
tionThe aim of this 
hapter is to introdu
e SAWs in poly
rystalline materials by means ofa general formulation for elasti
 waves in inhomogeneous media. The theory is �rstintrodu
ed trying to keep genereality to in
lude linear elasti
 theory for homogeneousmedium. The theory is applied to materials with observable mi
rostru
ture, thatis, those one-phased materials 
omposed of grains that 
an have an e�e
t on elasti
propagation at a 
ertain s
ale. The theoreti
al model is based on sto
hasti
 pro
essrepresenting physi
al mi
ros
opi
al variations as well as elasti
 properties of thematerial.In order to des
ribe mi
ros
opi
 and ma
ros
opi
 
hara
teristi
s a brief intro-du
tion to sto
hasti
 pro
esses is given. This is the �rst part of the 
hapter whi
hbrie�y introdu
es many of the tools needed for elasti
 propagation.The elasti
ity theory for poly
rystals is then introdu
ed for elasti
 wave modesthat may arise in this type of medium , in parti
ular to problems in a half spa
e. Theuse of the full wave theory is rather 
ompli
ated even for solids with no mi
rostru
-ture, so a 
onne
tion is made to the s
alar theory to des
ribe SAWs in randommedia. The s
alar theory uses the sto
hasti
 wave equation for waves in randommedia whi
h is normally presented as the Helmholtz equation.In most sto
hasti
 models des
ribing physi
al quantities, su
h as geometri
 
har-
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rystalline materials 49a
teristi
s of poly
rystals , �rst and se
ond order moments are the most importantquantities. In parti
ular the se
ond moment, sin
e it is related to the 
orrelation ofthe a
ousti
 �eld, is emphasised in this thesis.The sto
hasti
 wave equation is a widely and well a

epted model for soundpropagation in other areas, su
h as underwater a
ousti
s. There are 
ertain limi-tations on its use as a general solution whi
h has not yet been established. Oneimportant approximation, 
alled the paraboli
 or paraxial approximation has beenwidely used in underwater a
ousti
s. Its range of appli
ability is given in [50, 56℄.This approximation has been used here to obtain an approximated des
ription ofSAW propagation in random media 
ombined with a phase s
reen model used inopti
s, whi
h is developed in [59℄.3.1 Theory of elasti
 waves in sto
hasti
 mediaThe notion of mean, se
ond and higher order moments is de�ned in terms of proba-bility theory. This introdu
tion is rather brief but an extended introdu
tion 
an befound in any book on sto
hasti
 pro
esses [90, 39℄. For a more physi
al expositionand appli
ation of sto
hasti
 pro
esses, [64, 46℄ are good referen
es.Preliminary on random pro
essesThe probability spa
e is a 
lass {P, p} where P is the spa
e of events and p is a setfun
tion taking values in the interval [0, 1]. A random variable in {P, p} is a set ofreal or 
omplex numbers {x(ξ)}ξ∈P with probability distribution p. The set P 
anbe either a 
ountable or un
ountable set, and so x(ξ) is a dis
rete or 
ontinuousrandom variable, respe
tively.A random pro
ess or random �eld is a family of spatial fun
tions µ(r, ξ), where
µ is a random variable for ea
h r ∈ R3. This means that µ has its own probabilitydistribution pµr

for every r from whi
h moments 
an be de�ned. These random vari-ables belong to the same probability spa
e P . The set µ(r, ξ) is 
alled an ensembleand realisation for a �xed ξ.
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rystalline materials 50In order to fully des
ribe a physi
al phenomenon represented by a pro
ess µ it isne
essary to spe
ify the distributions pµ. There is a large list of probability distribu-tions to des
ribe physi
al phenomena. In [90℄, a vast list of probability distributionand their main properties are given. In parti
ular, the Gaussian distribution wouldbe of interest for modelling wave propagation in random media. As an example, themultivariable Gaussian distribution is presented. Let x1 = x(r1, ξ), ..., xn = x(rn, ξ)be n random variables thus its n-fold distribution is
p =

1

(2π)n/2σ1 · · ·σn

exp

[

−1

2

∑ ∆2yi

2σ2
i

] (3.1)This probability distribution will be useful in obtaining the mean 
orrelation of the�eld in forth
oming 
hapters. Here, yi are arbitrary variables indi
ating that p isfun
tion in several variables. The parameters σ2
1, ..., σ

2
n 
ompletely 
hara
terise therandom variables xi(ri). These parameters are in fa
t the varian
e of the randompro
esses xi, whi
h are de�ned below using the distribution Eq. (3.1).The properties of a pro
ess, su
h as the mean de�ned below, are de�ned in termsof distributions. Su
h de�nitions 
an be found in any standard book on sto
hasti
pro
esses su
h as the ones already mentioned.As matter of introdu
tion the 1-point moment of order k is de�ned and denotedas

mk
rr′ =

〈

µk(r, ξ)
〉

=

∫

µrpµr
dµr (3.2)Here µr is a dummy variable. The �rst moments bear spe
ial names, k = 1 givesthe mean value whereas k = 2 
orresponds to the varian
e. These are the mostimportant moments as many random pro
ess 
an be des
ribed solely by these twoparameters. If one would like to extend the above de�nition for the 2-point or se
ondmoment, the de�nition will read

〈µ(r, ξ), µ(r′, ξ〉 =
∫

µrµr′pµrµr
′dµrµr′ (3.3)Here pµrµr′

denotes the two-fold probability density. In general pµrµr′
is a interlinked
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rystalline materials 51fun
tion of two variables that allows to 
al
ulate integral Eq. (3.3). It is di�
ultvery often in pra
ti
e to know an expression for pµrµr′
. A random pro
esses is saidto be statisti
ally independent if its two-fold distribution splits as pµrµr′

= pµr
pµr′Analogously for any �nite number µ1 = µ(r1, ξ), ..., µn = µ(rn, ξ) of random pro-
esses, they be
ome statisti
ally independent if their n-fold distribution de
omposeas pµ1···µn

= pµ1 · · · pµn
. Random pro
esses of this type are easily handled espe
iallyif the µ(r) are Gaussian variables.In forth
oming se
tions the above de�nitions on sto
hasti
 pro
ess will be usedto des
ribe the theory of elasti
 waves in poly
rystalline materials. The sto
hasti
pro
ess will be used without spe
ifying a probability distribution.3.2 Elasti
 waves in poly
rystalsA poly
rystalline material is any material that is 
omposed of anisotropi
 grainswith highly 
orrelated elasti
 and geometri
 properties, e.g. aluminium. The grainshave random orientation with respe
t to ea
h other as well as random spatial distri-bution. Among other properties of grains in poly
rystals, there is 
rystal plasti
ityand atomi
 latti
e evolution of poly
rystalline metals. Materials subje
ted to timedependent pro
esses were not studied in this work, but good referen
es on the sub-je
t are [73, 39℄. In this thesis, the beginning is to des
ribe elasti
 wave propagationin a given random spatial grain 
on�guration.The theory is based on the 
lassi
al approa
h for elasti
 waves, the main di�er-en
e being that the elasti
 moduli cijkl(r), whi
h are tensor fun
tions that 
hara
-terise the elasti
 properties of poly
rystals, are assumed to vary randomly throughspa
e, [40, 49℄. The theory is de�ned, in prin
iple for any poly
rystal. There aresome 
onstraints imposed on the poly
rystals in order to simplify theoreti
al aspe
tsof elasti
 waves. Here we reprodu
e some of the assumptions, whi
h are very oftenused for theoreti
al predi
tion of waves modes in poly
rystals , whi
h appeared in[91℄.1. Linear elasti
ity holds.
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rystalline materials 522. The anisotropy is small within individual grains or grains 
an be 
onsideredlo
ally isotropi
.3. The grains are mainly 
onvex regions and equiaxed. Equiaxed means that thediameter of the grain in ea
h dire
tion and the mean 
alliper diameter di�erslightly.4. The 
rystallographi
 axes of the individual grain has no preferred orientation;all orientations are equally likely.5. The poly
rystalline materials is single-phased with no voids or in
lusions.The aluminium samples analysed in this work, whi
h are presented in 
hapter (6),hold 
ondition (3), (5). The hypothesis (2) quite possible sin
e aluminium showsrelatively small elasti
 anisotropi
 behaviour. In this thesis an extra hypothesisor statement will be ne
essary in order to des
ribe SAWs in poly
rystalline mate-rials. That is, the sto
hasti
 s
alar approximation will su�
e to des
ribe SAWs.This is dis
ussed in se
tion (3.3.1) sin
e it requires some explanation. From nowon, the terms inhomogeneous or heterogenous media will be used as synonymous,and assumed to refer to any poly
rystal or medium with random 
hara
teristi
s.Homogeneous is the opposite to inhomogeneous material, whi
h is relative to wave-length. For instan
e, a poly
rystal 
ould be 
onsidered elasti
ally homogenous ifthe wavelength is greater than the largest s
ale of grains within the poly
rystals. Ahomogenous material at all s
ales relative to wavelength would be glass, for instan
e.3.2.1 Linear elasti
 poly
rystalThe theory of elasti
 waves in heterogeneous media is entirely analogous to thetheory of linear elasti
ity for homogeneous solids. There is no surprise that the gov-erning equation looks similar. In the dis
ussion that follows, Einstein's summation
onvention is assumed; i.e. the summation over repeated indi
es is implied. Let usdenote a point in the three dimensional spa
e by r = (x1, x2, x3), and the brokenbra
kets 〈...〉 denote ensemble average.



Waves in poly
rystalline materials 53The theory of elasti
ity in poly
rystalline materials is based on the followingmodel, known as Hooke's law:
σij = cijlm(r)ǫlm (3.4)where σij denotes the stress tensor and ǫlm the strain tensor; ciklm is the tensorrandom �eld 
hara
terising the elasti
 properties of the medium. The obvious dif-feren
e here to the stress-strain relationship for non-poly
rystalline materials is thatthe elasti
 moduli cijlm is a random tensor �eld. The indi
es runs from 1 to 3 soone has 81 random pro
ess des
ribing lo
al elasti
 properties of the poly
rystal as alinear elasti
 homogenous material.The statement for linear elasti
 homogenous materials of Hooke's law is re
ov-ered by taking the cijkl to be independent of r in Eq. (3.4). The ma
ros
opi
 elasti
properties of poly
rystalline materials are measured by measuring the elasti
 moduliwhi
h 
an be found reported elsewhere for a great variety of materials. The mi
ro-s
opi
 elasti
 properties for poly
rystalline materials, that is, taken into a

ountmi
rostru
ture, is obviously a mu
h harder task sin
e one would have to measure arandom �eld; possibly by empiri
ally spe
ifying the probability distribution. Onealternative for spe
ifying the cijkl(r) is to measured what is 
alled the e�e
tive pa-rameters based on 
ertain spatial averages along grain orientations. Thus, the elasti
moduli are spe
i�ed as an average along grain orientation plus a �u
tuating part.This is a very important point that will be dis
ussed more broadly in se
tion (3.2.2).The e�e
tive parameters theory intended to explain the elasti
 response of poly-
rystals by homogenising the system. That is, repla
ing the overall elasti
 responsefor one that behaves as it were homogeneous. One of the di�
ulties is how to expressthe e�e
tive parameters as a fun
tion of the moments 〈cijkl(r)〉, 〈cijkl(r)cpqrs(r

′)〉,...of individual 
omponents of the elasti
 moduli. Some authors have found bounds fore�e
tive bulk modulus [92℄. A brief introdu
tion to the subje
t and list of referen
es
an be found in [26℄. The e�e
tive parameter theory is not reviewed in this work butit will use some of the well established theoreti
al aspe
ts for averaging the elasti
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rystalline materials 54moduli based on the mi
ro-
hara
teristi
s of poly
rystals.3.2.2 The e�e
tive parametersThe e�e
tive parameters are important in spe
ifying the elasti
 moduli cijkl(r).These parameters are de�ned in terms of 
ertain averages over the orientation. Toavoid writing every time the sub-indi
es ijkl, the elasti
 moduli are also written bythe single 
hara
ter c(r).Let us �rst review single grains 
hara
terised by assuming that the tensor c(r) is
onstant. If a non-singular linear transformation T is applied to c, therefore 
hangingtheir numeri
 values, the grain is said to be anisotropi
. The transformation wouldbe an axis rotation sin
e the c are invariant under translations. Let us 
onsider
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Figure 3.1: Anisotropy of poly
rystalline materialstwo adja
ent grains belonging to a 
ertain poly
rystalline material. Denoting thesti�ness by c in the 
oordinate system e = (e1, e2) atta
hed to grain D and by c′ inthe new system e′ atta
hed also to D′. The axes e are 
alled 
rystallographi
 axesthat de�ne a 
oordinate system within the grain. These axes are 
hosen in terms ofthe latti
e and symmetries of the grain. In general, depending on the 
omplexity ofthe grain, the 
rystallographi
 axes are not orthogonal systems and sometimes thenumber of axes needed ex
eed the dimension of the grain. Here for simpli
ity, twoorthogonal axes de�ne a 
oordinate system within the grain, Fig. (3.1).If one performs the experiment of measuring c and c′ independently in the di-re
tion indi
ated by the arrows on top of D and D′, Fig. (3.1) then c = c′. This is



Waves in poly
rystalline materials 55be
ause D, D′ have identi
al elasti
 
hara
teristi
s but di�erent shape and di�erentorientation relative to ea
h other. Now, if one �xes a 
oordinate system, let say
e and T (θ) denotes the transformation between the 
oordinate system e, e′ thus
c′ = T (θ)c. What makes a poly
rystalline material a spe
ial type of medium is that
θ is a random variable, therefore one speaks of materials 
omposed of anisotropi
grains with random orientation. The ma
ros
opi
 elasti
 response of poly
rystallinematerials is 
hara
terised by the e�e
tive parameters de�ned as c0 = 〈T (θ)c(r)〉0,where 〈·〉0 is the average over the orientation. The average 
ould be well de�nedusing Reuss's average Eq. (2.2). This, average or e�e
tive parameters, 
oin
ideswith the elasti
 moduli for homogenous solids.Based on this average, the elasti
 response of a poly
rystalline material is mod-elled as random �u
tuations with respe
t to c0, that is c(r) = c0 + c′(r) where c′ is azero mean random tensor. Grains have their own symmetry, depending on their lat-ti
e that generates the grain itself. In terms of c0 they are 
lassi�ed as: mono
lini
,orthorhombi
, 
ubi
, et
., depending on the symmetry and form of c0. We shall takehere, grains with 
ubi
 symmetry sin
e aluminium 
an be 
onsidered to have thistype of symmetry as an anisotropi
 solid. Then a grain having 
ubi
 symmetry is
hara
terised with elasti
 moduli having the following form

c0 =





























c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44





























(3.5)
Thus, three s
alar random pro
esses c11(r), c12(r), c44(r) are needed for an elasti
des
ription of a poly
rystalline material with 
ubi
 symmetry.
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rystalline materials 563.2.3 The anisotropy of the grainsIn theory the main 
ontribution to of aberrations is the anisotropy of the individual
onstituents of the poly
rystal. The degree of anisotropy of poly
rystals shall bedes
ribed in terms of the elasti
 moduli c(r), where the non-�u
tuating part c0 willhave the form Eq. (3.5). The anisotropy of ea
h grain is given as [23, 24℄
β(r) = c11(r)− c12(r)− 2c44(r) (3.6)It is understood that all the quantities here depend on position in
luding β, so it willnot be written in the next paragraph. If grains within the poly
rystalline materialswere isotropi
, i.e. β = 0 then c44 = (c11 − c12)/2, c11 = λ + 2µ and c12 = λwhere λ, µ are 
onstants within grains whi
h 
orrespond to Lamé 
onstants [36℄ forisotropi
 solids. Thus, in this 
ase the overall aberrations or deviation of the a
ousti
�eld would 
ome purely from s
attering at grain boundaries with no 
ontributionfrom the anisotropy of individual grains. In the same sense, if β is a small varyingparameter, the poly
rystalline materials are 
onsidered as being lo
ally isotropi
 orweakly anisotropi
.The type of material studied in this thesis 
ould be well 
onsidered as beingma
ros
opi
ally isotropi
 or that the anisotropy is weak from one region into another;it seems plausible to assume that c(r) depends on only two s
alar random �elds λ(r),

µ(r), thus c(r) 
ould have the form [93, 26℄,
c(r) = λ(r)δijδkl + µ(r)(δikδjl + δilδjk) (3.7)where δij is Krone
ker's delta fun
tion.This is the familiar form of the elasti
 moduli for isotropi
 linear elasti
 solidswith λ, µ set to 
onstants; whi
h are termed Lamï¾1

2

onstants or elasti
 
onstants forisotropi
 solids. The lo
al isotropy or weak anisotropy will be useful for theoreti
alpurposes sin
e SAWs in poly
rystalline materials 
an be redu
ed to s
alar theory byusing Eq. (3.5) for the elasti
 moduli [40℄.
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s equationsIn this se
tion the elastodynami
s equations are presented for a three dimensionalbody and later are spe
ialised for SAWs. The displa
ement o

urring in all dire
tionsof the body under stress are being denoted by Ui, i = 1, 2, 3. In the presen
eof external for
es F the stress and strain tensors are dynami
ally related to thedispla
ement Ui(r, t) o

urring within the medium by
σij,j + Fi = ρ

∂2Ui

∂t2
(3.8)

ǫij =
1

2
(Ui,j + Uj,i) (3.9)Combining Eq. (3.4), Eq. (3.8), Eq. (3.5) and assuming Ui(r, t) = ui(r, ω)e−iωt ,i.e.assuming that the displa
ement are mono
hromati
 �elds for simpli
ity, gives thegoverning equations for an poly
rystalline material and no external for
es as

∂

∂xj

(c(r, ξ)uk,l(r, ξ)) + ρω2ui(r, ξ) = 0 (3.10)The density ρ is assumed to be 
onstant. This is equivalent to hypothesis (5) inse
tion (3.2), where the poly
rystal is assumed with to have no voids or in
lusions.In Eq. (3.10) the following 
onvention is used ∂uk

∂xs
= uk,s for short.Equations Eq. (3.10) give the elasti
 displa
ement uk, k = 1, 2, 3 in all dire
tionsin the poly
rystal. This means, in terms of probability theory, �nding the probabilitydistributions whi
h de�ne entirely the displa
ements uk as random �elds. From theseprobability distributions, it is possible at least in theory, to 
al
ulate all momentsof the random �eld uk. This approa
h is beyond the s
ope of this thesis, so thesolution is formulated in terms of moments of the random �elds involved, whi
h isdes
ribed below.Ultimately, the important part in the problem are the moments of the random�eld displa
ements, therefore the problem 
an be put in the following way: giventhe moments Γijkl = 〈cijkl(r)〉, Γijkl

pqrs = 〈cijkl(r)cpqrs(r
′)〉 , . . . of elasti
 moduli orin terms of two s
alar random �elds λ(r), µ(r) if cijkl is given by Eq. (3.7), Γλ =
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〈λ(r)〉 , Γλλ′ 〈λ(r)λ(r′)〉 , . . . Γµ = 〈µ(r)〉 , Γµµ′ = 〈µ(r)µ(r′)〉 , . . .., the problem is to�nd the 
orresponding moments Γuk

= 〈uk(r)〉 , Γukur
= 〈uk(r)ur(r

′)〉 , . . . for thedispla
ement in terms of Γijkl, Γpqrs
ijkl , . . . or Γλ, Γλµ . . .. The most dire
t method inobtaining this relationship is to �nd a di�erential equation for all the moments Γuk

,

Γukur
,. . . whi
h has been proved to be an extremely di�
ult problem. Nevertheless,the authors in [93℄ derived an equation for the �rst moment Γuk

in terms of a in�niteseries whi
h 
ontained all the moments of the elasti
 moduli.For the parti
ular 
ase of SAWs in poly
rystalline material , the above formula-tion will be redu
ed to �nd the moments for the displa
ement in one single dire
tion.Sin
e this is a spe
ial 
ase of a more general formulation, the SAW 
ase is refor-mulated using the two dimensional sto
hasti
 wave in se
tion (3.3). The aboveformulation applies equally to s
alar theory governed by the sto
hasti
 Helmholtzequation in the sense that an equation for the 
orrelation fun
tion 
an be obtainedunder 
ertain 
onditions. This is explained in detail in 
hapter (5).The anisotropy 
an also be des
ribed in terms of velo
ity variations within grains.Thus, lo
ally the longitudinal and transverse velo
ity in terms of the elasti
 moduliare given [24℄ as vl(r) =
√

c11(r)/ρ and vs(r) =
√

c44(r)/ρ, where vl, vs is thelongitudinal and shear velo
ity, respe
tively in a poly
rystalline material. The degreeof inhomogeneity in the s
alar des
ription is also given in terms of these velo
itiesas Rayleigh wave velo
ity is a fun
tion of the shear and longitudinal wave velo
ities.The development of this relationship is given in se
tion (3.3.2).The type of problem that 
on
erns this work is two dimensional. The full wavetheory would des
ribe wave modes of any type as stated in Eq. (3.10), in parti
ularSAWs. However, it is 
ompli
ated to establish a solution under the boundary 
on-ditions for a SAW. A more pre
ise meaning of the above problem formulation forSAW is given se
tion (3.3).



Waves in poly
rystalline materials 593.3 SAWs in poly
rystalline materialsIn 
hapter (4) a theoreti
al des
ription of SAWs is developed for the homogeneousmedium, governed by Eq. (3.10) when c′ = 0. A 
on
ise des
ription of a SAW sour
eand SAW devi
es is also presented. For the time being, an approximate solutionfor SAW is given below where the full wave is redu
ed to the sto
hasti
 Helmholtzequation in two dimensions.The term SAWs has been used to stand for surfa
e a
ousti
 waves without statingpre
isely what they are. One would simply say that SAW is a two-dimensional wavetravelling near or at the surfa
e of a sample or half spa
e as shown in Fig. (3.2).This wave emanates from a �nite line sour
e along x travelling in dire
tion z. The
PSfrag repla
ementsx

y

z

u0 SAW
Sample

Figure 3.2: Geometry of SAW in poly
rystals. The verti
al arrows pointing down-wards indi
ate the lo
ation of the initial �eld displa
ement u0. The horizontal arrowis indi
ating the dire
tion in whi
h a SAW propagates.use of a �nite line sour
e is simply be
ause the experimental setup uses a sour
e ofthis type, but SAWs are not restri
ted to this geometry.Formally, ultrasound on the surfa
e is a Rayleigh wave. Thus, the parti
le motionis 
on�ned to the yz plane being motionless in x dire
tion. Rayleigh waves, stri
tlyspeaking depend on depth, y in this 
ase but de
ay rapidly [76℄. In the type ofSAW studied here, depth is unimportant but what is really important is the normaldispla
ement to the plane xz, whi
h shall be denoted by uy or simply u. TheRayleigh wave motion is des
ribed simultaneously by the displa
ement in the other
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tions whi
h des
ribe an ellipti
 parti
le motion.The statement of the problem in general terms is to �nd a single random �eldthat satis�es Eq. (3.10), with boundary 
onditions u(x, y, 0) at z = 0. In fa
t, themain interest is the se
ond order moment 〈u(r)u(r′)〉 and to the author's knowledge,it has not been reported in the literature. Many arti
les, however have written onthe �rst moments of the �eld satisfying Eq. (3.10) for di�erent wave modes and
rystals symmetries [48℄.Sin
e one single �eld is needed to des
ribe a SAW in the geometry of Fig. (3.2),it seems that s
alar approximations would be appropriate for the present problem.3.3.1 The s
alar approximationThe boundary problem established in se
tion (3.3) in elasti
ity terms is a lateralshear motion. That is, the parti
le motion is perpendi
ular to the plane xz. Ifone assumes lo
al isotropy, that is the elasti
 moduli has the form Eq. (3.7), themathemati
al formulation developed in [40℄ establish that SAW in poly
rystals 
anbe des
ribed by a sto
hasti
 s
alar equation. That is, u satisfying Eq. (3.10) 
anbe des
ribed by a single sto
hasti
 s
alar equation. The author has redu
ed theproblem to the paraboli
 version of the sto
hasti
 Helmholtz equation. There is noway of proving at present that Eq. (3.10) 
an always be redu
ed to a s
alar equationfor the normal displa
ement u, for poly
rystals of general anisotropy, that is thosepoly
rystals with elasti
 moduli not of the form Eq. (3.7). Therefore, the additionalhypothesis to the ones introdu
ed in se
tion (3.2), is that a SAW 
an be des
ribedby a sto
hasti
 s
alar equation whi
h 
orresponds to the Helmholtz equation. Fromnow on, k0 = 2π/λ̄ will denote a mean wave number where λ̄ is the mean Rayleighwavelength, ∆ the Lapla
ian operator in two dimensions and v̄ is the mean Rayleighwave velo
ity. Thus, SAW in a poly
rystal for the geometry depi
ted in Fig. (2.1)
an be des
ribed by
∆u(r, ξ) + k2

0u = −k2
0µ(r, ξ)u(r, ξ)

u(x, 0) = w(x) (3.11)
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k2(r, ξ) = k2

0

(

v̄

v(r, ξ)

)2

= k2
0(1 + µ(r, ξ))2 (3.12)and µ would be a zero mean Gaussian random fun
tion that relates to the inhomo-geneity of the medium. The boundary problem Eq. (3.10) has been redu
ed to theboundary problem Eq. (3.11) with initial boundary 
ondition w(x) in the plane x. uis a s
alar that 
orresponds to normal displa
ement, in pra
ti
e the displa
ement isa ve
tor within plane 
omponents. Here, we negle
t the e�e
t of these on the basisthat normal(s
alar) displa
ements exhibit the statisti
al behaviour 
hara
teristi
 ofthe full displa
ement �eld.Based on this model for SAW in poly
rystals the problem will be to obtain anexpression for the mean 
orrelation fun
tion 〈uu∗〉, whi
h is the subje
t of 
hapter(5). The �rst thing to do would be to 
onstru
t an approximate solution to Eq. (3.11)based on a s
reen model. But �rst, one has to spe
ify moments of the random pro
ess

µ and 
ertain 
onditions where it is possible to give an approximate solution of theboundary problem.3.3.2 The degree of inhomogeneityThe s
alar theory does not distinguish between the elasti
 properties of the grains.The grains, in this theory are 
onsidered random s
atterers 
hara
terised by a wavenumber whi
h is a random fun
tion of position and 
hara
terised by the sto
hasti
equation, in parti
ular the �rst and se
ond moments. The wave number is mod-elled as �u
tuations with respe
t to the ba
kground wave number, this is the meanalong the ensemble of s
atterers. The wave number, whi
h is normally expressedin terms of a zero mean fun
tion µ in Eq. (3.12), whi
h is the random �u
tuationsof the a
ousti
 �eld. Those random �u
tuations are quanti�ed by the degree ofinhomogeneity de�ned as
σ =

1

k0

√

〈[k(r)− k0]2〉 (3.13)
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rystalline materials 62Eq. (3.13) measures the random �u
tuation with respe
t to the mean wave number
k0. The bra
kets here denote an ensemble average. The average is taken along allrealisations for the spatial grain 
on�gurations.The ultrasound 
onsidered here is a SAW that travels with the Rayleigh wavevelo
ity. It is well known that, this velo
ity in terms of the Poisson ratio ν isapproximately given by [76℄

v =
0.862 + 1.14ν

1 + ν
vs

= p(ν)vs (3.14)The velo
ity at whi
h the SAW is travelling in a poly
rystalline material 
an there-fore be given as p(ν)vs(r), where vs(r) is the velo
ity for shear waves previouslyde�ned for poly
rystalline materials. Thus, the wave number in terms of vs has theform
k(r) =

ω

v(r)
(3.15)

=
ω

p(ν)vs(r)The inhomogeneity degree de�ned in Eq. (3.13) relates in an obvious way to thevarian
e of pro
ess µ. The standard deviation for µ is de�ned as σ =
√

〈µ2〉;it shall be seen that σ is important in the 
orrelation of the �eld. The se
ondmoments of k are de�ned in terms of this parameter. From now on, σ and thedegree of inhomogeneity would mean exa
tly the same quantity. The parameter σ
an be expressed in terms of the �u
tuations of the elasti
 moduli in poly
rystallinematerials. Re
alling that vs(r) =
√

c44(r)/ρ is de�ned in terms of the s
alar pro
ess
c44, let c′ denote the �u
tuations with respe
t to the mean c0

44; thus
c′44 =

c44(r)− c0
44

c0
44

(3.16)From Eq. (3.15), after inserting the de�nition for the velo
ity vs the ratio (k(r) −
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k0)/k0 in terms of c44 and c0

44 is given by
k − k0

k0

=

√

c0
44 −

√

c44(r)
√

c44(r)

=

√

c0
44

c44(r)
− 1

=
1

√

c′44 + 1
− 1 (3.17)If the �u
tuations within a grain are small, that is ‖c′44‖ ≪ 1, the term on the righthand side in Eq. (3.17) is approximated by the linear term of its Taylor expansionaround zero. In doing so,

1
√

c′44 + 1
− 1 = (1− 1

2
c′44 +

3

8
(c′44)

2 + · · · )− 1

≈ −1

2
c′44 (3.18)Squaring both sides of Eq. (3.17) and inserting Eq. (3.18) in the expression, the stan-dard deviation or degree of inhomogeneity σ in terms of the anisotropy �u
tuationwithin grains is given by

σ ≈
√

〈(c′44)2〉
2

(3.19)The physi
al meaning of the standard deviation is now 
lear from Eq. (3.19). Thestandard deviation is half the standard deviation of one entry of the elasti
 modulimatrix. This entry a

ounts for wave velo
ity �u
tuations with the grains. Thus,the standard deviation σ measures the overall degree of anisotropy of poly
rystallinematerials. The standard deviation 
an also be related to statisti
al geometri
al
hara
teristi
s of poly
rystals via a 
orrelation fun
tion of the wave-number. In thefollowing se
tion it will be seen in whi
h way σ relates to the 
orrelation fun
tion of
k.
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al 
hara
teristi
s of the mediumReal materials 
an have very 
ompli
ated mi
rostru
tures, so an approximate de-s
ription is potentially sus
eptible to large errors. In general, grains 
an be 
on-sidered as randomly distributed spatially with preferred or random orientation, andma
ros
opi
ally the material 
an be isotropi
 or anisotropi
. �Randomly distributed�or just �randomly� is being used here as a generi
 word; so the spatial arrangement ofgrains may follow any probability distribution. Here, for theoreti
al simpli�
ationsthe sample is 
onsidered as being 
omposed of randomly oriented s
atterers whi
hare either isotropi
 or weakly anisotropi
. This is a restri
tive approximation but itappears to be justi�ed as it explains many of the observed phenomena.At this stage, no progress 
an be made without assuming statisti
al propertiesfor µ. There is experimental eviden
e, whi
h is the subje
t of 
hapter (6), to assume
µ to be Gaussian and lo
ally isotropi
. By lo
al isotropy (isotropy in the sto
hasti
pro
esses 
ontext), it means that Dµ = 〈[µ(r)− µ(r′)]2〉 depends only on the di�er-en
e r = ‖r− r′‖ and that the 
orrelation of µ is invariant under translations. Thisassumption is ne
essary in order to give an approximated solution to 〈u(r)u(r′)〉.Another important point is the grain shape, whi
h 
an be des
ribed basedon the s
ale length l. This length expli
itly des
ribes the form of 
orrelation
Γk = 〈k(r)k(r′)〉, whi
h also fully des
ribes µ. A single model is being used whi
h
hara
terises µ statisti
ally in terms of σ and l. This is a fair representation of met-als with equiaxed grains whose spatial distribution 
an be des
ribed by an isotropi
random fun
tion. Complex stru
tures su
h as inhomogeneous grain size distribu-tion -elongated grains- will require a more sophisti
ated model. Mi
ro-stru
tureswith grains elongated in a preferred dire
tion 
an experimentally be investigated bypropagating ultrasound at multiple dire
tions.Moreover, in what follows the se
ond order moment Γµ = 〈µ(r)µ(r′)〉 
an takeany form as long as it is a fun
tion of r− r′ only. But the exponential form Γµ =

σ2 exp[−|r − r′|2/l2] has been shown to be useful in other areas to des
ribe realphysi
al phenomena, [47℄. The fun
tion Γu will depend on two parameters in thisapproximation: the degree of anisotropy and a 
orrelation length l. The 
orrelation
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l indi
ates the distan
e where two points bear no statisti
al 
orrelation, that is fortwo points, su
h that ‖r− r′‖ > l then Γµ → 0 . This 
orrelation distan
e is 
loselyrelated to the mean diameter of the grains. They are, in fa
t the same quantity asshown in se
tion (3.3.3) below, where a pre
ise meaning of the diameter of the grainis also introdu
ed.Mean grain sizeThe mean grain size or more general geometri
 features of mi
rostru
ture are im-portant parameters in material 
hara
terisation. There is no simple method or evena simple number that best des
ribes geometri
al features of grains. There are sev-eral standards for measuring grain size used in industry. One very popular amongmetallurgists that uses a statisti
al estimation of mean grain diameter by laying outline segments of random length on a mi
rograph and 
ounting the number of grainboundary interse
tions [94℄ within segments.Many other important stereologi
al methods are available to des
ribe geometri
features for a given 
on�guration of mi
rostru
ture whi
h are reviewed in [34℄. Themean 
alliper diameter b̄ is dis
ussed, for any geometri
 obje
t X ⊂ R2, de�ned as

b̄ =
1

π

∫ π

0

b(Xθ)dθ (3.20)where b(Xθ) is the proje
tion of Xθ onto the y axis, see Fig. (3.3). Xθ is the sameobje
t X but rotated an angle θ around zero, that is Xθ = M · X is a rotationof X around the origin. The integral in Eq. (3.20) averages the length of all linesthat 
onne
t two points in ∂X that are diametri
ally opposed with respe
t to M .The symbols ∂X stand for the boundary of the obje
t X. For a polygonal X withverti
es vn = {zn | zn ∈ C}, M = eiθ and M ·X be
omes the 
onvex hull of {eiθvn}.The 
onvex hull of {vn} is the minimum 
losed polygon 
ontaining the points vn.The mean 
alliper diameter is a measure of the �average� diameter of a shape. Itis determined by taking the average, over angle (or solid angle), of the distan
ebetween two limiting lines (or planes) bounding the extremities of the shape as the
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Figure 3.3: Rotation of obje
t X around zero, whi
h represents grain around. Thematrix M rotates X by an angle θ, the 
alliper diameter is the distan
e between thepoints interse
ting the verti
al axis as indi
ated by b(X0) and b(Xπ/2).shape is rotated, see Fig. (3.3). Therefore, ¯̄b is de�ned as the average of b̄ overthe number of shapes X. If X is 
onvex L(X) = πb̄(X) where L(X) =
∫

∂X
ds isthe length of the boundary ∂X. The above is a good theoreti
al de�nition, and itwas used to 
hara
terise the aluminium samples for the experimental work. The
onne
tion between the 
orrelation length l and the mean 
alliper diameter is doneby simulating grain spatial 
on�guration using Voronoi 
ells as will be shown inse
tion (3.3.4).3.3.4 Simulating the mi
rostru
ture of poly
rystalsIn order to generate realisations of the phase variation φ one needs to know pre
iselythe properties of the poly
rystal. This, as has been dis
ussed in se
tion (3.3.3) isdi�
ult in general. The wave number k was expressed as mean k0 plus a �u
tuatingpart µ in Eq. (3.12), and some assumptions were introdu
ed for the pro
ess µ, su
has the 
orrelation fun
tion Γµ to des
ribe the medium. Realisations of the pro
ess

φ 
an be given if Γµ is known as explained below. Another method is by simulating
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tual mi
rostru
ture of the poly
rystals by using Voronoi 
ells. This methodwill be explained �rst by introdu
ing the Voronoi 
ells.The simulation of mi
rostru
ture is a 
ommon pra
ti
e in the area of material
hara
terisation for theoreti
al and pra
ti
al reasons [44, 34℄. One of the most widelyused not only for its mathemati
al simpli
ity but for its 
losest resemblan
e to realmi
rostru
ture is the Poisson Voronoi tessellation. Here, in this 
hapter only briefintrodu
tion of its potential is given. The aim here was to simulate wave velo
ityvariations within the material as well as to investigate the relationship between themean grain size Eq. (3.20) and the 
orrelation length l of the pro
ess µ introdu
edearlier in se
tion (3.3.3).The Voronoi 
ellsThe Voronoi tessellation is based on a Poisson random pro
ess in spa
e. This pro
esspla
es a number of random points that serve as seeds for the regions that de�ne thetessellation of the spa
e. To begin with, 
onsider a domain B ⊆ R2 in the twodimensional Eu
lidean spa
e. A Poisson pro
ess N(B) in the domain B is a randompro
ess that generates N pairs of points within B, with Poisson statisti
s. In fa
t,
N(B) gives the number of regions in whi
h B is going to be divided thus the averagesize of ea
h region. This implies that the size distribution and mean size of ea
hregion is a statisti
al estimation that depends on how the seeds are generated.The starting point to generate the seeds in B that predetermine the tessellation isby generating samples of the random variableN(B). Let us generate a number N(B)with Poisson statisti
s. The seeds in B are obtained by generating N(B) points in B,that is (x1, y1), ..., (xN(B), yN(B)) ∈ B, where xk, yk are uniformly distributed randomvariables. The pairs {xk}, {yk} are arbitrary random variables and to ensure all thepoints belong to the domain B, a simple linear transformation is applied.The statisti
al properties of the random variable N(B) are weighted via a 
on-stant λ and the volume of the 
ells but 
an be generalised with λ as a fun
tion ofposition. Thus, the �rst moment takes a simple form , i.e. 〈N(B)〉 = λvB, see [39℄for more details. In the 
ase of the generalised Poisson pro
ess, that is when λ(r),
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r ∈ B, the seeds 
luster together on spe
i�
 regions in B depending on the form of
λ. This type of pro
ess is parti
ularly useful if one is interested in an inhomogeneousdistribution of the regions. For simpli
ity we have taken λ to be 
onstant sin
e itserves to our purposes.In order to de�ne Voronoi tessellation from samples of N(B), N(B) uniformlydistributed points b1, ..., bN(B) in B are generated.The regions that de�ne the Voronoi tessellation as subsets of the Eu
lidean spa
eare de�ned as the open 
onvex sets

Bk = {x ∈ R
2 | ‖x− bk‖ < ‖x− bl‖, k 6= l} (3.21)Geometri
ally the regions Bk that tile the entire spa
e are 
onstru
ted by �ndingthe line perpendi
ular to the segment that 
onne
ts two adja
ent seed point bk.This 
onstru
tion is also valid for generation of polytopes in three dimensions whereplanes are to be found instead of lines. By de�nition of tessellation Bk ∩Bl = ∅ for

k 6= l. The above 
onstru
tion is the simplest version of Voronoi tessellation but it

Figure 3.4: The Poisson Voronoi tessellation simulating mi
rostru
ture of poly
rys-tals. Only a few regions are being showed for illustration purposes. The dots insidethe regions are the seeds from whi
h regions are grown.
an be generalised almost arbitrarily [34℄, where a full range of statisti
al estimatorsof geometri
al features is also reviewed. It is a simple task using open sour
e soft-ware1 to generate Voronoi tessellation. Fig. (3.4) shows the regions tessellating theset B = [0, 1] × [0, 1] by generating N(B) uniformly distributed random variables1qhull http://www.qhull.org/
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bk = (xk, yk) ∈ B. By 
onstru
tion, almost everything is known using this numeri-
al te
hnique for mi
rostru
ture simulation, namely area and size distribution of theregions and also their statisti
al properties. The unitary polytope has been 
hosenbe
ause real areas 
an always be normalised.The simulated mi
rostru
ture had two purposes: (1) phase s
reens were designedto obtain the representation for the a
ousti
 �eld in 
hapter (3). (2) it has helpedin making a better �rst estimate for the 
orrelation fun
tion Γµ 
hara
terising theinhomogeneities as well as the relationship between the 
orrelation length and themean grain size for real mi
rostru
ture.Wave velo
ity variationsThe idea is to repla
e the 
ontinuous model for velo
ity variation for a dis
reteversion, the two being statisti
ally equivalent in the se
ond order sense, that is, twopro
esses that have same or similar 
orrelation fun
tion. Let σ2 be the varian
e of
µ and let us simulate the wave number in simulated media as follows: If Bn arethe polygons tiling randomly the entire spa
e and cn are independent zero meanGaussian variables with varian
e 1, hen
e k 
an be simulated as

k(r) = k0 + k0σ
∑

cn1Bn
(r) (3.22)Here 1Bn

denotes the fun
tion
1Bn

=







1 r ∈ Bn

0 otherwise .The wave number de�ned in this way relates dire
tly to the de�ning mi
rostru
ture.The regions Bn were generated using Voronoi tessellation enabling samples for thewave number to be reprodu
ed by the algorithm presented in appendix (A.4). Thealgorithm gives the 
oordinates of the verti
es de�ning the polytope of the simulatedmi
rostru
ture and this 
an be used to �ll the regions with normal random variablesusing Eq. (3.22).
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Figure 3.5: a) Realisation of the wave number k in a simulated mi
rostru
ture show-ing deviations from mean value in arbitrary units. b) A realisation of φ generatedusing Eq. (3.22) by generating the Gaussian variables cn.The spatial 
orrelation of grain distributionAt this point nothing has been said about the 
orrelation length l of the pro
ess µand its relationship to the mean grain size of poly
rystalline mi
rostru
ture.The pro
ess in Eq. (3.22) depends on two random pro
esses simultaneously,namely the Poisson variable N(B), the uniform variables giving the a
tual positionof the seed and �nally the Gaussian pro
ess that models velo
ity �u
tuation withinthe grains. This dependen
e 
ompli
ates the 
al
ulation of the 
orrelation Γµ de�nedin this form. One would be tempted to 
ompute an exa
t expression but that isnot as straightforward as it may look. For the purpose of simulating the a
ousti
�eld this was not ne
essary but one needs to �nd a relationship between the meangrain size and 
orrelation length for the pro
ess de�ning the inhomogeneities wherethe wave is to propagate. This relationship is found by the two-dimensional Fouriertransform of Eq. (3.22) and �tting an appropriate fun
tion to the result.Using the well known Wiener-Khin
hine theorem whi
h says that the auto
or-
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Figure 3.6: a) Simulated mi
rostru
ture using Voronoi 
ells. b) The two-dimensionalFourier transform of M normalised to maximum value. 
) Comparison of the trans-verse 
orrelation fun
tion ΓM as indi
ated by the dashed line in (b) to Γµ = e−4 τ2

l2to obtain l or ¯̄b.relation is the inverse Fourier transform of power 
orrelation,
ΓM =

∫

MM∗e−iτtdt (3.23)Here M = ∪kBk is the union of the region that 
omposed B. This method dire
tlymeasures the 
orrelation that two points r1, r2 ∈ M may have, that is Γµ showswhether or not r1, r2 are in the same region. Γµ turned out to be symmetri
 withrespe
t to zero as as it 
an be seen in Fig. (3.6)(b).The Fig. (3.6)(a), shows a simulated grain stru
ture with N regions. Fig. (3.6)(b)is the two dimensional Fourier transform of M , i.e. ΓM whi
h is a symmetri
 fun
-tion that 
learly resembles an exponential fun
tion. The size of the spot of ΓM is
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aliper diameter of the regions as shown on the right handside of Fig. (3.6)(
).This simulation shows that for mi
rostru
ture with equiaxed grains the expo-nential fun
tion Γµ = e−
4τ2

l2 
an be used as a good approximation for the 
orrelationfun
tion of the pro
ess a

ounting for the wave velo
ity �u
tuations. The mean
alliper diameter ¯̄b was obtained from M and substituted into Γµ showing the resultin Fig. (3.6)(
).3.4 Con
luding remarksA theoreti
al des
ription of SAWs in poly
rystalline materials has been presentedbased on the full wave theory for elasti
 poly
rystals. The normal displa
ementgiven by the full theory was redu
ed to a s
alar des
ription as a limiting 
ase. Theadvantages of the s
alar des
ription over the full ve
torial theory is the simpli�edmathemati
al des
ription of SAWs in poly
rystalline materials. In this des
ription,velo
ity variations within grains 
an be simply des
ribed by a single sto
hasti
 pro-
ess avoiding the 
ompli
ated expression arising from tensor pro
esses. The degreeof inhomogeneity and 
orrelation length in the s
alar approa
h have a dire
t physi
almeaning in relation to mi
rostru
ture of the poly
rystal.The des
ription of SAWs in poly
rystals using a s
alar theory has been donewithin the paraxial approximation; this appeared a very restri
tive approximationbut it will be seen that most of the experimental phenomena observed 
an be ex-plained within the framework of this approximation.The anisotropy or degree of anisotropy is des
ribed in terms of the elasti
 modulibut it has been related to the standard deviation of the wavenumber in the s
alardes
ription in su
h a simple way that the standard deviation has 
learly a physi
almeaning. The 
orrelation length of the wavenumber 
ould also be dire
tly relatedto the mean grain size of the poly
rystal. This relationship is not so obvious aswith the standard deviation be
ause it uses the hypothesis that the random wavevelo
ity �u
tuation is an isotropi
 random pro
ess with a Gaussian 
orrelation fun
-
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tive sin
e real mi
rostru
tures may be farmore 
ompli
ated. To support this idea, a Voronoi model for simulating real mi-
rostru
ture was used to investigate the 
orrelation fun
tion of the wave velo
ity�u
tuation in poly
rystalline mi
rostru
tures. The results showed that for poly
rys-tals with mainly 
onvex equiaxed grains the assumption of Gaussian 
orrelation is agood approximation. The relationship between the 
orrelation length of the pro
essmodelling the 
hara
teristi
s of the medium was also numeri
ally investigated. Thiswas ne
essary to 
orroborate that the 
orrelation length is in fa
t proportional tothe mean grain size.



Chapter 4
SAW waves in poly
rystallinematerials
Introdu
tionIn 
hapter (3) was stated that SAW in inhomogeneous media 
an be des
ribedby the sto
hasti
 wave equation to a good approximation. This 
hapter is the
ontinuation of the statement in that an approximate solution to the sto
hasti
equation is presented. The solution is given in two stages. The �rst one will 
omprisethe propagation of SAWs in homogenous media. This will follow from theory forSAW in isotropi
 solids by means of Green's fun
tion theory. The a
ousti
 �eld onthe homogenous half-spa
e is approximated using the angular spe
tral expansionfor �elds that satisfy the Helmholtz equation in a homogeneous half spa
e with noboundaries. This result is used in the se
ond stage in 
onjun
tion with a phases
reen model for waves in random media to give an approximate solution to thesto
hasti
 wave equation.The idea of using the phase s
reen model is to approximate the variations of thea
ousti
 �eld 
aused by the mi
rostru
ture using a simple model rather than solvingthe sto
hasti
 wave equation. This approximation 
onsideraby redu
es the math-emati
al 
al
ulations involved and gives a dire
t way for obtaining the 
orrelationfun
tion of the �eld. The aberrations of the �eld strongly depend on the 
hara
-
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s of the medium. These, were des
ribed in se
tion (3.3.3) by the sto
hasti
pro
ess that 
hara
terises wave velo
ity �u
tuation; thus phase s
reens and wave ve-lo
ity �u
tuations are fun
tionally interlinked. This fun
tional dependen
y, 
omesnaturally sin
e the phase s
reen model and the Helmholtz equation in its paraboli
form are related.The overall approa
h is to divide the region of interest, a slab in this 
ase, alongone of the axes, and into many layers of equal thi
kness thus approximating the �eldwithin ea
h layer by means of a phase s
reen and half spa
e propagation. The totala
ousti
 �eld is then given as a multiple integral. The obje
tive and 
onvenien
eof this integral representation is to fa
ilitate or be able to 
al
ulate se
ond ordermoments of the �eld. These 
al
ulations are part of 
hapter (5) and will not bedis
ussed here.At the end of this 
hapter some numeri
al implementations are dis
used as partof the overall development. Generation of realisations of the a
ousti
 �eld in randommedia implies ne
essarily generation of a realisation of the pro
ess a

ounting forthe aberrations. The numeri
al implementation of phase s
reens is done by usingtwo methods. The �rst one has already been introdu
ed in se
tion (3.3.4) as part ofmi
rostru
ture simulation. The se
ond one, whi
h is used in this 
hapter, generatesrealisations by using the 
orrelation Γµ of pro
ess µ, dis
ussed in 
hapter (3.3), bymeans of the Fourier transform. A brief dis
ussion of the development of a SAWfrom a series of straight lines evenly distributed is also presented. This type of sour
eis related to the instrument used in the experimental work presented in 
hapter (6).A more detailed des
ription of ultrasound generation from this type of sour
e isin
luded in the appendix.4.1 Propagation in random mediaThe full wave theory presented in 
hapter (3) in
ludes SAWs in inhomogeneous aswell as homogeneous media. The homogeneous media is in
luded in the theory bysetting the �u
tuating part c′ to zero of the elasti
 moduli in the stress-strain rela-
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rystalline materials 76tionship Eq. (3.4). The homogeneous medium, in prin
iple, in
ludes both anisotropi
and isotropi
 materials, but to a good approximation in this thesis the theory is only
onsidered for the isotropi
 
ase. Thus, from the elasti
ity Eq. (3.10) it is possible todes
ribe SAWs in a homogeneous isotropi
 material. This is done by providing ex-pli
itly the Green's fun
tion of Rayleigh waves developed in [17℄ for the point sour
eexpansion. The expli
it des
ription of SAWs in homogenous media is important forthe approximation of SAWs in the inhomogeneous 
ase, so it will be developed �rst.An important point, whi
h will demonstrated, is that SAWs 
an also be given asa solution of the Helmholtz Eq. (3.11) in the homogeneous half spa
e. From this,and some intuition, it is possible to 
on
lude that SAWs in the inhomogeneous 
aseare also given by Eq. (3.11) using the phase s
reen model. Although, a mathemat-i
al justi�
ation is not as simple as for the homogenous 
ase, it is important toshow that a des
ription of SAWs in inhomogeneous media 
an also be given by thesto
hasti
 equation, Eq. (3.11). This is be
ause se
ond order moment or 
orrelationfun
tion theory of the s
alar a
ousti
 �eld is mostly based on Eq. (3.11). Most ofthe mathemati
al development in this 
hapter is left for an appendix, spe
ially the
al
ulations of the �eld using phase s
reens.4.1.1 Displa
ement from a line sour
e in the half spa
eThe theoreti
al development presented in this se
tion by means of Green's fun
-tions applies to any type of sour
es for SAW generation. The Green's fun
tion isindependent of the sour
e utilised for SAW generation. In this se
tion however,the normal displa
ement depends on a laser pro�le. The reason for that is be
ausethe mathemati
al development to represent point sour
es has been done within theframework of SAW generation by thermal expansion using lasers in [17℄. This 
ouldhave been removed for the sake of generality in this thesis but it is important to keepit that way be
ause experimental work is mainly 
on
erned with laser ultrasoni
s.The des
riptions of line sour
es are required be
ause the instrument to 
arry out theexperimental work uses a line sour
e for SAW generation. But again, the approa
his not 
on�ned to line sour
es.
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rystalline materials 77The sour
e S is assumed to lie within the plane xz and �nite in the x, z axis asdepi
ted in Fig. (4.1). Thus, the (x, y, z > 0) 
oordinate system will represent thehalf-spa
e of a homogenous or inhomogeneous material. The elasti
 wave Eq. (3.10)give as a result the displa
ement in every dire
tion. For the geometry being 
on-sidered, the SAW will be the normal displa
ement to the xz plane. This is thedispla
ement in dire
tion y.The position of the sour
e is in the plane xy at z = 0. The sour
e region S isrepresented by a di�erent set of 
oordinates (α, β) and its dimension is 
ompletelydetermined by a, b. The additional 
oordinate system (α, β) is ne
essary to integrateall the 
ontributions from point sour
es 
ontained within the region S generating theSAW. In the geometry of Fig. (4.1) parti
les within the material are supposed to be
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Figure 4.1: Geometry of SAW on the half-spa
e generated by a line sour
e S.motionless along the x-dire
tion. The only motion that matters in SAW waves is thedire
tion of propagation along z and the upwards and downwards parti
le motionalong y−axis. In the general 
ase one would have displa
ement in all dire
tionsand the boundary problem is solved by giving an appropriate Green's fun
tion thatrepresents displa
ements in ea
h dire
tion.Let uy0 be the normal displa
ement given by solving equations Eq. (3.10) of apoint sour
e for the geometry shown in �gure Fig. (4.1). The Green's fun
tion for alinearly elasti
 isotropi
 material from a point sour
e is developed in [17℄, thus the
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rystalline materials 78normal displa
ement uy0 due to a point sour
e is given by
uy0(r, t) = Aq(t)⊗ H(t− sRR)

√

t2 − s2
RR2

(4.1)where A is a 
onstant that depends on the material properties. All the 
onstantsinvolved in de�ning A are given in appendix (A.6). The fun
tion q(t) is the laserenvelope used to generate a point sour
e on the surfa
e of the materials. H is thestep fun
tion and sR = 1
cR
, with cR being the mean Rayleigh wave velo
ity. Here,the variable t represents time.Adding all the 
ontributions emanating from ea
h point with the region o

upiedby the sour
e S is equivalent to integrating uy0 over the region S weighted with anappropriated fun
tion representing the spatial energy distribution. Let w(α, β) bethat spatial laser pro�le, then the displa
ement, denoted by uy(r, t) at r = (x, z)away from the sour
e is

uy(r, t) =

∫∫

S

w(α, β)uy0(R, t)dαdβ

=

∫∫ ∞

−∞
Πabw(α, β)uy0(R, t)dαdβ (4.2)where R =

√

(x− α)2 + (z − β)2. In order to be able to integrate Eq. (4.2) it isne
essary to know w expli
itly. A very detailed dis
ussion of the fun
tion w is givenin se
tion (4.1.5) where uy will be plotted in the frequen
y domain.The integration over the sour
e was 
hanged to in�nity and this is possible, onlyin this 
ase that S is a line, be
ause of the introdu
tion of the step fun
tion in twodimensions, that is
Πab =



















1 |α| ≤ a

1 |β| ≤ b

0 otherwise (4.3)where a , b is the width and length of S, respe
tively.A further step in this development is to substitute the expression for uy0 in theabove integrals and transformed into the frequen
y domain. The transformation
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rystalline materials 79from the temporal to the frequen
y domain is both for mathemati
al 
onvenien
e andalso be
ause the experimental work was 
arried out at a single frequen
y. Therefore,the displa
ement is transformed into the frequen
y domain by taking the Lapla
etransform on both sides of Eq. (4.2). The transformation is simpli�ed by using the
onvolution theorem. In doing so one has
L[uy0] = AL[q]L[g] (4.4)where L is the symbol denoting the Lapla
e transform and g = H(t−sRR)√

t2−s2
R

R2
.Before pro
eeding any further let us re
all that the Lapla
e transform of theGreen's fun
tion is the modi�ed Hankel fun
tion H

(1)
0 , hen
e

L[g(x, z; α, β)] =
iπ

2
H

(1)
0 (k̄R) (4.5)where k̄ = ω

cR
, see [78℄ page 288.Denoting the Lapla
e transform of uy by u and applying the Lapla
e operator Lto both sides Eq. (4.2) after inserting Eq. (4.4),Eq. (4.5) gives
u(r, ω) = AL[q(t)]

∫∫

S

w(α, β)L
[

H(t− sRR)
√

t2 − s2
RR2

]

dαdβ (4.6)
=

iπA

2(iωτ + 1)2

∫∫

S

w(α, β)H
(1)
0 (k̄R)dαdβ (4.7)Note that L[q(t)] = 1

(sτ+1)2
, with s = iω and ω is the angular frequen
y.The above representation for the displa
ement 
an be easily evaluated sin
e theHankel fun
tion has been numeri
ally implemented elsewhere. However, a betterrepresentation for numeri
al evaluation is to expand H

(1)
0 in plane waves.This 
an be a

omplished by re
alling that H

(1)
0 
an be expanded in plane wavesin the same manner as u. After the insertion of this expansion for the Hankel
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tions u be
omes
u(r, ω) =

iπA

2(sτ + 1)2

∫∫∫

Παβw(α, β)
eik̄(x−α)p+ik̄(z−β)

√
1−p2

√

1− p2
dαdβdp

u =

∫

a(p, ω)eik̄xp+ik̄z
√

1−p2
dp (4.8)where

a(p, ω) =
iπA

2(iωsτ + 1)2

∫∫

Παβw(α, β)
eikαp+ikβ

√
1−p2

√

1− p2
dαdβ (4.9)and the variable p denotes spatial frequen
ies. The fun
tion a looks 
ompli
atedbe
ause of the double integration over the weight fun
tion w and plane waves. Thisapparent 
ompli
ation 
an be over
ome by simply realising that

u(x, 0, ω) =

∫

a(p)eik̄pdp (4.10)In other words, the angular spe
tral representation is the Fourier transform of theinitial displa
ement evaluated at the spatial frequen
ies k̄p. In summary, the 
al
u-

PSfrag repla
ements

z(mm)

x

(mm)
(a)

z(mm)

x

(mm)
(b)

−π 0 π

0 0.05 0.1

0 0.5 1

0 0.05 0.1

00.10.20.30.40.50.60.70.80.91
-0.15-0.1-0.0500.050.10.15

00.10.20.30.40.50.60.70.80.91

-0.15-0.1-0.0500.050.10.15
Figure 4.2: a) Amplitude of the 
omplex normal displa
ement (arbitrary units). b)Phase distribution (radians)lation of the normal displa
ement from a line sour
e has been redu
ed to the angular
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rystalline materials 81expansion of the �eld and the frequen
y 
omponents of the laser are the frequen
y
omponents of the displa
ements. As it 
an be seen the important quantity here isthe initial displa
ement at z = 0. In the experimental setup the idea was to propa-gate a plane wave but be
ause of the �nite size of the sour
e it be
omes a trun
atedplane wave. Thus, ideally the normalised initial displa
ement would be
u(x, 0, ω) =







1 x ∈ [−a
2
, a

2
]

0 otherwise (4.11)Using this in Eq. (4.8) the resulting displa
ement of the �eld is shown in Fig. (4.2).Fig. (4.2)(a) is the amplitude of the normal displa
ement and initial displa
ementgiven by Eq. (4.11) whereas Fig. (4.2)(b) shows the phase. The wave propagatesfrom left to right.It is now easy to re
ognise that the last expression in Eq. (4.8) is the angularspe
tral representation of the normal displa
ement u(r, ω), as developed in [70℄. Itis straightfroward to 
he
k that u(r, ω) satisfy Eq. (3.11) sin
e eikxp+ikz
√

1−p2 is aplane wave satisfying the Helmholtz equation.4.1.2 Propagation through a random thin layerIn se
tion (4.1.1) the normal displa
ement or SAW was developed for homogenousisotropi
 materials. This result is used in the present se
tion for SAWs in inhomo-geneous media. Spe
i�
ally, an approximation for the a
ousti
 �eld will be given inthe slab (x, 0 ≤ z ≤ L) 
ontaining inhomogeneities. In order to a
hieve that, theregion of interest is divided in layers of equal thi
kness δz along the propagationdistan
e, in this 
ase the z axis. Thus, the geometry will be as in (4.1.1), �gureFig. (4.1).The displa
ement u(r, ω) in Eq. (4.8) is frequen
y dependent. In this thesis, asingle frequen
y will be needed for 
omparison with the experimental work. Thedes
ription of the SAW in this se
tion therefore will be in the frequen
y domain.The frequen
y will be dropped from the notation for the rest of the 
hapter as it
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rystalline materials 82will be understood that the displa
ement depends on it. The �rst step in a
hieving
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a b
v

δzδzFigure 4.3: S
hemati
 representation of ultrasoni
 propagation in a random mediumusing phase s
reen theory.propagation in a random slab is to 
onsider a thin layer of thi
kness δz and in
ident�eld v = u(x, 0) to the layer, as shown in Fig. (4.3)(a). Some assumptions have tobe made in order for this approximation to work. Firstly, that forward s
atteringwithin the layer is stronger than ba
kward s
attering so it 
an be negle
ted to agood approximation. As a result, the phase of the �eld will be the only one a�e
tedleaving the amplitude un
hanged. Se
ondly, the layer is thin enough for all pointsbelonging to the wavefront of the �eld to follow approximately straight lines. Thismeans that the phase 
hanges 
an be represented by a phase s
reen. Essentially, aphase s
reen is a 
omplex number eiφ where φ is a random pro
ess representing the
hara
teristi
 of the medium. Below, it will be seen how the pro
ess φ is relatedto pro
ess µ a

ounting for wave velo
ity �u
tuations, whi
h was �rst mentioned inse
tion (3.3.1).Let us 
onsider the situation as shown in Fig. (4.3). The idea is to substitutethe �eld within the inhomogeneous region Fig. (4.3)(a) by the in
ident �eld to thelayer times a 
omplex number or phase s
reen that depends on the 
hara
teristi
sof the medium. The phase s
reen is lo
ated in the middle of the layer as shown inFig. (4.3)(b). The approximation is as follows: instead of solving Eq. (3.11) withinthe random layer, the in
ident �eld v is propagated in a half spa
e using Eq. (4.8)to a distan
e δz
2
, then the resultant �eld is multipled by a phase s
reen eiφ, whi
hgives the normal displa
ement u(x, δz

2
) behind the s
reen.
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rystalline materials 83Let us denote by uin the �eld from 0 to δz
2
in half spa
e having v as sour
e at

z = 0, thus the �eld behind the s
reen 
an be written as
u(x, z) = uin(x, z)eiφ(x) (4.12)The inhomogeneous medium has been repla
ed by a phase s
reen that modi�es thephase leaving the amplitude un
hanged. The situation is depi
ted in Fig. (4.3)(b)where the s
reen is being represented by a thin box. The phase s
reen has beenallo
ated in the middle of the slab but it 
ould have been at the entran
e of thelayer.In the 
ontinuous model v is expe
ted to follow random paths whi
h dependon the statisti
s of the medium, in this 
ase the pro
ess µ, whereas in the presentsituation, the impli
it assumption is that those paths are indeed straight lines. Thephase φ, therefore, has the following fun
tional dependen
e [95, 57, 60℄ as
φ(x) =

k0

2

∫ δz

0

µ(x, z′)dz′ (4.13)The Eq. (4.13) indi
ates that the overall phase 
hange experien
ed by the �eld is infa
t the integrals of all possible 
hanges indu
ed by the inhomogeneities within thelayer. Again, the reason for the appearan
e of the pro
ess µ in Eq. (4.13) is be
auseit has been assumed that u within the layer is approximately given by solving thesto
hasti
 Eq. (3.11). It has to be said, that the fun
tional dependen
y Eq. (4.13)is only valid in 
ase of weak ba
ks
attering or equivalently if the �eld is given bythe paraboli
 form of Eq. (3.11), see [60℄.To end this, the �eld u in Eq. (4.12) is again propagated in the half spa
e to adistan
e δz
2
. Thus, by taking the Fourier transform with respe
t to x of Eq. (4.12)and using Eq. (4.8), and reverting ba
k again to the spatial domain by performingthe inverse transform gives the angular representation for u in a random medium asfollows:

u(r) =

∫

[v̂(p)h(p,
δz

2
)⊗ ŝ(p)]h(p,

δz

2
)eipxdp (4.14)
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rystalline materials 84Here v̂, ŝ denote the spatial Fourier transform of v and s = eiφ, respe
tively. Thefollowing substitution has been made, h = eik̄px+ik̄z
√

1−p2 to represent the fun
tionpropagator to simplify Eq. (4.14). The symbol ⊗ stands for spatial 
onvolutionbetween two fun
tions. A �eld propagating through an inhomogeneous layer hastherefore been approximated by distorting the phase of its elementary 
omponentsby φ. In order to extend the above development to the entire domain (x, 0 ≤ z)the �eld is expressed in the Fourier domain by relabelling the �eld to indi
ate thenumber s
reens and their pre
ise lo
ation within the region (x, 0 ≤ z). This isexplained in great detail in the following se
tion.There is an important point to bear in mind. The thi
kness δz is taken to be ofthe order of the 
orrelation length of k(r), see se
tion (3.3.3) for a pre
ise meaningof the 
orrelation length.4.1.3 Propagation through many layersLet us divide the slab D = (x, 0 ≤ z) in N layers of thi
kness δz and let us assume,for the sake of symmetry, that the s
reens are lo
ated at δz
z
. The phase 
hange forea
h s
reen is relabelled as φn(x), let ŝn be the Fourier transform of s = eiφn(x).The situation within the nth layer is s
hemati
ally showed in Fig. (4.4). In order toapproximate the �eld within the slab D formulation Eq. (4.14) is applied re
ursivelyfor ea
h layer. As the in
ident �eld v is propagated from one layer into anotherthe phase s
reen re
ursively multiplies as well as the fun
tion h. Be
ause u hasbeen expressed as a integral as well as a 
onvolution, equation Eq. (4.14), the �nalexpression would be given as a multiple integral. To express the long representationin a single expression let us label the �eld with ea
h layer by un, thus un representsthe �eld at distan
e nδz away from the sour
e. For ea
h layer, one needs a set ofdi�erent dummy variables to represent the �eld as in Eq. (4.14), thus let pn be thatvariable and making hpn

= h(pn,
δz
2
).Assuming that v propagates to a distan
e nδz, and taking into a

ount that

F [un(x, nδz)eiφn(x)] = ûn(pn, nδz)⊗ ŝ(pn) (4.15)
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Figure 4.4: S
hemati
 representation of the nth layer repla
ed by the phase s
reensystem. The s
reen s = eiφn is being allo
ated in the middle of the layer.where F is the Fourier transformation operator, by using Eq. (4.14), the �eld in thefrequen
y domain at the exit of the nth layer 
an be expressed as
ûn+1 = [ûnhpn

⊗ ŝn]hpn+1

= hpn+1

∫

ûn(pn)hpn
ŝ(pn+1 − pn)dpn (4.16)The 
onvolution is the operation of propagating the �eld through a random s
reenand multipli
ation again by hpn+1 propagates ûnhpn
⊗ ŝn to the entran
e of the nexts
reen thus be
oming the new in
ident �eld. In appendix (A.2), it is shown howto express the �eld in the following multiple integral representation by substitutingthe re
urrent integral representation Eq. (4.16) for un , thus the total �eld u = un+1
an be expressed as

u(x, z) =

∫

· · ·
∫

v̂(q0)
n−1
∏

n=0

h2
qj

ŝ(qj+1 − qj)

×eik0qnxdq0 · · · dqn (4.17)Equation Eq. (4.17) represents the ensemble of a
ousti
 �elds in a random medium.The dependen
y on s makes u a random pro
ess that depends on the statisti
alproperties of µ be
ause of the fun
tional dependen
y Eq. (4.13). Equation Eq. (4.17)will serve as a basis to 
al
ulate the se
ond moments 〈uu∗〉 of the �eld. It is a
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rystalline materials 86multiple integral and there are as many integrals as there are s
reens used for theapproximation, however it is 
omputationally e�
ient as these 
an be implementedusing the FFT algorithm.The �eld u is a random pro
ess that depends entirely on the statisti
al propertiesof the pro
ess φ; thus generation of realisations of the �eld within the slab D willfollow from the realisation of φ. The realisation of φ in turn depends on the statisti
sof µ via the relation Eq. (4.13). The 
onstru
tion of the realisation for φ is based ona given 
orrelation fun
tion for µ whi
h is dis
ussed in the next se
tion. A realisationof u will then be given by evaluating Eq. (4.17) by substitution of the appropriaterealisation of s
reens.4.1.4 Realisation of phase variationsThe realisation of the �eld u depends on the pro
ess φ a

ounting for phase varia-tions. This pro
ess depends dire
tly on the properties of the medium, whi
h is beingrepresented by the pro
ess µ earlier introdu
ed in se
tion (3.3.3).In se
tion (3.3.4) a method was then introdu
ed to generate realisations of thepro
ess φ. It was based on simulation of wave velo
ity variations within mi
rostru
-ture by 
onstru
ting a pro
ess µ that depends on geometri
 
hara
teristi
s. The
orrelation fun
tion of µ was also investigated, with the 
on
lusion that as a goodapproximation it 
ould well be 
onsidered to have an exponential form. This is thestarting point to generate a realisation of the phase φ in this se
tion. That is, itwill assume a known 
orrelation fun
tion for µ and from this the required phaserealisations will be generated by using the Fourier transform method.Fourier method for phase generationLet us start by assuming the pro
ess µ has the known 
orrelation fun
tion Γµ,having the exponential form σ2e−|r|2/l2 , where again σ2 is the varian
e of µ and l isthe 
orrelation length. Therefore, generation of realisations of φ is equivalent to thegeneration of realisation of the pro
ess µ by means of 
orrelation Γµ and relationEq. (4.13). Although, not essential for the present development, it is important to
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hapter (5), the relationship between the stru
ture fun
tion of φand the 
orrelation fun
tion Γµ is investigated.The Fourier method for generating a realisation of a pro
ess is as follows: Letus denote the power 
orrelation of µ by Sµ and let W (ω) be 
omplex white noise,i.e. a 
omplex zero Gaussian pro
ess with 
orrelation 〈W (ω)W ∗(ω′)〉 = δ(ω − ω′).Then µ admits the following spe
tral representation
µ(x) =

∫

W (ω)
√

Sµ(ω)eixωdω (4.18)Thus, realisations are simply given by taking the Fourier transform of the produ
t ofa Gaussian noise and the square root of the power 
orrelation of µ. This method hasthe advantage of being easily implemented by using the dis
rete fourier transform.Generation of realisation from Eq. (4.18) a
ts as a �lter for W giving a smoothrealisation 
ompared to Eq. (3.22), in Fig. (3.5). The fa
t that the pro
ess µ has
Γµ as 
orrelation fun
tion follows from the Wiener-Khin
hine theorem for randompro
ess, thus

〈µ(x)µ(x′)〉 =

∫∫

W (ω)W (ω′)
√

Sµ(ω)Sµ(ω′)eixω−x′ω′
dωdω′

∫∫

δ(ω − ω′)
√

Sµ(ω)Sµ(ω′)eixω−x′ω′
dωdω′

=

∫

Sµ(ω)eiω(x−x′)dω

= Γµ(x− x′) (4.19)In 
hapter (3) it was stated that a good approximation in representing mi
rostru
-ture of 
ertain poly
rystals is when Γµ has exponential form. Taking this intoa

ount, realisations for φ are generated using the dis
rete Fourier transform fromEq. (4.18). Fig. (4.5) shows the 
orrelation Γµ (top graph), a single realisation ofthe white noise W
√

Sµ and a superimposed plot of the pro�le √

Sµ. On the bottomof Fig. (4.5), is shown a realisation of φ using this method.In se
tion (3.3.4) we showed how to generate mi
rostru
ture using Voronoi tes-sellation. This method also give a straightforward way to generate realisations of the



SAW waves in poly
rystalline materials 88
PSfrag repla
ements

Γφ(τ)

τ

Sφ(ω)

W (ω)
√

Sφ(ω)

ω

φ(x)

x

-20 -10 0 10 20

-3 -2 -1 0 1 2 3
×10−3

-20 -10 0 10 2000.10.20.30.40.50.60.70.80.91

-202
-202
00.51

1.5

00.10.20.30.40.50.60.70.80.91 Figure 4.5: Generation of realisation of φ



SAW waves in poly
rystalline materials 89pro
ess φ, as shown in the same se
tion. It was also shown that the auto
orrelationof the generated mi
rostru
ture is an exponential fun
tion. Therefore, the Fouriermethod with exponential auto
orrelation and the one des
ribed in se
tion (3.3.4),for generating realisation of the pro
ess φ are equivalent. In the former, it is onlyne
essary to 
al
ulate the Fourier transform of a known fun
tion whereas in thelatter it is ne
essary to build the tessellation and 
olour the regions. Colouring theregions in this 
ontext means spe
ifying the velo
ity variations within regions, asexplained in se
tion (3.3.4). The algorithm for tesellating the spa
e and de�nitionof wave velo
ity variations within the regions is a slow pro
ess. This is why theFourier method was preferred, sin
e it is simple and fast. This method will be usedfor the rest of the thesis for generating realisations of the pro
ess φ.4.1.5 Realisation of the a
ousti
 �eldBefore showing a realisation of the �eld based on Eq. (4.17) it is ne
essary to spe
ifythe in
ident �eld. It was said in se
tion (4.1.1) that the Fourier transform of thein
ident �eld is the angular spe
trum of u. But the angular spe
trum a, Eq. (4.9)is an integral over a laser spatial pro�le w(r) whi
h was not spe
i�ed. Here for
ompleteness a Gaussian pro�le is presented, although already mentioned in se
tion(4.1.1), it is not ne
essary to spe
ify the in
ident �eld. The (4.6) shows a plot of
Πab(r)w(r); note that Πabw is rounded on top, this is be
ause w has been assumedto be a Gaussian pro�le, i.e. w = e−|r|2/c2, where c is a parameter de�ning the widthof w. Many lasers have Gaussian distribution [64℄, so w 
an fairly be des
ribed witha Gaussian pro�le. Here, again for pra
ti
al purposes the in
ident �eld is taken tobe of the form Eq. (4.11). Thus, by using Eq. (4.17) and realisations of φ alreadygenerated in se
tion (4.1.4) is possible to give a realisation of the �eld u whi
his shown in Fig. (4.7). Fig. (4.7) shows the amplitude distribution numeri
allyimplemented from Eq. (4.17). It is a trun
ated plane wave propagating in thesimulated inhomogeneous medium 
hara
terised by standard deviation σ = 0.02. Asthe wave travels from left to right (z-dire
tion) the phase is being altered by s
reenspla
ed to approximate the �eld within a layer. The overall phase is distorted as well
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ording to Eq. (4.17). The simulation is basedon real parameters and a numeri
al pro
edure. This 
an be 
ompared with theexperimental amplitude distribution shown in Fig. (1.1).
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rystalline materials 91as the amplitude distribution breaking up as it 
an be seen in the Fig. (4.7). Thisshows what to expe
t to happen to the a
ousti
 surfa
e waves propagated in realpoly
rystals, whi
h 
an be 
ompared to Fig. (1.1) showing aberrations in aluminium.4.1.6 Solids in generalSo far the theory just developed applies mainly to isotropi
 solids. The angularspe
trum representation is a powerful tool that 
an even be extended to more generaltype of solids.In the arti
le [96℄, a paraxial theory for ultrasoni
 beams was developed foranisotropi
 solids. The integral representation of the �eld is basi
ally an angularexpansion based essentially on Taylor series expansion of the slowness surfa
e. Theargument in the exponential fun
tion of the integrand in Eq. (4.9), however, involves
rossed and quadrati
 terms leading to a 
ompli
ated angular expansion. The ad-vantage of that formulation is that the isotropi
 
ase is easily obtained as a limiting
ase.Here, for simpli
ity the isotropi
 
ase was only 
onsidered sin
e the anisotropi
parameter is lost in poly
rystalline materials as part of a random e�e
t from mi-
rostru
ture.4.2 Con
lusionsA model that a

urately represents line sour
es for ultrasound generation has beenpresented. The mathemati
al development uses the method of Green's fun
tion toexpress the elasti
 response of a homogenous medium. This mathemati
al formula-tion gives expli
itly the Green's fun
tion of the normal displa
ement for a thermoe-lasti
 point sour
e. By integrating the Green's fun
tion a
ross the area o

upied bya line on the sample surfa
e, an expression for the normal displa
ement is given asa plane expansion. This representation was later used in se
tion (4.1.2) to approxi-mate the �eld in an inhomogeneous medium using a phase s
reen model.One of the parameters dire
tly involved in the des
ription of s
reens to ap-
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rystalline materials 92proximate the �eld is the standard deviation. This parameter in the s
alar modeldeveloped in se
tion (3.3.2) is dire
tly related to the anisotropy of the grains whi
hin turn des
ribes the strength of the s
reens.The expression obtained for the �eld is given as multiple integrals that 
anbe e�
iently implemented using the FFT. The other important property of thisrepresentation is the possibility of 
al
ulating the se
ond order moments of the �eldby using Eq. (4.17), whi
h is developed in great detail in 
hapter (5).It is believed that the representation Eq. (4.17) is a fair approximation sin
eit explains most of the observed phenomena in poly
rystalline materials with mi-
rostru
ture 
hara
terised by an exponential 
orrelation fun
tion. Naturally, thismust be 
ombined with the general assumption listed in se
tion (3.2).The representation (4.17) is assessed by 
omparison via the se
ond order mo-ments of the �eld in 
hapter (6).



Chapter 5
Propagation of 
orrelation fun
tion
Introdu
tionThis 
hapter des
ribes the theory of propagation of the 
orrelation fun
tion or, interms of sto
hasti
 pro
ess, the se
ond order moments. The aim is to determinean expression for the ensemble average Γu = 〈u(r)u∗(r′)〉, where u is the pro
essrepresenting the a
ousti
 �eld. The 
orrelation fun
tion is important sin
e it isdire
tly related to the geometri
 
hara
teristi
s of the medium. In 
hapter (3.2),grain stru
ture was des
ribed via the 
orrelation fun
tion of the wave number. This
orrelation will be seen to be dire
tly related to the 
orrelation Γu of the �eld by
al
ulating the ensemble average using Eq. (4.17), in the �rst pla
e.The propagation and the determination of this fun
tion through random mediahave been given in the literature [70, 97, 47℄. In these papers, many 
onstraintsare imposed on pro
esses de�ning the medium in order to approximate 〈u(r)u∗(r′)〉.The assumptions introdu
ed here are not that di�erent from the ones proposed inthe literature, in parti
ular that µ is isotropi
 in transverse dire
tions and almostdelta 
orrelated in the dire
tion of propagation. By de�nition a pro
ess µ is delta
orrelated if its 
orrelation is of the form Γµ = δ(z − z′)f(x − x′), where δ is theDira
 delta fun
tion and f is an arbitrary fun
tion. Other assumptions have beenalready introdu
ed in the previous 
hapter (3), se
tions (3.3.2) and (3.3.3) and theywill 
ontinue to hold.



Propagation of 
orrelation fun
tion 94The expression for 〈u(r)u∗(r′)〉 is given by two di�erent points of view that di�erin the way the ensemble average is obtained. The �rst one is a dire
t appli
ation ofphase s
reens to obtain an approximate solution to Γu using the integral represen-tation for the �eld Eq. (4.17).The assumption on the pro
ess µ of the inhomogeneity �u
tuations, is that thephase �u
tuations φ are Gaussian. This property is used to 
al
ulate the ensembleaverage of the �eld based on a standard result in multivariate statisti
s that isvalid for the Gaussian sto
hasti
 pro
esses. The 
orrelation, however, is 
al
ulatedtransversally, whi
h is de�ned as the ensemble average 〈u(x, z)u∗(x′, z)〉 for ea
h z.The variable z here denotes propagation distan
e.The se
ond point of view uses the Helmholtz equation to approximate Γu, whi
hsatis�es a di�erential equation derived in the literature [47℄. There are some te
hni
alproblems within the phase s
reen te
hnique that 
annot easily be solved. The strongassumption that rays do not bend 
onsiderably within a layer not only restri
ts thesuitability of the method but also the 
orrelation fun
tion depends on the numberof s
reens used to approximate the �eld within the slab.To remedy this in some way the 
orrelation fun
tion of the �eld, based entirelyon the sto
hasti
 equation, is given in a heuristi
 manner in se
tion (5.2). This al-ternative approximation would also justify the feasibility of the phase s
reen methodin approximating the 
orrelation fun
tion sin
e the two 
oin
ide.One of the reasons for obtaining the 
orrelation fun
tion of the �eld is to relateit to the 
orrelation of the medium. The grains are assumed to be equiaxed, thus ameasure in any dire
tion would give a reliable quanti�
ation of the mean grain size.The importan
e of the 
orrelation fun
tion Γu is that aberrations 
an be quanti-�ed by means of this fun
tion, whi
h is determined by two main parameters de�ningthe medium. These are the 
orrelation length and the standard deviation of µ thatmeasures the degree of inhomogeneity.
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orrelation fun
tion 955.1 Moments of the a
ousti
 wave �eldThe se
ond moment of the a
ousti
 �eld by de�nition is the ensemble average
〈u(r)u∗(r′)〉, where r = (x, z) will denote a point in the two dimensional 
oordi-nate. The se
ond moment for any sto
hasti
 pro
ess will be denoted by Γu if u isthe pro
ess being 
onsidered. Thus, for instan
e the se
ond moment for the pro
ess
µ is already de�ned and ne
essary in what follows

Γµ = 〈µ(r)µ(r′)〉 (5.1)The rest of the notation ne
essary for the mathemati
al development will be intro-du
ed within the text.5.1.1 Initial 
orrelation fun
tionThe starting point in 
al
ulating the 
orrelation fun
tion is to introdu
e the 
orre-lation of the in
ident �eld v to a slab as in the boundary problem Eq. (3.11). Thisinitial value for the �eld at z = 0 
ould, in prin
iple, be a random pro
ess with pre-s
ribed statisti
al properties. What is needed here in order give an approximationto Γu is the initial form of Γv. The pro
ess v(x) 
an be non-stationary or a widesense stationary random pro
ess. If v is non-stationary, the 
orrelation fun
tion Γvwill not be independent under translation, spe
i�
ally 〈v∗(x)v(x + τ)〉 will dependin general on the point x in spa
e, where τ = x − x′. Thus, Γv is de�ned as theenergy 
orrelation fun
tion of a random pro
ess as
Γv(τ) =

∫ ∞

−∞
v∗(x)v(x + τ)dx (5.2)It is well known that under stationary 
onditions the average Γv is in�nite. In this
ase it is meaningless to 
onsider Eq. (5.2); the power 
orrelation fun
tion

Γv = lim
X→∞

1

X

∫ X

−X

v∗(x)v(x + τ)dx (5.3)
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tion 96has to be 
onsidered, instead. The integral in Eq. (5.2), is known as the auto
or-
PSfrag repla
ements Γv

Γv(0)

−a
2

0 a
2

τ0
1

Figure 5.1: Idealised 
orrelation fun
tion of the �eld at z = 0. The width a deter-mines the size of the sour
erelation fun
tion in signal pro
essing for 
omplex signals. For 
omparison with theexperimental work it is su�
ient to give the initial form of Γv as a fun
tion of τonly. This fun
tion will be the auto
orrelation of the initial displa
ement Eq. (4.11)
onsidered in se
tion (4.1.1). Thus, Γv has a triangular form as shown in Fig. (5.1).5.1.2 The stru
ture fun
tion of the mediumThe stru
ture fun
tion of a pro
ess is of great importan
e in opti
s and atmospheri

al
ulations [47℄. Here it is introdu
ed as it arises in the 
al
ulation of the 
orrelationfun
tion.The statisti
al 
hara
teristi
s for the pro
ess µ have already been introdu
edin 
hapter (3) where it was needed for building ensembles of the pro
ess. The
orrelation Γµ was then used to build realisations of the phase �u
tuations φ. Thestru
ture fun
tion of φ is introdu
ed as it will be used for the 
al
ulations of Γuin the following se
tion. This is de�ned as the ensemble average of the squareddi�eren
e of φ at two di�erent points in the transverse axis of 
oordinates, thus
Dφ =

〈

[φ(x)− φ(x′)]2
〉 (5.4)
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orrelation fun
tion 97The pro
ess φ has a fun
tional dependen
e on µ, equation Eq. (4.13), and hen
e onewould expe
t to be able to express Dφ in terms of µ. This 
an only be done if µ holds
ertain properties. Let us suppose that Γµ 
an be split as Γµ = f(x, x′)g(z, z′) where
f , g are arbitrary fun
tions that depend on x− x′, z − z′, respe
tively. The reasonfor splitting Γµ in the above form 
omes from the fa
t that in the end an exponentialfor Γµ is taken sin
e it 
ould a

urately represent the measured 
orrelation of thea
ousti
 �eld. The exponential form would trivially satisfy this 
ondition. It is
lear from the above de�nition that f is the 
orrelation of two points along theaxis x, whereas g is the 
orrelation of µ at two arbitrary points along axis z. Thefun
tions f and g in general would be determined by di�erent 
orrelation lengths thatdetermine the s
ale of the grains along x, z axes, respe
tively. Earlier in 
hapter (3),the grains were assumed to be equiaxed, and so to speak of two di�erent 
orrelationsis meaningless at this point.Here, the pro
ess φ has the same meaning as in Eq. (4.13) but without the fa
tor
k0/2 and the limits of integration are from 0 to z, hen
e

φ =

∫ z

0

µ(x, z′)dz′ (5.5)Inserting Eq. (5.5) in de�nition Eq. (5.4) after using the assumption on Γµ thestru
ture fun
tion Dφ is given by
Dφ =

∫∫

〈[µ(x1, z
′)− µ(x2, z

′)][µ(x1, z
′′)− µ(x2, z

′′)]〉 dz′dz′′

=

∫∫

f(x1, x1)g(z′, z′′)− f(x1, x2)g(z′, z′′)

−f(x2,, x1)g(z′, z′′) + f(x2, x2)g(z′, z′′)dz′dz′′ (5.6)Sin
e f depends on the di�eren
e at two di�erent points it follows that f(0) =

f(x1, x1) = f(x2, x2), f(x1, x2) = f(x2, x1) and is obviously independent of z', z′′,thus the stru
ture takes the �nal form
Dφ = 2[f(0)− f(x1, x2)]Ψ(z) (5.7)
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orrelation fun
tion 98where Ψ(z) =
∫ z

0

∫ z

0
g(z′, z′′)dz′dz′′.The integrals de�ning Ψ 
an only be 
al
ulated in a spe
i�
 form if g is assumed.In the paragraphs below Dφ is spe
i�ed for the 
ase when g bears an exponentialform. To be 
onsistent with notation for the rest of the 
al
ulation f is again denotedby Γµ, even when it only represents transverse 
orrelation.The exponential 
orrelationUltimately, the �nal form of Γµ used for 
omparison with the measured 
orrelationfun
tion has the following form Γµ = exp[− (x−x′)2+(z−z′)2

l2
], thus g(z, z′) = exp[(z −

z′)2/l2] and Ψ after substitution of g following a 
hange of variable lξ = z′ − z′′ ,
lη = z′ + z′′ takes the form

Ψ(z) =

∫∫ z

0

e−(z′−z′′)2/l2dz′dz′′

=
l2

2

∫∫ 2z
l

0

e−ξ2

dξdη

=

√
πlz

2
erf(2z

l
) (5.8)The fun
tion erf() introdu
ed in the last step above is the familiar error fun
tion,whi
h is basi
ally Ψ up to some 
onstant fa
tors. Substituting the above integral inEq. (5.7) one gets

Dφ =
√

πlzerf(2z
l

)[Γµ(0)− Γµ(x1, x2)] (5.9)The relationship between the stru
ture fun
tion of the pro
ess φ and material prop-erties is evident from Eq. (5.9). As presented in se
tion (3.3.3), the 
orrelation Γµdire
tly 
hara
terises properties of the medium, whi
h de�nes the stru
ture fun
tion
Dφ of the pro
ess φ in Eq. (5.9). A plot of Dφ is shown in Fig. (5.2) at arbitrarydistan
es. The shape is given by the normalised 
orrelation fun
tion

γµ = 1− Γµ(τ)

Γµ(0)
(5.10)
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Figure 5.2: The stru
ture fun
tionDφ plotted over the normalised axis τ
l
propagationdistan
es z = 1/3l, 1/2l, 1/l.As shown in the graph the fun
tion γµ narrows as the multipli
ative fa
tor√πlzΦ(2z

l
)Γµ(0)in
reases for di�erent z = 1/3l, 1/2l, 1/l. The values for z were 
hosen arbitrarily.The behaviour of this fun
tion is di
tated mainly by the parameters l, Γµ(0) thatare kept 
onstant in plotting this graph. As we shall see these parameters will
ompletely de�ne the 
orrelation fun
tion of the �eld Γu.5.1.3 Multiple s
reensThe 
al
ulation of the 
orrelation Γµ requires integration on several variables, soan independent 
oordinate system is atta
hed to ea
h s
reen. Sin
e the 
orrelationinvolves the averages at two arbitrary points in the transverse 
oordinates let usdenote them by x and y leaving z for the dire
tion of propagation as before. Let

x = (x0, ..., xn), z = (z0, ..., zn) and denote their 
oordinate di�eren
es by x− =(x1−
x0, ..., xn−xn−1); the same de�nition would apply for y− and z− as well. The phasevariations at ea
h s
reen are labelled by sub-indi
es to indi
ate whi
h s
reen they
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h s
reen, then
Ds(τs) =

〈

[φs(xs)− φs(ys)]
2
〉 (5.11)will denote the stru
ture fun
tion for phase variations at ea
h s
reen. An extravariable y is needed sin
e the stru
ture fun
tion is 
al
ulated at two di�erent pointsin the transverse dire
tion. In general Ds is not a fun
tion of the di�eren
e τs =

xs − ys but one has to assume this in order to 
al
ulate Γu. This point has alreadybeen dis
ussed in se
tion (5.1.2). The Ds, s = 1, 2, ... are essentially the samefun
tion but de�ned on di�erent 
oordinate systems for te
hni
al reasons.Following this notation and a

ording to phase s
reen approximation the multi-variate s
reen would be
s(x) = ei

P

s φs(xs) (5.12)The pro
ess of propagating v from one s
reen into another a

ording to Eq. (4.14) isthat every time the �eld is distorted by a s
reen the phase variation adds up resultingin Eq. (4.17) if written in several variables. One 
ould 
all s a multivariable s
reen;
s is a random pro
ess determined 
ompletely by the pro
esses φs. In the 
ase whenthe φs are Gaussian pro
esses, it is possible to obtain the se
ond moment of s asa fun
tion of the stru
ture fun
tions Ds. In appendix (A.1) it is shown how theensemble average 〈s(x)s∗(y)〉 is related to the stru
ture fun
tion Eq. (5.4) by usinga standard result in multivariate statisti
s [64℄; in doing so

〈s(x)s∗(y)〉 = e−
P

s Ds(τs) (5.13)The average Eq. (5.13) will be in the end an exponential fun
tion but it will be seenthat for 
al
ulating Γµ it su�
e for Ds to depend on the di�eren
e xs−ys; pro
esseswith this property are 
alled lo
ally isotropi
.
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tion by averaging over the ensembleThe �eld at the entran
e of ea
h s
reen shall be denoted by un and the Fouriertransform for all the fun
tions 
onsidered here is denoted by the hat symbol, so forinstan
e ûn is the Fourier transform of un.In general, un may be statisti
ally related to φ for a single layer, be
ause as vpropagates from layer to layer, un depends on φ. It will be shown that it is possible,at least mathemati
ally, that the energy 
orrelation of the �eld 
an be 
al
ulated ifthe medium is statisti
ally independent of the in
ident �eld.The Green's paraboli
 fun
tionThe Green's fun
tion for the Helmholtz equation is well known, and in appendix(A.3) the Green's fun
tion for the Helmholtz equation in the paraxial approximationis given and has the following form
g(x− x′, z − z′) = (1 + i)

√

k

4π(z − z′)
e

ik
(x−x′)2

2(z−z′) (5.14)The Eq. (4.17) is written in the spatial frequen
y domain and the a
tual 
al
ulationof Γµ is performed in the spatial domain. Hen
e rewriting Eq. (4.17) in the spatialdomain the fun
tion g arises a
ting as a propagator. For a derivation of the Green'sfun
tion g from the angular representation of the �eld see [64℄.As in the 
ase of the s
reens, the multiple propagation through s
reens re-sults in multipli
ative fun
tions if written using several variables. That is, atea
h s
reen, let us say the s-th s
reen, one has to 
onsider the following produ
t
g(xs− xs−1, zs)g

∗(ys− ys−1, zs). Multiplied altogether one has to de�ne a multivari-able Green's fun
tion.The fun
tion propagator in several variables or the multivariable Green's fun
tionis simply the multipli
ation of the Green's fun
tion Eq. (5.14) by its 
onjugate
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oordinate xs, thus
G(x, z) =

n
∏

s=1

g(x−
s , z−s ) (5.15)where x−

s = xs − xs−1. The fun
tion G is a deterministi
 fun
tion bearing no rela-tion with the ensemble average but the fa
t that it is a multidimensional Gaussianfun
tion 
onsideraby simpli�es the integration. This is one of the reasons in makingthe paraboli
 approximation sin
e it is possible to give a simple expression for the
orrelation fun
tion.Cal
ulation of ΓµTo 
al
ulate the transverse 
orrelation of the �eld, i.e. Γu(x, x′, z) = 〈u(x, z)u∗(x′, z)〉at distan
e z away from the sour
e, is ne
essary to take the ensemble average ofEq. (4.17) in the spatial domain. In a
hieving this, let us set H(x,y) = G(x, z)G∗(y, z)and de�ne the ensemble average of vs as f = 〈v(x0)v(y0)〉〈s(x)s∗(y)〉, the ensemblesplits be
ause v and s are statisti
ally independent. Thus the ensemble average
〈un(xn)u∗

n(yn)〉 using Eq. (4.17) is given by
Γu =

∫

· · ·
∫

f(x,y)H(x,y)dxdy (5.16)To be able to integrate Eq. (5.16) one would need to 
al
ulate the average f butthis is not ne
essary as long as f is a fun
tion of the di�eren
e x − y only. Thisis a 
onsequen
e of φ being a Gaussian and lo
ally isotropi
 pro
ess. Thus, usingEq. (5.13), f takes the form
f = 〈v(x0)v(y0)〉e−

PN
s=1 Dφ(xs−ys) (5.17)To 
ontinue the evaluation of integral Eq. (5.16) more notation is introdu
ed toshorten the length of the equations. Let Λ−

s = 2(zs−1−zs)
k

and rs = (xs − xs−1)
2 −

(ys − ys−1)
2 be with obvious de�nition in ve
torial form. Then Eq. (5.16) 
an be
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Γu = b

∫

· · ·
∫

f(x,y)
N
∏

s=1

{

exp [−i rs

Λ−
s
]

Λ−
s

}

dxdy (5.18)where b =
(

− 1
π

)N . A step further in 
al
ulating the above integral follows bymaking the following 
hange of variables: 2x = p + q, 2y = q − p, therefore
rs = (ps − ps−1)(qs − qs−1) or rs = p−s q−s . Thus, Γu in the new 
oordinate system is

Γu = b

∫

· · ·
∫

f(p,q)
N
∏

s=1







exp [−ip−s q−s
Λ−

s
]

Λ−
s







dpdq (5.19)Now, using that, Eq. (5.17) depends only on the di�eren
e of its 
oordinates, fwould be a fun
tion of p only, and so it is possible to integrate with respe
t to q.Re
ognising, that the fun
tion to be integrated in Eq. (5.19) is the Fourier transformof the identity thus resulting in a produ
t of delta fun
tions. But �rst, let us expressthe term appearing inside the exponential fun
tion as
−i

p−s q−s
Λ−

s

= i
∑

s

[

p−s
Λ−

s

− p−s+1

Λ−
s+1

] (5.20)with p−1 = p−n+1 = 0, sin
e we have added extra terms for 
onvenien
e. After insertingEq. (5.20) in Eq. (5.19)and performing integration with respe
t to q, ex
ept for thesingle variable q0, we have
Γu =

∫

f(p, q0)

N
∏

s=1

Λ−
s δ

(

p−s −
Λ−

s p−s+1

Λ−
s+1

) N
∏

s=2

1

Λ−
s

dpdq0 (5.21)where δ is the Dira
 fun
tion delta. In the above expression N is an even integerotherwise one would have to multiply the term on the right by (−1)N .Finally, integration 
an be 
ompleted by noting that if Λ−
s = Λ−

s+1 for all s, i.e.all s
reens are allo
ated at equal distan
e in spa
e then we have
f( ~pN , q0)

N
∏

s=2

Λ−
s =

∫

f(p, q0)
N
∏

s=1

Λ−
s δ

(

p−s −
Λ−

s p−s+1

Λ−
s+1

)

dp (5.22)
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tion 104Here, ~pN = (pN , ..., pN). The �nal expression for Γu is obtained by insertingEq. (5.17) and Eq. (5.22) into Eq. (5.21), in doing so
Γu = e−NDφ(pN )

∫

〈v(
pN + q0

2
)v∗(

pN − q0

2
)〉dq0

= e−NDφ(pN )Γv(pN) (5.23)where Dφ is given in Eq. (5.9) by 
hanging to the new variable pN = τ . The above
al
ulations show that the energy fun
tion at distan
e L is equivalent to the produ
tof individual energy fun
tions at the exit of ea
h layer. Letting N tend to ∞ Γuapproximates to a 
ontinuous solution of se
ond order moment of the Helmholtz'sequation. An approximate solution for the se
ond order moment of Eq. (3.11) isgiven in [70℄ and 
losely 
oin
ides with Γu. An expression for the 
orrelation fun
tionof the ba
ks
attering �eld is also given in that paper. An example of the energy
orrelation over a distan
e 
orresponding to several grains, as 
al
ulated a

ordingto Eq. (5.23), is illustrated in Fig. (5.3). The de
ay and width as it propagates isdetermined by σ and l, respe
tively. As a reminder, σ is the standard deviation ofthe pro
ess µ 
hara
terising mi
rostru
ture and l is 
orrelation length proportionalto grain size in poly
rystalline materials.The extreme 
ase, i.e. for a highly aberrated medium, that is, σ → 1 and small
l -small grains- then the fun
tion Eq. (5.23) de
ays rapidly having a narrow tail.The ideal 
ase o

urs when µ = 0, that is a homogeneous medium, Γu so does not
hange with the propagation distan
e.The 
hart shows a series of images of the 
orrelation fun
tion for di�erent valuesof σ and l. From the 
hart one 
an observe the behaviour of this fun
tion as theparameters are varied. The very �rst row shows the 
orrelation of the �eld in ahomogeneous medium. The row on the bottom line shows the behaviour of Γu forlarger values, that is σ → 1 and l → ∞ whi
h represent a medium with stronganisotropy and large mean grain size.
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tion 1065.2 Using a derived di�erential equationThe 
al
ulation of the se
ond order moment of the �eld in a random medium is notstraightforward as the last se
tion has shown. Even for the 
ase of single s
attering.Many authors had dealt with se
ond order moments, [70, 59, 49, 40, 98, 97, 24, 60℄,of solutions of the sto
hasti
 wave equations with appli
ations to di�erent areas,su
h as opti
s, and a
ousti
s as well as elasti
ity. Some have given approximatesolutions under the assumption that the random pro
ess 
hara
terising the mediumis delta 
orrelated in the dire
tion of propagation, or the Markov approximation asit is also known. In referen
es [47, 46℄, an equation for the se
ond order moment isobtained and its solution is shown under the Markov approximation. It was foundthat this solution is basi
ally the se
ond moment previously obtained in (5.1.4),using the spe
tral representation of the �eld.5.2.1 Equation for the se
ond momentThe equation derived in [47, 46℄, is presented with the aim of giving an alternativeapproximation to Γ(x, x′, z) already given in the previous se
tion.Following the development in [47, 46℄, although it is easy to derive from Eq. (3.11)in its paraxial version, the equation for Z(x, x′, z) = u(x, z)ū(x′, z) is given by
2ik∂zZ + [∆x −∆x′]Z + k2[µ(x, z)− µ(x′, z)]Z = 0 (5.24)Note that the ensemble average has not been taken yet, whi
h means that theequation for se
ond moment is far from 
omplete. In order to �nd an equation for

〈Z〉 the average of the third term in Eq. (5.24) has to be 
al
ulated. But this isdi�
ult, without assuming that µ is delta 
orrelated, that is, its 
orrelation satis�es
〈µ(x, z)µ(x′, z′)〉 = δ(z− z′)f(x− x′), f an arbitrary fun
tion and δ the Dira
 deltafun
tion. Using this 
ondition, and the assumption about the in
ident �eld, whi
his that its 
orrelation fun
tion depends only on its di�eren
e, it is possible to de�nea random pro
ess that satis�es Eq. (5.24) after taking the mean.
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tion 107Let the following pro
ess
Zγ(x, x′, z, ξ) = Z0(x, x′, γ) e

ik
4

g(r,ξ) (5.25)be where g(x, x′, z, ξ) =
∫ z

0
[µ(x, z′, ξ)−µ(x′, z′ξ)]dz′ and Z0 = v(x, γ)v̄(x′, γ). Sin
e

v is �xed it is obvious that g must meet 
ertain 
onditions so Zγ(x, x′, z, ξ) is asolution of Eq. (5.22) for all ξ. One 
ould try to �nd those 
onditions but sin
e theimportant quantity here is the mean over an ensemble, that will not be ne
essary.The initial 
ondition at z = 0 is indi
ated with the produ
t of the in
ident randompro
esses v(·, γ) and its 
onjugate. The γ is aimed to indi
ate that v belongs to adi�erent ensemble whi
h implies that Zγ(·, ξ) has to be averaged twi
e. This doesnot represent a problem sin
e the pro
ess v and µ are statisti
ally independent.Taking the average in Eq. (5.24) results in
2ik∂z 〈Zγ〉+ [∆x −∆x′] 〈Zγ〉+ k2 〈[µ(x, z, ξ)− µ(x′, z, ξ)]Zγ〉 = 0 (5.26)One still has to �nd a random pro
ess that satis�es Eq. (5.26) and there is no wayto prove that pro
ess Eq. (5.25) satis�es Eq. (5.26). Obviously

2ik∂z 〈Zγ〉+ k2 〈[µ(x, z, ξ)− µ(x′, z, ξ)]Zγ〉 = 0 (5.27)is satis�ed for the pro
ess of the form Eq. (5.25)). Therefore, the solution toEq. (5.26)) redu
es to �nding pro
esses of the form Eq. (5.25)) that satisfy the
ondition
[∆x −∆x′ ] 〈Zγ〉 = 0 (5.28)The realisations of the pro
ess Zγ are de�ned by the realisations of the pro
ess µ.This means that the mean 〈Zγ〉 is 
ompletely determined by the statisti
al propertiesof µ. In prin
iple, all pro
esses satisfying Eq. (5.28) would solve Eq. (5.26) but thederivation here is in more elementary terms. One of the assumptions is that µ is a
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ess, besides being transversally isotropi
, and almost delta 
orrelatedin the dire
tion of propagation, thus the mean 〈Zγ〉 is a fun
tion of the mean 〈g2〉.Let us �rst average Zγ with respe
t to ensemble γ, that is, using the sameletter to average the initial 
ondition one has Z0(x− x′) = 〈v(x, γ)v̄(x′, γ)〉γ . Hen
ethe average 〈Z〉 over the ensemble is equivalent to obtaining 〈

e
ik
2

g(x,x′,z)
〉, whi
h issomething that 
an be a
hieved if g is a Gaussian pro
ess.The pro
ess g(x, x′, z, ξ) is Gaussian sin
e µ is a Gaussian pro
ess. It is wellknown that for any Gaussian pro
ess g

〈

e
ik
2

g(x,x′,z)
〉

= e−
k2

8 〈g2〉 (5.29)so it remains to 
al
ulate 〈g2〉. Now, the mean 〈g2〉 is in fa
t the stru
ture fun
tion
Dφ already introdu
ed in se
tion (5.1.2) for Gaussian statisti
s. After inserting Z0and 〈g2〉 into Eq. (5.29) the ensemble average 〈Z(x, x′, z, ξ)〉 of Eq. (5.25) is

〈Z(x, x′, z, ξ)〉 = Z0e
√

πk2

4
lz[Γµ(0)−Γµ(x−x′)] (5.30)Now, expression on the right hand side of Eq. (5.30) is a fun
tion of the di�eren
e

x − x′ so is Γ = 〈Z(x, x′, z, ξ)〉 . It is now straightforward to 
he
k that Eq. (5.28)holds true by substituting Eq. (5.30) in Eq. (5.28). Therefore, pro
esses Z(x, x′, z)of the form Eq. (5.25) satisfy equation Eq. (5.26).In this se
tion a random pro
ess has been derived su
h that its 2−point 
orre-lation satis�es Eq. (5.26) and this 
oin
ides with Eq. (5.23) previously developed inse
tion (5.1.4) using a di�erent method.5.3 Con
luding remarksThe 
al
ulation of the average 
orrelation fun
tion of the �eld has been given �rstby the phase s
reen method and derived from a di�erential equation in a separatese
tion. The integral representation given in 
hapter (4), Eq. (4.17) was used to ap-proximate the average 
orrelation fun
tion, by dire
tly 
al
ulating the 
ross average
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tion 109of the �eld. The paraxial assumption allowed us to integrate the resulting multipleintegral. The average of the multiple phase s
reen in the integrand of Eq. (5.16)
ould have been 
al
ulated be
ause of the Gaussian assumption on the pro
ess µ,that follows from a standard result for multivariate Gaussian pro
esses. It is possiblethat in the future these 
onditions 
ould be removed so as to in
lude pro
esses withmore general 
hara
teristi
s, thus representing other types of poly
rystals.The resulting 
orrelation depends on the number of s
reens used to approximatethe �eld, thus giving a dis
rete approximation of the 
orrelation. The se
tion wherewe have derived the 
orrelation from an di�erential equation was intended in a wayto alleviate this limitation. The resulting 
orrelations are essentially the same ifone uses an exponential fun
tion for the pro
ess µ. It has to be observed that thesame result is obtained if one assumes from the beginning that u is statisti
allyindependent, under whi
h 
ondition the operator [∆x −∆y] is eliminated from theequation. At any rate, any of the Eq. (5.23) or Eq. (5.30) 
an be used for theoreti
alpurposes as will be seen in 
hapter (6).



Chapter 6
Experimental methods and results
Introdu
tionIn the previous 
hapters a theoreti
al model for SAWs in poly
rystals was devel-oped. The aim was to derive a 
orrelation fun
tion for the �eld whi
h relates thestatisti
al properties of the medium to the statisti
al properties of the �eld. This
orrelation was the transverse 
orrelation of the �eld and was dependent on the de-gree of inhomogeneity and the 
orrelation length of the medium. In this 
hapter thisis investigated experimentally by imaging the deviation of an plane a
ousti
 wave onthe surfa
e of the poly
rystal. Aluminium and titanium were used as media be
ausethey have relevan
e to industrial measurements and exhibit well de�ned properties.In order to measure the 
orrelation fun
tion, whi
h is sto
hasti
 , it is ne
essaryto measure an ensemble of independent samples of the medium. So multiple mea-surements were 
arried out on the surfa
e of the samples to get an experimentalensemble of the a
ousti
 �eld. A pro
edure based on the estimator of the mean 
or-relation for a �nite sequen
e is given to study the a
ousti
al ensemble statisti
ally.From this analysis a transverse 
orrelation fun
tion 
an be measured for ea
h samplewith the aim of 
omparing it to the theoreti
al 
orrelation to obtain the degree ofinhomogeneity and the mean grain size of the samples. Material 
hara
teristi
s, su
has mean grain size, are obtained by numeri
ally solving a nonlinear �tting problemfor the measured and theoreti
al 
orrelation fun
tion.
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ed des
ribing the main 
hara
teristi
s ofthe OSAM system on whi
h the experiments were 
arried out. Part of the experimen-tal work was the sele
tion and preparation of the samples and their metallographi

hara
terisation. This is explained in detail as is their 
hara
terisation by the dire
tmeasures of the grain size from photomi
rographs.The results 
omparing the theoreti
al and measured 
orrelation fun
tion of theultrasoni
 ensemble are presented at the end of this 
hapter together with some
on
lusions.6.1 Sample sele
tionTwo di�erent metals were sele
ted, aluminium and titanium. Aluminium was se-le
ted be
ause is extensively studied in the literature, both ultrasoni
ally as well asme
hani
ally. The other reason was be
ause of the well understood te
hnique to pro-du
e samples with di�erent grain sizes and a 
ertain degree of spatial randomness ofthe grains. Aluminium naturally shows grain stru
ture as shown in Fig. (6.1). Thephotomi
rograph, 
learly shows huge elongated grains and the regions have 
ertaindegree of spatial orientation. From theoreti
al and experimental points of view thesetypes of samples were not of interest for the present resear
h, mainly be
ause of theelongated grain shape, whi
h is extremely di�
ult to model. The mi
rostru
ture ofaluminium in Fig. (6.1) 
an be modi�ed by adding a re�ner. Using the re�ner thegrains tend to be
ome mainly 
onvex, and spatially distributed at random.Titanium metal was sele
ted mainly be
ause of in
reasing interest in determiningits properties non-destru
tively in industry. The titanium sample, widely used inaeroplane, engines was provided by Rolls Roy
e.6.2 Sample preparationThree di�erent aluminium samples were 
reated, A, B and C, ea
h with a di�erentmean grain size, and one blo
k of titanium. The grain size distribution in aluminium
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Figure 6.1: Photomi
rograph showing individual elongated grains in an aluminiumsample. The photomi
rograph was obtained in a 
onventional mi
ros
ope under
ross-polarised light.was sele
ted by varying the 
on
entration of the re�ner. The pro
edure is similarfor all of them so only a detailed des
ription for one sample is des
ribed here.6.2.1 Pro
edure for re�ning grains in AlAn Al (99.9%) 
harge of 500gr, 
ontained in a 
lay bonded SiC 
ru
ible, was heatedto 730◦C in a mu�e furna
e. After melting the Al 
harge and in order to obtaina lightly re�ned Al ingot, 0.2wt.% of an Al-titanium-B 
ommer
ial grain re�nerwas added and dissolved into the melt. Prior to removal of the oxide skin from thesurfa
e of the molten metal, the melt was 
ast into a re
tangular steel mold in whi
hit was allowed to solidify naturally. The Al ingot was released from the mold andse
tioned with a band saw. Due to the geometry of the steel mold, a 
oarse 
olumnargrain stru
ture is expe
ted in the top part of the Al ingot. For this reason, thatse
tion was removed and four useful blo
ks were obtained. Owing to the symmetryof the ingot, only three blo
ks were used; one for the 
ounter part for metallographi

hara
terisation and the third was subje
ted to ma
ro et
hing to reveal the overallgrain stru
ture. The ma
ro et
hing is simply the immersion of the sample in a
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rostru
ture and to be able to observe it with the nakedeye. Samples for metallography were taken from one blo
k and were mounted,ground and polished down to 1µm following standard polishing pro
edures. Thesame preparation was given to the 
ounter fa
e of the other blo
k. To reveal thegrain stru
ture, the Al blo
k was repeatedly immersed into a solution (38% H2O,45%HCl, 15% HNO3 and 2%HF) and washed until a good 
ontrast was a
hieved.Also, the Al polished samples were anodised in a 2% solution of KBF4 in water for 1min at 25V [31℄. After washing and drying, the samples were viewed and imaged inan opti
al mi
ros
ope, equipped with a digital 
amera, under 
ross-polarised light.The idea with this te
hnique was to 
reate samples with di�erent grain sizes,mainly 
onvex grains and spatial random distributions [31℄, by re�ning the grainsize by adding small quantities of the re�ner, Al-Ti-B, to the aluminium. This te
h-nique did work well for high 
on
entrations of Al-Ti-B in the mixture whi
h hasprodu
ed samples, identi�ed as MB, MC below, with the required 
hara
teristi
s.The te
hnique is probably not suitable for produ
ing samples with those 
hara
ter-isti
s and grain mean sizes bigger than 1000µm, as it was the 
ase for the other twosamples.Finally, the samples were polished to a mirror-like �nish for ultrasoni
 inspe
tionusing standard te
hniques.Ti preparationOne single blo
k of titanium was prepared for ultrasoni
 inspe
tion. The metalblo
k was polished to a mirror-like �nish for inspe
tion. Immediately after theultrasoni
 experimentation was 
omplete a small pie
e of the 
orner, 1
m×1
min size, of the sample was 
ut-o� for metallographi
 
hara
terisation. This smallse
tion was et
hed with the purpose of revealing the mi
rostru
ture, but most of thestandard te
hniques did not reveal 
learly the mi
rostru
ture as with the aluminiumsamples. Nevertheles, a photomi
rograph is presented in se
tion (6.3.1) where it 
anbe appre
iated that the mi
rostru
ture of the Ti sample is 
ompli
ated.
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hara
terisationChara
terisation of a metal, in parti
ular Al, means more than just measuring thegrain size of the mi
rostru
ture. Other properties inherent to metals like me
hani
al,opti
al or physi
al 
hara
teristi
s, to mention just a few, are beyond the s
ope ofthis work. However, the opti
al properties of the surfa
e of the sample are importantsin
e this te
hnique requires samples with well polished surfa
es for laser ultrasoni
analysis. The metallographi
 analysis or 
hara
terisation of samples means, in this
ontext, the estimation of the grain size distribution expressed in terms of a meangrain size and a standard deviation. The unit 
hosen for these quantities was themi
rometre.The 
hara
terisation of the aluminium is presented �rst, followed by the titaniumsample.6.3.1 Digital 
hara
terisationThe grain size distribution was measured dire
tly from a digital image for ea
h blo
k.The image 
orresponding to blo
k A will be referred as MA, MB for blo
k B and soon.Using open sour
e software1 the perimeter was measured for ea
h region 
on-tained within ea
h mi
rograph and stored in a �le for mean estimation. The mean
alliper diameter, as de�ned by Eq. (3.20), was obtained by dividing the mean di-ameter of ea
h region [34℄ by π.Chara
terisation of blo
k AFor blo
k A, MA is not a single image but several pi
tures stit
hed together. Thispro
edure was ne
essary due to the opti
al limitation of the mi
ros
ope used at thetime of imaging the samples. The image in Fig. (6.2) does not 
ontain a su�
ientnumber of grains for statisti
al estimation. A sensible number in the population ofthe grains would be at least �fty.1ImageJ http://rsb.info.nih.gov/ij/



Experimental methods and results 115To minimise the error, software was used to identify similar points of adja
entimages and it was possible to stit
h them together. In this way an image 
ontainingmore that enough regions for metallographi
 
hara
terisation was 
reated. The im-PSfrag repla
ements
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Figure 6.2: A histogram of the grain size distribution for MA is showed on the lefthand side, where σA is the standard deviation of the grain size distribution. To theright hand side, the photomi
rograph of the aluminium sample is shown, under-
rosspolarised.age MA 
orresponding to blo
k A has a more 
ompli
ated mi
rostru
ture 
omparedto MB , MC , in that it 
ontains non-
onvex regions. The other problem was that the
ontrast in some regions of the et
hed surfa
e was very poor, so quite a few grainswere merged into one. Additionally, some of the grains were 
ompletely embeddedwithin larger grains, in whi
h only the big ones are 
ounted. This feature made
hara
terisation di�
ult.The 
ompli
ation with grain 
hara
terisation 
an be seen in Fig. (6.2), where thedistribution does not uniformly a

umulate around a 
entral value. Nevertheless,the results were approximately ¯̄bA ≈ 1345µm for the mean grain size, standarddeviation σA = 718, and the number of grain 
onsidered was NA = 54. The mean
alliper diameter number was roughly 
he
ked with a di�erent method by measuringthe number of visible grains within an square and dividing the area of the square
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omparable with both te
hniques.Chara
terisation of blo
k BFor the se
ond pie
e a similar pro
edure was applied as des
ribed in previous para-graphs, but the number of regions present in one image was far greater than in MAin Fig. (6.3). The di�eren
e with MB is that it has a homogeneous distribution ofmainly 
onvex grains. In the sense that the size distribution is more evenly dis-tributed, unlike A, making the estimation of the length of the boundary for ea
hregion easier. Stri
tly speaking, neither MA nor MB have mi
rostru
ture 
ompletelypopulated with 
onvex regions. To make 
hara
terisation easier, grains whi
h aremainly 
on
ave are being thought as 
onvex when estimating the mean 
alliper di-ameter. On average grains mainly 
onvex outnumber grains mainly 
on
ave foraluminium sample MB. Fig. (6.3) shows the results of measuring grain size distribu-PSfrag repla
ements
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Figure 6.3: A histogram of the grain size distribution for MB showed on the lefthand side, where σB is the standard deviation of the grain size distribution. Toright hand side, the photomi
rograph of aluminium sample is shown, under-
rosspolarised.tion for ea
h region by measuring their perimeters. The mean 
alliper diameter wasobtained under similar 
onditions from equation Eq. (3.20) with an approximate
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al values for the standard deviation σB and thenumber of regions NB 
onsidered in this 
ase are also shown in Fig. (6.3).Chara
terisation of blo
k CA third sample aluminium MC was 
hara
terised with en
ouraging results. Thissample has the smallest grain sizes 
ompared to the other two so one 
ould see highnumber of grains in a single image. It was not ne
essary to take several images andstit
h them together. The interesting feature of this sample is the evenly distributedgrain 
on�guration. The frequen
y of grains of size of approximate mean valuePSfrag repla
ements
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Figure 6.4: A histogram of the grain size distribution for MC showed to the left handside, where σC is the standard deviation of the grain size distribution. To right handside, is the photomi
rograph of the aluminium sample showing, under-
ross polarisedlight the grain for blo
k MB.
¯̄bC ≈ 134µm is high, making a good distribution as shown in the histogram in�gure Fig. (6.4). The high 
ontrast between regions in this sample made perimetermeasurement easier, 
onsiderably redu
ing the error.
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terisation of TiThe 
hara
terisation of this sample was di�
ult. At the beginning it was thoughtit was titanium but most of the standard te
hniques for et
hing titanium to revealthe mi
rostru
ture did not show the expe
ted result, so an alloy must have beenpresent. Below, in �gure Fig. (6.5), is shown the photomi
rograph of a se
tion oftitanium sample et
hed to reveal the mi
rostru
ture. It was obtained in a standardmi
ros
ope equipped with a digital 
amera after et
hing the surfa
e of the metalwith standard te
hniques. There are 
ertain regions that 
ould 
orrespond to grains

Figure 6.5: Photomi
rograph of the surfa
e of titanium et
hed by standards pro
e-dures to reveal the mi
rostru
ture.but it is di�
ult to 
on
lude that they a
tually 
orrespond to grains. Therefore, theestimation of the mean grain size was not possible for this parti
ular sample. The
ompli
ated mi
rostru
ture made the dis
ussion about the observed aberrations inthis sample di�
ult as well.6.3.2 Error in 
hara
terisationThe perimeter was measured by using graphi
al interpretation using the open sour
esoftware as before. A sour
e of error is then how a

urately a normal human being
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an measure the perimeters of regions 
omposed entirely of pixels with the aid of a
omputer mouse. The other possible sour
e of error is in the pro
edure of takingseveral digital pi
tures by me
hani
ally moving the sample to a di�erent position,with the possibility of the mi
ros
ope being out of fo
us.A more quantitative error is given in terms of the standard deviation and thenumber of regions 
onsidered for ea
h blo
k, i.e. Es = σs/
√

Ns where s = A, B, C,showed in Fig. (6.2), Fig. (6.3) and Fig. (6.4). This is the standard error [99℄,whi
h measures the di�eren
e between the estimated and the true values for thediameter of the grains. The units of the standard deviation σs are the units usedfor estimating the mean size distribution, therefore the units of Es. The mean graindistribution was estimated in mi
rometres.6.4 Experimental setupOver the past few years an Opti
al S
anning A
ousti
 Mi
ros
ope (OSAM) hasbeen developed [89℄. This highly �exible instrument 
an be fully automated and is
apable of performing multiple a
ousti
 measurements over the surfa
e of a sample.Advantages has been taken of these 
apabilities to build up an ensemble of thea
ousti
 �eld over the surfa
e of aberrating materials.6.4.1 SAW generation systemsTwo di�erent type of devi
es were used for SAW generation in the experimentalwork. The �rst one is a spatial light modulator (SLM) being part of the OSAMsystem, whi
h is brie�y presented below, and a 10MHz transdu
er, whi
h repla
edthe SLM as sour
e of SAWs for the titanium sample.The OSAM systemThe main 
omponents of the OSAM are shown in Fig. (6.6). It uses a Q-swit
hedmode lo
ked Nd-YAG laser for SAW generation, by using a spatial light modulator



Experimental methods and results 120(SLM) to image any desirable pattern�typi
ally a set of ar
s or straight lines�onto the surfa
e of the material under investigation. This image, illuminated by thepulsed laser, a
ts as the sour
e of the surfa
e waves. The fundamental frequen
y atwhi
h the OSAM generates ultrasound is 82MHz, but multiples of that frequen
y
an be also generated.
Sample

Probe laser

Pulsed
 laser

SLM

Mirrors

 system
Photo−detectionFigure 6.6: A pattern generated by a spatial light modulator is imaged onto thesample using a pulsed laser. This pattern a
ts as the sour
e of the surfa
e a
ousti
waves. The waves are dete
ted by another laser, using an opti
al beam de�e
tionte
hnique [19℄.SAW generation using a transdu
erThe ultrasoni
 inspe
tion of titanium was performed by generating SAWs using astandard 10MHz transdu
er. In this experiment, the SLM was repla
ed by thetransdu
er as the sour
e to generate SAWs on titanium as shown in Fig. (6.7). Thesame probe and 
apabilities of the OSAM were used, so it uses the me
hani
aland opti
al setup of OSAM system to dete
t SAWs in titanium. Two things weretaken into 
onsideration for 
hanging devi
es for SAW generation. Firstly, and mostimportant, is that it was not possible to laun
h a SAW in titanium at 82MHz, whi
his the fundamental frequen
y of the OSAM and a
tively uses the SLM to a
hieveit. Se
ondly, the idea was to have a broadband sour
e to test the mi
rostru
ture oftitanium at di�erent s
ales relative to the wavelength. The transdu
er was a 10MHz
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Transducer

x
z

Sample

Probe

yFigure 6.7: Sample and transdu
er array for SAW generation. The probe and thewhole dete
tion system in this experimental setup 
orrespond to the OSAM system.[Panametri
s, A544S-SM℄, so one 
an take the amplitude and phase measurementabove and below this frequen
y to see how it intera
ts with the grain stru
ture ofthe material. The bandwidth of the transdu
er allowed one to measure frequen
ies
±2MHz from the 
entre frequen
y. The frequen
y of the transdu
er was sele
tedsimply on the basis that the transdu
er was readily available, although it would havebeen interesting to experiment with other frequen
ies; unfortunately there was notime for more experiments.6.4.2 Dete
tion systemA 
ontinuous wave laser is used to dete
t the propagating surfa
e waves using anopti
al beam de�e
tion te
hnique. Both the dete
tion system and the sample aremounted on 
omputer-
ontrolled automated stages, and so the OSAM is 
apable ofrapidly imaging, due to the analogue data 
apture system, the propagating wavefrontat any position on the sample. A 
omprehensive overview and te
hni
al details aregiven in [89℄.A 
omplete set of software and ele
troni
s has been developed for gatheringinformation at high speed. Typi
ally, an amplitude and phase 
-s
an over an areaof 1.5
m×1.5
m with a resolution of 10µm 
an be taken within a matter of minutes.
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 investigations on aluminium and titanium samples are presented inthis se
tion as a fundamental part of the experimental work. In order to measurethe mean 
orrelation fun
tion, it is ne
essary to have multiple independent measure-ments of the a
ousti
 �eld a
ross the ensemble of the sample. Fig. (6.8) shows thes
hemati
s of the multiple lo
ation on the surfa
e of the sample where multiple mea-surements were performed. It is important to highlight here that the pro
edure isfully automated so it was only ne
essary to 
reate a single s
ript in order to performall the measurements. The materials tested were aluminium blo
ks, labelled MA,

PSfrag repla
ements
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Figure 6.8: S
hemati
 representation of s
anning area and sour
e lo
ations to builtup an ultrasoni
 ensemble. At ea
h position of the SLM, marked with a series ofbla
k and white stripes, a 
-s
an was performed a
ross x and z dire
tion. Thedire
tion of propagation is along the z axis.
MB and MC already introdu
ed and titanium. The measured �elds are labelled atea
h lo
ation by uA

n where A indi
ates the blo
k it belongs to, in this 
ase to blo
k
A, n is the number of 
-s
ans performed in that parti
ular blo
k.The dimensions of ea
h metal blo
k were approximately 6
m×4
m×1
m, whi
hgives su�
ient room for multiple measurements sin
e the s
anning area is typi
ally3mm×10mm. This area was 
hosen so the size of the SLM or equivalently the widthof the sour
e as well as the spread of the ultrasoni
 beam was entirely s
anned asthe SAW propagates in the material. The length of 10mm along the propagationdistan
e was also 
arefully 
hosen so to be able to dete
t SAWs until the a
ousti
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ame undete
table or the knife-edge was dete
ting only noisy signals.The images are presented separately sin
e the grain size distributions are di�er-ent for ea
h blo
k to give di�erent aberration patterns. In all 
ases, the SLM wasprogrammed to proje
t a series of straight lines onto the surfa
e of the sample, ea
hline separated from its nearest neighbour by a distan
e equal to the mean Rayleighwavelength in aluminium. The waves are generated at 82MHz, whi
h is the funda-mental frequen
y of the ex
itation laser in the OSAM system, whi
h 
orresponds toa line spa
ing of approximately 37µm in this material. For the titanium sample a
z

x

Source(a) (b)

Figure 6.9: (a) Area in xz plane whi
h 
-s
an has been performed. (b) The bla
ksquare represents the multiple positions where the transdu
er has been lo
ated toperform a 
-s
an a

ording diagram (b); whereas arrows indi
ate the dire
tion ofpropagation.similar pro
edure was 
arried in order to obtain multiple measurements. The onlydi�eren
e was in the areas 
hosen within whi
h to perform the s
anning. This wasmainly be
ause the transdu
er 
ould only physi
ally be �tted to the edge of thesample. The situation of the s
anning areas 
hosen for this parti
ular experimentis s
hemati
ally represented in Fig. (6.9)(b). Fig. (6.9)(a) shows the sour
e and thearea to perform 
-s
an for ea
h bla
k square in Fig. (6.9)(b).The relo
ation of the sour
e was done manually by moving the transdu
er toa new lo
ation and making sure the 
onta
t medium was in good 
ondition at alltimes. The 
onta
t medium was a water based 
ouplant that dries very qui
kly, sothe 
-s
an had to be done very qui
kly before the 
ouplant be
ame hard, 
hangingthe pattern. The e�e
t of dried 
ouplant 
ould not entirely be avoided, and this 
an
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ed in the measured �elds whi
h will be presented at the end of this se
tion.In both experiments, the lo
ation of the sour
e is unimportant as long as theareas 
hosen do not overlap, and the dete
ted a
ousti
 �elds remain independent.This was to ensure that every SAW propagated in the samples travelled throughdi�erent samples of the ensemble of lo
al mi
rostru
tures. The basi
 assumption isthat ea
h area 
hosen to perform the s
anning represents an independent realisationof the mi
rostru
ture ensemble whi
h is equivalent to having many independentsamples with the same statisti
al properties.Case ABlo
k A has large grains 
ompared to mean Rayleigh wavelength, and so they have arelatively small e�e
t on the wave in the dire
tion of propagation. In this parti
ular
ase, the a
ousti
 �eld 
ould not be measured until it be
ame un
orrelated be
auseof me
hani
al limitations of the system. This 
an be seen in Fig. (6.10), wherethe signal at 6mm remains strong in some 
ases and so 
ould have propagated evenfurther. Thus the e�e
t of mi
rostru
ture on the a
ousti
 �eld 
ould only be partiallyobserved. Fig. (6.10) shows the amplitude and phase distributions of a plane wavetravelling from left to right on di�erent lo
ations in sample A. The images show thedeviations 
aused by the mi
rostru
ture to the wavefront of the a
ousti
 wave. Thetransverse size of the �eld is determined by the size of the SLM. The propagationresembles an opti
al di�ra
tion pattern through a slit sin
e the SLM has a �niteaperture. The e�e
ts of the 
orners of the SLM are not observed in this parti
ularexperiment.The images have a typi
al plane wave pattern propagating in a medium withinhomogeneities su
h as poly
rystals. The wavefront breaks up due to aberration
aused by the grain stru
ture, leading to transverse variations in the amplitude. Thesame e�e
t 
an be observed in the phase distribution; the wavefront is not �at asone would expe
t in a homogeneous medium.One possible 
ause for the relatively small e�e
t in this experiment is that thegrain size is rea
hing the size of the SLM (≈ 2mm), so the beam behaves as it was
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olumn shows the phase distribution forea
h �eld on the left. The wave propagates from left to right as indi
ated by thearrow on top of the �rst 
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Experimental methods and results 126propagating in a homogeneous medium.By 
omparing the di�erent amplitude images in Fig. (6.10), one 
an observe thatthey are di�erent from ea
h other. As the sour
e 
hanges lo
ation, one is in fa
tmeasuring the a
ousti
 �eld in a di�erent realisation of the mi
rostru
ture ensemble.The sour
e position was 
hosen in su
h way that the s
ans of adja
ent areas werenot overlapping, see Fig. (6.8); thus the family {

uA
n

} for di�erent n is an ensembleof a
ousti
 �elds sin
e di�erent s
anning areas 
orrespond to di�erent realisationsof the mi
rostru
ture.Case BUnder similar experimental 
ir
umstan
es as with blo
k A, the sample B was inves-tigated. Blo
k A and B have similar dimensions, grain size being the only di�eren
ebetween them. The ensemble of a
ousti
 �elds was built up by moving the sour
e atdi�erent lo
ations and performing a 
-s
an every time. Fig. (6.11), shows a numberof phase and amplitudes images, on
e again at di�erent lo
ations on sample B. Themean wavelength is still smaller that the grain size distribution, but the grains aresmaller 
ompared to the previous 
ase. In this 
ase, it is expe
ted that there wouldbe a stronger intera
tion between SAWs and grains 
ompared to the one observedpreviously with sample A. This 
an be observed as the amplitude de
ays faster andthe �eld be
omes di�use at propagation distan
es less than 6mm. By di�use wemean that the energy of the wave has spread transversally due to aberrations andthe a
ousti
 �eld be
omes un
orrelated in the sense that the transverse 
orrelationfun
tion tends to a delta fun
tion. The phase 
hanges are slightly more di�
ult toobserve here be
ause of the resolution limitations. A 
omparison 
an be made withFig. (1.1) in 
hapter (1), where the s
anning was performed at higher resolution inboth dire
tions.Case CFinally, sample C was also ultrasoni
ally investigated showing the amplitude andphase distributions of a number of realisations of the a
ousti
 ensemble in Fig. (6.12).
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olumn is the plot the amplitude distribution of uB

n at di�erentinstan
es a
ross the sample B. The se
ond 
olumn shows the phase distribution forea
h �eld on the left. The wave propagates from left to right as indi
ated by thearrow on top of the �rst 
olumn.
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ted, the wave be
ame di�use very qui
kly due to multiple intera
tionswith the grains.Summary on the values obtained and used previouslyThe following table summarises the various values obtained and used in the wholeexperiment.Aluminium ¯̄b(µm) λ̄R(µm) n px × pz(µm× µm)

MA 1345± 98 35.5 54 5× 200
MB 785± 42 35.5 118 5×2000
MC 134± 5 35.5 56 5×100Table 6.1: Summary of some of the values used and obtained for mean 
aliperdiameter ¯̄b, mean Rayleigh wavelength λR, and the number if images n in aluminiumsamples at 82MHz. px, pz denotes pixel size in x and z, respe
tively.The low resolution 
hosen in the dire
tion of propagation (z−axis) in 
omparisonto the transverse axis is partly due to the relatively small variations of the 
orrelationfun
tion �eld for short propagation distan
es. So for instan
e, blo
k MB has aresolution of 2000µm giving as a result a total of eleven sli
es of the �eld alongthe axis of propagation. This is why aberrations 
annot visually be observed inFig. (6.11). The resolution on the rest of samples was in
reased only for aestheti
purposes to show the variations of the wavefront. It is believed that a minimumof three sli
es along the propagation dire
tion would be su�
ient to observe theoverall behaviour of the 
orrelation fun
tion. It was important to keep the transverseresolution high sin
e the width of the 
orrelation fun
tion will be an estimator ofthe mean grain size, whi
h is presented in se
tion (6.6). As regards the number

n of �elds measured, it is believed that n ≥ 50 would be a sensible number forobtaining an average 
orrelation fun
tion. The pro
edure for obtaining the average
orrelation is explained in detail in se
tion (6.6). To make sure this was the 
ase,
n was in
reased to 118 for blo
k MB, making a small di�eren
e on average for the
orrelation fun
tion. The other reason, perhaps less important, in keeping n around50 in blo
ks MB and MC was to speed up the pro
ess of gathering data.
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Experimental methods and results 130The values for the mean wavelength are only approximations for aluminium.The OSAM system is wavelength tunable in order to generate ultrasound so a valueof 35.5µm for the Rayleigh wavelength, gave the maximum signal that 
ould beobserved using a standard os
illos
ope for the normal displa
ement signal.6.5.1 Measurements in TiThis se
tion dis
usses the experiment 
arried out in the titanium sample; the pro-
edure is similar to the one for the aluminium spe
imen already dis
ussed. Theexperimental setup and SAW generation as well as the pro
edure for the experi-ment has been dis
ussed in se
tion (6.4). The important point here is to observehow the amplitude breaks up with distan
e as well as the phase variations. Thepropagation is from left to right. As it 
an be observed the spe
kle patterns areslightly di�erent to ea
h other as the a
ousti
 �eld intera
ts at di�erent frequen
ieswith the grains. The purpose of this experiment was to make the ultrasoni
 �eldintera
t with di�erent grain sizes and to build an ensemble of the a
ousti
 �eld atmultiple frequen
ies. Therefore, for ea
h point r = (x, z) and �xed sour
e positiona time waveform, u(r, t), for the normal displa
ement was obtained. The waveform
u(r, t|γ) has been transformed to the frequen
y domain using the Fourier transform,

u(r, ω|γ) =

∫

uy(r, t|γ)e−iωtdt (6.1)where γ represents a sample of the a
ousti
 ensemble a
ross a mi
rostru
tural en-semble.The fundamental frequen
y of the transdu
er is 10MHz so analysis of the spe
klepattern at that frequen
y was expe
ted to provide the most a

urate estimation ofthe material 
hara
teristi
s.In Fig. (6.13) there are some noti
eable deviations of the a
ousti
 �eld that arepossibly not to due to the intera
tion of the a
ousti
 �eld with the mi
rostru
ture.These latter observations, by looking at images in Fig. (6.13), were partly due tothe observed mi
rostru
ture, shown in Fig. (6.5) after et
hing the titanium sample
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hara
terisation. To assess and to make sure that those deviations were 
ausedby the intera
tion with the mi
rostru
ture an experiment in a homogenous isotropi
medium was 
arried out. The �ndings are presented in the next se
tion for glass. Itwas found that the 
ouplant was partly responsible for the deviations.The a
ousti
 �eld in a homogeneous mediumThe purpose of this experiment was to assess the output of the transdu
er in anon-poly
rystalline medium and experimentally assess the weak 
ontributions ofthe mi
rostru
ture to the aberrations 
aused in the a
ousti
 �eld. The resultanta
ousti
 �eld is shown in Fig. (6.14) below. Comparisons 
an be made with the
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 �eld at 10MHz on anideal sample (Glass) with no mi
rostru
ture. The transdu
er output is not a singlebeam as one might expe
t.amplitude and phase in Fig. (6.13). It 
an be 
learly seen in Fig. (6.14) the e�e
tthat the 
ouplant is having to the beam. This problem 
ould have been avoided byusing a di�erent 
ouplant but this was learned later on that there was not time torepeat the whole experiment. Nevertheless, by 
omparing Fig. (6.13) and Fig. (6.14)there are some deviations to the wavefront that 
an be observed but turned out tobe very weak. This is assessed by looking at the 
orrelation fun
tion of the �eld inse
tion (6.6).



Experimental methods and results 1336.6 Analysis of experimental data6.6.1 Pro
edure for spatial 
orrelationThe statisti
al analysis of aberrations was made on the basis of statisti
al 
on
eptssu
h as the se
ond order moment or energy 
orrelation fun
tion for �nite sequen
es.Notation is introdu
ed to explain some of 
on
epts and be able to 
ompare themwith the theory earlier developed in previous se
tions of 
hapter (5).The measured a
ousti
 �eld in all the samples is being denoted by un
xz. Thus,

un
xz will represent any of the �elds shown in Fig. (6.10), Fig. (6.11), Fig. (6.12)and Fig. (6.13). The a
ousti
 �eld is a two dimensional s
an in the xz axis, so

x = 1, ..., K, where K is the number of measurements in the x dire
tion whereas
z = 1, ..., L being L the number of measurements in the z dire
tion. The numbers
K and L are determined by the resolution of the 
-s
an taken in both dire
tions.The index runs as n = 1, ..., N , where N is the number of 
-s
ans performed onea
h sample.The aberrations are being quanti�ed by the transverse 
orrelation of the �eld.Hen
e, the transverse 
orrelation is 
al
ulated from the a
ousti
 ensemble at ea
hplane along the dire
tion of propagation.We de�ne the 
ross-
orrelation as 〈un

xzu
n∗
x′z〉 where 〈−〉 denotes the ensembleaverage for �nite sequen
es. The estimation of the ensemble average of Zn

xx′z=un
xzu

n∗
x′zis rather 
ompli
ated sin
e there is little statisti
al information about un

xz. Instead,two di�erent averages will be performed. By making τ = x − x′, Zn
xx′z 
an berewritten as Zn

x(x+τ)z=un
xzu

n∗
(x+τ)z. Sin
e there is a transverse waveform for ea
h τ ,the average over x is performed as well as the ensemble average, leading to
Zτz =

1

NK

N
∑

n=1

K
∑

x=1

Zn
x(x+τ)z (6.2)The average Z is an average transverse 
orrelation for ea
h measured realisationof the a
ousti
 �eld. The dis
rete fun
tion Z remains a 
omplex fun
tion so itsmodulus will be 
onsidered, and it will be termed 
orrelation or the energy 
orrela-
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tion. The average 
orrelation fun
tion is denoted by Γe where sub-index eindi
ates measurement, thus
Γe(τ, z) = ‖Zτz‖ (6.3)The average Eq. (6.2) is simply the arithmeti
 average of the dis
rete 
orrelation forea
h realisation of the a
ousti
 ensemble measured on ea
h sample. As pointed outin se
tion (6.5), if N ≥ 50 Eq. (6.3) would give a good estimation for Γe.6.6.2 ResultsThe estimated 
orrelation fun
tion is presented in this se
tion. It has been numer-i
ally estimated using Eq. (6.3) for one instan
e of the a
ousti
 �eld. The mainproperties of this fun
tion are des
ribed in the next se
tion where it will be 
om-pared to Eq. (5.23). Only a single image of the 
orrelation fun
tion, in parti
ularfor aluminium, will be presented as they all look similar. A more detailed versionfor both aluminium and titanium will be des
ribed in se
tion (6.7).The 
orrelation Γe in a aluminium sample numeri
ally implemented is shownin Fig. (6.15). The fun
tion has been normalised so the value of ea
h transverse
orrelation at 0 along the propagation axis is 1. The important 
hara
teristi
s ofthis fun
tion will be the width of the 
entral tail whi
h will be related to the meangrain size. The se
ond most important 
hara
teristi
 of the 
orrelation fun
tionis that it de
ays away from the sour
e. This de
ay is also dire
tly related to thestrength of the aberration measured via the standard deviation that 
hara
terises thedegree of inhomogeneity. The 
orrelation fun
tion at z = 0 has a wide base and tail(brightest areas in Fig. (6.15), near 0), but narrower away form the sour
e. The base
orresponds to the non-zero values of the 
orrelation fun
tion. The width of the baseis 
ompletely determined by the size of the sour
e, in the 
ase of aluminium, the sizeof the SLM. As the 
orrelation fun
tion propagates away from the sour
e, it de
ays sothe base disappears as 
an be seen in Fig. (6.15) at distan
e z = 8, for instan
e. Thereason for that to happen is be
ause the a
ousti
 �eld at those propagation distan
es
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Figure 6.15: One single instan
e of measured 
orrelation fun
tion in aluminiumsample a

ording to Eq. (6.2). The width of this fun
tion is an estimator of themean grain size in poly
rystals.is transversally un
orrelated, thus giving as a result almost a delta 
orrelation.This transverse property of the �eld depends entirely on the mi
rostru
ture of thesample under investigation. Therefore, the 
orrelation fun
tion behaves di�erentlyon samples with di�erent mi
rostru
tural properties. In theory, ea
h spe
imen would
orrespond to a unique 
orrelation fun
tion, ea
h one being 
hara
terised by twoparameters su
h as 
orrelation length and degree of inhomogeneity. For instan
e,the 
orrelation fun
tion is expe
ted to have small variations both on the de
ay andwidth for aluminium sample MA 
ompared to MB and MC at equal propagationdistan
e away from the sour
e. This is be
ause MA has larger grains relative to thewavelength 
ompared to MB and MC . In the latter 
ase there is a greater number ofintera
tions between grains and the a
ousti
 �eld and so the �eld be
omes rapidlyun
orrelated.In order to have a global behaviour of the 
orrelation fun
tion in both dire
tions,transverse and in the dire
tion of propagation, the �eld was observed until it be
amevanishingly un
orrelated or di�use, that it is Γe → 0. These properties are dis
ussedin the next se
tions, whi
h is dedi
ated to 
orrelation of the a
ousti
 �eld and itsrelation to the theoreti
al 
ounterpart.
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tion presents the main results 
on
erning the measured 
orrelation fun
tionon aluminium and titanium samples. The statisti
al analysis of the a
ousti
 �eldsmeasured on ea
h sample was performed a

ording to analysis des
ribed in se
tion(6.6.1), whi
h 
ulminates in the estimation of an average 
orrelation fun
tion for ea
hsample. So, the main result is the 
omparison between theory and the measured
orrelation fun
tion. The averaged measured 
orrelation fun
tion for ea
h 
ase, thatis for A, B, C and the titanium sample, was estimated from Eq. (6.2) in all 
ases for
omparison to Eq. (5.21). From this 
omparison, two parameters 
hara
terising theoverall behaviour of the 
orrelation fun
tion are estimated. These, as it will be seen,
orrespond to the degree of inhomogeneity and the mean grain size. To 
ontinuewith the same order as in previous se
tions the results for aluminium are presented�rst.6.7.1 Comparison for AlThe experimental data a
quired by the OSAM instrument were pro
essed in the waydes
ribed in se
tion (6.6.1) whi
h dis
ussed 
orrelation for �nite sequen
es, and 
om-parisons are made between the measured Γe and predi
ted Γu in Eq. (5.21); these arethe energy 
orrelation fun
tions at various propagation distan
es. Fig. (6.16) showsthe 
omparison of the measured Γe and predi
ted Γu energy 
orrelation fun
tions�where Γu is shown as solid lines�for samples A, B and C. In ea
h 
ase, it is shownat three di�erent propagation distan
es, in order to illustrate the de
ay of the 
or-relation fun
tion with distan
e.The dashed lines in Fig. (6.16) represent the measured energy 
orrelation fun
-tion on the samples at the same propagation distan
es, derived from the a
ousti
ensemble in samples A, B and C. There is good agreement for samples B and C.There are two parameters whi
h are free in Eq. (5.23), being σ and l. These
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Figure 6.16: Comparison of theoreti
al and experimental 
orrelation fun
tions, Γuand Γe for the three blo
ks A,B, C of aluminium. The dashed lines is Γe at severaldistan
es whereas the 
ontinuous line is Γu at same distan
es. The half-width ofthe plotted fun
tions is proportional to mean grain size. The numeri
al values for
σ and l are given for ea
h of the three 
ases.



Experimental methods and results 138have been obtained by �tting Γe to Γu by minimising the following fun
tion
χ2(σ, l) =

∑

xk,zl

[Γe − Γu]
2 (6.4)The values obtained for σ and l from Eq. (6.4) were obtained by nonlinear minimi-sation of the square di�eren
e between the experimental and predi
ted 
orrelationfun
tion. The above non-linear �tting problem is numeri
ally implemented else-where. The standard deviation whi
h measures the velo
ity variations from grainto grain, Eq. (3.19), used in Fig. (6.16) for 
omparison; average this σ ≈ 0.015,whi
h is a value that one would expe
t for aluminium [23℄. For 
omparison between

Γu and Γe in Fig. (6.16), the values for the 
orrelation length l were taken as themean grain size from the 
hara
terisation of the spe
imens in se
tion (6.3). This isto illustrate that the theoreti
al 
orrelation Γu, is indeed reprodu
ing the measured
orrelation fun
tion using real values.The estimated values σ and l from Γe obtained by minimising Eq. (6.4) are shownin table (6.2). It should be remembered that the standard deviation σ, and the
MA MB MC

σ 0.010± 0.002 0.014± 0.003 0.021± 0.004
l 686± 137 678± 136 165± 33Table 6.2: Experimental values for σ, l obtained by minimising Eq. (6.4) for thealuminium samples A, B, C. The spread in both quantities σ, l indi
ates that theyare to be found within a 20% a

ura
y.
orrelation length l in table (6.2), have no relationship with the standard deviationand mean 
alliper diameter ¯̄b in Fig. (6.2), Fig. (6.3) and Fig. (6.4). It would bedesirable, however, that l and ¯̄b have the same value, so the 
orrelation length is agood estimation of the mean grain size. The de�nition and physi
al meaning of σor degree of inhomogeneity has been given in detail in se
tion (3.3.2). The spreadin both quantities, σ and l in table (6.2) indi
ates that they are to be found withina 20% a

ura
y a

ording to analysis presented in se
tion (6.8) for the best �tting.The estimation of σ is reasonable in all 
ases, 
ompared to the value reported in[23℄, however, the estimated 
orrelation length for sample A is signi�
antly di�erent



Experimental methods and results 139from the values obtained visually, whi
h are approximately 1345µm, 785µm and134µm, as shown in Fig. (6.10), Fig. (6.11) and Fig. (6.12), respe
tively.Possible reasons for this are as follows. Firstly, due to me
hani
al limitations inthe OSAM instrument, the a
ousti
 �eld on sample A 
ould not be mapped in itsentirety. This e�e
tively trun
ated the available dataset from whi
h an estimation
ould be made. Se
ondly, we note that the measured mean grain size (1345µm), isapproa
hing the width of the a
ousti
 sour
e (≈ 2mm). This is signi�
ant, be
ause
Γe is in�uen
ed more by the a
ousti
 aperture in this 
ase than by the 
orrela-tion length. Finally, as noted in se
tion (6.3.1), the large grains in sample A have
ompli
ated form in that many of the grains are non-
onvex.6.7.2 Comparison for TiThe analysis of the ensemble a
ousti
 �eld was identi
al to that of aluminium, inthe sense that the energy 
orrelation fun
tion was obtained using the same method.The results for some representative frequen
ies are presented in table (6.3) belowFig. (6.17) shows a 
omparison of the predi
ted and measured power 
orrelation

f(MHz) 8 9 10 11 12 13
σ 0.024 0.025 0.028 0.028 0.026 0.027 ±0.15σ

l(µm) 351 399 368 428 424 424 ±0.15lTable 6.3: Parameter values used for 
omparison of the predi
ted and measured
orrelation fun
tion.fun
tion with values a

ording to table (6.3). The weak aberrations observed inse
tion (6.5.1) is re�e
ted in the energy 
orrelation where the de
ay is slow alongthe propagation distan
e, Fig. (6.17). It should be expe
ted, at least theoreti
allyin highly aberrated materials, that the energy 
orrelation de
ays and gets narrowas it propagates. It 
an be said that the a
ousti
 �eld is intera
ting with grains.Otherwise, the propagation will imitate propagation in homogeneous materials.The parameter l 
hara
terises material mi
rostru
ture but the metallographi
study of the sample tested did not 
learly reveal the grain boundaries so the valuesin table (6.3) 
ould not be satisfa
torily validated using standard te
hniques. This
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ompares to the results for aluminium where the parameters are in satisfa
toryagreement with the a
tual measured mi
rostru
ture.6.8 Analysis of the best �tting pro
edureThe values for σ and l were obtained numeri
ally by minimising χ2 in Eq. (6.4).This se
tion dis
usses the range over whi
h values obtained 
an be 
onsidered tobe the best. The analysis has been done for the results shown in Fig. (6.16) foraluminium, in parti
ular for the sample C. This sample was 
hosen arbitrarily asthe others show similar behaviour.Let us de�ne the following fun
tion
r(σ, l) =

√

1− χ2

s2
(6.5)where s2 =

∑

x,z f 2
xz, fxz = uC

xz and uC
xz is the �eld shown in Fig. (6.12). The fun
tion

r depends on σ and l. Let us also denote the best values for the standard deviationand 
orrelation length by σb and lb, respe
tively. These values will 
orrespond tothe values used in graph Fig. (6.16). The 
orrelation r is 
al
ulated when a pair ofvalues σ, l best �t and r(σb, lb) is expe
ted to be very 
lose to 1. The plot on theright in Fig. (6.18) shows that for values smaller and larger than σb the fun
tion r isfar less than 1. A similar situation is shown on the left plot in the same �gure. Thefun
tion r is smaller than 1 for values smaller and larger than the best. In summary,the best values that minimise χ2 
an be found within 20% of the best values σb and
lb used in Fig. (6.16) for 
omparison.The estimation of the parameters is a�e
ted by the noise generated by the systemand is re�e
ted in the 
orrelation fun
tion. The additive noise goes away when the
orrelation fun
tion is estimated but the noise remains a�e
ting mainly the widthof the 
orrelation fun
tion whi
h is proportional to the mean grain size.
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tion of σ, l. On the right side is r as afun
tion of l for three di�erent values of σ whereas on the left r is plotted as fun
tion
σ at di�erent values of l.6.8.1 Noise in measurementsOne of the di�
ulties with this te
hnique is that the sample surfa
e has to bepolished to a mirror-like �nish so �valleys� and �hills� on the sample surfa
e areminimised with respe
t to the laser probe. Otherwise high levels of opti
al noisewill arise. This in most 
ases 
an be a

omplished if the right polishing te
hniqueis applied. Assessing the quality of the surfa
e is a
hieved with an opti
al imageof the surfa
e by 
-s
anning the surfa
e in the absen
e of ultrasound. Most surfa
efeatures 
an be seen, e.g. s
rat
hes, by looking at the opti
al �eld. Another sour
eof noise 
omes from the ele
troni
s in the dete
tion system. This noise 
an varyfrom system to system so spe
ial �lters have to be designed a

ordingly.A

umulated noise at the 
entral peak of the energy fun
tion gives a very sharppeak a�e
ting the overall de
ay of the fun
tion, and therefore the estimated values of
σ, l. The data was �ltered assuming a linear model [100℄ of the form y1 = y2+e where
e is white noise statisti
ally un
orrelated to y1, and y2 is data free of noise. When�ltered with an optimum �lter the residual is delta 
orrelated, whi
h 
orresponds to
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an be removed by a �lter based on wavelets with the retention of thedesired signal. This very simple model 
onsiderably redu
es the 
entral peak due tonoise.The following table summarises the values obtained by minimising χ2 using rawdata without a �lter. From table (6.4), it 
an be 
on
luded that the most a�e
ted is
MA MB MC

σ 0.011± 0.002 0.021± 0.004 0.029± 0.006
l 404± 81 176± 35 112± 22Table 6.4: Parameter estimated by minimising χ2 without �ltering the datathe 
orrelation length for blo
k B as the standard deviation remains 
onstant within
ertain limits, 
ompared the values for σ and l in table (6.2). Thus, in order toestimate parameters with a

eptable a

ura
y it is ne
essary to gather data almostfree of noise or apply a �lter where possible.6.9 Comparison of simulated mi
rostru
tureIn se
tions (6.7.1), (6.7.2) a link was made between a theoreti
al and measured
orrelation fun
tion obtained from an ensemble of a
ousti
 �elds measured on realpoly
rystalline materials. The analysis showed that it is possible to relate thisfun
tion to the a
tual properties of the poly
rystal investigated.In order to 
orroborate the analysis of this measured data, the phase s
reen ap-proximation model des
ribed in se
tion (4.1) was used to simulate a set of ultrasoni
�elds propagating through a simulated aberrating medium of known statisti
al prop-erties. Ea
h of these �elds propagated through di�erent simulated grain stru
tures,and their 
orresponding propagating 
orrelation fun
tions were 
ombined into anensemble average as des
ribed by the average Eq. (6.3).The symbols ls, σs stand for 
orrelation length and standard deviation used inthe simulations, respe
tively. Whereas lb, σb will stand for the best values obtainedby minimising χ2, Eq. (6.4) for ea
h simulation.



Experimental methods and results 1446.9.1 Simulated degree of inhomogeneity σThe statisti
al analysis des
ribed in se
tion (6.6.1) was performed and the resultsfor standard deviation (σ) and mean grain size (l) were 
ompared to the valuesused to generate the ultrasoni
 �elds. The simulations were repeated for di�erentvalues of standard deviation and mean grain size, and the results are illustrated inFig. (6.19). In Fig. (6.19) σs denotes the standard deviation fed into the simulation
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Figure 6.19: Comparison of the best value σb (dots on the graph) on simulatedmi
rostru
ture. The symbol σs stands for the standard deviation used to simulatethe medium. The plot is a 
omparison between the standard deviation estimatedby solving the minimisation problem Eq. (6.4), for the simulated a
ousti
 �elds ina simulated media with standard deviation σs, represented by a small square.to generate di�erent velo
ity variations on di�erent simulated mi
rostru
tures. The
σb is obtained by minimising χ2 in Eq. (6.4) with the simulated a
ousti
 �eld. Thesmall squares in the graph 
orrespond to σs whereas the points 
orrespond to thebest �t.In Fig. (6.19), σs is used for the abs
issa as well as the ordinate, that is (σs, σs).In the same graph, σs is plotted against σb so the plot should be a straight line
oin
iding with the line 
omposed by squares, if they were equal. One 
an see thatthere are 
ertain dis
repan
ies for high values of deviation.
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orrelation length lFig. (6.20) shows the result for the 
orrelation length of the medium. The parameter
σb and lb were obtained by solving simultaneously the minimisation of χ2 but shownon di�erent graphs.The agreement between the values used to simulate the random mi
rostru
tureand the values obtained from statisti
al analysis of the ensemble auto
orrelationfun
tions is very good.
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Figure 6.20: Comparison of the best value lb (dots on the graph) on simulatedmi
rostru
ture. The symbol ls stands for the mean grain size used to simulate themedium. The plot is a 
omparison between the 
orrelation length lb estimated bysolving the minimisation problem Eq. (6.4), for the simulated a
ousti
 �elds in asimulated media with average grain size ls, represented by small squares.A
ousti
 �eld simulationsOne hundred di�erent media were simulated by feeding the algorithmwith ten valuesfor σs and ten for ls, varying σs from 0.01 to 0.1, and ls from 51 to 512. For ea
hpair (σs, ls), one hundred �elds were generated in order to give a good estimationof the average, Eq. (6.2). The agreement between the values used to simulate therandom mi
rostru
ture, and the values obtained from statisti
al analysis of the



Experimental methods and results 146ensemble auto
orrelation fun
tions is good, parti
ularly for the standard deviation.The spread on the estimated grain size a

ording to Eq. (6.4) is probably due to thefa
t that the mean grain sizes are rea
hing the size of the SLM, and the fun
tionEq. (5.23) be
omes 
ompli
ated in that region. Thus, the spread will be redu
ed by
hoosing a wider aperture for the initial �eld.Remarks on simulationThe mi
rostru
ture was simulated using a di�erent method from that of Voronoi
ells. The Voronoi analysis for mi
rostru
ture simulation was not available at thetime of writing the paper [101℄, whi
h was part of the results, so it was de
ided touse the algorithm already developed by the �rst author in [14℄. Besides, the graingrowth model used is equivalent to Voronoi tesellation for many pixels and is mu
hfaster.The method used for simulating mi
rostru
ture has no e�e
t on the �nal result.The 
orrelation fun
tion of the �eld 
oin
ides by using di�erent methods as long asthe simulated mi
rostru
ture 
ontains 
onvex regions. All simulated methods leadto an exponential fun
tion whi
h is the requirement of the analysis presented in
hapter (4).The above statement is equivalent to saying that as long as the simulated medium
an be 
hara
terised by an exponential 
orrelation fun
tion it will then approximatethe 
ase of Voronoi 
ells.One of the reasons for the simulation not being repeated using Voronoi 
ells 
anbe inferred from se
tion (3.3.4), 
hapter (4) and 
hapter (5) as follows: The resultsshowed in Fig. (6.19), Fig. (6.20) that by 
omparing an estimated to a theoreti
al
orrelation fun
tion, Eq. (6.3) and Eq. (5.23) respe
tively, then the input values σsand ls 
orrespond to those obtained by minimisation of χ2 Eq. (6.4). Now, it is knownfrom se
tion (3.3.4) that the mean grain size a
tually 
orresponds to the 
orrelationlength of an exponential 
orrelation fun
tion. It is also known that by using this
orrelation it is possible to generate realisations of the �eld, as it has been done in
hapter (4) by using Eq. (4.17), based on Voronoi 
ells. By generating as many �elds
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essary a simulated ensemble 
an be generated, an also an estimated 
orrelationfun
tion in a simulated medium. However, sin
e the mean 
ross-
orrelation of the�eld in 
hapter (5) uses Eq. (4.17) to obtain the theoreti
al 
orrelation �eld used for
omparison in both experiments and simulations, the simulation of the �eld wouldbe unne
essary.6.10 Con
lusionsIn this 
hapter the experimental work 
arried out on two di�erent poly
rystallinematerials, aluminium and titanium has been presented. Four spe
imens were pre-pared, three blo
ks of aluminium with di�erent grain sizes and one pie
e of titanium.The aluminium samples were spe
ially built to have mainly 
onvex grains with ran-dom spatial distributions and to enable testing of the theoreti
al development aswell as to give a better experimental understanding of aberrations in relation tomi
rostru
ture. The titanium sample on the other hand was provided by industrialsta�, so it was only ne
essary to polish it for ultrasoni
 testing. The et
hing ofall spe
imens was performed by using standard te
hniques for both aluminium andtitanium. In the 
ase of aluminium, the pro
edure showed the required 
hara
teris-ti
s so the 
hara
terisation was performed as presented in se
tion (6.3) by obtainingthe mean grain size for all spe
imens. The et
hing of titanium proved to be moredi�
ult than expe
ted, thus 
hara
terisation of this spe
imen was not possible.In order to measure the aberrations in all the spe
imens SAWs at frequen
iesof 82MHz were propagated in all the aluminium spe
imens. The a
ousti
 �eld inea
h 
ase was obtained by performing a 
-s
an to obtain a two dimensional imageto show the deviations of the wavefront. The results were presented as a series ofimages in se
tion (6.5). The aberrations are 
learly seen in aluminium, espe
iallyin sample MA, for whi
h the a
ousti
 �eld was taken at high resolution. The ul-trasoni
 testing of titanium at 82MHz using SAW waves was not possible so it wasne
essary to 
hange the method for SAW generation. It proved di�
ult to generateSAW in titanium using laser ultrasoni
s. A standard 10MHz transdu
er was used
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edure as with the aluminium samples the a
ous-ti
 �eld was obtained. The aberrations in this parti
ular sample were weak and later
orroborated by looking at the 
orrelation fun
tion of the �eld.The aberrations of the a
ousti
 �eld were statisti
ally analysed so it was ne
es-sary to perform multiple measurements at di�erent lo
ations in the spe
imen. Theaim was to measure a 
orrelation fun
tion of the �eld. This 
orrelation fun
tionneeds a set of independent measures in the spe
imen with same statisti
al 
hara
-teristi
s for mi
rostru
ture. This was performed by s
anning at di�erent areas overthe surfa
e of ea
h sample, thus building up an ensemble of a
ousti
 �elds. The pro-
edure was repeated for ea
h spe
imen under investigation thus obtaining a mean
orrelation fun
tion for ea
h sample.The importan
e of measuring a 
orrelation fun
tion 
an be seen in the 
ompari-son of the theoreti
al against the experimental 
orrelation fun
tion, whi
h has beenmade in se
tion (6.7) for the aluminium and titanium samples. From this 
ompar-ison, it was possible to obtain two parameters that determine the behaviour of the
orrelation fun
tion. Theoreti
ally, as shown in 
hapter (3) and (5) these parame-ters are the 
orrelation length l, whi
h is dire
tly related to mean grain size of thepoly
rystal under investigation, and the degree of inhomogeneity σ. The estima-tion of the parameters from the measured 
orrelation proved to be a

urate only forsamples MB and MC but not for MA sin
e the value of mean grain size obtainedfrom the �tting did not agree with the value estimated from the 
hara
terisation ofthe sample. This does not 
on
lusively mean that the theory is wrong sin
e therewere other fa
tors involved in obtaining those results, su
h as the mean grain sizeof the spe
imen. The other reason was that, due to system limitations, it was notpossible to measure 
ompletely the a
ousti
 �eld along the axis of propagation.As regards to the titanium sample, the values obtained for the degree of anisotropyand mean grain size unfortunately 
ould not be 
orroborated sin
e the photomi
ro-graph does not show the grains as in aluminium samples; it was thus impossible to
on
lude anything about the mi
rostru
ture of the sample.In order to asses the te
hnique even further a set of poly
rystalline environments
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rystalline material. Fromthe simulated aberrations the mean 
orrelation fun
tion was obtained showing en-
ouraging results despite the spread in agreement for values 
lose to 0.05 and 500µmfor the standard deviation and 
orrelation length, respe
tively.The overall pro
edure for obtaining the mean grain size from a measured 
orre-lation fun
tion 
an 
on
lusively be used for poly
rystalline material with relativelysimple mi
rostru
tures. It is believed that the te
hnique 
ould be a valuable tool inmaterial 
hara
terisation.



Chapter 7
Dis
ussions and further work
Introdu
tionThe theoreti
al model and experimental work presented in this thesis 
overed ingreat detail the statisti
s of a
ousti
 aberrations in poly
rystalline materials. How-ever, there is still resear
h to do, spe
ially in the theoreti
al part.The 
ombination of NDE methods su
h as the OSAM system together withthe statisti
al te
hnique developed in 
hapter (6) 
ould well be serve as a tool inmaterials 
hara
terisation. The statisti
al analysis of aberrations 
ould also aidin the ongoing resear
h of 
orre
ting aberrations whi
h is part of the 
ontinuousdevelopment of the OSAM system. There are several problems to be addressed
on
erning the work presented in this thesis along with some 
on
lusions whi
h willbe dis
ussed in the rest of the 
hapter.7.1 The s
alar modelMany aspe
ts of the presented theoreti
al model are based on the elasti
ity of poly-
rystals modelled within the framework of sto
hasti
 pro
esses. This theory makesuse of the full ve
torial equations for poly
rystalline materials. It was shown in
hapter (3), than in the very parti
ular 
ase of SAW propagation in poly
rystallinematerial the full ve
torial theory, governed by the elasti
ity Eq. (3.10), 
an be re-
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ed to a s
alar approximation to simplify the des
ription of wave propagation inpoly
rystals. The elasti
ity theory in poly
rystalline materials helped to establishmany of the important 
hara
teristi
s of the materials, su
h as the anisotropy of thegrains dis
ussed in se
tion (3.2.3).The s
alar model was shown to a

urately des
ribe a
ousti
 aberrations of SAWsin poly
rystals. The quanti�
ation of the aberrations was made through the two-parameter estimation in se
tion (6.9), by 
omparison to the measured 
orrelationfun
tion in 
hapter (6.6). These parameters relate to the statisti
s of the a
tual mi-
rostru
ture of poly
rystals through the 
orrelation of the a
ousti
 �eld, developedin detail in 
hapter (5). The model gives an expli
it expression for the 
orrela-tion fun
tion, Eq. (5.23), being able to estimate standard deviation and 
orrelationlength.The standard deviation was shown to be a

urate when 
ompared to values re-ported in the literature [23℄. The model of the medium in se
tion (3.3.3) also showedthat, even under very restri
tive 
ir
umstan
es, the 
orrelation length obtained by
omparison in (6.7) 
an realisti
ally represent the mean grain size for poly
rystalswith mainly 
onvex regions.The s
alar theory in 
hapter (3) was based on existing models already in use inother areas su
h as turbulen
e theory and underwater a
ousti
s. Most of the ap-proximations and mathemati
al methods were imported into this �eld and adjustedso they 
ould be used to explain aberrations. The mathemati
al development waslimited then to approximations already in use, although an attempt was made toimprove them. For instan
e, in the 
hapter (5) the 
al
ulations for the 
orrelationfun
tion were made without assuming that Γµ is delta 
orrelated in the dire
tion ofpropagation.As far as the model presented in 
hapter (3) for SAW in poly
rystalline materialsis 
on
erned, it only takes into a

ount homogeneous isotropi
 solids. This way, itwas possible to express the a
ousti
 �eld in an isotropi
 medium as a plane waveexpansion in 
hapter (4), whi
h was later used in se
tion (4.1.2) to approximatethe a
ousti
 �eld in a random medium. In order to extend the development in
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hapter (4) to materials of general anisotropy, it is ne
essary to 
al
ulate the Green'sfun
tion of the normal displa
ement for materials of general anisotropy. The Green'sfun
tion for solids of general anisotropy has been reported in [21℄. This, added tothe development in 
hapter (4), would improve the theoreti
al des
ription of thea
ousti
 �eld in random media. A major improvement to the present resear
h wouldbe to des
ribe SAWs in poly
rystalline materials by removing the hypothesis of lo
alisotropy, Eq. (3.7), on the elasti
 moduli, whi
h means a 
omplete des
ription of aSAW based entirely on the elasti
ity Eq. (3.10) for poly
rystals, without relying ona s
alar des
ription.7.1.1 Modelling the mediumThe most limited assumption was in modelling the medium. It has been assumedin se
tion (3.3.1) that µ follows Gaussian statisti
s and is transversally isotropi
.Without this assumption, the theoreti
al 
orrelation of the �eld in 
hapter (5) 
ouldhave been more di�
ult to 
al
ulate. This model works well with grains that behaveon average as if they were spheres. However, as seen in the experimental work inFig. (6.16), the assumption 
ould lead to problems as was the 
ase for the aluminiumsample for whi
h Fig. (6.2) in se
tion (6.3.1) presented 
ompli
ated geometri
alfeatures, as showed in the photomi
rograph. A more realisti
 model would be to
onsider a more general expression for Γµ, in the sense that it would depend on two
orrelation lengths, i.e. in x and z dire
tions so to model elongated grains. Theanisotropy would also have to be taken into a

ount, that is, Γµ would also dependon dire
tion. This implies that the whole theoreti
al development would have to bereformulated to in
lude this type of mi
rostru
ture.The s
alar wave approa
h in se
tion (3.3.3) will have to be modi�ed so as toin
lude a more general pro
ess to model the medium rather than simply assuming apro
ess with a Gaussian 
orrelation fun
tion. In addition, modelling mi
rostru
turewithin the approximations in se
tion (3.3.4), where grains of similar size 
lustertogether in 
ertain areas in the sample, not to mention elongated and non-elongatedgrains within the 
luster, would be prohibited. This behaviour did o

ur near the
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ontainer when preparing the aluminium samples, see se
tion (6.2.1).The grains of di�erent sizes were 
ut o� by sli
ing the edges of the sample as theywere of no interest for the 
urrent resear
h.Thus, future work in relation to mi
rostru
ture and anisotropy within the frame-work of s
alar approximation will be to �nd a more suitable pro
ess for des
ribingmi
rostru
ture. This means �nding a random pro
ess to des
ribe general anisotropywithin grains as well as more 
ompli
ated grain shape rather than mainly 
onvexregions.7.2 The phase s
reen modelThe phase s
reen model, alongside the sto
hasti
 wave equation in 
hapter (3) and(4), has been developed to simulate ultrasound propagation through random me-dia. This model has been used to 
orroborate the te
hnique of statisti
al analysisof the propagating energy 
orrelation fun
tion, and provides a useful test bed fordeveloping the theory, alongside the experimental work.One of the problems with the phase s
reen approximation is that it 
an onlyhandle the forward �eld, although the same model 
ould be used to forward andba
kward propagate the �eld to a

ommodate ba
ks
atter. This was not attemptedsin
e the primary interest was to assess the transverse 
orrelation of the �eld, whi
hresulted in the expression Eq. (5.23). The other problem is the mathemati
al jus-ti�
ation to represent a �good� approximation to the paraxial approximation of theHelmholtz equation. This 
an only be done using 
ontinual integrals [60℄ that inpra
ti
e are extremely di�
ult to evaluate. Nevertheless, the model was shownto be useful in obtaining an approximated expression for the 
orrelation fun
tionwith similar results if Γµ is assumed to be delta 
orrelated along the propagationdire
tion.The phase s
reen model makes use of the angular spe
tral representation of the�eld, see se
tion (4.1.3). In the a
tual 
al
ulation of the 
orrelation of the �eld, aparaboli
 approximation was used by approximating the radi
al appearing in the
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tion propagator of the expansion. That is the fun
tion h = exp[iz
√

1− p2] wasapproximated by h ≈ exp[iz − 1
2
izp2], making possible the 
al
ulation of integralsin 
hapter (5). This was one of the key points in making use of the approximation.The numeri
al simulation showed that under the 
onditions used in this work theoriginal or the approximated expansion does not make a signi�
ant di�eren
e tothe �nal result. The other interesting feature of this model is that it is possible toe�
iently build realisations of the a
ousti
 ensemble using the FFT algorithm, so itis possible to 
ompare them to the measured aberrations in real samples. Lookinginto the future, it would be desirable to remove the dependen
e on the number ofs
reens in Eq. (4.17) by repla
ing the multiple integrals by a 
ontinual integral soas to in
lude propagation paths other than straight lines.7.3 Experimental workTwo di�erent materials or poly
rystals were ultrasoni
ally analysed using di�erentultrasoni
 sour
es, aluminium and titanium. In the aluminium sample the OSAMsystem was used whereas in the titanium sample a 
onta
t transdu
er te
hnique wasused as the ultrasoni
 sour
e. The idea with the transdu
er was to test the model atdi�erent frequen
ies limited to the narrow frequen
y bandwidth of the transdu
er.Unfortunately, the titanium sample proved to be a di�
ult sample in the sense thatthe mi
rostru
ture was unexpe
tedly 
ompli
ated. So the mean grain size was notestimated. As a 
onsequen
e, the 
orrelation length obtained in (6.3) 
ould not bedemonstrated to 
orrespond to the mean grain size of the material.The te
hnique for aluminium samples, on the other hand, both for preparationand 
hara
terisation of the samples generally ful�lled expe
tations.The obje
tive of the experimental work was to measure the deviations of thea
ousti
 �eld 
aused by the grains within the material by looking at the forwardpropagating �eld. However, it appears that SAW re�e
tion at grain boundaries
an also be a sour
e of deviations in the a
ousti
 �eld, see se
tion (3.2.2). Thus,from the experimental point of view it would be interesting as a part of further
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h to measure the re�e
ted �eld at grain boundaries. These re�e
tions possiblywould involve mode 
onversion 
ompli
ating even further a theoreti
al des
riptionof a
ousti
 propagation. It would be useful to modify the OSAM system so that it
ould look at ba
ks
atter to examine the re�e
ted �eld at grain boundaries usingthe OSAM system.The pro
edure used in this work to obtain parameters 
hara
terising materialsby minimising Eq. (6.4) needs to be reviewed if the te
hnique is to be used routinelyfor materials 
hara
terisation. That is, it will be ne
essary to design a better �lterto pro
ess the data so that reliable and a

urate estimation of parameters will bepossible. It is a very important point to establish to what extent the level of noisea�e
ts the estimation of the parameters and how to remove it. The �lter appliedfor the 
omparison in Fig. (6.16), did work well in general terms.7.4 Final 
ommentsThe theoreti
al development of SAWs in poly
rystalline materials presented in 
hap-ter (3) and (4), whi
h 
ulminates with the 
al
ulation of the 
orrelation fun
tion ofthe a
ousti
 �eld in 
hapter (5), proved to work very well in aluminium samples withmainly 
onvex regions. This was demonstrated by 
omparing the measured 
orrela-tion fun
tion to the theoreti
al one in 
hapter (6), with good agreement. Even whenthe value of the 
orrelation length obtained by performing the inverse problem forsample MA did not mat
h the mean grain size in Fig. (6.2), it is believed that thete
hnique as a whole 
an be a valuable tool for material 
hara
terisation, providedthe 
onditions dis
ussed in the thesis are met.In summary, this work has 
ontributed to the establishment of a wave 
orrelationfun
tion that quantitatively des
ribes the lo
al anisotropy and mean grain size ofpoly
rystalline materials with 
ertain 
hara
teristi
s.The statisti
al properties of SAWs in poly
rystalline materials were de�ned byse
ond order moments of the a
ousti
 �elds and these relate to material grain sizeand anisotropy via the theoreti
al 
orrelation fun
tion developed in 
hapter (5).
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ussions and further work 156Originality of the workPart of the work done in this thesis has been presented in a series of 
onferen
esand has been published arti
les on a
ousti
 aberrations [101, 102, 103, 104, 105℄.
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Appendix
A.1 Multivariate propagation fun
tionIn this appendix a 
ertain type of multiple integrals that arise in propagation of
orrelation fun
tion will be dis
ussed. It will be shown that for very spe
ial 
asesthose integrals 
an be evaluated for arbitrary fun
tion by making a simple 
hangeof variable.Let x = (x0, ..., xn), z = (z0, ..., zn) be and denote the ve
tor 
oordinate dif-feren
e by x− = (x1 − x0, ..., xn − xn−1) and z− = (z1 − z0, ...), respe
tively. Themultidimensional Green's fun
tion is de�ned as

G(x−, z−) =

n
∏

j=1

G(x
_
j , z

_
j ) (A.1)where G(x − x′, z − z′) = (1 + i)

√

k
4π(z−z′)

eikze
ik (x−x′)2

2(z−z′) is the Green fun
tion of theHelmholtz's equation in two dimensions. Some de�nitions are introdu
ed in orderto avoid lengthy equations, so let us say Cn = (1 + i)n( k
4π

)n/2, Λ−
s = 2(zs−1−zs)

k
and

rs = (xs − xs−1)
2 − (ys − ys−1)

2 with obvious de�nition for ve
torial form.Consider the following integral
I =

(

−1

π

)n ∫

· · ·
∫

f(x,y,z)
n

∏

s=1

{

exp[−i rs

Λ−
s
]

Λ−
s

}

dxdydz (A.2)
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ates that integration has to be performed on variables x0, ..., xn−1 and
f is an arbitrary fun
tion.If f is a fun
tion of x− y, z− only then I 
an be expressed in the following form

I = (−1)n

∫

f(xn − yn, ..., xn − yn, z)dz0,n−1 (A.3)where d0,n−1 = dz0 · · · dzn−1Let us make the following 
hange of variable p = x− y, q = x + y so p + q =2xand q− p = 2y therefore their quadrati
 di�eren
es 
an be expressed as follow
(xs − xs−1)

2 − (ys − ys−1)
2 = (ps − ps−1)(qs − qs−1). (A.4)Also note that dxsdys = 1

2
dqsdps then dx0,n−1dy0,n−1 = dx0 · · ·dxn−1dy0 · · · dyn−1 =

1
2n dqdp.Substitution of Eq. (A.4) into Eq. (A.2) after using the assumption on f gives

I =

(

−1

π

)n ∫

f(p, z)

n
∏

s=1







exp[−ip−s q−s
Λ−

s
]

Λ−
s







dpdqdz

=

(

−1

π

)n ∫

f(p, z) exp

[

−i
∑ p−s q−s

Λ−
s

] n
∏

s=1

1

Λ−
s

dpdqdz (A.5)Sin
e f is independent of q the integral with respe
t a q follows by expressing theargument in su
h way that it is possible to integrate with respe
t to the variable q,hen
e
i

n
∑

s=2

p−s q−s
Λ−

s

= i
n

∑

s=1

[
1

Λ−
s

p−s −
1

Λ−
s+1

p−s+1]qs (A.6)with p−1 = p−n+1 = 0; se
tion (A.1.1) shows how to obtain Eq. (A.6). Then integralEq. (A.4) after inserting Eq. (A.6) and performing integration with respe
t to dq1,n−1,
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I = b

∫

f(p, z)

n
∏

s=1

Λ−
s δ(p−s −

Λ−
s

Λ−
s+1

p−s+1)

n
∏

s=2

1

Λ−
s

dp0,n−1dz0,n−1 (A.7)where b =
(

− 1
π

) (2π)n−1

2n−1 .It is not di�
ult to realise that
f(pn, ..., pn, z)

n
∏

s=2

Λ−
s =

∫

f(p, z)

n
∏

s=1

Λ−
s δ(p−s −

Λ−
s

Λ−
s+1

p−s+1)dp0,n−1 (A.8)Therefore the integral redu
es to
I = (−1)n

∫

f(pn, ..., pn, z)dz0,n−1 (A.9)



Appendix 160A.1.1 RemarksEquation Eq. (A.6) is revisited step by step to show how it was obtained by rear-ranging the sums. Thus,
i

n
∑

s=2

p−s q−s
Λ−

s

= i
∑ 1

Λs
(ps − ps−1)(qs − qs−1)

= −i

[

n
∑

s=2

1

Λs
(ps − ps−1)qs−1 +

n
∑

s=2

1

Λs
(ps−1 − ps)qs

]

= −i

[

n−1
∑

m=1

1

Λm+1
(pm+1 − pm)qm +

n
∑

s=2

1

Λs
(ps−1 − ps)qs

]

= −i

[

(p2 − p1)q1
1

Λ2
+

n−1
∑

s=2

1

Λs+1
(ps+1 − ps)qs+

+

n
∑

s=2

1

Λs
(ps−1 − ps)qs +

1

Λn
(pn−1 − pn)qn

]

= −i

[

1

Λ2
p−2 q1 +

n−1
∑

s=2

(
1

Λs+1
ps+1 − ps(

1

Λs+1
+

1

Λs
)+

+
1

Λs
ps−1)qs −

1

Λn
p−n qn

]

= i
n

∑

s=1

[
1

Λ−
s

p−s −
1

Λ−
s+1

p−s+1]qs (A.10)where p−1 = p−n+1 = 0 has been made to 
omplete the sum from s = 1 to n.A.1.2 The mean for multiple phase s
reensLet us denote the phase di�eren
es by wij = φ(xi)− φ(xj) and the varian
e of thetheir di�eren
e by c = {cij} =
{〈

w2
ij

〉}, whi
h is the matrix of 
ovarian
es
w = {wjj}t =











w11...
wnn











=











φ(x1)− φ(y1)...
φ(xn)− φ(yn)











(A.11)
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ξ =











ξ1...
ξn









an arbitrary ve
tor variable. The mean Eq. (5.13) 
onsidered in 
hapter (5) followsby using the 
umulative generating fun
tion for multivariable Gaussian variables[64℄, thus the ensemble average Eq. (4.14) 
an be expressed as,
〈s(x)s∗(y)〉 =

〈

ei
Pn

1 φ(xj)−φ(yj)
〉

=
〈

ei
Pn

1 wjj

〉

= C(1, ..., 1)

=
〈

ei
P

ξjwjj
〉

ξ=1

=
〈

ei
P

ξtw
〉

ξ=1
(A.12)

= eiξt〈w〉e−
1
2
ξtcξ|ξ=1 (A.13)

= e−
1
2
ξt〈w2〉ξ|ξ=1

= e−
1
2

P

j〈w2
jj〉

= e−
P

Γφ(0)−Γφ(xj−yj)

= e−
Pn

j Dφ(xj−yj) (A.14)where Dφ(xj − yj) = Γφ(0) − Γφ(xj − yj). The equivalen
e between Eq. (A.12)and Eq. (A.13) follows from the well known result for Gaussian variables; the en-semble average of an exponential random variable is the ensemble average of itsargument. After some algebra Eq. (A.14) follows, whi
h is the desired equivalentform for 〈s(x)s∗(y)〉. Thus, the mean 〈s(x)s∗(y)〉 is an exponential sum of stru
-ture fun
tions. Ea
h stru
ture fun
tion Dφ(xj − yj), 
orresponds to the stru
turefun
tion of the phase s
reen at position j. It has to be said that the above result isonly valid for Gaussian variables.



Appendix 162A.2 The angular representation in inhomogeneousmediumThe long expression obtained in se
tion (4.1.3) is developed in this appendix stepby step. The development of the expression is based on the angular representationof the �eld and the linearity of 
onvolution and Fourier transform.Let us �rst introdu
ed the de�nition of 
onvolution of two fun
tions. It is 
os-tumery to use t as the independent variable, thus the 
onvolution of two fun
tions
f and g is de�ned as

f(t)⊗ g(t) =

∫

f(τ)g(t− τ)dτ (A.15)The starting point for writing the �eld representation in random media will be there
ursive relationship Eq. (4.16) between the values of the �eld in ea
h s
reen.For instan
e, using the re
ursive relation Eq. (4.16) and Eq. (A.15) the �eld valueat layer n = 0, n = 1, n = 2, ... are given by
n = 0 u1 = hp1

∫

û0hp0 ŝ0(p1 − p0)dp0 (A.16)
n = 1 u2 = hp2

∫

û1hp1 ŝ1(p2 − p1)dp1 (A.17)
n = 2 u3 = hp3

∫

û2hp2 ŝ2(p3 − p2)dp2 (A.18)...
un = hpn

∫

ûn−1hpn−1 ŝn−1(pn − pn−1)dpn−1 (A.19)The �eld u2 depends on the values of the Fourier transform of u1 from the previouslayer, whi
h in turn depends on the Fourier transform of u0. The pro
ess is 
ontinueduntil one rea
hes un then ba
k substitution is performed to be able to express unas a fun
tion of u0 whi
h is the in
ident �eld v as an spe
ial 
ase in this notation.In the re
ursive relation above there is the Fourier transform involved both for unand the s
reens s. To make things easy in writing su

essively un let us re
all



Appendix 163that kûn(k0pn) = an(pn) for all n, where an is the angular representation of unwithin layer n. Moreover, it is understood that whenever ŝn appears in the followingexpressions what it really means is ŝn(pn+1 − pn).Thus, using Eq. (A.16) to Eq. (A.19) by starting with un and substitution of theintegral representation for an−1 and an−2 one has
ûn = hpn

∫

an−1hpn−1 ŝn−1dpn−1 (A.20)
= hpn

∫
(

hpn−1

∫

an−2hpn−2 ŝn−2dpn−2

)

hpn−1 ŝn−1dpn−1 (A.21)
= hpn

∫∫

an−2hpn−2h
2
pn−1

ŝn−2ŝndpn−1dpn−2 (A.22)
= hpn

∫∫
(

hpn−2

∫

an−3hpn−3 ŝn−3dpn−3

) (A.23)
×hpn−2h

2
pn−1

ŝn−2ŝn−1dpn−1dpn−2 (A.24)
= hpn

∫∫∫

an−3hpn−3h
2
pn−2

h2
pn−1

ŝn−3ŝn−2ŝn−1dpn−3dpn−2dpn−1 (A.25)Now it is 
lear from the above relationship that every time one substitutes an for itsintegral representation, the Fourier transform of ea
h s
reen forms a multipli
ativeseries. The same happens with the fun
tions hpn
inside the integral. Su

essiveintegration is possible be
ause hpn

and ŝn are independent for every n. The �eld
un is now expressed as a fun
tion of an−3 in Eq. (A.25). To end this, is ne
essaryto substitute the representation for a0, ..., an−3 as it has been done in Eq. (A.21),Eq. (A.24) for an−1 and an−2, respe
tively. Allowing j to run from 0 to n the produ
tseries in Eq. (A.25) 
an be rewritten using a short notation, hen
e

n−1
∏

j=0

h2
pj

ŝj = hp0 · · ·hpn−3h
2
pn−2

h2
pn−1

ŝ0 · · · ŝn−3ŝn−2ŝn−1 (A.26)Using Eq. (A.26) the �eld un 
an be expressed as
ûn = hpn

∫

· · ·
∫

a0(p0)
n−1
∏

j=0

h2
pj

ŝj(pj+1 − pj)dpj
(A.27)whi
h Eq. (4.17) written in the spatial frequen
y.



Appendix 164A.3 The Green's fun
tion for the 
orrelation equa-tionA.3.1 Helmholtz's equationThis appendix is dedi
ated to the 
al
ulation of the Green fun
tion for the operators1. L = 2ik ∂
∂z

+ λ2. D = 2ik ∂
∂z

+ ∆1 −∆2 where ∆s = ∂2

∂x2
sCase 1.The Green's fun
tion for operator L is a fun
tion G whi
h satisfy the followingdi�erential equation

2ik
∂

∂z
G + λG = −δ(z − ξ) (A.28)where δ is the delta of Dira
 and λ an arbitrary parameter.There is a straightforward method of �nding G by using Fourier's transform.Thus, in taking Fourier transform on both sides of Eq. (A.28) one gets

−2ωkĜ + λĜ =
1√
2π

e−iωξ

Ĝ =
e−iωξ

√
2π(−2kω + λ)

(A.29)Taking the inverse Fourier transform of the above relation gives
1√
2π

∫

Geiωzdω =
1√
2π

∫

eiω(z−ξ)dω√
2π(−2kω + λ)

G = − 1

2
√

2πki

∫

ie−iω(z−ξ)dω√
2π(ω + λ

2k
)
. (A.30)Using one of the integrals from table in appendix (A.7) G takes the form

G = − 1

2
√

2πik
H(z − ξ)ei λ

2k
(z−ξ) (A.31)
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H the Heaviside fun
tion.The following fun
tion is also solution

G = H(z − ξ)ei λ
2k

(z−ξ) (A.32)Case 2.On
e again in order to �nd the Green's fun
tion for D or a solution to thefollowing di�erential equation
DG = −δ(x1 − a)δ(x2 − b)δ(z − c) (A.33)the Fourier transform te
hnique is applied. The above problem is redu
ed to �rst
ase by takingFourier transform with respe
t to x1, x2, in doing so, equation Eq. (A.33) on thefrequen
y domain takes the form

2ikĜz + [ω2
2 − ω2

1]Ĝ = − 1

2π
e−iω1a−iω2bδ(z − c) (A.34)Obviously, the above di�erential equation falls in the �rst 
ase. In using this resulta solution 
an be obtained for Ĝ,

Ĝ(ω1, ω2, z) = − 1

2π
e−iω1a−iω2bH(z − c)ei

ω2
2−ω2

1
2k

(z−c) (A.35)The result follows after taking the inverse Fourier transform and using, on
e againone of the integrals in appendix (A.7), therefore by taking the inverse Fourier trans-



Appendix 166form of Eq. (A.35) we have
G = − 1

4π2

∫ ∫

ei
ω2
2−ω2

1
2k

(z−c) ×

×eiω1(x1−a)+iω2(x2−b)dω1dω2 (A.36)
G = − 1

4π2

∫ ∫

e−β1ω2
1−β2ω2

2 × (A.37)
×eiω1(x1−a)+iω2(x2−b)dω1dω2

= − 1

4π2

π

β1β2
e−(x1−a)2/4β2

1e−(x2−b)2/4β2
2

= − 1

4π2

2πk

(z − c)
eik

(x1−a)2

2(z−c)
−ik

(x2−b)2

2(z−c)

G = − k

2π(z − c)
eik

(x1−a)2

2(z−c)
−ik

(x2−b)2

2(z−c) (A.38)where β1 = 1
2

√

z−c
k

(1 + i), β2 = 1
2

√

z−c
k

(1− i)A.4 Colouring Voronoi 
ellsThe algorithm for 
olouring Voronoi 
ell is based on expressing the fun
tion 1Bn
intothe 
omplex version. The verti
es that de�ne ea
h region Bn are irregular polygonsand its verti
es 
an be expressed in 
omplex numbers denoted by w1, ..., wn, wk ∈ C.Also points belonging to B are written in its 
omplex version. In 
omplex variablethe wind number is de�ned as

n(w; γ) =
1

2πi

∫

γ

dξ

ξ − w
. (A.39)The fun
tion n(w; γ) has the wonderful property that n(w; γ) = 1 if z belongs tothe interior of γ and zero otherwise.The path γ de�ning entirely a region Bn is de�ned pie
ewise by the verti
es as

γ = γ1 + · · ·+ γn (A.40)where γk = wk + t(wk − wk−1), t ∈ [0, 1]. The fun
tion n(w; γ) 
ounts how manytimes γ wraps around a point w ∈ B. It takes the value 1 be
ause γ is a 
lose



Appendix 167polygon that winds up only on
e around z.The integral Eq. (A.39) is a line integral and sin
e dγ
dt

= zk − zk−1, Eq. (A.39) isequivalent to
n(w, γ) =

1

2iπ

∑

i

∫

γi

dξ

ξ − w

=
1

2iπ

∑

i

∫ 1

0

(wi − wi−1)dt

wi−1 − w + t(wi − wi−1)

=
1

2iπ

∑

i

zi

∫ 1

0

dt

wi−1 − w + t(wi − wi−1)

=
1

2iπ

∑

i

ln

[

wi − w

wi−1 − w

] (A.41)So the wind number is the logarithm evaluated at the verti
es forming a region. Inorder to de�ne k(r) is to enough to determine the se
ond term in Eq. (3.22). Let usdenote γs = γs1 + · · · γsl be the 
lose 
urve ea
h Voronoi 
ell Bs has for boundaries,
s = 1, ..., N(B) and l is determine by the Voronoi 
onstru
tion then

µ(r) =
∑

s

csn(w; γs) (A.42)This a Gaussian pro
ess simulating the wave number that relates the wave velo
ityto the statisti
s of the mi
rostru
ture.A.5 Algorithm for wave propagationThis se
tion presents the algorithm to numeri
ally implement the long Eq. (4.17).An image showing the simulated �eld has been already shown in 
hapter (4), Fig. (4.7).
A.6 Prin
iple of laser-generationThe simplest and most dire
t way of generating ultrasound using a laser is by dire
t-ing the beam onto the surfa
e of a spe
imen [88℄. The absorbed light energy 
ause



Appendix 168Algorithm 1 Cal
ulate u(x, z)Star with:
N ← Number of s
reens
λ← Wavelength
φj ← Random pro
esses, j = 1, ..., N ,
v ← In
ident �eldfor j = 1 to j = N do

s← eiφj

ŵ ←
∫

(vs)e−ixqdxProgate ŵ to a distan
e δz:
û← [ŵh(q, δz

2
)⊗ ŝ]h(q, δz

2
)

u←
∫

ûe−ixqdq Ba
k to spatial domainStore u and make it the new in
ident �eld v
v ← uend forstrain to the material thus generating ultrasound. The physi
s and the mathemati
sbehind this pro
ess is 
arefully 
onsidered in [106℄, for instan
e. The author givesa relation between the rise in temperature due to a pulsed laser hitting the surfa
eand Rayleigh waves.In this appendix the formulation of the thermal expansion boundary problemdue to a laser is reprodu
ed only for 
ompleteness. Nothing has been added to itssolution nor its formulation.The spatial and temporal temperature distribution is governed by the heat equa-tion. If Q represents the total input heat due to a pulse laser, w(r) the normalisedspatial distribution of the laser onto the surfa
e and q(t) the temporal pro�le of thelaser, the appropriate boundary problem heating a free surfa
e of sample is givenby, [17, 106℄

∆T + χ
∂T

∂t
= Qw(r)q(t)

T =
∂T

∂t
= 0 t ≤ 0 (A.43)where χ is the temperature 
ondu
tivity.As the temperature rises (above ambient temperature) at (r, t) the absorbed light
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es stress-free strain. The author in [17℄, 
onsiders the additional boundary
ondition
n·∇T (r, t) = 0, r ∈ S, t > 0. (A.44)This 
ondition establishes that no heat is lost by 
ondu
tion or radiation as pointedout by the author. Sin
e strain is related to the temperature by the following relation

ǫkl(r, t) = αδklT (r, t) (A.45)Here α represents the thermal 
ondu
tivity and δkl the Krone
ker delta. One ofthe remarks in [17℄ is that the displa
ement 
an be dire
tly related to displa
ementgenerated by thermal expansion as
u(r, t) = Aq(t)⊗ g(r, 0, t) (A.46)where A is a 
onstant that depends on material 
hara
teristi
s and g is the Green'sfun
tion that gives the normal displa
ement due to a point sour
e. The displa
ementrepresented as a 
onvolution of the Green′s fun
tion and the laser pulse is very
onvenient for extended sour
es. The 
onstant A is important for theoreti
al andpra
ti
al purposes but in this work is less important sin
e we are mostly 
onsideringnormalised quantities.For the sake of 
ompleteness the de�nition of the 
onstant A is given, that is
A = −1

8

κ

πµc2
T

EαkQ

(1− 2ν)K
S (A.47)where

E, µ = Young and shear modulus, respe
tively
cL, cT= Longitudinal and transverse wave speeds, respe
tively
ν = Poisson ratio
k, K =The thermal di�usivity and 
ondu
tivity, respe
tively
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α=linear 
oe�
ient of thermal expansion
κ =

c2
T

c2
L

.The whole arti
le [17℄ is dedi
ated to the 
al
ulation of g for di�erent sour
e lo
ationsin
luding the 
ase when the sour
e lies on the surfa
e. This representation for g isthe one that is used in this thesis to theoreti
ally represent SAW in homogeneousmaterials. The fun
tion q depends on the laser used. In the experimental work anNd:YAG laser was used that has q = t
τ2 e

−t/τ as temporal pro�le. Here, τ is thepulse duration whi
h is approximately 12ns for Nd:YAG Laser.A.6.1 Displa
ement from an array of linesThe pattern delivered onto the surfa
e by the SLM is a series of straight lines,Fig. (A.1). The displa
ement for an array of N straight lines evenly distributedis easily extended using the development in se
tion (4.1.1) in 
hapter (4). Thus,on
e again if uy is the displa
ement for a single line, the displa
ement of a sour
e
omposed of N lines is given by
u =

N
∑

n=1

uy(t− n∆t) (A.48)The di�erential time is ∆t = λR

cR
where λR is the wavelength of the Rayleigh wave.The reason for appearan
e of the ultrasoni
 wavelength in the separation of thelines is be
ause this the only way to generate SAW using this type of sour
es. Thusprevious knowledge of the wave velo
ity in the material to investigate is requiredor at least a good guess in order to generate SAW with the OSAM system. Atypi
al value for λR in aluminium would be 35.5µm approximately for ultrasoundgeneration at the frequen
y of 82MHz. The size of the SLM is �xed, so is a withan approximated value of 2mm. The value b is a fun
tion of λR and the number oflines.The sum above is easier to look in the ω-domain; thus, performing Fourier trans-
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{

PSfrag repla
ements
N

a

b

λRFigure A.1: Array of N illuminated lines by a laser. a, b are the width and length,respe
tively of the lines and λR is the Rayleigh wavelength whi
h is the distan
e ofseparation between adja
ent lines.form gives
û(r, ω) = ûy(r, ω)

∑

e2πiωn∆t

= eπiω(N+1)∆t sin(πωN∆t)

sin(πω∆t)
ûy(r, ω) (A.49)where ûy is the Fourier transform of uy. Here, ω is the angular frequen
y ω = 2πf , fthe normal frequen
y. Looking at the Eq. (5.13), one 
an observe that the amplitudeof displa
ement due to a line sour
e is being modulated by sin(πωN∆t)

sin(πω∆t)
and the phaseby an amount of πω(N + 1)∆t for ea
h frequen
y 
omponent. For a more detailedanalysis of sour
es of the this type [107℄ is suggested.A.7 Useful integralsUseful integral used within the text

∫

e−β2t2−iqtdt =
√

π
β

e−q2/4β2 ℜβ > 0 [70℄
∫

e−iωtdt = 2πδ(ω)
i√
2π

∫

e−iωtdω
(ω+ξ+ic)

= H(t)e−ct+iξt [78℄Table A.1: Useful integrals
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