
Novel Approaches to Cyclic

Job-Shop Problems with

Transportation

Sven Groenemeyer, Dipl.-Math.

Thesis submitted to the University of Nottingham for the degree of

Doctor of Philosophy (PhD)

July 2012



Abstract

Scheduling problems can be found in almost any field of application in the real

world. These problems may not only have different characteristics but they also

imply more or less complex requirements. One specific class within this domain

is the cyclic job-shop problem. It occurs in various areas reaching from indus-

trial production planning down to the systems architecture of computers. With

manufacturers in particular, one can find increasing demand for effective solution

methods in order to tackle these scheduling problems efficiently.

This thesis will deal with the Cyclic Job-Shop Problem with Blocking and Trans-

par·tation. It arises in modern manufacturing companies, where the products move

automatically between the different workstations, for instance.

The problem itself is not new to the research community, but hardly any work has

been done in solving it. Within this thesis we will try to close this gap and present

some first approaches, discussing the structure of the problem and how it can be

solved. As a result, we will provide three different solution methods, including

an integer programming formulation, which is solved with a commercial solver, a

branch and bound algorithm and a tabu search heuristic. All algorithms are tested

on a range of data sets and compared with each other.

Additionally, we have worked on a polynomial solvable subproblem, which has

gained more interest in the literature. As a result, a new polynomial algorithm,

that outperforms the existing ones in theory as well as in empirical tests (except

for some special cases) is presented.

This thesis concludes with a discussion about ideas of how to improve the presented

methods and some other extensions to the investigated problem.
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Chapter 1

Introduction

1.1 Background and Motivation

Scheduling problems have been investigated over more than fifty years. A great interest

for the study of these problems is their applicability to real world problems. Important

applications of interest are machine scheduling and project planning. At the beginning

of research in this area, the problem constraints were kept very simple. Early work in

project planning, for instance, only considered scheduling situations with precedence

constraints between activities, assuming that sufficient resources (machines, workers,

space, material, etc.) to perform the activities were available. Over the years, more

constraints have been introduced, which also coincided with the fact that modern com-

puters could solve larger problems in time horizons that were realistic and useful in

practice. So, the problem definition developed from a few simple constraints to more

sophisticated and more complex problem definitions (cf. Brucker and Knust (2005)).

Today, process automatisation and assembly line production are key factors for modern

industry. It is, therefore, of great interest to have good, reliable, and flexible methods

for supporting production planning. One problem that derives from those manufac-
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1. INTRODUCTION

turing environments is the cyclic job-shop problem with transportation and blocking

(CJSPTB).

A practical example of where this problem arises is a modern furniture factory. It

produces chairs, tables, wardrobes, and many other things. These objects are the jobs.

Every job has to pass different machines through its production process (saws, drills,

ploughs and varnishing stations). The processing of a job at one of these machines

is called an operation. Obviously, these operations have to be executed in a specific

order for every job and might take different times. We assume that the machines

can only process one job at a time and that a machine has no space to store a job

when it is finished (blocking). The transport of the jobs between the machines is done

automatically by a single transport robot which can also only transport one job at a

time. Since a factory is usually not producing just one item of each job, we consider a

mass production environment, where every job has to be produced over and over again

(cyclic). Note that this is just an example of the problem. A precise definition will be

given in Chapter 2. As one can imagine, the CJSPTB is not just of great theoretical

interest, but it also arises in many practical applications, which is one of the reasons

why we have chosen it for this work.

1.2 Aims and Scope

The purpose of this dissertation is to provide a contribution for understanding and

solving the cyclic job-shop problem with transportation and blocking. The problem

is known to be NP-hard, which might be·one of the reasons, why it has not been

excessivelystudied. Also, the blocking situation makes it more difficult to find feasible

solutions, since it significantly restricts the total number of them compared to the

non-blocking case.

We discuss two main problems in this thesis. Firstly, we consider a description of fea-

6



1.3 Contributions of this Thesis

sible solutions for the CJSPTB. In addition to that, different algorithms are presented

to check if a given solution is feasible and to calculate the objective value. (We will

see that this is not as straightforward as it is for other NP-hard problems.) Secondly,

we look at different approaches to solve the general problem. Within this, we consider

exact as well as heuristical methods. It is important for us not to just present theo-

retical results. We also apply all developed algorithms or solution methods to explicit

problems of different sizes and compare their practical performances.

1.3 Contributions of this Thesis

In the following we summarise the contributions of the different sections within this

work.

• Chapter 3

- Section 3.1: An overview about the heights of different cyclic scheduling

models, especially their interpretations and the theory of overlapping oper-

ations.

Section 3.2: The theory of blocking-feasible robotic cycles and a simple

method to verify this.

- Section 3.5: A new algorithm to solve the CJSPTB for a given robotic cycle,

that (except for special cases) outperforms the existing ones in the literature

theoretically (cf. Lemma 3.5.2) and based on experimental results.

- Section 3.6: A computational comparison of three algorithms (including our

own) solving the cyclic job-shop problem with transportation for a given

robotic cycle on various data sets of different sizes .

• Chapter 4

7



1. INTRODUCTION

- Section 4.1.1: An adaptation of a mixed integer programming model to our

problem formulation of the CJSPTB.

- Section 4.1.2: A new mixed integer programming formulation for the CJSPTB

based on overlapping operations.

- Section 4.2: An efficient method to construct feasible robotic cycles and an

integration into a branch and bound procedure.

- Section 4.3: A new neighbourhood for the CJSPTB embedded in a tabu

search heuristic.

- Section 4.4: A problem instance generator to create data sets for the CJSPTB

of different sizes and properties.

- Section 4.5: A comparison of the experimental results on various data sets

using all previously presented solution methods.

1.3.1 Publications Produced and Presentations Given based on the

Work in this Thesis

The following work has been produced during the creation of this thesis. Although

material from all of them has been assimilated into the thesis as a whole, they can be

assigned as belonging particularly to the following specific following chapters.

Journal Publications and Submissions

• Section 3.5

- Peter Brucker, Edmund K. Burke, and Sven Groenemeyer. A novel graph

theoretical approach for cyclic job-shop problems. Submitted to Annals of

Operations Research, September 2010.

• Section 4.1.2

8



1.3 Contributions of this Thesis

- Peter Brucker, Edmund K. Burke, and Sven Groenemeyer. A mixed integer

programming model for the cyclic job-shop problem with transportation.

Discrete Applied Mathematics, 2012.

• Section 4.2

Peter Brucker, Edmund K. Burke, and Sven Groenemeyer. A branch and

bound algorithm for the cyclic job-shop problem with transportation. Com-

puters 8 Operations Research, 2012.

Conference Publications and Talks

• Section 2.2

- Peter Brucker, Edmund K. Burke, and Sven Groenemeyer. Cyclic job-shop

problems with transport robots. Student Conference on Operational Re-

search, SCOR 2009, Lancaster, March 2009.

• Section 3.5

- Peter Brucker, Edmund K. Burke, and Sven Groenemeyer. A fast algorithm

for the cyclic job-shop problem with one transport robot and blocking. Stu-

dent Conference on Operational Research, SCOR 2010, Nottingham, April

2010.

• Section 4.2

- Peter Brucker, Edmund K. Burke, and Sven Groenemeyer. A fast algorithm

for the cyclic job-shop problem with one transport robot, blocking, setup

times and a fixed robotic cycle. The 12th International Workshop on Project

Management and Scheduling, PMS 2010, Tours - Loire Valley, France, April

2010.
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1. INTRODUCTION

Technical Reports and Manuals

• Section 4.4

- Peter Brucker, Edmund K. Burke, and Sven Groenemeyer. Problem Gener-

ator: Generating problem instances for cyclic job-shop problem with trans-

portation. University of Nottingham, November 2008, manual.

1.4 Structure of the Thesis

The main body of the thesis is separated into 4 chapters. Chapter 2 starts with a

problem definition of the classical non-cyclic job-shop problem and some additional

constraints. This should help everyone who does not have a broad background in job-

shop scheduling to get a general impression and basic understanding about this area.

From there, it builds up defining the main problem of the thesis. The cyclic job-shop

problem with transportation and blocking (CJSPTB). Furthermore, wegive a literature

review and description of the previous work undertaken in the field.

In Chapter 3, we consider a specificpolynomially solvable subproblem of the CJSPTB,

where the robotic cycle is given in advance. We discuss different algorithms to solve

this problem and present theoretical as well as empirical results.

Approaches to solve the general CJSPTB are presented in Chapter 4. Two mathemat-

ical programming models, a branch and bound procedure and a tabu search heuristic

are discussed and experimental results are shown.

Finally, the thesis is concluded with some discussion in Chapter 5. All notations that

are used within this work is summarised in a glossary at the end of this dissertation

(cf. page 211).

10



Chapter 2

Problem Definition and

Literature Review

Introduction

The classical job-shop problem is a well known combinatorial optimisation

problem which (including its variations) has been widely studied by numer-

ous authors over the last few decades. Within this chapter, we start de-

scribing the classical job-shop problem, followed by introducing additional

constraints (time windows, blocking) that are also very common in the lit-

erature. Furthermore, a transport robot is added to the problem and leads

to additional constraints. The first part of this chapter concludes with a

literature review.

Even if the classical job-shop problem is not the major part of this thesis, it

still builds the foundation to it. For that reason, we included it in this work.

11



2. PROBLEM DEFINITION AND LITERATURE REVIEW

In our opinion, it makes it easier to understand the second part (Section 2.2),

in which we present the cyclic version of the job-shop problem. Especially

readers with less expertise in cyclic (or even non-cyclic) scheduling problems

should get a good impression and basic understanding about the problem.

The cyclic job-shop problem has many practical applications in the real

world. We introduce different models from the literature and illustrate

them with small examples. As in the non-cyclic case before, a transport

robot is introduced to formulate the main problem of this thesis. The cyclic

job-shop problem with transportation and blocking (cf. Section 2.2.5). We

end the chapter with a literature review about cyclic scheduling problems

and its variation.

For the reader's convenience, a glossary about all symbols, signs and variable

names used within this work is added to the end of this thesis.

12



2.1 The Classical Job-Shop Problem

2.1 The Classical Job-Shop Problem

2.1.1 The Basic Model

The problem can be formulated as follows. We are given a set of N jobs 11, h, ... ,IN.

Each Job lj consists of a set of nj operations. There are different notations for the

operations in the literature. One is that the i-th operation of job lj is denoted by Oij

with i E {I, ... ,nj}. Another simplified way, which will mostly be used in this work,

is to consecutively number the operations in the form i with i E {I, 2, ... , n} and n =

z=f=l nj. This means that the operations 1, ... ,nl belong to job 11, nl + 1, ... , nl +n2

belong to h, and so on. (We will occasionally refer to the first notation, if needed,

in the case of ambiguity.) The set of all operations is denoted by o. Furthermore,

let l(i) E {ll, ... ,.IN} be the job operation i belongs to. The operations of each job

have to be processed in ascending order. For instance job .II has the processing order

1 -+ 2 -+ ... -+ nI, Jz has nl + 1 -+ nl + 2 -+ ... -+ n2 and so on. In general,

it can be stated that the processing order of job lj is Olj -+ 02j -+ ... -+ Onj,j.

These processing orders are called precedence constraints. Considering this order, let

pre( i) (respectively suc( i)) be the preceding (respectively succeeding) operation of i,

in case it exists. Every operation has to be processed on one specified machine out

of m machines Ml, ... ,Mm. The machine, operation i E 0 will be processed upon, is

denoted by M(i). If two succeeding operations of the same job are processed on the

same machine, we simply combine those two operations into one. Each machine can

only process one job at a time. Every operation i has a given processing time Pi ~ 0

for which it has to stay at machine J\;I(i) and we assume that preemption is not allowed

(that means a job cannot stop its processing on one machine and continue later). For

each operation i E 0 let Si be the starting time of operation i. Thus, for an operation

13



2. PROBLEM DEFINITION AND LITERATURE REVIEW

i and its direct successor suc( i) the following has to hold:

(2.1)

for all i E n where suc( i) E n exists. These restrictions are called precedence con-

straints. In this first part, we assume that there is sufficient buffer space between the

machines to temporarily store a job if it is finished on one machine and the succeeding

machine is still occupied by another job. (In the next subsection we will introduce

the so called blocking constraints, where machines do not have such a buffer. There

is also the possibility to consider scenarios with limited buffers. However, the problem

constraints will become a lot more complex and would exceed the scope of this thesis.)

The time for a job to move from one machine to another or to a buffer zone is assumed

to be included in the processing time. Thus, a job can continue its processing on the

next machine immediately after finishing on the current machine. For two operations

i,j E n that have to be executed by the same machine M(i) = M(j), one of the

following machine constraints has to hold:

either Si + Pi ::; s,
or Sj + Pj ::; Si.

(2.2)

We call these constraints machine constraints. Note that for reentrant jobs, which

means that the same job can visit the same machine several times, the machine con-

straints are dominated by the precedence constraints (2.1).

A common way of representing those problem is the Disjunctive Graph Model and this

has been introduced in connection with the Program Evaluation and Review Technique

(PERT). In this representation, we consider a graph G = (V,E UD) where V is the set

of nodes and E, D are sets of conjunctive and disjunctive arcs connecting the nodes.

For the job-shop problem, there is a node for every operation and every arc in E

14



2.1 The Classical Job-Shop Problem

(respectively D) represents a precedence constraint (respectively machine constraint).

Note that the set E consists of directed arcs and the set D of directed arc pairs.

Formally, we define:

E ={(i, j) I J(i) = J(j) and suc(i) = j},

D ={(i, j), (j, i) I M(i) = M(j)}.

To every arc (i,j) E E U D, we assign a length which is equivalent to the processing

time Pi of operation i. Additionally, there are two special dummy operations 0 and

* indicating the start and the end of the schedule. The processing times of those

operations is set to Po = P* = O. To the graph, we add a directed arc of length 0 from

the dummy start node to any other node without a predecessor (Olj for j = 1, ... ,N).

From every node i without successor (Onj,j for j = 1, ... ,N), we set suc(i) = * and

add a directed arc of length Pi to the dummy end node *.

The basic scheduling decision now is to define an ordering of the operations processed

on the same machines. This can be done by choosing an arc from each pair in D. Such

a set of directed disjunctive arcs is called a selection A s;:; D. A selection A is called

complete if A contains exactly one arc of each pair out of D. Note that choosing one

of every disjunctive arc pair is equivalent to fixing the order of the jobs processed on

the same machine. The disjunctive graph model as a representation for the job shop

problem was first proposed by Roy and Sussman (1964). A complete selection can be

used to determine a feasible solution for the job-shop problem. Thereby, a solution

is defined by a schedule S consisting of the starting times of all operations Si with

i E n. For a graph G(A) representing a solution of a job-shop problem, the starting

time Si of each operation i is equivalent to the longest path from 0 to i. We call a

schedule S = (Si)?=l feasible if and only if constraints (2.1) and (2.2) hold and the

corresponding graph G(A) contains no cycle. We always assume that the starting time

15



2. PROBLEM DEFINITION AND LITERATURE REVIEW

of the dummy start operation is 80 = O. The objective of the job-shop problem is to

find a feasible schedule that minimises the makespan Cmax = ~8x.Ci' where Ci = 8i+Pi
t=1

is the completion time of operation i. In a given graph with a feasible selection, the

makespan is equivalent to the length of the longest path from 0 to *. For further

explanations of and other results, see Shtub et al. (1994). The following example shows

a problem and a corresponding feasible schedule.

Example 2.1.1. Consider a job-shop problem with N = 2 jobs and m = 3 machines.

Both jobs Ji and J2 consist of nl = n2 = 3 operations and h is a reentrant job. The

processing times and the machine allocation are given in the following table.

Job

Operation 1 2 3 4 5 6

Processing time 3 5 2 3 8 2

Machine M2 M3 u, u, M2 u,

It follows that the precedence constraints are

Constraints (2.2) are of the following form

Ml ,{
either 83 + 2 :s; 84 and 84 + 3 :s; 86 and 83 + 2 :s; 86
or 84 + 3 :s; 83 and 83 + 2 :s; 86 and 84 + 3 :s; 86
or 84 + 3 :s; 86 and 86 + 2 :s; 83 and 84 + 3 :s; 83

M2: either 81 + 3 :s; 85 or 85 + 8 :s; 81

Note that there are also constraints for the reentrant job h in which the processing of

operation 6 starts before the processing of operation 4 (e.g. 86 + 2 :s; 84) for machine

MI. However, those constraints are contradictory to the precedence constraints and

therefore we exclude them in advance. Figure 2.1(a) respectively 2.1(b) show a feasible

16



2.1 The Classical Job-Shop Problem

respectively infeasible selection of the machine constraints. In the infeasible selection,

there is a cycle 1 --+ 2 --+ 3 --+ 4 ---+ 5 --+ 1 with length 21 that is highlighted by bold arcs.

For choosing 84 + 3 'S 83, 83 + 2 'S 86 and 81 +3 'S 85 a feasible schedule is presented

(a) Feasible machine sequence (b) Infeasible machine sequence

Figure 2.1: Directed graphs for Example 2.1.1

in Figure 2.2. It is optimal for this problem with Cruax = 13.

I

Figure 2.2: Schedule for Example 2.1.1

2.1.2 Blocking Constraints

Assume that there is no buffer to store a job after it has finished its processing on a

machine and the next machine is still occupied by another job. Then the job has to

remain on the current machine and blocks it until the next machine becomes available.

We call such an operation of this job a blocking operation. Obviously, blocking opera-

tions may delay the start of successive operations on the same machine. Let us consider

two operations i, j which have to be processed on the same machine and assume that

i is a blocking operation. If operation i is going to be processed first on M (i), then

17



2. PROBLEM DEFINITION AND LITERATURE REVIEW

suc(i) has to start at the same time or before j can start. (Otherwise M(i) would still

be blocked by i.) Hence, we get the relation:

SSUC(i) ::; s, for all (i,j) EA, M(i) = M(j), i is blocking. (2.4)

If an operation i can be stored after its processing has been finished and the next job

on this machine can start, then i is called a non-blocking operation. In the classical

job-shop problem for instance, the last operation of every job is always assumed to

be a non-blocking operation. According to the PERT representation, for every two

blocking operations i, j that have to be processed on the same machine M (i) = M (j) we

introduce two directed alternative arcs (suc(i),j) and (suc(j), i). In a feasible solution,

one of these arcs has to be chosen, such that no cycle exists in the corresponding graph.

2.1.3 Time Window Constraints

As we have mentioned before, every job has to stay at a machine M(i) for at least its

processing time Pi. Hence, some authors refer to this minimal processing time as prin.

Furthermore, one can introduce a maximum processing time prax 2:: prin, defining

the time job J(i) can stay at longest at machine M(i). Note that this maximum

processing time only makes sense, if there is no or only a limited buffer at machine

M(i) to store operations that have finished their processing at this machine. In practice,

those minimum and maximum processing times are used, for instance, in circuit board

printing, where the job has to pass through different acid baths. It needs to stay in a

bath for a minimum time, but cannot exceed a given duration, because this could ruin

the board.

Those processing time windows can be generalised to minimal and maximal time lags

between the starting times of two operations. Therefore, let i, j E {1, ...,n} be two

operations with i =1= j and Si respectively Sj their starting times. We have a time lag
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di,j between Si and Sj if

(2.5)

We call di,j 2: 0 a minimum time lag and di,j :S: 0 a maximum time lag. If there exists

a minimal time lag di,j 2: 0 between i and j, then j has to start at least di,j time units

after the start of i. On the other hand, if we have a maximal time lag di,j :S: 0, i.e

Si :S: Sj + Idi,j I, then operation i cannot start later than Idi,j I time units after j has

been started.

By using minimum and maximum time lags, several restrictions can be added to the

general job-shop problem, for example:

1. Release times, where an operation i cannot start earlier (respectively deadlines

where a job cannot start later) than a specific time, can be modeled by minimum

(respectively maximum) time lags between the dummy start operation 0 of the

schedule and i.

2. If operation i has to start exactly at time T, we introduce minimum and maximum

time lags such that dO,j = -dj,o = T.

3. The so called no-wait constraint implies that operation j has to be carried out

directly and without delay after activity i, so Sj - Si = Pi. Therefore we introduce

minimum and maximum time lags such that di,j = -dj,i = Pi.

4. As mentioned before, if an operation i has a minimum and a maximum duration

of processing, then the processing time of i is bounded by a time window, i.e.

Pi E [prin, prax]. That means, the earliest finishing point in time of i is Si + pr1in
and the latest is Si + p~nax. Hence, for an operation j which follows i we have the

time lags di,j := prin and dj,i := _pr1ax.
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Those time lags can be represented in our current PERT graph as follows. As before,

the nodes V in Graph G = (V, E U A) are representing the start of an activity. For

every minimum time lag di,j ~ 0, we introduce an arc (i, j) of length di,j. On the other

hand, for every maximum time lag di,j ~ 0 we introduce an arc (j, i) of lengths -di,j.

Note that, if in (2.5) we set di,j = Pi we get the same constraints as in (2.1) and (2.2).

2.1.4 Transportation Constraints

So far, we have assumed that, at the time ajob has finished its processing on a machine,

it moves automatically and without any delay directly to the next machine (in the

blocking case, only if this machine is free). However, in many industrial production

lines this move is done by a transport robot (or automated guided vehicle). This means

that after a job has finished its processing on a machine, a robot unloads the job,

transports it to the next machine and loads the job onto that machine. After a job

has been transported to, and loaded onto the machine, the robot either stays at this

machine until the job is finished and unloads it, or moves empty to another machine.

Of course, the robot needs some time to perform these tasks, which has to be taken into

account. Within this work, we restrict ourselves to a single transport robot. Scenarios

where multiple robots are allowed have additional problem constraints. For instance,

physical collisions of two robots needs to be avoided. Especially for practical purposes

this would be an interesting point. To provide a fundamental understanding and a

variety of different approaches for a problem within this thesis, we chose the single

robot scenario. However, the multiple robot problem is definitely an interesting topic

and as we will see in the literature review, the problem has already been investigated.

For an operation i E n the single robot has to perform the following tasks:

• unloading job J(i) from machine M(pre(i)) (if the processing is not finished the

robot will wait);
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• transporting the job from M(pre(i)) to M(i);

• loading job J (i) onto M (i).

These operations are called the transport move of operation iwhich is denoted by Ti and

the time it takes to perform such a move by ti. We will refer to ti as the transportation

time of operation i. After a job has been loaded onto a machine the robot either stays

at this machine or drives empty to another one. An unloaded drive is called an empty

move. The time needed by the robot to move from machine M(i) to M(j) is denoted by

eij' Note that a sequence of transport moves indirectly induces necessary empty moves

after loading a machine and unloading the succeeding one. Hence if, for example, in a

sequence of robot moves Tj follows Ti then after loading J(i) on M(i) the robot drives

empty to machine M(pre(j)) (or stays at M(i) if M(i) = M(pre(j))).

Since the robot also needs to transport the finished jobs away from their last machine

to the output station, we add a dummy end activity ~ for every job Jj E {J1,"" IN}

and set the direct successor of the last operation of Onj,j of Jj to ~. Furthermore,

we define 0* := 0 U {*1, ... ,*N} as the set of all operations including the dummy end

operations and set Pi = 0 for all i E {*1, ... , *N}.

We make the reasonable assumption that the triangle inequality eij + ejk 2: eik holds

for the empty moving times between any three machines M(i), M(j) and M(k). We

assume that, after an empty move, a transport operation always follows, and that for

all empty moves the triangle inequality

eik + eu 2: eil for all i, k, 0* U {O} (2.6)

holds. This means that the direct way between two machines is at least as short as the

detour through a third machine. Otherwise, the robot always takes the shorter way

through the third machine and we set eil = eik + eu We also assume that eij = 0 for
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M(i) = M(j) and the empty moving time from M(i) to M(j) is the same as from M(j)

to M(i), so eij = eji. Note that a transport move and an empty move between the same

two machines do not need to have the same duration. Since a transport time ti also

includes the loading and unloading process of the job it usually holds that ti > epre(i),i.

Furthermore, we define a sequence of all necessary transport moves Ti as a robot route

R. That means a robot route is of the form

(2.7)

where (J : 0* -+ 0* is permutation of the set of all operations. It is also required that

in a robot route R all transport moves concerning the same job are in ascending order.

This means that Ti appears before Tsuc(i) in R. (Otherwise, the precedence constraints

would be violated.)

In the following, we update the previous model and include those robot operations.

We distinguish between two different cases: in the first case we investigate the problem

without blocking constraints. We assume that a machine M, has a buffer B, that

is large enough to store jobs that have either finished their processing, or have been

delivered by the robot. This means that, on the one hand, the jobs that the robot loads

onto a machine are stored in this buffer, and the machine can take a job automatically

without any delay from this buffer. On the other hand, if the processing of a job is

finished, then the job will be stored without any delay in the buffer, and the robot

unloads the jobs from there. After a job has been stored in the buffer, the machine can

start the processing of the next job.

In the second case, we assume that a machine has no buffer. This means, that after

finishing its processing on the machine a job has to stay there, until it is unloaded by

the robot. During this stay, the machine is blocked and not available for processing

any other job.
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robot move

M(j)

I

ej,pre(i) M(pre(i))

I

t.
____ O __ M(i)

transport move Ti Iempty move

S'+p'J J

Figure 2.3: Illustration of a robot move

Problems without Blocking

In addition to the starting time Si of operation i, we denote the staring time of the

transport move Ti with Ti; which is the point in time when the robot starts unloading

job J(i) off machine M(prc(i)). Figure 2.:3 provides an illustration of a general robot

move.

For a feasible schedule S = (Si,1j)i,jEn* there are several constraints which have to

be satisfied. First, we have to guarantee that operation i cannot be unloaded from

machine M(i) until its processing time Pi is over:

Si + Pi ::; Tsuc(i) for all i E n. (2.8)

The next constraint ensures that operation i cannot be processed on M (i) before the

robot has unloaded .l(i) from the previous machine M(pre(i)), transported it to M(i)

and loaded J(i) onto M(i):

(2.9)

After unloading a job from a machine, the robot must have sufficient time to transport

the job to the next machine, load it onto that machine and travel empty to another

machine, before it can start unloading the job there. For two operations i,j E n* with

i f:. j one of the following constraints has to be satisfied, depending on which transport
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movewill be processed first:

T; + ti + ei,pre(j) S Tj

or Tj + tj + ej,pre(i) S Ti·

(2.10)

For two jobs which have to be processed on the same machine we have to determine

an order in which the jobs will be processed. Hence, one of the followingconstraints

must hold.

Si + Pi S s,
or Sj + Pj S Si,

(2.11)

for i,j E 0 with i i= j and M(i) = MU).

In the next step, we will introduce a graph representation of this model. Let G =

(V, E UA) be a directed graph where V is the set of nodes and E UA is the set of arcs.

As in our previous model, for every i E 0* we add a node to V, which indicates the

start of processing operation i. Furthermore, for every i E 0* we add a node Ti to V

which denotes the start of a transport move. For every precedence constraint defined

by (2.8) we get an arc from i to Tsuc(i) of length Pi. Additionally, for every constraint

given by (2.9), we get an arc from Ti to i of length k These arcs together build the set

E. The constraints defined by (2.10) are dependent on the robot route. If the robot

has loaded a job onto a machine, then it either has to wait for this job at the machine

or drive empty to another machine. In the first case, the next operation would be the

transport move of the same job after its processing has finished on the machine, while

in the second case, the robot would perform an empty move. For each empty move

according to (2.10), we introduce two disjunctive arcs. One leads from Ti to Tj of length

ti +ei,pre(j) and the other one from Ti to Ti of length tj +ej,pre( i)' Furthermore, there are
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• arcs in E
• arcs in A

processing (2.8)
tranport move (2.9)
robot move (2.10)

Figure 2.4: Example for disjunctive arcs

alternative arcs between the operations that have to be processed on the same machine.

For each pair i, j E n with i i- j and M (i) = M (j), we add an arc from i to j of length

Pi and an arc from j to i of length Pj. In a feasible solution, one arc of each disjunctive

arc pair has to be chosen. These arcs build the set A.

Figure 2.4 represents an example of a partial graph with M(suc(i)) = M(suc(j)) and

M(i) i- M(j).

Additionally, we add one general source node 0 and sink node *. An arc leads from the

source node to every first transport operation of each job of length 0 and from the last

operation ~ of each job Jj there exists an arc to the sink node * of length o.

Example 2.1.2. Consider the following data of a job-shop problem with three jobs and

three machine.

Job

Operation 1 2 3 4 5 6 7

Processing time 13 7 4 4 9 3 9

Machine u, M2 M3 Nh M3 Ml M2

Additionally, there is one transport robot which transports the jobs between the ma-

chines. The transportation time the robot needs to transport a job from one machine

to another is given by ti = 2 for all i = 1, ... , 7, *1, *2, *3. We assume that the empty
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- processing ........tranport move --- robot move

Figure 2.5: Graph for Example 2.1.2

moving time between any two machine M(k), M(l) is en = 1. We choose the following

job sequences on the machines: 1 --+ 4 --+ 6 for M1, 2 --+ 7 for M2 and 5 --+ 3 for M3.

Furthermore, a robot route is given by R = T1,T6,T4,T2,T5,T7,T3,T*2,T*3,T*1. Figure

2.5 represents the graph for this job-shop problem.

The Gantt-chart in Figure 2.6 shows an optimal solution for this problem with Cmax =

38. Moreover, the route taken by the robot and the buffers at each machine are included.

The robot starts at the input station Mo, unloads the first job J1 and transports it to

M1. Immediately after loading, the processing of operation 1 starts and the robot moves

back empty to the input station and unloads job J3. It transports the job and loads it

onto M1 where J3 now has to stay in the buffer B1, because the machine is still busy

with operation 1. The robot repeats this procedure with job h, which also has to stay

in the buffer B1 for now. Afterwards it waits at the machine until operation 1 has

finished and unloads the job after the processing. Due to the fact that we assume that

a job, having finished its processing, is moved automatically and without any delay to

the buffer or has been unloaded by the robot (if the robot is already waiting), operation

4 can start its processing immediately after operation 1 has finished. After transporting

J1 to machine M2, the robot drives back empty to machine M1, waits and unloads job

h, which also means operation 6 can start. When the last operation 3 in the schedule
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o 10 20 30
-- transport move ----- empty move

Figure 2.6: Schedule for Example 2.1.2

!
has finished it will be loaded in the buffer again, since the robot is currently at the

output station. The robot continues until the last finished job has been transported to

the output station M*.

Problems with Blocking

In this part, we assume that there is no buffer to store jobs at any machine (apart

from the input and output machines Mo and M*, which have a sufficiently large buffer)

while the machine is still occupied by another job. In that case, the robot first has to

unload the machine before it can transport another job to it.

We consider two operations i, j E n that have to be processed on the same machine

M(i) = M(j). Assume that i will be processed before j. Before we can start the

transport move Tj to machine M(j), we have to guarantee that M(j) is already empty.

This implies that job J(i) has already been transported to its next machine M(suc(i)).

Otherwise, the machine would be blocked and the robot could not load J(j) onto it.

27



2. PROBLEM DEFINITION AND LITERATURE REVIEW
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-- processing ........ tranport move alternative arcs

for robot move

Figure 2.7: Alternative arcs for blocking

Hence, for i,j E n ~ith M(i) = M(j) one of the following constraints has to be satisfied:

Tsuc(i) + tsuc(i) + esuc(i),pre(j) ~ Tj
(2.12)

or Tsuc(j) + tsuc(j) + esuc(j),pre(i) ~ Ii.

In the graph these constraints lead to two alternative arcs. One goes from Tsuc(i) to

Tj and the other one from Tsuc(j) to Ti. We always have to choose one of these arcs.

Otherwise, we would get a cycle with positive length in the graph (cf. Figure 2.7).

For job-shop problems with transportation and blocking, a common real world con-

straint is represented by processing time windows (cf. Section 2.1.3). This means that

a job has to be processed a minimum time at the machine, but is not allowed to stay

longer as a given maximum time. Therefore, let again pfin (respectively pfax) be the

minimal (respectively maximal) duration of stay of Job J(i) on machine M(i). This

means, that J(i) has to stay at least pfin time units on machine M(i) and has to be

unloaded not later than pfax time units after the processing has started. Note that

introducing a maximum processing time only makes sense for the blocking case or at

least for a limited buffer at the machines. Otherwise, a job will automatically be moved

into the buffer after it has been processed for its minimal time. For a feasible schedule,

the following constraints must be satisfied. First of all we have to ensure, that job J( i)

will be processed for at least pfin time units on machine M(i) and will not stay longer

28



2.1 The Classical Job-Shop Problem

on the machine than piax time units. Thus, constraint (2.8) changes to

S + min < T
i ·Pi - sucCi),

(2.13)

for all i E O. Additionally, we presume that for i E 0 job J(i) starts its processing on

M(i) immediately after it has been loaded. For i E {*l, ... ,*N}, the job J(i) leaves

the system immediately after it has been loaded onto the output station of job J(i).

Thus, the following equation holds:

(2.14)

(2.15)

If we substitute T; according to (2.15) in all constraints (2.9) -(2.13) then these con-

straints change as follows. Constraint (2.9) changes to Si :S Si and, therefore, becomes

redundant. For constraint (2.10), we get

(2.16)

for all i, j E 0*. This simply means that an operation i can only start after the empty

robot has picked it up from its previous machine M(pre(i)) and delivered it to M(i). For

two jobs processed on the same machine, we now have to change the constraint modeling

the machine order (cf. (2.17)). Since we are dealing with a bufferless environment, a

machine has to be empty before another job can be unloaded at it. We know, that

job J(i) has left machine M(i) when suc(i) has started its processing on M(suc(i)).
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Therefore, one of the followingconstraints must hold.

Ssuc(i) + esuc(i)pre(j) + tj S Sj

or Ssuc(j) + esuc(j)pre(i) + ti S Si,
(2.17)

for i,j E 0 with i -I j and M(i) = M(j). The processing time windows in (2.13) can

be updated to

Si + piill + tsuc(i) S Ssuc(i),

Si + piax + tsuc(i) 2: Ssuc(i)
(2.18)

for all i E O. Compared to the non-blocking case, now a robot route also induces the

order of the jobs on the machines. More precisely,we consider two operations i, j which

have to be processed on the same machine M(i) = M(j). If for a given robot route R,

the transport move 7i is executed before 7j, then operation i will be processed before

operation j. That means, if we choose Ssuc(i) + esuc(i),pre(j) + tj S Sj in (2.17) then

Si S Sj is induced by (2.18). The job-shop problem with one transport robot and

blocking can be designed as finding an earliest start schedule that fulfills constraints

(2.14)-(2.18). After the calculation of optimal Si-values, the corresponding 'Ii-values

are given by (2.15).

Example 2.1.3. We consider the same data as in Example2.1.2. For the time window

constraints we set piill = Pi and piax = piill + 10 for all i E O. A feasible (and also

optimal) robot route for this problem is R = (74,75,71,7*2,72,76,73,77,7*1,7*3). The

robot starts at the input station Mo, unloads job h, transports and loads it onto MI.

As machine M; is now blocked and the first operations of both hand J3 also have to

be processed on M1, the robot has to wait until operation 4 is finished. After that, it can

unload h and transport it to its next machine M3. Since M; is not blocked anymore,

the robot drives empty to the input station, picks up J1 and continuous according to
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processing

I

Mo

-- transport move ---- empty move

Figure 2.9: Schedule for Example 2.1.3

R. The graph [or this problem is shown in Figure 2.8. The arcs representing the robot

route have been omitted. The corresponding and also optimal schedule with Cmax = 49

can be Jound in Figure 2.9.

2.1.5 Literature Review

The classical job-shop .problem is well known in the literature and its studies date back

to 1960. A benchmark instance with 10 jobs and 10 machines was introduced in Muth

and Thompson (1963) which could first be solved 25 years later. Garey et al. (1976)

proved that the problem is NP-hard. The complexity of the problem makes it a tough
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challenge for the research community. Since then, a lot of research has been done in

this area. For a broad overview, we refer to surveys of Pinson (1995a,b), Blazewicz

et al. (1996), Jain and Meeran (1999) or Potts and Strusevich (2009).

For solving the problem, we distinguish between three general methods. Branch and

bound methods and mathematical programming are aimed at solving the problem to

optimality. Approximation algorithms can guarantee a certain quality for the reached

solution. Finally, heuristics, which can be seen as a "rule of thumb" are usually pretty

fast, but cannot give any guarantee on the quality of the solution. A good overview

about various techniques for solving the job-shop problem is given in Jones and Rabelo

(1998).

Branch and bound algorithms have been proposed by various authors. Carlier and

Pinson (1989,2004)developed algorithms based on disjunctions and efficientconstraint

propagation techniques. They also solved for the first time the famous 10 jobs and 10

machines instance of Muth and Thompson. About 5 years later, the same instance was

solvedby Brucker et al. (1994)using a block approach. A partial enumeration heuristic

based on the branch-and-bound method by Carlier and Pinson (1989) has been pre-

sented by Applegate and Cook (1991). They developed an approximation method, the

shuffle algorithm, where one or more machine orderings are fixed and the remaining

ones are optimally completed using a branch-and-bound method. Martin and Shmoys

(1996) developed an enumerative procedure which is based on time-oriented branching

schemes.

Approximations algorithms are polynomial time algorithms which are guaranteed to

find a feasible solution that is at most p times the optimal value. The value p is called

a "worst-case ratio bound". In Jansen et al. (2001) a polynomial time approxima-

tion scheme is presented where the number of machines and as well as the number of
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operations per job is fixed. Feige and Scheideler (1998) give a polynomial time approx-

imation algorithms with performance guarantee of O(log( mn) log(log( mn))). For more

information, we refer to survey papers by Lenstra and Shmoys (1995), Hall (1997) and

Schuurman and Woeginger (1999).

One of the first neighbourhood search procedures was developed by Irwin and Wilkerson

(1971) and is quite similar to hill climbing. Their simple heuristic rule is based on the

idea of interchanging certain non-adjacent jobs. A survey of algorithms with an empha-

sis on local search is presented in Aarts et al. (1994). In van Laarhoven et al. (1992) a

neighbourhood based on critical arcs was first used in a simulated annealing algorithm.

For a single-machine problem with release dates and maximum lateness as the objective

a block approach was first proposed by Grabowski et al. (1986). Other authors like

Nowicki and Smutnicki (1996a,b) adapted it to job-shop and flow-shop problems. An-

other promising neighbourhood has been developed by Balas and Vazacopoulos (1998).

Their so called "Guided Local Search" uses a new concept of neighbourhood trees with

such structural properties that guide the search in promising directions. They have also

embedded their method in a shifting bottleneck framework to create a hybrid proce-

dure that takes advantages of the differences between the two neighbourhood structures.

Also simulated annealing (often in combination with other methods) has been applied

effectively to the job-shop problem. In van Laarhoven et al. (1992) an algorithm is

presented that is proved to converge asymptotically to the global minimum. El-Bouria

et al. (2007) combined with their heuristic a simulated annealing module and two short-

term memories. A hybrid optimisation strategy based on a combination of tabu search

and simulated annealing is presented by Zhang et al. (2008).

Among the local search algorithms discussed above, the tabu search algorithm of Now-

icki and Smutnicki (1996b) and the guided local search algorithm employing the shifting
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bottleneck procedure of Balas and Vazacopoulos (1998) are the most effective.

Vaessenset al. showed in Glover (1997) that tabu search methods in specificscheduling

cases are superior over other approaches such as simulated annealing, genetic algorithms

and neural networks. For the job-shop problem with flexible machines, Hurink et al.

(1994) developed a tabu search algorithm based on a block approach. Mastrolilli and

Gambardella (2000) proposed a tabu search based on the reduced neighbourhood for

the same problem. For changing an operation in a machine sequence they reduce the

set of possible neighbours to a subset that always contains the optimal sequence for

this swap. An advanced tabu search algorithm is presented by Nowicki and Smutnicki

(2005) which evaluates neighbour solutions in an efficientway.

Different models of buffers for job-shop problems are investigated in Brucker et al.

(2006). They proved that pairwise buffers, job-dependent buffers and input- or output

buffers have the property that, if schedules are represented by machine sequences, then

the corresponding optimal schedules can be calculated in polynomial time. A more de-

tailed overviewabout job-shop problems with limited buffers can be found in Heitmann

(2007).

For the job-shop with no buffers and blocking constraints, Mascisa and Pacciarelli

(2002) formulated the problem with alternative graphs and introduced dispatching rule

based heuristics to solve the problem. Furthermore, they have developed a branch

and bound method and even solved several large (10 x 10) instances to optimality.

Meloni et al. (2004) presented a constructive approach (a rollout metaheuristic) based

on an alternative graph formulation that, that iteratively extends a partial schedule by

fixing some alternative arcs. All possible next candidates are evaluated using a scoring

function and the arc providing the best score is added to the partial selection. In Groflin

and Klinkert (2009) a neighbourhood based on a disjunctive graph is presented. Their
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approach is based on the exchange of critical alternative arcs that guarantees to get a

new feasible solution providing a key theorem of "short cycles". Their neighbourhood

has been integrated in a tabu search and promising computational results are presented.

Today, most researchers concentrate their studies on variations of the classical job-

shop problem. A possible reason for this could be the applicability of their developed

solutions to problems in the real world. This includes the problems with transportation

as presented in Section 2.1.4.

Several modern environments require transport robots, so generalising the classical job-

shop problem leads to more realistic models. As many authors investigate special cases

of the problem, only a few results are available for the general case, and most of them

also only consider problems without blocking. Kise (1991) proved that minimising the

makespan in a two-machine flow-shop with constant transportation time and a single

robot is already NP-hard. Different aspects of job-shop problems with an unlimited or

limited number of transport robots and without blocking is considered in Knust (1999).

In Bilge and Ulusoy (1995), a heuristic for simultaneously scheduling the machines and

robots in a flexible manufacturing system with job-shop structure is proposed. Brucker

and Knust (2002) studied constraint propagation techniques for the job-shop problem

with one transport robot. One-stage and two-stage tabu search algorithms for the job-

shop problem with one transport robot were proposed by Hurink and Knust (2005).

Lee and Strusevich (2005) considered the two-machine problem, where the robot is

allowed to transport an arbitrary number of jobs at a time. Several complexity results

for unlimited buffer flow-shops where either the processing times or the transportation

times are constant are presented by Hurink and Knust (2001).

General problems with blocking are rarely discussed in the literature. Lacomme and

Tchernev (2006) presented a memetic algorithm where limited or even no buffers can

be included in the problem definition. However, many authors instead study flow-shop
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problems with transportation times and blocking constraints. Panwalkar (1991) and

Levner et al. (1995) considered a two-machine case without an output buffer behind

the first machine. They showed that this problem is solvable in polynomial time and

both developed an algorithm for the problem. The two-machine case with an additional

no-wait constraint has been studied by Stern and Vitner (1990).
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2.2 Cyclic Job-Shop Problems

2.2 Cyclic Job-Shop Problems

There are many situations where it happens that a job is not going to be produced

only once but several times. That means, many instances of the same job have to be

processed. In large scale production, for instance, there usually is a fixed set of jobs

that have to be processed indefinitely often. If we model this as a classical job-shop

problem we have to include different repetitions of the same job in our schedule. This

could be a huge number of individual jobs and, therefore, very hard to solve. A slightly

different idea would be to define a minimal part set (MPS) of all jobs, which basically

is the ratio in which the jobs will be produced. For example, if we have three different

types of products J1, hand .h and we want to produce 100 items of J1, 300 items

of J2 and 200 item of h then a minimal part set would be given by J1 ; 1, h : 3

and J3 : 2. The non-cyclic approach would be to find a schedule in which all 600 job

items are produced, whereas the cyclic approach would be to find a schedule in which

one repetition of J1, three repetitions of J2 and two repetitions of h are produced

and repeat this schedule 100 times. Note that the minimal makespan for producing all

600 items in the cyclic case is at most as good (usually it is worse) as the one for the

non-cyclic case. On the other hand, solving the cyclic problem usually takes less time,

so one has to to deliberate about whether time or quality matters more. Summarising,

cyclic scheduling tries to find a good schedule for the MPS and simply repeat this

schedule over and over again. This is the basic idea of cyclic job-shop scheduling which

will be introduced within this section.

2.2.1 The Basic Model

To distinguish between the different repetitions of each operation, we denote the r-

th repetition of operation i E 0* by (i; r) where r E Z is called repetition number.

Applying the latter idea, a cyclic schedule for the data in Example 2.1.1 would be as
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shown in Figure 2.10. A schedule is called cyclic with cycle time ex2: 0 if

(2.19)

for all i E nand r E Z, where Si(r) denotes the starting time of operation i at the r-th

repetition.

r = 1 r=2

Figure 2.10: Possible cyclic schedule for Example 2.1.1 with cycle time a = 13

We also enforce, that the (r + l)-th repetition of operation i cannot start before the

r-th repetition of it has been finished. Therefore, we get the following constraint

(2.20)

for all i E nand r E Z. A time interval of length ex is called a cycle. Constraint

(2.19) implies that in every cycle all operations have to start exactly once, because the

distance between two consecutive repetitions of an operation (e.g. (i, r) and (i, r + 1))

is the cycle length ex. Furthermore, constraint (2.20) together with (2.19) guarantees

that Pi ::; exfor all i E n which means, that every operation also finishes exactly once

in each cycle.

The remaining precedence and machine constraints are similar to the non-cyclic job-

shop problem.

(2.21)
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for all i E n, r E Z and assuming that the machines have a sufficient large buffer to

store unprocessed or finished jobs

either Si(ri) + Pi :S Sj(rj)

or Sj(rj) + Pj :S Si(ri),
(2.22)

has to hold for all i,j E n and rt, rj E Z with M(i) = MU). In general, the objective of

the cyclic scheduling problem is to find a schedule with minimum cycle time et. This is

equivalent to maximising the throughput rate, which is the number of completed jobs

in a given time window.

The key property of cyclic scheduling is that ri and rj in constraint (2.22) do not have

to be the same in a specific cycle. Consider again Figure 2.10 which shows two complete

repetitions of a cycle. The first repetition goes from 0 to 13 and the second from 13

to 26. In both cycles every operation has the same repetition number. Also noticeable

is that every machine has some idle time in a cycle which usually is an indicator that

the quality of the schedule might be improvable. A possible improved schedule for this

problem with cycle time et = 11 is shown in Figure 2.11. It is important to realise, that

the precedence constraints do still hold for operations belonging to the same repetition

of a job and are not violated. It just happens that the operations of a specific repetition

of a job are spread out over more than one cycle. This time, from the start of the first

operation of a job repetition until the last operation has finished, is called the flow time

<Pj of job Jj• For instance, job J1 has a flow time of <PI = 10 in Gantt-chart 2.10 and a

flow time of <PI = 16 in the improved schedule in Figure 2.11. Obviously, a lower bound

for a job's flow time is given by the sum of all processing times of this job. The cycle

time and the flow time are usually negatively correlated. That means, a smaller cycle

time tends to lead to a larger flow time and vice versa. Especially in practice, the flow

time can be an important factor (e.g. delivery deadlines). Even if every job repetition

39



2. PROBLEM DEFINITION AND LITERATURE REVIEW

o 5 10 15 20 25
Figure 2.11: Improved cyclic schedule for Example 2.1.1 with cycle time Q: = 11

is of the same type, they can still be individual. E.g. in car manufacturing every

cycle a complete car leaves the assembly line. However, the cars have different colours,

configuration, engine, and so on. Consequently, a larger flow time makes customers

wait longer for their special orders. The variable, which builds the connection between

the flow time and the cycle time, is the height. For a general constraint between two

starting points Si(ri) and Sj(rj) it holds

(2.23)

where dij E lR is a minimum time lag between the two starting points. The height

hij E Z of such a constraint is defined as the difference between r j and ri:

(2.24)

In the following, we will introduce different models for cyclic job-shop problems as they

appear in the literature. The difference will be in some additional constraints, that

have an upper bound for the height given in advance. We will see how different heights

will influence the resulting solutions.

2.2.2 Specific Models

In the literature, four different models of a cyclic job-shop problem are presented. We

describe these models in terms of the underlying graph G = (V, E). In general, a cyclic
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job-shop scheduling problem without blocking (CJSP) can be formulated as minimise

et such that constraints (2.19) - (2.23) are fulfilled. As in the non-cyclic problem, the

difficulty lies in finding a feasible selection for the machine constraints (2.22).

The first model is very general and also provides the basic structure of the three other

models. In this case, the set V is equal to D and

E = {(i, i) liE D} u {('i, suc(i)) liE D; successor suc(i) exists}.

We assign to each arc (i, suc( i)) a delay di,suc(i) = Pi and a height hi,suc(i) = 0 (cf.

constraints (2.21)). Furthermore, for every operation i we add a loop from i to i with

delay dii = Pi and height lu, = 1. These arcs are representing the constraints (2.20).

Example 2.2.1. Consider a cyclic job-shop problem with N = 2 jobs and m = 4

machines. Each job consists of 4 operations. The processing times and the machine

allocations are given in the following table.

Job

Operation 1 2 3 4 5 6 7 8

Processing time 4 4 4 4 2 3 3 2

Machine lvIt M2 M3 M4 lvIt M3 M4 M2

Figure 2.12 shows the basic graph for this example. The optimal cycle time is et = 7.

A corresponding schedule is shown in Figure 2.13.

Note that the optimal cycle time etopt by using this model is always equivalent to

the maximum machine utilisation, which is the sum of processing times on the same

machine, i.e.

etopt = m~ '"' Pi.
k=l ~

(2.25)
iE!1

M(i)=Mk
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(4,1) (4,1) (4,1) (4,1)

(2,1) (3,1) (3,1) (2,1)

Figure 2.12: Graph for Example 2.2.1

It is easy to see that a schedule with a smaller cycle time than nopt in (2.25) cannot

be reached. Otherwise, some operations would overlap on a machine. The following

method shows how to construct a feasible schedule with a maximum utilisation of at

least one machine.

1. Start with a machine Mi; that has maximum utilisation.

2. Put the jobs in ascending order according to their number of operations and

schedule all operations one after another on Mk in this order. Assume that this

order is Ji, Jz, ... ,Jm where m ::; N. Therefore, let r E Z be the repetition

number of all operations on Mk in this cycle. We start with the job that has the

fewest operations and schedule its operation i with M(i) = Mk.

(1=7
'PI = 20
'P2 = 14

o 5 10 15 20 25 time

Figure 2.13: Optimal schedule for Example 2.2.1
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0<=7
'PI = 26
'P2 = 23

o 5 10 15 20 25 time

Figure 2.14: Constructed schedule for Example 2.2.1

3. Schedule all remaining operations of the job in ascending order according to the

precedence constraints at the earliest point in time 2: S; (r) on their machines.

After all operations j with J(j) = J(i) have been scheduled we update their

repetition numbers to make sure that the precedence constraints are not violated.

This can be done in the following way:

• Start with the last operation i* of a job and assign an arbitrary repetition

number r* to it. If the proceeding operation pre( i*) has finished before i*
i

starts, assign r" as a repetition number to pre(i*). Else. assign r* + 1.

• Repeat the process for all remaining jobs h, ... ,Jm on Mk and afterwards

with all other remaining jobs Jm+l,"" IN.

Figure 2.14 shows another feasible schedule for Example 2.2.1 constructed by the

method described above. The machines with the highest utilisation of 7 are M3 and M4.

Since both jobs have the same number of operations we start with job h, in particular

with operation (7; 2) on M4. After scheduling this operation at time 0, we schedule all

other operations of h in ascending order as early as possible but not before 87(2) = o.
Afterwards, we adjust the repetition numbers. Thus, operation (5; 4) is scheduled on

M1 at time 0, (6; 3) o~ M3 at time 0 and operation (8; 1) is scheduled on M2 at time

O. After that, we schedule J1 in the same way.

Applying this method to a problem without job repetition (which we always consider

within this work), there are at most m different repetitions of each job in one cycle.
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This also means that the flow time CPj of an instance of job Jj is bounded by the num-

ber of different repetitions of the job in one cycle multiplied by the cycle time. Since

the flow time of a job is another important value in practical application, a second

aim can be seen to minimise the sum of all flow times in a schedule with given cycle

time. Note that the method described above in general does not lead to such a schedule.

The second model is called the cyclic job-shop problem and is a generalisation of the

model of the non-cyclic version. We expand the graph of the first model by introducing

a dummy start node 0 and a dummy end node *. For every job, there is an arc leading

from 0 to its first operation with delay and height equal to O. Also, we have an arc

from the last operation i* of every job to * with di** =Pi* and Iu«; = O.

Furthermore, we add an arc from the dummy end node * to the dummy start node 0

where d*,o = 0 and h*,o is a parameter. In this model, for each operation i the r-th

repetition of i has to be finished before the (r + h*,o)-th repetition of i can start. The

height h*,o also limits the number of different repetitions of operations in the same cycle.

In general, the following holds: the larger the height h*,o, the smaller the optimal cycle

time (until the maximal utilisation of one machine is reached). On the other hand, for

the flow time the following holds:

for all j E {I, ... ,N}. In case h*,o = 1, the optimal cycle time and completion time of

all jobs is equivalent to the minimal makespan of the classical job-shop problem. The

following example will illustrate how the choice of a maximal height h*,o can influence

the optimal solution of a cyclic job-shop problem.

Example 2.2.2. Consider the same data as in Example 2.2.1. Figure 2.15 shows

the directed graph for this model. This time, the optimal cycle time depends on the
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~

Figure 2.15: Graph for Example 2.2.2

value of h*,o. For h*,o = 1 we get an optimal schedule with cycle time a = 17 equal

to the makespan of the non-cyclic case as shown in the first Gantt-chart of Fiqure

2.16. Increasing the height h*,o to 2, gives the possibility that operations with different

repetition numbers can be processed in the same cycle. Hence, the utilisation of the

machines also increases and the schedule gets more compact as we can see in the second

Gantt-chart of Fiqure 2.16. The optimal cycle time for h*,o = 2 is a = 9. Note that

the flow time <PIof job J1 has increased from 14 to 17.

The third model is called the cyclic job-shop problem with job repetition. Again, we

expand the first model. For each job an arc from its last operation to its first opera-

tion is introduced. The delays of these arcs are equal to the processing times of the

corresponding last operation. The parameter for the height of these arcs is denoted by

bi, with j E {I, ... ,N}. In this model, the r-th repetition of all operations belonging

to the same job Jj has to be finished, before the (r + hj, )-th repetition of this job can

start.

Example 2.2.3. As before, we illustrate this model with the data of Example 2.2.1.

1'0 the basic graph in Figure 2.12 we add an arc from 4 to 1 with delay d4I = P4 = 4

and another one from 8 to 5 with delay d85 = P8 = 2. Both arcs have the same
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0-

M4 [[;]l...
h•.o = 1

M3 1{3,2~1'" 0-= 17
'PI = 14

M2 'P2 = 10
MI

0 5 10 15 20 25 time

0-

M4
h•.o = 2

M3 0-=9
'PI = 17

M2 'P2 = 10
MI

0 5 10 15 20 25 time

Figure 2.16: Schedules for Example 2.2.2

height parameter hJI = hh' Figure 2.17 shows the corresponding graph. For purposes

of clarity, we omit the labels of the loops, because they are identical to the labels in

Example 2.2.1 and 2.2.2. If we set hh = hh = 1 we get the schedule with cycle time

a = 16 (cf. first Gantt-chart in Figure 2.18) and by increasing hJI' hh to 2, the cycle

time reduces to a = 9 (cf. second Gantt-chart in Figure 2.18).

Compared to the second model, we can see that heights of hh = hh = 1 can already

Figure 2.17: Graph for Example 2.2.3
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0

M4 I ~7,2~
hJI = hJ2 = 1

M3 I ~3,2~ 0=16
'PI = 16

M2 ~2,2) I(8, 2~1 'P2 = 12

MI

0 5 10 15 20 25 time

0

M4
hJI = hJ2 = 2

M3 0=9
'PI = 17

M2 'P2 = 16

MI

0 5 10 15 20 25 time

Figure 2.18: Schedules for Example 2.2.3

provide a schedule where operations with different repetition numbers can occur in the
I

same cycle. The reason is that the start of processing a new instance of a job only

depends on the finishing of a previous instance of the same job and not on the finishing

of all jobs.

The fourth and last model we will describe is called the cyclic job-shop problem with

machine repetition. Within this, the graph of the first model is extended as follows. We

add a dummy start node Ok and a dummy end node *k for each machine Mk E M to

V. Furthermore, we introduce an arc from Ok to each operation processed on machine

Mi; of length 0 and height 0 and an arc from each operation i E n processed on Mk

to the dummy end node *k of length Pi and height O. Finally, for each machine Mk

there exists an arc from *k to Ok of length 0 and variable height hu,: In this model,

the height limits the number of different repetitions on the same machine during one

cycle. In particular, on each machine the difference between the repetition numbers of

the operations processed on the same machine during one cycle can be at most hMk•

The following example will illustrate this extension.
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~

Figure 2.19: Graph for Example 2.2.4

Example 2.2.4. Using the data from Example 2.2.1 the graph for the the cyclic job-

shop problem with machine repetition is shown in Figure 2.19. We again omit the loops

for the purposes of clarity and refer to the loops in Example 2.2.1. An optimal schedule

with height hu, = 1 is shown in the first Gantt-chart of Figure 2.20. The optimal cycle

time is a = 9. By increasing tiu, and hM2 up to 2 we get an optimal schedule as shown

by the second Gantt-chart. The minimal cycle time is a = 7.

2.2.3 Blocking Constraints

In this section, we briefly expand the CJSP to the blocking case, in which we assume

that an operation i is blocking a machine M(i) as long as the succeeding operation

sucCi) has not started its processing on M(suc(i)) (cf. Section 2.1.2). Note that the

last operation of every job is never a blocking operation, since the succeeding machine

48



2.2 Cyclic Job-Shop Problems

hMk = 1
Q=9

'PI = 19
'P2 = 11

o 5 10 15 20 25

hMk = 2
Q=7

'PI = 19
'P2 = 12

o 5 10 15 20 25
Figure 2.20: Schedules for Example 2.2.4

M* is supposed to have a large enough buffer to store the finished jobs. Assume that

i,j E n with M(i) = M(j) are blocking operations. Then, we have to replace constraint !

(2.22) by

(2.26)

for all blocking operations i,j E n, ri,rj,rsuc(i),rsuc(j) E Z with M(i) = M(j). Fur-

thermore, for a blocking operation i it has to be satisfied, that the (r + l)-th repetition

of it can only start when the r-th repetition of its succeeding operation suc( i) has

started. Thus, we get

(2.27)

for all blocking operations i E nand r E Z. Defining

(.) {SUC(i),b z :=
z,

if i is a blocking operation;

else,
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and

{
0,

Pb(i) :=
Pi,

if i is a blocking operation;
else,

the cyclic job-shop problem with blocking (CJSPB) can be summarised as

min a (2.28)

s.t.

(2.29)

(2.30)

(2.31)

Si(r) + Pi :::; Ssuc(i)(r) i E n, suc(i) exists; rE Z

Sb(i)(rb(i») + Pb(i) :::; Sj(rj)

or Sb(j)(rb(j») + Pb(j) :::; Si(ri) with M(i) = M(j). (2.32)

As in the non-blocking case, there are different ways of modeling the problem and

building a graph. We will only briefly discuss the second case with one backward arc

from the previous section. Again, we have a node for each operation i E n as well as a

source node 0 and a sink node *. We introduce arcs leading from the source node to the

first operation of every job with delay and height equal to o. From the last operation

i* of every job, we add an arc to the sink node of delay equal to Pi* and height equal

O. Furthermore, we add an arc from the sink node to the source node with d*,o = 0

and h*,o as a parameter. Constraints (2.30) are modeled in the same way as before.

For every constraint (2.31), we add an arc from b(i) to j with db(i),j = Pb(i) and height

hb(i),j = 1. Moreover, for every constraint (2.32) we add two alternative arcs: one from

b(i) to j with db(i),j = Pb(i) and height hb(i),j = 0 and another one from b(j) to i with

db(j),i = Pb(j) and height hb(j),i = O.We illustrate the blocking situation with a simple

example.

Example 2.2.5. We consider two jobs JI, h and two machines MI, M2. Each job
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(0, h*,a)

Figure 2.21: Graph for Example 2.2.5

h*,a = 2
Q=9
'PI = 9
'P2 = 6

time i

Figure 2.22: Schedules for Example 2.2.5

consists of two operations. The following table shows the processing times and machine

allocations of the operations.

Job

Operation 1 2 3 4

Processing time 5 4 2 2

Machine Ml M2 Ml M2

The first operation of each job is a blocking operation .. Figure 2.21 shows the graph

of the problem. Additipnally, to the precedence constraints we have also included the

selection of the machine constraint in an optimal solution. It is represented by a dashed

arc from 2 to 3. A n optimal schedule with height h*,o = 2 and cycle time et = 9 can be

found in Figure 2.22.
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2.2.4 Transportation Constraints

In the same way as in the non-cyclic job-shop problem, we can include a robot into the

process, that transports the jobs between the different machines (cf. Section 2.1.4). As

before, the robot can only transport one job at time and has to perform a sequence of

transport and empty moves in each cycle respecting the precedence constraints of all

jobs. Again, we assume that, in each cycle, every operation will be done exactly once,

which also means every robot move (transport move plus empty move or waiting) is

done exactly once. To distinguish between the different repetitions of those moves, we

include the repetition number in the transport moves. Therefore, let Ti(r) for i E 0*

and r E Z be the r-th repetition of transport move Ti. We assume that for any i E 0*

and r E Z, Ti(r) must be finished before its next repetition Ti(r + 1) can start. To

represent the route the robot takes in each cycle, we extend the definition of the robot

route R from Section 2.1.4 to a robot cycle by adding the repetition number. Hence,

where a : 0* -+ 0* is a permutation of the set 0*. As before, we assume that after

an empty move of the robot a transport move always follows, and that for all empty

moves the triangle inequality

eik + en 2: eil for all i, k, l E 0* U {O}

holds. We also assume that eij = 0 for M(i) = M(j) and the empty moving time from

M(i) to M(j) is the same as from M(j) to M(i), so eij = eji.

Again, we distinguish between the non-blocking and the blocking case. Furthermore,

each of the four models described in Section 2.2 can be used to describe the cyclic

behaviour. In this part we will only consider the "cyclic job-shop problem" model.
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Problems without Blocking

The transformation from the non-cyclic definition in Section 2.1.4 to the cyclic problem

a brief introduction of the necessary constraints.

is analogous to the transition we presented in Section 2.2. Therefore, we will only give

In addition to Si(r), let Ti(r) be the point in time, when transport move Ti(r) for i E 0*

starts. Again, we assume that every machine Mk has a sufficient large buffer Bk to

the machine has been finished.

store a job after the robot has loaded it onto the machine, or after its processing on

The problem can be summarised as follows.

lIUll 0:

s.t.

Si(r) + Pi :s; Si(r + 1) i E O*;r E Z

Si(r) + Pi :s; Tsuc( i)(r ) i E O*;r E Z

Ti(r) + ti + ei,pre(i) :s; Ti(r + 1) i E O*;r E Z

Ti(r) + ti < Si(r) i E O*;r E Z

Ti(ri) + ti + ei,pre(j) < T(r ,) i,j E 0*, i 1= j- J J

or Tj(rj) + tj + ej,pre(i) < 1',(r') ri, rj E Z_ t t

Si(rd + Pi < Sj(rj) 'i,j E O*;ri,rj E Z

or Sj(rj)+pj < Sih) i 1= j; M(i) = M(j)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

A schedule S = (Ti(r), Si(r)) with i E 0* is called cyclic with cycle time 0: if (2.34)-

(2.41) are fulfilled.
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(0, h.,o)

(3,1) (8,1) (3,1) (4,1) (3,1) (0,1)

T> ••(?,.g)..~._(2,.g) ..~ ..(2.,g)..

(3,1) (6,1) (3,1) (4,1) (3,1) (0,1)

..(l,.g) ..~ ..(2,.g)..~ ..(2,.g)...

processing tranport move

Figure 2.23: Graph for Example 2.2.6

Example 2.2.6. Consider a cyclic job-shop problem with N = 2 jobs and m = 2

machines. Both jobs consist of 2 operations. The processing times and the machine

allocations are given in the following table.

Job

Operation 1 2 3 4

Processing time 8 4 6 4

Machine Ml M2 u, M2

Again, every machine Mk has a large enough buffer Bk to store the jobs. Additionally,

we have one transport robot. The transportation time for all operations i E 0* is set to

ti = 2, whereas the empty moving time between any two machines is given by eij = 1.

Figure 2.23 shows the basic graph for this example.

By setting the height of the arc from * to 0 equal to 1, the minimal cycle time is a = 25.

Increasing the height up to 2, the cycle time decreases to a = 15. Possible schedules

for these solutions can be found in Figure 2.24.

Most of the work in the area of cyclic job-shop scheduling with transportation is focused

on the blocking situation which we are going to describe in the following section.
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M.

B2 h.,o = 1
a = 25

M2 'PI = 20
BI 'P2 = 22

MI

Mo
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!

a

M.

B2

BI

MI

Mo

0 10 20 30 40 50 time

-- transport move -- empty move

Figure 2.24: Schedules for Example 2.2.6
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2.2.5 The Cyclic Job-Shop Problem with Transportation and Block-

ing

Recapitulating our discussion so far, we have introduced the classical non-cyclic job-

shop problem with additional constraints in Section 2.1 and have also included the use

of a transport robot. After that, we presented different ways of how a cyclic version of

the problem can be modeled and gave some examples. In the previous section, we have

briefly introduced the cyclic job-shop problem with transportation (CJSPT) including

a simple example. Finally, in this section, we will introduce the main problem of this

thesis: the cyclic job-shop problem with transportation and blocking (CJSPTB). As in

the non-cyclic case, during the whole production process a job is either on a machine or

on the robot, and all machines (except the input and output stations) have no buffer.

This means, that a job can stay longer on a machine than its minimal processing time,

to which we from now on will refer to as prin for all i E f!. Thereby, Pi will now indicate

the time the job is actually on the machine, so it holds that prin ~ Pi. If Pi > prin,

the job will remain on the machine after the minimal processing time is over and block

it until the job has been unloaded.

Furthermore, a job starts its processing immediately after it has been loaded onto the

machine. This is expressed by the following equation

Ji(r) + ti = Si(r)

{:} Ji(r) = Si(r) - ti,
(2.42)

for all i E f!* and r E Z. That means, a solution for the CJSPTB can be presented

as a vector including the starting times of the processing or the starting times of the

transport moves for the operations. We will use the former version, which means a

schedule S for the CJSPTB is represented by a vector S = (Si(ri)) for all i E f!*, ri E

Z including the starting times of each operation and their repetition numbers in an
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arbitrary time interval (cycle) of length 0:. We recall, that in any cycle every operation

starts and finishes exactly once. Note that there are indefinite many schedules, that

have the same cycle time but different starting times for the operations. Hence, we can

assume without loss of generality that at the beginning of a cycle, the robot is at time

o at the input station Mo and starts with transporting operation (1,1) to its machine.

Thus,

(2.43)

must hold. Note that the start of J1 is just an arbitrary choice for the start of the cycle

and could be replaced by the start of any other job. The remaining constraints could

be obtained by substituting Ti(r) according to (2.42) in constraints (2.34) - (2.41) and

adding the blocking constraints. However, since these constraints are defining the main

problem of the thesis, we will derive and explain them from scratch.

As mentioned before, we assume that a job immediately starts its processing after it

has been loaded onto a machine. This convention can be formulated as

(2.44)

for all i E 0; r E Z. For the actual processing time Pi which corresponds to the duration

a job stays at a machine it holds

PIIlin <~ _ Pi, (2.45)

for all i E o. Constraints (2.44) and (2.45) also ensure, that an operation has to be

processed at least for its minimal processing time before its succeeding operation can

start.

We also enforce, that w.l.o.g. the (r + 1)-th repetition of operation i E 0 cannot start
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before the r-th repetition of it has been finished and transported to the next machine

M(suc(i)). After that, the robot has to move to M(pre(i)) and repeat the transport

move Ti. Therefore, we get the followingconstraint:

(2.46)

for all i E 0, r E Z. For i E {*1, ... ,*N} constraint (2.46) changes to

(2.47)

for all r E Z, since these operations do not have a successor.

Now, consider two operations i,j with M(i) =f M(j). As there exists no storage at the

machines, operation j can only start its processing after J(j) has been loaded onto the

machine. In case i starts its processing immediately before j, the robot has to finish

the loading of job J(i), drive empty to the machine on which the predecessor pre(j)

of operation j is processed, unload the job, transport it to M(j) and load it onto that

machine. Depending on the order of processing the ri-th repetition of i and the rj-th

repetition of j, we have

Si(ri) + ei,pre(j) + tj ::;Sj(rj)

or Sj(rj) + ej,pre(i) + ti ::;Si(ri),

for all i,j E 0* and ri,rj E Z with M(i) =f M(j). Note that these constraints (and the

(2.48)

followingones as well) are only valid if the triangle inequality for the empty moving

times holds.

For two operations i,j E 0, that have to be processed on the same machine M(i) =

M(j), we have to decide, which job has to be processed first on the machine. Let us

assume that i will be processed before j. Because of the blocking situation it follows,
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that after the processing of J(i) has been finished the robot first has to transport J(i)

to the next machine, before it can drive empty to M(pre(j)) to transport J(j) to M(j).

Otherwise, M(i) would be blocked by J(i), and we would have a deadlock situation.

Therefore, one of the following constraints must hold:

SSUC(i) (Tsuc(i)) + esuc(i),pre(j) + tj < Sj(Tj)

or Ssuc(j) (Tsuc(j)) + esuc(j),pre(i) + t; ::; Si(Ti),

for all i,j E nand Ti, Tj, Tsuc(i)' Tsuc(j) E Z with i i- j; M(i) = M(j).

Finally, the constraint that each operation should start every 0: time units can be

(2.49)

formalised as

(2.50)

for all i E n*, T E Z.

We briefly want to recall, why constraints (2.43)-(2.50) are not just necessary, but

also sufficient to define our problem. The question is, if a schedule, that fulfills these

constraints is also a feasible one. First of all, the minimal processing and transportation

times have to maintained. The processing times are trivially fulfilled by (2.44) and

(2.45). The robot also has always sufficient time drive to a machine, pick up a job

and transport it to its next machine, and a job does not start before it has been

transported to its machine. This is given by constraints (2.48) and (2.49). The latter

one also ensures, that a machine is always free before another job will be loaded onto

it, so no two jobs can overlap. Finally, it is not possible to miss out a repetition of a

job, since (2.46) and (2.47) are satisfied.

As with all the other cyclic problems there are different ways of modeling the CJSPTB.

We will again use the second model from Section 2.2.2, the "cyclic job-shop problem"-

model for an example. Thus, we have a general height hmax = h*,o which limits the
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number of all different job repetitions in one cycle.

Example 2.2.7. We consider the same data as in Example 2.2.6. The graph for this

problem can be found in Figure 2.25. Note that the backwards arcs between an operation

and its predecessor are caused by constraint (2.46) and replacing the loops from the node

to itself are redundant. Setting the height h*,o to 1, the minimal cycle time is er = 30.

Increasing the height to 2, the cycle time decreases to er = 24. Possible schedules for

these solutions can be found in Figure 2.26.

(O,h.,o)

Figure 2.25: Graph for Example 2.2.7
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M2
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et = 30
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M.

M2
h.,o = 2

et = 24
MI 'PI = 18

'P2 = 16
Mo
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Figure 2.26: Schedules for Example 2.2.7
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2.2.6 Literature Review

Cyclic scheduling problems have, in addition to mass production, other applications,

such as compilation of loops for parallel computers, hoist routing in electroplating

facilities, the design of embedded architectures or network scheduling. Different models

have been proposed to handle those kinds of problem. Trouillet et al. (2007) and

Chretienne (1985) investigated the use of petri nets whereas Baccelli et al. (1992); Cohen

et al. (1989) applied Max-plus algebras to the problem. Probably the most common

approach, and also the one we will apply in this work, is modeling the problem using

graphs (cf. Hanen and Munier (1995); Kats and Levner (1998a)). A good overview of

cyclic scheduling can be found in Robert and Vivien (2009).

The range of areas in which cyclic scheduling problems occur is wide. Many researchers

investigated the problem of software pipelining or scheduling on parallel processor.

Further details for those applications can be found in Artigues et al. (2010); Calland

et al. (1998); Eichenberger and Davidson (1997); Gasperoni and Schwiegelshohn (1994);

Sucha et al. (2004).

The area we are studying in this work can be characterised as production scheduling

where a set of products has to pass several machines in specific orders. And the corre-

sponding production plan has to be repeated over and over again, as it is the case in

large scale productions.

As already mentioned, it is easy to determine the minimal cycle time and a feasible

corresponding schedule of a cyclic job-shop problem if the maximal flow time (or the

height) is unbounded. Thus, this problem has not reached much attention in the liter-

ature. However, determining an optimal schedule that has minimal cycle time on the

one hand and according to this cycle time also minimal flow-time on the other hand

is of greater interest. Chauvet et al. (2003) define a criteria to determine if a sched-

ule is optimal according to this definition. Furthermore, they present a construction
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method based on an event graph model to generate good schedules with small flow

time. Caggiano and Jackson (2008) developed schedule construction and improvement

techniques to provide an effective solution approach for producing cyclic schedules with

minimum weighted flow time.

The general cyclic job-shop model we have introduced is very similar to the model of the

non-cyclic job-shop problem and is used by Hanen (1994) and Brucker and Kampmeyer

(2005). Hanen (1994) also proved that the sequencing problem for general cyclic job-

shops is strongly N P-hard. Other complexity results for cyclic scheduling problems

can be found in McCormick and Rao (1994) and Levner et al. (2010).

Brucker and Kampmeyer (2005) introduced the cyclic job-shop problem with job rep-

etition model. The probably most discussed model in the literature however, is the

cyclic job-shop problem with machine repetition model. Additionally several authors

assume that the number of jobs to be produced could be different for each job. For

this model, the minimal part set (MPS), which indicates the ratio of the amount of

produced jobs, has been introduced. For example, let us consider 3 jobs It, hand h.

We want to produce 100 parts of It, 300 parts of hand 200 parts of h. Then, we get

an MPS of (lJ1, 3h, 2J3) which has to be repeated 100 times. There are several ways

of choosing or setting up an MPS and usually this is done in advance (cf. Lee (2000)).

The aim is to find for a given MPS a periodic schedule with minimal cycle time. In

the most discussed cases in the literature the height hM is set equal to 1. Several

complexity results for hM = 1 can be found in Hall et al. (2002). They present a poly-

nomial time algorithm for determining an optimal schedule for cyclic job-shop problems

in which each job has at most two operations. They also solved an important open

question discussed in Lenstra et al. (1977): For a job-shop problem with n ~ 5 opera-

tions, the decision version of the job-shop problem with makespan objective is strongly

NP-complete. Furthermore, they show that the cycle time minimisation problem with

m ~ 3 machines and n ~ 3 operations is also strongly NP-hard. For the special case
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with two machines and two operations, Hall et al. (1998) provided a polynomial time

algorithm. Most of the authors like McCormick and Rao (1994), Lee and Posner (1997)

and Lee (2000) who considered this problem assume that each machine processes all of

its operations for the i-th MPS before it can start the processing of any operation of

the (i + 1)-th MPS. Contrary to this, Caggiano and Jackson (2002) presented a model

without this restriction.

For the general cyclic job shop problem with blocking Brucker and Kampmeyer (2008b)

developed a tabu search algorithm and presented computational results. The same

problem with an additional no-wait constraint is studied by Hall and Sriskandarajah

(1997). Kamoun and Sriskandarajah (1993) review algorithmic and complexity issues

for this problem. In Roundy (1992) an exact method for the special case with only one

single job is presented. McCormick et al. (1989) considered the problem with blocking

constraints and limited buffers where blocking only occurs when buffers are full. They

proposed heuristic approaches to this problem based on an equivalent maximum flow

problem and critical path techniques.

A cyclic production environment where a robot is in charge of transporting the jobs

between the machines are often called robotic cells in the literature. Robots have

increased the production capabilities in manufacturing by making the assembly process

faster, more efficient and reliable than ever before. They also save workers from doing

monotonous work on an assembly line. The literature distinguishes between three major

robotic cell environments: the cyclic robotic flow-shop, the cyclic robotic job-shop and

the multiprocessor cyclic scheduling.

The robotic flow-shop is probably the most well studied case. A flow-shop problem

is a special version of the job-shop problem in which every job has the same order in

which it has to be processed on the machines. The first research in this area dates
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back to the early 1960s. Aizenshtat (1963);D.A. Suprunenko and Metelsky (1962) and

Tanaev (1964) investigated cyclic processes in manufacturing lines served by transport

devices. Within their work, they have introduced the cyclic robotic flow-shopproblem

and already suggested the method of forbidden intervals, which since then has been

further developed by author such as Livshits et al. (1974), Kats et al. (1997, 1999),

Che and Chu (2005a,b), Che et al. (2003) and Chu (2006). For more details in this

area, we refer to Hall (1999), Crama et al. (2000), Dawande (2007); Dawande et al.

(2005b).

On the other hand, the general cyclic job-shop problem with transportation or robotic

job-shop is rarely discussed in the literature. Even with a single part MPS and a single

robot the problem of scheduling the robot operations to minimise the cycle time is

known to be NP-hard in the strong sense (cf. Livshits et al. (1974), Lei and Wang

(1989)). In Kampmeyer (2006) and Brucker and Kampmeyer (2008a), a mixed linear

integer programm as well as a tabu search for the cyclicjob-shop problem are presented.

This can be applied to the problem with transportation and also blocking.

Finally, multiprocessor cyclic scheduling differs from the robotic job-shop problem in

the way, that the operations are only partially ordered, and that there are sufficient

machines (including parallel ones) to process the jobs, such that the problem of finding

the optimal sequence on a specific machine is left out. The problem definition was

introduced by Romanovskil (1967). For an overview of these types of problems, we

refer to Hall (1999) and Crama et al. (2000).

Furthermore, there are variations of cyclic scheduling problems. In this work, we only

consider problems in which exactly one instance of every job enters and leaves the pro-

duction process in a cycle. In a relaxed version of this definition, which is called k-cyclic

scheduling, exactly k instances of a job are allowed to start and finish in a cycle. It is

known that an optimal multi-unit cyclic solution can be better than an optimal L-unit
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cyclic solution. Dawande et al. (2005a) present some upper bounds on the difference

in the per unit cycle times between an optimal multi-unit cycle and an optimal I-unit

cycle. Other results can be found in Kats and Levner (2002); Kats et al. (1999). The

special case of 2-cyclic robotic scheduling with a single product has been investigated

by Che et al. (2003), Chu (2006) and Kats and Levner (2011).

Another problem, which has reached a lot attention in the literature, is represented by

cyclic robotic scheduling problems with blocking, in which the route the robot takes is

given in advance. The problem is sometimes named the cyclic hoist scheduling problem.

It has been shown to be polynomial solvable by various different approaches (cf. Matsuo

(1990), Lei (1993), Ioachim and Soumis (1995), Ng and Leung (1997) and Lee (2000)).

Another problem, which we will explain in more detail in the next chapter, has been

developed throughout various publications. The main idea concerns a critical path

algorithm, which is applied to a network with parametrical arc length. It has been

developed in Kats and Levner (1998a). Several applications based on this algorithm

are published in Kats and Levner (1998b) or Alcaide et al. (2007).
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Chapter 3

The CJSPTB for a Fixed

Robotic Cycle

Introduction

In cyclic scheduling problems, the height is one of the most important pa-

rameters. It distinguishes such problems from non-cyclic problems. How-

ever, many authors, just treat it as a standard parameter and do not discuss

possible meanings and interpretations of it. As we have seen before, one

can think of cyclic scheduling as finding a schedule for a minimal part set

and then repeating this schedule all over again. However, at the end of

one repetition and at the beginning of the next one, there often are only

a few machines occupied by a job. Especially in the case of the CJSPTB,

since we only have on robot available to unload the machines at the end

of a cycle. Thus, we try to improve our schedule, by slightly shifting two
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adjacent repetitions of a schedule into each other (cf. schedules in Fig-

ure 2.26). The parameter which on one hand allows those improvement to

certain levels is the height. Within Section 3.1, we will give various differ-

ent interpretations of the height in different cyclic scheduling models, that

can be used to analyse and influence the solution for both theoretical and

practical purposes.

A special sub problem of the CJSPTB arises, when the robotic cycle is given

in advance .. In Section 3.2, we will discuss the conditions under which a

robotic cycle is feasible for a given problem and how to check this feasibility.

Given a feasible robotic cycle, the problem simplifies in the sense that it

becomes polynomially solvable. In practice, this situation is by far not

exceptional. In circuit board printing, for instance, the robot is mounted

on a fixed track and the route is predefined so that the robot is simply

running along the track over and over again.

On a different note, it is very useful to have a fast procedure for solving

the CJSPTB for a given robotic cycle in case you want to solve the general

CJSPTB. Since branch and bound methods or heuristics need to evaluate

many solutions during their optimisation process, it is of great interest to

have a fast method performing this evaluation and therefore improve the

solving time.

There are different algorithms in the literature, to calculate the cycle time

when a feasible robotic cycle is provided. We shortly present two good

algorithm from the literature in Sections 3.3 and 3.4. The first is a pseudo

polynomial method which is supposed to perform well in practice and the

other one is, to our knowledge, the fastest one in the literature based on

computational complexity. In Section 3.5, we present a new algorithm, that
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(except for some special cases) has a lower complexity than the ones in the

literature. Since theoretical complexity can differ from the actual running

times for solving real instances, we are also comparing our algorithm to

the other two algorithms and we show that it also performs better on real

computation. The computational results and a discussion about them are

provided in Section 3.6.
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3.1 Heights

Before we start discussing robotic cycles in more detail, we will give a short overview

about the height parameter. So far, we have seen how different heights can influence

the solution. However, the literature does not provide many interpretations of the

height for the various models. Since the height is the main parameter in cyclic job shop

problems, we will give some more insight to understand its meaning.

There is different information that one might like to know and be able to adjust in a

production. For example: How many different job instances or repetitions are being

processed at a time? Or, for how long will a specific job instance be in the production

process? The height can, in a way, answer these questions.

In the previous chapter, we have looked at 3 different cyclic job-shop scheduling mod-

els, where everyone of those models has special height parameters. Let us recall the

individual definitions of the heights for these different models.

• Cyclic job-shop problem with height h*,o: The (r +h*,o)-th repetition of a job can

only start if the r-th repetition of any job has finished.

• Cyclic job-shop problem with job repetition with heights hJj: The (r + hJj )-th

repetition of job Jj can only start if the r-th repetition of the same job has

finished.

• Cyclic job-shop problem with machine repetition with heights hMk: The (r+hMk)-

th repetition of an operation on machine Mk can only start if the r-th repetition

of all operations on the same machine have finished.

Example 3.1.1. In Figure 3.1, the schedules of the Examples 2.2.2 - 2.2.4 for the

different cyclic models are shown again. The heights are h*,o = hJj = hMk = 2 for

j = 1,2 and k = 1, ... ,4. In the first Gantt-chart, the first operation in the fourth
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Figure 3.1: Schedules for Example 3.1.1
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repetition is (1,4). It starts after the last operation oj the second repetition ((4,2)) has

finished. For h*,o = 2, this schedule is Jeasible.

For the model with job repetition in the second schedule, the Jourth repetition oj job J1

starts at time 11 which is after the second repetition oj h has finished (at time 10). For

job J2, it also holds that the first operation (5,4) starts after the last operation (8,2)

has finished. Thus, Jor hh = hh = 2 this is a Jeasible schedule.

For the last model with machine repetition, the final schedule is also Jeasible. For

instance, on machine M4 the first operation in its Jourth repetition is (7, 4). It starts

after the last operation in the second repetition ((4,2)) has finished.

Note that according to these definitions, the height is considered to be an upper bound.

71



3. THE CJSPTB FOR A FIXED ROBOTIC CYCLE

That means, a feasible solution for a given height h E {h*,o, hJj' hMk} is also a feasible

solution for any height h' ~ h. Thus, in a solution of a problem, the "actual" height

can be smaller than the given height. According to the three models above, the actual

height in a feasible solution is the smallest possible height. We denote it with h! 0' hj.
, J

and hMk, respectively and define it as follows.

• Cyclic job-shop problem with actual height h! 0: The r-th repetition of a job will,

be finished, before the (r + h*,o)-th repetition of any job starts and after the

(r + h! 0- l)-th repetition of any job has been started.,

• Cyclic job-shop problem with job repetition with actual heights hj.: The r-th
J

repetition of job Jj will be finished before the (r + hj. )-th repetition of this job
J

starts and after the (r + hj. - l)-th repetition of the same job has been started.
J

• Cyclic job-shop problem with machine repetition with actual heights hMk: The

r-th repetition of an operation on machineMk will be finishedbefore the (r+hMk)-
th repetition of an operation on this machine starts and after the (r +hMk -1)- th
repetition of any operation on this machine has been started.

An important fact about the height is, that it depends on the different repetition

numbers of the operations in a cycle. For each job these repetition numbers can be in-

creased or decreased and the solution would still be feasible (in any perspective except

the height restriction, since the height might change). Thus, by convention the repeti-

tion numbers are chosen in a way, such that the actual heights are as small as possible.

For the cyclic job-shop problem, one can simply give the first operation of each job the

repetition number h! 0' For the one with job repetition the first operation of each job,

gets the repetition number equal to hj. and for the one with machine repetition the
J

first operation on machine Mk gets the repetition number equal to hMk. Procedure

3.2.1 in the next section shows, how the repetition numbers can be assigned.
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In Example 3.1.1, for height h1vh = 2, for instance, the actual heights of machine MI

and M2 are hk = h~[2 = 1 and for M3 and M4 they are hM3 = h~[4 = 2. Note that,

regardless of which model is used to solve the problem, any actual height of the three

can be calculated for a given solution. In the following, we will restrict our discussion

to the cyclic job-shop problem model and the one with job repetition, which includes

the heights h.; 0 and hJ., J

We know, that at the end of each cycle, the robot drives empty to the input station

Mo. That means, that at any time r . 0: no job will be loaded or unloaded from any

machine MI, ... ,Mm. Hence, a machine is either empty at the end of the cycle or

the operation currently processed on it will be unloaded in the next cycle. We call an

operation that starts its processing in one cycle, and will be unloaded in the next one an

overlapping operation since it 'overlaps' into the next cycle. For instance, operation 4 in

the second schedule of Figure 2.26 on page 60 is an overlapping one. Those overlapping

operations are characteristic for the CJSPTB. It is obvious that the maximum number

of overlapping operations is m - 1. Every machine can have at most one overlapping

operation, except the machine on which the first operation at the beginning of a cycle

is processed. However, what is the connection between the height and the overlapping

operations? This and other useful properties of the height are summarised in the

following Theorems.

Theorem 3.1.1. Consider job Jj in a feasible solution of a CJSPTB with cycle time

0:. If we consider an arbitrary cycle that starts with unloading the first operation of job

Jj from the input station then the following statements are equivalent:

1. The actual height of the solution is hs*,o.

2. The number Ok of overlapping operations of each job Jk (k

than or equal to h:,o'

1, ... , N) is less
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Proof. The important assumption in this theorem is, that a cycle starts with unloading

the first operation of Jj from the input station. This means that at the end of every

cycle, the robot drives empty to Mo. The definition of the actual height h! 0 states that,

the r-th repetition of a job will be finished before the (r +h! o)-th repetition of any job,

starts and after the (r + h! 0 - 1)-th repetition of any job has been started. Assume,

that the cycle starts with unloading the r-th repetition of job Jj from the input station.

1 ~ 2: Consider a job A of the problem. Since in every repetition of a cycle one

instance of each job starts and another one (can be the same) finishes, the number of

overlapping operations must belong to different job repetitions. We distinguish between

two different cases.

In the first one, let Jj = Jk. Then, the overlapping operation must have repetition

numbers between r - 1 and r - Ok. Hence, the (r - ok)-th repetition of Jj will finish

in this cycle. This is after the r-th repetition of Jj has been started and before the

(r + 1)-th repetition has been started. Therefore, the actual height will be at least

OJ + 1.

For the second case, we consider Jj f. Jk. Then we can always adjust the repetition

numbers in a way, such that the first overlapping operation of Jk has the same repetition

number as the first operation of Jj. Therefore, the instance of Jk finishing in that cycle,

after the r-th repetition of Jj has been started and before the (r + 1) - th repetition

will start has the repetition number r - Ok + 1. Therefore the actual height will be at

least o.

2 ~ 1: Assume that the number ° of overlapping operations of Jk is greater than h! o-,

As before, we set the repetition numbers of the first overlapping operation of Jk to

r - 1 if Jk = Jj and to r otherwise. In the first case, the (r - o)-th repetition will

finish in the current cycle and in the second case the (r - 0+ 1)-th repetition. Thus

the actual height would be h! 0 = 0 or h! 0 = 0+ 1. However, this is a contradiction to, ,

the assumption that 0> h! o-,
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o

Theorem 3.1.2. Consider job Jj in a feasible solution of a CJSPTB with cycle time

a. If we consider an arbitrary cycle that starts with unloading the first operation of job

Jj from the input station, then the following statements are equivalent:

1. The actual height of jo b Jj is h j ..
J

2. The number of cycles job Jj is in the production process for is hj.
J

3. The number of overlapping operations of job Jj is equal to hj - 1.
J

4. The number of different instances of job Jj processed in one cycle is equal to hj.
J

Proof. We again have the assumption, that a cycle starts with unloading the first

operation of Jj from the input station. Hence, at the end of every cycle, the robot

drives empty to Mo.

1 => 2: According to the definition of the actual job height hj, the r-th repetition of
J

job Jj will be finished, before the (1' + hj)-th repetition of job Jj starts and after the
J

(1' + hj - 1)-th repetition has been started. In every cycle, a new instance of the job
J

will start its processing. Let the r-th repetition of Jj start in cycle c. Then it finishes

in the cycle in which the (1' + hj - ll-th repetition starts. This is cycle c + hj - 1.
] J

Thus, the job has been processed for hj cycles.
J

2 => 3: Let iI, ... ,inj be the operations of job Jj and T be the point in time when Til (1')

will be executed. In the case that the r-th repetition of Jj is completed in the interval

[T, T + a[, then hj = 1 holds per definition and there are obviously no overlapping
J

operations. Note that the time interval [T, T + a[ is open to the right hand side, since

the robot will move empty to the input station at the end of the cycle and Jj will

be finished before T + a. It follows, that the number of overlapping operations is

hj - 1= 1 - 1= o.
J
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In the other case, the r-th repetition of the job will finish in an interval [T + lee, T + (l +
1)0.[ for l = hj. - 1 ~ 1. At the beginning of every time interval [T + ua, T + (/l + 1)0.[

J

(/l = 1 ... , l) the /l-th repetition of Jj will be transported from Mo to M(il). Therefore,

the r- th repetition of Jj must be on a machine during this time and its corresponding

operation is overlapping. This means that Jj has exactly l = hj. - 1 overlapping
J

operations.

3 :::;.4: In the case that job Jj has no overlapping operations (hj. = 1), a specific
J

repetition of the job will start and finish in the same cycle. Since each operation will

start and finish exactly once in each cycle, there must be one instance of the job in

every cycle. In the other case, Jj has OJ ~ 1 overlapping operations. Consider a cycle

given by the time interval [T, T + 0.[ in which the r-th repetition of Jj starts. If the

job has an overlapping operation that finishes in the next cycle [T + a, T + 20.[, then

the same operation of the (r - 1)-th repetition of Jj must finish in the current cycle.

Thus, there is another instance of Jj in the current cycle. In general, if Jj has an

overlapping operation that finishes in the cycle [T + la, T + (l + 1)0.[ then the (r -l)-th

repetition of this operation will finish in the time interval [T, T + 0.[. Hence, for every

overlapping operation there is an additional instance of the same job processed in a

cycle. In conclusion, the number of different job instances in one cycle is equal to hj ..
J

4 :::;. 1: Consider the cycle in which the r-th repetition of Jj starts its processing.

Baring in mind, that there are hj. different instances of the job in this cycle, the
J

(r - hj. + 1)-th repetition will be finished within this cycle. For the last operation of
J

the r-th repetition this means, it will finish hj. - 1 cycles later and within that cycle
J

the (hj. - 1)-th repetition of Jj will start. Hence, the r-th repetition of Jj will be
J

finished between the starts of the (hj. - 1)-th and hj.-th repetition of the same job,
J J

which is the definition of the actual height hj ..
J

D

With this, we can also draw a conclusion about the height and the flow time of a job.
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Corollary 3.1.1. For the flow time 'Pj and the actual height hj in a feasible solution
J

for the CJSPTB it holds:

for all j E {1, ... ,N}.

Let us consider another example.

Example 3.1.2. We are given a CJSPTB with 2 jobs and 4 machines. Job J1 only

consists of 1 operation and h has 3 operations. The processing times and machine

allocations are given in the following table.

Job

Operation 1 2 3 4

Processing time 10 6 14 14

Machine M1 M2 M3 M4

As before, the transportation time is t, = 2 for all i E 0* and the empty moving time

between any two different machines jl,h, NIL is equal to 1. Figure 3.2 shows the same

solution twice for the problem with height h:,o = 3 and cycle time et = 19. However,

in the first solution we start the cycle with unloading job J1 from the input station and

in the second with h. Note that these solutions are identical and just offsets of each

other. The number of overlapping operations in the first schedule are 01 = 0 and 02 = 3

uihereas in the second schedule they are 01 = 0 and 02 = 2. In both cases these numbers

are less than or equal to h:,o = 3 (cf. Theorem 3.1.1). The actual heights of the two

jobs in these solutions are hj! = 1 and h\ = 3. Job J1 always has only one repetition

in a cycle and no overlapping operations in both solutions. The interesting job in this

example is h. As one can see, there are 4 different repetitions of this job in every

tagged cycle of the first schedule and 3 in every cycle of the second one. However, to

apply Theorem 3.1.2 to h we need to consider the second schedule, since a cycle starts
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M*
M4

M3

M2

MI

Mo

0

M*
M4

M3

M2

MI

Mo

0

h:,o = 3
Cl' = 19
'PI= 15
'P2= 47

10 20 30 40 50 time

h:,o = 3
Cl' = 19
'PI= 15
'P2= 47

10 20 30 40 50

Figure 3.2: Schedule for Example 3,1.2

with unloading h from Mo. Note that such a shift of the cycles can always be done

to any job in any feasible solution. An instance of job Jz is processed within 3 (equal

to hj
j
, cf. Theorem 3.1.2, 2) cycles, has 2 (equal to hj2 - 1, cf. Theorem 3.1.2, 3)

overlapping operations 3 and 4 and as already mentioned before, there are 3 (equal to

hj, cf. Theorem 3,1.2, 4) different repetitions of it in a cycle if the cycle starts with
J

For the connection between the flow time 'P2 = 47 and the cycle time Cl: = 19 it follows

from Corollary 3.1.1 that (hj2 - 1)CI:= 38 :'S 'P2 :'S 57 = hj2C1:·

3~2 Feasible Robotic Cycles

In this part, we will consider the CJSPTB with a given robotic cycle. Let us first of all

have a brief discussion about how the problem changes if the robotic cycle is known in
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advance. Assume that

with a : 0* ~ 0* being a permutation of the set 0*, is the given robotic cycle. With

a given order for the transport moves we can introduce further precedence constraints;

firstly for the operations on each machine and secondly for the transport order based on

the robotic cycle. Accordingly, let pr-eM (i) (respectively sucM (i)) be the preceding (suc-

ceeding) operation of i processed on machine M(i) and pr-eR(i) (respectively sucR(i))

be the preceding (succeeding) operation of i in the robotic cycle. If i = a(N + n) is

the last operation in R then we set sucR(i) = a(l). To define an order between the

operations in a robotic cycle, we write Ti -< Ti if Ti precedes Tj in R. Denoting the

starting time of an operation i in a specific cycle by S;, the CJSPTB with a given

robotic cycle can be formulated as minimising the cycle time a subject to

{
s:s; +Pi + tslLc(i) = suc(i)'
S;uC(i) + a

{
s-

S* < sucH(i)'
i + ei,pre(sucR(i)) + tsucR(i) _

s;u(J'(i) + n

if Ti -< Tsuc(i);

else;
(3.1)

if Ti is not last in R;

else;

ViE 0* with

M(i) 1'- M(sucR(i))
(3.2)

S· < {s'Uc(i) -

S·
S1LCJ\! (i)'

S;ucAf (i) + a

if Tsuc(i) -< TsucM (i);

else;
ViE 0 (3.3)

ViE 0 (3.4)

(3.5)o..p; ~ 0 ViE O.

Since the order of the operations in the schedule depends on the given robotic cycle, the

machine constraints also depend on R. Due to the no-wait constraint, equation (3.1)

must hold. The cases, we have to distinguish between, are: S; starts before its successor

S;uc(i) in the cycle or not. (This is equivalent to Ti appearing before Tsuc(i) in R or not.)

Note that it is not a contradiction to the precedence constraints if Tsuc(i) -< Ti, since
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the operations would belong to different repetitions of the same job {e.g. (i, r) and

(suc{i),r-1)). The direct successor (suc{i),r) of (i,r) will start in the next repetition

of the cycle, et time units later. Similarly, this can also be applied to the precedence

constraints according to the robotic cycle or any machine. Constraint (3.2) ensures

that the robot has enough time between delivering a job to a machine before picking

up the next one in the cycle. To explain (3.3), let suc{ i) =1= sucM (i). Thus, suc{ i) will

not be processed on M{i). SinceM{i) cannot be blocked at the time when suc{i) starts

and due to the fact that there is only one transport robot, constraint (3.3) must hold.

Finally, we have to ensure that each operation will be processed at least for its minimal

processing time {cf. (3.4)) and we do not allow any negative times {cf. (3.5)). Thus,

constraints (3.1) - (3.5) are necessary to represent the CJSPTB with a fixed robotic

cycle. What is often left out in a problem definition, is, that the described constraints

are not just necessary but also sufficient to represent the problem. In our case, it is not

difficult, since the problem is very compact, but we at least want to mention it. The

'critical' restrictions in this problem are, the minimal processing times, the blockingand

the transportation constraints. If all of them are fulfilled, then the solution is feasible.

And due to the discussion above all of these criteria are met. Note that constraints

(3.1) - (3.5) would also be necessary for a problem, in which every machine needs some

setup time between the processing of two jobs (e.g. cleaning the machine). However,

it is not sufficient, since constraint (3.3) would have to be tightened in that case.

As we can see, with a given robotic cycle R there are no options available to decide

which operation is processed first on a machine, or whichjob has to be transported next

in a cycle. Looking back to the graph models, this means that by fixing the robotic

cycle, every pair of disjunctive or alternative arcs has been fixed as well. Therefore,

the problem is a lot easier to solve than the general CJSPTB. This also means, that

a solution can be represented by a robotic cycle. However, a given robotic cycle for

the CJSPTB is not necessarily a feasible one. Moreover, the number of feasible per-
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mutations is way smaller than the number of infeasible ones. This results from two

facts:

1. There are no buffers at the machines.

2. The overall height of the problem can be limited.

If there would be enough buffer space at every machine and a large enough value for

the height would be allowed then any permutation of the transport moves would lead

to a feasible robotic cycle. In order to decide whether a given robotic cycle would lead

to a feasible solution, we define the following property.

Definition 3.2.1. A robotic cycle R is called blocking-feasible if

1. before the robot executes operation Ti, job J (i) must be loaded and finished its

processing on machine M(pre( i)) and

2. the robot is never required to transport a job to an already loaded machine.

The following example shows a feasible and an infeasible robotic cycle for the same

problem. Moreover, it implies a simple method to check whether a robotic cycle is

blocking-feasible or not.

Example 3.2.1. We will reuse the data of Example 2.2.7. Recapitulating, we had 2

jobs to be processed on 2 machines with the following data.

Job

Operation 1 2 3 4

Processing time 8 4 6 4

Machine Nh Nh Ml M2

Consider the first cycle from time 0 to 24 of the solution provided in Example 2.2.7

with height h*,o = 2 (cf. Figure 2.26 on page 60). This implies the following robotic
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cycle:

Using Table 3.1, we can show that robotic cycle RI is feasible for the problem. The

structure of the table is as follows. In column "move: from -+ to" the transport moves

and the affected machines are shown, columns "MI" and "M2" show the operations that

are currently loaded on the machines and column "r " shows how often this transport

move has been executed. If a transport move is not possible, because the previous trans-

port move has not been done yet, we write "n/a". Filling the table according to RI,

the robot starts with tmnsporting job JI from the input station to its first machine MI.

Thus, MI is blocked by operation 1. The second move 7*2 cannot be executed because

7pre(*2) = 74 has not been done yet. If we continue, we observe that before executing

move 7i operation pre(i) is always available at M(pre(i)) and that the robot is never

required to load an already loaded machine. That means, that RI is a blocking-feasible

robotic cycle.

On the other hand, Table 3.2 shows an infeasible robotic cycle

Before executing 74 the first time, both machines MI and M2 are blocked by operation

3 and 2. Transport move 74 wants to move job h from machine MI to machine M2

which is currently blocked by an instance of JI .. Thus, the robotic cycle R2 is infeasible.

The second property, that a feasible robotic cycle must fulfill is the height, depends on

the different job repetitions in one cycle. Thus, for a given permutation of all transport

moves 7i with i E 0* we need to calculate the corresponding repetition number ri in

order to decide, whether the limit of the height is maintained or not. Procedure 3.2.1

calculates the repetition numbers and the actual job heights hj. for a given robotic
J
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move- from -+ to I Ml I M2 I r move: from -+ to I u, I M2 I r
71 : Mo ---+ M, 1 - 1
1*2 : M2 ---+ M. 1 n/a n/a
72 : Ml -+ M2 - 2 1
73 : Mo -+ MI 3 2 1
1*1 : M2 -+ M. 3 - 1
74 : M, -+ M2 - 4 1

71 : M« -+ MI 1 4 2
1*2 : M2 -+ M. 1 - 1
72 : M, -+ M2 - 2 2
73 : M» -+ MI 3 2 2
7.1 : M2 ---+ M. 3 - 2
74 : !vh -+ M2 - 4 2

71 : Mo -+ MI 1 - 1
1*1 : M2 -+ M. 1 n/a n/a
72 : MI -+ M2 - 2 1
73 : Mo -s u, 3 2 1
74 : MI -+ M2 -failed-
1*2 : !vh -+ M. M2 is blocked

71 : Mo -+ MI
1*1 : M2 ---+ M.
72 : M, -+ M2
73 : Mo -+ Mi
74 : !vII ---+ M2
1*2 : M2 ---+ M.

Table 3.1: Blocked machines in
RI

Table 3.2: Blocked machines in
R2

cycle. (It can easily be adjusted to calculate any other height depending on the model.)

The method works as follows. For every job Jj, the default height is set to hi = 1
J

and the last operation ~ gets the repetition number r*j = 1 (of course this can be any

integer number). It then loops through the operations of the job in an descending order

(line 4). If the successor suc(i) is scheduled after operation i, then both must belong

to the same job instance and therefore have the same repetition number. If not, the

instance of operation i belonging to the same job as suc( i) must have been scheduled in

the previous cycle. Hence, the actual occurrence of i must belong to the next repetition

of Jj, and the repetition number ri as well as the height hi have to be increased by 1
J

(cf. line 5 - 8). We repeat this procedure for every job and finally return the repetition

numbers and the heights (cf. 11).

Example 3.2.2. We apply the described procedure to the robotic cycle R1 [rom Example

3.2.1. Starting with the last operation T*1 of job J1 and assign repetition number rii = 1

to it. The job height is also set to hJ) = 1. Entering the for-loop, the last operation of

J1 is i = 2 and its successor is suc( i) = *1. Since T*I is executed after T2, neither the

height nor the repetition number is increasing. The same holds for the next operation

i = 1. Thus, all repetition numbers of J, are equal to 1 and the actual job height hil = 1

as well.
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Procedure 3.2.1 Determine repetition numbers and job heights

2:
3:

1: procedure determineRepeti tionNumbers(R)
for j = 1 to N do

hj. = 1 and r*i = 1
J

for i = last operation of Jj down to first operation of Jj do
if 7suc(i) precedes 7i in R then

hj. = hj. + 1
J J

end if

4:
5:
6:
7:
8: r' - h* .t - Ji'

end for
end for

9:
10:
11: return rh ... , rn and hj1' ... , hjN
12: end procedure

Considering job h and starling again with r*2 = hj2 = 1 we see, that 7*2 precedes its

direct processor 74, and therefore we increase hj2 up to 2. The repetition number r4

is also set to 2. Continuing with the algorithm the robotic cycle including repetition

numbers is given by:

The actual heights h!,o and hMk of the problem can easily be determined by looking

at the repetition numbers of the corresponding operations. For instance, the second

repetition of h starts before the first repetition of J1 has finished, so that h! 0 = 2.,

In order to find an optimal solution for the general CJSPTB (which is as we know

NP-hard), most heuristics or branch and bound methods need to evaluate many sub

optimal solutions during their execution. Since this number tends to be very large, it

is of great interest to have a method that evaluates a determined solution as quickly as

possible. That is, what this chapter is mainly about.

One of the methods we will analyse within this chapter is the fastest one tested in

Dasdan et al. (1998) which is known as "Howard's Algorithm" and which was first
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introduced in Howard (1960) (cf. Section 3.3). Furthermore, we will analyse a so called

"Parametric Critical Path Algorithm" published in Alcaide et al. (2007) and updated

in Kats et al. (2008) (cf. Section 3.4). Finally, in Section 3.5 we will then present a

new algorithm and compare all three methods in Section 3.6.
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3.3 Howard's Algorithm

The general idea of this algorithm is very simple. We start with a small enough value

for the cycle time 0; and then continuously increase 0; until an optimality condition

is fulfilled. We assume that a CJSPTB is represented by a graph G = (V, E U A)

as described in Section 2.2.4. Since the constraints (2.48) and (2.49) are, due to the

feasible selection A, now fixed, the problem can be reformulated after building the

corresponding graph. Every arc (i,j) E E UA is representing a type of constraint and

consists of a delay dij and a height hij. Therefore, the problem can be summarised as

min 0; (3.6)

s.t.

Si{r) = Si{O) + ra i E V,r E Z

Si{r) + dij ::; Sj{r + hij) (i,j) E E uA, rE Z.

(3.7)

(3.8)

By setting Si{O) = Si for all i E V and a substitution of (3.7) into (3.8) we get the

following formulation

min 0; (3.9)

s.t.

(3.10)

The problem defined by (3.9)-{3.10) is a special case of the maximum cost-to-time ratio

problem and an easy way to solve this problem is for instance applying the simplex

method (cf. Dantzig et al. (1967)). However, there are other specialised algorithms

that solve the problem much faster and one of them is Howard's algorithm. Before we

start to discuss Howard's Algorithm, we want to recall some necessary and sufficient
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conditions for the existence of a cyclic schedule from the literature. Furthermore, we

conclude that the optimal cycle time can be computed by analysing the cycles in the

graph C. The following results are based on the work of Kampmeyer (2006) which can

be consulted for proofs and further details.

Let JL< E U A be a circuit in C. Then we define

d(JL):= L dij,
(i,j)E/l

h(lt):= L hij
(i,j)E/l

and

the length, the height and the value of It respectively. A circuit with maximum value

and positive height is called a critical circuit.

Theorem 3.3.1. The problem described by (3.9)-(3.10) has a feasible cyclic solution

with cycle time a > 0 if and only if each circuit JLfulfills one of the following conditions:

1. The circuit JLhas a positive height and arbitrary length.

2. The circuit JLhas a negative height and a negative length.

3. The circuit JLhas height zero and a non-positive length.

And additionally the following inequalities

min {~~~~ I JLis a circuit with h(lt) < o} :2 a :2

max {~~~:~ IlL is a circuit with h(JL) > 0 }

have to hold.

Theorem 3.3.2. Assume that the problem described by (3.9)-(3.10) has a feasible cyclic

solution. Then the optimal cycle time is equal to the value of a critical circuit.

The pseudocode of the algorithm is given in 3.3.1. Instead of using the complete graph

C = (V, E U A), the algorithm operates on a special subgraph Ca = (V, (E U A)a) of
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G where (EUA)u = {(i,O"(i)) I i,O"(i) E V}. The set (EUA)u ~ EuA is updated in

every iteration of the algorithm and thus the so called policy graph Gu changes as well.

The node set of this graph is the same as in G. However, every node i has exactly one

successor O"(i).

The algorithm can be divided into three parts. In the first one (cf. lines 1-5), the policy

graph Gu is initialised. Every node starts to be its own successor O"(i) = i. The distance

label of every node i E V is denoted by d(i) and initially set to d(i) = prin + ti. The

boolean variable 'improved' which is initialised in line 5 is used to indicate whether the

current solution has changed and, if this is not the case, to stop the algorithm.

After initialising Gu the graph consists of several disjunctive circuits. The next part

of the algorithm is a while loop (lines 6 - 32) which can be divided into two parts. In

the first part, we find all circuits J.L in the graph and check with Theorem 3.3.1 if the

problem has no feasible solution. If this is not the case, we set the cycle time 0: equal

to the maximum value of a critical circuit in Gu (cf. line 13). In the second part (lines

14 - 20), the graph is updated in a way, such that the critical circuit remains the only

circuit in the graph. Furthermore, we recalculate the distance labels d( i) for all nodes

i E V (line 22). Within this line, the length of a longest path between two nodes, is

the sum of the arc lengths contained in this path. Thereby, the length of an arc (i,j)

does not only consists of its time lag dij but also of its height hij. In particular the

following holds:

length( (i, j)) = d(j} + dij - o:hij.

These labels are an estimation of the value of a longest path from i to the selected

node s.

In the last part of the algorithm (lines 24-31), we check, whether the labels can be

improved by changing the arcs in the graph Gu. If they cannot be improved, the

algorithm terminates and 0: is the minimal cycle time (line 33). Otherwise, the policy
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graph has changed and we restart at the beginning of the first while loop (line 6) with

the updated graph.

We want to show by an example how the algorithm works.

Example 3.3.1. We will reuse the data of Example 2.2.7 on page 60. There are 2 jobs

to be processed on 2 machines with the following data.

Job

Operation 1 2 3 4

Processing time 8 4 6 4

Machine Nh M2 Nh M2

Transportation times were set to ti = 2 for all i E 0* and to = t.; = O. The empty

moving times were given by eij = 1 for all i, j E 0* U {O, *} with i i= j and eii = O.

Again, consider the first cycle [rom time 0 to 24 of the solution prooided in Example

2.2.7 with height h*,o = 2 (cf. Figure 2.26 on page 60)and the implied robotic cycle:

The fixed alternative arcs for this final solution are shown in Figure 3.3. As one can

see, the hij -ualues on the arcs are compensating the differences between the repetition

numbers in the cycle. The arc set EuA of the gmph G, to which we will apply Howard's

Algorithm, consists of both arc sets belonging to the gmphs that are shown in Figures

2.25 and 3.3.

Starting with the initialisation phase of the algorithm, the first policy graph G~ is shown

in Figure 3.4( a). The corresponding labels and successors are given in the table below.

Node i I ° I 1 I 2 I *1 I 3 I 4 I *2 I *
d(i) 0 lO 6 2 8 6 2 0

O'(i) 0 1 2 *1 3 4 *2 *
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Procedure 3.3.1 Howard's Algorithm

1: for all nodes i E V do
2: set d(i) :=prin + ti;
3: set o-(i) := i;
4: end for
5: improved := TRUE;
6: while improved is TRUE do
7: (E U A)a := {(i, o-(i)) liE V};
8: Find all circuits in Ca := (V, (E U A)a);
9: if Ca has circuit /-L with h(/-L) < 0 and d(/-L) 2:: 0 or h(/-L) = 0 and d(/-L) > 0 then
10: return infeasible;
11: end if
12: Let /-L be the circuit with maximum value in Ca and h(/-L) > 0;
13: set a := v(/-L) = d(/-L)/h(/-L);
14: Select node s E /-L with smallest index;
15: VJ.L:= {i E V I there exists a path from ito s in Ca};
16: while VJ.Lf:. V do
17: Find node i E V \ VJ.Ls.t. there is a j E VJ.Land (i,j) E E U A;
18: set o-(i) := j;
19: set VJ.L:= VJ.LU {i};
20: end while
21: for all i E V do
22: update label d(i) to length of the longest path from i to s in Ca;
23: end for
24: set improved := FALSE;
25: for all arcs (i,j) E E U A do
26: if d( i) < d(j) + dij - ahij then
27: set improved := TRUE;
28: set d(i) := d(j) + dij - ahij;
29: set o-(i) := j;
30: end if
31: end for
32: end while
33: return a;
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Figure 3.3: Arcs representing the robotic cycle for Example 3.3.1

The circuit with maximum value in G~ is JL= (1,1) and emphasised by a dotted arc.

Its value is v(JL) = 10/1 = 10, which gives an initial minimal cycle time of 0: = 10 and

the only node in JL is s = 1. Then, the policy graph is updated in lines 16 - 20 and the

new graph G; is shown in Figure 3.4(b). Updating the labels and successors gives the

following values:

Node i I 0 I 1 I 2 I *1 I 3 I 4 I *2 I *

d(i) 2 0 -7 -14 1 -7 -14 -20

()(i) 1 1 1 2 4 1 2 0

For instance, the path from 3 to s = 1 is 3 ---+ 4 ---+ 1. Its length is 8 + 3 = 11 and its

height is 0 + 1 = 1. Thus the label is set to d(3) = 11 - 0: . 1 = 11 - 10 = 1. Based on

these labels and successors we update the graph again (lines 24 - 31) and the result is

shown in Figure 3.4( c). The labels and successors have changed as follows:

Node i I 0 I 1 I 2 I *1 I 3 I 4 I *2 I *

d(i) 2 14 4 -3 1 -7 -3 -20

di) 1 2 3 2 4 1 2 0

Returning to the beginning of the while-loop the critical circuit has changed to JL=

(1,2,3,4, 1) which is again indicated by dotted arcs in Figure 3.4( c). The value of this

circuit (and at the same time the new cycle time) is 0: = 24/1 = 24. Applying the rest
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of the algorithm we see that the if-statement in line 26 is never true and thus a = 24

is returned as the optimal cycle time.

The running time for this version of Howard's Algorithm is pseudo-polynomial, which

means it is polynomial in the numeric value of the input. (Note that computational

complexity is measured in relation to the size of the input rather than the numeric

value which is exponential in the size of the input). However, the running time can be

summarised as

o (n2maopth(~+)) ,

where aopt is the minimal cycle time,

h(J.t+) := max{h(J.t) I J.t is a circuit in G without node repetition}

and e = d(i)-(d(j)+dij-ahij) is the maximal improvement during the label correction

in lines 24 - 31. For further details and proofs we refer to Kampmeyer (2006). Even

if the running time is pseudo-polynomial its practicality has already been shown in

Dasdan et al. (1998) and for that reason, we included it in our study as well.
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Figure 3.4: Policy graphs of Example 3.3.1
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3.4 A Parametric Critical Path Algorithm

The basic concept of this algorithm is a modification of the Bellman-Ford algorithm

(cf. Bellman (1958)). It was developed by Kats and Levner and from then on it had

some modification and was applied to different problem types (cf. Kats and Levner

(1998a), Alcaide et al. (2007) and Kats et al. (2008)). However, the general idea of the

algorithm always stayed the same.

Since this algorithm is based on a network algorithm, it also operates on a graph

G = (V, E U A). The node set V = {O} U 0* consists of the dummy start node 0

and all operations in 0* representing the starting times of these operations. Note that

the dummy end operation * is not included in the node set. The arcs of the graph are

representing minimum time lags between the starting points. Those time lags are based

on the formulation in Section 3.2 given by (3.1) - (3.5). Substituting Pi in constraint

(3.1) by (3.4), we get:

S
min { Ssuc(i), if Ti -< Tsuc(i);

i + Pi + tsuc(i) ~
Ssuc(i) + a, else.

(3.11)

for all i E O. Thus, the length of the arcs representing the precedence constraints

depends on the order of transport moves in the robotic cycle. If Ti precedes Tsuc(i) in R

then we add an arc from i to sue(i) of length prin + tsuc(i)' Otherwise, the arc length

from i to sue (i) is going to be prin + tsuc(i) -a. Note that those lengths can be affine

functions rather than constant values, since they depend on the parameter a. This is

also the reason, why the algorithm is called "parametric".

For the transport constraints the following holds:

{
SsucR(i)' if Ti is not last in R;

Si + ei,pre(sucR(i)) + tsucR(i) ~
SsucR(i) + a, else.

(3.12)
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for all i E n* with M(i) f= M(sucM (i)). Those constraints can be represented by an

arc from ito sucR(i) of length ei,pre(sucR(i))+ tsucR(i) in case Ti is not last in R and one

from the start of the last operation in R to 1 of length e-.o + t : - a.

Finally, for the machine constraints the following holds:

if Ti -< Tsuc(i);
else.

(3.13)

for all i E n. Therefore, we add an arc from suc( i) to sucM (i) of either length 0 or

of length -a depending on the order of the transport moves. Note that these arcs

are only relevant in case of a non-blacking-feasible robotic cycle. Otherwise, they are

implied by the route the robot takes.

Finally, there is an arc from the dummy start node 0 to the first node in the cycle

(i = 1) of length ti-

Example 3.4.1. The graph for the data used in Example 3.3.1 is shown in Figure

3.5. The solid arcs are presenting precedence constraints and (except for one arc) are

of length prill + tsuc(i)' The arc from 4 to *2 is of length 6 - a since *2 precedes 4 in

the robotic cycle. The dashed arcs are representing the transport constraints. They are

all of length ei,pre(sucR(i)) + tsucR(i) = 3 except the arc from 0 to 1 (which is of length

tl = 2) and the one from the last operation 4 to the first operation 1 in the cycle (which

is of length 3 - a).

Bellman's and Ford's algorithm finds the single-source shortest paths in a weighted

directed graph. For graphs with only non-positive arc lengths, the faster Dijkstra's

algorithm also solves the problem. Thus, the Bellman-Ford Algorithm is primarily used

for graphs with positive arc lengths. In the graph presented above, some arcs lengths

are affine functions of the form a - bee, and therefore, might become negative for a large

enough value for bar a. Kats and Levner modified the Bellman-Ford Algorithm, so that
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processing transport machine

Figure 3.5: Graph for Example 3.4.1

it finds the longest paths in such a graph. The pseudo code of their Parametric Critical

Path Algorithm (PCP) is shown in Procedure 3.4.1. Since it is a labeling algorithm,

every node i E V has a distance label a:u(i). The different superscripts u are indicating

the different updates during the algorithm.

It starts with initialising the labels by setting the label of the source node 0 to dO(O) = 0

and the ones for the remaining nodes i to ~(i) = -00 (cf, lines 1-2). Then the label

correction is carried out in lines 3 - 11. Within this, the algorithm alternates between

two cases. It either considers the arcs from a node that precedes the current one in the

robotic cycle or not. However, the ordering in the two cases could be chosen in any

other way. Since this algorithm is searching for the longest critical path from the source

node 0 to all other nodes, in every iteration, it updates the labels of every node i to

the maximum of the current label d( i)U and all labels d(j)U +dji, for which exist an arc

(j, i) in G. Note that the labels are not just integer values, but sets of affine function

depending on a. The label correction has been updated since its first version presented

in Alcaide et al. (2007). Originally, the outer for-loop would have been executed 1V1-1
times and therefore one wouldn't distinguish between u being even or odd. Apparently,

in Kats et al. (2008) the authors changed that to the current version, since it should

save on average 50% of operations while computing the max operator. The origin of

this idea is based on Yen (1970) who considered the problem with constant arc lengths;
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After the label correction, one needs to find the feasible values for exthat satisfy con-

straint (3.14). If there does not exist one, the problem is infeasible and otherwise the

minimum feasible value for exis returned (cf. line 17).

Procedure 3.4.1 Parametric Critical Path Algorithm

1: dO(O) = 0;
2: dO(i) = -00 for all i E V \ {O}
3: for 'U = 0 to U - 1, where U = 2(1V1- 1) do
4: for i = 1 to IVI do
5: if u is even then
6: set du+1 (i) := max{ d(i)U, max{ d(j)U + djd};

Tj <ri
7: else
8: set du+1(i) := max{d(irt, max{d(j)U + dji}};

ti>«,
9: end if
10: end for
11: end for
12: for all arcs (i, j) E E uA do
13: solve the system of functional relations

(3.14)

with respect to ex;
14: end for
15: Let T be the set of feasible values satisfying (3.14).
16: if T #- 0 then
17: return exopt = min{T};
18: else
19: return infeasible;
20: end if

The following example shows how the algorithm works.

Example 3.4.2. We are going to apply the algorithm on the graph of Example 3.4.1.

The labels after the initialisation are as follows

Node i I 0 I *1 I 3 I 4 I
-00
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For u = 0 the labels do not change. In the second repetition of the label correction, the

label of node 1 changes to d2 (1) = 2 since the label of 0 is d1(0) = 0 and there exists

an arc from 0 to 1 of length 2. The maximum of { -00, 2} is obviously 2. After the

repetition for u = 6 the labels have changed to:

Node i I 0 11 I 2 I *1 I 3 I 4 I *2
d7 (i) I 0 I 2 116 118 115 I 21 112

For the next iteration (u = 7) let us consider node 1 with a current label of d7(1) = 2.

Since u is odd, we only consider nodes having an arc to 1 that appear later in the robotic

cycle. Operation 4 is the only one and the length of the arc from 4 to 1 is d41 = 3 - a.

Thus, the label of 1 is updated to

d8(1) =max{d(lf, max{d(4f + d41}}

=max{2, max{21 + 3 - a} }

=max{2, 24 - a}

Here we can see, how the maximum operator starts to increase the number of terms of

the label. For every different coefficient of the variable a there will be another function

added to the label. At the end of the label correction the final labels are as follows:

d12(O) = 0
d12(1) = max{2,26 - a,48 - 2a}

d12(2) = max{12, 36 - a}

d12(*1) = max{18,42 - a}

d12(3) = max{15, 39 - a}
d12(4) = max{23, 45 - a}
d12(*2) = max{5, 29 - a, 51 - 2a}

Solving constraints (3.14), the minimal value for the cycle time is a = 24. The critical
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nodes dominating this result are 3 and 4. According to (3.14) we have

{:} max{15, 39 - a} + 8 S max{23, 45 - a}

{:} max{23,47 - a} S max{23,45 - a}. (3.15)

We also have

{
23,

max{23, 47 - a} =
47 - a,

for o > 24;

else,

and

{
{

23,
max 23,45 - o:} =

45 - a,

for « > 22;

else.

Hence, constraint (3.15) holds [or all 0: ::::: 24. Continuing to solve the remaining

constraints of (3.14), the minimum cycle time is given by a = 24.

The running time of the PCP is O(1V14) which in case of the CJSPTB is equivalent to

O(n4) and therefore strongly polynomial (proofs can be found in Kats et al. (2008)).

The algorithm also has the advantages of being able to handle time window constraints

which would lead to negative time lags between some nodes.
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3.5 A New Algorithm

In this section we will present a new algorithm that solves the CJSPTB with a given

robotic cycle. The idea of the algorithm can be described as follows. Assume we are

given a feasible robotic route for the non-cyclic job-shop problem with transportation

and blocking (cf. Section 2.1.4). An earliest start schedule can be obtained as follows.

We start with fixing the starting time of the first operation in the robotic route. Then,

we successively consider every other operation associated with a transport move in the

robot route and calculate its earliest possible starting time. Obviously, this depends

on the precedence and robot constraints. If we use the same graph representation as

before, then the earliest point in time a task i in the project can be started is equivalent

to the length of a longest (critical) path from the starting task of the project to node i

(cf. Shtub et al. (1994)). (The Parametric Critical Path Algorithm from the previous

section also relies on the critical path method.) Therefore, in the non-cyclic problem,

an earliest start schedule can be calculated in linear time. The same idea will be used

in our approach. However, there is one problem in the cyclic problem, which makes

it slightly more difficult to solve: the overlapping operations. Since such an operation

consists of two processing parts (one at the beginning an one at the end of the cycle),

the sum of them needs to be equal to the minimum processing time of the operation.

Therefore, we cannot use the same critical path method as for the non-cyclic problem.

Anyway, the basic idea is very effective and we will try make use out of it.

Since graphs or networks, as we have seen before, are common ways of representing

production processes or any kind of projects we have based our new approach on a

directed graph G = (V,E UA) as well. The nodes are representing the starting times

of all operations i E 0* and the arcs again minimal time distances between the start

of the operations. Additionally to the operation nodes, there is a dummy start node 0
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processing transport

Figure 3.6: Graph representing robotic cycle for Example 3.5.1

and a dummy end node *. Thus, V = n* U{O,*}. The arcs in graph G are representing

those parts of constraints (3.1) to (3.3) which do not depend on o. We distinguish

between the following arcs:

• for every precedence constraint Si + Pi + tsuc(i) = Ssuc(i) together with pfin :S Pi

an arc from i to suc( i) of length eli,sHe(i) = pillin + tsuc(i),

• for every robot constraint Si + ci,pre(sllcR(i)) + tSllcR(i) :S Ss1tcR(i) an arc from i to

sucR(i) of length eli,sucR(i) = ei,pre(SllCH(i)) + tSllcR(i),

• for every machine constraint SSllc(i) :S SSlldl'f (i) an arc from suc( i) to sucM (i) of

length ds1tC(i),s1tcM(i) = O.

Furthermore, we add an arc of length ta( I) from dummy node 0 to the first operation

in the cycle a(1) and one from the last operation in the cycle a(N + n) to * of length

da(N+n),* = ea(N+n),O' If there exists a path from node i to node j then the length of a

longest path from i to j is denoted by CPi,j' We call a longest path from 0 to * critical

path and an arc belonging to such a critical path is called critical arc. The following

example will present the corresponding network for our already known problem.

Example 3.5.1. Again, we use the same data as before (cf. Examples 2.2.7, 3.3.1,

is blocking feasible we omit the arcs for the machine constraints given by (3.3). The

graph for this problem is shoum in Figure 3.6. The nodes are ordered in a way that is
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analogous to the robotic cycle. Between every two nodes i and '~ucR( i) we have an arc

of length 3 since ei,pre(sucR(i))+ tsucR(i) = 3 for all i E 0* U [O}. Furthermore, we have

arcs from i to suc(i) of length piin + 2 for all i where 7i -< 7suc(i)' Additionally, there

are two dummy arcs. One from 0 to 1 of length 2 and one from *3 to * of length O.

The critical path from 0 to * is (0 -+ 1 -+ 2 -+ 3 -+ 4 -+ *) and emphasised through

bold arcs in the graph. Its length is CPo,* = 24. Note that this length is a lower bound

for the cycle time.

As we can see in the example, there are still some constraints missing in the graph. For

instance, there is no arc representing the precedence constraints between operation 4

and *2. And those are the ones which depend on et or on the overlapping operations

(cf. page 73). To get a better understanding of those operations, imagine a cyclic

schedule of length et as a Gantt-chart of length et which is wrapped around a cylinder

with perimeter equal to et. One starts with the transport move 71(1) of operation 1 to

its machine and then moves around the cylinder. To get the consecutive schedule, one

simply increases the repetition number every time the starting point of an operation

is reached again. A single repetition of the cyclic schedule can be obtained by slicing

through the cylinder at the beginning of 71 and unfolding it. Obviously, it can happen

that an operation i is cut in two parts. Those operations are the overlapping ones.

In our case, an overlapping relation can only be induced by a precedence constraint

(constraint (3.1)). If we would assume that the cycle does not necessarily end with the

robot arriving at the input station Mo one could also slice through a transport move

and we would also need to take these ones into account. Note that for a machine Mk

there can be at most one overlapping relation. This is the last operation i.processed on

machine Mk for which the 'else'-case in (constraint (3.1)) holds. Looking at the graph

in Figure 3.6 the overlapping relations are those that are not represented by an arc so

far. E.g., there would be an arc representing a precedence constraint from node 4 in

this cycle to node *2 in the next cycle of length 6, Le. an arc from node 4 in this cycle
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to node *2 in the same cycle of length 6 - 0:.

We denote by P the set of pairs Ij, il with i, j E V for which there exits an overlapping

relation from i to j. (The order of j and i in this definition is chosen because an

overlapping relation can be seen as one in which the order in the robotic cycle is

the wrong way rouncl.) For each pair Ij,'il E P, we introduce two arcs (O,j)lj,i1 and

(i, *) Ij,il of variable lengths Xlj,il and Ylj,il ' respectively, which depend on the precedence

constraint (3.1). For every overlapping operation i with Si + Pi + tsuc(i) = Ssuc(i) + 0:

together with prin S Pi, we add one arc from ° to 8uc(i) of variable length Xlsuc(i),il

and another arc from i to * of variable length Ylsuc(i),il' The property of those lengths

is, that

Xlsuc(i),il + Yls1tc(i),il = prin + tsuc(i)'

To include those relations in the graph, we define the following set of (possible parallel)

arcs associated with P by

Associated with every arc pair Ij, il E P there exists a value dlj,il ~ 0, which denotes

the minimal length of a pair, and corresponds to the minimal distance between node i

and node j. By adding the arcs of (E U A)' to graph C we get an extended graph C'

for the problem.

Example 3.5.2. Consider again the data of Example 3.5.1. For the precedence con-

straints, there is one overlapping operation which is i = 4. This operation leads to one

arc from 0 to *2 of variable length XI*2,41 and one from 4 to * of variable length YI*2,41'

For the sum of those lengths we can see that XI*2,41 + YI*2,41 = p~lin + t*2 = 6. Figure

3.7 shows the corresponding graph C'.

The aim now is to determine the lengths of the arcs in (E U A)' such that
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processing transport

Figure 3.7: Graph G' for Example 3.5.2

1. for all pairs Ij, il E P it holds that Xlj,il+ YIj,il= dlj,il and

2. the length of a critical path from 0 to * in the corresponding graph C' is minimal.

However, this problem can be reduced to an equivalent problem in which the underlying

graph C has only O(m) vertices, where m is the number of machines. To achieve this, we

use the longest path lengths CPi,j in graph C = (V, EUA). The graph C = (V, ElJA)
is defined as follows. Let VI = {j : Ij, il E P} and V2 = {i : Ij, il E Pl. Then,

V = {O,*} U VI U V2. Furthermore, ElJA is defined by the following arcs:

(a) arcs (0, i) for all i E V2 with length CPO,i,

(b) arcs (j,*) for all j E VI with length CPj,*,

(c) arc (0,*) with length CPo,*,

(d) arcs (j, i) with lengths CPj,i for all j E VI and i E V2 with the property that

there exists a path from j to i,

(e) arcs (O,j)lj,il with variable length Xlj,il for all Ij, il E P and

(f) arcs (i,*)lj,il with variable length Ylj,ilfor alllj,il E P.

--The reason for defining E U A in this way, is that there are four different possibilities

to create a critical path in Graph C. Such a path can start and finish in arcs of

constant length (cf. (c)), it can start in an arc of variable length and finish in an arc
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524

Figure 3.8: Graph 6 for Example 3.5.2

of constant length (d. (e), (b)), it can start in an arc of constant length and finish in

an arc of variable length (cf. (a),(£)), and it can start and finish in arcs of variable

length (cf. (e),(d),(f)). Figure ;t8 shows the reduced graph C for Example 3.5.2. It

is easy to see that the critical path length in C' is equal to the critical path length

in C. Hence, the problem can bo reformulated to: Determine the lengths of all arcs

(O,j)lj,il' (i, *)Ij,il E (E U A)' such that :cU,il + Ylj,il = ci1j,il and the length of a critical

path from 0 to * is minimal in (J.

3.5.1 A Linear Programming Formulation

The problem derived in the previous section can be formulated as the following linear

program LPl.

minimise 0: (3.16)

s.t.

XIJ,il + YU,iI cib,iI

Xlj,il + CPj,k + YII,kl < 0:

Xlj,il + CPj,* < 0:

C PO,i + YU,il < 0:

V jj,ilEP

V Ij, ii, Il, kl E P

V lj,ilEP

V Ij,iIEP

V Ij,iIEP.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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To derive optimality conditions for LP1, we consider a non-directed bipartite graph B

with vertex sets VI and V2 and arc set Acp u Ap where

Acp = {(j,i),(i,j) : j E VI,i E V2 and in G there

exists a critical path containing both j and i},

Ap={(j,i),(i,j): Jj,iIEP}.

Note that Acp depends on the given solution implied by the vectors (xlj,il) Ij,iIEP'

(YIj,il) Ij,iIEP' A path in B is called an alternating path if its arcs are alternating between

arcs from Acp and Ap. Furthermore, an alternating cycle is an alternating path that

starts and ends in the same node.

Theorem 3.5.1. A feasible solution of the linear program LP1 is optimal if one of the

following conditions holds:

1. The corresponding non-directed bipartite graph B contains an alternating cycle.

2. There exists an alternating path in the corresponding non-directed bipartite graph

B that

• starts with an arc (cI,il) E Acp, where (i1,*)lh,ill is on a critical path with

an arc (0, Cl) of constant length, and

• ends with an arc (jk, C2)E Acp, where (O,jk)ljk,ikl is on a critical path with

an arc (C2,*) of constant length.

Proof. Case 1: Assume that there exists an alternating cycle

(il,jd(jl, i2) (i2,h)(h, i3) ... (jk-l, ik) (ik,jk)(jk, id·
.....___.........___.... "'-v-'"
EAp EAp EAp

To improve the solution, which means decreasing the critical path length, we have to
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decrease at least one xIJ· i I-value or YIJ· ii-value. W.l.o.g. we consider the length ofv, v l v, V

Yljl,ill' This value is replaced by Ylh,ill - El· Due to condition (3.17), Xljl,iIl must be

replaced by xlh,ill +e r- Since (O,jJ)Ul,ill is on a critical path with (i2, *)Ih,i21 the value

YI12hl must be replaced by Ylj2hl - El - E2, because otherwise there is no decrease of

the solution value. Again this implies that :rlhhl must be replaced by XIh,i21 + El + E2,

etc. (cf. Figure 3.9(a)). Finally, ;Cl.ik,iklmust be replaced by Xljk,ikl + El + E2 + ... + Ek

which implies that the path (0,jdUk,ikl(jk,id(il,*)lh,i11 is of length

In other words, the critical path length cannot be decreased by decreasing YUl,ill'

Symmetrically, the critical path length cannot be decreased by decreasing xlh ,ill'

Case 2: In this case, assume that there exists an alternating path which starts in a

node Cl. This node implies a critical arc (0, cd of constant length. Furthermore, there

exists a critical path going through (O,cd and (il,*)IJI,iII' Symmetrically, there is a

node C2at the end of the alternating path and there exists a critical path going through

(O,jk)ljl,ill and (C2,*) (cf. Figure :3.9(b)). The alternating path then is

(q,id (il,jl)(jl,i2) (i'2,.h)(j2,ia) ... (jk-l,ik) (ik,jk)(jk,C2) .....___.......___... ....___...
EAp EAI' EAp

In a better solution, the Yljl,ill-value must be replaced by YIJI,ill - El. Following the

same principle as in case 1 the critical path through (0, jk) and (C2, *) has increased by

El + ... + Ek and, therefore, the solution was already optimal.

D
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Ap Acp.....__ ... --
(a) Alternating cycle for item 1

Ap Acp.._-_ ...... --
(b) Alternating path for item 2

Figure 3.9: Bipartite graph B for proof of Theorem 3.5.1

3.5.2 An Algorithm to Solve the Special Linear Program LPl

In this section we present an algorithm to solve LPl. We choose an arbitrary numbering

of the elements in P = {iiI, ill, Ih, i21,... , lilPl' ilPII} and define

with 1/ = 1, ... , !PI. The idea of the algorithm is to iteratively solve the relaxation

of LP1 in which P is replaced by Pv' That means, we start with graph C, add

PI = {Ijl,ill} to it and determine the optimal values for xlh,ill and Ylh,ill' such that

the new critical path length is minimal. To this new graph, we add the next pair Ih, i21

and solve the problem again. We continue until all arc pairs have been added to the

graph. The underlying graph of each relaxation is denoted by c; To solve the problem

associated with Gv+! (1/ = 0, ... , IPI- 1), we use the optimal solution for the problem

associated with c.; where Go is the graph consisting of the single arc (0, *) of length

CPo,*. Note that if 1/ = ° then 0: = CPo,* is the optimal solution because P = 0.
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Determining the Arc Lengths of a Pair

We start with describing, how a relaxation associated with Cv+1 can be solved. The

pseudo-code of such an iteration can be found in Procedure 3.5.1. In this procedure,

we use the following notations:

• CPj,i denotes the length of the longest paths from j to i in o; for the current

value of u,

• (lfUA)v are the arcs corresponding to Pv, and

• the lengths of the current solution values are denoted by Xlj,il' Ylj,il'

For every pair Ij, z], the algorithm works as follows:

Step 1. line 2-3: We start with initialising the lengths of the arc pair to a minimal
~ ~

value. If the length CPO,j of the longest path from 0 to j plus the length CPi,*

of the longest path from i to * is greater than or equal to dlj,il, then we set

This choice is neither changing the length of the longest path from 0 to any

other node in the network, nor from any node in the network to *, since it is

at most equal to the length of a path that is already in the graph.

Step 2. line 4-10: Else we need to increase the length of the arc pair. Therefore, let

(II· ·1= dl· ·1- (xI· ·1+ YI: ·1)J,~ J,Z J,Z J,t

be the value the arcs are still to short after the first step. We calculate the

maximal length an arc from i to * can be set without increasing the critical
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path length. That is CPo,* - CPO,i. Thus Ylj,il can be increased by CPo,* -

CPO,i - Ylj,il without increasing CPo,*. We set Ylj,il to the minimum of this

value and dlj,il. If Xlj,il + Ylj,il = dlj,il holds then we are finished.

Step 3. line 11-16: Else, we still need to increase the length of xU,il + Ylj,il. Again, let

dlj,il = dU,il - (Xlj,il + YU,il) be the value the arcs are still to short after the

first two steps. We calculate the maximal length an arc from 0 to j can be set

without increasing the critical path length. That is CPo,* - CPj,*. Thus Xlj,il

can be increased by CPo,* - xU,il - CPj,* without increasing CPo,*. We set

Xlj,il to the minimum of this value and dU,il· If Xlj,il + Ylj,il = dlj,il holds then

we are finished.

Step 4. line 17-22: Else, we must increase the critical path lengths. Therefore we split

the remaining difference dlj,il evenly on both arcs. That means, we increase

Xlj,il and Ylj,il by cll~il. Note that this could lead to a non-integer value for

--Xlj,il' Ylj,il and CPo,*. Since the critical path length has been increased we have

to make sure, that the solution is still optimal. The followingsection describes

how this can be done.

Correcting the Solution and Proof of Optimality

Assume that we start with a graph representing an optimal solution for the arc pairs

inserted so far. That means, all lengths Xlj,il' Ylj,il of the arc pairs in the graph are

feasible (Xlj,il + Ylj,il = dlj,il) and the critical path length CPo,* is minimal. If, after

inserting an arc pair with Procedure 3.5.1, the critical path length has not changed

then the solution is still optimal, since adding an arc pair cannot decrease the critical

path length. On the other hand, if the length of the critical path has changed, we need

to check,whether the solution is still optimal, and correct it if it is necessary. Finishing

in Step 4 of the algorithm, it holds that every critical path contains either arc (0,j)U,il
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Procedure 3.5.1 Determine lengths of arc pair (O,j), (i,*) E (E u A)'

1: procedure determineLengths(pair Ij, il)
2: :rlj,il := min{dU,il,CPO,j}; Ylj,il := min{dU,il- XU,iI'CPi,*};
3: if xU,i1+ YU,il 2: dU,il then return
4: else
5: dl, 'I = dl" 'I - (XI' 'I + YI' 'I)J,2 ____2_,'l Y J,z

6: ~i := CPO,* - CPO,i - Ylj,il
7: ]tjj,il := ]tjj,il+ min{ ~j,il' ~d
8: dU,il := dlj,il - min {dU,il' ~i}
9: end if
10: if dU,il = ° then return
11: else _j_ a critical path contains i}
12: ~j := CPo,* - Xlj,il - CPj,*

13: xU,il := Xlj,il+ min{dlj,il' ~j}
14: dU,il := dlj,il - min {dU,il' ~j}
15: end if
16:

17:

18:

if dU,il = ° then return
else {a critical path contains j}

,_ dlj,;1
Xlj,il ,- Xlj,il+ -2-

,_ + dlj,;1Ylj,il ,- Ylj,il -2-

end if
19:

20:

21: optimality check and possible correction (cJ. next section)
22: return
23: end procedure

or Ci, *)Jj,il or both. In the latter case, due to Theorem 3.5.1, the solution is already

optimal, because the cycle (i, j) (j, i) is alternating. Otherwise, we distinguish between

two different cases for the bipartite graph:

Case A: There is an alternating path starting in a node 11.and finishing in a node i or

j. The arc corresponding to 11.has the form (11.,*) or (0,11.), i.e. it has constant

length, whereas the finishing arc has the form (O,j)lj,il or (i,*)U,il, i.e. it has

variable length.

Case B: There is an alternating path including node j and i that starts in a node 11.

and ends in a node t where (O,j)Jj,il, (i,*)Jj,il, (11.'*)lv,ul and (O,t)lt,sl are arcs
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critical arc

Figure 3.10: Graph for case A or B

in 6 of variable length.

The fact that one case of the two always holds can be seen as follows. Since (0, j)lj,il

and (i, * )I,j,il are on a critical paths there exists an alternating path of the form

(u,j) (j,i) (i,t),
'--"~~
EAcp EAp EAcp

where an arc al from u to * is on a critical path with (O,j)lj,il and an arc a2 from 0 to

t is on a critical path with (i,*)lj,il (cf. Figure 3.10). If alar a2 are of constant length

then case A holds, otherwise case B holds.

The aim is now to decrease the length of the critical paths. Since there can be more

than just one critical path in the graph, we obviously have to decrease the lengths of

all of them. The rough idea is to follow the alternating path(s) and iteratively decrease

every critical path by a (so far unknown) value of e > 0, until we reach the end of

every alternating path. Then we calculate the minimal value for e, such that at least

one additional arc becomes critical and update the graph. This will also add another

arc to an alternating path in the corresponding bipartite graph B. We continue with

this s-correctlon until we either get an alternating cycle or an alternating path that

starts and ends in a node belonging to a critical arc of constant length. This means

the solution is optimal.

The difference between the two cases is, that in case A we start at node u and only

follow the alternating path in one direction, whereas in case B we start at node j and i
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and follow the alternating path in both directions. In case A, this method will always

lead to an optimal solution since the correction could either lead to an alternating cycle

or the alternating path also ends in a constant node. However, in case B we can also

finish with an alternating cycle, or one side of an alternating path finishes in a constant

node. In the latter case, we change to the correction method to the one presented in

case A.

In the following we explain the two correction methods in more detail.

Case A: In this case, there must be a critical path including a constant arc and an arc

belonging to a pair. As indicated before, we can assume that this critical path

if of the special form 0 --t j --t 'lL --t *, where ('lL, *) is an arc of constant length

and (0, j)lj,il belongs to a pair. Furthermore, let 0 --t t --t i --t * be another

critical path where (0, t)lt,sl belongs to an arc pair. Then the alternating path

would be

(u,j) (j,i) (i,t) (t,s) ......__..,....._,__ ....._,__ ....._,__
EAcp EAp EAcp EAp

This scenario is shown in Figure 3.11(a). (Note that this figure is not showing

the bipartite graph but C.) To decrease the lengths of the critical paths we

start with decreasing the length of xlj,i1 by El. Due to constraint (3.17), we

have to increase YIj,il by El. Since (i,*)lj,il is on a critical path as well, the

extension by El would increase the critical path length. Therefore, we have

to decrease the lengths of all arcs that are critical with (i, *)Ij,il by 2EI to

decrease the overall length of these paths by El. This situation is shown in

Figure 3.11(b). One can see that both critical paths 0 --t j --t u --t * and

o --t t --t i --t * have been shortened by El. Again, we have to increase

the length of all partner arcs (here (s,*)lt,81) by 2EI. After reaching a non-

critical arc (here (s, *)It,81) on this alternating path, we can calculate a value

for El, such that another critical path will be added to the graph, and a
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previously non-critical arc becomes critical. (We will explain later, how cl

can be calculated.) A possibility for an updated graph is shown in Figure

3.11(c). Here, (0, l)ll,kl and (8, *)It,sl became critical after the first s-correction

and the alternating path has been extended to

(u,j) (j,i) (i,t) (t,8) (8,l) (l,k) ...__.,....__. ....__. ...__,....__....__,
EAcp EAp EAcp EAp EAcp EAp

If 8 would have become critical with j, then there would already be an alter-

nating cycle

(j,i) (i, t) (t,8) (8,j)....__. ....__. ...__,....._,,_
EAp EAcp EAp EAcp

and the solution would be optimal. Otherwise we get the situation shown in

Figure 3.11(c). Since the solution is still not optimal (there is no alternating

cycle in the corresponding bipartite graph), we start again at the same arc

(u, *) and try another attempt by correcting all critical paths by C2 (cf. Fig-

ure 3.11(d)). If, after this c2-correction, k is critical with j or t an alternating

cycle has been created. Otherwise, we have to continue. An optimal solution

after a correction with C2 is shown in Figure 3.11(e). Note that, after every

s-correction, an additional arc in the graph becomes critical, while the previ-

ously critical arcs stay critical. Since the number of non-critical arcs is limited,

the approach must finally stop at some point. As soon as a non-critical arc

becomes critical with a constant arc or an arc already included in the alter-

nating path, the solution is optimal. In the worst case, every arc in the graph

becomes critical.

Case B: This time, we have a critical path including (0, j)lj,il and another one including

(i, *) Ij,il. As indicated before, we can assume that this critical path is of the

114



3.5 A New Algorithm

Bconstant and
Bcritical arc Bcritical arc

(a) Initial situation

(c) (O,l)ll,kl and (s'*)lt,sl becamo orit.ical

Bmight become
Bcritical arc

(b) Correction by El

(d) Correction by E2

(e) (k,*)ll,kl became critical with (O,j)l1,il' So-
lution is optimal

Figure 3.11: Possible s+corrections in case A after adding arc pair (O,j)lj,il(i,*)lj,il
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special form

(s,t) (t,i) (i,j) (j,u) (u,v)~.__., ~...__"..._,__
EAp EAcp EAp EAcp EAp

(cf. Figure 3.12{a)). We start in the middle of the path at {O,j)lj,il and

(i, *) Ij,il and move "right" from node j and "left" from node i along the path.

We start decreasing the length of the arcs that are critical with {O,j)lj,il and

(i, *) Ij,il' Figure 3.12{b) gives an example for such a situation. Both values

Xlt,sl and Ylv,ul are decreased by Cl and their partner arcs must be increased

by the same value. We choose Cl to be large enough so that at least another

arc becomes critical {here {s, *)It,sl together with (O,l)ll,kl) and the alternating

path has been extended to

(k,l) (l,s) (s,t) (t,i) (i,j) (j,u) (u,v).
'-v-'~ ~.__., ~...__"..._,__
EAp EAcp EAp EAcp EAp EAcp EAp

Since the solution is still not optimal we carryon with the correction by C2

(cf. Figure 3.12{c)). Continuing with the procedure, there are two possible

situations that can be reached.

(a) An arc of constant length becomes critical. In this case, we cannot extend

the alternating path in this direction. This means, we have a situation

like in case A. Hence, we do not continue with this correction method

but change to the method in case A starting with the constant arc the

alternating path now finishes in.

(b) An arc becomes critical with an arc that is already part of the alternating

path. In this case, we have an alternating cycle and the solution is optimal.

One of these situations must be reached after a finite number of extensions

because new arcs become critical as long as none of those two cases occur.

Continuing with the example and applying the correction by C2 at least one ad-
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ditional are (here (0, V)IV,lll and (k,*)ll,kl) becomes critical (cf. Figure 3.I2(d)).

This solution is optimal since there is an alternating cycle

(v, k) (1.:, l) (l,8) (s, t) (t, i) (i,j) (j, u) (u, v).
"-v-""-v-""-v-" "-v-" "-v-" "-v-""-v-""-v-"
EAcp EA}' EAcp EAp EAcp EAp EAcp EAp

Beritieal are

(a) Initial situation (b) Correction by Cl

(c) (O,I)ll,kl and (8,*)lt,,'1 became critical (d) (O,v)lv,ul became critical with (k,*kkl'
Solution is optimal

Figure 3.12: Possible E-correctiolls in case B after adding arc pair (0, j)lj,il(i, *)I),il

dure A.I and A.2 in Appendix A.

The pseudo-codes including a formal description of the corrections are given in Proce-
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As mentioned before, there are different possibilities of generating new critical arcs or

alternating paths after an e-correction. During this correction some variable arc lengths

have been increased or decreased by a multiple of c. However, we do not know this

value yet. It can be calculated as follows.

After the correction, the critical path is going to be decreased by c, i.e.

(3.23)

Changing the arc lengths on the left and right hand side of the graph, changes the

length of the paths from 0 to *. Those lengths can be described by

where (O,t)lt,sl (respectively (s,*)lt,sl) is either critical or has been increased by a mul-

tiple of c. Those lengths need to be at most as large as the new critical path length,

which means

-- -r+-otd
CPo,s(c) + Ylt,sl(c) ~ CPo,* - s,

(3.24)

(3.25)

must hold. Note that the values on the left hand side of these constraints do not

necessarily need to be depending on c. E.g. it is also possible that a new longest path

only contains arcs of constant length. We now have to determine the largest e, such
that no constraint is violated and for at least one of the constraints (3.24) or (3.25)

the equality holds for every arc that has been increased by a multiple of c. We are.

interested in the minimum value of e fulfilling the constraints which gives the optimal

value for the s-correction. If we consider the situation in Figure 3.12(b) then e.g. the
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arcs (O,v)lv,ul and (O,j)lj,il would lead to the following constraints for constraint (3.24):

----old -rr-r-ol d
Xlv,ul + Cl +cr., + Ylj,il ::; CP -El, Xlj,il + cr., + YIJ,il < CP - cl,

~old ~old

Xlv,ul + Cl +ce., + Ylt,,1 + Cl ::; CP - cl, XIJ,il +cr., + Ylt,sl + Cl ::; CP - Cl,

~old -old
Xlv,ul + cl + CPu,u + Ylv,ul ::; CP - cl, XIJ,il + CPj,u + Ylv,ul ::; CP - cl,

~old -old
Xlv,ul + Cl + CP",* ::;CP - cl, XIJ,;I + CPj,* < CP - Cl,

Additionally, we have to add the constraints corresponding to (3,25), All constraints

will lead to an upper bound for El, The minimal upper bound also impacts which arcs

will become critical. The calculated value is used to update the arc lengths in the graph

that depend on El and the next iteration can start.

From the discussion above, the following theorem can be obtained.

Theorem 3.5.2. Adding all arc pairs [rotti (EUA)' to C with Procedure 3.5.1 provides

an optimal solution for the linear pmgram LP1.

Complexity Analysis and Numerical Example

Lemma 3.5.1. The complexity of adding IFI arc pairs 11,'il E P to the graph such that

the graph has minimal critical path length is O(IE U AI ·IFI + 1F14),

Proo]. First, we calculate all longest paths CPj,i with i, i E V for the given graph C. In

a directed acyclic graph with IE U AI arcs and a unique topological order every critical

path from a specific node to any other node can be calculated in time O(IEuAI). Since

there are O(IPI) nodes in the reduced graph G and a longest path can be dependent on

all O(IEUAI) arcs from the original graph C, all critical paths CPj,i with j, i E V can be

calculated in time O(IEUAI·IPI)· Note that these values will never change throughout

the whole procedure, since these paths only contain arcs of constant lengths.

The Steps 1 - 4 of Procedure 3,5.1 without the correction part in line 21 can be done

in constant time. If we have to correct the solution, then every critical path either goes
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through (O,j)lj,il or (i,*)lj,il. In the bipartite graph, we follow every alternating path

until we either prove that the solution is optimal or we find some arc pairs that can

be corrected by e and start again. In the worst case, we have to visit all nodes which

leads to a complexity of O(IPI). To check optimality, at each step we examine whether

the visited arc is on a critical path with an arc already contained in the alternating

path. In this case, we have an alternating cycle which proves optimality. This can also

be done in time O(IPI). Since at least one arc pair will be corrected and in the worst

case we have to correct all arcs, the overall correction has a complexity of O(IPI3).

Afterwards, the value for e can be calculated in O(IPI2).

Overall there are IPI arc pairs to be inserted, which means the total complexity in-

cluding the calculation of all longest paths CPj,i with j, i E V at the beginning is

D

Applying this algorithm to the problem used throughout the chapter so far, would not

really demonstrate how the algorithm (especially the s-correction] works. Indeed, the

optimal solution of CPo,* = 24 is already given by the length of the critical path in

G (cf. Figure 3.6). For the arc pair 1*2,41 of length dl*2,41 = 6 the algorithm would

already terminate after Step 1 with XI*2,41 = 5 and YI*2,41 = 1. Hence, we have chosen a

different example, where also the e-correction has to be applied. For reasons of clarity,

we only present the graph G' instead of G.

Example 3.5.3. Consider the initial graph G in Figure 3.13(a) with CPo,* = 10. We

will add three arc pairs to the graph. The first pair is (O,j)lj,il and (i,*)lj,il with length

dlj,il = 20. Starting with the first step of Procedure 3.5.1, we set Xlj,il = CPO,j = 1

and Ylj,il = CPi,* = 4. The sum of these lengths is 5, so that the arcs are dji = 15

units to short. Applying the next step, we increase the lengths Ylj,il to 6 so that arc

(i,*)Ij,il becomes critical. Since the length is still too short and arc (O,j)lj,il is already

on a critical path, we have to extend the critical path lengths in Step 4. The remainder
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135

139
(a) Initial Graph e

131 + 6.5 = 7.5 136 + 6.5 = 12.5

(b) Graph e', after adding the first arc pair Ij, il

137.5 1312.5

I
IL.__•••• ••__. ...... -- --
138.5 + 1.5 = 10

I
I I
I I1. .1

136.5 + 1.5 = 8

(c) Graph e; after adding the second arc pair 11, kl

I:'--_ .......... --_ .......... --- .......~
1310 - E

(d) Graph e~aft.er adding the third arc pair lv, ul

: IL ...... ••••• ......
1310 - 0.25 = 9.75 138 + 0.25 = 8.2589

(e) Graph e; after E-correctioll

Figure 3.13: Iterative steps of Example 3.5.3
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CPo,* = 10

----CPO,* = 23
dl"1 = 20J,t

----CPo,* = 24.5
dll,kl = 18

----CP«, = 25.25
d1v,u.1 = 22

----CPo,* = 25
E = 0.25
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Ap Acp Ap Acp

(a) Bipartite graph before s-correction (b) Bipartite graph after e-correction

Figure 3.14: Bipartite graph of Example 3.5.3

dlj,il = 13 will be evenly split on both arcs, which means Xlj,il = 7.5 and Ylj,il = 12.5.

The solution is optimal since both arcs are included in the same critical path with lengths

CPo,* = 23 (cf. Figure 3.13(b)). The second arc pair is (0, 1)ll,kl and (k, *)Il,kl with

length dl1,kl = 18. It is also introduced in Step 4 and increases the critical path to

CPo,* = 24.5 (cf. Figure 3.13(c)). This solution is optimal due to Theorem 3.5.1 since

there are two critical paths 0 --t j --t k --t * and 0 --t I --t i --t *, where each arc of the

added pairs is included in one of them, and the bipartite graph contains the alternating

cycle

(j,i) (i,l) (l,k)(k,j).
'-v-' ......._"-..,........___,
EAp EAcp EAp EAcp

The last pair to add is (O,v)lv,ul and (u,*)lv,ul with length dlv,ul = 22 and the algorithm

again finishes in step 4 now withCPo,* = 25.25. However, the solution can be improved,

since there is the following alternating path

(j,i) (i,v) (v,u) (u,l) (l,k)
'-v-' -..,........___,-..,......-..,......
EAp EAcp EAp EAcp EAp

in the corresponding bipartite graph (cf. Figure 3.14(a)). Due to case B of the cor-

rection we extend the path to the left and to the right starting at the pair Iv, ul and

finishing at the arcs (k, *)Il,kl and (0, j)lj,il of variable lengths. Thus, we can increase
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both arcs by E and decrease their partner arcs by E. Since both nodes are at the end

of the alternating path, we can calculate E. In particular, we need to find the largest E

such that

~
7.5 + E + CPj,* :s; CPo,* - E = 25.25 - E,

10 E + CPz,* :s; 25.25 - E,

11.75 + CPv,* :s; 25.25 - E,

CPO,i + 12.5 - E :s; 25.25 - E,

CPO,k + 8 + E :s; 25.25 - E,

CPO,u + 10.25 :s; 25.25 - E.

Therefore, we first calculate the length of each longest path given in these constraints

which obviously can depend on E. For example CPj,* = max{15.5 - E, 17 + E, 16.25} =

17 + E since E :::::0 and the first constraint would lead to

24.5 + 2E :s; 25.25 - E

3E :s; 0.75

< 0.25

Continuing with the other constraint we finally get E = 0.25. Correcting all arcs the
~

critical paths length decreases to CPo,* = 25 and the optimal graph can be found

in Figure 3.13(e). It is optimal, because there is a critical path including both arcs

(0, u)lv,ul' (v, *)Iv,ul of the same arc pair and the corresponding bipartite graph contains

an alternating cycle (cf. Figure 3.14(b)).

So far in this section, we have presented a method to change a cyclic graph representing

a feasible solution of the CJSPTB into a directed cyclic graph. Each "backwards" arc
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has been removed, which leaves a non-cyclic graph. Afterwards, the removed arcs are

successivelyadded to the graph as non-cyclicarc pairs and their lengths are determined

in a way such that the overall length of a critical path from the source node 0 to the

sink node * is minimal. We have shown that both graph representations can be used

to determine an optimal solution for the CJSPTB with a given robotic cycle.

Lemma 3.5.2. The complexity to calculate the minimal cycle time of the CJSPTB

with a given robotic cycle is O(nm + m4).

Proof. Every node i E 0* can have at most 3 outgoing arcs: one for the precedence

constraint, one for the robotic constraints and one for the machine constraints. The

source node 0 can have at most m outgoing arcs. One for every machine except M(l)

representing an overlapping operation, and another one for the first transport move 71.

Hence, there can only be m pairs of arcs in (E U A)'. Using Lemma 3.5.1, we get an

overall complexity of O(nm +m4). D

It is worth mentioning that the number of machines is usually significantly smaller

than the number of operations. Therefore, the complexity is mostly depending on the

number of operation. Moreover, for a fixed number of machines the complexity turns

out to be linear in n. Furthermore, after determining the final graph, it is easy to

calculate the starting times of all operations in the problem and finally building the

schedule. The starting point of each operation i is equivalent to the longest path from

o to i in the non-reduced graph G' including the final lengths of the arcs in (E U A)'.

Since the critical path can be calculated in linear time, the complexity of the whole

procedure will not increase when we include the calculation of the complete schedule.

For practical purposes, it is worth sorting the arc pairs before adding them to the graph.

Inserting the "long" arc pairs Ii,il E P, that might increase the length CPO,j, CPi,* or

even CPo,* the most, at the beginning, can already increase some critical path lengths,
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such that "shorter" arc pairs can be added to the graph in an earlier stage of the

algorithm. Also, possible corrections steps could be avoided. For this reason, we sort

the arc pairs in descending order according to the ratio

dl· '1),Z (3.26)
CPO,j + CPi,*'

for all jj, il E P. This means, the "shorter" arc pairs, that have a smaller possibility to

change the critical path, will be inserted at the end of the algorithm. Note that this is

not changing the complexity nor guaranteing to speed up the algorithm. However, to

get an idea, we compared, the results of the algorithm by sorting the arc pairs once in

descending order to the ratio given in (3.26) and the other time in the reverse order and

applying it on the data set presented in the next section. The descending sorting slightly

outperformed the ascending one on all instances. However, the improvements were only

fractions of milliseconds, but used as a method to evaluate the current solutions in a

heuristic, it still is an improvement and will therefore save some time.
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3.6 Comparison of the Algorithms

In this section, wewant to discuss the computational complexity of the three algorithms

and present a comparison of their actual running times on various data sets. We start

with the latter one. In Dasdan et al. (1998), a similar comparison of several algorithms

(Howard's algorithm was one of them) has already been done for graphs in which the

height of each arc was at most one

All algorithms have been re-implemented in C++ (single threaded) and built with the

Microsoft Visual Studio 2010compiler. The experiments were executed on a computer

equipped with an Intel i5 quad core CPU, 4 x 2.8MHZ, 8GB of memory, running

Microsoft Windows 7 professional, 64bit. To get a fair comparison, we used the same

graph data structure for all three algorithms. For the statistical analysis we have used

R, a software environment for statistical computing and graphics (cf. R Development

Core Team).

The data for the comparison has been generated as follows. We have used a data set

generator (cf. Section 4.4) to randomly generate 28 problem instances for the CJSPTB

of different sizes. For each of these instances we have computed up to 500 feasible

robotic cycles (without any restriction to the height) and randomly chose 5 out of

them. So, in total we had 140 solutions which can be found in Tables 3.3-3.4. The

columns from left to right are indicating the name of the problem instance (name),

the number of jobs (N), the number of machines (m), the number of operations (n),

a unique identification number (ID), the actual problem height (h!,o) and the number

of overlapping operations (0). The instances are sorted according to their number of

operations, their height and the number of the overlapping operations.

It usually is difficult, to compare the running times of different algorithms for specific

problem instances, since they depend a lot on the underlying data structures and other
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Name N m n ID h: [) 0 Name N m n ID h:o 0

1 2 61 2 2
2 2 62 2 2

jspt-2x5-1 2 5 9 3 2 jspt-l0x5-1 10 5 41 63 2 2
4 2 64 2 2
5 2 65 2 2

6 2 66 2 2
7 2 67 2 2

jspt-Sxfi-I 3 5 13 8 2 jspt-7x7-1 7 7 43 68 2 2
9 2 69 2 2
10 2 70 2 2

11 2 1 71 3 3
12 2 1 72 2 3

jspt-4x5-1 4 5 17 13 2 1 jspt-5xl0-l 5 10 46 73 3 5
14 2 1 74 3 5
15 2 1 75 3 5

16 3 4 76 2 3
17 3 4 77 3 3

jspt-2xlO-1 2 10 19 18 4 5 jspt-6xl0-l 6 10 55 78 3 3
19 4 5 79 3 4
20 4 5 80 3 4

21 2 81 2 2
22 2 82 2 2

jspt-5x5-1 5 5 21 23 2 jspt-8x8-1 8 8 57 83 2 2
24 2 84 2 2
25 2 85 2 3

26 2 86 2 3
27 2 87 2 3

jspt-6x5-1 6 5 25 28 2 jspt-7xlO-1 7 10 64 88 2 3
29 2 89 2 4
30 2 90 2 4

31 2 2 91 3 5
32 3 5 92 3 6

jspt-3xlO-1 3 10 28 33 3 5 jspt-5x15-1 5 15 71 93 3 6
34 3 5 94 3 6
35 3 5 95 3 6

36 1 0 96 2 1
37 2 1 97 2 2

jspt-7x5-1 7 5 29 38 2 1 jspt-8xlO-1 8 10 73 98 2 2
39 2 2 99 2 2
40 2 2 100 2 2

41 2 1 101 2 4
42 2 2 102 2 4

jspt-6x6-1 6 6 31 43 2 2 jspt-9x9-1 9 9 73 103 2 4
44 2 2 104 2 4
45 2 2 105 2 4

46 2 1 106 2 1
47 2 2 107 2 1

jspt-8x5-1 8 5 33 48 2 2 jspt-9x10-1 9 10 82 108 2 1
49 2 2 109 2 3
50 2 2 110 2 3

51 3 3 111 3 5
52 2 4 112 3 6

jspt-4xlO-1 4 10 37 53 3 4 jspt-6x15-1 6 15 85 113 3 6
54 :3 4 114 3 6
55 3 5 115 3 6

56 2 2 116 1 0
57 2 2 117 2 2

jspt-9x5-1 9 5 37 58 2 2 jspt-lOxlO-1 10 10 91 118 2 2
59 2 2 119 2 2
60 2 2 120 2 2

Table 3.3: Problem instances part 1
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Name N m n ID h:o 0

121 2 3
122 2 3

jspt-7x15-1 7 15 99 123 2 3
124 2 3
125 2 3
126 1 0
127 1 0

jspt-8x15-1 8 15 113 128 1 0
129 1 0
130 2 1
131 2 1
132 2 1

jspt-9x15-1 9 15 127 133 2 2
134 2 2
135 2 2
136 2 1
137 2 1

jspt-10x15-1 10 15 141 138 2 1
139 2 1
140 2 1

Table 3.4: Probleminstancespart 2

implementation details. However, a variation in the input size should make a direct

comparison more appropriate. We have solved each of the 140 problem instances 1000

times with every algorithm and took the meal).of the running time. The time measured

for each run included building the graph, solving the problem and returning the final

cycle time. The graph for the running times can be seen in Figure 3.15. For a better

overview, we also plotted the same results on a logarithmic scale in Figure 3.16. The

first impression is that the PCP and Howard's Algorithm perform similarly for the

first third of the instances and, for the last two thirds, Howard's Algorithm is faster.

The running time of our new algorithm however, is faster on all 140 instances. The

scale of the PCP and Howard's algorithm also has a polynomial shape, whereas our

new algorithm tends to be linear (cf. Figure 3.17). We have tried to analyse the data

with respect to the number of operations and the average running times using linear

regression. The R2-values1 for estimated polynomial functions of different degrees and

the algorithm's outputs are shown in the followingtable:

lIn linear regression, the R2-value E [O,IJ is the so called coefficient of determination. It mea-
sures the discrepancy between the data and an estimation model. The closer this value is to 1.0, the
more similar is the data series to the compared function. For more details, we refer to de Sa (2007),
Chapter 7.
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I degree 1 I degree 2 I degree 3 I degree 4

PCP Algortihm 0.8548 0.9365 0.9367 0.9370

Howard's Algorithm 0.9279 0.9838 0.9865 0.9920

New Algorithm 0.9947 0.9953 0.9953 0.9955

According to these values, it seems that the PCP and Howard's algorithm solve the

problem instances in quadratic time (in relation to the number of operations) whereas

our new algorithm needs linear time. Note, that this is only an indicator for this specific

data set and cannot be considered as a general result. Also, the data of 26 different

problem sizes is rather small.

To show the statistical significance of the computational results in a direct comparison,

we have first of all checked whether the results are normally distributed, since paramet-

ric tests assume normally distributed data. The Shapiro-Wilk-Test (cf. Shapiro and

Wilk (1965)) shows that the data is not normally distributed (p-value < 0.0001) for all

three algorithms), which means we need to use a test that does not assume a normal

distribution of the underlying data. Note that those non-parametric tests are generally

weaker than the parametric ones. In our case, we used the Wilcoxon signed-rank test

(cf. Wilcoxon (1945)). It is a non-parametric statistical hypothesis test, that checks

for two related samples (or in our case measurements) whether their population means

differ or not. We have compared pairwise all algorithms against each other. The result

from the experimental data sets was that our new algorithm is better than Howard's

and this one in turn is better than the PCP algorithm. All test results turned out to

be highly significant (p-value < lO-10), which means that our algorithm works better

on real instances for the CJSPTB. However, we want to point out, that we have tested

the algorithms on problem specific data sets and not on arbitrary graphs. On graphs,

where our algorithm, for instance, has to perform a correction step after each inserted

arc pair, another algorithm might be faster.

Also, the computational complexity of our algorithm is not necessarily better than the
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3. THE CJSPTB FOR A FIXED ROBOTIC CYCLE

complexity of the other ones (e.g. for n = m the PCP has the same complexity of

O(m4)). However, its advantage is based on the separation of solving a relaxation very

quickly (O(nm)) and correcting the solution if necessary (O(m4)). In most cases, the

correction, which is quite expensive in terms of computational complexity, does not

need to be executed, which makes the running times appearing to be linear. The other

algorithms do not make such a distinction. For example, the two nested for-loops in

the PCP (cf. lines 3 - 11) always have to be executed O(n) times.
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Chapter 4

The General CJSPTB

Introd uction

This chapter deals with the general cyclic job-shop problem with transport

and blocking, in which the robotic cycle is not given in advance. There are

different ways of solving combinatorial optimisation problems. They start

from mathematical programming models over branch and bound procedures

to approximation algorithms and heuristics. Each method has advantages

and disadvantages. One approach we could find in the literature is a mixed

integer programming formulation for the CJSP that can be applied to the

CJSPTB. We use this formulation and its results as a comparison for our

new approaches. In Section 4.1 we briefly describe the MIP-model from the

literature and show how it can be applied to the CJSPTB. Furthermore,

we have developed a different MIP-model that is presented within the same

section. The foundation of this model is the analysis of the structure of
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4. THE GENERAL CJSPTB

cyclic schedules. In particular, we have used the derived connections be-

tween the height parameter from Section 3.1 and the number of overlapping

operations to define new constraints for linear programming formulation.

In Section 4.2 we adopt the idea of feasible robotic cycles from Section

3.2 to create a tree search algorithm that generates feasible robotic cycles.

This search has been incorporated into a branch and bound procedure to

solve the overall problem. Since CPLEX often struggles to find solutions

for large enough problem instances (which is also the case for our problem),

we designed our procedure to be more solution orientated than focused on

optimali ty.

While the first two approaches are exact algorithms, we also developed a

tabu search heuristic, which is presented in Section 4.3. Wemainly adjusted

moves known from the non-cyclic version of the problem such that they can

be applied to the CJSPTB.

Since this general problem is not well studied in the literature, there are also

no standard benchmarks available. Therefore, we have developed a general

instance generator which is briefly described in Section 4.4.

Finally, wegenerated various data sets and tried to solve them with the four

discussed methods. The computational results are summarised in Section

4.5.
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4.1 Mathematical Programming Models

4.1 Mathematical Programming Models

Since integer programming software (such as CPLEX (ILOG (2010)) or Gurobi (Gurobi Op-

timization (2011)) is becoming more and more powerful to solve reasonably large prob-

lem instances it is useful to have integer programming formulations for a problem.

Within this section, we will present two mixed integer programming formulations for

the CJSPTB. One adjusted from the literature and a new one based on the idea of

overlapping operations in a cycle.

4.1.1 A Mixed Integer Programming Model from the Literature

The following formulation is based on the work of Hanen (1994) and Brucker and

Kampmeyer (2008a). We used their ideas to reformulate our problem definition from

Section 2.2.5 with it.

Theorem 4.1.1. By setting Si := Si(O) problem (2.43) - (2.49) (ef. page 57 - 59) can

be reformulated to the following mixed integer linear program.

min er (4.1)

s.t.

(4.2)

(4.3)

(4.4)

Si + Pi + tsuc(i) = Swo(i)

1

i,j E 0*; i of j; M(i) of M(j) (4.5)

i,j E0*; i of i, M(i) of M(j) (4.6)

Si + Pi + tsuc(i) + esuc(i),pre(j) + tj S s, +«nXsuc(i)j i,j E 0; i of j; M(i) = M(j) (4.7)
HXsuc(i)j + HXsuc(j)i 1 i,j EO; i of j; M(i) = M(j) (4.8)

nx., E ;Z i,j E 0*; iofj (4.9)
ei,pre(i) + i, S 0 i E 0* \ 0 (4.lO)

Pi + tsuc(i) + esuc(i),p1'e(i) + i, S 0 i E 0 (4.11)
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..
Proof. First of all, we substitute Si(r) for all i E n* according to constraint (2.50) in

(2.44)-(2.49). Therefore, (4.3) is equivalent to (2.44).

Constraints (4.5),(4.6) and (4.7),(4.8) are all of the same structure and we are only

going to prove that (4.5),(4.6) and (4.9) are equivalent to constraints (2.48) and (2.50).

Applying the substitution described above to constraint (2.48) we get

which is equivalent to

for i,j E n*, it j, M(i) t M(j) and ri, rj E Z. By setting h:= ri - rj it follows that

Sj - Si cannot be included in any of the intervals

for any h E Z. The following graphic shows this relation.

ej,pre(i) +t; ei,pre(j) +tj ej,pre(i) +ti ei,pre(j) +tj
~~

I·
ah a(h + 1)

Hence, there exists a h' E Z with
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which means that

Si + Ci,pre(j) + tj :s: Sj + oh'

and Sj + Cj,pre(i) + ti :s: Si + 0:(1 - hi).

By setting H Xij = hi and H Xji = 1- hi this is equivalent to (4.5),(4.6) and (4.9). Ana-

log, one can show that constraints (2.44) and (2.49) are equivalent to (4.3), (4.7),(4.8)

and (4.9).

Finally, constraints (2.47) are, after substitution of Si(r) and Si(r + 1), equivalent to

(4.10), and (4.11), (4.3) are equivalent to (2.44) - (2.46). o

In this linear programm, the integer variables H Xij restrict the job sequence on each

machine and on the robot. In particular, the following holds.

Lemma 4.1.1. For a problem given by (4.1)-(4.11) the following holds. Let i,j E 0*

be two arbitrary operations with ptill,pTill > O. Then Si(r) :s: Sj(r) for all rE :z if and

only if H x., < H Xji.

Proof. Because of constraint (2.43) it is sufficient to consider the case r = O. Assume,

Si starts before Sj. Then, 0 2: Si - Sj 2: ej,pre(i) + t, - o:HXji holds according to (4.5).

This is only true if H Xji 2: 1 (since 0: 2: ej,pre(i) + ti) which implies that H Xij :s: 0 and

furthermore Hx., < Hx.;

To show the other direction let H x., < H x; Then it follows that H x., :s: 0 because

of (4.6) and even more, oH Xij :s: O. It follows from (4.5) that

and therefore Si :s: s; o
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The presented mixed integer programming model can be used to solve the CJSPTB

for different cyclic models by simply adding another constraint expressing the height

restriction. The one we will use within here is the cyclic job-shop problem (cf. page

44). To represent the height restriction we have to add the followingconstraints to the

MIP-model:

(4.12)

for all j E {I, ... ,N}, where S* is the start of a dummy end operation. And finally the

actual height constraint

(4.13)

The result after solving the linear program is the minimal cycle time a and feasible

starting times Si(O) for every operation (i,O) with i E 0*. Note, that these values do

not necessarily have to be included in the interval [0, a] since not all operations of a

specific job instance have to start in the same cycle. However, constraints (4.12) and

(4.13) ensure that all starting times Si(O) are included in the interval [0, ah*,o], with

J(i) = Jj. To get the starting times of each operation in the first considered cycle

[0, a] we calculate the remainder of the division Sd a for all i E 0* and thus, shift

every operation in the first cycle. Note that the repetition number of an operation will

change due to such a shift.

An obvious question one can ask is whether an operation might clash with another

operation on the same machine by shifting it in an earlier cycle and the same question

could be asked for the robot moves. Or, in other words: Is the cycle length a large

enough to process all operations once? Note that neither (4.10) nor (4.11) are sufficient

to bound the minimal cycle length. Recalling the equivalence showed in Theorem
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4.1.1 we know that a solution of the MIP-model is also fulfilling constraints (2.43) -

(2.49). The constraints guaranteeing that such a clash cannot happen are (2.43), (2.48)

and (2.49). (The corresponding constraints in the MIP-model are (4.5)-(4.9)). Each

operation starts every a time units and therefore in every cycle at the same position.

Constraints (2.49) define the order of any two operations processed on the same machine

and ensure that they will not clash and (2.48) does the same for the robot moves.

After solving the linear program and calculating the starting time of each operation in

a specific cycle, the repetition number for each starting time in the resulting schedule

can be obtained using a variation of Procedure 3.2.1 on page 84. One simply has to

substitute the check whether T.mc(i) precedes Ti in R by checking whether SSlLc(i) ::; Si.

By nature formulation (4.1) - (4.11) is not linear, since constraints (4.5) and (4.7) are

quadratic. However, it can be rewritten by dividing constraints (4.3) - (4.5), (4.7),

(4.10) and (4.11) by a. One can afterwards substitute l/a = ii, Sda = Si and

pda = Pi and change the objective to maximise ii.

4.1.2 A New Mixed Integer Programming Model

In this part, we will present a new formulation for the CJSPT that is more tailored

to the problem compared to the model in the previous section. The major difference

between cyclic and non-cyclic problems is that the precedence constraints between the

operations are slightly relaxed. So, in a specific cycle, operation i does not have to be

scheduled before its successor suc( i). In this case, the precedence constraints are, of

course, not violated since both operations must belong to different repetitions of J(i),

but they provide a more flexible layout of the schedule. This property relies on the

existence of overlapping operations. To model overlapping operations, we introduce a
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set of binary variables Ii with i E 0* which are defined as

1, if i is overlapping;
0, else.

The main idea behind this model is to specify the relations between operations in the

same cycle, rather than looking ahead into the next one. As before, we make the

assumption that we start the cycle at machine Mo with unloading operation i = 1 at

time O. Furthermore, at the end of the cycle, the robot has to drive back to the input

machine. Since we are only concentrating on all operations in one specific cycle, we

can ignore the repetition numbers. Hence, the followingconstraints must hold:

(4.14)

(4.15)

for all i E 0*. To ensure that the no-wait and precedence constraints ((2.44) and (2.45))

hold, we have to distinguish between overlapping and non-overlapping operations. For

the non-overlapping case, it still holds that Si + piin + tsuc(i) :s; Ssuc(i)' For the over-

lapping case, we have Si + piin + tsuc(i) :s; Ssuc(i) + a. Both cases can be combined in

the followingconstraint:

for all i E O. If i is not overlapping, then Ii = 0 and the term a,i disappears. Since

this is not a linear constraint we can split it up into the followingtwo constraints:

Si + piin + tsuc(i) :s; Ssuc(i) + e,i,

Si + piin + tsuc(i) :s; Ssuc(i) + a,

(4.16)

(4.17)

140



4.1 Mathematical Programming Models

for all i E 0 and where C E N is a sufficiently large constant.

The constraints for the transportation of each job can be modeled in a very similar way

to the ones in the previous model. Therefore, we introduce a set of binary variables Oij

with i, j E 0* which are defined as

Oij = { 1,
0,

if i is transported after j;

else.

The robot constraints (2.48) can then be formulated as

(4.18)

(4.19)

for all i, j E 0* and where C E N again is a sufficiently large constant. Note that these

constraints are logically identical to constraints (4.5) and (4.6). Another fact is that

a transport move itself will never overlap. This is because we assume that the cycle

starts with unloading a job from the input machine and that the cycle finishes with the

robot arriving empty at the input machine.

Finally, we will formulate the blocking constraints for operations that have to go on the

same machine. We again introduce a set of binary variables (3ij with i, j E 0* which

define the processing order of the jobs on the same machine in the current cycle:

_ {O, if j is processed after i on M(i) = M(j);
(3ij -

1, else.

for all i,j E 0 with M(i) = M(j).

A first set of constraints is similar to (4.5) and (4.6) and ensures that an operation

cannot start its processing before the previous job on the same machine has been
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transported to its succeeding one:

Ssuc(i) + esuc(i),pre(j) + tj ~ Sj +C(3ij,

(3ij + (3ji = 1,

(4.20)

(4.21)

for all i,j E 0 with M(i) = M(j). Considering only one specific cycle, makes it more

difficult to deal with overlapping operations. Before we start to tackle this problem,

it is worth mentioning that there can be at most one overlapping operation on each

machine and this operation always has to be loaded first off and last onto the machine

in the cycle. Such an operation i has two processing periods in the cycle. One is at the

very beginning, i.e. from time 0 to Ssuc(i) -tsuc(i). The other one is from Si to o. Even if

those two periods physically do not belong to the same repetition of the job, the sum of

these processing times needs to be at least prin. Therefore, in the following, we have to

distinguish between an overlapping and a non-overlapping operation on each machine.

For the remaining constraints, consider i,j in 0, with i =F j and M(i) = M(j). In the

case of i being overlapping, its successor has to start before any other operation on

M(i) in the cycle. This leads to the following constraints:

Ssuc(i) + esuc(i),pre(j) + tj ~ Sj + C(1 -,i). (4.22)

Furthermore, all other operations must have finished their processing and been unloaded

before the last operation on a machine can start in the current cycle:

(4.23)

where M(i) =F M(suc(j)), j =F i and M(i) = M(j). Since there is at most one

overlapping operation per machine, all other operations on this machine must have
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stayed (at least) for their minimal processing times, which leads to:

(4.24)

where M(i) i= M(suc(j)), j i= i and MU) = J\;f(j). Finally, constraints (2.46) and

(2.47) have to hold as before, which gives the same constraints as in the model from

the previous section:

ei,pre(i) + ti :::; 0: for i E 0* \ 0

and piin + tslLc(i) + eslLc(i),pre(i) + ti :::; 0: for i E O.
(4.25)
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The model can be summarised by the followingmixed integer program.

min Cl! (4.26)

s.t.

S! = t! (4.27)

Si + eso ::; Cl! i E n* (4.28)

S min t < Ssuc(i} + 0Yi i E n (4.29)i + Pi + sucCi}

S min t ::; Ssuc(i} + Cl! i E n (4.30)i + Pi + sucCi}

Si + ei,pre(j} + tj ::;s, + co: i,j E n* (4.31)

(Jij + (Jji = 1 i,j E n* (4.32)

Ssuc(i) + esuc(i},pre(j} + tj ::; Sj +ce, i,j E n,i '" i,M(i) = M(j) (4.33)

(3ij + (3ji = 1 i,j E n, i '" j, M(i) = M(j) (4.34)

Ssuc(i} + esuc(i},pre(j) + tj ::; Sj + C(I - ')'i) i,j E n,i '" j,M(i) = M(j) (4.35)

Ssuc(j} ::; Si + C(I - ')'i) i,jEn,i",j, (4.36)

M(i) = M(j) '" M(suc(j))

S min t ::; Si + C(I - ')'i) i,j E n, i '" i,M(i) = M(j) (4.37)j + Pj + suc(j}

ei,pre(i} + ti ::; Cl! i E n* \ n (4.38)

min t t ::; Cl! i E n, (4.39)Pi + sucCi} + esuc(i},pre(i} + i

,),i, (Jij, (3ij E {O,I} (4.40)

for all i, j E 0* and C E N is a sufficiently large constant. Since modeling the

overlapping operations on each machine is the key property of this model, we will refer

to it as the CJSPTB-MIP-OO.

The last constraint we have to specify is the height restriction. This, as before, depends

on the different models. We will only consider the cyclic job-shop problem model and

the one with job repetition.

We start with the cyclic job-shop problem model and its height h*,o. As we have

mentioned before, in an arbitrary but fixed feasible cycle, we can set the repetition
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number of the first operation of every job to a fixed number. In our case, we chose h*,o

for every job. For every overlapping operation 'i of a job Jj the repetition number of the

successor suc( i) in the current cycle will decrease by one. This means the last operation

~ of job Jj will have the repetition number h*,o - OJ. According to the definition of h*,o

the (r + h*,o)-th repetition of a job can only start if the r-th repetition of any job has

finished. Thus, in our case using Theorem 3.1.1 we have to ensure, that for two jobs Jj

and Jk, the end of the last operation of Jj (which is S*j) can only happen before the

start of the first operation oj of the job, if

OJ < h*,o, for k f j;
OJ < h*,o, else.

This can be done with the following constraints:

(4.41)

(4.42)

for all j, k = 1, ... ,N with j f k. The number of overlapping operations is given by

L "Ii = OJ,
iEJj

(4.43)

for all j = 1, ... ,N.

For the model with job-chain repetition, we have to remember that the number of

overlapping operations of a specific job Jj is equal to hj - 1 (cf. Theorem 3.1.2). Since
J

hjj :s: h.i, must hold, the number of overlapping operations per job Jj has to be less

than or equal to hJj - 1, which leads to the additional constraints

L "Ii :s: hs, - 1,
iEJj

(4.44)
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for all j = 1, ... ,N.

The repetition numbers for a resulting schedule can be obtained in the same way as in

Section 4.1.1.

146



4.2 A Branch and Bound Procedure

4.2 A Branch and Bound Procedure

Within this section, we want to present a new branch and bound procedure for solving

the CJSPTB. Branch and bound algorithms are general solutions methods to find the

optimal solution for a discrete or combinatorial optimisation problem. The idea is based

on the work by Land and Doig (1960) and contains two main steps. A branching part,

in which the algorithm systematically evaluates all possible solutions. "Systematically"

in this case means, that first of all no solution is visited more than once, and that the

solutions are ordered in specific way, usually using a tree structure. The search tree

has the property, that a solution of a parent node has a relation to the solution of its

child nodes. This relation is used in the second part, the bounding. For a minimisation

problem, every feasible solution provides an upper bound for the optimal solution.

Furthermore, the structure of the search tree is usually set up in a way, that one can

also determine a lower bound for all possible child nodes (by using some relaxation

method). If the lower bound for the children of a specific node is greater than the best

upper bound (solution value) discovered so far, then there is no need to evaluate those

nodes, since they cannot provide a better solution and therefore can be "chopped off"

the tree. This way of pruning the search tree decreases the number of solutions to

evaluate and therefore speeds up the search procedure. The algorithm stops returning

the optimal solution, when all solutions have been visited or chopped off the tree.

As we have seen before, a solution for the CJSPTB can be represented by a robotic

cycle (a permutation of all transport moves). However, we have shown in Section 3.2

that not all possible permutations lead to a feasible robotic cycle. Thus, we will show

in the next part an efficient way of constructing feasible robotic cycles.
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4.2.1 Constructing Feasible Robotic Cycles

In Section 3.2, Definition 3.2.1, we have defined a blocking-feasible robotic cycle R as

one, in which before executing Ti, job J(i) must be loaded and finished its processing

on machine M(pre(i)) and the robot is never required to transport ajob to an already

loaded machine. From this definition, we can state the following:

Lemma 4.2.1. For a robotic cycle R the following statements are equivalent.

1. R is blocking-feasible.

2. For every machine Mk (k = 1, ... ,m) and any operations i =1= j with M(i) =

M(j) = Mk and existing succeeding operations, none of the transport moves Ti

or Tsuc(j) occur between Ti and Tsuc(i) in R.

3. For every machine Mk (k = 1, ... ,m) and any operations i =1= j with M(i) =

M(j) = Mk and existing succeeding operations, the order of Ti, Tj, Tsuc(i), Tsuc(j)

in R has to be compatible with the following graph:

where Ti --+ Tj means that Ti occurs before Tj in R in a cyclic manner.

Proof. 1 ~ 2: Assume that R contains the sequence Ti --+ Ti --+ Tsuc(i). Since R is

blocking-feasible, J(i) must have been unloaded offM(i) before another job J(j) with

M(i) = M(j) can be loaded onto M(i). Since the unloading operation Tsuc(i) occurs

after Tj, the robotic cycle cannot be blocking-feasible. On the other hand, if we assume

that R contains a sequence Ti --+ Tsuc(j) --+ Tsuc(i), the robot (while executing Tsuc(j))

tries to unload job J(j) off the machine. This is not possible since J(i) is currently
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loaded on M(i). Thus, again R is not blocking-feasible.

2 ::::}1: Let Tsuc(i) be the next transport move to be performed by the robot. Assume

that J(i) is not available on M(i). Hence, M(i) must either be occupied by a different

job or empty. The case of ]vf(i) being occupied cannot arise, since Ti must be executed

before Tsuc(i) without any other transport move Tj (]vf(i) = M(j)) executed in between

h ---t Tsuc(i) ---t Tj). On the other hand, ]vf(i) cannot be empty, since otherwise either

Ti would not have been executed or J(i) has been unloaded by a different transport

operation Tsuc(j) which is also a contradiction to Statement 2.

Finally, the machine that is going to be loaded must be empty. If Ti is the next transport

move to be performed, then M (i) must be empty. This is the case, due to the fact that

after performing any other transport move Tj loading M(j) = M(i), its succeeding

transport move Tsuc(j) unloading M(j) will have been executed according to the graph.

2 {::}3: This is easy to see, since 3 is simply a graphic interpretation of 2 and vice

versa. o

For a cyclic schedule this means that two transport moves Ti and Tj loading the same

machine and their successors have to be executed in the following order.

... Ti(ri) ---t Tsuc(i) (ri) ---t Tj(rj) ---t Tsuc(j) (rj) ---t

Ti(ri + 1) ---t TsuC(i)(ri + 1) ---t Tj(rj + 1) ....

The next question is, how can we construct those feasible cycles? With this question in

mind, we define a partial robotic cycle (PRG) RP that consists of a list Rdone containing

the so far scheduled (i.e. finished) transport moves and a set Rtodo of unscheduled

transport moves. The list Rdone is a robotic cycle, where not necessarily all transport

moves have been scheduled yet, and the set Rtodo contains all elements, which are not
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in Rdone. During the construction phase, the unscheduled transport moves in Rtodo will

be added to the end of Rdone until Rdone is a complete robotic cycle and Rtodo contains

no more elements. One can think of different strategies to construct blocking-feasible

solutions. One, that we will discuss here, is based on a depth-first-search tree where

the nodes are partial robotic cycles which are blocking-feasible. The method works as

follows.

1. Initialisation: The root of the tree is an initial PRG, where Rdone contains only

transport move T1 and Rtodo contains all remaining transport moves in an arbi-

traryorder. (Note that since we are considering a cyclic problem, we can always

fix the first operation in every cycle to be T1).

2. Construction of a blocking-feasible child: Given a blocking-feasible PRG (node)

of the tree, a blocking-feasible child (if it exists) can be constructed as follows.

We test for every unscheduled transport move Ti in Rtodo whether it can be placed

at the end of Rdone, so that the PRG could still lead to a blocking-feasible robotic

cycle (we will see in the next paragraph how this can be done efficiently).

3. For every transport move Ti that can be placed, we add a new child to the tree

wherein Ti is deleted from Rtodo and placed at the end of Rdone.

4. For all children recursively continue with the procedure. If there are no children

left the procedure stops.

While shifting transport moves from Rtodo to Rdone one can check with Definition

3.2.1 or property 3 of Lemma 4.2.1 whether this PRG could potentially lead to a

blocking-feasible robotic cycle or not. Therefore, we can also apply the concept of

blocking-feasibility to partial robotic cycles.

If the scheduled transport moves in a PRG are incompatible with the graph in Item 3 of

Lemma 4.2.1 then this PRG is not blocking-feasible. However, there is no need to check
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the complete PRG all over again after inserting a transport operation. During every

transport move Ti, the robot gets in touch with two machines: M(pre(i)) and M(i).

After inserting Ti into Rdone the blocking-feasibility is violated if one of the following

cases occurs.

1. Rdone contains one of the following sequences

d RtodoTi --~ Ti an Tsuc(j) E or , d RtodoTsuc(j) --~ Ti an Tpre(i) E , (4.45)

for all j with M(pre(i)) = M(j);

2. Rdone contains one of the following sequences

d RtodoTj --~ Ti an Tsuc(j) E or d RtodoTsuc(i) --~ Ti an Tj E , (4.46)

for all j with M(j) = M(i) i- M*.

Note that these cases are all violating the graph in Lemma 4.2.1. Therefore, those

situations cannot lead to a blocking-feasible robotic cycle.

The first condition in (4.45) needs to be checked only for the last operation j with

Tj E Rdone processed on M (pre( i)). If Tsuc(j) is also contained in Rdone and there is

another operation k with Tk in Rdone processed on M(pre(i)) with Tsuc(k) E Rtodo then

the corresponding blocking-infeasibility must have been detected when Ti was added

to Rdone. This comment also applies to the first condition in (4.46). Therefore the

conditions in (4.45) and (4.46) can be checked in constant time if

• for each machine the last operation j with Ti E Rdone is stored, and

• a data structure is used which allows for any operation j to check whether Tj is

in Rdone in constant time.
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Example 4.2.1. Consider the following job-shop problem with two jobs Jl, h and three

machines Ml, M2, M3. The following table shows the processing times and the machine

allocations.

Job

Operation 1

Processing time 3
Machine u,

6

3
u,

Thus, a robotic cycle consists of 11 transport moves. As mentioned before, we assume

that the first operation in a robotic cycle is always 71. In the following, we will simply

write i instead of 7i. Thus, the PRC in the root of the search tree consists of

Rdone= (1) and Rtodo= {*1 2 3 9 5 7 *2 6 4 8}, , , , " '" .

The only machine status at this point is M; : 1, M2 : - and M3 : -, where - means

the machine is empty. In the next steps we will place all feasible transport moves in

Rtodo at the second position in Rdone. This leads to the following PRC's:

(1, *1)" (1,2), (1,5),

Transport moves 79,74, T7 cannot be scheduled at the second position, since they would

try to unload machine M; without being the successor of the operation currently loaded

on M; (cf. (4.45)). On the other hand, transport moves 78,76,73 cannot be scheduled

since all of them will loadMl which is currently blocked by operation 1 (cf. (4.46)).

In the next generation, we start with the first of the previous generated PRC where

Rdone= (1,*1) and Rtodo= {2,3,9,5, 7,*2,6,4,8}.

The machine status is still M; : 1, M2 : - and M3 : -, since 7*1 has brought a job to
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the output station M*. The next possible moves are

(1, *1,2).

Since Ml was still occupied by operation 1 only the same operations as before could be

scheduled at the next index. The complete tree search until finding a feasible solution

is presented in Figure 4.1. Prom the PRG with Rdone = (1, *1,2,3,4,5) onwards there

is always only one possible PRG in every next generation, which leads to the following

blocking-feasible robotic cycle:

The whole problem only has 40 feasible robotic cycles. The presented method needs

to create 529 different partial robotic cycles to find these 40 solutions. Note that the

number of all possible (not necessarily feasible) robotic cycles is 10!= 3,628,800. (Note

that the transport move T1 can be fixed at the first position which means there are only

(n - I)! different robotic cycles.)

We want to point out, that this constructive method is generating all possible blocking-

feasible robotic cycles. This is easy to see, since in every iteration, the algorithm tries

to schedule every transport move left in Rtodo at the next position in Rdone and only

skips those ones, that cannot lead to a blocking-feasible robotic cycle. For a non-

reentrant single job problem, for instance, every permutation of the transport moves is

a blocking-feasible robotic cycle. And our algorithms would generate all of them.

Table 4.1 shows the number of blocking-feasible robotic cycles of some small instances

and the number of nodes generated during the search needed to determine these feasible

cycles. The general format is jspt-Nxm-a where as before N is the number of jobs, m

the number of machines, and a an index to enumerate different data sets of the same
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(1)

(1, *1,2,3) (1, *1,2, *2) (1, *1,2,6)

---------------(1,*1,2,3,4) (1,*1,2,3,*2)

I
(1, *1,2,3,4,5)

Figure 4.1: Search tree for Example 4.2.1

size. More detailed information about the data-sets are given in Section 4.4. Note

that the explored nodes are partial robotic cycles which are generated to build up the

feasible solutions.

A feasible robotic cycle must, in addition to the blocking-feasibility, also fulfill the height

constraint. We will also consider the cyclic job-shop problem model and the one with

job repetition. Thus we have upper bounds h*.o or hJj for j = 1, ... ,N. During the

construction of the different robotic cycles, we can calculate minimum actual heights

for every partial route Rdone. Since, the height will not decrease by inserting more

transport operations to Rdone the PRC beco~es infeasible as soon as an actual height

is bigger than the given maximum height. We can either use a variation of Procedure

3.2.1 to determine the height of a PRC or, more efficiently, remember the actual heights

for each PRe and simply check if it could have changed after adding the next transport

move to Rdone.
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Instance Transport Feasible Nodes (N + n - I)!
moves solutions explored

Example 4.2.1 11 40 238 3,628,800
jspt-4x5-1 16 440 4,129 > le12
jspt-4x5-2 16 302 2, 706 > le12
jspt-4x5-3 16 2,300 12,287 > le12
jspt-5x5-1 20 7,938 70,912 > le17
jspt-5x5-2 20 11,328 68,827 > le17
jstp-5x5-3 20 17,166 108,249 > le17
jspt-6x5-1 24 200,676 1,542,938 > le22
jspt-6x5-2 24 205,894 50,803,949 > le22
jstp-6x5-3 24 7,521,903 30,318,854 > le22

Table 4.1: Blocking Feasible Routes for Small Instances

4.2.2 A Lower Bound for the Construction Phase

In branch and bound algorithms every node in the search tree can be complemented by

a lower bound which usually is a relaxation of a potential feasible solution. Those lower

bounds can then be compared to an upper bound (e.g. from already explored feasible

solutions) and the branch can be 'chopped off' the search tree if the lower bound is

greater or equal than any upper bound. So, the bounding can reduce the search space

by pruning the tree. In general, bounding methods are meant to be computationally

cheap to keep the search as quick as possible.

For every PRC, we will now calculate a lower bound for the cycle time in two stages.

For the already scheduled operations in Rdone we can determine a lower bound LBdone

for the time needed to process these operations. For the non-scheduled operations in

Rtodo, we present several different lower bounds, that are dependent on the machines,

the robot, and the height and combine them to an overall lower bound LBtodo. In the

following, we will explain how those bounds can be calculated.

We start with considering the list glone of a partial robotic cycle which contains n +
N _IRtodol elements. Starting with So, we can successively calculate an earliest starting
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point of all operations corresponding to the transport moves in Rdone. An operation i

can only start if its predecessor operation pre( i) has been finished and the robot has

transported it to its machine M(i). This is at time

(4.47)

In addition to that, the robot must have

• finished the transport move TpreR(i) of the previous operation according to the

robotic cycle (which is equivalent to the time when preR(i) starts its processing),

• driven empty to M(pre(i)) and

• transported the job to its next machine M(i).

This is at time

(4.48)

In the case that preR(i) = pre(i), the robot has waited at M(pre(i)) until the processing

is finished, and then transported the job to its next machine. (This is also covered by

(4.47) since epreR(i),pre(i) = 0). Finally, the earliest point in time, at which operation

i can start, is the maximum of (4.47) and (4.48), since both corresponding conditions

have to be fulfilled. This leads to

It followsthat, a minimal time needed to schedule the already planned jobs is equivalent

to the earliest starting point of the last scheduled operation, which is
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where Rdone[k] (k = 1, ... , n + N) is the operation belonging to the transport move

planned at position k in Rdone. Setting So = 0 to be the earliest starting time of an

already planned operation i can be calculated in an iterative way assuming that the

starting times of the previously scheduled operations have already been calculated. A

formal description to successively calculate LBdone is given in Procedure 4.2.1.

Procedure 4.2.1 Calculates the earliest starting time of an operation in Rdone

1: procedure CalculateEarliestStartingTimeO
2: So = 0
3: Si = -00 for i = 1, ... , n + N
4: for k = 1 to n + N - IRtodoI do
5: i = Rdone[k]
6: pTeR(i) = Rdone[k - 1]

7: Si = max ( SpreR(i) + epreH(i),pre(i), Spre(i) + p~~i~(i))+ ti
8: end for

LBdone - S9: - Rdone[n+N-IRtodoll
10: end procedure

Note that if we add another transport move to Rdone there is no need to calculate the

complete bound again. Instead, one can simply update it, by taking the old starting

time of the previous bound and carrying out another iteration in the loop, for the last

inserted move.

Let us exemplify this on a PRG with

and Rtodo = {3,6,8,4,7,9, 5}

that is based on the data in Example 4.2.1. The transport times ti are 2 fOT all operations

i and all empty moving times are set to 1. A corresponding schedule to follow the bound

calculations more easily can be found in Fiqure 4.2.

Starting with So = 0, the earliest time operation 1 can start is SI = max(So + eo.o. So +
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LBdone = 11

1)

o 10 time

Figure 4.2: Gantt-chart to exemplify calculation of LBdone

perin) + t1 = max(O, 0) + 2 = 2. Since the predecessor of *2 has not been scheduled yet,

the only time we can add to the lower bound after planning *2 is e1,9+ t*2 = 3. For the

next operation 2, the predecessor 1 has already been started at time S1 = 2 which means

its earliest starting time is 82 = max(8*2 + e*2,1,81 + piin) + T2 = max(6, 5) + 2 = 8.

Finally, we get t.n=: = 8*1 = 11.

The next step is to give a lower bound for the remaining operations in Rtodo. They are

divided into three different types depending on machines, robot, and height. Each of

these bounds will be exemplified using the same PRG as before.

Machine Dependent Bound

Lower bounds LB!: (k = 1, ... ,m) for scheduling the remaining time needed on each

machine Mk can be obtained as follows. Let nk be the set of all operations i on a

specific machine M(i) = Mk and ntodo = {i E n* I M(i) = Mk I\Ti E Rtodo} the subset

of the operations that have not been scheduled yet (Ti E Rtodo). The bound relies on

the minimal processing times, transport times and possible empty moving and waiting

times of the operations on a machine.
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• processing times: All operations have to stay for at least prin time units on

their machine. Hence, if neither i nor suc( i) have been started yet, the complete

minimal processing time still has to be done. Since the problem is cyclic, it is

possible that, at the beginning of a cycle, a job that has started in the previous

cycle is still on the machine. Therefore, let Ii E {O, I} (i En) be equal to

1, if operation i is such an overlapping operation and 0 else. In our example

15 = 19 = 1 and all others are O. In the following we consider four different cases,

distinguishing whether Ti and Tsuc(i) are in Rtodo or Rdone. Each of these cases is

then divided into classes determined by whether i is overlapping or not.

1. Ti E Rdone: In this case, we also have to distinguish if Tsuc(i) has been

scheduled or not.

Tsuc(i) E Rdone: If z is not overlapping then the minimal processing time

is already contained in the bound LBdone, so the interesting case is

the one, where i is overlapping. Thus, i has been processed from the

beginning of the cycle until it has been unloaded at time Ssuc(i) - tsuc(i)'

This leaves a remaining processing time of

min (S t)Pi - sucCi) - sucCi) .

We, moreover, have to decrease the remaining processing time by the

time span between the start of the operation (Si) and the current fin-

ishing time for all operations in Rdone (LBdone), which then adds up

to

min (5' t) (LBdone S )Pi - sucCi) - sucCi) - - i·
'--v---'

start of cycle end of cycle

(4.49)

Tsuc(i) E Rtodo: In this case, operation i has already started its processing
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hE Rdone), but has not been taken off the machine yet ('Tsuc(i) E Rtodo).

Note that this is only possible if i is not overlapping. Otherwise, 'Tsuc(i)

must have been scheduled before. In the non overlapping case, the

remaining processing time is

(4.50)

where LBdone - Si indicates the time that the operation has already

been processed for.

In our previous example, operation i = 2 is one of those. It did start

at time S2 = 5 and has been processed for 7 - 5 = 2 time units, which

leaves a remaining minimum processing time of 5 time units.

Note that the last part of the (4.49) is the same as in (4.50). Because of this,

we can combine these two differences by using the overlapping indication

variable "(i. In both cases, i has already started its processing in the actual

cycle. If i is overlapping ("(i = 1) then 'Tsuc(i) must also have been started,

and we additionally have to decrease piin by Ssuc(i) - tsuc(i). Hence, a joint

formulation is given by

(4.51)

Note that this term can be negative. Since we want to include it in a lower

bound, we define

(4.52)

2. 'Ti E Rtodo, 'Tsuc(i) E Rdone: This case can only occur, when i is overlapping,

since 'Ti will appear after 'Tsuc(i) in the final robotic cycle. The time span i
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has been processed for so far is 5suc(i) - tsuc(i) (from the beginning of the

cycle until the time i has been unloaded). Thus, the remaining processing

time is given by

min (5 t)Pi - suc(i) - suc(i) , (4.53)

Note that 5suc(i) - t.suc(i) can be greater than piin, because piin is the

minimal processing time and not the actual time Pi the job stays on machine

M(i). Hence, for the lower bound we again define an expression ~~[ (i) that

keeps (4.53) non-negative:

AM(:) - . (min (5 t) 0)L...l.2 L - lllax Pi - suc(i) - suc(i), . (4.54)

3. Ti, Tsuc(i) E Rtodo: In this last case Ti and Tsuc(i) have not been planned yet.

For a non-overlapping operation 'i which has not been started yet, the whole

minimum processing time pjllill is still needed. We can imply that 'i is not

overlapping if on the same machine lvJ(i) an operation j has already been

processed in this cycle. Otherwise, if i is overlapping then i must occupy

M(i) during the time interval [0,LBdone] and no other job could have been

processed in that time. Therefore we define Vk E {O, I} which is 0 if no

operation in Rtodo can be overlapping on machine Mk and 1 otherwise (in

the previous example VI = V2 = V3 = 0 since every machine had already

processed an operation). There are two situtations in which Vk = 0 holds:

A job has already been processed on Mk in this cycle.

For any operation i with M(i) = Mi. either Case 1 (Ti E Rdone) or Case

2 ( E Rtodo E Rtione)Ti , Tsuc(i) occurs.

In case that the machine could have an overlapping operation (Vk = 1) we
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obviously do not know, which operation this might be. Therefore, we have

to assume that it is the one with the longest processing time since this will

decrease the lower bound the most. If LBdone ~ prin then operation i can

completely be processed from the beginning of the cycle until LBdone. Thus

we have to decrease the lower bound by the complete minimal processing

time. On the other hand, if LBdone < prin then we only have to decrease

the lower bound by t.n=«. Summarising this, the lower bound has to be

decreased by

(4.55)

Combining these bounds we finally get the bound

LB:: = L ~r(i) + L ~~(i) + L piin_ IIk~~.

iEf2k iEf2k iEf2k
TiERdone TiERtodo Ti,Tsuc(i)ERtodo

Tsuc(i) ERdone

for all k = 1, ... ,m. Note that the substraction of IIk~~ ensures that in case the

machine could have an overlapping operation, at most this processing time from

the beginning of the cycle until now will be taken off the lower bound.

In our example the lower bounds are

LBP min (LBdone s) + min + min + min (8 t ) 212 = P2 - - 2 P4 . P7 P9 - suc(9) - suc(9) = ,

LB~ = p~in - (8suC(5) - tsuc(5)) = -1.

Since a negative lower bound is not of any use in this case, we set LB~ = o.

The complexity of calculating this bound is O(n), since in the worst case n~odo=
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Ok for all k = 1, ... , m and therefore every operation i E 0 has to be incorporated

to the bound calculation. Note that there is no need to check if a machine already

has processed a job for the current PRe. One can simply keep track of this in

constant time during the search .

• transport times: Every job on Mi. also needs to be transported to lVh and

after its processing it has to be transported to its succeeding machine. During

this time, no other job can be processed on Mi: Thus, we can increase the lower

bound by the sum of all transport moves to and away from the machine.

if E Rdone.1 TS1tc( i) ,

else;

for all k = 1, ... ,m. In our example, these lower bounds are

LB~= t:~+ t4 + t5 + t7 + ts + tg = 12,

LB~= ts = 2.

Again, the complexity to calculate these bounds is O(n) .

• empty moving and waiting: After the robot has transported a job to a machine

it can either stay and wait at the machine or move empty to another one. During

that time the machine, to which the robot will transport a job next, must be

empty. We distinguish between the two cases

a. empty move: Assume Ti is the next task of the robot, transporting a job

from M(pre(i)) to M(i). If the robot is not already waiting at M(pre(i))

then it has to perform an empty move from its actual machine to M(pre(i))

which is at least as long as the shortest possible move from any machine
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Mk to M(pre(i)). This machine Mk can only be one, on which a non yet

scheduled operation will be processed, or the one where the last operation

l = Rdone[n +N -IRtodolJ has been brought to. Therefore let M(j) = Mk oj:.

M, with j E l u ntodo. For every unscheduled operation, the robot needs at

least to perform such a minimal empty move, which is of length:

min ej pre(i)'
jElUntodo '
M(i)",M(j)

Note that this value is the same for all operations j E n~odo, since they are all

processed on the same machine M(j) = Mk and i is fixed. In our example,

the minimal empty moving time is always 1.

b. waiting: In the case that two succeeding transport operations belong to the

predecessor of an operation and the operation itself (7pre(i), 7i), the robot

would have waited at machine M(pre(i)) after performing 7pre(i)' During

the processing time of pre(i), no other job could have been on machine

M(i), since otherwise M(i) would have been blocked. Hence, there is an

additional waiting time for M(i) of length

min
Ppre(i) .

In the Gantt-chart of Figure 4.2 this is for instance the case on machine M2,

where operation 3 on M; has to be finished before any other operation on

M2 can start. So, there is a gap of length prin = 8 between operation 2 and

4.

For every operation on Mk that is left to schedule, one of these two cases will

occur. A lower bound for every transport move is given by the minimum of those

cases. Finally, after the last operation has been scheduled, the robot needs to
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return to the machine of the predecessor of the first operation in the robotic

cycle, which we can assume is operation 1, and therefore the input station Mo.

Summing up, a lower bound for the empty moving and waiting time is given by

LBe (L . (min. ) ) .k = mm Ppre(i)' mm ej,pre(i) + .mm ei,pre(l)·
jE1UOtodo lEOtodo

iEO~odo M(i)~M(j)

Again, we take the minimum, because we don't know which case might occur in

the final schedule.

In our previous example, these empty moving bounds are dominated by the short

empty moving times and therefore

LBT = 4, LB~ = 4 and LB?>,= 2.

The complexity of this bound is O(nm). There are at most n operation left in

ntodo. For each i of ntodo one need to find the minimum empty moving time from a

machine M(j) to M(pre(i)). (Note that ej,pre(i) refers to the empty moving time

between two machines and does not directly depend on the operations itself.)

Since there are at most m machines lvf(j) to check, this leads to a complexity

of O(nm). However, one can decrease it to O(n log m) by ordering these empty

moving times ej,pre(i) in advance by their durations for every machine lvI(pre(i)).

This initial sorting would have a complexity of O(m·m log m). (For every machine

the distances to every other machine need to be sorted.) The last minimum empty

moving time min eipre(l) can also be calculated in O(logm).
iEOtodo '
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It follows that an overall lower bound for a machine Mk (k = 1, ... ,m) is

LBt: = LB~ + LBk + LBk (4.56)

and the overall machine depending lower bound is

LBM = max LBt:.
k=l, ...,m

(4.57)

For our example this leads to LBtt = 17 + 12 + 4 = 33, LBr = 21 + 12 + 4 = 37,

LBr = 0 + 2 + 2 = 4 and therefore LBM = 37.

The complexity of this bound is the sum over the complexities of all sub bounds which

is O(nlogm) plus an initial one-time cost of O(m . m log m) for sorting the empty

moving times.

Robot Dependent Bound

The robot can also be seen as a machine that can only process (transport) one job at

a time. Every job needs to be transported to its remaining machines. Thus, there is .

a minimum time of L:iEOtodo ti. After a transport operation, the robot either waits at

the machine or drives empty to another one. So, it at least needs the minimum time

between the processing time of i and the empty moving time to another (different)

machine for picking up a job, that still has to be processed. This is

. (min. )mm Pi , mm ei pre(j) .
jE1UOtodo '
M(j)i=M(i)

Finally, at the end of each cycle the robot needs to drive back to the input station,

which adds a time of min ei pre(l). Thus, the overall minimal time the robot needs to
iEOtodo '
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perform the leftover tasks is

( L i, +min (Pillill, min ei pre(j))) + min ei,pre(l)·
jEIUntodo ' iEntodo"Entodo" " M(j)#-M(i)

In our example, this bound would be LBR = 14 + 7 + 1 = 22.

The robot dependent bound has the same complexity as the empty moving bound which

is O(nm).

Height Dependent Bound

If we have an overlapping operation this operation is partially processed at the begin-

ning and at the end of the cycle. Both parts belong to different repetitions of the same

job. In difference to a machine a job can have more than one overlapping operation.

If we have the situation that the maximum height has been reached for a specific job

in Rdone then the remaining operations of this job have to be planned according to

their precedence constraints. Note that from this point on, scheduling the remaining

operations has to be done in the same way as in a non-cyclic job-shop scheduling prob-

lem with makespan minimisation. All operations of the same job have to be processed

in order of their precedence constraints and no additional operation is allowed to be

overlapping. There are also cases in which no additional operations of a job can be

overlapping anymore (and therefore has to be scheduled according to their precedence

constraints) even if the maximum height of a job Jj has not been reached yet. This

case occurs when every machine Mk, on which the job has still to be processed on, had

already processed an operation at an earlier point in time.

In the following we only calculate the height dependent bound for jobs Jj for which

all values Ii with J(i) = Jj are known at this point. This means that for operations i

of these jobs with Ti E Rdone the value for Ii E {a, I} is known and for all remaining
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operations i with Ti E Rtodo it holds '"'Ii = O. Note again that we exclude the cases in

which we do not know whether i is overlapping or not.

The height dependent bound LBy is calculated individually for each of such jobs Jj.

The basic idea is as follows. For a non-cyclic problem a bound for each job is given

by the sum of all processing times plus the corresponding transport moves, since all

operations have to be done according to their precedence constraints. For the cyclic case

assume that operation if is the only overlapping operation of Jj and Qi (respectively

~) indicates the first (respectively last) operation of Jj. Then in the current cycle

• all operations from Qi to if have to be processed in order of their precedence

constraints and

• all operation from suc( if) to ~ have to be processed in order of their precedence

constraints.

Each of those two sequences builds a lower bound for the minimal completion time of the

. b Th fi t .. b ",pre(i') (t min) t (min (8 t 0)JO. e rs one IS given y wk=oi k +Pk + i'+max Pi' - suc(i') - suc(i),

whereas the second one is given by (8suc(i') - tsuc(i)) + EZ~SUC(i')(tk +prin). Thereby

the parts

max (Pvin - (8suc(i') - tsuc(i)), 0) and (8suc(i') - tsuc(i))

indicate the two partial processings of operation if at the end and at the beginning of

the cycle.

In case a job has more than one overlapping operation, there are more than two se-

quences where each builds a lower bound for the completion time of the job. Therefore,

we calculate those lower bounds for each sequence and finally take the maximum as

the final height dependent bound LBy of job Jj•

Procedure 4.2.2 shows how such a bound can be calculated. We start with setting

LBy and a variable LBtemp for a temporary bound to O. In the for-loop (lines 4-19)
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Procedure 4.2.2 Calculates the height dependent lower bound for a job Jj

1: procedure Cal.cul.at.elle ight.Boundf.Jr)
2: LBH = 0

1
3: ur=» = 0
4: for i = first operation of ./j to pre(~) do

if E Rdone . 1 . - 1 th1 Ti, Tsuc(i) ane "It - en
LBH - , (LBll' min (S t))j - max j ,Pi - suc(i) - suc(i)

end if
if _,-.E Rdone T . E Rtodo and "Y' = 0 thenIt, suc(t) n.

LBtemp = pflin - (LBdone - Si)

end if
if Ti, T.mc(i) E Rtodo and "Ii = 0 then

t.e=» = LBtemp + ti +prill
end if
if 'T E Rtodo T . E Rdone and "Y' = 1 thent , suc(t) c n

t.s=» - t.e=» + t· + ( min - (S . - t . ) 0)- l max Pi suc(t) suc(t),

LBH = max (LBIl LBtemp)
J J '

ur=» = 0
end if

5:
6:

7:

8:

9:

10:
11:

12:

13:

14:

15:

16:

17:

18:

19: end for
20: if T*j E Rtodo then
21: t.n=» = t.n=» + t*j

22: LBH = max (LBH LBtemp)
J J '

23: end if
24: return LBy
25: end procedure

we consider all operations of Jj in order of their precedence constraints. We add the

processing and transport times of every sequence to t.e=» until an overlapping oper-

ation (or the last operation) has been reached and then continue with a new sequence.

In particular for every operation i five different cases can occur.

1. Ti, Tsuc(i) E Rdone and i is overlapping (line 5): This case is the same as in (4.49).

Thus we update LBy by the maximum of itself and pinin - (Ssuc(i) - tsUC(i))'

2. Ti E Rdone, Tsuc(i) E Rtodo and i is not overlapping (line 8): This case is the

same as in (4.50). Thus we set the temporary bound LBtemp to prill - (t.e=«:
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Si). Note that after operation i has been finished the succeeding operations

suc( i), suc( suc( i)), ... ,~ of i have to be processed as well. If none of these

operations is an overlapping one (remember that we know this at this point) then

all operations have to be executed one after each other in the remaining cycle.

Therefore, we store the current lower bound in LBtemp and we will increase this

value (cf. Case 3) until we have reached another overlapping operation (cf. Case

4) or the last operation of the job (cf. Case 5).

3. Ti, Tsuc(i) E Rtodo and i is not overlapping (line 11): In this case, we are in the

middle of a sequence and know that i is completely processed in the remaining

part of the cycle after its predecessor has been finished. Therefore the transport

time as well as the minimal processing time can be added to the temporary bound

(LBtemp = t.e=» + ti +prill).

4. Ti E Rtodo, Tsuc(i) E Rdone and i is overlapping (line 14): Since i is overlapping,

the sequence of operations processed after each other in the cycle will finish at

operation i. Thus we cannot add the complete minimal processing time prill to

LBtemp but only the transport time and the remaining processing time which is

ti + max (prill - (Ssuc(i) - tsuc(i)), 0). Again this is the same case as in (4.49).

Since prill - (Ssuc(i) - tsuc(i)) can be negative we use the maximum of it and O.

Because i has been the last operation in a sequence of operations processed one

after each other in the cycle, the succeedingoperations of i (suc( i), suc( suc( i)), ...)

do not start after i in this cycle. Thus, these operation cannot influence the

temporary lower bound t.s=» which know builds the bound for one complete

sequence. Hence, we update the best lowerbound LBf by the maximum of itself

and LBtemp and reset LBtemp to 0 again to possibly calculate another bound for

a sequence of operations that have to be processed according to their precedence

constraints in the remaining cycle. Note that after this case, either Case 1 or 2
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will occur.

5. T*j E Rtodo (line 20): If the last operation ~ of Jj has been reached we add

its transport time t*j to the current temporary lower bound LBtemp and update

LBfi as before.

N
The overall bound for the height is given by max LB)H.

)=1

Considering our example the following holds:

Case 2 Case 3 Case 4

Case :3 Case 4

and therefore LBH = 22.

The complexity of this bound is as follows. Every operation of a job is considered in

the for loop of Procedure 4.2.2. The if-statements are all checked in constant time.

Since there are n operations to be checked the bound can be calculated in O(n) time.

Summarising, a lower bound for the complete PRC is given by

(4.58)

which in our case is LB = 11+ max(37, 15,22) = 48.

The efficiency of each of these these bounds is mostly depending on the problem in-

stance. The robot dependent bound for example is not of much use if the travel times

of the robot are very small compared to the processing times. That means the robot

would not be a bottleneck in the production process. On the other hand, if the moving
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times are large compared to the processing times and the fact that between each two

operations a transport move has to be done, this bound has a lot more influence on the

overall lower bound.

The height dependent bound is only of any use, if the maximum height is relatively

small (or will be reached fast), since then the lower bound will be not just dependent

on the chains of operations on each machine, but also on the chain of processing times

of the operations of each job.

For the instances we have considered, one can in general say that the machine depen-

dent bound is the most dominant one. This holds especially at the beginning of the

construction phase.

4.2.3 Search Strategy

In branch and bound methods the solving time and solution quality significantly depend

on the strategy with which the branching tree is explored. On the one hand, we want

a good quality solution and, on the other hand we need solutions fast enough to make

the bounding more efficient.

The strategy we have chosen for our approach works as follows. To every PRG we

assign a score, which gives an indication of the potential quality of a complete resulting

robotic cycle. Obviously, the quality of the solution depends on the extra time each

operation stays on its machine (Pi - prin) and the machine idle times (the time the

machines are empty). For example, let us examine two extreme cases. Consider a

solution, where all jobs are sequentially performed after each other. The order of the

operations for each job is the same as the order of the precedence constraints. This

means that there is at most one machine loaded at any time during the production

process and all other machines are empty at this time. The robot is always waiting at

a machine while a job is processed and only performs empty moves from the output to
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the input station. Furthermore, each job stays on a machine exactly for its minimal

processing time. Note that such a solution is always feasible. However, the machine

utilisation is the worst possible one (assuming that the cycle time is minimised) which

means, that the machines have long idle times.

On the other hand, if we try to keep the machine idle time very low, by reloading a

machine as soon as it has been unloaded, the possibility to get an infeasible PRG is very

high since many machines are blocked. Also, the jobs on a machine might stay there

for longer than needed. E.g. if a set of machines is loaded with jobs whose successors

have all to be processed on the same machine Mk, then they obviously have to visit lvh

one after each other. This means that a part of this machine set will be blocked for a

(most likely) longer time than needed since the jobs cannot be unloaded. Furthermore,

no other job can go on those machines in the meantime, which also increases the cycle

time.

Based on this, we assume that a schedule with short cycle time has less idle time and

less operation waiting time than a schedule with a long cycle time. Therefore, we

define the overall waiting time w of a partial robotic cycle as the sum of the machine

idle times and the operation waiting times in Rdone. The smaller this time is, the

potentially better the final solution will be.

The order in which the partial robotic cycles are explored during the search is based

on a priority rule. It depends on the waiting time wand the lower bound LBdone of

every PRe. The later a PRG appears in the search tree, the more likely it is to have

a high waiting time, since more operations have been scheduled already. Therefore, we

want to relativise the waiting time of a PRG to its depth in the tree. A simple way of

doing this is to set it in relation to the lower bound LBdone. The deeper a PRG is in

the tree, the higher this value gets. Therefore, the priority rule is based on a scoring
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function that is given by
w

LBdone'

After every iteration, we branch on the node containing the PRC with the lowest score.

If two PRCs have the same score than the one with the smallest lower bound is chosen

next.

An advantage of the search procedure is, that it has great potential to be parallelised.

Different partial robotic cycles can be updated by different threads, where the only

variables to be synchronised are the best global solution and the global lower bound.

Since multi core computers are very common those days and concurrent containers are

available in most standard libraries of common programming languages like Java, C++
or Python, parallel computing becomes an important factor in modern algorithms.
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4.3 A Heuristic Approach

In the area of operational research heuristics refer to algorithms which deliver acceptable

solutions to a problem. They are usually based on a 'rule of thumb' or a set of rules

derived from some experience or insight into the problem by an expert. Although,

tending to work well in practice heuristics do not give any guarantee to the quality of

obtained solutions. There are two main types of heuristics: constructing and improving

ones. A constructive heuristic builds solutions from scratch and compares them against

each other, while improving heuristics (or local search methods) take an existing solution

and try to find a better solution by perturbing a previous one. The construction method

for robotic cycles in Section 4.2.1 can be seen as a constructing heuristic. However, in

the remaining part of this section we will consider a local search method (more precisely,

a tabu search heuristic) for the CJSPTB. A detailed overview about heuristics in general

can be found in Michalewicz and Fogel (2004) and Burke and Kendall (2005).

4.3.1 Neighbourhoods

As before, solutions are presented as robotic cycles, which means our search space

is the set of all feasible robotic cycles. A very important component of local search

methods is the neighbourhood function. For a given solution the neighbourhood function

determines a set of different solutions (neighbours) that have been derived from the

original one. From this set of neighbours one solution (often one with a good objective

value) is chosen as the current one. Then the neighbours of this current solution are

calculated and evaluated. One selects a solution within these neighbours as the new

current one and continues.

Since the CJSPTB can be regarded as a permutation problem one can move from

a given robotic cycle R to another one, by swapping two transport moves in R, for
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instance. Common changes for the non-cyclic job-shop problem with transport and no

blocking (JSPT) are to

• move all operations of one job to the end of the schedule (job shift),

• swap the order of two successive transport operations by the robot (robot swap)

or

• swap the order of two successive operations processed on the same machine (ma-

chine swap). '

In the following we are going to adapt these neighbourhood moves to the CJSPTB.

However, by randomly swapping the position of two transport moves in R, the resulting

neighbour might be an infeasible robotic cycle. Thus, we have to be a bit more 'careful'

by choosing which transport operations are being moved or swapped. Since we are

aiming to generate feasible neighbours, we always have to check whether they are

blocking-feasible and fulfill the height restriction. In our case, the blocking feasibility is

the more restricting property and, therefore, we will discuss this part more intensively.

The height of a blocking-feasible robotic cycle can easily be calculated by keeping track

of the individual repetition numbers during the different neighbourhood moves.

Job Shift

For the non-cyclic job-shop problem with transportation and blocking one can always

move from a given feasible solution to another feasible one, by shifting all operations

of one job to the end of the schedule in order of their precedence constraints. We can

use this idea for the CJSPTB as well. Let Jj be the job to be shifted to the end of the

schedule. The pseudo code of such a shift is shown in Procedure 4.3.1.

In the first step, we remove all transport moves belonging Jj from the robotic cycle

(cf. line 2). Note that the remaining robotic cycle R' is still feasible. Firstly, the
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Procedure 4.3.1 Performing a job shift

1: procedure JobShift(Jj)
2: remove transport moves of job Jj from R
3: let R' be the remaining robotic cycle
4: consider Mj <;;;; M of all blocking machines on which Jj is processed on
5: while there exists lEn with M(l) EMj and Tsuc([) --+ T[ in R' do
6: move Tsuc(i) to the last position of R'
7: end while
8: reinsert operations of Jj at the end of R' in order of precedence constraints
9: return R'

10: end procedure

height will not be increased by removing a job. And secondly, for every removed

transport move Ti its successor Tsuc(i) will also be removed (if it exists) and therefore

with Lemma 4.2.1 (page 148) the robotic cycle is still blocking-feasible. Before we can

add the eliminated transport moves of Jj at the end of the R', we have to make sure

that this would not violate the conditions of Lemma 4.2.1. In particular, we have to

make sure that for all machines lvh, job Jj is going to be processed on, the following

holds. Consider an operation l r;. Jj with M(l) = Mi: If the order of T[ and its

successor in R' is T[ --+ Tsuc(l) then inserting Ti, Tsuc(i) with J(i) = Jj and M(i) = Mk

at the end of R' would lead to T[ --+ Tsuc([) --+ Ti --+ T.mc(i). This would be blocking-

feasible on lvh according to Lemma 4.2.1. On the other hand, if the order in R' is

Tsuc([) --+ T[ then inserting Ti, Tsuc(i) in order of their precedence constraints would lead

to Tsuc(l) --+ T[ --+ Ti --+ Tsuc(i) which cannot lead to a blocking-feasible robotic cycle.

Hence, for all those transport moves T[ one has to make sure that its successor appears

in front of Ti. This can be done by moving the successor of T[ to the end of R' (cf. line

6). However, by moving a transport move Tsuc(l) to the end of the robotic cycle it can

happen that R' contains the order T,mc(suc([)) --+ Tsuc(l) and M(suc(l)) is a machine

where Jj has to be processed on. Thus, TSllc(suc([)) also has to be moved to the end of

R'. In the worst case this is done for all succeeding transport moves of a job. Finally

the transport moves of Jj are inserted at the end of R'.
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h:,o = 2
et = 58

Mo

o 10 20 30 40 50 60 time

Figure 4.3: Gantt-chart for Example 4.3.1 with robotic cycle R

We will demonstrate the job shift with an example.

Example 4.3.1. Consider the following data of a CJSPTB with 4 jobs and 4 machines.

Job

Operation 1 2 3 4 5 6 7 8 9 10

Processing time 5 3 6 5 4 5 6 6 8 5

Machine s« M2 M3 M2 M4 M3 M2 M4 Ml M2

The transport times are ti = 2 for all i E D* and the empty moving times between any

two different machines are 1. Figure 4.3 shows a feasible schedule for the problem. The

robotic cycle in this solution is

(The corresponding machine is written above each transport move to help the reader

identifying possible blocking situation in the next steps.) We now want to perform a

job shift for J4 in this solution. We start with removing transport moves Tg, Tg, TlO, T*4

from the robotic cycle. This leaves a remaining robotic cycle
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The machines Js has to be processed on are M4 = {MI' M2, M4}. Considering machine

M4 we have the situation that T5 with M(5) = M4 is done after T*2 in R'. If we would

insert T8,Tg at the end of R' in its current state then the order T*2 --+ T5 --+ T8 --+

tg would violate the conditions in Lemma 4.2.1 for machine !v14. According to our

procedure we move T*2 to the end of R' and then insert the transport moves of .14. The

resulting feasible robotic cycle is

Note that all jobs are processed one after each other and there are no overlapping

operations. However, this is not necessarily the case. If we apply a job shift to h in

R, the resulting robotic cycle would be

MI M* M4 M2 !vh M3 M* M2 M* M2 M4 M3 !vh M*
Rill = Tl, T*2, T8, T2, T9, T:~, T*I, TID, T*4, T4, T5, T6, 'T7, T*3.

The correspotulinq schedule for both robotic cycles are shown in Figure 4.4. In Figure

4.4( a) we omit the repetition numbers since they are all identical.

Robot Swap

For a given robotic cycle R = Tcr(1)'Tcr(2)'" ., Tcr(k),Tcr(k+l)' ... , Tcr(N+n) a robot swap

between transport moves Tcr(k)and Ta(k+l) leads to the neighbour robotic cycle

Formally, we swap the transport moves at position k and k + 1. Note that we only swap

transport moves that are direct successors of each other. In other words, Ti is swapped

with TsucR(i)' In case k = N + n is the last position in the robotic cycle, we cannot
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Figure 4.4: Gantt-charts for Example 4.3.1 after job shift

swap it with its "right hand neighbour". Because of the cyclic property the right hand

neighbour of Ta(N+n) would be Ta(l)' Since we have fixed the robotic cycle to start

with transport move Ta(l) = T1, we cannot just swap these two moves, but also have to

readjust the robotic cycle, so that. it starts with T1 again. Hence, swapping transport

moves Ta(l) and Ta(N+n) in the previously given robotic cycle R would lead to the new

robotic cycle

RI!
= Ta(l)' Ta(N+n)' ra(2),"" Ta(N+n-1)'

However, not every robot swap provides a feasible neighbour. Let us recall that a fea-

sible robotic cycle needs to be blocking-feasible and has to fulfill the height restriction

(cf. Section 3.2). We are now going to discuss in which cases a swap will lead to a

feasible or infeasible robotic cycle.
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We start with the height restriction. We know that the actual height h:,o depends on

the different job repetitions processed at a time. A solution can only become infeasible

if a job .fi with repetition number r will finish after another job with repetition number

r + h*,o has already started processing. Thus we simply need to keep track of the

repetition numbers during the neighbourhood moves.

To ensure that the neighbour is blocking-feasible, for any two operation i, j E 0 with

JvJ(i) = M(j) the cyclic order Ti ---t TS1Lc(i) ---t Tj ---t TS1Lc(j) must be preserved in a

robotic cycle (cf. Lemma 4.2.1). Thus, we can conclude the following.

Corollary 4.3.1. Consider a blocking-feasible robotic cycle R containing Ti, Tj with

M(i) = JvJ(j) of M*. Then swapping any two transport moves in

Ti ---t TSlLC(i) ---t Tj ---t TSlLC(j)

leads to an infeasible robotic cycle.

Due to Corollary 4.3.1 in the following cases a swap between Tk and Tk+l leads to a

blocking-infeasible sequence if for M(i) = 1I1(j) one of the following cases occurs:

Case A: TA: = Ti and Tk+l = TSlLC(i), or

Case B: TA: = Ts1Lc(i) and Tk+l = "i- or

Case C: Tk = Tj and Tk+l = TSlLC(j), or

Case D: TA: = TS1Lc(j) and Tk+l = Ti.

Assuming that R was blocking-feasible before, the resulting robotic cycle R' will be

blocking-feasible after a robot swap if none of the cases above will occur. We will again

use an example to illustrate a robot swap.
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Figure 4.5: Gantt-chart for Example 4.3.2 with robotic cycle Rill

Example 4.3.2. We will use the same data as in Example 4.3.1 and start with the

same feasible solution given by

and shown in Figure 4.3. We want to shift transport move T6 as far to the left as possible

by using robot swaps. Operation 6 is processed on M3. The first swap is between T6 and

TlO, where operation 10 is processed on M2. This swap is feasible. The next swap would

be with T*l. However, *1 is the direct successor of operation 3 which is also processed

on M3 (cf. Case B). Thus, a swap would lead to an infeasible sequence

T3 --+ T6 --+ Tsuc(3) --+ Tsuc(6)'

Hence, a the resulting robotic cycle after swapping T6 to the left is given by

The corresponding schedule is shown in Figure 4.5. In the same way, one can obviously

also shift a transport move to the right in a robotic cycle. Moreover, for every transport

move Ti there is an interval of transport moves Ti can be shifted in using some robot

182



4.3 A Heuristic Approach

swaps.

Machine Swap

Another common swap in job-shop scheduling is to change the order of two operations

processed on the same machine. While this swap is rather trivial for the general job-

shop problem, it is not that obvious how to retrieve a feasible robotic cycle for the

CJSPTB after a machine swap.

Assume that Ti appears before Tj in R where M(i) = M(j). Instead of swapping Ti

and Tj we move J(i) immediately after T,mc(i) (see steps 1, 2 below). Usually this leads

to a robotic cycle that is not blocking-feasible. Therefor we need to repair the robotic

cycle which is described in Steps 3 and 4 of the following.

1. Remove all operations of J (i) from the robotic cycle. The remaining partial

robotic cycle is still feasible.

2. Insert all transport moves of J (i) after TSILC(j) in order of their precedence con-

straints. We denote the resulting (most likely infeasible) robotic cycle with R'.

3. Let TiD resp. Ti* be the first resp. last transport move of J(i). Shift all transport

moves Tsuc(jl) belonging to J(j) with Ti* - --t Tsuc(jl) in front of TiD by keeping the

original order between themselves, if they fulfill the following conditions:

• J(i) has to be processed on Jvl(j/),

• R' contains the order Tjl ---t TiO.

4. Consider a transport move Tk neither belonging to J(i) nor J(j). After Steps 2 and

3 have been executed operation k can collide with another operation l on machine

lvl(k) = M(l) such that the current robotic cycle is infeasible (the first time l

belongs to either J(i) or J(j)). To correct this, we shift Tsuc(k) as far to the left as
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needed until the there is a blocking-feasible order Tk --+ Tsuc(k) --+ t: --+ Tsuc(l)

on M(k) = M(l). During this shift, there could occur new collisions on some

machines. We continue with this correction until the robotic cycle is blocking-

feasible (cf. explanation below).

Step 1 is the same as in the job shift. Step 2 is similar to the job shift, except job J( i)

will inserted immediately after Tsuc(j) rather than at the end of the robotic cycle.

In Step 3, we make sure that all operations belonging to J(j), that collide with J(i)

on any machine in the current schedule are finished before J(i) starts. Assume that

i' and j' are operations belonging to J(i) and J(j), respectively that are processed on

the same machine M(i') = M(j'). After reinserting the operation of J(i) we know that

the resulting robotic cycle R' contains the sequence Tio, ... , Tpre(i'), Ti', Tsuc(i'),' .. , Ti*.

Together with the two transport moves Tj' and Tsuc(j') the following cyclic orders could

be possible in R':

Tj'--+TiO, ... ,Ti* --+Tsuc(j') or Tj'--+Tsuc(j') --+Tio, ... ,Ti*'

The latter case would be feasible for machine M(i') = M(j'), whereas the first case

would be infeasible. However, we can make this robotic cycle blocking-feasible for this

machine by moving Tsuc(j') in front of TiD to retrieve the situation in the latter case. In

the most extreme case the complete job J(j) will be finished before J(i) starts. Note

that the order between the moved transport moves will remain the same as before. If

we would remove all other transport moves not belonging to J(i) or J(j) the remaining

robotic cycle would be feasible. However, there could be other transport moves Tk not

belonging to J(i) or J(j) which are now in conflict with transport moves of J(i) or

J(j).

In step 4 let Tk be such a transport move. The following two cases can occur between
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Tk and Tl and their successors with M(k) = lvf(l):

Tk ---+ Tt ---+ Tsuc(k) ---+ Tsuc(l) or Tk ---+ Tl ---+ Tsuc(l) ---+ Tsuc(k)'

We shift the successor Tsuc(k) to the left such that the resulting order in the robotic cycle

is Tk ---+ Tsuc(k) ---+ Tl ---+ Tsuc(l) with M(k) = M(l). We repeat this procedure until R'

is blocking-feasible. Note that this method will eventually lead to a blocking-feasible

robotic cycle. Any shift of a transport move Tsuc(k) will, in the worst case, result in

the order ... , Tk, Tsuc(k), ... in R'. If every operation of J(k) is colliding with another

operation on a machine then the final sequence of all transport moves belonging to

J(k) in R' would be TkO,"" TA:,Tsur(k),"" Tk* which means all operations of the job

are processed one after each other. If this case happens for all jobs except J( i) and

J(j) the result would be a blocking-feasible robotic cycle in which all jobs are processed

directly one after each other.

Since this move provides a lot of diversification between the original robotic cycle and its

resulting neighbour many repetition numbers can change. Hence the height restriction

needs to be checked again.

Example 4.3.3. We again will use the same data as in Example 4.3.1. The given

robotic cycle is R = TI,T*2,Ts,T2,Tg,T3,T*1,TlO,T6,T*4,T7,T*3,T1,T5. We are going to

swap operations 8 and 5 {resp, TS and T5) that are both processed on M4. The swap

can be done as follows

1. We remove the transport moves belonging to J2 (T4' T5, T*2) from the robotic cycle.

The route of the remaining par-tial robotic cycle is

Nh M4 M2 lvh ]\;[3 M* M2 M3 M* M2 M*

R' = TI, TS, T2, Tg, T;{, T*l, T1O, T6, T*4, T7, T*3.

2. We r-einsert the transport moves of h after Tsuc(S) = Tg in order of their precedence
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h:,o = 1
ex = 57

u;

o 10 20 30 40 50 time

Figure 4.6: Gantt-chart for Example 4.3.3 with robotic cycle Rill

constraints. The resulting robotic cycle is

MI M4 M2 MI M2 M4 M* M3 M* M2 M3 M* M2 M*
R" = TI, TS, T2, Tg, 74, 75, 7*2, T3, T*l, TIO, T6, T*4, T7, T*3.

3. Job J(5) = h is processed on machine M2 and M4 and J(8) = J4 on M4, MI

and M2. The only non-dummy transport move belonging to h scheduled after T*2

in R' is TW. However the predecessor of operation 10 is processed on MI which is

not in the set of machine h is processed on. Formally said, there are no transport

moves Tsuc(j) with MU) E {M2' M4} of J4 that appear after T*2 in R'.

4. The remaining transport move not belonging to J4 is T3. Note that for M2 we

have the order T2 --+ T4 --+ T5 --+ T3 which is infeasible according to Lemma

4.2.1. Thus we move T3 to the first position such that the order on M2 is blocking-

feasible again. This position is in front of T4, since T2 --+ T3 --+ T4 --+ T5 is

a blocking-feasible order for M2. After that, there is no blocking-infeasibility on

any machine. Thus, the final blocking-feasible robotic cycle is given by

The corresponding schedule can be found in Figure 4.6.

186



4.3 A Heuristic Approach

The presented neighbourhood moves can now be used to explore the search space.

As mentioned before, there are various strategies of how this could be done. In the

following section we will present a tabu search strategy to solve the CJSPTB.

4.3.2 A Tabu Search

The possible simplest way of a local search method is hill climbing. For a given feasible

solution, one calculates all its neighbours and choose the one with the best objective

value as the new solution. One continues until no further improvement can be made.

A disadvantage of this method is that it will usually stuck in a local optimum. There

are different ways of escaping such a local optimum. A common one is to accept the

best solution of all neighbours as the new solution, even if it is not better than the

best one found so far (global optimum), which will be stored separately. In addition

to that a quite promising method is the tabu search (cf. Glover (1997)). Briefly said,

it is a hill climber with memory. There is a list of fixed length I in which the last I

previously visited 'states' of the search are stored. If during the search, a state will be

reached, that is in the tabu list, one will ignore it. Even then it will be ignored if the

resulting neighbour is the best of the current set of neighbours. This will avoid going

in short cycles and possibly escape local optimas. In addition to this one can also use

an aspiration criteria. This means, we will accept solutions if they are better than the

global optimum, even if they are tabu.

The next step is to decide, which neighbours are calculated for a current solution.

Of course, one could calculate all possible neighbours, using the neighbourhood moves

provided. However, this might take et long time. Since the aim is to improve the current

solution, it is manifest to apply those neighbourhood moves that might improve the

current solution. The objective value does not necessarily depend on all operations in

a solution. Moreover, it is dominated by those operations that build the bottlenecks
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in the current solution. The property of those operations is that the solution cannot

be improved if none of the bottleneck operations will be moved. Thus we restrict

the neighbourhood search, to only swap and shift those transport moves, where the

corresponding operations builds a bottleneck for the current solution.

The last important point is the tabu list. One has to decide, what is going to be stored

in it, and how long the list should be. The simplest elements to store in the list are

complete solutions, in our case this would be a robotic cycle. However, checking whether

the current neighbour is contained in the list could take up some time, depending how

long the list is. Therefore, instead of this, we store the previous positions of the swapped

or shifted transport moves. For our approach we chose three different tabu lists T LJ,

T LR and T LM, each defined for the three different neighbourhood moves.

• T LJ stores the jobs that have been moved last to the end of the schedule after a

job shift.

• TLR stores the pairs of transport moves that have been swapped in a robot swap.

• TLM stores the pairs of jobs that have been swapped in a machine swap.

The search strategy is as follows. We start with a feasible robotic cycle R, which in

our case is simply all jobs are processed one after each other in ascending order of their

indices. This robotic cycle is then evaluated and defines the current best global solution.

Then, the operations on the critical path(s) are calculated. For every operation i on a

critical path, the following neighbours are calculated and evaluated.

• J(i) is shifted to the end of the schedule (this is at most done once for every job).

• Ti is swapped with the transport moves left and right of it in R.

• i is swapped with the preceding and the succeeding operation on M(i) (if it

exists).
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All neighbours are evaluated and the best neighbour, that is not tabu, is stored as

the best local solution and added to the corresponding tabu list. In case there are

neighbours with the same objective value, we choose the one that has been calculated

first during our search. Note that this keeps the method purely deterministic, which is

good for reproducing the results. However, a random choice of the neighbour could act

as a good tiebreaker and might influence the final solution in either a good or bad way.

If the current solution is better than the best one found so far (global optimum), then

we replace this solution by the current one. Note that we also store a solution that

actually was tabu, if it is better than the global optimum. The search stops, if after a

specific number of iterations no improving solution could be found, or a time limit has

been reached. (We will specify these values in Section 4.5.)
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4.4 Generating Problem Instances

For the cyclic job-shop problem with one transport robot, there are, as far as we

know no standard benchmarks available. Most authors have considered standard job-

shop benchmarks and have randomly added additional times for transportation. To be

able to test any algorithm on different classes of problem instances (especially different

ratios between processing times and transport times), wedeveloped a problem generator

(Brucker et al. (2009)).

The underlying pseudo random number generator (PRNG) is based on Park and Miller

(1988). Thus, every problem instance can be reproduced if the program is run with

the same parameters. The input parameters are the number of jobs N, the number

of machines m (including an input and output machine) and a seed number for the

PRNG. For every job, the generator randomly assigns a machine to each operation.

Furthermore, one can set minimal and maximal values for the processing, setup, empty

moving and transport time. A reasonable assumption is that the transport time cannot

be smaller than the corresponding empty moving time between the same machines.

Therefore, we add a random value between a minimal and maximal additional transport

time to the corresponding empty moving time.

The processing times are calculated as follows. There is a lower bound for the smallest

minimal processing time and an upper bound for the largest maximal processing time.

Additionally, a minimal distance between minimal and maximal processing time can

be set (processing time window).

Since the triangle inequality has to hold, we determine the distances between the ma-

chines in the followingway. We create a 2-dimensional quadratic area with diameter

equal to the difference between minimum and maximum empty moving time. Then,

we randomly place all machines on this area, calculate their euclidian distances to each
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other and add the minimal empty moving time. This guarantees a distance between

the machines according to the given limits. We assume that every job starts at input

machine Mo and finishes at the output machine M* = Mm-I. In our case, the mini-

mal processing and setup times of the output machine are set to 0 and the maximum

processing time to a big enough number.

Here is an example of a small problem instance with 2 jobs and 5 machines.

*SEED 212121
*MIN,MAX_PROCESSING_TIME 10,99
*MIN_PROCESSING_TIME_WINDOW 20
*MIN,MAX_TRANSPORT_TIME 1,4
*MIN,MAX_EMPTY_MOVE_TIME 1,8
*MIN,MAX_SETUP_TIME 4,8
*The first line represents the numbers of jobs (2) followed by the number
*of machines (5). Each of the next 2 line(s) represent all operations of one job.
*Each operation has assigned 5 values which are in the following order:
*Machine I minProcessingTime I maxProcessingTime I transportTime I setupTime
*The other lines representing the time distance
*between the machines are of the form:
*machine-A I machine-B I distance
2 5 II #jobs #machines
3 42 74 6 8 2 75 97 9 6 1 73 95 8 740 9999 5 0 II operations job 1
2 27 56 5 7 3 25 68 7 8 1 48 94 8 5 4 0 9999 5 0 II operations job 2
000
015
024
035
045
110
1 2 6
135
147
220
233
242
330
344
440

II empty moving times
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4.5 Computational Results

In this section we describe some implementation details and report some computational

results. All approaches have been tested on an Intel Xeon E5472 3.0GHz computer with

16GB memory, single threaded, running Linux 64bit. The mathematical programming

models have been solved with CPLEX 12.2 using the default parameters. The branch

and bound method (Section 4.2) and the tabu search (Section 4.3) have been imple-

mented in C++ using the Intel compiler version 11.1.

We will start with presenting the test data used for our experiments. Afterwards,

the MIP-model from the literature (Section 4.1.1) is compared with our new MIP-

formulation (Section 4.1.2). In addition to the best solutions, we will also provide the

lower bounds found during the search and the memory used by the solver, since this is

an important criteria, what problem sizes the solver can handle. Afterwards, we will

compare the best solutions and bounds of the two MIP-models with our branch and

bound method. Finally, we will present the best results out of all methods and compare

it with the tabu search heuristic. To model the cyclic constraint, we have chosen the

cyclic job-shop model with height h*,o. The reason for this is, that the model with job-

chain repetition does not have much variation in the solution for different heights for our

problem instances. This is, because in our instances (and also the ones in the literature

for problems without transportation) every job is processed on every machine. Hence,

even for a small number of jobs, every job usually overlaps at most once. Thus, there is

no real point in testing different parameters for the height, since the optimal solutions

stay the same. For the complexity of solving the problem it also does not make much

of a difference. All three models have constraints that restrict a specific repetition of a

job to start before another one has finished. They do not change anything substantial

in the overall problem formulation. The parameters for the height are set to h*,o = 1

and h*,o = 2. We have also done all experiments with a maximum height of h*,o = 3
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(and even higher where possible), but the optimal results kept the same, in case we

could find it.

The time limit that every method had to solve each problem instance was set to 3600

seconds, which is also a standard value in the literature.

4.5.1 Test Data

The problem instances used in the experiments are generated with the problem gener-

ator proposed in Section 4.4. We have generated 27 instances of various sizes that are

shown in Table 4.2. The complete data of the instances can be found in Brucker et al.

(2009).

Instance I #Jobs I #Machines I #Operations
5x5-1 5 5 20
5x5-2 5 5 20
5x5-3 5 5 20

5x10-1 5 10 45
5x1O-2 5 10 45
5x10-3 5 10 45
6x6-1 6 6 30
6x6-2 6 6 30
6x6-3 6 6 30
7x7-1 7 7 42
7x7-2 7 7 42
7x7-3 7 7 42
8x8-1 8 8 56
8x8-2 8 8 56
8x8-3 8 8 56
9x9-1 9 9 72
9x9-2 9 9 72
9x9-3 9 9 72
1Ox5-1 10 5 40
10x5-2 10 5 40
lOx5-3 10 5 40

10x10-1 10 10 90
10x10-2 10 10 90
10x1O-3 10 10 90
15x15-1 15 15 210
15x15-2 15 15 210
15x15-3 15 15 210

Table 4.2: Data sets
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4.5.2 MIP-Models

In this part, we compare the mixed integer programming formulation from the litera-

ture, presented in Section 4.1.1, to the new developed one presented in Section 4.1.2.

The results can be found in Tables 4.3 and 4.4. The first two columns contain the

problem instance and the corresponding height h*,o. The first set of columns contains

the results for the model from the literature (CJSPT-MIP-LIT) and the second set

(CJSPT-MIP-OO) those from the newly developed model presented within this work.

The minimal cycle time obtained by CPLEX ('a') is given in the next column, followed

by the lower bound ('LB') and the corresponding gap ('GAP'). The last column ('Mem-

ory') contains the space in megabyte for storing the tree in case the problem could not

be solved to optimality when the time limit has been reached. If no value for a specific

column could be obtained (e.g. no solution has been found) we write 'inf'.

As we can see, our new model mostly outperforms the model from the literature. It finds

a better solution for 16 instances and a better lower bound in 21 cases. The model from

the literature on the other hand finds a better solution value for 2 instances and a better

lower bound for 11 instances. Furthermore, the differences in the memory needed for

the branching trees are enormous. The average memory needed for the CJSPT-MIP-

LIT model is 2751MB, not taking into account instances solved to optimality, whereas

the CJSPT-MIP-OO model only uses an average of 289MB per unsolved instance.

This new formulation especially benefits scenarios, where computers with less memory

or 32Bit operating systems are used. However, for large instance with more than 200

operations, none of the models was able to find any feasible solution. One can also

notice, that the problem seems to become more complicated, when the height has been

increased. Obviously, the main reason is that the search space has been increased.
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Instance
CJSPT-MIP-OO

LB Gap Memory
CJSPT-MIP-LIT I

LB Gap Memory

5x5-1 519
508

519 0.0%
508 0.0%

1
2

519
508

519 0.0% - I
508 0.0%

5x5-2 1
2

446
432

446 0.0% - I
432 0.0%

446
432

446 0.0%
432 0.0%

519
482

519 0.0%
482 0.0%

5x5-3 1
2

519
482

519 0.0% - I
482 0.0%

694 0.0%
558 0.0%

5xlO-1 1
2

694
560

691 0.0% - I
512 9.4%

694
558

765
558

765 0.0%
461 15.5% 178

5xl0-2 1
2

765
545

765 0.0% - I
545 0.0%

696
524

696 0.0%
524 0.0%

5xlO-3 1
2

696
524

696 0.0% 665- I
504 4.0%

6x6-1 616
575

616 0.0%
575 0.0%

1
2

616
575

616 0.0%
575 0.0%

fix6-2 1
2

605
548

605 0.0%
548 0.0%

605
548

605 0.0%
548 0.0%

559
532

559 0.0%
532 0.0%

fixfi-3 1
2

559 559 0.0%
532 532 0.0%

7x7-1 683 0.0%
620 0.0%

1
2

683 682.7 0.0%
623 532 17.1% 1242

683
620

7x7-2 1
2

735 735 0.0%
644 612 5.2% 339

735
634

735 0.0%
634 0.0%

7x7-3 1 676 676 0.0%
2 621 539 15.2%

676 676 0.0%
1350 618 618 0.0%

327
8x8-1 1 948 947 0.1%

2 880 572 53.8%
3 948 948 0.0%

3540 865 611 29.4%

8x8-2 1 887 792 12.0%
2 811 634 27.9%

400 884 884 0.0%
1818 804 649 19.3% 456

8x8-3 1 852 802 6.2%
2 800 524 52.7%

1665 852 852 0.0%
3337 796 487 38.9% 427

9x9-1 1 1175 722 62.7%
2 inf 498 inf

3839 1050 1033 1.6%
4387 inf 656 inf

418
494

453
387

9x9-2 1 1188 728 fi;3.2%
2 inf 501 inf

3867 1034 714 30.9%
4463 inf 480 inf

9x9-3
408

1 1119 764 46.5%
2 1272 665 91.3%

3808 1097 1097 0.0%
3582 inf 525 inf

lOx5-1 1 819 819 0.0%
2 779 649 20.0%

819 819 0.0%
373 779 779 0.0%

lOx5-2 1 818 818 0.0%
2 810 551 47.0%

841
798

818 818 0.0%
1350 808 808 0.0%

844
798

lOx5-3 1
2

844 0.0%
572 39.5% 1597

844
798

0.0%
0.0%

Table 4.3: Results for MIP models part 1
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CJSPT-MIP-LIT I CJSPT-MIP-OO
Instance h*,o a LB Gap Memory a LB Gap Memory

lOxlO-I 1 1403 803 42.8% 5749 1 1389 803 42.2% 93
2 inf 446 inf 2910 inf 346 inf 270

IOxl0-2 1 inf 822 inf 5367
1

1444 800 44.6% 54
2 inf 362 inf 967 inf 383 inf 297

IOx10-3 1 inf 720 inf 6572 1441 777 46.1% 521
2 inf 310 inf 3863 inf 318 inf 391

15x15-1 1 inf 953 inf 2979 inf 927 inf 852 inf 722 inf 3122 inf 289 inf 201
15xl5-2 1 inf 942 inf 3099 I inf 959 inf 892 inf 483 inf 4322 inf 330 inf 209
15x15-3 1 inf 830 inf 2255 I inf 860 inf 1002 inf 401 inf 5204 inf 295 inf 209

Table 4.4: Results for MIP models part 2

4.5.3 Branch and Bound

In this section, we have applied the branch and bound method from Section 4.2 to

solve the problem instances. For comparison, we have used the best solutions and best

bounds found in the previous experiments. The results are presented in Tables 4.5 and

4.6.

As we can see from the results, our method is competitive with CPLEX. For large

instances, we were able to find (non trivial) solutions were CPLEX was not able to

find any solution. Moreover, we could also find better solutions for some instances.

Even by changing the parameter of CPLEX to find feasible instead of optimal solu-

tion (CPXpARAMMIPEMPHASIS) the overall result did not change much. It in

fact became worse than the current one that uses the default parameter. Moreover,

by studying the final schedules, we could see that our solutions (especially for large

instances) are also not trivial ones, which in this case means they are not of the type in

which the jobs are processed one at a time. However,CPLEX outperforms our method

in the bounding. One reason for that is definitely that CPLEX explores the tree more

in its breadth, where we are more concentrated on the depth to find more solutions.

Another indicator for this is the memory used by the algorithm. As we have seen in the
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CJSPT -NIIP-Best Branch and Bound
Instance h*,o 0' LB Gap 0' LB Gap

5x5-1 1 519 519 0.0% 519 519 0.0%
2 508 508 0.0% 508 508 0.0%

5x5-2 1 446 446 0.0% 446 446 0.0%
2 432 432 0.0% 432 432 0.0%

5x5-3 1 519 519 0.0% 519 519 0.0%
2 482 482 0.0% 482 482 0.0%

5xlO-1 1 694 694 0.0% 694 694 0.0%
2 558 558 0.0% 558 558 0.0%

5xlO-2 1 765 765 0.0% 765 765 0.0%
2 545 545 0.0% 558 461 17.3%

5xl0-:3 1 69{j 696 0.0% 696 696 0.0%
2 524 524 0.0% 524 524 0.0%

6x6-1 1 616 616 0.0% 616 616 0.0%
2 575 575 0.0% 575 575 0.0%

6x6-2 1 605 605 0.0% 605 605 0.0%
2 548 548 0.0% 548 548 0.0%

6x6-3 1 559 559 0.0% 559 559 0.0%
2 532 532 0.0% 532 530 0.4%

7x7-1 1 68:3 683 0.0% 683 683 0.0%
2 620 620 0.0% 629 363 42.3%

7x7-2 1 735 735 0.0% 735 608 17.3%
2 634 634 0.0% 634 538 15.1%

7x7-3 1 676 676 0.0% 676 454 32.8%
2 618 618 0.0% 621 377 :39.3%

8x8-I 1 948 948 0.0% 948 823 13.1%
2 865 611 29,4% 884 415 53.1%

8x8-2 1 884 884 0.0% 884 702 20.6%
2 804 649 19.3% 837 521 37.8%

8x8-3 1 852 852 0.0% 852 504 40.8%
2 796 524 3/1.2% 906 349 61.5%

9x9-I 1 1050 1033 1.6% I 1050 613 41.6%
2 inf 656 inf 1109 316 71.5%

9x9-2 1 1034 728 30.9% I 1034 589 43.0%
2 inf 501 inf 1028 480 53.3%

9x9-3 1 1097 1097 0.0% 1097 619 43.6%
2 1272 665 91.3% 1268 386 62.5%

lOx5-1 1 819 819 0.0% 819 640 21.9%
2 779 779 0.0% 779 464 17.1%

10x5-2 1 818 818 0.0% 818 570 30.3%
2 808 808 0.0% 808 439 46.7%

10x5-3 1 844 844 0.0% 844 539 39.0%
2 798 798 0.0% 798 507 36.5%

Table 4.5:Results for best MIP model and branch and bound part 1
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CJSPT-MIP-Best I Branch and Bound
Instance h*,o Q LB Gap Q LB Gap

lOxlO-l 1 1389 803 42.2% I 1291 511 60.4%
2 inf 446 inf 1396 346 75.2%

lOxl0-2 1 1444 822 43.1% I 1224 515 57.9%
2 inf 383 inf 1788 228 87.7%

lOxl0-3 1 1441 777 46.1% I 1208 509 57.9%
2 inf 318 inf 1665 288 82.7%

15x15-1 1 inf 953 inf I 10681 599 94.4%
2 inf 722 inf 7763 458 94.1%

15xl5-2 1 inf 959 inf I 10543 589 94.4%
2 inf 483 inf 7489 296 96.0%

15x15-3 1 inf 860 inf I 7254 602 91.7%
2 inf 401 inf 5428 351 93.5%

Table 4.6:Results for best MIP model and branch and bound part 2

previous section, the CJSPT-MIP-OO formulation had and average tree size of 289MB

after the time limit has been reached, whereas the branch and bound method used less

than 20MB.
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4.5 Computational Results

4.5.4 Tabu Search

The last method to test is the tabu search presented in Section 4.3. An important

variable for such a heuristic is the length of the tabu list, or in our case the lengths of

the three lists TL J, TLRand TLM. A too short tabu list could lead to getting stuck

in the area of a local optimum, whereas a too long tabu list more likely leaves out

the neighbours that would lead to an optimal solution. (Note that we are not storing

complete solutions, but only the last neighbourhood moves.) We have tested various

sizes for the lengths lTL of the tabu lists. In particular:

• length of TL;: lTLJ = N· k,

• length of T L;: lTLR = n . k;

• length of TL;: lTLM = m· N· k;

where k E {0.1,0.15,0.2,0.25,0.3} was used as a scaling factor. The quality of the

results was varying for different values of k, Also, there was not a specific value for k

that led to the best solution for every instance. However, to get a fair comparison, and

not choosing the best parameter for each instance, we have chosen k = 0.15, since it

on average gave the best solutions.

In Table 4.7 we compare our tabu search method with the best results from all previous

methods.

The results clearly show that the tabu search is outperforming all previously applied

exact methods, on the data sets we have tested them on. Especially for larger instances

where CPLEX and our branch and bound procedure start to struggle. Only the branch

and bound method wins on instance 15x15-3 for height 2. However, we do not know

anything about the quality of the solution, by just using a heuristic, since no lower

bounding is done during the search. Ouly for the small instances, that the exact

methods also solve, we know that the solution is optimal.
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4. THE GENERAL CJSPTB

Best previous 1 Tabu search Best previous Tabu search
Instance h*,o solution solution Instance h*,o solution solution

5x5-1 1 519 519 9x9-1 1 1050 10502 508 508 2 1109 947
5x5-2 1 446 446 9x9-2 1 1034 1034

2 432 432 2 1268 953
5x5-3 1 519 519 9x9-3 1 1097 10972 482 482 2 1268 931

5xlO-l 1 694
1

694 10x5-1 1 819 819
2 558 558 2 779 779

5xlO-2 1 765
1

765 lOx5-2 1 818 8182 545 545 2 808 808
5xl0-3 1 696

1
696 10x5-3 1 844 8442 524 524 2 798 798

6x6-1 1 616 1 616 lOxlO-1 1 1291 1172
2 575 575 2 1396 1163

6x6-2 1 605
1

605 lOxl0-2 1 1224 1177
2 548 548 2 1788 1101

6x6-3 1 559 1 559 lOxlO-3 1 1208 1143
2 532 532 2 1665 1252

7x7-1 1 683 1 683 15x15-1 1 10681 2447
2 620 620 2 7763 2440

7x7-2 1 735
1

735 15x15-2 1 10543 2391
2 634 634 2 7489 2547

7x7-3 1 676 1 676 15xl5-3 1 7254 3641
2 618 618 2 5428 5803

8x8-1 1 948
1

948
2 865 865

8x8-2 1 884 1 884
2 804 804

8x8-3 1 852
1

852
2 769 769

Table 4.7: Comparison tabu search and best known solution
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Chapter 5

Concluding Remarks

In this thesis, we have studied the cyclic job-shop problem with blocking and one

transport robot. We started with presenting the classical non-cyclic job-shop problem,

showed how additional constraints like blocking and transportation can be added and

finally ended with describing the main problem of the thesis. In the literature review

we have seen, that the problem is not well studied by other researchers, which was one

reason why we have chosen it for this thesis. Since even evaluating the cycle time for

a feasible solution is not a trivial problem, we presented in Chapter 3 two algorithms

from the literature and additionally proposed a new algorithm, that outperforms the

existing ones in theoretical complexity (except for some special cases) as well as in actual

running times on various tested benchmarks. As we have mentioned before the strength

of this algorithms seems to be the separation between solving a relaxed problem very

fast and correcting the solution if necessary, whereas the correction phase is hardly

reached. In our case, the algorithm itself seems to be more complicated (especially the

correction parts) and the proof of correctness also is a lot more complex compared to

the PCP, for instance. However, it finally seems to payoff. Since the correction phase

only applies so rarely, it would be interesting to find out, whether those cases can be

201



•
5. CONCLUDING REMARKS

characterised. With this information, one could try to adjust the algorithm in a way

such that those cases are already captured during the insertion of the arc pairs and

therefore save the time for corrections.

Another question would be, what other problems could be presented with such a graph?

Or, if there are similar representations, how can one adjust the algorithm to be applied

to other graphs? Additionally, we have studied some properties of the problem. One

parameter, that probably is the most characteristic one for cyclic scheduling problem is

the "height". In Section 3.1, different interpretations of various height models as well

as their influences in feasible solutions have been discussed. An interesting point would

be to find the minimum height for a problem with a given cycle time. The height is

a very interesting parameter, which has a great range of interpretation. Especially, in

connection with the flow time of the jobs, it builds an important factor for practical

purposes.

In Chapter 4, we investigated solution methods for the CJSPTB. For comparative rea-

sons, we have used an existing mixed integer programming model for cyclic scheduling

problems from the literature and adapted it to model and solve the CJSPTB. Further-

more, we have developed three other solution methods: another integer programming

model, a branch and bound procedure and a tabu search heuristic. All of them have

been applied to the same data sets and the solutions have been compared.

The computational results have shown, that our developed methods are able to solve

reasonably large instances of the CJSPTB. However, every approach has advantages

and disadvantages. The integer programming model has been solved with a powerful

software (CPLEX). Although, for larger instances (around 10 jobs and 10 machines),

CPLEX was sometimes not able to find any solution and if, this could have taken some

time. Therefore, it is not appropriate for the case, that a solution is needed very fast.

It also should not be forgotten that CPLEX is a quite expensive piece of software.
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One possible future direction, would be the definition of cutting planes for the problem.

There are many examples in the literature, where sophisticated cutting planes could

enormously improve the solving process. A good overview is given in Marchand et a1.

(2002) .

The advantage of branch and bound methods in general is, that they provide a (lower)

bound and therefore can prove whether a final solution is optimal or not. However, the

bounding part of our method is rather poor compared to CPLEX, for instance. It would

be interesting to see, how the search strategy for the can be modified, such that the

lower bounds become better and at the same time avoid loosing the ability of finding

good solutions. An idea would be to incorporate the search strategy of our branch and

bound algorithm into CPLEX. This would turn its general "black box behaviour" into

a more sophisticated search strategy and could also make use of the computational

power of CPLEX.

Out of all tested methods it is fair to say that the heuristic performed best on the

given problem instances. However, there is still room for improvement. A promising

adjustment could be the introduction of randomness, which has been shown to work as

a good tiebreaker during the local search. Furthermore, it would be interesting to see,

how different start solutions influence the performance of the heuristic. A constructive

heuristic to create an initial starting solution, for instance, could be developed or even

used from the non-cyclic version of the problem.

Even if we have presented three different approaches to solve the CJSPTB there are

still many other possibilities to tackle the problem. Since we have been inspired by

approaches for non-cyclic scheduling problems, one could try to adapt more existing

techniques, which have already performed well for other problems. Constraint propa-

gation, for instance, has shown to be a powerful tool which is used in connection with

various solution methods for scheduling problems. It has been successfully applied to
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the RCPSP and machine scheduling problems (cf. Brucker (2002)). One could also

think of incorporating the presented neighbourhood moves from Section 4.3 into other

meta heuristics such as simulated annealing.

Another point is the general model and the theoretical background. We have restricted

ourselves to the cyclicjob-shop scheduling with blocking and one transport robot. The

problem is very specific and therefore only interesting for a small audience. How does

the problem change; when the blocking restriction changes to (un)limited buffers? Can

our methods easily be adjusted, or are they not of any use? What about flexible

job-shops or even open-shop problems or parallel machines? Can we easily include

multiple robots and what are additional constraints that might come up (e.g. physical

collisions)? Those robots also do not need to be identical. They even could be limited

to a fixed set of machines they could circulate between. It is also possible that the

jobs do not need transportation after every processing step. One could imagine several

working areas with several machines and conveyor belts. The number of variations of

problems seems endless.

What about k-cyclic scheduling problems? It is easy to see that for a k-cyclic solution

to a problem there is a minimum of one k+1 cyclic solution to the same problem that

is at least as good as the other one (in the worst case, it is the k-cyclic solution itself).

What is the trade off between increasing k, potentially improving the solution and

increasing the solving time?

Solution robustness is also already an important factor for practical purposes. How

long does is take to recover a production process after a machine failure? Especially,

if those machine breakdowns are more likely, one might prefer a robust instead of an

optimal solution. For real world applications, also uncertainty plays a big rule. For

instance, the robot travel time between two machines can vary, due to wheel slipping
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or other external influences. The robust shortest path problem, for instance, deals with

those circumstances.

One last important question for us is, whether there are other non-scheduling research

areas that could benefit from this work. This tends to be a problem for many research

areas. The problems itself seem to be completely different and are based on various

backgrounds, but the underlying models and formulations can be very similar. However,

there are not many people that have such a comprehensive background to keep on top

of all the research and finally see the link between then.

Finally, we again want to point out that, even if the problem is not completely new, not

many people have worked on it. We hope to motivate other researchers with our work

to look into this area and modify, improve or even just use our methods and solutions.
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Appendix A

Pseudo-code for E-Corrections

We start with Case A. The pseudo-code of this correction can be found in Procedure

A.I. While the solution is not optimal we perform an E-correction. Therefore, we save

the arcs belonging to pairs that are critical on the left hand side of the graph (ending

in a node of Vd in list crit.List.X and the ones that are critical on the right hand side

(starting in a node of V2) in critListY. Since (0, j)lj,il and (i, n*)Ij,il are critical for sure

we initialise the lists as in line 4. In the next two lines we update the arc lengths of

(O,j)lj,il and (i, n*)Ij,il and store the multiplier of E in a variable k(i,n*). Since the length

of (u,n*) cannot be changed, we follow the alternating path along arc (i,n*)lj,il' We

store this current arc in a variable curArcY and loop through all arcs that are critical

with this arc, since their lengths have to be corrected (line 8). If any of these arcs is

critical with an arc from crit.Lisi X or a constant arc (0, c) then the solution is optimal

according to Theorem 3.5.2 and we return without any changes. If not, we update the

arc lengths as described in the second part of Section 3.5.2. We add all arcs that are

critical with cur ArcY to critListX and also their partner arcs to critListY in case it is

itself critical. We repeat this procedure until either the solution is found to be optimal

or all critical arcs on the right hand side have been corrected. (This means we have
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reached the end of every alternating path.) Nowwe can calculate the best value for E

and update the graph. The length of the new critical path is supposed to be E units

shorter than the old length, which was

XU,il + CPj,n* = CPO,i + Ylj,il·

Therefore we calculate the maximal E such that every path through the corrected

arcs in critListX and critListY is at most the length of the new critical path length

Xlj,il + CPj,n* - E. We update the graph an continue until the solution is optimal.

The correction for Case B is similar. Its pseudo-code can be found in Procedure A.2

and it works in a comparable way as Procedure A.I. The main difference is, that we

start with at least two critical paths that can be changed (one through (O,j)U,il and

one through (i, n*)U,il) so we have to correct along both directions of the alternating

path (line 26). If during this correction one side ends in a constant arc (0, c) or (c, n*)

we continue the correction with Procedure A.I, line 14.
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Procedure A.1 s-correction in case (0, j)lJ,il is critical with (u, n*)

1: procedure correctLengthsA(pair 1 j, i I)
2: given: (0, j)lj,il is critical with (u, n*)
3: while not optimal do
4: critListX = {(O,j)lJ,il}' crit.List.Y = {(i,n*)lj,il}
5: xlJ,i1 = Xlj,il - E, Ylj,il = Ylj,il + E

6: k(i,n*) = 1
7: cur ATCY = first element in critListY
8: for all arcs (0, t)lt,sl that are critical with CUTATCY do
9: if (s, n*)lt,sl is critical with an arc from critListX or an arc (0, c) then

10: E = 0
11:

12:

13:

14:

return
end if
k(s,n*) = kCUTATCY + 1
Xlt,sl = Xlt,sl - k(s,n*) . E
Ylt,sl = Ylt,sl + k(s,n*) . E
ADD (0, t)lt,sl to crit List.X
ADD (8, n*)lt,sl to crit.Listv'
cur ATCY = next element in crii.List.Y

end for
for all arcs (0, t)lt,sl in crii.List.X and (s, n*)lt,sl in critListY do

calculate maximal E s.t.
------ -r-s.old

Xlt,sl(E) + CPt,n*(E) :s; CPO,n* - E
------ ------ 01d
CPO,s(E) + Ylt,sl(E) :s; CPO,n* - E

end for
UPDATE arc lengths

end while

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27: end procedure
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Procedure A.2 s-correctionin case (0,j)lj,il is critical with (u, n*)lv,ul

1: procedure correctLengthsB(pair I j, i I)
2: given: (0,j)jj,il is critical with (s, n*)lt,sl' (i, n*) Ij,il is critical with (0,V)lv,ul
3: while not optimal do
4: critListX = {(O,j)jj,il' (0,V)lv,ul}' critListY = {(i, n*)jj,il' (s, n*)lt,sl}
5: Xlt,sl = Xlt,sl + c, Ylt,sl = Ylt,sl - c
6: k(i,n*) = °
7: cur ArcY = first element in critListY
8: for all arcs (0,t)lt,sl that are critical with cur ArcY do
9: if (s, n*)lt,sl is critical with an arc from critListX then

10: e = °
11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

return
end if
if (s, n*)lt,sl is critical with an arc (0,c) then

correctLengthsA(1 t,s I)
end if
k(s,n*) = kcurArcY + 1
Xlt,sl = Xlt,sl - k(s,n*) . c
Ylt,sl = Ylt,sl + k(s,n*) . c
ADD (0, t)lt,sl to critListX
ADD (s, n*)lt,sl to critListY
cur ArcY = next element in critListY

end for
xlv,ul = xlv,ul - c, Ylv,ul = Ylv,ul + c
k(o,j) = °
cur ArcX = first element in critListX

repeat lines 5 - 25 symmetrically for (i, n*)lj,il and (0,v)lv,ul

for all arcs (0,t)lt,sl in critListX and (s, n*)lt,sl in critListY do
calculate maximal e s.t.

- -r-sold
Xlt,sl(c) + CPt,n*(c) ::; CPO,n* - e
- -r+-old
CPo,s(c) + Ylt,sl(c) ::; CPO,n* - e

end for
UPDATE arc lengths

end while
34: end procedure
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Glossary

Q cycle time, page 38

Mj Set of machines that Jj has to be processed on, page 179

A selection of directed disjunctive arcs, page 15

Acp arc set of critical arcs, page 106

arc set of arcs belonging to a pair

Si Starting time of operation i in a specific cycle, page 79

Tabu list storing jobs, page 199

Tabu list storing pairs of transport moves, page 199

f3ij binary variable defining if operation i is processed before j or not,

page 141

b( i) 8UC( i) if i is blocking and i else, page 49

length of the longest paths from j to i in c.; page 109

C, completion time of operation i, page 16

makes pan of schedule S, page 16

CPi,j length of longest critical path from node i to node j, page 101

D set of disjunctive arcs representing machine constraints, page 15

lenght of circuit It in graph G, page 87

time lag between operation i and j, page 19

(E U A)' set of arc associated with arc pairs in P, page 103
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--EuA Arc set of C, page 104

E set of arcs representing precedence constraints, page 14

E~ set of arcs corresponding to Pv, page 109

eij empty moving time from machine M(i) to machine M(j), page 21

<{Jj ••••••••••••••• flow time of job Jj, page 39

Ii binary variable defining if operation i is overlapping, page 140

c; relaxed graph based on pairs in Pv, page 108

G a graph, page 14

h! 0 actual height of a problem in a feasible solution, page 72,

hj. actual height of job Jj in a feasible solution, page 72
J

actual height of machine Mk in a feasible solution, page 72

height of curcuit J.L in graph G, page 87

hij height of a constraint between i and j, page 40

(i; r) r-th repetition of operation i, page 37

i* last operation of a job, page 44

J(i) the job in h, ,IN operation i belongs to, page 13

Jj j-th job, page 13

J.L •••••••••••••••• circuit in a graph, page 87

m number of machines, page 13

M(i) the machine operation i has to be processed on, page 13

Mk the k-th machine, page 13

N number of jobs, page 13

n number of all non-dummy operations, page 13

nj number of operations job Jj has, page 13

o set of all non-dummy operations, page 13

w overall waiting time of a partial robotic cycle, page 173

0* 0 U {*1, ,*N}, page 21
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Ok number of overlapping operation of job Jk in a feasible solution of

the CJSPTB, page 73

Oij i-th operation of job Jj, page 13

pre( i) direct predecessor of operation i, page 13

preM (i) predeceasing operation of i on M (i) , page 79

preR( i) operation transported directly before i by the robot, page 79

P set of arc pairs, page 103

Pi processing time of operation i, page 13

piax maximum processing time of operation i, page 18

piill minimal processing time of operation i, page 18

P; subset of P, page 108

Pb(i) 0 if i is blocking and Pi else, page 50

R robot route or cycle depending on the problem, page 22

r repetition number, page 37

suc(i) direct successor of operation i, page 13

sucM (i) succeeding operation of i on M(i), page 79

sucR(i) operation transported directly after i by the robot, page 79

~ dummy end activity of job Jj, page 21

S a schedule, page 15

Si starting time of operation i, page 13

start processing of the r-th repetition of operation i, page 38

Ti transport move of operation i, page 21

Ti(r) r-th repetition of transport move Ti, page 52

Ti ---< Tj Ti precedes Tj in R, page 79

()ij binary variable defining if i is transported after j or not, page 141

T; start of transport move Ti, page 23

ti time, the transport move Ti takes, page 21
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Ti (r) start of the r- th repetition of transport move Ti, page 53

V set of nodes, page 14

V(IL) value of a circuit IL in graph G, page 87
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