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Abstract

The magnetic field within electrical machines causes an interaction between the

electrical and mechanical dynamics of the system. In the simplest cases, when the

rotor mean position is central in the stator, the interaction manifests itself mainly as a

negative stiffness between the rotor and the stator. When the rotor mean position is

offset relative to the stator, then components of force arise whose frequency in the

stationary frame is twice the electrical frequency of the supply.

For induction machines in particular, both the electrical system and the mechanical

system may be quite complex dynamically in the sense that over the range of

frequencies of interest, it is necessary to consider a number of degrees of freedom in

both the electrical part of the model and the mechanical part.

This work sets out a structured and formal approach to the preparation of such

models. Each different combination of voltage and slip is examined separately. In

each case, the first step is to compute the steady-state reference solution for machine

currents as a function of time. Then, the electro-magnetic behaviour of the electrical

machine is linearised around that reference solution. The result is a linear time-

dependent model for the electromagnetic behaviour which is then easily coupled with

a linear model for the mechanical dynamics. The mechanical dynamics are usually

stationary. Floquet methods can then be applied to determine whether the system is

stable and the response of the system to mechanical or electrical perturbations can be

computed quickly.

The analysis method is applied to a particular three-phase induction machine which

has parallel paths integrated into its winding structure in the sense that each of the

phases is split into a "Wheatstone-bridge" arrangement following. Currents passing

diametrically through a phase in the vertical direction account for the main torque-

producing components of stator field. Currents passing diametrically through the

phase in the horizontal direction account for transverse forces. The parallel paths can

IX



be switched to open-circuit or closed-circuit without affecting the torque-producing

function of the machine and all of the stator conductors contribute to torque-

production. For a number of combinations of voltage and slip, the machine is stable

irrespective of whether the parallel paths are open-circuit or not but the effective

damping of the machine for synchronous vibration is shown to be much higher with

the parallel paths in closed-circuit.
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Chapter One

Introduction

1.1 General

Rotating electrical machines playa very important role in industry. Electric motors

consume something in the order of two-thirds of all electrical power used in industry.

Therefore, the efficiency of these motors is also a major environmental factor.

Besides, there is also a strong industrial demand for reliable and safe operation of

rotating machines (Devanneaux, et al., 2003).

Most of the electrical machines comprise two parts: the cylindrical rotating member

called the rotor and the annular stationary member called the stator. Figure (1.1)

shows an electrical machine showing the stator and the rotor. The rotor has an axial

shaft which is carried on bearings at each end. The rotor core and stator core are both

constructed from a stack of sheet steel laminations. The constructional and certain

other distinguishing features separate electrical machine into different categories.

Among these machines, the induction machine is by far the most common because of

its relatively simple, robust construction and low price.

1.2 Eccentricity in an electrical machine

Eccentricity refers to an offset between the centre of the rotor core and the centre of

the stator core at any given axial position along the motor length. Clearly, eccentricity

can vary along the length. In this thesis, we are concerned only with machines in

which the stator core is rigidly fixed and the rotor core is relatively short and rigid.

Such rotor cores can translate in directions normal to the axis of rotation and they can

also rotate about axes normal to the rotation axis. In this thesis, we restrict attention to
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pure translation for reasons which are well-founded. These reasons are exposed

further in a chapter about rotordynamic modelling. Eccentricity is described as being

either static or dynamic depending on whether the offset between the core centres is

constant or whether it is moving (usually in an orbit of some description). Static

eccentricity occurs when the axis of the rotor is not being aligned with that of the

stator although it still rotates about its own axis. This can occur for example simply

due to manufacturing tolerances. Excessive static eccentricity can also occur when the

bearings are incorrectly positioned or become worn. Figures (1.2) and (1.3) show

concentric and eccentric rotor respectively. Dynamic eccentricity is caused by the

centre of rotation of the rotor not being aligned with the rotor axis. The usual causes

of dynamic eccentricity are also manufacturing tolerances, wear and incorrect

manufacture. Rotor 'whirl' near critical speed is another source of dynamic

eccentricity and is an important consideration in large, flexible-shaft machine.

One result of eccentricity is that an uneven distribution of electromagnetic field is

produced in the airgap of an electrical machine. These uneven electromagnetic fields

in the air gap gives rise to electromagnetic forces between the rotor and stator and

termed as Unbalance Magnetic Pull (UMP). The net magnetic forces may often be

significant and the direction of these net forces is often such that they tend to pull the

rotor away from the centre position. In other words the magnetic field within every

rotating electrical machine creates a coupling between the eccentricity of the rotor

relative to the stator and the net magnetic force. This "coupling" behaves like a

bearing with very complicated (speed, frequency and load dependent) properties that

is not fully understood. The effect of UMP on the dynamics of a machine is often

equivalent to a strong negative stiffness between rotor and stator. In extreme cases, if

the mechanical stiffness of the rotor and its support is not sufficiently high, the rotor

of the machine may even pull over and knock the stator when the machine is

energized. In less severe cases, the first critical speed of a motor may be reduced by a

significant amount.

To study the dynamic behaviour of an electric machine there is a need for an accurate

UMP model integrated with an accurate rotordynamic model. The UMP modifies the

dynamics of the machine by introducing additional damping and stiffuess terms into

the mechanical system equations forming a coupling between the mechanical and
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electrical behaviour of the machine. Previous works on the study of coupled

(mechanical and electromagnetic) behaviour of electric machines have reduced either

the electrical or mechanical behaviours to a very simple form.

Understanding the characteristics of the dynamic performance of induction machines

is of fundamental importance to design engineers. The present research represents a

challenging problem to a dynamicist since a proper design involves a melding of

electromagnetic theory, electrical systems and rotordynamics. The existing literature

does not provide a general solution. A fuller discussion of the literature is given in the

next chapter.

1.3 Motivation

The objectives of this work relate centrally to the More Electric Engine movement.

Inevitably, engines will have shaft-mounted electromagnetic machines integrated into

their structure. Engine design is already critically limited by rotordynamic concerns

and the incorporation of electrical machines into engines will have very substantial

rotordynamic implications. Work to date on the modelling of UMP in machines has

been limited in two main respects:

• Attention has previously been focused almost exclusively on magnetic normal

stress at the airgaps as the primary cause of UMP in machines. This focus is now

dated - especially where permanent magnet machines are concerned since in these

machines, the magnetic normal stress at the airgap is extremely insensitive to

electrical or mechanical eccentricity (lack of symmetry) and magnetic shear

stresses can dominate the production of UMP.

• Attention has previously been focused on modelling the electromagnetic

behaviour separately from the mechanical - allowing only very simple (low-

dimensional) models for the mechanical dynamics involved. In an aero-engine

context, the mechanical dynamics are relatively high dimensional (i.e. a

significant number of resonance frequencies contribute to the relative movements

of the rotor and stator) and for this reason, it is necessary to provide for the

development of rotordynamic models without limitations on either the mechanical

or electromagnetic complexity.
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1.4 Aim of the research

The objectives of this research can be summarized as follows

• To develop a coupled model combining the electromagnetic dynamics and

rotordynamics of an electrical machine to study the electromechanical

interaction. This model should be able to examine some low-cost passive and

semi-active provisions for the adjustment of UMP. This outcome will be very

worthwhile gains in cost effectiveness and efficiency of a number of classes of

system powered by electrical machine.

• To construct an experimental rig and demonstrate how UMP can be reduced.

The results from the coupled model will be compared with that from the

experimental rig.

1.5 Organisation of the thesis
This thesis is organised in the following chapters.

Chapter 1 introduces eccentricity and unbalanced magnetic pull of an electric

machine.

In Chapter 2 the literature review of analytical and numerical calculation of

unbalanced magnetic pull is described. Methods of reducing unbalanced magnetic pull

are also discussed in this chapter.

Chapter 3 is concerned with the development of a 2D electromagnetic finite element

modelling to analyse any electromagnetic or magnetic devices including the electrical

machines. A finite element code is developed in MATLAB environment. This FE

code comprises a pre-processor, postprocessor and a solver. The solver is capable of

solving linear as well as non-linear electromagnetic problem. The efficiency of this

code is verified with the results of commercial software developed by the Department

of Electrical Engineering of the University of Bath, UK. Some case studies have been

performed using this code, where the static eccentricity of two different electrical
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machines is calculated and the performance of an electrical generator with and

without magnetic slot wedge in the slots is compared.

The electromagnetic finite element model developed in Chapter 3 is generic and not

restricted to electrical machines. In general electrical machines are voltage fed, so this

model needs some special treatment to handle it. Different transformation methods are

discussed in Chapter 4 with special reference to induction machines.

Chapter 5 discusses the modelling of an electro-magneto-mechanical device. The

circuit equation of an electro-magneto-mechanical device is coupled to its field

equation incorporating geometry change and magnetic non-linearity in the modelling.

Chapter 6 describes the time-marching simulations of rotating electric machinery.

This chapter also discusses two methods to accommodate the movement of the rotor

during the time domain simulation. The merits and demerits of these tow methods are

explained.

Chapter 7 describes methods for calculating steady state currents of induction

machine for a concentric as well as an eccentric rotor. This chapter also unveils a

novel method called "central circle method" for calculating steady state currents of

induction machine with a concentric rotor. One of the main attractions of "central

circle method" is the non-linear model reduction. Non-linear model reduction is

attempted for a simple static electromagnetic problem.

Chapter 8 discuss the electromagnetic dynamics and mechanical dynamics in its full

glory. An integrated model of electromagnetic dynamics and mechanical dynamics is

proposed. The stability of the coupled system is studied. A 3-phase induction motor is

chosen as an example.

Chapter 9 discusses a passive method for reducing UMP in an electrical machine and

its effectiveness is verified with an experimental setup. The working principle of this

method is explained in this chapter.
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In Chapter 10 details about the experimental rig are described. The steady state

currents from the numerical methods are verified with experimental results. A 3

phase, 2 kW induction motor with a flexible shaft is commissioned for this purpose.

The efficiency of the proposed method for reducing UMP is examined.

Chapter 11 concludes the thesis and proposes future work to be undertaken. The

present study presents some interesting possibilities for further investigations.

Appendices A and B supplement the thesis with basic electromagnetic formulation,

additional formulae and results.
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Figure (l.1): An electrical machine
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Stator Core

Rotor Core!
I

Figure (1.2): A concentric rotor. '0' is the centre of the axis of rotation

Stator Core

RotorCorep
I

I

I

I

Airgap, (g+e)

Figure (1.3): An eccentric rotor with static eccentricity. 'P' is the centre of the axis of

rotation
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Chapter Two

Literature Review

2.1 Introduction

This chapter presents the literature review of unbalanced magnetic pull (UMP) and its

interaction on the mechanical dynamics. The calculation of UMP in electrical

machines, the examination of practical means of reducing this pull, and its effects on

the dynamics of the machine are subjects which have received considerable attention

over the last 50 years. The unbalanced force necessitates an increase in shaft diameter

and bearings size and has the effect of reducing critical speed, and the practical

importance of its accurate prediction is beyond question (Binns and Dye, 1973). There

are noticeable differences among the published papers in the method of UMP

calculation and also in the method of integrating UMP with the mechanical dynamics

model.

In 1963 Kaehne (1963) presented a detailed literature review on UMP in electrical

machines. Two recent literature reviews in this topic are done by Tenhunen (2003)

and Dorrell (1993). It is not immediately obvious how the various published work on

UMP should be classified. Mainly based on the method of calculation the review of

the published works is classified into following five main categories and they are

discussed individually:

1. Analytical methods of calculating UMP

2. Numerical methods for the solution of static magnetic fields

3. Numerical methods for the computation of magnetic forces from fields

4. Integration of electromagnetic and mechanical model

5. Experimental findings of UMP
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Before discussing the above points it will be wise to introduce the general

observations about the origin of UMP and its effects. A few analytical methods which

are commonly used while calculating UMP are also discussed.

2.2 General observations about the origin of UMP and its effect

An electrical machine consists of two parts: a rotating part which is called the rotor

and a stationary part called the stator. The UMP may be defined as a net force

between the rotor and the stator of an electric machine, which results from a

difference in the airgap flux densities on opposite sides of the machine. It can be said

that UMP comes to exist because of a lack of symmetry in the magnetic field linking

the rotor and the stator. This lack of symmetry can arise because of various reasons,

for example the effects of slots, non-symmetrical stator windings, saturation

phenomena and eccentric rotor in a stator bore. Although the UMP arising from all

sources is considered in this study emphases on the UMP generated from the

eccentricity of the rotor. Because of the eccentricity in the airgap of an electric

machine, in addition to the main field two additional fields also occurs i.e. p±l. Here

p is the number of pole pairs. The main field produces the torque and these two

additional fields gives rise to the UMP. A general view on this is given later in this

study. An eccentric machine having pole-pairs of higher than one will have always

these additional two fields. For a 2 pole machine only one additional field is present

since the other field changes into homopolar.

The UMP from the static eccentricity is stationary with respect to the stator frame of

reference and tends to act in the direction of the smallest airgap and the UMP from the

dynamic eccentricity has a rotating component with respect to the stator frame of

reference. Figures (2.1) and (2.2) show the static UMP and the dynamic UMP

respectively.

The UMP modifies the dynamics of the system by introducing additional terms in the

damping and stiffness matrices of the equation of motion. Apart from that the UMP

also introduces an additional forcing term in the right hand side of the equation of

motion.
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2.3 Airgap permeance

The basic theory of the airgap permeance harmonics is more than 50 years old. The

airgap permeance is the inverse of its reluctance. Figure (2.3) shows an eccentric

rotor. If the airgap happens to be very small compared to the outer radius of the rotor

and the airgap with respect to the stator reference frame can be approximated as

8(a,/) ~ 8m [1- e cos(a - WJ - fPc)] (2.1)

with the relative eccentricity, e = .!!_. Here 8m, is average airgap length, fPc' is the
8m

phase angle and lUc is the whirling frequency. In case of static eccentricity to, = O.

The airgap permeance varies inversely with its length. Inverting airgap length and

resolving into an airgap permeance Fourier series produces

(2.2)

The Fourier coefficients An are

A =n

(n = 0)
(2.3)

(n>O)

2.4 Conformal transformation technique

Another analytical method called the conformal transformation technique is also used

sometimes to calculate UMP in an eccentric rotor. In the airgap permeance method

the expression for the airgap MMF is usually assumed to be sinusoidal of known

amplitude. This usual assumption of sinusoidal MMF is a poor approximation
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especially if there are parallel stator paths with a non-uniform airgap. The conformal

transformation technique has an edge over the airgap permeance on this point and can

be used to study different combination of windings. A detailed explanation of

conformal transformation techniques is given by Dorrell and Smith (1994). This

technique transforms the machine from being magnetically asymmetric to one which

is magnetically symmetric but electrically asymmetric, i.e. to a machine which has a

uniform airgap but non-uniform winding distribution.

The conformal transformation of two eccentric circles to two concentric circles is

achieved by utilizing a simple inversion as

_ 1
z=-=:

t

(2.4)

By finding a proper value of d in Z-plane and c in T-plane, the eccentric rotor

machine as represented by circles 1 and 2 shown in Figure (2.4) can be mapped on the

T-plane as two concentric circles shown in Figure (2.5). The transformation results in

an irregular slot pattern in the T-plane and hence any method based upon this

technique must be capable of accommodating general asymmetrical windings. The

flux density distribution round the stator surface is different in the Z- and T-planes but

related by a transformation matrix. The machine represented in the T-plane can be

used to find an impedance matrix linking the stator currents and the terminal voltages.

2.5 Analytical methods of calculating UMP

Until recently, the analytical methods for calculating the electromagnetic forces have

been the most widely used. Most of the early works of the unbalanced magnetic pull

is analytical and the most favourite method is the airgap permeance method.

According to Dorrell (1994) the theory of the rotating fields in the airgap i.e. airgap

permeance method is the most common analytical method to calculate the forces

acting between the rotor and the stator and is widely used in the studies of the noise

and vibrations in electrical machines. Based on the this theory, Freise and Jordan

(1962) derived the equations for the forces caused by the eccentricity of asynchronous

and synchronous machines for symmetrical winding conditions. In these equations
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they used damping factors for taking into account the force reduction caused by the

equalizing currents. They also noticed that these currents change the direction of the

force from the direction of the shortest airgap. In addition, they discussed the effect of

eccentricity forces on the critical speed of a rotor.

Smith and Dorrell (1996) developed an analytical model for cage induction motors

considering the static eccentricity of the rotor based on the airgap permeance

approach including the stator and the rotor MMF harmonics. Unlike the method

proposed by Freise and Jordan (1962) this method can accommodate different

series/parallel winding connections and this is achieved by resolving the stator

windings into harmonic conductor density distribution. The saturation and slotting

effects are not considered in their calculation. It is also mentioned that the parallel

winding connections can lead to the localised saturation of the leakage paths around

the coils carrying the largest currents and the series winding connections can lead to

the localised saturation of the main magnetising paths around the area corresponding

to the shortest airgap. The horizontal and the vertical components of UMP by the

stator and the rotor airgap field components are given by

(2.5)

(2.6)

Here w is the machine effective stack length, d is the mean airgap diameter, lis and

BR are the amplitudes of the stator and rotor flux density, n is the stator winding

harmonics, (J) is the supply frequency, Po is the permeability of free space and *
represents the complex conjugate.

It is clear from the UMP expressions that generally two force components are present,

a constant force and an oscillating component at twice the line frequency. It is also

evident that the force components are produced by the interaction of the two fields

whose pole pair differs by one Le. nand n+I or n or n-l. It is concluded from the
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analytical study that in a series-connected winding the flux density distribution is non-

sinusoidal with the flux concentrating around the narrowest airgap, hence UMP is

significant whereas in a parallel-connected windings the flux density distribution is

much more sinusoidal and hence the UMP levels are greatly reduced. It is also shown

by Smith and Dorrell (1994) that the direction of the UMP deviates slightly from the

narrowest airgap.

Using the airgap permeance method Schuisky (1971) developed the expressions for

the UMP and studied different kinds of machine i.e. synchronous, asynchronous and

de machine under the static as well as the dynamic eccentricity. He also incorporated

the different winding connections and saturation effect in his analytical method. The

occurrence and magnitude of damping of UMP are dependent first and foremost on

the type and connections of winding. The homopolar flux is not considered in his

expression and he stated that it has no influence on the UMP. Later Belmans et al.

(1987) showed that the homopolar flux does contribute to the UMP.

The practical significance of unbalanced magnetic pull is explained in details by

Frohne (1967). He also used the airgap permeance method to calculate the UMP and

mentioned that UMP always acts in the direction of the shortest airgap. It is shown by

other researchers that there is a slight deviation from the direction of the shortest

airgap. For the static eccentricity the UMP is constant. The dynamic eccentricity gives

rise to a rotating component. The dynamic UMP exhibits effects that are similar to

mechanical unbalance. These are often referred to as magnetic unbalance. According

to him, among the practical effects of UMP, attention must be also paid to the

following:

1. The increase in the static shaft deflection.

2. The reduction of the critical speed of the rotor

He also showed that UMP is generated by the interaction of two fields with a pole-

pair difference of one. The influence of UMP on the deflection and hence the critical

speed of the shaft is demonstrated. In a simplified method in which the saturation of

the iron is ignored, a rather high value of UMP is obtained and this might lead to an

uneconomic machine design and particularly to erroneous assessment of vibrational

behaviour. He proposed one method in which the magnitude of UMP can be

calculated taking into account the saturation and damping.
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Berman (1993) presented a detailed analytical expression of UMP incorporating the

effect of the stator winding with the equalising connections.

Belmans et al. (1987) used the airgap penneance method to calculate UMP in a two-

pole induction machine for the static eccentricity. He also established a relationship

between the UMP and the homopolar flux which is ignored by previous researchers in

their study. He also showed that the direction ofUMP differs from the direction of the

shortest airgap. According to him p+ 1 components of UMP in the case of a two-pole

machine are damped by the equalising currents but the vibratory components with

twice the supply frequency, which occur due to the homopolar flux are not influenced

by the equalising currents and therefore, do not depend upon the machine load. Here p

is the pole pair of the machine.

Freise and Jordan (1962) showed that two-pole machines are special cases where the

eccentricity of the rotor tends to cause the homopolar fluxes. This flux crosses the air

gap only once and returns via the shaft and casing. The theory of the rotating field

shows that the homopolar flux can exist in any machine but it is most likely to be

significant in two-pole machine (Kovacs, 1977).

Haase et al. (1972), Fruchtenicht et al. (1982), Holopainen et al. (2005), Guo et al.

(2002), Joksimovic (2005) are a few of the researchers who used the airgap

penneance method to calculate the UMP in the study of noise and vibration

calculation of electrical machines.

Binns and Dye (1973) determined the relationship between the UMP and the static

eccentricity of a cage rotor through measurements of the electromagnetic field at the

rotor surface, and the significance of the tangential-flux component in the machine

airgap is assessed. Figure (2.6) shows the radial and tangential components of

magnetic flux density in the airgap of an electrical machine. It is mentioned in their

work that the UMP can be related to the unbalance and slip frequency flux

components by using the surface-integral methods of force evaluation, through the

simple equation
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(2.7)

where B; is slip-frequency component of flux density (peak), B)s unbalanced

component of flux density (peak), S is surface area of surface of integration and Po is

the permeability in free space.

According to Binns and Dye (1973), the measurement of the tangential-flux

components shows that these can be neglected in any further work on UMP.

Another method for UMP calculation is the conformal transformation technique

which is not as popular as the airgap permeance method. Swann (1963) put forwarded

a method to calculate UMP upon the conformal transformation technique because of

its capability of modelling different winding connections. Later Dorrell and Smith

(1994) developed this method and coupled to a winding impedance approach to

demonstrate the reduction of the static UMP of a typical stator winding with the

parallel paths together with the unbalanced winding currents.

Though quite a large amount of work has been done to calculate unbalanced magnetic

pull using analytical methods, many still suffer from some drawbacks. One of the

main drawbacks of the analytical methods is that the magnetic saturation of the iron is

not incorporated in the analytical formulation. Frohne (1967) and Schuisky (1971)

have incorporated the magnetic saturation in the analytical UMP calculation but these

are over simplified. Most of the induction machines are skewed but none of the

researchers has incorporated this design in their analytical model.

2.6 Numerical methods for the solution of the static magnetic field

The relationship between the magnetic field intensity, {H} and the magnetic flux

density, {B} is a property of the material in which the field exists, thus

{B}=p{H} (2.8)
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where /1 is the permeability, {H} is determined by a combination of permanent

magnet distribution and distribution of currents. Currents are induced by changing

{B} but this issue can be considered separately. The problem of computing {B} for

given {H} is a static magnetic field problem. To solve a static magnetic field problem

numerically, an appropriate method has to be chosen. The most important methods

prescribed by Hameyer and Belmans (1999) are listed below:

1. Finite Element Method (FEM)

2. Finite Difference Method (FDM)

3. Boundary Element Method (BEM)

4. Magnetic Equivalent Circuit (MEC)

5. Point Mirroring Method (PMM).

The advantages and disadvantages of the above methods are given in Figure (2.7).

The FEM is widely used in any engineering analysis and extensively used in the

analyses of structures, solids, electromagnetics, heat transfers and fluids. The

phenomenal success of the FEM IS mostly related to the development of

computational power. The FEM is a technique for solving partial differential

equations of a continuum domain. The continuum is discretised into a finite number

of parts known as the elements, the behaviour of which is specified by approximate

functions. The solution of this discrete problem is similar to the standard discrete

problem. Details about the FEM is widely discussed by Zienkiewicz and Taylor

(1989), Bathe (1996), Sylvester and Ferrari (1996).

Nowadays the FEM is widely used for the analysis of electromagnetic field problems

because of its flexibility. Bastos and Sadowski (2003) gave a detailed explanation

about the electromagnetic modelling by the FEM in his book. Williamson et al.

(1990) described two methods for predicting the performance of cage induction

motors using the FEM. The first method was used for the steady state analysis of an

induction motor. The parameters of the equivalent circuit model were calculated using

the FEM. The second method is suitable for the transient analysis and uses a time-

stepped coupled circuit model for the machine together with the magneto-static FE

field solutions that are used to update the circuit parameters.
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The FE analysis of induction machines needs further attention than the other electrical

machines because finite element should be capable of handling induced currents in the

rotor. The field of an induction motor must be solved with a method that takes the

time-dependence into account.

Perhaps the difficulties associated with the solution of time-dependent nonlinear fields

have hindered the progress of the numerical analysis of induction motors. The first

publication dealing with this problem appeared at the beginning of the 1980's

(Arkkio, 1987). The basic theory of the finite element method and the use of it to

analyse electrical machines is presented in details by Arkkio (1987), Hameyer and

Belmans (1999) and Silvester and Ferrari (1996).

Attention has moved towards the time-stepping finite element analysis of electrical

machines because of the rapidly developing power and speed of computers. For most

types of electrical machines the modelling is of a two-dimensional (Williamson,

1994). Williamson (1994) mentioned that although three-dimensional modelling gives

more accurate results than two-dimensional, its associated high computational cost

means it is still beyond the bounds of economic viability.

Most published finite-element based analyses of cage motors employ an eddy current

formulation for the rotor (Williamson et al., 1990), i.e., the current density in a rotor

bar is computed from the local rate of change magnetic vector potential (Arkkio,

1987), (Ho, et aI., 1999) and (Ho, et al., 2000). Effects due to the three-dimensional

nature of the rotor, such as the end-ring resistance, are taken into account by

modifying the rotor conductivity or by combining the rotor loop voltage equations

with the time stepped field equation. Such methods are both elegant and powerful but

suffer from two distinct disadvantages. Firstly, no satisfactory technique appears to

have been found for dealing with machines with skewed rotors, and secondly the

nonlinear field solution must itself be time-stepped, so a very long solution time is

required. The coupled-circuit method presented by Williamson et al. (1990) is capable

analysing the machines with skewed rotors and is believed to have features to reduce

the solution time required.
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A suitable finite-element software package can be used to study UMP in detail taking

into account the full magnetic circuit and eccentric airgap, and the influence of

saturation. This was done by Benaragama (1982) although without the influence of

the rotor eddy currents. Here is an example mentioned in Stoll (1997): a typical 500

MW generator on open circuit with a 10% static eccentricity was found to produce a

force per unit rotor length of 23.4kN when the direct axis of the rotor is towards the

small airgap In this static finite element calculation, the damping effect of eddy

currents is excluded.

The use of the parallel windings reduces the net UMP by allowing different amplitude

currents to flow in the parallel branches. Salon et al. (1990) and DeBortoli et al.

(1993) used a time-stepping finite element method for studying the equalizing

currents setup by an eccentric rotor in the parallel circuits of the stator windings. The

FEM is used to compute the eccentricity induced harmonics of airgap flux density and

UMP acting on the rotor. Different stator winding schemes such as series,

series/parallel, and parallel were investigated.

The calculation of force using numerical methods has been a popular research topic

during the last few decades, but the numerical field computation methods have only

been rarely used for analysing eccentric rotors (Tenhunen, 2003). It is shown that

there is a significant tangential force that exists in the airgap because of the

eccentricity which was neglected in most of the analytical calculations. Figure 2.8

shows the frequency response function at no load condition showing the radial and

tangential components of the force.

Arkkio et al. (2000) presented a simple parametric force model for the

electromagnetic forces acting between the rotor and the stator when the rotor is in

whirling motion. The model parameters of an electric motor were determined by

numerical simulations including the non-linear saturation of the magnetic materials.

The numerical results were validated by extensive measurements.

Amirulddin et al. (2005) presented a simulation model capable of investigating the

effect of induction-machine design on the generation and control of the radial forces.

They investigated the radial force production in both cage and wound rotor machines,
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and introduced a mixed field orientation method for the decoupled control of the

torque and radial forces.

From the above it has been observed that there is a strong need for a coupled

numerical model where the UMP is calculated and then combined with the

mechanical model to study the behaviours of the coupled system. To the knowledge

of the author there is no published literature available on the effect of parallel

windings on rotordynamics model.

2.7 Integration of electromagnetic model and mechanical model

If the time constants of electrical and mechanical dynamics happen to be at the same

range then the UMP may be large enough to couple both systems. The literatures that

have been reviewed in the earlier sections indicate that there has been intensive study

on the methods of calculating UMP, but due to rotor eccentricity, there are several

other aspects of the UMP which are still unclear. Many authors have tried to obtain

the analytical expression of the UMP for any pole-pair induction machine, and only a

few authors have studied the vibratory characteristics of the rotor system coupling the

UMP with the mechanical model. These are Fruchtennicht et al. (1982), Belmans et

al. (1987), Salon et al. (1999), Holopainen et al. (2002a), Guo et al. (2002) and

Pennacchi and Frosini (2005).

Fruchtennicht et al. (1982a) developed an analytic model for the electromechanical

forces between the rotor and the stator, when the rotor is in circular whirling motion.

The electromagnetic force parameters of this model are determined from the

analytical solutions. Using this model together with a simple mechanical rotor model

they studied the effects of the electromechanical interaction in a cage induction motor.

They also mentioned that total unbalanced force acting on the rotor consists of two

rectangular components:

• The first component is the well known unbalanced force which always tends

to pull the rotor in the direction of the shortest airgap length and thus being

related to the electromagnetic spring constant
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• The second component is a force where its line of action always perpendicular

to the first component. The second force component acts like an external

mechanical damping.

The analytical formula for the stiffness coefficient derived as

(2.9)

and the formula for the damping coefficient derived as

(2.10)

where Sp±1 are the slips of the rotor with respect to the eccentricity harmonic fields,

Pp+1 is the resistance-reactance ratios of the rotor mesh, ; p±l is the winding factors of

the eccentricity harmonics, ;Schr.p±l is the skew factors of the eccentricity harmonics,

and U gRp±1 is the geometrical leakage coefficients of the eccentricity harmonics.

Using these coefficients, together with the Jeffcott rotor model including the

contributions of the external and internal damping, Friichtennicht et al. (1982b)

developed an electromechanical model to study the effects of electromechanical

interaction on the rotordynamic stability.

Belmans et al. (l987a) developed an analytical model to calculate the electro

magnetically generated forces due to the eccentric rotor of a two-pole induction motor

with a flexible shaft. They derived an analytical expression for electro magnetically

induced spring constant and also for damping coefficient. These expressions includes

the contribution from the homopolar flux exist in the machine. It is shown that due to
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electromagnetically induced forces the critical speed of the machine is reduced. The

natural frequency of a coupled electro-mechanical model

(2.11)

where Kmech is the mechanical spring constant and Kmag is the electromagnetically

induced spring constant. The electromagnetically induced damping ratio is

(2.12)

where Cmech is the mechanical damping coefficient and Cmag is the electromagnetically

induced damping coefficients. The rotor is assumed to be a Laval rotor for the

machine considered. It is concluded that if the electro magnetically induced damping

coefficient is larger than the mechanical damping coefficient, instability will occur.

The previous research on the coupling of electromagnetic model with the mechanical

model has not been conclusive, in part because it has generally been based on the

assumption of synchronous whirling motion (Friichtennicht et al., 1982 and Belmans

et al., 1987) and in part because the effects of the saturation of magnetic materials are

not included in the analytical force models (Friichtennicht et al., 1982 and Belmans et

al.,1987).

Guo et al. (2002) studied the non-linear vibratory responses of a Jeffcott rotor excited

by the UMP and the eccentric force using a numerical method. The analytical

expression of UMP in a three-phase electric machine with any pole-pairs caused by

the static and the dynamic eccentricity is derived based on the idea of modulating the

fundamental MMF wave by airgap permeance expressed as Fourier series. The

conclusions of their study are

• The UMP includes constant and oscillatory components. The frequency of the

oscillatory component is twice the supply frequency. If the pole-pair number is

larger than three, only the constant component of unbalanced magnetic pull
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remains. When the eccentricity is large, the magnitude of the UMP is non-

linear.

• Due to the UMP, the natural frequency of the rotor system will be reduced and

the magnitude of vibration will become larger. When the relative eccentricity

is small, the UMP is constant and the orbits of the rotor centre are

axisymmetric.

• When the relative eccentricity is large, the centre orbits are not axisymmetric

due to the non-linear UMP. If p = 1, the components of UMP aremp'

(2me - mp) and 2me'

Holopainen et al. (2002a) studied the electromechanical interaction between the rotor

and the stator and developed an analytical model to study this interaction and the

stability of the machine. A lower order linear model, developed by Arkkio (2000), is

used for the electromagnetic forces between the rotor and the stator. The parametric

force model which includes only two cage-current harmonics and one equation for the

total electromagnetic force, can be written in the rotor reference frame as

(2.13)

(2.14)

(2.15)

where C-I and I:+I are the space vectors of the harmonic components p ±1of the

cage currents, the circumflex above a symbol refers to the space-vector character, p is

the number of pole pairs, the asterix (*) denotes the complex conjugate, IDs is the

electrical supply frequency, s is the slip of the rotor with respect to the fundamental

component of the stator field, i) is the phase angle of the magnetic-flux-density

space-vector at t = 0, F: is the total electromagnetic force exerted on the rotor, and

finally ap±I' 1"p±I' Cp±1 and ke are the system parameters. These parameters are

estimated from the numerical simulations. To reveal the relation of these parameters

23



to the machine and operation characteristics, the analytical formulae can be written

using several simplifying assumptions which are given in Holopainen, et al. (2005).

k = trdJe (132 + 132) t: = Lpi!
e 211 t5. ph' pi! R

1""'0 0 p±!

where 110 is the permeability in free space, d; is the outer diameter of the rotor core, Ie

is the equivalent core length, t5e is the equivalent airgap length including slotting, L is

the self-inductance of one mesh of the rotor cage, kpi! is the coupling factors due to

the leakage flux and the saturation, s,«. Rpi!' and Lpi! are the time constants, the

resistances, and the total inductances of the rotor cage determined separately for the

harmonic components p ± I respectively, Bp is the amplitude of the fundamental

component of the magnetic flux density in the air gap, and Bh is the effective

amplitude of all the high-order harmonics. In steady-state operation Bp and Bh and

thus the analytical parameters are constant.

Holopainen et al. (2002a) modelled the rotor as a Jeffcott rotor and combined this

mechanical model with above mentioned parametric force model. By applying this

model the electromechanical interaction are studied. It is concluded from the

numerical results that the electromagnetic fields and rotor vibrations may interact

strongly. If the new electromagnetic variables are interpreted as 'quasi-

displacements', the interaction turns up in the equations of motion as additional

damping, stiffness and circulatory terms. The circulatory terms, i.e. cross-coupled

stiffness terms, are a major source of instability in rotating machines.
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2.S Numerical methods for the computation of magnetically-

oriented forces

The calculation of the electromagnetic forces has been a very popular research topic

during the recent decades. Three such methods used to calculate the forces acting

between the rotor and the stator are discussed here in separate subsections.

2.8.1 Lorentz force

A problem frequently encountered is that of a current-carrying conductor In an

external magnetic field. The differential force equation may be written:

bF = I (axE) (2.16)

where Ii is the elementary length in the direction of the current I. Equation (2.16) is

derived from the fundamental force relationship between two moving charges. It

represents the magnetic part of the Lorentz force.

If the conductor is straight and the field is constant along its length, the differential

force may be integrated. In a two dimensional magneto static finite element model, the

field components are located in the plane, where the current is oriented

perpendicularly to it. In this case Equation (2.16) can be simplified to the following

expression for the conductor length /:

F=BIl (2.17)

These equations are theoretically valid only for a conductor in a magnetic field.

However, in practice it might be used even for the calculation of force in electrical

machines with many slots containing current, provided that B is the average value of

the magnetic flux density in the airgap. This simplification already indicates a loss of

accuracy, as the local information about the field is not taken into account. This
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approach combines the analytical and the numerical field analysis at a rather

simplified level.

2.8.2 Virtual work

Coulomb (1983) presented a method, based on the principle of virtual work for

calculating magnetically oriented forces from a finite element solution. In this

method, the force is calculated as a partial derivative of the co-energy functional with

respect to the virtual movement. The co-energy is defined by the integral

(2.18)

The component of the force F, in the direction of the displacement s is

F = oWco ~ dWco
s os ds

(2.19)

where Wco is the co-energy functional. The force in the direction of s is calculated as

follows

(2.20)

where summation may be restricted to the subset of virtually distorted finite elements

(area contained between the movable and stationary parts). When applying this

method to electrical machines, the summation is over the airgap elements (Antila et

al., 1998). [J] is the Jacobian matrix, which couples the local coordinates to the global

ones.
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2.8.3 Maxwell stress tensor

Methods based on the Maxwell stress tensor are commonly used in the calculation of

forces and torques in the finite element analysis of electric devices (Reichert, Freundl

and Vogt, 1976). Belmans et al. (1987), use this method to calculate UMP in the

airgap.

The electromagnetic force on a three-dimensional object is obtained as a surface

integral

F=fO'ds
s

(2.21)

(2.22)

where 0' is the Maxwell stress tensor, n is the unit normal vector of the integration

surface S and E is magnetic flux density. In a two-dimensional model, the surface

integral is reduced to a line integral along the air gap.

The normal, 0' nn and tangential, Ttt components of the Maxwell stress are

(2.23)

(2.24)

where En and Et are the normal and tangential components of flux density

respectively. If a circle of radius r is taken as the integration path as shown Figure

(2.9), the normal and tangential components of the force are
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2tr

F, = I f{O'nn cos8 - 1'/1 sin 8) rd8
o

(2.25)

2tr

F; = I f{O'nn sin 8+ 1'/1 cos8) rd8
o

(2.26)

Here I is the axial length of the machine. If the solution were exact, the force would be

independent on the integration radius r when r varies within the air gap. However, the

calculated force depends greatly on the choice of the integration radius. A modified

method based on the Maxwell stress is also put forward by Arkkio (1987).

Methods based on the Maxwell's stress are commonly used on analytical studies with

some simplifications. Supposing that the permeability of the core material is infinite,

the flux lines enter and leave the stator and rotor surfaces perpendicularly. Maxwell's

stress tensor O'{x, t) is then calculated from the radial component of the flux density

distribution in the air gap B,{x, t) (Fruchtenicht et al., 1982)

(2.27)

The flux density distribution can be solved by harmonic analysis of the airgap fields

or by using the conformal transformation technique. The force is then obtained by

integrating the Maxwell's stress tensor around the rotor (Fruchtenicht et al., 1982).

2.9 Experimental findings of UMP

Not much work has been reported on the experimental findings of UMP in literature

because of the obvious difficulties. The parallel windings on either the stator or rotor

damp UMP (Dorell, 1999). Dorrell and Smith (1993) have shown that the parallel

stator windings can also be used to reduce UMP but this is not very effective for a

cage rotor since the rotor already have many more parallel paths. Dorrell and Smith

(1996a) developed an analytical model to investigate the effectiveness of series and

parallel connections of stator coils. They (Dorrell and Smith, 1996b) also verified the
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results from this analytical model with the experimental results. They mentioned that

for a static eccentric rotor, any eccentric field component will cause vibrating UMP at

twice-supply- frequency.

Berman (1993) theoretically proved and also experimentally verified the substantial

reduction in UMP due to the parallel windings with equalizing branches. He measured

the radial forces on an experimental setup. His experimental setup consists of two

induction motors with a common shaft which capable of permitting a variety of

connection patterns for the stator coils. Forces are calculated in two mutually

perpendicular directions with the help of the strain gauges serving as branches in

differential bridges. His experimental findings confirmed that using the equalising

connections, up to 25 times reduction in UMP can be achieved. Figure (2.10) shows

the radial strain for different supply voltages with series and equalizing pattern of

stator coils.

The relationship between the UMP and the homopolar flux is derived by Belmans et

al. (Belmans et al., 1987). The stability of the radial vibration behaviour of induction

motors also depends upon the electro magnetically generated forces due to the

eccentric rotor position. The homopolar flux generated by the eccentric rotor position

clearly influences the unbalanced magnetic pull in 2-pole induction motors, not only

by altering the value of the constant component of the pull, but also generating a pull

component with a frequency double that of slip (Belmans et al., 1987).

2.10 Summary of the review

The unbalanced magnetic pull of an electric machine can be calculated analytically as

well as numerically. An electric machine is a complex electromagnetic device.

Analytical methods can calculate the electromagnetic forces between the stator and

the rotor very quickly but certain aspects of an electric machine such as magnetic

saturation, skew effect, effect of slots, uneven distribution of field is difficult to

incorporate in the model. Numerical methods can calculate UMP taking these effects

in consideration. This chapter reviewed the literature related to analytical and

numerical methods for calculating UMP in an electrical machine.
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Clearly a substantial amount of work has already been carried out to calculate the

UMP and its effect in the stability of an electrical machine using analytical model.

There are still gaps to be filled in these analytical models. Improvements can be made

of these analytical models by incorporating magnetic saturation, effect of skew, effect

of slots, effects of uneven distribution of magnetic field into these models.

It is also found that there is a strong need for a coupled numerical model which can

integrate the electrical dynamics with a detailed mechanical dynamics. This will allow

us to investigate the electromechanical interaction in electrical machines. This is the

main aim of this study.

The results of the numerical models are incomplete without experimental

verifications. There is not much literature published on the experimental findings of

the UMP and the electromechanical interaction because of the obvious difficulty. An

attempt has been made in this thesis for experimental investigation of

electromechanical interaction in an induction machine.
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Figure (2.1): UMP from static eccentricity
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Figure (2.3): Airgap of an electric machine with an eccentric rotor
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Figure (2.6): The radial and tangential components of magnetic flux density in the

airgap. (Binns and Dye, 1973)
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Figure (2.7): Numerical field computation methods (Hameyer and Belmans, 1999)
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Figure (2.8): Frequency response functions at no load condition. In the figure thick
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Figure (2.10): The radial strain for different supply voltages: (a) series pattern of

stator coils, (b) equalizing pattern of stator coils (Berman, 1993)
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Chapter Three

2-D Finite Element Modelling of Electric Machines

3.1 Introduction

During the past few decades, the numerical computation of magnetic fields has

gradually become a standard in electrical machine design. The finite element method

(FEM) currently represents the state-of-the-art in the numerical magnetic field

computation relating to electrical machines [Bastos and Sadowski (2003), Hameyer

and Belmans (1999)].

In the scope of this thesis, a typical motor or generator can be modelled with high

accuracy by two-dimensional FEM, which is coupled with the circuit equations for the

windings. The FEM for electromagnetic analysis is well established but it will be

appropriate to introduce the procedure adopted in this study.

In this chapter, the basic equations of the electromagnetic field are presented along

with a systematic procedure of finite element formulation for electromagnetic study.

The relationships between currents and flux, and subsequently between flux and force

are described. It is assumed here that currents are known and they are calculated from

the given current densities in the current-carrying regions. The modelling of eddy-

currents additionally using magnetic vector potential is dealt with shortly. The

presence of ferromagnetic materials makes the relationship between current and flux

non-linear. At first formulations are derived for linear FE analysis and subsequently

material nonlinearity is incorporated in the model. The treatment of time-varying

geometry is deferred to Chapter 6.
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The procedure presented here is general in nature and can be applicable to any

electrical device; but specific emphasis is placed on electrical machines. A non-linear

finite element computer code has been developed. Using the procedure developed

three electrical machines have been studied.

3.2 Basic equations of the electromagnetic field

In this section the differential equations of the magnetic vector potentials are derived

from Maxwell's equations. The aim is to give the basic field theoretical material for

the next sections that contain the discretization of the field equation by the finite

element method. Details about the field potentials and its formulations are given by

(Hameyer and Belmans, 1999)

In three-dimensional magneto-static analysis magnetic flux density is derived as the

curl of magnetic vector potential

{BXx,y,z) = V'x{AXx,y,z) (3.1)

where

{BXx, y, z) is the vector magnetic flux density

{AXX, y, z) is the vector magnetic vector potential

A static magnetic field in an electrical machine is governed by Maxwell's equations

V'X{HXx,y,z)= {J0Xx,y,z) (3.2)

where

{HXx,y,z) is the magnetic field intensity vector

{JoXx,y,z) is the current density vector

The integral of magnetic flux density over any closed surface is zero and In

differential form
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V· {B}(x,y,z) = 0 (3.3)

Using the permeability tensor, ~] we have the material equation

{B}(x,y,z) = fl-tKH}(x,y,z) (3.4)

where ~] is a material-dependent and possibly nonlinear function of the magnetic

field. In this study, nonlinearity is dealt with using a local linearization. For an

isotropic material ~] is a scalar and is denoted by u. and if the material is not an

isotropic, tensor ~] is a 3x3 matrix, which takes into account the effect of the

magnetizing directions. The 2D field equation for an orthotropic material is shown in

Appendix A. Using the magnetic vector potential {A}(x,y,z), the system of

differential equations is reduced to

Vx(Vx{A}(x,y,z))= ~KJo}(x,y,z) (3.5)

Applying vector calculus Vx(Vx{A}(x,y,z))= V(V. {A}(x,y,z))- V2{A}(x,y,z) to

Equation (3.5) yields

(3.6)

With V.{A}=Oand by assuming a constant permeability, J1, leads to the A-

formulation of a magnetic-static field, a Poisson's equation:

V2{A}(x,y,z) = -,u{J o}(x,y,z) (3.7)

To consider quasi-stationery fields, for example necessary for eddy current

calculations, the magneto-dynamic formulation must be employed. In addition to

Ampere's law, Faraday law has to be considered to evaluate the conduction to the

field by the eddy currents:
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a avx {EKx,y,z)= --{BKx,y,z)= --(v x {AKx,y,z))at at
(3.8)

Now Ohm's law is employed to calculate the eddy currents, {IeKx,y,z)

a{JeKx,y,z)= -u-{AKx,y,z)at
(3.9)

where (j is the conductivity of the material. Ampere's law can now be rewritten,

yielding the A-formulation for the quasi-stationery magnetic field in the time domain:

v x [_!_V x {AKX,y,Z)] +O'~{AKx,y,z) = {JoKx,y,z)~ at
(3.10)

Substituting agam V x (V x {AKx,y,z ))= V(V. {AKx,y,z ))- V2 {AKx,y,z) and

assuming V· {AKx,y,z)= 0, results in a similar A-formulation the time domain for the

transient magnetic field:

(3.11)

Assuming sinusoidal excitation currents with an angular frequency, m and thus

substituting

~{AKx,y,z)= jm{AKx,y,z)at
(3.12)

yields the A-formulation in the frequency domain to solve eddy current problem.

(3.13)
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This equation is the A-formulation to describe time-harmonic problems. The time-

dependent components of the vector potential {A}<t)= {A}.cos(mt+~)are expressed

as

(3.14)

Employing a true eddy-current model would require that all magnetic potential

variables were state-variables which had to be integrated for applications other than

where pure sinusoidal variations were encountered. The standard magnetic FEA

packages use this procedure. The model presented in this study will represent induced

circulating currents using discrete current variables. Inductances are calculated once

these currents are known and hence the back EMFs. This is one of the reasons why we

can not use these standard packages for this study. The equations described above are

for three dimensional magneto-static problems. From this point onwards we will

confine our study on two-dimensional magneto-static analysis. The two-dimensional

model is based on the assumption that the magnetic vector potential and current

density have only z-axis components and their values are determined in the xy-plane

A

Az = A(x,y)k (3.15)

A

Jz = J(x,y)k (3.16)

where fc denotes the unit vector in the z-axis direction.

3.3 Finite element formulation

For a magnetically linear material, the electromagnetic energy inner product is

1

[AA =1,[(:)(:)] P; o
1

(3.17)
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where \}'j is the area of the jth element, A is the magnetic vector potential which is a

function of position and J.Lxx and J.Lyy are the permeabilities along x and y respectively

where these are the principle axes of the magnetic material.

3.3.1 Shape functions

To facilitate the definition of various finite elements, we introduce the idea of a

"reference" or "local" element and the reference or local system of coordinates.

Figures (3.1) and (3.2) show the node ordering chosen in the reference and actual

Cartesian coordinates. The various relations needed to define an element are

generated in the local system of coordinates because it is easier to do so. In order to

represent the magnetic field within one element using finite number of variables, we

need a coordinate transformation between a space of infinite dimension and a finite

number of coordinates. This transformation is accomplished by shape functions.

The coordinate transformation

x = X(~,17) (3.18)

And y = Y(~,17) (3.19)

represents a mapping of the points (~,17) in the ~,17-plane onto points (x, y) in the x, y

-plane. Figure (3.1) shows a rectangular element in the ~,17-plane and Figure (3.2)

shows a curved element in x, y -plane. The element in the ~, 17-plane is referred as the

master element and the element in the x, y -plane is described as an isoparametric

element. A finite element is called "isoparametric" when the same functions are used

for mapping element coordinates as are used for the shape-functions. Isoparametric

elements are the commonly used elements in FE codes. In electromagnetic finite

element analysis magnetic potentials are approximated by piecewise polynomials that

can be used for mapping one element onto another. Shape functions are derived for 4-

noded quadrilateral element, 8-noded quadrilateral element, 3-node triangular element

and 6-noded triangular element and they are explained in the following subsections.
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3.3.1.1 4-Noded quadrilateral element

Figure (3.3) shows the node ordering chosen for the 4-noded quadrilateral element.

The four shape functions can be written as

NI(;,1]) = +(1 -;)(1-1])
N2(;,1]) = +(1- ;)(1 + 1])
N3 (;,1] ) = +(1+ ;)(1 + 1])
N4 (;,1] ) = HI+ ;)(1 -1])

(3.20)

3.3.1.2 8-Noded quadrilateral element

Figure (3.4) shows the node ordering chosen for the 8-noded quadrilateral element.

The eight shape functions can be written as

NI (~, 1])= t (1- ~) (1-1] ) (-1 - ; -1])
N 2 (~, 1])= ± (1- ~) (1+ 1])(-1 - ~ + 1])
N3(~,1])=±(1 + ;)(1 + 1])(-1 + ~ + 1])
N4 (~,1])= HI+ ;)(1-1])(-1 +~ -1])

N5(~,1])=Hl-;)(1-1]2)
N6(~,1])=t(1- e)(1 + 1])
N7 (~,1])= t(l + ;)(1-1]2)
N8(~,1])=t(1-;2 )(1-1])

(3.21)

3.3.1.3 3-Noded triangular element

Figure (3.5) shows the node ordering chosen for the 3-noded traingular element. The

three shape functions can be written as

NI(;, 1])= (1-; -1])
N 2 (;,1]) = 1]
N3 (;, 1])=; }

(3.22)
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3.3.1.4 6-Noded triangular element

Figure (3.6) shows the node ordering chosen for the 6-noded triangular element. The

six shape functions can be written as

NI (~,1])= 2(~ +1] -I{ ~ +1] -~)
N2 (~, 1])= 1](21]-1)
N3 (~,1]) = ~(2~-1)

N4 (~,1]) = -41](~ +1] -1)
N,(~,1])= 4~1]

N6 (~,1]) = -4~(~+1] -I)

(3.23)

3.3.2 The magnetic stiffness matrix

We assume that the finite element approximation of the magnetic vector potential, A

over a given element with n nodes has the form

n
A(x,y)= {N(~,1])y {A}=I NjAj

j=1

(3.24)

where {N(~, 1])} is an n-vector of interpolation functions (shape functions) and {A} an

n-vector of nodal magnetic vector potential. The (~, 1]) is omitted from {N(~,1])}
hereafter for the sake of brevity. Moreover, the mapping of (~, 1]) onto (x, y) is given

by

n

X = IN;x; = {NY {x}
;=1

(3.25)

n

y = IN;y; = {NY {y}
;=1

(3.26)
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in which {x} = [XI, X2, ... , xn] and {y} = [YI, Y2, ... , Yn] are n-vectors with entries equal

to the x- and Y- components, respectively, of the nodal points (Xj, Yj).

The stiffness matrix involves the partial derivatives aA/ ax and aA/ay and to find

these quantities, it is necessary to have expressions for the partial derivatives of the

shape functions with respect to x and y.

a{NV
a~ =

a{NV
a1]

a{N}T
ax

a{NV
ay

a{NY
= [J]-I a~

a{N}T
a1]

where [J] is called the Jacobian. Again

(3.27)

(3.28)

(3.29) and (3.30)

(3.31) and (3.32)

Now the Jacobian is calculated as

ay aN;
a~ = a~
ay aN;
a1] a1]

ax

[J]= ~
a1]

Finally for the jth element

(3.33)
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a{NY a{NY
a{:Y {AJ= [Jjl a{Jy {AJ
ay a17

(3.34)

The differential element of an area can be shown to transform according to

(3.35)

Now we can write the expressions for the isoparametric element stiffness matrix.

Inserting Equations (3.34) and (3.35) into Equation (3.17) we obtain

(a{N}) r

[A A]. = f. {A}r a~ [J]-r J.Lyy
• , jp, ' ( a~~}) 0

1
(3.36)

(a{N}) r

[A A]. = r'2 f2 {A}r a~ [J]-r J.Lyy· , ~,~, ' (a~~}) 0

1

(3.37)

(3.38)

where lK j J is the stiffness matrix for the jth element. Here ~I and ~2 are the

integration limits for ~; similarly 171 and 172 are the integration limits for 17. For a

quadrilateral element ~I and ~2 are -1 and 1 respectively and 171 and 172 are also -1

and 1 respectively. The stiffness matrix for the whole domain, which is known as the

global stiffness matrix, is obtained by assembling the individual stiffness matrices.
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3.3.3 Conduction modelling

The electrostatic constitutive relationship is

E(x, y) =p(x, y )J(x, y) (3.39)

where J(x, y), E(x, y) and p(x, y) are continuous current density, local electrical

field strength (Vim) and local resistivity respectively. Total power (per unit length)

being dissipated over a domain '¥ is

(3.40)

Now J(x,y) for a single "element" will be approximated as

"J(x,y) =L Nk (x,y v,
k=l

(3.41)

where k is the index of "nodes" on the element and where Nk (x,y) is a "shape

function" which is unity at the k-th node but zero at all others. Total power being

dissipated Po over the element now

(3.42)

where {j} is the vector of nodal current density values and where

[x]= ip(x,y){N(x,y)Y {N(x,y)}d'P (3.43)

Now, each element is characterised by an equation in the form

[x]{j}= {e} (3.44)

45



where {e} is the vector of nodal electric field strength values. We assume that the

original distribution of electric field strength E(x, y) is equal to

"E(x,y)= LNk(x,y)ek
k=l

(3.45)

and we obtain a definition for {e}in this case from the assumption that

1'I'I{eY{j}= lE(x,y }J(x,y)d'¥ = Power being dissipated per unit length (3.46)

Note from this that the units of field strength E(x, y) are (V1m) and that we obtain the

vector {e}from

{ }= iE{x, y ){N(x, y)}a'I'
e 1'1'1

(3.47)

It is clear, now, that we can assemble a model for the entire region from individual

element models. Each element makes a contribution to both [X] and {e}.

For the purpose of coupling electrical circuit models to the magnetic model, we will

want nodal "currents" rather than "current densities". We must prepare our basic

electrical model using the "current density" as variables and then transfer it to

"currents". The transformation from current density to currents has to be done element

by element. A given current density at one node will account for n contributions to

current - one contributed from each of n elements. Each individual contribution to

current is derived using the following argument:

The work done WD by a current distribution J(x, y) on a magnetic field described by

the magnetic potential A(x,y) is given by
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(3.48)

If, here, \f represents only a single element then our magnetic potentials, A(x, y),
will have been written as

n

A(x, y) =Lu,(x,y )Ak
k=!

(3.49)

where Ak is the k-th nodal magnetic potential and M, (x,y) is the k-th shape function

for magnetic potentials. For a purely "magnetic FEA" perspective, the element

stiffness matrix is derived as

(3.50)

The forcing vector {Iz} then corresponds to nodal currents and the work done on the

magnetic field by the currents is given by

(3.51)

From the above we obtain the definition

{IJ= [S]{j} (3.52)

where S(i,j) = iM;(x,y )Nj (x,y)d'¥ and often M; =N; T;f i. Now the resistance

matrix [R] is calculated as

[R]= [sY[xIs] (3.53)
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3.3.4 Calculation of the magneto motive forces

In any electrical systems magnetomotive forces (MMFs) can be contributed by current

carrying coils or permanent magnets or both. Calculations of equivalent nodal current

excitations from the both sources are discussed separately.

3.3.4.1 MMF from current carrying coils

Equivalent nodal current excitation can be calculated when MMF source is current

carrying coils. We define the term current density by dividing current by the cross-

sectional area perpendicular to its direction. For a constant current density the

excitation for jth element is calculated as

{IJ= jJo(x,y ){NJd'I'
'I'

(3.54)

where J 0 (x, y) is the current density and {Nj} is the shape function of jth element.

This provides a vector of nodal currents. It is assumed in this chapter that currents are

known and they are calculated from the given current densities in the current-carrying

regions. Electric machines are generally voltage fed and also it is quite common to

find electrical machines fed by static converters and the field equations need to be

written with the external electric/electronic circuits. This requires a special treatment

to calculate the currents and will be discussed in the next chapter.

3.3.4.2 Magnetomotive force of permanent magnets

Equivalent nodal current excitations can be calculated for permanent magnet regions

if the relative permeability, J1 and remanent flux density vector, {Bo} are known.

Relative permeability and remanent flux. density can be calculated from the B(H)

curve of the permanent magnets. Figure (3.7) shows B(H) curves of the four principal

permanent magnet materials available. If the remanent flux. densities with

magnetisation directions and the respective relative permeabilities are known, the
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coercive field intensities can be calculated. The remanent flux density vector, {Bo lis

related to the coercive field intensity vector {He} by

(3.55)

Figure (3.8) shows magnetisation curve for a permanent magnet. Once the coercive

field intensities are calculated, the equivalent nodal current excitations are calculated

using Equation (3.56).

(3.56)

where M ex and Mcyare the components of {He} along the two principal directions x

andy respectively.

3.3.5 Calculation of magnetic flux density

Once the magnetic vector potential is calculated at each node the next step is to

calculate the magnetic flux density and (if relevant) the resultant magnetic forces and

moments. The magnetic potential for thejth element was stated in Equation (3.24),

A(x,y)= {NY {Aj}= INiAi
i=1

(3.57)

The magnetic flux density is the curl of magnetic vector potential, i.e. B = V x A . So

the magnetic flux density along x-direction is B, =: and the magnetic flux density

along y-direction is By = - ~. Both B x and By can be calculated from
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a{~}T a{~}T
a{~y {AJ= [Jjl a~y {AJ

ay aT]

(3.58)

3.4 Material properties

Generally permittivity and conductivity can be considered to be constant. However,

permeability (or reluctivity) is dependent on the magnetic field intensity.

Ferromagnetic materials are characterized by a B(ll) curve, with permeability varying

depending on the location on the B(ll) curve. The B(ll) curve shown in Figure (3.9)

has been considered for the ferromagnetic materials in this study. For effective use in

the finite element this B(ll) curve is divided into four regions and each region is fitted

with an equation maintaining Cl continuity. These equations are given in Appendix A.

3.5 Non-linear finite element analysis

Section (3.2) describes the linear relationship between the nodal potentials and nodal

currents in a domain. The permeability of ferromagnetic materials in any

electromagnetic device is not constant and is dependent on the field intensity. Figure

(3.9) shows the magnetization characteristics in B(ll) form of a typical electrical steel.

The permeability changes hence the stiffness matrix changes with the field intensity.

This implies that Equation (3.50) is non-linear since the stiffness matrix, [K] is a

nonlinear function of the permeability of the materials. The permeability of the

materials depends on the excitation and is calculated from its B(ll) curve. Equation

(3.50) can be written in two different forms. The first one is the instantaneous

relationship between the magnetic vector potentials and the currents and can be

written as

(3.59)

The second form is the linearised form and can be written as
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(3.60)

where [Kmarl is the tangential or marginal stiffness matrix. If we know the flux

density everywhere, then we would be able to calculate the stiffness matrix [Kmar]
instantly and directly. The flux densities are calculated by an iterative procedure using

a Newton-Raphson technique which is described in the next paragraph. {bJ is the

free MMF vector. For a linear case the value of the vector {bJ will be zero and then

Equation (3.60) will be similar to Equation (3.50). That is why linear problem is

treated as a special case of non-linear problem throughout this thesis. To calculate the

vector {bJ, a point PI is considered in the non-linear region on the B(1l) as shown in

Figure (3.10). If a tangent is drawn through PI as shown by a dotted line in Figure

(3.10), then there will be a negative value for field intensity. This is shown as M in the

figure. Based on the direction of the saturation there will be components of M. Once

the components of M are obtained the free MMF vector can be calculated using the

similar procedure explained in Section 3.3.4.2.

The Newton-Raphson procedure, an extension of the Newton method, is adopted

because of its quadratic convergence to solve non-linear problem in this analysis. It

works by guessing a trial solution, and then successively improving the "initial guess"

by using the slope of the B(ll) curve. Figure (3.10) shows a schematic representation

of the procedure adopted to solve the non-linear static electromagnetic problem using

the Newton-Raphson method.

The procedure starts with an initial guess of the permeability and this is shown as f.ig

in Figure (3.10). BT (x,y) and HT (x,y) are the flux density and field intensity

respectively corresponding to f.ig• M(x,y) is referred here as the free MMF which is

(3.61)
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At each point in the domain a linear approximation is made to the magnetic

characteristics. The stiffness matrix and free MMF are calculated for this initial guess.

Once the stiffness matrix and the free MMFs are calculated, the magnetic vector

potentials are calculated using Equation (3.60). Now an excitation residue vector, {9t}
is calculated using the equation

(3.62)

The nominal correction proposed by the standard Newton-Raphson procedure for

addition to the magnetic vector potential will be

(3.63)

The actual new magnetic vector potential is

(3.64)

Here a is a relaxation factor which helps to facilitate the convergence. Improvement

of convergence characteristics of Newton-Raphson method for nonlinear magnetic

field analysis by choosing the optimum relaxation factor is explained by Nakata

(1992) and Oapos and Oapos (1995). The procedure for updating the estimated vector

of potentials based on a known vector of excitation is continued until the norm of the

residue satisfies the convergence criteria.

3.6 Computer code for finite element analysis of electromagnetic

The previous sections mainly focus on the general procedure of finite element

modelling in electromagnetic field problems. A particular interest is devoted to the

modelling of magnetic material behaviour and to the coupling with the

electromagnetic field computation. The procedures described above are general in

nature and can be applied to the analysis of any electromagnetic systems.
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Computational codes called MagFEA (Magnetic Finite Element Analysis) for two-

dimensional electromagnetic field problems have been developed in the MATLABTM

environment based on these procedures. The results are verified by a commercial

software called 'MEGATM' developed by the University of Bath, UK. The results

obtained from the MagFEA and MEGA for a simple electromagnetic device have

been presented in Appendix. Most of the numerical routines that have been used are

standard routines within MATLAB. This is the main reason for choosing MATLAB

for this study. MagFEA comprises a pre-processor where the model is built, a solver

where excitations are applied and responses are computed and a postprocessor, for

producing graphical output. The solver has the capability to solve linear as well as

nonlinear transient problem.

3.6.1 Pre-processor

In the pre-processor facilities are provided which assist the user in creating a

description of his model. The design of the pre-processor of MagFEA is generic and

can model any 2D geometry. Mesh generation is semi-automatic. At the first stage the

user has to identify the key regions of the model and then specify the discretisation

level. An isoparametric element is used to map the local element to the global

element. The procedure of mesh generation can be summarised as follows:

• User divides the meshable region into key regions (or elements).

• Generate information about the nodal coordinate of the key nodes and

connectivity of the nodes of the key region.

• Generate information about the material properties and excitation of individual

key elements.

• User decides the discretisation level depending on the requirement.

• Discretise individual key elements as per the discretisation level using

isoparametric elements.

The model comprises of seven arrays and these are KEYNODES, KEYELEMS,

KDIV, NODES, ELEMS, PERM, EXCT.

• KEYNODES comprises of three columns and stores the information about the

nodal coordinates of the key nodes of the domain to be discretised. The first
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column stores the keynode labels, and the other two columns stores the x- and

y-coordinates respectively.

• KEYELEMS comprises of eleven columns. It stores the information about the

connectivity of the keynodes, indices for the material properties, excitation

and element types. The first eight column stores the connectivity of the

keynodes. Some of the entries of these eight columns will be zero if we use 4-

noded quadrilateral, 3-noded triangular and 6-nodes triangular elements.

• KDIV stores the information about the discretisation level and comprises two

columns. The number of rows of KDIV is equal to the number of key

elements. The first column stores the number of divisions along the local x-

axis and the second column stores the number of divisions along the local y-

axis of a particular key element.

• Similar to the KEYNODES, NODES comprises of three columns and stores

the information about the nodal coordinates of all nodes of the whole domain

once it is discretised. These columns store exactly the same information as the

columns ofKEYNODES.

• Similar to the KEYELEMS, ELEMS comprises of eleven columns and stores

the information about the connectivity of all nodes for the whole domain once

it is discretised. These columns store exactly the same information as the

columns ofKEYELEMS.

• PERM comprises of two columns and stores the information about the

material properties specified by the ninth column of ELEMS. The two

columns of a particular row represent the permeabilities along the two

orthogonal directions and they are !ixx and !iyy' In case of isotropic materials

J.lxx = J.lyy but in case of orthotropic materials !ixx *!iyy •

• EXCT stores the information about the excitation applied to the elements. The

excitations are mainly constant current density. This array is optional because

in most of the application of this study we do not have prior information about

the excitations in terms of current density.
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3.6.2 Solver

The solver is capable of solving 2D magneto-static electromagnetic problems. An

excitation is applied as a current density. The solver is also capable of modelling

permanent magnets. To solve for the permanent magnet remanent flux, the relative

permeability and magnetization direction are provided as an input to the solver. Any

permanent magnet portions of the model are modelled using current distributions. The

solver has the following capabilities

• Linear and non-linear 2D magneto-static analysis of electromagnetic

system, electromechanical actuators, electrical machines.

• Steady state characteristics of electrical machines in general and

induction machine in particular.

• Transient solver including motion-induced eddy currents.

This solver also includes the coupling of electromagnetic equation to the mechanical

equations of motion, so that the movement of an electrical machine is accurately

simulated. The rotor and stator of an electrical machine are modelled completely

independently and combined at the middle of the airgap to take care of the rotor

movement. The solver re-meshes only the airgap regions to take care of the rotor

movement. A method where the solver does not have to be re-meshed to take care of

the movement is explained later Chapter 7.

3.6.3 Post-processor

In the post-processor the computed results from the analysis are displayed. The post-

processor has the following features

• Plot contours of the magnetic flux at any location in the finite element domain.

• Calculate and plot the flux densities along the two orthogonal directions at any

location in the finite element domain.

• Calculate and plot the magnetic stresses along the two orthogonal directions at

any location in the finite element domain.

• Calculate the forces along the two orthogonal directions.
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3.7 Case studies for Static Unbalance Magnetic Pull (UMP)

This section presents three case studies to validate the non-linear finite element code

developed which is explained in the previous section and also to calculate static UMP.

In the following section the results from the finite-element code (MagFEA) are

presented. Static UMP is calculated for two different electrical machines. The first

one is a 2 kW, 3-phase induction motor. The configuration of the stator and

electromagnetic parameters of this motor are similar to the experimental rig discussed

in later chapters. The only difference between the two is the configuration of rotor.

Unlike the rotor in the experimental rig, the rotor in the machine studied here has non-

magnetic slot wedges. The numerical modelling code has the provision to study

machines with either magnetic or non-magnetic slot wedges.

3.7.1 Case study I: Unbalanced magnetic pull of an induction

machine

The first case study aims to calculate the static UMP of a 2 kW induction motor. The

main electromagnetic parameters of the motor are presented in Table (3.1). The stator

and rotor are modelled separately and discretised with eight noded quadrilateral

elements. These two meshes are connected at the middle of the airgap with six noded

triangular elements. Figure (3.11) shows the finite element mesh considered for this

study. Currents are applied at the stator windings which vary sinusoidally about the

machine periphery producing a four pole field in the motor. Forces are calculated

using the non-linear solver of MagFEA when 3-phase sinusoidal currents with peak

currents of 100A, 200A and 300A per slot respectively in the stator for different

eccentricities of the rotor. Induced currents in the rotor are not considered as the radial

force is calculated for the worst case of the motor. A contour plot of magnetic vector

potentials is shown in Figure (3.12) when a 3-phase current with a peak of 200A is

applied in the stator for a concentric rotor. Figures (3.13) and (3.14) show the normal

and tangential components of flux density in the middle of the airgap respectively for

the same operating current but with an eccentricity of 10% of the airgap. The

magnetic normal and shear stresses are calculated using Equations (2.23) and (2.24)

of Chapter 2 once the components of flux densities are known at the airgap. Normal
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and shear stresses in the airgap are shown in Figures (3.15) and (3.16) as a function of

the angular position.

The mean airgap for the above study is kept constant at 0.4 mm. Forces are calculated

by shifting the rotor from its central position along the positive x-direction as well as

along the negative x-direction. Because of the discretization there will be some

vertical force associated with this horizontal movement. Figure (3.17) shows the

horizontal and vertical forces per meter of axial length for different eccentricities

when 3-phase current with a peak of 200 A (per slot) is applied. For a 30% rotor

eccentricity a force of 1800 N per meter of axial length is generated. From Figure

(3.17) negative stiffness is calculated as 1.883 x 106 (N/m) per meter of axial length.

From Figure (3.17), it is clear that force is varying quite linearly with eccentricities of

up to 30% of the airgap. Figure (3.18) shows the horizontal and vertical forces per

meter of axial length for 3-phase currents with different peaks per slot. The effect of

magnetic non-linearity in the iron is distinct from Figure (3.18). For a peak current of

300 A per slot, the force no longer varies linearly with the current. As the machine is

saturated the magnetic fluxes are distributed uniformly reducing the amount of

unbalance flux in the airgap and in turn reduces the unbalance force in the airgap.

3.7.2 Case study II: Unbalanced magnetic pull of a small high speed

permanent magnet alternator (PMA)

The second case study investigates UMP for a small high speed 14-pole permanent

magnet alternator with an overhung rotor. This case study serves as an excellent

example to demonstrate how severe the effects of UMP can be. It is found from this

small study that a significant reduction of critical speed is possible due to UMP. This
reduction was not appreciated fully by the system designers during the mechanical

modelling of the alternator. The main parameters of the alternator are given in Table

(3.2).

The stator and rotor of the permanent magnet alternator are modelled separately using

eight-noded quadrilateral element and the two are combined by stitching the airgap

using six-noded triangular elements. Horizontal and vertical forces are calculated for
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different eccentric position of the rotor in the same way as they were calculated for

case study I. In this case the excitation is considered from the permanent magnets on

the rotor. Stator currents are constrained to remain zero in this analysis. Figure (3.19)

shows the FE mesh considered for the analysis. The remanent flux density of the

permanent magnet material is 1.2 Tesla with and its relative permeability is taken to

be 1. Figure (3.20) shows the contour plot of the magnetic vector potential. Once the

model is solved using the non-linear solver of MagFEA the normal and tangential

components of flux density are calculated at the middle of the airgap. The airgap

radial thickness of the PMA is 0.635 mm. Figures (3.21) and (3.22) show the normal

and tangential components of flux density in the middle of the airgap of the PMA. A

normal component 0.65 Tesla can be achieved in the middle of the airgap for

remanent flux density of 1.2 Tesla of the permanent magnets. The normal and

tangential stresses at the middle of the airgap are shown in Figures (3.23) and (3.24)

respectively. Figure (3.25) shows the forces per meter of axial length along x-

direction for different eccentric positions of the rotor. The negative stiffness

calculated for the PMA is 7.276xl 05 (N/m) per meter of axial length.

3.7.2.1 Reduction of critical speed due to negative stiffness

As stated in Equation (2.11) of Chapter 2, the natural frequency of a coupled electro-

mechanical model can be calculated as

(3.65)

where Kmech is the mechanical stiffness and Kmag is negative stiffness due to UMP.

Equation (3.65) shows that due to negative stiffness the natural frequency is reduced.

True critical speed of the PMA is calculated for a wide range of mechanical stiffness

which is taken as multiples of the negative stiffness. Figure (3.26) shows the variation

of true critical speed of the PMA against the predicted critical speed only from

mechanical stiffness. Each predicted critical speed is associated with a particular

bearing deflection. Critical speed is 'zero' until the bearing stiffness is equal to the

negative stiffness. If the operating critical speed without negative stiffness is 25000
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rpm, the reduction of critical speed is 6% if negative stiffness is considered. The

reduction of the critical speed is 20% if the operating critical speed is 15000 rpm.

3.7.3 Case study III: Investigation of tooth passing spatial

harmonics (TPSH) excitation with non-magnetic and

magnetic slot wedges

The third Case is an investigation carried out for a company considering the design of

a 2-pole generator for a defence application. The aim of this investigation is to study

the magnitude of the tooth passing spatial harmonics (TPSH) of the normal stress in

the airgap of a 2-pole generator with non-magnetic and magnetic slot wedges. The

dimensions of the slot are shown in Figure (3.27). The main parameters of the

generator are given in Table (3.3). Figure (3.28) and (3.29) show the finite element

mesh of one half of the machine. In these two figures 'cyan' colored regions represent

the slot wedge. Taking advantage of the symmetry only one half of the machine is

analyzed. The machine is solved for three levels of current density i.e. 5A1mm2,

10Almm2 and 15A1mm2 in the rotor slots for cases with non-magnetic and magnetic

slot wedge respectively. Figures (3.30) and (3.31) show the contour plots for a

machine with non-magnetic and magnetic slot wedge for a current density of 15

Almm2• Once the nodal magnetic vector potentials are known for the model, the

magnetic normal stress and shear stress are calculated from the normal and tangential

component of magnetic flux density. Figures (3.32) and (3.33) show the normal and

tangential components of magnetic flux density in the airgap with non-magnetic slot

wedge for a current density of 15 Almm2• Similarly, Figures (3.35) and (3.36) show

the normal and tangential components of magnetic flux density in the airgap with

magnetic slot wedge for a current density of 15 Almm2• Figures (3.34) and (3.37)

show the normal components of magnetic normal stress in the airgap with non-

magnetic and magnetic slot wedge respectively for a current density of 15 Almm2•

The magnetic normal stress is reduced because of the use of magnetic slot wedge and

this is clearly seen from Figure (3.37). Taking the advantage of symmetry, the

magnetic normal stress is calculated for angle 0 to 2n. The TPSH component of

magnetic normal stress is calculated by taking an FFT of the normal stress. It is found

that incorporating magnetic slot wedges in place of non-magnetic slot wedges reduces
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the magnitude of the tooth passing spatial harmonics of the normal stress by 60%.

There is a slight loss of performance associated with the inclusion of magnetic slot

wedges since they provide a magnetic "short-circuit" around the rotor conductors.

3.8 Magnetic Pull (UMP) for overhung machine

Figure (3.38) shows a schematic view of an electrical machine with an overhung rotor

and Figure (3.39) shows the corresponding equivalent system. The extended length

and the weight of the overhung rotor cause a considerable amount of unbalanced

magnetic pull. From the Figure (3.39) the equivalent stiffness of the system is

K _ KMECH_STATOR X KUMP
EQUIV - ( )

KMECH_STATOR + KUMP

(3.66)

where KMECH_STATOR is the mechanical stiffness of the stator and KUMP is the negative

stiffness because of UMP. If the mechanical stiffness of the stator, KMECH_STATOR is

large compared to the negative stiffness of the rotor, KUMP then KUMP is the

equivalent stiffness. However, if KMECH_STATOR ::::KUMP then the stiffness of the rotor

reduced significantly and there is a tendency to pull the stator towards the rotor.

3.9 Summary of the chapter

The basic procedures of finite element analysis of electromagnetic devices are

discussed. The relationship between the nodal currents and the magnetic potentials

has been established. For a given current density we can calculate the magnetic

potentials. The procedure for calculating resistance matrix of an electromagnetic

device using the finite element method is also discussed. Using these procedures a

non-linear finite element code, called MagFEA, is developed. Three case studies have

been performed using this FE code. The first two case studies investigate the static

UMP and the third case study investigates the effect of the tooth passing spatial

harmonics in case of the magnetic and the non-magnetic slot wedge.
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Figure (3.7): B(H) curves for some permanent magnet (Bastos and Sadowski,
2003)
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Figure (3.8): Magnetisation curve for a permanent magnet
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Figure (3.9): Magnetization characteristics in B(H)-form ofa typical electrical steel
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Figure (3.10): Schematic representation of solution procedure of non-linear static

electromagnetic problem

Table (3.1): Parameters of the 2 kW induction motor

Parameters

Number of poles
Number of phase

Number of stator slots
Outer diameter of the stator [mm]
Inner diameter of the stator [mm]

Number of rotor slots
Outer diameter of the rotor [mm]

Airgap [mm]
Rated voltage [V]

Rated frequency [Hz]
Rated power rkWl
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Value

4
3
36
153
93
32
92.2
0.4
415
50
2



Figure (3.11): FE mesh of the induction motor considered for case study 1

Figure (3.12): Contour of magnetic vector potential when a sinusoidal current when 3-

phase current with a peak of 200 Amps (per slot) is applied.
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Figure (3.14): Tangential component of flux density in the middle of the airgap when

3-phase currents with a peak of 200 (per slot) Amps is applied

- -'

-- - -

67



4

ok-J-:. - -

~
,~

-/'1 -- - -

rl

~ U1-.,.c-< - - - -Irv--

2 3 4 5 6
Angle (rad)

o 1

Figure (3.15): Normal stress at the middle of the airgap when a sinusoidal current

when 3-phase current with a peak of 200 Amps (per slot) is applied
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Figure (3.16): Shear stress at the middle of the airgap when a sinusoidal current when

3-phase current with a peak of 200 Amps (per slot) is applied
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Figure (3.17): Horizontal and vertical force versus eccentricity for the induction

machine considered for Case Study I when 3-phase currents with a peak of 200 Amps

(per slot) is applied

2500.0

2000.0

,.-. 1500.0
Z
'-
(!)
o.... 1000.00
u...

500.0

0.0
50

•
100 150 200 250 300

Currents per slot (A)

r+Fxl
~

350

Figure (3.18): Horizontal and vertical forces for 3-phase currents with different peaks

(per slot) in the stator for the induction motor considered for case study I
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Table (3.2): Parameters of the permanent magnet alternator

Parameters Value
14
3
21
3.2
36.5
50.0
1.2
1.0

0.635

Number of poles
Number of phase

Number of stator slots
Thickness of the permanent magnet [mm]

Outer diameter of the rotor [mm]
Outer diameter of the stator [mm]

Remanent flux density of permanent magnet [Tesla]
Relative permeability of the permanent magnet

Airgap [mm]
Mass of the rotor which includes magnet, sleeve, carrier,

nut, and oil flinger [kg]
Length of the rotor [mm]

Rated frequency [Hz]

0.836
67
50

Figure (3.19): FE mesh of permanent magnet alternator (PMA)
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Figure (3.20): Contour plot of magnetic vector potentials of the PMA considering

permanent magnet excitation only
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Figure (3.21): Normal component of flux density in the middle of the airgap of the

PMA
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Figure (3.22): Tangential component of flux density in the middle of the airgap of the

PMA (when the rotor is concentric with the stator).
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Figure (3.23): Normal stress in the middle of the airgap of the PMA

(when the rotor is concentric with the stator)
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Figure (3.24): Shear stress in the middle of the airgap of the PMA

(when the rotor is concentric with the stator)
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Table (3.3): Parameters of the 2-pole generator

Parameters Value
Number of poles
Number of phase

Number of rotor slots
Outer diameter of the rotor [mm]
Inner diameter of the stator [mm]
Outer diameter of the stator [mm]

Airgap [mm]

I.. 12mm .1

Figure (3.27): Dimension of the slot
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14
200
220
380
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figure (3.28): A fE mesh

figure (3.29): A fE mesh
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Figure (3.30): Flux contour with non-magnetic slot wedge with current density of 15

Azrnnr'

Figure (3.31): Flux contour with magnetic slot wedge with current density of 15

Azrnrn''
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Figure (3.32): Normal component of flux density in the airgap with current density of

15Azmm' for non-magnetic slot wedge
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Figure (3.33): Normal component of flux density in the airgap with current density of

15 Almm2 for magnetic slot wedge
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Figure (3.37): Normal stress in the airgap with current density of 15 Almm2 for

magnetic slot wedge
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Table (3.4): Fourier coefficients of the normal stress in the airgap for different levels

of currents in the rotor slot

Normal stress in case of Normal stress in case of magnetic
nonmagnetic slot wedges at the slot wedges at the tooth tip

tooth tip

Spatial Current density in the rotor slots Current density in the rotor slots
Harmonics

5 10 15 5 10 15
(Azrnrrr') (Almrn2) (Azmm'') (Azmnr') (Azmrrr') (Almrn2)

TPSH-6 7.3515E2 2.4344E3 3.8671E3 2.0870E3 3.3518E3 4.9412E3

TPSH-4 1.9142E3 4.9760E3 5.6994E3 1.2201E3 2.5845E3 3.4724E3

TPSH-2 3.6368E3 7.7403E3 9.4927E3 1.8937E2 3.7520E3 5.8764E3

TPSH 4.5649E3 1.2169E4 1.5723E4 3.9895E3 5.5286E3 5.6631E3

TPSH+2 3.1310E3 7.1593E3 8.2507E3 2.32166E 6.5880E3 8.6818E3
3

TPSH +4 5.6454E3 1.4287E4 1.7651E4 2.1202E3 2.4431E3 2.0911E3

TPSH+6 1.1245E3 3.0872E3 3.5190E3 1.0838E3 1.5152E3 1.5505E3

TPSH - Tooth Passing Spatial Harmonics
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Figure (3.38): Schematic view of an electrical machine with an overhung rotor
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Figure (3.39): Equivalent system
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Chapter Four

Co-ordinate Transformations Used in the Magnetic

FEA

4.1 Introduction

The 2D finite element analysis of electromagnetics explained in the previous chapter

is very general in nature. There, the view was taken that FEA would be used to create

an instantaneous relationship between nodal currents and nodal potentials. This

relationship takes the general form

{A}= f{{I}) (4.1)

where {A} = vector of magnetic potentials at nodes

{I}= vector of nodal currents

In other words the magnetic FEA that is used here is magneto-static. In the case of a

linear magnetic system

(4.2)

where [K] is the stiffness matrix

Electrical machines are electromagnetic devices with very complex geometries and

phenomena, having moving parts, magnetic saturation and induced currents. Their

simulations by finite element methods require special consideration. In the previous

chapter it was assumed that the currents were known and these were specified by

setting current densities in the domain of the analysis.
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The FE models used throughout this work have been 2D. Each model comprises a

large number of nodes (typically 10,000) and these nodes are connected by finite

elements (often numbering around 3,000). In a fully general view of 2D magnetic

FEA, a single nodal current can be associated with every single node and also a single

magnetic potential can be associated with each. If the FEA formulation was intended

to capture eddy-currents intrinsically, each node would have had to be allowed three

components of the magnetic vector potential. Chapter 3 explained why all induced

currents were going to be modelled explicitly and why this (eddy currents)

formulation was not chosen.

This chapter addresses coordinate transformations of two basic types.

• Transformations that express the full length vector of nodal currents in terms

of a reduced length vector.

• Transformations that express the full length vector of nodal potentials in terms

of a reduced length vector.

It will be seen that the transformations are applied in stages with each stage reducing

the number independent variables (entries) in the vector of currents (potentials). Each

time that there is a reduction in the number of currents (potentials) a constraint of

some description is, in effect, applied. In some cases the constraint is known first and

the stage of the transformation is designed so as to satisfy that constraint. In other

cases, the main purpose of the stage of transformation is to reduce the computational

burden of working with the model. Then the transformation stage is designed such

that the constraints which are applied have the least impact on the fidelity of the

model.

In this chapter different transformations are used which transform the independent

terminal currents of the stator to nodal currents in the stator and also transform the

very large number of rotor nodal currents to the rotor bar currents. These

transformations are used in the subsequent chapters to calculate the steady state

currents from the electrical dynamics and also during the coupling of the

electromagnetic dynamics with the mechanical dynamics.
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4.2 General principles of the coordinate transformations

Sometimes we use a formal method to obtain the transformation matrix and

sometimes by inspection. For both nodal currents and nodal magnetic potentials, we

will come across sets of constraints which must be applied. These are discussed

specifically in later sections but a single treatment can be outlined here. Because we

encounter the situation most commonly in connection with currents, we use that

situation here.

Let {Io} represent a "full length" vector of currents. If there are nodal currents, then

there is a corresponding vector {Ao} of magnetic potentials having the same length.

In a fully nonlinear model we have (at any instant)

{Ao}= j{{Io }) (4.3)

But it is always possible to find a linearised form to this as

[K]{Ao}= {Io}+ {bo} (4.4)

where [K] is the "tangential" or "marginal" stiffness and {bo}is the vector of free

MMF. Some constraints are known to apply to {Io}in the form

(4.5)

It is always possible to enforce these constraints by introducing the coordinate

transformation

(4.6)

where the matrix [r] must satisfy two requirements. where [r] is any matrix selected

in order that
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• [Ej'[T]= 0

• [y][Yj' non-singular where [Y] := [E T]

There are several methods by which such transformation matrices may be found and

each of these will result in a different matrix, [T]. If any matrix [T] has been found

satisfying the above criteria, a number of alternatives [T1 may be found through

[T1= [T] [x] where [x] is any square invertible matrix of the appropriate dimension.

We now describe one method commonly used in Finite Element analysis for

developing the transformation. This method is highly efficient and it has good

properties of numerical stability. It deals with one constraint at a time and the final

transformation, [T], is developed as the product of p intermediate transformations,

ITp J where p is less than or equal to the number of constraints (columns in [E]). Each

[Ti] is effectively an identity matrix with an additional row inserted.

(4.7)

For reasons which become clear shortly, we employ a duplicate notation for [E] here

and we refer to that also as [Eo]. The number of rows in [Eo] equals the number of

degrees of freedom in the original system and is denoted no. Matrix [T1] has

dimensions (no x (no - 1)) and it is found by considering only the first column of

[Eo]. Let k be the position of the entry having the largest absolute value in this

column. [T1] can then be described entry-by entry as follows:

• [TJU, i) = 1 '<:/ 0< i < k

• [T1]U, i) = 1 '<:/ 0< i < k, i »] < no

• [1:)(k J] ~ ( - [EolCi, 1)J if 0 <j < k
I' [Eo](k,I)

• [1:)(k ] ~ ( - [EolCi +1,I)J if k ~j < no
I'] [Eo](k,I)

• [T1]U, i-I) = 1 '<:/ i>k

• [T1](i,j) = 0 Tt i > k, (i - 1);t j < no

86



Example (4.1): A simple example illustrates this nicely. Consider the case of a 6

degree of freedom system to which a single constraint is applied with [Eo] given by

[Eof =[2 -10 6 -4 5 20]

The sixth entry here has the largest absolute value and hence k = 6. Then

1 0 0 0 0
0 1 0 0 0

[Tl]=
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

-0.1 0.5 -0.3 0.2 -0.25

The procedure for multiple constraints is a very small extension. Having found [Tl],

calculate [Elf = [Eof[TJ The first column of [El] contains only zeros and requires

no further work. The next step, finding [T2], proceeds precisely as the first step except

that [El] is used in place of [Eo] and its second column is considered.

Example (4.2): Consider the case of a 6 degree of freedom system to which two

constraints are applied with [Eo] given by

[
2 -10 _6

2
-84 5 2

0
0]

[Eor = 4 5 1

Proceed as in the previous example to find [Tl]. Then evaluating [ElY = [EoY [TJ

yields
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Evidently, the first constraint requires no further attention. The second column of [El]

informs the determination of [T2] which emerges as

1 0 0 0
0 1 0 0

[T2Y = 0 0 1 0
-0.5 -0.625 0.25 -0.125
0 0 0 1

The product [T]= [TIHT2] is then determined easily. The procedure here can be

applied for any number of constraints. In some cases, the constraints are not all

independent. A particular case of this may be encountered in an electric circuit shown

in Figure (4.1) where each one of 5 different nodes produced a different constraint but

there are only 4 degrees of freedom in the original system and it transpires that only 4

of the constraint equations are independent. When the procedure described here is

applied to such cases, after [T4] and [E4] have been obtained, it is found that all

columns of [E4] are zero. The fact that its first four columns comprise zeros is not

surprising. The fact that all other columns comprise zeros points to the lack of

independence in the original constraints. In order to prevent round-off errors from

introducing spurious constraints, an account should be kept of the original magnitudes

of the columns of [Eo] and compared against the magnitudes of [E,] after the general

step i. The process is complete when all of these magnitudes are very low compared

with their original values.

4.3 Transformations of the stator currents

Most of the stators in electrical machines are powered by a three phase supply and it

is usual that only three independent currents are required to describe fully the currents

flowing in the stator. In ~-connected machines or Y-connected machines with a

floating star point only two currents are needed. Similar constraints also exist in the

case of wound rotors. Arrangements must be put in place in our stator model to

accommodate a transformation of three phase currents to the nodal currents.
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Also, in the later part of this thesis while validating out numerical model we have

used a special kind of winding scheme, which can be used as a passive reduction of

unbalanced magnetic pull along with its torque producing capability. Unlike the usual

winding scheme this particular winding scheme has six stator currents. Amongst these

three are the phase currents and other three are so-called levitation currents. For a

concentric rotor where magnetic fields are symmetric the levitation currents are zero.

This is explained in detail in later chapters.

The full set of nodal currents in the stator is transformed to the terminal currents in

five different stages. Figure (4.2) shows a schematic of the different transformations.

The following subsections discuss each transformation separately. To illustrate the

transformations of the stator currents a 4-pole induction machine is considered. The

stator of the machine and its winding connections are shown in Figures (4.3) and

(4.4). The machine has 36 stator slots. The winding is a dual layer distributed winding

with fractional pitch coils. The pitch of each coil is (6/9) or 120 electrical degrees.

4.3.1 Transformation of the full set of nodal currents in the stator

to the nodal currents correspond to the conducting regions in

the stator (Stage I)

In the FE models every single node has an associated nodal current but many of these

are always zero. Non-zero currents are associated only with those nodes which are

either boundary or within the conducting regions of the FE model. The full set of

nodal currents in the stator is transformed to a smaller set of nodal currents

corresponding to the nodes of the conducting regions. This is accomplished by the

following transformation:

(4.8)

where {Isne} is the full set of nodal currents and {ISene} is the smaller set of nodal

currents corresponding to the nodes of the conducting regions. The number of

columns of the transformation matrix, [TS1] will be the same as the number of entries
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of {ISene}. Most of the entries of [Ts1] will be zeros as majority of the nodes will not

carry currents.

Consider any part of the domain of a stator as shown in Figure (4.5), which has

conducting as well as non-conducting regions. This part is descretised with three 4-

noded finite elements and element 2 is the only conducting region. Suppose iI, ii. i3 ...

is are the nodal currents corresponding to nodes 1, 2, 3, ... 8 respectively, the

transformation in this case will be

il 0 0 0 0
i2 0 0 0 0
i3 1 0 0 0 i3
i4 0 1 0 0 i, (4.9)=
is 0 0 1 0 is
i6 0 0 0 1 i6
i7 0 0 0 0
ig 0 0 0 0

4.3.2 Transformation of the nodal currents corresponds to the

conducting regions to the coil side currents in the stator (Stage

II)

In this transformation the nodal currents corresponding to the nodes of the conducting

regions, {Isene} are transformed to "coil-side" currents. A coil-side represents a

conducting region in a particular stator slot having, in effect, a constant current

density. In Figures (4.3) and (4.4), +al represents one coil side. Since the example

machine has 36 slots with dual layered windings, it will have 72 entries in the coil

side current vector. This transformation is explained with the following illustration.

Consider a stator slot with double layer windings as shown in Figure (4.6). Here the

two layers are distinguished by two different colours. Each layer is discretised with

finite elements. Figure (4.7) shows layer 1 having been discretised with two 8-noded

finite elements. Currents corresponding to layer 1 have one entry in the "coil side"
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current vector. Suppose i}, iz. is ... i13 are the nodal currents corresponding to nodes 1,

2, 3,... 13 respectively as shown in Figure (4.7). {I;} and {In are the currents for

elements l' and 1"respectively. Assuming constant current density in the region of one

set of coil

a'
il

1

AI
i2

a2
AI

i3
aj
Ai

i4
a'4 (4.10)AI {I; }= asis AI., a''6 6

AI., a;'7 AI., as'8 AI

and similarly

." a~

'6 A~

." a;

'7 A~
." a'8's A~

i9 a9 (4.11)Ai {I~}= aioiIO Af
ill

ail
A~

i12 ai2
Af

il3 ail
A~

where a;, a;, a~ are the areas associated with the nodes correspond to element l'

and a;, a;, a;3 are the areas shared by nodes correspond to element 1" and also

note that a; + a; +...+a~= A;, a; + a; + ...+ a;3= A; . Here A; and At are the areas

for elements l' and I"respectively. These areas are determined by the corresponding

shape functions. i~, i; and i~are the nodal currents of nodes 6, 7, and 8 respectively

contributed by element l' only. i:, i; , and i: are the nodal currents of nodes 6, 7, and

8 respectively contributed by element l' only. Nodes sharing more than one element
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such as nodes 6, 7, and 8 will have contributions from the two elements. Finally these

thirteen nodal currents can be written in terms of only one slot current as

il a~

i2 a~

= {I'} (4.12)
i7 (a;+a7~

il3 a~V;

Following this, the nodal current in a particular stator slot can be written in terms of

its corresponding "coil side" currents by transformation matrix, [TS2].

(4.13)

Here {ISese } is the "coil-side" current vector. Since the stator has 36 slots with dual

layer of winding, it has 72 coil sides and 72 current variables entries. The number of

columns of [TS2] is the same as the number of coil side current variables.

4.3.3 Transformation of the coil side currents to the full coil

currents in the stator (Stage III)

Every full coil current corresponds to two half-coil currents. In Figure (4.4) ar

represents one full coil. This transformation imposes a constraint that current going

down in slot -al is equal in magnitude to the current coming up in slot +al (+al is not

shown in the figure) but opposite in sign. This transformation can be written by

inspection. The transformation can be written as:

(4.14)
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where {Isfcc}is the vector of full coil currents. For the machine considered {Isfcc}will

have 36 entries. The size of the transformation matrix [Ts3] is (72x36). We can write

the transformation for this as

i+al 1 0

t.; -1 0 ...h}i; = 0 1 (4.15)
i_a2 0 -1

where i: ' i.; ' i+a2 ' i_a2 are the coils side currents of coil sides + a), - a), + a2 , and

- a2 respectively and ia1, ia2 are the full coil currents of full coils a), and a2

respectively [refer Figures (4.3) and (4.4)].

4.3.4 Transformation of the full coil currents to the coil group

currents in the stator (Stage IV)

The six full coils ai, a2, ai, aa, as, and a, together form one "coil group" and since they

are connected in series as per the winding scheme shown in Figure (4.4), they have

the same currents. This transformation transforms the coil currents within {ISfCC} to the

coil group currents. The transformation is:

(4.16)

where {Iscgc}is the vector of coil group currents. The vector {lsfcc}has 6 entries. The

size of the transformation matrix [Ts4] is (36x6).
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ia, 1 0 0 0 0 0

0 0 0 0 0

ia6 1 0 0 0 0 0
iaa, 0 1 0 0 0 0

0 0 0 0 0

iaa 0 1 0 0 0 06
ib, 0 0 1 0 0 0 ia

0 0 0 0 0 iaa
ib6 0 0 1 0 0 0 ib

=: [Ts4 ]{IsegJ=
ibb, 0 0 0 1 0 0 ibb (4.17)

0 0 0 0 0 ic
ibb6 0 0 0 1 0 0 icc
t; 0 0 0 0 1 0

0 0 0 0 0

i: 0 0 0 0 I 0

ice I 0 0 0 0 0 I
0 0 0 0 0

i; 0 0 0 0 0 1

In Equation (4.17) ia" "., ia6, iaa" "., iaa6 are the full coil currents of full coils aI'''''

a6, aa., ... , aa, respectively corresponding to phase A. Currents with subscripts b

and c correspond to phases Band C respectively.

4.3.5 Transformation of the coil group currents to the terminal

currents (Stage V)

This transformation converts the 6 coil group currents to 3 terminal currents. The

transformation is

(4.18)

where {Is} is the vector of terminal or phase currents. The vector {Is} has 3 entries of

the three phase currents as:
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{
iAPh}

{Is}= ~BPh
'Cph

(4.19)

The size of the transformation matrix [Tss] is (6x3). If the resistance of the six coil

groups are same and also the EMFs due to changing magnetic field in the two coil

group in a particular phase are same then we can write

ia 1 0 02"
iaa 1 0 02" f~}ib 0 1 0 (4.20)2"

~BPh =: [Tss HIs}=
ibb 0 1 02"
i, 0 0 j_ 'Cph

2

iCC 0 0 1
2"

where ia, iaa, ib, ibb, ie' icc are the coil group currents and iAph' iBPh' iCph are the three

terminal currents. Finally the overall transformation can be written as

(4.21)

The final transformation matrix can be written as

(4.22)

where [Ts] is the transformation matrix which determines the transformation of nodal

currents to the terminal currents.

4.3.6 Transformation of the coil group currents according to the

bridge windings

In a usual winding scheme (similar to Figure (4.4» there will be three independent

stator phase currents but in some special windings scheme such as (Khoo, 2005) there
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can be more than three currents. Here without going about the detail of the bridge

configured winding scheme introduced by Khoo (2005), an explanation is given for

the transformation of stator slot currents to the independent stator phase currents. One

reason for choosing this winding scheme for explanation is that it is used in the

experimental rig developed to study electromechanical interaction of an induction

machine. Another reason is that it contains more than three currents. Some features of

this winding scheme are explained in Chapters 7 and 8. Figure (4.8) shows the

equivalent bridge connection for the winding connection shown in Figure (4.3). The

branch currents, phase currents and the levitation currents are shown for phase A in

the figure. Unlike the conventional winding scheme, this particular winding scheme

has one "levitation current" per phase. The usage of this levitation current will be

explained in detail in Chapter 5. A transformation matrix which transforms all the slot

currents (or branch currents as shown in Figure (4.8)) to the phase currents and

levitation currents is required. Assuming the same resistance in each branch of the

bridge the transformation matrix for the phase A is calculated as follows,

iA 1 1
2" 2"

iB 1 _1. fAp>} (4.23)2" 2=
iC 1 1

2" -2 IAlev

iD 1. 1
2 2"

iA, iB, tc, and iD are the currents in four branches of the bridge for phase A. It is also

assumed here that EMFs due to changing magnetic fields are identical for each branch

of the bridge. Similar transformations shown in Equation (4.23) are also obtained for

phases B and C. These comprise a different transformation matrix [TssJ, similar to

[Tss] explained in Section (4.4.5), which transforms the stator coil group currents to

the phase currents. iA, iB, ic, and iD are the four entries of the current vector {Iscgc}.

Similar currents variables are obtained for phases B and C. Unlike the current vector,

{Is} shown in Equation (4.21), the vector {Is}there will have six entries when we use

the bridge configured windings, i.e.
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iAPh
iAlev

{Is}= iSph (4.24)
iSlev
iCph
iClev

where iAlev s iSlev and iClev are the three levitation currents in the bridge.

4.4 Transformations of the rotor bar currents

In case of a rotor of squirrel cage induction machine currents flows axially along the

cage. Similarly, current flows axially along one set of damper-bars in a synchronous

machine. The transformation enforces the constraint zero total currents must flow

axially along the cage or along one set of damper-bars. It is well known that the

density of current in rotor bars of a cage induction machine varies with radial position

of the rotor bar due to skin effects.

Figure (4.9) show a cross-section of a rotor of an induction machine with 32 rotor

bars. At low slip, the rotor's frequency is very small and the reactances of all the

parallel paths through the bar are small compared to their resistances (Chapman,

1998). The impedances of all parts of the bar are then approximately equal, so current

flows through all parts of the bar equally. The resulting large cross-sectional area

makes the rotor resistance quite small, resulting in good efficiency at low slips. At

high slip (starting conditions), the reactances are large compared to the resistances in

the rotor bars, so all the current is inclined to flow in the lower-reactance path of the

bar near the stator. With a high rotor resistance at starting conditions, the starting

torque is usually higher. There is a limit reached but this has no practical significance.

Another reason of transforming rotor bar currents is that there are very many different

currents in the model. To solve the FE model with these currents as nodal currents

may not be practical for more number of bars and also for more number of nodes in

the rotor bar region. Like the transformation of stator currents, transformations are
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needed for the rotor bar currents so that we can represent the full set of nodal currents

of the rotor with fewer current variables. If current densities were constant, we would

use only one current variable per bar. As mentioned above current density in a rotor

bar is a function of radius and radial depth of the rotor. To take care of these effects

provisions have to be made in the numerical model. The transformations from the full

set of nodal currents in the rotor to the smaller number of current variables are

achieved in four different stages. These stages are shown in Figure (4.10).

4.4.1 Transformation of the full set of nodal currents in the rotor to

the nodal currents corresponding to the conducting regions

(Stage I)

Similar to the stator (Section 4.3.1), in the FE models of rotor every single node has

an associated nodal current but many of these are always zero. Non-zero currents are

associated only with these nodes which are either boundary or within the conducting

regions of the FE model. The full set of nodal currents in the rotor is transformed to a

smaller set of nodal currents corresponding to the nodes of the conducting regions.

This is accomplished by the following transformation:

(4.25)

where {IRnc} is the full set of nodal currents of the rotor and {IRene}is the smaller set

of nodal currents corresponding to the nodes of the conducting region in rotor bars.

The number of columns of the transformation matrix, [TR1]is the same as the number

of entries of {IRene}.Most of the entries of [TR1]are zeros since the majority of the

nodes in the rotor do not carry currents. The structure of the transformation matrix

[TR1]is similar to the transformation matrix [Ts1](refer Section 4.3.1).
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4.4.2 Transformation of the nodal currents corresponding to the

conducting regions in the rotor to the set of currents based on

the "modes" of conduction (Stage II)

After applying the transformation described in Section (4.4.1) the set of nodal currents

corresponding to the conducting regions still contains very many nodal currents and it

is still not possible to keep them as independent current variables. Since the current

density in a bar is not constant as explained, the nodal currents in a bar cannot be

transformed into one current variable. This is performed by considering a few eigen

modes of the conductance. The modes of conduction and hence the transformation

matrix for this stage is evaluated as follows.

Firstly note that the modelling we are using is 2D and "prismatic" in the sense that we

expect that the same 2D analysis applies at any cross section over the entire length of

the 3D object which we are trying to model (electrical machine in the present case).

In general, we will not have uniform continuous electrical field strength E(x, y) and

we will not have continuous uniform current density J(x, y) either. We often have

uniform continuous resistivity p(x,y) but we do not need to assume this. In-plane

currents will occur.

Define q(x,y,z) as electrical potential. In plane current densities J, and Jy occur

where

r,=-(:/p)
J,=-(:/pJ

(4.26)

(4.27)

We define z = 0 to be the axial centre of a machine. In-plane currents are zero here (by

symmetry). It is convenient to define as q(x,y,z)= O. Away from z = 0
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8q = E(x,y)-Jz(x,y)p(x,y)
8z

(4.28)

From Kirchoff (in effect)

div(J) = 0 (4.29)

In our analysis, we intend to use 2D and hence the effects of in-plane currents are

ignored. We can write mean square current density and mean square current gradient

as follows

fJ2cf¥ {.}T[ZlJ·}
Mean square current density := JP = J JlJitfIJ I\}II (4.30)

(4.31 )

We carry out model reduction using the logic that Jz (x, y) will have relatively low

mean square current gradients compared with the mean square current values. Hence

the conduction modes we will derive from the lowest modes of eig([Y], [Z]), where

[Z] is built up from element matrices as

z(i,j) = i(N(x,y )YN(x,y)tfIJ (4.32)

And [V] is built up from element matrices as

(4.33)

100



where N(x, y) are the shape functions. The eigenvectors corresponding to the

respective conduction modes of eig([V], [Z]) constitutes the column of the

transformation matrix. The transformation can be written as

(4.34)

where {IRmcc}is the set of nodal currents based on the "modes" of conduction of the

rotor bars. The transformation of the rotor bars having the same physical dimension

(as shown in Figure (4.9)) will have the same structure. In this case the transformation

matrix has blocks equal to the number of rotor bars.

Suppose b is the number of nodes in each bar and three eigenmodes are considered for

a rotor bar, then the nodal currents for a particular bar, {IRmeel}can be written as

{IRBAR1} = [TRlIHIRmeel} (4.35)

where [TRl!] is the transformation matrix which transforms the nodal currents to a

smaller number of currents and {IRBAR1} is the nodal currents for a particular bar and

this is a subset of nodal currents corresponds to the conducting regions of the rotor,

{IRencl.If the numbers of nodes in each bar is b then the {IRBAR!} is

ir!1

{IRBAR1} =
irl2 (4.36)

ir1b

VII V2! V31

and
[TRlJ=

VI2 V22 V32 (4.37)

V1b V2b V3b
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Here [VII Vl2 • • • Vlb Y is the eigenvectors correspond to the three eigenrnodes

considered. Figures (4.11a), (4.11 b) and (4.11c) show three modes of conduction of a

typical rotor bar. Appendix A shows the effect of different number of modes in a

typical electrical machine.

{

ir!! }

{IRmcc!} = ~r2!

I r31

(4.38)

If the numbers of bars in the rotor is k, then the transformation matrix for the whole

rotor can be written as Equation (4.39).

'T' 1 1 1
lR21 1 1 1
- - - -1- - - - 4 - - -1- - --

: TR21: := ---~----~---~---
1 I'. 1
1 I' 1

- - - -1- - - -., - - -1- - - -

~ ~ ~ TR2!

IRmcc I

IRmCC2 (4.39)

4.4.3 Transformation of the set of currents based on the "modes" of

conduction to the set of nodal currents from the Fourier

transform (stage III)

In this stage the reduced vector of currents calculated based on "modes of conduction"

is further reduced by considering the Fourier coefficients. The transformation can be

written as

(4.40)

where {IRfcc} is the set of currents based on the Fourier coefficients. The number of

rotor bars is k. We will typically use fewer harmonics than k (which is the
2

maximum). If the number of harmonics considered is q, then the transformation

matrix, [TRJ for a 4-pole induction machine will be
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I e~'O) I . (2~.O) (2~.O) I' e~'O)cos- sm - Icosq -k- smq-
k k k

(4.41)
ICOs( 2~(~-1») ISin(2~(~-1») I e~(i-l}) I' (2~(i-1»)

[TR3]= I cosq smq
k k

I ICOs( 2~(~-1) ) ISine~(~-l») I (2~(k-1») I' (2~(k-1»)cosq k smq
k

4.4.4 Transformation of the set of nodal currents from the Fourier

transform (stage IV)

This transformation relates to the "0" harmonics of the transformation matrix [TR3].

The sum of total currents coming out of the rotor bars should be zero. A constraint

must be applied to make sure that this condition is satisfied and this reduces the

number of current variable by one. This is the fourth transformation matrix, [TR4].

Finally the overall transformation can be written as

(4.42)

where [TR] is the transformation matrix which determines the transformation of nodal

currents in the rotor to a reduced number of current variables and

(4.43)

{IR} is the reduced current vector of the rotor only.

4.5 Transformations of the magnetic potentials

In this chapter most of the magnetic potentials in the 2D model are considered to be

independent. In a later chapter on model reduction for magnetic FEA of machines,

this situation will be changed. To enforce a tangential-jlux condition at the outside

border of a magnetic analysis, it is common to impose constraints forcing all of the

nodal potentials at this outside border to be zero. Sometimes in the case of hollow-
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rotor machines, it is appropriate also to restrict the modelled domain using an internal

border also and in these cases, further constraints are used to ensure that all nodal

potentials at the inner border are equal. The imposition of constraints is one reason for

employing coordinate transformations and this is discussed later. In this section some

transformations applied to the magnetic potentials are discussed. These two

transformations are discussed in the following sub-sections. Further transformations

on magnetic potentials are considered in later chapters.

4.5.1 Transformation on the set of nodal potentials in the stator to

apply the tangential-flux conditions

Consider a simple cylinder shown in Figure (4.12), which represents a notional stator

of electrical machines. The stator is descretised with eight 4-noded elements.

Tangential-flux condition is applied at the outer diameter of the stator by imposing the

constraint and forcing the nodal potentials of nodes 1, 2, 3, 4 to be zero. Suppose PI,

P2, ... , Pl2 are the nodal potentials corresponding to the nodes 1, 2, 3, ... , 12

respectively. After applying the constraint we can write

PI 0 0 0 0 0 0 0 0

P2 0 0 0 0 0 0 0 0

P3 0 0 0 0 0 0 0 0 Ps
P4 0 0 0 0 0 0 0 0 P6
Ps 1 0 0 0 0 0 0 0 P7 (4.44)
P6 0 1 0 0 0 0 0 0 Ps

=
P7 0 0 1 0 0 0 0 0 P9
Ps 0 0 0 1 0 0 0 0 PlO
P9 0 0 0 0 1 0 0 0 Pll
PlO 0 0 0 0 0 1 0 0 P12
Pll 0 0 0 0 0 0 1 0

P12 0 0 0 0 0 0 0 1

This transformation is analogous to state I transformation of stator and rotor currents.
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4.5.2 Transformation on the set of nodal potentials of a hollow

rotor to apply the equal-flux conditions

Consider a simple cylinder shown in Figure (4.13), which represents a notional rotor

of an electrical machine. The rotor is descretised with four 4-noded elements. A

tangential flux condition is applied at the inner diameter of the cylinder by imposing

constraints that force the nodal potentials of nodes 5, 6, 7, 8 to be equal. Suppose PI,

P2, ... , Ps are the nodal potentials corresponding to the nodes 1, 2, 3, ... , 8

respectively. After applying the constraint we can write

PI 1 0 0 0 0

P2 0 1 0 0 0
0 0 1 0 0 PIP3
0 0 0 1 0 P2P4 (4.45)= P3Ps 0 0 0 0 1
0 0 0 0 1 P4P6
0 0 0 0 1 PsP7

Ps 0 0 0 0 1

We can write the nodal potentials corresponding to the nodes 5, 6, 7, 8 in terms of one

nodal potential variable only. It is often but not always acceptable to constrain these

potentials to zero. A zero constraint here would mean that there could be zero net

circulation of flux about the machine axis.

4.6 Conclusions

Separate coordinate transformations for stator and rotor are explained for analysing

the coupled electro-mechanical model of an induction machine without compromising

the accuracy. Recall Equation (3.50),

(4.46)
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where [K], {Az} and {Iz} represent the magnetic stiffness matrix, magnetic vector

potentials and nodal currents for stator as well rotor respectively. Most of the entries

in {IJ are 'zero' because not all the nodes carry currents. We can write nodal current

vector as

(4.47)

where [U] is a transformation matrix which transforms the rotor and stator terminal

currents to the nodal currents. Combining [TR] and [Ts], the transformation matrix for

stator and rotor, [u1 is created and {IRS}=G:}. The main coordinate transformations

are explained in this chapter. Some further transformations on magnetic potentials are

explained in later chapters.
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Figure (4.1): An electric circuit (For illustration purpose only)
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Full set of nodal currents in stator
{Isnc}

Stage I [Ts1]
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Set of nodal currents in the conducting

region of the stator

"-
{IScnc} ./

Stage II [Ts21
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Full coil currents
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Figure (4.2): Flow diagram showing the different transformations of stator currents
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Figure (4.3): Stator of an induction machine showing the winding connection. Red,
blue and yellow colours show the three different phases.

c
lie,"iAph iCph

aa, bl bb, Cl

aa, b2 bb; C2

t, iaa b3
ib ibb bb3 C3

t, icc
aa,

aa, b4 bb4 C4

aa, bs bb, C5

aa, b6 bb, C6

I I I

CC5

Figure (4.4): Winding connection of a 4-pole, 3-phase Induction Motor
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Figure (4.5): Part of the stator core descretised with three 4-noded elements
(For illustration purpose only)

Figure 4.6: Stator slot with two sets of coil 1 and 2
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Figure 4.7: One stator slot shown in Figure (4.6) showing the finite element nodes

when discretized with two elements

Figure (4.8): 4-pole, 3-phase Induction Motor with a Bridge Configured Windings
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Figure (4.9): Rotor of an induction machine with 32 bars
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Figure (4.10): Flow diagram showing the different transformation of rotor currents
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Figure (4.11): First three modes of conduction of a typical rotor bar

114



3

1

Figure (4.12): A notional stator of an electrical machine
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Figure (4.13): A notional rotor of an electrical machine
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Chapter Five

Modelling of Electro-Magneto-Mechanical (EMM)

Devices

When solving the magneto-static field equation, the excitation takes the form of

electrical currents. This has been discussed in Chapter 3. The circuit equation

provides the linkage between these currents and voltages applied to the machine.

Methods for coupling field and circuit equations are well known. Numerous

procedures for combining transient field and circuit equations are already published in

the literature such as [Williamson and Smith, (1980), Strangas, (1985), Salon et al.,

(1990), Ho et al., (2000)].

One parameter in the circuit equation yet to be discussed is the resistance matrix of an

electro-magneto-mechanical (EMM) device. In Chapter 3 an explanation is given for

how the nodal resistance matrix is calculated from 2D FEA of an EMM device. Most

2D FE models comprise a large number of nodes and one nodal current can be

associated with every single node. The model has few independent currents. As

explained in Chapter 4 the higher dimensional vector of nodal currents can be reduced

to a vector of independent currents with smaller dimensions with proper

transformations. The resistance matrix associated with these independent currents can

be calculated by post- and pre-multiplying the full-dimensional resistance matrix by a

transformation matrix and its transpose respectively. The resistance matrix associated

with the independent currents is diagonal and positive-definite.

5.1 Introduction

In the finite element modeling of EMM prismatic devices, the most profound

approximation is that the device can be modelled using a two-dimensional section
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orthogonal to the axis of the device. We expect that the same 2D analysis applies at

any cross section over the entire length of the 3D object which we are trying to model.

The model should be capable of incorporating additional terms due to three-

dimensional effect such as stator end-winding, and rotor end-rings.

From 2D FEA we get an instantaneous relationship between nodal currents and nodal

magnetic potentials and this is already stated in the previous chapter. For a linear

system

(5.1)

where [K] is the stiffness matrix

{A}is the vector of magnetic potentials at nodes

{Iz} is the vector of nodal currents (out of plane)

If we incorporate nonlinearity in Equation (5.1) can be written as

(5.2)

where [Kmar] is the tangential or marginal stiffness matrix which is determined by

the B(ll) curves of the magnetic materials. [Kmar] is a nonlinear function of current

and geometry. With constant geometry, [Kmar] depends on current only.

This chapter describes the general procedures for modeling an EMM device and how

they can be extended to model an induction machine.

5.2 Calculation of the resistance matrix from finite element

method

This section explains how the resistance matrices for the stator and rotor are obtained.

Chapter 3 outlines how the resistance matrices can be obtained for the current-
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carrying regions from 2D FEA. Nodes which lie on the elements corresponding to

conductors are current-carrying nodes. Nodes at the boundaries of a region of

permanent magnet material are also current-carrying nodes and the sum of these nodal

currents must be zero. Chapter 4 outlines how coordinate transformations are used for

both stator and rotor of an induction machine such that the number of independent

current degrees of freedom is much reduced. As explained in Chapter 3. using proper

transformations. the full vector of nodal currents can be transformed into a vector of

independent currents with smaller number of current variables and we can write this

transformation as

(5.3)

where {Inc}is the full set of nodal currents. {I} is the set of independent currents and

[T] is the corresponding transformation matrix. If [Rnc] is the resistance matrix

associated with the nodal currents. then the resistance matrix [RI] associated with the

set of independent currents is calculated as

(5.4)

5.3 Resistance of the end windings

The resistance matrix, [RI] discussed in the previous section does not represent

completely the resistance of the whole device because electric current (like magnetic

flux) must flow in loops, 2D magneto-static analysis is necessarily incomplete in

terms of the corresponding estimation of conductor resistance properties. The

electrical circuits must be completed by end-windings of some description outside the

plane of the analysis. The term "end-windings" is used in the generic sense as a

connection between the conductors in the prismatic section of an EMM device. The

resistance for the end-windings is explained in this section. Figure (5.1) shows a

section of an end-ring. The nodes of the end-ring can be divided into two categories.

Category A represents the nodes having zero into-plane currents and nodes 1, 2, ... , 6,

16, .... 21 fall in this category and is distinguished by green colour. Category B
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represents the nodes having non-zero into-plane currents and nodes 7, 8, ... , 15 fall in

this category and is distinguished by red colour. In some EMM devices such as the

stator in an electrical machine, knowing the into-plane currents instantly determines

the above-plane currents. In other words, there is a unique set of above-plane currents

for a set of into-plane currents. This is not true for all EMM devices. In some EMM

devices, there is no unique set of above-plane currents for a set of into-plane currents.

In these devices the resistance of the end-windings is calculated by determining the

combination of end-winding currents which minimises the total resistive losses.

Let {Iso} represent the full vector of nodal currents of category B nodes, let {IER}

represent the full vector of currents in the end-ring links, and let [RE] be the diagonal

matrix of link resistances for the end-ring. Figure (5.2) shows part of the rotor end-

ring with seven links. Links 1-2, 3-4 and 5-6 are the links in the circumferential

direction and links 1-3,2-4, 3-5 and 4-6 are the links in the radial direction. The three

different areas associated with three circumferential links are shown by three different

dashed regions in the figure. Links 1-2 and 5-6 are associated with only one finite

element and link 3-4 is associated with two finite elements. Therefore, the area

associated with link 3-4 is more than the areas associated with the other two links in

the circumferential direction. Similarly we can calculate the area associated with a

particular link in the radial direction. If the width of the area associated with a

particular link is WI, the length of the link is 11 and the thickness of the end-ring is t1,

then the resistance of that link can be calculated as

(5.5)

where p is the resistivity of the end-ring materials. Matrix [Rs] represents the nodal

resistance matrix of category B nodes. The number of end-ring links connected to

category B nodes is smaller than the total number of end-ring links and naturally, the

number of variables of {IER} is much more than the number of variables of {Iso}. The

sum of end-ring (above-plane) currents flowing into a category B node is equal to the
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into-plane currents associated with that node and the sum of end-ring (above-plane)

currents in a category A node is 'zero'.

We can write Kirchoff's current law in the form

(5.6)

where [Hor is some transformation matrix which relates end-ring currents to the

rotor bar currents.

The objective is to find the matrix Go such that we can write

(5.7)

If we know all of the currents in the rotor bars, there is a unique pattern of end-ring

currents.

Combining Equations (5.6) and (5.7) gives us

[HoY [G 0] = [I] (5.8)

and (5.9)

Now there are many choices of [G0] which satisfy Equation (5.8). The general case is

this

(5.10)

Note that
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(5.11)

Here lH~ J is the left pseudo-inverse of [Ho] and lH~ J is a matrix of spanning the

space of all columns normal to [Ho]. [Fo] is arbitrary in the sense that Equation (5.8)

will be always true for all [Fo]. We apply additional reasoning to determine a unique

[Fo]. This is based on the minimization of total resistive losses. We choose [Fo] such

that \:;j vectors {Iso} the term {IsoY [GoY [RE][Go]){Iso} will be minimum.

Omitting certain tedious details, we find that

(5.12)

The detail derivation of Equation (5.12) is given in Appendix A. Then the matrix

[Go] is found from Equation (5.10) and the total resistance matrix is the combination

of the resistance matrix associated with the nodal currents and the resistance matrix of

the end-rings.

5.4 Coupled electromagnetic model for an EMM device with

changeable geometry

This section describes the coupled electromagnetic model for an EMM device with

changeable geometry. Here by changeable geometry we mean rigid body changes as

well as deformations. The magnetic field equation of the machine is solved using a

finite element procedure. A magnetic potential solution provides an instantaneous

relationship between the magnetic flux and the vector of currents, {Iz}, present in the

model. A fully-general version of the circuit equation is

(5.13)
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where {V{t)} is the vector of externally-applied voltages (EMFs), {<I>{t)} is a vector

representing magnetic flux and [p] is a matrix dictating how the individual flux

quantities in {<I>(t)} are coupled to the current variables. Flux vector, {<I>{t)} is

calculated from solving magneto-static field equation using FE method and the

instantaneous relationship between nodal currents and nodal potentials is shown in

Equations (5.1) and (5.2). [R] is the resistance matrix of the machine including the

effect of the end-windings. The resistance matrix is symmetric and positive-definite.

With an appropriate definition for the vectors {V} and {IRs}, the instantaneous

electrical power P, being fed into the machine is.

(5.14)

The instantaneous geometry of an EMM device can be expressed using a small

number of variables which we arrange in the vector, {x}. If vector, {IJ contains one

entry for every node in the two-dimensional finite-element model and the vector {Vz }

contains a corresponding entry for the net (externally applied) voltage tending to drive

that current, then it is usual to construct a single transformation

{v}= [uf{vJ

{Izl= [UHIRS}

(5.15)

(5.16)

which allows the complete current state of the machine to be expressed concisely with

a relatively small number of independent quantities within {IRS}.

At any instant, if {IRs}and {x} are known, the state of flux of the machine can be

determined through a static relationship and Equation (5.2) can be represented in a

different form as

{<I>} = [e({IRS}'{x})][pr {IRS} (5.17)

122



where {<D} is a vector representing magnetic flux. Here, the matrix function [8(.,.)],

essentially embodies a finite-element solution for magnetic potentials given the

corresponding vector of nodal currents ([pf {IRs}). It is clear why [8(.,.)] is

dependent on geometry. Its dependence on {IRs} arises because of the nonlinear

magnetic characteristics of the iron in most machines. At low levels of flux, [8(.,.)] is

independent of {IRs}.

At any given instant, t = to, if the machine currents and geometry are known as

{IRsl= {Io} and {x}={xo} respectively, Equation (5.17) can be applied to determine

{<l>o}.Then this equation can be approximated by this following linear form for

sufficiently small perturbations

(5.18)

If the flux in the machine is low enough everywhere that there is no magnetic

saturation, then [p] [A] [pn is precisely the inductance matrix associated with the

current vector, {IRS }. Also in this case, the matrix [B] is proportional to {IRS}so that

if the currents are doubled, then [B] is also doubled. Matrices, [A] and [B] should not

be confused with {A} and {B} which are used to represent magnetic potential and

magnetic flux density respectively.

We can write Equation (5.18) in differential form as

(5.19)

Now pre-multiplying Equation (5.19) by half of the nodal currents _!_ [py d {IRS}r and
2

also assuming that there is no geometry change, we will get
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(5.20)

The right hand side of Equation (5.20) is the increment of energy invested in the

magnetic field. Comparing the left hand side with the increment in stored energy in an

inductor it can be recognised that UPY [A] [p]) is the "tangent inductance" or

"marginal inductance" matrix. This matrix is always symmetric and positive definite.

In general, matrices [A] and [B] of Equation (5.19) can be obtained by differentiation

from Equation (5.17). This differentiation can be done analytically but a numerical

approach is much more straightforward. Differentiating Equation (5.17)

d{<t>} = d[e({IRS}' {x})][pI{IRs}+e(IRs,xXP J d{IRs}

d {<!>} ~ [[e({I,,},{x})][pF +a[e~{~Sx})] [pf{I,,}} {I,,}+a[e(~r!i {x})][pf{ I,,}d {x}

(5.21)

(5.22)

Here a[e({Ir\{x})] is a 3D tensor, Plane k of this is a matrix representing the
a IRS

sensitivity of [e({IRs}, {x})] to small changes in the k-th entry of d{IRs}. Similarly

a[e({~~i {x}}] is also a 3D tensor and plane k of this is a matrix representing the

sensitivity of [e({IRs}, {x})] to small changes in the k-th entry of d{x}. Comparing

Equations (5.19) and (5.22)

[A]= [[e({IRS}, {x})]+ a[e({IRS ~l;~]lpr{IRS}]

[B]= a[e({~{~{x})] [pY{IRS}

(5.23)

(5.24)

If the linearization described in Equation (5.18) has been applied at the instant t = to,

then at that instant Equation (5.13) applies with this effect
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(5.25)

From this, the rate of change of the current vector can be determined. Through this, it

is clear that a time-stepping integration can be carried out to determine currents

provided that {v} and {x} (and its rate of change) are known at every instant.

We make one final remark in this section. Equation (5.17) implies that no flux is

present if there is no current and hence appears to exclude the analysis of machines

having permanent magnets. In fact, it is not difficult to model permanent magnet

portions arbitrarily accurately using current distributions. All that is necessary here is

the inclusion of more entries in {IRS}than there are "physical" independent currents.

We choose zero voltage, zero resistance and large inductance associated with these

currents. With proper initialisation of these currents can be kept constant during the

time stepping integration process.

5.5 Modelling of an induction machine

An induction machine is a complex EMM device and consists of mainly two parts.

One is stationary part called stator and another is rotating part called rotor. In general

(for a 3-phase machine having no parallel paths) the stator currents are represented by

three independent currents. The resistance matrix associated with the three terminal

currents is a 3x3 diagonal and positive-definite matrix. Each diagonal entry represents

the resistance associated with one terminal current. As explained in Section (4.3) of

Chapter 4, the nodal currents of a stator can be transformed into terminal currents by

the following transformation

(5.26)

where {Isnc}is the full set of nodal currents of the stator, {Is} is the vector of terminal

currents of the stator and [Is] is the corresponding transformation matrix. If [Rsnc] is
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the resistance matrix associated with the stator nodal currents, then the resistance

matrix, [Rsl associated with the terminal currents is calculated as

(5.27)

The resistance matrix associated with the reduced vector of rotor bar currents is also a

diagonal and positive-definite matrix. The size of this matrix is determined by the

number of reduced rotor bar currents. Each diagonal entry represents the resistance

associated with one of the reduced rotor bar currents. As explained in Section (4.4) of

Chapter 4, the nodal currents of a rotor can be transformed into a reduced number of

rotor bar currents by the following transformation

(5.28)

where {IRnc} is the full set of nodal currents of the rotor, {IR} is the reduced vector

number of rotor bar currents and [TR] is the corresponding transformation matrix. If

[RRnJ is the resistance matrix associated with the rotor nodal currents, then the

resistance matrix associated with the reduced number of rotor bar currents, [RR] is

calculated as

(5.29)

The resistance matrices for the rotor and stator are calculated separately and finally

each of these becomes a diagonal block partition in the resistance matrix for stator

windings and rotor bar. The resistance matrix for the stator windings and rotor bar of

an induction machine can be written as

(5.30)
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here [RI] is the resistance matrix for the stator windings and rotor bars.

The resistance for the end-windings of the stator can be calculated easily (see Section

5.3) and the end-winding currents can be written in terms of stator terminal currents.

This transformation can be written by inspection. The resistance matrix, [R] consists

of the resistance of the stator and rotor and also the effects of end-windings of the

stator and rotor.

For a two-dimensional analysis of an induction machine, the vector {x}describing the

instantaneous geometry usually comprise only three entries provided that neither the

rotor nor the stator can deform significantly in the plane and provided that the stator is

fixed in space. As shown in Figure (5.3) these three entries can be written as

(5.31)

where u and v are the horizontal and vertical positions of the rotor centre respectively

and 8. is the angle of turn of the rotor.

The electro-magneto-mechanical equation for an induction machine is the same as

Equation (5.25)

(5.32)

where {V} is the vector of externally-applied voltages, [R] is the resistance matrix of

the machine including the effect of the end-windings, {IRS} is the vector of

independent currents of the machine and this includes the stator and rotor independent

currents. Matrix [p] [A][py) is the tangential inductance and is a function of currents

and geometry. If there is no translation of the rotor and only rotation is considered,
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then the geometry vector, {x} is a scalar and {x} = e. So, when we consider only

rotation Equation (5.22) can be written as

(5.33)

For a constant mechanical speed of the rotor, Omech' dB = 0mechdt and Equation

(5.13) can be written as

(5.34)

Equation (5.34) can also be written as

(5.35)

where [Lmar] is the marginal inductance.

5.6 Conclusions

This chapter focuses on the modelling of electro-magneto-mechanical devices using

2D FE model. The presented model can be applied to any EMM devices including

induction machines. The effects of end-windings are incorporated in the 2D model by

writing the end-winding currents (above-currents) in terms of rotor bar currents (into-

currents). If the current density is uniform this transformation is obvious. For variable

current densities this transformation is obtained from the minimisation of resistive

losses. An example of how the procedures can be extended to model an induction

machine has also been discussed.
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Figure (5.1): Cross section of rotor end- rings
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Figure (5.2): Cross section of rotor end-rings with seven links (three along the

circumferential and four along the radial direction)
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Figure (5.3): Stator, rotor and airgap of an electric machine
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Chapter Six

Time-marching Simulations of Rotating Electric

Machinery

6.1 Introduction

Chapters 3 to 5 of this thesis have addressed the rudiments of modelling coupled

electro-magneto-mechanical systems. Chapter 3 outlined the basics of magneto-static

FEA such as is used throughout this work. Chapter 4 explained a number of essential

transformations which are made (some relating only to the vector of currents and

others to the vector of magnetic potentials as well as to the vector of currents). In

Chapter 5, the principles of how to deal with changing geometry in an electro-

magneto-mechanical system were outlined but their implementation within an FEA

context was not explored. This chapter concentrates on precisely that implementation.

In particular, it addresses the time-domain simulation of electrical machines which are

obviously particular cases of electro-magneto-mechanical systems. In some cases, the

changes in geometry are restricted only to the rotation of the rotor relative to the

stator. In the most general case, however, the rotor is also allowed to translate relative

to the stator. Time-domain simulation is really the workhorse tool for modem

machine designers. Approximate design calculations can bring the machine designer

to the point where his design is close to optimal. It is now commonplace for machine

designers to check their final design by simulating its behaviour numerically so as to

ascertain whether the many assumptions which are common in basic machine design

programs are valid in his particular case.

The remainder of this chapter comprises four main sections. In section 6.2, we

examine the set of ways by which it is possible to accommodate the movement of the

rotor relative to the stator.
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In section 6.3, we firstly recall the structure of the FEA model formulation. It is

obvious from this revision that certain matrix quantities will be needed at every

instant in the simulation. The remainder of section 6.3 addresses some general

principles by which these quantities can be acquired. Finally two distinct methods

which are used within this thesis for accommodating relative motion of rotor and

stator are discussed. These are: (a) the "airgap stitching" method and (b) the "central

circle" method. It will be seen that the latter has many advantages and attractions over

the former but that it suffers from the drawback that it cannot easily be used to

simulate machines where the rotor is not concentric with the stator.

At several points in this chapter, the reader will encounter some sections that look

similar because (1) arguments applied to the rotor are also applied to the stator, (2)

similarities between the two main methods explained here and (3) explanations given

for linear are extended to non-linear.

6.2 Accommodating movement in rotating electric machine

modelling

6.2.1 Established approaches for accommodating movement in FE

models

In rotating electrical machines, electromagnetic finite element modelling must be able

to account for mechanical displacements caused by the relative movement between

the stator and rotor. One simple approach is to separate the solution domain into a

stationary and a rotating part, discretise them separately so that there is a space

between them and then stitch the two parts with (largely triangular) elements in that

space. The magnetic field formulations of the stationary and the rotating parts are

each then derived in their own respective coordinate systems and constraints are

applied in the airgap to take care of the relative movement. Different methods for

modelling movement of rotors have been described by Bastos and Sadowski, (2003)

and Rodger et al. (1990). A number of different methods exist to cater for the relative

movement of two parts linked by a magnetic field. The available methods can be

broadly categorized as
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Boundary element modelling is used for the airgap and integrated with the FE

models for the rotor and stator. This is a hybrid method combining both BE

and FE methods. Klimke (2004) in his article described a hybrid magnetic

field solver based on this concept. The disadvantage with this method is that

the magnetic stiffness matrix is no longer sparse and can increase the

computational time. A positive attribute is that this method can be used to take

care of the movement of an eccentric rotor.

2 In an alternative set of methods the rotating and stationary parts are modelled

separately and then connected at the airgap. Re-meshing is required to take

care of the relative movement between the stator and rotor. Arkkio (1987)

gave a detailed review of this method.

3 In a third class of methods rotor movement is accommodated by airgap

element. The airgap element is an macroelement originally proposed by

Abdel-Razek et al. (1982) for modelling annular airgap in electrical machine.

The finite elements in the airgap are replaced by a single element

macroelement. This macroelement is based on the analytical solution of the

magnetic field of the airgap. The advantages of using an airgap element are

that it avoids the re-meshing the airgap and since an analytical solution is used

the results are more accurate. Later Wang et al. (2002) developed airgap

element method to use in some special machines such as the linear machine or

the disc-type rotating machine. The disadvantage of this method is the

substantial increase of the computational time caused by the insertion of dense

matrix blocks into the sparse FE matrices [Gersem and Weiland, 2005].

4 Another method exists for a class of problem where rotating and stationary

parts are modelled separately with non-coinciding nodes from both the stator

and rotor sides being present at the same sliding interface. This subdivides

further into (4a) constraints being applied to reduce the number of independent

potentials again and (4b) introduction of Lagrangian multipliers. In the

Lagrange multiplier method the rotating and stationary parts are modelled

completely independently and Lagrange multipliers are used to couple these

independent meshes at a suitable interface. Rodger et al. (1990) used the

Lagrange multiplier method to account for the relative movement between a

stationary part and a rotating part in 2D. Later Lai et al. (1992) extended this

method for 3D problems. Moving surface technique is implemented in a
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commercial package called Maxwell 2D™ to handle the rotational movement.

Both the stationary and moving parts are meshed separately. Finite element

shape functions are then used to couple these two independent meshes at the

moving surface. Fu et al. (2005) used a similar method using sliding surface.

6.2.2 Approaches used in this thesis for accommodating movement

In the analyses reported in this thesis, the rotor movement is modelled in two different

ways. One of them is called the airgap stitching method and another is called the

central circle method. In the first method the rotor and stator are modelled using

completely separate FEA models - each including some fraction of the airgap. The

two subsystem models are combined by stitching the outer diameter of the rotor and

the inner diameter of the stator in the airgap. During the simulation, at least some of

the airgap has to be re-meshed to account for the rotor movement. This means that the

element matrices for (some of) the airgap must be derived at every time step during

the simulation even if the magnetic saturation is not considered. At the very least, one

whole radial layer of airgap elements will have to derived afresh. This method falls on

the second category described above where the rotor and stator are modelled

separately connected at the airgap using finite elements. Figure (6.1) shows where the

relative movement of the stationary and the rotating part of a typical rotating electrical

machine is taken care by airgap stitching method. The airgap stitching method has

two main disadvantages:

(a) In reality, it is obvious that the machine inductance matrix should be a

continuous function of rotor angle. With the stitching method, at instants

where the connectivity of rotor and stator nodes has to be changed,

discontinuities will appear in the inductance.

(b) Even for analyses which are magnetically linear, the element matrices must

be derived afresh for the stitching elements at each instant in time.

A strong advantage of this method is that it can cope with the case of eccentric rotor

and stator provided that the eccentricity is smaller than the thickness of the stitched

band.
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In the second method employed in this work, the FE models for the rotor and stator

have coincident circular boundaries (usually in mid-airgap). Initially, the magnetic

potentials at these two boundaries are completely independent but constraint

equations are applied to ensure that flux traversing the common boundary is

conserved. This method falls on the category where non-coincident rotor nodes and

stator nodes are both present at the same sliding interface and constraints are applied

to reduce the number of independent potentials. Figure (6.2) shows a stator, a rotor

and the central circle in the middle of the airgap of a typical rotating electrical

machine. This method has two disadvantages:

(a) When constraints are applied the sparsity of the stiffness matrix is reduced.

(b) It can not cope with the case of eccentric rotor and stator.

6.3 Some general features of machine modelling

In this section the first of the two subsections describe the model that is solved in this

chapter. The second section describes some general notes on inductance matrix and its

derivatives.

6.3.1 Revisit of the electro-magneto-mechaaieal model

From the 2D FEA proposed and used in this work, we get an instantaneous

relationship between nodal currents and nodal potentials and this is already stated in

the Chapter 3. The full nodal vector of currents can be reduced to a smaller number of

independent currents variables by imposing constraints. Recalling the transformations

discussed in Chapter 4, for a magnetically linear rotating electromagnetic machine we

can write

(6.1)

where [K] is the stiffness matrix, {A} is the vector of magnetic potentials at nodes,

[U] is the transformation matrix and {IRS} is the reduced vector of independent

currents of the machine. The current vector {IRS} comprises two partitions. The first
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partition is the terminal or phase currents of the stator and the second partition is the

reduced number of rotor bar currents. If we incorporate nonlinearity in Equation (6.1)

we can write

(6.2)

where [Kmar] is the tangential or marginal stiffness matrix and [Kmar] is a nonlinear

function of current and instantaneous geometry. It is already discussed how [Kmar]
can be found out from B(ll) curve. Equation (6.2) can also be written in the form

(6.3)

where {bz} can be described as a vector of free MMF . The coupled electro-magneto-

mechanical model has already been described in Chapter 5. The linearised coupled

equation of this electro-magneto-mechanical model of an electrical machine with

constant mechanical speed, nmcch is

(6.4)

where {V} is the vector of externally-applied voltages, [R] is the resistance matrix of

the machine including the effect of the end-windings, {IRS} is the vector of

independent currents and [Lmar] is the marginal inductance matrix and is a function of

the independent current vector, {IRS}and the rotor position (}. To calculate the

current vector {IRS}'Equation (6.4) is integrated in time domain. Two methods are

employed to calculate the marginal inductance and its rate of change. These two

methods are airgap stitching method and central circle method and these two methods

are discussed in the subsequent sections.
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6.3.2 Definition and calculation of marginal inductance and its

derivative

The marginal inductance [Lmar] mentioned in Equation (6.4) is calculated from the

instantaneous relationship between the magnetic nodal potentials and nodal currents.

The increment in stored energy in a magnetically coupled circuit can be written as

(6.5)

Using Equation (6.2) we can write the increment of stored energy of this as

(6.6)

The stored energy of an inductor, Es is

(6.7)

Comparing Equation (6.6) and (6.7) the marginal inductance [L] of the machine can

be written as

(6.8)

For a magnetically linear system {Mzl= {Azl and [Kmar] =[K]. It is noted that [U]

has fewer columns than rows and also most of the entries of [U] are zeros. The non-

zero entries correspond to the current carrying nodes. From Equation (6.8) it is seen

that only the components corresponding to the current carrying nodes are used to

calculate the inductance matrix. Therefore, we can reduce the stiffness matrix further

and in turn reduce the computational time. This feature is used in the calculation of

steady state currents and is discussed in the next Chapter. A detailed explanation is

given in Appendix A.
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The rate of change of inductance i.e. d[L] can be calculated either by a direct
dt

analytical differentiation (which would involve determining the sensitivity of each

element stiffness matrix to the position of its nodes) or by a numerical differentiation.

The latter is preferred here and a central difference method is employed whereby

perturbing the model by a small angle. For a particular mechanical speed the rate of

change of inductance is d[L] = n
mcch

d[L]. From Equation (6.8)
dt dB

d[L] = [uy d[Krl [u]
dB dB

(6.9)

But we know that

(6.10)

So,

(6.11)

Therefore, to calculate d[L] we need to calculate d[K] and d[K] is calculated using
se so dB

the central difference as

(6.12)

For linear case, since we have already calculated the term QKt[U]) while calculating

the inductance [Equation (6.8)], we can save a substantial amount of time by using

Equation (6.12). In this work the value of /j.(} used for numerical differentiation was

1% of 1°.
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If no geometry change occurs in the machine, the above prescribed method can be

used directly to calculate inductance and its rate of change. If there is geometry

change some additional modifications can be incorporated to speed up the calculation

of inductance and its derivative. The following sections discuss how the inductance

and its derivative are calculated using airgap stitching method and central circle

method.

6.4 Airgap stitching method

Figure (6.1) shows a simple machine whose airgap is divided into three bands. The

inner most band which is nearest to the outer diameter of the rotor is stitched with

triangular elements. In terms of computational effort linear and non-linear FEA can be

very different and so they have to be handled separately. Therefore, this section is

divided into two main sub-sections

•

Calculation of marginal inductance and its rate of change usmg airgap

stitching method from non-linear FEA

Calculation of marginal inductance and its rate of change using airgap

stitching method from linear FEA

•

6.4.1 Marginal inductance and its rate of change using airgap

stitching method from non-linear FEA

As stated in Chapter 3 for higher currents the relationship between nodal currents and

nodal potentials is no longer linear. If nonlinearity is incorporated in the instantaneous

relationship between nodal currents and nodal potentials, Equation (6.1) can be

written as

(6.13)

Since there is geometry change here, [Kmar] will be functions of current and geometry

change. The stiffness matrix, [Kmar], has to be derived at every time step. The element

matrices for non-ferromagnetic materials need be derived only once - except for those
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air gap elements which change with the motion of the rotor. Similar to Section (6.3)

we can write the inductance as

(6.14)

The inductance matrix computation in Equation (6.14) is performed after convergence

of the nonlinear magnetic field problem has been achieved for the machine currents

i.e. stator phase currents and the rotor bar currents. Rate of change of inductance is

calculated using the procedure described in Equation (6.11).

6.4.2 Marginal inductance and its rate of change using airgap

stitching method from linear FEA

If the geometry change is not considered the calculation of the marginal inductance

from linear FEA is quite simple because it has to be calculated only once. If the

geometry change is considered in the calculation of marginal inductance from linear

FEA the element matrices also need to be derived only once except for those airgap

elements which change with the motion of the rotor. In an electric machine, geometry

changes occur mainly due to the rotor movement. While modelling the movement of

the rotor in the time domain simulation, the stiffness matrix [K] has to be derived at

every time step. This process can be computationally very expensive. To avoid that

the full magnetic vector potential vector {Az} is written in terms of airgap potentials

when modelling the rotor movement since the changes occur only in the airgap if the

magnetic saturation is neglected. Thus, only the element stiffness matrices of the

airgap elements need to be derived at every time step to take care of the rotor

movement. The vector of nodal currents {Iz} is divided into five different partitions

as
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I) V)
12 V2

{Iz} = 13 = V3 {IRs} (6.15)
14 U4
Is Us

Correspondingly, magnetic potentials are also divided into five regions as

A)
A2

{Az}= A3 (6.16)
A4
As

Here, {A)} contains magnetic vector potentials at stator nodes excluding those stator

nodes bordering the airgap, {A2} contains magnetic vector potentials at nodes on the

stator-airgap boundary, {A3} contains magnetic vector potentials at air gap nodes not

common to either stator or rotor, {A4} contains magnetic vector potentials at nodes

on the rotor-airgap boundary, {As} contains magnetic vector potentials at nodes

excluding those rotor nodes bordering the airgap. Figure (6.3) shows a quarter of an

electrical machine model discretized with 8-noded quadrilateral and 6-noded

triangular finite elements. For this example we can write {AI}' {A2}, {A3}, {A4},

and {As} as

a6 a)

a7 a2

a13 as a4 a3 a8

{A)}= a)4 . {A2}=
a12 . {A3}=

a)) . {A4}=
alO . {As}=

a9 (6.17)
a20 a19 a)8 a17 a)S

a21 a26 a2S a24 a)6

a27 a22

a28 a23

141



where aI, ai, a3, ... , a28 are the nodal magnetic vector potentials of nodes 1, 2, 3, ... ,

28 respectively. Arranging [K] matrix according to the order mentioned in Equation

(6.15) we can write Equation (6.1) as

KlI : K12 0 0: 0 AI V I---~-------------~----
K21 : K22 K23 0: 0 A2 V 2

I I

o : K32 K33 K34: 0 A3 = V3 {IRs} (6.18)
I I

o : 0 K 43 K 44 : K 45 A4 V 4---~-------------~----o ! 0 0 K54 ! K 55 A 5 V 5

From Equation (6.18) we can write the following Equations from (6.19) to (6.22)

[KII HAI}+ [K12HA2} = [VI HIRs}

{AI} = [KII ]-1aV IHIRs} - [K12HA2})

[KS4HA4}+ {K5SHAs} = [v 5 HIRs}

{As} = [KS4]-1 aV sHIRs}- [KS4HA4})

(6.19)

(6.20)

(6.21)

(6.22)

For the linear case we can write the full vector of magnetic potential in terms of the

airgap potentials as

AI -K~IIKI2 0 0 K~:UI-------------------

{~}
-----.

A2 I 0 0 0

A3 = 0 I 0 0 {IRS } (6.23)
A4 0 0 I 0--- ------------------- ----_.
As 0 0 - K;~KS4 K;~Us

or {AJ= [TJAred}+ [T2HIRs} (6.24)

where the definitions of the quantities in Equation (6.24) are obvious from Equation

(6.23). Substituting {Azl of Equation (6.24) to Equation (6.18) and pre-multiplying

by [TIr,we obtain
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r
(K22 -K2IK~IIKI2) K23

K32 K33

o K43
(6.25)

(6.26)

{Ared } is the reduced vector of magnetic potentials consisting only the nodes

corresponding to the outer diameter of the rotor, inner diameter of the stator and the

air gap nodes. The energy stored in a magnetically coupled circuit is given by

(6.27)

Inserting the expressions of {Ared } from Equation (6.26) in Equation (6.27) and

simplification leads to

(6.28)

where E is the total energy stored in the machine. Comparing Equation (6.28) to the

stored energy of an inductor, as Equation (6.11) we obtain the inductance of the

machine as

T1 T2 T3 (6.29)

As shown in the above equation the inductance matrix consists of three terms. The

first term, T1, corresponds to the stator nodes excluding those stator nodes bordering

the airgap. The element matrix for this region does not depend on the movement of

the rotor so for a linear case it is calculated only once. The second part, 12,

corresponds to the nodes on the stator-airgap boundary where the air gap nodes are

not common to either the stator or rotor and nodes on the rotor-airgap boundary. The

element matrix for this region depends on the movement of the rotor and has to be

calculated at every time step. The third part, Ts, corresponds to the rotor nodes
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excluding those rotor nodes bordering the airgap. The element matrix for this region

does not depend on the movement of the rotor so for a linear case it is calculated only

once.

The rate of change of inductance i.e. d[L] can be calculated using the similar
dt

procedure prescribed in Equation (6.11).

6.S The central circle (CC) method

In this section we present a method for calculating steady state solution of an

induction machine and we call this method the 'central circle method'. This method

has significant advantages over the airgap stitching method described above. In this

method the rotor and stator are modelled separately which share a common circle

named as 'central circle' at the middle of the airgap. Figure (6.4) shows the rotor and

stator along with the common central circle. Nodes corresponding to one half of the

airgap form an integral part of the rotor model and nodes corresponding to another

half form an integral part of the stator model. Nodes of the stator model at the central

circle are not required to coincide with nodes of the rotor side. This particular

characteristic makes this method different from the other method. Another feature of

this method is that the rotor and stator are analysed completely independently. The

effects of the stator on the rotor flux are represented to the rotor by a set of fictitious

currents acting at the "central circle". This set of currents is denoted by {IRc}·

Similarly the effects of the rotor on the stator flux are represented to the stator by a set

of fictitious currents acting at the "central circle". This set of currents is denoted by

{Isc}.

The nodal potentials of rotor at the central circle are approximated by a Fourier series.

Similarly the nodal potentials of stator at the central circle are also approximated by a

Fourier series. A constraint is imposed on these two sets of potentials to take care of

the relative movement between the rotor and the stator. As the rotor and stator nodes

are concerned; both side see same pattern of potentials but shifted. These steps are

explained in the following subsections.
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6.5.1 Formulation for the rotor

Figure (6.4) shows a notional electric machine separated into halves, i.e. stator and

rotor, by the central circle at the middle of the airgap. The instantaneous relationship

between the nodal potentials and the nodal currents for the rotor can be written as

(6.30)

where [KR] is the stiffness matrix of the rotor, {AR} is the nodal potential vector of

the rotor, {IRN} is the nodal current vector of the rotor and {bR} is the nodal free

MMF vector in the rotor. {AR} is divided into two parts as

{AR}={ARM }ARCN

(6.31)

Here {ARM} contains potentials at rotor nodes excluding those rotor nodes on the

central circle and {ARcN} contains potentials at nodes on the central circle in the rotor.

The nodal magnetic vector potentials at the central circle in the rotor are approximated

using a Fourier series. We can write this transformation as

(6.32)

where {ARc} is the Fourier components of the potential on the central circle in the

rotor and [TRCN] is the transformation matrix. If the number of nodes on the central

circle in the rotor is n and if the number of harmonics considered is p, Equation (6.32)

can be written as

COSO'OI sin 0'01 cOSpO'OI sin pO,OI
arcl

a,ol arsl

{ARCN l= a,02 cos 0ro2 sin 0ro2 cos pOro2 sin pOro2
=: [TRCNHARe}=

(6.33)

a ran COSO,OII sin 0ran cos pOran sin pOran
arcp
artp
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where aro}, ar02, . '" aron are the nodal potentials on the central circle in the rotor, ~01,

Br02, "., Bron, are the angular positions of the nodes 1, 2, "., n respectively with

respect to the rotor reference frame and arc), ars2, "., arcp, Grsp are the Fourier

components of the potential on the central circle in the rotor. So Equation (6.30) can

be written as

(6.34)

Now, not every node in the rotor can carry current. In fact, the space of possible

vectors, {IRM}, is substantially smaller than the dimension of this vector. There is

some transformation, [TR], such that

(6.35)

The method to form [TR] has already been explained in Chapter 4. Thus, Equation

(6.34) can be written as

(6.36)

Writing {ARcN}in terms of {ARc} and from Equations (6.33) and (6.36) we obtain

(6.37)

{T~cNIRCN}is the vector of Fourier components of the fictitious currents at nodes on

the central circle in the rotor. Replacing {r~CNIRCN}with {IRC}we can write Equation

(6.37) as

[
KRMM
T~CNKRCM

(6.38)
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6.5.2 Formulation for the stator

We can write the formulation for the stator similarly to that of the rotor. The

instantaneous relationship between nodal potentials and nodal currents for the stator

can be written as

(6.39)

where [Ks] is the stiffness matrix of the stator, {As} is the nodal potential vector of

the stator, {IsN} is the nodal current vector of the stator and {bs} is the free MMF

vector. {As} is divided into two parts as

(6.40)

Here {AsM} contains potentials at stator nodes excluding those stator nodes on the

central circle in the stator and {AscN} contains potentials at nodes on the central circle

in the stator. The nodal magnetic vector potentials on the central circle in the stator

are approximated using a Fourier series. We can write this transformation as

(6.41)

where {Asc} is the Fourier components of the potentials on the central circle in the

stator and [TSCN] is the transformation matrix. If the number of nodes on the central

circle in the stator is q and if the number of harmonics considered is p, Equation

(6.41) can be written as

COSOsil sinOsil COSpOsil sin pO'il
ascI

asil
COSOsi2 sin 0si2 cos pOsi2 sin pO'i2

aliI

{ASCN }=
asi2 =: [TSCN HAsc}= (6.42)
asiq cosO.iq sin B.iq cos pB.iq sin pBsiq

ascp
asap
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where asil, asi2, ... , asin are the nodal potentials on the central circle in the stator, Bsi"

Bsi2, ... , Bsin, are the angular positions of the nodes 1, 2, ... , n respectively with respect

to the stator reference frame and ascI. ass2, ... , ascp. assp are the Fourier components of

the potentials on the central circle in the stator. Therefore, Equation (6.39) can be

written as

(6.43)

Now, not every point in the stator can carry current. In fact, the space of possible

vectors, {ISM}' is substantially smaller than the dimension of this vector. There is

some transformation, [Ts], such that

(6.44)

The method to form [Tsl has already been explained in Chapter 4. Thus, Equation

(6.43) can be written as

(6.45)

Writing {ASCN}in terms of {Asc} and from Equations (6.43) and (6.45) we get

(6.46)

{r[CNISCN}is the vector Fourier components of the nodal fictitious currents on the

central circle in the stator. Replacing {r[CNISCN}with {Isc}, we can write Equation

(6.46) as
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(6.47)

6.5.3 Coupling the rotor and stator models

The stator and rotor reference frames are shown in Figure (6.4). If the angular position

of the rotor is ¢ with respect to the stator reference frame, then with the appropriate

transformations applied to take account of the effect of the rotation of the rotor

relative to the stator,

(6.48)

And the compatibility of the magnetic potential dictates that

(6.49)

where [T(¢)] is a simple rotation matrix comprising block 2x2 rotation matrices on its

diagonal. We can write

asci cos(¢) -sin(¢) 0 0 arc!

ass! sin(t/J) cos(t/J) 0 0 ars!
= =: [T(t/J)MARc} (6.50)

«; 0 0 cos(pt/J) -sin(pt/J) arcp
asS{} 0 0 sin(pt/J) cos(pt/J) arsp

Combining Equations (6.38) and (6.47)
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Now (6.52)

{ARC}is the distribution of magnetic potential on the central circle in the rotor and is

considered at the rotor fixed frame of reference and [p(;)] takes care of the rotation.

Applying Equations (6.51) and (6.52) and pre-multiplying by [p(;)Y, we obtain

Simplifying Equation (6.53)

(6.54)

(6.55)

where the definitions of the partitions in Equation (6.54) are evident from Equation

(6.53). We now proceed to show how this formulation of the machine can be used in

simulation.

6.5.4 Marginal inductance and its rate of change from non-linear

finite element analysis with geometry change

Since there is geometry change here, [KM] will be a function of current and geometry

change. The stiffness matrix, [KM], has to be derived at every time step. The element

matrices for non-ferromagnetic materials need be derived only once except for those

airgap elements which change with the motion of the rotor. Similar to Section (6.3)

we can write the inductance as
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(6.56)

The inductance matrix computation in Equation (6.56) is performed after convergence

of the nonlinear magnetic field problem has been achieved, for the machine currents

i.e. stator phase currents and the rotor bar currents.

Rate of change of inductance is calculated using the procedure described in Equation

(6.11).

6.5.5 Marginal inductance and its rate of change from linear finite

element analysis with changeable geometry

When material non-linearity is not considered, Equation (6.54) can be written as

(6.57)

From Equation (6.57) we can write the rotor and stator magnetic potentials in terms

central circle magnetic potentials as

{ARM}= -[KRMMJ1[KRMCHARC}+ [KRMMJ1[TRHIRs} (6.58)

{AsM}= -[KSMMJ1[KsMC1HARC}+ [KsMMJ1[TsHIRs} (6.59)

Finally,

(6.60)

(6.61)
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From Equations (6.57) and (6.61) we can write

(6.62)

where

[KD2] = [Kcc]-[KRCMJKRMMtl[KRMC1]- [KSCMtlKSMMtl [KSMC1]) (6.63)

[UD2] = -[KRCMtlKRMMt1[TR]+[KsCMtlKSMMt1[Ts] (6.64)

The energy stored in a magnetically coupled circuit is given by

E = .!_{AzlY[KMHAzl}
2

= .!_[[T3]{ARc}+ [T4HIRs}Y[KM][T3HARc}+ [T4HIRsn]
2

(6.65)

(6.66)

After simplification we can write Equation (6.66) as

Equation (6.67) can be compared to the stored energy of an inductor as shown in

Equation (6.7). Thus, the inductance is

Tt T2 T3 (6.68)

[K02] and [UD2] in Equations (6.63) and (6.64) respectively can be expanded as

[TRCNr [KRccITRCN]
[K

D2
]= + [T(<6)rQTsCNr[KsccI~sCN])r(,)

-[TRCNf[KRcMIKRMMt [KRMcITRCNl (6.69)

- T(;l[TsCNY[KsCMIKsMMtl[KsMcITsCNjr(;)
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The first, T1 and third, 13, terms of Equation (6.68) are independent of rotor position,

so they are calculated only once. The second term, 12 depends on the rotor position.

Therefore, only the rotation matrix, [T(¢)] is derived at every time step of the

simulation. Unlike the airgap stitching method the element matrices do not need to be

derived at every time step. For the linear analysis the rate of change of inductance i.e.

d[L] is calculated simply by differentiating Equation (6.68). From Equation (6.68)
dt

d[L] = [U ]T d[K02 jl [U ]
dt 02 dt 02

(6.71)

But

d[K02jl = -[K 1-1 d[K02][K 1-1
dt O2J dt O2J

(6.72)

So,

d[L] = _IrK ]-1 [U ]f d[K02] IrK ]-1 [U ])
dt \J. 02 02 dt \J. 02 02

(6.73)

From Equation (6.69) d[K02] can be easily calculated. As already we have calculated
dt

the term QK02jl[U02]) while calculating the inductance, using Equation (6.72) we can

save substantial amount of time.

6.6 Case studies

The case study described here presents the steady state currents for a typical electrical

machine from the methods discussed in Sections (6.4) and (6.5). The case study is to

compare the steady state currents of a typical electrical machine from the airgap
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stitching and the central circle method. The main parameters of the induction machine

are given in Table 6.1.

The machine considered is a 4-pole, 3-phase induction motor wound with double

layered windings. The stator of this machine has three independent currents. The

number of rotor bars is 32. If five modes of conductance are considered for the rotor

bar and the number of harmonics for the Fourier approximation of the rotor bar is also

five, the transformations in Chapter 4 leads to a total of 44 independent rotor currents.

The stator and rotor currents can be written as

1
Rotor currents Rotor currents Rotor currents Rotor currents Rotor currents )

Stator currents (DC components) (1stharmonics. cos) (1stharmonics. sin) (2nd harmonics, cos) (2nd harmonics, sin)
~~~~~~

{IRs}= i1 ••• i3 i4 ••• i7 ig ... i12 i]3 ... i17 i18 ... i23 i23 ... i27 .. ·i47

(6.74)

here it, ..., is are the three stator currents, u, ..., ;, are the DC components of the rotor

currents, ie, ... , i12 are the cosine components of the first harmonics of the rotor

currents and so on. For the airgap stitching method the airgap is divided into three

bands and two bands are attached to the stator. The stator and rotor of the machine are

modelled separately with 8-noded quadrilateral finite elements. Outer band of the

rotor is combined with the inner band of the stator by stitching using triangular

element airgap elements to take care of the relative movement between the stator and

rotor. Figure (6.3) shows one quarter of a machine cross-section where the stator and

rotor are discretized with 4-noded quadrilateral finite elements and airgap is stitched

with triangular elements. For the central circle method the airgap is divided into two

parts by a central circle passing through the middle of the airgap. One half of the

airgap is attached to the rotor and the other half of the airgap is attached to the stator.

The stator and rotor of the machine are modelled separately with 8-noded

quadrilateral finite elements. The stator and rotor are combined at the central circle to

take care of the relative movement between these two by applying constraints.
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Figure (6.5) shows the three stator currents from the linear and non-linear FEA by

airgap stitching method for the case where the slip is 10% and supply voltage is 20 V.

Figure (6.6) shows the two rotor currents (shown as i18 and i23 in Equation (6.74))

from the linear and non-linear FEA by airgap stitching method. The steady state

currents are calculated using the linear FEA from time 0 to 0.2 sec. Considering these

currents as initial guess the steady state currents are calculated from the non-linear

FEA from time 0.2 to 0.3 sec.

Figure (6.7) shows the three stator currents computed from the linear and non-linear

FEA by central circle method for the same slip (10%) and same supply voltage (20

V). Figure (6.8) shows the two rotor currents (shown as i18 and i23 in Equation (6.74))

from the linear and non-linear FEA by central circle method. From time 0 to 0.2 sec

the currents calculated from linear FEA. Similar to the airgap stitching method, the

steady state currents are calculated using the linear FEA from time 0 to 0.2 sec.

Considering these currents as initial guess the steady state currents are calculated from

the non-linear FEA from time 0.2 to 0.3 sec. For the results presented in Figures from

(6.5) to (6.8), it is seen that the results of airgap stitching method and central circle

method match very well with each other.

For the linear FEA case the central circle method is computationally more efficient

than airgap stitching method because in case of central circle method no element

derivation is required during the simulation.

For the non-linear FEA element matrices are required to be derived at every time step

of the simulation. The airgap stitching method is computationally more effective than

central circle method because sparsity is reduced in case if central circle method.

6.7 Conclusions

Two general methods for calculating steady state currents of an induction motor are

discussed in this chapter. One case study is presented where the steady state currents

are calculated using these two methods. It makes a huge difference in terms of
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computational time if non-linearity due to magnetic saturation of the iron cores is

considered in the calculations.
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Figure (6.1): Rotor movement modeling by the airgap stitching method

Figure (6.2): Rotor movement modeling by the central circle method
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Figure (6.3): One quarter of an electric machine discretized with 4-noded quadrilateral
and 3-noded triangular finite elements
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Figure (6.4): Rotor and stator with common central circle
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Table (6.1): Main electromagnetic parameters of the machine

Parameters Value
Number of poles
Number of phase

Number of stator slots
Outer diameter of the stator [mm]
Inner diameter of the stator [mm]

Number of rotor slots
Outer diameter of the rotor [mm]

Air gap radial thickness [mm]
Length of the rotor [mm]

Rated voltage [V]
Rated frequency [Hz]

Rated power [kW]

4
3
36
152
90
32
89.2
0.4
123
415
50
2

159



200~----~----,------'-----'------~-----

150 ---------------------------------------------------.---

VJ.......
I:
'l)..........
::l

:::-50-
o.......
roVS -100

o

-150
, ,, , ,

- - - -~- - - - - - -} - - - - - - - - - - - -- -; - - - - - - - - - - - - - -} - - - - -

-2500

~
I
I

-200

0.05 0.1 0.15
Time (S)

0.2 0.25 0.3

Figure (6.5): Stator currents of an induction machine by the airgap stitching method
when slip = 10% and supply voltage = 20Y
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Figure (6.6): Rotor currents of an induction machine by the airgap stitching method
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Figure (6.7): Stator currents of an induction machine by the central circle method
when slip = 10% and supply voltage = 20V
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Chapter Seven

Method of Calculating Steady State Solutions for

Induction Machines

7.1 Introduction

Any induction machine fed from a balanced sinusoidal supply with known voltage

and frequency and constrained such that the rotor rotates at a constant speed about the

geometric centre will develop periodic machine currents in both the rotor and stator

and a fairly steady airgap torque. The machine will also attain an equilibrium thermal

state and equilibrium torque losses from friction and windage. The determination of

these machine states (currents, torques and temperature-rises above ambient) is an

important capability in the design of the machine. Knowing the rotational speed and

the net torque (airgap torque less the sum of friction and windage loss torques), the

output mechanical power can be calculated. Knowing the periodic machine currents,

the machine designer can also calculate the net real input power, the harmonic

distortion fed into the supply and the reactive power. The net machine efficiency

follows.

This chapter addresses the computation of the steady-state behaviour of an induction

machine. The importance of this calculation extends beyond the determination of

machine efficiency, power-factor and temperature-rise etc. The entire approach

advocated in this thesis for the rotordynamic analysis of induction machines (and

indeed for any rotating electrical machine) is based on linearisation of the machine

dynamics around the steady-state solution. The steady-state currents of the machine

are the quantities of interest for this purpose. If we have knowledge of these for every

instant, then we can perform a magneto-static 20 FE computation to determine the

complete state of flux within the machine.
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At first sight, it appears (at least conceptually) straightforward to determine the

steady-state of a machine by doing a time-marching simulation and simply continuing

this until all transient effects have died down. Three distinct difficulties arise in this.

The first difficulty is that the motion of the rotor relative to the stator must be

captured. The second difficulty is that all practical (iron-bearing) machine designs

operate with at least some of the iron being partially saturated magnetically. The third

difficulty is that the equations may be mathematically stiff with the result that the

computational time taken to carry out the simulation can be very long.

In this chapter one very novel method of calculating steady state solution of an

induction machine is explained. The newly proposed method calculates the stator and

rotor currents of an induction machine taking the material nonlinearity into account

but without requiring that the complete set of element matrices be calculated each

time step. In other methods the element matrices for all saturable elements in the in

the model are calculated.

7.2 Available approaches to calculate steady state solution

There are many ways to calculate the steady state currents of an induction machine.

One option is to perform the full non-linear time domain simulation using the

methods prescribed in Chapter 6. These methods are computationally very expensive.

Another option is to solve the linear problem in time domain to steady state. Examine

one period of the steady state. Modify the permeability at every Gauss point in the

element based on the rms flux density at that point. Then solve linear problem again.

This process can be solved iteratively until a converged result is reached. One main

disadvantage of this method is that the final solution has constant permeability.

Despite many recent advances, electrical machine modelling using finite element can

be computationally very expensive (Rodger et. al., 2004). Several techniques are put

forwarded by Rodger et. al (2004). One of their techniques is to use the previous

answer as starting points. A torque speed curve is generated for the higher speeds first

and used the results as the initial guess for the lower speeds. They have observed that

this method is four times faster than a conventional method. Another method for
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speeding up the calculation of torque speed curve by shaping the applied voltage

waveform in order to reduce the initial transient effects of switching the excitation on.

7.3 Central circle method with non-linear model reduction

Section (6.5) of Chapter 6 discusses the general features of central circle method and

outlined its advantages over the airgap stitching method. One of the main features of

the central circle method is that while analyzing electric machines the relative

movement between the rotor and stator can be modelled very efficiently using the

central circle method. Other features includes the calculation of inductance matrix

considering no geometry change as well as geometry change from linear FEA and the

calculation of inductance matrix considering no geometry change as well as geometry

change from non-linear FEA. These features are similar to the airgap stitching method

and discussed in detail in Section (6.4). One disadvantage of central circle, which

might occur in calculation of inductance matrix from non-linear FEA, is that it may

reduce the sparsity of the stiffness matrix if the number of harmonics is large.

This section discusses another feature of central circle method. Section (6.5) discusses

the calculation of inductance matrix from nonlinear FEA using airgap stitching

method and central circle method. During the process of simulation to calculate the

steady state currents of an induction machine this inductance matrix and its rate of

change also, if there is geometry change, have to be calculated several times at every

time step. To solve the differential equation [Equation (6.4)] an ode45 routine of

MATLAB™ is used. The ode45 routine integrates a system of ordinary differential

equations using the 4th and 5th order embedded formulas from Dormand and Prince

or Fehlberg. This requires 6 function evaluations per integration step. The element

matrices for the ferromagnetic materials need to be derived afresh few times at each

of this function evaluation to calculate the conversed values of permeabilities from the

B(ll) curve. This process is very time consuming as permeability of each node

depends on its nodal excitation. The method presented here overcomes this by

reducing the dependency for non-linearity. The stiffness matrices for the stator and

rotor are derived separately and the stiffness for the stator and rotor is derived as a

nonlinear function of the magnetic potentials at the central circle.
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7.3.1 Formulation of the rotor

Applying Equation (3.59) to the specific case of the rotor we can write

(7.1)

where [KR] is the stiffness matrix in the rotor, {AR} is the nodal potential vector in

the rotor, {IRN} is the nodal current vector in the rotor and {bR} is the nodal free

MMF vector in the rotor. Vectors {AR} and {IRN} are divided into two parts as

(7.2)

Here {ARM}contains potentials at rotor nodes excluding those rotor nodes at the

central circle, {ARCN} contains potentials at nodes on the central circle in the rotor,

{IRM}contains currents at rotor nodes excluding those rotor nodes on the central circle

in the rotor, {IRCN} contains currents at nodes on the central circle in the rotor Using

Equation (7.2) we can write Equation (7.1) as

(7.3)

Here {bRM}contains free MMF at rotor nodes excluding those rotor nodes on the

central circle in the rotor and {bRC} contains free MMF at nodes on the central circle

in the rotor.

The nodal magnetic vector potentials at the central circle in the rotor are approximated

using a Fourier series. We can write this transformation as

(7.4)
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where {ARc} is the Fourier components of the potential on the central circle in the

rotor and [TRCN] is the transformation matrix. Section (6.5.1) explains how [TRCN] is

constructed.

Not every point in the rotor can carry current. In fact, the space of possible current

vectors, {IRM}, is substantially smaller than the dimension of this vector. There is

some transformation matrix, [TR], such that

(7.5)

where {IR} is the reduced vector of rotor bar currents [refer Section 4.4] . We are

interested in the calculation of the marginal inductance from the solution of the

magnetic field. Now the combinations of nodal potentials in the rotor which are

orthogonal to [TR] are of no direct significance to us. It will be convenient to write

(7.6)

where [VR] is a matrix spanning the space orthogonal to [TR]. {ARB} contains

magnetic potentials at current carrying nodes excluding nodes on the central circle,

{ARO} contains potentials at rotor nodes, which do not carry currents, excluding nodes

on the central circle. Using Equations (7.3) and (7.6) and pre-multiplying by [XR f we
obtain

TiKRMMVR

ViKRMMVR

TicNKRCM VR

(7.7)

Writing Equation (7.7) in simple form and replacing [TRCN HIRCN} with {IRC}
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(7.8)

where the definitions of the partitions are obvious from comparing Equations (7.7)

and (7.8). From Equation (7.8) the potentials at rotor nodes can be written in terms of

the potentials at current carrying rotor nodes as

(7.9)

Equation (7.9) can be simplified to

(7.10)

where the definitions of partitions in Equation (7.10) are clear from Equations (7.9)

and (7.10).

7.3.2 Formulation of the stator

Similar to the rotor Equation (3.59) can be written for the stator as

(7.11)

where [Ks] is the stiffness matrix in the stator, {As} is the nodal potential vector in

the stator, {IsN} is the nodal current vector in the stator and {bs} is the nodal free

MMF vector in the stator. Vectors {As} and {IsN} is divided into two parts as
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(7.12)

Here {AsM} contains potentials at stator nodes excluding those stator nodes at the

central circle, {AscN} contains potentials at nodes on the central circle in the stator,

{IsM} contains currents at stator nodes excluding those stator nodes on the central

circle in the stator and {ISCN}contains currents at nodes on the central circle in the

stator. Using Equation (7.12) we can write Equation (7.11) as

[
KSMM

KSCM

(7.13)

Here {bsM} contains free MMF at stator nodes excluding those stator nodes on the

central circle in the stator and {bsc} contains free MMF at nodes on the central circle

in the stator. The nodal magnetic vector potentials at the central circle in the stator are

approximated using a Fourier series. We can write this transformation as

(7.14)

where {Asc} is the vector of Fourier components of the potential on the central circle

in the stator and [TscN] is the transformation matrix. Section (6.5.2) explains how

[TscN] is constructed.

Similar to the rotor, not every point in the stator can carry current. In fact, the space of

possible current vectors, {ISM}' is substantially smaller than the dimension of this

vector. There is some transformation matrix, [Tsl, such that

(7.15)
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where {Is} is the reduced vector of stator phase currents [refer Section (4.3)]. We are

interested in the calculation of marginal inductance from the solution of magnetic

field. Now the combinations of nodal potentials in the stator which are orthogonal to

[Tsl are of no direct significance to us. It will be convenient to write

{ASM} =[Ts
ASCN 0

(7.16)

where [vsl is a matrix spanrung the space orthogonal to [Tsl. {Ass} contains

magnetic potentials at current carrying nodes excluding nodes on the central circle,

{Aso} contains potentials at stator nodes, which do not carry currents, excluding

nodes on the central circle. Using Equations (7.13) and (7.16) and pre-multiplying by

[XsY we obtain

T[KsMMVS
V[KSMMVS
T[CNKSCMVS

(7.17)

Writing Equation (7.17) in simple form and replacing [TSCNY {ISCN} with {Ise}

(7.18)

where the definitions of the partitions are obvious from comparing Equations (7.17)

and (7.18).

From Equation (7.18) the potentials at stator nodes can be written in terms of the

potentials at current carrying stator nodes as
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(7.19)

Equation (7.19) can be simplified to

(7.20)

where the definitions of partitions in Equation (7.20) are clear from companng

Equations (7.19) and (7.20).

7.3.3 Coupling the rotor and stator models and accounting for the

non-linearity

Combining Equations (7.10) and (7.20) we can write

[
KRUU . KRUC: a . a l{ARB} [T~TR. a: a · al{ IR} [bRBl••.•••••••• , .........••. ~ .••.•••••.• ,........ . • • .•• . .. . •..•••..•. ; 1 .•...••.... ,. .. .. • .. . . . '" .KRCU : KRCC: a ~ a ARC a ~ I: a : a Illc bllc-----~----~-----~---- ---. = -----~--r----~-- --- + ---.~ ~..+~:~.~..,.~:~:·1::~····~·1!.bTs,.~'i:::: (7.21)

Now

(7.22)

where [ARc] is the distribution of magnetic potential on the central circle in the rotor

and considered at the rotor fixed frame of reference and [p(;)] takes care of the

rotation. Applying Equations (7.21) and (7.22) and pre-multiplying by [p(;)Y, we

obtain
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(7.23)

or (7.24)

where [Kx] is the reduced stiffness matrix of the rotor and stator and is a function of

the nodal potentials, {Ax} is the vector of potentials at current carrying nodes in the

rotor and stator and Fourier components of potentials on the central circle in the rotor,

{IRS} is the reduced stator and rotor bar currents and Fourier components of currents

on the central circle in the rotor and {bx} is the vector of reduced free MMFs at the

rotor and stator nodes and Fourier components of free MMFs on the central circle in

the rotor. Differentiating the above

(7.25)

The term, [~Kx] consists of two parts Le. one from the change of the machine

geometry and the other from the change of material permeability because of magnetic

saturation. We can write [~x1 as

(7.26)

where [~Xrp] and [~KXnI] correspond to the changes of [Kx] from the machine

geometry and from the non-linearity respectively. From Equations (7.25) and (7.26)

we can write as

(7.27)

The terms [~XnIHAx} and {~bx} are equivalent by definition. The above equation

simplifies to

171



(7.28)

There are two discrete regions in the model namely the rotor and the stator. The finite

element representations of these two regions are derived separately. These

representations of the rotor and stator are combined to take care of the rotation by

applying the transformation matrix [T(¢)]. which depends on the rotor and stator

relative positions. In the time domain Equation (7.28) becomes

(7.29)

Along with Equation (6.4), Equation (7.29) is also integrated at every time step to

calculate {Ax}. The next subsection shows how we can find the nonlinear stiffness

matrix if the Fourier coefficients of the potentials on the central circle are known.

The full nonlinear stiffness matrix, [KJ in Equation (7.29), is function of the nodal

magnetic vector potentials and the nodal vector potentials varies with the slip

frequency in the rotor and with the supply frequency in the stator. The saturation

modulates the rotor stiffness matrix at twice the slip frequency and modulates the

stator stiffness matrix at twice the supply frequency. This is because the modulation is

dependent on the absolute value of the flux density.

The reduced stiffness matrices for the rotor and the stator [refer to Equations (7.10)

and (7 .20) respectively] are approximated as functions of magnetic vector potentials

in the central circle. Once the nonlinear stiffness matrices are approximated the

inductance matrix can be calculated as explained in the previous sections. More

details about this are explained with examples in the next sections.

7.3.3.1 Method I of accounting for non-linearity

In method I it is assumed that the reduced stiffness matrices for the rotor and the

stator are functions of the radial component of magnetic vector potentials in the
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central circle only. The Fourier coefficients of the radial component of magnetic flux

density in the central circle from the rotor side, {BRC} can be calculated from

{B l= 1 a{ARC}
RC r aB

(7.30)

Here 'r' is the radius of the central circle. Similarly the Fourier coefficients of the

radial component of magnetic flux density in the central circle from the stator side,

which is denoted by {Bsc}can also be calculated.

The reduced nonlinear stiffness matrix for the rotor in Equation (7.13) can be

approximated as the power series

(7.31)

[MR_i] are the nonlinear coefficients of the power series for calculating the non-

linear approximate [KR] matrix and {BRc} is the radial component of the magnetic

flux density vector in the central circle. [KRXO) is the stiffness matrix for the linear

case.

Similarly, the reduced stiffness matrix for the stator in Equation (7.20) can be

approximated as the power series

(7.32)

[MS_i] are the nonlinear coefficients of the power series for calculating the non-

linear approximate [Ks] matrix and {Bsc} is the radial component of the magnetic

flux density vector in the central circle. [Kslo) is the stiffness matrix in the linear
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case. The reference magnetic flux density, {Brcf} is the key parameter, which will

determine the accuracy of the approximation of the power series.

7.3.3.2 Method II of accounting for non-linearity

A series of numerical study show that the dependency of stiffness matrix of the rotor

with the radial component of the magnetic flux density in the central circle is not

enough to represent fully the nonlinear characteristics of the stiffness matrix. In

method II it is overcome by extending the dependency to radial as well as tangential

magnetic flux at the central circle by incorporating rotor bar currents in addition with

the magnetic flux density vector in the power series. It is observed that value of the

stiffness matrix increases with the increase of the rotor bar currents to produce the

same reference flux density in the corresponding position in the Fourier coefficients

of the central circle magnetic vector potentials. A series of numerical study by the

author revealed that the cosine and sine terms of a particular rotor bar current

harmonics have effect on the cosine and sine terms of the magnetic vector potentials

of the same harmonics i.e. two pole cosine rotor bar currents have effect on the two

pole cosine terms of the magnetic vector potentials, similarly two pole sine bar

currents have effect on the two pole sine terms of the magnetic vector potentials.

The reduced nonlinear stiffness matrix for the rotor In Equation (7.10) can be

approximated as the power series

(7.33)

where a is reference parameter and a = Bref , IRreristhe reference value of the rotor
IRref

bar currents. The reduced stiffness matrix for the stator in Equation (7.20) is

approximated as Equation (7.32). Inmethod II the two main key parameters are {Brcf}

and a.
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7.3.2.3 The method of calculation of the nonlinear coefficients of the

power series

To calculate the nonlinear coefficients of the power series in Equations (7.31) and

(7.32), we solve inverse nonlinear problems equal to the number of harmonics

considered in the central circle. For an example to calculate the term lMR_3j, we

solve an inverse problem to calculate the pattern of currents in the central circle,

which will produce an flux density equal to the reference flux density in the cosine

term of second harmonics in the central circle.

7.4 Case studies

This section presents two case studies to validate the non-linear model reduction

proposed in Section (7.3) using a simple electromagnetic device in static condition.

The situation is chosen here is similar to that of the locked-rotor condition of an

induction machine. This electromagnetic device with the dimensions is shown in

Figure (7.1). To represent the central circle a line is drawn in the middle of the airgap

as shown in the figure and this line is referred here as central circle. The model is

divided into two halves, region A and region B, in the central. The region below the

central circle is referred as region A and represents the rotor of an induction machine.

As shown in the figure region A contains a thin layer of current conducting sheet. In

these case studies voltages are applied to generate current. The region above the

central circle is referred as region B and represents the stator of an induction machine.

Region B has two current carrying slots and a single tum conductor is used. Voltage is

supplied to the coil in region B. The two currents in region B are constrained and

represented by only one current, ib as follows

(7.34)

where ib+ and ib. are the two slot currents for the slots b+ and b- respectively. The

airgap is shown exaggerated in Figure (7.1).
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The magnetisation characterisation of the iron is assumed as the B(H) curve shown in

Figure (3.9). Two regions are discretised completely independently by 8-noded

quadrilateral element. Both regions are coupled at the central circle by imposing the

constraint that the magnetic potentials at the central circle from region A must be

equal to the magnetic potential at the central circle from region B. Tangential

boundary conditions are applied on the sides AB, BC, CD and DA. Figure (7.2) and

(7.3) show the FE mesh of the model and a snapshot of the magnetic potentials

contour when two arbitrary currents are applied to region A and region B respectively.

Approximate functions are derived separately for the rotor and the stator as a function

of the sine component of the first harmonics of the magnetic potentials in the central

circle. The reference value of the magnetic potential is chosen the threshold value of

the sine component of the first harmonics of the magnetic potentials in the central

circle above which value the machine will saturate. To calculate the coefficients of the

approximate functions we solve a series of full non-linear FE problems with different

level of current density in region A and region B allowing the machine to be

saturated. We store the marginal inductances for region A and region B separately for

each case. We also store the sine component of the magnetic potentials in the central

circle. Then, the following inverse problem is solved to calculate the coefficients of

the region A.

1 aA1 Kl (7.35)

1 aA2 [~:J=K2

1 aAII Kn

where n is the number of full nonlinear FE problem solved, aAI. a-s. ... , aAn are the

sine components of the magnetic potentials in the central circle for cases 1, 2, ... , n

respectively, [K1], [K2], ••• , [K,.] are the marginal stiffness matrices for cases 1,2,

... , n respectively and [KA1] and [KA2] are the two coefficients for the approximate

function. Similarly, we can find the coefficients for the region B.
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The two currents are calculated by integrating Equation (6.4) in time domain until

they reach the steady state. The first of the two case studies solves the two currents

with a low level of saturation when the voltages are applied at both region A and

region B. The supply voltage is chosen such that the machine is saturated. The second

case study solves the currents with a high level of saturation when the voltages are

applied at both region A and region B.

7.4.1 Case study I: Sinusoidal voltage with a low level of saturation

The first case study presents the results for a low level of saturation of the device. The

following sinusoidal voltages are applied in the two regions.

VA =lsin(ax)

VB = 5sin(ax)

where VA and VB are the voltages applied to the region A and region B respectively.

While applying these voltages it is ensured that the machine will have a low level of

saturation.

Figure (7.4) shows currents t, from linear, approximate method I and complete non-

linear methods. Figure (7.5) shows the currents ib from linear, approximate method I

and complete non-linear. It has been observed that the results from the approximate

method agree very well the results from the full non-linear FE solution.

7.4.2 Case study II: Sinusoidal voltage with a high level of saturation

The second case study presents the results for a high level of saturation. The

following sinusoidal voltages are applied in the two regions.

VA = 1.5 sin (ax)
VB = 7.5 sin(ax )
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where VA and VB are the voltages applied to the region A and region B respectively.

The device is highly saturated when the above voltages are applied in the two regions.

Figure (7.6) shows currents ia from linear, approximate method I and complete non-

linear. Figure (7.7) shows the currents ib from linear, approximate method I and

complete non-linear method. It has been observed that when the level of saturation is

high the results from the approximate method do not agree very well the results from

the full non-linear FE solution. Approximation of the stiffness matrix can be

improved by using method II. Figures (7.8) and (7.9) show the improved results using

the approximate method II.

7.5 Conclusions

Efficient ways for calculating steady state currents of a rotating electric machine are

presented here. If the magnetic saturation is not considered a substantial amount of

computation time can be saved using these methods. These methods are used to

calculate the steady state currents in an induction machine and some of the results are

presented in Chapter 8. Next chapter presents a coupled model combining the

electrical and mechanical dynamics. In the next chapter it will be clear about the need

of an efficient method to calculate steady state currents. Two approximate methods

for non-linear model reduction are also presented and verified using a simple

electromagnetic problem. For low level of saturation the results from the first

approximate method agree very well with the results of complete non-linear FE

solution. For higher level of saturation the results from the first approximate method

do not agree very well with the results of complete non-linear FE solution. There is a

limit of the level of saturation beyond which the results will be less accurate.

Accuracy can be improved by performing more number of numerical experiments

while calculating the coefficients of the approximate function. This method can be

used in rotating electric machines when the machine is not highly saturated.
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Figure (7.3): Contour plot of magnetic potentials
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Chapter Eight

Unified Electromagnetic Dynamic and

Rotordynamics Model

8.1 Introduction

Procedures for using finite element analysis to approximate magnetic field quantities

in an electrical device are well known ([Arkkio, (1987), Hameyer and Belmans,

(1999), Bastos and Sadowski, (2003)]. To study the mechanical dynamic behaviour of

an electrical machine there is a need for an accurate UMP model (incorporating a

number of current degrees of freedom) and for a high-dimensional rotor dynamics

model. Previous work on the study of coupled (mechanical and electromagnetic)

behaviour of electrical machines have either reduced the electrical behaviour to static

(or very low-dimensional dynamic behaviour) and then focused on the mechanics or

else they have taken very simplistic models of the mechanical behaviour and viewed

the system from the standpoint of the electrical system.

Previous chapters describe how the electromagnetic field equation of an electrical

machine is solved at every time step of the simulation in order to calculate the

inductance matrix of an electrical machine incorporating the material non-linearity. It

also describes how the electromagnetic field equation can be coupled to the circuit

equation to form the electro-magneto-mechanical model. In this chapter a detailed

mechanical model is presented and this detailed model is coupled with a high

dimensional electromagnetic model to study the behaviour of the coupled system.

The combined model coupling electrical and mechanical dynamics facilitates the

following
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• Voltage is applied to the terminals of the machine and mechanical

speed is taken to be a known input quantity to specify the electrical

problem, and the internal currents are calculated as unknowns.

Parameters of the coupled dynamics are calculated for this set of

internal currents.

• Equations for mechanical motion are coupled to the electrical

dynamics.

The numerical model developed here to study the coupled dynamics of electrical and

mechanical dynamics is generic. In the first application of the model, only cage

induction motors without parallel paths in the stator windings are studied, in the

second application of the model, the effect of parallel winding paths in the system is

incorporated. These parallel paths tend to reduce the net unbalanced magnetic pull by

allowing different amplitude of current to flow in the parallel branches similar to the

effect of rotor cage currents. This model is also used to calculate the equalising

currents in parallel paths.

The chapter is divided mainly into two sections. The first section describes the

proposed combined model coupling electrical and mechanical dynamics. The

electrical dynamics is described by an electro-magneto-mechanical model and this has

already been explained in Chapter 4. A mechanical model of an electric machine is

developed to describe the mechanical dynamics. A coupled model is developed to

describe the combined electrical and mechanical dynamics of an electrical machine.

The second section describes a case study which solves this coupled problem. A 4-

pole three phase induction machine is considered for this study. The machine is

wound in a special way known as the bridge configured windings as described in

Section (4.36) of Chapter 4. Chapter 10 describes the fundamental properties of this

machine presenting the no-load and locked-rotor conditions. The machine has parallel

paths in its stator windings which facilitate to study the effect of the parallel paths in

the machine dynamics. To the knowledge of the author there is as yet no literature

available to include the parallel paths into a rotor dynamic model. One of the

additional features of this coupled model is that it can be easily extended to include
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the effects of parallel paths. In this section the additional damping offered by the

parallel windings is calculated in terms of energy dissipated in the windings.

8.2 Electro-magneto-mechanical model

The coupled electro-magneto-mechanical model has already been described in

Chapter 5. The linearised coupled equation of this electro-magneto-mechanical model

of an electrical machine is

(8.1)

where {V} is the vector of externally-applied voltages, [R] is the resistance matrix of

the machine including the effect of the end-windings, {IRS } is the vector of

independent currents and {x} is the vector which describe the instantaneous geometry

of the machine. For a two-dimensional analysis {x} comprises only three entries

assuming that neither the rotor nor the stator can deform significantly in the plane and

provided that the stator is fixed in space. The vector, {x} can be written as

(8.2)

where u and v are the horizontal and vertical positions of the rotor centre respectively

and e. is the angle of turn of the rotor. Matrices [A] and [B] are calculated by

differentiating Equation (5.17) and is already explained in Section (5.4) of Chapter 5

how these two matrices can be obtained. For relatively smaller currents, the machine

is not saturated and the matrix [B] is proportional to {IRS}and [pUAHpY) is the

"tangent inductance" or "marginal inductance" matrix. Matrices [B] and [p] [A][pr)
are calculated from the magneto-static field equation using 2D FE method.
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8.3 Mechanical model

The development of mechanical models for rotor-stator-bearing systems is well-

established (Lalanne and Ferraris, 1990) and these models commonly emerge in the

natural second-order form

[MHq} + aD] + n[G ]){q}+ aKmech]+ n[F ]){q}= {f} (8.3)

where [M],[D],[Kmechll denote mass, damping and stiffness matrices of the

mechanical system. Very often, these are all symmetric and positive (semi-jdefinite,

Matrices [F] and [G] are both skew-symmetric and they represent force contributions

from gyroscopic effects and from internal rotor damping respectively. Vectors {q}

and {f} represent the displacements and (externally-applied) forces respectively. With

appropriate definitions for these vectors, {qY{f}represents the instantaneous power

flowing into the mechanical system from the externally applied forces. In fact, the

observations about the symmetry in the matrices above depend fundamentally on this

convention. The mean rotational speed of the rotor is denoted by n in Equation (8.3).

In order to couple the mechanical model to the electromagnetic one, it is necessary to

express the relevant geometry variables of {x} from the previous section in terms of

the displacements in {q}.

{x}= [sf {q}+ [l]"" {x,}+ [l]
{x}= [s]' {4}+m=: {x.}+ [~]

(8.4)

(8.5)

where [8] is a selection matrix having three columns. The first two columns of [8]
pick out which (linear combinations) of the displacements within {q} constitute the

horizontal and vertical motions of the rotor centre (u and v) respectively. If the
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mechanical model includes entries in {q} representing rotor twist relative to a frame

of reference rotating at constant speed n, then the third column of [S] contains some

non-zero coefficients. Otherwise, this column contains only zeros. The total force

acting, {f} in Equation (8.3) on the mechanical system is the sum of those

components due to mechanical causes and those due to the electro-magnetic effects

(8.6)

The mechanical force vector, {fM}, is presumed to be known at any instant in time

and it is arises from unbalance and other known sources. In the simulations of interest

here, this vector is zero. In most other cases, it would be a sinusoidal forcing

associated with imbalance and/or bend on the rotor. In the 2D electromagnetic

modelling case where {x} is defined according to Equation (8.2), the electromagnetic

force vector {fE} can have only three independent components - net horizontal force,

U, net vertical force, V, and net (oscillatory component of) torque, Tm and {fE} may

always be written as

{fEl= [S{T~Tm]=:[S{{Xl- [J.]J (8.7)

involving the same matrix [S] that appeared in Equation (8.4) and using Tm to

represent the mean torque exerted by some mechanical load. The product (nTm) is the

useful mechanical power being delivered to that load. The vector {X} is part of the

electromagnetic force vector and contains U and V. This can be obtained in several

different ways. The method favoured here is to draw a closed curve around the rotor

(usually a circle dividing the air gap into a rotor side and a stator side of similar radial

depths) and to integrate force and torque contributions due to Maxwell stresses

(magnetic stresses) around that circle. The method of calculating the force and torque

using Maxwell stresses is explained in Chapter 3. Given the ability to compute {fE}
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and {fM} at every instant, it is clear that we do have the wherewithal to perform time-

domain simulation of the mechanical system also.

If the magnetic field has been computed at a given instant, t = to, then it is

straightforward to do the integration of Maxwell stresses numerically to obtain

{X}= {Xo}. For small excursions, {xto} from the reference-geometry at this instant,

the time-dependent forcing vector {X} can be approximated well by the linear

expression:

(8.8)

where [KUMP] is usually positive-definite and (because of our definition for {X} as a

force exerted Qy the system rather than on the system) this matrix has a de-stabilising

effect. [KUMP] may be determined by straightforward numerical differentiation in the

magnetic finite-element model at any instant. The matrix [C] represents the influence

of small changes in machine currents on the mechanical system. The quantity

({xtoY[CI{I}-{Io}}) represents the instantaneous marginal power being drawn from

the electrical circuits into the oscillatory mechanical motions. By conservation of

energy, this must be identical to (({I}- {Io}YQP][B]){xto }). It can be concluded that

(8.9)

8.4 Coupled linearised model

In Chapter 5, we outlined the development and format of the electromagnetic model.

This model included the effects of geometry changes and the linearised version of this

model was presented as Equation (8.1) for any instant t= to. Accepting that we have a

reference solution for the machine, it is clear that this linearization of the

electromagnetics is applicable at all times. The linearization includes the effects of

small geometry changes from the expected machine geometry (Le. the reference

solution does recognise the fact that the rotor is rotating).
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In Section (8.3), the development and format of the mechanical model is outlined. The

purely mechanical aspects of this model were assumed to be linear. The model

included the effects of magnetic forces and the linearization of these forces around the

reference solution was presented as Equation (8.3) for any instant t= to. Note that

{q}=Ofor all times in the reference solution. However since {I} is certainly not zero

in the reference solution, it is convenient for us to define

(8.10)

We deliberately use a vector of charge displacements in place of currents as the basic

time-dependent electrical quantity because of the pleasing structure that it creates in

the time-dependent matrices later. Thus we define

t

{Q~Kt)= f{I~}(T}dT ,
o

t

{Qref}(t) = J{Iref KT }dT ,
o

t

{Q}(t)= f{I}(T}dT
o

(8.11)

Now, this time-dependent linearization of the coupled machine model can be put

together as

The forcing terms on the right hand side of the equation include the mechanical forces

(usually originating from imbalance, rotor bend/misalignment) and slight differences

from the reference voltage. All terms in Equation (8.12) have been defined before

now with the exception of [H]. This matrix represents the sensitivity of the third

column of UpIBD to {I~} and it arises because the vector {x} contains the non-

infinitesimal entry, Cl (c.f. Equations (8.4) and (8.5)). In Equation (8.12), the matrices

which depend on time are [A], [B], [H] and [KUMP].

If the actual coupled response of the machine is of interest, then Equation (8.12)

provides an extremely effective way to obtain that. We caution, however, that as this
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is a linearised model, it is accurate only for small perturbations from the reference

solution. Transverse deflections at the centre of the rotor should be substantially less

than the radial thickness of the airgap for this analysis to be valid.

Our purposes for the linearised coupled model are two-fold. One interest is the time-

domain response to (small) applied excitation. The other is to do with stability. If the

forcing terms on the right hand side of Equation (8.12) are zero, then Equation (8.12)

represents a homogeneous periodic time-varying linear system.

The period, Tp of any periodic system is defined as the time required repeating the

state of the system. The method of calculating the period of an induction machine is

given later in this chapter. For machines other than induction machines, the period is

much more easily obtained. At any instant, this system has a state which is

characterised by the state-vector

{QJ

{} {q}
Y := {Od}

{q}

(8.13)

If there are 2n entries in {y}, then we can discover a (2n x 2n) State-Transition

matrix, [Z] which relates the state at the end of a period, {y}(Tp), to the state at the

start of the period, {yKo), according to

(8.14)

Following the ideas developed by Floquet, the eigenvalues of [Z] show whether the

system is stable. If all eigenvalues are less than 1 in magnitude, the system is stable.

Recall that in the reference solution apIBD is proportional to the magnitude of the

applied voltage - at least for low values of the magnitude of the applied voltage,

{vref }. The negative magnetic stiffness, [KUMP] is proportional to the square of this

applied voltage and the matrix [H] is independent of this applied voltage. At very low
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levels of applied voltage, the electrical and mechanical dynamics are completely

independent and any instability which might occur will either be purely electrical in

nature (which can occur since many eigenvalues of [H] are negative) or purely

mechanical in nature (which can also occur as a result of internal damping effects

represented by [F]). Other sources of mechanical instability also exist but are not

discussed here.

We study one particular 3-phase induction machine operating in 25 different

conditions - 5 values of slip and 5 different voltage magnitudes.

8.5 The reference electromagnetic solution

Chapter 6 and 7 describe different methods for calculation of the steady state solution

for induction machines. If the rotor is constrained to move concentrically within the

stator and if it is required to rotate at constant mechanical speed n while a fixed-

frequency balanced sinusoidal voltage is applied to the stator windings, then a time-

stepping simulation can be carried out to establish the steady-state machine currents

as a function of time. At this condition if the simulation is carried out by integrating

Equation (8.1) without the final term on the right-hand side the steady state machine

currents is called the reference currents.

For induction machines, this solution depends on both the magnitude of the applied

voltage and its frequency. For reasons that will become clear later, we will invariably

restrict our reference solutions to conditions where the machine rotor has rotated an

integer number of slot-pitches after some periodic time Tp which is also an integer

multiple of the periodic time for the applied voltage waveform. Obtaining this

solution for anyone machine condition can be relatively intensive in computation

time - not least because transients must be allowed to die away before one period of

reference solution is captured and Chapter 7 addresses means for finding this solution.

We have studied the coupled dynamics of the machine for different levels of applied

voltage. A reference solution for a very low applied voltage (say 1V) can obtained

accurately and relatively quickly because the iron behaves linearly and so the element
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matrices for each finite-element in the model need to be derived only once (in contrast

to the nonlinear case where the matrices must be derived afresh for all ferromagnetic

elements several times per time-step). With magnetic linearity assumed, the reference

currents for an applied voltage of higher magnitude can be scaled - i.e. the reference

solution for 2V is exactly twice the reference solution for 1V. Based on a single

reference solution at low voltage, therefore, we can estimate with confidence at what

voltage it will be necessary to allow for magnetic nonlinearity and moreover, we can

start the simulation for this (slightly non-linear) reference solution with an initial

estimate which will be close to the converged answer. We accept from this point

forward that a reference solution can be obtained for any desired voltage level and any

combination of supply frequency and shaft-speed, n.

8.6 The time period of an electrical machine

For an induction machine with p pole-pairs supplied by electrical frequency, CUe

(rad/s), the so-called "synchronous speed", no (rad/s), is given by

n _CUe
0-

p

(8.15)

Synchronous speed is a speed at which the machine develops zero airgap torque. The

time taken for the stator MMF to repeat itself is given by

T = 21r
m

(8.16)

If the number of bars in the rotor is k and if the motor is running with a slip of s, then
the time taken for the rotor to slip one rotor bar is

(8.17)
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The machine will have perfectly-periodic behaviour if the slip, s, is a rational number,

s = a , {a,b} EN. Then the period, Tp, is given by
b

(8.18)

where c is the highest common factor of (Pb) and (lea). For machines other than

induction machines, the period is much more easily obtained.

8.7 Case study of the coupled electrical and mechanics dynamics

of an induction machine

This case study is about the electromechanical interactions of a 2kW induction motor

having flexible rotor. The main electromagnetic parameters of the motor are presented

in Table (8.1). This 4-pole, 3-phase induction motor is wound with a fractional pitch,

double layered bridge configured windings. The stator of an induction machine with

its windings connections and the bridge configured winding scheme are shown in

Figures (4.3) and (4.8) of Section 4 respectively. As mentioned in Chapter 4, bridge

configured windings have six independent currents. Three of them are phase or

terminal currents, denoted by iAph» iBph and iCph, and the other currents are the bridge

or equalising currents, denoted by iAlev, iBlev and iClev, There will be no current flowing

across the bridge for a concentric rotor when the flux field is uniformly distributed.

Any unbalance of field due to eccentricity will induce an EMF tending to drive

currents in the closed circuit such that a MMF comes to exist opposing the rate of

change of this field. Chapters 6 and 7 describe various methods for calculation of

steady state currents of an induction machine for a concentric rotor. To calculate the

equalising currents, which exist because of the rotor eccentricity, the electro-magneto-

mechanical equation is solved by displacing the rotor by a known amount of

eccentricity. The results are presented later in this chapter.

A schematic diagram of the motor is shown in Figure (8.1). The mechanical model of

the motor is developed using mechanical FE software developed by Professor M I

Friswell of the University of Bristol, UK. The rotor and the shaft are modelled using

1D beam elements. The laminations of the rotor are modelled using disc elements.
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8.7.1 Finite element model of the flexible rotor

Typically the rotor is modelled using around 60 Timoshenko beam elements with four

degrees of freedom per node to represent shaft stiffness and using rigid disc elements

fixed at the appropriate shaft-stations to represent the additional mass of blade-stages

(in the case of turbo-machines) or (in the case of electrical machines) the laminated

core of the rotor. Each node of the model has two translational degrees of freedom

and two rotational degrees of freedom. In some cases, (Garvey, et al., 2004), it is

critical to take account of the stiffening effects of the laminated rotor core on the

shaft. Figure (8.2) shows a typical finite element model of an induction machine

where the shaft is supported by two preloaded angular contact ball bearings at each

end. The bearings are assumed to be isotropic and they are represented using

equivalent stiffness and damping properties. The equivalent stiffness and damping

properties of the bearings are shown in Table (8.2). Figures (8.3) and (8.4) show the

system Campbell diagram and the mode-shapes associated with the first four

(forward-whirling) critical speeds. These forward critical speeds occur at 3843, 8939,

15000 and 20040 rpm

8.7.2 Equalising currents for an eccentric rotor

An eccentric rotor creates an asymmetric flux distribution that causes the radial

forces. The asymmetric field may induce circulating currents in the rotor cage and

parallel paths of the stator winding. These currents tend to equalise the flux

distribution and they may significantly reduce the amplitudes of these radial forces.

Therefore, from the electrical dynamics alone we can measure the equalising currents

for an eccentric rotor. In other words, these equalising currents are the measures of

eccentricity of a particular machine at its operating conditions.

Numerical tests (linear) are carried out at 20V supply voltage with varying degree of

static eccentricity. Figures (8.5), (8.6) and (8.7) show the levitation currents in the

three bridges because of the static eccentricity of 2% of the air gap, which are

otherwise 'zero' for a concentric rotor. Similarly, Figures (8.8), (8.9) and (8.10) show

the levitation or equalising currents in the three bridges based on the 10% static
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eccentricity in the airgap. The magnitudes of the equalising currents are 4% of the

phase currents when the static eccentricity is 2% of the airgap. It can be seen from

these figures that the equalising currents vary linearly with the eccentricity.

8.7.3 Minimum time period of the machine

The minimum time period of the induction machine is calculated using Equation

(8.18) For example, if the supply frequency if> is 25 Hz, the number of rotor bars (k)

is 32 of a 4-pole induction machine, then the minimum time period is calculated as

follows:

The time taken for the stator MMF to repeat itself, Tm = _!_ = 0.04 sec
f

For a slip of 2.5% the time taken for the rotor to slip one rotor bar, Thar =]!_ Tm = 0.1
ks

sec. For slip 2.5%, a = 25 and b = 1000. The highest common factor, c of (Ph) and

(lea) in this case is 400 and the period of the machine is

Tp = ph Tm = 5 x 0.04 = 0.2 sec
c

8.7.4 Preparing the state transition matrix for the coupled model

To determine the system characteristics, we are interested in solutions for Equation

(8.12) where forcing term, {f}, is zero for all time. We can write Equation (8.12) as

[M'(t)] {q'(t)} + [D'(t)] {q'(t)} + [K'(t)] {q'(t)} = 0 (8.19)

We can write Equation (8.19) in state-space form

[\(t) -~'(t)I::~:lJ+[~Y~M~(tl::~:lJ= [~]

=: [A{t )Hx{t )}+ [B{t )Hx{t )}

(8.20)
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The time-varying coefficient matrices of the linearised coupled dynamic equation are

periodic. The Floquet method is used to analyse the stability of this linear time

varying periodic system. The state vector, {x{t)}, has 2n entries in it. Given any initial

vector, {x{O)}, it is straightforward to integrate Equation (8.20) numerically through

one time-period, Tsys, to develop {x{I:ys)}. In fact, the fastest method for achieving this

would take account of the second-order nature of the system. We apply Newmark-

Beta (Newmark, 1959) algorithm for numerical integration. By generating 2n linearly-

independent initial state vectors {x(O)} and integrating each one through one complete

period, we can develop a so-called State Transition Matrix (STM), [Z], such that

given any arbitrary initial state vector, {x{O)}, the state-vector at the end of the period

is given by

{x{TsyJ}= [Z]{x{O)} (8.21)

8.7.5 Stability of the system

The stability of the linear system with time varying coefficients is analysed using the

Floquet method. The eigenvalues of the STM are calculated for different slip

conditions and different voltages at the end of one period and that determines the

stability of the system. Table (8.4) shows the stability condition of the system for

different slips and supply voltages. It is found that the system is stable for all slip

conditions at 22.5 V and unstable for 51 V or above. At 25.5 V the system is stable at

2% of slip or less and unstable beyond 2%. At 34 V the system is stable at 0.5% of

slip or less and unstable beyond 0.5%. It is also possible to draw a stability chart with

slip versus the supplied voltage.

8.7.6 Energy transfer while closing the bridge

The one of the main points of interest of this study is the effective mechanical

damping provided by the closure of the parallel-path circuits in the three different

phases. The parallel paths do not stabilise any of the unstable conditions (which
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appear to be dominated by negative magnetic stiffness) but they do reduce the real

parts of eigenvalues in all cases. Effective electrical damping has been assessed by

forcing the rotor centre to take a positive circular synchronous orbit of 1% of the air-

gap and examining the energy transferred into the electrical circuits from the

mechanical motion over the period of time, Tp. Tables (8.5) and (8.6) summarise the

findings at 17V for each of the five conditions of slip with the parallel paths closed for

forward whirling and backward whirling of the rotor respectively. These results are

presented as time-constants (the mean total mechanical energy in the rotor divided by

the mean power-loss into the electrical system).

Energy transferred to the electrical system from the mechanical system because of the

displacement of the rotor from the central position as a function of time is shown in

Figures (8.11) and (8.12) for forward and backward whirl respectively. As expected

the energy transfer is greater when the rotor is in forward whirl than it is in backward

whirl.

8.8 Conclusions

A coupled model combining the electrical and mechanical dynamics is proposed. The

results of this coupled model are verified by experimental results and this is explained

later in Chapter 10. The coupled system is a time varying linear system with periodic

coefficients. A method for analysing stability of time varying periodic system is also

described.
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Rotor Shaft

Figure (8.1): Schematic diagram of an induction machine

----------------------------------~~

Bearing 2

~

Table (8.1): Main electromagnetic parameters of the machine

Parameters Value
Number of poles
Number of phase

Number of stator slots
Outer diameter of the stator [mm]
Inner diameter of the stator [mm]

Number of rotor slots
Outer diameter of the rotor [mm]

Air gap radial thickness [mm]
Length of the rotor [mm]

Rated voltage [V]
Rated frequency [Hz]

Rated power rkW]

4
3
36
153
93
32
92.2
0.4
123
415
50
2
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Figure (8.2): Finite element model of the induction machine

Table (8.2): Coefficients of the bearing

Stiffness (in N/mL) Damping (in N/mL)

kxx kxy kyy kyx Cxx cxy Cyy cyx

Brg.#l 5.0 e7 0.0 5.0 e7 0.0 0.0 0.0 0.0 0.0

Brg. #2 5.0 e7 0.0 5.0 e7 0.0 0.0 0.0 0.0 0.0
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Figure (8.3): Natural speed versus rotor speed
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Figure (8.4): First four modes of the system
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Figure (8.5): Equalising current per meter of axial length in phase A bridge for an

eccentricity of 2% of the air gap and when supply frequency is 25 Hz and slip is 2%
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Figure (8.6): Equalising current per meter of axial length in phase B bridge for an

eccentricity of 2% of the air gap and when supply frequency is 25 Hz and slip is 2%
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Figure (8.7): Equalising current per meter of axial length in phase C bridge for an

eccentricity of 2% of the air gap and when supply frequency is 25 Hz and slip is 2%
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Figure (8.8): Equalising current per meter of axial length in phase A bridge for an

eccentricity of 10% of the air gap and when supply frequency is 25 Hz and slip is 2%

203



30~--~----~-----:~--~-----'
20 -----------------~---------------

lO ············'~llli.....LN I 1\+
_ 0 ---N -J~---_V_ ----~' --- (f- -l :-tr-~- --- -- --- -- --- --
i-IOJ ...··f ...~.....~ltll iJ' ·l·11 ...~
8 ::: ••·.••.~·.•••~..••....•••..•••L· •••..•••••.r••..••••..••..:•.•.••••..•••••.

-40~- ------------t-----------------t-----------------i-----------------i----------------
, , ,

-50 r-- -------------t-----------------(--------------f-----------------i-----------------
, ,

Time (sec)

-60~----~------~------~----~------~o 0.2 0.4 0.6 0.8

Figure (8.9): Equalising current per meter of axial length in phase B bridge for an

eccentricity of 10% of the air gap and when supply frequency is 25 Hz and slip is 2%
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Figure (8.10): Equalising current per meter of axial length in phase C bridge for an

eccentricity of 10% of the air gap and when supply frequency is 25 Hz and slip is 2%
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Table (8.3): The minimum periods of a machine with parameters given in Table (8.1)

for different slips

Slip(%) Period of the system (s)

0.5 1.00

1.0 1.00

1.5 1.00

2.0 1.00

2.5 0.20

3.0 1.00

4.0 1.00

5.0 0.20

Table (8.4): Stability chart of the machine at different slips for different voltage levels

Supply Stability of the machine at different slips for different voltage levels

Voltage Slip = Slip= 0.5% Slip = 1% Slip= 2 % Slip =2.5% Slip = 5.0%

(V) 0 Period = Is Period = Period = Period = Period =

Is Is 0.2s 0.2s

17.0 ...j ...j ...j ...j ...j ...j

20.4 ...j ...j ...j ...j ...j ...j

22.1 ...j ...j ...j ...j ...j ...j

25.5 ...j ...j ...j ...j X X

34.0 ...j ...j X X X X

51.0 X X X X X X
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Table (8.5): Time constants with the parallel paths closed for five different slips in

case of forward whirling

Supply Time constants (s)

Voltage Slip = 0 Slip = 0.5% Slip = 1% Slip = 2 % Slip = 5%

(period= 1s) (period= 1s) (Period= 1s) (Period= 1s)

17V 0.00187160 0.00173507 0.00146956 0.00117471 0.00157921

34V 4.6790e- 4.3377e-004 3.673ge-004 2.9368e-004 3.9480e-004

004

Table (8.6): Time constants with the parallel paths closed for five different slips in

case of backward whirling

Supply Time constants (s)

Voltage Slip = 0 Slip =0.5% Slip = 1% Slip =2 % Slip = 5%

(period= 1s) (period= 1s) (period= 1s) (period= 1s)

17V 0.39781394 0.37390752 0.29176840 0.20925626 0.15278131

34V 0.09945348 0.09347688 0.07294210 0.05231406 0.03819532
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Figure (8.11): Energy transfer to the electrical system from the mechanical motion

due to forward whirling for different slips

-0.045 L

, ,
- - - - - - - - - - ... - - - - - - - - - - - - - - - - -~- - - - - - - - - - - - - - --, ,-0.005 -

-001 ~-------

I
2 -0.0151-------------:-----

,2 -0.02 ~--------------:------
~ I I~ -0;::r .•......... I=O~OO ...
~ -0 035 ~ -- 0.005 --------------_

. -- 0.010

-0_04 ~--------------- -- 0_020

4 4.5 5
Time (sec)

Figure (8.12): Energy transfer to the electrical system from the mechanical motion

due to backward whirling for different slips
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Chapter Nine

Methods for Reducing Unbalanced Magnetic Pull

9.1 Introduction

Several people have studied UMP due to eccentricity and most notably Belmans et al.

(1984), Kovacs (1977) and Frunchtenicht (1982) but very few people has

recommended methods for reducing UMP. Among these are Bradford (1968), Krondl

(1956) and Dorrell and Smith (1994). Bradford's (1968) experimental machine

consists of a 6-pole series connected type which could be used in conjunction with a

blank, wound and a cage rotor. He concluded that because of its parallel paths cage

rotor damped the UMP much higher degree than blank and wound rotors. Krondl

(1956) and Dorrell and Smith (1994) concluded that parallel stator windings damp

UMP which in turn reduces the motor noise and vibrations.

A generic method for reducing UMP using secondary windings in the stator of an

electrical machine was put forward by Kozisek (1935), Garvey and Watson (2004).

One drawback of these methods is that it occupies some space in the stator slots which

otherwise could have been used for torque production. The effectiveness can be

increased by increasing the total cross sectional area of the secondary coils but at a

sacrifice of main windings.

One passive method for reducing the UMP in an electrical machine is discussed here

and its effectiveness is verified with an experimental setup in Chapter 10. The method

uses the main torque producing winding to suppress the UMP due to eccentricity. In

this chapter the working principles of this method is discussed.
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9.2 Reduction of UMP in an induction machine using bridge

windings

The bridge configured windings, first introduced by Khoo (2005), overcomes the

drawback of secondary windings proposed by Garvey and Watson (2004). This

unique scheme has three-phase terminals for torque production and additional

terminals for active or passive magnetic bearing action control. Active control can be

deployed by connecting the terminals devoted to lateral forces to closed-loop

controllable current or voltage sources. Passive control of UMP can be accomplished

by short circuiting the additional pairs of terminals or "closing the bridge". In this

work only the passive control of UMP feature of this bridge winding is introduced.

Both torque-producing and induced currents flow in the same set of conductors in the

bridge configured winding scheme. A detailed explanation about the bridge

configured winding can be found in (Khoo, 2005).

Figure (9.1) depicts a three-phase induction motor having distributed coils wound on a

36-tooth stator. Coil groups "ai-as-a," and "aa-a--a," are wound and aligned at the

same axis of symmetry. Likewise, coil group "aaj-aai-aa," and "aaa-aae-aa," are

wound at the diametrically opposite tooth and their terminals are connected to coil

group "al-a2-a3" and "aa-ae-a," to form a bridge. Coils in phases "B" and "C" are

connected in a similar manner.

No current will flow across the bridge if the rotor is concentric and the stator MMF is

symmetric (flux field is uniformly distributed) i.e. bridges iAlev, iBlev and iClev are zero.

Any unbalance of field due to eccentricity will induce an EMF tending to drive

currents in the closed circuit such that a MMF comes to exist opposing the rate of

change of this field. The currents flowing across the bridge are known as equalising

currents. The feature which makes the bridge winding different from the other passive

methods for reducing UMP is its provision for active control. When the bridge is

connected to a controllable power supply with feedback control, the rotordynamic

behaviour of the machine can be controlled. Additional currents required to bring the

rotor to the centre will be provided by the controllable power supply. With proper

control strategy the response of a flexible system at critical speeds can be subdued
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dramatically by using this controlled UMP within the electrical machine (Khoo, et al.,

2004).

9.3 Conclusions

One method of passive control of UMP of an electrical machine is discussed. Though

only the passive feature of bridge configured winding is studied in this study, the

machine with the bridge configured windings can be used for active control of UMP.

The bridge configured winding possess many interesting features which are beyond

the scope of this study. Some of them are explained in (Khoo, et al., 2004) and (Khoo,

et al., 2005). For secondary windings to be effective in reducing the UMP one must

increase the number of turns of the secondary windings and this call for extra space in

the stator slot. For the same performance the machine with the bridge configured

windings will be smaller in size and weight than those with secondary windings.
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Figure (9.1): Stator of an electrical machine showing the winding connection. Red,

blue and yellow colours show the three different phases.

aa,

iCph

Figure (9.2): 4-pole, 3-phase induction motor with a bridge configured windings
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Chapter Ten

Experimental Validation

Chapter 5 describes the modelling of an electro-magneto-mechanical device and

describes the coupling of circuit equation and field equation of an electrical machine.

Chapter 6 describes different methods of calculating steady state characteristics of an

induction machine using linear as well non-linear FEA. Chapter 7 describes a

numerical model which unifies electromagnetic and mechanical dynamics. Using this

numerical model Chapter 8 also analyses the stability of a 4-pole, 3 phase 2 kW

induction motor. Chapter 9 describes the method of reducing UMP using equalising

connections.

10.1 Introduction

Often experiments are required for accurate determination of machine parameters.

Some physical phenomena are difficult to model accurately and experiments are also

required for clear understanding of these phenomena. An experimental setup has been

commissioned to investigate the electromechanical interactions of an induction

machine. The parameters of the machine are chosen to be the same as the machine for

the case study in Chapter 8. The motor is wound as a 3 phase, 4-pole bridge

configured windings, which as explained in Chapter 9. The aims of this experimental

study can be summarised as follows:

• Verify the results of the coupled model (numerical) combining the electrical

and mechanical dynamics proposed in Chapter 8.

• Investigate the effectiveness of the bridge configured windings as a passive

method for reducing UMP.

In this chapter, the experimental procedures to investigate the electromechanical

interaction of an induction machine are described. Experimental results are presented
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and compared with the numerical results. The effects of equalising connections

produced by bridge configured windings in reducing UMP are clearly demonstrated.

10.2 Design of the test rig

The design of the test rig is divided into two categories: electrical and mechanical

design. They are discussed in the following sections.

10.2.1 Motor electrical design

The electrical motor is a 4-pole induction motor with 2 kW capacity. The main

electromagnetic parameters of the machine are given in Table (8.1) of Chapter 8.

10.2.1.1 Winding scheme

The main torque-producing stator winding is connected according to the bridge

configured winding scheme [Khoo, et al. (2002). Khoo, et al. (2005)], forming a four-

pole motor configuration. The bridge configured winding is a unique scheme and it

has three-phase terminals for torque production and additional terminals for active or

passive bearing action control. The winding scheme of the machine in the

experimental rig is a 4-pole, 3-phase double layered fractional pitch windings. Figure

(8.1) depicts a three-phase induction motor having distributed coils wound on a 36-

tooth stator. Coil group "ai-aj-a," are connected in series with coil group "Wi4-aa5-a~"

and this coil group in turn is connected in parallel with series group "aai-aar-aa," and

"~-a5-~". Coils in phases "B" and "C" are connected in a similar manner. Details

about the passive control of UMP using this winding scheme can be found in Chapter

9.

10.2.1.2 Full pitch and fractional pitch

The pole pitch is the angular distance between two adjacent poles on a machine. The

pole pitch of a machine in mechanical degrees is
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(10.1)

where Pp is the pole pitch in mechanical degrees and p is the number of pole pairs of

the machine. Regardless of the number of poles on the machine, one pole pitch is

always 180 electrical degrees. If the stator coil stretches across the same angle as the

pole pitch, it is called a full-pitch coil. If the stator coil stretches across an angle

smaller than a pole pitch, it is called a fractional-pitch coil. The pitch of a fractional-

pitch coil is expressed as a fraction indicating the portion of the pole pitch it spans.

There are good reasons for using fractional-pitch windings (Chapman, 1998). These

concern the effect of the non-sinusoidal flux density distribution in real machines. The

MMF produced by the coils is not sinusoidal and it contains many harmonics. When

the voltage waveform is symmetric about the centre, no even harmonics are present in

the phase voltage. However, all the odd harmonics (third, fifth, seventh, ninth, etc) are

present in the phase voltage to some extent and need to be dealt with the machines.

Table (10.1) shows the harmonics for full pitch and fractional pitch of the voltage

waveform. In the test rig we have chosen the fractional-~ because amongst the cases
9

shown in the table it has the lowest proportion of the third harmonic. The fractional-

pitch reduces the magnitude of the output voltage slightly, but at the same time

attenuates the harmonics components. Figure (10.2) shows the MMF harmonics with

fractional pitch - ~ of the stator windings.
9

10.2.1.3 Number of turns in each coil

In this subsection the calculation used in designing the machine winding is described.

The number of turns per coil is calculated for the winding scheme proposed in the

experimental rig based on the total flux density of 1 Tesla in the airgap. We assume

that the MMF distribution is sinusoidal. First the individual fluxes for the three coils

ai, a2 and a3 are calculated.

+(7~6)
Coil ai has flux, <1>1 = rlBmax J cos{2B}dB = rlBmax Wb

_(11~6)
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where I is the axial length of the machine, r is radius of the rotor and Bmax is the

maximum flux density.

+(%)
Coil a2 has flux, <1>2= rlBmax J cos{2ti)do = 0.939 rlBmax Wh

-(%)

+(11Y3'6)
Coil a, has flux, <1>3=rlBmax J cos(20)do = 0.939 rlBmax Wh

_(7Y3'6)

Total flux, <I> = 2.878 rlBmax Wb. For a rotor of length, l= 123 mm and radius, r = 46

mm and Bmax~ 1.0 Tesla, the total flux, <I> is 16 x 10-3Wb.

In the case of bridge configured windings three full coils, ai, a2, and a3 together forms

a coil group as shown in Figure (8.2) of Chapter 8. There are four coil groups per

phase. Since there are four coil groups per phase and the total voltage, Emaxin one

phase in which the coils each carry N turns is

Emax = 4<l>{2tif)N (10.2)

where/is the supply frequency. From Equation (10.2) we get

N- Emax
- 4<l>{2tif)

(10.3)

Using the above calculated values for <I> and considering the values for Emu and

supply frequency is 415 V and 50 Hz respectively, the value of N is found to be 17.

10.2.2 Drive system for the motor and electrical sensors

10.2.2.1 Drive system for the motor

A frequency converter is the best way to control the speed of an induction machine.

The most common frequency converter type is the voltage-source converter with

pulse width modulation (PWM). The frequency converter used to control the
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induction used is manufactured by ABB (ACS140) and has a power ratings of up to

2.2 kW. The motor voltage consists of rectangular pulses with a switching frequency

as high as (3-20 kHz). The currents are nearly sinusoidal since the motor is inductive

and the very high frequency components associated with carrier frequency and

multiples of that are fairly effectively filtered out.

10.2.2.2 Current transducers

Hall effect closed loop (compensated) multi-range current transducers (LTS 15NP)

are used to measure the currents. These current transducers can measure DC, AC,

pulsed currents and equipped with a galvanic isolation between the primary circuit

(high power) and the secondary circuit (electronic circuit). Because of its compact

design it can be easily mounted on a PCB. This current transducer has an extended

measuring range. In the present case, we set the range at -15 to +15A. The measuring

currents have a linear relation with the output voltage with linearity < 0.1%. The

current transducers were calibrated to measure between -5.5 to +5.5 A. The output

voltage is fed to a data acquisition system for further processing.

10.2.2.3 Voltage transducers

Hall effect Closed loop (compensated) voltage transducers (L V 25NP) are used to

measure the voltages. This voltage transducer can measure DC, AC, pulsed voltages

and equipped with a galvanic isolation between the primary circuit (high power) and

the secondary circuit (electronic circuit). The measuring range is configurable. We

have set the range at -100 to +100 V. The measured voltage has a linear relation with

the output voltage with linearity < 0.2%. The voltage transducers were calibrated to

measure between -74 to +74 V. The output voltage is fed to a data acquisition for

further processing.

10.2.3 Mechanical design of the system

For an eccentric rotor a significant UMP force is produced in the airgap usually

tending to pull the rotor even further away from the concentric position. Thus for a
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stable operation the mechanical stiffness of the shaft must be greater than the negative

stiffness introduced by the UMP.

The mean airgap for the induction machine used in this experimental rig is 0.4 mm.

The negative stiffness is the slope of the curve of magnetic force in the airgap versus

displacement of the rotor. Magnetic forces are calculated by solving the magnetic

field when the rotor is shifted from centre along positive x-direction as well as

negative x-direction. Figure (3.17) of Chapter 3 shows the magnetic forces per unit of

axial length versus eccentricity of the rotor when 3-phase currents with a peak of 200

A (per slot) is applied. The slope of this curve is 2x 106 N/m per meter of the axial

length. From this negative stiffness the total load is calculated for a travel of the

airgap and this is ~ 800 N. The shaft is designed for up to a loading capacity of 1000

N. This force is regarded as a concentrated load on a simply supported beam. The

diameter of the shaft is calculated based on the assumption that the deflection of the

beam in the motor position is 30% of the airgap. Figure (l0.3) shows a simply

supported beam with a concentrated load. The deflection of the beam under the load is

8 =Wa2(I-aY
w 3EIl

(10.4)

where W is the concentrated load, RI and R2 are the reaction forces, a is the distance

ofW from reaction force, RI, I is the length of the beam. In our case: W= 1000N, a =
156.5mm, and I = 1020 mm. It is found that for a 50 mm diameter shaft the deflection

under the load is nearly equal to 25% of the airgap. Thus a shaft with diameter of 50

mm is chosen for the rig.

10.2.4 Other transducers

The impact hammer method is a convenient and economical excitation method for

injecting known inputs into a vibrating system. The impact hammer consists of a

hammer with a piezoelectric force transducer at its tip. The impact hammer is highly

portable for fieldwork and provides no unwanted mass loading to the structure under

test. The impact hammer produces an impulse force at one hit, which excites the
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structure with a constant force over a frequency range of interest. The waveform

produced by an impact hammer is an impulse. The test setup for impact hammer

excitation experimental is shown in Figure (l0.4). An impact hammer with an output

ofO.01 Volts/g is used to supply an impulse force signal. A signal conditioner is used

for conditioning the input force signal. The input signal is measured using a multi-

channel signal analyser.

Aluminium foil strain gauges are mounted in the bearing housing at one end of the

shaft. Figure (lO.S) shows the strain gauges along with the bearing in the rig. Figures

(10.6) and (10.7) show the strain gauge calibration curves for forces along x and y

directions. The test setup is shown in Figure (10.1). Horizontal and vertical forces are

measured separately and fed into the oscilloscope. The vertical force signal is

measured using a multi-channel signal analyser.

10.2.5 Data acquisition

The sensor or transducer signals are often incompatible with the data acquisition

interface and these signals must be conditioned before they are fed to a data

acquisition interface. The analog signals are converted to digital signals via the analog

to digital converter of the data acquisition interface. The data acquisition card used is

a dSPACE DS1104 R&D Controller Board. The whole unit is used in conjunction

with Matlab, Simulink and Real time workshop software package. The data

acquisition card has 8-channels where 4 multiplexed channels equipped with one

sample and hold AID converters, another 4 parallel channels each equipped with one

sample and hold converters.

10.3 Numerical model verification with experimental results

Figure (10.8) shows a schematic diagram of the experimental rig. The rig consists ofa

4-pole 2 kW induction motor with a long and flexible shaft. This motor is wound with

fractional pitch double-layered bridge-configured windings. The stator of the machine

with the winding connections and the bridge configured winding scheme are shown in

Figures (4.2) and (4.7) of Section 4 respectively. The shaft is supported by preloaded
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angular contact ball bearings at each end. This whole assembly is fixed on the top of a

steel plate. Strain gauges are mounted in the bearing #1 which is situated in the left

hand side of the shaft. The right end of the shaft is attached to another shaft via a

flexible bellows coupling and this second shaft is coupled to another induction motor

via a belt drive. The second induction motor is used as a brake by applying DC

currents across the terminals (plug braking). This section compares the results from

the numerical model with that of experiments.

10.3.1 Mechanical model

The development of the mechanical model can be found in Section (7.3) of Chapter 7.

We can write the equation of motion of the mechanical model as

(10.5)

where UM], [D],[Kn denote mass, damping and stiffness matrices. The mean

rotational speed of the rotor is denoted by n.

In Chapter 8 we have solved the mechanical model numerically using FEM without

considering the effect of the base plate.

Tests using an impact hammer test are used to investigate the mode shapes of the rig.

The experimental setup for the impact hammer test is shown in Figure (10.8). The

hammer produces an impulse force at a single hit and this excites the structure with a

fairly flat force spectrum over a given range of frequency. The response signals are

captured with the strain gauges and these signals are amplified and conveyed to a

signal analyser. We have chosen 12 locations for excitation on the rig i.e. 5 points on

the shaft and 7 points on the base plate. The frequency range is selected as 0-160 Hz.

Frequency response functions were obtained taking 16 averages at each location in

order to reduce the effects of the noise. The shaft was rotating while the FRFs were

being obtained. We get a total of 12 FRFs. Figure (10.10) shows a FRF at when the

impulse is applied at point 3 on the shaft. Mode shapes can be calculated once the

FRF at 12points is obtained by solving the following equation
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(10.6)

where htj (m) is one entry of the frequency response matrix, Akk is the k-th eigenvalue,

m is the excitation frequency, 'L,ik represents the amount by which one unit of

excitation at input degree of freedom #j excites mode #k and 'R ik: represents the

amount of output at output degree of freedom #i is contributed by each mode #k. The

derivation of frequency response matrix for a second order system is explained in

Appendix B.

Figures (10.11), (10.12), (10.13) and (10.14) show the modes shapes of the rig at 1.35

Hz, 58.61 Hz, 65.78 Hz and 72.39 Hz respectively. The deflected and un-deflected

rotor and base are shown separately and they are distinguished by different colours.

Mode shapes obtained from the numerical model are shown in Chapter 8. Since the

effect of the base plate is not considered in the numerical model explained in Chapter

8, therefore there is a slight difference in the results. The numerical model can be

improved by incorporating the effect of the base plate.

10.3.2 Electrical model

The development of electrical dynamics coupling circuit equation with the field

equation is explained in Chapter 5. For a constant mechanical speed, nmech the

electro-magneto-mechanical equation can be written as

(10.7)

where {V} is the vector of externally-applied voltages, [R] is the resistance matrix of

the machine including the effects of the end-windings, {IRS} is the vector of

independent machine currents, 0 is the angular position of the rotor and

[Lmar{{IRs},B)] is the marginal inductance matrix which is a function of machine
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currents and angular position of the rotor. Chapter 6 discusses different methods of

calculating marginal inductance of an induction machine. The results of this

numerical model are compared with the experimental results of a rig with the same

parameters.

To solve the numerical model, the circuit equation [Equation (l0.7)] is solved for no-

load and locked-rotor conditions using ode45 integration routine of MATLAB.

Marginal inductance [Lmar({IRs},B)]is calculated by solving the field equation using

MagFEA, the 2D FEA code developed in the MATLAB environment. Material non-

linearity is not considered for this calculation. End winding effects are also not

included in the resistance and inductance matrix. The applied voltages at the stator

windings terminals are:

V A = Vmcos(rot)

VB =Vmco{ mt_
2
;)

Vc = VmCOs( rot _ 4;)
(10.8)

The stator and rotor currents are obtained for no-load and locked-rotor conditions for

Vm= 1 V. These numerical results are compared with the experimental results by

scaling the stator and rotor currents according to the voltage obtained from

experiments.

The supply voltage and stator terminal currents of the experimental rig are measured

using voltage transducers and current transducers respectively for no-load and locked-

rotor conditions. The following section compares the experimental results with the

numerical results.

10.3.2.1 No-load test

The no-load test of an induction motor measures the rotational losses of the motor and

provides information about its magnetization current. The only load on the motor is
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the friction and windage losses. Experiments are carried out for the noload test by

spinning the rotor at synchronous speed for different supply frequencies. The supply

frequencies are chosen as 20, 25, 30, 35, 40, 45, and 50 Hz. Figures (10.15) and

(10.16) show the no-load supply voltages and stator phase currents from numerical

model as well as from the experiments when the supply frequency is 20 Hz. The

experimental results show a very good agreement with the numerical results. Figures

(10.17) and (10.18) show the no-load supply voltages and stator phase currents from

both numerical model and experiments when supply frequency is 25 Hz.

10.3.2.2 Locked rotor test

When voltage is applied to the stator windings of an induction motor, EMFs are

induced in the rotor circuits of the machine. Generally, the greater the relative motion

between the rotor and the stator magnetic fields, the greater the resulting rotor EMFs

and rotor frequency. The largest relative motion occurs when the rotor is stationary

and this situation is called the locked-rotor or blocked rotor condition, so the largest

voltage and rotor frequency are induced in the rotor at that condition. A voltage is

then applied to the motor and the resulting voltages and currents are measured with

the help of voltage and current transducers respectively. Figures (10.19) and (10.20)

show the locked-rotor supply voltages and stator phase currents from numerical model

as well as from the experiments. The machine is saturated in the locked-rotor test. As

mentioned earlier magnetic saturation is not considered in the numerical model,

therefore currents from the experiments are higher than the numerical one.

10.4 Results for the modified motor

As mentioned in Section (10.2.1.1), the induction machine under test is wound with

bridge configured windings. This unique winding scheme can be used for torque

generation as well as for passive or active modification of UMP. The arrangement of

the bridge configured windings shown in Figure (9.2) has two parallel paths with one

equalising connection in each phase. Because of the inevitable manufacturing and

assembling tolerances, there will be always, to some degree, a non-uniform airgap in

an electrical machine. This problem is particularly significant for small and medium
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sized induction machines with a nominal airgap of a fraction of 1 mm (Ellison et al.,

1971). We expect some degree of non-uniform airgap in our machine.

If the rotor happens to be concentric and if the stator is electromagnetically

symmetric, there will be no equalising currents even if the equalising links are short

circuited. In case of an eccentric rotor obviously there will be no net equalising

currents flowing when the equalising links are not short circuited. Once the equalising

links have been short circuited, any unbalance of field present will induce an EMF

tending to drive currents in the closed circuit such that a MMF comes to exist

opposing the rate of change of this field. Hereafter the short circuited and open

circuited links are known as CLOSED bridge and OPEN bridge respectively. This

section presents a comparison between measured induced voltages and equalising

currents in the bridge and the results obtained experimentally.

10.4.1 Bridge currents and voltages

The induced voltages and currents in the three bridges are measured for CLOSED

bridge using voltage and current transducers respectively. Figures (10.21) and (10.22)

show the measured equalising voltages and currents respectively for a supply voltage

of 20 Hz. Figures (10.23) and (10.24) show the measured equalising voltages and

currents respectively for a supply frequency of 25 Hz. An average voltage of 1V is

induced in the bridge. The main frequency components of equalising currents are

tis, Is and tis, where Is is the frequency of the supply voltage. Appendix B

provides more results of measured equalising voltages and currents for different

supply frequencies.

Section (8.7) of Chapter 8 presents a case study of an induction machine. The

electromagnetic parameters of the machine used for this numerical study are the same

as the machine used in the experimental rig. The rotor of the machine is shifted from

the centre by a known percentage of airgap thickness along x-direction. The

eccentricity obtained in this way static. This eccentricity produces harmonics into the

airgap field and these harmonics induces currents in the rotor cage as well as in the

equalising connections in the bridge configured windings. The steady state currents
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are calculated by solving the electro-magneto-mechanical equation of the machine at

this eccentric position. As explained in Chapter 4, there are six terminal currents

associated with the bridge configured windings. Three of these six currents are the

phase currents and the other three currents are bridge currents. The bridge currents are

also referred to as equalising currents in this thesis.

Since we do not have knowledge about the eccentricity of the machine in the

experimental rig, we can not compare these experimental results with the numerical

results presents in Chapter 8 [refer Figures (8.5) to (8.10)]. However, it is noted that

the patterns of the equalising currents from experiments are similar to the pattern of

equalising currents from numerical simulations. It can be concluded that the

magnitude of the equalising currents are a measure of eccentricity present in the

machine.

Ellison and Yang (1971) investigated noise reduction using similar types of winding

with 2 parallel paths and one equaliser in case of a cage induction motor. They also

found that equalising currents vary linearly with the relative eccentricity of the

machine.

10.4.2 Reduction of UMP

When we short-circuit the bridge we create paths for equalising currents. The forces

on the bearings are calculated for OPEN and CLOSED bridges using strain gauges.

The forces acting along horizontal and vertical directions are plotted and the reduction

of UMP is investigated for OPEN and CLOSED bridges. Figures (10.25) and (10.26)

show the frequency response function and force orbit when the supply frequency is 25

Hz for OPEN and CLOSED bridge. From Figure (10.26) it is seen that by closing the

bridge we can reduce UMP by about 75%.

Similar results of reducing UMP using parallel connections are reported by Berman

(1993). His experimental fmdings have shown that using equalising connections in the

stator the UMP of an induction machine can be reduced by 25 times.
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10.5 Conclusions

An experimental setup has been commissioned to investigate the electromechanical

interaction of an induction machine. The design procedure for the electrical and

mechanical system is described. The bench mark results of the electrical model as

well as the mechanical model of this experiment have been presented. These results

are used to verify the coupled model (numerical) described in Chapter 7. The bench

mark results of the mechanical model give good agreement. The bench mark results of

the electrical model also give good agreement except the locked rotor test. There is

some difference in the case of the locked-rotor test of the machine. The effectiveness

of bridge configured windings to reduce UMP is clearly demonstrated.
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Figure (10.1): Experimental setup

Table (10.1): MMF harmonics with different slot combinations

Harmo Full pitch
Fractional -! Fractional - 7... Fractional - inics 9 9 9

0 0.001953125000 0 0.001953125000 0
1 3.668218869325 3.609653303498 3.447480634178 3.172590876457
2 0.001953125000 0 0.001953125000 0,., 0.854074066085 0.733379054737 0.428913563056 0.002599583840.)

4 0.001953125000 0 0.001953125000 0
5 0.172187715542 0.105528021612 0.026702945104 0.142885832007
6 0.001953125000 0 0.001953125000 0
7 0.092907467687 0.033265064671 0.073962024974 0.084433609203
8 0.001953125000 0 0.001953125000 0
9 0.141491198647 0.000434065909 0.141464569607 0.001302181386
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Figure (10.3): A simply supported beam with a concentrated load
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Figure (10.4): Test setup of impact hammer excitation experiment
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Figure (10.5): Experimental setup showing the stator with the strain gauges

.... ··2·.0·

1.0

1.5

0.5

.!i
"0> -11 -10 -9 -8 -7 -6 -5 -4 -3 3 4 5 6 7 8 9 10

-0.5

-1.0

-1.5

.. ·-2·.0· .

Load (kg)

Figure (10.6): Output voltage of the strain gauge amplifier when the load is applied
along x-direction
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Figure (10.7): Output voltage of the strain gauge amplifier when the load is applied
along y-direction
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Figure (10.8): A schematic diagram of the experimental rig (all dimensions are in

mm)
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Figure (10.9b): Excitation points on the shaft of the experimental rig

231



4
10 ~c~~====~··=·=··=·=···=···=··=··=··=··~==~··=··=···=··=··.=.=...=..=...=..=...=.======~

.······'············F·T.E~
, ,

- - - - - - - - ~ - - r - - - - - - - - - - - r - - - - - - - - - - - - - , - - - - - - - - - - - - - ., - - - - - - - - - - - - -,- - - - - - ,_ _ _ _ _ _ _ _ _ _ ,... _
, , ,

-----------:--------------:--------------:-------------

3
10

~>--->'-'
eo 10
C':

~
CO
"0

" I,-----------r-------------r-------------r--------------,------ ----.--------- ----,--------------,--------------r-------------r---------------------------,--------- ----,----------- , ---------r-------------r-------------r--------------,--------------,--- ----------,------ , _
• I , , , I-----------r-------------r-------------r---------- -----------------,--------------,--------------,-------------

, ,------------------------r-------------T ----,-- -----------,-- -----------,------- ------,-------------

--------------- -- ------!.-------------i"--------------:--------------:--------- ----:--------------:-------------
, ,

----- -----------------,------------ '--------------:--------------:--------------:--------------,-
, , ,, , ,, , ,

I;
...... ,..... . ... .1;

1 I I ,

1

0 ~;!!!!!T+l
. I: I.. I : CO ': : : Icl.. . ~ ··········,···rr:r·······,···························,············l

: co~' I I : : I100 :.-conl n2 Ii I I+!con4

20 40 60 80 100 120 140 160

-----,--------------,--------------,-------------, , ,------------,--------------,--------------,-------------
-------------,--------------,---, ,

, ,------------,--------------,-----------

o
Frequency (Hz)

Figure (10.10): Frequency responses from the strain gauge in dB CVN) for non-

rotating shaft.
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Figure (10.11): Mode shape at 1.35 Hz. 'Cyan' and 'red' colours show the un-

deflected and deflected rotor respectively. 'Green' and 'blue' colours show the un-

deflected and deflected base respectively.
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Figure (10.12): Mode shape at 58.61 Hz. 'Cyan' and 'red' colours show the un-

deflected and deflected rotor respectively. 'Green' and 'blue' colours show the un-

deflected and deflected base respectively.
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Figure (10.13): Mode shape at 65.78 Hz. 'Cyan' and 'red' colours show the un-

deflected and deflected rotor respectively. 'Green' and 'blue' colours show the un-

deflected and deflected base respectively.
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Figure (10.14): Mode shape at 72.39 Hz. 'Cyan' and 'red' colours show the un-

deflected and deflected rotor respectively. 'Green' and 'blue' colours show the un-

deflected and deflected base respectively.
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Numerical results Experimental results
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Figure (10.15): Noload supply voltages from numerical model as well experiments

when supply frequency is 20 Hz

Numerical results Experimental results
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Figure (10.16): Noload stator currents from numerical model as well experiments
when supply frequency is 20 Hz
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Numerical results
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Figure (10.17): Noload supply voltages from numerical model as well experiments

when supply frequency is 25 Hz
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Figure (10.18): Noload stator currents from numerical model as well experiments
when supply frequency is 25 Hz
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Figure (10.19): Supply voltages for locked rotor test from numerical model and

experiments
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Figure (10.20): Stator currents from numerical and experiments for locked rotor test
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Figure (10.21): Equalising voltages from experiments when supply frequency is 20
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Figure (10.22): Equalising currents from experiments when supply frequency is 20
Hz
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Figure (10.23): Equalising voltages from experiments when supply frequency is 25
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Figure (10.24): Equalising currents from experiments when supply frequency is 25 Hz
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Chapter Eleven

Conclusions and Future work

11.1 Conclusions

The objectives of this thesis can be divided into two, (1) development of a unified

model combining electrical dynamics and mechanical dynamics (2) commissioning an

experimental setup to investigate the electromechanical interactions in an electrical

machine and also to investigate the effectiveness of the bridge configured windings as

a passive method of reducing UMP.

This study starts with the development of 2D finite element models of a prismatic

electromagnetic device. A single representation is applied to every cross section over

the entire length of the 3D object which is the actual model. The three dimensional

effects such as stator end-windings and rotor end-rings are added separately. Initially

the formulation is developed for linear problems and subsequently extended to non-

linear problems. The 2D finite element model represents the instantaneous

relationship between the nodal magnetic potentials and the nodal currents starting

from the Maxwell's equation. The excitations are given in terms of current density

and permanent magnet regions. The idea is that, if the excitations are known, the

magnetic potentials can be calculated from the relation between the magnetic

potentials and the currents through a magneto-static analysis. The procedures for

developing this 2D FE model are described in Chapter 3 in a systematic way. In fact

Chapter 3 is the back-bone of the thesis.

A generic 2D Finite element (FE) code has been developed in MATLABTM using

these procedures. This general procedure is called MagFEA and this code is

thoroughly validated. This code has a linear solver as well as a non-linear solver and

can solve any electromagnetic device including rotating electrical machines. Using
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this code three electrical machines have been investigated. It is shown that overhung

machines are more prone to unbalanced magnetic pull and that the actual critical

speed can be very different from the critical speed computed without including UMP.

Another investigation has revealed that magnetic slot wedges in an electrical machine

reduce the tooth passing frequency component of the magnetic normal stress in the

airgap.

The FE model of an electromagnetic device has a few independent currents. There can

be two sets of nodes in the model based on the conducting and non-conducting

regions. Only those nodes correspond to the conducting regions can carry currents and

those nodes are called current carrying nodes. These currents are also not independent

because constraint exists on these currents as a result of the way that the machine is

wound. Chapter 4 discusses different transformations employed to reduce the vector

of nodal currents to a smaller number of independent currents. It is well known that

the density of current in the rotor bars of a cage induction machine and also in damper

bars in a synchronous machine varies with the radial position in the bar due to skin

effect. Transformations are also developed to reduce this vector of nodal currents to a

lower-dimensional vector. If we know the independent currents for the stator as well

as for the rotor we can calculate the full set of nodal currents and hence we can

calculate the magnetic potentials. Transformations are also applied to the magnetic

potentials. In an electric machine model we usually enforce a tangential-flux

condition at the outside diameter of the stator and this is achieved by imposing

constraints. Chapter 4 discusses all transformations applied to the currents as well as

magnetic potentials.

Most of the electromagnetic devices can be considered to be voltage-driven. The

circuit equation has to be coupled with field equation. A model for electro-magneto-

mechanical device has been developed. The presented model can be applied to any

EMM devices including induction machines. The effects of end-windings are

incorporated in the 2D model by writing the end-winding currents in terms of rotor

bar currents. For variable current densities this transformation is obtained from the

minimisation of resistive losses.

The steady state characteristic is one of the most fundamental requirements in the

design of electrical machines. There is a requirement for these steady state currents in
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the proposed coupled dynamic model. General methods for calculating steady state

currents are discussed. The airgap stitching method and the central circle method are

discussed in detail. A main advantage of the airgap stitching method is that it can cope

with the case of an eccentric rotor. It suffers from two disadvantages - (1) in reality, it

is obvious that the machine inductance matrix should be a continuous function of

rotor angle. With the airgap stitching method, at instants where the connectivity of

rotor and stator nodes has to be changed, discontinuities will appear in the inductance,

(2) even for analyses which are magnetically linear, the element matrices must be

derived afresh for the stitching elements at each instant in time. The central circle

method overcomes these two disadvantages. It has also two major disadvantages (1)

when constraints are applied the sparsity of the stiffness matrix is reduced, (2) it can

not cope with the case of an eccentric rotor and stator. Different variants of the central

circle method are exploited. One of the interesting outcomes is that the stiffness

matrix which is used to calculate the inductance matrix can be approximated using a

non-linear function.

Once the steady state currents of the electrical machine are known, a unified model is

developed combining the electrical dynamics and the mechanical dynamics. The

variables are electric charge and point displacements. The coupled system is a time-

varying linear system with periodic coefficient matrices. One of the main points of

interest of this study is the effective mechanical damping provided by the closure of

the parallel-path circuits in the three different phases. The parallel paths do not

stabilise any of the unstable conditions (which appear to be dominated by negative

magnetic stiffness) but they do reduce the real parts of eigenvalues in all cases.

Effective electrical damping has been assessed by forcing the rotor centre to take a

positive circular synchronous orbit of 1% of the air-gap and examining the energy

transferred into the electrical circuits from the mechanical motion over the period of

time.

An experimental rig has been commissioned for two distinct reasons; (1) to verify the

results of the coupled model (numerical) combining the electrical and the mechanical

dynamics as proposed, (2) to investigate the effectiveness of the bridge configured

windings as a passive method for reducing UMP. The numerical results of mechanical

and electrical model are separately verified using the experimental results. The
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parallel paths in the stator windings can reduce the UMP. This has been clearly

demonstrated by experimental results. It is seen that by employing bridge configured

winding the UMP can be reduced by about 75%.

11.2 Future work

The present study presents some interesting possibilities for further investigations.

Some recommendations for future work are presented here

11.2.1 Application to other electrical machine

The models developed in this study have been applied to only on a particular class of

machine. These models can be applied to other electrical machines such as axial flux

machines, linear induction machines and cylindrical machines with double airgap.

11.2.2 Three dimensional analysis

The models developed in this study are two dimensional. Three dimensional effects

are either ignored or approximated in this study. For example, inductances due to end-

windings are ignored and resistances of the end-windings of stator coils and the

resistances of the end-rings of the rotor bars are approximated. It will be interesting to

see the effect of these parameters by developing a complete three-dimensional model.

11.2.3 Detailed study of the approximate method

Chapter 6 discusses different methods by which we can calculate steady state

characteristics of an induction machine. These methods can easily be used to calculate

the steady state characteristics of other electrical machines such as synchronous

machines. Separate methods are discussed for different conditions of a particular

machine which include geometry change and magnetic saturation. When magnetic

saturation of the iron cores is not considered in the calculation then there is no issue

with the computational time. When material non-linearity is incorporated in the

calculation, a full FE solution demands substantial computational time. This work has
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proposed a new and interesting idea whereby instead of regarding the materials as

having a separate permeability at every Gauss point dependent on the flux density

there, we approximate the complete inductance matrix of the device as a continuous

function of a small number of variables. The method is applied to a simple

electromagnetic problem in which there are only two independent current variables.

Electric machines are complex devices where, in addition to magnetic non-linearity,

there is also relative movement between the stationary and rotating parts. There is

scope to adapt this method for use in electrical machines.

A feature of this method which is proposed in this work is that separate

approximations are created for both rotor and the stator and the problem of

accommodating movement is removed.

11.2.4 Optimum scaling in the approximate function

For the approximate method, the ultimate measure of success is how closely the

steady state currents can be found from the approximate method which will match that

of full non-linear solution. Recalling the approximate functions for the rotor and the

stator mentioned in Equations (7.32) and (7.32) respectively

(10.1)

where a is reference parameter and a = Bref , IRreris the reference value of the rotor
IRref

bar currents.

(10.2)
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The parameters which determine this measure are the Fourier coefficients of the

magnetic potentials in the central circle ({ARc land {Asc}), the rotor bar currents {IR},

the reference values of the Fourier coefficients of the magnetic potentials Brefand the

reference values of the rotor bar currents IRref.

In is possible to investigate the optimum number of harmonics of the magnetic

potentials and the optimum number of independent currents per rotor bar.

Investigation can also be extended to find a better way to choose the optimum value

of these reference parameters.

11.2.5 Extending the central circle method so that it can

accommodate eccentricity

Our approximate method is used only to find the reference solution when rotor

remains concentric. It is possible to accommodate some small displacement from the

central circle by incorporating additional parameters in the approximate function.

11.2.6 Automatic differentiation of the stiffness matrix with respect

to position

In this study two methods are introduced for accommodating the relative movement

between the stationary and the rotating parts. These two methods are (1) the airgap

stitching method and (2) the central circle method. In the central circle method, there

is no element derivation is required while accommodating the relative movement. In

this method the differentiation of the stiffness matrix with respect to angular position

(8) is achieved analytically. In the airgap stitching method the layer (band) combining

the outer diameter of the rotor and the inner diameter of the stator has to be derived

afresh. In case of the airgap stitching method the rates of change of stiffness with

respect to the geometry (x, y position and 8) are calculated separately using the central

difference method. It is possible to calculate these rates of change during the element

derivation of the layer whose elements have to be derived afresh to accommodate the

relative movement ..

246



11.2.7 Time dependent transformations

The analysis of time-dependent linear second-order systems is of high genenc

interest. A time-dependent linear second-order system is shown in Equation (7.12) of

Chapter 7. Equation (7.12) can be written as

[M'(t )Hq'(t)}+ [D'(t )Hq'(t)}+ [K'{t )Hq'(t)} = 0 (10.3)

where [M'(t)], [D'(t)] and [K'(t)] are the time-dependent mass, damping and stiffness

matrices respectively and {q'(t)} is the vector of generalised displacements. There are

several possible approaches to dealing with the time-dependency of this system. One

approach would be to employ time-dependent transformation matrices [TL (t)] and

[TAt)] to Equation (10.3) starting with

{q'{t)} = [TR (t )HP'(t)} (10.4)

where {P'(t)} is a new vector representation of the generalized deflections of the

system. The first and second derivatives of {q'(t)} are then

(10.5)

(10.6)

Making the obvious substitutions into Equation (10.3) and pre-multiplying the result

by the transpose of [TL (t)] leads to a new equation. With appropriate choice of [TL (t )]
and [TR (t)] it is evident that at least two out of the three system matrices can be made

constant. In essence, the analytical approaches to UMP modeling do precisely this. In

the fully general case, all three matrices cannot be made constant using this limited

transformation. Further investigations can be made for a general class of

transformations where the system matrices will be constant with respect to time.
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11.2.8 Passive components in the parallel paths

It is possible to include additional components such as capacitance, inductances and

resistances. By adjusting the values of these components, the mechanical dynamics of

the machine can be modified. Note that with no capacitances or inductances present,

the MMF resulting in the parallel paths from induced currents caused by changing

flux imbalance in the machine will lag behind the original flux imbalance by 90%.

Introducing capacitance will obviously increase the impedance of the circuit but will

also reduce the lag at any given frequency. Inductances will do the opposite.

Considerable "tuning" of the mechanical dynamics is possible by using different

combinations of capacitances and inductance.

11.2.9 Inclusion of torsional dynamics in the coupled model

In our proposed coupled model lateral dynamics is considered to investigate the

electromechanical interactions. In the present model the displacement vector contains

electrical charge and point lateral displacements (x, y). The torsional dynamics can be

included in our mechanical model by introducing more degrees of freedom. This

model will facilitate to investigate the coupling between the torsional and lateral

dynamics through the electrical interactions.

11.2.10 Incorporation of the effect of base plate in the mechanical

model

The dynamic modes of the rig obtained from experiments are slightly different from

the results obtained from numerical model. One reason for this difference is that the

effects of the base plate of the rig are ignored in the mechanical model. In the future

study on the electromechanical interaction of a real machine the effects of the base

plate should be incorporated.
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APPENDIX A

A.I Formulation for directional permeability for two dimensional

magneto-static problem

The magnetic flux density is derived as the curl of another vector field:

B(x,y)= V x A(x,y) (A.I)

A static magnetic problem is described by

(A.2)

V .B(x,y)= 0 (A.3)

And also

H(x,y)=v B(x,y) (A.4)

(A.S)

where [v ] is the inverse of permeability and can be written for an orthotropic material

as

I

[v]= Pxx
o

o
I

(A.6)

I



where jJ.:cc *" jJ.yy

Equation (A.4) can be written as

v x [v] (V x A(x,y))= Jo(x,y) (A.7)

VXA(X,y)=[ax
O
: "o~ ~ 1= 8A(x,y)i_ 8A(x,y) j

A(x,y) ay ax
(A.8)

[v](v x A(x, y)) = (_1 J 8A(x, y) i - (_1 J 8A(x, y) j
jJ.:cc ay jJ. yy ax

(A.9)

i j k
iJ iJ iJ =Jo(x,y)ax iJy iJz (A.IO)

1 8A(x,y) 1 8A(x,y)
0

jJ.:cc ay jJ.yy ax

(A.II)
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A.2 Approximation for B(H) curve
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Figure (A.l): A B(ll) curve ofa standard electrical steel

Figure (A. I ) shows B(ll) curve for a standard electrical steel which is obtained

experimentally. It is better to have an analytical function when we solve nonlinear

finite element as the field intensity has to be calculated at every iterations for all

elements. For the above reason the B(ll) curve shown in Figure (A.1) is divided into

four regions and is fitted with four different polynomial functions maintaining Cl

continuity. Equation (A.12) shows the polynomial functions for different regions.

a1B-b1B
2 for 0.0 s B s 0.1 Tesla

a2 for 0.1 s B s 1.4 Tesla(I + b.e -C2B)
H= (A.12)

a3 + b3B + c3B2 for 1.4 s B s 2.0Tesla
I-(B - 2.0)+ a3 + 2b3 + 4c3 for 2.0 sBTesla
Po

where a .. b.. az, bi, C2, a3, bs, and C3 are constants and values of these constants are

III



al 69.80926049616697

b1 291.2027377442727

a2 -179.599730

b2 -59.6075740

C2 2.7802181

a3 1.261085222177513 x 106

b3 -1.813387839003966 x lOb

C3 6.522906386158606e X 105

A.3 Approximating the stiffness matrix: what is important and

what is not

Equation (3.59) in Chapter 3 appears as

(A.13)

where [U] is the transformation matrix which determines the transformation of nodal

currents to the terminal currents. Generally [U] is a tall thin matrix.

Assert that [K] can be written in the following way

(A.14)

where

(A.IS)

i.e. [Hu] spans the same space as [U].

Also,

IV



(A.I6)

And further more

[Hy Y[U]= [Hy Y[Hu]= 0 (A.l7)

To find [Hu] the procedure is adopted. It is speculated that

[Hu]= [U][X] (A.I8)

[xl can be calculated as

(A.19)

(A.20)

The Cholesky decomposition can be used to evaluate the matrix [X]. The matrix [X]

can also be calculated by solving the eigenvalue problem. Once [Hu] is calculated

[Hy] is calculated as

(A.21)

Again assert that

(A.22)

The following procedure is adopted to calculate [Xu] and [x.].

(A.23)
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Pre-multiplying by [n,Y and post-multiplying by [Hu] we can write Equation

(A.24) as

Similarly [Xv] can be calculated as

(A.27)

The main purpose of the calculation of [K]-1 is to evaluate inductance matrix, [L],

which is calculated using the formula

(A.28)

It is clear from Equation (A.28) that not all the entries of [K]-1 are relevant while

calculating the inductance matrix.
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A.4 Lagrange's equation of motion for coupled electrical and

mechanical dynamics

In this coupled system a mechanical process and an electromagnetic process are

coupled. The mechanical system is described by a generalised displacement vector,

{q} and electrical dynamics part of a R-L system is described by generalised

electrical quantity (charge), {Q}.

The Magnetic Field Energy, MFE can be written

MFE = _!_{QY [Lo(q,e)]{Q}
2

(A.29)

Here {Q} is the electric current and [Lo(q,9)] is the inductance of the system which is

a function of displacement and rotational position of the rotor.

Similarly, the Kinetic Energy, KE of the system can be written as

KE = _!_ {qY [MHq}
2

(A.30)

where [M] and {q} are the mass matrix and generalised velocity respectively.

Potential energy of the system, PE is

(A.31)

Here [K] and {q} are the stiffness matrix and generalised displacement vector

respectively. Dissipation function, F* is expressed as

(A.32)
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Here [R] is the resistance and [e] is the damping of the system. In the mechanical

dynamics {q} is the displacement vector and in electrical dynamics {Q} is the electric

charge vector. The Lagrangian of the electrical and mechanical coupled system is

L = KE{{q}, {q})+ MFE{{q}, {Q})- PE{{q}) (A.33)

Motion of the system is governed by the Lagrange equation

(A.34)

and

!!_ ( oL J - oL + of - F
dt d{q} d{q} d{q} - { 2}

(A.35)

where {F)} and {F2} are vectors the generalised forces. For the electrical system {F)}

is the vector generalised electric potentials and for the mechanical system {F2} is the

vector generalised mechanical forces.

Again from Equation (A.34) we get

(A.36)

(A.37)

(A.38)

From Equation (A.35) we get

VIn



Combining Equations (A.38) and (A.40)

IX

(A.39)

(A.40)

(A.41)



A.S Calculation of [Fo]based on the minimization of total resistive

losses

_[d ]{IsoY ~GoY [RE][Go]){Iso}=0dFo

d~o] {IsoY ([H~ I+ [H; HFo]T[RE][H~I+ [H; HFo])) {Iso}= 0

d~ol{I.or ([H;l+IFor[H~ r r [RE1[H;r + [HdIFol)){I.oH

_c!_{I y[[H~][RE1H~Y +[H;][REIH~HFo] I{I }=O
d[Fo] BO +[Fof[H; Y[REIH; Y + [Fof[H; Y[REIH~][Fo]) so

2lH; j[REIH; J + 2[FoY[H; Y[REIH;] = 0

[Fo]=-[H; Y[RE1H; D1 QH;][RE1H~D

x

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)



A.6 Effects of different number of modes of conductance in a

rotor bar

The machine considered is a 4-pole, 3-phase induction motor wound with double

layered windings. The stator of this machine has three independent currents. The

number of rotor bars is 32. This study provides the effects of different number of

modes of conductance in a rotor bar.

If two modes of conductance are considered for the rotor bar and the number of

harmonics for the Fourier approximation of the rotor bar is also five, the

transformations in Chapter 4 leads to a total of 20 independent rotor currents. The

stator and rotor currents can be written as

{

Rotor currents
Stator currents (DC components)
,.---A----.. ....

{IRS2} = i1 ... i3 t.

Rotor currents Rotor currents Rotor currents Rotor currents } T
(1st harmonics, cos) (1st harmonics, sin) (2nd harmonics, cos) (2nd harmonics, sin)
~ ~ r-"----, ~

is . .. i6 i7 . .. i8 i9 . . . ilO ill . .. i12' .. i20

(A.48)

here i}, ... , ts are the three stator currents, i4 is the DC components of the rotor

currents, is, ... , i6 are the cosine components of the first harmonics of the rotor

currents and so on.

Similarly the stator and rotor currents for three, four and five modes of conductance

can be written as Equations (A.49), (A.50) and (A.51) respectively.

{

Rotor currents
Stator currents (DC components)
~ ,....--A--,

{IRS3} = i1 ••• i3 i4 is

Rotor currents Rotor currents Rotor currents Rotor currents } T
(1st harmonics, cos) (1st harmonics, sin) (2nd harmonics, cos) (2nd harmonics, sin)

~ ~
i6 . . . is i9 . .. ill i12 . . . i14 its ... i17' .. i29

(A.49)
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1
Rotor currents Rotor currents Rotor currents Rotor currents Rotor currents } T

Stator currents (DC components) (Ist harmonics, cos) (Ist harmonics, sin) (2nd harmonics, cos) (2nd harmonics, sin)
r--A----. ~ ~,..----A--....,..----A--.... ~

{IRs4} = i1 ••• i3 i, ... i6 i, ... ilO ill ... i14 i15 ... ilS i19 ... i22'" i3S

(A.SO)

{

Rotor currents Rotor currents Rotor currents Rotor currents Rotor currents } T
Stator currents (DC components) (1stharmonics, cos) (1stharmonics, sin) (2nd bannonics, cos) (2nd bannonics, sin)
~ ~ ~ ~~,----J'---.

{IRs5} = i1 ... i3 i4 ... i7 is ... i12 i13 ... i17 ilS ... i23 i23 ... i27'" i47

(A.Sl)

Figure (A.2) shows the rotor currents for different modes of conductance corresponds

to the first modes of the cosine component of the 2nd harmonics and Figure (A.3)

shows the rotor currents for different modes of conductance corresponds to the first

modes of the sine component of the 2nd harmonics. It can be concluded that four

modes of conductance are enough to represent the currents in a rotor bar for this

machine.
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Figure (A.2) shows the rotor currents for different modes of conductance corresponds

to the first modes of the cosine component of the 2nd harmonics
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APPENDIXB

B.1 Frequency response matrix

Consider a second-order system described by the three equations:

(B.I)

(B.2)

{y}= [SRY {q} (B.3)

If this system is classically-damped, then it is possible to define a coordinate

transformation in the form

(B.4)

with the effect that the equations of motion can be written as

(B.S)

(B.6)

(B.7)

with matrices [A], [r]and [I] all diagonal. It is obvious from Equations (B.!), (B.2),

(B.3) and (B.4) that

XN



[<I>LY =[TLY[SJ, [<I>RY =[TRY[SR] (B.8)

[AY = [TLY[KrnechITR], [rY = [TLY[DITR] and [IY = [TLY[MITR]

All of the matrices here are real-valued. The frequency-response matrix, [H{w)], is (no

x ni) where no represents the number of outputs (the dimension of {y}) and where n,

represents the number of inputs (the dimension of {u}). [H{w)] can be expressed in

terms of either the original representation of Equations (B.I), (B.2) and (B.3) or the

transformed (modal) representation of Equations (B.5), (B.6) and (B.7) thus

[H{w)] = [SRY[Krnech]+ jW[D]- w2 [M]f' [SL]
= [<I>RJIA]+ jw[r]-w2[I]f'[<I>LY

(B.9)

A single entry of the frequency response matrix can be constructed as:

(B.10)

where 'L,jk represents the amount by which one unit of excitation at input degree of

freedom #j excites mode #k and 'R,ik represents the amount of output at output degree

of freedom #i is contributed by each mode #k.
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B.2 Supply Voltages and Stator Currents for No-Load conditions

from experimental rig
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Figure (B.2): Supply voltages and stator currents at no load condition for supply

frequency of 30 Hz
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Figure (B.3): Supply voltages and stator currents at no load condition for supply

frequency of 35 Hz
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Figure (B.4): Supply voltages and stator currents at no load condition for supply

frequency of 40 Hz
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Figure (B.S): Supply voltages and stator currents at no load condition for supply

frequency of 45 Hz
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Figure (B.6): Supply voltages and stator currents at no load condition for supply

frequency of 50 Hz

B.3 Equalizing Voltages and Currents for No-Load conditions

from experimental rig
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Figure (B.7): Equalizing voltages and currents at no load condition for supply

frequency of 20 Hz
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Figure CB.8): Equalizing voltages and currents at no load condition for supply

frequency of 25 Hz
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frequency of 30 Hz
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frequency of 40 Hz
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Figure (B.12): Equalizing voltages and currents at no load condition for supply

frequency of 45 Hz
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Figure (B.13): Equalizing voltages and currents at no load condition for supply

frequency of 50 Hz
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C.I Comparison of results from MagFEA and MEGA
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Figure (C.l): A simple electromagnetic device
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Figure (C.2): FE mesh of the model
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Figure (C.3): x-component of the flux density for linear and non-linear case from

MagFEA in the middle of the airgap when Cl = 5 Azrnm'' and C2 = 0

0.01 0.02 0.05 0.06 0.07

0.1

0.08

0.06

0.04
f='
<;»

CO" 0.02
;;.......
c/l
:::
<!)

u
><:=
u..

-- Linear
.................. -- Non-linear

____________ t- ., _

, ,
, ,
, ,

0.01 0.02 0.03 0.04

Time (sec)
0.05 0.06 0.07
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MEGA in the middle of the airgap when Cl = 5 Azmm ' and C2 = 0
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Figure (C.6): y-component of the flux density for linear and non-linear case from

MEGA in the middle of the airgap when Cl = S Azrnrrr' and C2 = 0
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Figure (C.7): x-component of the flux density for linear and non-linear case from

MagFEA in the middle of the airgap when Cl = 10 Azrnm' and C2 = 0
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Figure (C.8): x-component of the flux density for linear and non-linear case from

MEGA in the middle of the airgap when Cl = 10 A/mm2 and C2 = 0
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Figure (C.9): y-component of the flux density for linear and non-linear case from

MagFEA in the middle of the airgap when Cl = 10 Azmm ' and C2 = 0
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Figure (C.lO): y-component of the flux density for linear and non-linear case from

MEGA in the middle of the airgap when Cl = 10 Azrnm' and C2 = 0
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Figure (C.ll): x-component of the flux density for linear and non-linear case from

MagFEA in the middle of the airgap when Cl = 15 A/mm 2 and C2 = 0

0.01 0.02 0.05 0.06 0.07

0.25~----~------~----~----~,-----~-----,------~

0.2

0.15
:,
:1

~ ;- _ - - - - - - - - -"1 __ ' l_ - - - - - - - - - - - - -;...- - - - - - - - - - - - - -,- - - - - - - - - - - - - - - "' - - -

--Linear
---- Non-linear-- - - -- - .... - - - - - - - - - - - - - -- - - - - - - - - - - - - --,- - - - - - - -- - - - - - -~ -- - - - - - -- -- --

o

0.1 . .-------,----------------,--------------

:oX 0.05
~......

-0.05 - - ------,--------------- .. --------------, ,
, ,

-0.1 - - - - - - - - - - - - - -~ - - - - I -

, ,------------------,--------- ------,------

-0.15 _____________ ,_______, I

--------,----------------,--- , ,------,----------------,----------------,---------

O~2:c_-_- -_- -_- - -_- -_- -_l__-_- -_--_---_- -_--_J- -"c_- -_- _- -_- - -_- -_- ---'-'~L__- -_- -_- '. -_j- -"L__- -_- -_- -_- - _- - -_- -~- -_- - -_-_- -_- - _- - -_- -_l- ~_- - -_- -_- __ __j

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Time (sec)

Figure (C.12): x-component of the flux density for linear and non-linear case from

MEGA in the middle of the airgap when Cl = 15 Azrnm' and C2 = 0
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Figure (C.13): y-component of the flux density for linear and non-linear case from

MagFEA in the middle of the airgap when Cl = 15 Azmm' and C2 = 0
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Figure (C.14): y-component of the flux density for linear and non-linear case from

MEGA in the middle of the airgap when Cl = 15 Azrnm'' and C2 = 0
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Figure (C.lS): x-component of the flux density for linear and non-linear case from

MagFEA in the middle of the airgap when Cl = 15 A/mm2 and C2 = 5 Azrnm''
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Figure (C.16): x-component of the flux density for linear and non-linear case from

MEGA in the middle of the airgap when Cl = 15 Azrnm' and C2 = 5 Azmm'
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Figure (C.17): y-component of the flux density for linear and non-linear case from

MagFEA in the middle of the airgap when C2 = 15 A/mm2 and C2 = 5 Azmnr'
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Figure (C.l8): y-component of the flux density for linear and non-linear case from

MEGA in the middle of the airgap when C2 = 15 Azmnr' and C2 = 5 Azmm'

xxx


