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Abstract

The work described in this thesis was carried out at the Sir Peter Mansfield

Magnetic Resonance Centre at the University of Nottingham between March

2006 and December 2009. All work described in this thesis was performed by

the author, except where indicated. This thesis aims to develop and implement

ASL techniques to measure haemodynamic responses to neural activity.

The development of a new technique Double Acquisition Background Sup-

pression (DABS) is presented as a remedy for a newly discovered artefact af-

fecting Philips Achieva 7 T scanners and other sources of variation in baseline

signals such as physiological noise. The new technique (DABS) was developed

for simultaneous acquisition of ASL (with suppressed static tissue signal) and

BOLD data using the FAIR scheme. This method not only provided a so-

lution to obtaining ASL data at 7 T, despite the Roman Artefact, but also

proved to reduce the contribution of physiological noise to ASL images, which

is problematic, especially at ultra-high magnetic field strengths. The statis-

tical verification was carried out based on the neural activation induced by

a finger-tapping stimulus.

A simplified model for quantifying CBVa.with the Look-Locker sampling

method is proposed in this thesis to overcome the need for the Step-wise Com-

partmental Model (SCM). The Look-Locker sampling scheme acquires multi-

ple readout pulses followingthe labelling and provides an estimation of transit

time as well as CBVa..Here the simplified model is used to assess changes due



iii

to visual stimulation and validated against the SCM model.

The application of LL-FAIR to form CBF and CBVa weighted data with im-

proved SNR compared to traditional single TI FAIR technique is then shown.

This method uses a summation over LL-EPI readout pulses and is used to asses

the temporal characteristics and absolute changes in CBF and CBVa haemo-

dynamic responses to a short (4.8 s) and long (9.6 s) visual stimulus.

LL-FAIR methods are then used to appraise the neural coupling of haemo-

dynamic parameters and assess Grubb's relationship. CBF and CBVa. data

were collected together with CBVtot data from a bolus injection of contrast

agent. Assessing Grubb's power-law (CBVtot = CBFCI:)for neuronal activa-

tion, which was originally derived in primates during a steady state response

of hypercapnia, a was found in this human study to be between 0.22 ± 0.08

and 0.29, dependent on the analysis method. In addition, the power-law re-

lationship between CBVtot and CBVa.was assessed, and resulted in a similar

relation, yielding aTA = 0.42 ± 0.14 and 0.40. Since CBF is thought to be

driven by CBVa.the power-law between these parameters was also tested with

a value of aFA = 1.35 ± 0.64 and 1.21, found in close agreement with earlier

animal work.
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Chapter 1

Introduction

Arterial Spin Labelling (ASL) methods were first introduced over fifteen

years ago [1], however the idea of measuring blood in vessels and perfusion

using saturated and excited spins was suggested a few years earlier [2]. De-

spite this, ASL is still very much a research tool though clinical interest is

now rapidly growing. The reason for this is that ASL measurements are non-

invasive and can provide not only qualitative information (in the form of Per-

fusion Weighted (PW) images) but also quantitative measures of perfusion

(in [loo~min]). This being very important in diagnostic medicine of acute and

chronic diseases affecting blood flow and perfusion. Also the interest in ASL

,approaches for pharmaceutical trials have started to increase, since the long

term and frequent monitoring using a natural contrast (of ASL) is possible.

,NewASLtechniques are being developed and existing methods improved. This

is allowing ASL to become a more powerful tool every day, and this thesis

presents an example of such measures.

Chapter 2 introduces the phenomenon of Nuclear Magnetic Resonance

(NMR) outlining the key basic physics concepts behind it. Definitions of im-

portant terms, and explanations of the basic physics principles are provided

along with the defining equations key to the main subject of this chapter.
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The concept of Magnetic Resonance Imaging (MRl) is outlined in Chap-

ter 3. Using notations from Chapter 2, the basic idea behind MRl is explained

and the main hardware components of an MR system introduced. This chap-

ter elaborates on the role of various equipment in forming an image using

the NMR phenomenon.

Chapter 4 introduces different techniques used to measure blood flow

and perfusion. The imaging techniques using MR are explained and the vari-

ous ASL pulse sequences described, which are the main subject of this thesis.

The application of ASL to functional MRl (fMRl) and the typical Blood Oxy-

genation Level Dependent (BOLD) contrast used for fMRI are introduced.

Chapters 5, 6 and 7 are the experimental chapters of this thesis. In Chap-

ter 5 advantages and challenges of acquiring ASL data at ultra-high (7 T) field

are described. The first section of this chapter describes an artefact discovered

on all Philips 7 T scanners which impacts on ASL data collection. The second

part proposes a remedy, allowing ASL data acquisitions, which also benefits

in reduction of other noise signals associated with high and ultra-high field

scanning, such as physiological noise.

The second experimental chapter, Chapter 6, addresses the quantification

of Arterial Cerebral Blood Volume (CBVa.)using traditional FAIR technique

and a Look-Locker EPl (LL-EPl) acquisition. An alternative quantification

method to quantify (CBVa.) to the Stepwise Compartmental Model (SCM)

used previously for the LL-EPI acquisition technique is proposed and verified.

Chapter 7 introduces applications of the Lt-EPl acquisition technique with

FAIR scheme, particularly interesting for pharmaceutical trials - a single ac-

quisition approach. Also, a cross-fieldstudy combining three measures (CBVa,

CBF and CBVtot) to obtain more detailed information of their contribution

in haemodynamic processes, is conducted in this chapter.

This thesis concludes with a summary of the findings in Chapter 8. This is
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followed by a brief outline of potential applications and suggested future work

can also be found. For example, perhaps in the future, it will be possible

to obtain fMRI images using ASL in real time within just an ultra-fast single

trial - reconstructing images just like the one below ...



Chapter 2

Nuclear Magnetic Resonance

Theory

Nuclear Magnetic Resonance (NMR) is one of many methods used by sci-

ence and technology nowadays to investigate matter. NMR was first described

independently by Purcell [3Jand Bloch [4Jin 1946. Six years later these two sci-

entists were awarded a Nobel Price for their achievements. In principle, NMR

uses magnetic properties of nuclei as well as a radio frequency electromagnetic

wavefor excitation purposes. Rotating particles possess an angular momentum

vector1(Fig. 2.1), which points in the direction orthogonal to the rotating

plane. Spin angular momentum 1. (spin) is a particle's intrinsic property [5].

Not all nuclei are NMR sensitive, only certain nuclei that have non-zero spin

can be used from the NMR perspective. Associated with the spin is magnetic

moment vector 71, which expresses the particles' interactions with an exter-

nal magnetic field. The spin angular momentum and the magnetic moment

are proportional:

11= ,S, (2.1)

where 11and S are quantum mechanical operators and , is the gyromagnetic ra-

tio, a characteristic constant of a nucleus, typically described in units of [~z],
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Figure 2.1: Schematic of various directions of the angular momentum of ro-
tating particles.

see Table 2.1. The magnetic energy Emag of these interactions can be deter-

mined as a scalar product of the particle's magnetic moment 11 and the ex-

ternal magnetic field 13 (Eq. 2.2).

(2.2)

The negative sign indicates that a lower energy state corresponds to parallel

vectors and antiparallel vectors results in a higher energy configuration.

Interactions of particles having a magnetic moment with an external mag-

netic field form the core of the NMR phenomenon. NMR interest lies in nuclei

with high, such as hydrogen IH, carbon 13e, nitrogen 14N, sodium 23Na,

or phosphorus 31P. The values of the gyromagnetic ratio, together with rel-

ative sensitivity of nuclei compared to 1H and relative abundance are shown

in Table ,,2.1. Hydrogen nuclei can be seen to be the most common and widely

present in biological matter. Since no other nuclei was used in any experiment

in this thesis, 1H NMR is the main subject of this chapter.
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Table 2.1: Properties of nuclei used for magnetic resonance [5]
nucleus spin 'Y[M~] relative natural

sensitivity (to IH) abundance [%]
IH I 42.58 1 99.82
13C I 10.71 1.59xlO-2 1.112
14N 1 3.08 1.01xlO-3 99.6
23Na 3 11.26 9.25xlO-2 1002
3lp I 17.24 6.63x 10-2 1002

2.1 Single Spin

In quantum mechanics, both angular momentum and spin angular momen-

tum are quantised, which means that there are only discrete energy levels that

a particle (or system) can occupy. The angular momentum quantum num-

ber, J, represents the quantised energy levels, therefore can only have positive

integer numbers (J = 0, 1, 2...). Total angular momentum, Loot, represents

the entire group of stable states of the system and can be calculated from:

Ltot = 1h/J(J + 1), (2.3)

where Ii is the Planck constant (6.626 x 10-34 J . s) divided by 27r. The mea-

surable values of the the z-component of the angular momentum, Lz, are given

by:

(2.4)

where Mj is the azimuthal (or projectional) quantum number, which has 2J+1

values (M, = -J, -J + 1, -J + 2...J - 2, J - 1, J). M, physically determines

the number of degenerate (the same) energy states that the system posses

in the absence of the external magnetic field. Total spin angular momen-

tum Soot uses the same form of equation, (Eq. 2.3), however S can have posi-
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Figure 2.2: Energy level diagram of the hydrogen nucleus (spin D in a mag-
netic field Ba. Transitions can be induced between the spin states by adding
energy ~E, equal to the difference between energy levels of the split, to the sys-
tem.

tive integer numbers (S = 0, 1, 2...) for particles called "bosons" and half-

integer numbers (S = ~, ~, ~...) for particles called "fermions". Similarly,

the azimuthal quantum number for spin angular momentum has 2S+ 1 values

(M, = -S, -S+ 1, -S+2 ...S- 2, S -1, S). The energy levels are also quantised

and in the case of 1H (a ~ spin system) this concept is crucial in understand-

ing the effects of the external magnetic field on spins. For an S = ~ spin

system, the measurable z-component of the total spin angular momentum M,

has 2· ~ + 1= 2 values of -S (-~) and +S (+~)

Quantum-mechanically, a presence of the external magnetic field causes the

degeneracy of both angular momentum and spin angular momentum to break

down, splitting them into 2J+1 and 2S+1 sublevels, respectively. This phe-
,

nomenon is known as the "Zeeman effect". The allowed energy levels are also

split in the same manner, as shown in Figure 2.2. However, because of the ro-

tating nature of the particles, spins actually precess around t; (Fig. 2.3) with

an angular velocity WL called Larmor frequency. The Larmor frequency is
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Figure 2.3: Schematic of the spin precession in presence of external magnetic
field Bo with () being a precession angle, which only depends on the spin state.

proportional to the magnetic field and is given by

(2.5)

As stated earlier, from the NMR perspective, only nuclei of high 'Y such as hy-

drogen 1H, are interesting.

The energy states (Fig. 2.2) of the Zeeman splitting depend on the spin con-

figuration (spin number S), and can be derived from a simple energy equation

E= hv:

(2.6)

As mentioned before, there are two spin configurations for 1H in a magnetic

field, therefore there are two energy levels. The energy difference between

these two levels is DoE= E~-EQ (where 0: and f3 represent the parallel and

antiparallel spin, respectively, with reference to the magnetic field ~) and is

equal to:

(2.7)
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To cause excitation of spins in the lower energy state (ex) to the higher energy

state (/3), there must be an exact amount of energy (D.E) absorbed by the par-

ticle to the system. In case of the 1H nucleus, this energy falls in the radio

frequency energy spectrum, with a value of 128 and 298 MHz for 3 and 7 T ,
respectively.

2.2 Bulk Magnetisation

Despite NMR having its origin at the atomic level, in MRI experiments

we actually measure a macroscopic phenomenon. Figure 2.4 shows the state

of thermal equilibrium of multiple magnetic moments (about 6.7 x 1022 protons

per 1 cm" of water) in the external magnetic field. Superposition of those

moments is called the "bulk magnetisation" E71 = 111, however for simplicity,

I will refer to this as the "magnetisation". There are more proton's spins

occupying the lower energy level of the Zeeman splitting rather than the higher

net magnetic moment

Figure 2.4: Schematic of the thermal equilibrium of spins in an external mag-
netic field Bb.
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energy state. The distribution of both parallel and antiparallel number of spins

in the magnetic field followsthe Boltzmann distribution (Eq. 2.8):

N,a _~ _1t'YBo
- = e k·T = e k·T
No< ' (2.8)

where N, and N,8indicate the number of parallel and antiparallel spins, re-

spectively, ~E is the difference between the energy levels of both states,

"k" is the Boltzmann constant ( = 1.38xlO-23 ~), and T is the temperature.

The z-component of the magnetisation (in the direction of the external mag-

netic field), Mz, defines the thermal equilibrium of the system, M, = Mo

and thus depends on the temperature T and the strength of the external mag-

netic field Bo.

2.2.1 Rotating Reference Frame

Behaviour of magnetisation in the external magnetic field and excitation

processes are made easier to understand when using a "rotating reference

frame". The precessional motion of a single spin was explained in Section 2.1,

and the net magnetisation vector, Xi, also precesses around the ~ field with

the Larmor frequency WL' Figure 2.5(a) shows the precessing magnetisation xi
in the "laboratory reference frame" (x, y, z). However, if a "rotating reference

frame" (x', y', z') that rotates around the z-axis (the axis of the ~ field) with

the angular velocity w, is chosen then the magnetisation rotates at a slower

angular velocity in that reference frame (Fig. 2.5(b». If W = WL, we "freeze"

the precessional motion of the magnetisation in the rotating reference frame

and xl becomes a stationary vector in that reference frame.

The mathematical description of the transition between the two refer-

ence frames is easiest to show on an arbitrary, time-dependent vector p(t)

in the laboratory reference frame whose three components in Cartesian coor-
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a)

y
x

z'

y'

Figure 2.5: Comparison of two reference frames, laboratory (a), where the mag-
netisation vector M precesses around the direction of the external magnetic
field Ito with the Larmor frequency WL, and rotating (b), where the reference
frame rotates around the t; (z-axis) with the frequency w. When W = WL, M
becomes a stationary vector.

dinates are px(t), Py(t), pz(t):

(2.9)

where the symbol ~denotes a unit vector. The same vector in the rotating

reference frame will be:

-r '~ ~ ~
p (t) = Px,(t)x' + Py,(t)y' + Pz>Ct)z', (2.10)

The z-component is equal in both reference frames whilst, for the transverse

axes, the relation is:

x' = x cos (wt) - ysin (wt) (2.11)

y' = x sin (wt) + y cos (wt ), (2.12)

where w is the angular velocity of the rotating reference frame (Fig. 2.5(b)).

Considering Equations 2.11 and 2.12 and that z' = z, the components of both
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the laboratory and the rotating reference frames are related by:

Px' cos (wt) - sin (wt) 0 Px

Pyl sin (wt) cos (wt) 0 Py =~p, (2.13)

PZI 0 0 1 pz

where ~ is the rotation matrix.

A useful relation was derived by Slichter in 1989 [6],taking the time deriva-

tive of the given time-dependent vector (Eq. 2.9):

(d]1(t)) = (d]1(t)) +n x p(t)
dt lab dt rot

(2.14)

n = -wz, (2.15)

where the subscripts "lab" and "rot" represent laboratory and rotating refer-

ence frames respectively, and c;j is a rotational angular velocity vector (the neg-

ative sign refers to the clock-wise rotation, shown as a vector pointing in the neg-

ative z-direction in Figure 2.5).

The introduction of the rotating reference frame considerably simplifies

many explanations of NMR phenomena.

2.2.2 Radio Frequency Excitation Pulses

Radio Frequency (RF) excitation pulses are only one type of RF pulses,

however they are very important as they play a role in all of MR sequences -

creating the MR signal which is subsequently sampled. RF pulses create

a modulation of the net magnetisation in the direction orthogonal to the exter-

nal magnetic field 130 (conventionally, ''x'' is the direction of the RF pulse and

"z" is the direction of the external magnetic field) so that the magnetisation is

redirected from its equilibrium state towards the direction of the applied mod-
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ulation. Mathematically, the behaviour of the magnetisation can be described

by the Bloch equations (see also Section 2.3):

(2.16)

For an RF pulse applied in the x-direction with RF frequency WRF, the Bloch

equation in the rotating frame is:

(d:) rot = 'YM x [XB1(t)+ i (Bo - '";) 1 ' (2.17)

where Bl(t) is a time-dependent radio-frequency wave function. The angle

that the magnetisation M is diverted from the z-direction is termed the flip

angle (0), and can be determined by the area under the curve representing

the amplitude of the modulation (B1), expressed as:

(2.18)

Expressing Eq. 2.17 in spherical coordinates and assuming initial conditions

(M; = 0, My = 0, M, = Mo at t = 0), results in:

M; =Mocos </> sin 0

My=Mosin </> cos 0

M, = MocosO

(2.19)

where ¢ is an angle between the magnetisation and x-axis in the transverse

plane (physically, </> is an angular representation between Larmor frequency

and RF pulse frequency; </> = 6.w = 'YBo- WRF) and 0 is an angle that the

magnetisation forms with the z-axis.

Figure 2.6 shows an example of the "normal" laboratory reference frame

(Fig. 2.6(a» and the rotating reference frame (Fig. 2.6(b». A fairly compli-
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a)

y

x

b) z'

y'

Figure 2.6: Comparison of the magnetisation's beha~our in two reference
frames laboratory (a) where the magnetisation vector M spirals down around, , '=+
the direction of the external magnetic field Bo after applying a radio frequency
magnetic pulse Hi, and rotating (b), where "frozen" magnetisation is flipped
into the transverse (xy) plane by a 90° excitation pulse.

cated spiral motion of magnetisation during the application of an RF excita-

tion pulse becomes a very simple and easily describable one-dimensional "flip"

of the magnetisation.

The B, waveform that determines the RF pulse profile is never perfect,

i.e. the ideal is a ,perfectly squared profile, but in reality this always results

in side lobes caused by modulation of sin and cos (or exponential) wave func-

tions.

2.2.3 Relaxation

Relaxation is the process of returning to equilibrium after a disturbance

of the system. In the case of spins, the disturbance is caused by an RF pulse.

The relaxation mechanism varies depending on the matter in which it occurs.

For the purpose of this thesis, we are only interested in spins in liquid phase,

where dipole-dipole interactions dominate. We then have to consider that

each spin is not only under the influence of the external magnetic field B 0 but
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also local, fluctuating fields from surrounding dipoles. These fields fluctuate

according to the ''tumbling time" (the time that is needed for a molecule to re-

orient by 1°) or the "correlation time", Te· Qualitatively, the correlation time

indicates how long it takes before the random field changes sign. In practice,

Te depends on the physical parameters of the system, such as the temperature.

Generally, correlation times decrease by warming the sample, since an increase

in temperature corresponds to more rapid molecular motion. Conversely, cor-

relation times are increased by cooling the sample.

These fluctuated fields are small, however, they still affect the relaxation

processes by inducing transitions for field fluctuating at WL·

2.2.3.1 Longitudinal Tl Relaxation

Relaxation in the z-axis (the axis ofB0) is called longitudinal, spin-lattice,

or simply Tl relaxation. Tl relaxation describes the mechanism of the spins

returning to their equilibrium position aligned along the external magnetic

field. For the spins to return to their thermal equilibrium, the behaviour

of the z-component of the magnetisation is described by the Bloch equation

(described in detail in Section 2.3):

dMz

dt (2.20)

where Mo is the longitudinal magnetisation at equilibrium and Tl is the lon-

gitudinal relaxation time. T1 is specific for different kinds of matter and is

dependent on the magnetic field strength (Bo) - the higher the magnetic field,

the longer the T, for the same matter. The spin-lattice relaxation results

from fluctuations of the dipole-dipole magnetic fields at the Larmor frequency.

In addition to the magnetic field Bo, relaxation time Tl also depends on the

correlation time Te, which is inversely proportional to temperature. Figure 2.7
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I

correlation time Te --+
... __ temperature

Figure 2.7: Schematic representation of dependencies between the longitudi-
nal relaxation time TI, correlation time re and temperature for 1.5 (green),
3 (blue), and 7 T (red).

shows schematically the dependence of the longitudinal relaxation time on cor-

relation time and temperature for three external magnetic field strengths (1.5,

3 and 7 T).

The solution of Bloch equation shows that when a 1800 inversion pulse is

applied, the magnetisation is inverted, Mz(O) = -Mo, and the recovery then

follows an exponential curve (Fig. 2.8(a)) according to:

Mz(t) =Mo (1- 2e-i1). (2.21)

Following a 900 readout pulse, the longitudinal component of the mag-

netisation is Mz(O) = 0, and the recovery curve (Fig. 2.8(b)) is expressed

by the saturation recovery curve:

Mz(t) = Mo (1 - e-i1). (2.22)



2.2. Bulk Magnetisation 17

(a) (b)

0.8

0.6

0.4

...,
::J

.!. 0
~..

-0.

-0.

-0.

-0.

3000 -b

0.8

0.8

0.4

';' 0.2

.!. Or---~------------------~
~-o

-0

-0.

-0

500 1000 1500 2000 2500
Ume[ms]

500 1000 1500 2000 2500 3000
Ume[ms]

Figure 2.8: Longitudinal relaxation - z-component of the magnetisation (rel-
ative to Ma) as a function of time for inversion recovery (a) and saturation
recovery (b). T1 in this example is 800 ms.

2.2.3.2 Transverse T2 Relaxation

Relaxation that is the result of short-range spin-spin interactions is called

transverse or T2 relaxation. T2 relaxation describes the decay of transverse

magnetisation and can also result from dipole-dipole interactions. Similarly,

T2 relaxation depends on the magnetic field, Ba, correlation time, le, and tem-

perature. However temperature and correlation time are mutually dependent

values. Figure 2.9 illustrates again the dependency of the transverse relaxation

time on Ba, le,' and temperature.

The transverse component of the Bloch equation, describing the behaviour

of magnetisation in the transverse plane (xy) is:

(2.23)

where T2 is the transverse relaxation time (Mxy= 0 at thermal equilibrium).

Because of the nature of these interactions, the T2 value is always smaller

than T1 and is dependent on the Ba field strength. There is a tendency for

the T2 decay time to be longer when the spins are more mobile (such as in

water) and to be shorter when the spins are more rigid (molecules containing
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Figure 2.9: Schematic representation of dependencies between the longitudi-
nal relaxation time T2, correlation time Tc and temperature for 1.5 (green),
3 (blue), and 7 T (red).

rigid structures). A 90° pulse is required to incur full Mxy polarisation, and

the solution of Bloch equation results in the exponential signal decay:

(2.24)

This signal decay after an excitation pulse is known as a Free Induction Decay

(FID). It plays a key role in creation of "echoes", where under the envelope

of the FID multiple echoes can be formed within a single FID (see Section 3.5).

2.2.3.3 Transverse T; Relaxation

The transverse magnetisation is also sensitive to Ba field inhomogeneities.

This additional contribution to the FID of transverse magnetisation is called T'
- 2

and can be reversed with a 180° pulse. Figure 2.10 shows the spins' behaviour

when using a spin echo sequence (a) and gradient echo (b). When a refocusing

pulse (180°) is applied, not only does it reverse the changes to spins induced

by the gradient, but also those variations in frequency modulations induced

by Ba field inhomogeneities.
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Figure 2.10: Schematic diagram of the spins' behaviour under the influence
of a spin-echo (a) and gradient-echo (b) sequence. Different shades of green
represent "fast" (dark green) and "slow" (bright green) spins.

The T2 relaxation time combines these elements:

(2.25)

This relation indicates that T2 ::; T 2 and as Ba increases, the inhomogeneities

are greater and T2 shortens.

As described above, T~ is reversible, and this can be achieved by employing

spin-echo based sequences with refocusing pulses (Spin Echo - Echo Planar

Imagine sequence, SE-EPI, is described later in Section 3.5).
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2.3 Bloch Equations

The Bloch equations relate the time evolution of magnetisation to the ex-

ternal magnetic fields and the relaxation times (Tl and T2)'

where 13 is the total applied magnetic field (superposition of B; and Bl effects)

Eq.2.27.

2.3.1 Bloch Equation without Relaxation

Using the basic relation (Eq. 2.14 and 2.15) and the conversion of the 13
vector (Eq. 2.27) neglecting relaxation and diffusion processes according to

the Eq. 2.13, the Bloch equation in the rotating reference frame is:

(
dU(t)) _ -:-i -::t

- "'(M x J:J eff
dt

rot
(2.28)

Solf = [Bl(t) [x COS «WRF - w)t) - ysin «WRF - w)t)] +i (Ba - ~) 1
(2.29)

A special case of this equation is when WRF = W = WL, in which the mag-

netisation precesses about the applied Bl field and the effective field reduces

to s: =~Bl(t).

After explicitly carrying out the vector cross product, Equations 2.28

and 2.29 can be expressed as three scalar equations:
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(d~x) = {'My(BO - W) + {'MzBl(t) sin ((WRF - w)t), (2.30)
trot {'

(d~y) = -{,Mx (Bo - w) +{'MzBl(t) cos ((WRF - w)t), (2.31)
trot {'

(dd
Mz

) = -{,MxB1(t) sin ((WRF - w)t) - {'MyBl(t) cos ((WRF - w)t).
trot

(2.32)

Ifwe define our magnetisation in a transverse plane as a complex number:

(2.33)

and write Me explicitly based on equations (2.30) and (2.31) we have:

(dM
c) = _ if' (Bo _ w) (M, + iMy)

dt r~ {'

+ if'MzBo(t) [cos((WRF - w)t) - isin ((WRF - w)t)]

= - i{,Mc (Bo - ~) + i{'MzBo(t)e-i(WRF-W)t (2.34)

2.3.2 Bloch Equation with Tl and T2 Relaxation

The consideration of longitudinal and transverse relaxations to the Bloch

equation is fundamental for all NMR processes, therefore relaxation compo-

nents must be included:

(dd
M) = {'M x B elf - MT.
trot

(2.35)
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To accomplish the true equation, we need to convert the relaxation components

into the rotating reference frame using equation (2.13):

MTx' cos (wt) - sin (wt) 0 Mx.T2

MTy' sin (wt) cos (wt) 0 ~
T2

MTz' 0 0 1 ~
Tl

Mx cos ~wt~-Ml sin ~wt~
T2

- Mx sin ~wt~+Mlcos~wt~ (2.36)- T2
Mo-Mz
Tl

Therefore, our explicit expressions (Eqs, 2.30-2.32) for individual components

of the magnetisation in the rotating reference frame, and including the T 1 and

T 2 relaxations, are as follows:

(d~x t =t [My (Bo - ~) +M.B,(t) sin«WRF - w)t)]

Mx cos (wt) - My sin (wt)
T2

(d~y t = - "([Mx (Bo - ~) - M,B,(t) cos «WRF - w)t)]

Mxsin (wt) +My cos (wt)
T2

(dM
z) = _ "y [MxBl(t) sin ((WRF - w)t) +MyBl(t) cos ((WRF - w)t)]

dt rot

Mo-Mz
+ Tl

(2.37)

(2.38)

(2.39)



Chapter 3

Magnetic Resonance Imaging

and Instrumentation

Magnetic Resonance Imaging (MRI) is an imaging technique entirely based

on the NMR phenomenon. MRI was simultaneously discovered by two inde-

pendent groups led by Peter Mansfield [7] and Paul Lauterbur [8] in 1973.

The first in vivo images were produced in 1977 [9] and following the devel-

opment of this new and exciting method avalanched with its most practical

application in diagnostic medicine.

3.1 Fourier Transform

One of the most important tools in NMR, together with implementation

of the rotating reference frame (Section 2.2.1), is the Fourier transform (FT).

The FT was named after the French mathematician Jean Baptiste Joseph

Fourier (1768 - 1830) and it is a mathematical operation that yields the spec-

tral content of a signal [10]. If g(x) is a function of the real variable ''x'' ,
the output of the Fourier transform, G(k), of that function can be calculated
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Figure 3.1: Schematic representations of the Fourier transform using the step
function in Matlab. (a) time domain containing only one frequency (a) and
its Fourier transform showing only one peak at that frequency (~160 Hz); (b)
time response of the signal containing superposition of two different frequencies
with the same amplitude and its Fourier transform revealing two peaks at those
frequencies (~15 and ~160 Hz).

using the following equation:

FT[g(x)] = G(k) = Loo g(x)e-27rikxdx, (3.1)

where "x" and "k" are two real variables called Fourier conjugates and rep-

resent a pair of conjugate domains, such as time and frequency or distance

and spatial frequency.

Figure 3.1 shows two examples of decoding the signal in the time domain

using FT to reveal the frequency information of the function's representa-

tion. This shows functions composing one frequency (Fig. 3.1(a» and two

frequencies (Fig. 3.1(b». These examples are only to visualise the mechanism

of the Fourier transform; real time-domain signals are far more complex and

so are the corresponding frequency-domain spectra.
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3.2 k-Space

The concept of k-space was first introduced into NMR by P. Mansfield

and P. Crannell in 1973, called 'reciprocal space' [7]. Early development

of MRI recognised that the time-varying signals detected from precessing mag-

netisation could be analysed by following trajectories that evolve in space.

That space corresponds to a domain that is a Fourier conjugate, as well as

the standard spatial domain containing the object's magnetisation [11, 12].

In the Fourier transform, the conjugate to the distance crt) variable was given

a letter "k" and the domain was then called "k-space". This concept brings

simplicity to the understanding of many pulse sequences. Figure 3.2 shows

the k-space representation of an image.

Image space y k-space

•••• • • • • • • • •
• • •

~
• • •

~

• • •

• •

- leX,max kx,max

FOVx Nx!!J.kx

Figure 3.2: The relationship between image space (left) and k-space (right).

The introduction of k-space helped visualise the trajectories of spins' phase

in the presence of field gradients. An example of a trajectory typically used

in most Echo Planar Imaging sequences (see Section 3.5), is shown in Fig-

ure 3.3. k-space represents the spatial frequency distribution of an MR image

where the accumulated phase, under the influence of time-dependent field gra-
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Figure 3.3: Example of a k-space acquisition trajectory commonly used in Echo
Planar Imaging sequences. The dotted line indicates a prephasing trajectory
and arrows indicate direction of k-space traversal.

dients G(r ), can be expressed as:

(3.2)

--::-t
and the k vector:

~ '"Y it-::tk (t) = - U(r)dr,
2rr 0

(3,3)

Combining Eq. 3.2 and Eq. 3.3 and considering only transverse components

of magnetisation, M..L(rt), and B. field - B..L(rt), the time-domain signal ere-

ated is:

(3.4)

The trajectories of the k-vector traverse a continuous path (Fig. 3.3), how-

ever the signal is sampled only at discrete intervals (6.kx) along the path

(Fig. 3.2). The "Spacing of the measurements made in k-space determines
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the field of view (FOV) of the resulting image:

1
~kx,y = FOV '

x.y
(3.5)

where x and y subscripts denote components of the transverse plane. With this

in mind, the further away from the centre ofk-space the signal is being sampled,

the higher the resolution of the reconstructed image. The maximum amplitude

of k-space therefore determines the spatial resolution of a reconstructed image.

3.3 Imaging Gradients

To produce an MRI image, the signal has to carry spatial information,

which is made possible by employing imaging gradients (Fig. 3.4) applied in all

directions (x, y and z). Gradients cause spatial variation with the following

mathematical representation:

(3.6)

Commonly used is a Cartesian planar scheme, under which there are con-

ventionally entitled frequency-encoding gradients (x-axis), phase-encoding (y_

axis), and slice selection gradients (z-axis).

(a)

fBo

Figure 3.4: Schematic image of a gradient application; object in the external
magnetic field », (a), Larmor frequency modulations after application of the
G gradient in a given direction.
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3.3.1 Frequency-Encoding Gradient

A frequency-encoding gradient spatially encodes NMR signal by assign-

ing a unique precession frequency to each spin cluster (if the cluster contains

spins precessing with the same frequency, it is called an isochromat). Fig-

ure 3.5 illustrates the difference in outgoing signal before and after applying

a frequency-encoding gradient. It shows an example of two objects contain-

ing water. The first is placed in a uniform magnetic field », (Fig. 3.5(a)),

producing a single-frequency NMR signal (Fig. 3.5(b)); the second is placed

in the same magnetic field, but with an applied gradient along the horizontal

direction G . -:t (Fig. 3.5(d)), producing a complex signal in the time do-

main (Fig. 3.5(e)). After applying a Fourier transform, the first case reveals

(a)
--+Bo

(b) (c)
Time-domain signal

FT
---+

Spectrum

Frequency

(d)
--+ Bo+G'r

(e) (f)
nme-domaln signal

o.!!.z\o "",00"", or location

Figure 3~5: NMR signal characteristics for two plates of water in the absence
(toprow) and presence (bottom row) of a frequency-encoding gradient. 130
is the external magnetic field, G - applied gradient, 7, is the spacial location
along the gradient direction and FT refers to the Fourier transform. With no
applied gradient (a) the time-domain signal (b) transforms to a single peak
frequency-domain spectrum (c). Applied gradient modulates the frequencies
of spin isochromats (d) causing changes in time-domain signal (e), which trans-
forms to a projection in a frequency-domain (f).
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a single peak spectrum (frequency domain) without any spatial information

(Fig. 3.5(c». However, when a Fourier transform is applied to the second

time-domain signal, the spectrum is a projection of the two objects in the di-

rection of gradient (Fig. 3.5(f». Therefore, spatial information is encoded

into the NMR signal by the frequency-encoding gradient, and can be decoded

by the Fourier transform.

Frequency encoding is commonly use in spin-echo and gradient-echo se-

quences such as EPI (Echo Planar Imaging), RARE (Rapid Acquisition with

Refocused Echoes) and GRASE (GRadient And Spin Echo). Their mecha-

nisms are slightly different as well as their basic applications.

3.3.1.1 Gradient Echo

Gradient echo sequences (Fig. 3.6), which employ frequency-encoding gra-

dients, consist of an excitation pulse, prephasing gradient lobe and a readout

gradient lobe. Note, the polarity of the prephasing lobe is opposite to that

of the readout lobe. The prephasing lobe is used so that the signal is a symmet-

ric echo (rather than FID). Very often both lobes are combined into a single

continuous waveform (Fig. 3.6(a». The application of the excitation pulse

brings the magnetisation to the transverse plane (Fig. 3.6(b», after which,

a prephasing gradient lobe modulates the resonant frequencies of spins

(Fig. 3.6(c», preparing the magnetisation for the echo creation. Different

spins are at different frequencies - spin dephasing (Fig. 3.6(c». The oppo-

site: polarisation of the readout gradient lobe modulates the spins frequen-

cies in the opposite direction causing the spins in isochromats to rephase and

to produce an echo in the middle of the readout lobe (Fig. 3.6(d». In multi-

echo sequences, the second half of the readout lobe is also used as a prephas-

ing lobe for the following echo. The absence of the 1800 refocusing pulse

results in no compensation for off-resonance effects (chemical shift, Bo inho-



3.3. Imaging Gradients 30

(a)

RF

readout lobe
Greadout

I

Gkp (t)
L..---6

I prephastnq
lobe

y (c) y (d)

x

Figure 3.6: Schematic of a simple gradient-echo sequence employing a fre-
quency encoding gradient (a) and diagrams of magnetisation behaviour with
the phase accumulation during: excitation pulse (b), prephasing lobe (c) and
readout lobe (d).

mogeneities or susceptibility variations), therefore, this method provides a T~

contrast mechanism.

3.3.1.2 Spin Echo

A frequency-encoding gradient waveform typically consist of two parts,

a 'prephasing gradient' lobe (dephasing gradient lobe) and a 'readout gradi-

ent' lobe. Figure 3.7(a) shows a schematic example of the gradient configura-

tion in the case of spin-echo sequences. Firstly, an excitation (90°) RF pulse

is applied to bring the magnetisation to the transverse plane (Fig. 3.7(b)).

A prephasing gradient lobe is then applied in order to dephase spins, there-

fore, spins of different isochromats precess with a different, modulated angular
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y y(d)

Figure 3.7: Schematic of a simple spin-echo sequence employing a frequency
encoding gradient (a) and diagrams of magnetisation behaviour during: exci-
tation pulse (b), prephasing lobe (c), refocusing RF pulse (d) and readout lobe
(e).

velocity (Fig. 3.7(c». Next, a 180° RF pulse is applied to flip the spins about

the x-axis (an axis of the' applied gradient) (Fig. 3.7(d)). Because the spins

were flipped (the 180° pulse reverses the phase so that "fast" spins are now be-

hind the "slow" spins) the readout lobe (of the same polarisation as the prephas-

ing lobe) will modulate their precession frequencies back to return them to their

orig~nal"positions (Fig. 3.7(e»). The echo is formed in the middle of the readout

lobe duration as the area under the gradient shape is twice as big as the one

of the prephasing lobe. In multiecho sequences, the second part of the readout

lobe is used as a prephasing lobe for the next echo. The refocusing (180°) RF

pulse also refocuses phase accumulation from off-resonance effects, therefore

this method is used when T2 contrast is required.
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3.3.1.3 Quantitative Description

Quantitatively, the frequency modulation of the spin isochromats arranged

in a one-dimensional array at xi, X2, X3,···,Xn locations along the ''x'' axis

in the rotational reference frame is equal:

(3.7)

so the phase accumulated by the spin isochromats at Xj due to the prephasing

gradient is:

(3.8)

where kxj,pis the k-space offset:

kx p= x. iT GXi p(t)dt.
j, 211" 0 .' (3.9)

The NMR signal in the transverse plane can be obtained by summing up all

the isochromat vectors weighted by their spin densities in various locations

(3.10)

where p(x) and c/>p(x) are the continuous representations of the spin density and

the phase dispersion, respectively. In a spin-echo sequence, the 1800 refocusing

R.f' pulse, inverts the c/>p(x) phase dispersion, so the signal after that becomes:

1+00

Sse = p(x)ei</>p(x}dx.
x.p

-00
(3.11)

At the beginning of the readout lobe Gx(t), another time-depending mod-
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ulation is introduced:

¢>(x,t)= 27rXkx(t), (3.12)

with the k-space offset:

(3.13)

Here the time origin is defined as the beginning of the readout gradient lobe.

With the new phase previously introduced the time dependent signal (Eq. 3.10)

is now equal to:
r+co

Set) =L; p(x)e-i(I(>(X,t)-l(>p (x»dx. (3.14)

3.3.2 Phase-Encoding Gradient

Spatial localisation of the MRI signal normally employs both phase and

frequency encoding. As one can intuitively predict, a phase-encoding gradient

modulates the phase of the precession of the magnetisation instead of manip-

ulating its frequency (as described in Section 3.3.1). The idea behind phase

encoding is to create a linear spatial variation of the phase of the magnetisa-

tion orthogonal to readout gradients (frequency encoding). Figure 3.8 shows

the behaviour of the transverse magnetisation of an object after introducing

a phase-encoding gradient in one direction. In a pulse sequence, the phase-

encoding gradient must be implemented before the readout but after the ex-

citation pulse, such that magnetisation is in the transverse plane (Fig. 3.9).

The phase modulation can be adjusted by changing the area under the phase-

encoding lobe, and the signal can be reconstructed with FT to recover spatial

information about the object. Phase encoding is used with k-space sampling

(Section 3.2) and, as mentioned before, usually used in the direction orthogonal

to the frequency-encoding gradient. Both gradients can be played concurrently.

The implementation of the phase-encoding gradient is the same for the spin-
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Figure 3.8: Transverse magnetisation of the object (divided into 25 pixels)
commencing the excitation pulse before (a) and after (b) employing a phase-
encoding gradient. Phase of the lines of the magnetisations are modulated
according to the applied gradient.

(a) 900 1800 (b) 900
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~ ~
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Gy(t) Gy(t)
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prephasing lobe

~ N'r-
echo echo

Figure 3.9: Schematic of a simple spin-echo (a) and gradient-echo (b) sequence
employing a phase-encoding lobe. Readout gradient configuration is also shown
for both sequences, played concurrently to the phase-encoding lobes. For the
spin-echo pulse sequence, the gradient can occur either before or after the 1800
refocusing pulse.
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echo (Fig. 3.9(a)) and gradient-echo (Fig. 3.9(b)) sequences.

The mathematical description of the phase-encoding signal can be analysed

independently from the frequency-encoding one, and for simplicity, the latter is

being ignored. A linear phase-encoding gradient is applied here in the "y" di-

rection. Therefore, the angular frequency of the precession in the rotating

reference frame is:

(3.15)

and the phase at the end of the lobe is:

(3.16)

where k, is k-space location defined in Section 3.2. The signal detected is

the vector sum of the magnetisation of all the nuclear spins in the object

(Section 2.2 and 2.3). Using complex notation to describe the rotation with

M..l being the rotating magnetisation in the transverse plane (Mj = Mx+iMy),

the k-space signal of a one-dimensional object is then:

(3.17)

Approximating the integral in Eq. 3.17 and combining it with Eq. 3.16 gives:

N-l
S(~) =2:M..l (nzxy)« -2ri(n.!ly)ky ,

n=O
(3.18)

where y = nzsy, and ~y and N are the pixel size and number of pixels,

respectively.

The prephasing lobe (also called "dephasing lobe") of a readout gradient

can be played concurrently with the phase-encoding gradient lobe (Fig. 3.9).

In case of the spin-echo sequence, the prephasing lobe and the readout lobe are
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applied in the same direction (positive sign in Fig. 3.9(a)), whereas gradient-

echo-based sequences employ the prephasing lobe with a reversed polarity com-

pared to the readout gradient lobe.

3.3.3 Slice-Selection Gradient

Spatially selective RF pulses are used for many purposes in MRI, includ-

ing excitation, inversion, refocusing or spatial presaturation of magnetisation.

Each of these applications require a slice-selection gradient [13-15] to achieve

the desired spatial localisation. The slice-selection gradient is normally a con-

stant gradient that, in the pulse sequence, is applied simultaneously with

the RF pulse (Fig. 3.10).

The radio frequency bandwidth represents a range of frequencies that are

contained within the RF pulse. Figure 3.11 illustrates the selection of the RF

RF pulse
Time

Figure 3.10: The slice-selection gradient (red) is a constant gradient (plateau)
occurring simultaneously with a selective radio frequency pulse. The amplitude
of the gradient, Gz, and RF pulse bandwidth determine the thickness of the
slice. The slice selective excitation is followed by a negative gradient lobe
(Gz,r), which has half the area of the positive lobe, to refocus the dephasing
effects induced by the slice selection gradient.
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Position

Figure 3.11: Larmor frequency as a function of position along the slice-selective
gradient direction (z-axis) for two different strengths of the gradient (red lines,
Gz,l and Gz,2). For the same RF pulse bandwidth, ~w, the excited slice thick-
ness (~Zl and ~Z2) decreases with gradient strength (Gz,l > Gz,2).

bandwidth (~w), which then is translated by an appropriate slice-selective

gradient (Gz,b Gz,2) to a range of locations (~Zl' ~Z2) - a slice. For a fixed

RF bandwidth, the stronger the gradient the thinner the slice that is selected.

Mathematically, the Larmor frequency (Eq. 2.5) can be expressed as:

(3.19)

By applying an additional gradient Eo, Eq. 3.19 becomes:

fL (r) = 2: (Bo+G . r7) , (3.20)

where r7 denotes a displacement vector from the gradient isocentre. In the ro-

tating reference frame, the 13° term vanishes. Only a displacement in the di-

rection of the slice-selection gradient affects the resonant frequency, there-

fore, considering the direction along the z-axis, G and r7 become Gz and ~z

(slice thickness), respectively. The slice thickness can then be determined from
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Eq. 3.20 as:

(3.21)

Application of an RF pulse in the presence of a gradient results in a con-

tinuous phase shift across the slice. This phase shift must be corrected and

this is accomplished by applying a reversed slice gradient. The correcting gra-

dient must have half of the area under the curve of the slice selection gradient,

as shown in Fig. 3.10, which can be obtained by modifications of both duration

and amplitude.

3.4 Two-Dimensional Acquisition

Two-dimensional imaging, also known as planar imaging, involves: slice

selection (Section 3.3.3) and spatial encoding within that slice (Section 3.3.1

and 3.3.2). Following the slice selection and sampling k-space along the tra-

jectory during the decay of transverse magnetisation, a 2D image is produced

by an inverse 2D Fourier transform.

To cover a required volume of an object with 2D acquisition, multiple slices

must be acquired, where the spatial information is individually encoded into

its own k-space data matrix for each slice. There are two main algorithms

to obtain images of multiple slices: sequential and interleaved (Fig. 3.12).

In the first method (Fig. 3.12(a)), after obtaining the points of one k-space

line, the sampling is moved to the next k-space line, this process is repeated

until all the k-space lines (following the sampling trajectory) are acquired

within one slice. Only after completing the acquisition of the entire slice, does

this process move to the next slice. The entire image is completed, when all the

predefined slices have been collected. In practice, this method is commonly

used in sequences with the repetition time, TR, close to the actual length

of the pulse sequence waveform, Tseq(TR ~ Tseq).



3.4. Two-Dimensional Acquisition 39

(a)

•••

slice 1 slice2 slice n

Time
signal averaging - k-space line - slice location

(b)

Islice n. -••slice 2_
slice 1'-- __ --I

phase encoding 1

sliceJ1,-
•. ;

slice 2_
slice 1'--__ _'

phase encoding 2

•••
I· I~ :1suce n~::.. ::. ::
slice 2L;
slice'1

phase encoding n

slice location - signal averaging - k-space line Time

Figure 3.12: Sequential (a) and interleaved (b) acquisition in 2D imaging. Grey
boxes represent slices and red lines represent lines of k-space. The looping order
for each acquisition is presented.

In the interleaved method, (Fig. 3.12(b)), after selecting the first slice

and obtaining the average signals of each interval point within the k-space

line, the acquisition continues by collecting signals in the same line, but from

the next slice. The sampling moves to the next k-space line when the first line

of the k-space was acquired in all the predefined slices. The entire image is

collected, when all the lines of k-space have been completed. This method is

used in sequences with TR » Tseq, to achieve desired image contrast (i.e. Tl

weighing) and high signal-to-noise ratio.
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3.5 Echo Planar Imaging

Echo Planar Imaging (EPI) is one of the fastest MRI imaging sequences

known and used to this day since its development by Peter Mansfield in 1977

[16]. Using modern technology, a 2D image can be produces in only tens of mil-

liseconds, making this sequence very attractive, especially from a diagnostic

and pharmaceutical point of view. Such a fast sweep of k-space is possible

thanks to rapidly varying additional gradients, maximising usage of the signal

collected from the transverse magnetisation.

As stated earlier, the standard gradient-echo sequence (Fig. 3.13(b)) only

allows acquisition of one k-space line within the time of the T; decay, where

the transverse magnetisation signal decays according to the FID:

t

Ml.(t) = Ml.(O)e-'i1 (3.22)

EPI introduces a series of gradients, reversing the scattered spins by negating

accumulated frequencies and phases (Fig. 3.13(c)). This configuration allows

creation of multiple gradient echoes within one signal decay, without applying

additional RF excitation. The number of usable signal echoes is determined

by the T; of the tissue, .applied readout gradient (both the slew rate and

the amplitude), time between echoes (echo spacing time - tesp), receiver band-

width, and the k-space matrix size.

In gradient-echo EPI (GE-EPI) (Fig. 3.14), an RF excitation pulse (nor-

mally 90° to maximise the signal in the transverse plane) is applied to create

an FID. After the initial excitation, a prephasing gradient lobe is applied (as

described in Section 3.3.2) to prepare for the signal acquisition, which deter-

mines the beginning of k-space. The readout gradient (frequency-encoding)

creates echoes, whilst the phase-encoding gradient changes the acquisition

lines of k-space (blips in Fig. 3.14) according to the trajectory. The blips of
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Figure 3.13: An RF excitation pulse (a) and comparison between a conven-
tional gradient-echo (b) and EPl (c) acquisition. Tacq indicated the acquisition
time and FlD - free induction decay (in this case - gradient echo - it is a T~
decay).

the phase-encoding gradient in Fig. 3.14 refer to the trajectory shown in Sec-

tion 3.2 Fig. 3.3. Each echo is formed at a different echo time (TE), and

the corresponding signal decays as follows:

_ TE~n)

S(n) = Soe T2, (3.23)

where "n" is the echo index in the echo train, and So is the signal at t=O.

Equation 3.23 neglects the contribution of the initial phase-encoding gradi-
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Figure 3.14: Pulse sequence diagram of a gradient-echo EPI pulse sequence.
FID indicates a free induction decay (T~) and Gy,p represents a prephasing
gradient lobe. The corresponding k-space trajectory is shown in Fig. 3.3.

ent to the overall signal amplitude of the echoes; only an FID component is

considered.

As gradient-echo EPI is based on the T~ contrast it plays an important role

in neurofunctional MRI (fMRI) such as Blood Oxygenation Level Dependent

(BOLD) contrast [17],which is based on susceptibility variations (Section 4.5).

Spin-echo EPI (SE-EPI) employs an additional refocusing RF pulse (180°)

in the transverse plane (Section 3.3). When applying the 180° RF pulse,

the prephasing gradient lobe has to be applied with reversed polarity to the one

in the gradient-echo sequence, as the 180° pulse already reverses the spins' po-

larity. It is common to use the prephasing lobe before the refocusing pulse, so

that the time after the pulse can be more efficiently used to produce echoes.
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Figure 3.15: Pulse sequence diagram of a spin-echo EPI pulse sequence. Gy,p
represents a prephasing gradient lobe, note the polarity here is the same as
the blips.

Figure 3.15 represents a typical spin-echo EPI pulse sequence, where the sig-

nal echoes are being formed under the envelope of spin-echo instead of FID.

The rest of the mechanism is the same as in the gradient-echo EPI.

As described in Section 3.3, spin-echo sequences (including for EPI) reduce

the influence of off-resonance effects, therefore the contrast obtained due to

this acquisition is based on T2.

Inversion-Recovery EPI (IR-EPI) is another alteration of the EPI pulse

sequence, frequently used to attenuate cerebrospinal fluid (CSF), prepare T1-

weighted images, or produce T1 maps. As suggested, IR-EPI images are based

on the Tl relaxation time and this sequence employs an inversion recovery

module prior to either GE or SE-EPI pulse sequence acquisition [18].
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3.6 Instrumentation

This section gives a brief overview of a magnetic resonance imaging system

with particular reference to the 3 and 7 T Philips system on which the work

in this thesis was performed. Figure 3.16 shows a schematic diagram with

the principal components of an MR system. The most significant part of any

MR system is the main magnet. The bore of the magnet contains the shim,

gradient and RF coils. Both the 3 T and 7 T Philips systems have a bore size

of 92 em in diameter. The RF head transmit coil with the head receive inside

(If-channel SENSE coil) of the 7 T system is attached to the bed and inserted

into the magnet bore (See Chapter 4.1 for further details). The 3 T system has

a body transmit coil with a 8-channel SENSE coil as a head receiver. The main

components are described in the following sections.

Figure 3.17 shows a diagram of a typical setup of the MR System. Arrows

indicate the exchange of information between the different components of the

system.

Figure 3.16: Schematic of a whole-body MRI scanner with cut-away section
to show the principal components. Courtesy of Mike Poole [19].
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Figure 3.17: A diagram of a typical MR System setup. Courtesy of Nic Block-
ley [20].

3.6.1 Main Magnet

In current commercial MRI systems an electro-magnet provides the static

Bo field. To produce an intense homogenous magnetic field, such as 3 or 7 T,

a coil of super-conducting material such as Niobium - Titanium (Nb3Ti) is

usually used. Nb3Ti becomes superconducting at temperatures below ~ 10 K,

therefore the wires are held in a superconducting state by immersion in liquid
.

helium at 4.2 K. An MRI system requires the main magnet to produce a highly

spatially _uniform magnetic field and to have good temporal stability. For the

Philips 3 T and 7 T systems, the field stability is of the order of 0.10 ppm

in a 25 cm diameter spherical volume and 0.24 ppm over a 30 cm diameter

spherical volume, respectively.
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3.6.2 Shimming Coils

When a subject is placed into the static Bo-field, the field is distorted by

susceptibility differences between various materials in the subject. To ensure

the magnetic field generated by the main electromagnet is as homogeneous as

possible, a set of shim coils are placed within the bore of the magnet.

The process of homogenising the magnetic field is done through both pas-

sive and active shimming. Passive shimming involves the placement of fer-

romagnetic blocks of material in the magnet's bore that correct for minor

inhomogeneities of the field, and is assembled once, when the magnet is set

up. After placing a subject in the scanner, active shimming is performed by

adjusting currents in the shim coils. On the Philips systems, an auto-shimming

routine is included in the pulse sequence set-up process. For better quality im-

ages, some experiments require small volume-based shimming assuring images

free from artefacts in the area of interest [21].

3.6.3 Gradient Coils

Gradient coils are large resistive coils, usually positioned inside the shim

coils, used to produce magnetic fields in the ''x'', "y", and "z" directions. These

fields are used for spatially. encoding the NMR signal for MRI as described

in Section 3.3. Due to the high current carried by coils during an imaging

sequence (~ 600 A), the coils are often water-cooled to prevent overheating.

The Philips gradient systems for the 3 T scanner produces a peak field strength

of 80 niT while 7 T 40 mT, both using a slew rate of 200 mT . 7 T was limitedm m m-ms

to 33 mT and 166 mT at time of scanning.m m-ms
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3.6.4 RF System

The RF system generates the oscillating Bj-field to excite the sample and

detect the resulting NMR signal. The RF coil is located within the gradient

coils closest to the object that is to be scanned. The RF signal is generated by

the spectrometer. An adjustable frequency synthesiser produces the pure radio

frequency signal Wo, which is then mixed with a pulse envelope (for example

a sine function) and amplified: the Philips Achieva 3 T has an amplifier of

12 kW (whole body coil), the 7 T system is equipped with a 4 kW amplifier.

The RF probe then converts the electrical signal from the power amplifier

into a homogeneous oscillating magnetic field inside the sample. Following

excitation, the system switches to receive mode. The receive probe detects the

weak rotating magnetic field generated by the precessing spins and converts

it back to an electrical signal via Faraday induction. The signal is amplified

and passed to the spectrometer which uses two quadrature phase sensitive

detectors. An 8-channel SENSEitivity Encoding technique (SENSE) coil was

used in all experiments at 3 T, while a NOVA transmit head coil with 16

independent SENSE receive channels was used in all 7 T experiments. At

7 T, an additional coil (T/R - transmit/receive) was used for testing purposes

included in Section 5.1.



Chapter 4

Perfusion and Functional

Imaging Techniques

4.1 Overview of Techniques to Measure Blood

Flow and Volume

There are several different methods to measure biological haemodynamic

processes such as blood flowand perfusion, or blood volume. Positron Emission

Tomography (PET), Single-Photon Emission Computed Tomography

(SPECT), and traditional angiography are invasive methods as they involve ei-

ther exposure to radiation or intake of a radioactive contrast or tracer, so they

can not be used repeatedly Le. for pharmacological monitoring. However, only

a hand-full of methods are considered non-invasive, and MRl (without contrast

agent enhancement) takes the lead in these procedures. The following sections

outline the most common techniques to monitor haemodynamic-related pro-

cesses. The technique used in this thesis - Arterial Spin Labelling (ASL) is

described in detail in Sections 4.2 - 4.4.
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4.1.1 PET and SPECT

Positron Emission Tomography (PET) and Single-Photon Emission Com-

puted Tomography (SPECT) are nuclear medicine diagnostic tools that can

measure perfusion. PET detects pairs of 511 keV photons as a result of positron

annihilation from (3+ decay of radioactive isotopes - most common are 11C,

13N,18F, 150, 82Rb, 62CUand 68Ga. SPECT detects single photon emission by

gamma-emitting radionuclides such as 99mTc,67Ga, 111In and 1231.Although

there are fundamental differences in both techniques, they both require the

intake of radiopharmaceuticals to achieve signal for detection. Radiophar-

maceuticals are metabolically active substances that are marked by a chosen

radionuclide, carefully selected to target an appropriate organ of interest. One

of the major advantages of PET imaging is existence of many low atomic

number elements with positron-emitting isotopes; this permits incorporation

of those isotopes to image very specific physiological properties of an organ. In

both PET and SPECT, after the injection (or intake), radiopharmaceuticals

are transferred through the blood stream and perfuse the target tissue (high

metabolic demand in cancer cells) together with their attached radioactive

isotopes. That place (or a body organ) then becomes a source of radioactiv-

ity later detected by a ring of crystals (PET) or gamma cameras (SPECT).

However, a disadvantage to both techniques is very low resolution and lack of

detailed spatial placing of the source, the latter can be improved by simulta-

neously using another, high resolution, imaging technique such as CT [22, 23]

or MR [23].

4.1.2 Angiography

Angiography, also called arteriography, is a medical imaging technique used

to visualise blood flow inside veins and arteries. The traditional method for
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this involves injection of a radio-opaque contrast agent into a blood vessel

and then monitoring its flow using X-ray fluoroscopy. The injection typically

occurs into the femoral artery to visualise the arterial system and the left side

of the heart, or into the femoral vein to image the right side of the heart

and venous system. For both systems, images are normally acquired using

a Digital Subtraction Angiography (DSA) technique, where the static tissue

(including bones and other organs) is digitally removed from images. Vessels in

the brain are normally imaged with a low temporal resolution of 2 - 3 images

per second, whereas heart images typically require high temporal resolution of

15 to 30 frames per second. This information can then be used to evaluate the

flow of the blood through the vessels.

Computed Tomography Angiography (CTA) and Magnetic Resonance An-

giography (MRA) are nowadays commonly use to produce flow-sensitive im-

ages. Computed Tomography Angiography is a fast imaging technique that

combines the use of X-rays, which are emitted from a rotating device at many

angles to obtain projections, which are then assembled by computer into a 3D

picture. The intake of the contrast agent is far less invasive in this method

usually by a simple injection into a peripheral vein in the form of a bolus.

Magnetic Resonance Angiography (MRA) combines various MRI techniques

to image vessels; most typical methods are:

• Contrast Enhanced (CE-MRA) - this is one of the most common clin-

ical.method of acquiring MRA. The injection of the MRI contrast agent
.-

is typically in a form of bolus into a peripheral vein. Image acquisition

is during the first pass through the arterial system, where it results in a

very high quality images. A variation of this method is the usage of the

"blood-pool" contrast agent that remains in the blood stream for up to

an hour, allowing for a longer acquisition time. The main disadvantage

is, however, that both arterial and venous systems are imaged.
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Dynamic Susceptibility Contrast (DSC) MRI (a variation of the CB-

MRA) can monitor physiological parameters related to Cerebral Blood

Flow (CBF), Cerebral Blood Volume (CBV) and Mean Transit Time

(MTT) of blood passing through tissue. This technique requires a fast

imaging technique to capture the signal loss due to the injected bolus of

paramagnetic contrast agent passing through the tissue [24,25]. Signal

loss is due to spin dephasing (decreased T2 and T; values) and suscep-

tibility effects magnify the signal loss [24,26]. Intuitively, the strongest

contribution of the contrast agent to the image is during the first pas-

sage although recirculation of the contrast agent can also be recorded,

as shown in Figure 4.1.
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Figure 4.1: Schematic plot of signal reduction in DSC-MRI method;
baseline, first passage and recirculation periods are marked. Schematic
based on real data [25] for a Region Of Interest (ROI) containing the
Middle Cerebral Artery (MCA) .

• Time-of-Flight (TOF) or Inflow Angiography - this method, ex-

tremely popular in clinical applications, uses an imaging sequence with a

short echo time (TE) and flow compensation, which saturates the static

tissue signal making only the inflowing blood appear bright in images.

The main disadvantage of this technique is its limited ability to detect
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areas with slow flow, such as large aneurysms. This method is closely

related to ASL.

• Phase Contrast (PC-MRA) - the phase of the magnetisation is mod-

ulated by gradients in such a way that it is directly proportional to the

blood flow. This method can be used for both, blood flow visualisation

and quantitative measurement.

4.2 Arterial Spin Labelling - What Does It

Measure?

Tissue function depends strongly on the underlying perfusion. Perfusion

is the process of supplying brain tissue with nutritive and oxygenated blood

from arteries through exchange across the Blood-Brain Barrier (BBB). The

measurement of perfusion using MRI has been an active area of research for

over 15 years [1]. In general, perfusion techniques can be divided into two cat-

egories: exogenous and endogenous methods. Exogenous techniques use con-

trast agents externally introduced into the blood stream, such as Gd-DTPA

(Gadolinium Diethylene'friamine Penta-acetic Acid). Endogenous methods

use the water protons in arterial blood as the tracer (natural contrast agent).

The endogenous MR method is called Arterial Spin Labelling (ASL) or Arterial

Spin Tagging. In ASL the magnetisation of water molecules of the infiowing

arterial blood can be labelled by saturation [1] or inversion pulses [27,28],

altering the magnetisation of the arterial blood [1]. Labelled blood then pro-

gressively travels through the arteries and arterioles to the capillary bed where

the magnetisation exchanges with that in the tissue, as water is a fast and

freely diffusable tracer. ASL measures can be assessed either qualitatively

or quantitatively. If two images are acquired, one with labelled blood and
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a second non-labelled, then the difference image yields a qualitative map of

perfusion (or Cerebral Blood Flow - CBF). Qualitative measurements result in

Perfusion-Weighted (PW) images that are simply a percentage difference be-

tween labelled and non-labelled images. Quantitative measurements typically

involve measuring the voxel signal intensity curve at a range of post-labelling

delays and fitting to a complete perfusion or Arterial Cerebral Blood Volume

(CBVa) model [29,30].

4.2.1 CerebralBlood Flow (CBF) and Perfusion

Cerebral Blood Flow (CBF) and perfusion "f" are haemodynamic param-

eters, which are closely dependent on each other. Cerebral perfusion "P" is

defined as:
F

P=W' (4.1)

where "F" is the cerebral blood flow rate [~n] and "W" is the tissue mass

[100 g]. Very often (especially in MRI of brain) more useful is perfusion rate

"f' given by:

f=pP, (4.2)

where p is the tissue density in [l:g]. Perfusion rate in literature is expressed

in [mlx_n~n] [31,32] or often as [100 ~~min]' The typical perfusion value for grey

matter is ~ 90 100~min [33], white matter ~ 20 100~min [33], and the whole

brain ~ ~O- 60 100~min [32,33].

4.2.2 Arterial CerebralBlood Volume (CBVa)

Blood volume V is defined as the fraction of blood volume that occupies

a certain amount of tissue (typically defined in terms of 1~ g)' Blood volume

can also be chosen to be expressed as a dimensionless fraction "q" (in [%]) of
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the blood volume within the voxel volume Vo,

(4.3)

In context of the brain, blood volume is referred to as Cerebral Blood Vol-

ume (CBV) [32). Total CBV is often measured using contrast agents methods.

However, recently, there has been a lot of interest in measuring Cerebral Ar-

terial Blood Volume (CBVa), as effectively, this is the driving input causing

changes in CBF. It has been shown that fractional changes in CBVa are linearly

related to fractional changes in CBF and oxygen consumption [34,35]. CBVa

is the volume of the blood in arteries and arterioles, which, on activation, ex-

pand in diameter causing increase in blood volume. It has been suggested that

CBVa changes exceed CBVv [36].

4.3 ASL Methods

ASL techniques can be classified into: continuous (CASL) [37] and pulsed

(PASL) [38]ASL methods. Continuous ASL uses a long labelling time, so the

label reaches a steady state in the tissue of interest. The major advantage

of this method is much higher SNR over the pulsed ASL, and also simpler

quantitative perfusion models. In the PASL technique, a bolus of arterial

blood is labelled and passes through the tissue carrying a transient change in

signal. Shorter labelling time with a greater efficiency and smaller RF power

deposition are the most important advantages of this method [32], due to

which, CASL often requires additional hardware to be employed.
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4.3.1 Continuous ASL (CASL)

Continuous ASL (CASL) is the original method for arterial spin labelling.

Proposed in 1992 [1,27,31], this method originated from angiography [31,39].

Early techniques employed multiple saturation pulses [1],which was then re-

placed by the magnetisation inversion approach [27]. CASL relies on contin-

uous, flow-induced, adiabatic inversion with simultaneous application of mag-

netic field gradient in the flowdirection [31](Fig.4.2). This adiabatic inversion

pulse alone does not carry any amplitude or frequency modulation, therefore,

stationary spins are not under the influence of the adiabatic inversion [32].

By implementing concurrently a magnetic field gradient G along the direction

of motion, spins located at position ro = ~ will be inverted. The inversion

is usually applied for 2 - 4 s to ensure the complete filing of vessels and ex-

change with inverted arterial spins to the imaging slices. The most common

spatial placement of the inversion plane is in the vicinity of Circle Of Willis

(COW) or common carotid. Spins are inverted with efficiency Q, which must

be considered in the quantification process; typical efficiencyvalues range from

80 - 98% [27,31,40-44].

To estimate perfusion to produce a non-label image, the control plane has

to be inverted twice, which results in double RF deposition - higher Specific

Absorption Rate (SAR), especially problematic in high magnetic fields of 3 T

and above. In addition, CASL, with its prolonged train of RF pulses, is partic-

ularly sensitive to Magnetisation Transfer (MT) effects resulting in saturation

of the static tissue signal in imaging slices. To lower exposure to the excess of

SAR, a second RF coil is needed to expand limited ROI, which is an additional,

hardware-based disadvantage and difficulty in using this method.

More recently, a hybrid of CASL and PASL techniques, pseudo-continuous

ASL (PCASL), has been developed [45]. This method uses rapidly repeated RF

pulses in place of the continuous RF and therefore overcomes the problems of
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Figure 4.2: Schematic diagram of Continuous Arterial Spin Labelling tech-
nique. Tag (top) and control (bottom) images are shown with the spatial
inversion of tag and control (blue) and imaging slices (green). Pulse sequence
for tag and control shown.on right.

needing two RF coils or exceeding a safe SAR, and is advantageous for scanning

as it provides an optimised SNR. After repeated application of RF pulses the

magnetisation reaches a steady state. The z-component of the magnetisation,

Mz, in the steady state conditions is dependent on the flip angle of the RF

pulse, 0, and the phase shift experienced during the time between pulses, ¢

(Eq. 4.4).
±Mo sin 0 sin ~

Mz = --;==========J (1 - cos 0)2 + sirr' 0 sirr' ~
(4.4)
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4.3.2 Pulsed ASL (PASL)

Pulsed Arterial Spin Labelling (PASL) denotes a family of sequences and

spatial techniques that use a bolus to label the inflowing magnetisation. This

approach is far less demanding on the hardware and lowers the specific ab-

sorption rate. The bolus travels through the arteries and arterioles to the

capillary bed (recovering with the Tl of blood) where the labelled magneti-

sation exchanges with unlabelled magnetisation of the water in tissue. Once

in the tissue, the labelled magnetisation then experiences T1 relaxation (T1 of

tissue) and eventually recovers and washes out as the fresh, unlabelled blood

arrives in the imaging slice. The most commonly used PASL techniques are

discussed later in this section. These techniques are described in the form they

were initially introduced. However today most of these sequences have been

variously optimised for example with the addition of pre- I post-saturation
pulses.

Figure 4.3 represents the basic sequence for any PASL method; first we

label arterial blood then we perform a readout sequence of the desired slice,

slices or volume. In-plane pre- and post-saturation pulses are optional but

time

Figure 4.3: Schematic diagram of a general pulse sequence of the Arterial Spin
labelling. 'Thrquoise boxes represent pre- and post-saturation pulses played
immediately before and after the label - blue box (180° inversion pulse). The
red box represents the beginning of the readout sequence.
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commonly used in most of the sequences because they limit the effect of poor

labelling pulse profile (180° inversion). In-plane saturation becomes more of a

requirement at higher fields, where the 180° pulses are even more susceptible

to imperfections in their profile and efficiency across the volume. Typically the

in-plane presaturation uses a WET scheme [46]and the postsaturation uses a

single sine pulse.

4.3.2.1 STAR

In the STAR (Signal Targeting with Alternating Radiofrequency) tech-

nique [28],the sequence begins with an in-plane (90°) saturation pulse to min-

imize possible perturbations in the imaging slice from the labelling inversion

pulse. The RF pulse is typically followed by an additional spoiler to dephase

the magnetisation. After the initial saturation, a spatially selective adiabatic

inversion pulse is played (Fig. 4.4). The spatial placement (carrier frequency)

of the 180° (typically adiabatic hyperbolic secant or FOCI inversion [47--49])

pulse differs between the tag and control images such that the tag is played

below the imaging slice and the control is played above the imaging slice at an

equal distance from the centre of the slice. This approach avoids discrepancies

in static tissue signal between tag and control as a result of the magnetisation

transfer effects. However this original approach would not accurately correct

for MT effects away from the isocentre and in particular for multislice acqui-

sitions. A multislice version of EPI STAR has since been developed, which

applies two 180° pulses back-to-back to act as the control [50] Following the

tag/control inversion pulses, at a time equal to the. post-label delay (often

referred to as TI period), a Spin Echo EPI (SE-EPI) or Gradient Echo EPI

(GE-EPI) pulse sequence is typically employed to collect images.
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Figure 4.4: Schematic diagram of the traditional STAR labelling technique.
Tag (top) and control (bottom) images are shown with the spatial inversion
of both labels (blue and turquoise) and imaging slices (green). Schematics of
the RF and slice-selective gradient of the sequence are shown. It can be seen
that gradients are identical for tag and control resulting in equal eddy current
effect. Here the frequency offset is alternated tag and control conditions (blue
and turquoise).

4.3.2.2· PICORE

PICORE (Proximal Inversion with a Control for Off-Resonanca Effects) [46]

is a variation of the STAR technique. Figure 4.5 shows the spatial placement

of inversion pulses and imaging slices accompanied by the schematic represen-

tation of the pulse sequence. The tagging is identical to that used in STAR,

however for the control, the inversion (180°) is played out without the slice-
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Figure 4.5: Schematic diagram of the PICORE labelling technique. Tag (top)
and control (bottom) images are shown with the spatial inversion of both labels
(blue and no inversion in the image for tag and control conditions, respectively)
and imaging slices (green). Schematics of the RF and slice-selective gradient
are shown. Gslice can be seen to be modified between tag and control, which
can lead to eddy current ·effects.

selective gradient, therefore the control image does not experience any inversion

(hence, in Fig. 4.5 the inversion is not marked in the control image). Because

RF inversion pulses with identical frequency offset are played for both tag

and control scheme, the magnetisation transfer effects are the same for both

and subtract out. In addition, the asymmetry in magnetisation transfer ef-

fects, which occur in a multislice volume acquisition for traditional STAR, is

also compensated in PICORE, which provides a slight advantage over EPI
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STAR. However, the gradient waveform is different between tag and control

(no slice-selective gradient in control sequence) and so PICORE is more sus-

ceptible to eddy-current effects than STAR [32]. Again, image acquisition is

then performed after a post-label delay (TI) often using either a GE or SE-EPI

sequence.

4.3.2.3 1rI~1r

Transfer-Insensitive Labelling Technique (TILT) [51]is another variation of

the PASL technique. In this method, the labelling scheme uses two consecutive

90° spatially selective pulses (Fig. 4.6). In the tagging part of the sequence,

both 90° pulses have the same phase, effectively producing a 180° inversion

at the selected location (blue box in Figure 4.6). For the control image, the

90° pulses are out of phase (the two pulses perform a 90° rotation and then

-90° rotation) resulting in a 0° effective pulse width with the magnetisation

experiencing no net nutation. Because the tag and control are applied in the

same spectral location with reference to the imaging slice (and using identical

power RF pulses), any magnetisation transfer effects are cancelled on image

subtraction. TILT method is more resistant to the venous inflow than STAR

and FAIR (discussed next). However, this method was developed at 1.5 T and

when applied at 3 T, the effectiveness of the tag and control pulses is reduced,

which can lead to poor labelling efficiency and the control not being 0°, which

decreases signal in the perfusion weighted images.

4.3.2.4 ~~IFl

Flow-sensitive Alternating Inversion Recovery (FAIR) [52,53] employs a

frequency selective inversion pulse with and without an accompanying slice-

selective gradient (or with a reduced one) to produce tag and control images,

respectively. Similarly to STAR, the inversion is typically performed using
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Figure 4.6: Schematic diagram of the TILT labelling technique. Tag (top) and
control (bottom) images are shown with the spatial inversion of both labels
(blue for 900 + 900 and yellow for 900

- 900 pulses) and imaging slices (green).
Schematics of the RF and slice-selective gradient parts of the sequence are
shown. The phase of the second 900 pulse is altered between tag and control.

a hyperbolic secant adiabatic pulse (bandwidth of 1 - 5 kHz); for optimal

labelling-FOCI pulses are used. The ideal FAIR scheme would employ a 1800

slab over the imaging volume to produce the tag image, and over the entire

coverage of the coil to produce the control image. Realistically, in the tagging

part of the sequence the selective inversion must cover more than imaging

volume due to imperfect pulse profile (side-lobes) and the inversion width in

the control image is selected to assure arrival of the inverted blood to the

imaging slice (Fig. 4.7). In addition, often a head only coil is used for the
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Figure 4.7: Schematic diagram of the FAIR labelling technique. Tag (top) and
control (bottom) images are shows with the spatial inversion of both labels
(blue) and imaging slices (green). Schematics of the RF and slice-selective
gradient are shown. The gradient amplitude can be seen to alternate between
tag and control conditions.

labelling (as used on the 7 T system described in Chapter 5). Under such

circumstances, limiting the inversion pulse width in the control sequence is vital

to avoid signal drop-off due to the coil efficiency and to assure arrival of the

fresh, non-inverted blood at the beginning of the following tagging sequence.

FAIR is resistant to magnetisation transfer effects with respect to the imaging

slice if slices are centred at zero offset frequency. Again, the image acquisition

is obtained following the post-label delay (TI) typically using one of the fast

imaging sequences. FAIR is the labelling scheme, which was used for all the
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ASL data collected and described in this thesis and an EPI readout is used for

all acquisitions.

4.3.3 Image Readout

One of the most popular readout sequences used for ASL is EPI. This is

since EPI provides a method of rapid acquisitions and it is essential to acquire

the image before the label decays. However, alternative acquisition methods

may be used, such us 3D-GRASE [54]. The advantage of this sequence is

that it acquires a 3D volume in a single shot reducing the slice dependent

variation in perfusion signal due to differences in acquisition delays that occurs

with 2D multislice methods. It also provides increased SNR compared to 2D

acquisitions. However, it is generally limited to coarse in-plane resolution to

reduce off-resonance effects or limited slice thickness to reduce through-slice

decay and blurring.

Alternatively, more structural-based readout sequences can be used, such

as TurboFLASH [55] and TrueFISP [56,57], which have been shown to be

advantageous for body ASL applications.

4.4 ASL Applications: Functional and Phar-

maceutical

Because the ASL signal is an absolute measure of CBF, this technique is

more reproducible over time and between subjects [31]than for example Blood

Oxygenation Level Dependent (BOLD) based methods. For this reason ASL

is an excellent, non-invasive method to asses tissue metabolism and function.

Cerebral blood flow increases as the brain performs a task and it is thought

that functional perfusion maps are spatially more localised than BOLD, the
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typical contrast used in fMRI (see Section 4.5) [34]. This and the fact that

BOLD information can also be extracted from the ASL data [58,59] (co-adding

tag and control images obtained by a T~-sensitive sequence with a 90° readout

pulse to receive the highest contrast to noise ratio), make this method a very

flexible and powerful tool.

Pharmaceutical interest in using ASL arises from the non-invasive nature

of the image acquisition. The perfusion-altering drugs can especially benefit

from ASL as it allows frequent data collection and does not require the usage

of any additional external tracers, where there is always a risk of unwanted

interactions with the drug itself.

ASL can also be a useful tool in clinical applications such as in paediatric

patients, to limit them to the radiation exposure during monitoring treat-

ment progress. ASL can be an excellent supporting tool as well as the main

method for diagnostic or monitoring purposes. Using the technique of terri-

torial ASL [60-63] regional perfusion territories can be defined or multi phase

ASL data (such as LLEPI acquisition, described in Chapter 6) can be used to

asses transit time of labelled blood. These techniques are particularly useful

in patients with cerebrovascular diseases, such as stroke, where they may have

internal carotid artery occlusion or reduced cerebral haemodynamics, can also

be monitored with their recovery process using ASL methods. Cancer cells

change the perfusion providing the physicians not only with the accurate lo-

cation but also with information regarding the aggressiveness of the disease.

ASL is not limited to brain imaging and can be applied to study perfusion

in other organs such as kidneys in abdomen [64]. However, applications to

other organs bring some challenges, particularly due to respiratory motion

induced in the body, as the rest of the main internal organs are not as rigid as

human brain.
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4.5 Blood Oxygenation Level Dependent: Ori-

gin and Limitations

The most common technique for the functional study of brain activity is the

Blood Oxygenation Level Dependent (BOLD) MRI contrast. However, BOLD

is a qualitative measure and is still not well understood. On brain activation it

is thought to be a disproportionate increase in cerebral blood flow (CBF and

CBVa) compared to oxygen consumption CMR02 (Cerebral Metabolic Rate

of Oxygen uptake) [31],leading to a local increase in oxygenated blood, hence

an increased MR signal. This increased blood oxygenation then creates an

escalated oxygenation gradient to drive increased oxygen extraction.

The BOLD effect technique uses the natural contrast of the difference in

magnetic susceptibility between oxygenated and deoxygenated haemoglobin

contained in erythrocytes [17,65--68]. Oxygenated blood is sightly diamag-

netic (similar magnetic susceptibility to tissue), whereas deoxygenated blood

is paramagnetic, causing dephasing of spins in the veins and perivenous tissue

relative to surrounding tissue.

Figure 4.8 shows three different stages of the temporal BOLD haemody-

namic response:
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Figure 4.8: Schematic of typical BOLD response.
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• initial dip; the short initial dip (2-3 second negative BOLD response)

is thought to be due to the delayed CBF response to the oxidative de-

mand in the stimulated area. This early response is particularly difficult

to detect, as the fractional change in BOLD (~BOLD) is very small

and requires high temporal resolution imaging technique and large Inter-

Stimulus-Interval (lSI) in order to observe the initial dip. This feature

is not often detected and its origin controversial [69-71]. This may be

due to the initial dip being swamped by other underlying contributions

to the image quality such as physiological or instrumental noise.

• positive overshoot; this is the main BOLD response and the length of

it depends on the duration of the stimulus. Typically the peak of the

BOLD response occurs at ~ 6 s after stimulus onset. This prolonged

response is due to relaxation of smooth arteriolar muscles continuing to

supply the capillary bed with larger amounts of oxygenated blood after

the ceased stimulus.

• post-stimulus undershoot; this final part of the BOLD response curve,

unlike the initial dip, is well observed. The origin of this signal is still

under debate. One of the hypotheses is that the venous compartment has

a delayed compliance and results in the increased concentration of de-

oxyhaemoglobin in the imaging voxel [72]. The relaxation of this venous

balloon in relation to the CBF response can be seen as an undershoot in

·~BOLD response. The second, alternative explanation, is based on the

elevated oxygen consumption without increased blood flow resulting in

the undershoot for the duration of the extended demand for oxygen in

activated neurons [73]. For a 5 s stimulus, the undershoot can take as

long as 1 minute to return to baseline.

The BOLD haemodynamic response can be assessed using fast GE imag-
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ing sequences like gradient echo EPI, which are very sensitive to any inhomo-

geneities in magnetic susceptibility [32], therefore, a more direct method to

isolate those components is needed in order to fully understand the Haemo-

dynamic Response Functions (HRF). Arterial Cerebral Blood Volume (CBVa)

and Cerebral Blood Flow (CBF) are important haemodynamic inputs to any

model of the BOLD effect [74-76] and measurement of these more direct com-

ponents is needed in order to fully understand brain functions.



Chapter 5

Perfusion Imaging: Removing

Noise Contributions from Static

Tissue

5.1 The Roman Artefact

Magnetic resonance technology continuously expands and improves pro-

viding us with new tools for fast and accurate measuring methods. One of

the most rapid MRI acquisi~ions is Echo Planar Imaging (EPI) [16]. This ul-

tra fast acquisition speed comes with vulnerability to various image artefacts

and distortions. Many system imperfections and physical phenomena result

in commonly seen EPI artefacts such as: Nyquist ghosts [77], chemical shift,

image distortion due to very low bandwidth in the phase-encoding direction,

Ti-induced image blurring or intravoxel dephasing [32].

The Nyquist ghost appears as the result of misrepresentation of the k-space,

signal amplitude modulation or phase inconsistencies, which can originate from

a variety of sources [32]. There are also many ways to correct images for this

artefact. The most popular method is to obtain a reference scan without phase
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encoding the echoes (no gradient blip in the phase direction) to measure incon-

sistent phase errors between odd and even echoes [32,78-80]. Artefacts caused

by chemical shift appear as a result of the difference in resonance frequency

of protons in water and lipids (different proton environment). The chemical

shift can be calculated for different Ba fields and frequency matrices, therefore

can be effectively suppressed [32]. These are only a few examples of commonly

known artefacts and their remedies to show that there are methods to minimise

their effect on image quality and reliability.

In research and development of medical imaging, there is always a possibil-

ity of discovering new artefacts such as a recently discovered banding artefact

seen on 7 T Achieva Philips scanners, now commonly known to their users as

the "Roman Artefact". The Roman Artefact (RA) was first observed during a

standard stability test of a new NOVA, 16 Channel, SENSE coil delivered to

the system, in January 2007. This artefact is most apparent in EPI sequences

(both gradient and spin echo) applied on 7 T Achieva Philips Scanners, and

results in an incoherent banding effect on subtracted images (differences in

signal intensity between dynamics).

5.1.1 3 T versus 7 ~: Comparison

The RA manifests itself as a very significant difference in signal intensities

between dynamics and can even reach 10 % or more in individual voxels of

difference images at 7 T. To assess whether the artefact was specific to the 7 T

hardware, data were also collected on a 3 T Achieva Philips System. Figure 5.1

shows a comparison of a four-compartment gel phantom (T1= 1680, 1320, 960,

and 600 ms) images obtained using the same EPI scanning protocol on 3 and

7 T scanners (TR = 2000 ms, TE = 20 ms, resolution: 3.75 x 3.75 x 5 mm",

1 slice per dynamic); original individual dynamics for 3 and 7 T, respectively

(Fig. 5.1(a) and (c) and below equivalent images representing subtracted dy-
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Figure 5.1: Individual dynamics of a four-compartment gel phantom
(Tl = 1680, 1320, 960, and 600 ms) (a) and (c), and corresponding differ-
ence images (b) and (d) at 3 T and 7 T, respectively. All data collected using
the same stability protocol provided by the scanner's manufacturer - Philips:
(TR = 2 s, TE = 20 ms, res: 3.75 x 3.75 x 5 mm", 1 slice).

namics (Fig. 5.1(b) and (d)). In the images acquired on the 3 T scanner

(Fig. 5.1(a)) we can see that when subtracting individual dynamics the differ-

ence images (Fig. 5.1(b)) show a noise level of no more than 1 %. However, in

Fig. 5.1(c) and (d), a noticeable visible structure above the noise level is seen as

an additional ripple effect throughout the imaging object. These variations in

signal intensities are coherent, and so do not average out across the dynamics,

as would be expected for random noise. In the averaged images the percent-

age variation was smaller, but the ripple effect was still very pronounced. Fig-

ure 5.2 shows the unaveraged difference images and the corresponding averaged

images across all shown dynamics for the NOVA coil with SENSE acceleration

factor 2, demonstrating that the Roman Artefact is coherent and fluctuations

do not average out.

This instability in the images means the application of standard ASL meth-



5.l. The Roman Artefact 72

a) 501 502 503 504 SOS 506 507 508 509 510
, • +4%

V1-V2

V3-V4 0%

".. #"VS-V6
-4%

b) 502 503 504 SOS 506 507 508 509 510

Figure 5.2: Comparison of the subtracted unaveraged (a) and averaged (b)
images of the NOVA 16-channel SENSE coil with SENSE acceleration factor
2. Average was performed across 6 original dynamics. All the slices were
subtracted as follows: dynamic 1 - dynamic 2 (Vl-V2), dynamic 3 - dynamic 4
(V3-V4), dynamic 5 - dynamic 6 (V5-V6), etc.; TR = 2 s (default value of the
stability protocol provided by Philips), TE = 20 ms, res: 3.75 x 3.75 x 5 mm",
10 slices.

ods (which rely on image subtraction) was impossible to perform with reliable

results. The signal change between tag image and control image for PASL is

at most 3 % of the original image intensity, and the Roman Artefact can easily

be of this order or higher.

5.1.2 Effect of Scan Parameters on the Magnitude of

the Roman Artefact

To investigate the origin of the Roman Artefact a series of experiments
.

were .performed at 7 T. This allowed us to narrow down the sources to then

notify the manufacturer and obtain the remedy.

5.1.2.1 Mechanical Vibrations Effect

Prior to collecting data with varied scan parameters, vibration effects had

to be eliminated as a source of the RA. A four-compartment gel phantom
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(Tl = 1680, 1320, 960, and 600 ms) was therefore balanced on a counter-

lever so that it was decoupled from vibrations of the bed. No changes to the

magnitude or behaviour of the Roman Artefact were seen for the decoupled

environment. This set-up therefore confirmed that the RA does not originate

from mechanical vibrations.

5.1.2.2 RA Dependence on Head Coil

Figure 5.3 shows variability of the Roman Artefact for various head coils.

All of the examples clearly show significant RA on the acquired images. The

difference images (pairwise subtraction as follows: dynamic 1 - dynamic 2, dy-

namic 3 - dynamic 4, etc.) display the behaviour of the artefact for the NOVA

transmit coil with the 16 channel SENSE coil inside and SENSE 2 acceleration

factor (Fig. 5.3(a», NOVA coil with SENSE coil inside but no SENSE accel-

eration (Fig. 5.3(b», NOVA coil acting as a TjR coil with the SENSE receive

coil physically removed (Fig. 5.3(c» and TjR coil Fig. 5.3(d). This suggests

that the RA is not dependent on coil configuration as the signal intensity fluc-

tuations are present in the same form and at the same level (approximately

± 5 %) for all coils and SENSE settings.

5.1.2.3 RA Dependence on Phase-Encoding Direction and Slice

Orientation

Phase-encoding direction was found to play a key role in the appearance

of the Roman Artefact. Independent of the slice orientation, the RA banding

effect always occurred in the phase encoding direction. Figure 5.4 shows images

acquired at various slice geometries and phase-encoding directions. As shown,

the RA banding direction changes with the direction of the phase-encoding

gradient. However, the percentage value of the RA remains unchanged. This

behaviour indicates some involvement of the phase gradients in the process of
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Figure 5.3: Comparison of difference images for the various coils and settings;
(a) NOVA coil with 16-channel SENSE receive coil inside with SENSE ac-
celeration factor 2, (b) NOVA coil with SENSE receive coil but no SENSE
acceleration, (c) NOVA with SENSE coil physically removed, and (d) NOVA
coil replaced by the T/R coil. All volumes are subtracted pairwise: dynamic 1 -
dynamic 2 (Vl-V2), dynamic 3 - dynamic 4 (V3-V4), dynamic 5 - dynamic 6
(V5-V6), etc.; TR = 2 s (default value of the stability protocol provided by
Philips), TE = 20 ms, res: 3.75 x 3.75 x 5 mm", 10 slices.
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Figure 5.4: The Roman Artefact for various slice and phase-encoding direc-
tions: transverse slices with the Anterior-Posterior phase-encoding direction
(a), transverse slices with the Left-Right phase-encoding direction (b) and
coronal slices with the Foot-Head phase-encoding direction (c). TR = 10 s,
number of slices n = 10, and TE = 20 ms.

creating the artefact.

5.1.2.4 RA Dependence on Readout Flip Angle, Repetition Time,

and Echo Time

Flip angle analysis revealed an interesting relation to the magnitude of the

Roman Artefact. Figure 5.5 displays data sets acquired using various readout

flip angles. Analysing each data set separately, and scaling the modulation to

the maximum pixel value of that same data set (absolute RA), it was found

that the value of the RA remains virtually the same. However, when scaling all

the images to the maximum pixel value of the image acquired with a 90° flip

angle, the magnitude of the RA decreases as the readout flip angle is reduced

(relative RA). This observation was very important as it lead to the conclusion

that the Roman Artefact is directly related to the signal intensity. Figure 5.6

shows the relative value of the RA as a function of the readout flip angle e.
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Figure 5.5: Images representing various readout flip angles (a) and the as-
sociated Roman Artefact contribution measured relative to the 90° readout
pulse.
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Figure 5.6: Relative (to the 90° readout pulse) Roman Artefact magnitude as
a function of sin (), () being the flip angle applied.

To assess repetition time dependency, data sets were collected at a constant

angle () = 900. No visible influence of TR > 500 ms on the magnitude of the

RA (scaled to maximum pixel in its own data set), was found, calculated as a

percentage value of each data set. Only when decreasing TR below 500 ms can

we see the intensity fluctuations becoming more pronounced. This behaviour

is expected as the system's stability has previously been shown to drop dra-

matically for short TRs. However, the absolute Roman Artefact is not affected

by changes in TR, based on the same absolute RA level for TR = 0.5 to 10 s.
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Figure 5.7: Comparison of the subtracted unaveraged images of the NOVA
16-channel SENSE coil for several TR values. The images were subtracted as
follows: dynamic 1- dynamic 2 (VI - V2), dynamic 3 - dynamic 4 (V3 - V4),
dynamic 5 - dynamic 6 (V5 - V6), etc.; ()= 90° (default value of the stability
protocol provided by Philips), TE = 20 ms, res: 3.75 x 3.75 x 5 mm", 1 slice.

Figure 5.7 shows the consecutively subtracted images acquired at various TR

values, from 10 s to 250 ms. No changes were found in the absolute Roman

Artefact behaviour directly related to the length of TE.

Due to the RA presence, it was not possible to perform a traditional ac-

quisition method to obtain CBF or CBVa images at 7 T. The size of the

banding effect induced by the RA exceeded changes due to haemodynamic

effects. However.igiven the finding that the RA was dependent on base image

intensity, we implemented a Background Suppression (BS) method, where the

static 'signal is suppressed and the ASL image is sensitive solely to inflow and

perfusion-related effects (described in Section 5.2). This would thus suppress

static signal fluctuation which could exceed perfusion-related signal changes.

Currently, the manufacturer provided the 7 T system with a new PTS

board (with correctly calibrated spectrometer clock for the 7 T field) and the

Roman Artefact has been now reduced in magnitude. However, the RA still



5.2. Double Acquisition Background Suppression (DABS) 78

remains at a level of se twice that at 3 T, which means that ASL data still

needs to be collected background suppressed on the 7 T Philips Achieva MRI

scanner. The actual source of the underlying Roman Artefact is still unknown.

5.2 Double Acquisition Background Suppres-

sion (DABS)

ASL perfusion weighted signal is low (of the order of 1 - 3 %) and high mag-

netic field provides significant advantages to ASL data acquisition including

increased image signal-to-noise ratio (SNR) and lengthened longitudinal re-

laxation times leading to increased contrast-to-noise ratio of ASL images [81].

These gains can be exploited to improve spatial resolution. However, ultra-

high field also presents several challenges such as increased B, and Bo inho-

mogeneity and increased physiological noise [82]. Physiological noise, arising

from cardiac pulsation and respiratory motion from thoracic modulation of

the magnetic field in the head, has been shown to add structured noise to

perfusion and BOLD functional MRI data leading to a reduction in the SNR

of perfusion measurements. Further, as demonstrated in the previous section,

there is decreased stability due to the Roman Artefact at 7 T.

Image based correction methods of RETROICOR [83] and component

based noise correction (CompCor) [84] techniques have been proposed to re-

duce the physiological noise. RETROICOR fits a low-order Fourier series to

the image data based on the time of each image acquisition relative to the

phase of the cardiac and respiratory cycles. CompCor uses principle compo-

nents derived from a noise ROI as nuisance regressors in the General Linear

Model (GLM) of the BOLD and perfusion time series.

An alternative method to reduce physiological noise in ASL sequences is to

reduce the source of physiological noise - the static tissue signal. Background
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Suppression (BS) techniques [85] have been proposed to reduce the effects of

physiological noise by suppressing the static signal in ASL data prior to image

acquisition. In a BS measurement the tag and control images are acquired

close to their null point (M, = 0), by applying a non-selective inversion recov-

ery sequence prior to the ASL acquisition [85]. Figure 5.8 shows a schematic

representation of a pulse sequence employing BS pulses. BS reduces noise from

physiological sources, as well as the effects of head motion and other system

instabilities, such as the Roman Artefact. However, the intrinsic suppression

of static signal does prevent background suppressed ASL being used for the

simultaneous measurement of BOLD and CBF. Simultaneous measurements of

CBF and BOLD are important for many reasons for example the assessment of

spatial localisation of CBF versus BOLD [86]. One particular use of combined

CBF and BOLD is for a quantitative interpretation of BOLD, and to yield an

estimate of the change in oxidative metabolism (oxygen consumption; Cere-

bral Metabolic Rate of Oxygen - CMR02) [87-89]. In addition, such meth-

ods may be particularly useful in studying and interpreting tMRI responses

in which cerebrovascular changes can alter BOLD, such as in ageing-related

diseases or due to pharmacological agents. Furthermore, the possibility of mo-

pre-sat label post-sat SS pulses readout

RF

\ .

Gslice

Figure 5.8: Schematic of a pulse sequence with two background suppressing
adiabatic inversion pulses employed. For simplicity, only RF and slice selective
gradient time lines are shown.
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tion correcting background-suppressed ASL data is limited. Therefore here we

implemented a technique called Double Acquisition Background Suppression

(DABS) to address these issues obtaining a BOLD weighted (TE ~ T~) second

acquisition prior to the end of the ASL TR period.

The DABS approach is based on two acquisitions of the same volume in

a single TR period. Following the labelling, the first volume is acquired at

the delay (TI) time of interest, and the second at the end of the TR period,

allowing simultaneous assessment of CBF (first acquisition) and BOLD (second

acquisition). Here this method is applied to measure simultaneous CBF and

BOLD changes in response to a finger tapping task at high field (3 and 7 T).

For this method we assess physiological noise contributions and realignment

issues to determine the benefits of background suppression techniques to study

functional changes. The aim of this work is to determine how the ASL-fMRI

signal is affected by the physiological noise sources and the gains that can be

achieved by using DABS validated against the RETROICOR method.

5.2.1 Optimising Timing of BS Pulses

We first evaluated the optimal number and timing of the non-selective

adiabatic inversion pulses for use in the background suppression scheme; an

increase in the number of pulses provides nulling across a greater range of in-

version times, but can attenuate ASL signal due to the non-ideal performance

of the inversion pulse, particularly at high field. In this study a saturation

scheme (comprising a WET presaturation and postsaturation scheme [46])

was applied to the image volume to suppress effects of static signal offsets due

to differences in efficiency of the selective and non-selective slabs in the FAIR

scheme. The theoretical static signal (normalised to Mo = 1) following back-

ground suppression was simulated for each tissue type for normalised signal
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change for 3 and 7 Tusing Eq, 5.1

t-ETIn ( ) ~8(t) = 1-e-~ -8 LTIn e- 1,tlgue, (5.1)

where TIn indicates the inversion time of the nth background suppression pulse.

Longitudinal relaxation times used for the simulations are given in Table 5.1.

The optimal background suppression scheme for one, two and three back-

ground suppression pulses was then determined at each field strength for a

post-labelling delay time of 1550 ms by iteratively varying TI and calculating

a weighted Sum-of-Squares minimisation (using MATLAB) according to the

following equation:

8umSq = SumSq +4 (SGM(TI))2+2 (SWM(TI))2+ (Sblood(TI))2+ (ScsF(TI))2 ,

(5.2)
where SGM,SWM,Sblood,and SCSFrepresent normalised signal for grey matter,

white matter, blood and cerebro-spinal fluid, respectively. In this way the data

was more strongly weighted to suppress grey matter, with reduced weightings

Table 5.1:Assumed parameters used in the simulation of BS pulses
Assumed Values

Fixed Parameters
3T 7T

Longitudinal Relaxation Time of White 800 1200
Matter (T1,WM[ms])

Longitudinal Relaxation Time of Grey 1300 1850
~Matter (T1,GM[ms])

Longitudinal Relaxation Time of Blood 1600 2100
(T1,Blood[ms])

Longitudinal Relaxation Time of Cerebro- 3700 4500
Spinal Fluid (T1,CSF[ms])

Null Point (TIo [ms]) 1450 1350

81].
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for white matter, blood and Cerebro-Spinal Fluid (CSF). To ensure that the

images are acquired past the null point, it was chosen to optimise that the static

signal was nulled at 1350 ms for 7 T and 1450 ms for 3 T for the acquisition

to begin at 1550 ms. Acquiring data past the null point avoided the need for

complex subtraction, which requires the need for good suppressing of static

signal across the entire volume [90].

5.2.1.1 3 T Optimisation

The timing of the background suppression pulses is crucial in obtaining

desirable reduction in overall image signal intensity. To assure that the mag-

netisation from all the considered brain tissue components passed the null

point, allowing magnitude subtraction of the ASL data, it was aimed to null

the static signal 100 ms earlier than the first acquisition (Tnull = 1450 ms,

TI = 1550 ms). The following sections present approaches for the BS pulses

at 3 T.

(A) Double Acquisition FAIR, No Presaturation Module The sim-

ulated static tissue longitudinal magnetisation for Double Acquisition FAIR

at 3 T are shown in Figure 5.9(a). In this simulation, a TR of 3 s was used

according to experimental conditions, and so the signals are not equal to -1

at the t = 0 s (however the signals represent the stabilised magnetisation for

short TRs). For one background suppression pulse, the weighted minimisation

equation of the Sum-of-Squares (Eq. 5.2) leads to optimal nulling of grey and

white matter. One non-selective inversion BS pulse at the optimal time of

TIl = 1008 ms is shown in Figure 5.9(b)) together with the second (BOLD)

acquisition volume. Because the T1 values of various brain tissues differ (T~

ble 5.1), one background suppression pulse does not equally null across all

tissue types, suggesting that a single background suppression pulse is insuffi.-
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Figure 5.9: Simulated normalised inversion recovery signals of the longitudinal
magnetisations for various brain tissues (white matter, grey matter, blood, and
CSF) at 3 T without background suppression (a) and with one BS pulse applied
at the optimal TIl time (1008 ms) (b). Red and blue blocks indicate 7-slice
ASL and BOLD acquisitions, respectively. The initial value of the longitudinal
magnetisation is presented for a TR of 3 s, as used experimentally for optimal
SNR per unit time, whilst allowing good labelling. Hence, a time t = 0 the
magnetisation is not equal to -1.
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cient.

Table 5.2 presents the simulated ASL and BOLD signals (ignoring T2 de-

cay) at the beginning of each acquisition (1550 ms for ASL and 2573 ms for

BOLD) for the brain tissue types without and with the application of BS

pulses. It can be seen there is ~ 86 % reduction for white matter and ~ 90 %

reduction in grey matter signal, blood and CBF in BS images in relation to the

traditional FAIR technique (no background suppression). It should be noted

that the BOLD second acquisition, at the end of the TR period, will remain

the same for any number of BS pulses of the ASL due to the saturation of

Table 5.2: Simulated optimal timing and signal intensities at the beginning of
both ASL and BOLD acquisitions for 0-3 background suppression pulses with-
out and with in-plane pre- and post-saturation of imaging slice's magnetisation
at 3 T.

Without Pre- and Post-Saturation

No. of Inversion Simulated ASL control signal Simulated BOLD signal

BS Times (1st acquisition, 1st slice) (2nd acquisition, 1st slice)

Pulses [ms] White Grey Blood CSF White Grey Blood CSF

0 - 0.797 0.612 0.532 0.271 0.722 0.545 0.472 0.242

1 TI1=1008 0.162 0.050 0.026 -0.007 0.722 0.545 0.472 0.242

2
TI1=719

0.117 0.074 0.060 0.024 0.722 0.545 0.472 0.242
Th=508
TI1=409

3 TI2=323 0.118 0.073 0.063 0.036 0.722 0.545 0.472 0.242

Th=443
With Pre- and Post-Saturation

No. of Inversion Simulated ASL control signal Simulated BOLD signal

BS Times (1st acquisition, 1st slice) (2nd acquisition, 1st slice)

Pulses [ms] White Grey Blood CSF White Grey Blood CSF

0 - 0.856 0.696 0.620 0.342 0.722 0.545 0.472 0.242

1 TI1=936 0.192 0.037 0.000 -0.045 0.722 . 0.545 0.472 0.242

2
TI1=492 0.118 0.073 0.063 0.035 0.722 0.545 0.472 0.242
Th=664
TI1=98

3 TI2=504 0.118 0.074 0.062 0.032 0.722 0.545 0.472 0.242

TIa=565
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the longitudinal signal by the 90° readout pulse. To asses the BOLD signal

of DABS compared to traditional FAIR, the longitudinal magnitude of the

non-background suppressed ASL signal should be compared with the BOLD

signal of the second acquisition, as normally BOLD information is extracted

from the high CNR ASL data. This can be seen to be of comparable order.

However, DABS has the added advantage that echoes can be obtained for each

acquisition at times optimised to ASL (shortest TE) and BOLD (TE ~ T~)

sensitivity. This will significantly increase SNR for ASL data, for example a

TE of 15 ms is achievable at 3 T but 35 ms is the optimal TE for BOLD. SNR

will be increased by a factor of 2 for DABS, where we can acquire data with

TE = 15 ms rather than 35 ms.

Figure 5.10 shows the longitudinal magnetisation for white and grey mat-

c: 0.4ii 0.2
c:
~
E

- white matter
0.8 - grey matter

-blood
0.6 -CSF

ASL BOLD

500 1000

Figure 5.10: Simulated normalised inversion recovery signals of the longitudi-
nal magnetisations for various brain tissues (white matter, grey matter, blood,
and CSF) at 3 T with two BS pulses applied at times TIl and Th times (719
and 508 ms, respectively). Red and blue blocks indicate a 7-slice ASL and
BOLD acquisitions, respectively. The initial value of the longitudinal mag-
netisation is presented for a TR of 3 s as used experimentally for optimal SNR
per unit time, whilst allowing good labelling.
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ter, blood and CSF, with application of two background suppression pulses at

the optimal timings. As shown, the addition of a second inversion pulse im-

proves the nulling across all the brain tissue type signals. Table 5.2 provides

the optimal timing for two and three background suppression pulses and the

associated tissue signals. All simulations assume 100 % efficiency of inversion

pulses with no loss or decay of signal. No gains in suppression were found

for three pulses, and this configuration is likely to lead to reduction of the

perfusion signal due to imperfections in inversion pulses profiles.

(B) Double Acquisition FAIR with Presaturation Pulses By intro-

ducing pre- and post-saturation pulses, the static signal for all tissue types

is initially saturated, meaning, the longitudinal magnetisation is zero (for all

brain tissues). This technique has the advantages of overcoming inaccuracies in

inversion efficiency across the imaging slab with the selective and non-selective

pulses which can lead to a static offset signal. This problem increases with field

strength. Figure 5.11(a) shows simulated signal intensities for a presaturated

FAIR configuration without the application of background suppression, and

with one, optimised, BS pulse at time TIl (b). In the case of no background

suppression pulses, for the presaturated FAIR case, the signal at TI = 1550 ms

is higher than in the traditional FAIR without pre- and post -saturation (Fig-

ure 5.9(a», as the magnetisation is more recovered (practically for long TR).

This is likely to result in increased physiological noise effects (and an increased

contribution from the Roman Artefact for 7 T data). Applying just one BS

pulse (Fig. 5.11(b» results in the signals across all brain tissues being scattered

at the desired null point.

Figure 5.12 shows the evolution of simulated longitudinal magnetisation

signals for white and grey matter, blood and CBF using in-plane pre- and

post-saturated for two optimised background suppression pulses. The optimal
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Figure 5.11: Simulated normalised recovery signals of the longitudinal mag-
netisation for pre- I post-saturated brain tissues (white matter, grey matter,
blood, and CSF) at 3 T without background suppression (a) and with one BS
pulse applied at the optimal time TIl = 936 ms (b). Red and blue blocks
indicate 7-slice ASL and BOLD acquisitions, respectively.
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Figure 5.12: Simulated normalised recovery signals of the longitudinal mag-
netisations for various brain tissues with pre- I post-saturation (white matter,
grey matter, blood, and CSF) with two BS pulses applied at the TIl and TI2
times (492 and 664 ms, respectively). Red and blue blocks indicate 7-slice ASL
and BOLD acquisitions, respectively.

times were TIl = 492 ms and TI2 = 664 ms. This configuration suppresses

the signal across all main brain tissue signals at 1450 ms, giving the desired

suppression at the beginning of the ASL acquisition. Table 5.2 shows that a

similar suppression is achieved when using two background suppression pulses

with or without pre- I post-saturation. However, pre- and post-saturation

pulses are preferred as this configuration reduces static signal offsets due to

differences in inversion pulse efficiency between tag and control.

~gain optimisation using three pulses shows very little improvement in

introducing additional pulses in terms of static signal suppression, and because

of imperfect profiles, increased number of pulses would only contribute to

further discrepancies between the simulation and experimental ASL images.

The signal in the second stack (BOLD acquisition) remains the same for all

considered approaches.
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(C) Perfusion-Weighted Images Acquired at 3 T Using FAIR Tech-

nique: BS Width Validation The width of the background suppression

pulses is an important parameter in using this method due to flow dependent

effects. Here are a few approaches to validate the use of the inversion pulses

to suppress static tissue signal.

Figure 5.13(a) shows perfusion-weighted brain images (5 transverse slices)

obtained using traditional FAIR technique without application of additional

background suppression pulses. The slices display perfusion of the labelled

blood to grey matter tissue. This is a reference to determine the appropriate

width of the BS pulses.

Figure 5.13(b) displays perfusion-weighted brain images obtained using

(a)
(b)
(c)

(d)

Figure 5.13: Perfusion-weighted images acquired at 3 T using traditional
FAIR technique (a) and with application of two background suppression pulses
(TIl = 507 ms and TI2 = 688 ms) with various spatial widths: 35 mm (b),
60 mm (c), 100 mm (d), and 200 mm (e).
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FAIR with additional application of two background suppression pulses. The

width of the introduced BS pulses (at TIl = 507 ms and TI2 = 688 ms) was

set to match the width of the selective FAIR pulse - 35 mm. As shown in

Figure 5.13(b), this significantly reduces perfusion signal in each of the ac-

quired slices. A narrow second BS pulse applied to the imaging slab leads to

both the selective and non-selective pulses being flow sensitive but ultimately,

sensitivity to perfusion signal is suppressed. This is due to fast flowing blood

appearing to have an opposite sign of signal change to slow moving blood.

Increasing the width of the background suppression pulses make the se-

quence more sensitive to perfusion, as shown in Figure 5.13(c) and (d), as

more of the moving blood has the same sign of the changes If we increase the

background suppression pulses' width to match the control slab, 200 mm, the

sequence is then most sensitive to qualitative perfusion. Figure 5.13(e) displays

perfusion-weighted images of five transverse slices of human brain, using two

background suppression pulses of 200 mm. Grey matter perfusion is clearly vis-

ible with the Contrast-to-Noise Ratio (CNR) comparable to traditional FAIR

technique without suppressing the static tissue signal (Fig. 5.13(a)). Grey

matter perfusion of the BS data yields approximately 15% reduction in signal

intensity across the whole head, compared to traditional FAIR acquisition. It

is wise, though, to optimise the second background suppression pulse, as its

minimisation ensures inflow of fresh blood in the next TR period.

Figure 5.14 shows the effect of the background suppression pulses on the

inflowing blood for tag and control conditions. The difference in the signal

intensity between the tag and control at the beginning of the ASL acquisition

is the basis of the ASL methodology.

The background suppression method was shown to have no significant dis-

advantages on qualitative perfusion over the traditional FAIR acquisition tech-

nique.
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Figure 5.14: Simulation of magnetisation for DABS (with 2 BS pulses) acqui-
sition for the inflowing blood in tag (black) and control (green) conditions at
3 T.

5.2.1.2 7 T Optimisation

The methods described in Section 5.2.1.1 were then repeated at 7 T. Be-

cause of the lengthened relaxation times, the potentially reduced inversion

efficiency at 7 T, and the use of magnitude subtraction, the null point for the

simulation was chosen to be 200 ms prior to the beginning of the first (ASL)

acquisition block/stack (Tnull = 1350ms) for a label delay TI = 1550ms. This

ensured that the grey and white matter (dominant tissues of the imaging slice)

were past the null point at the label delay TI. The equivalent simulations, de-

scribed "above for 3 T, were performed for BS optimisations using parameter

values for 7 T provided in Table 5.1.

(A) Double Acquisition FAIR, No Presaturation Module Again, with-

out additional pulses, longitudinal magnetisation signal values at the beginning

of the first acquisition at TI = 1500ms (Fig. 5.15(a)) are highly recovered. By

introducing one additional inversion pulse (one BS) at an optimal time, shown
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Figure 5.15: Simulated normalised inversion recovery signals of the longitudi-
nal magnetisation for various brain tissues (white matter, grey matter, blood,
and CSF) at 7 T without background suppression pulses (a) and with one BS
pulse (b) applied at the TIl time. Red and blue blocks indicate 5-slice ASL
and BOLD acquisitions, respectively. The initial value of the longitudinal
magnetisation is presented for a short TR of 3 s.
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Figure 5.16: Simulated normalised inversion recovery signals of the longitudi-
nal magnetisations for various brain tissues (white matter, grey matter, blood,
and CSF) at 7 T with two BS pulses applied at the TIl and TI2 times (611 and
505 ms, respectively). Red and blue blocks indicate 5-slice ASL and BOLD
acquisitions, respectively. The initial value of the longitudinal magnetisation
is presented for a short TR of 3 s.

in Figure 5.15(b), the signal from all the brain tissues is brought to a signifi-

cantly lower level at the readout of the ASL stack. However, as was the case

for 3 T, the quality of the signal suppression across the different tissue types is

reasonably poor with no clear focal point for suppression of the magnetisation.

The optimal time for one BS pulse at 7 T is TIl = 880 ms.

Introducing a second background suppression pulse brings the desired sup-

pression of all considered signals of normal brain tissues, as found at lower

magnetic field. Figure 5.16 shows the relaxation of the magnetisation signals

for two optimised background suppression pulses: first at TIl = 611 ms and

the second 505 ms later (Th). This simulation resulted in low, but positive

signals at the ASL acquisition for white and grey matter, blood and CSF.
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(B) Double Acquisition FAIR with Presaturation Pulses Using in-

plane pre- I post-saturation pulses results in a large magnitude of longitudi-

nal magnetisation at TI = 1550 ms at 7 T (Fig. 5.17(a)). If the TE f"V T;

(~ 25 ms) the average of the tag and control images can be used to obtain

BOLD [46]. However at 7 T this configuration could not be used to generate

reliable perfusion-weighted images, due to the high longitudinal magnetisation

of the static signal leading to considerable Roman Artefact. Figure 5.17(b)

shows the signal for one optimised BS pulse at (TIl = 800 ms) to suppress the

static tissue signal (which gives rise to the RA). However a single BS pulse,

does not provide sufficient nulling of static signal across tissue types, a result

previously demonstrated for 3 T.

By applying in-plane pre- and post-saturation pulses and two additional

background suppression pulses, the most desirable longitudinal magnetisation

of the image slab is obtained. As shown in Figure 5.18, there is a clear nulling

of all tissue types (Table 5.3) with two BS pulses at 403 (TIl) and 638 ms

(TI2). Table 5.3 shows simulated normalised longitudinal signals for the DABS

sequence with and without saturation at 7 T. At 7 T, it can be seen there is

~ 80% signal reduction for the ASL acquisition for all tissues using DABS

in relation to traditional.FAIR technique (no background suppression pulses).

However, the use of pre- and post-saturation pulses is highly necessary at ultra

high field [81],because profiles of the selective and non-selective inversion can

be poor, and due to the RA in addition to the likelihood that static offset

signal is large at 7 T.

The use of three BS pulses (Table 5.3) is presented to show very little

improvement in introducing additional pulses, which in practice would be worse

because of the imperfect inversion pulse profiles at 7 T.
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Figure 5.17: Simulated normalised saturated inversion recovery signals of the
longitudinal magnetisation in the image slab for brain tissue (white matter,
grey matter, blood, and CSF) at 7 T without background suppression pulses
(a) and with one BS pulse applied at optimal time TIl = 800 ms (b). Red and
blue blocks indicate 5-slice ASL and BOLD acquisitions, respectively.
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Figure 5.18: Simulated normalised saturated inversion recovery signals of the
longitudinal magnetisation in the image slab for brain tissue (white matter,
grey matter, blood, and CSF) at 7 T with two BS pulses applied at optimal TIl
and TI2 times (403 and 638 ms, respectively). Red and blue blocks indicate
5-slice ASL and BOLD acquisitions, respectively.

5.2.1.3 Perfusion-Weighted Images Acquired at 7 TUsing FAIR-

DABS

Figure 5.19 displays two 5-slice volumes (stacks) obtained using the FAIR-

DABS technique with in-plane pre- I post-saturation pulses. The top images

show the first stack - ASL acquisition with suppressed static tissue signal,

whilst the bottom volume corresponds to the BOLD-sensitive second stack.

For comparison with simulated data, the average signal intensity in grey and

white matter measured from small regions of interest (ROI of 30 to 15 voxels for

1st to 5th slice, four separate regions across the transverse plane) was estimated

as a ratio with base data of two-stack acquisition with no BS and long TR.

The BS pulses reduce the signal intensity in comparison with a non-background

suppressed FAIR acquisition and the reduction of the ASL data is about 78 %

in the first slice and 60 % in the last slice for both grey and white matter,
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Table 5.3: Simulated optimal times and signal intensities at the beginning of
both ASL and BOLD acquisitions for 0-3 BS pulses with and without in-plane
t ti ti ti t 7 Tsa ura IOnmagne isa IOna

Without Pre- and Post-Saturation

No. of Inversion Simulated ASL control signal Simulated BOLD signal
BS Times (1st acquisition, 1st slice) (2nd acquisition, pt slice)

Pulses [ms] White Grey Blood CSF White Grey Blood CSF
0 - 0.664 0.502 0.457 0.245 0.615 0.461 0.420 0.225
1 TIl=880 0.173 0.091 0.075 0.024 0.615 0.461 0.420 0.225

2
TIl=611 0.154 0.102 0.091 0.043 0.615 0.461 0.420 0.225
Tlz=505
TIl=372

3 TI2=306 0.154 0.102 0.091 0.046 0.615 0.461 0.420 0.225
Th=402

With Pre- and Post-Saturation
No. of Inversion Simulated ASL control signal Simulated BOLD signal
BS Times (pt acquisition, r= slice) (2nd acquisition, pt slice)

Pulses [ms] White Grey Blood CSF White Grey Blood CSF
0 - 0.725 0.567 0.522 0.291 0.615 0.461 0.420 0.225
1 TIl=800 0.187 0.085 0.066 0.008 0.615 0.461 0.420 0.225

2
TIl=403 0.154 0.102 0.091 0.046 0.615 0.461 0.420 0.225
TI2=638
TIl =194

3 TI2=476 0.154 0.102 0.091 0.044 0.615 0.461 0.420 0.225
Th=411

"'ASL

.... SOLD

Figure 5.19: 5-slice DABS data obtained at 7 T; first stack corresponds to
ASL data (static tissue signal is suppressed) and second to the recovered
signals to maximise the BOLD effect. Images acquired at high resolution
(1.5x 1.5x3 mm"), TE rv T2 (26 ms).
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whilst the BOLD data has only an 8 and 4 % reduction for the first and

last slice, respectively. Theoretical reduction of the first slice yields about

80 % for ASL, which is very close to the experimental data, and the signal in

the second stack should remain the same, as it follows the suppression of the

90° ASL readout pulses. The discrepancies in signal reduction between the

theoretical and experimental data is generally due to the imperfect inversion

pulses, showing clearly in the high-signal images, however, the non-ideal 90°

pulses also contribute to the differences in BOLD-based data.

5.2.2 Assessing Advantages of DABS to f.M:RIStudies

The aim of this study was to assess the advantages of the DABS sequence,

which incorporates background suppressed ASL and high-contrast BOLD data

to a functional paradigm. The study was approved by the local ethics commit-

tee and four healthy adult subjects (average age 27.5 ± 1 year) were scanned;

all volunteers gave informed, written consent.

5.2.2.1 Method

Experiments were performed on a 3 T Philips Achieva scanner using a body

transmit and 8-channel SENSE receive coil, and a 7 T Philips Achieva system

using head volume transmit and 16-channel SENSE receive coil. A DABS

FAIR sequence (using in-plane pre- I post-saturation and spatially limited non-

selective slab confined to 200 mm to allow a short TR acquisition [91]for good

temporal resolution of the functional study) was implemented on both 3 and

7 T using two background suppression pulses, optimised as described above.

At 3 T, data were also collected in the absence of background suppression

pulses (DA-noBS). Due to the Roman Artefact, this data could not be collected

at 7 T.

For each, in-plane saturation was provided by WET pre- and sine post-
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saturation pulses [46]. Images were acquired using SENSE factor 2, at two

spatial resolutions:

• 3 T data:

- 3 x 3 x 5 mm" (3 T Lo-Res); ASL TEl = 12 ms, BOLD TE2 = 35 ms

- 3 mm isotropic (3 T Hi-Res); ASLTEl = 12 ms, BOLD TE2 = 35 ms

• 7 T data:

- 3 mm isotropic (7 T Lo-Res); ASL TEl = 9 ms, BOLD TE2 = 26 ms

- 1.5 x 1.5 x 3 mm" (7 T Hi-Res); TE = 26 ms.

7 and 5 contiguous slices at 3 and 7 T, respectively, were acquired per volume

(N = 90 volumes, 15 cycles) in ascending order with minimal temporal spacing

(total acquisition time of 427 ms and 270 ms at 3 and 7 T, respectively). The

functional paradigm consisted of one handed, sequential finger tapping with

12 s duration (ON period) and 24 s resting state (OFF period).

Physiological data, respiration and cardiac pulsation, were monitored and

recorded using a pulse oximeter and respiratory transducer with a temporal

resolution of 500 Hz. Following the functional experiment, a non-prepared

base Mo reference EPI image was also collected along with a series of inversion

recovery EPI (IR-EPI) measurements (TI = 200 - 1400 ms in 200 ms steps,

and 1700, 2000, 3000 and 4000 ms; TR = 15 s) to allow measurement of tissue

Tl maps.

5.2.2.2 Image Analysis

One aim was to assess the success of realignment of the background sup-

pressed data. If the static tissue signal is very close to zero, the realignment

process is challenging. However, use of the DABS technique can overcome

this as the second stack (BOLD) contains images of high SNR (collected after
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the ASL data). These BOLD images can be used for realignment and their

transforms then applied to background suppressed ASL data. To assess this,

the tag and control ASL image time series were realigned using a standard

algorithm in SPM (with a 5 mm FWHM Gaussian smoothing kernel and 2nd

Degree B-Spline interpolation) based on two methods:

(I) realignment of the background-suppressed ASL acquisition, which had

very low signal

(II) realignment of the second BOLD acquisition and application of the trans-

forms to the first background suppresses ASL acquisition.

A second aim was to assess the contribution of physiological noise to ASL

and BOLD data. Therefore, the effect of correcting DABS ASL and BOLD

data sets for physiological noise using RETROICOR [83], was assessed and

compared to the (DA-noBS) data. RETROICOR uses recorded respiratory

and cardiac waveforms to remove the physiological contribution of both sources

from the images. Those voxels, which are modulated at the affected frequen-

cies, are then corrected. Respiratory and cardiac contribution for each ASL

and BOLD data sets can be obtained as physiological parameter maps.

To then assess the use of DABS for the functional study, ASL and BOLD

activation maps were obtained using standard SPM algorithms with: p < 0.005

for CBF and p < 0.001 for BOLD with Family-Wise Error (FWE) correction

for BOLD. t-scores and cluster sizes of activated areas were compared between

methods.

5.2.2.3 Results

(A) Realignment Figure 5.20 shows realignment parameters plots of the

ASL and corresponding BOLD data for a DABS acquisition at 3 and 7 T.

The translation and rotation parameters for ASL (realignment) data (method
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Figure 5.20: Realignment parameter plots for the first ASL stack (a) and the
second BOLD stack (b) collected using DABS sequence.

(I), Fig. 5.20(a)) are significantly more erratic than the corresponding BOLD

data. This is probably due to the low image intensity of the BS ASL data

and also due to the fact that there is a significant difference in tag and control

images of the ASL acquisition series. The BOLD data (Fig. 5.20(b)) shows

motion parameters with fewer sharp transforms whilst maintaing a similar

shape of translational and rotational curves. For subsequent analysis, method

(II) of realigning the second stack BOLD acquisition and applying realignment

parameters to the first ASL acquisition stack, was used.

(B) Physiological Noise: Background Suppression vs. RETROICOR

ASL and BOLD data for DABS and Double Acquisition without Background

Suppression (DA-noBS) were analysed. Using RETROICOR, cardiac and res-

piratory maps were formed for each. Figure 5.21 shows typical maps of cardiac

and respiratory motion contribution to the image. The ASL data (a) and (c)

can be seen to show reduced physiological noise contribution compared to more

recovered BOLD acquisition (b) and (d).

The ASL and BOLD time-series were processed in SPM5 to identify act i-
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(c)

(a)

(b)

(d)

Figure 5.21: An example of physiological maps for data acquired at 3 T.
Respiratory maps for DABS ASL (a) and BOLD stack (b) and cardiac maps
for DABS ASL (c) and BOLD stack (d). Courtesy of Emma Hall.

vated areas for both data with and without RETRICOR correction. For all

data sets a general linear model was formed and activated maps calculated at

p < 0.005 for CBF and p < 0.001 with FWE (Family Wise Error) correction

for BOLD.

For validation, standard FAIR with two data stacks (DA-noBS) was also

acquired with both CBF and BOLD maps created from the first stack. 3 T data

sets (FAIR-DABS and FAIR-DA-noBS) were analysed both with and without

RETROICOR data correction. The number of activated voxels, time-courses

of their mean and maximum t-values obtained for each set were estimated.

Figure 5.22 displays a comparison of the functional analysis of the CBF data

acquired using FAIR-DABS (a) and with RETROICOR applied to the data

(b). The application of RETROICOR to BS ASL data reduces the size of the

activated cluster by over 50 % with only a small reduction in t-sore. The small

~difference in t-value can be explained by similar time-courses of the average

intensity of the activated clusters (Fig. 5.22(c)) of both data sets. Therefore,

RETROICOR introduces additional smoothing, which results in the loss of

activation-sensitive voxels; RETROICOR reduces the functional response of

the ASL data obtained using the background suppression method.
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Figure 5.22: Comparison of the activation maps at 3 T obtained with sup-
pressed static tissue signal (a), with applied RETROICOR correction of phys-
iological noise (b), and corresponding time courses (c).
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Figure 5.23 displays the functional analysis of the CBF data acquired using

FAIR-DABS (a) and the FAIR-DA-noBS data after RETROICOR (b). Al-

though applying RETROICOR correction to traditional FAIR improved the

quality of the data (slightly higher t-score), data acquisition with suppressed

static tissue signal is far more efficient. Standard FAIR with RETROICOR

has a cluster size of 52 % of that found for FAIR-DABS. The supremacy of

the FAIR-DABS method is also shown in the time course plots of the acti-

vated clusters' intensities for both cases (Fig. 5.23(c», where cycles are far

better pronounced for the FAIR-DABS data (black line). For both FAIR-

DABS and traditional FAIR, RETROICOR correction showed reduction in

ASL functional response compared to realigned FAIR-DABS.

(C) Statistical Results, fMRl Figure 5.24 shows data from a representa-

tive subject showing the implementation of the DABS scheme at 3 and 7 T.

3 T data in Figure 5.24(A) and 5.24(B) compares Hi-Res (3 mm isotropic)

activation for data acquired using traditional FAIR and DABS FAIR, respec-

tively. The sensitivity to perfusion weighted changes on activation is consid-

erably increased (from 14 to 42 voxels, maximum t-value from 4.44 to 5.80,

Fig. 5.24 AASLversus 5.24 BASL,respectively) using DABS compared to stan-

dard FAIR. The size and t-score of the activated region in BOLD images is

however reduced using DABS (192 to 43 voxels, maximum t-value 13.16 to

8.84, Fig. 5.24 ABoLDversus 5.24 BBoLD)as a result of lower SNR. However,
"

BOLD data has sufficient CNR and still considerably large activated area, to

allow this reduction. This reduction can also contribute to better localisation

of BOLD contrast, by limiting naturally to voxels with only highest signifi-

cance. Figure 5.24(C) and 5.24(D) shows 7 T DABS data collected at Lo-Res

(3mm isotropic) and Hi-Res (1.5 mm in-plane) resolution. Since 7 T offers

increased SNR and lengthened relaxation times, ASL CNR is increased. At
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Figure 5.23: Comparison of the activation maps at 3 T obtained with sup-
pressed static tissue signal (a), without background suppression and applied
RETROICOR (b), and corresponding time courses (c).
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3 mm isotropic

Figure 5.24: 3 T: data acquired at 3 mm isotropic resolution for double ac-
quisition FAIR (No BS) (A) and DABS (B); 7T: data acquired using DABS
at 3 mm isotropic resolution (C) and 1.5x 1.5x 3 mm" (D). Perfusion weighted
images are shown overlaid with activated perfusion regions, BOLD activation
is shown on images from the second acquisition.

Lo-Res activated areas are significantly larger in comparison with 3 T even

with DABS for BOLD acquisition (CBF: 42 voxels at 3 T, 592 voxels at 7 T;

t-value 5.80 to 10.29; BOLD: 43 voxels at 3 T, 534 voxels at 7 T, t-value 8.84

to 14.32, Fig. 5.24(B) versus 5.24(C)). Hi-Res activation areas at 7 T (both

CBF and BOLD) contain fewer voxels but are better localised to sulci com-

pared to Lo-Res, due to a reduction of partial voluming effects, but maintain

similar t-values (mean 8.49 for CBF and 12.11 for BOLD) (Fig. 5.24(C) versus

5.24(D}).

It is shown that at 7 T there is increased CNR to perfusion measures

allowing higher resolution studies with reduced partial volume effects. The

FAIR DABS sequence provides a double acquisition method for simultaneous

acquisition of BOLD and background suppressed CBF data. At 3 T BS is

shown to improve detection of CBF changes whilst the second acquisition

maintains sensitivity to BOLD. High resolution CBF and BOLD data can be
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collected at 7 T using DABS.

5.3 Discussion

Moving to ultra-high field brings several advantages such as significant in-

crease in SNR and CNR due to the longer relaxation times. However, there are

known challenges of a larger contribution of the physiological noise to the data

and, as were found, additional hardware issues involving the Roman Artefact

at 7 T. The DABS sequence can overcome these problems by eliminating static

tissue signal. This sequence provides improved temporal stability resulting in

higher statistical significance of the ASL data at a cost of small decrease in

the BOLD signal. However, due to the increased BOLD response with field

strength, this reduction has a minimal effect. DABS proved to not only be a

very efficient tool in overcoming the RA but also to provide a better source-

based physiological noise correction method than RETROICOR [83].

This method can be an excellent tool for the simultaneous ASL and BOLD

measurement at ultra-high field. It can be applied to any data that are partic-

ularly susceptible to the high contribution from cardiac and respiratory motion

as well as any artefacts originating from the signal intensity, such as the Ro-

man Artefact. Thus its application could appeal for the study of hypercapnia,

where it can be used for calibrated BOLD studies. A further application is to

the study of pharmaceutical modulations, where temporal stability must be

maximised,



Chapter 6

Simple model of measuring

Arterial Cerebral Blood Volume

(CBVa) from LL-FAIR

Arterial Cerebral Blood Volume (CBVa), the volume of blood in the paren-

chymal arterial vessels, is an important parameter in assessing vascular control.

Previously, it has been assumed that blood volume changes in response to acti-

vation originate from ballooning of the elastic venous vessel wall (74]. However,

recent studies have shown that CBVa increases on brain activation and that

venous blood volume changes may, in fact, be small (35,92,93]. CBVa may

therefore provide a more direct, quantitative, MRI measure of brain activa-

tion than BOLD or CBF and aid modelling of the BOLD response to improve

identification of the origin of neurovascular responses. Pulsed Arterial Spin La-

belling (PASL) techniques measure cerebral blood flow, but these techniques

are also sensitive to signal in the arterial blood compartment, seen as bright

foci in ASL images at short post-labelling delay times (TI). Vascular crushing

(generally using flow-sensitive bipolar gradients) is often used to remove this

signal [94], but this signal provides valuable information, which can be used
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Figure 6.1: Image of an artery and a vessel (top) with a schematic representa-
tion and anatomical details of an artery, arteriole, capillary bed, venule, and
vein (bottom) [95].

to measure CBVa. Figure 6.1 shows a schematic representation of the arterial

and venous' systems, and capillary bed.

The use of standard PASL techniques (such as FAIR) to measure CBVa

is very time consuming ("-' 30 minutes) as several data sets must be acquired

at a range of inversion delays (TIs), each with and without vascular crush-

ing. The data acquired without the vascular crushing is sensitive to both

arterial blood volume signal and perfusion, resulting in a co-added signal

from both (Fig. 6.2(a». Using vascular crushing (in this thesis, if used, a

diffusion-weighted gradient was applied with 5 ms duration of both lobes and

an amplitude of 15 rr:uT at 3 T and 8.7 rr;;; at 7 T) eliminates the vascular



6. Simple model of measuring Arterial Cerebral Blood Volume (CBVa) from LL-FAlR 110

(a) (b) (c)

lUI .. o.
u .. ..
~1 e.7 .. 7

1: 1"" ~o .._10.1
-.!Lu

I..· ... -I...... ... ..
O~ U

0.1

ao ,... ",,.
-1"'1 -tn-I ... [.....1

Figure 6.2: Schematic of an MRI signal obtained using a sequence with no vas-
cular crushing (a) with underlined CBVa and CBF responses; signal obtained
with vascular crushing (b) - CBF sensitive; subtraction of both responses (c)
revealing CBVa signal.

contribution to the signal (Fig. 6.2(b)), making this acquisition sensitive only

to perfusion. Subtracting these data sets isolates the arterial blood volume

signal (Fig. 6.2(c)), which can then be modelled to fit for CBVa. An alterna-

tive method is to use a FAIR technique with a Look-Locker sampling scheme

(techniques known variously as LL-FAIR, ITSFAIR and QUASAR). LL-EPI

acquisition is based on multiple low flip angle readouts within a single TR. As

shown in Figure 6.3, this scheme compares alternating non-selective and se-

lective Look-Locker inversion recovery signals acquired at a range of TI values

in a single shot. If an optimised combination of flip angle and timing of the

readout pulses is used [96],this sequence is only sensitive to CBVa signals and

requires no vascular crushing; it has been shown that the optimised sensitivity

to CBVa causes suppression of the CBF signal. The Look-Locker sampling

has to be performed at the intervals shorter than the tissue transit time with a

rea~out pulse flip angle of about 50°. CBVa and the transit times can then be

measured noninvasively from "-' 5 minutes data acquisition [96]. In the past a

Step-wise Compartmental Model (SCM) [97], which iteratively estimates the

signal based on repeated application of the Bloch equations, or a model-free

method [98],has been used to fit the data. The model-free method uses a series

of correction factors for the difference images, however, this method still re-

quires image acquisition with and without vascular crushing. Both Perfusion-
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Figure 6.3: LL-:FAIRsequence simulated with the Philips AcqSim. Measure-
ment (M), phase (P), and slice selection (S) directions of the gradients and
RF_-am pulse profile are shown as a function of time [ms]. Left panel shows
the selective (tag) inversion pulse followed by the series (only two shown) of
read out pulses. Right panel presents the non-selective (control) inversion
pulse followed by the readout pulses.

Weighted (PW) images (~M) are then subtracted and corrected for the Tl

blood relaxation. The area under the received time-dependent curve is then

calculated and corrected .for Mo of blood, the duration of the label, "W", and

the inversion efficiency (ex).

This chapter describes the simplified method for quantitatively measuring

CBVa from LL-FAIR data, validation of this new model against the SCM, and

application to measure CBVa and changes on activation.
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6.1 Theory

6.1.1 Traditional FAIR

The traditional ASL FAIR acquisition technique for quantification of CBVs

is time consuming as the data have to be obtained at a range of different

delay times (TI) with and without applying an additional gradient for vascular

crushing. This approach, however arduous, results in a fairly simple process

to quantify CBVa- Figure 6.4 shows various stages of the inflowing blood

for both tag (selective inversion) and control (non-selective inversion) images

for the traditional FAIR acquisition. In this schematic, the T1 relaxation of

the inverted blood was neglected to show the progress of the input function.

First, the blood is inverted by applying inversion slabs for tag and control.

A saturation slab of a width sufficient to cover the imaging slices is then applied

(Fig. 6.4(a)). In Figure 6.4(b), the images represent the situation after time

~, the "arterial transit time" (defined by the width of the selective inversion),

when the leading edge of the recovered blood in the tag and the inverted

blood in the control acquisition (labelled blood) reach the imaging slice. The

labelled blood then starts filling the network of arteries and arterioles within

the imaging slice (Fig. 6.4(c)) and after a time 6, the "arteriolar transit time"

(the time blood remains in the arterial blood compartment of a voxel), the

labelled blood fills the entire arteriolar space in the imaging slice (Fig. 6.4(d)).

Only when the label arrives at the extravascular space of the capillary bed,
.

after a time f'.J ~+6, the exchange occurs giving rise to a PW ASL signal. Thus

at short TIs the difference signal between tag and control images is dominated

by signal from the arterial blood. The Full Width Half Maximum (FWHM)

of the input response is then dependent on the temporal duration of the label

through the vasculature, "W' ("temporal label width" of the non-selective

inversion), which will depend on the non-selective label width, the size of the
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Figure fi.d: Schematic representation of FAIR tag and control acquisitions
at various stages: (a) immediately following inversion and saturation pulses;
(b) following arterial transit time ~ where the labelled blood (black) reaches
the imaging slice; (c) the labelled blood has filled half of the imaging slice
(arterioles); (d) after the time 0 where the labelled blood reaches the capillary
bed within the imaging slice (perfusion); (e) the labelled blood has almost
entirely washed out from the imaging slice. T 1 relaxation is not included in
the schematic.
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vessel, and blood flowing through it. Figure 6.4( e) shows the situation when

the labelled blood was almost entirely washed out from the imaging slices.

The magnetisation in a voxel of the arterial blood compartment (in terms

of magnetisation per gram of tissue) can be described by the modified Bloch

equation:

CBVadd (ma(t)) = CBVa (m;,a - ma(t)) + F. Min(t) - F· Mout(t), (6.1)
t 1~

where mo,a is the value of unperturbed, thermal equilibrium, arterial blood

magnetisation per unit volume of blood; ma(t) is the mean arterial magnetisa-

tion per unit volume of blood at time "t"; "F" is the normalised arterial blood

flow per unit volume of voxel (in [10o;~n]); Min(t) and Mout(t) represent

the magnetisation of blood entering and leaving the arterial compartment per

unit volume at time "t", respectively; CBVa is the blood water volume per

unit volume of tissue (in [1:;gg7:Ue]); T1,bis the spin-lattice relaxation time

for arterial blood. The arterial blood magnetisation per gram of tissue at time

"t", Ma(t) = CBVa· ma(t), where CBVa is related to the volume of blood per

unit volume of voxel, Va by CBVa = Va . A. A is the blood:brain partition

coefficient [r;t~~ed] [99],.which incorporates the difference in spin density be-

tween tissue and blood pools. CBVa is related to "F" by the central volume

principle [100]:

CBVa = cSF. (6.2)

The difference in arterial blood magnetisation, ~Ma(t), depends on the

difference in Min(t) and Mout(t) between the label and non-label conditions

(Eq. 6.1). Referring to Figure 6.4, following the arterial transit delay, ~,

labelled blood enters the imaging voxel and remains in the intravoxel arterial

blood compartment for the average "arteriolar transit time" cS,it then either

flows out of the imaging volume to a neighbouring voxel or enters the capillary



6.1. Theory 115

section of the imaging voxel where exchange occurs. If the label slab has a

finite spatial width and hence temporal label width, 'W", then after a time

W + ~ + 6 fresh non-labelled blood will fill the arterial compartment and the

arterial blood magnetisation difference signal returns to zero. For plug flow,

ideal inversion of the labelled blood, complete refreshment of blood in the TR

period, and "W' greater than 6 (true for ASL experiments using standard

label widths) ~Ma(t) can be described in terms of five discrete time intervals

(indicated in Figure 6.5(i)):

1. t<~:

~Ma(t) = 0; (6.3)

2. ~ ~ t ~ A + 6, during inflow of the tag to the arterial blood compart-

ment:
t

~Ma(t) = 2mo,aF(t - ~)e -T1,b; (6.4)

3. ~ +6 ~ t ~ ~ +W, when the arterial blood compartment is completely

filled with labelled blood:

During this time interval, ~Ma(t) is proportional to CBVa and a T1,b

exponential decay function;

4. ~ +W ~ t ~ ~ +W + 6, during outflow of the label from the arterial

blood compartment:

t

~Ma(t) = 2mo,aF(~ +W - t)e -'fl,b; (6.6)

5. t > ~+ W +6:

~Ma(t) = O. (6.7)
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Figure 6.5: Simulated FAIR signal (i); corrected for Tl of blood (ii) with fitted
trapezoidal input function (iii). Numbers 1 - 5 indicate discrete time intervals
for FAIR data.

Considering a trapezoidal input function, quantification of CBVa, using the

traditional FAIR data acquisition, is thus simple; .6.M (difference between tag

and control) images are first normalised to the equilibrium blood magnetisa-

tion, mo,a' Next, the arterial signal of a single voxel is recorded for each time

point of the diffe~ent TI'valuesl (averaged over multiple dynamics or cycles

in the case of fMRI acquisition) to form a signal intensity curve (Fig. 6.5(i)).

Additionally, the original signal intensity curve has to be corrected for the
t

relaxation time of blood (T l,b) - multiplication by eT1,b to normalise to the

equilibrium of blood magnetisation (Fig. 6.5(ii)), The corrected signal then

reflects the input function (Fig. 6.5(iii)), therefore the arterial cerebral blood

volume can be quantified using one of the approximations. CBVa value is then

represented by the percentage content of the blood within a voxel.

1In the past, it was suggested that an acquisition of a single TI value can be used to
quantify CBVa [93], however this approach seems to be limited as the acquisition must be
performed at the peak, which changes with A that also changes on activation.
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Ifconsidering a non-selective pulse with a finite width, "W" , the input func-

tion of labelled blood to the arterial compartment can then be approximated

as a trapezoidal function of height from Eq, 6.5:

or

(6.8)

(6.9)

(6.10)

h = 2· CBVa,

AM _t_

_ eT1,b = 2· CBVmo,... a,

or the area:

A= 2 ·CBVa· W, (6.11)

where "W" is full width at half height, 0 (arteriolar transit time) slope length

starting at time ~ (arterial transit time).

6.1.2 Look-LockerFAIR

The Look-Locker sampling method combined with FAIR ASL technique

introduces additional complications in comparison with traditional FAIR tech-

nique. Figure 6.6 shows the affect of LL-FAIR acquisition on FAIR technique

at various stages omitting longitudinal relaxation. After the initial inversion

and saturation (Fig. 6.6(a» and prior to the transit time ~ (Fig. 6.6(b», fast

acquisition with low flip angle has no affect on the longitudinal magnetisation,

as it was previously saturated (nulled), therefore it is similar to the traditional

FAIR acquisition. However, once the labelled blood flows into the imaging

slice (Fig.6.6(c», each LL-EPI readout will suppress the magnetisation within

the imaging slice slab; inverted blood is progressively tipped closer to the null

point with every readout pulse and fully recovered blood is suppressed with

each readout. Figure 6.6(d) shows the scenario after additional time 0 when

the labelled blood has filled in the entire arteriolar space (including capillary
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Figure ().6: Schematic representation of Look-Locker EPI sampling method
for FAIR tag and control acquisitions: (a) immediately following inversion and
saturation pulses; (b) following arterial transit time .6. where the labelled blood
(black) reaches the imaging slice; (c) the labelled blood has filled half of the
imaging slice (arterioles), each readout suppresses the magnetisation according
to the applied flip angle of readout pulses; (d) after the time 0 where the
labelled blood reaches the capillary bed within the imaging slice (perfusion),
here the LL-FAIR contribution to the imaging slices is most pronounced; (e)
the labelled blood has almost entirely washed out from the imaging slice. T 1

relaxation is not included in the schematic.
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bed) of the imaging slice and the LL-FAIR readout pulses have established

stability of magnetisation within the imaging slice. Figure 6.6(e) represents

the situation when labelled blood has almost left the imaging slice and the

LL-FAIR readout pulses start to have the same affect on both tag and control

acquisitions. LL-FAIR signals are more complex since they must be corrected

for the effects of longitudinal recovery and suppression by the LL-EPI readout

pulses. However, if this is possible, then the corrected signals will approximate

an input function of a trapezoidal form and thus provide a simple method by

which to measure CBVa.

Figure 6.6 illustrates the complexity of the signal intensity in the arte-

rial compartment using the LL-FAIR acquisition technique, therefore the need

for the SCM model (which estimates ~ and 8 for each voxel) generally used

for quantification of the LL-FAIR approach. The simplified method to quan-

tify LL-FAIR CBVa data involves analysing the data in a similar manner to

traditional FAIR but incorporating additional steps to allow for progressive

saturation of longitudinal magnetisation.

Firstly, the ~M images must be normalised to the equilibrium blood mag-

netisation, as for traditional FAIR. Now, each LL-EPI readout point within a

single TR represents a different TI value of the original FAIR data (Fig. 6.7(i».

The following steps must then be taken:

1. correction for longitudinal recovery of the inversion (multiplication by
't

.~eTl,b (Fig.6.7(ii»;

2. from the T l-corrected data 8 must be estimated - crucial for correct

estimation of the CBVa value (Fig. 6.7(iii»;

3. the correction for the suppression of blood, by the "n" Look-Locker read-

outs, as it travels through the voxel, must then be performed by multi-
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plication by:
(1 - cos (0)) . n

[1 - (cos (o))n] . sin (0)' (6.12)

where n = ;A and TA is the LL-EPI readout pulse spacing (Fig. 6.7(iv)).

The correction is only accurate for times > ~ +6, and the discrepancies

are shown in Figure 6.7(iv) and (v). This deviation is a result of "n"

being only accurate for a steady state as within time < ~ + 6, small

portions of blood experience intermediate amount of LL-EPI readouts.

The arterial blood within a voxel can then be estimated using either T1,b-

corrected data (Fig. 6.7(iv)) or fitting the data to a trapezoidal input function

(Fig. 6.7(v)), the best approach is assessed later. Each method requires initial

estimation of 6 before the LLEPI correction can be applied. This is crucial

in providing an accurate correction factor for LLEPI suppression and can be

determined by a cross point between the linear approximation of the slope's
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Figure 6.7: Si~ulated LL-FAIR signal (i) with applied correction for Tl blood
recovery (ii); estimation of 6 using a trapezoidal fit (iii); correction for Look-
Locker EPI acquisition (iv) with a trapezoidal fit for input function (v).
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leading edge and plateau of the Tl blood corrected data. 1000 repeat fits were

performed for each simulated data set and the errors in the measurement of

CBVa for the different values of ~, 6, and CBVa were assessed.

For preliminary validation, Monte Carlo modelling was used to compare

this simplified approach against simulated data generated and fitted using

SCM. Data sets were simulated with the SCM for parameters' values (~ = 100-

300 ms, 6 = 500 -700 ms, CBVa = 2 - 3 %, W = 1500ms) and Gaussian noise

added (mean = 0, standard deviation = 0.01). CBVa was then estimated from

the simulated data using four methods:

(I) peak amplitude of the simulated signal (Eq. 6.10);

(II) area under curve of simulated signal (Eq. 6.11);

(III) height (h) of the fitted trapezoid (Fig. 6.7);

(IV) area of fitted trapezoid.

6.2 Experimental Methods and Data Analysis

The LL-FAIR sequence was implemented on a Philips 3 T Achieva scanner

using a body transmit and SENSE receive head gradient coil. Sequence timings

used were those previously optimised for CBVa at 3 T [96] (TI = 150 ms,

TA = 100 ms, 19 readout pulses, selective width = 30 mm, non-selective width

= 2QOmm) with the jittered TR = 2.4 s. Image resolution was 3 x 3 x 5 mm"

and GE-EPI TE = 16 ms. Four healthy volunteers participated in a visual

experiment using 4.8 s red LED goggles flashing at 8Hz followed by 26.4 s

rest repeated for 14 cycles. The tag and control time series were realigned

separately using a standard algorithm in SPM (with a 5 mm FWHM Gaussian

smoothing kernel and 2nd Degree B-Spline interpolation), both registered to the

same base EPI image for the same spatial placement. The LL-FAIR difference
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signals AM (tag - control) were extracted and normalised to the equilibrium

blood magnetisation mo,a(estimated from sagittal sinus). This normalised data

was then fitted using methods (I-IV) and the SCM and estimates of CBVa were

compared.

6.3 Results

Figure 6.8 shows the difference images (AM = tag - control) of each LL-

FAIR readout corresponding to different TI values (noted on each image).

Brightening parts of the image are a clear indication of the inflowing blood to

the imaging slice and represent the amount of labelled blood in the arteries and

arteriolar compartment. Timing of readout pulses (TI and TA) were optimised

to only be sensitive to CBVa while the perfused signal is suppressed and the

static tissue signal is being removed by subtraction of AM images.

Figure 6.8: Difference images (AM) representing 19 LL-FAIR readout points
of a single TR. Each readout is equivalent to a different delay time (TI), noted.
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Figure 6.9: Percentage difference between simulated and estimated CBVa data
as a function of induced Gaussian noise for four different methods: (I) - max-
imum signal of the simulated data curve (green); (II) - area under the simu-
lated data curve (red); (III) - height of the fitted trapezoid (purple); (IV) -
area under the fitted trapezoid (blue). Values estimated for this simulation:
~ = 100 ms, 8 = 500 ms, W = 1500 ms.

Figure 6.9 shows the relative difference [%] between simulated and fitted

values of CBVa for the four fitting methods. The simulations were performed

with a contribution of a Gaussian noise of different magnitude. Monte Carlo

simulations showed that the measured peak signal, method (I), provided the

most reliable estimate of.CBVa for Gaussian noise < 0.01; for higher noise

levels, the height of the trapezoidal fit, method (III), delivered closest estima-

tion. As ~ increased the accuracy of estimated CBVa was reduced (Fig. 6.10),

especially for both methods involving trapezoidal fit (method (III) and (IV)).

This·was due to the increased noise in the data as a result of the longer period

available for T 1 recovery of blood. As 8 increased, the accuracy of CBVa esti-

mation was also reduced (Fig. 6.11), particularly for those methods (III) and

(IV) that are based on trapezoidal fit since the onset/offset slopes, which are

of length 8, are not well matched to a trapezoid function (Fig. 6.7). In esti-

mating CBVa, Method (II) was also inaccurate for high values of 8, which is
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Figure 6.10: Percentage difference between simulated and estimated CBVa

data as a function of arteriolar transit time 6 for four different methods: (I) -
maximum signal of the simulated data curve (green); (II) - area under the
simulated data curve (red); (III) - height of the fitted trapezoid (purple); (IV)-
area under the fitted trapezoid (blue). Values estimated for this simulation:
6 = 500 ms, CBVa = 3 %, W = 1500 ms.
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Figure 6.11: Percentage difference between simulated' and estimated CBVa

data as a function of arteriolar transit time 6 for four different methods: (1)-
maximum signal of the simulated data curve (green); (II) - area under the
simulated data curve (red); (III) - height of the fitted trapezoid (purple); (IV)-
area under the fitted trapezoid (blue). Values estimated for this simulation:
~ = 100 ms, CBVa = 3 %, W = 1500 ms.
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due to the nature of the offset slope: experiencing less SNR because of the T 1

relaxation of blood and higher dispersion of the input function caused by the

tortuousness of the arteriolar compartment. Method (I) was then chosen in the

estimation of the experimental data to eliminate inclusion of the offset slope

and additional steps involving trapezoidal fit; application of ancillary fits can

introduce misrepresentations of the estimates.

Figure 6.12 shows the experimental LL-FAIR data with a marked activation

region with time courses of four selected voxels. Both correction steps (T1

blood relaxation and LL-FAIR readout) are also plotted for the resting state

and visual activation. Voxels were selected to emphasise a variety of shapes

of the signal curves, which mostly depend on the tortuousness of the vascular

system; blood then reaches and remains within a voxel for a different amount

of time. This highlights the necessity for acquisition at a range of TI values to

estimate CBVa for the traditional FAIR technique [93]. In the case of fMRI

data, reduction in transit time 6 on activation also contributes to changing the

shape of the signal curves (Fig. 6.12), therefore providing further advantage to

LL-FAIR over traditional FAIR acquisition. The results of chosen voxels are

summarised in Table 6.l.

It is shown that CBVs, can be simply estimated from the peak of the LL-

FAIR signal using simple correction factors. This opens up the possibility

of conveniently applying this technique to fMRI studies, where CBVa may

provide a more direct measure of neuronal activation than the BOLD effect.

The model described here assumes that the input function is trapezoidal, but

in practice variation of vessel sizes within an ROI and dispersion of the label

will lead to deviations from a trapezoid (Fig. 6.12). LL-FAIR voxel-by-voxel

analysis of the data can be used to form CBVa maps. The use of LL-FAIR

will also provide an opportunity to study the exact form of the arterial input

function of the label to the voxel.
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Figure 6.12: Averaged LL-FAIR image with marked activated area to the
visual stimulus. Four voxels were chosen and time courses extracted with
correction steps shown in order to quantitatively estimate CBVa for resting
state (OFF) and on activation (ON) using simplified method. CBVa values
were then verified against the Step-wise Compartmental Model for each voxel.

Table 6 1· Estimated values for 6., 8, and CBVa using the simplified model...
resting state on activation

voxel 6. [ms] 8 [ms] CBVa [%] 6. [ms] 8 [ms] CBVa [%]

(a) 270 370 13.6 150 300 23.3

(b) 450 400 17.2 300 350 32.1

(c) 250 609 20.3 220 513 29.1

(d) 200 450 16.1 150 350 19.9
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6.4 Discussion

It has been shown that quantitative CBVa can be simply and accurately

estimated from the peak of the FAIR signal with Look-Locker EPI sampling,

using only several correction factors. This opens up the possibility of conve-

niently applying this technique to fMRI studies, where CBVa may provide a

more direct measure of neuronal activation than the BOLD effect. The model

described here assumes that the input function is trapezoidal, but in practice

variation of vessel sizes and their tortuousness within a region of interest, and

dispersion of the label, will lead to deviation from the trapezoid (as shown in

Fig. 6.12). LL-FAIR provides significant advantages over traditional (single

TI) FAIR acquisition, as it allows for the variation in arteriolar transit time 8

across the cortex to be measured. Therefore LL-FAIR yields an estimation of

change in transit times (~ and 8) on activation.

Future work will use voxel-by-voxel analysis of the LL-FAIR data to form

CBVa maps. The use of LL-FAIR will also provide an opportunity to study

the exact form of the arterial input function of the label to the voxel.



Chapter 7

Applications

This chapter outlines the application of Look-Locker (LL) based qualitative

(perfusion weighted) and quantitative ASL methods for measuring Cerebral

Blood Flow (CBF) and Cerebral Blood Volume (CBVa), highlighting their ad-

vantages. The Look-Locker technique provides a method of ASL acquisition

which can result in significantly increased signal-to-noise ratio and reduced

acquisition time compared to standard methods. Qualitative CBF-weighted

and CBVa-weighted images are of interest to clinicians where fast assessment

of blood flow and arterial blood volume related changes can be critical, but

quantitative assessment is not essential. However, there may not be a sim-

ple relationship between a qualitative measure and quantitive value due to

transit time changes also occurring. In this Chapter LL-based ASL sequences

are used. to monitor relative and absolute changes in CBVa and CBF in re-

spouse to visual activation with high temporal resolution. A second study

uses quantitative ASL measures to determine the relationship between CBF,

CBVa and total CBV, in order to assess the Grubb power-law [101]which is

widely used in calibrated BOLD [87]and BOLD modelling [88]studies. Total

CBV is measured using contrast agent techniques and compared to CBF and

CBVa haemodynamic responses on both an inter-subject and intra-subject ba-
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sis. Few studies have directly compared the responses of these haemodynamic

parameters, and this is the first in vivo study to assess the relationship between

CBF, CBVa and total CBV .

7.1 Assessing the Temporal Responses ofCBF

and CBVa Measures

BOLD provides a qualitative measure of brain activity and depends on

changes in blood flow, blood volume (until recently assumed to be dominated

by venous volume changes) and oxygen consumption resulting from neural

activation. To understand neural activity it is better to measure directly these

changes in CBF, CBV and CMR02 quantitatively (for example for CBF in

units of [l~~in] or CBV in [l~g]). Sometimes a qualitative approach (in

the form of CBF-weighted or CBVa-weighted images) is acceptable to assess

brain function, particularly if interest lies in determining the time course and

spatial location of relative changes in haemodynamic responses on activation.

As outlined in Chapter 6 and 4.1 ASL provides a non-invasive method to

measure CBF and CBVa; The sensitivity to detect these changes is improved

by following the ASL labelling scheme with a Look-Locker EPI readout. Ll»

EPI sampling uses multiple low flip angle pulses, which when combined with

ASL, sample the inflowing blood signal as it exchanges with the tissue forming

a sequence which is sensitive to CBF. Alternatively, if high flip angle pulses are

applied more rapidly, then the signal from the exchanging water is suppressed,

and the sequence is then sensitive solely to CBVa [96]. As previously shown

[96,97] and discussed in Chapter 6 the timing between read-out pulses as well

as their flip angle have to be chosen very carefully.

Lt-FAIR has been shown to provide a method to determine activation-

based relative changes in CBVa and CBF from the LlM images (LlM = tag-
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control). Using this method the associated changes (reduction) in arterial

and tissue transit times (~ and 8, respectively), can also be measured [96,97].

However, ASL based perfusion-weighted images arise from a signal change (be-

tween a selective and non-selective conditions) which is of only a few percent.

Therefore to detect changes induced by neuronal activity it is crucial for this

technique to be very sensitive and the underlying MR signal must be very

stable. This has previously limited activation studies to long duration stimuli

or long paradigms with a large number of a cycles. The LL-FAIR technique

can provide a method of increasing the perfusion weighted SNR of an ASL

data acquisition by summing over the signal change of each readout pulse in

the LL-EPI train to overcome these limitations.

Knowledge of the temporal dynamics of CBVa and CBF responses to neural

activation is important for BOLD modelling [102]. The aim of this section is

to use LL-FAIR to compare the temporal dynamics of arterial blood volume

and blood flow weighted responses to visual stimuli of 4.8 and 9.6 s duration.

7.1.1 Experimental Methods and Data Analysis

The LL-FAIR sequence was implemented on a Philips 3 T Achieva scanner

using an eight-channel SENSE head RF coil. The following sequence timings

were used in this experiment:

• CBF: TI = 600 ms, TA = 360 ms, ()= 40°, 5 readout pulses;

• CBVa: TI = 150 ms, TA = 100 ms, ()= 50°, 21 readout pulses;

where, TI is the time between the inversion pulse and the first readout pulse,

and TA is the time between evenly spaced readout pulses, and () is the flip

angle of each readout pulse. The thickness of the imaging slice was 5 mm and

the width of the FAIR labelling (inversion) slab alternated between 30 and

200 mm for the selective and non-selective conditions, respectively. The TR
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between inversion pulses was 2.4 s (4.8 s per tag - control pair). A short TR

is acceptable due to the spatially confined (200 mm) non-selective slab. The

EPI echo time was 16 ms (shortest achievable) and the image resolution was

3 x 3 x 5 mm". The flip angle ()of the final LL-EPI readout pulse for both the

CBF and CBVa sequences was set to 90° to maximize signal-to-noise ratio and

to provide suppression of the imaging slice prior to subsequent readout, hence

aiding to reduce any offset signals due to imperfections between selective and

non-selective pulses. This also led to simplification of the quantitative fitting,

as the final 90° readout caused each Look-Locker data set to be independent,

removing the requirement for an iterative fit across dynamics. Further an addi-

tional sine pre- and post-saturation RF pulse was applied to the imaging slices

immediately before and after the inversion pulse (Fig. 7.1)1 to further suppress

the effect of any inversion pulse imperfections. Also additional spoilers were

employed following the inversion pulses and after each read out pulse along

all three axes (frequency, phase and slice selection) to suppress any remaining

transverse magnetisation.

Four healthy volunteers gave informed consent and participated in a visual

activation experiment on two separate days. The visual stimulus was an 8 Hz

bright red LED light which was shone at the eyes through light pipes for 4.8 s

separated by 26.4 s of rest and repeated 31 times (Experiment 1) or 9.6 s

separated by 50.4 s of rest and repeated 16 times (Experiment 2). Initially 3

LL-FAIR dummy volumes were acquired in order to allow for Tl saturation
..

effects. An odd number of LL-FAIR acquisitions were made per stimulus

cycle, resulting in the experiment being jittered to give an achievable effective

temporal resolution of 2.4 s.

IThis study was conducted prior to WET pulses being coded on the 3 T Achieva Philips
scanner
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Figure 7.1: FAIR labelling scheme used in this study, simulated with the
Philips Acq8im: selective inversion pulse with pre- and post-saturation sine
pulse. Measurement (M), phase (P), and slice selection (8) directions of the
gradients and RF pulse profile are shown as a function of time [ms]. For the
pulse sequence diagram of the LL-readout scheme see Chapter 6
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Although LL-FAIR data can be fitted for CBF or CBVa, the aim of the

Experiments 1 and 2 was to form high 8NR CBF and CBVa weighted data

by co-adding the signal from the different LL-EPI readout pulses in a single

train following each inversion pulse. These co-added images could then be

examined over the time course of the visual stimulation. Difference images

(from the subtraction of consecutive selective and non-selective pairs) were

then calculated to give a time series of CBF and CBVa weighted images. For

the CBF data the images from all five readout pulses were co-added, as all five

TIs clearly contributed to the difference signal. For the CBVa data, only four

images (TI between 150 and 850 ms depending on subject) showing the greatest

signal change in the unaveraged difference images were co-added. Using more
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images with less pronounced activation would only contribute noise to the final

signal, diluting the activation intensity of the visual cortex VI·

Regions of interest were drawn around the area showing a CBF response

on the raw image, a grey matter mask (obtained from the first LL-EPI image

acquired after the inversion pulse, which was relatively T 1 weighted) was then

applied to these ROIs. For each subject, the signal in the voxels containing

grey matter within the activated region was averaged and the data were then

averaged across trials to provide a time course of the CBF and CBVa response

to the visual stimuli with a 2.4 s temporal resolution. Data were then averaged

across subjects to form a mean CBF and CBVa time course for the long and

short stimulus.

7.1.2 Results and Discussion

7.1.2.1 CBF

Figure 7.2 shows the CBF weighted images for a single trial image data

set of the short (4.8 s ON and 26.4 s OFF) stimulus - no averaging of images

across dynamics performed. In Figure 7.2 activation in the visual cortex (Vj )

Figure 7.2: Single trial perfusion weighted images acquired on the Philips 3 T
Acheiva scanner. Each image represents a 2.4 s time interval time during a
single 31.2 s cycle. Stimulus duration was 4.8 s followed by the 26.4 s of rest.
Significant activation in the region of interest (marked with red circles) within
the visual cortex (VI) is present in images 4 - 6.
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of the grey matter (images 4 - 7) is clearly seen in a single trial (no averaging

across dynamics), as marked by the red circles. This data set shows that the

signal to noise ratio achieved by using a simple summation of the data from the

different LL-FAIR readout pulses allows visual activation to be detected from

just a single trial. The reduction of the experimental time that the summation

of the LL-EPI readout pulses provides, has potential advantages in allowing

us to perform more complex functional studies, for example to study multiple

contrast levels.

As expected, averaging over a greater number of cycles will result in a better

signal-to-noise ratio. Figure 7.3 displays perfusion weighted images averaged

over a1l16 cycles (in case of the short stimulus, averaging over all 31 cycles was

performed). Images 3 - 7 clearly show the activation of the visual cortex, Vb

to the stimulus. In general it was found that adequate SNR could be obtained

by averaging only 10 CBF weighted data sets.

Further statistical analysis focused on the grey matter of VI of the visual

cortex, masking out the remaining part of the brain. Figure 7.4 shows the CBF

normalised percentage intensity change averaged within the region of interest

for the short (a) and long (b) stimulus. For ease of comparison both graphs

are shown:on the same time scale. Normalisation was performed relative to a

baseline period from the last four data points in the cycle (resting state). The

four coloured curves correspond to the signal intensity of individual subjects,

the black ,curve in each panel shows the average response over all subjects.

For both stimuli, there is one subject (Subject 2 in Fig. 7.4(a) and Subject 3

in Fig. 7.4(b)) that deviates from the response characteristic. There can be

a number of reasons for such a difference which will be discussed later (see

Section 7.1.3).

The increase in signal in CBF response to the visual stimulus can be seen

to commence between 4.8 and 7.2 s after initiation of the stimulus. Maximum



7.1. Assessing the Temporal Responses of CBF and CBVa Measures 135

t[s]

o 4.8 9.6 1

t[s]

16.8 24

t[s]

28.8 36

t[s]

40.8 48

t[s]

52.8 60

Figure 7.3: Subtracted and averaged m inoo images of a visual cortex VI
acquired on the Philips 3 T Achieva scanner. Each image represents 2.4 s
interval time in the functional cycle. Stimulus duration was 9.6 s (marked with
the blue box on the time axis) followed by the 50.4 s of rest. Area containing
grey matter with the highest activation is marked with the red circles.
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Figure 7.4: Percentage CBF response of the visual cortex VIto the short -
4.8 s (a) and long - 9.6 s (b) stimulus for all the subjects (coloured lines). The
response was measured based on the averaged pixels' intensity of the region of
interest. The ROI was masked to consider only grey matter voxels. The black
line in each panel represents the average response over all subjects.

intensity for the short stimulus is reached in the vicinity of 9.6 s (Fig. 7.4(a)).

For the long stimulus there seem to be two maxima, the first at approximately

9.6 s as in the short stimulus case, and the second, dominating peak, at ap-

proximately 14.4 s. The existence of the first maximum, even though well

pronounced, is still a subject to further investigations. The CBF percentage

changes observed are consistent with those in the literature [75] and show a

similar degree of variability for these stimuli. Miller found that whilst the sen-

sorimotor cortex showed a nearly linear flow response with increased stimulus

duration, a strong nonlinear flow response was observed in the visual cortex.

Figure 7.5 combines the average CBF response over all subjects for both

short and long visual stimulus.
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Figure 7.5: Comparison of the averaged percentage CBF responses for the
short ~ 4.8 s (red curve) and long ~ 9.6 s (blue curve) stimulus.

7.1.2.2 CBVa

We have extended preVIOUSwork that has measured the change in the

CBF haemodynamic response to study two lengths of visual stimuli [75] to

measure the change in the CBVa haemodynamic response to a 4.8 sand 9.6 s

stimulus. Figure 7.6 shows the CBVa percentage intensity change averaged

within the VI region of interest for the short (a) and long (b) stimulus for all

four subjects individually (coloured curves), and the averaged response (black

curve). Again, results from the two (same as for CBF) subjects deviate in a

small degree from the other characteristics. The maximum signal appears to

peak at the same time (about 7.2 s) for both the short and long stimulus. After

reaching the maxima, the short stimulus experiment indicates a quicker and

much steeper decrease in the relative CBVa signal (Fig 7.6(a)), while signal

drops more gradually for the longer duration stimulus.

Figure 7.7 combines the average percentage intensity changes in the CBVa

responses over all subjects for both short and long visual stimuli averaged.
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Figure 7.6: Percentage CBVa response of the visual cortex Vi to the short -
4.8 s (a) and long - 9.6 s (b) stimulus for all the subjects (coloured lines). The
response was measured based on the averaged pixels' intensity of the region of
interest. ROI was masked to consider parts with high vessels concentration.
The black line in each panel represents the average response over all subjects.
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Figure 7.7: Comparison of the averaged percentage CBVa responses for the
short - 4.8 s (red curve) and long - 9.6 s (blue curve) stimulus.
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Figure 7.8: Time courses of the percentage in CBF (red curve) and CBVa

(blue curve) responses the long -- 9.6 s (a) and short - 4.8 s (a) stimulus.

Figure7.8(a) and (b) shows the CBF and CBVa data plotted together for

the long and short stimulus durations, respectively. From the graphs it can

be seen that the first peak in CBVa change leads that in CBF, supporting the

idea that CBVa is the driving function for the CBF response. As expected,

the changes in the relative CBVa precede CBF changes, based on the time of

maximal signal changes.

7.1.3 Conclusions

This study has shown that by using LL-FAIR, and summing over the read-

out pulses, sufficient SNR can be achieved even from a single trial to assess the

temporal response of CBF and CBVa changes to both short and long duration

visual stimuli. The CBVa response is shown to lead that of CBF weighted sig-

nal, demonstrating the CBVa changes act as a driving input function. These

haemodynamic measures are important input parameters to measure, for ex-

ample to assess input parameters to the BOLD effect such as the Balloon

Model [74] and this is the focus of the following study in this chapter.
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7.2 Functional Changes in CBVa, CBF and

contrast enhanced CBVtot

The temporal dynamics of the BOLD response are determined by the

haemodynamic parameters of cerebral blood flow (CBF), cerebral blood vol-

ume (CBV), both arterial and venous, and the oxygen extraction fraction

(CMR02). BOLD contrast depends on deoxygenated blood in the venous

blood volume, which is driven by CBF changes which are themselves driven by

changes in arterial CBV. This represents the resistance to blood flow through

capillary network. However there is only a limited number of published stud-

ies that examine the relationship between these haemodynamic input parame-

ters [103-106].This is largely due to a lack of suitable measurement techniques

to assess changes in each of the parameters.

Few groups have studied arterial cerebral blood volume, most studies have

used gadolinium based contrast agents to measure changes in total CBV and

assumed that this provides a measure of venous CBV, with arterial blood

changes being neglected. However, this assumption is unlikely to be true

though it is still unclear as to what proportion of arterial and venous blood

volume changes contribute to the total blood volume change and the BOLD

response. Since venous blood volume comprises about 60 - 80% of total blood

volume, to date, most biomechanical models of vascular response, such as the

origin Balloon Model [74], have assumed that venous CBV (CBVv) changes

dominate. However, vascular physiology studies suggest that local and up-

stream arterial vessels dilate during increased neural activity [107] and this

has been supported by recent MR studies [92]. Attempts are now being made

to measure venous CBV directly, and the VERVE method [108,109] has been

suggested for this. This method uses the dependence of apparent T 2 of blood

CPMG (Carr-Purcell Meiboom-Gill) refocusing interval to separate blood and
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tissue signals. This sequence uses the intravascular BOLD T2 effect of venous

blood to modulate the blood signal. However, if the tissue signals show any

dependence on refocusing intervals that will also contribute to the VERVE

signal.

In the absence of a technique to measure venous CBV directly it is possible

to measure total CBV (CBVtot). One method to do this which was previously

performed at the SPMMRC (Sir Peter Mansfield Magnetic Resonance Centre)

was to use an infusion of paramagnetic contrast agent (PROHANCE), giving

an increase in contrast agent with time [110---112] to measure the fractional

change in CBVtot during a stimulus. A key limitation of this technique was an

inability to measure total CBV changes quantitatively. Quantitative maps of

resting CBVtot have long been produced by bolus tracking methods [113]. By

combining the fractional change in CBVtot (~CBV tot) with the bolus tracking

method, quantitative changes in CBVtot can be measured.

The objective of this study is to measure changes in perfusion (CBF),

arterial CBV (CBVa.) and total CBV (CBVtot) to a visual stimulus, and as-

sess the relation between these three haemodynamic responses. The LL-FAIR

technique is used to provide a method to quantify changes in both CBF and

CBVa. [96,97]. To measure total CBV a bolus injection of contrast agent is

used. This agent is excreted through the kidneys providing an exponential

reduction in concentration, with a half life of about 40 minutes. From this it

is possible to measure the change in BOLD signal intensity in response to the

change in intravascular contrast agent concentration and thus ~CBVtot.

Data from this study will allow Grubb's power-law [101] to be assessed

for neuronal activation. Grubb's quantitative relationship between CBF and

CBVtot has been taken to follow the power-law relationship:

CBVtot - 0.80. CBFo.38. (7.1)
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However, this was derived for primate data during hypercapnia and under

steady state conditions. A hypercapnic challenge causes global changes in

haemodynamics, and it is likely that this will result in a very different response

to the local effects of dilation and oxygen extraction that occur on neuronal ac-

tivation. Grubb's power-law is extensively used in calibrated BOLD [87,88]and

yet its application in situations of dynamic changes is thus questionable [74],

and a matter of current debate.

7.2.1 Experimental Methods and Analysis

Data were acquired on a Philips Achieva 3 T system, equipped with a

volume transmit coil and an 8 channel SENSE receive coil. For all three

haemodynamic parameter measurements a resolution of (3 x 3 x 5 mm'')

and SENSE acceleration of 2 were used. At the time of these studies, the

LL-FAIR acquisition to measure CBF and CBVa was limited to a single slice

acquisition, therefore an initial functionallocaliser scan was performed in order

to select an axial single slice through the visual cortex with the largest region

of BOLD activation. This geometry was then used throughout the rest of the

experiment.

Visual stimulation was provided by red LED goggles flashing at 8 Hz.

Lights were ON for the first 19.2 s of each 60 s cycle. The number of stimulus

cycles varied between modalities reflecting the differing SNR of each method.

For CBVa measurements 8 cycles were collected; for CBF, which has lower

CNR, 12 cycles were collected (see Section 7.1) and for CBVtot 14 cycles were

collected.

A LL-FAIR acquisition was used for both CBF and CBVa measurements.

The sequence parameters for the CBF measurement were an inversion delay

TI = 600 ms, time interval between EPI readouts TA = 350 ms, flip angle

() = 35° and 5 readout pulses with vascular crushing (bipolar lobe of 5 ms



7.2. Functional Changes in CBVa, CBF and contrast enhanced CBVtot 143

duration per lobe and amplitude of 15 I~n.For the CBVa measurement the

parameters were TI = 150 ms, TA = 100 ms, ()= 50°, with 19 readout pulses.

In both CBF and CBVa measurements the shortest achievable echo time of

16 ms was used and the final LL-FAIR pulse had a flip angle of 90° to max-

imise SNR. The LL-FAIR scheme was performed with in-plane pre- and post-

saturation pulses to provide signal suppression of the imaging slice to reduce

any offset signals due to imperfections between the selective and non-selective

pulses. The application of a 90° pulse at the end of each TR simplified the

fitting as each tag/control remained independent, removing the need for an

iterative fit. The TR between inversion pulses was 2.4 s, giving a tag/control

pair every 4.8 s. The thickness of inversion slab was alternated between 30 mm

and 200 mm for tag and control conditions, respectively.

For the measurement of CBVtot dual-echo GE-EPI images were acquired

with TE = 13 I 35 ms. A TR of 1.2 s was used in order to better characterise

the first pass of the bolus of contrast agent. Contrast agent injections con-

sisted of two single doses of ProHance (Bracco Imaging Spa). The first bolus

was injected at the beginning of the 5th stimulus cycle and the second at the

beginning of the 6th cycle. For these cycles (5 and 6), the visual stimulus was

not presented to preserve the analysis from being confounded by the BOLD

response. Resting CBVtot was measured from the first and second bolus and

was found to increase the blood contrast agent concentration to approximately

1 mM. The final 8 cycles of visual stimulus were acquired at different contrast

agent concentration levels as the contrast agent washed out allowing ~CBV tot

to be measured.

Eight healthy volunteers gave written consent and were scanned as part of

this study (approved by the local ethics committee). The age range was from

20 to 31 years (mean 24, standard deviation 3).

CBF, CBVa and BOLD data sets were first realigned. Realignment was
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performed first within each data set and then across all data sets for each sub-

ject using SPM with a standard algorithm (5 mm FWHM Gaussian smoothing

kernel and 2nd Degree B-Spline interpolation). For the CBF and CBVa data,

the last LL-FAIR readout pulse (900 flip angle) of the data set was realigned,

and the transforms then applied to the other readout pulses within that TR

period. The CBVtot data were realigned using the first echo and the transforms

applied to the second echo data. The average time series of the signal changes

due to CBF, CBVa and CBVtot were then formed by averaging across cycles,

accounting for jittering, to produce a time series with 2.4 s temporal resolution.

This data was then fitted on a voxel-by-voxel, time point-by-time point basis.

CBF-weighted and CBV-weighted images were formed by summing over the

LL-EPI readout pulses (as described in Section 7.1).

Data sets were also quantified for CBVa using a two-parameter fit, as pre-

viously described [96], to measure changes in arterial transit time and CBVa•

CBF data were initially analysed using a two-parameter fit for capillary transit

time and CBF [97]. However since the data had lower SNR than the CBVa

data, a two parameter fit for each time point was found to increase the noise

in CBF measures. Therefore instead, a mean estimate of the transit time at

rest and on activation was computed, and the data for these states then fitted

to a one parameter fit assuming these estimates.

CBVtot data sets were quantified by Dr. N. Blockley. The first pass bo-

lus transit of the contrast agent was used to determine the resting absolute

CBVtot [114]. This was achieved by first selecting an Arterial Input Function

(AIF) by averaging together the time courses of several voxels within large

arteries. A gamma variate function was then fitted to the AIF and each tis-

sue voxel of the brain [113]. The area under the curve was then calculated

for each tissue voxel and normalised by the area under the AIF curve. The

relative change in CBV tot was calculated by considering the effect of a steady
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state concentration of contrast agent on the R; changes that occur during the

BOLD response. Previously this was achieved with the aid of an infusion [112].

However, here two bolus injections of contrast agent were used to reach an ini-

tial blood contrast agent concentration. Visual stimulation was continued from

this point as the contrast agent was washed out through the kidneys. Instead

of a continually increasing concentration, as in the case of an infusion, in this

experiment the concentration was gradually decreasing. In all other aspects

this method is the same as in previous reports [112].

Activation regions for CBVa. CBF and CBVtot were then generated using

a correlation analysis applied to their respective quantified data sets, on a

voxel-by-voxel basis. Statistical maps were then thresholded at a z-score of

2.31, p < 0.02 to form binary region-of-interest masks. These ROI masks were

then combined to form a mask of activated voxels common to CBVa, CBF

and CBVtot. The use of a common ROI was chosen to enhance specificity to

microvasculature, therefore we could assume that we are looking at relationship

between haemodynamic variables with the same vascular components.

Grubb's constant was then calculated for neuronal activation assuming the

relationship between CBVtot and CBF, as previously assessed for hypercapnia

[101]
CBVtot = (CBFO!, (7.2)

where ( is a constant based on the gradient offset and estimated to be ( =

0.80). Differentiating this equation then gives

~CBVtot ~CBF
----=Q---cnv., CBF (7.3)

where each side of the equation represents the percentage change in CBVtot

and CBF respectively. Since venous blood volume change is driven by CBF

which is itself driven by CBVa, here the relationship between CBF and CBVa
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was assumed to be described by

~CBF ~CBVa
CBF = aFA CBVa . (7.4)

The relationship between CBVtot and CBVa was also assumed:

~CBVtot ~CBVa
CBV = aTA CBV 'tot a

(7.5)

Grubb's constant, a, as well as aFA and aTA, can then be estimated from

linear fits of relative change in total cerebral blood volume, cerebral blood flow

and arterial cerebral blood volume. Data was analysed in two ways.

1. inter-subject estimates of a; mean steady-state change in CBF, CBVa

and CBVtot were estimated for each subject, and each subject's data

plotted on a single graph

2. for each subject each data point in the time series was used to form

a linear fit of relative change in haemodynamic parameters and hence

estimate a on a subject-by-subject basis:

(a) CBVa and CBF weighted data were plotted and used to estimate

a, aFA and 'aTA; values were then averaged across the 7 subjects (to

form an estimate of "average a");

(b) fitted values of CBVa and CBF were used to estimate a, aFA and

aTA, and then averaged across the 7 subjects (to form an estimate

of "average a");

(c) all quantified data points for all subjects were combined into a single

fit and the value of a, aFA and aTA estimated (this a is referred to

as the "average image a").
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7.2.2 Results

In Figure 7.9 (a-c) shows the masked ROIs for CBVtot, CBF and CBVa ac-

tivation maps (blue) for one subject (Subject 6), and the common ROI of the

three haemodynamic measures are shown overlaid (red). Below, Fig. 7.9(d),

the corresponding time course for each haemodynamic response for the com-

mon (dashed lines) and individual ROIs (solid lines) are shown.

Table 7.1 shows the numbers of activated voxels for each of the haemody-

namic responses for each individual subject and the size of common ROI for

individual subjects. Subject 8 was excluded from further analysis due to lack

normalised signal timecourses
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Figure 7.9: Base images with overlaid activated area for CBVa (a), CBF (b)
and CBV tot (c) marked in blue, and common ROI for all three haemodynamic
responses, marked in red. Corresponding time courses for each haemodynamic
measure for individual regions (solid line) and common ROI (dashed line) are
shown below (d).
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Table 7.1: Number of voxels of activated ROJs for CBVa, CBF, CBVtot and
common ROJ for individual subjects obtained for z-score of 2.31.

Subject CBVa CBF CBVtot common ROI

1 8 22 42 1

2 35 41 21 6

3 19 80 104 6
4 12 5 11 2
5 23 70 10 1
6 33 107 45 9
7 60 77 22 10
8 5 13 21 0

of a common activated RO!.

Figure 7.10(a) shows the steady state Grubb relationship (6.CBVtot vs.

6.CBF), formed from the inter-subject data. The gradient of each linear fit

equals the steady state et (etFA and etTA) according to Grubb's power-law. The

other assessed relationships of 6.CBVa are shown in Figure 7.1O(b) and (c).

The fits of (et, etTA and etFA), are presented in Table 7.2. There can be seen

to be a large scatter in the data points likely to result from the variability in

ROJ placement across subjects, as will be discussed later.

The results of fitting each time point (method 2) were then used to esti-
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Figure 7.10: Steady state Grubb's constant et = ~.09 (6.CBVtot vs. 6.CBF)
across seven subjects (a) and equivalent relations for etTA = 0.15 (6.CBVtot vs.
6.CBVa) (b) and etFA = ~.27 (6.CBF vs. 6.CBVa) (c).
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mate Grubb's constant on an individual subject basis. In this way the data

includes both dynamic and steady state changes in the three haemodynamic

measures. Figure 7.11 shows plots to determine the dependency between

changes in LlCBVtot and LlCBF (Grubb's constant a [101]) for each of the

seven subjects for their common ROI of functionally activated CBF, CBVa

and CBVtot• The last panel in Figure 7.11 shows the same plot for the time

courses averaged across all subjects. It should be noted that the clusters of

points at the minima and maxima of the axes represent the steady state sig-

nals. These plots indicate both steady state (far points) and dynamic changes

(intermediate points). Although for some subjects the data is very scattered

there is no indication that the relationship is not linear (Le. that a changes

under dynamic conditions). Figures 7.12 and 7.13 represent the same plots for

aFA and aTA for each subject and their averages are again presented.

Table 7.2 shows Grubb's constant values for each subject for a (CBVtot vs.

CBF), aTA (CBVtot vs. CBVa) and aFA (CBF vs. CBVa) respectively. Values

are presented firstly for the CBF and CBVa weighted data and secondly for

quantitative fits. It can be seen that the estimates of a are similar between

these methods (methods 2(a) and 2(b».

7.2.3 Discussion

This study has combined the measurement of CBF, CBVa and CBVtot in

individual subjects in a single experimental session to assess the coupling of
.-
neurovascular responses as determined by their Grubb's constant (a, aFA and

aTA). The use of LL-FAIR has allowed the measurement of CBF and CBVa

accounting for transit time effects and in a reasonable experimental time. Us-

ing inter-subject data to estimate Grubb (method 1) was found to introduce

a large scatter and poor linear fits. Fitting each temporal data point for each

individual subjects was found to result in improved linear fits. Using this
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Table 7.2: Calculated dependencies for linear approximation:
~CBVtot = a·~CBF, ~CBVtot = aTA·~CBVa and ~CBF = aFA·~CBVa

change in signal quantitative change
Subject a aTA aFA a aTA aFA

1 0.30 0.21 0.34 0.27 0.31 0.47

2 0.13 0.30 1.79 0.12 0.34 2.48

3 0.30 0.30 0.72 0.27 0.47 1.30

4 0.06 0.20 0.45 0.13 0.47 0.96

5 0.18 0.28 1.27 0.18 0.24 1.03

6 0.27 0.44 1.51 0.25 0.46 1.69

7 0.36 0.34 0.77 0.33 0.65 1.52

average a 0.23 0.30 0.98 0.22 0.42 1.35

STDev ± 0.11 ± 0.08 ± 0.55 ± 0.08 ± 0.14 ± 0.64

average image 0.31 0.29 0.81 0.29 0.40 1.21

method, classical Grubb's constant, a, was found to be 0.26 ± 0.11 or 0.34

when fitted across all subjects. This value is in a good agreement with the

value of the Grubb's constant originally estimated (a = 0.38) [101], which

was based on a steady state measurement of global changes in non-human

primates using hypercapnia-based modulation, with CBF data acquired using

PET. This relation has been a fundamental approximation used in many stud-

ies of calibrated BOLD and oxygen consumption CMR02 [88,115,116], blood

volume and perfusion using hypo- I hyper-capnic modulations and other func-

tional stimuli throughout the years. Since the original study by Grubb, several

groups have assessed this power-law with varying results; a = 0.40 during hy-

percapnia [35], a = 0.3 [117] and 0.29 [118] in PET studies based on visual

stimulation and hypo- I hyper-capnia, respectively. In addition when regional

spatial variability in a has been assessed using PET, and a value of 0.64 was

found for the cortex compared to 0.46 for subcortical grey matter [119]. It is

also worth noting that VERVE found a venous Grubb's constant of 0.23 [108].
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The study also allowed the dependency between CBF and CBVa to be

assessed, fitting a linear fit of change in these parameters returned a value of

0.81 ± 0.29 and 1.09 (Table 7.2) for methods 2(b) and 2(c). A similar power-

law dependency of CBF to CBVa 1.2 was found in rats [35]. Modelling the

arteriole as an expanding cylinder [102] would suggest QFA to be 2 for a laminar

flow approximation (proportional to r4, where "r" is the radius) [76,102,1201

and 1 for a plug flow approximation (proportional to r2) [76,102,120]. However,

if a spherical expansion of arterioles would be considered, QFA would be in the

vicinity of ~ and ~ for a laminar and plug flow model, respectively.

Simultaneous measurement of CBV tot, CBF and CBVa has not previously

been conducted in humans. Until recently it was believed that blood volume

changes arise from the venous compartment. However, this and other recent

studies now suggest that CBVa contributions play a large role. Considering

the relation that CBVtot = CBVa + CBVv (where CBVv is the venous CBV),

an increase of volume in the arterial compartment to be Qa and Qa·k represents

the increase of volume in the venous compartment, then the absolute changes

in CBVtot and CBVa can be expressed as:

~CBV' = Qa(1 + k) and ~CBV = Qa
tot CBV tot a CBVa

(7.6)

The ratio of changes in CBVtot to changes in CBVa can the be described as:

~CBVtot = (1 + k) CBVa
~CBVa osv.;: (7.7)

where ~~B~:t = QTA. We can then describe "k" as:

csv.,
k = QTA CBVa - 1. (7.8)

Since quantitative estimates of all three haemodynamic responses (CBVtot,
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a e .. cae v ues or su ~ec s.

Subject CBVtot [l~g] CBVa [l~g] arterial
k

contribution [%]
1 24.44 3.01 12 1.68
2 9.18 3.78 41 -0.63
3 3.08 3.94 128 -0.70
4 5.16 8.86 172 0.71
5 4.53 2.07 46 -0.27
6 5.33 6.91 130 0.31
7 7.06 5.83 83 -0.72

'] bl 7 3 Cal ul t d "k" al £ all bi t

CBF, and CBVa) and their changes were measured above, data from the com-

mon ROI can be used to estimate ~B~~' the contribution of arterial blood

volume to total blood volume, and thus calculate "k" .

Table 7.3 lists the absolute resting state values for CBVtot and CBVa, from

which the percentage contribution of arterial blood to total blood volume was

calculated, and the corresponding "k" values for each subject, using Eq. 7.8. A

large variability in the estimated values of "k" is seen across the seven subjects.

For Subject 1 (Table 7.3, Subject 1) "k" > 1 indicating that the venous changes

exceed the contribution of arterial changes in the total CBV change. Clearly,

in that ROI only a small percentage of the blood is contained within arterioles.

For "k" = 1 the changes of both CBVa and CBVy would contribute equally

to the changes in total CBV. For 0 < "k" < 1 the CBVa changes are larger

than the CBVy (Table 7.3, Subject 6). "k" = 0 would indicate no changes

in the venous compartment, therefore the changes in the total CBV would

depend entirely on changes in CBVa. The interesting situation is when "k" < 0

(Table 7.3, Subjects 2, 3, 4, 5 and 7). This can be explained as a negative

change in blood volume of the venous compartment driven by the increase of

the arterial blood.
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The absolute values for both CBVtot and CBVa carry errors (and this

can be seen to result in an arterial contribution of over 100 %, Table 7.3,

Subject 3, 4, and 6). Errors may arise in the estimation of CBVa due to the

inaccurate estimation of the Mo of blood. For the spatial resolution of the

data in this study, it is difficult to find a voxel with 100 % blood volume,

and so partial voluming effects are likely leading to errors in the Mo of blood.

Errors in CBVtot are likely to arise from the misrepresentation of the AIF.

It is expected that the error in CBVtot is greater than that associated with

CBVa. Nevertheless, values of QTA, which playa key role in calculating "k",

are only based on changes in CBVtot and CBVa, and therefore fairly accurate

(for all subjects errors in relative change are less than 5 %, estimated using

last 4 points of the baseline signal). Taking the average value of QTA = 0.42

(Table 7.2), the venous blood content of a voxel (or an ROI) would have to

be over 3.7 times larger than the arterial blood content of the same voxel (or

ROI) for the changes in CBVv to exceed the changes in CBVa•

Because the ROI chosen in this study for the calculations is common to

all three haemodynamic responses, this region should be dominated by small

vessel effect, and therefore no draining veins where ballooning may occur were

included. Instead, we hypothesise that arterial expansion could actively lead

to compression of the venous volume. Previous, non MR data have found no

change in CBVv in response to hypercapnia [36], but for BOLD calibration

the component of venous compartment is of key interest. Error in estimating

OBVv will lead to erroneous estimation of CMR02 change and could have a

great impact on cerebrovascular modelling.



7.3. Conclusions 157

7.3 Conclusions

The studies presented in this chapter show applications of the LL-FAIR

technique. It has been shown that the qualitative measurements of relative

changes in cerebral blood flow and arterial cerebral blood volume can be ac-

quired in a significantly reduced time in comparison to traditional ASL tech-

niques. Averaging over LL-EPI readout pulses (five for CBF and four for

CBVa) results in sufficient signal-to-noise ratio in a single shot acquisition.

Time courses and their characteristics were assessed for two durations of vi-

sual stimulus. Future work is suggested to perform a multiple-length stimuli

in order to find possible dependency. Optimisation of LL-FAIR technique for

single shot acquisition can also be performed at the utra-high field where the

SNR is increased.

This chapter also shows the application of LL-FAIR sequences as a part

of a larger multi-parameter study. The LL-FAIR sequence was used to ob-

tain CBF and CBVa data, and in addition a further GE-EPI acquisition was

used to measure CBVtot to observe visually induced changes in neurovascu-

lar response. Absolute and relative changes were then quantified and various

haemodynamic relationships were addressed and compared against the values

found in the literature. Values obtained for traditional Grubb's constant et

are in reasonable agreement with the power-law relation of CBVtot = CBFo.38,

although our value was slightly lower. Differences may arise because Grubb's

constant was originally measured using PET and will have included very large

vessels. For calibrated BOLD this would lead to an over estimate of venous

volume contributing to the BOLD effect. Many other studies returned dif-

ferent values of Grubb, also suggesting spatial variation of the power-law. In

these studies a broad spectrum of acquired data allowed us to find and discuss

relationships between these three haemodynamic responses in order to better
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understand neurovascular brain functions. Future work will extend the analy-

sis to form voxel-by-voxel maps of the dependencies between CBVtot, CBF and

CBVa in order to better understand spatial and temporal relations between

these haemodynamic responses on visual stimulation.



Chapter 8

Summary

The work described in this thesis was directed towards developing and

improving Arterial Spin Labelling techniques to improve MRI brain function

mapping. It has been shown that ASL methods can find their applications in

medical research, diagnostic medicine as well as in pharmaceutical trials.

In Chapter 5, it was shown that ASL experiments at ultra-high field are

challenging; the discovery of a new artefact (characteristic only to Philips

Achieva MR scanners and termed the Roman Artefact) was one of the biggest

obstacles. To eliminate this artefact, a technique known as Double Acquisi-

tion Background Suppression (DABS) was developed. This technique was then

combined with the PASL FAIR method, and has proven to not only reduce the

influence of the Roman Artefact on images, but also decrease the contribution

of cardiac and respiratory induced physiological noise. It was also proven that

QABS, by reducing physiological noise at source, has statistically surpassed

the RETROICOR method for post-processing removal of physiological noise.

Potentially, DABS can be combined with any ASL labelling sequence, thus re-

moving static tissue signal and maintaining its sensitivity to inflowing blood.

Simultaneous acquisition of a second stack of high CNR images can provide

additional BOLD contrast data or simply be used as a tool for improved re-
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alignment of background suppressed images.

The use of the ASL FAIR technique continues to be the core technique

for all the experiments throughout this thesis. In Chapter 6, the advantages

of combining Look-Locker sampling method with ASL labelling over the tra-

ditional, single TI, FAIR acquisition in quantifying CBVa, are outlined. It

was confirmed, that both arterial and arteriolar transit times (~ and 8, re-

spectively) change on activation and vary on a voxel-to-voxel basis. Although

Look-Locker sampling usually requires a complicated quantification process,

this work has introduced and verified a simplified model for accurate estima-

tion of CBVa. LL-FAIR significantly reduces the acquisition time in compar-

ison with an arduous approach of sampling at many TIs separately, as in the

tradition FAIR method.

LL-FAIR can be modified for sensitivity to either CBVa or CBF, therefore

it is an excellent tool to study multi-parameter haemodynamics. Chapter 7

assesses the relative changes in arterial blood volume (~CBVa) and blood

flow (~CBF) in response to visual stimuli. The reduction of the acquisition

time over a traditional FAIR technique is emphasised. Qualitative (perfusion

weighted) images are obtained from co-adding several LL-EPI readout pulses

to significantly increase SNR, making LL-FAIR technique a good candidate for

single-trial studies. The second study combines quantitative measurements of

CBVa, CBF, and CBVtot. These data are used to estimate Grubb's constant

and to show the flexibility of this method and possibility to extract important

information about relationships between these three haemodynamic responses.

Future work will continue the analysis of haemodynamic responses, CBVa,

CBF, and CBVtot, mapping the spatial variability in Q, QTA and QTA on a

voxel-by-voxel basis. Further studies will pursue a more clinical direction, ap-

plying ASL methods in diseased patients with altered cerebral blood volume

or perfusion. Also research of comatose patients could benefit from application
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of a fast acquisition techniques (patients in a comatose state frequently experi-

ence involuntary spastic muscle movements) in assessing basic brain perfusion

and haemodynamic responses.



Glossary

AIF

ASL

BBB

BOLD

CASL

CE-MRA

CBF

CBV

CBVa

onv.;
CBVv

COW

CMR02

CPMG

CSf

CTA

Arterial Input Function

Arterial Spin Labelling

Blood-Brain Barrier

Blood Oxygenation Level Dependent

Continuous ASL

Contrast Enhanced MRA

Cerebral Blood Flow

Cerebral Blood Volume

Cerebral Blood Volume (arterial)

Cerebral Blood Volume (total)

Cerebral Blood Volume (venous)

Circle Of Willis

Cerebral Metabolic Rate of Oxigen (02)

Carr-Purcell Meiboom-Gill

Cerebro-Spinal Fluid

Computed Tomography Angiography

DABS Double Acquisition Background Suppression

DSA Digital Subtraction Angiography

DSC-MRl Dynamic Susceptibility Contrast MRI

EPI Echo Planar Imaging

FAIR Flow-sensitive Alternating Inversion Recovery
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FID

FISP

FLASH

FOCI

FT

FWE

GE-EPI

GRASE

HRF

LL-EPI

LL-FAIR

MCA

MTT

MRA

MRI

MT

NMR

PASL

PC-MRA

PCASL

PET

PIQORE

PW

RA

RARE

RF

SAR

SCM

Free Induction Decay

Fast Imaging with Steady-state Precession

Fast Low Angle SHot

Frequency Offset Corrected Inversion

Fourier Transform

Family Wise Error

Gradient Echo EPI

GRadient And Spin Echo

Haemodynamic Response Functions

Look-Locker EPI

FAIR with Look-Locker EPI readout

Middle Cerebral Artery

Mean Transit Time

Magnetic Resonance Angiography

Magnetic Resonance Imaging

Magnetisation Transfer

Nuclear Magnetic Resonance

Pulse ASL

Phase Contrast MRA

Pseudo-Continuous ASL

Positron Emission Tomography

Proximal Inversion with a Control for Off-Resonance Effects

Perfusion Weighted

Roman Artefact

Rapid Acquisition with Refocused Echoes

Radio Frequency

Specific Absorption Rate

Step-wise Compartmental Model
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SE-EPI

SNR

SPECT

Spin Echo EPI

Signal-to-Noise Ratio

Single Photon Emission Computed Tomography

SPMMRC Sir Peter Mansfield Magnetic Resonance Centre

STAR Signal Targeting with Alternating Radiofrequency

TE

TI

TILT

TOF
TR

VERVE

Echo Time

Inversion Time

Transfer Insensitive Labelling Technique

Time-Of-Flight

Repetition Time

VEnous Refocusing for Volume Estimation
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