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ABSTRACT

A Shack Hartmann wavefront sensor is used to detect the distortion of light in an

optical wavefront. It does this by sampling the wavefront with an array of lenslets and

measuring the displacement of focused spots from reference positions. These

displacements are linearly related to the local wavefront tilts from which the entire

wavefront can be reconstructed. In most Shack Hartmann wavefront sensors, a CCD is

used to sample the entire wavefront, typically at a rate of 25 to 60 Hz, and a whole

frame of light spots is read out before their positions are processed. This results in a

data bottleneck. In this design, parallel processing is achieved by incorporating local

centroid processing for each focused spot, thereby requiring only reduced bandwidth

data to be transferred off-chip at a high rate. To incorporate centroid processing at the

sensor level requires high levels of circuit integration not possible with a CCD

technology. Instead a standard 0.7J..lmCMOS technology was used but photodetector

structures for this technology are not well characterised. As such characterisation of

several common photodiode structures was carried out which showed good

responsitivity of the order of 0.3 AIW. Prior to fabrication on-chip, a hardware

emulation system using a reprogrammable FPGA was built which implemented the

centroiding algorithm successfully. Subsequently, the design was implemented as a

single-chip CMOS solution. The fabricated optical centroid processor successfully

computed and transmitted the centroids at a rate of more than 2.4 kHz, which when

integrated as an array of tilt sensors will allow a data rate that is independent of the

number of tilt sensors' employed. Besides removing the data bottleneck present in

current systems, the design also offers advantages in terms of power consumption,

system size and cost. The design was also shown to be extremely scalable to a

complete low cost real time adaptive optics system.
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CHAPTER!

INTRODUCTION

1.1 ADAPTIVE OPTICS

Since Galileo pointed his telescope to the heavens some 400 years ago, man has been

trying to see further and further into the stars and in greater detail. The fundamental

limit of resolving the images is known as the diffraction limit and is governed by the

diameter of the lens used. However it was observed that as larger telescope lenses

were used, the astronomical images did not get any sharper when the lenses exceeded

about 20cm in diameter [Angel 2000]. There was something distorting the images in a

seemingly random manner. This was the air around us. Variations in temperature in

the atmosphere cause random fluctuations in wind velocity and hence, changes in the

refractive index [Tyson 1998]. This leads to distortion in the images obtained.

Fortunately there was something we could do about it and it is called adaptive optics.

Adaptive optics (AO), which has been heavily developed over the last 30 years,

allows automatic compensation of atmospheric systems. It deals with the control of

light in a real-time closed-loop fashion and is made up of three fundamental

components, the wavefront sensor, the control computer and a corrector element such

as a deformable mirror. The wavefront sensor acts like the eyes detecting light from

the object of interest: such as an astronomical object or a satellite, and transducing the

intensity information of the wavefront into phase information of the aberration in the

wavefront. The control computer then calculates the necessary changes required to

correct this aberration, and passes this on to the corrector or the deformable mirror

where these changes are made. Figure 1.1 shows the components of a typical adaptive

optics system as used in a telescope [O'Byrne 1996]. Often a tilt-tip mirror is used to

rapidly remove beam wander in the incoming beam of light while the deformable

mirror performs the higher order corrections.
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Chapter 1

,,1/
-.- Star/1"

Telescope

Figure 1.1 A typical adaptive optics system with its fundamental components

highlighted [O'Byrne 1996]

The most widely used wavefront sensor in adaptive optics is the Shack-Hartmann

[Platt 2001] and currently with most of these systems a CCD is used to sample the

wavefront and a frame grabber is used to acquire and digitise the image before it is

transferred to a PC for reconstruction of the wavefront. The bandwidth of these .AO

systems is often limited to some tens of Hz [Nirmaier 2003]. Integration of these

systems with processing at the detector level will reduce the bandwidth of the data to

be transferred off-chip thus allowing fast real-time wavefront detection and correction

and is the topic of this research. Furthermore, integration of the wavefront sensor with

wavefront reconstruction will reduce the size and cost of the system even further;

re~lising the concept of a System-on-a-Chip (SoC).
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Chapter 1

Adaptive optics has traditionally been known for its role in compensating wavefront

distortions for astronomical applications. The main reason for this is the cost of the

-key elements of an adaptive optics system - deformable mirrors, wavefront sensors

and control systems requiring high-speed computers. AD systems with a reasonable

bandwidth (greater than a few Hz) were extremely expensive, with a component cost

of >£105 [Munro 1999]. Applications of adaptive optics however are not limited to

astronomy or defence initiatives and a number of potential applications are surfacing

which will benefit from some form of cheap, fast, adaptive optics systems. These

range from laser communications, to medical imaging of the retina, to industrial

inspection to the development of more efficient lasers as well as underwater imaging

devices and better microscopes. Basically adaptive optics can be used wherever light

passes through a distorting medium. Section 1.2 will cover some of the application

areas where an adaptive optics system can be applied. In Section 1.3 the concept of

wavefront sensing is described paying particular attention to the mechanics of a

Shack-Hartmann wavefront sensor and how integration will remove the bottleneck in

traditional CCD systems. The process of detecting a centroid which is a fundamental

component of a Shack-Hartmann wavefront sensor is covered under Section 1.4.

Section 1.5 and 1.6 will then review the theory behind photodetection and the possible

implementation structures for this. Section 1.7 summarises the chapter while Section

1.8 will detail the layout of the rest of the chapters.

1.2 APPLICATIONS

In addition to system integration, the development of new low-cost technologies such

as Micro-Dpto-Electro-Mechanical Systems (MDEMS), liquid crystal wavefront
,

'correctors and micromachined deformable mirrors [Anderson 1999, Hatcher 2001,

Vdovin 1997] will further open up new areas of applications. Some of the key

. applications for an adaptive optics system are discussed in the following subsections.

1.2.1 ASTRONOMY

The' field of astronomy gave birth to the technique of adaptive optics and is widely

used in correcting the imaging capabilities of ground-based telescopes. The image
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Chapter 1

quality of all ground-based telescopes suffers from atmospheric turbulence, which is

the fundamental reason for placing the Hubble Space Telescope in space and the fact

, that ground-based telescopes are built high in the mountaintops with clear air regions.

The spatial resolution of uncompensated telescopes can be more than 10 times better

on mountains than at sea level [Tyson 2000].

The structure and statistics of turbulence as well as its corresponding effects can be

described by a model by Kolmogorov [Tyson 1998]. The effect of this turbulence is to

cause high spatial frequency beam spreading, low spatial frequency beam wander, and

intensity variations which limits the ability of telescopes to resolve fine details. The

level of turbulence at a particular site can be described by a parameter introduced by

Fried called the Fried coherence length, ro' [Fried 1965] and is the maximum diameter

of the aperture that can be used for collection of the wavefront before atmospheric

distortion seriously limits its performance. This parameter defines the limit of the

achievable resolution without compensation, as shown in Figure 1.2 by the sketch of

the typical point spread function of a star being imaged by an astronomical telescope.

The Fried coherence length is -2cm under poor seeing conditions to -20cm under

good seeing conditions [Mansell 2000]. Figure 1.3 shows the uncompensated and

compensated image of a binary star as taken at the Starfire Optical Range [Air Force

Research Laboratory Directed Energy Directorate 1997]. With compensation, the

image halo or beam spread, as in Figure 1.2, has been corrected for and the two

distinct stars of the binary star k-Peg can be discerned.

Image halo

Image core

Figure 1.2 Beam spread due to atmospheric turbulence limits the resolution for

an aperture of diameter D
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Chapter 1

Figure 1.3 Uncompensated (left) and compensated (right) images of the binary

star k-Peg as taken by the Starfire Optical Range [Air Force

Research Laboratory Directed Energy Directorate 1997]

For adaptive optics to work, the aberrations that are caused by the turbulence have to

be measured faster than they can change. This is given by the Greenwood frequency

fc; which is strongly dependent on the velocity of the wind, and can range from tens to

hundreds of hertz under fair viewing conditions [Tyson 2000]. Another important

factor to consider in the design of atmospheric adaptive optics systems is the

isoplanatic angle eo, which determines the maximum angle that we can look away at

our object point and still measure the correct wavefront [Tyson 2000]. Because the

isoplanatic patch for the atmosphere is so small, only a tiny fraction of the sky will be

near suitably bright stars that can serve as reference beacons. A way of overcoming

this is to produce artificial guide stars using powerful lasers to illuminate the sky. Two

types of artificial guide stars exist. One using Rayleigh scattering of ultraviolet or

visible light illuminates the sky at a height of 5 to 15 kilometres in the atmosphere.

The other uses resonant scattering of light from a layer of sodium atoms that sits in the

upper mesosphere at about 90 to 100 kilometres in altitude. The second scheme has

the advantage of putting the reference beacon higher, thus sampling a larger portion of

the path oflight from a celestial object in space to a telescope on Earth [Olivier 1999].

The disadvantage is that it is more expensive and requires laser at a specific

wavelength of 589nm for excitation of sodium atoms. An emerging technique called

Multi-Conjugate Adaptive Optics (MCAO) which uses several guide stars and
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wavefront sensors allows the field of view to be extended and could overcome the

disadvantage of having to use artificial guide stars [Berkefeld 2001].

Besides atmospheric imaging, underwater imaging and fluid mechanics [Neal 1993]

will also benefit from the field of adaptive optics. And just as how the advancement of

lasers, imaging devices and optical materials has pushed the frontiers of the field of

adaptive optics for astronomy, the theories and techniques developed for the

correction of atmospheric turbulence is directly applicable to that of other non-

astronomical applications enabling their rapid development.

1.2.2 OPHTHALMOLOGY

Imperfections in the cornea and the eye leads to refractive errors which causes image

blurring. This gives rise to long and short sightedness which needs correction with

glasses or contact lenses. It is now possible to perform these corrections through eye

surgery. Laser-Assisted In-Situ Keratomileusis, or LASIK as it is commonly known,

is the procedure of reshaping the cornea with a laser beam to correct for these errors.

Typically LASIK corrects for low-order aberrations and in the course of reshaping the

cornea to correct these, refractive surgeries can inadvertently increase higher-order

aberrations. A wavefront sensor can be used to measure these higher-order aberrations

and to allow doctors to have a more detailed and quantitative view of the topography

of the cornea before it is operated upon. The first commercial ophthalmic Shack-

Hartmann aberrometer, the Complete Ophthalmic Analysis System (COAS),

manufactured by WaveFront Sciences, Inc. became available in early 2000 and

incorporates a CCD-based- Shack-Hartmann wavefront sensor [Salmon]. The h~man

eye is a non-static optical system and the corrections need to be done at a bandwidth

of at least several hundred Hz [Nirmaier 2003]. Real-time wavefront correction in the

human eye will also allow a better diagnosis of eye diseases like the common

glaucoma and will allow the development of the next generation of customised

wavefront-guided contact lenses [Thibos 2003].

6
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1.2.3 BEAM QUALITY CONTROL

The beam quality and output power of lasers can be degraded by optical aberrations

within the laser resonator [Kudryashov 2002]. Adaptive optics allow the correction of

these aberrations using either intracavity or extracavity control of the beam.

Intracavity control involves using an adaptive mirror as one of the end mirrors of the

laser resonator as shown in Figure lA.

Adaptive mirror

Figure 1.4 Intracavity laser beam correction [Applied Optics Group; Imperial

College]

Intracavity control is able to influence the geometry of the output modes and stabilise

the output energy. Also the output parameters of the beam can be changed without the

need to reconstruct the entire cavity or altering the power supply block which is costly

and time consuming. Intracavity beam control will also aid in the generation of beams

w~th a super-gaussian distribution [Cherezova 1997], which has lower side lobe

intensities than a typical Gaussian beam and consequently, a reduction in higher

spatial frequencies and a higher intensity profile. This is very attractive for industrial

applications.

For lower orders of aberration, extracavity control is easier to implement. Extracavity

correction involves performing correction outside the cavity of the resonator.

Extracavity control will allow beams to be accurately focused on a sample as well as

maintaining beam quality over long distances. For instance, extracavity control will

also -be used on the Laser Interferometer Gravitational-Wave Observatory (LIGO)

system for the detection of gravitational waves [Mansell 1999]. Gravitational waves

are produced by events such as collapses, explosions or collisions of celestial objects

and its observation will allow a better view of the universe and its beginnings. They

are less attenuated than electromagnetic waves like radio waves but the predicted

7
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magnitudes of such waves are extremely small. As such very sensitive means of

detection are necessary to detect these waves and typically laser interferometry with

large kilometre sized arms is used. It is necessary to maintain the beam quality and its

coherence over the length of the arms making adaptive optics necessary.

Another field that has received a lot of attention lately is that of free space optical

communications which will allow high-speed transmission of large bandwidths of

data in the order of gigabits and without the need for cables [Weyrauch 2002]. The use

of highly collimated laser beams will ensure the security of the communication. Air

flow and temperature gradients at ground level will degrade the quality of the

communication which can be improved with the use of some form of wavefront

correction. However limitations like scintillation, weather, need for line-of-sight and

sun-blindness needs to be addressed. In free-space optoelectronic interconnects, a key

challenge is maintaining precise alignment of the opto-mechanical system, which

requires high tolerances of optical components and opto-mechanics. Correcting any

misalignment dynamically using adaptive optics will help reduce the specifications

and tolerance requirements of the opto-mechanical system and improve the

cost/performance trade-off [Gourlay 2000].

In laser fusion, pulse shaping and precision focus of the high-energy lasers involved

will ensure the quality of the laser pulse as it goes through the amplification process

and will allow safe testing of nuclear devices as well as aid fusion energy research

[Metrologic Instruments Inc.]. Industrial applications of laser beam control include

laser welding and cutting [Haferkamp 1993]. For pulse piercing technology using

deformable mirrors, the piercing time can be reduced and for laser cutting technology

the thickness of high-quality cutting can be increased. Adaptive optics was used to

laser cut thicknesses up to 16 mm in mild steel without decrease of the cut surface

with a thickness increase by maintaining focus of the laser beam [Geiger 1996].

Commercially, adaptive optics can also be applied to optical data storage such as in

CD drives.

8
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1.2.4 MICROSCOPY

In microscopy, an adaptive optical system can aid in the sensing and correction of

aberrations due to imperfections and misalignment in components and the mismatch

of refractive indices between the media and the sample to be observed [Booth 2002a,

Booth 2002b]. For instance, in a confocal microscope a pinhole is used to block out

light from the specimen that are not within the focal plane. This allows strong

rejection of multiple scattered light and gives significant improvements in resolution

over conventional microscopes [Diaspro 2001]. Its principle is illustrated in Figure

1.5. By scanning the specimen a full 3D image of the specimen can be built up.

However, even small amounts of spherical· aberration are enough to produce

considerable degradation of the imaging performance in the depth direction. Also,

confocal microscopes are often operated in reflection because aberrations caused by

the refractive index structures within the specimen make imaging in transmission

difficult. This results in a loss of phase information only available in transmission.

The use of an adaptive optical system would overcome this and allow the

compensation of the aberrations introduced by the specimen as well as any

misalignment of optical components in the microscope [O'Bryne 1999, Sheppard

1991].

incident
illumination

beam splitter
pinho e

objective
emission filter

Figure 1.5 Principle of the confocal microscope

In multiphoton fluorescence microscopy, a point source is scanned through the sample

volume and the resulting fluorescence is imaged. The localised excitation provides

high spatial resolution, efficient background rejection, reduced photobleaching and

9
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increased penetration depth in specimens compared to conventional microscopes. It

allows the elimination of the confocal aperture and hence does not limit the number of

photons detected. However specimen induced aberration again reduces the achievable

resolution as well as increases the necessary laser power to achieve imaging.

Aberration correction using feedback will allow the imaging depth to be extended and

increase the efficiency of the system [Marsh 2003].

1.3 WAVEFRONT SENSING

As mentioned previously, an integral part of an adaptive optics system is the

wavefront sensor which quantitatively measures the amount of aberration present in

the wavefront. Wavefront sensing can be either modal or zonal [Tyson 1998]. In

modal sensing the wavefront is expressed in terms of coefficients of the modes of a

polynomial expansion each representing one of the known aberrations (e.g. tip, tilt,

defocus, astigmatism, coma etc.), whose magnitudes are measured separately. Current

modal sensors can only sense low-order aberrations. In zonal sensing the wavefront is

divided into a number of zones, and the slope or the curvature of the local wavefront

is measured in each zone. The Shack-Hartmann wavefront sensor is one such sensor.

1.3.1 SHACK-HARTMANN WAVEFRONT SENSOR

A Shack-Hartmann wavefront sensor uses an array of microlenses 1 to sample the

optical wavefront as shown in Figure 1.6. If the incident beam had a flat wavefront,

the light failing on each lenslet would be focused at the centre of each tilt sensor. If

instead the wavefront is not flat but distorted, the spots obtained by the lenslefs will

deviate from the centre and by measuring this deviation, the local wavefront tilts are

obtained. To remove alignment errors sometimes a reference plane wave beam is used

and the deviation is then measured from the reference positions obtained [Tyson

1998].

I The Shack-Hartmann wavefront sensor is an improvement over the basic Hartmann test which uses an

array of hard apertures instead of the lens let array. The Shack-Hartmann samples the entire wavefront

and has the advantage of better photon efficiency. The disadvantage is in the cost of the microlenses

and the difficulty in the optical alignment.
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Array of tilt sensors
measuring
displacement of spots

turbulence

Lenslet
array

Figure 1.6 Shack-Hartmann wavefront sensor

Traditional CCD systems for Shack-Hartmann wavefront sensing use the CCD to

sample the entire wavefront and entire array of spots need to be read out before they

are processed leading to a data bottleneck. This bottleneck is illustrated in Figure 1.7

in comparison with our proposed system, where each local wavefront tilt is measured

by a local tilt sensor with its own detector array and local centroid processing. The

parallel readout and processing of the raw data into reduced bandwidth centroid data

will allow faster frame rates to be achieved. In addition, the array of tilt sensors can be

linked to a matrix processor to reconstruct the estimate of the complete wavefront.

Once calculated, the reduced bandwidth wavefront data can then be transferred off-

chip. Hence, as a result of parallel processing, the data rate is independent of the

number of tilt sensors employed.

Local centroid

...

I~

u
Serial Register

Output
amplifier

Detector~
array

wavefront reconstruction

Large
bandwidth

analogue data

Reduced
bandwidth

wavefront data

(a) Traditional CCD systems (b) Wavefront sensing with local
centroid processing
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Figure 1.7 Integration of on-chip centroid processing to remove data bottleneck

Assuming that at each tiny local portion of the wavefront the only aberration is the tilt,

the local wavefront tilt can be linearly related to the displacement of the centroid

position from its centre or reference position, as illustrated in Figure 1.8 and given by:

Tilt = dW = ~ (1.1)
dx f

where x is the displacement of the centroid and f is the distance of the sub aperture

from the focal or measurement plane and f » maximum dW over the entire

subaperture. From these local wavefront tilts, the entire wavefront can be

reconstructed and this will be covered further in Chapter 5.

~etaperture
wavefront

dX lspot displaced

f

mask focal plane

Figure 1.8 Relationship between local wavefront tilt and displacement of the

centroid (for a single lens let of Figure 1.6)

The size of the sub aperture required for correct measurement of the wavefront rs given

by the distance over which the subaperture can pass a coherent beam, i.e. over which

the optical phase distortion is highly correlated. In the case of atmospheric optics, this

is given by Fried's coherence length, ro' which has a dependence of ')..615 with

wavelength, ')..,and as such astronomical adaptive optics is usually performed in the

infrared. Another factor to consider is the number of degrees of freedom required, that

is, the number of actuators in the wavefront corrector, and this is closely related to the

number of subapertures required. There should be roughly one actuator corresponding

12
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to each patch of sky equal in size to Fried's coherence length [Mansell 2000], so the

number of subapertures required, N, will be:

N- (D/ro)2 (1.2)

where D is the size of the entire pupil or wavefront. Hence the longer the wavelength

the lower the complexity.

The Shack-Hartmann wavefront sensor is simple to construct, robust with no moving

parts, compact and is by far the most common and established wavefront sensor. It

offers high accuracy, reproducibility and a wide dynamic range [de Lima Monteiro

2002]. The work done in this thesis focuses on the use of a Shack-Hartmann

wavefront sensor because of the high level of integration possible but it is by no

means the only option open to designers of adaptive optic systems. The following

section will briefly describe the other wavefront sensing techniques available and why

these are less suitable for the purpose of this work.

1.3.2 OTHER WAVEFRONT SENSORS

The choice of wavefront sensor is very much dependent on the application. Several

other common wavefront sensing techniques include interferometers, phase diversity,

curvature wavefront sensors and the relatively new pyramid wavefront sensors.

Interferometric methods include the lateral shear interferometer which measures the

wavefront slope or the first derivative of the phase and the point diffraction

interferometer which measures the phase of the wavefront directly [Tyson 1998]. The

lateral shear interferometer works by splitting the beam and introducing a lateral shear

on one arm and measuring the difference or interference between these two beams.

The point diffraction interferometer also generates its own reference but does this by

capturing a small part of the beam and expanding this as a plane wave reference. In

general, interferometric methods of wavefront sensing require monochromatic, highly

coherent sources to work making them unsuitable for certain applications such as

astronomical imaging. They are also vibration sensitive, expensive and wavefront

extraction is complicated so real-time analysis is difficult. Unlike the Shack-

Hartmann, they suffer from phase ambiguity of phases exceeding 21t and they cannot

be used for pulsed sources. However, the point diffraction interferometer for example,

13
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performs better than the Shack-Hartmann wavefront sensor in strong scintillation

where phase discontinuities make the use of linear reconstruction difficult.

Another technique called phase diversity retrieves the phase from the analysis of two

simultaneous images, one in-focus and the other defocused [Jefferies 2002]. This

method has the advantage of not having any particular requirement on the optical

beam and can be used with greatly extended sources. But the algorithm is non-linear

and hence slow so it is often used as a post-processing technique for measuring

aberrations and deblurring images.

The curvature wavefront sensor works by measuring the irradiances at two planes at

the same distance but on opposite sides of the focal point [Roddier 1998b]. By solving

the irradiance transport equation that relates the irradiances on the two planes, the

curvature of the wavefront can be obtained. They have the advantage of being cheaper

and more sensitive than the Shack-Hartmann. However, the equation is non-linear and

its solution is not trivial [de Lima Monteiro 2002], and they are difficult to implement

for systems that require large number of degrees of freedom such as in highly

segmented telescopes [Jefferies 2002] and are only suited for low order systems. On

highly segmented mirrors they could still be used for the tip/tilt alignment or the

alignment of the primary mirror segment. In confocal microscopy, curvature sensing

does not work~well due to strong diffraction effects.

Pyramid wavefront sensors work by focusing the wavefront onto the central vertex of

a glass pyramid which splits the beam into its four parts with the four edges acting

like four Foucault knife edge tests and the images contain information of the
...

aberration present in the wavefront. Pyramid wavefront sensors offer higher

sensitivity than Shack Hartmann wavefront sensors and also allow variable gain which

makes them useful in wide field adaptive optics. However the fabrication of the

pyramids is no simple matter. The quality of the edges between the faces of the

pyramids and the size of the roof at the apex of the pyramid are critical [Canadian

VLOT Working Group 2003]. Manufacturing of single pyramid structures using the

. classical figuring and polishing technique is a time consuming process and the

production of a large number of identical pyramids is still being developed.
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A new development, the hybrid curvature and gradient sensor enables one to obtain

information on the local curvature as well as the local wavefront tilts or gradients

while maintaining the simplicity of the Shack-Hartmann wavefront sensor [Paterson

2000]. The sensor uses quad cells placed at the foci of an array of astigmatic lens lets

and the curvature signal is obtained from the difference of the pair of diagonal

elements of the quad cell. Experimental results of this design have yet to be published.

Several factors make the Shack-Hartmann wavefront sensor the choice for an

integrated wavefront sensor not least of which is that it requires only simple

processing in finding the spot positions which can easily be integrated at the sensor

level to reduce the amount of data to be sent off chip. Lower resolution imagers can be

used in finding the centroid position, instead of obtaining complicated fringe data in

interferometric methods for example. The linear relationship between the spot

displacement and the local wavefront tilt also means a simple linear reconstruction

technique can be used. This translates to fast real-time correction of wavefront

aberrations. Integration could also lead to a reduction in size and costs in many

applications.

1.4 CENTROID DETECTION

The fundamental process performed in a Shack-Hartmann wavefront sensor is the

detection of the optical centroids. Optical position-sensitive detectors (PSDs) detect

the centroid position of a light spot projected on their surface and can be divided into

two broad categories namely lateral-effect PSDs and multi-element PSDs [Sharman

2002]. Besides adaptive optics, optical position sensing has numerous commercial,

industrial and laboratory applications. In the manufacturing process position-sensitive

devices are used to characterize lasers, align optical systems, and calibrate and analyze

machinery. PSDs are also used as triangulating sensors in various domestic appliances

for switching the appliances on and off by detecting the presence of a body. They are

also used in the feeding of paper in fax machines and printers and in the reading of

disc tracks in CD players.
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1.4.1 LATERAL EFFECT PHOTODIODES (LEP)

LEPs, as shown in Figure 1.9 (c), consist of a single resistive sheet formed by a p-n

junction. The photogenerated charge carriers in the silicon move towards the

appropriate electrode where the photocurrent at each electrode is inversely

proportional to the distance between that electrode and the centroid of the incident

light beam. Lateral effect PSDs are usually operated under reverse bias. Different

geometries and positioning of the electrodes in lateral effect PSDs will give rise to

tradeoffs in terms of linearity, sensitivity and resolution [Wang 1989].

A lateral effect PSD requires large uniform sheet resistance for linear operation, which

is not readily available in a standard CMOS process making integration with circuitry

difficult [de Lima Monteiro 2002] and hence unsuitable for the aims of this work.

However, the performance of the LEP shall be compared with other PSD structures in

Section 1.4.3.4.

1.4.2 MULTI·ELEMENT PSD

Multi-element PSDs consists of separate active areas. The simplest two-dimensional

multi-element structure would be the quad cell, shown in Figure 1.9 (a). Larger

structures are termed multi-pixel arrays. Like LEPs, quad cells have simple readout

schemes. The position of the incident spot is determined by the comparison of the

signals from the four quadrants as illustrated in Figure 1.9(a) and described below:

x = [(B+D) - (A+C)] / [A+B+C+D]

Y=_[(A+B) - (C+D)] / [A+B+C+D] (1.3)

B
/ <,

-, ,)

I

C D

(a) Quad cell
I

(b) Multi-pixel array Cc)Lateral Effect Photodiodes CLEP)

Figure 1.9 Different position sensitive detector (PSD) structures
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For multi-pixel arrays, the position of the spot can be found either by simply finding

the maximum signal in the array, and this is termed binary position sensing [Makynen

1998], or by finding the normalized first order moment of the signals of all the pixels

in the array [Hom 1986] and this is given by:

v- IC(x) = LJ xn n •LIn'
~r I

C( ) - LJ yn n •y - ~ ,
LJIn

(1.4)

where rxnis the displacement in the x-direction of pixel n

rynis the displacement in the y-direction of pixel n

In is the light (photocurrent) level of pixel n

This essentially finds the weighted average of the different elements. Finding the

weighted average offers the advantage of subpixel accuracy at the expense of more

complicated processing. Higher order moments can also be found. The second order

moment for example can be used to give the axis of least inertia or orientation of the

imaged object [Standley 1991]. In the field of computer vision, the centroid and

higher order moments are often used for character and object recognition [Cash 1987,

Dudani 1977, Low 1998] as well as image compression [Karadimitiou 1998].

Other methods for computing a centroid from multi-pixel arrays also exist, such as the

median-sum method used by the students of Johns Hopkins University [Dickinson

2003] for tracking objects, which was motivated by the Robocup competition where

robots are built to play soccer. In this method, the row and column currents are

summed and the median of these currents represent the centroid. This technique has

.the advantage of not requiring complex mathematical processing but is only accurate

when a large number of pixels are used. Also this technique does not provide subpixel

accuracy.

Another technique for determining the centroid of an object is by fitting a suitably

defined PSF to a series of images [Fosu 2004]; a Gaussian function for stellar images

for example. This method can only be used when the image is spread over more than

four pixels but is said to give better accuracy than the moment analysis method.

However, it is computationally intensive and complex making integration and real-

.time operation difficult.
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1.4.3 MULTI-ELEMENT PSD PERFORMANCE

Pixelated position sensitive devices are typically evaluated in terms of linearity,

positional sensitivity and positional range. These are affected by the detector size', the

cell density i.e. the number of cells for a given detector size, the gap between the cells

and the intensity profile of the spot. Consider a uniform circular beam incident on a

bi-cell, which is basically a 2-cell device which measures position in 1dimension. The

results of sweeping the beam of varying sizes across the cells are simulated and shown

in Figure 1.10. This case is then extended to a 4-celllinear array and the results are

shown in Figure 1.11. Note that for the simulations, truncation of the beam in the

vertical direction is ignored. That is the height of the cells are infinitely long and the

problem is limited to one dimension. These results shall be discussed in terms of spot

size, cell density and beam intensity profile.

A

-1

Shaded area = r2 cos(;{)- x~r2- x2

where r is the radius of the beam and x is the lateral displacement
Response of bkell PSD for different spot sizes

O.B

0.6

0.4

~ 0.2
c:
o
Cl.

~ 0
CD
.~ -0.2
.0

-0.2 0 0.2 0.4 0.6 O.B
spot position

Figure 1.10 Response of a bi-cell PSD for spot sizes of different radius, r

.2 Detector size is the size of the entire array whereas the cell size is the size of a single element or pixel

in the array.
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-1 -0.5

Figure 1.11 Response of a 4-celllinear PSD for spot sizes of different radius, r

1.4.3.1 Spot size

From Figures 1.10 and 1.11, we can see that when a spot is smaller than the size of a

cell or pixel and it moves completely into one cell tracking is lost, which results in a

step-like response [Sharman 2002]. While tracking is still achieved, non-linearity for

spot sizes smaller than the detector size is due to the circular nature of the beam. Non-

linearity for spot sizes larger than the detector is due to the truncation of the beam as it

moves off the array. Maximum linearity and positional range is obtained when the

spot size is the size of the .entire detector as shown in Figure 1.10 for r = 1. However,

the spot size is usually made smaller for two reasons [de Lima Monteiro 2002]. For

large displacements, the beam may impinge on neighbouring cells leading to optical

crosstalk. Secondly, the positional resolution or positional sensitivity is higher for

smaller spot sizes because for a given displacement a small spot produces a much

bigger differential signal.

Response of a 4-cell linear array

0.8

0.6

0.4

~ 0.2
c
o
Cl.

~ 0
Cl

~ -0.2

-0.4

-0.6

-1 ~~_-'---__L_--'---____J.__-'----'---'=:L:==::JL==:::::J
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

spot position
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1.4.3.2 Cell density

The larger the cell density the better the linearity [de Lima Monteiro 2002]. This can

be seen from the differential and double differential of the PSD response of a bi-cell

and 4-cell linear array in Figure 1.12 (b) and (c). The downside is that the positional

sensitivity is poorer as indicated by the slope of the PSD responses. Also larger cell

density means more complicated processing and longer processing time. As we have

seen, positional sensitivity can be improved by making the spot size smaller. There is

a trade-off between linearity and positional sensitivity. Multi-pixel arrays are able to

deal better with smaller spot sizes, and likewise for a given spot size of a few pixels,

the larger the array the larger the positional range achievable.

0.8

Response of PSD for differanl cell densily

0.6

0.4

-1 ~~----;:-'::---::'-:--::'::----:~-=,="---::c'-:-'---::':,.......-::::'::-~~ m ~ ru ill 0 ~ M M M
spot position

g: 0.2
g_e 0
o
~ -0.2

(a) Bi-cell and a 4-celllinear array PSD response

X 10-3

·0.4

-0.6

-0.8

Response of PSD for di1rerent cell density

12

10

~ ~ ~ ~ m 0 ~ ~ M M 1
spot position

1.5

Response of PSD for different cell densny

1-2ce1lS I
-4cells

~ ~
tr --; \

.
c

~ 0.5~
Q

.• 0
;;
.~
~ .0,5

·2
-1 -0.8 -0.6 -04 -0.2 0 0.2 ~ 0.6 0.8 1

spo' position

(b) Differential of bi-cell and 4-cell PSD (c) Double differential of bi-cell and 4-

response (Fig. (a)) cell PSD response (Fig. (a))

-1

Figure 1.12 Comparison of a bi-cell and a 4-celllinear array PSD response

-1.5
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1.4.3.3 Intensity profile

The effect of the beam shape and intensity profile also needs to be considered. The

response of a quad cell is only linear over the whole range for a rectangular or square

beam. With a circular beam, linearity is only achieved over the central region of the

quad cell. The situation is even worse for laser beams which have a Gaussian profile

[de Lima Monteiro 2002]. For a Gaussian beam, maximum linearity is not obtained

with a beam the size of the quad cell but of that smaller due to the infinite extent of a

Gaussian beam. With a Gaussian beam incident on a multi-pixel array, typically a spot

size of about 1 to 2 pixels would then be suitable for maximum linearity, sensitivity

and positional range.

1.4.3.4 PSD comparisons

Because of its higher positional sensitivity but lower linearity and positional range

compared to LEPs, quad cells tend to be used more as centring devices than as linear

position sensors where LEPs are more dominant [Makynen 2000]. As a custom

device, the LEP offers fine resolution over a large positional range as there are no

gaps and no problems of loss of tracking when the beam is in a single detector

segment as in the case of multi-element PSDs. On the other hand, quad cells have

lower noise and a faster response than LEPs and aparticular disadvantage of LEPs is

that it does not cope well with stray or background light whereas discrete detectors are

able to rel1)0ve this somewhat by applying a threshold.

Quad cells have simple readout schemes but are not very linear. They are designed

primarily for measuring small deviations because the incident beam must impinge

simultaneously on all four sectors of the detector [On-Trak Photonics]. Multi-pixel

arrays have better linearity and positional range at the expense of processing time and

positional sensitivity. They also offer greater flexibility and are able to deal with

multiple spots and non-uniform intensity profiles. Quad cells require the beam to be

defocused in order to achieve sufficient linearity making it susceptible to illumination

fluctuations [Makynen 2000], that is, smaller spot sizes deal better with scintillations

due to atmospheric turbulence. The relative performance of the different PSD

structures can be summarised as in Figure 1.13.
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Increasing linearity and positional range, decreasing positional sensitivity

I

- 0 t-

(a) Quad cell
I

(b) Multi-pixel array (c) Lateral Effect Photodiodes (LEP)

Figure 1.13 Performance of the different PSD structures

With any multi-element detector, the issue of crosstalk arises and requires mentioning.

There are two possible sources of crosstalk; crosstalk from other elements or cells and

crosstalk from the substrate. Crosstalk from outside the array due to diffused carriers

actually improves the linearity by increasing the signal at the edges and gives the

appearance of larger pixel size at the edges. However, crosstalk from within the array

serves to average the centroid value towards the centre leading to a reduction in

positional sensitivity.

1.4.4 CENTROID PROCESSING

In the previous section it was shown how lateral effect photodiodes CLEP), quad cells

and multi:rixel arrays are used for the purpose of centroid detection. In this section

the processing techniques in computing the centroid from these architectures are

presented. Table 1.1 shows a summary of the work done by other groups capable of

obtaining optical centroids using standard CMOS or BiCMOS processes. Most LEP

systems have the processing performed off-chip because the LEP itself is not usually

fabricated on a standard CMOS process due to the high non-linearity obtained. Turner

[Turner 1994] demonstrated a LEP in standard CMOS with photocurrents measured

externally at a maximum bandwidth of 2.4 kHz. The reported resolution was

approximately 0.25Jlm but with non-linearity at the edges reaching 40%. Centroid

processing for quad cell and multi-pixel array architectures, on the other hand, can be

readily integrated on-chip.
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1.4.4.1 Quad-Cell Centroid Processing

Processing using quad cells are relatively simple requiring only a minimum number of

signals; two from each axis. De Lima Monteiro [de Lima Monteiro 2002]

demonstrated an approach for an integrated Shack-Hartmann wavefront sensor using

an array of 8 x 8 quad cells in a 1.6J..lmCMOS process. The sensor can be read out at a

rate of 3.125 kHz but the current-to-voltage conversion and serial conversion of the

analogue voltages into digital format was performed off-chip and the centroid

computation was carried out on a PC. The resulting operating frequency of 260Hz was

limited by the data acquisition card. Another quad cell centroiding approach, this time

in analogue using a 1.2J..lmCMOS process, by Furth [Furth 1998], integrates the

current-to-voltage conversion on-chip using passive and active loads as well as

differencing circuits which computes the difference between the photocurrents in the x

and y-direction. The differencing circuits consist of double-differential

transconductance amplifiers. Experimental results were not reported. However,

recently, Ambundo and Furth [Ambundo 2002] have incorporated the wavefront

reconstruction on-chip by finding the second derivative of the phase by taking the

difference between the centroid currents of neighbouring quad cells and injecting this

result into a resistive grid which solves this second derivative to obtain the phase.

Normalization allows the centroid computation to be independent of light intensity

and was achjeved using a modified current amplifier to divide the sum of the four

photocurrents in the quad cell. Currently the system has only been simulated and yet

to be fabricated and no performance results were shown.

Charge-coupled devices (CCD) are multi-pixel arrays but when used in a Shack-

Hartmann wavefront sensing system CCDs are typically' used as an arrayof quad

cells with guard row and column pixels between them [Thompson 2002]. Due to the

serial readout nature of CCDs, the entire wavefront has to be sampled and a whole

frame of light spots read out before they can be processed. This results in a data

3 There are applications where the use of more pixels per sub aperture than a quad cell is needed such as

in varying seeing conditions. A multi-pixel array can easily be adapted for such circumstances at the

expense of reduced signal-to-noise ratio and increased computational load.
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bottleneck. Processing of individual light spot positions at the sensor level would

alleviate this problem as only reduced bandwidth data need to be transmitted off-chip.

However, circuit integration on CCDs remains difficult (see Section 1.5.5.1).

1.4.4.2 Multi-Pixel Array Centroid Processing

Processing using quad cells offer limited displacement range and require careful

alignment of the null point of the system [Tyson 1998] as large offsets from the null

point will reduce the dynamic range of the system and lead to significant non-linearity

[Dillon 1999]. Using a multi-pixel array will allow the system to cope better with

varying aberrations and seeing conditions. Efforts into incorporating centroid

computation for multi-pixel arrays at the sensor level can be categorised into two

basic approaches, analogue and digital and several different sub-approaches, as

illustrated in Figure 1.14.

Centroid Processing

Analogue Digital
I

Resistive or
Capacitive

Array

Winner- Take-All
(WTA) Circuit

Thresholding Dedicated
processor

General
purpose

Figure 1.14 Different approaches for optical centroid processing using multi-

pixel arrays
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1.4.4.2.1 Analogue Centroid Processing for Multi-Pixel Arrays

Most multi-pixel array approaches are performed in analogue, using either an

analogue current division method capable of subpixel accuracy, or discrete binary

position sensing techniques 4. With the analogue current dividing method,

photocurrents are divided on a uniform resistive array [Gonnason 1990, Standley

1991] or a linearly varying capacitive array [Pain 2000]. Both effectively compute the

first order moment of the array photocurrents. With the uniform resistive array, the

photocurrent of a pixel is divided on the line and the difference in output currents of

the ends of the resistive line is directly related to the position of the incident light on

the array. With a quadratic resistor line, the second order moment can be obtained and

used to determine the orientation of the object [Standley 1991]. In addition to the

basic resistive line, Deweerth [Deweerth 1992] used a current mirror and differential

transistor pairs to establish feedback allowing the system to continuously respond to

changes in spot position. However, non-idealities and mismatch in these additional

circuitry caused offsets in the system. With the linear capacitive array, the pixel

voltages are sampled onto separate sampling capacitors, the sizes of which are

proportional to the integer row and column addresses, hence giving the inner products

of the centroid computation of equation (1.4).

Binary position sensing effectively uses a form of thresholding technique to reject all

photocurrent levels below a certain threshold level or below the largest signal level in
~

the array or a collection of pixels. Many variations are possible but two commonly

used circuits are the winner-take-all (WTA) circuit [Droste 2002, Nirmaier 2003] or

some form of on-pixel comparator [Bums 2003, Makynen 1998]. Figure 1.15 shows

the basic form of the WTA circuit and its ID vs. VDScharacteristic. A WTA circuit

consists of an array of competing cells with each cell consisting of two MOSPETs M,

and MF. M, senses the input current Ii while MF, if activated, draws the output current

10,

4 Digital centroid computation in this thesis refers to the computation of the centroid from several bits

of digitized pixel values and not from a binary image map such as in the case of binary position

sensing.
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Figure 1.15 Basic topology and operation of a WTA circuit [Droste 2002]

Because all the M, are identical and are gate-connected, they have the same ID vs. VDS

characteristic., The one with the highest input current will generate the highest drain

potential and hence the highest Vos of all the MF, therefore sinking most of the current

source Isrc and shutting off all other MF. The computation is continuous in time and the

winning output encodes the logarithm of its associated input since the M all the MF

are operating in subthreshold [Lazzaro 1988]. Saturation of the pixel is determined by

the saturation of the WTA M, MOSFETs and positional accuracy is limited to that of

a single pixel. With this circuit, a very slow response time (several hundred ms) is

obtained due to the large photodiode capacitance seen at the drain of Ms. The

capacitance seen was reduced by using a regulated cascode configuration. Response

time can be improved further by setting the drain of Ms to a defined value at startup

and by introducing positive feedback into the WTA. But enabling feedback reduces

accuracy of position detection due to mismatches. Nirmaier et al. [Nirmaier 2003]
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introduced an interdigitated topology to the WTA concept by splitting the single WTA

circuit into several groups. This has the advantage of increased robustness against

defective outputs, reduced sensitivity to mismatch and faster response.

For analogue centroid computation utilizing destructive readout such as in the current

division method, or for those utilizing the WTA algorithm, two discrete photodiodes

are needed per pixel. One for the x-centroid and one for the y-centroid. This results in

lower fill factor, sensitivity and a non-linear spatial response. De Lima Monteiro [de

Lima Monteiro 2002] proposed the use of a spiral structure to reduce the non-linearity.

With these architectures, the pixels in each row and column are tied together and the

photocurrents along each row and column are summed so only two sets of current

division or WTA circuits are needed per array, one for each axis, as illustrated in

Figure 1.16. In a CCD this would be equivalent to binning all pixels in the row or

column [Dillon 1999].

Foci1lPoint Phorodctcclor Array Y-8~ts!roam

~

Figure 1.16 Use of two photodiodes per pixel and the summation of

photocurrents along each row and column with analogue centroid

computation [Droste 2002]

Standley [Standley 1991] used a uniform grid of resistors to aggregate the

photocurrents in both the x and y-dimensions, hence eliminating the need for two

photodiodes per pixel. However, this suffers from non-linearity due to the tolerance of

on-chip resistors as well as increased power consumption and thermal noise. It also

required the use of two resistive lines per axis instead of just one. This technique has

limited usage in position sensing because the advantage of increased fill factor and

sensitivity from removing the need of a second structure is lost by the need to
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integrate a resistor at each pixel. However, its use in neural network structures for

vision chips is common as interconnectivity between neighbouring pixels is desired.

Makynen [Makynen 1998] used global threshold current comparison per pixel to

generate a binary image map and off-chip moment calculation of the binary map to

obtain sub-pixel accuracy. Unlike the WTA circuit approach, it is able to deal with

multiple beam spots and it does not require two structures per pixel. However, it does

not deal well with non-uniform intensity profiles due to its binary representation and

the extensive circuitry per pixel leads to low fill factor and sensitivity. With position

sensing using on-pixel comparators, it is possible to use a ramp function of the

threshold value, to obtain a more accurate centroid estimate as well as deal with non-

uniform intensity profiles by obtaining several binary image maps at different

threshold levels [Bums 2003]. However, this requires post-processing and several

readouts of the array.

1.4.4.2.2 Digital Centroid Processing for Multi-Pixel Arrays

Analogue centroid computation offers the advantage of high speed and high functional

density but suffers from lack of flexibility and imprecision due to mismatches and

tight tolerances of components. De Lima Monteiro [de Lima Monteiro 2002] found

that there was significant spatial variation in on-chip polysilicon-array resistance

which leads net only to the shifting of the zero response but also to the slope of the

response curve, as per Figure 1.10. Well structures offer higher sheet resistance but

has greater spatial variation and poorer temperature and voltage coefficients. Also, as

CMOS technology scales, the advantage of speed and functional density of analogue

over digital diminishes.

Digital centroid computation involves the analogue-to-digital conversion of the pixel

values into several bits of data and computing a weighted average of the

photogenerated signals. A generic 256 x 256 pixel array system with an on-chip image

processor has been designed which performs several common image processing

algorithms including centroiding at 250 frames/s [Forcheimer 1993, Forcheimer

1992]. Recently an even more advanced and larger array sized programmable image
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sensor and processor has been developed by the same group [Johansson 2002].

However, in an adaptive optics system such as the Shack Hartmann wavefront sensor,

a large number of tilt sensors are required but the pixel count of each tilt sensor can be

minimal. Nonetheless, the work presented by the group is encouraging because it

shows that it is possible to integrate complex digital circuits alongside a CMOS image

sensor and still achieve low noise.

Another generic structure for image processing is the cellular neural network (CNN)

architecture where each cell (pixel) senses a point of the input image and interacts

with neighbouring cells to perform parallel-processing tasks on the input image

[Roska 1993]. All cells operate in parallel and in continuous time so that high

operation speeds are obtained [Dominguez-Castro 1997]. However, due to the locality

of the connections, global image processing tasks such as centroid detection require

longer processing times, and generic structures in general are not optimised for any

particular tasks.

The approach taken in this work is to integrate dedicated local digital centroid

processing at each subaperture to measure the local wavefront tilt. By performing the

centroid computation of the sub apertures in parallel, the processing speed is

maximised and the amount of data to be sent off-chip is reduced. In addition to an

increase in speed, a single-chip system will have an advantage of reduced system size,

costs and power consumption over multi-chip systems. This work represents the only

dedicated digital centroid processor designed and fabricated to date".

5 However, post-processing of a Shack-Hartmann sub aperture image using artificial neural networks is

capable of providing a more accurate estimate of the centroid location than with conventional linear

estimators (1 SI moment calculation) [Montera 1996].

6 There are digital chips that compute the first, second and higher order moments, e.g. [Hatamian 1986],

but these do not have on-chip photodetection and are not dedicated centroid processors.
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1.5 PHOTODETECTION

When determining the centroid in a given subaperture, the relative light intensities

incident on each pixel in the array needs to be measured accurately. So an

understanding of the mechanisms involved in the photogeneration of carriers is

needed and this section will examine this.

1.5.1 OPTICAL ABSORPTION

When a photon is incident on a piece of semiconductor, there is a

possibility that the photon will be absorbed if its energy is greater than the

bandgap energy of the semiconductor. When a photon is absorbed, a bound

electron in the valence band is excited to the conduction band where it is free to move

randomly or under the influence of an electric field. The excited electron leaves

behind a vacancy, or hole, in the valence band, which is also mobile. Hence an

electron-hole (e-h) pair is generated. The electron-hole pair will then either

recombine, diffuse or get separated by an electric field. Silicon is an

indirect bandgap material so a phonon is required in the optical absorption

process reducing transition probability and making the process strongly

temperature dependent. For crystalline silicon, the bandgap energy, Eg is 1.12 eV

making the cut-off wavelength above which no photons can be absorbed to be Ac -

1.11 !lm7.The optical absorption process can be quantified as follows. The

carrier generation rate gtx) at a depth of x in the silicon must equal the

rate of change of the photon flux <!lex)with x and at the same time proportional to

<!lex)[Bar-Lev 1984] as given by:

g(x) = - d¢ = a(A)¢(x)
dx

(1.5)

where the proportionality constant a(A) (cm") is called the absorption coefficient and

is dependent on the material and the wavelength, A. The solution of this shows an

exponential decay of photon flux with penetration depth as follows:

he 1.24 1.24
7 Energy of a photon, E = hf = -eV = eV ;Cut-off wavelength, Ae = um

Itq A(f.Jl1l) Eg (eV)
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rjJ(x) = T rjJoexp(- ax) (1.6)

where T is the transmission coefficient'' and <1>0 is the photon flux at the surface (x=O).

This then gives a carrier generation rate of:

g(x) = - dx = TarjJo exp(- ax) (1.7)

The absorption coefficients of several common semiconductor materials

and compound semiconductors are shown in Figure 1.17. For wavelengths

exceeding Ac, a becomes negligible and the material becomes transparent to those

wavelengths. For shorter wavelengths, a becomes very large which means photons of

shorter wavelengths get absorbed closer to the surface. The slow increase of a with

photon energy in silicon is due to the fact that Si is an indirect bandgap

semiconductor.

5 4 3 2
-- Photon energy (eV)

1 0.9 O.S 0.7

lx106

a (m+)

1x105 ,
•1
I

lxl04 I

•,

1x 103 -I--..--..,....-r--,--r--r---r--'-r--r-~-..--..,....--.----..--...l..--1
0.2 0.4 0.6 O.S 1.0 1.2 1.4 1.6 1.8

Wavelength (um)

Figure 1.17 Absorption coefficient, a, for various semiconductor materials at

300K [Kasap 2001]

8 The transmission coefficient or transmittance is the ratio of the amount of transmitted light to the

amount of incident light i.e. the fraction of incident photons on the surface that is not reflected. With

antireflection coatings, T=l-R ~ 1,where R is the reflectance.
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Figure 1.17 also shows that different semiconductor materials can be used to detect

incident radiation over different wavelength regions with silicon having a

characteristic wavelength range of about 250 nm to 1100 nm. Visible wavelengths

range from 400nm (blue) to 750nm (red). Typically, blue light penetrates to a depth of

about 0.21lm while red light penetrates more than 101lm. This difference in penetration

depths can be utilized for the design of colour sensors by stacking charge collection

layers at different depths, as pursued by Foveon Inc. in their commercially available

Foveon X3 direct image sensors [Rubel].

The choice of silicon in this work is due to the high level of circuit integration

required and available with the Complementary Metal Oxide Semiconductor (CMOS)

silicon process technology. In the near infrared and infrared, compound

semiconductors like Indium Gallium Arsenide (InGaAs), Indium Antimonide (InSb)

and Mercury Cadmium Telluride (HgCd'I'e) are usually used".

1.5.2 QUANTUM EFFICIENCY AND RESPONSITIVITY

The quantum efficiency and responsitivity of a photodetector is a measure of how well

the device can detect light. Quantum efficiency is defined as the number of signal

electrons generated per incident photon while responsitivity is defined as the ratio of

the photogenerated current to the incident light power falling on the device and they

can be related as follows:

Responsitivity, RA.= Photocurrent generated = Photocharge generated

Incident power Incident Energy

(1.8)
,

. . ngen he 6 RA.
Therefore, the quantum efficiency 1] = - = RA. - = 1.24xlO- -

nine Aq A
(1.9)

9 These types of detectors are called quantum detectors. Thermal detectors like bolometers and

thermopiles are also used for far infrared detection.
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where ngen is the number of electron-hole pairs generated and nine is the number of

incident photons, A is the incident wavelength (m), h is Planck's constant = 6.626068

x 10.34 m2kg/s, c is the speed of light = 3 x 108 mfs, and q is the electron charge = 1.6

x 10-19 Coulombs.

There are various types of photodetector structures that can be implemented in silicon

such as p-n junction photodiodes, Schottky photodiodes, p-i-n photodiodes, avalanche

photodiodes (APD), metal-oxide semiconductor (MOS) capacitors and

phototransistors [Bar-Lev 1984, Sze 1981].

1.5.2.1 P-N Junction Photodiode

The p-n junction photodiode is by far the most common structure because of its low

cost, visible wavelength range and its easy availability in standard silicon processes.

In a junction photodiode, a p-n junction is used as the photodetection region as the

depletion region provides an electric field to efficiently separate and collect the

electron-hole pairs generated and to prevent recombination. However, electron-hole

pairs generated outside the depletion region can also diffuse to the depletion region

and be collected but less efficiently.

The quantum efficiency of a photodiode structure can be derived by solving for the

drift current inside the depletion region and the diffusion current outside the depletion

region'", The quantum efficiency for a vertical p-n photodiode with a very narrow p-

region and n-type bulk substrate can be shown to be [Sze 1981]:

1]
--1- exp( -aW) (1.10)

l+aLp

where 11is the quantum efficiency, a is the absorption coefficient, W is the depletion

width of the junction and L, is the diffusion length of the minority holes in the n-

substrate. Hence the quantum efficiency of a photodiode can be increased by

10 The drift current is obtained from integrating the carrier generation rate of equation (1.7) across the

depletion region. The diffusion current is found by solving the diffusion equation for the minority

carrier concentration using boundary conditions.
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increasing the depletion width, which is dependent on the doping levels and the

reverse bias voltage applied.

The speed of a photodiode is limited by three factors: diffusion of carriers, drift time

in the depletion region, and capacitance of the depletion region [UDT Sensors Inc.

1982]. Carriers generated outside the depletion region must diffuse to the junction

resulting in considerable time delay. The wider the depletion region, the more light is

absorbed and the larger the spectral bandwidth. However, the depletion region must

not be too wide or transit-time effects will limit the frequency response. It also should

not be too thin or excessive photodiode capacitance C will result in a large RC time

constant.

1.5.2.2 Other photodetector structures

The Schottky photodiode is formed by the interface of a doped semiconductor with a

metal layer and is capable of high speeds of the order of GHz but suffers from lower

quantum efficiency and higher dark current. A p-i-n photodiode has a thick or lightly

doped intrinsic (i) layer between the p and n-regions that serves to provide the device

with a large depletion region and a low junction capacitance. This results in faster

response times and higher quantum efficiency. However, the intrinsic layer which is

usually tailored to be fully depleted is not a standard feature in the CMOS fabrication

process. An avalanche photodiode (APD) achieves internal gain by operating under

high reverse bias in the avalanche region where multiplication of charge carriers

occurs through impact ionization. APDs have large dark current and integration of

electronic circuitry with an APD is not straightforward due to the high reverse voltage

requirement [de Lima Monteiro 2002]. A MOS capacitor detects light by ,storing

photogenerated charges in a potential well that is formed when a voltage is applied to

its gate. It is capable of high sensitivity and is the basis of the charge-coupled device

(CCD) which will be discussed later on in Section 1.5.5.1. Phototransistors provide

internal gain but only carriers generated in the base-collector space-charge region is

amplified and phototransistors are slower and less linear than photodiodes and have a

large dark current.
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1.5.3 NOISE AND PHOTODIODE EQUIVALENT CIRCUIT

For modelling of a junction photodiode, an equivalent circuit is needed and one that is

typically used is shown in Figure 1.18. The different noise sources have been

collectively represented by the current source IN and the photocurrent is modelled as

the current source Iph.

I--.

Iph t

Figure 1.18 Photo diode equivalent circuit

Id represents the diode current and is given by:

(1.11)

where k=1.38xlO-23 J/K is the Boltzmann constant, T is the absolute temperature in

Kelvin, q=1.6xlO-19C is the electron charge, V is the voltage across the photodiode

and 10 is the process dependent diode saturation current. In the reverse bias the diode

current converges to -10' which is equivalent to the dark current of the photodiode.

The resultant output current is given by the sum of the individual currents:

(1.12)

The capacitance, C, of the photodiode is the junction capacitance of the depletion

region formed and the shunt resistance Rsh represents the resistance of this depletion

layer and is usually very large of the order of 10MQ to 100Q [de Lima Monteiro,
2002]. The series resistance, Rs, which is the resistance of the undepleted region

between the edge of the depletion layer and the metal contact, has a value ranging

from several Ohms to several hundred Ohms. There are two mains sources of noise in

a photodiode, shot noise and thermal noise [UDT Sensors Inc. 1982, de Lima

Monteiro 2002, Homsey 1999c]. In addition, there is also lIf noise, reset noise and

spatial noise.
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1.5.3.1 Shot Noise

Shot noise, Is, is due to the statistical fluctuation of both the photocurrent Iphand the

dark current Id, and is expressed by:

Is = ~2q(lPh + Id)B (1.13)

where q is the electron charge and B is the noise measurement bandwidth.

1.5.3.2 Thermal Noise

The thermal noise or Johnson noise of the photodiode, VI>is due to the random motion

of carriers in resistive electric materials and it increases with temperature. In a

photodiode the thermal noise associated with the load resistance RL is given by!':

V; = ~4kTRLB (1.14)

where k is the Boltzmann constant, T is the absolute temperature in Kelvin and B is

the noise measurement bandwidth.

1.5.3.3 Reset Noise

Capacitors are usually thought of as noise-free devices. In the case of sampling

systems, however, they exhibit a theoretical noise because the capacitor is periodically

reset (see Section 1.6.3). In most image sensor pixel architectures, signal detection

will involve the reset of the photodiode capacitive node. This operation gives rise to

reset noise and is due to the thermal noise of the resistance of the switch used to reset

the photodiode.

The noise equivalent bandwidth, B, of a circuit is defined as the voltage-gain-squared

of the circuit as follows [Homsey 1999c]:

(1.15)

where A is the voltage gain of the circuit and f is frequency. For an RC circuit like

that of a photodiode being reset through a switch, the noise equivalent bandwidth can

be shown to have the value of 1I4RC and substituting this into the expression for

thermal noise voltage we get the ever popular 'kTC' noise figure of:

11 Assuming the load resistance RL is significantly smaller than the Rsh• which is a reasonable

assumption in most cases.
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4kTR f%TV = ~4kTR B = eq = -
I eq 4R C C

eq

(1.16)

where C is the capacitance of the photodiode (Figure 1.18) and Req is the equivalent

resistance of the circuit.

1.5.3.4 l/f Noise

Another noise source which exists but is given only brief mention here is the lIf noise

or flicker noise. The causes of this noise are not well understood and it has been

proposed that it comes from carrier fluctuations at the surface interface traps or by

mobility fluctuations. It derives its name from the fact that its magnitude is inversely

proportional to its frequency and structures with a larger area are less prone to its

effects. Also, it is more significant in lateral shallow devices (e.g. MOS transistors)

and less important in bare photodiodes.

1.5.3.5 Spatial Noise

The sources of noise talked about so far are forms of temporal noise. When an array of

photodiodes is used, spatial noise'? needs to be considered as well. This consists of

fixed pattern noise (FPN) which is the pixel-to-pixel variations in the absence of

illumination and photoresponse non-uniformity (PRNU) which is a function of the

incident light level. The main causes of FPN are variations in photodetector geometry,

dark current 13 and threshold voltages, VT, while the non-uniformity in the

photoresponse of CMOS photodiodes is caused mainly by light interference in the

passivation layers as well as threshold variations [Makynen 1998]. Typical non-

uniformity of a CMOS photodetector responsitivity is <5%. With integrated on-pixel

circuitry, threshold variations dominate the spatial non-uniformity!". Good matching

in general requires close spacing and non-minimum size which is prohibitive with on-

pixel circuitry. Devices operating in the subthreshold have higher threshold voltage or

current variations such as in the logarithmic active pixel sensor (see Section 1.6.2.3).

12 Also known as pattern noise

13 Variations in photodetector geometry and dark current are smaller for larger sized devices.

14 Threshold variation and circuit mismatches have a larger effect on spatial noise than do the other

photodiode parameters. For instance, variation of photodiode well capacity across the array does not

matter if only half of the total well capacity is used for the desired application.
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However, there are means to remove these spatial noise sources with the use of

additional circuitry at the column or chip level which will be discussed in Section

1.6.3.

1.5.4 PHOTODIODE MEASUREMENTS

In the testing of photodiodes it is important to understand the different measurement

techniques possible when measuring photocurrents directly without integration of

charge. The best place to start would be with the general I-V characteristic of a

photodiode as shown in Figure 1.19. A photodiode can be operated in either quadrant

3 or quadrant 4 of the diode I-V response. In quadrant 4, one can either measure the

open-circuit voltage Voleor the short-circuit current, Is/c.

Current

Quadrant 1Quadrant 2

V Voltage
ole

Quadrant 3 Quadrant4

Increasing
light level

Figure 1.19 I-V characteristics of a photodiode

When measuring the open-circuit voltage (1:::::0in Figure 1.18 and Figure 1.19), the
,

load resistance is very large, for example that of a high input impedance multi meter.

Ignoring noise, and from equations (1.11) and (1.12), the photogenerated open-circuit

voltage obtained is:

kT (I ph JVole =-In -+1
q 10

(1.17)
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In effect, what is happening is that the generated photocurrrent cancels out the forward

bias diode current for very small forward bias voltages. The problem with obtaining

the photocurrent this way is that the measurements now depend on temperature as

well as 10, which in tum depends on process parameters like doping concentration and

minority carrier lifetimes. The open circuit voltage, Vole, is also highly non-linear.

In order to get a linear response with respect to photocurrent, it is more suitable to

measure the short circuit current, Isle, i.e. measuring the change in photocurrent along

the y-axis of Figure 1.19. In order to do so, a very low load resistance is required. An

op-amp is typically used to achieve this low load resistance by keeping the voltage

across the diode fixed, as shown in Figure 1.20, using the virtual earth principle. In the

short-circuit mode, Isle = Iph(L1=O).

Rr

>-....1.-_ Vout

Figure 1.20 Photocurrent measurements using an operational amplifier

The photodiode can also be operated under reverse bias in quadrant 3 with a linear

response. In this region, the diode current, L1 is approximately equal to the leakage

current, 10• An op-amp can again be used to obtain a low load resistance line. The
"advantage of operating a photodiode under reverse bias is its high speed of response as

well as larger generated photocurrent. Both of these are due to the increasing depletion

. width with reverse bias voltage. However, the disadvantage is that the leakage current

is also increased and hence the noise.
,

When charge integration of a photodiode is to be measured, usually a capacitor

performs the charge integration and this could be the photodiode capacitance itself,

and a buffer or amplifier is used to readout the signal. The amplifier could be a

sophisticated off-the-shelf component which has the advantage of low noise or a

simple source follower buffer which lends itself to on-chip integration with the

. photodiode.
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1.5.5 TECHNOLOGY AND MATERIALS

Even in silicon several different technologies and fabrication processes are available

to the designer. These include the charge-coupled device (CCD), BiCMOS and

CMOS technologies as well modifications to the standard CCD and CMOS process

and even a combined CCD/CMOS process. A newer development, borne out of the

move towards smaller feature sizes and silicon-on-insulator (SOl) technology, is the

Thin Film on ASIC (TFA) technology [Wong 1996]. In the following sections, these

technologies and their applicability to the work will be discussed.

1.5.5.1 Charge-Coupled Device (CCD)

Invented in the late 1960s by researchers at Bell Labs, the charge-coupled device

(CCD) was initially intended for use as a memory circuit. But its potential in imaging

soon became clear and it has since become the industry standard in image sensor

technology. The basis of a CCD is the accumulation, storage and transfer of charges

using closely spaced metal-oxide-semiconductor (MOS) capacitors. A MOS capacitor

is simply a semiconductor substrate with an overlying thin oxide layer and a top metal

contact, also known as the gate. When the structure has a p-type substrate, an n-type

MOS capacitor is formed. To operate the CCD these MOS capacitors are pulsed with

a positive gate voltage and driven into deep depletion (empty potential well). This is a

non-equilibrium phase and the structure is able to collect any available minority

carriers (electrons). The empty potential well can either be filled up by thermally

generated electrons or photo-generated electrons. Fortunately thermal generation of

electrons is relatively slow. It takes several seconds at room temperature to collect

enough thermally generated electrons for inversion of the MOS capacitor to occur.

During this time the potential well is available to collect photo-generated electrons.

For low light level applications long integration times may be necessary and cooling is,
used to reduce the thermally generated dark current.

Once the charge has been stored, the next step is for the charge to be transferred to the

output amplifier to be read off-chip. The transfer mechanisms in CCDs are well

documented [Theuwissen 1995]. Figure 1.21 illustrates the charge transfer mechanism

for a three-phase CCD system. A typical analogy used to describe the transfer of

charge in a CCD is that of transferring water using buckets. By varying the voltages
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applied to the gate electrodes in a properly timed sequence, the stored charges are

shuttled across the array to the output register and finally to the output amplifier.

There are various transport systems possible for a CCD, from the classical four-phase

system all the way to a single phase system. They have relative tradeoffs between fill

factor, charge handling capacity, fabrication complexity and clocking requirements.

But by far the most common is the four-phase system for transfer in the array and the

two-phase system in the output register.
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Figure 1.21 three-phase charge transport mechanism ID a CCD (Source:

Eastman Kodak)

Besides the various transport mechanisms, there are several architectures possible in a

CCD imager, the main architectures being the full frame, frame transfer and interline

transfer CCDs. Full frame CCDs represents the basic architecture where the image is

directly transferred to the readout register and has the problem of image smear as the

sensor is still exposed to illumination as the image is transferred out, necessitating the

use of a shutter and making them unsuitable for video applications. The other

architectures aim to correct this by having fast intermediate transfer to on-chip storage

area before the image is serially readout.
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Since its inception, CCDs has had its fabrication process specially tailored towards

imaging. CCD fabrication is complex with typically 15 - 25 masks [Homsey 1999b].

To name but a few unique features; closely spaced or overlapping gates and large

clocking voltages (1O-20V) are necessary to produce high charge transfer efficiencies,

large operating voltages means the gate oxide thickness has to be large (80nm),

compared to lOnm in CMOS, and a buried channel structure reduces surface traps and

improves charge transfer efficiency. Crosstalk is reduced by controlling the doping

concentration and resistivity of the substrate to limit the diffusion length of minority

carriers, and unique antiblooming structures, specialised channel stop implants and

stepped oxide isolation are used to absorb free carriers. Thinning and backside

illumination are often used to improve blue and ultraviolet (UV) response while Multi

Pinned Phase (MPP) clocking is used to suppress dark current by inverting the

channel and quenching stray electrons. However these specialised fabrication

procedures and techniques, though optimised for image sensing, make integration

with circuitry difficult and cause the sensor to be susceptible to radiation damage,

making it unsuitable for certain applications such as space based imaging. This has led

to the resurgence of CMOS image sensors.

Much has been said about the possibility of CMOS image sensors eclipsing CCDs in

the image sensing market. While this seems to be true in low end and high volume

applications, CCDs still continue to dominate the scientific imaging market. For sure,

developments into improving the performance of CCDs are still ongoing with several

innovations being introduced. Roper Scientific's deep depletion CCDs use a high

resistivity silicon substrate to reduce diffusion of charge carriers and improve

quantum efficiency in the near-infrared (NIR). Kodak's Microelectronics Technology

Division developed a gate structure based on indium tin oxide (ITO) which is more

transparent than polysilicon hence giving better sensitivity in the blue/green region.

Fujifilm's 3rd Generation Super CCD System uses octagonal-shaped photodiodes in

an interwoven layout to achieve higher sensitivity and equal resolution in both

horizontal/vertical direction and diagonal direction. The orthogonal transfer CCD

(OTCCD), developed by Tonry, Burke and Schechter [Tonry 1997], permits parallel

clocking in both the horizontal and vertical direction by replacing the channel stop

.between columns of pixels by an additional gate and was used to remove image

.motion caused by atmospheric turbulence at rates of up to 100Hz. The low light level
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CCD (LLLCCD) from E2V is able to achieve sub-electron readout noise levels even

at MHz pixel rates using on-chip charge multiplication and is currently being

incorporated into the NAOMI wavefront sensor at the Isaac Newton Group of

Telescopes (lNG). Sony has introduced its HAD (Hole Accumulation Diode), Super

HAD and EXview HAD CCD technology where an additional accumulation layer has

been included to drain off thermally generated currents. The newer Super HAD and

EXview HAD technology also incorporates two layers of on-chip microlenses for

better light collection. Kodak integrated clock drivers on-chip with its interline

KAI2020 CCD chip. Research is also being done into making CCDs more radiation

tolerant. All these mean the predicted demise of CCDs is far from certain. However,

for the purpose of this work, CCDs do not offer the level of integration needed to

allow parallel processing of subaperture centroids. The disadvantages of this process

will be highlighted further in Section 1.5.5.3 when the CMOS process technology is

discussed.

1.5.5.2 BiCMOS

The BiCMOS process was introduced to combine the performance, high packing

density and low power dissipation of the CMOS process with the high current drive,

high switching speed and low mismatch of the bipolar device [Gray 1992]. However,

the use of BiCMOSprocesses for imaging has been limited [Biber 2000, Chou 1991,

Guidash 1995, Kuo 1991, Tanaka 1989, Wohl 2003] due to its complexity and cost

with no obvious advantage in possible photosensing structures. The process is not yet

mature and, unfortunately, many of the improvements in CMOS fabrication

techniques do not directly transfer to BiCMOS fabrication. Also the large area

required for each bipolar transistor makes them unattractive in large vision chips

[Moini 1999]. The bipolar image sensor did achieve some commercial success with

the base-stored image sensor (BASIS) [Tanaka 1989] which was used in Canon's

EOS line of autofocus sensors but has since been dropped in favour of CMOS sensors.

The imager achieves amplification using a vertical bipolar transistor structure with the

optically generated holes being integrated on the base.

1.5.5.3 CMOS

Complementary Metal-Oxide Semiconductor (CMOS) technology is the dominant

technology in integrated circuit (IC) fabrication and is continuing to mature. CMOS
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image sensors, on the other hand, are relatively immature having been sidelined for

the better image quality of CCD sensors. However, these devices are making a

comeback and an in-depth historical account of the birth and development of CMOS

image sensors is given by Fossum [Fossum 1997].

Unlike CCDs, standard CMOS processes are not tailored for imaging purposes. For

example, in a standard CMOS process, a shallow epi-layer substrate (see Figure 2.1)

is used to mitigate latch-up reducing the response in the red, while heavily doped

junctions which enable denser, shorter gate-length devices reduces the response in the

blue/green region. Furthermore, CMOS imagers suffer from high temporal noise and

lIf noise because signals are transferred to the outside world via multiple transistor

stages. However, CMOS imagers offer higher levels of integration and compared to

multi-chip systems, a reduction in system size and power consumption [Janesick

2002]. CMOS imagers are more suited for high volume, space-constrained

applications where imaging quality is less important such as in security cameras, PC

peripherals, toys, fax machines, and some automotive applications [Litwiller 2001]. A

summary of the relative advantages and disadvantages of the CMOS and CCD

processes are given in Table 1.2.

CMOS Advantages CCD Advantages

Capable of on-chip circuit integration High light sensitivity and low noise

Low power consumption Low dark current

Random " pixel regions of High uniformityaccess to

interest (RO!)
.'

CMOS Disadvantages CCD Disadvantages

Higher noise levels Circuit integration difficult

Larger dark current High power consumption ,

Lower fill factor Require large multiple supply voltages

and complex timing signals

Pixel defects could render entire

row/column unusable

Table 1.2 Comparison of advantages and disadvantages of CMOS and CCD

image sensors

48



Chapter 1

The cost advantage of CMOS over CCDs is not very well understood. CMOS imagers

would be much cheaper if they could be produced on the same high-volume wafer

processing lines as mainstream logic or memory chips. However, typically for

improved performance, CMOS imagers would require additional modifications to the

basic process such as optical packaging, on-chip colour filter arrays and on-chip

microlenses. So at the chip or sensor level costs are similar but at the system level

CMOS imagers are generally cheaper due to the additional related circuitry required

for CCD operation [Litwiller 2001].

An issue which faces CMOS imagers is that of decreasing feature sizes. Smaller

feature sizes mean higher packing densities, improved fill factors, lower power

consumptions, faster speeds 15 and reduced crosstalk 16. However, reduced voltage

swing due to downscaling reduces dynamic range and smaller junction depths means

reduced volume for photocharge collection and increase in surface effects [Wong

1996] as well as shifting of quantum efficiency curves to shorter wavelengths. Short

channel effects lead to off leakage currents and tunneling currents which contribute to

the dark current of pixels. Furthermore, for these processes, opaque silicide layers

(WSh, TiSh, CoSh) are used to reduce contact and sheet resistances of source/drain

regions and gates. Hence, as technology scales beyond 0.5f.lm, modifications to the

fabrication process are needed to enable good quality imaging [Lule 2000, Wong

1996] such as the removal of the silicide layer.

The use of CM:OS imagers currently proves difficult for low-light level applications

such as astronomy due to the high-level of noise in CMOS compared to CCDs .

.However, CMOS imaging is a relatively new development and noise reduction

techniques by means of specialized circuitry are being heavily researched [Bursky

1999, Lai 2002, Meynants 2001, Pain 2003, Rullmann 2003]. Watabe et al. [Watabe

2003] mentioned the overlaying of a high-gain avalanche rushing amorphous

photoconductor (HARP) film on top of a CMOS image sensor to produce an ultrahigh

15 This is due to lower capacitance which leads to better conversion efficiency (q/C) between electron

. charge and output voltage.

16 This is due to higher doping levels which lead to reduced diffusion lengths.
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sensitivity CMOS image sensor. So it may be that in the not too distant future CMOS

image sensors will achieve the level of sensitivity now only seen in CCDs.

1.5.5.4 CCD/CMOS

Modifications of the basic CCD and CMOS process in order to allow more flexible

readout in CCDs or improved imaging quality in CMOS include the charge injection

device (CID), static induction transistor (SIT), charge modulation device (CMD),

pinned photodiodes and many more. The CID uses MOS capacitors like in CCDs but

allow X-Y addressing and non-destructive readout [Theuwissen 1995]. The SIT

achieves current amplification by placing a light sensitive MOS capacitor on top of a

bipolar transistor. A CMD sensor, developed by Olympus, consists of a MOSFET

structure where photogenerated charges collected under the gate of the device

modulates the current flowing through the transistor [Homsey 1999a]. Amplification

is achieved and the device is compact requiring only two transistors per pixel but

suffers from large dark current and fixed pattern noise. The pinned photodiode 17

developed by JPUKodak offers high quantum efficiency, low dark current and low

noise readout [Fossum 1997]. However none of these sensors are fully compatible on

a standard CMOS process and additional fabrication steps are required.

Several efforts have been made to combine CCD and CMOS processes to make use of

their relative advantages, in particular the better imaging quality of CCD sensors with

the high level of integration ,of the CMOS process. However this is not without its

difficulties [Homsey 1999b, Moini 1999]. CCD/CMOS processes do not provide an

optimised CCD structure. In fact, neither process is fully optimised in a combined

. device and the approach represents more of a compromise than an improvement. Also,

the high clocking pulses needed for CCD operation induces noise into any circuitry

that is integrated. Being highly capacitive devices, CCD structures will cause adjacent

CMOS circuits to dissipate too much power. Furthermore, combining CMOS and

CCD processes to obtain the best of both worlds would require almost all the stages

17 Pinned photodiode has a p'np' structure where the voltage applied to the n-layer fully depletes the n-

layer and the voltage is pinned. Photogenerated majority carriers are then stored in this depletion region

decreasing the pinned voltage. This is different than a p-i-n photodiode which utilizes an intrinsic layer

, between a p-layer and n-layer (typically p+n'n+) and photogenerated minority carriers are swept across

the depletion region and collected by electrodes connected to the p and n-layers.
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from both processes, which means an excessive number of fabrication masks and the

resulting process tends to be more expensive than either the standard CMOS process

or CCD manufacturing. High volume production is highly unlikely.

One of the approaches taken by NASA is their concept of "Hybrid imaging

technology" (HIT). Instead of uniting CCD and CMOS devices at the device-

fabrication-process level, the devices are fabricated separately and then joined

mechanically and electrically (hybridized) by standard bump bonding techniques

where indium bumps are deposited on matching bump-bond pads formed on the CCD

imager and CMOS chips.

1.5.5.5 Thin Film on ASIC (TFA)

TFA (Thin Film on ASIC) image sensors consists of a hydrogenated amorphous

silicon (a-Si:H) photodiode with the a-Si:H layers directly deposited on the CMOS

chip to give fill factors approaching 100% [Wong 1996]. Furthermore, detectors and

electronic circuitry can be developed independently, with the potential of obtaining

very low dark currents due to the higher energy gap of a-Si:H (1.75eV). However this

represents a relatively immature technology and is not widely available, hence costs

are still high. But for downscaled processes this technology holds great promise.

1.6 PIXEL ARCHITECTURES IN CMOS

Of the technologies discussed, CMOS offers the highest possibility of on-chip

processing at a reasonable cost and performance. This section describes the possible

pixel architectures in a CMOS process. Readout for CMOS photodetector structures

can either be made in the direct readout mode or in the charge integration mode, The

advantage of charge integration readout is that it offers higher signal sensitivity

[Fossum 1997] and allows the dynamic range to be controlled by changing integration

times and it has low sensitivity to device mismatch because the integration time

depends on the input capacitance, which has less mismatch than other parameters of

the circuit [Moini 1999]. Also it has a linear transfer characteristic and integration acts

as a low-pass filter which removes the high frequency components of the noise.
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1.6.1 PASSIVE PIXEL SENSORS (PPS)

The passive pixel sensor (PPS) first introduced by Weckler in 1967 [Weckler 1967]

represents the early form of the CMOS imager and is responsible for much of its

initial criticism due to its poor noise performance. Passive pixel sensors have one

transistor per pixel for addressing purposes as shown in Figure 1.22. Operating the

passive pixel sensor in a direct or continuous mode usually involves the use of a

transimpedance amplifier, with the feedback resistance providing the current-to-

voltage conversion. However, this technique does not lend itself to on-chip integration

due to the difficulty in incorporating the large feedback resistance required. A more

common approach is to operate the sensor in a charge integration mode using a charge

amplifier with feedback capacitance at the column or chip level [Homsey 1999b] as in

Figure 1.22.

column

reset
_L._

row n

row n+1

Vref

Figure 1.22 Passive pixel sensors with column-level charge amplifier readout

circuitry

The photocharge integrated on the photodiode capacitance IS transferred to the

feedback capacitance of the charge amplifier and output as a voltage. Gain is provided

by the ratio of the photodiode capacitance to the feedback resistance. With passive

pixel sensors, parasitic capacitances of the data line is a major concern as it limits the

speed at which the pixel can be read out, increases readout noise as well as reduces the

charge seen at the output. As such, passive pixel devices does not scale well to larger

array sizes and is not usually the architecture of choice except where fill factor is a

limitation or current readout is desired. Integration of a charge amplifier at the column
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level has the advantage of reduced bus capacitance but the disadvantage of

mismatches between the amplifiers and limited space, and hence performance,

available for each amplifier.

1.6.2 ACTIVE PIXEL SENSORS (APS)

Active pixel sensors incorporate an active amplifier or buffer at each pixel, typically a

source follower, to overcome the large bus capacitance of the passive pixel sensors.

The initial problem with active pixel sensors was the poor fill factor caused by the

incorporation of the on-pixel amplifier but decreasing feature sizes means more and

more functionality can now be built into a single pixel. Pixels as small as 4 microns

have been fabricated [Endo 2003]. There are three major types of active pixel sensors,

namely the photodiode APS, photogate APS and logarithmic APS.

1.6.2.1 Photo diode APS

The structure of a photodiode APS is shown in Figure 1.23. Light incident on the

photodiode generates charge carriers which are collected on the photodiode

capacitance. After the integration time has elapsed the voltage on the capacitor is read

out and is linearly related to the charge collected and hence the incident illumination.

After readout, the reset line is pulsed high to reset the photodiode to the supply

voltage. The integration may then be repeated.

VDD

reset -l
column bus

rown

row n+1

column
select

1---- Vout

Figure 1.23 A photodiode APS with array row/column selection
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Due to the added circuitry and their threshold drops, the dynamic range of an active

pixel sensor is normally limited by the voltage swing of the circuit rather than the full

well capacity of the photodiode. Methods to extend this output swing include using a

complementary PMOS readout structure in addition to the regular NMOS source

follower readout structure [Xu 2002]. This however causes a reduction in fill factor.

Numerous modifications to the basic photodiode APS have been carried out in order

to improve its functionality or its performance, as detailed in [Fossum 1997].

1.6.2.2 Photogate APS

A photogate APS is based on a CCD device where photogenerated charge is collected

in a potential well when a voltage is applied to the photogate (PG). The structure of

the photogate APS is shown in Figure 1.24. After integration, the floating diffusion is

reset, and its reset voltage is stored. A transfer gate is then pulsed to transfer the stored

photogenerated charge to the floating diffusion and this voltage is then read. Readout

of the reset and signal voltages are performed through a source follower buffer and a

row select transistor like in the photodiode APS of Figure 1.23. The difference in the

reset and signal voltages is the output of the sensor. This approach is called correlated

double sampling (see Section 1.63) and it suppresses reset noise, 11f noise and FPN.

However the photogate APS has a lower fill factor, higher mismatch 18 and lower

quantum efficiency, particularly in the blue, than the photodiode APS due to the

additional circuitry and the overlying polysilicon gate. However, it has better noise

suppression and charge conversion efficiency'" making it suitable for low-light level

applications.

18 This is due to the surface states at the Si-Si02 interface contributing to the recombination of stored

carriers

19 This is because it has a separate smaller output node (floating diffusion) which means a smaller

capacitance (Charge conversion efficiency = q/C in V/e-)
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Vuu

p-epilayerp-epilayer

(a) Cb)

Figure 1.24 Photogate APS with (a) overlapping transfer gate and (b) with n+

transfer diffusion [de Lima Monteiro 2002]

Ideally the transfer gate should overlap the photogate to ensure effective charge

transfer. This would require a double poly process. However, the need for an

additional gate can be avoided by utilizing an intermediate bridging' diffusion, as

shown in Figure 1.24 (b), This has little effect on the performance of the pixel except

for the possible introduction of image lag [Mendis 1997].

1.6.2.3 Logarithmic APS

The logarithmic pixel is a modification of the linear photodiode active pixel sensor

where the gate of the reset transistor is connected to the supply voltage giving

continuous readout of the photocurrent and is depicted in Figure 1.25. The small

photocurrent causes the reset transistor to operate in the weak inversion or

subthreshold region where the MOS current flow is dependent upon the exponential of

YDS. The voltage at the photodiode node therefore varies logarithmically with the

photocurrent, giving the pixel a very large dynamic range and can be expressed by the
"

following equation [Homsey 1999b]:

Vs = VDD- kT In(ip~oto J (1.18)
q lo

where k is the Boltzmann constant, T is the absolute temperature in Kelvin, q is the

electron charge, VDD is the supply voltage, iphotois the generated photocurrent and io

is a process dependent parameter.
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column bus

row n

row n+1

Figure 1.25 Logarithmic APS

Logarithmic pixels can measure illumination over 5 orders of magnitude, an order of

magnitude more than ordinary APS [Homsey 1999b]. In addition, logarithmic pixels

do not require a reset line and have simpler timing and operation as well as larger fill

factor. Since logarithmic pixels operate in continuous time, they are randomly

accessible both in time and in space. This also means they are able to operate at a

higher sampling rate. On the downside, because of the subthreshold operation of the

MOSFET and its dependence on temperature and process parameters such as

threshold voltage and oxide thickness, logarithmic sensors suffer from large pixel

offset non-uniformity or FPN. So though its dynamic range is larger, typically
"

logarithmic pixels have lower SNR. This FPN cannot be removed by correlated

double sampling because of its continuous time operation. This offset, however, can

be removed by storing the offset in memory and subtracting when the pixel is read. It

can be performed by software but for the highest possible speed, a parallel hardware

correction method is used. Dierickx et. al. [Dierickx 1996] used an external PROM

and a dedicated co-processor while Ricquier et. al. [Ricquier 1995] performed the

non-uniformity correction on-chip.

Another disadvantage of the logarithmic APS is its speed under low illumination

levels because of the small photocurrent available for charging/discharging of the

sensing node [Homsey 1999b]. Delbrtick, however, used feedback to improve the
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speed response. An adaptive element was also used in order to give compression for

slowly varying signals and higher gain for larger frequencies making it useful for

biological vision systems and motion detection [Moini 1999]. In fact, logarithmic

sensors are the preferred sensors for modelling biologically inspired vision systems as

it mimics its large dynamic range response.

An inverted logarithmic APS structure, where the positions of the photodiode and the

load (transistor in subthreshold) is reversed, was used to reduce pattern noise and

improve output voltage swing by reducing signal compression [Hong 2001]. The

electrical sensitivity of the conventional structure can be improved by increasing the

number of subthreshold diode connected MOS transistors (MOS diodes) in the pixel

at the expense of reduced fill factor and speed of response. With an inverted structure

the effect is less pronounced (no increase in sensitivity) but instead the subthreshold

region of operation is extended over a wider region offering an even larger dynamic

range. Again at the expense of reduced fill factor.

1.6.3 NOISE REMOVAL AND EXTENDING DYNAMIC RANGE

Noise has been the weak point of CMOS imagers compared to the highly sensitive

CCDs. However, there are various means to achieve noise removal in CMOS sensors.

New techniques are constantly being developed but two well established methods are

the Correlated Double Sampling (CDS) and Delta-Difference Sampling (DDS)

techniques for removing the 'kTC' reset noise2o and FPN. Figure 1.26 shows the

typical circuit for performing CDS and DDS.

w . ~kT(7
It IS known as kTC noise because the number of noise electrons generated n = , though the

q

{kT
noise voltage at the output is given by Vn =Vc (from Q=CV). Since signal electrons increases

proportionately with area but reset noise electrons increase as a square root of area (capacitance), SNR
improves with a larger photodetection area.
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Figure 1.26 Correlated Double Sampling (CDS) and Delta-Difference Sampling

(DDS) applied to a photogate APS [Mend is 1997]

Correlated double sampling is usually performed at the column level and works by

differentially reading out the reset and signal levels. However, due to the threshold

voltage variations between the two readout circuits, column-wise FPN is generated.

Delta-difference sampling removes this by shorting the two sample and hold

capacitors (by pulsing CB and SEL in Figure 1.26) and taking another differential

reading. This reading is proportional to the threshold voltage difference between the

two circuits and subtracting this from the initial reading gives the final offset free

output.

Reset noise of an APS is the thermal noise (see equation (1.16» associated with the,
finite resistance of the reset switch. This noise is transferred to the capacitor when the

reset switch opens. In the case of a photogate APS, the 'kTC' noise freezes when the

reset transistor switches off because the effective noise bandwidth, B = 1I4RC

(equation (1.15», drops significantly (Roff » Ron). Figure 1.27 (a) illustrates this.

However, in a photodiode APS the charge is integrated on the output node such that

when the reset signal goes low the photodiode immediately starts discharging the

stored charge. Removal of reset noise would require sampling right at the instant reset
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is switched off and the photodiode discharges, which is difficult to do. However, it is

still possible to use double sampling (not correlated) to remove l/f noise and fixed

pattern noise from the photodiode pixel.

Reset on Reset off
1II1II .1II1II .1

SI = sample reset

S2 = sample signal

Reset noise (kTC)

+ white noise + FPN S2

~ Reset on Reset off
~ .1II1II .1

PO pulsed low

(a) Photogate (PO) APS

S2 (b) Photodiode (PD) APS

Figure 1.27 Double sampling to remove noise in (a) a photogate APS and (b) a

photodiode APS

Besides noise, another important characteristic of image sensors is the dynamic range.

There are several means to extend the dynamic range of active pixel sensors [Yadid-

Pecht 1999]. These include the logarithmic pixel discussed previously, multi mode

sensors, clipping a sensor's response, having a variable integration time [Yasuda

2003], and conversion of the sensor output to a pulse frequency [Yang 1994]. Multi

mode sensors allow the photodetector structure used to be operated under different

modes. One such example makes use of the fact that it is simple to switch between the

linear and logarithmic mode of the active pixel sensor by proper biasing of the

reset/subthreshold transistor. This has been commercially marketed under the label

LINLOO technology by Photonfocus AO and it uses a linear response at low

illumination levels and logarithmic compression at high intensities. Clipping sensors

59



Chapter 1

have anti-blooming structures that bleed off excess charge as it builds up. Control of

integration time to extend dynamic range works on the fact that increasing integration

time allows more charged to be stored in the pixel and this can be done either globally

or locally. The advantage of controlling the integration time locally is that if the scene

being captured consists of different illumination levels, the dynamic range at the

brighter part of the scene is extended while the resolution at the darker regions is

maintained. Most dynamic range enhancement efforts, specifically those requiring on-

pixel circuitry, suffer from reduced fill factor, sensitivity and spatial resolution as well

as increased mismatch.

It is clear that the ability to integrate circuitry on-chip with CMOS imagers has

opened the doors to a wide range of applications and possibilities. Its flexibility has

meant enhanced functionality of devices. From adaptive photocircuits and foveated

pixels for robotic vision [Moini 1999], to unique readout and pixel reset structures

[Yadid-Pecht 2003], to pixel-level ADCs for high frame rates [Kleinfelder 2001], to

on-chip or in-pixel analogue memory [Simoni 1995] for motion detection, extended

dynamic range and electronic shuttering; the possibilities seem endless for CMOS

imaging.

1.7 CHAPTER SUMMARY

This chapter has emphasized the need for adaptive optics (AO) highlighting several

key application areas where low cost real-time AO systems would be useful such as

astronomy, ophthalmology, intra and extra-cavity laser correction, free space optical

communications and microscopy. A fundamental part of any AO system is the

wavefront sensor and with current Shack-Hartmann wavefront sensors, conventional

imagers are used with limited frame rates ranging from 25 to 60 Hz. Using a dedicated

CCD increases the frame rate but at the expense of increased cost, and the need for an

image-processing step and special hardware still remains [de Lima Monteiro 2002]. In

this thesis, a solution to the data bottleneck is proposed by integrating local centroid

processing at the detector level.

60



Chapter 1

There are several possible structures for implementing a position sensitive device

CPSD) such as the lateral effect photodiode CLEP), the quad cell and the multi-pixel

array. A lateral effect PSD requires large uniform sheet resistance for linear operation,

which is not readily available in a standard CMOS process making integration with

circuitry difficult. Quad cells have simple readout schemes but are not very linear.

Multi pixel arrays have better linearity and positional range, which translates to larger

tilt measurement capability. They also offer greater flexibility and are able to deal

with multiple spots and non-uniform intensity profiles. The drawback is the increased

computational load but for moderate array sizes this is reasonable and this was the

architecture chosen for our system. A 5 x 5 pixel array was selected as a tradeoff

between linearity and circuit complexity.

Several technological options were highlighted and the standard CMOS process was

chosen as the technology of choice as it allows high levels of circuit integration

needed to implement the local centroid processing. There have been various efforts to

implement centroid detection on a CMOS process for numerous applications. In

general, analogue multi-pixel array approaches suffer from low fill factor and

sensitivity, requiring either separate x and y pixels or on-pixel circuitry such as a

comparator or resistors. In addition, binary position sensing techniques using Winner

Take All CWTA) circuitry or an on-pixel comparator do not offer subpixel accuracy

and cannot cope with multiple spots or non-uniform spots. A dedicated digital

centroid processor has yet to be demonstrated to date, though several generic image

processors exist/and this research explores this approach. A dedicated digital centroid

processor offers high accuracy and greater flexibility. Also the processor can be made

programmable and additional image processing tasks can easily implemented if

necessary.

The fundamentals of the photodetection mechanism were described along with issues

of response, noise and operation. The junction photodiode structure was chosen as the

basis of the imaging component as it is readily available in a standard CMOS process

and offers good quantum efficiency as well as high linearity and dynamic range. In

terms of pixel architectures, the CMOS active pixel sensor CAPS) was selected as it

offers high fill factor and low mismatch compared to other APS types. Ideally, the
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pixel size has to be sufficiently large in order to achieve a large fill factor and

sufficient tilt dynamic range. A large fill factor also means less mismatch.

In summary, in the proposed design each tilt sensor will consist of: i) a 5 x 5

photodiode active pixel sensor array in a standard CMOS process ii) a dedicated on-

chip digital centroid processor to remove the data bottleneck. A discussion of the data

bottleneck in current CCD systems and how our system addresses this is given in

Appendix AI.I. The following chapters of this thesis will cover the design, fabrication

and implementation of the proposed system.

Chapter 2 will discuss the results from the characterisation of fabricated full custom

photodiodes in a standard CMOS process. Their suitability and performance are

assessed. Chapter 3 then describes the use of a hardware emulation system to validate

the functionality of the design prior to committing the design to silicon. The emulation

system consists of a photodiode array as the front-end for light detection and a Field

Programmable Gate Array (FPGA) as the digital backend that performs the centroid

computation. The system was tested using both a commercial photodiode array and a

fabricated full custom CMOS photodiode array. Chapter 4 then details the integration

of a full custom CMOS photodiode array with on-chip digital centroid processing.

Chapter 5 discusses the reconstruction of an optical wavefront from an array of

centroid data and finally Chapter 6 will offer some concluding remarks and some

discussions on possible further developments and improvements.

,
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CHAPTER2

CHARACTERISATION OF CMOS

PHOTODIODES

2.1 INTRODUCTION

In the design of any complete system, particularly in VLSI, the individual parts of the

system needs to be evaluated and characterised before the complete system is

fabricated. One of the fundamental building blocks of any optoelectronic system is

that of the photodetector. As mentioned in the previous chapter, these photodetectors

are formed in a CMOS process by the generation of a p-n junction and are typically

the "well-substrate" or "diffusion-substrate" or the "diffusion-well" photodiode types.

This chapter covers the characterisation of these discrete photodiodes and the

selection of the optimum device prior to the addition of any circuitry or processing.

2.2 FABRICATION OF TEST STRUCTURES

The process usee! for the test structures and also for the fabrication of the centroid

processor is the A1catel Microelectronics (Mietecj " O.7J.lm self-aligned twin-well,

single-poly, double-metal layer CMOS process with LOCOS isolation [Europractice

IC Service]. This process is accessed via IMEC in Belgium through the Europractice

IC Service. The Europractice Multi-Project Wafer (MPW) service enables the,
prototyping to be carried out at a reduced cost. The main electrical and physical

parameters of this process such as the resistivity, threshold voltage and transistor

transconductance are highlighted in Appendix A2.1. However, to give a clearer view

21 Now known as AMI Semiconductor (AMIS) after AMIS acquired Alcatel Microelectronics' mixed-

signal business activities from STMicroelectronics.
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of the characterisation results the junction depths of the process have been illustrated

in a typical CMOS cross section shown in Figure 2.1.

diffusion-weJl
photodiode

weJl-substrate
photodiode

Vss

p-weJl 15-18.7f..lm

O.45f..lmI FOX

p+ bulk substrate

p- epilayer substrate

-750f..lm

Figure 2.1 Junction depths of the Mietec O.7!lm CMOS process22

2.2.1 FIRST CHARACTERISATION CHIP (PDFINAL)

Figure 2.2 shows the layout of the first test chip PDfinal. This chip contained the

following: 1. well-substrate photodiodes 2. diffusion-substrate photodiode 3.

combined well-substrate and diffusion-well photodiode 4. lateral effect photodiode

(LEP) 5. active pixel sensor 6. 5-by-5 array of combined well-substrate and diffusion-

well photodiodes. The various junction photodiodes were included in order to

determine their relative response and characteristics as well as their individual
"

variation with area and periphery. In addition, a combined device was designed and

included in order to capture a longer range of wavelengths than either the well-

substrate (deep) photodiode or the diffusion-substrate (shallow) photodiode, and will

be discussed further in Section 2.2.3. The LEP is commonly used for position sensing
,

as a custom device and was included for characterisation in a CMOS process but was

not used in this work as the multi-pixel array approach was chosen for our application.

Finally, the 5.:.by-5 photodiode array was included for use in the hardware emulation

system of the centroid processor which is described in Chapter 3.

22 The term p-substrate wiJl be used frequently in this thesis and this wiJl refer to the p-epilayer

substrate and not the bulk substrate.
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Initial characterisation of this chip showed several issues. Firstly light being absorbed

in the substrate and diffusing to the photodiode active region gave rise to crosstalk and

a larger signal than expected. Secondly the pads used were those available in the

library and contained a diode protection structure (see Figure 2.3), which if biased

incorrectly may interfere with the characterisation of the raw devices. Also when

operating the photodiode in reverse bias it was necessary to power up the protection

circuit in order to avoid any forward bias current from the protection structure

affecting the results. However, we were nevertheless able to obtain satisfactory

responsitivity values from the photodiodes and the array on this chip allowed us to

proceed with the development of the centroiding system, as will be discussed in the

next chapter. The chip size was 2513.8Ilm x 2412.21lm (Area = 6.0638mm2
) and was

packaged in a 44-pin ceramic J-Ieaded chip carrier (JLCC 44).
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Figure 2.2 Layout of 1st photodiode test chip (PDfinal)
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Figure 2.3 Diode protection structure present in pads used in PDfinal
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2.2.2 SECOND CHARACTERISATION CHIP (CHIPIBFINAL)

Figure 2.4 shows the layout of the 2nd characterisation chip (chip 1bfinal). In this chip

several changes were made. Firstly, a metal light shield surrounding each structure

was incorporated. However the process required that holes be included in the metal

every 251lm to relieve mechanical stress, which meant total blockage was not

possible. Secondly, more structures were incorporated and the number of different

sized devices for each structure was increased in order to better determine any area

and perimeter scaling effects. Finally it was necessary to design a pad without any

additional circuitry on it to allow accurate characterisation of the photodiode test

structures.

n+/p-substrate &
n-well/p-substrate
(ncombl-6)

Figure 2.4 Layout of the 2nd photodiode test chip (chiplbfinal)
"

Figure 2.S Optical image orwell-substrate photodiodes on test chip (transposed)

-1500

-1000

-500

o

500

1000

1500
-1500 -1000 -500' o 500 1000 1500

66



Chapter 2

The size of this chip was 3640/-lm x 3543/-lm, which is an area of approximately

12.9mm2 and was packaged in a 68-pin ceramic J-Ieaded chip carrier (JLCC 68). The

full list of devices present on this chip are summarised in Table 2.1 and will be

referred to by its assigned short name from henceforth - and is also used in Figure 2.4.

Short name Photodiode type Size of_I)_hotodiode
deep I n-well/p-substrate with n+ removed 30/-lm x 30/-lm
deep2 (deep) 60/-lm x 60/-lm
deep3 80/-lm x 80/-lm
deep4 lOO/-lmx lOO/-lm
deep5 160/-lm x 160/-lm
deep6 200/-lm x 200/-lm
ndeepl n-well/p-substrate with n+ across lOO/-lmx lOO/-lm
ndeep2 (deep with n+) 200/-lm x 200/-lm
nshall n-s/p-substrate (shallow n+) 30/-lm x 30/-lm
nshal2 60/-lm x 60/-lm
nshal3 80/-lm x 80/-lm
nshal4 lOO/-lmx lOO/-lm
nshal5 160/-lm x 160/-lm
nshal6 200/-lm x 200/-lm
pshall p-/n-well (shallow p+) 30/-lm x 30/-lm
pshal2 60/-lm x 60/-lm
pshal3 80/-lm x 80/-lm
pshal4 lOO/-lmx 100/-lm
pshal5 160/-lm x 160/-lm
pshal6 200/-lm x 200/-lm
ncombl Combined n-s/p-substrare and n- 30/-lm x 30/-lm
ncomb2 well/p-substrate 60/-lm x 60/-lm
ncomb3 80/-lm x 80/-lm
ncomb4 ,\ lOO/-lmx lOO/-lm
ncomb5 160/-lm x 160/-lm
ncomb6 200/-lm x 200/-lm
pcomb l Combined p+zn-well and n-well/p- 30/-lm x 30/-lm
pcomb2 substrate 60/-lm x 60/-lm
pcomb3 80/-lm x 80/-lm
pcomb4 lOO/-lmx lOO/-lm ,

pcomb5 160/-lm x 160/-lm
pcomb6 200/-lm x 200/-lm
APSPMOS Active pixel sensor with PMOS reset lOO/-lmx lOO/-lm

gate (n-well/p-substrate photodiode)
APSCMOS Active pixel sensor with CMOS reset lOO/-lmx lOO/-lm

gate (n-well/p-substrate _I)_hotodiode)
PDarray 5 by 5 n-well/p-substrate (deep4) lOO/-lmx 100/-lm

photodiode array
Table 2.1 Devices present in characterisation chip 'chiplbfinal'
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Figure 2.6 shows the layout and cross section of the deep photo diode with n+ removed

from the active region except for the cathode contact region (i.e. deepl-6 and those

used in PDarray). In addition, the simplified cross sections of the other photodiode

types present on the chip are shown in Figure 2.7.
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Figure 2.6 Layout and cross section of fabricated well-substrate (deepl-6 and

PDarray) photodiode
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Figure 2.7 Other photodiodes present on the characterisation chip

,

2.2.3 COMBINED PHOTODIODES

In Section 1.4.1 we observed that the absorption depth of a photon depends upon the

wavelength. As a result the two different junction depths (at O.3J,.lmand 2J,.lm) in

theory lend themselves to being sensitive to different wavelengths. Hence the

combined devices were designed and fabricated in order to extend the spectral
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response of the typical photo diode over a wider range of wavelengths. Two types of

combined photodiodes are possible, the combined shallow p+/n-well and deep n-

well/p-substrate photodiode (pcombl-6 - Figure 2.7(d)) and the combined shallow

n+/p-well and deep n-well/p-substrate photodiode (ncombl-6 - Figure 2.7(c)). In the

first chip, the former was included. In the second chip, both were included. The

ncomb devices are in effect two discrete photodiodes laterally adjacent to each other

and will not provide any additional advantages when focused light is used such as in

the intended application. In fact, in the intended application of finding a centroid, the

use of this device would be detrimental due to its non-symmetrical spatial response.

As for the pcomb devices, when tested in room light, these devices were found to be

very leaky with increasing reverse bias voltage. This observed effect is shown in

Figure 2.8. This is believed to be due to the depletion region being formed at the

surface of the photodiode leading to a large leakage current as a result of the large

electrical field caused by increased mechanical stress and increased number of surface

traps present [Bogaerts 2000, Pain 2001]. As the reverse bias voltage increases the

leakage current increases as a result of the larger depletion width. As a consequence of

these observations, the majority of the characterisation work presented henceforth will

be focused on the deep (Figure 2.6) and shallow devices (Figure 2.7(a) and 2.7(b)).

However, results on these combined devices will be presented where deemed relevant

to highlight its uniqueness or simply for completeness.
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Figure 2.S I-V response in room light showing increased leakage of combined

shallow p+/deep (pcombl-6) device compared to the deep (deepl-6)

device for reverse bias operation (PDfinal)
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2.3 DARK RESPONSE OF PHOTODIODES

The response of a photodiode can be evaluated under dark or illuminated conditions.

Its response in the dark is assessed by its current-voltage (I-V) characteristics and its

capacitance-voltage (C-V) characteristics.

2.3.1 DARK I-V MEASUREMENTS

The dark current of a photodiode determines the smallest detectable photocurrent and

hence the dynamic range achievable. Dark current also gives rise to shot noise. Hence

it is necessary, particularly for low light level applications, to quantify the amount of

dark current present in the system. Hence, I-V measurements of the devices under no

illumination i.e. in the dark, were carried out. Note that the direction of the current and

voltage on the I-V plots to be shown is such that a positive current and a positive

voltage represents the photodiode operating in reverse bias i.e. in quadrant 3 of a

typical I-V plot of a photodiode (the plot is therefore transposed).

2.3.1.1 Experimental setup for dark I-V measurements

Figure 2.9 shows the setup. The dark current was measured using a Keithley 236

Source-Measure Unit. The unit is capable of measuring currents as low as IOfA and

sourcing voltages from IOOJ,tV to HOV. In order to avoid any pickup of

electromagnetic interference, the sample was placed in a metallic die-cast box with a

coaxial connection. The connections on the Keithley are made through triaxial cables.

In order to convert the connections of the triax cables to that of a coaxial connection, a

second die-cast box was made. Initially a PCB board was built up to house the sample
,

(photodiode chip) but it was found to introduce too high a leakage current even with

the devices mounted simply in its JLCC socket. The lowest leakage current was

obtained with the packaged chip tested on its own with no socket or PCB. That is the

test probes were connected directly to the pins of the packaged chip.
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triaxial cable

DOD)=------) DOD
DOD

Keithley 236
coaxial cable

Figure 2.9 Experimental setup (left) and Keithley 236 Source-Measure Unit

(right)

Figure 2.10 Die-cast box to hold sample (left) and die-cast box for triax to coaxial

connection (right)

The measured dark current of the fabricated photodiodes is typically less than 1pA.

With the added DC leakage from the cabling, packaging and housing, the actual

leakage current can be much larger. As a result the system DC leakage was measured

with no sample (photodiode) attached i.e. just the cables and die cast box. These

results are shown in Figure 2.11. Here we can see the DC leakage of the system is of

the order of 83300 with a 1pA offset.
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Figure 2.11 I-V measurement of the cables showing systematic error in the setup
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Hence this systematic error was subtracted from the photo diode readings of the test

devices. Figure 2.12 shows the dark current measurements for the deep photodiodes

with n+ across (ndeep1, ndeep2) before and after subtraction of the cable offset.
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Figure 2.12 Dark I-V measurements of deep photodiodes with n+ across (ndeepl,

ndeep2) before (left) and after (right) subtraction of cable offset

2.3.1.2 Results and discussion of dark I-V measurements

From a closer look at the dark current measurement of the deep photodiodes with n+

across in Figure 2.13, it can be seen that the plots do not pass through the origin

indicating that a systematic error in the reading still exists. We can however see that at

2V the dark current of ndeep1 and ndeep2 is estimated to be O.3SpA and O.SpA

respectively.
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Figure 2.13 Close up of dark I-V measurements of deep photo diodes with n+

across (ndeepl, ndeep2)
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It was also found that the measurements of the dark current were affected by the

position of the cable in the die-cast box due to possible triboelectric effects at"such

low currents. Hence it was necessary to measure the offset introduced by the cable for

every measurement of the sample with the cable in roughly the same position. This

was difficult but the dark current was found to be of the order of 0.2 - 1.0pA for a

reverse bias voltage of 2.0 - 4.0V for both the deep photo diodes (deep 1-6 and ndeep 1-

2) as well as for the shallow photodiodes (nshaI1-6, pshaI1-6). This is a lot larger than

the value obtained through simulation and could be due to the uncertainty in the cable

measurement and parasitics in the connection of the photodiode to the outside world

i.e. pad and wiring capacitance and resistance. However, these results allowed the

typical measurement accuracy of the characterisation system to be determined and to

obtain a figure for the dark current limits for deciding the next stage of the design.

An interesting observation was made in the forward bias currents of the deep devices

with n+ removed (deepl-6). The forward bias current in these devices does not rise

exponentially as in a typical forward biased diode but was significantly smaller.

Initially, because of its somewhat linear response, this was thought to be due to a large

load resistance in series with the diode introduced somewhere in the design or in the

setup. However when modelled for this, it showed that this was not the case as a large

resistance would make the response linear at an early stage of the bias. Forward I-V

plots of deep2 and deep3 are shown in Figure 2.14 and are shown in comparison to

ndeep 1 and a simulation plot cif a 50kQ resistor in series with a deep3 photodiode

model. The reason for this anomaly was later discovered and will be explained in

Section 2.3.2.2.
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Figure 2.14 Forward bias currents of deep2 and deep3 showing abnormal
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2.3.2 DARK C-V MEASUREMENTS

The response time of a photodiode is dependent on the drift time of charge carriers

across its depletion region, the charge collection time of carriers outside of the

depletion region diffusing to it, and the RC time constant of the photodiode and the

circuit [Centronic Ltd. 1998, UDT Sensors Inc., Zimmermann 2000]. This response

time is highly dependent on the applied bias voltage. By increasing the applied reverse

bias, the depletion region of the diode increases thereby reducing the diffusion time23

of the photodiode. The RC time constant also decreases because the capacitance of the

photodiode, which arises from the junction capacitance of the depletion region, is

inversely proportional to the width of the depletion region [Sze 1981]. Depending on

the circuitry connected to the photodiode the RC time constant could very well

dominate the response time of the system. As such it was necessary to characterise the

photodiodes in terms of their C-V characteristics. This would also allow one to

determine a suitable operating voltage for the photodiode depending on the

application.

The C-V characteristics of the various junction diodes in the Mietec 0.7J,lm CMOS

process were simulated using PSpice and the models provided. Figure 2.15 shows the

C-V plots for the p+/n-well (pshall-6), n+zp-well (nshall-6) and the n-well/p-substrate

(ndeepl, ndeep2) junction diodes. The values shown are for an area of 10000 J,lm2

(lOOJ,lmx 100J,lm).

23 The drift time also decreases due to the increase of drift velocity, Vd. with electric field. E. applied

('<:'d=IlE whereu is the mobility of carriers). However. once saturation is reached, the drift velocity does

not increase further and drift time. ~. increases with depletion width. w (~=W/Vd).
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Figure 2.15 Simulated C-V plots for the (a) p+/n-well (pshall-6), (b) n+/p-well

(nshall-6) and (c) n-well/p-substrate (ndeepl-2) junction diodes (all

devices are of area lOOJlmx 100Jlm)

The software does not simulate periphery capacitance but it took into account scaling

factors and grading coefficients provided in the models. Table 2.2 summarises the

parameters from the models and the results of the simulation.

Photodiode type Process datasheet (OV) Simulations (PSpice)

C Cjsw Cj at OV c, at 2VJ

(pPIJlm2) (pF/Jlm) (pF/!lm2) (pF/!lm2)
"

p+/n-well (pshaI1-6) 6.0 x 10-4 3.6 X 10-4 5.6 X 10-4 3.2 X 10-4

n+/p-well (nshaI1-6) 5.0 x 10-4 2.8 X 10-4 4.8 X 10-4 3.2 X 10-4

n-well/p-substrate 7.89 x 10-) 7.33 X 10-4 7.4 x 10-) 4.9 X 10-)

(ndeep 1, ndeep2)
.

Table 2.2 Junction capacitance of diodes based on model parameters and

simulations

Based on these values, the periphery capacitance of the shallow photodiodes (nshall-

6, pshaI1-6) only starts to dominate the total capacitance value for areas < lum x

lum. But with the deep photodiode (ndeepl, ndeep2) the periphery capacitance

remains the dominant capacitance for areas up to l Oum x IOum. The deep
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photodiodes have the lowest capacitance. This is because they have the largest

depletion region due to their lower doping concentration. At zero bias the p+zn-well

photodiode has a larger capacitance than the n+/p-well photodiode but it becomes

lower at higher bias voltages of more than 2V. The p+/n-well photodiode has the

largest variation in capacitance with voltage while the deep photodiodes have the

smallest making it suitable to be used in the integrating and discharge mode. For a

lOO!J.mx l00!J.m device, the calculated zero bias junction capacitance of the p+/n-

well, n+/p-well and n-well/p-substrate diodes are 6.14pF, 5.11pF and 1.08pF

respectively.

It should be noted that the process parameters can vary from run to run and with

external conditions such as temperature. This. makes the simulations an estimate at

best. Mietec provide a set of models to account for the variation in process parameters

such as threshold voltage, gate oxide thickness and gate lengths drawn. The models

provided are TYP for nominal process conditions, FAST for fast devices (to estimate

worst-case power dissipation) and SLOW for slow devices (to estimate worst-case

delay). Simulations were mainly performed and shown for TYP but illustrated in

Figure 2.16 is the effect of process variations on the C-V characteristics of an n+/p-

well junction diode.
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Figure 2.16 Simulations of the C-V characteristics ofa lOO!J.mx 100!J.m n+/p-well

diode
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2.3.2.1 Experimental setup for C-V measurements

In order to verify the values given by the simulations, the capacitance was measured

using a Boonton Electronics Capacitance Meter (Model 72B) capable of measuring

capacitance down to a resolution of 0.01pF. In order to eliminate the measurement of

any parasitic capacitance (cable, package and bondpads), a differential measurement

was obtained. The capacitance meter allows a direct difference measurement to be

made at its two terminals. So by connecting one photodiode of a particular size to one

terminal and another photodiode of a different size to the other terminal, a reading

corresponding to the capacitance of the difference in size of the two photodiodes is

obtained. This of course assumes the stray cable capacitance in both connections are

similar. A reverse bias voltage bias was applied to bias the photodiodes via the back

of the capacitance meter.

2.3.2.2 Results and discussions for C-V measurements

Figure 2.17 shows the differential capacitance measurement between ndeep2 and

ndeep1. The result is hence equivalent to the effective capacitance of a 30000J.lm2(or

O.03mm2) deep photodiode with n+ across. The C-V response obtained has the

characteristic inverse shape of a C-V curve we would expect from a junction diode

and it agrees satisfactorily with simulations.
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Figure 2.17 Differential C-V measurements of deep photodiodes with n+ across

(effective area of 30000J.lm2
~ 170J.lmx 170J.lm)compared with the

simulation model
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However, when the deep photodiodes without n+ (deep 1-6) were tested, an unusual C-

V response was obtained just as we saw with the I-V plots for these devices.' The

response observed was essentially and uncharacteristically flat, as shown in Figure

2.18. In general the capacitance for these devices were lower than that obtained with

the deep photodiodes with n+ across (ndeep1, ndeep2).
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Figure 2.t8 Differential C-V measurements (left) of deep photodiodes with n+

removed (deept-6) and compared to simulations (right) for an

effective area of 39tOOf..lm2(~ 200f..lmx 200f..lm)

The reasons for requesting the removal of the n+ layer was to maximize the light

entering the substrate without being strongly absorbed at the surface and to reduce

recombination of photogenerated carriers in this region and hence improve the overall

quantum efficiency. Also, silicide, which is opaque to light, is used in CMOS

processes to reduce the resistivity in the diffusion and polysilicon layers [Yang 1996]

making it necessary to remove these layers for image sensing. In order to remove the

n+ diffusion layer, Mietec allowed the use of a reserved layer called NO_GEN to

indicate where diffusion is to be removed. The layout rule provided by Mietec

containing its usage is as follows:

IGS layer 3 (NMOS_FIELD) and IGS layer 16 (N+ _IMPLANT) are automatically
,

generated, unless in these areas .covered by IGS layer 61 (NO_GEN). On these IGS

layers, all data that is not covered by IGS layer 61 will be ignored during mask

preparation.

Figure 2.19 shows how NO_GEN was used to generate an active region without any

diffusion layer. Note the use of NO_GEN as shown gave a design rule warning

because this was a reserved layer that wasn't recognised by the design rule checker
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used. However when checked via IMEC's Dracula design rule checker the layer was

recognised and the diffusion layer was removed at that junction.

Blue indicates
NO _GEN layer

Get design rule error of 'Minimum spacing
between opposite type of active areas at
different potential in the same substrate
(1.6um)' because removal of n+ not seen
byDRC

FOX FOX

P-substrate

Figure 2.19 Use of NO_GEN to remove diffusion layers in an active area

It was later established that the Mietec 0.7!lm CMOS process used was a polycide

process and not a salicide'" process. But the abnormal results obtained with the deep

devices with n+ removed necessitated closer inspection of the device. It seems that the

use of NO_GEN layer over th~ explicitly drawn n+ region had removed the n+

diffusion layer here as well, despite the description of the layout rule. As a

consequence a Schottky barrier diode was formed between the n-well and the cathode

(K) contacts. Hence two diodes in series were formed as illustrated in Figure 2.20,

which explains the C-V characteristics as well as the forward bias current obtained.

24 Silicidization is the process of depositing metal (typically titanium or cobalt) on to the silicon in

order to lower the resistance of the polysilicon interconnect or the source-drain contact. In a polycide

process only the poly silicon is silicided. In a silicide process both polysilicon gate and source-drain

regions are silicided. If this silicide process is a self-aligned process, it is usually termed salicide.
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Figure 2.20 Diode configuration formed by the removal of the n+ layer (deepl-6

and PDarray) and its expected C-V characteristics

The overall capacitance of the photodiode is the capacitance of these two diodes in

series and as such the smaller of the two capacitance dominates. The Schottky barrier

diode is formed only over the contact area and is hence much smaller than the junction

diode. When the deep junction is reverse biased the Schottky barrier is forward biased.

However, since it is small its capacitance dominates. Hence a smaller and more linear

capacitance value is obtained which agrees with that observed. As the deep junction

capacitance drops with increasing bias it will come into play in determining the

overall capacitance. The effect of the Schottky diode on the photoresponse in the

reverse bias operation of the photodiode is not observable which is reasonable because

under these conditions the Schottky diode is forward biased. This will be shown later.

Paradoxically, the lower capacitance obtained with these deep devices is a useful by-

product for high-speed applications and increased charge conversion efficiency. Also

the linear C-V curve obtained will give rise to a linear discharge curve when the
,\

photodiode is used in an integrating mode, such as in an integrating active pixel

sensor.

It should be pointed out that the diode capacitances measured do not scale linearly

with the effective area and is not expected to because a differential measurement will

have a lower periphery component than a direct measurement. Consider a difference

measurement between a 200J,lm x 200J,lm and a lOOJ,lmx 100J,lm diode, the effective

area measured will be 30000J,lm2 and the effective periphery measured will be the

difference in periphery, which is 400J,lm. However, for an area of 30000J,lm2 the

periphery expected would be close to 700J,.l.m.A more accurate estimate of the

capacitance is obtained by considering the measurement for the largest difference in
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area, for example the measurement for deep6 - deepl. Figures 2.21, 2.22 and 2.23

show the measured C-V characteristics of the shallow n+, the shallow p+ and both the

combined photodiodes respectively.
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The p+Zn-well (pshall-6) photodiode has a larger capacitance than the n+/p-well

(nshall-6) photodiode and both have a larger capacitance per unit area than the deep

photodiodes, which agrees with what simulations suggest. The measured capacitance

of the combined devices are also shown. The pcomb devices exhibit a strange

response which has yet to be explained but is thought to be due to the formation of the

depletion region at the surface and how this depletion region increases in size with

reverse-bias till it eventually meets the n+ collection region leading to punch-through.

2.4 PHOTORESPONSE OF PHOTODIODES

The photoresponse of a photodiode can be evaluated in terms of its spatial and spectral

sensitivity. The following sections detail experimental work carried out in determining

both of these responses for the fabricated standard CMOS photodiodes.

2.4.1 SPATIAL RESPONSE

Edge-effects due to the lateral diffusion of photogenerated carriers in imaging

detectors lead to the increase in photocurrent in the periphery and a larger effective

charge collection area than the actual geometry of the photodiode [Holloway 1983].

This effect is expected to be more pronounced in small photodiodes which has a larger

perimeter-to-area ratio. A series of photodiodes of varying sizes were included in the

second characterisation chip (chiplbfinal) in order to evaluate this. Also with the first

characterisation chip, the effect of lateral crosstalk was seen. Lateral crosstalk arises

from the diffusion of lateral photocharge from outside the pixel region, either from a

neighbouring photodiode or from collection in the substrate. The effect of this for

imaging applications is that the contrast obtained will be significantly degraded and

decreasing pixel size to increase resolution will reach a limit if this crosstalk is not

removed. The following section demonstrates and evaluates this issue.
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2.4.1.1 Experimental setup of spatial response test

In order to determine the spatial photoresponse of the photodiodes, a laser beam

(667nm) was focused to a spot of approximately 5J..lmand scanned across the area of

the photodiode. This was done by placing the sample on a scanning stage and

adjusting the height and position of the stage such that the laser is focused on the

sample. The stage is controlled by a PC to move in 2 dimensions to cover the

scanning area with the focused laser remaining fixed. The scanning stage is capable of

moving in step sizes as small as lum but mainly a step size of 5J..lmwas used, as too

small a step would lead to excessively long scan times. Also it would be unnecessary

to make the step size too small when the spot size is limited to 5J..lmanyway. The

PR08000 laser diode controller from Profile, Germany, was used to control the laser

output power over a range of 2 decades (OAmW - lOmW). It also maintains the

temperature of the laser ata specified level for stability and a room temperature of

25°C was chosen. Figure 2.24 shows the setup of the scanning system. The power of

the laser diode was set at DAmW with no neutral density filter (NDF) in the optical

path but after going through the optics the power incident on the chip was

approximately 82J..lW.The reflected beam was imaged on a reference photodiode to

obtain an image of the scan and to determine if the setup was in focus. As with the

dark current measurements, the Keithley Source-Measure Unit was used to apply a

bias voltage and take the current measurement. The scan was performed with a reverse

bias voltage of 2V applied to the test photodiode. However, unlike the dark current

measurements, the Keithley was controlled through the IEEE 488.2 GPIB (General

Purpose Interface Bus) serial interface [Keithley Instruments Inc. 2001] to allow

automatic collection of data25. However, it was necessary to wait for a period of at

least 3s after setting the bias conditions before taking a reading from the Keithley as

the bus remains busy for this period. Consequently a time between readings of 5s was

used throughout. A test board allowed each photodiode on the test chip to be tested in

25 When controlling the Keithley through the GPIB, the autoranging feature of the Keithley would fail

at low measured currents and an arbitrary value of +O.OOlmA is obtained. When that occurred, it was

necessary to change the measurement range. The easiest way to do this was to check the reading

, obtained and if the reading when out of range, the program would switch to an appropriate

measurement range.
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turn by connecting the appropriate jumper. The schematic and PCB of the test board

for the scanning experiment is included in Appendix A2.2.

!
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Reference Imaging PD
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Test
board
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~---- To Keithley

To PC's IEEE bus

Scanning
stage and
motor

Scanning stage platform

Figure 2.24 Setup of scanning system for the characterisation of fabricated

photodiodes for spatial response measurements

2.4.1.2 Results and discussion of spatial sensitivity measurements

Figure 2.25 shows the optical image obtained from a scan of the deep4 photodiode

and Figure 2.26 shows the spatial results in both x and y direction obtained from this

scan. The increase of photocurrent at the edges is due to the side-wall of the

photodiode providing a larg~r volume depletion region (see Figure 2.1) and hence

collection region. Also the large number of defects at the edges, particularly at the

surface and at the field-oxide/well-junction interface, could contribute to its presence.

During the oxidation process in chip fabrication, stresses are generated that slightly

lift the protective nitride at'its edges, creating a tapered oxide called a bird's beak. The

LOCOS or bird's beak region is the transition between the field oxide and the thin
,

oxide that covers the n+ implant and is under elevated mechanical stress. The

presence of this can lead to a larger leakage current. In a recent paper by Homsey and

Renshaw [Lee 2003 (Part II)], it was observed that the edge-effect in CMOS

photodiodes is significantly affected by surface recombination and mobility

degradation along the Si-Si02 interface.
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It can be seen that edge effects are more significant in the x-direction than the y-

direction. It is not yet clear why this is so. However it is felt that shadowing effects in

the optics made the observed edge effects more pronounced than they actually are as

the edge effects are also seen in the optical image which is the reflection of the beam

from the surface. Also the structure is not perfectly planar, particularly at the edges,

and variation of type and thickness in the layers will mean the relative effect of the

response between the edges and its centre could depend on the wavelength used and

the reflections that occur. Furthermore, there exists a grain in the wafer, which can be

observed in the optical image previously shown (Figure 2.5) and will give rise to

different responses depending on where along the grain the spot lies. Another issue is

that the photoresponse extends outside the area of the exposed photodiode. So it is

possible that at the edges, diffraction effects and multiple reflections in the passivation

layers are occurring, and not discounting the possibility that the light spot is diffused

significantly more than expected by the imaging optics. Stray and scattered light was

also an issue in the experiment.
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Figure 2.25 Optical image from reflected beam
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(c) Measured photoeurrent in y direction at x=O

Figure 2.26 Scan of lOOJlmx lOOJlmdeep photodiode with n+ removed (deep4)
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Figure 2.27 shows the scan of different sized devices of the deep photodiodes with n+

removed. The edge effects can again be seen, except for 'deepl', the 30ll-m x 30ll-m

device, where only a single peak exists at the centre of the pixel. For the other sizes

(i.e. deep2-6) the response at the centre decreases with increasing size. It seems that as

the pixel size gets smaller the peaks get closer together increasing the response at the

centre until the peaks merge and further decrease in size reduces the central response.

3: 2.5
1:
'"~ 2
~a. 1.5

Measured photocurrent across y=0

3.5

0.5

.150

(a) scanning along y = 0
·5 Measured photocurrent across x=O

4 x 10

150

(b) scanning along x = 0

Figure 2.27 Scan of different sized deep photodiodes with n+ removed (deepl-6)

For applications where a flooded light source is required and the pixel size dictated

resolution, there would be an optimum size in the trade-off between sensitivity and

resolution [Chen 2000]. In the case of a focused spot size, however, the size of the

device is expected not to matter until the size of the device is comparable to the spot

size. However, because of the edge effects and non-uniform response, it may be

prudent to make the detector size somewhat larger than the spot size.
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Crosstalk

In scanning a laser beam across the chip, two sources of crosstalk could be seen:

diffusion of photogenerated carriers from neighbouring photodiodes and diffusion of

carriers from the exposed substrate. The crosstalk from neighbouring photodiodes

could be removed by grounding the neighbouring photodiodes. This is illustrated in

Figure 2.28 (a) and (b). Figure 2.28 (a) shows the photocurrent detected by the device

in the centre as the beam is scanned across the other photodiodes which were left

floating. By grounding these devices this crosstalk was removed as shown in Figure

2.28 (b). Figure 2.28 (c) and (d) show the measured photocurrents along y=O and x=O

of the scan before and after grounding of the neighbouring photodiodes. Although the

crosstalk from neighbouring photodiodes has been removed, the crosstalk from the

substrate still remains. To remove crosstalk from the substrate a metal light shield is

placed around each photodiode to block the incident light in this region. However due

to the large diffusion length of the carriers relative to the scale of the devices,

substrate current as far as 300lJ,m away from the pixel is still detected by the

photodiode under test. This implies either a larger area light shield is required or a

guard ring or parasitic photodiode structure is needed to absorb the leakage current.

However, it can be seen that the crosstalk from the substrate is also reduced when the

neighbouring photodiodes are grounded because some ofthe diffused substrate current

is now drawn and collected by the other photodiodes.

Measured photocurrent

Figure 2.28 Scan of 'deep4' photodiode with crosstalk present and crosstalk

removed
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(a) Neighbouring photodiodes floating
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(d) Scan along x = 0 before and after grounding of neighbouring photodiodes

Figure 2.28 Scan of 'deep4' photodiode with crosstalk present and crosstalk

removed
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Figure 2.29 shows the response obtained from the scan of the 1OO~mx 1OO~m deep

photodiode with n+ across. Several cross sections of the scan are shown. The crosstalk

from the substrate clearly shows the extent of the diffusion length of the carriers. The

minority carrier diffusion lengths of epitaxial silicon in modem CMOS processes are

typically in the order of hundreds of micrometers [El Gamal, Lee 2003 (Part I)].

Metal2
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(a) Optical image from scan
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(b) Measured photocurrent image map

Figure 2.29 Scan of the 100~m x 100~m deep photo diode with n+ across
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(c) Measured photocurrent in x at y = -150,0 and IS0f.lID
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(d) Measured photocurrent in y at x = -150,0 and IS0f.lID

Figure 2.29 Scan of the 100f.lIDx 100f.lIDdeep photodiode with n+ across

The contact area of the photodiode can clearly be discerned in Figure 2_29 (b)

establishing the size of the spot to be less than eum. Note that in Figure 2.29 (c) and

(d) (circled regions) the presence of metal tracks did not block the light completely

because the spot size was larger than the track size (Zum) at these points. This causes
,

the size of the tracks in the optical image to appear broader than they are. Spatial

filtering has occurred.
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The diffusion of minority carriers follows an exponential decay with length

[Shcherback 2003, Sze 1981] and hence the diffusion lengtlr'" of the process used can

be estimated from the plots of the substrate crosstalk as follows:

(2.1)

where II and Iz are the photocurrents generated at XI and X2 respectively, and L, is the

diffusion length of minority carrier electrons in the p-epi substrate.

x -x
Therefore, the diffusion length, i; = (2~1)

In II
12

Choosing two points, X2 = -200~m and XI = -150~m, from the plot of y=O~m of the

scan (Iz = 1.0111 X 10-5A, II = 8.0628 X 10-6A), a diffusion length of -220~m for

(2.2)

electrons in the p-substrate is obtained. It takes three diffusion lengths for the

concentration of diffused carriers to drop to 5% of its original value.

Figure 2.30 shows the crosstalk obtained when the beam is scanned across the

photodiode array with the central device connected and the remaining devices

floating. The lateral crosstalk is significant with adjacent pixels reaching more than

50% of the central pixel value. Furthermore, the response of the pixel under test is

lower than that obtained in the isolated pixel case. This is possibly because part of the
"

photoresponse is due to the diffusion of carriers outside the depletion region and this

is now being collected by the p-n junctions (depletion regions) of neighbouring

photodiodes. The diffusion process, though contributing to the photocurrent, acts as a

spatial filter performing spatial averaging of the image. It is also interesting to note,

from the 3D image obtained (Figure 2.30 (e)), that the edge-effects are most

prominent at the comers of a photodiode pixel where the electric field stresses are

higher [Shcherback 2002].

26 The distance over which concentration of injected free charge carriers injected into semiconductor

.falls to lie (37% )of its original value.
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(a) Optical image
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Figure 2.31 shows the response of the different types of photodiode of size 100Jlm x

100Jlm. In general the shallow n+ photodiode had a lower response and the combined

shallow n+/deep device has an abrupt and two distinct responses. The lower

responsitivity of the shallow n+ photodiode can be attributed to its narrower depletion

region [Xiangliang 2002]. Also its shallow junction depths and the isolation provided

by the deep field oxide trenches means collection of diffusion carriers is poorer than in

deep photodiodes. Whether or not the choice of wavelength used had an effect in the

response obtained will be discussed later.
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Figure 2.31 Photoresponse of the different lOOJlm x lOOJlm sized photodiodes

(b) scanning along x = 0
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Figure 2.32 shows the measured photoresponse in the combined devices. In the case

of the combined shallow n+/deep (ncomb) device, the response is due to the fact that

this photodiode consists of two distinct photo diodes next to each other (see

photodiode cross-section in Figure 2.7( c)) with the deep device having a higher

responsitivity than the shallow n+ photodiode as mentioned. It is also interesting to

observe the breakdown effect in the combined shallow p+/deep (pcomb) devices as

mentioned previously in Section 2.2.3. With the pcomb device, a large background

current is obtained with reverse bias voltage but with no amplification of the

photocurrent. This device will suffer from poor signal-to-noise ratio due to large shot

noise and poor dynamic range due to saturation, ifused in the reverse bias mode.

~ 2
~
~ 1.5
If.

MesslI"ed photocurrent across x=O

2.5

-50 o
x (um)

50 -~OO:;;;=--'--.t.;;50--~0:-------;5~0 _____:'-~100

y(um)

(a) ncomb4 (b) pcomb4

Figure 2.32 Photoresponse of the lOOJlm x lOOJlm combined photodiodes

Chip to chip variation

In order to see the variation in photoresponse from chip to chip i.e. with process or

wafer variations, scans of different samples of the deep4 photodiode were performed.,
It can be seen from Figure 2.33 that the shape of the peaks varied. This could be due

to the grain in the wafer as mentioned previously. Also in setting up the experiment

for different chips, slight difference in clamping of the test board to the scanning stage

i.e. if the board is not flat, could lead to different shadow effects in the scan. Overall

the standard deviation of the images over the photosensitive area is still less than

.1.7%. From the image of the measured photo current of Figure 2.33 (a), the absorption

of light through the metal holes can also be seen. Also with the neighbouring
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photodiodes grounded, contribution from the edges of these devices is still visible

though significantly reduced as seen in Figure 2.33 (b) and (c). Perfect removal of

crosstalk just by grounding is not possible. Diffusion follows a statistical process and

a very small proportion still diffuses to the test photodiode.
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(b) Measured photocurrent along y=O (c) Measured photocurrent along x=o

. Figure 2.33 Scan of the deep lOOllm x lOOllm photodiode with n+ removed

(deep4) on various chips

Responsitivity

From the spatial sensitivity experimental setup, responsitivity values can be obtained.

However, there are several means to determine this value due to the spatial nature of

the response. The responsitivity can be obtained by taking a mean over the area of the

photodiode. But it is difficult to determine exactly the size of the photodiode as the

light entering the substrate outside the defined photo diode area can also be picked up.
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Thus far the photodiode size has been defined by the size of the n-well as this

corresponds to the location of the p-n junction or depletion region. But the photodiode

exposed area is slightly larger than this because of the necessary substrate contacts

around the periphery of the device - see Figure 2.6. For our design, the exposed

region of each photodiode is about 20J..lmlarger than the stated n-well width in both

directions.

Four different conditions are defined for the possible calculation of the responsitivity.

The responsitivity can be calculated based on an average over a defined area. Here

two will be used: the total area exposed to light i.e. before the boundary of the light

shield and the area of the drawn n-well. Or the responsitivity can be obtained from

specific points on the photoresponse scan. Intuitively, either the centre of the pixel or

the maximum value across the scan is used. Table 2.3 gives the responsitivities

obtained for a 100J..lmx 100um deep photodiode with n+ across for these different

conditions.

Exposed area N-well area Centre Maximum

Responsitivity (AIW) 0.242 0.293 0.335 0.426

Quantum efficiency (%) 45.1 54.5 62.3 79.3

Table 2.3 Responsitivity and quantum efficiency values for the lOOJ..lmx lOOum

deep photodlode with n+ across (ndeepl) at "A = 667nm

It is felt that the average value obtained using the n-well area gives a fair and good

, estimate of the responsitivity and will be used from now on. In the case of

photodiodes without an n-well, the equivalent active area drawn defines the area.

Quantum efficiency values are also shown and are obtained from the measured

responsitivity values using equation (1.9).

Table 2.4 shows the responsitivities obtained for the photodiodes tested. The average

responsitivity of the deep devices is 0.298 A1W. The responsitivity of the shallow n+

device is slightly lower as it has a smaller depletion region to collect the

photogenerated charges. The shallow p+ device has a comparable responsitivity to the

deep devices because of the presence of the parasitic n-welllp-substrate junction. A
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more detailed analysis of the responsitivity will be given later when the spectral

response of the devices is observed.

Photodiode Responsitivity (A/W) at 667nm

ndeep1 (lOOf.lmx lO0f.lm) 0.293

ndeep2 (200f.lm x 200f.lm) 0.307

deep1 (30f.lm x 30f.lm) 0.259

deep2 (60f.lm x 60f.lm) 0.287

deep3 (80f.lm x 80f.lm) 0.281

deep4 (lOOf.lmx lO0f.lm) 0.307

deep5 (l60f.lm x 160f.lm) 0.306

deep6 (200f.lm x 200f.lm) 0.320

nshal4 (lOOf.lmx lO0f.lm) 0.258

pshal4 (lOOf.lmx lO0f.lm) 0.303

ncomb4 (lOOf.lmx lO0f.lm) 0.282

pcomb4 (lOOf.lmx 100f.lm) 0.273
.Table 2.4 Responsitivities of photodlodes tested at 667nm (based on n-well area)

2.4.2 I-V CHARACTERISTICS

By obtaining the I-V characteristics of a photodiode (see Section 1.5.4) under varied

illumination levels, its linearity and suitable operating range in terms of light intensity
,\

and bias voltage can be determined.

2.4.2.1 Experimental setup

The same scanning system employed in the measurement of the spatial photoresponse

(see Section 2.4.1.1) was used to obtain the I-V characteristics of the photodiodes in

light. However, the incident power on the sample is now adjusted by varying the

output power of the laser diode and by placing various NDFs in the optical path.

NDFs with optical densities, D of 3.2, 0.8 and 0.4 where the NDF transmittance, T =
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lO-D, was used to give an incident power range of 5 decades (60nW to 2.7mW). The

focused laser beam is imaged onto the centre of the pixel under test and then an I-V

sweep is performed using the Keithley with a step size of 0.1V up to a reverse bias

voltage of 5V and a forward bias of 1V (5V for the deep and pcomb devices with

Schottky diodes). The results obtained from the characterisation will be shown in the

following section.

2.4.2.2 Results and discussion of I-V characterisation in light

Figure 2.34 shows the I-V characteristics obtained for various illumination levels

(82JlW to 2.7mW) of the deep 100Jlm x 100Jlm photodiode with n+ removed

(ndeep1). As expected, the larger the incident power, the larger the photocurrent. The

response appears linear and this will be investigated further. What is interesting to

note is that there is some response to light in the forward bias because the Schottky

diode (as a consequence of no n+ under the contacts) can act as a photodiode as well.

However, its response is weak, partly due to the size of the device and partly due to

the fact that it is completely covered in metal with no interdigitated structure required

for proper photodiode operation of Schottky photodiodes. The main mechanism for

light detection here is probably due to the diffusion of carriers from outside the

contact area.

x 10·~V plot of 100umx 100um deep photodiode for varying light levels
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Figure 2.34 I-V characteristics for deep lOOJlm x lOOJlm photodiode with n+

removed (ndeepl) for increasing light level
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Figure 2.35 shows the comparison between the I-V characteristics of the deep 100fJ.m

x 100fJ.m,photodiode with n+ across (ndeepl) and that without (deep4) for incident

light powers of 41.6fJ.W and 494fJ.W. The deep photodiode with n+ across is slightly

more responsive (8.6%). It is also observed that the deep photodiode with n+ removed

has significantly less photoresponse in 'quadrant 4' of the I-V plot and has a fixed

open-circuit voltage in the presence of illumination. This is due to the reverse bias

action of the Schottky diode in this region. This limits the operating range of this

device as a photodiode.

10

--- ndeep1 (41.6uW)
-e- ndeep 1 (494uW)
~ deep4 (416uW)
-+- deep4 (494uW)

0.2 0.4 0.6 0.8
Vokage (V)

12-0.6 -0.4 -0.2

Figure 2.35 I-V characteristics of the deep lOOfJ.mx lOOfJ.mphotodiode with n+

across (ndeepl) and without (deep4)
"

The linearity w~tlr illumination level was tested and the results for the deep 100fJ.mx

100fJ.m photodiode with n+ removed (deep4) at a reverse bias voltage of 2V are

shown in Figure 2.36 (a) and (b), as compared to a linear (dotted) line. The non-

linearity'" or the maximum deviation over the full range of powers (60nW to 2.7mW)

tested is 0.73% of the full scale range while the average deviation was about 0.13%.

Over the range of 60nW to 1fJ.W, the non-linearity was 2.26%. The linearity of both

the deepphotodiodes with n+ across (ndeepl-2) and with n+ removed (deepl-6) are

shown in Figure 2.37. In general, all the photodiodes were found to be of similar

linearity.

27 Non-linearity is defined as the maximum deviation of the transmitter output from the reference line

(terminal or best- fit straight line) and is reported as a percentage of the unit's full-scale range.
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Figure 2.37 Photoresponse linearity of the deep photodiodes with n+ across

(ndeepl-2) and without (deepl-6) for incident power of 40J.-lWto

460jJW (2V)

4

When the photocurrent measured is plotted against area as shown in Figure 2.38, a

non-linear response was obtained. Also the response seems to be larger for smaller

sized devices with the exception of the 30J.-lmx 30J.-lmdevice. This test was repeated

on a separate chip with similar results. In actual fact, this is the same response that

was seen with the spatial photoresponse of the deep devices in Figure 2.27 because it

is the photoresponse at the centre of the pixel that is being measured. The dip in the

102



Chapter 2

photoresponse gets shallower as the pixel gets smaller and the edge effects merge till a

single peak is seen for 'deepI'.

1.1

10~~O~.5--~-1~.5--~2--~2.5~~~3.5~-
Area (m2)

Figure 2.38 Variation of photocurrent with area for deep devices (2V)

2.4.3 SPECTRAL RESPONSE

The spectral response of a photodiode shows how the magnitude of the photocurrent

for a given incident light power varies over a range of wavelengths. Obtaining the

spectral response will help determine a suitable operating wavelength to use in a

chosen application.

2.4.3.1 Experimental setup for spectral sensitivity tests

This section describes the setup and testing of the experimental apparatus for

obtaining the spectral response of the full custom photodiodes, as shown in Figure

2.39. The first part of the setup involves providing a monochromatic or single

wavelength output over a wide range of wavelengths. The H20 IR Jobin Yvon

monochromator [Jobin Yvon (Horiba) New Jersey, USA] with a grating of 600

lines/mm and an output wavelength range of 400nm to IIOOnm was used. The

monochromator takes in white light from a 70W tungsten-halogen lamp through its

entrance slit. Mirrors inside the monochromator direct the light to a diffraction

grating, whichdivides the white light into its spectrum. Another set of mirrors direct

the light to the exit slit where the spectrum is narrowed down to a near-
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monochromatic light. The wavelengths exiting the monochromator are selected by

rotating the grating which is controlled by the dial on the monochromator.

Aperture

To Keithley To PC's
parallel port

Stepper motor
controller

White light
source

Figure 2.39 Setup to determine spectral response of test photodiodes

The resolution of the monochromator is specified as O.Snm for a wavelength of

SOOnmand a diffraction gratingof 1200 lines/mm. In order to observe and confirm the

resolution of the monochromator for the diffraction grating used, its output was

observed through. a spectrometer. The grating used in the spectrometer allowed a

range of 400nm to 700nm to be observed. Figure 2.40 shows the resolution observed

for wavelengths of 420nm and 600nm. The resolution, specified as the full width at

half maximum (FWHM), is approximat.ely Snm at both wavelengths. In addition, the

output beam of the monochromator was diverging and non-uniform. The non-

uniformity was partly due to the image of the grating appearing on the output beam

and the position of this changes with wavelength. Hence a diffuser was used in order

to produce a uniform beam of light over the area of the sample. The disadvantage of

this is less light gets through.
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A stepper motor was used to automatically rotate the grating and step through the

wavelengths. The UCN5804B BiMOS IIUnipolar Stepper Motor Driver is used to

convert CMOS/TTL logic inputs into a stepper motor drive format to drive the four-

phase unipolar stepper motor attached to the monochromator grating turret [Chen

2002]. The format used was the two-phase drive format which has better torque

performance and less susceptible to motor resonance. The driver accepts two signals

from the PC's parallel port. One is to control the rotation sequence of the outputs and

hence the direction of the motor i.e. whether the wavelength is increased or decreased

and the second is to advance the sequence position of the outputs by one position with
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every high-to-Iow transition. Six step pulses were needed to advance the wavelength

by 1nm. Step sizes of 5nm were used in the measurement of the spectral response.

The second part of the setup is the measurement of the sample's photocurrent and the

incident light power. The Keithley was used to obtain the photocurrent measurements.

In theory, fluctuations in the source (wavelength and intensity) can be compensated

for by splitting the light and simultaneously measuring (and cross calibrating) the

photocurrent generated on the test photodiode and on a calibrated reference

photodiode. However, the Keithley only allows for measurements on one channel and

so this cannot be carried out. The power of the light incident on the sample was

measured with a Newport Optical Power Meter (Model 835) that used an 818-SL

detector type with an active area of Icrrr'. Readings were double-checked with a

second power meter, namely the Coherent LabMaster Ultima Power Meter which had

a detector aperture of 7.9mm, a spectral range of 400-1064nm and a resolution of

1nW. Measuring the power of a non-uniform beam as illustrated in Figure 2.41 gives

rise to an incorrectly higher responsitivity value because the power measured is

averaged across the beam but the power incident on the detector, which is smaller than

the aperture, is higher. An aperture was used so that a more uniform area of

illumination is obtained and this also allowed a more accurate determination of the

illuminated area when measuring the incident light power with the power meter.

Incident ~
light .s-> .....___

intensity.
Aperture

'/E7=I,
Photodiode D.D.T.

11= 1 1

Figure 2.41 The use of an aperture to obtain more uniform power measurements

Initial tests were made with the Temic BPW34 photodiode in order to use its datasheet

values for comparison. However, this showed a significantly larger response than that

specified in its datasheet. This turned out to be due to the source not being accurately

imaged on the entrance slit. This resulted in a more non-uniform beam at the output.

However the response obtained after correcting this was still high as shown in Figure
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2.42 (a). Also shown are measurements taken at different times (correctly imaged on

the slit) which shows that the temporal variations of power or wavelength could not

account for this discrepancy. A calibrated photodiode from Hamamatsu (S6058 4-

quadrant Si PIN Photodiode) was then used for further tests but this still showed

similar results of the response being higher than expected. This is shown in Figure

2.42 (b). It was thought that the uniformity of the beam was still affecting the reading

and a smaller aperture and a second diffuser was used. This improved the reading as

shown. However, some non-uniformity probably still existed. As such it was decided

to scale the spectral response curves obtained with the value of the responsitivity

obtained with the spatial response experiment as the light source was focused in that

experiment and the incident power could be determined more accurately. The scaled

result is also shown in Figure 2.42 (b). Now the curve is slightly lower but this is

marginal and can be explained by scattered light, which gets measured by the power

meter, and losses in the photo current measurement.

Absolute Spectral Response

truncated
'09. by slit ~
0.8 ~

0.7 imaged /
~06 on slit / A.~0'5Ali
iir°A~

0.3

0.2

500 600 700 800 gOO 1000 1100
-Wavelength (nm)

datasheet

(a) BPW34

Absolute Specual Response

1 diffuser

Figure 2.42 Comparing measured and documented spectral response of reference

photodiodes

0.9

0.8

Table 2.6 shows the responsitivity values obtained from the scanning system

compared to that quoted on the datasheet for the reference photodiodes. The incident

power in this test was measured at 84!lW. It was concluded that the best and most

accurate means of determining the spectral response of any test photodiodes was to

scale the response obtained with the responsitivity value obtained from the previous

spatial scanning experiment. This removed the need for the second diffuser, which

0.7

!06~10
.
5

.!OA~
0.3

0.2
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aO~0--~500~~60~0--~700~~60~0--9~OO~~100~0~1100
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(b) S6058
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meant more light could be directed at the sample and the signal-to-noise ratio of the

system isimproved,

Reference photodiode

BPW34 S6058

Measured photocurrent 35.4IlA 37.5 IlA

Measured responsitivity 0.421 AlW 0.446 AIW

Responsitivity from datasheet 0.425 AlW 0.488 AIW

Percentage error 0.94% 8.6%

Table 2.5 Comparing measured responsitivity values of the reference

photodiodes using the scanning system with their quoted datasheet

values at 667nm

Due to size restrictions in the setup, unshielded flying leads had to be used to make

the measurement instead of a direct shielded BNC connection to the board (as in the

spatial scanning system). This caused the dark DC leakage current from the spectral

system (biased at 2V) to be about 50pA compared to that of the scanning system

which was about 3pA. As such, dark current measurements were taken and subtracted

for each run. However, this did not eliminate problems due to electromagnetic pickup

and steps had to be taken to remove this, such as isolating from external circuitry and
\

human motion.

The output light intensity of the monochromator could be increased by increasing the

entrance and exit slit widths of the monochromator but this has the effect of reducing

the resolution of the wavelength selection. Using a higher power (wattage) light bulb

may not necessarily increase the input light intensity because a higherpower light

bulb may just have a larger filament area whose image is truncated by the input slit

anyway.
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2.4.3.2 Results and discussion of spectral sensitivity tests

The spectral response of the deep l Ouum x 100f.lm photodiode with n+ removed

(deep4) from 400nm to 1100nm is shown in Figure 2.43 (c). The response curves

when scaled to the different responsitivity values are shown. Figures 2.43 (a) and (b)

show the measured photo current and incident light power respectively. The readings

go below 100pA for wavelengths of 450nm or less for the 200f.lm x 200f.lm devices

and 470nm or less for the 100f.lm x lOOf.lmdevices making it susceptible to the noise

level at this range. However this corresponds to where the response curves quickly

drop off anyway. An internal spline function in Matlab was used to interpolate the

data and get a smoother, more detailed waveform.

1.2~xl~O·'~_~lJm<>::.:.:rrml=lise;..:...ds...:..pe_ctr~alR_es...:..po_nse~~_---,
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Figure 2.43 Spectral response of the deep lOOf.lm x lOOf.lm photodiode with n+

removed (deep4)
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The spectral response curve of the device is typical of a photodiode fabricated in a

standard CMOS process [Lee 2003 (Part I), Stoppa 2002]. The peaks and troughs in

the response seen are due to the interference of the reflections within the passivation

layers covering the active area of the photodiode. The response drops off at

wavelengths longer than 1100nm as it approaches the cut-off wavelength of silicon

(see Section 1.5.1). Photons with energies smaller than the bandgap energy of 1.12eV

at room temperature will not be absorbed at all. At the other end, the reason for the

drop-off of responsitivity at lower wavelengths. is twofold. Firstly light at that

wavelength gets absorbed closer to the surface and the photogenerated carriers do not

diffuse to the depletion region but are lost due to surface recombination at the Si-Si02

interface. Secondly, for a given amount of power P incident on the detector, the

shorter the wavelength, '}.."the more energy, Eph, the photons have and hence the

number of quanta or incident photons is smaller as given below:

P P PA
Photon flux N = - = he/ = -- photons/s

, Eph 5A he
(2.3)

Figure 2.44 shows the spectral response obtained for the different sized deep

photodiodes with n+ removed (deep 1-6). The peaks of the curves line up reasonably

as expected because the variation in the pixel is in the lateral width and not with any

vertical differences. As the experiment was carried out with a flooded, not focused,
\

light source, it was susceptible to crosstalk from the substrate - an optical blocking

layer was used around the test devices but this only extended to 180f..1m.However, this

is notexpected to affect the shape of the spectral response.

x 10·g Unnormalised Spscnal Response
6~~--~~--~~~~~

- deep1
- deep2
- d•• p3
- d.ep<l
- deepS

4 - de.p6
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Wavelength (nm)

(a) Measured photocurrent
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Absolute Spectral Response
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Figure 2.44 Measured spectral response of the deep photodiodes with n+

removed (deepl-6)

Figure 2.45 shows the measured spectral response of the various lOuurn x lOuum

photodiodes. It shows that the 'deep' and 'ncomb' devices show similar responses with

the 'nshal' device showing a lower response (maximum ofO.3081NW at 735nm). The

lower response of the 'nshal' device is believed to be due to the higher doping

concentration of the p-well compared to the p-substrate leading to a potential barrier

for the collection of diffusion electrons in the substrate [Dierickx 1997]. Also the

'pshal' device shows better response at shorter wavelengths and the 'pcomb' device
\

showing an overall wider response than the others. Overall the 'ndeep l' device gave

the best response ,at longer wavelengths while the 'pshal' device was better at shorter

wavelengths. This response is consistent with the fact that light of longer wavelength

penetrates deeper into the substrate where the junction of the deep photodiode lies so

charges generated here are swept across the junction and collected, while the reverse

is true for shorter wavelengths. This is due to the absorption coefficient which is

highly wavelength dependent (see Section 1.5.1) and results in a penetration deptlr"

oflight into silicon as shown in Figure 2.46.

28 Penetration depth is defined as the distance that light travels before the intensity falls to 37% (lie) of

its original value at the surface.
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Comparing the spectral response curves in Figure 2045 (b) of the deep4 photodiode

(Figure 2.6) and the pcomb4 photodiode (Figure 2.7 (dj), at a wavelength of 422nm

the response is higher for the pcomb4 device. This is because pcomb4 has an

additional shallow junction for the collection of charges at a depth of 0.3~m (see

Figure 2046) which corresponds to the penetration depth of light at this wavelength. At

a wavelength of 586nm, or a penetration depth equal to the n-well junction depth, Xj,

of 2um, they show similar responsitivity values. This again is consistent since any

photons penetrating past the deep n-well junction will only be collected by this

junction and not the shallow source/drain region. Table 2.6 summarises the

responsitivities obtained with the test photodiodes.

Photodiode Responsitivity Maximum Wavelength of

(A/W) at 667nm responsiti vity max. responsitivity

(A/W) (nm)

ndeep1 (100~m x 100~m) 0.293 00403 690

ndeep2 (200~m x 200~m) 0.307 00413 683

deep1 (30~m x 30~m) 0.259 0.312 779

deep2 (60~m x 60~m) 0.287 0.354 740

deep3 (80~m x 80~m) 0.281 0.326 733

deep4 (100~m x 100~m) 0.307 0.357 735
"

deep5 (160~m x 160~m) 0.306 0.377 739

deepf (200~m x 200~m) 0.320 00402 681

nshal4 (100~m x 100~m) 0.258 0.308 735

pshal4 (100~m x 100~m) 0;303 0.387 647

ncomb4 (100~m x 100~m) 0.282 0.358 686

pcomb4 (100~m x 100~m). 0.273 0.340 685
....

Table 2.6 ResponsltIvltIes of the photodiodes tested
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2.5 CHAPTER SUMMARY

Unlike CCDs which have a specially tailored process and structures such as buried

channels and surface state pinning to achieve very low dark current levels,

photodetectors in a standard CMOS process make use of the parasitic junctions that

exists. The work done in this chapter was carried out in order to evaluate the design

and use of these junction photodiodes from a standard CMOS process. Several factors

need to be considered such as the dark current, the capacitance and its variation with

bias, the responsitivity of the device and its spatial and chromatic variation. The dark

current determines the minimum sensitivity of the device and has two main sources

[Shcherback 2002]: dark current from the diffusion of carriers across the depletion

region which depends on the doping concentration, bandgap, temperature, bias voltage

and active area, and stress induced or defect generated leakage current which depends

on the active area shape and bias voltage. For the same fill factor, the smoother the

shape the lower the leakage current. This was clearly seen from the observed spatial

response of the devices where edge effects showed increase leakage current. The dark

current for the devices tested was of the order of 1pA or less for a reverse bias voltage

of2 - 4V.

For applications where speed of response is important, the junction capacitance of the

devices needs to be small for a fast response time. The capacitance of the deep device

was .shown to be smaller than the shallow devices with the presence of the inadvertent

Schottky barrier diode in reverse lowering the capacitance further. In determining the

spatial response of a device, the issue of crosstalk between pixels and from the

substrate was highlighted. Due to the large diffusion lengths in silicon, either a metal

shield or a guard ring is required to prevent degradation of the contrast of the image

obtained. Also, due to the presence of edge effects the response of the photodiodes

does not scale linearly with area but is affected by the peripheral response. So in cases

where there is a trade-off between sensitivity and resolution, this must be taken into

account. The junction photodiodes were also shown to be very linear with light power,

with saturation level not yet reached for an incident light power of 2.7mW. The

linearity range of a photodiode can be extended slightly by applying a reverse bias

voltage [.UDT Sensors Inc.].
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The deep' or well-substrate photodiode showed better responsitivity than the shallow

devices due to its wide depletion region caused by the relatively low carrier

concentration in the n-well. Since it is deep it is also able to collect the minority

carriers photogenerated deep in the substrate provided that they are generated within a

diffusion length of the depletion region. In terms of spectral response, the deep

photodiode has better spectral response at longer wavelengths while the shallow

performed better at shorter wavelengths. This is due to the absorption coefficient and

penetration depth of light into silicon, where light of longer wavelength penetrates

deeper into the substrate. The deep photodiode is sensitive to substrate noise and

crosstalk from the neighbouring photodiodes due to its large and deep collection

region while the shallow n-/p-substrate photodiode has good substrate noise

immunity due to the presence of the deep field oxide (FOX) implants. Also the

presence of the diffusion implant at the surface helps reduce the collection of dark

current generated at the surface states of the Si-SiOz interface. The shallow p+/n-well

photodiode is the least sensitive to substrate noise and crosstalk with neighbouring

pixels because each junction is isolated within its own n-well [de Lima Monteiro

2002]. However the presence of the n-well also means that arrays using these

photodiodes are less dense with the n+zp-substrate photodiode offering the best

packing density. Noise was not characterised as the noise components in a bare

photodiode without any additional circuitry are small and the large shunt resistance of

the photodiode gives rise to a very small noise bandwidth (see Section 1.5.3). In most

applications, where there is sufficient light budget, the imaging system tends to be

photon shot noise limited [Homsey 1999c]. In addition, the connection of the

photodiode to readout circuitry will induce another form of noise known as read noise,

which limits the noise at low-light levels.

In summary, this chapter has demonstrated that the photodiodes present in a standard

CMOS process offer great potential as an optical detector. This work provides an

essential foundation to the rest of this thesis. In the next chapter, the design of a

hardware emulation system of the optical centroid processor will be presented which

makes use of a full custom array of photodiodes as the front end.
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HARDWARE EMULATION SYSTEM

3.1 INTRODUCTION

The fabrication of an ASIC (Application Specific Integrated Circuit), especially one

that contains analogue components, carries the possibility that the design may fall

outside specifications and hence more than one fabrication iteration may be required

before a satisfactory operating circuit can be realised. This carries a heavy cost

penalty. Hence, a more conservative approach of a hardware emulation system prior to

ASIC fabrication has been adopted in order to reduce the number of iterations needed.

The hardware emulation system consists of a photodiode array as the optical front end

and a reconfigurable digital device (called a Field Programmable Gate Array or

FPGA) for the digital centroid processing. Once the emulation hardware confirms the

satisfactory performance of a design in its intended application, it can then be

converted into a mask programmed CMOS integrated circuit. Due to the re-
.\

programmable nature of the FPGA the hardware emulation environment can also be

used to evaluate many other optical processing algorithms prior to ASIC fabrication.

3.2 SYSTEM OVERVIEW.

The hardware emulation system is shown in Figure 3.1 and consists of two printed

circuit boards: a main motherboard and a smaller daughter board. The motherboard

contains a single channel 16-bit analogue-ta-digital converter (ADC), a Field

Programmable Gate Array (FPGA), an RS232 transceiver for a PC serial interface,

LED displays for debugging purposes and miscellaneous switches for initiating

various test routines under user control. The second, smaller, daughter board contains

an optical front end with a 5 by 5 photodetector array for optical light detection,

multiplexers for pixel access and current-to-voltage conversion prior to digitisation.

The individual parts of the system will be described in the following sections.
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Figure 3.1 Block diagram of centroid emulation hardware

3.2.1 OPTICAL FRONT END

Initially a commercial photodetector array from Centronics (part number MD25-5T)

[Centronic Ltd. 1998] was used in the front end. This device is a 5 by 5 photodiode

array with a pixel size of 2.7mm x 2.7mm, a wavelength range of 340nm to 1100nm

and a quoted responsitivity of O.18A/W at 436nm. This allowed the design and testing

of the hardware emulation system to be carried out in order to locate any possible

problems. Once confirmed the fabrication of a full custom photodetector array was

carried out and once the fabricated array (5 by 5 photodiode array in PDfinal)29 was

tested, it was incorporated into the emulation system in place of the commercial
,\

photodetector array. The size of the array chosen is a tradeoff between linearity and

positional range with complexity and the desired centroid processing time as

dis~ussed in Section 1.4.3.2. Each pixel in the full custom array has a size of lOOJ..lmx

lOOJ..lmand though the exact size of the photodiodes is not crucial, there is a

compromise between ease of focusing, efficient use of silicon area and light budget

when deciding upon the pixel size.

Both the commercial and the full custom array have a passive pixel architecture with

no active circuitry at each photodiode. Current to voltage conversion is achieved using

an op-amp in the transimpedance mode i.e. with a feedback resistance. A 5MQ

29 Note that the photodiode type used in the full custom array is the combined device which is leaky in

the reverse bias. However, in the emulation system the photodiodes were biased at OV where the

operation of the combined devices is acceptable.
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variable resistor was used to allow the design to cope with different photocurrent

levels and hence light intensities. A single transimpedance amplifier is used and

multiplexers are used to select each photodiode output in tum to be converted. Serial

multiplexers (Maxim MAX349) [Maxim Integrated Products Inc. 1998] were used to

reduce the number of control signals needed. The schematics and PCB layouts for the

daughter board with the commercial photodiode array and for the daughter board with

the full custom photodiode array are shown in Appendix A3.1 and A3.2 respectively.

The choice of op-amps is crucial when using a large feedback resistance to detect a

small photocurrent. An op-amp with low input bias current is necessary. The input

bias current should be significantly smaller than the photocurrent that is to be

converted because the large feedback resistance will convert this input bias current

into a de offset voltage at the output of the op-amp for every pixel. This background

offset will significantly affect the centroid algorithm by shifting the centroid position

towards the centre. Initially the Texas Instruments TLE2024Y op-amp [Texas

Instruments Inc. 1997] was used in the front end (Appendix A3.1 and 3.2) which had

an input bias current of SOnA but this was replaced with the pin-compatible TLC2274I

[Texas Instruments Inc. 2000] which had an input bias current of only IpA. In

addition, the TLC2274I has a low noise voltage of 9nV/~Hz and rail-to-rail output

voltage, hence providing a larger dynamic range.

The Centronics photodiode array has a common cathode configuration and hence the

photodiodes must be wired as shown in Figure 3.2(a). If the non-inverting input of the

transimpedance amplifier is biased at OV, the output of the transimpedance amplifier

will be a ,negative voltage. However, the input voltage range for the ADC on the

FPGA board was hardwired for 0 to 5V operation (see Section 3.2.2.2). So either a 2nd

op-amp configured as an analogue inverter is used, but this would also require

generating a -5V supply for the daughter board, or the non-inverting input of the

transimpedance amplifier is biased at 2.SV. The latter was chosen though this meant a

decrease in dynamic range by half. But for testing purposes this was adequate. The

MAX873 voltage reference generator [Maxim Integrated Products Inc. 1992] was

used to generate the 2.5V ± 1.5mV reference.
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(a) Common cathode configuration of Centronics photodiode array
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(b) Common anode configuration of the full custom photodiode array

Figure 3.2 Connection of photodiode array pixels to the current-to-voltage

converter on the daughter boards

In the case of the full custom array, the photodiodes have a common anode
,\

configuration (Figure 3.2(b)) and the output of the transimpedance amplifier goes

from 0 to 5V. However, due to the on-resistance of the switches (600. for MAX349

and iOQ for MAX4514 [Maxim Integrated Products Inc. 1996c]), the input voltage at

the switches go negative when photocurrent is drawn. So this meant the switches had

to be ableto cope with a negative input voltage range. So a MAX660 voltage inverter

[Maxim Integrated Products Inc. 1996b] was used to generate a -5V supply while the

MAX349s were configured for ±5V operation and the MAX4514 was replaced with

the dual supply DG418DY [Maxim Integrated Products Inc. 1996a].
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3.2.2 FPGA PROCESSOR

The FPGA processor board consists of an ADC for digitising the analogue signal

voltages, an FPGA to perform the centroid processing and an RS232 transceiver for

transmitting the computed centroids to a PC. Peripheral circuitry includes LEDs for

debugging purposes, switches for control and power supply protection. An onboard

25MHz crystal oscillator provides a clock input for the FPGA. The schematic and

PCB layout for the FPGA motherboard is given in Appendix 3.3 and the following

sections will discuss the construction of the different components of the board.

3.2.2.1 FPGA

The processor selected to perform the centroid processing in the hardware emulation

system is the Xilinx Spartan XCS40-3PQ208C FPGA [Xilinx Inc. 1999] with 40,000

system gates 30 or 784 Configurable Logic Blocks (CLBs) 31. CLBs are used to

implement most of the logic in the FPGA and are organised as a two dimensional

array interconnected by routing channels and surrounded by a perimeter of

programmable Input/Output Blocks (lOBs). Figure 3.3(a) shows the basic block

diagram of a Spartan FPGA. Each CLB consists of primitive hardware elements such

as look-up tables (LUT) and positive-edge triggered flip flops as shown in Figure

-3.3(b). Each lOB controls one package pin and can be configured for input, output, or

bidirectional signals ".

30 This is the quoted maximum value but the typical gate range can vary from 13,000 - 40,000 logic

and RAM gates depending on how much of the resources can be utilised in a design. It is more

common to quote the number of CLBs used.

31 The Spartan devices with speed grade -3 have a specified minimum clock high time and clock low

time of 4.0ns. So theoretically these devices can be run up to a speed of 125MHz.

32 Note that if an l/O is unused after configuration, it is configured as an input with a pull-up resistor

activated.
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Figure 3.3 Architecture ofaXilinx Spartan FPGA

The FPGA is programmed by loading configuration data into its internal static

memory cells. The values stored in these memory cells determine the logic functions

and interconnections implemented in the FPGA. The board is designed to allow

configuration from a Xilinx XCS 17S40-PD8C [Xilinx Inc. 1999] serial PROM

(Master Serial mode) or from an external device such as a PC via an XChecker cable

(Slave Serial mode) as shown in Figure 3.4. In the Master Serial mode, the FPGA's

internal oscillator generates a Configuration Clock (CCLK) for driving the serial-

configuration PROM (SPROM) while in the Slave Serial mode, CCLK is driven by an

external signal. Clearing of the configuration memory is done using the PROGRAM

'pin which is controlled by a pushbutton on the board. *INIT and DONE provide status

outputs during configuration of the FPGA. Connecting the *RESET of the SPROM to

the *INIT output of the Spartan device ensures that the SPROM address counter is

reset before the start of any configuration.

121



Chapter 3

* represents active low XChecker cable to PC

l *PROG I DONE I *INIT I CCLK I DIN I
XCS40-3PQ208C
(Xilinx FPGA) XCS1740PD8C

(Xilinx SPROM)

DIN '~ DATA

CCLK CLK

*INIT *RESET

DONE *CE

*PROGRAM

HDC
MODE Eo-- ~l*LDC

1 1 is L
I LED array I
Figure 3.4 Configuration of the Spartan FPGA via a PC or a SPROM

3.2.2.2 Analogue-to-Digital Converter (ADC)

The ADC used for the hardware emulation system is the Burr-Brown ADS7807UB

16-bit sampling successive approximation ADC [Burr Brown Corporation 1994].

Figure 3.5 shows how the ADC is controlled and connected to the FPGA and also

how the processed data from the ADC is to be displayed or transmitted to a PC. The

ADC was hardwired for an input voltage range of 0 to 5V. The ADS7807UB can

acquire and convert 16-bits in 25J..ls(40kHz) while consuming only 35mW (max) with

a maximum integral non-linearity error of ±1.5LSB and no missing codes. It has 8

parallel output lines and a BYTE signal that has to be controlled to read the high byte

andlow byte in tum. Conversion is initiated by controlling a convert signal, RIC, with

the 25MHz clock used to run the FPGA, as shown in Figure 3.6.

* re presents active low

ADS7807UB (ADC) 3 x8 7-Segment

D7 ..DO ~ XCS40-3PQ208C Displays

omllV R/*C E--
(Xilinx FPGA)

verter on
hter board BYTE E-- MAX3232E

BUSY ---? Serial data Transceiver
ToP

output serial p
Multiplexer/switch

5

control signals
r

I 25MHz Crystal I
Oscillator

C
ort

Fr
con

daug

Figure 3.5 Connection of ADC to the FPGA motherboard
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Figure 3.6. Control of ADC by FPGA using a 25MHz clock

The ADC used had a low input impedance of only 20kn. But the output impedance of

the transimpedance amplifier was significantly smaller (1300) so there was relatively

no volt drop of the input voltage due to this and no buffering was required. An anti-

aliasing filter was incorporated into the front end of the ADC. The switches of the

multiplexers on the daughter board are updated 10 clock cycles before the ADC

convert signal is sent.

3.2.2.3 RS232 Transceivers

The RS232 (or EIA232) standard was introduced to ensure reliable serial
\

communication between devices. In the RS232 standard", voltages of -3V to -25V

with respect to sign-al ground (pin 7 on DB25 connectors or pin 5 on DB9 connectors)

are considered logic 'I' while voltages of +3V to +25V are considered logic '0'. An

RS232 transceiver is a level converter Ie which converts CMOS level voltages to

RS232 level voltages and vice versa, and for this purpose, a MAX3232E transceiver

[Maxim Integrated Products Inc. 2000] was employed which has two receivers and

two drivers guaranteed to run at data rates of 250kbps while maintaining RS-232

output levels.".

33 InRS232 the start bit is logic '0' and stop bit is logic 'I' and the least significant bit is always the first

bit sent. .

34 The output voltage swing of the transmitters is ±5.4V (typ).
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For serial communication with a PC, a null modem connection is made. For

synchronising, the receiver on the PC scans the incoming data for valid start and stop

bit pairs. The receiver uses a 16x clock for detecting the incoming start bit, so the

occurrence of the start bit will be located within the ±1I2 16x clock cycle or ±1I32 bit

or ±3.125%. The design of the transmitter for generating and sending the output data

will be discussed in Section 3.3 when the design of the digital centroid processor is

presented.

3.2.2.4 Peripheral Circuitry

LED bargraphs and 7 segment displays are used to display results and for

troubleshooting". A logic low level on an FPGA output connected to the LEDs draws

current through the LEDs turning them on36• In addition, an 8-way rocker DIL (Dual

In-Line) switch and 3 tactile pushbutton switches were included to allow the user to

easily control several input pins of the FPGA. Some of these input switches are used

as mode or control inputs during the configuration of the FPGA.

All the components on the board operate on a 5V supply. Power supply protection is

incorporated to protect these devices from voltage surges and incorrect powering of

the board. The power supply protection circuit is shown in Figure 3.7 and includes a

fuse, a zener diode, a varistor (voltage-dependent resistor) and a PMOS power
,\

MOSFET. When there is a power surge or a large voltage spike, the zener diode goes

into breakdown and the varistor's resistance rapidly decreases creating a shunt path for

the over-voltage: The PMOS SI9430SDY is used to protect the board from incorrect

connection of the power supply". If the supply is connected correctly and the gate of

the PMOS is connected to OV and the s<?urceis connected to the +5V input, then Vgs

< 0 and the PMOS is on. Else if it is connected in reverse say, Vgs > 0 and the PMOS

turns off cutting the supply to the board.

35 To display the output data in decimal on the 7 segment display, binary to BCD (binary coded

decimal) conversion is performed using the FPGA prior to output. Only three 7 segment displays were

available, requiring data larger than 12 bits to be truncated. If the data is to be displayed in units other

than binary, say volts, the effect of this truncation has to be taken into account when scaling.

36 Resistors are used to limit the current drawn from the LEDs.

37 Rds(on)=O.IQ
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Figure 3.7 Power supply protection circuitry

Under quiescent conditions, the FPGA board drew 105.6mA from a 5V regulated

supply. With all the LEDs on, it drew 189.6mA and with the Centronics array

daughter board connected, 213.5mA was drawn. The board also allows users to use an

unregulated power supply or a non-compliant supply voltage such as a 9V battery. It

does this by having a second power supply input with the same power supply

protection circuitry but connected to a MAX667 voltage regulator [Maxim Integrated

Products Inc. 1994] prior to connection to the board's power lines. The power supply

protection in the voltage regulator path has the same structure as that in the

unregulated supply path but with different ratings. For example, the zener diodes have

a zener voltage of 5.1V and 16V respectively in the regulated and unregulated supply

paths. The MAX667 accepts a +3.5V to +16.5V input and has a maximum dropout

voltage of 350m V and maximum supply current of 250mA, sufficient for the design

needs.

3.2.2.5 Layout and Testing of FPGA Board

The' PCBs were designed in ProteI and the PCB motherboard was sent away for

fabrication while the daughter boards were built in-house. When laying out the board,

several basic rules were adhered to for reducing EMI (Electromagnetic Interference)

and crosstalk:

• Use a large ground plane.

• Make power supply tracks large.

• As far as possible keep signals away from power lines.

• Avoid creating a loop when routing the power line38• Use a star configuration.

38 Routing traces in a loop around the board can increase the board's susceptibility to external fields as

well as increase the generation of them.
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• Two decoupling capacitors (0.1 uF ceramic and lOuF tantalum) are placed as

close as practically possible to each power and ground pin of all the IC
, 39components .

• Use of surface mount technology (SMT) components is preferred over

through-hole mounting due to its shorter lead length and hence lower

inductance.

• Use a regulated power supply. If not, use the onboard voltage regulator.

Figures 3.8(a), (b) and (c) respectively show photos of the FPGA board, the FPGA

board with the Centronics array board attached and the FPGA board with the full

custom array daughter board connected. A basic test of the FPGA was to generate a

counter and observe the outputs on the LEDs. The serial link was tested by generating

and sending data from the FPGA to a PC [Goodwin 1992] via the onboard tranceivers.

For the testing of the ADC, various analogue test signals such as a triangle wave and a

sine wave input were acquired and converted and the results transmitted via the

RS232 port to the PC. The analogue front end was tested by applying fixed voltages

via resistors to generate an input current at the bare photodiode array sockets and

observing the multiplexer switching and I-to- V conversion outputs. Once the system

was fully tested, it was inserted into an optical bench setup for obtaining centroids.

39 A real capacitor includes both an inductor and resistor in the form of leads, traces, and even ground

planes in series with it. This means that, in a circuit, a capacitor acts as a low-impedance element only

over a limited range of frequencies. To extend this frequency range, many references propose adding a

second capacitor to bypass frequencies outside the limited range of the single capacitor.
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Figure ~.8 Photographs of the boards designed and built for the centroid

custom
board

hardware emulation system.

3.3 DIGITAL CENTROID PROCESSOR DESIGN

This section discusses the design of the digital centroid processor on the FPGA.

Digital systems can be specified 'in three domains [Yalamanchili 200 1]. Under the

functional domain, the system is described in terms of its operation or behaviour.

Under the structural domain, the system is specified by the interconnection and

hierarchy of its components and finally in the physical or geometrical domain, it is

specified by the physical layout of the components. At the same time, a digital system
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can have different levels of abstraction from the algorithm level to the register transfer

level (RTL)4o to the boolean logic level. In this design, the digital backend of the

system was described in VHDL where the individual behavioural RTL-based VHDL

macros or components are placed and connected together on a schematic to give a

structural and graphical description of the system. A block diagram of the VHDL

macros of the centroiding system is shown in Figure 3.9. The schematics for the

FPGA centroiding system of the Centronics array and the full custom array are shown

in Appendix A3.4 and A3.5 respectively". The only difference between the two is the

digital inputs in the Centronics array case are inverted and an offset is subtracted

within the centroid processor block in order to account for the inverse direction of the

signal in the Centronics array due to its common cathode configuration. The

advantage of using VHDL (VHSIC42 Hardware Description Language) to model a

digital system is that it is technology independent hence allowing a standardised,

portable model of electronic systems. Technology independence will allow technology

migration to, for example, reduced feature lengths in ASICs (deep sub-micron) or

from, say, a Field Programmable Gate Array (FPGA) to ASIC where an FPGA has

been used to prove the functionality of a design. In addition, a VHDL model of a

digital system can be described both structurally and behaviourally and at different

levels of abstraction, providing a means of managing large, complex designs.

40 At the register transfer level (RTL) a digital system is represented by a set of registers and a set of

transfer functions describing the flow of data between the registers.

41 As the inputs of the transimpedance amplifier for the Centronics array are biased at 2.5V instead of

OV, its output voltage goes from 2.5V to OV (10000000 to 00000000) for an effective signal level of

00000000 to 10000000 so inversion (shown in schematic) and substraction of an offset of 01111111

from the digitised data bits is performed before centroid processing is carried out.

42 VHSIC: Very High Speed Integrated Circuits
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Figure 3.9 Block diagram of the centroid processor implemented in the FPGA

To obtain a centroid from incident light levels of a photodetector array, the I" order

moment of the light levels has to be calculated as described in Section 1.4.2 and given

by equation (1.4). A simplified example of a centroid calculation is shown in Figure

3.10. In this example'r', a 4 x 4 photodiode array (shaded) with arbitrary light intensity

given by the decimal numbers in the top right hand comer of each pixel produces

centroid positions of C(x)=2.53 and C(y)=2.68.

Reference
point (0,0)

y
0 1 2 3 4 r-4 4 '5 6 5·

" • • • .._
3 5 6 7 6

• • • •
X 2 4 5 6 7

• • • •
'~ 1 3 4 5 7

r-, • • • •
0 -.

.

Light level
at each

Represents
a single

photodiode

Figure 3.10 Example centroid calculation for a 4 by 4 photodiode array giving

centroid positions of C(x)=2.53 and C(y)=2.68

43 Note that the reference point is chosen outside of the array. If the reference point was chosen as the

centre of the array with positive and negative coordinate ranges, this reference point will not carry any

weighting in the centroid calculation, leading to poor noise characteristics when the spot is close to the

centre.
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If the light levels are now represented digitally then these centroid moments can be

implemented using the block diagram shown in Figure 3.11 for the x-coordinate and

another duplicate block (not shown) for the y-coordinate. Photocurrent data is clocked

in sequentially from each photo-detector and multiplied by a counter (Mod N1I2, where

N is the number of pixel elements in the array) that holds the position of the detector

relative to the reference point in the x-direction. The output of this multiplier is

continually accumulated via an adder block and the result is divided by the total

photocurrent acquired via a separate and parallel running accumulator. The resultant

division represents the x-centroid coordinate. A second centroid processing block

calculates, in parallel, the y-centroid coordinate.

Digitised light
level

I

I
I

/:
x-co-ordinate ]
processor

______________ ~ To y-eo-ordinate

r----- -- ---------------------------- -- --:::::=:::::::=~-----~-~~-----
I

ModNI12

counterclock

Adder

Adder

output: 1It
momentofx

-~---------------------------------------------------------------------------
Figure 3.11 Block diagram of centroid processor in the x-direction

For binary addition and multiplication, VHDL operators (functions) within the IEEE

numeric_std package are used. The addition effectively synthesises carry look-ahead

adders 44 while the binary multiplication process is effectively a shift and add

procedure [Chang 1999]. Binary division however was not supported and division is

44 Adders can be implemented using a ripple structure which is small but slow or carry look-ahead

adders which is faster but larger.
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implemented using shift and conditional subtract operations of long divisionf [Dewey

1997]. For a 5 x 5 array with a digitised 8-bit input light level, 15 bits are required for

the numerator (255 x 15 x 5 + 1 levels) and 13 bits for the denominator (255 x 25 + 1

levels). This results in a non-floating point quotient output of 3 bits and corresponds to

the coordinate range of 1 to 5 of the array, or 001 to 101 in binary. To increase the

number of quotient bits and hence the precision of the division process, additional

shift and subtract cycles are performed. This represents an increase in the number of

cycles of operation with minimal increase in hardware as the dividend and divisor size

remains the same (as long as 8-bit representation of light level is sufficient). A 7-bit

representation of the centroid coordinates was chosen with 3 non-floating point bits

and 4 floating point bits giving a positional resolution of 0.0625 of a pixel.

A centroid is obtained after N+5 conversion cycles or pixel cycles from the start of the

frame where N, the number of photodiodes is 25. For a 40 kHz (25J,Ls) conversion rate,

a centroid is obtained after 0.75ms from the start of the frame. The 5 remaining cycles

are required to allow the division process to complete. However, a new frame is

started after N+ 1 or 26 cycles by making use of the latency during the division

process, so centroids are updated every 26 cycles or at a rate 1.54 kHz. The additional

cycle in this case is for the latching and reset of the dividend and divisor result prior to

division and the start of the next frame'".

The calculated centroid positions are then converted into the serial RS232 format with

one start bit (logic 'OJ, 8 data bits, no parity bits and 1 stop bit (logic '1j. The MSB of

each byte sent is used to indicate whether it.is x or y-data while the remaining 7-bits

are for the actual centroid data. A standard RS232 baud clock of 19,200 bits/s is

generated to transmit the centroid coordinates, which limits the frame rate to 960 Hz

45 Like in long division, the divisor needs to be aligned to the dividend before subtraction can be carried

out. This is done by buffering or padding the divisor with additional zeros.

46 A conversion cycle was used for convenience sake and a shorter cycle could be utilised by

controll~ng the final latching of the dividend and divisor on a faster clock.

131



Chapter 3

(19,200 bits/s + 20 bits)47. When a baud rate of 38,400 bits/s is used, the full frame

rate of the centroid processing is utilised. The serial centroid data is then sent off the

FPGA chip to the MAX3232E for RS232 level conversion. In addition to the

computation and transmission of the centroid, the digital processor had to control the

ADC for the digitisation and acquisition of the photocurrents as well as the serial

multiplexers for selecting the individual pixels in tum.

3.4 FPGA CADENVIRONMENT AND DESIGN FLOW

The CAD environment used for the development and programming of the FPGA

system is the Xilinx Foundation Series 2.1i software [Xilinx Inc.] which fully supports

the use of the Spartan device. The design flow for an FPGA design environment is

shown in Figure 3.12. VHDL programs are analyzed to check for syntax errors and

compiled to a form executable by a VHDL simulator. The analyzed design is

synthesized to a library of components, typically gates, latches or flip-flops.

Hierarchical designs are synthesized in a bottom up fashion, that is lower level

components are synthesized before higher level components. Once the design is

synthesized we have a gate-level netlist. This gate-level netlist can now be

simulated". Functional simulation is possible but accurate timing simulation is not

possible at this point because the actual timing characteristics are determined by the

physical placement of this design within the FPGA chip.

47 The 25MHz clock is divided by 1302 to obtain a baud rate clock of 19201.23 bits/so This represents

an error in the bit rate of 0.0064% which is not significant and in addition. RS232 receivers are

designed to synchronise the transmission at the start of each new byte sent by clocking in the start bit at

16x the baud rate clock.

48 Xilinx simulation script files (.cmd) are used to ease the input of test vectors as well as allow

simulations to be repeated or modified quickly.
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Figure 3.12 FPGA design flow

Once the gate-level netlist is obtained the next step is to map this design onto the

FPGA. Mapping a design onto an FPGA involves translating the gate-level netlist

produced by the synthesis compiler into a netlist of FPGA primitive hardware

components. Locking of the input and output ports on the design schematic to specific

physical pins on the FPGA- chip is done using the LaC property on the individual

ports. The LaC property is a property provided for within the Xilinx Foundation

Series software for assigning pin numbers to each input and output pin. This option

was preferred over the use of the Constraint Editor to lock the pinouts as it did not

always register or store the values entered,

In the Place and Route stage of the design, these primitive hardware components are

assigned to actual physical primitives on the FPGA chip and the interconnections

between these components are made. The Spartan device, and FPGAs in general, have

different types of routing channels from single-length lines between each CLB to long

or global lines which run the entire length of the array. These global routing networks

can be used to route and distribute critical nets such as clock signals and high fanout

signals throughout the device with minimal skew. This is done by placing global
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buffers from the library on the design schematic. Besides layout constraints, timing

constraints can also be placed in the User Constraints File (UCF) for controlling and

optimising the placement and routing. In addition, Xilinx Foundation Series 2.1i

allows several options to be selected during design implementation such as

optimisation for area or speed, number of place and route passes to make,

configuration of input/output pins (TTL or CMOS) and so on.

After place and route, the design can be simulated with propagation delays of the

routed signals incorporated. Two types of post-layout simulation are possible in the

Xilinx Foundation Series design environment, namely logic timing simulation and

static timing analysis. In the timing simulation, user defined test vectors are

dynamically propagated through the circuit and the resulting output waveforms are

observed. The time required to perform the simulation limits the number of input

vectors and circuit operating modes, and the length of circuit operation that can be

simulated. Static timing analysis on the other hand does not have a simulation cycle

and therefore do not schedule events. Instead of evaluating logic functions, static tools

sum up and compare delays through paths, relative to pre-defined clocks. Static timing

analysis will determine the critical paths in the design and verify that the design meets

the timing constraints set. Static timing analysis is faster and provides a wider

coverage but is less comprehensive and may generate false paths. Note that the

Timing Analyzer (i.e. static ~iming analysis) in Xilinx Foundation 2.1 does not detect

setup and hold violations but these violations are highlighted during logic simulation.

Xilinx FPGA chips come with different speed grades and the static timing analyser

can provide a quick analysis of the effect of different speed grades on the same

design.

Once the design has been properly verified, the generated configuration bits during

implementation can be downloaded onto the FPGA via a Xilinx XChecker cable. Due

to the reprogrammability of the device, the design can be verified in-circuit using real

data and any errors can easily be corrected and the device reprogrammed until the

desired performance is achieved.
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3.5 RESULTS OF HARDWARE EMULATION SYSTEM

For testing the hardware emulation system, a 20J,1mdiameter laser beam (a double

YAG laser at 532nm with approximate output power of 0.86mW) was scanned across

the array at a speed of 2000J,1m1sec.Figure 3.13 shows the experimental setup used for

testing the hardware emulation system. Centroid values were computed by the FPGA

and serially transmitted in real time to a PC at a rate 38,400 bits/so Initially the

Centronics photodiode array was incorporated in order to test the VHDL centroid

algorithm. Then the full custom photodiode array was included to evaluate the

performance of a full custom array for centroid detection. The results of these tests are

shown in the following sections.

(Aerial view) Laser (532nm)

Reference Imaging PD

LI4~:=* ----. To PC's A2D card

,""/To FPGA
board

Clamped and mounted
on x-y translation stage

Figure 3.13Experimental setup of scanning system

3.S.1 COMMERCIAL PHOTODIODE ARRAY (CENTRONICS)

Figure 3.14 shows a grey scale map of the centroid values successfully recorded at

each position on the array - each photodiode was of size 2.7mm x 2.7mm. The dark

regions correspond to larger centroid coordinates whilst lighter regions correspond to

small centroid coordinates. As expected, as we scan in the x-direction, the x-centroid

values increases while the y-centroid values remain constant and vice versa. Since the

laser beam size (20J,1m)is less than the size of one pixel then a stepped appearance can

be seen as the beam moves across the array passing from one discrete detector to

another. The guard rings of the Centronics array was left floating (Appendix A3.I)
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and this gave rise to crosstalk but the purpose of the test was to check the functionality

of the centroid processing algorithm which shows the desired response.

Xcentroid Y centroid

-6 -6

-4 -4

-2 -2

>< 0 >< 0

2 2

4 4

6 6

-5 0 5 -5 0 5
Y Y

Figure 3.14 Image map ofx and y centroids for the Centronics array

3.5.2 FULL CUSTOM PHOTODIODE ARRAY

Centroid values were again calculated in real time by the FPGA with the 532nm laser

.scanned across the custom made CMOS array - the pixel size is l Otlum x IOuum.

Figure 3.15 shows the y-coordinate centroid values plotted as a function of pixel

position for different beam diameter sizes. The array goes from -250J...l.mto 250J...l.m.

Near the edges we can see non-linearity e:f;fectsas the beam falls off the edge of the

array. This effect is more pronounced for larger beam sizes because these will fall off

the edge first. For very small beam sizes, we obtain discrete steps in the waveform as

"o/ewould expect as the beam passes from 1 pixel to another. The steeper rise in

ce~troid value occurs when the beam lands in-between two pixels. As the beam size

increases the response becomes more linear in the centre of the array.
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Figure 3.15 Measured position vs. actual position for different beam sizes

Figure 3.16 shows the grey scale centroid maps for both the x and y centroid

coordinates obtained in real time by the CMOS array via the FPGA. Again the darker

regions correspond to large centroid coordinates and vice-versa for light regions.

Again we can see the stepped appearance with small beam size and a smoother

appearance for larger beam size. From these results it can be seen that the hardware

emulation system has proven the functionality of the digital centroid processor on the

FPGA in computing the required centroids.

x-centroid
<10um 50um 100um 150um

1
200um

x

y y y y y

y-centroid <10um 50um 100um 150um 200um

x

y y y y y

Figure 3.16 Image map of x and y centroids for different beam sizes
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3.6 CHAPTER SUMMARY

A hardware emulation system allows the designer to test out various processing

algorithms prior to IC fabrication. Although conservative, this approach aims to

reduce the number of design iterations needed to produce a working design, and hence

can lead to a reduction in cost and time-to-market. The hardware emulation system for

the optical centroid detector consists of a 5 x 5 photodiode array, I-to- V conversion of

the photocurrent, ADC of the signal voltage and the centroid calculation of the digital

data with a reprogrammable FPGA. The hardware emulation system was tested with

both a commercial photodiode array and a full custom standard CMOS photodiode

array fabricated in the Mietec O.7J..lmCMOS process. Current-to-voltage conversion

was achieved using a transimpedance amplifier with a feedback resistance.

The centroid processor successfully computed the centroids at a rate of 1.54kHz

which was limited by the maximum conversion frequency of the ADC of 40kHz. But

even at this speed, an array of these centroid detection systems operating in parallel

will enable fast low cost adaptive optical systems to be built. The centroid data was

then transmitted off-chip to a PC using a RS232 transmitter. Having proven the

functionality of the digital centroid processor and the use of a full custom photodiode

array, the next step in the design was to integrate the full custom array with the digital

centroid processor onto a single CMOS IC chip.
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DESIGN, FABRICATION AND TEST OF

CENTROID ASIC

4.1 INTRODUCTION

After the performance of a full custom photodiode array and the centroid processing

algorithm was verified by the hardware emulation system, the next stage is to integrate

the full custom array and the processing onto a single piece of silicon. A block

diagram of the overall system is shown in Figure 4.1. The top level schematic of the

system is shown in Appendix A4.1 which shows the centroid chip divided into an

analogue front end and a digital backend. The analogue front end consists of an active

pixel sensor array and analogue-to-digital conversion circuitry. The digital backend

consists of the centroid processor and a serial link for transmitting and receiving data

off-chip. The individual components of the, system are discussed in greater detail in

the following sections.

-i~-----------_----::::::::::::::::::::::::::::::::,------------------------------------,
I
I

--------------- 12select I

I
Reference I
voltage I I

Vrefl I
I- I

12 I
select I

Reference .....__.~compl H-J x
voltage 2

Yref2r-V'
7 centroid Serial

111 Digitised Centroid
outpu

r--t_1-_+,,,~omp2
ADC : processor 7 RS232 r-----+lightn yYout V centroid

row/column
I

ixel reset I

5x5 active P: Smgle CMOS Chip
pixel array , Analogue front-end and ADC I

--------------------------------~-------------------------------- JFigure 4.1 Block diagram of the single CMOS chip optical centroid processor
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4.2 ANALOGUE FRONT END

The analogue front end in the hardware emulation system consists of a passive pixel

array and a transimpedance amplifier with a large feedback resistance. However, it is

difficult to integrate a large resistor on silicon and the use of an external resistor

would lead to parasitics and noise. Instead, an integrating photodiode APS array was

used which incorporates a buffer at each pixel to convert the photocurrent to a

discharging voltage output (see Section 1.6.2.1). The optimisation of this architecture

is presented in Section 4.2.1 while the digitisation of the output signal is discussed in

Section 4.2.2.

4.2.1 PHOTODIODE AND PIXEL ARCHITECTURE

For the photodiode array, the deep n-well to p-substrate photodiode is used. The deep

photodiode has better responsitivity and lower junction capacitance than the shallow

devices due to its wide depletion region caused by the relatively low carrier

concentration in the n-well. Also, it does not suffer from a large leakage current in the

reverse bias as the combined shallow p+zn-well and deep n-well/p-substrate

photodiode in the original array does. Furthermore, its higher responsitivity at longer

wavelengths make them suitable for ~daptive optical systems where longer

wavelength operation means less stringent requirements.

Each pixel of the APS array, shown in Figure 4.2 (a), has a size of 100J-lmx 100J-lm

and consists of the deep photodiode (Djunc), a complementary NMOSIPMOS reset

gate (MRST, MNRST), a source follower (MACT, MBIAS) and two select transistors

(MRSEL, MCSEL). All pixels are reset globally and the inverter output and the bias

transistor (MBIAS) are shared with all pixels. Having a CMOS transmission gate

allows the pixel to take advantage of a wider dynamic range by pulling the pixel up to

the 5V supply voltage (VDD) during reset. This eliminates the problem obtained with

using only an NMOS reset transistor whereby the reset level varies with light intensity

[Tian 2001]. The layout of a single pixel is shown in Figure 4.2(b). Circuitry other

than the photodetector is light shielded using one of the two available metal layers but

this is not shown in Figure 4.2(b).
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Figure 4.2 Active pixel circuit and its layout

The backend of the active pixel sensor, shown in Figure 4.3, acts as a current-to-

voltage converter and buffer for the photodiode node. It consists of the source

follower active transistor (MACT), a row select transistor (MRSEL), a column select

transistor (MCSEL) and a bias transistor (MBIAS) which is shared by all pixels. To

optimize the design of the backend, simulations were carried out to find the optimum

WIL of the transistors and biasing voltage. For the simulations, the gates of the row-

column access transistors were held at VDD i.e. sv. To verify and confirm the

simulation results, first order analysis of the circuit was carried out. The results of the

simulation and the circuit analysis are presented in the following subsections.
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Figure 4.3 Backend of the active pixel sensor

Optimisation ofMBIAS:

As Vbias is increased the dynamic range decreases and the response becomes more

non-linear particularly for lower input voltages (Figure 4.4). An optimum bias voltage

of 1V was selected to keep the biasing transistor operating above the threshold voltage

of O.76V [Alcatel Microelectronics 1999a] but sufficiently small so as to maintain a

wide linear operating range. For further optimisation after fabrication, the applied

voltage of the bias transistor of the active pixel array can also be applied externally.

4.0

3.5 0.6V
1.0V

3.0 1.4V

2.5
~- 2.0:::::I
o·> 1.5

1.0

0.5

0.0
0 1 2 3 4 5

Vin (V)

Figure 4.4 VOUT. against Vin for different values of Vbias (W /L = 31lm/31lm)
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Similarly, as the width-to-length (WIL) ratio of l\1BIAS increases, the dynamic range

reduces and the response becomes more non-linear at lower input voltages (Figure

4.5). Also using larger size transistors does not improve the linearity of the response.

As such, a WIL ratio of 3!J.m!3!J.mwas chosen.

3.5 -,--------------------------,

--+-1/3
--3/3
--6/3
...,._9/3
-+- 616

..
::Ig 1.5+----------~~j~-------~

o 2 3
Vin (V)

4 5

Figure 4.5 VOUT against Vin for different sizes of the MBIAS transistor

Optimisation ofMCSEL and MRSEL:

The effect of sweeping the voltage at Vrow on the output VOUT is shown in Figure

4.6. The response is fairly linear at voltages below 3V. As the WIL ratio ofMCSEL

increases, the dynamic ra~ge improves and flattens off at a higher voltage. As such, a

large WIL ratio is desirable but the improvement in increasing the WIL ratio reduces

as the WIL ratio increases. A WIL ratio of 3urn/turn is used to keep the fill factor of

the pixel large. The simulations indicate the need of a CMOS transmission gate to

allow satisfactory transmission of higher voltages. But the dynamic range achievable

is more than adequate for our application. Similar results were obtained with MRSEL

and a WIL ratio of 3!J.m!I!J.mwas also used for MRSEL.
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Optimisation ofMACT:

Increasing the WIL of MACT improves the voltage gain and linearity at lower input

voltages but at higher voltages the linearity degrades because of the poor transmission

of high voltages by the NMOS row-column select transistors (Figure 4.7). The

improvement in increasing the W/L ratio reduces as the ratio increases. Using a larger

size transistor with the same WIL ratio does not give better results. A W/L ratio of

6IJ.rnIlIJ.mwas chosen for MACT. The selected W/L ratios of the transistors are shown

in Figure 4.3.
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Figure 4.7 VOUT against Vin for different sizes of MACT
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Circuit analysis (ignoring second order effects):

In the circuit analysis, the node and voltage names in Figure 4.3 are used and the

transconductance, K, and threshold voltages, VT, of the different transistors are

referred to using a subscript of that transistor's assigned name (MACT, MRSEL,

MCSEL and MBIAS), e.g. KMB1AS is the transconductance of the transistor MBIAS.

For output voltages Vout > Vbias - VT and Vbias > VT , MBIAS is operated in theMY/AS MB/AS

saturation region [Gray 1992] such that its drain-source current is independent of the

drain-source voltage, Vout. Therefore, the current through MBIAS, i is given by:

i = K MBIAS {Vbias _ V \2
2 ~ TMy/ASJ (4.1)

MACT is also in saturation and because the voltage at Vout is buffered, the current

through MACT is equal to the current through MBIAS, MRSEL and MCSEL.

Therefore:

i = KMACf {Vin - Vact - V \22 ~ TMAcrJ (4.2)

From (4.1) and (4.2), the voltage at Vact in terms of Yin and Vbias is obtained as

follows:

. V KMBIAS (,Vb' V )Vact = Vzn - T - ~ tas - T
user K MACT MB/AS (4.3)

MRSEL is operating in the linear region. Hence:

i::::;KMRSEL (VDD - Vrow- VTMRSELXVact - Vrow) (4.4)

From (4.1) and (4.4), the voltage Vrow in terms of Vact and Vbias becomes:

K (Vbias - V Y
Vrow = Vact - MBIAS ~ TMy/AS (4.5)

2K MRSELVDD - Vrow - VT )MRSEL

Similarly, MCSEL is also operating in the linear region so:

i::::;K MCSEL(VDD - Vout - VTMCSELXVrow - Vout) (4.6)

From (4.1) and (4.6), the voltage Vout in terms of Vrow and Vbias is given by:

K MBIAS (Vbias - VT Y
Vout = Vrow - ~ MB/AS (4.7)

2K MCSELVDD - Vout - VT )MCSEL

Therefore, from (4.3), (4.5) and (4.7) the output voltage Vout in terms of Yin and

Vbias is now obtained as follows:
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K MBIAS ( . ) K MJ3l Vlbias - VT t
Vout = Vin - VTMACT - --fbzas - V - AS t MBIAZ)

K MACT TMBIAZ 2K MRSEL VDD - Vrow - VTMRSEL

K 'Vbias - V )2
MBIAS ~ TMBIAZ

2KMCSEL (VDD - Vout - VTMCSBL)

(4.8)

This shows that as Vbias or the W/L ratio ofMBIAS is increased, the dynamic range

is reduced as indicated by Figure 4.4. It also confirms that increasing the W/L ratios of

MACT, MRSEL, MCSEL improves the voltage gain and linearity of the transfer

function. Furthermore, the last term shows that as the output voltage drops, the non-

linearity increases. This agrees with the simulation results presented earlier. The non-

linearity for Vin values close to the supply voltage is due to the use of NMOS select

transistors which do not pass high voltages very well.

4.2.2 ANALOGUE- TO-DIGITAL CONVERSION

The pixel is operated in the charge integration mode. Each pixel is globally reset to 5V

for Sus (with a 32MHz clock) after which the pixel photodiode is allowed to discharge

through its own photo current as shown in Figure 4.8. The discharge rate is

proportional to the photocurrent of that pixel, which in turn is proportional to its

incident light level. The discharge curve is approximately linear for voltages above

1V. This is because the photodiode capacitance varies inversely with the square root

of the diode voltage. Also, as the diode and the pixel output voltage drops, the bias

transistor starts to operate in the linear region and is no longer independent of the

output voltage.
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Figure 4.8 Discharge curve of the active pixel circuit used

146



Chapter 4

When digitising the pixel light level from a discharge curve, either the final output

voltage is digitised using standard ADC techniques such as successive approximation,

dual slope or flash techniques or the time taken for the discharge to occur is measured.

The second method was preferred due to the simple circuitry required and by

integrating the ADC into the discharge curve of the pixel using a counter technique

the digital output is immediately available after the discharge period. The discharge

time is measured by starting an 8-bit counter when it passes through an initial voltage

level and stopping it when it passes a second lower voltage level. These voltage levels

are set by 2 sets of reference voltage generators.

Each set of reference voltage generators can generate a voltage between 1V and 3.75V

with a step size of O.25V and each connects to a comparator input. Six levels of one of

these reference generators are shown in Figure 4.9. The reference voltage generator

consists of a set of voltage dividers implemented using active resistors (transistors in

saturation) and transmission gates for selecting the desired voltage. These

transmission gates are used to select the switching points of the comparators during

analogue-to-digital conversion. This style of reference generation was used because of

its efficient use of space [Allen 1987]. Increasing the number of devices in an active

resistor can reduce the total required area by reducing the voltage across the

transistors and changing the ratio required for the desired output'", For testability,

external reference voltages can also be applied in place of the internal ones.

49 If the transistors are identical in size the volt drop across the transistors are equal.
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Figure 4.9 Reference voltage generator

When reset is fired, one reference voltage (Vrefl) will be set at 3.75V while the

second reference voltage (Vref2) will be set at 3.5V. Then the reference voltages are

decreased until both reference voltages are below the pixel-reset level. This is

determined by when the comparators switch over. In order to cope with a wide range

of light levels, three modes of operation have been designed. In the first mode, the

counter is started when the reset is removed and stopped when the discharge curve

passes the 1st reference voltage. In the second mode, the counter is started when the

discharge curve passes the 1st reference voltage and stopped when it passes the 2nd

reference voltage. This has the advantage that if the reset level varies from pixel to

pixel, the reading will be- independent of this offset. In the third mode, a 2-cycle

approach is used. In the 1st cycle, a reading is obtained as in mode 2. In the 2nd cycle

, the value of Vref2 is adjusted such that a larger dynamic range is obtained thereby

increasing the resolution for higher light levels.

The simulated comparator delay is 0.38~s and the pixel reset period is sufficiently

long for the setting of the threshold levels. The default discharge time of 8~s for the

system was chosen for detecting photocurrents of the order of IOnA to 10J.lAin Mode

1 and 2. The minimum and maximum detectable current, [min and [max respectively, is

given by:

[ , = ellv = 0.5 pF(0.25V) = 15.6nA
mm llTmax 8J1S

(4.9)
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[max = CllV = 0.5 pF(0.25V) = 4,uA
llT min 8f.JS/ 256

(4.10)

where C is the capacitance of the photodiode at 2V (taken as the average voltage on

the discharge curve) and is obtained from the dark C-V measurements (see Section

2.3.2), LiV is the volt drop over which the time is measured, and LiTmax and LiTmin are

the maximum and minimum measurable time step respectively. Mode 3 extends this

dynamic range by 8 times. Increasing LiV to increase the minimum (and maximum)

detectable current is in effect a form of thresholding and can be used to remove

background signals. With this ADC technique, the sensitivity at low light intensity is

limited by the spacing of the reference voltage levels while the sensitivity at high light

intensity is limited by the speed of the counter.

Two of the main sources of noise in an active pixel sensor are shot noise and reset

noise. Shot noise due to integration is given by [Droste 2002]:

q fT .
Vn = C 2 Jo (l ph + Ide )dt

(4.11)

where q = 1.6xl0-19C is the electron charge, C is the photodiode capacitance, [ph is the

pixel photocurrent, ide is the pixel dark current, T is the integration period and IIV is

the signal volt drop over the integration· period. For a signal volt drop of 0.25V, the

shot noise voltage is:

v = 1.6xlO-
19

xO.25 = 0.283mV
n 0.5pF (4.12)

The reset voltage (equation (1.16» on the other hand works out to be:

_ [kT_ _ 1.38xlO-23 x300 _
Vreset - Vc - .0.5xlO-12 - 91,uV (4.13)

For a signal volt drop of 0.25V, this represents a total SNR of more than 58.9dB.

A programmable discharge clock is used such that for lower light levels, a slower

clock is used to measure the slower discharge curve over a longer period, thus

allowing optimum resolution to be maintained for different intensity levels. This is yet

another advantage of using CMOS processing which allows on-chip programmability
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to be incorporated. Four programmable discharge clock frequencies are possible,

which are internally selected by two mode registers. The states of which can be read

via the on-chip RS232 receiver.

4.2.3 APPLICABILITY OF DESIGN

Given that the sensor was designed to operate with photocurrents of IOnA to lOJ..lAin

Mode 1 and 2, the typical incident light levels for several applications are examined in

order to determine which applications are feasible. In astronomy, the number of

photons reaching the Earth's surface in a given area in unit time is given by the

astronomical brightness, Bastro and this is defined for a visible passband by:

B t = (4x106)0-mv'2,5photons/cm2 -sec
as ro ~ (4.14)

where my is the visual magnitude of the observed star and a visual magnitude of 14 is

roughly the brightness of a sunlit geosynchronous satellite [Tyson 1995]. For my = 14,

Bastro = 10 photons/cm's, For an Sm telescope, the photon flux will be 5 x 106

photons/s and assuming the Fried's coherence length, ro, is 15cm i.e. the size of a

single subaperture, the photon flux per sub aperture will be 2500 photons/s or about

O.SfW of incident power. For a responsitivity of approximately O.3NW, the

photocurrent generated will be about 0.2fA! In order to detect this level of intensity,

the integration time needs to increase by 108 times i.e. 3s.

According to [Nirmaier 2003], specifications for ophthalmic applications state that a

safely applicable laser power results in 200pW per spot or about 60pA of

. photocurrent, which is about 250 times below the measurement limit. With faster

clocks, shorter integration times, moving to smaller lower capacitance pixels and

better readout techniques, it is possible with future designs to improve the sensitivity

to this level and enable its use in ophthalmic applications.

In free-space optical (FSO) communications, the requirement is for the system to be

eye safe as per IEC 60S25 Class 1 or Class 1M specifications (up to 2mW/cm2). In

addition, FSO systems operate at longer wavelengths, either 7S0-S50nm and near the

1550nm band in order to be completely eye safe. For example, at approximately

1550nm, the regulatory agencies allow approximately 100 times higher power for
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"eye safe" lasers. This is because at this wavelength, the aqueous fluid of the eye

absorbs much more of the energy of the beam, preventing it from travelling to the

retina and inflicting damage.

With further work it is foreseen that the design will be applicable to the fields of free

space optical communications, microscopy and ophthalmology, but it is unlikely to be

used in astronomy, where currently CMOS imagers are not as sensitive as CCDs, and

the cooling and long integration times required negates the benefits of using the low-

cost highly-integrated CMOS option.

4.3 DIGITAL BACKEND

The digital backend consists of the centroid processor which was previously verified

by the hardware emulation system, counters and control for the ADC, the required

clock dividers, serial transmitters for sending output data off-chip and serial receivers

for receiving control signals. The block diagram of the digital backend is shown in

Figure 4.10.
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rowilcoli - internal row/column address
rstae - external pixel reset

co
co
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.Figure 4.10 Block diagram of digital backend of the ASIC
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4.3.1 ASIC CENTROID PROCESSOR

The centroid processor computes the first order moment of the light intensity (see

Section 1.4.2) and was successfully demonstrated in the hardware emulation system.

The x and y-centroids are calculated in parallel with separate processors. In addition to

finding the centroid, the position of the pixel with the highest intensity is also found.

In the ASIC processor, the number of bits is extended to 11 bits due to the extended

dynamic range. This extends the number of bits required for the dividend and divisor

to 18 bits and 16 bits respectively. The only change required to the centroid processor

in the hardware emulation system is larger storage while the operations performed

remain the same.

The centroid multiplications and summations are carried out as the pixels are read

while the division process of the centroid calculation is performed once every frame,

after all the pixel values have been read and the final dividend and divisor values

obtained. After the division process is completed, the centroid values are latched out.

A frame lasts 26 pixel periods. A pixel period consists of a reset period that lasts 256

clock cycles (Sus) and a discharge period that lasts up to 256 clock cycles depending

on the light level. For the full 32MHz clock, this gives a frame rate of between 2.4kHz

(32MHz / (512*26» and 4.8kHz (32MHz / (256*26» depending on the incident light

level of every pixel. The use of 26 pixel periods per frame was out of convenience and

it is possible to reduce this to 25 pixel periods by using a faster clock to latch out the

data and clear the registers, thereby allowing a new frame to start immediately after 25

,pixel periods.'

In the hardware emulation system, the division process was performed

asynchronously due to the style of coding and required about 125J.ls (5 conversion

cycles of the ADC) to settle to its result'". The VHDL division process was modified

in the centroid ASIC for synchronous operation, leading not only to an improvement

in speed but also a reduction in gate count despite the increase in number of bits. The

division process now needed just 15 clock cycles of a 16MHz clock to complete. The

50 Although the division process in the hardware emulation system is slower, the update rate of the

centroid values was also 26 ADC conversion cycles or pixel access cycles.
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clock frequency used was half the external 32MHz clock frequency as the critical path

delay was found to be 31.37ns in the division process (Appendix A4.3). At 16MHz,

15 clock cycles takes just 0.9375J.Lsto complete. With a pixel period of 8J.Lsto 16J.Ls,

there is plenty of latency to be utilised allowing the division processor to be shared

among several centroid processors and this will be discussed further in Section 4.3.3.

For testability, the reset of the pixels and the row-column addressing can also be

controlled externally.

4.3.2 DATA TRANSMISSION

Serial transmission was preferred over parallel outputs in order to minimise the

number of pinouts required. Centroid data and intermediate values of centroid

processing (such as the x-dividend, y-dividend, divisor, individual pixel light level

and peak pixel position) are transmitted in RS232 formar' I with, as before, one start

bit (logic '0), 8 data bits, no parity bits and 1 stop bit (logic '1) at a selectable baud

rate of 115200, 76800, 57600, 38400, 19200, 9600, 4800 or 2400 bits/s selected by

three external control pins. The default startup rate is 115200 bits/s and this is the only

RS232 baud rate capable of transmitting the centroid data in real time. The minimum

possible data rate needed to transmit the centroid data in real time = (32 MHz / (256 x

26» x 20 bits = 96154 bits/so

The row/column address .and digitised light levels are also transmitted off-chip so

external processing of the centroids can be performed. Unlike the centroid values,

, these need .to be transmitted at the pixel rate. So the light level data was transmitted in

a modified serial format with one start bit (logic '0), 11 data bits (10 for the

row/column address), no parity bits and 1 stop bit (logic '1) and the minimum. .

possible data rate required in this case is (32 MHz / 256) x 13 bits = 1.625 Mbits/s.

Hence, a baud clock of 4 MHz was used to transmit the row/column address and

51 A single transmitter is used to transmit the centroid and intermediate values by controlling three

external pins to select the data type to send. Some of the intermediate values have more than two bytes

(or just one byte for the pixel position of maximum intensity) to transmit and as before, the MSBs are

coded to distinguish between the packets transmitted. clkd IO, c1kd20 and c1kd30 signals are used to

ensure that a complete set of bytes are sent before newly available or updated data are transmitted.
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digitised light levels. This is a non-standard fonnat intended for use with an FPGA or

DSP to perform the external centroid processing.

Two serial receivers were implemented. One for obtaining control signals for selecting

the ADC mode of operation, the discharge clock rate, the accessibility of certain

input/output pins, and the enabling of external processor control. The second receiver

is used to receive external row/column address inputs, and like the row/column

address transmitter, receives data at 4 Mbits/s to enable real-time operation with an

FPGA say. The control signal receiver, on the other hand, does not need to operate

very fast and is designed to detect a serial RS232 format input of one start bit, 8 data

bits and 1 stop bit at a baud rate of 19200 bits/so Two bytes of input data (or 16 bits)

provide the required control signals. The receivers synchronise the baud rate clock at

every start bit using the 32 MHz clock and starts looking for the next start bit at the

centre of a stop bit52•

4.3.3 LAYOUT AND TEST BOARD

The ASIC centroid processor represents a single tilt sensor in an integrated Shack

Hartmann wavefront sensor and the core-limited layout of this tilt sensor is shown

Figure 4.11. The chip contained 7200 logic gates and has a size of 4500f.1mx 4000f.1m.

The core area is 3800f.1m x 3400f.1m and the photodiode array took up 530f.1m x

600f.1m. The digital circuitry which makes a significant portion of the chip will scale

favourably as technology scales and as we move towards a triple metal process with

improved routing capabilities. The main centroid processor block, for example, takes

up an area of 1800f.1mx 1900f.1mor 3.42mm2 and the division circuitry takes up about

44% ofthis area or 1.5mm2• Howev~r, since the division is performed only once every

frame and requires only 15 cycles of the 16MHz clock or 0.9375f.1s to complete, there

is significant latency in the use of the divider. Assuming that it is necessary to obtain

all the centroid/tilt outputs within one pixel cycle (256 x 1/32MHz = Sus) in order that

the tilts correctly represent the same wavefront, about 8 centroid processors could

52 The received data is latched out at this point as well. Certain control signals were not received

serially but as.parallel inputs, such as the baud rate clock select, the transmit data type, the transmit

trigger signal and the global reset signal.
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time-share one divider without any loss in data rate. However, such a large number of

centroid processors to one divider would lead to significant routing and crosstalk

issues. Also circuitry like the clock dividers, receiver and control logic can be shared

alongside the divider while the transmitters are only needed for the final output

signals. So overall there is a 50% fill factor in the circuitry that can be shared.

Integrating 4 tilt sensors for every divider such as illustrated in Figure 4.12 will give a

fill factor of about 20% which is a reasonable solution.

For testing of the centroid processor, the fabricated ASIC is incorporated into a test

board with power supply protection, input switches, serial port connection and a

32MHz crystal oscillator, as shown in Figure 4.13. The pushbuttons control reset

signals and to ensure default values are used on startup, an active-high power-on reset

circuit with an RC time constant of 2.7ms is used as shown in Figure 4.14. The

schematic and PCB layout for this test board is shown in Appendix A4.2.

Mietec bandgap
reference

Mietec comparators
and biasing

Reference voltage
generators

Control and

Figure 4.11 Layout of ASIC optical centroid processor (a single tilt sensor)
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Shared divider

Shared divider

Shared divider

Actuator control signals

Shared divider

Wavefront reconstructor

Figure 4.12 Scalabilty of design to a complete wavefront sensing and

reconstruction system

Figure 4.13 Test board for ASIC centroid processor

vee

S1.\'lJ
h

C17-it
IK

Figure 4.14Power-on reset used in centroid ASIC test board
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4.4 ASIC CAD ENVIRONMENT AND DESIGN FLOW

The design flow for an ASIC, illustrated in Figure 4.15, is a little more involved than

for an FPGA. An FPGA has a highly integrated synthesis, placement and routing flow

with less need and scope for manual optimisation due to the highly regular and

structured architecture of the FPGA. An ASIC, on the other hand, does not have a

regular layout and routing structure and can consist of both full-custom and semi-

custom cells. Hence, for an ASIC, there is greater flexibility and manual control in

the floorplanning, placement and routing stage.

Design Entry

Synthesis Pre-layout simulation

Floorplanning

Placement

Routing & Compaction Post-layout simulation

Physical veritlcatlon
(ERC, DRC, LVS)

Design submission

Figure 4.15 ASIC design flow

The CAD environment used for the design of the ASIC was the Mentor Graphics C4

suite of tools [Mentor Graphics Corporation 1998]. Design entry is made via Design

Architect v8.6_ 4. VHDL macros are incorporated into the design schematic by

synthesizing the VHDL code using the Leonardo Spectrum synthesis tool and

converting the EDIF netlist (.edf) generated into Mentor's proprietary netlist format,

Electronic Design Data Model (EDDM), prior to schematic and symbol generation.

The simulation tools used were Mentor's Accusim v8.6_3, QuickSim IT v8.6_ 4 and
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QuickPath vS.5_1 for analogue simulation, digital simulation and static timing

analysis respectively. Mixed analogue and digital simulation was not available so the

analogue and digital parts of the design had to be simulated separately. Layout was

carried out using Mentor's IC Station vS.7_3 family of tools, which include ICgraph

for full custom editing, ICplan for floorplanning", ICblock and ICroute for automatic

placement and routing of standard cells and blocks, and ICcompact for layout

compaction. The target technology for the design was the same as in the first two

chips (Section 2.2.1 and 2.2.2), that is the Alcatel Microelectronics (Mietec) O.7)J.m

CMOS process.

Due to the added nature of full custom editing, the physical verification stage is an

important part of any ASIC design and can be divided into three tasks: Electrical Rule

Checks (ERC), Design Rule Checks (DRC) and Layout Versus Schematic (LVS)

checks. The ERC checks for simple circuit violations such as short circuits, open

circuits and correct power and ground connections. A DRC is to ensure the design

meets the layout rules set by the foundry such as minimum spacing and minimum

lengths of any given mask [A1catel Microelectronics 1999b], while the LVS checks if

the layout structure matches with the original schematic design. In IC Station the

verification toolset is called ICverify and consists of the ICtrace, ICrules and ICextract

tools for ERC, DRC and LVS checks respectively. ICextract is also the extraction tool

used for extracting parasitic resistance and capacitance from the layout for

backannotation'" into the design schematic. Post layout simulations were not carried

out as the tools for backannotation were not properly setup but LVS and DRC were

'performed. LVS had to be performed separately on each individual block before the

top level check, that is, a hierarchical check had to be done. Finally when fully

verified, the design was exported in ODSII format and submitted to the chosen

foundry, IMEC in Belgium, via the Europractice IC Service. There further ERC and

53 Floorplanning is the process of placing groups of circuits on a die, and analyzing the effect of that

placement in terms of design performance and routability. Floorplanning also helps to monitor the

actual size of a' design.

54 Backannotation is the process of extracting timing information from the layout back into the design

schematic for post-layout simulation.
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DRC checks were carried out using their Cadence Dracula set of tools before

fabrication can commence.

4.4.1 DESIGN AND LAYOUT ISSUES

The design is a mixed semi-custom and full-custom design with full custom cells

(photodiode array, voltage reference generators), Mietec analogue cells (comparators,

biasing) and digital standard cells (VHDL macros). With such a mixed design, several

design and layout issues need to be addressed [Baker 1997, Johns 1997], such as the

combining, partitioning and routing of the design in the Mentor Environment, clock

tree buffering of digital circuitry and power consumption. These issues are discussed

in the following subsections.

4.4.1.1 Design Entry and Full Custom Editing

In the Mentor environment, specific properties are used on the components at different

levels of hierarchy such as the PWR_NET and GND_NET properties to specify which

global power supply nets to use, SUB_CaMP and CELL_CaMP to specify the lowest

level of hierarchy, MODEL, INSTPAR and INST properties for analogue simulation,

PLACE properties to specify placement on the layout, etc. When designing full

custom cells, these properties had to be incorporated and the layout instance pin

names must match the schematic symbol pin names for correct LVS. In addition,

equivalent circuit models of the full custom cells are included in subcircuit schematics

for simulation purposes. Ar the top level schematic (Appendix A4.1), the full custom

components, Mietec components and VHDL macros are connected and external

input/output a~d power supply pads are attached. Each VHDL macro corresponds to a

single layout block where the standard cells within each individual block are

autoplaced and autorouted.

4.4.1.2 Design Partitioning

The design was partitioned into blocks, which aids the separation of the analogue and

digital sections of the design and avoids coupling of high frequency digital switching

onto sensitive analogue lines. Clocks and transmitters were placed further away from

the analogue portion of the circuit but generated clocks were kept close enough to the

ADC and centroid processing blocks to prevent excessive clock skews and delays.

Keeping the ADC and centroid computation blocks together also helps to minimise
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wire lengths and delays. Once the individual blocks were placed, routing was carried

out.

4.4.1.3 Power Supply Routing and Protection

Power supply nets and critical nets were routed manually before autorouting of all

nets was performed. By using a 'keep pre-routes' option, the router uses the widths of

the manual routing but moves it as it sees fit. When the autorouter has finished, further

manual changes are made where necessary. Mietec specifies the maximum current for

the metal layers, the contacts and the vias under different conditions and this works

out to be approximately 1mNJ..1m, O.3OmNcontact and 0.35mNvia respectively

[Alcatel Microelectronics 1999]. To ensure low resistance and inductance, a

conservative approach was taken and power supply nets were widened to at least

25J..1m,expanding as power supply buses join, and clock lines were widen to 10J..1m.In

the design, four sets of power supplies (VDDl-4, VSSl-4) are used for the digital l/O,

one pair for the digital core cells (VDD, VSS) and three pairs (VDDAl-3, VSSAl-3)

for the analogue cells, namely the photodiode array, the comparators (with biasing)

and the voltage reference generators" respectively. The Mietec P_SUPPROT power

supply protection structure was placed between each power and ground pair for better

immunity against electrostatic discharge (ESD) [Alcatel Microelectronics 1995a].

4.4.1.4 Mietec Analogue Cells

The comparators used were the analog CFCMP1 cell provided for in Mietec's

MTC22500 Analog Library [Alcatel Microelectronics 1995b]. In order to use this cell

the cell had to be biased according to the biasing strategy stated by Mietec. This

includes a bandgap voltage reference (1.20V), a master bias generator for providing a

'sinking' current source and a slave bias cell to convert the reference current to bias. .
voltages for the analogue cells. The slave bias cells and the analogue cells that they

bias are placed close together and in the same row of cells, since voltage drops in the

supply lines can cause errors in the bias current.

55 VDDA3- VSSA3 was also used to power the analogue l/Os.
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4.4.1.5 Clock Tree Planning

Clock tree planning is necessary as it is impossible to use an ideal clock to drive all

the latches due to issues of routability, circuit drive strength and clock latency and

skew. In the FPGA design environment, global buffers and routing channels are used

to distribute critical nets such as input clock signals on the device with minimum

skew. In the ASIC environment, no clock-tree synthesis tool was available so clock

tree synthesis had to be done manually by calculating the load of every input and

output signal of each block and inserting clock drivers or buffers (inverters) into the

design in a tree-like manner.

Several buffers are available within the Mietec standard cell library [Alcatel

Microelectronics 1998] as shown in Table 4.1. CBTSA, CBTSB and CBTSC are

positive enabled tristate buffers with low drive, 2X drive and 3X drive respectively,

while CIA, cm and CIC are inverters with low drive, 2X drive and 3X drive

respectively. cm was chosen as a compromise between high output drive, low

propagation delay, minimum area and low power consumption. A maximum load of

20SL was allowed on a net before buffers were inserted to keep the maximum load of

each arm of the clock tree to 20SL.

Cell name Area Power Propagation delay for Input Output
(J.lm2) (J.lWIMHz) 32SL (ns) capacitance drive

tPLH tPHL (SL)* (SL)*

CBTSA 432 2.1360 3.69 2.74 2.0 19

CBTSB 649 3.7925 1.85 1.52 4.0 42

, CBTSC 1189 9.6915 0.97 0.83 9.7 108

CIA 216 0.8878 2.29 1.65 2.0 31

cm 324 1.2632 1.12 0.96 3.3 63

CIC 757 4.5378 0.16 0.16 11.6 172

* SL is defined in the Mietec hbrary as a standard load (SL) of 0.029pF

Table 4.1 Buffer types in the Mietec MTC23000 standard cell library

Only part of the clock tree buffering circuit can be seen in the top level schematic

(Appendix 4.1) with additional clock tree buffering extending into the lower level

schematics of certain blocks. Only input and output signals of the blocks were
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analysed by hand. Internal signals within each block were not dealt with manually but

static timing analysis highlights nets with long propagation delays and heavy loads.

4.4.1.6 Power Consumption

Another issue in circuit design is the power consumption of the circuit. A power

analysis tool was not available and manual calculations of the chip's power

consumption were carried out. Based on simulations and the specified supply currents

of the analogue cells, the majority of the power consumption is expected to come from

the digital circuits which also makes up a bigger proportion of the circuitry. The

power dissipation of a cell in the Mietec MTC23000 CMOS Standard Cell library is

given by:

Total Power Dissipation per cell =
[ POW (value from datasheet) + (VDD2 * Cext) ] * FREQ

POW =
FREQ =

load capacitance in pF for each cell

power in J.lW!MHz

switching frequency in MHz

where Cext =

The first term represents power dissipation due to the internal circuitry of the cell

while the second term is the power consumption due to the charging and discharging

of the load capacitance of the cell. Except for heavily loaded lines, the 2nd term can be

ignored and for the purpose of these power consumption calculations was not taken

into account. Calculation of the total power consumption of the digital circuitry is

shown in Appendix A4.3 where the power dissipation of the components in each

block are summed and multiplied by their operating frequency. A conservative

approa~h was used where the highe~t frequency which any part of the block runs at

was taken as the operating frequency of the whole block. For example, though the

calculation of the dividend and divisor runs at the pixel access rate of 2.4kHz to

4.8kHz, the switching frequency of the block was taken as the frequency at which the

division process occurs i.e. at 32MHz/2 = 16MHz. Furthermore, not every part of the

circuit is constantly being operated and the transmitters, the receiver and the control

logic only operate when activated. A summary of the results as well as the number of

gates and the critical path delay of each block is shown in Table 4.2.
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Block POW (J.lW!MHz) Frequency, Power No. of Critical
name f(MHz) Consumption Gates path delay

(mW) at (ns)

frequency, f

(MHz)

clkdiv1 72.9231 32 2.3335392 47 6.46
CTR5by5a 5131.3544 16 82.1016704 3641 31.37
CTRa2d 1554.306 32 49.737792 1028 17.45
ctrIrcvr 1029.2836 32 32.9370752 625 13.2
div2 12.632 32 0.404224 7 2.37
div8 58.0278 32 1.8568896 35 5.02
divlO 60.6702 0.1152 0.006989207 37 4.86
div20 79.6368 0.1152 0.009174159 48 5.51
div30 74.3362 0.1152 0.00856353 46 5.69
divbaud 307.2977 32 9.8335264 191 13.76
opctrIsyn 150.0007 32 4.8000224 92 2.05
RCrcvr 554.6075 32 17.74744 335 7.56
txall 869.5475 0.1152 0.100171872 590 11.02
txlightout 399.6852 4 1.5987408 256 8.84
txrowcol 381.9001 4 1.5276004 239 8.5

Total 205.0034192 7217-
Table 4.2 Power consumption, gate count and critical path delay of digital blocks

These figures are purely estimates at best but showed that the chip could cope with

power supply demands. Certainly, compared to the hefty power consumption of a PC
. .

(typically 100W) there is significant power savings to be made by going to a single

chip solution. When the chip had been fabricated and tested on a circuit board, the

supply current drawn from a 5V supply was 30mA (rms) when computing and

transmitting centroid data. Hence, the power drawn was less than estimated, which is

reasonable as a conservative approach of over-estimating the frequency of operation

was taken.
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4.5 RESULTS OF CENTROID ASIC

A 3J,1mdiameter beam from a 633nm HeNe laser was scanned across the array at a

speed of 2000J,1m/sec. Centroid values were computed by the processor and serially

transmitted in real time to a PC running Linux with a baud rate of 115,200 bits/so

Figure 4.16 shows the experimental setup used to scan the beam across the ASIC and

obtain the centroids. A neutral density filter (NDF) was used to bring the power

incident on the ASIC down to about IJ,1W.

Laser (633nm)

Reference Imaging PD=* - To PC's A2D card

port

Scanning stage platform

Figure 4.16 Experimental scanning setup for testing the centroid ASIC

Figures 4.17 shows the optical image obt,ained from the reference photodiode as the

beam is scanned across the array. Figures 4.18 and 4.19 show grey scale maps of the x
-

and y-centroid values successfully recorded at each position on the array, with the

device operating under mode 1 of the digitisation procedure. The dark regions

'correspond to smaller centroid coordinates whilst lighter regions correspond to larger

centroid coordinates. As expected, as we scan in the x-direction, the x-centroid values

increases while the y-centroid values remain constant and vice versa. Since the laser

beam size is less than the size of one pixel, a stepped appearance can be seen as the

beam moves across the array passing from one discrete detector to another. Figures

4.19 and 4.20 show the averaged x and y-centroid values plotted as a function of pixel

position. Also shown in Figures 4.19 and 4.20 are the error bars for the measurement

of the position across the array.

164



Chapter 4

Figure 4.17 Optical image of scan
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Figure 4.18 Image map of x-centroids
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Figure 4.19 Image map of y-centroids
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Figure 4.20 Measured vs. actual position of x-centroids
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Figure 4.21 Measured vs. actual position of y-centroids

4.5.1 POSITION RESOLUTION

300

300

The positional resolution is obtained by finding the average of the maximum deviation

(error bar) in the position response across the array in a single scan and this is found to

be 19.5Jlm in the y (2.1LSB) and 14.9Jlm in the x (1.8LSB)56. This is comparable to

56 The difference in resoiution in the x and y is accentuated by the fact that the array size is 530um in

the x and 600um in the y.
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the positional resolution obtained by Nirmaier [Nirmaier 2003] whose chip was used

to measure wavefront aberrations in the human eye. De Lima Monteiro's integrated

wavefront sensor [de Lima Monteiro 2002] achieved a positional resolution of 1.4J.1m

with a 7.0J.1Wspot but a resolution of 47.1J.1mwith a 0.2J.1Wspot. Hence, the design

showed reasonable position resolution.

The noise in the positional response curves obtained is attributed mainly to FPN and

shot noise. The shot noise and thermal/reset noise level for the design were discussed

in Section 4.2.2 and the shot noise was shown to dominate the reset noise. Typical

figures for FPN on the other hand are hard to define because it is significantly

dependent on the precise process used [Homsey 1999c]. The FPN reported with

CMOS image sensors in a submicron process was approximately 2-3% of saturation

for raw data without FPN removal circuitry, and as discussed in Section 1.5.3.5, the

main cause of FPN is the variation in VT in the pixel circuitry rather than the variation

in photoresponse. As seen in Section 2.4.1.2 on chip to chip variation, the FPN from

pixel to pixel is expected to be very small when the entire pixel is flooded i.e. for large

spot sizes.

FPN can be removed at the photodetection level using focal plane FPN removal

circuitry such as CDS and DDS, as described in Section 1.6.3, or by subtracting a

stored averaged dark frame of pixel values. This initial prototype did not include

either of these. However, FPN can still be removed using a suitable calibration

technique. To, remove FPN for a system that outputs a centroid would require

scanning a spot across the array many times over and averaging out the temporal noise

in the 2D images of centroids acquired to obtain a single 2D image map consisting of

the positional response, the dark ,FPN component and the PRNU component.

Assuming the PRNU component is negligible and this image map is applicable to all

other intensity levels, curve fitting can be used to fit ideal or average curves through

the positional response curves obtained, as illustrated in Figure 4.22, and the

difference between the curves can be stored in memory and subsequently subtracted

from future centroid readings. However, this is only accurate for a particular spot size

for which the design is tailored for. Note that for larger spot sizes the effect of the

FPN is expected to decrease.
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x-centroid

Figure 4.22 Curve fitting of calibration curves to obtain FPN values from time-
averaged positional response curves

In addition, it is possible to increase the resolution by reducing the size of the pixels

but this, however, reduces the maximum detectable tilt and hence, the maximum

measurable aberration magnitude. Also, the resolution was inherently limited by the

number of bits in the centroid representation (7 bits) and to increase this requires very

little overhead. That is, just an additional shift-and-subtract cycle in the divider is

required for each additional bit in the result, without the need for additional storage

for the dividend and divisor.

Under conditions of low signal-to-noise ratio (SNR) it is possible to improve the

accuracy of the centroiding by removing the background signal through thresholding.

With a digital centroid processor this is easily achieved by subtracting a

programmable, even adaptive, offset to the digitised input or by setting all pixel values

below a certain threshold to zero ~efore the centre of gravity is found. It is also

possible to apply windowing around the pixel of maximum intensity to improve the

SNR further.

168



Chapter 4

4.5.2 SPEED

The design achieved a frame rate of more than 2.4kHz which when scaled to an array

of centroid processors or tilt sensors in parallel will achieve a frame rate which is

independent of the number of tilt sensors employed, allowing fast real time adaptive

optical systems to be built.

The speed of the design is limited by the frame readout and digitisation technique and

not the centroid computation. In the initial design, 26 pixel periods were required per

frame but this can be reduced to 25 pixel periods by using a faster clock to latch out

the data and clear the registers, thereby allowing a new frame to start immediately

after 25 pixel periods.

Although the system is able to remove the data bottleneck in present systems, it is

possible for the design to go even faster as currently with the ADC technique used,

only 1 pixel is digitised per discharge cycle and 25 separate discharge cycles were

required before a frame was readout, as illustrated in Figure 4.23 (a). By measuring

the time to discharge to a particular voltage level, different pixels with different

discharge rates (due to different incident light intensities) complete the ADC

conversion at different times making it difficult to sequentially measure every pixel

during one cycle. It would be possible to reduce the current system to a single

integration period by comparing every pixel during each count as shown in Figure

4.23 (b), but this would require a very fast clock (800MHz for the default 8Jls range)

and an equally fast comparator. This may be feasible for long integration times but is

not considered a suitable alternative, Instead a design which requires only one

discharge cycle but a separate conventional ADC [Hoeschele 1994] that does not

incorporate the discharge curve into the digitisation process is proposed. This is

illustrated in Figure 4.23 (c) and Figure 4.24. By starting the integration period of the

pixels at different times and using a fixed integration period, pixel values can be

readout and digitised sequentially. Variable integration time is achieved by controlling

the position at which integration is started and stopped. The integration time is given

by the number of pixel access times between these points. With this technique, the

frame delay is reduced to a maximum of 25 pixel access times for a 5 x 5 array, which

is significantly faster than the current design.
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(a) Current system

(b) Current system modified for single cycle operation

Pixels l-25 compared

(c) Proposed system

Pixel 25 Pixel 24

Pixell
discharge
curve

i !
'----~t

...........................
256

Pixel 25 Pixel 24

Pixels discharging ADC conversion

Figure 4.23 Pixel discharge and access. with (a) the current system, (b) current

system modifled for single discharge cycle operation and (c) a
proposed sequential digitisation structure

pixel read out then reset (new intergration period started)

I

'----------, pixel25

Integration time of 1frame period (25 pixel cycles)

pixel read out

pixel reset

(new

integration

period started)

,
I'--------------------,

Figure 4.24 Alternative pixel access and digitisation structure
Integration time reduced to 11 pixel cycles
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4.5.3 DYNAMIC RANGE

The spatial dynamic range of the centroid outputs as shown in Figures 4.20 and 4.21

was limited leading to limited positional sensitivity". A limited spatial dynamic range

translates to a limited tilt measurement range. There are several reasons for the

reduced spatial dynamic range. Stray light in the test system will lead to a large

background signal on all pixels, shifting the centroid values towards the centre.

Secondly, as a global reset was used, all the pixels discharge simultaneously whether

or not they are read and during this discharge the photodiode node is floating and the

pixel current can diffuse to neighbouring pixels. This crosstalk will lead to a larger

background reading in all the signals, once again shifting the centroid output towards

the centre. Also, as simulation results may vary from actual values, the voltage drop in

mode 1 may be significantly smaller than that designed for, leading to a limited

dynamic range in this mode. In order to have a minimum of 0.25V volt drop in mode

1, the 2nd reference voltage level should be used instead of the 1st reference voltage

level. Finally, as a consequence of the digitising technique used where the discharge

time is measured for a given light level, a l/x compression of the input photocurrent is

achieved leading to a high light intensity dynamic range [Forchheimer 1994] but also

a smaller signal to background ratio, as expressed by:

CLlV
LlT =Tmax --, -

Iph
(4.14)

where iJT is the measured discharge time, Tmax is the maximum discharge time for a

given volt dro~ iJV, photodiode capacitance C and photocurrent Iplz• For the case of the

current system C = 0.5pF at 2V and iJV = 0.25V, a digital output count, x, is obtained

as follows (and shown in Figure 4.25):

x= 255- 4.uA
Iph

(4.15)

57 Poor positional sensitivity does not imply poor positional resolution and the accurate positional

resolution of spots could still be obtained by careful calibration of the response curves.
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Figure 4.25 Conversion of photocurrent to digital output by measuring discharge

time showing large dynamic range compared to conventional ADC

techniques of measuring voltage drop

The issue of limited spatial dynamic range can be addressed in various manners. In

order to remove any background signals, a thresholding technique can be used, or

alternatively, an initial frame of dark (or background) readings is stored and

subtracted from subsequent readings of each pixel. To resolve the problem of pixel

crosstalk, the pixels need to be reset individually [Yadid-Pecht 1997] such that when

one pixel is discharging the other pixels remain under reset. Also, a suitably biased

guard ring structure can be incorporated between pixels to mop up any crosstalk

current. As for the compression effect of the current digitisation technique, this has

. little benefit for determining centroids but would be a useful feature in imaging where

it is desired to capture both the, bright and dark regions of an image. Hence, an

alternate digitisation structure like that proposed in Section 4.5.2 and Figure 4.23 is

preferred. Note that the proposed pixel access and digitisation structure does not allow

crosstalk to be removed by having individual pixel reset. Instead a guard ring structure

must be used with every pixel.
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4.5.4 SCALABILITY

The system as a whole is extremely scalable. The division circuitry takes up a

significant amount of the processing area but the division process is performed only

once every frame and requires only 15 cycles of the 16MHz clockto complete so

there is significant latency in the use of the divider. When several centroid processors

are integrated in parallel the divider can be shared without significant increase in size

or loss of speed.

In addition, the specified gate density of the Mietec process is 1250 gates/mm'.

Migration to smaller feature sizes will mean greater packing density. The

austriamicrosystems CAMS) 0.35J,lm CMOS process, for example, has a gate density

of 18k gates/mm'. This is a 14 times reduction in size of the digital circuitry, making

the integration of a large number of centroid processors for a complete wavefront

sensing system feasible.

4.6 CHAPTER SUMMARY

A real time VLSI optical centroid processor was successfully designed and fabricated

for integration into a proposed Shack-Hartmann wavefront sensor. The chip consists

of an optimised 5 ~ 5 active pixel array and analogue-to-digital conversion circuitry

integrated with the centroid processor previously demonstrated using a hardware

emulation system. Centroid values can be obtained at a rate of 2.4 - 4.8 kHz with a

position resolution of less than 20J,lm or 0.2 of a pixel, allowing real time performance

of the adaptive optical system. By replacing the use of a CCD, a frame grabber and a

PC with a dedicated on-chip centroid processor, significant savings in power, size and

cost can also be achieved.
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WAVEFRONT RECONSTRUCTION

5.1 INTRODUCTION

Once an array of optical centroid processors has obtained the wavefront slopes, the

next step in the process of an adaptive optics system is the reconstruction of the

aberrated wavefront. The main aim of wavefront reconstruction is to generate the

required actuator signals to deform a flexible mirror to compensate for the distortions

in the wavefront. Hence, in order to understand the process of wavefront

reconstruction, one needs to understand how wavefronts are described and how

deformable mirrors are used to perform the correction before delving into the

reconstruction techniques available. The following sections discuss the concepts of

wavefront reconstruction and how this process can be incorporated into the design,

which will enable the design of a complete, compact, fast and low-cost adaptive

optical system.

5.2 WAVEFRONT DESCRIPTION

A wavefront can be described using a zonal approach or a modal approach [Tyson

1998]. In a zonal approach, the wavefront is expressed in terms of the phase over a

small spatial area or zone and by combining all the zones within the aperture, a,
complete wavefront is described. If the number of zones approaches infinity, the

wavefront is exactly represented. In the modal approach, the wavefront is expressed in

terms of a weighted sum of spatial modes such as tip/tilt, defocus, etc. where each

mode is defined over the entire aperture. For wavefronts with low spatial frequencies,

the entire wavefront can be adequately represented by a few low-order modes whereas

ifhigh spatial frequencies are present a large number of terms are needed and a zonal

approach may be preferable [Geary 1995]. This weighted sum of modes is expressed
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as a suitable polynomial expansion and one such expansion is the sum of Zernike

polynomials, Zk of order k:

ljJ(p,e)= L,AkZk(p,e)
k

(5.1)

where p, 8 are polar coordinates and the coefficients Ai is a time varying parameter

which is typically smaller for higher orders. ZI and Z2 correspond to the tilt of the

wavefront in the x and y-directions, Z3 to defocus, Z4 and Z5 to astigmatism and so on

[Noll 1976]. Zernike polynomials are a popular choice because the polynomials are

defined over a unit circle similar to the circular aperture of a telescope making it

straightforward to express such wavefronts in terms of Zernike polynomials. They can

also take into account the effect of the annulus present in telescopes. The

orthogonality of the polynomials over a unit circle is also useful for incorporating

higher order terms that are independent of the lower order terms and Zernike

polynomials also allow easy calculation of the wavefront variance or error.

5.3 DEFORMABLE MIRRORS

Deformable mirrors are used to produce the phase conjugate of the

aberrated wavefront in order to produce a plane wave. There are different

types of deformable mirrors used in adaptive optics and these include

segmented mirrors, continuous faceplate mirrors and bimorph mirrors

[Tyson 2000].

Segmented mirrors can be manufactured to tight tolerances and each segment acts

independently so the control computer is simplified. However, they do not provide a

smooth surface transition and the gap between segments can have an adverse effect on

the optical beam because its regular pattern acts somewhat like a diffraction grating'by

imparting diffractive modes into the beam. In addition, segmented mirrors need more

actuators than continuous faceplate mirrors. The continuous faceplate deformable

mirror eliminates the gaps and the optical problems associated with segmented mirrors

at the expense of more complicated control. The shape of the continuous deformable

mirrors is described by its influence function which describes the influence of one

actuator on the surrounding surface.
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A bimorph mirror consists of two thin layers of material bonded together. The layers

can be oppositely polarized piezoelectric wafers or a piezoelectric wafer bonded with

an optical surface made from glass or silicon. An array of electrodes is deposited

between the two wafers and when a voltage is applied to an electrode, one wafer

expands relative to the other producing a curvature proportional to the voltage applied.

For a given number of electrodes bimorph mirrors achieve the highest degree of

turbulence compensation. Compared to other deformable mirror technologies such as

membrane mirrors, bimorph mirror fabrication uses lower cost components and

involves fewer and much simpler processes. Bimorph mirrors produce a curvature

(which follows a Poisson equation) making it suitable for use with curvature

wavefront sensors [Roddier 1998a] without the need of complex reconstruction

circuitry but less suitable with other wavefront sensors which requires the Poisson

equation to be solved. Also, the geometry of the actuators in bimorph mirrors is

radial-circular which conveniently matches the circular telescope apertures with a

central annulus. However, the number of modes or actuators remains limited.

c)

Figure 5.1 Comparison between (a) segmented mirrors, (b) continuous faceplate

mirrors and (c) bimorph mirrors [Doelman 2000]

Micromachined deformable mirrors are a new class of deformable mirrors

fabricated in' silicon Micro-Electro-Mechanical Systems (MEMS)

technology where small mirror elements are deflected by electrostatic

forces. They offer potential for low cost and large number of actuators

[Hatcher 2001, Mansell 2000]. But currently insufficient stroke and the

small size of the elements remain a limitation.
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Liquid crystal (LC) spatial light modulators (SLM) are another way to

control the phase of light [Dayton 1997]. They operate based on the fact

that an applied voltage will change the alignment of the long thin LC

molecules and hence change its index of refraction. They can have a large

number of elements but the phase shifts introduced by liquid crystals

remain too small and wavelength-dependent.

5.4 WAVEFRONT RECONSTRUCTION

As described in Section 1.3.1, the Shack Hartmann wavefront sensor obtains local

wavefront tilts from focal spot position displacements. The reconstruction of a

wavefront from a set of local wavefront tilts involves solving a system of linear

equations [Tyson 2000], which expressed in matrix algebra has the form:

s=Ba (5.2)

where s is a vector of the local wavefront tilts, a is a vector of the required actuator

commands (if modal reconstruction is used modes are obtained instead of phases and

have to be converted into actuator commands) and B is called the reconstruction

matrix that contains information on how the tilts are related to the actuator signals.

The system is usually overdetermined with the system having more equations than

unknowns such that s has a higher dimension than a. A least-squares approximation

can be used to solve for vector a and this is equivalent to calculating:

a = [BTBriBTs (5.3)

where BT is the transpose and [BTBriBT is the pseudo-inverse of the reconstruction

matrix B. The equation is valid on the condition that BTB is invertible (not singular).

If this condition is not met, a method called singular value decomposition (SVD) is

used. Otherwise, directinversion methods like Gaussian elimination can be used [de

Lima Monteiro 2002]. The pseudo-inverse matrix [BTBriBT only needs to be

calculated once for a given configuration (sensor-actuator geometry and. .

reconstruction method). After which, the system only needs to compute the centroids,

the associated tilts and evaluate a matrix multiplication for the actuator commands.

There are two types of reconstruction methods that can be used, namely the zonal or

modal reconstruction. The choice of which depends very much on the choice of

deformable mirror and the choice of wavefront sensor.
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5.4.1 MODAL APPROACH

In a modal reconstructor, the coefficients of a polynomial function for describing the

wavefront, such as the Zemike polynomials, are obtained. From equation (5.1) the

local tilts, Six and Siy, can be related to the local derivatives of the phase and hence the

local derivatives of the Zemike polynomials of subaperture i, as follows:

Six = df/JI =L Ak dZk
dx; k dx;

(5.4)

(5.5)

In matrix form of N subapertures and M modes, this can be written as:

dZI dZ2 dZ3 dZM

dxl dxl dxl dx I

SIx

dZI dZ2 dZ3 dZM

dy I dy I dy I dy
SlY

I

dZI dZ2 dZ3 dZM
AI

S2x dx2 dx2 dx2 dx Az2

S2Y = dZI dZ2 dZ3 dZM A3 (5.6)

dy 2 dy 2 dy 2 dy 2

SNx
dZI dZ2 dZ3

AM

SNY
dZM

dxN dx N dx N dx N

dZI dZ2 dZ3 dZM

dy
N

dy
N dy N dy

N

By solving for vector Ak using equation (5.3), the coefficients of the Zemike

polynomial are obtained. At the same time, the influence function <PI (x, y) of each

actuator in' a deformable mirror can also be expressed as a function of the Zemike

polynomial as follows [Zhu 1999]:
M

lJ'1 (x, y) = LbklZk (x, y)
k=1

(5.7)

where bu is the coefficient corresponding to the kth Zemike polynomial due to the

control signal of the lth channel of the mirror. Assuming that the total deflection of the

mirror is a linear superposition of the deflections from all the control channels, the

mirror surface deflection Il¢(x, y)can be expressed as:
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p

~f/J(x, y) = L.CllfJl (x, y)
I:)

P M

= L.CI L.bklZk (x, y)
I:) k:)

~t.(tC1b" 'k(X,y)

where Cl is the control signal of the lth channel of the deformable mirror. Therefore,

(5.8)

the Zemike coefficients obtained from solving equation (5.6) can be related to the

control signals Cl as follows:

(5.9)

where bu is experimentally determined and the equation is solved using equation (5.3)

once again to obtain the required control signals Cl to perform the corrections.

5.4.2 ZONAL APPROACH

In a zonal reconstructor, the phase at regular grid points across the aperture is

evaluated and several sensor-actuator geometries such as the Hudgin geometry and the

Fried geometry shown in Figure 5.2 for a 3 x 3 actuator system. Here, a represents the

actuator positions and Si represents the slopes of subaperture i.

a) a2 a3 al a2 a3

• • • • ~ • ~ •
~ ~- ~ ~ ~

a, as a, a4

~

as

~

a,

-.' '. • • • •
~ ~ ~ ~ ~

a7 ag a9 a7 ag

EJ
a9

• • • • EJ • •
(a) Fried geometry (b) Hudgin geometry

Figure 5.2 Wavefront sensor-actuator geometries
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With the Hudgin geometry only one centroid per subaperture is used and SI, S2, S6, S7,

Sl1 and S12represent slopes in the x-direction while S3, S4, S5, S8, S9 and Sw represent

slopes in the y-direction. For N x N actuators, a Hudgin geometry requires 2N(N-1)

subapertures (N(N-1) x-centroids and N(N-1) y-centroids) while the Fried geometry

requires (N-1/ subapertures so the Hudgin geometry requires more subapertures but

less processing per subaperture.

From these configurations, the equations (equation (5.1» that relate the wavefront

sensor signals to the actuator commands can be developed. Besides the geometry and

alignment of the sensor subapertures and the actuators, the type of mirror used for

reconstruction determines how the tilt values are related to the required actuator

signals and hence the reconstruction matrix B [Tyson 2000]. In the case of a

segmented mirror, the slope of a particular subaperture only depends on the influence

of the neighbouring actuator signals and the reconstruction matrix B is sparse. In the

case of the continuous faceplate deformable mirror, the remaining elements in B are

not zero but dependent on the influence function of the mirror".

5.4.3 RECONSTRUCTION PROCEDURE

A Shack Hartmann wavefront sensor measures local wavefront slopes, which provide

a zonal description of the aberrated wavefront and lends itself to zonal reconstruction

procedures [Geary 1995]. To illustrate the architecture required for wavefront

reconstruction from a set of Shack Hartmann wavefront tilts, the process of generating

the reconstruction matrix and finding its pseudo-inverse for a chosen architecture is

carried out, and the implementation of this structure is considered.

-For this purpose, a segmented mirror system with 3 x 3 actuators and a Hudgin

geometry (requiring 12 tilt sensors) as shown in Figure 5.2(b) is selected. In the

matrix form this is expressed as:

58 For example. Bll of the reconstruction matrix represents the influence of actuator Ion the 151 slope in

the x-direction, B12 represents the influence of actuator 2 on the 151 slope in the x-direction and so on.
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SI 1 -1 0 0 0 0 0 0 0

S2 0 1 -1 0 0 0 0 0 0
S3 1 0 0 -1 0 0 0 0 0 al

S4 0 1 0 0 -1 0 0 0 0 a2

S5 0 0 1 0 0 -1 0 0 0 a3

S6 0 0 0 1 -1 0 0 0 0 a4

s= S7 B= 0 0 0 0 1 -1 0 0 0 a= as (5.10), ,
Sg 0 0 0 1 0 0 -1 0 0 a6

S9 0 0 0 0 1 0 0 -1 0 a7

SIO 0 0 0 0 0 1 0 0 -1 ag
SII 0 0 0 0 0 0 1 -1 0 a9

SI2 0 0 0 0 0 0 0 1 -1

0 1 1 1 1 1 1 1 1 1

The row of 1's at the bottom of the reconstruction matrix is used to force the average

surface of the wavefront to a specific shape or value and to keep the reconstruction

matrix from being singular'", The pseudo-inverse matrix of B is found as follows:

0.4444 0.1806 0.4444 0.1528 0.0694 0.1528 0.0972 0.1806 0.0972 0.0556 0.0694 0.0556 0.1111

-0.2639 0.2639 0.1528 0.3611 0.1528 -0.0556 0.0556 0.0972 0.1389 0.0972 -0.0139 0.0139 0.1111

-0.1806 -0.4444 0.0694 0.1528 0.4444 -0.0972 -0.1528 0.0556 0.0972 0.1806 -0.0556 -0.0694 0.1111

0.1528 0.0972 -0.2639 -0.0556 -0.0139 0.3611 0.1389 0.2639 0.0556 0.0139 0.1528 0.0972 0.1111

-0.0556 0.0556 -0.0556 -0.2222 -0.0556 -0.2222 0.2222 0.0556 0.2222 0.0556 -0.0556 0.0556 0.1111

-0.0972 -0.1528 -0.0139 -0.0556 -0.2639 -0.1389 -0.3611 0.0139 0.0556 0.2639 -0.0972 -0.1528 0.1111

0.0694 0.0556 -0.1806 -0.0972 -0.0556 0.1528 0.0972 -0.4444 -0.1528 -0.0694 0.4444 0.1806 0.1111

-0.0139 0.0139 -0.0972 -0.1389 -9.0972 -0.0556 0.0556 -0.1528 -0.3611 -0.1528 -0.2639 0.2639 0.1111

0.0556 -0.0694 -0.0556 -0.0972 -0.1806 -0.0972 -0.1528 -0.0694 -0.1528 -0.4444 -0.1806 -0.4444 0.1111

Consequently, the solution of the actuator commands from equation (5.3) is reduced

to a straightforward matrix multiplication. In the case of this example, 117floating

point. operations (and a further .108 additions) are required. For on-chip

implementation, the values of the matrix is stored in memory and the choice of the

number of bits to represent the values depends on the accuracy of the centroid

59 The piston component of the mirror can take on any value and still match the wavefront shape. Hence

the mirror has to be constrained to an average surface height.
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calculation as well as the control specifications of the deformable mirror used. In

order that the error in the reconstruction matrix does not propagate through the

reconstruction algorithm, and the reconstruction error is mainly due to the error in the

position response, the maximum fractional uncertainty in [Br! must be sufficiently

less than the minimum fractional uncertainty in the wavefront slopes s. At this current

stage of development, the centroid processor achieved a positional resolution of

2.1LSB in the y and 1.8LSB in the x. Hence the minimum fractional uncertainty in the

centroid measurement is given by:

_!!_ = ~ = 0.0225
.smax 80

(5.11)

where Smax is the maximum position output from the centroid processor and this

corresponds to a pixel position of 5 (1010000 or 80). [Br1 has a minimum element

value of 0.0139 and a full scale range of 0.8888. Hence the maximum allowable

uncertainty in rsr' is given by:

~-I IB-I I & 00139 1.8 -4UD max = min -- =. x- = 3.1275xl0
Smax 80

(5.12)

As such the minimum number of bits required for rsr' is given by:

I 0.8888 12b'
N = og , 3.1275xlO-4::::: Us

However, it turns out that for this configuration and this set of values of [Br!, the

(5.13)

round off error is very small and the same accuracy is obtained if 10 bits are used.

Also, although the result of the matrix multiplication will consist of 7 (slopes) + 12

(reconstruction matrix) = 19 bits, a typical deformable mirror usually requires 8 bits or

less of control input and the result is usually truncated.
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If signed lO-bit encoding is used, for example, the signed integer representation of the

inverse matrix values'" become:

512 208 512 176 80 176 112 208 112 64 80 64 128

-304 304 176 416 176 -64 64 112 160 112 -16 16 128

-208 -512 80 176 512 -112 -176 64 112 208 -64 -80 128

176 112 -304 -64 -16 416 160 304 64 16 176 112 128

-64 64 -64 -256 -64 -256 256 64 256 64 -64 64 128

-112 -176 -16 -64 -304 -160 -416 16 64 304 -112 -176 128

80 64 -208 -112 -64 176 112 -512 -176 -80 512 208 128

-16 16 -112 -160 -112 -64 64 -176 -416 -176 -304 304 128

-64 -80 -64 -112 -208 -112 -176 -80 -176 -512 -208 -512 128

This can then be converted into signed binary or two's complement for hardware

implementation. In general the number of bits of memory required to implement

wavefront reconstruction on-chip is given by:

No. of actuators x (No. of subapertures + 1 piston term) x No. of bits required

The same concepts can be applied for the Fried geometry but in this case the

relationship between the tilts and the actuator signals is given by (see Figure 5.2(a»:

SIx = a2 + as - al + ~

(5.14)

5.5 COMPLETE Ao SYSTEM

Traditional systems require data to be transmitted from the optical sensor (i.e. a CCD)

to a host computer by means of an analogue video line, an analogue-to-digital

converter (ADC) and a frame memory and hence are invariably slow and costly.

Figure 5.3 shows the structure of our proposed AD system and that of a traditional

system. By partitioning the design into its function and incorporating processing at the

60 The values have a minimum of -0.4444, maximum of 0.4444 and full scale of 0.8888. For 10-bit

encoding (or 1024 levels), an accuracy limit of 0.8888/1024 = 0.0009 is obtained.
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sensor level, the data bottleneck present in traditional system can be alleviated. The

final integrated wavefront sensor (iWFS) will consist of an array of tilt sensors with

local centroid processing, and wavefront reconstruction circuitry implemented either

on-chip or on a dedicated processor such as an FPGA, as illustrated in Figure 5.4.

There is a further reduction in data bandwidth of 2 after reconstruction of the

wavefront from the wavefront slopes. On-chip implementation will allow higher

speeds and a more compact design, while an FPGA implementation has greater

flexibility in allowing the system to cope with different mirror and optical

configurations.

Proposed

Traditional

wavefront

iWFS t Control ~ Corrector

i
I

CCO ----iI Frame ~ IPC ~
grabber Corrector

i

Bottleneck

Figure 5.3 Partitioning the AD system by function instead of hardware reduces

the data bottleneck

EJ

Local centroid

.I01l
Detector/~
array

wavefront reconstruction

Reduced
bandwidth

wavefront data

Figure 5.4 Proposed integrated wavefront sensor

184



Chapter 5

There was insufficient time to build a complete working AO system. However, in

order to highlight the potential of this system, a proposed architecture incorporating

the fabricated tilt sensor and a continuous deformable mirror will be discussed in

terms of its speed, its area and its cost. Scalability of this design will also be

considered. The deformable mirror selected is the 37-channel 15mm micromachined

membrane deformable mirror from OKO Technologies with a settling time of 1ms

and is a device which is widely used in other adaptive optical systems [Dayton 2002,

de Lima Monteiro 2002, Paterson 2000, Rhoadarmer 1999]. The cost of the mirror is

EUR4850 or £3300 including control electronics [Flexible Optical BV]. Each channel

is driven by an 8-bit input signal.

The proposed geometry to be used for alignment of the subapertures with the mirror is

shown in Figure 5.5, which requires 37 subapertures for the 37 actuators, and has been

used by Rhoadarmer et. al. [Rhoadarmer 1999] for testing the wavefront sensor

hardware and software for the new Multiple Mirror Telescope adaptive optics system.

The DM actuators and WFS subapertures have been projected onto the entrance pupil.

The large circle represents the entrance pupil diameter. The hexagons are the DM

actuators and the squares are the WFS subapertures. The small circles mark the

centers of the actuators. Dayton et. al. [Dayton 2002] used a slightly different

geometry with 32 actuators as shown in Figure 5.6.

Figure 5.5 Proposed subaperture-actuator geometry for AO system

[Rhoadarmer 1999]
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Figure 5.6 Alternative sensor-actuator geometry used by [Dayton 2002]

5.5.1 SPEED

A zonal reconstruction procedure is assumed and the closed loop response time of the

system is estimated as follows:

Closed loop response time = Frame time of tilt sensors + Readout time of tilt sensors

+Reconstruction time +Mirror settling time

5.5.1.1 Frame time of tilt sensors

All the tilt sensors in the prototype design operate in parallel at a minimum frame rate

of 2.4kHz, that is, a frame time of 0.416ms.

5.5.1.2 Readout time of tilt sensors

In the current design, each tilt sensor produces two (x and y) 7-bit centroid values,

although the number of bits used to represent the centroids may be increased in

subsequent designs to achieve better positional resolution. Parallel 7-bit readout is

possible but a serial readout using the 32MHz clock will be assumed here giving a

readout time of:

Treadout = (14 bits/subaperture x 37 subapertures)!32MHz = 16.2J..ls (5.15)
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5.5.1.3 Reconstruction time

The reconstruction procedure involves the matrix multiplication of the 7-bit centroid

values with the inverse reconstruction matrix as described in Section 5.4. Hence, the

reconstruction time, Trecon,required is given by:

Trecon= NmullX (Tmull+ Tmem) (5.16)

where Nmullis the number of multiplication procedures required, Tmullis the time

required for a single multiplication process and Tmemis the memory access time for

accessing the stored inverse reconstruction matrix values, assuming a single multiplier

operating serially on the entire matrix. If instead more than one multiplier unit is used,

then the reconstruction time required is given by:

Trecon= (Nmull/ Nunil)X (Tmull+Tmem)

where Nunilis the number of multiplier units operating in parallel.

(5.17)

i) Number of multiplication procedures, Nmult

The number of multiplication procedures, Nmulhrequired is given by:

Nmull= number of actuators x (number of slope terms x 1 piston term) (5.18)

Typically, there are two slopes obtained per subaperture (For the Hudgin geometry

only one slope per subaperture is required) and hence for the configuration proposed,

Nmull= 37 x (2 x 37 + 1) = 2775 procedures.

ii) Multiplication delay time, T~ult

If 12-bits are used for the inverse reconstruction matrix values, then the result of the

multiplication will be 19-bits long. For the multiplication, a shift and add method can

be used and for the addition, a carry-look-ahead adder is preferred over a ripple adder

for its parallelism and hence, shorter delay. A 16-bit 2-level carry-look-ahead (CLA)

adder'" requires just 9 gate delays to complete [Parhami 2000] and this can easily be

extended to a 19-bit value by incorporating another 4-bit CLA adder in the 1st level.

This does not entail significant delay overhead because although the fanout and the

61 This consists of four 4-bit CLA adders in the first level and a 2nd stage carry-look-ahead generator in

the second level.
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individual gate delay increases slightly, the number of levels or the number of gate

delays remains the same. An alternative to the carry-look-ahead adder is the carry-

save adder which has the advantage of reduced number of gates at the expense of

longer delay times. Also the pipelining of carry-save adders is a simple matter and is

suitable where the result of a carry-save addition is immediately re-used in another

addition e.g. in multiplication. In the case of a 12-bit by 7-bit multiplication, a carry-

save adder approach will require 2 x 19 clock cycles while the carry-look-ahead adder

technique requires 2 x 7 clock cycles but the cycle can be made faster for the case of

the pipelined carry-save adders. Other complicated optimised multipliers and adders

[Parhami 2000] are also possible. However, for the purpose of this investigation only

the carry-look-ahead adder will be considered. With a typical gate delay of <Ins, the

addition process can be performed within one cycle of the 32MHz clock (1I32MHz =
31.25ns) and the shift and add multiplication requires 7 x 2 clock cycles with a 7-bit

quotient (centroid) and 2 cycles per bit for shift and add. Hence the multiplication

delay time, Tmulto becomes:

Tmult = 14/ 32MHz = 0.4375JLs (5.19)

iii) Memory access time, Tmem

The inverse reconstruction matrix is fixed for a given configuration and these values

can be stored in memory for fast reconstruction computation. Foundries often provide

service for the generation of on-chip random access memory (RAM) and in the AMS

0.35JLm CMOS (C35) process, for example, a 2775 word x 12-bit single port RAM

~ill take up an area of 1.86mm2 with an access time of 5.75ns [Austriarnicrosystems-

Memory Compiler].

iv) Reconstruction time, Treeon

Therefore, with a single serial multiplier the reconstruction time, Treeon,required for

this design is:

Treeon= 2775 x (0.4375JLs + 5.75ns) = 1.23ms (5.20)
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It is possible to move to a faster clock to perform the arithmetic calculations as well as

use several parallel multiplier units to reduce the delay time. De Lima Monteiro [de

Lima Monteiro 2002] performed modal reconstruction on PC using a 750MHz

Pentium III Processor for 64 quad cells (128 slopes), 9 Zernike modes and 37 mirror

control signals, and this took a time of 134J,.ls,so it is possible to go much faster. Also,

according to de Lima Monteiro, the control and feedback algorithms runin a 750MHz

Pentium III PC, under Linux, are not of concern compared to the other elements of the

system.

5.5.1.4 Mirror settling time

The mirror settling time was lms [de Lima Monteiro 2002]. The mirror has to be

stable during WFS integration so the mirror actuation and settling cannot be pipelined

with the wavefront sensing and reconstruction.

5.5.1.5 Closed loop response time

Therefore, the closed loop response time = 0.416ms + l6.2J,.ls + 1.23ms + lms =
2.66ms. Hence, the closed loop bandwidth = 376Hz. Rhoadarmer et. al. [Rhoadarmer

1999] used a 80 x 80 array 4-port, split frame transfer CCD with 1kHz frame rate with

zonal reconstruction and achieved a closed loop bandwidth of 5Hz, while Dayton et.

al. [Dayton 2002] achieved a closed loop bandwidth of 80Hz. De Lima Monteiro [de

Lima Monteiro 2002] achieved an operational frequency (sensor readout and

wavefront reconstruction) of 370Hz and a closed loop bandwidth (sensor readout,

wavefront reconstruction, mirror actuation and settling time) of 260Hz with 44 quad

cells and modal reconstruction of 9 Zernike modes. Paterson et. al. [Paterson 2000]

used a .128 x 128 CCD with a maximum frame rate of 800Hz and the closed loop

bandwidth achieved was 50Hz. Hence the system compares favourably to other

similar systems.

Assuming the number of subapertures is equal to the number of actuators and there are

two slopes per subaperture, the delay of the system as the number of degrees of

freedom (actuators) increases can be shown. Figure 5.7 shows the delay of the system

when a 32MHz clock with a single multiplier is used while Figure 5.8 shows the delay
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when a 200MHz clock and 10 multiplier units are used. It can be seen that moving to

faster clock speeds and using parallel multiplier units will remove the delay bottleneck

from the reconstruction procedure to the mirror settling time. Also, by moving to

faster ADC techniques for the tilt sensors, it is possible to remove this as a key delay

as well.
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5.5.2 AREA AND COST

The integrated wavefront sensor consists of 3 main components; the fabricated tilt

sensors, the wavefront reconstruction circuitry and memory storage for the

reconstruction matrix.

The 5 x 5 photodiode array size is 530jlm x 600jlm (0.318mm2
) and the area of the

centroid processor (excluding the array) is 12.6mm2
. The gate density for the Mietec

0.7jlm CMOS process is 1250 gates/mm/ while that of the AMS 0.35jlm CMOS

(C35) process is 18k gates/mm'. When scaled to the AMS 0.35jlm CMOS (C35)

process, the area consumed per tilt sensor will approximately be 12.6mm2 x 1250/18k
2 1 2 2+ 0.318mm = . mm .

A 19-bit CLA adder is expected to take less than 200 gates and an area of 100jlm2 per

gate, and a 19-bit shift register would require 19 D-type flip flops at 400jlm2 each

[Austriamicrosystems], Hence, the wavefront reconstruction circuitry takes up less

than 0.03mm2. So it is feasible to use 10 multiplier units in parallel, or even more.

Ultimately, the bottleneck of the system will lie with the settling time of the mirror

except for the case where a very large number of actuators are needed.

Hence for the proposed system with 37 subapertures, the total area required will be 37

x 1.2mm2 + 0.03mm2 + 1.86 mnr' ~ 46.3mm2. Excluding packaging costs, the

fabrication cost will come up to 580EURlmm2 x 46.3mm2 ~ 26800EUR or about

£18000 for 10, samples. Considering traditional systems have a component costs of

>£105 [Munro 1999], the design offers a significant savings in system cost. The

largest chip area available through Europractice is 16.5mm x 16.5mm with a ceramic

quad flat pack (CQFP208) package, and this is capable of encompassing over 220

subapertures or tilt sensors.
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5.6 CHAPTER SUMMARY

In this chapter, the concepts for wavefront reconstruction were introduced. A

wavefront can be described using a zonal approach where the wavefront is divided up

into subapertures (zones) or using a modal approach where the wavefront is treated as

a sum of basis functions (modes) with Zemike polynomials being a popular choice.

Wavefront reconstruction usually involves the solution of a linear system of equations

in matrix form (s = B a) where for an overdetermined system, a linear least-square

approximation can be used to solve for the actuator signals a by finding the pseudo-

inverse of the reconstruction matrix B and multiplying this by the measured wavefront

tilts s (a = [BTBriBTs). For a given configuration, the pseudoinverse matrix [BTBriBT

need only be calculated once reducing the wavefront reconstruction computation to a

single matrix multiplication.

Two types of reconstruction techniques from wavefront slopes are possible and these

are the modal and zonal techniques. With the modal technique, coefficients of the

polynomial function for describing the wavefront (Zemike) are obtained and these

need to be converted into actuator commands for driving the deformable mirror. With

the zonal technique, the phases of the wavefront at regular discrete points on the

aperture are obtained and these translate directly into actuator commands. In the zonal

approach, the sensor-actuator geometry arid choice of deformable mirror directly

affects the generation of the reconstruction matrix B and an example for the

reconstruction of a 3 x 3 actuator system with a Hudgin geometry was shown. Once

the' pseudo-inverse matrix of B is obtained, it can be converted into binary values and

stored in on-chip RAM for wavefront reconstruction allowing a complete, cheap, fast,

low cost. adaptive optics system to be built.

The structure for our proposed AO system was then presented and it was shown that

the parallel processing achieved with the system allowed a closed loop bandwidth of

more than 370Hz and at a fraction of the cost of traditional AO systems. The design is

able to remove the bottleneck from the readout and processing of the wavefront to its

fundamentallimit of the mirror settling time.
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CONCLUSIONS

6.1 DISCUSSION

The research covered in this thesis addresses the need for a fast, low cost integrated

wavefront sensor for use in an adaptive optical system. An adaptive optical (AO)

system corrects for wavefront distortion in the imaging medium, such as the

atmosphere, by having a closed loop detection and correction scheme. A Shack

Hartmann wavefront sensor uses an array of small lenslets to sample the optical

wavefront and by detecting the deviation of the focused spots from reference

positions, the local wavefront tilts are obtained. Currently with most of these systems,

a single CCD is used to sample the entire wavefront before it can be processed,

resulting in a data bottleneck. This research addresses this issue by integrating local

centroid processing for each local wavefront tilt which will allow parallel processing

of the wavefront. In addition, removing the need for a CCD-frame grabber-PC

architecture will lead to a reduction in system size, cost and power consumption.

Adaptive optics has traditionally been known for its use in astronomical and military

applications mainly because of the high cost of the components in the system. With a

low-cost real-time adaptive optical system, many new application areas such as

ophthalmology, intra and extra-cavity laser correction, free space optical

communications and microscopy, will become feasible. The design stages of the

system are summarised below.

6.1.1 DESIGN SPECIFICATIONS

There are several possible structures for implementing a position sensitive device

(PSD) such .as the lateral effect photodiode (LEP), the quad cell and the multi-pixel

array. A lateral effect PSD requires large uniform sheet resistance for linear operation,
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which is not readily available in a standard CMOS process making integration with

circuitry difficult. Quad cells have simple readout schemes but are not very linear.

Multi pixel arrays have better linearity, sub-pixel accuracy and positional range. They

also offer greater flexibility and are able to deal with multiple spots and non-uniform

intensity profiles. The drawback is the increased computational load but for moderate

array sizes this is reasonable and this was the architecture chosen for our system. A 5

x 5 pixel array was selected as a tradeoff between linearity and circuit complexity.

In terms of centroid processing, there have been various efforts to implement centroid

detection on a CMOS process for numerous applications. In general, analogue multi-

pixel array approaches suffer from low fill factor and poor linearity due to poor

tolerance of components such as polysilicon resistors and capacitors. Binary position

sensing techniques using Winner Take All (WTA) circuitry or an on-pixel comparator

does not offer subpixel accuracy and cannot cope with multiple spots or non-uniform

spots. This research explores the approach of a dedicated digital centroid processor

which offers high accuracy and greater flexibility and programmability for various

image processing tasks. In terms of pixel architectures, the CMOS active pixel sensor

(APS) was selected as it offers high fill factor and low mismatch compared to other

APS types.

6.1.2 CHARACTERISATION

STRUCTURES

OF CMOS PHOTODIODE

An important design requirement for this work is the integration of circuitry at the

sensor level and this is difficult to achieve with CCDs. As such, a standard CMOS

process was used. However, CMOS processes have been optimised towards

microelectronic circuitry rather than imaging. Hence, characterisation of photodetector

structures in a standard CMOS process was necessary. The CMOS process selected

for the work was the Mietec O.7J..lmCMOS process accessed via the Europractice IC

Service. The CMOS photodiode structures were characterised for dark current,

capacitance, spatial response, responsitivity and spectral response. The dark current

for the devices tested was of the order of 1pA or less for a reverse bias voltage of 2 -

4V. The capacitance of the deep device (O.5pF for a lOOJ..lmx lOOJ..lmphotodiode at
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2V reverse bias) was shown to be smaller than the shallow devices (3.2pF for a

lOOJ..lmx lOOJ..lmphotodiode at 2V reverse bias) making them more suitable for high

speed applications. The presence of an inadvertent Schottky barrier diode lowered the

capacitance further. The photodiode structures were also shown to be highly linear

with incident light intensity and to have saturation levels higher than 2.7mW of light

power. The results of the characterisation work showed that without the need for any

process modifications photodiodes in standard CMOS showed good responsitivity of

the order of O.3NW. In terms of spectral response, the deep photodiode has better

spectral response at longer wavelengths while the shallow performed better at shorter

wavelengths. This is due to the absorption coefficient and penetration depth of light

into silicon, where light of longer wavelength penetrates deeper into the substrate. The

deep well-substrate photodiode was chosen for integration of the ASIC because of its

low capacitance, low leakage in reverse bias and high responsitivity particularly at

longer wavelengths.

6.1.3 DESIGN PROTOTYPING

To achieve the goal of fabricating a single IC optical centroid processor, a design

philosophy of functional validation via a hardware emulation system prior to chip

fabrication was employed. This reduces the risk and the number of iterations and

fabrication runs needed to produce a working centroid processor. The hardware

emulation system consists of a 5 x 5 photodiode array, a transimpedance amplifier for

current-to-voltage conversion, an analogue-to-digital converter (ADC) and a

- rep~ogrammabIe- FPGA processor for calculating the centroid. The hardware

emulation system was tested with a commercial photodiode array and a full custom

standard CMOS photodiode array fabricated in the Mietec O.7J..lmCMOS process. The

centroid processor successfully computed the centroids at a rate of I.54kHz, which

was limited by the maximum conversion frequency of the ADC of 40kHz. Having

proven the functionality of the digital centroid processor and the use of a full custom

photodiode array, the next stage in the design was to integrate the full custom array

with the digital centroid processor onto a single CMOS IC chip.
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For the ASIC centroid processor, an active pixel sensor array was used for buffering

of the pixel and current-to-voltage conversion. The pixel architecture was optimised

according to simulation results and circuit analysis. Digitisation of the pixel output

was done using a counter and two comparators to measure the discharge time of the

pixel. The dynamic range of the pixel output could be extended using a two cycle

adaptive technique. The digitised pixel values were then computed by the digital

centroid processor which was previously verified by the hardware emulation system.

The ASIC allowed different modes of operation and various control signals for

increased testability and observability. Being a mixed full-custom and semi-custom

design, several layout and design issues had to be considered such as design

partitioning, power supply management, physical design verification and clock tree

planning. The fabricated optical centroid processor successfully obtained and

transmitted the centroids at a rate of 2.4 - 4.8 kHz allowing real-time operation in

many applications.

6.1.4 COMPLETE AO SYSTEM

It was shown that wavefront reconstruction for a Shack Hartmann wavefront sensor

can be reduced to a simple matrix multiplication with on-chip memory storage so

integration of wavefront sensing and wavefront reconstruction can easily be achieved,

leading to cheap and fast adaptive optical systems. The structure for a proposed AO

system was presented to illustrate the scalability of the design and the advantage

drawn from processing the centroids in parallel. The system was capable of achieving

a closed-loop bandwidth of more than 370Hz and at a fraction of the cost of traditional

AO systems. The design is able to remove the bottleneck from the readout and

processing of the wavefront to its fundamental limit of the mirror settling time.
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6.2 FURTHER WORK

The recommended further work for this design shall be summarised below:

1) To improve the positional resolution of the processor, the number of bits in the

centroid representation can be increased. This requires very little overhead. That is,

just an additional shift-and-subtract cycle in the divider is required for each additional

bit in the result, without the need for additional storage for the dividend and divisor.

2) The limited spatial dynamic range of the design was attributed to stray light,

crosstalk between pixels and the choice of ADC technique which compresses higher

intensity light levels hence reducing the signal to background ratio. The problem of

stray light can be overcome by improving the optical setup. To resolve the problem of

pixel crosstalk, individual pixel reset can be implemented, such that when one pixel is

discharging the other pixels remain under reset. Also, a suitably biased guard ring

structure can be incorporated between pixels to mop up any crosstalk current. FPN

noise removal circuitry or pixel offset subtraction should be incorporated in future

designs.

3) To overcome the speed limitation of the current ADC technique, an alternate

digitisation structure can 'be implemented where a conventional ADC is used to

digitise the final discharge voltage, which would also allow pixel values to be readout

and digitised sequentially without the need of separate discharge cycles per pixel.

4) In the initial design, 26 pixel periods were required per frame but this can be

reduced to 25 pixel periods by using the fast clock instead of the pixel reset signal to

latch out the data and clear the registers, thereby allowing a new frame to start

imrriediately after 25 pixel periods. .

5) Under conditions of low signal-to-noise ratio (SNR) it is possible to improve

the accuracy of the centroiding by removing the background signal through

thresholding. With a digital centroid processor this is easily achieved by subtracting a

programmable, even adaptive, offset from the digitised input or by setting all pixel

values below a certain threshold to zero before the centre of gravity is found. It is also

possible to apply windowing to improve the SNR further.
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6) Testing of mode 2 and mode 3 operation of the ADC should be carried out,

which are expected to give better noise rejection and increased dynamic range

capability respectively.

7) The current design should be tested with different laser beam sizes in order to

characterise and quantify the linearity of the device as a centroid detector.

8) Faster, more robust off-chip readout techniques can be considered in place of

the RS232 link which has limited data rates, such as the Universal Serial Bus (USB)

which has a data rate of up to 480Mbps.

9) Finally, an array of tilt sensors can be integrated along with wavefront

reconstruction to form a complete low-cost real-time adaptive optical system.

6.3 CONCLUSIONS

The main conclusions from this work are highlighted below:

1) CMOS photodiode structures offer satisfactory responsitivity (about 0.3 AIW)

for the intended application while allowing high levels of circuit integration not

possible with the CCD process. This has allowed the use of parallel processing to

remove the data bottleneck in traditional CCD systems.

2) A hardware emulation system was used to confirm the performance of the

design prior to ASIC fabrication, hence reducing the risk and the number of iterations

needed to produce a working centroid processor. The hardware emulation system

successfully computed centroids at a rate of 1.54kHz which was limited by the speed

of the ADC used [Pui 2002]. Due to the re-programmable nature of the FPGA the

hardware emulation environment can also be used for prototyping many other optical

processing algorithms.
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3) This work represents the only dedicated digital centroid processor fabricated to

date and it was integrated with an on-chip CMOS photodiode array and the system

successfully processed and transmitted centroids at a rate of 2.4 - 4.8 kHz [Pui 2004],

removing the data bottleneck present in traditional CCD systems and allowing real-

time operation in many applications.

4) The centroid processor has the potential to be scaled to a complete cheap and

fast AO system. The division process of the centroid processor can make use of

latency in the design to be shared among several centroid processors. In addition,

moving to smaller feature sizes and improved routing capability will lead to a

significant reduction in the size of the digital centroid processor, which is an

advantage not offered by analogue approaches due to the tolerance of its components.

When integrated with an array of tilt sensors operating in parallel, the frame rate of the

design is not limited by the number of tilt sensors employed. In fact, the speed

advantage over traditional systems increases with the number of tilt sensors required.
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Appendix ALI: Removal of data bottleneck in traditional wavefront

sensors

In this section, the data bottleneck in current CCD AO systems is quantified and

compared with our proposed system. Figure Al.l and Al.2 shows the structure of our

system and that of a single sensor, typically a CCD, system respectively. Nlight is the

number of bits used to represent the light level while Ncentroid is the number of bits that

make up the centroid values and typically, N1ight > Ncentroid. For each centroid

processing block two centroid values are obtained (x and y). Figure Al.3 shows the

timing diagram associated with both. The off-chip centroid computation time is

ignored, as it is possible to make use of the latency in the frame acquisition and

readout, just as the parallel on-chip computation does, and to use several parallel

processors/CPUIDSP units off-chip.
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Figure A1.3 Timing diagrams of our proposed system and the traditional system

The acquisition time specified includes the pixel integration period and the ADC

acquisition time. For long integration periods, the frame rate is limited by the

acquisition time, and in this case the frame period for our system, TJ, and of the

traditional system, T2, is given by:

I; = 25Tpixel

For short integration times and fast digitisation, the frame rate is limited by the off-

chip readout time62, and in this case:

In summary, for long integration times, our system removes the data bottleneck by

allowing parallel acquisition of the raw data, while for short integration times, the

bottleneck is removed by processing the raw data on-chip and only transmitting

reduced bandwidth data off-chip. Also, the speed advantage offered increases with the

square of the number of subapertures, n, in the system.

62 Typically guard row and column pixels are needed to avoid optical crosstalk when a CCD is used. As

such the array size and hence. the readout time of the CCD system is larger than that assumed.
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Appendix A2.1: Alcatel Microelectronics (Mietec) O.7Jlm CMOS

Process Parameters

This process is a self-aligned twin-well CMOS process with n+doped polysilicon gate.

Several key process and electrical parameters are highlighted here.

Electrical Parameters:

Layer Thickness

Layer Thickness (ILm)

n-well 2.0

p-epilayer 15.0 - 18.7

field oxide 0.45

gate oxide 0.0175

Resistivity

Layer Resistivity/Doping levels

Sheet resistance (.QJsq)63 Resistivity (Q cm)

n-well 1300 --
p+ 96 -
n+ 67:5 -
Poly 27 -

Metal I 0.050 -
-

Metal2 0.035 -

p-epilayer - 27.2 - 40.8

.substrate'" - 0.01 - 0.02

63 Sheet resistance, R" = P (.QJsq), where p is the resistivity (Q cm) and t is the thickness (cm)
t

64 p-epilayer is also denoted as p-substrate.
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Junction diodes

Junction type Junction capacitance Leakage current Breakdown

Cj (pF/J.lm2
) ia (fAlJ.lm2) ipf ipf voltage (V)

(fAlJ.lm) (fAlJ.lm)

p-e/n-well 6.0 x 10-4 3.6 X 10-10 1.1 0.04 13.3

n+/p-wcll 5.0 x 10-4 2.8 X 10-10 0.13 0.37 14

n-well/p-substrate 7.8901 x 10-5 7.3315 X 10-10 1.1 4.1 59

Transistor Parameters

Parameters NMOS PMOS

Gate oxide thickness (nm) 17.5 17.5

Threshold voltage (V) 0.75 -1.0

Transconductance (JlAlV2
) 95 30

Diode Models:

Shallow n+/p-well junction

.MODEL DNPLUS D IS=3E-7 ISW=6E-ll CJO=5E-4 M=0.35 CSO=2.8E-1O

MS=0.21 VJ=0.8

Shallow p+/n-well junction

.MODEL DPPLUS D IS=2E-8 ISW=7E-ll CJO=6.0E-4 M=0.51 CSO=3.6E-1O

MS=0.35 VJ=0.8

Deep n-well/p-substrate junction

.MODEL Djunc D IS=IE-15 ·CJ=7.8901E-5 MJ=0.27412 PB=0.42842

CJSW=7.3315E-1O MJSW=0.25301 +FC=0.99232

Digital Logic:

System speed up to 80 MHz

Power: 3.2 J.lW/gatelMHz at 5 V

Density: 1250 gates/mm' (incl. routing, typical density for 20,000 gates design)
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Appendix A2.2: Schematic and PCB layout of test board for laser scanning

experiment
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Bottom layer
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Appendix A3.1: Schematic and layout of optical front end of the hardware

emulation system with a commercial photodetector array
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Top layer

Bottom layer
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Appendix A3.2: Schematic and layout of optical front end of the hardware

emulation system with a full custom photodetector array
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Appendix A3.3: Schematic and layout of FPGA processor board
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Appendix A3.4: Schematic of FPGA centroid processor for commercial

photodetector array front end
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Appendix A3.5: Schematic of FPGA centroid processor for full custom

photodetector array front end
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Appendix A4.1: Top level schematic of ASIC centroid processor
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Appendix A4.2: Schematic and layout of ASIC centroid processor test board
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