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Abstract 

This study characterised the bacterial flora of a commercially produced Stilton cheese in 

an effort to determine the contribution of non-starter lactic acid bacteria (NSLAB) to its 

aroma profile. A total of 123 microbial strains previously isolated from different sites 

(outer crust, blue veins and white core) of the cheese sample obtained at the end of 

ripening (~8 weeks) were recovered in MRS and BHI broths and preliminarily identified 

using conventional microbiological methods in order to establish population diversity and 

to screen out yeasts and moulds. Organisms identified with partial 16S rDNA sequence 

analysis were Lactobacillus plantarum, Lactobacillus brevis, Enterococcus faecalis, 

Staphylococcus aureus, Acinetobacter baumanii and Psychrobacter spp., with the genus 

Lactobacillus being the dominant (75%) group detected in all the sampled sites. Cluster 

analysis of pulse-field gel electrophoresis patterns associated the Lactobacillus isolates 

according to their site of isolation.  

 

Lb. plantarum isolates, two from each of the cheese sites, were evaluated for tolerance to 

heat stress and to different levels of salt, acid and relative humidity (RH) in order to 

ascertain whether the stress conditions associated with the isolation site could select the 

phenotype of microbial species recovered. The D72°C values revealed that isolates 

obtained from the outer crust were more heat sensitive suggesting they may have 

colonised the cheese post-pasteurisation. All the isolates were sensitive at pH range 3-4 

but could grow at pH range 4.5-5. Similarly, isolates could grow at 3.5-5% (w/v) sodium 

chloride but were suppressed at 10%. Lactobacilli from the outer crust were the most 

halo-tolerant growing at 8% sodium chloride. For all strains, survival was low at 33-54% 

RH when cells were suspended in sterile de-ionised water but survived better at 33% RH 

in maximum recovery diluent (MRD) suggesting cellular protection by MRD. 
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Lb. plantarum isolates from each site (outer crust=7; blue veins=19; white core=24) were 

tested for antimicrobial activity against Listeria monocytogenes, Escherichia coli, 

Pseudomonas aeruginosa, Staph. aureus, Salmonella Typhimurium, Clostridium 

sporogenes, Lb. pentosus and Lactococcus lactis using the plate agar overlay and paper 

disc diffusion assays. All the 59 Lactobacillus isolates were tested for plantaricin EF 

genes using PCR. The nature of antimicrobial activity was examined using cell-free 

supernatants treated to neutralise acids and/or hydrogen peroxide. Treatment with 

proteinase K was used to ascertain whether activity was due to bacteriocin (putative 

plantaricin) production. On solid medium, the isolates had antimicrobial activity against 

Gram-negative and Gram-positive bacteria, each isolate showing activity against more 

than one species. Lb. pentosus, Ps. aeruginosa, E. coli and L. monocytogenes were the 

most sensitive whereas Cl. sporogenes was the most resistant spp. Activity against these 

organisms was mainly attributed to acid, and to a less extent, hydrogen peroxide and 

plantaricin production. Whereas Lb. plantarum isolates had a high prevalence of 

plantaricin EF genes, there was weak evidence for plantaricin production in liquid 

medium assays. Plantaricin production was only demonstrable among Lb. plantarum 

isolates from the veins and core against Lb. pentosus, implying the phenomenon was 

largely dependent on the genotype/strain of Lb. plantarum and was only active against 

closely related lactic acid bacteria. 

 

Subsequently, the effect of growth and survival dynamics of the different genotypes of 

the organism on the volatile aroma profiles of milk was examined. Individual isolates, 

one from each of the cheese sites, were co-cultured with acid-producing Lc. lactis (APL) 

and non acid-producing Lc. lactis (NAPL) in UHT milk under simulated cheese ripening 

conditions. During early fermentation (0-48 h, 30
o
C), the isolate obtained from the blue 
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veins stimulated more growth of Lactococcus strains in mixed culture when compared to 

single cultures and to Lactobacillus isolates obtained from other sites in mixed culture. 

The volatile profiles of all Lb. plantarum strains grown alone were not significantly 

different (p>0.05). The type and levels of volatiles detected in mixed culture depended on 

the genotype/strain of Lb. plantarum inoculated as well as the acidification capability of 

Lc. lactis with which it was co-cultured. Co-culture of Lactobacillus isolates with APL 

resulted in increased aldehyde and alcohol production, whereas with NAPL only acetoin 

synthesis was enhanced. Salt addition had minimal effect on the volatile profiles. During 

further incubation (12 weeks, 18
o
C), growth of Lb. plantarum strains was better in salted 

samples inoculated with NAPL. The NAPL strain remained stable at 7 log10 CFU/ml 

throughout, while the APL rapidly declined from 9 to less than 5 log10 CFU/ml. The 

highest level of alcohols, organic acids and acetoin was detected from samples inoculated 

with the pure culture of the Lactobacillus isolate obtained from the blue veins. Co-culture 

of the isolate with APL enhanced acid and alcohol production, whereas its co-inoculation 

with NAPL increased acetoin synthesis. As Lb. plantarum is an incidental organism in 

cheese, its presence is unpredictable; it was therefore concluded that occurrence of 

different genotypes of the organism could be a major contributory factor to the variations 

in the cheese quality characteristics from batch to batch. 
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CHAPTER 1 

 

 

GENERAL INTRODUCTION 

 

 

1.0 Background 

Microorganisms are important in the production of all fermented food products and are 

responsible for their organoleptic characteristics (Bylund, 1995). In many fermented 

foods, microorganisms are added as starter cultures but often the final flora of the product 

varies widely, as other microorganisms enter the food as contaminants and survive the 

processing stages (Yim and Glover, 2003). These non-starter organisms can dominate the 

microflora of the final product and they may contribute substantially to aroma and other 

properties of the matured food. This makes quality control of most fermented foods 

difficult as batch-to-batch variation occurs depending on which organisms are present.  

Milk fermentation is one of Man’s most ancient traditions and has resulted in worldwide 

development of a variety of cultured milk products (Wouters et al., 2002). The evolution 

of these products has mainly been dependent on the type of milk, microorganisms 

involved and the technologies used for fermentation and microbial metabolites that 

accumulate in the final product (Platt, 1987; Robinson, 1990). The microbial ecology of 

different regions of the world, as well as the differences in dietary habits and social 

structures, have had profound influence on the various types of fermented milk products 

available on the market to such an extent that makes it difficult to classify them 

effectively due to their wide variation (Robinson and Tamime, 2006).  

Milk for manufacture of fermented products must be of high quality and free from 

antibiotics and sanitising agents that may inhibit the growth of acid-forming bacteria. The 

milk is often pasteurised to eliminate spoilage and pathogenic microorganisms (IDF, 

1988). The process results in denaturation of whey proteins and improves texture of the 

fermented product (Rynne et al., 2007). Cheeses made from pasteurised milk often ripen 

less rapidly and less extensively giving less intense flavours than their counterparts made 

from raw or lightly heat-treated milk (IDF, 1988; Buchin et al., 1998). For this reason, 

pasteurised milk for cheese manufacture is normally inoculated with both the fermenting 
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microflora (starter cultures) and rennet which promotes rapid curdling and ripening 

(Tamime and Robinson, 1999). Cheese ripening brings about the chemical changes 

necessary for transforming the fresh curd into a distinctive aged cheese. These changes 

are catalysed by rennet and microbial enzymes and largely depend on temperature and 

humidity in the ripening room, as well as on the type and levels of substrates (citrate, 

lactose, proteins and lipids, etc) and moisture content of the cheese. The ripening time can 

be as short as one month, such as for Brie, to more than a year, as in the case of some 

Cheddar varieties. 

The thermophilic bacteria Lactobacillus helveticus and Lactococcus thermophilus are 

usually used as starter cultures for acid and flavour development in Emmenthal type 

cheeses (not typical of other cheeses) where the curd is normally heated at temperatures 

greater than 40
o
C prior to moulding and ripening (Beresford et al., 2001). Citrate-negative 

mesophilic strains of Lactococcus lactis subsp. lactis or cremoris (O-cultures) are often 

used for acid production in Cheddar, Feta, Camembert and Stilton cheeses, whereas 

citrate-positive species such as Leuconostoc cremoris (also called L-culture), Lc. lactis 

subsp. lactis biovar. diacetylactis, and Lactobacillus casei (D-cultures) are mostly applied 

for aroma production in hard and semi-hard yellow cheeses (Morgana et al., 2002). When 

both acid and aroma-producing strains are present, the mixed culture is referred to as DL-

type. In cheese manufacture, DL cultures are selected on the basis of their ability to 

produce carbon dioxide that contributes to an open texture, and diacetyl which give the 

product its essential buttery flavour (Vallejo et al., 2008). Citrate metabolism, via the 

reductive tricarboxylic acid pathway, results in formation of succinate or diacetyl, and 

carbon dioxide (McSweeney, 2004). Succinate contributes a savoury flavour to Swiss-

type cheeses. Diacetyl, formed by oxidative decomposition of α-acetolactate, imparts a 

buttery note in butter, buttermilk and some cheese types, whereas carbon dioxide aids the 

formation of an open texture in some soft/semi soft cheeses. Knowledge of citrate 

metabolism and diacetyl production has led to effective strategies for engineering Lc. 

lactis strains to enhance diacetyl production. 

In the United Kingdom (UK), milk is mainly obtained from cows but other sources 

include sheep and goats, as well as a number of plant-based substitutes such as soya, rice, 

oat and almond milk for people with lactose intolerance (UK milk statistics, 2009). The 

milk is either consumed fresh or processed into cheese, butter and yoghurt using 
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traditional and modern technologies. Cheese is manufactured through a series of carefully 

controlled processing steps involving fermentation with a composite of more than one 

microbial species to allow the development of desired organoleptic properties. Traditional 

cheese processing technologies often result in products of variable quality and 

microbiological characteristics due to complex sequential microbial succession dynamics 

involving non-starter lactic acid bacteria (NSLAB), yeasts and moulds (Martley and 

Crow, 1993). The ripening temperature, time, type and level of starter cultures added vary 

with different producers, countries and regions giving rise to thousands of cheese varieties 

in the world. Upgrading traditional cheese production, through identification and 

development of the natural microflora contributing to desirable aroma and other 

organoleptic characteristics (starter culture adjuncts) would enhance products with good 

and consistent quality characteristics (Ibourahema et al., 2008).  

Ripened cheese is manufactured using either individually or a combination of rennet, acid 

or heat treatment of the milk, whereas for cottage cheese, milk coagulation is mainly 

induced solely by acidification (Fernández et al., 2009). The majority of semi-soft blue 

cheeses are manufactured by acid-heat coagulation (Fernández et al., 2009), but in the 

case of Stilton, milk coagulation is induced by acid/rennet treatment.  

Production of blue cheese involves inoculation of the milk with spores of Penicillium 

roqueforti which imparts the typical blue venation and flavour (Lawlor et al., 2003). The 

ripening process is associated with changes in the cheese microenvironments, 

microorganisms that contribute to the process and various biochemical changes such as 

lipolysis and proteolysis which are important for aroma formation. In general, the 

microenvironments in blue cheese are heterogeneous with pronounced gradients of pH, 

salt, water activity (aw) and redox potential (Cantor et al., 2004; Fernández et al., 2009) 

depending on the method of salting, solute concentration in the cheese mass, metabolic 

activities of inherent microorganisms and prevailing conditions in the ripening room 

including aeration, relative humidity and temperature (Prieto et al., 1999). This 

consequently leads to considerable structural differences within the cheese which 

influences the level and distribution of oxygen and carbon dioxide (Cantor et al., 2004). 

The above factors directly or indirectly impact on the growth, interaction and biochemical 

activity of the various microorganisms present in different sites of the cheese and 

consequently affect the quality characteristics of the final product. Elucidation of such 
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interactions would greatly add to an understanding of the cheese ripening process and 

would enable a more targeted approach to starter culture and culture adjunct selection for 

quality improvement and maintenance of ripened Stilton cheese. 

Many countries have developed their own types of blue cheeses, each with different 

characteristics and involving different production methods developed over a long period 

of time. Today, the best known blue veined cheeses are considered to be Gorgonzola 

(Italy), Roquefort (France), Stilton (UK) and Danablu (Denmark), all of which have been 

granted the status of protected designation of origin (PDO) (Fernández et al., 2009), a 

classification awarded by the European Union to protect Native rights of traditional foods. 

A PDO covers the term used to describe foodstuffs and agricultural products which are 

produced, processed and prepared in a given geographical area using recognised know-

how (FSAI, 2003). This EU law aims to protect the reputation of the regional foods, 

promote rural and agricultural activity, help producers obtain a premium price for their 

authentic products, and eliminate unfair competition and misleading of consumers by 

non-genuine products, which may be of inferior quality or of different flavour. In general, 

a PDO is the name of an area, a specific place or, in exceptional cases, the name of a 

country, used as a designation for an agricultural product or a foodstuff which comes 

from such an area, place or country whose quality or properties are significantly or 

exclusively determined by the geographical environment, including natural and human 

factors. Production, processing and preparation must take place within the determined 

geographical area and the entire product must be traditionally and entirely manufactured 

(prepared, processed and produced) within the specific region and thus acquire unique 

properties. 

There are two varieties of Stilton cheese; blue and white Stilton both of which are 

produced in only six creameries in the counties of Nottinghamshire, Leicestershire and 

Derbyshire following a standard procedure (SCMA, 2010). Blue veined Stilton cheese is 

mould-ripened and has a rich and mellow flavour, whereas the white variety is produced 

without inoculation of Pen. roqueforti. Although there are only six dairies in the world (in 

UK) licensed to make Stilton cheese, the word 'Stilton' is a certification trade mark 

registered not only in the UK but in another 15 countries around the world. As such, there 

are legal requirements relating to the labelling of these products and products where the 
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cheese may form a predominant part, such as white Stilton cheese with apricot (SCMA, 

2010). 

The presence of non-starter bacteria in inoculated and non-inoculated fermented foods as 

well as their contribution to biochemical changes and aroma characteristics of these 

products is well documented (Williams and Banks, 1997; Yim and Glover, 2003). Cheese 

ripening generally follows a gradual succession of different bacteria, yeasts and moulds. 

The dominant species in the majority of the cheeses include staphylococci, 

corynebacteria, micrococci, Debaryomyces hansenii, Geotrichum candidum and 

Penicillium camemberti, all of which are sometimes deliberately applied as secondary 

starter culture adjuncts to enhance organoleptic properties of the ripened products 

(Corsetti et al., 2001). In fact, improvements in the microbiological quality of raw milk, 

sub-pasteurisation of milk for 15-30 s at 60-65
o
C (thermisation) to inhibit bacterial 

growth for 1-2 days, relatively higher level of hygiene and modifications in the cheese 

manufacturing plants have all been reported to reduce sources of indigenous secondary 

microbiota in ripened cheeses (Chamba and Irlinger, 2004). Consequently, many cheeses 

have frequently developed bland tastes; this has led to increasing awareness about the role 

of the non-starter microflora in production of high quality cheese. This has led to the 

demand for development of starter culture adjuncts for consistent product quality 

characteristics (Chamba and Irlinger, 2004; Cogan et al., 2007). 

The NSLAB that grow in ripened cheese sometimes additionally provide protective 

advantage against spoilage and pathogenic microorganisms through formation of acetic 

and lactic acid, hydrogen peroxide, acetaldehyde, diacetyl and bacteriocins (Amin et al., 

2009; Essid et al., 2009; Sawitzki et al., 2009). In Cheddar cheese for example, 

Lactobacillus casei and Lactobacillus plantarum are the most common NSLAB used as 

culture adjuncts for flavour enhancement and to reduce microbial spoilage of the cheese 

(Peterson and Marshall, 1990). In Swiss cheese, Propionibacterium freudenireichii is 

used for riddling holes known as "eyes", whereas Brevibacterium linens is often used as 

an outside smear culture adjunct in Gruyere, Brick and Limburger cheeses (Prabhakara et 

al., 2011). There is no information on the application of NSLAB as culture adjuncts 

during the production of Stilton cheese; which calls for scientific research on this aspect. 

As blue cheeses become more popular, there is increasing interest in identification and 

characterisation of their dominant NSLAB that enhance products with more consistent 

http://www.sciencedirect.com/science/article/pii/S0022030211004498#implicit0
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quality characteristics (Cantor et al., 2004). The microflora of Stilton cheese has 

previously been established using conventional culture-dependent microbiological 

methods and molecular techniques (Fitzpatrick, 1971; Whitley, 2002; Ercolini et al., 

2003, Hiscox et al., 2008; Gkatzionis, 2010). Acidification usually begins with the 

primary starter culture Lc. lactis, which is gradually replaced by the more acid-tolerant 

NSLAB from the environment particularly lactobacilli (Hiscox et al., 2008). Whereas it is 

believed that the non-starter lactobacilli establish competitive symbiotic interactions with 

lactococci in the cheese, there is insufficient information on the possible interaction of 

these organisms with starter culture lactococci and Pen. roqueforti (Gkatzionis et al., 

2009).  

The contribution of Pen. roqueforti to the aroma and blueing of Stilton cheese is well 

recognised (Fernández et al., 2009; Gkatzionis et al., 2009), but there is no evidence to 

suggest that NSLAB that grow in the cheese interact with starter lactococci and the mould 

to modulate the organoleptic characteristics of the product. The role of possible 

interactions between the dominant NSLAB in Stilton cheese and starter culture lactococci 

as well as Pen. roqueforti in development of the cheese aroma properties needs to be 

established. This study aimed to examine the role of possible interactions between 

NSLAB that grow in Stilton cheese and Lc. lactis in modulating the product aroma 

profile. The study also aimed to establish whether abiotic stresses associated with the 

microenvironments in different sites (outer crust, blue veins and white core) within Stilton 

cheese are important in selecting for the presence of genotypically different strains of the 

dominant NSLAB within the ripened product. The strains with prospects for development 

into culture adjuncts for reliable and consistent quality production of Stilton and other 

blue cheeses would be identified. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 Cheese production and nutrition  

World cheese production has increased by 81% in the last 35 years, from under 11 million 

tonnes in 1977 to over 18 million tonnes in 2012 (AHDB, 2009; USDA-FAO, 2012). 

France, Germany and United States of America (USA) are the major cheese producers 

estimated at 1.8, 2 and 4.8 million tonnes respectively in 2007; which is about 50% of the 

global cheese production (Table 2.1).   

Table 2.1: World cheese production, export and consumption patterns for 2004-2012  

Country Production (000 tonnes)  Export (000 US $)  Consumption (kg/capita/year)  

Year 2012 2012 2012 

Total 18,794   

USA 4,275 - 14.8 

Germany 1,927 2,416,973 22.6 

France 1,884 2,658,441 26.1 

Italy 1,149 1,253,580  

Russia 603 (2007)  - - 

Brazil  495 - - 

Egypt 462 - - 

Argentina 425 - 11.3 

Australia 395 643,575 12.0 

UK 391 (2007) 374,156 10.9 

New Zealand 291 (2007) 631,963 (2004) - 

China 275 (2007) - - 

 

Source: AHDB (2009), USDA-FAO (2012), (2004-2007) data for the year 2004-2007 
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The world’s most cheese exporting countries by monetary value are France and Germany. 

Among the top ten cheese exporters, only Ireland, the Netherlands and Australia have 

cheese production that is mainly export oriented with 95%, 72% and 65% respectively, of 

their cheese production exported (USDA-FAO, 2012). In contrast, France (world largest 

exporter) exports only 30% of cheese production with Emmental (used as a cooking 

ingredient) and Camembert being its most common cheeses. USA is the largest world 

cheese producing country but exports marginal levels as most of the cheese is consumed 

by the domestic market (PM Food and Dairy Consulting, 2009). Mozzarella is 

America's favourite cheese and accounts for nearly a third of its consumption, because it 

is one of the main ingredients of pizza (IDFA, 2012). Cheese consumption is increasing 

in China, with annual sales more than doubling from 1996 to 2003 (AHDB, 

2009). Germany, UK and Italy are the world leading importers of cheese. The increase in 

global cheese production and consumption calls for more studies to improve its quality 

characteristics. 

 

Cheese is an ancient food with no conclusive evidence of whether it originated from 

Europe, Central Asia or the Middle East where it is strongly associated with tradition and 

culture. Although still rarely considered as part of the local ethnic dishes in and outside 

these regions, cheese has increasingly become known and popular worldwide due to its 

portability, longer shelf life (especially if it is encased in a protective rind), good flavours 

and high nutritional value. Cheese has a high calorific value due to its relatively high 

protein and fat content (Table 2.2).  Cheese produced in Europe, where climates are 

cooler, requires less salt and acidity for preservation making it a suitable environment 

for microbial growth. This gives aged cheeses their distinctive flavours arising from less 

hindered starter culture growth and metabolism.  
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Table 2.2 Average composition of some cheese varieties 

 

Cheese 

variety 

Component (per 100 g) 

water 

(g) 

energy 

(kcal) 

fat 

(g) 

protein 

(g) 

lactose 

(g) 

sodium 

(mg) 

calcium 

(mg/100 g) 

Cheddar - 402 33 25 1.4-2.1 621 720 

Mozzarella - 280 17 28 0.3-3.2 - 731 

Cottage - <289 3.9 49 4.9-28 - 243 

Blue Stilton 38.0 410 35.0 23.7 - 788 - 

Danablu 45.3 347 29.6 20.1 - 1360 - 

Gorgonzola 45.0 357 28.9 21.8 - 1000 - 

Roquefort 41.3 375 32.9 19.7 - 1670 - 

Source: SCMA (2009) 

 

Some of the main factors hindering consumption of cheese and other dairy products 

include personal selective tastes and preferences, prevalence of lactose intolerance in 

some communities such as in East Asia and strict religious and cultural taboos which 

restrict consumption of cheeses made with rennet from animals that are not slaughtered in 

a manner that does not adhere to halal or kosher laws (Watanabe et al., 1999). Currently, 

almost all cheese types are made with rennet produced from the fungus Mucor miehei (De 

Lima et al., 2008) or by cloning the rennet gene into a host microbe where it is 

expressed. This has consequently increased cheese consumption, particularly in some 

parts of Asia. 
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2.1.1 Classification of cheese 

There are several types of cheese, with about 500 different varieties recognised by the 

International Dairy Federation (IDF).  Cheese varieties are classified according to criteria 

(singly or combination) such as length of ripening, texture, method of manufacture (e.g. 

cooking step to enhance syneresis), fat content, animal milk used, country or region of 

origin, etc (Banks, 2006). Although there is no universal method of classification, cheese 

is commonly categorised on the basis of moisture content, which is then further 

discriminated by fat content, primary and secondary starter culture used and ripening 

methods employed (Little et al., 2005).  

 

There are three major types of cheese with regard to the fat content (FC), i.e. >60%, 45-

60% and 30-45% (Gunasekaran and Mehmet, 2003). Soft cheeses such as Brie are 

classified as high FC cheeses. Moisture content (MC) of cheese varies from less than 35% 

to over 60% (Farkye, 2004). Fresh or cottage cheeses such as Ricotta and Feta contain the 

highest MC while hard-curd cheeses such as Cheddar have the lowest. In general, cheeses 

are classified on the basis of their MC as: fresh (>60%), soft (45-60%; such as 

Camembert and Roquefort), semi-soft (35-45%; such as Edam, Stilton and Brick) and 

hard-type cheeses (<35% MC; such as Gruyere, Parmigiano Reggiano and Gouda) 

(Farkye, 2004). Soft and semi-soft cheeses are normally consumed within 1-3 months of 

production when they still retain their MC, have a rubbery texture and buttery flavour. 

 

Cheese may also be classified according to the type of rind (bloomy, artificial or washed) 

(Banks, 2006). Washed-rind cheeses, such as Langres, are rubbed or washed with water, 

wine, beer or brine in order to maintain high internal MC and attract the bacterium 

Brevibacterium linens that forms the characteristic red/orange sticky rind and a smooth 

texture at maturity. In bloom-rinded cheeses such as Brie and Camembert, the cheese 

surface is seeded with Penicillium candidum and Pen. camemberti respectively, which 

grow and cover the curd with a white velvety layer referred to as the “bloom” (Shaw, 

2007). Smeared rinds progressively change in colour, aroma and flavour as the ripening 

process evolves (Lawrence et al., 1987). Cheese types with well-formed rinds such as 

Stilton can be stored for longer time with minimal changes to their aroma and other 

quality characteristics.  
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2.1.2 Methods of analysis of microbiology of cheese  

In the past, studies on microbial interactions which occur during the manufacture and 

ripening of cheese and other food products were mainly dependent on the classical 

culture-based microbiological techniques, which are not only time consuming and biased 

due to selectivity of media applied, but also unsuitable for handling large numbers of 

samples and generally not suitable to studies at sub-species level (Beresford, 2001). 

Today, there is a wide range of molecular protocols, which enable rapid identification of 

microorganisms to species and strain levels. Techniques such as pulse-field gel 

electrophoresis (PFGE) and polymerase chain reaction with denaturing gradient gel 

electrophoresis (PCR-DGGE) can provide a reliable distinction between the strains 

involved in complex microbial population dynamics and they have been successfully 

applied to study microbial interactions and succession in many ripened cheeses and other 

food fermentation systems (Beresford, 2001; Blaiotta et al., 2001; Bouton et al., 2002; 

Ercolini et al., 2003).  

 

Within the genus Lactobacillus, species and subspecies have been also discriminated by 

using the following methods: ribotyping, amplified rDNA restriction analysis (ARDRA) 

and amplified fragment length polymorphism (AFLP) (Singh et al., 2009). Ribotyping 

employs probes designed against 16S or 23S rDNA genes. Species-specific 

oligonucleotide probes based on the gene groEL which encodes the Hsp60 have also been 

used to differentiate more than 40 species of Lactobacillus (Blaiotta et al., 2008). Probes 

based on other genes including rpoB, pyrDFE (Singh et al., 2009), tuf (Ventura et al., 

2003) and recA (Torriani et al., 2001) have also been successfully applied to infer 

phylogenetic relationships among species of lactobacilli and bifidobacteria. This approach 

has been used to discriminate Lb. plantarum, Lb. pentosus and Lb. paraplantarum 

(Torriani et al., 2001). Species-specific fragments obtained from randomly amplified 

polymorphic DNA (RAPD) or DNA fragments obtained from restriction digests of 

plasmids or genomic DNA, have also been utilised to obtain specific probes for some 

Lactobacillus species (Kunene et al., 2000). 

 

Ribotyping involves separation and identification of fragments of the genome containing 

the 16S or 23S rDNA genes and detecting variation in restriction patterns by hybridisation 

with a labelled probe, within the restriction endonuclease pattern. The resultant profile 

(ribopattern) is simpler than the original restriction profile since only DNA fragments 
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complimentary to the rDNA probe are visualised. Ribotyping is widely used for both 

species and subspecies discrimination within Lactobacillus (Kunene et al., 2000). The 

technique is highly reproducible and has successfully been applied to detect individual 

species or strains within the Lb. acidophilus complex, Lb. casei, Lb. delbrueckii, Lb. 

fermentum, Lb. helveticus, Lb. plantarum, Lb. reuteri, Lb. rhamnosus and many other 

lactobacilli (Singh et al., 2009). ARDRA, a technical variation of ribotyping, is equally 

efficient for species level identification of Lactobacillus species and involves the 

restriction enzyme analysis of 16S rDNA PCR amplicons. AFLP employs a combination 

of PCR and RFLP and is based on selective PCR amplification of restriction fragments 

from digested DNA. The amplified fragments are then separated by polyacrylamide gel 

electrophoresis. The method is highly reproducible, allows a quick scan of the whole 

genome for polymorphisms and has been found good enough to discriminate between Lb. 

pentosus, Lb. plantarum and Lb. paraplantarum (Torriani et al., 2001). Sequence-based 

approaches such as multilocus sequence typing (MLST) are also gaining popularity for 

species and subspecies differentiation of lactobacilli (Singh et al., 2009; Tanigawa and 

Watanabe, 2011). 

 

Other techniques which have been used to characterise and classify LAB include analysis 

of whole-cell protein, cell wall composition, morphology, physiology and biochemical 

characteristics (Kunene et al., 2000). While the combined use of these methods is 

invaluable for distinguishing LAB at species level, the methods are not sufficiently 

discriminatory to differentiate the organisms at subspecies and strain levels (Kunene et 

al., 2000). Determining the electrophoretic patterns of total soluble proteins (Khalid, 

2011) and genomic analysis with PFGE (Yeung et al., 2004) followed by computer-

assisted analysis of the resulting profiles are well established procedures in bacterial 

taxonomy. The latter technique, also the main focus of this work, has been previously 

used for taxonomic discrimination of LAB at sub-species and strain levels (Sanchez et al., 

2004; Yeung et al., 2004). The precision of PFGE can be improved by creating a digitised 

and normalised restriction profile of LAB of known species, subspecies and strains 

(Benson and Ferrieri, 2001), as well as by employing 2-3 restriction enzymes (Singh et 

al., 2009). Other techniques such as RAPD and determination of rRNA sequence 

homology have been shown to have their limitations of lack of reproducibility of the 

results (RAPD) and requirements for long periods of time and labour (rRNA sequence 

determinations; Yeung et al., 2004). Lactobacillus and Leuconostoc are also highly 
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heterogeneous giving low correlation between the phylogenetic relationship and rDNA 

sequencing (Khalid, 2011). 

 

2.2 Sources and effect of microbial contaminants associated with cheese spoilage 

The wide array of fermented dairy products in the world market offers challenges to food 

technologists in order to establish the best ways to prevent microbial contamination, 

destroy organisms (and their enzymes) already present in the food, and prevent growth 

and activity of those that escape the processing treatments. The most common spoilage 

microbial groups in ripened cheese include aerobic psychrotrophic Gram-negative 

bacteria such as Pseudomonas, yeasts, moulds, heterofermentative lactobacilli and spore-

forming bacteria (Ledenbach and Marshall, 2009). Psychrotrophic bacteria often produce 

heat resistant extracellular hydrolytic enzymes that cause taints and rancid off-flavours 

and the extent of recontamination of cheese with these bacteria is a major determinant of 

its shelf life (Champagne et al., 1994). Fungal spoilage is manifested by the presence of a 

wide variety of metabolic by-products causing off-odours and off-flavours, in addition to 

visible changes in colour and texture (Filtenborg et al., 1996). Coliforms, yeasts, 

heterofermentative LAB and spore-forming bacteria can all cause gassing defects in 

ripened cheese (Ledenbach and Marshall, 2009). The rate of cheese spoilage can be 

slowed by lactic acid production, introduction of desirable microflora that prevent growth 

of undesirable microorganisms and addition of salt to reduce water activity (Beresford et 

al., 2001). Raw milk is the major source of microorganisms associated with dairy 

products. However, in cheeses made from pasteurised milk (such as Stilton), microbial 

contamination can occur from other sources (Fig. 2.1).  
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Figure 2.1 Potential sources of microbial contamination during cheese manufacture. Adapted from 

Martley and Crow (1993) 

 

Raw milk for cheese manufacture may be contaminated with different microorganisms 

from the infected cows’ udder (Mubarack et al., 2010). Environmental contaminants also 

represent a significant percentage of the cheese spoilage microflora. Spoilage 

microorganisms are ubiquitous in the environment from which they contaminate the 

feeds, cows, equipment, water and the milkers’ hands (Torkar and Teger, 2008). Bacteria 

that re-contaminate pasteurised milk originate primarily from the resident microflora of 

water and equipment or from the immediate surroundings (Martley and Crow, 1993). 

Little et al. (2005) examined the microbiological quality of cheeses made from 

pasteurised milk in the UK. Their results indicated that whereas 98% of the 2,636 samples 

had satisfactory microbiological quality, 2% were unsatisfactory with Staphylococcus 

aureus (>10
3
 CFU/g), Escherichia coli (>10

3
 CFU/g) Listeria spp. (<20 CFU/g) and L. 

monocytogenes (detected in 0.2% of the samples) being the major organisms. The 
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incidence of these organisms was higher in semi-hard cheeses, and in the products 

imported from Poland (12.5% of 8 samples) and Italy (5.5% of 201 samples). Insufficient 

control systems, poor hygiene and storage at temperatures above 8
o
C were the major 

contributory factors for contamination of the final products. 

 

Washed curd cheese types are particularly susceptible to coliforms from contaminated 

water. In smear type cheeses, Saccharomyces cerevisiae, Candida famata, Torulaspora 

delbrueckii and Pichia membranaefaciens and other microorganisms are often introduced 

from milk, brine, air in ripening rooms, ripening shelves, human skin, wooden tables used 

for dry salting of cheese blocks and processing equipment (Pacheco and Galindo, 2010). 

Many mould species are well adapted to the cheese-making environment and can be 

difficult to eradicate from the production facility. Cladosporium 

cladosporioides, Penicillium commune, Cl. herbarum, Pen. glabrum and Phoma spp. 

often cause a “thread mould” defect in Cheddar cheese and are frequently isolated from 

the cheese factory environment, on the equipment, in air, and in the curd and whey 

providing a wide range of potential sources of contamination with these organisms 

(Hocking and Faedo, 1992).  

 

A major cause of failure of processing and packaging systems in the dairy industry is the 

development of biofilms on equipment surfaces. These communities of microorganisms 

develop when nutrients and water remain on surfaces between times of cleaning and 

reuse. Bacteria in biofilms are more resistant to chemical sanitisers (Kumar and Anand, 

1998). This is why bacteriocins and enzymes are gaining importance due to their 

effectiveness in bio-control and removal of biofilms (Mills et al., 2011). Therefore, it is 

possible that chemical sanitisers which are often used in cheese production industries may 

be rendered ineffective by biofilms. This could leave viable bacteria to be dislodged into 

the cheese. NSLAB which survive the pasteurisation process, and those which 

contaminate the cheese from the ripening room environment (air, floors, drains, 

equipment surfaces, etc) usually proliferate during ripening to dominate the bacterial flora 

of the mature cheeses made from pasteurised milk (Banks and Williams, 2004). Although 

secondary microflora are believed to have a positive contribution on cheese flavour 

properties, their presence also introduces variability in the cheese-making process due to 

differences in their respective populations in individual cheese batches and production 

plants. Floors, packaging materials, brine and starter cultures used in cheese manufacture 
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are also major sources of contamination of enterococci, psychrophilic bacteria and 

coagulase-positive staphylococci whereas the cheese vat, cheese cloth, curd cutting knife 

and production room air frequently introduce aerobic mesophilic bacteria, yeast and 

moulds (Temelli et al., 2006). 

 

2.2.1 Psychrotrophs and coliforms 

Psychrotrophic organisms have the ability to grow at low temperature (3-7
o
C) and to 

hydrolyse and use proteins and lipids for growth. However, coliforms usually do not grow 

at these temperatures. Ledenbach and Marshall (2009) have summarised that the 

psychrotrophs commonly associated with raw milk and dairy products include members 

of the genera Bacillus, Micrococcus, Aerococcus, and Lactococcus, and of the family 

Enterobacteriaceae. In unsalted cottage cheese, pseudomonads and coliforms reduce the 

diacetyl content which leads to yogurt-like flavour due to imbalance of the diacetyl-

acetaldehyde ratio. In salted ripened cheese however, low pH and aW levels limit the 

growth and metabolic activity of these organisms and undermine their impact in the final 

products. Slow lactic acid production by starter cultures favours the growth and 

production of gas by coliform bacteria. In soft and semi-soft mould-ripened cheeses such 

as Stilton, there is a pH increase during ripening (Gkatzionis et al., 2009), which 

increases the potential of coliform bacteria to grow and cause spoilage defects in the 

cheese. However, there is a low incidence of pseudomonads and coliforms/ 

Enterobacteriaceae in Stilton and other pasteurised milk cheeses, as the organisms are 

heat sensitive. 

 

2.3 Origin and production of blue cheeses  

Blue cheeses have been produced for a long time either deliberately or by accident before 

they were described in writing. Gorgonzola was the first blue-veined cheese to be 

mentioned in the literature in 879 (Fernández et al., 2009), while Roquefort was described 

in customs papers in 1070. Stilton cheese was not mentioned until the Seventeenth 

Century. In Denmark, production of Danablu and Mycella blue cheeses from cows’ milk 

started in the 1870s. In 1916, homogenisation was employed to improve the ripening 

process of Danablu by accelerating lipolysis (Fernández et al., 2009). 
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Different strains of Pen. roqueforti are inoculated to ripen the cheese giving a variety of 

products. However, in most English and Italian blue cheeses, the strain Pen. roqueforti 

CECT 2905 is utilised (Fernández et al., 2009). The variation in mould strains used in 

ripening can pose substantial differences in quality characteristics of blue cheese from 

one producer to another. This is due to differences in types and levels of enzymes and 

other metabolites produced by the moulds. For example, whereas most industrial strains 

of Pen. roqueforti produce high levels of proteases, others produce moderate or barely 

detectable levels of these substances (Fernández et al., 2009), creating differences in the 

cheese quality characteristics. 

 

Blue cheese is traditionally produced from high quality pasteurised whole cows’ milk 

containing 3.5% fat and 9% non-fat-solids. The primary starter culture, Lc. lactis, is 

added and milk coagulated with the enzyme rennet. Spores of Pen. roqueforti may be 

added to the cheese milk at the outset of fermentation or sprinkled on the surface after 

moulding. After fermentation, whey is drained, the curd allowed to dry overnight and 

then salted with 2.5-5% (w/w) sodium chloride.  The salted curd is filled in the mould (or 

hoops) and turned daily for six days to give it a relatively open texture. The mould is 

removed and the cheese surface smoothed with a stainless steel knife. It is then punctured 

to permit entrance of air and ripened at 8-15
o
C for 8-12 weeks to acquire the 

characteristic blue veins (Nelson, 1970). 

  

In the case of Stilton cheese, it requires about 10 l of cows’ milk to make 1 kg of the 

product. Briefly, fresh pasteurised cows’ milk is fed into an open vat to which Lc. lactis, 

rennet and spores of Pen. roqueforti are added. After curd formation, whey is drained 

overnight and the curd is cut into blocks to allow further drainage before being milled and 

salted (3.5%, w/w). The salted curd is fed into cylindrical moulds, the moulds placed on 

boards and turned daily to allow natural drainage for 5-6 days. This ensures even 

distribution of moisture throughout the cheese so that, as the cheese is never pressed, it 

creates the flaky, open texture required for blueing. After one week, cylinders are 

removed and the cheese surface sealed by smoothing or wrapping to prevent entry of air. 

The cheese is then ripened under carefully controlled temperature (10-20
o
C) and relative 

humidity (85%) with regular turning. At six weeks, the cheese is pierced with stainless 

steel needles to allow entry of air and promote blue venation typical of the cheese. At 

about nine weeks, the cheese is checked for aroma grade and dispatched for sale. 
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Sometimes, the product is ripened for about three more weeks to develop a smoother, 

buttery texture and a more rounded mellow flavour desirable by some consumers. The 

final product is wrapped in wax paper and stored under refrigeration or freezing (SCMA, 

2009). High quality Stilton cheese is usually semi-soft and has blue veins and a crumbly 

whitish interior. The product has a sharp, tangy flavour and melts quickly (Recipe 

Goldmine, 2009).  SCMA (2009) specified that other legal requirements to use the name 

Stilton should fulfill the following, the cheese should: 

 

 Be made in Derbyshire, Leicestershire and Nottinghamshire in the UK 

 Be made from pasteurised milk obtained from local cows in the above counties 

 Be only made in a traditional cylindrical shape 

 Be allowed to form its own outer crust 

 Be un-pressed 

 Have delicate blue veins that radiate from the centre 

 Have a taste and aroma typical of Stilton 

 Have a fat and protein content of approximately 35 and 23%, respectively  

 

2.3.1 Microflora of Stilton cheese  

Production of Stilton cheese involves the addition of starter microorganisms to the milk 

during manufacture, but the final flora develops during ripening and contains a complex 

mixture of organisms that are not originally added (secondary flora).  

 

2.3.1.1 Starter cultures used in the manufacture of Stilton cheese 

The starter cultures used in manufacture of Stilton cheese include single or a mixture of 

the primary acid-producing Lactococcus lactis strains (Lc. lactis subsp. lactis, Lc. lactis 

subsp. cremoris or Lc. lactis subsp. lactis biovar. diacetylactis), and the mould 

Penicillium roqueforti which is responsible for its blue venation. The homofermentative 

Lc. lactis subsp. lactis and Lc. lactis subsp. cremoris are usually applied to produce lactic 

acid, whereas Lc. lactis subsp. lactis var. diacetylactis is included to produce diacetyl and 

acetoin (from citrate metabolism), which are important aroma compounds of ripened 

cheese (Whitley, 2002). Citrate metabolism in the latter Lactococcus occurs at an 

optimum pH of 5-6.9 (Sanchez et al., 2008), implying flavour formation from the latter 

strain would decrease (due to low pH) as ripening progresses. However, after piercing (~6 
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weeks), sporulation of Pen. roqueforti brings about an increase in pH which could favour 

diacetyl formation in Lc. lactis. 

 

Pen. roqueforti produces conidiophores exhibiting a green/blue colouration. The majority 

of these organisms produce extracellular proteases and lipases with different strains 

showing different levels of activity (Floreza et al., 2007). In Stilton cheese, strains PV 

from Visbyvac®, Danisco (Whitley, 2002) and CECT 2905 (Fernández et al., 2009) are 

normally utilised. These strains are moderately proteolytic and lipolytic, have a high salt 

(1-3% salt is stimulatory for its growth) and acid (pH 4-7) tolerance and grow at 8-25
o
C 

(Whitley, 2002). Pen roqueforti also produces the mycotoxins roquefortine C, patulin, 

penicilic acid and mycophenolic acid (Erdogan et al., 2003). Whereas the significance of 

these substances for human health is unclear (Bulleman et al., 1981), it has been 

suggested that their level in ripened cheese is generally low due to biochemical 

degradation into non-toxic metabolites (Whitley, 2002). 

 

2.3.1.2 Non-starter microorganisms associated with Stilton cheese 

Rennet-coagulated cheeses involve ripening for several weeks prior to consumption. The 

process leads to complex microbiological and biochemical changes resulting in the typical 

flavours and textures. The microflora of ripened cheese is often dominated by non-starter 

microorganisms, also referred to as secondary flora. In Stilton cheese, the secondary 

microflora is dominated by non-starter bacteria, yeasts and moulds, and largely comes 

from the processing plant environment (Gkatzionis, 2010). There is a need to understand 

the role these organisms play in the development of the cheese flavour, and how this can 

be harnessed for improved quality stability and reliability of Stilton cheese. 

 

Published literature on the microbiology of Stilton cheese is limited. Gkatzionis (2010) 

examined the microbial flora of different sections (outer crust, blue veins and white core) 

of the cheese focussing on the impact of fungal flora on the distribution of aroma volatiles 

in these sections. The author employed classical microbiology and molecular methods 

(denaturing gradient gel electrophoresis-DGGE, restriction fragment length 

polymorphism-RFLP and terminal RFLP) to screen the local fungal communities in the 

cheese. Fungal communities were different for each of the cheese sections. The only 

mould detected was Pen. roqueforti and was mainly isolated from the blue veins, whereas 

yeasts were found in all the cheese sections. The yeast communities detected included 
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Kluyveromyces lactis, Yarrowia lipolytica, Candida catenulata, Trichosporon ovoides 

and Debaromyces hansenii. Kl. lactis and Deb. hansenii mainly colonised the blue veins 

and outer crust respectively, whereas Can. catenulata and Yarr. lipolytica were 

predominantly found in the outer crust and white core.  

 

The above findings were similar to an earlier account by Whitley (2002). The author 

employed culture-based methods to compare the microflora of low quality (poor blueing) 

Stilton cheese batches with that of good quality samples. The most occurring yeasts were 

Kl. lactis and Deb. hansenii, with the latter species occurring in both the good and poor 

quality cheeses. In the same study, the bacterial flora was found to be different with Lb. 

plantarum dominating in good quality cheeses. Presence of the latter alone or its co-

presence with other lactobacilli including Lb. curvatus, Lb. casei (homofermentative 

LAB) or Lb. brevis was correlated with high quality Stilton, whereas dominance of the 

heterofermentative Lb. brevis was associated with the poor quality samples. Whitley 

(2002) pointed out that Lactobacillus constitutes the dominant non-starter LAB in Stilton 

cheese at the end of ripening. This account was supported by other studies on Stilton 

cheese including Sharpe and Brindley (1956), Fitzpatrick (1971) and Hiscox et al. (2008). 

A similar observation was made for other blue cheese varieties including Cabrales from 

Spain (Florez and Mayo, 2006) and Gorgonzola from Italy (Fontana et al., 2010). 

 

The most comprehensive study on the bacterial diversity of Stilton cheese was reported 

by Ercolini et al. (2003). These authors applied 16S rDNA analysis with PCR-DGGE of 

DNA extracted directly from the cheese and from bulk cells from culture media. The 

dominant species were found to be close relatives of Lc. lactis, Enterococcus faecalis, Lb. 

plantarum, Lb. curvatus, Leuconostoc mesenteroides, Staphylococcus equorum and 

Staphylococcus sp. When different sections of the cheese matrix were examined using 

fluorescence in situ hybridisation (FISH) with probes developed to detect Lc. lactis, Lb. 

plantarum and Leu. mesenteroides, lactococci were found in the blue veins as mixed 

colonies, and as single colonies within the white core. Lb. plantarum was detected only 

underneath the outer crust, while Leuconostoc microcolonies were homogeneously 

distributed in all parts the cheese. FISH demonstrated differential location and 

distribution of bacterial species within Stilton cheese suggesting specific ecological 

reasons for establishment of sites of actual microbial growth in the cheese. This 

phenomenon can have implications on the quality characteristics of the cheese as different 
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organisms employ various metabolic routes to generate compounds of significance to 

aroma and other quality properties. The contribution of yeasts to the aroma profile of 

Stilton cheese has been established (Gkatzionis et al., 2009). However, there are no 

conclusive studies about the effect of non-starter LAB on the quality properties of the 

cheese. Given that the microflora of ripened cheese is usually dominated by facultative 

heterofermentative lactobacilli which are known to promote flavour and texture properties 

of the cheese (McSweeney, 2004), this aspects needs to be investigated for Stilton in 

order to identify strains that can be employed to optimise the cheese production process 

(culture adjuncts) without compromising its traditional nature. 

 

2.3.2 Aroma profile of Stilton cheese  

Similar to its microflora, the aroma profile of Stilton cheese has not received extensive 

research attention. The earlier published studies on flavour of Stilton cheese (made from 

unpasteurised milk, at the time) were reported by Madkor et al. (1987
a,b

) and focussed on 

proteolysis and lipolysis. The studies monitored the progress of these biochemical 

activities with time, in two lots of Stilton cheese manufactured under commercial 

conditions. Thin-layer chromatography was applied to separate and quantify amino acids 

of the nitrogen fraction of samples obtained at different time points during manufacture. 

Lipolysis was quantified using high performance liquid chromatography. A decrease in 

pH during the white stage (pre-mould growth) was recorded, but increased during the 

active mould growth phase (after 6 weeks) due to production of a wide array of free 

amino acids (FAA) and other protein derivatives. The concentration of free FAA 

increased from 5 to 36-fold by the end of ripening with valine, leucine, lysine and 

glutamic acid accounting for more than 50% of the total FAA occurring throughout 

ripening. The level of free fatty acids also increased during ripening with long-chain FFA 

occurring at higher concentrations than short chain fatty acids. Whitley (2002) compared 

the volatile compounds in good quality Stilton with those present in poor quality cheese 

using gas chromatography-mass spectrometry (GC-MS). Alcohols, aldehydes and 

branched ketones (metabolites of protein and lipid metabolism) were the major 

compounds in good quality Stilton, whereas poor quality cheeses were dominated by 

acetone and unidentified compounds. Both cheese types also contained methyl ketones, 

which were attributed to mould growth.  
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In a subsequent study, Gkatzionis et al. (2009) employed solid phase micro-extraction 

with GC-MS (SPME GC-MS) and direct headspace analysis (atmospheric pressure 

chemical ionisation with MS, APCI-MS) to determine the aroma profiles of Stilton cheese 

regarding its three main sections (outer crust, blue veins and white core). As yeasts had 

been found to constitute the dominant fungal flora of the cheese, the authors further 

examined (using SPME GC-MS) how the interaction of yeast flora and the starter mould 

Pen. roqueforti could influence the aroma profile of a model UHT milk medium. In the 

cheese studies, blue veins and the outer crust contained higher levels of ketones while the 

white core was dominated with alcohols and aldehydes. Co-culture of Pen. roqueforti 

with Yarr. lipolytica resulted in an aroma profile more similar to that of blue cheese than 

when the mould was grown alone. Given that ripened cheeses are often dominated by 

non-starter microflora (principally, the fungi and NSLAB), the need to examine the effect 

of the different microbial interactions on the quality properties of Stilton cheese cannot be 

overemphasised. 

 

2.4 Characteristics of lactic acid bacteria and their metabolism 

2.4.1 Classification of lactic acid bacteria 

Identification and classification of bacteria and other organisms has always been a hard 

task. Basically, the process involves arranging the organisms into different taxonomic 

groups (taxa) on the basis of their similarities or relationships. The groups are assigned 

names according to taxonomic rules and subsequently determine whether a new isolate 

belongs to one of the established named taxa as exemplified for Lactobacillus plantarum 

(Table 2.3). In bacterial nomenclature, the lowest official taxonomic rank is the 

subspecies. This is based on minor but consistent phenotypic variations within the species 

or on genetically determined clusters of strains within the species that diverge in 

phenotype (Khalid, 2011).  
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Table 2.3 Taxonomic classification of Lactobacillus plantarum 

Taxonomic 

rank 

Nomenclature Characteristic features References 

Domain Bacteria Membranes composed of un-
branched fatty acids attached to 

glycerol by ester bonds 

 

Rogers and Smith 
(1917) 

Lineage Firmicutes Most have peptidoglycan in cell 

wall, rods or cocci, some 

produce endospores 
 

’’ 

Class Bacillus Gram-positive cells  ’’ 

Order Lactobacillales Non-sporing, Gram-positive 
cells, 32-54 %mol G+C 

 

’’ 

Family  Lactobacillaceae Short or long-slender cells, rods 
or coco-bacillus, normally occur 

in chains, non-sporing, Gram- 

positive, catalase-negative, 

fermentative mainly producing 
lactic acid 

 

’’ 

Genus  Lactobacillus Non-motile, nitrate negative, 
complex nutritional requirements 

 

’’ 

Species  Lb. plantarum Facultative heterofermentative Felis and Dellaglio 
(2012) 

 

The term ‘lactic acid bacteria’ (LAB) was accepted at the beginning of the 20
th

 century. 

LAB is a group of Gram-positive, low GC content, acid-tolerant, generally non-

sporulating, non-respiring rod or cocci that catabolise sugars to essentially produce lactic 

and acetic acid. LAB are classified into different genera based on cell morphology, mode 

of glucose fermentation, growth at different temperatures, and configuration of lactic acid 

produced, ability to grow at high salt concentrations and acid tolerance. The genus 

Vagococcus are the only known motile organisms in the LAB group (Khalid, 2011). LAB 

are typically fermentative bacteria with low proteolytic activity. Lactobacilli constitute 

the major flora of ripened cheese with the production of short chain fatty acids being their 

best known physiological effect (Collins et al., 2003). Klein et al. (1998) proposed that 

the most important genera in the LAB group include Aerococcus, Lactobacillus, 

Leuconostoc, Pediococcus, Lactococcus, Enterococcus, Streptococcus, Weissella, 

Carnobacterium, Tetragonococcus and Bifidobacterium. 
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Lactobacilli are Gram-positive rods, which frequently form chains. Whereas metabolism 

of these organisms is mainly fermentative, some species are aero-tolerant (Khalid, 2011). 

Their growth is optimal at pH 5.5-5.8. Lactobacilli have complex nutritional requirements 

for amino acids, peptides, nucleotides, vitamins, minerals, fatty acids and carbohydrates. 

The genus Lactobacillus is divided into two main groups based on fermentation patterns: 

Homofermentative lactobacilli, which produce more than 85% lactic acid from glucose, 

and heterofermentatives that produce only 50% lactic acid and considerable amounts of 

ethanol, acetic acid and carbon dioxide (Axelsson, 2004). In cheese, some of these 

compounds are important aroma metabolites as well as imparting antimicrobial activity 

against undesirable microflora, especially under conditions of low redox potential. 

 

2.4.2 Lactic acid bacteria associated with cheese defects 

LAB generally grow in nutrient-rich habitats such as milk, meat and vegetables. 

Lactococci in cold-stored (7
o
C) cheese produce diacetyl reductase which reduces the 

diacetyl content resulting in a yogurt-like flavour (Ruas-Madiedo et al., 1998). 

Heterofermentative LAB use the pentose phosphate pathway to metabolise lactose, 

producing equimolar quantities of lactic acid, ethanol and carbon dioxide (Khalid, 2011). 

Examples of these organisms include Leuconostoc and some lactobacilli such as Lb. 

brevis, and can develop off-flavours and gas in ripened cheese (Doyle, 2007). Their 

growth is favoured over that of homofermentative LAB when cheese is ripened at 15
o
C 

than 8
o
C (Ledenbach and Marshall, 2009). When the homofermentative LAB fail to 

metabolise all of the fermentable sugars in the cheese, heterofermentative ones at 

populations of ~10
6
 CFU/ml would complete the process producing gas and off-flavours 

(Taskila et al., 2009).  

 

Some facultative lactobacilli co-metabolise citric and lactic acid and produce carbon 

dioxide. Amino acid catabolism in cheese by non-starter lactobacilli, propionibacteria and 

Lc. lactis subsp. lactis can produce small amounts of gas (Martley and Crow, 1993). 

Some strains of Streptococcus thermophilus and Lb. helveticus can form carbon dioxide 

and 4-aminobutyric acid from decarboxylation of glutamic acid leading to cracks in the 

cheese due to excess gas formation (White et al., 2003). Ledenbach and Marshall (2009) 

provided details for some cheese defects caused by LAB. These authors reported that 

oxygen-dependent tyrosine metabolism by certain lactobacilli causes a pink-brown 

discoloration on the surface of some ripened cheeses.  
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The racemic mixture of L(+) and D(-) lactic acid that usually forms an (undesirable) 

white crystalline material on the surface of Cheddar and Colby cheeses is produced by the 

combined growth of starter culture lactococci and NSLAB producers. In Swiss cheese, 

the white spot defect is normally caused by Enterococcus faecalis subsp. liquefaciens 

which survives pasteurisation. The bacterium inhibits the growth of propionibacteria and 

Lb. fermentum starter cultures resulting in poor ‘‘eye’’ development and lack of flavour. 

The above factors highlight the need for application of starter culture adjuncts not only 

for the control of spoilage LAB and other microorganisms, but also to promote faster and 

reliable cheese ripening process. In this context, homofermentative lactobacilli such as 

Lb. casei and Lb. helveticus are used as adjunct cultures to control spoilage, reduce 

bitterness, and improve flavour and/or to accelerate ripening in Cheddar, Emmental and 

Mozzarella cheeses (Mullan, 2001). 

 

2.4.3 Metabolism of lactic acid bacteria  

LAB lack the ability to synthesise cytochromes and porphyrins which are major 

components of the respiratory chain. Therefore, they do not generate chemical energy 

(adenosine tri-phosphate, ATP) by creation of a proton gradient. These organisms obtain 

ATP by fermentation, usually of sugars. However, LAB are aero-tolerant organisms. 

They are protected from oxygen by-product production such as hydrogen peroxide 

produced by peroxidases (King et al., 2000). The genera Lactococcus, Lactobacillus, 

Leuconostoc and Pediococcus are most important in food fermentation. Axelsson (2004) 

summarised that there are two main sugar fermentation pathways through which LAB 

generate energy: the glycolytic (Embden-Meyerhof-Parnas) and 6-phosphogluconate-

phosphoketolase (6-PG/PK) pathways. Homofermentative LAB employ the glycolytic 

pathway to produce almost exclusively lactic acid as the end product (Fig 2.2), whereas 

heterofermentatives use the 6-PG/PK pathway for fermentation of most carbohydrates 

producing other end products such as ethanol, acetate, diacetyl, carbon dioxide and other 

metabolites (Fig. 2.3), in addition to lactic acid. Various growth conditions may alter end 

product formation due to altered pyruvate metabolism. For example, in a slightly aerated 

environment, Leuconostoc preferentially produce lactic acid and ethanol, but mainly 

produce lactic and acetic acid in a more aerated medium. In cheese and other fermented 

foods, this would have a positive effect on flavour by inducing the formation of acetic 

acid in higher concentrations. Formation of acetic acid in aerated cultures is due to 

increased activity of the enzyme NADH oxidase (NOX), which allows the organism to 
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redirect the conversion of acetyl phosphate from ethanol to acetic acid (Adler-Nissen and 

Demain, 1994). Although it appears that LAB possess simpler metabolism resulting in 

few end products, these organisms can exhibit diverse metabolic capacities enabling them 

to adapt to a variety of conditions (Hugenholtz and Kleerebezem, 1999).  

 

Figure 2.2 Glucose and fructose metabolism of LAB through the glycolytic pathway. Enzymes: 

(1) phosphoglucoisomerase, (2) fructokinase, (3) mannitol dehydrogenase and (4) acetate kinase. 

Adapted from Maicas et al. (2002) and Aarnikunnas (2006). 



 

27 

 

The homofermentative pathway involves glycolysis of hexose sugars to form the terminal 

electron acceptor pyruvate which is subsequently reduced to lactic acid (Fig. 2.2). In 

heterofermentative metabolism, xylulose 5-phosphate obtained from glycolysis is cleaved 

into acetyl phosphate and glyceraldehyde 3-phosphate. Glyceraldehyde 3-phosphate is 

then metabolised into lactic acid following the homofermentative pathway, whereas 

acetyl phosphate is either reduced into ethanol (Fig. 2.2), or it is converted to acetic acid, 

depending on environmental conditions. Pyruvate is an essential electron acceptor in 

metabolism of LAB as it enables regeneration of nicotinamide adenine dinucleotide 

(NAD+). Depending on media conditions, pyruvate is utilised in alternative pathways 

(Fig. 2.3), a phenomenon which is strain-specific (Liu, 2003). 

 

 

Figure 2.3 Alternative metabolic pathways of pyruvate in LAB. (1) pyruvate-formate lyase 

pathway, (2) pyruvate dehydrogenase pathway, (3) diacetyl-acetoin pathway, (4) pyruvate oxidase 

pathway. Dashed lines illustrate pathways that are favoured by presence of oxygen. Adapted from 

Ott et al. (2000) and Aarnikunnas (2006). 
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2.4.3.1 Diacetyl-acetoin pathway 

In presence of surplus amounts of pyruvate (relative to the need for NAD+ regeneration) 

in cells, the compound is shunted into the diacetyl-acetoin pathway and transformed into 

diacetyl (DA) and acetoin as the end products (Fig. 2.3). This normally occurs when there 

are other sources of pyruvate (other than the fermented sugar) in the growth medium or 

when other compounds such as oxygen act as the electron acceptors instead of pyruvate 

(Aarnikunnas, 2006). In general, low sugar concentrations and low pH favour 

diacetyl/acetoin formation (Axelsson 2004). In Lb. plantarum, conversion of pyruvate to 

acetoin helps to maintain cellular pH homeostasis (Tsau et al., 1992). In this pathway, 

acetolactate is synthesised from pyruvate by acetolactate synthase, and chemically 

decomposed (in presence of low pH and aeration) to DA following a non-enzymatic 

reaction. 

 

2.4.3.2 Pyruvate-formate lyase (PFL) pathway 

Pyruvate-formate lyase (PFL) catalyses the formation of acetyl CoA and formate from 

pyruvate and CoA (Fig. 2.3). Acetyl CoA then either serves as an electron acceptor 

resulting in ethanol formation or as a precursor of ATP leading to acetate production. PFL 

system is oxygen sensitive and is inactivated in aerobic conditions. In some LAB such as 

Lb. casei and Lc. lactis, PFL system is usually inactivated under conditions of substrate 

limitation resulting in a change from homolactic to heterolactic fermentation to form 

lactate, acetate, formate and ethanol as the metabolic end-products (Axelsson, 2004)   

(Fig. 2.3). 

 

2.4.3.3 Pyruvate oxidase pathway and NADH oxidases 

In LAB, oxygen has a profound effect on re-routing of pyruvate, being mediated directly 

by pyruvate oxidase (POX) or indirectly by NADH oxidase (NOX) (Aarnikunnas, 2006). 

POX uses oxygen to convert pyruvate into acetyl phosphate, carbon dioxide and hydrogen 

peroxide (H2O2) (Fig. 2.3). In Lb. plantarum, this enzyme plays a major role in aerobic 

formation of acetic acid (Sedewitz et al., 1984). POX activity in Lb. plantarum is 

enhanced by presence of oxygen or hydrogen peroxide and is reduced by glucose 

(Aarnikunnas, 2006). 
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2.4.3.4 Pyruvate dehydrogenase pathway (PDP) 

Under aerobic conditions, pyruvate dehydrogenase has an anabolic role in some LAB 

producing acetyl CoA used for lipid synthesis (Axelsson, 2004). This enzyme complex 

can also have a catabolic role similar to PFL, producing acetyl CoA but only under 

aerobic conditions (Fig. 2.3). In this case, acetyl CoA is metabolised further to acetate 

with concomitant formation of ATP and pyruvate. Excess NADH formed in PDP is re-

oxidised by NOX to form H2O2 or water (Aarnikunnas, 2006). The impact of NSLAB on 

the production and distribution of the afore-mentioned (Section 2.5) compounds in Stilton 

cheese has not been widely investigated. Indeed, several lactobacilli including Lb. 

plantarum have been found to produce esters, FFA, alcohols and carbonyls which are 

important for blue cheese flavour (Vítová et al., 2006).  
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2.5 Cheese flavour development 

Cheese flavour is derived from metabolic pathways controlled by rennet and other 

enzymes produced by microorganisms in the cheese matrix as illustrated by Fig. 2.4. 

Cheese aroma primarily originates from glycolysis, lipolysis and proteolysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Metabolic pathways of cheese flavour formation. Source: McSweeney (2004). 

 

2.5.1 Glycolysis and citrate metabolism 

During fermentation, LAB catabolise sugars to produce lactic acid by homo- or 

heterofermentative pathways as already discussed in Section 2.4. These organisms also 

metabolise citrate to produce carbon dioxide, diacetyl, acetoin and butanediol (Fig. 2.4). 

Diacetyl and acetoin have aromatic properties in ripened cheese whereas carbon dioxide 

contributes to the formation of "eyes" (holes) in some cheese varieties but can have a 

detrimental effect by causing cracks in most other varieties. Essentially, citrate is 

metabolised to oxaloacetate which is then decarboxylated to pyruvate (Sing et al., 2003). 

Pyruvate can be converted to lactic acid through the glycolytic pathway or ethanol, acetic 
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acid, acetoin/diacetyl and other metabolites via the phosphate pentose pathway         

(Section 2.4.3).  

 

2.5.2 Lipolysis 

Carboxylic acids or FFA originate from lipolysis or from degradation of lactose and 

amino acids (Sing et al., 2003). Organic acids can also be derived from oxidation of 

ketones, esters and aldehydes. Long chain (>12 carbon atoms) FFA play a minor role in 

cheese flavour owing to their relatively high perception thresholds. However, short (e.g. 

acetic acid), moderate chain and even-numbered FFA such as butanoic, hexanoic and 

octanoic acid have much lower perception thresholds and impart characteristic vinegar or 

sour notes, but higher concentrations can cause rancid off-flavours. It has been previously 

demonstrated that Pen. roqueforti secretes lipases in cheese which participate in synthesis 

of butanoic and hexanoic acid that are highly correlated with ‘mouldy’ flavours (Lawlor 

et al., 2003). FFA can also serve as precursors for synthesis of lactones and methyl or 

ethyl esters which contribute to fruity, creamy, buttery or sweet flavours (Longo and 

Sanromán, 2006). The level of FFA in Stilton cheese increases slightly during the first 28 

days followed by rapid increase up to the end of ripening (Madkor et al., 1987
b
). Long 

chain FFA usually present at higher concentrations than low molecular weight 

counterparts are important precursors of the high molecular weight (C9 and above) aroma 

volatiles (Madkor et al., 1987
b
). It has been suggested that odd carbon (C3-C15, 

inclusive) and some even-numbered carbon chain methyl ketones comprise the principal 

compounds responsible for the unique flavour of blue cheeses (Lawlor et al., 2003). 

Methyl ketones are normally derived from β-oxidation of FFA or from β-ketoacids and 

are primary contributors of typical fruity, floral, mushroom or musty notes in ripened 

cheese (Gkatzionis et al., 2009). 

 

2.5.3 Proteolysis 

For most ripened cheese varieties, proteolysis, which results in the accumulation of free 

amino acids, is the major source of flavour development. Amino acids, particularly the 

sulphur-containing, aromatic and branched types, are the key substrates for the 

development of more complex flavour and aroma compounds in cheese (Tavaria et al., 

2002). Starter culture lactococci contain a range of catabolic enzymes which facilitate the 

conversion of amino acids to potential flavour compounds. Several non-starter lactobacilli 
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including Lb. paracasei (Beresford and Cogan, 2000), Lb. casei and Lb. plantarum 

(Milesi et al., 2010) have also been shown to produce similar enzymes.  

 

Amino transferase (AT) is the enzyme responsible for initiating amino acid conversion to 

flavour compounds during cheese ripening. Indeed several mesophilic non-starter 

lactobacilli normally show AT activity with valine, isoleucine, leucine, tyrosine, 

tryptophan, phenylalanine, methionine and other amino acids as substrates (Tavaria et al., 

2002). AT activity varies from one Lactobacillus species to another and also depends on 

the prevailing conditions. For instance, in Lb. paracasei, AT has optimum activity 

towards valine, leucine and isoleucine near neutral pH but activity is reduced in presence 

of 5% salt (Beresford and Cogan, 2000). Therefore, inclusion of Lb. plantarum and other 

lactobacilli can be associated with an increased content of total free amino acids and 

higher concentration of aroma compounds in cheese (Milesi et al., 2010).  

 

The immediate products of amino acid catabolism are α-ketoacids (oxoacids) such as 

acetolactate, pyruvic acid and oxaloacetate. Oxoacids are important intermediates in 

aroma development and can be subsequently converted to α-hydroxyacids, acetyl-CoA 

and aldehydes (Fig. 2.4). Aldehydes may be subsequently reduced to alcohols and 

carboxylic acids (Steele et al., 2013). Acetyl CoA can be converted to its derivatives 

including ethanol, diacetyl, acetoin, acetic acid or formate depending on the 

environmental conditions. For example, low pH and lack of glucose in the medium 

favours formation of acetoin. Co-presence of mesophilic lactobacilli such as Lb. 

plantarum with the starter culture lactococci has been shown to enhance the cheese aroma 

due to degradation of amino acids, particularly glutamate, to produce α-ketoglutarate and 

hydroxyl acids which are subsequently converted to carboxylic acids by the Lc. lactis 

(Kieronczyk et al., 2003). 

 

2.5.4 Role of starter lysis in cheese flavour development 

Steele et al. (2013) have surmised that lysis of starter bacteria affects cheese flavour 

development through release of intracellular enzymes such as peptidases, and substrates 

for NSLAB growth. Lysis occurs via the activity of cell wall-degrading enzymes of the 

cells or through induction of a prophage (Lortal and Chapot-Chartier, 2005). Starter 

culture lysis is enhanced by constructing or selecting for fast-lysing strains, using 

bacteriocin-producing LAB as adjunct cultures, or by employing bacteriophage lysins 
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either alone or in combination with the corresponding holin (Meijer et al., 1998; Lortal 

and Chapot-Chartier, 2005), all of which have been found to enhance cheese flavour. The 

above pathways are critical (beneficial or detrimental) to flavour development in cheese. 

Therefore, understanding role NSLAB play and the factors that determine the fluxes 

through these competing pathways is essential for consistent and rapid generation of 

cheese-specific flavours. 

 

 

2.6 Objectives of the study 

2.6.1 To characterise the non-starter bacterial isolates obtained from different sites 

(outer crust, blue veins and white core) of a Stilton cheese using phenotypic and 

genotypic methods. 

2.6.2 To determine the tolerance of different genotypes of the dominant NSLAB to 

some stress conditions (heat, acid, salt and desiccation) typical of the 

microenvironments in the cheese from where they were isolated. 

2.6.3 To determine the potential of the isolates for application as bio-preservatives on 

the basis of their antimicrobial properties. 

2.6.4 To determine whether or not the interactions between selected genotypes of the 

dominant NSLAB obtained from the sampled sites and Lc. lactis alone or in 

combination, affect the profiles of aroma compounds produced in the model 

medium. 
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CHAPTER 3 

 

 

GENERAL MATERIALS AND METHODS 

 

 

3.1 Microbial isolation and growth conditions 

The 123 microbial isolates (Table 3.1) for this study had been obtained from the outer 

crust, blue veins and white core of a commercial Stilton cheese sample using Rogosa 

(CM0627, Oxoid, UK) and M17 agar (CM0785, Oxoid) (Gkatzionis, 2010). Briefly, an 8 

kg commercial sample of blue Stilton cheese at the end of ripening (~8 weeks) was 

precisely partitioned into outer crust, blue veins and white core. Microbiological analysis 

was performed on each of the cheese sections by aseptically scrapping 130-190 mg 

micro-samples into sterile o-ringed micro-centrifuge vials (Biospec Products, UK). The 

samples were mixed with nine parts of maximum recovery diluent (MRD; CM0733, 

Oxoid) and four glass beads (2 mm, acid washed, Biospec Products, UK), and 

homogenised using a Mini Beadbeater-1 (Biospec Products) at 2500 rpm for 2 x 40 s, 

cooling on ice between each treatment. Samples of the same cheese section were pooled 

and 1 ml volumes used for further 10-fold serial dilutions and subsequently plated on 

Rogosa (CM0627, Oxoid) and M17 (CM0785, Oxoid) agar, and incubated 

aerobically/anaerobically for 24-48 h at 30-37 
o
C. After incubation, three to five colonies 

with different morphologies were randomly selected and streaked twice on Rogosa and 

M17 agar for purification. The strains were stored in brain heart infusion (BHI) broth 

(CM1135, Oxoid) with the addition of 20% (v/v) glycerol (G/0650/17, Fisher Scientific) 

at -80
o
C in a freezer (U570, New Brunswick Scientific, England). 

The isolates were resuscitated from -20
o
C by growth in brain heart infusion (BHI; 

CM1135, Oxoid) and de Man, Rogosa, Sharpe (MRS; CM0359, Oxoid) broth at 30-37
o
C 

(Yavuz et al., 2004). All isolates from the frozen stocks were sequentially sub-cultured 

twice on BHI and MRS agar by streaking on the media and separately incubating the 

plates under aerobic or anaerobic conditions for 24-48 h at 30-37
o
C.  
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Table 3.1 Microbial isolates used in the study and their site of isolation 

Strain ID Site of isolation Media used for isolation 

R1-R15 Outer crust Rogosa agar 

R16-R30 Blue veins Rogosa agar 

R31-R45 White core Rogosa agar 

B1-B30 Blue veins M17 agar 

W1-W30 White core M17 agar 

Source of isolates: Gkatzionis (2010) 

 

3.2 Biochemical characteristics 

3.2.1 Gram staining 

Gram staining was carried out according to the method described by Rollins and Joseph 

(2004). A loopful of maximum recovery diluent (MRD; CM0733, Oxoid) was transferred 

to the surface of a clean 1-1.2 mm glass slide (BS7011/2, Thermofisher Scientific). One 

colony grown on BHI agar (Oxoid) was dispersed in the MRD and spread over a small 

area using a 10 µl sterile disposable loop (731171, Greiner Bio-One, Hungary). The film 

was allowed to dry for about 15 min at ambient temperature (~20
o
C) and heat fixed by 

briefly passing the slide through a Bunsen flame three to five times, exposing the dried 

film directly to the flame. The slide was flooded with the primary stain, crystal violet 

(PL8000, Pro-Lab Diagnostics), for 1 min, followed by washing with tap water and then 

treated for 30 s with the mordant, Lugol’s iodine (PL8010, Pro-Lab Diagnostics). Excess 

iodine was washed off with water, the slide decolourised for 1 min with general purpose 

methylated spirit (M/4450/17, Fisher Scientific) and the excess washed off. Finally, the 

slide was counter stained for 30 s with carbol fuschin (PL8004, Pro-Lab Diagnostics), the 

excess rinsed off with water, and the slide allowed to dry for ~15 min at ambient 

temperature. Gram reaction and cell morphologies were examined using oil immersion 

microscopy (PBA Microscopes T250, England) at a magnification of X1000. Gram-

negative cells stained pink while Gram-positive ones were purple. Escherichia coli and 

Pediococcus pentosaceus (Table 3.2) were used as the Gram-negative and Gram-positive 

controls, respectively.  
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3.2.2 Catalase test 

Using a sterile disposable loop, 2-3 colonies from a 24 h MRS agar plate culture were 

placed on a clean Petri-dish. One drop of 30% (v/v) hydrogen peroxide (H1009, Sigma, 

UK) was added with a sterile Pasteur pipette and the test observed for bubbling within    

10 s. Vigorous bubbling was taken as positive while no bubbling was considered to be a 

negative result. A hand lens (10X) was used to observe very slight catalase production. 

Ped. pentosaceus and Pseudomonas fluorescens (Table 3.2) were used as the negative and 

positive controls, respectively. 

 

3.2.3 Oxidase test 

Production of cytochrome oxidase was detected using oxidase identification sticks        

(BR0064A, Oxoid). The stick tip was completely rolled on 5-10 colonies of the cultures 

grown aerobically on BHI agar for 24 h at 30-37
o
C. A positive result was indicated by a 

colour change from pink to purplish-black after 30-180 s of contact between the stick and 

cells. Ped. pentosaceus and Ps. fluorescens (Table 3.2) were used as the negative and 

positive controls, respectively. 

 

3.2.4 Coagulase test 

The Staphytect plus kit (DR0850M, Oxoid) was used to identify coagulase producing 

staphylococci.  All the isolates tested were first confirmed as Gram-positive catalase-

positive cocci according to the manufacturer’s instructions. The latex reagents were 

brought to ambient temperature and mixed vigorously by shaking for ~10 s. One drop of 

each of the test (DR0851, Oxoid) and control (DR0852, Oxoid) reagents was dispensed 

onto separate circles on the reaction card (L990, Oxoid). Using a sterile disposable loop, 

3-5 colonies from a culture grown aerobically on BHI agar (Oxoid) for 24 h at 30-37
o
C 

were separately introduced onto the control and test circles and mixed with the reagents to 

cover the circles. The card was rocked gently; agglutination within 20 s was taken to 

indicate a positive result. Staph. epidermidis and Staph. aureus (Table 3.2) were used as 

the negative and positive controls, respectively. 

 

3.2.5 Lancefield test 

The latex agglutination (Lancefield) test was used for preliminary identification of the 

presumptive enterococci isolate (Collins et al., 1989). The isolate tested was first 

confirmed as Gram-positive catalase-negative cocci.  Prior to the test, the isolate was 
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grown on Columbia blood agar base (CM0331, Oxoid) supplemented with 5% 

defibrinated sheep blood (SR0051B, Oxoid) for 24 h at 37
o
C and examined for 

haemolytic activity. The Streptococcus extraction enzyme (DR593, Oxoid) was re-

constituted to 1X with sterile deionised water (SDW) and 0.4 ml of the solution dispensed 

into a sterile bijou bottle.  Five colonies were emulsified in the enzyme preparation using 

a sterile disposable loop and incubated for 10 min at 37
o
C. During incubation, the mixture 

was shaken vigorously after 5 min for 2-3 s and then continued with the incubation. The 

latex reagents were shaken vigorously, and together with the extract, brought to room 

temperature (~20 min). Then, a drop from each of the six latex reagents was dispensed 

onto individual circular rings on the reaction card (DR500, Oxoid) and one drop of the 

extract added to each of the six rings using a sterile Pasteur pipette. The mixture was 

spread over the entire area of the ring using a sterile wooden mixing stick and the card 

rocked gently to enhance agglutination within 30 s, which was indicative of the positive 

test. 

 

Table 3.2 Bacterial strains used as test controls  

Control strain Test Source Reference 

Ped. pentosaceus Gram-positive, catalase 

and oxidase-negative  

UNFCC Collins et al. (1989) 

E. coli JM 109 Gram-negative  '' '' 

Ps. fluorescens SM06 Catalase and oxidase- 

positive  

'' '' 

Staph. aureus NCTC 1803 Coagulase-positive '' '' 

Staph. epidermidis (wild type) Coagulase-negative '' '' 

Staph. aureus NCTC 10652 Enterotoxin genes A & D NCTC Sharma et al. (2000) 

Staph. aureus NCTC 10654 Enterotoxin gene B NCTC '' 

Staph. aureus NCTC 10655 Enterotoxin gene C UNFCC '' 

Staph. epidermidis NCTC 

12100 

Enterotoxin gene C UNFCC '' 

UNFCC - University of Nottingham Food Sciences Laboratory Culture Collection, UK 

NCTC - National Collection of Type Cultures, UK 
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3.2.6 Biochemical profiling  

3.2.6.1 API 20 Strep 

The API 20 Strep kit (20600, BioMerieux) was used to assess the substrate assimilation 

profile of the presumptive enterococci identified as group D Streptococcus by the 

Lancefield test (§3.2.5) following the manufacturer’s instructions.  To the incubation box, 

5 ml SDW was added to create a humid atmosphere and the strip placed in it. Then, a 

dense bacterial suspension with a turbidity equivalent of McFarland standard-4 was 

prepared by harvesting cells grown on Columbia blood agar as in §3.2.5. The cells were 

homogenised in 2 ml normal physiological saline (0.85% sodium chloride, pH 7.4±0.2). 

The first half of the strip, i.e. tests VP (sodium pyruvate, 1.9 mg/cupule) to LAP (L-

leucine-β-naphthalamide, 0.0256 mg/cup) was inoculated by distributing the suspension 

into the tubes and cupules, avoiding the formation of air bubbles. All tubes on the second 

part of the strip, i.e. tests ADH (L-arginine, 1.9 mg/tube) to GLY (glycogen, 1.28 

mg/tube) were filled with GP medium inoculated with the culture suspension and overlaid 

with sterile mineral oil. The box was closed and incubated for 4 h at 37
o
C to obtain the 

first reading and then 24 h for the second reading. The results were read by referring to 

the interpretation table according to the manufacturer’s instructions and species 

identification obtained using the API software v.3.2.2 (BioMerieux, France). 

 

3.2.6.2 API 50 CHL 

The API 50 CHL kit (50300, BioMerieux) was used to assess the presumptive 

Lactobacillus isolates for substrate assimilation profiles in order to preliminarily identify 

the species. To the API incubation box, 10 ml SDW was added to create a humid 

atmosphere and the strips placed in it.  Five to ten colonies were picked from a 24 h 

culture grown on MRS agar at 30
o
C and dispersed in 2 ml physiological saline using a 

sterile cotton swab (FB61001, Fisher Scientific) to make a heavy suspension (S1). Fifteen 

drops of S1 were transferred into 5 ml physiological saline in a sterile universal bottle to 

obtain a second suspension (S2) with a turbidity equivalent of McFarland standard-2. 

Fifteen drops of S2 were inoculated into API 50 CHL medium (50410, BioMerieux) 

using a 1 ml graduated Pasteur pipette (LW4005, Alpha Laboratories, UK). The 

inoculated medium was filled into the tubes on the strip, overlaid with sterile mineral oil 

and incubated at 30
o
C. Readings were taken after 24 and 48 h by referring to the colour 

chart according to the manufacturer’s instructions. A positive test was revealed by the 

bromocresol purple indicator contained in the medium changing to yellow due to 
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acidification. For the Esculin test (tube 25), a colour change from purple to black was 

taken as the positive result. Species identification was obtained using the API software 

(BioMerieux). 

 

3.2.6.3 API 20 NE 

The API 20 NE kit (20050, BioMerieux) was used for preliminary identification of the 

Gram-negative, catalase-positive, oxidase-positive cocco-bacillus isolates. Three to five 

colonies were collected from a 24 h BHI agar plate grown at 30
o
C and suspended in 2 ml 

physiological saline to form a bacterial suspension with a turbidity equivalent of 

McFarland standard-0.5. The first part of the strip i.e. tests NO3 (potassium nitrate) to 

PNPG (4-nitrophenyl-β-D-galactopyranoside) was inoculated by distributing the saline 

suspension into the tubes using a Pasteur pipette. The cupules GLU (glucose), ADH (L-

arginine) and URE (urea) were overlaid with sterile mineral oil. Then, 200 µl of the 

remaining saline suspension was inoculated into AUX medium (08037, BioMerieux) and 

the medium was filled into tubes and cupules on the second part of the strip i.e. tests GLU 

(D-glucose) to PAC (phenyl acetic acid). The box incubated for 24 h at 30
o
C and the strip 

read according to manufacturer’s guidelines. Species identification was obtained using the 

API software (BioMerieux) as previously. 

 

3.3 DNA-based molecular methods 

3.3.1 Extraction of genomic DNA 

Genomic DNA for amplification of 16S rDNA (§3.3.3.1) and class IIb bacteriocin 

(plantaricin) genes (§3.3.3.3) was extracted using the guanidinium EDTA sarcosyl (GES) 

method as described by Pitcher et al. (1989). The presumptive lactobacilli isolates were 

grown in 10 ml MRS broth for 24 h at 30
o
C (100 rpm; Obi-Safe TS, Gallenkamp, 

England). All the other bacterial isolates were grown in 10 ml BHI broth (Oxoid) for 24 h 

at 30-37
o
C (100 rpm; Gallenkamp). Cells from 2-3 ml of the culture were harvested by 

centrifugation (13000 g; Eppendorf 5415R, Germany) for 60 s. The cell pellet was re-

suspended and washed twice by spinning (13000 g; Eppendorf) at 4
o
C with 1 ml ice cold 

lysis buffer [25 mM Tris-HCl, 10 mM EDTA, 50 mM sucrose (S/8560/53, Fisher 

Scientific) pH 8]. The cell pellet was re-suspended in 100 μl of the same lysis buffer 

supplemented with 50 mg/ml lysozyme and incubated for 30 min at 37
o
C. Three hundred 

microlitres of GES buffer [5 M guanidine thiocyanate (B21250, Alfa Aesar), 100 mM 

EDTA, 5% (w/v) N-lauryl sodium sarcosyl salt, pH 8] was added and the mixture 
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incubated for 10-15 min at room temperature until it became clear. The lysate was 

incubated on ice for 2 min and 250 μl ice cold 7.5 M ammonium acetate (A/3440/53, 

Fisher Scientific) added. The mixture was vortexed (Clifton Cyclone74405, England) 

briefly, incubated on ice for 10 min and 500 μl 24:1 chloroform (C/4920/17, Fisher 

Scientific): isoamyl alcohol (1105, Fisons Scientific) added. This was mixed and spun 

(9000 g; Eppendorf) for 10 min. The upper phase supernatant (850 µl) was transferred 

into a clean microcentrifuge tube. Exactly 0.54 volumes (459 µl) of ice cold isopropanol 

(propan-2-ol) (P/7490/PB17, Fisher Scientific) was added and gently mixed for 1 min to 

precipitate the DNA. Genomic DNA was recovered by spinning (9000 g; Eppendorf) for 

5 min at 4
o
C. Then, the pellet was washed three times in 500 µl of 70% analytical grade 

ethanol (E/0650DF/P17, Fisher Scientific), air dried for ~30 min at room temperature, re-

suspended in 50 μl TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5) and stored at         

-20
o
C.  

 

3.3.2 Extraction of chromosomal DNA 

Chromosomal DNA used in the multiplex amplification of staphylococcal enterotoxin 

(SE) genes (§3.3.3.2) was extracted using the cetyl trimethyl ammonium bromide 

(CTAB) method (Ausubel et al., 1992; William and Feil, 2004). Presumptive 

staphylococci isolates were grown aerobically in 100 ml BHI broth (Oxoid) for 24 h at 

30
o
C. The control strains: Staph. aureus NCTC 10652 (SE A&D), Staph. aureus NCTC 

10654 (SE B), Staph. aureus NCTC 10655 (SE C) and Staph. epidermidis (SE C; Table 

3.2) were grown at 37
o
C under the same conditions. Cells from 100 ml culture broth were 

harvested by centrifugation (5500 g; Beckman J2-21, England) for 10 min and re-

suspended and washed twice by spinning (5500 g; Beckman) in 10 ml of wash buffer (2.5 

M NaCl, 10 mM EDTA, pH 7.5). The cells were washed twice in 10 ml lysis buffer (10 

mM Tris-HCl, 150 mM NaCl, 10 mM EDTA, pH 7.5) and re-suspended in 9.25 ml of the 

same lysis buffer supplemented with 25 μg/ml lysostaphin (L7386, Sigma). The mixture 

was incubated (100 rpm; Gallenkamp) for 1 h at 37
o
C; and 500 μl of 10% sodium dodecyl 

sulphate (SDS; S/5200/53, Fisher Scientific) solution was added followed by proteinase K 

(final concentration, 0.3 mg/ml). The mixture was vortexed briefly and incubated (100 

rpm; Gallenkamp) for 1 h at 37
o
C until lysis occurred forming a clear solution. Sodium 

chloride (5 M, 1.8 ml) and 1.5 ml CTAB solution [0.7 M NaCl and 0.275 M CTAB 

(52365, Sigma) pre-warmed to 65
o
C] were added and mixed thoroughly. The mixture was 

incubated for 20 min at 65
o
C and an equal volume (13.5 ml) of 24:1 chloroform: isoamyl 
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alcohol added. This was mixed and spun (5500 g; Beckman) for 10 min. The upper phase 

supernatant (10-12 ml) was taken out and put into a clean 50 ml conical tube, and exactly 

0.6 volumes (6-7.2 ml) of ice cold isopropanol added and gently mixed for 1 min to 

precipitate the DNA. Chromosomal DNA was recovered by spinning (3500 g; Beckman) 

for 10 min at 4
o
C. The DNA pellet was washed twice with 1 ml 70% ethanol and air dried 

for ~30 min at room temperature. DNA was finally re-suspended in 5 ml TE buffer (10 

mM Tris-HCl, 1 mM EDTA, pH 7.5) and stored at -20
o
C until use.  

 

3.3.3 Measurement of DNA concentration 

The concentration of the DNA extracts obtained was measured by spectrophotometry. A 1 

µl sample was pipetted onto the pre-cleaned end of the lower measurement pedestal 

(receiving fibre) of the NanoDrop spectrophotometer (ND1000, England) whilst the 

second optic cable (sampling fibre) was open. The sampling arm was closed and spectral 

measurement performed using NanoDrop software v.3 (NanoDrop Technologies Inc., 

England). Sample carryover between successive measurements was minimised by wiping 

the sample from the pedestals using a Whatman lens cleaning tissue (2105918, Whatman, 

England).  TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5) was used as the blank.  

 

DNA extracts were diluted with SDW to a working concentration (10-200 ng/μl). 

Aliquots of DNA extracts (5 μl) were checked for quality and size by electrophoresis on a 

1% (w/v) agarose (MB1200, Melford) gel prepared with 1X TAE buffer [40 mM Tris 

base, 20 mM glacial acetic acid (A/0400/PB17, Fisher Scientific) 1 mM EDTA, 0.2 µg/ml 

ethidium bromide, pH 8]. TAE (1X) was used as the running buffer for ~40 min at 90 V. 

A 1 kbp lambda DNA ladder (G571, Promega) was used as the molecular size marker. 

 

3.3.4 Polymerase chain reaction (PCR)  

3.3.4.1 PCR amplification of 16S rDNA  

The primers used to amplify 16S rDNA are listed in Table 3.3. Primers Lac1 and Lac2 

were used to amplify the variable V6-V8 regions, while the V3F and V3R primers 

amplified the variable V3 region of the gene giving PCR products of ~428 and 200 bp, 

respectively. The reaction mixture (final volume, 50 µl) for the variable V6-V8 region 

amplification contained 5 µl of 10X PCR buffer IV (AB0289, Fisher Scientific, 10 mM 

Tris-HCl, pH 8.5; 50 mM KCl); 2.5 mM MgCl2; 0.2 mM (each) of the deoxynucleotide 

triphosphates, dATP (U120D, Promega), dCTP (U122D, Promega), dGTP (U121A, 
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Promega) and dTTP (U123D, Promega); 0.2 pmol/μl (each) forward and reverse primers; 

1.25 U of Taq DNA polymerase (AB0351, Fisher Scientific); and 3 µl of template DNA 

(150 ng). The samples were amplified in a programmable thermocycler (Techne TC512, 

USA) as follows: initial denaturation at 94°C, 5 min; 35 cycles of 94°C, 30 s; 52°C, 1 

min; 68°C, 1 min; and 68°C, 7 min.  

 

The reaction mixture for amplification of the variable V3 region was constituted as above 

with minor modifications; 2.5 mM (each) of the dinucleotide triphosphates (dNTPs) and 

different primers (V3F and V3R; Table 3.3) included in the mixture. DNA was denatured 

for 5 min at 94
o
C. Then, a touchdown PCR was performed as follows: initial annealing 

temperature was 66°C, and this was decreased 1°C every cycle for 10 cycles; finally, 20 

cycles were performed at 56°C. The extension for each cycle was carried out at 72°C, 3 

min, while the final extension was at 72°C, 10 min. 
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Table 3.3 Primers and their target sequences in the PCR reactions 

Primer 

name  

Sequences Gene 

location 

Target Reference 

Lac1 5'AGCAGTAGGGAATCTTCCA-3' 364-382 V6-V8 region of 16S rDNA of lactobacilli                    

(forward primer) 

Lopez et al. 

(2003) 

Lac2 5'-ATTTCACCGCTACACATG-3' 690-707 V6-V8 region of 16S rDNA of lactobacilli (reverse primer)  

'' 

V3F 5'-CCTACGGGAGGCAGCAG-3' 341-357 V3 region of 16S rDNA (universal forward primer) Muyzer et al. 

(1993) 

V3R 5'-ATTACCGCGGCTGCTCG-3' 518-534 V3 region of 16S rDNA (universal reverse primer)  

'' 

SA-U 5'- TGTATGTATGGAGGTGTAAC-3' - SE (A-E) genes (universal forward primer) Sharma et al. 

(2000) 

SA-A 5'- ATTAACCGAAGGTTCTGT-3' 639-657 SE A gene (reverse primer) '' 

SA-B 5'- ATAGTGACGAGTTAGGTA-3' 564-582 SE B gene (reverse primer) '' 

SA-C 5'- AAGTACATTTTGTAAGTTCC-3' 457-477 SE C gene (reverse primer) '' 

SA-D 5'- TTCGGGAAAATCACCCTTAA-3' 676-696 SE D (reverse primer) '' 

SA-E 5'- GCCAAAGCTGTCTGAG-3' 584-600 SE E (reverse primer) '' 

plnEF-F 5'-GGCATAGTTAAAATTCCCCCC-3' 3-23 Plantaricin EF operon (forward primer)
*
 Yi et al. (2010) 

plnEF-R 5'-CAGGTTGCCGC AAAAAAAG-3' 100-118 Plantaricin EF operon (reverse primer)  



 

44 

 

'' 

plnJK-F 5'-ACGGGGTTGTTGGGGGAGGC-3' 74-93 Plantaricin JK operon (forward primer) Cho et al. (2010) 

plnJK-R 5'-TTATAATCCCTTGAACCACC-3' 148-168 Plantaricin JK operon (reverse primer)  

'' 

plnN-F 5'-GGGTTAGGTATCGAAATGG-3' 25-43 Plantaricin N operon (forward primer)  

'' 

plnN-R 5'-CTAATAGCTGTTATTTTTAACC-3' 163-184 Plantaricin N operon (reverse primer)  

'' 

*
Beginning of coding sequence of plnI 
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3.3.4.2 Multiplex PCR for amplification of staphylococcal enterotoxin genes 

The primers used to amplify sequences of the SE A, SE B, SE C, SE D and SE E genes 

(Table 3.3) in a multiplex PCR reaction were as described by Sharma et al. (2000). The 

forward primer (SA-U) was universal to all the SE genes, and five reverse primers 

amplified a site in the variable regions for each of the specific SE genes.  

 

PCR was performed using the method of Sharma et al. (2000). The reaction mixture (final 

volume, 50 µl) contained 25 µl of 2X DreamTaq buffer (K1081, Fermentas; 10 mM Tris-

HCl, pH 9; 50 mM KCl; 4 mM MgCl2); 5 μl (2 ng/μl) of template chromosomal DNA; 

0.6 pmol/μl (each) of the primers SA-U, SA-A, SA-B, SA-C, SA-D and SA-E; 0.2 mM 

(each) of dATP, dTTP, dGTP, dCTP; and 1 U of Taq DNA polymerase. DNA 

amplification was carried out in a programmable thermal cycler (Techne) as follows: 

initial denaturation at 94°C, 5 min, 25 cycles of 94°C, 30 s, 50
o
C, 30 s, 72

o
C, 30 s, and 

72
o
C, 2 min.  

 

3.3.4.3 PCR amplification of the class IIb bacteriocin (plantaricin) operons 

The primers used to amplify the various plantaricin (pln) operons are listed in Table 3.3. 

The primer sequences and PCR conditions were adopted from Cho et al. (2010) and Yi et 

al. (2010). The reaction mixture was constituted as the one for amplification of the V6-V8 

regions of 16S rDNA (§3.3.4.1). The samples were amplified in a programmable 

thermocycler (Techne). Amplification conditions for plantaricin EF operon were as 

follows: initial denaturation at 94°C, 5 min; 30 cycles of 94°C, 1 min; 51°C, 40 s; 72°C, 3 

min; and 72°C for 10 min. In the case of plnJK and plnN, amplification conditions were 

as follows: initial denaturation step at 94
o
C, 3 min; followed by 32 cycles of 94

o
C, 1 min; 

primer annealing conditions were 50
o
C, 1 min and 56

o
C, 1 min for plnN and plnJK 

respectively; and 72
o
C, 30 s extension; followed by a final extension step at 72

o
C, 6 min.  

 

3.3.4.4 Gel electrophoresis of PCR amplicons 

PCR product (10 μl) was mixed with 2 μl of 6X loading dye (G190A, Promega) and run 

on 1-2% (w/v) agarose (Melford) gels containing ethidium bromide (0.2 µg/ml) in 1X 

TAE running buffer for 2 h at 75 V to check the product size. A 100 bp lambda DNA 

ladder (G210A, Promega) was used as the molecular size marker. The gel was visualised 

on a UV transilluminator (Bio-Rad), images recorded with Quantity one Gel Doc 
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software v.4.6.3 (Bio-Rad) and the bands of PCR products excised from the agarose gel 

with sterile scalpel blades and purified (§3.3.4.5) prior to sequencing (§ 3.3.4.6). 

 

3.3.4.5 Purification of PCR products 

PCR products were purified using the Zymoclean Gel DNA Recovery Kit (D4002, Zymo 

Research). Five hundred micro-litres of ADB buffer (D4001, Zymo Research, UK) was 

added into each gel sample and the tubes placed into a heating block (Stuart Scientific 

SHT 1D, England) for 5-10 min at 55-60
o
C until solubilised. The molten agarose solution 

was poured into the Zymo-spin column, placed into a collection tube and centrifuged 

(9000 g; Eppendorf) for 30 s. Then, DNA was washed thrice by adding 200 μl wash 

buffer (D4003, Zymo Research), centrifuging (9000 g; Eppendorf) for 30 s for each wash 

cycle. Finally, 10 µl SDW was added directly onto the column matrix and purified DNA 

eluted by spinning (9000 g; Eppendorf) for 30 s. The purified PCR products were kept at  

-20
o
C until use.  

 

3.3.4.6 DNA sequencing and database search 

The eluted purified DNA was diluted to 2-5 ng/μl with SDW and sent for sequencing 

(MWG Eurofins, Ebersberg, Germany). To determine the closest known relatives of the 

partial DNA sequences obtained, searches were performed in public data libraries 

(GenBank) using the BLAST programme. Percent similarity values of the most closely 

related identities were retrieved from NCBI chromosome gene bank using the NC 

accession numbers.  

 

3.3.5 Pulse-field gel electrophoresis (PFGE) 

3.3.5.1 Preparation of genomic DNA   

Genomic DNA was prepared in situ in agarose blocks as described by Moore and Datta 

(1994) and Yeung et al. (2004). For each of the Lactobacillus isolates, a colony was 

inoculated in 10 ml MRS broth (Oxoid) and incubated for 16 h at 30
o
C under moderate 

agitation (100 rpm; Gallenkamp). Cells from 1.5-3 ml of the culture were harvested by 

centrifugation for 60 s in a micro-centrifuge (Eppendorf) at 13000 g. The cells were re-

suspended and washed twice at 4
o
C with 1 ml sterile cell wash buffer [1 M NaCl 

(S/316/60, Fisher Scientific), 10 mM Tris-HCl (T6066, Sigma)] at pH 7.6. The cell pellet 

was re-suspended in 300 μl of the same cell wash buffer, warmed to 55
o
C and mixed with 

300 μl of 1% (w/v) pulse-field certified agarose (161-3109, Bio-Rad) solution in the cell 
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wash buffer maintained at 55
o
C in a water bath (Grant JB1A08578, England). The 

suspension mixture (400 μl) was poured into a CHEF plug mould (Bio-Rad) and allowed 

to solidify for 15-20 min at room temperature. The plugs were transferred to 5 ml sterile 

bijou bottles and lysed in situ with 4 ml lysis buffer [6 mM Tris-HCl, 0.1 mM
 
EDTA 

(D/0700/53, Fisher Scientific), 1% (w/v) N-lauroyl-sarcosine sodium salt (L9150, Sigma), 

10 mg/ml lysozyme (L6876, Sigma) and 2 U/ml mutanolysin (M4782, Sigma)] at pH 7.6 

for 16 h at 37
o
C (MIR262, Sanyo, Japan) to remove cell walls, membranes and RNA. The 

lysis reagents were drained and and the plugs washed thrice with 3 ml of TE buffer (10 

mM Tris-HCl, 1 mM EDTA, pH 7.6) for 30 min at room temperature. The plugs were 

incubated in 4 ml proteinase-K buffer [0.5 M EDTA, 1% (w/v) N-lauroyl-sarcosine 

sodium salt and 1 mg/ml proteinase-K (EO0491, Fermentas)] at pH 8.5 for 24 h at 55
o
C 

(100 rpm; Gallenkamp) to hydrolyse the cellular proteins. Subsequently, the plugs were 

treated twice for 2 h with 4 ml of 1 mM phenylmethylsulphonyl fluoride (PMSF; P7626, 

Sigma) in TE1 buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8) at 55
o
C (100 rpm; 

Gallenkamp) to inactivate proteinase-K. The plugs were finally rinsed thrice with TE2 

buffer (10 mM Tris- HCl, 50 mM EDTA, pH 8) for 30 min at room temperature, and 

stored at 4
o
C in TE1 buffer until use. 

 

3.3.5.2 Digestion with NotI 

The plug was placed in a sterile Petri-dish and using a sterile scalpel blade, it was sliced 

into three pieces each measuring ~2 mm. The plug slices were rinsed in 500 µl SDW for 

20-30 min at room temperature and rinsed again in 200 µl restriction buffer-D (R004A, 

Promega, USA; 6 mM Tris-HCl, 6 mM MgCl2, 150 mM NaCl, 1 mM dithiothreitol, pH 

7.9) for 30 min at room temperature. Then, the plug slices were incubated for 4 h at 37
o
C 

with 40 U of NotI GQ (R643A, Promega) in a 200 μl solution consisting of the enzyme 

buffer (20 μl) and 0.1 mg/ml bovine serum albumin (BSA; R396D, Promega) following 

the manufacturer’s recommendations for concentrations of each reagent. The reaction 

reagents were removed and digestion stopped by addition of 400 μl of 0.5X TBE buffer 

[44.5 mM Tris-HCl, 44.5 mM boric acid (B7901, Sigma), 1.25 mM EDTA] at pH 8 and 

kept at 4
o
C until use (Vancanneyt et al., 2006). 
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3.3.5.3 Pulse-field gel electrophoresis 

The electrophoresis conditions were adopted from Obodai (2006) with minor 

modifications. Plug slices were loaded directly into wells of 1% (w/v) PFGE certified 

agarose (Bio-Rad) gel prepared in 0.5X TBE buffer containing 100 μM thiourea (88810, 

Sigma). Electrophoresis was performed in 2 l of 0.5X TBE buffer containing 100 μM 

thiourea in a contour-clamped homogenous electrophoresis cell (CHEF) DRII, (Bio-Rad) 

at 14
o
C for 21 h at 6 V/cm and pulse times ramping linearly from 4 to 45 s at a switching 

angle of 120
o
 and pump pressure of 80 rpm. A 50-1000 kbp DNA ladder (Sigma D-2416, 

USA) was used as a molecular size marker. For each run, ~2 mm of the pulse marker was 

placed in the first, middle and last lanes to allow alignment of the gel during subsequent 

analysis of the gel images. After electrophoresis, the gel was stained in 100 ml of SDW 

containing 10 µl (10 mg/ml) of ethidium bromide (Fisher Scientific) for 1 h at room 

temperature, and subsequently de-stained in 100 ml of SDW for 30 min at room 

temperature. Images were visualised on a UV trans-illuminator (Bio-Rad) and recorded 

with Quantity one Gel Doc software (Bio-Rad). 

 

3.3.5.4 Cluster analysis 

PFGE images were converted and patterns normalized with background subtraction and 

further processed using FP Quest software (Bio-Rad) to generate the dendrogram. 

Clustering of isolates was calculated using the un-weighted pair group method with 

arithmetic averages (UPGMA) and comparison of the combined PFGE patterns done 

using the band-based Dice similarity coefficient (Zapparoli et al., 1998). 

 

Clusters in the dendrogram were defined at a selected similarity level of 52%. This 

similarity threshold and significance of clusters were tested using analysis of molecular 

variance (AMOVA) as described by Excoffier et al. (1992). The significance of clustering 

was examined by calculating the PhiPT value (ΦPT), a measure of sub-population (cluster) 

genetic differentiation that suppresses intra-individual variation. The null hypothesis                 

(H0; ΦPT = 0) implied that there was no genetic difference amongst the Lactobacillus sub-

populations, whereas the alternative hypothesis (H1; ΦPT >0) implied genetic differences 

existed between the sub-populations and their component demes. Calculation of ΦPT was 

performed using GenAlEx v.6.5 software according to Peakall and Smouse (2006). 
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3.4 Stress tolerance response of Lactobacillus  

3.4.1 Heat injury of cells 

Tolerance of Lactobacillus isolates to heat stress was ascertained in sterile full cream 

cows’ milk (Drinks Brokers Ltd., Norfolk, England) as the heating matrix. An MRS broth 

(Oxoid) culture (1 ml) grown for 24 h at 30
o
C was centrifuged (9000 g; Eppendorf) for 1 

min and cells washed in phosphate buffered saline (PBS; BR0014G, Oxoid) and re-

suspended in 1 ml PBS. Before being used in the experiment, the suspension was 

vortexed (Clifton Cyclone) twice for 1 min to de-clump the cells, and spiked into milk to 

a final concentration of ~8 log10 CFU/ml. Inoculated milk was vortexed briefly and 

dispensed in 500 μl aliquots into 1.5 ml Wheaton vials (NJ 08332-2092, Wheaton 

Scientific Products, USA). The vials were immersed in a water bath (Grant, UK) pre-

heated to 72±1
o
C, and samples withdrawn at different time points for enumeration of the 

survivor counts by plating 0.1 ml samples of 10-fold serial dilutions in MRD (Oxoid) on 

BHI agar in triplicate. All plates were incubated under anaerobic conditions for 48 h at 

30
o
C and enumeration performed on plates with 30-300 colonies. To determine the 

recovery of heat-injured cells, samples of the heat-treated milk were kept in a cold room 

for 24-48 h at 4
o
C and thereafter viable counts enumerated on MRS and BHI agar as 

before.  

 

3.4.2 Acid and salt tolerance response 

Acid and salt tolerance of Lactobacillus isolates was assayed in MRS broth (Oxoid) as 

described by Santos et al. (2003), Succi et al. (2005) and Pelinescu et al. (2009). To 

examine acid tolerance, an overnight MRS broth culture (~10
9
 CFU/ml) grown as in 

§3.5.1 was serial diluted 10-fold (three times) and 1 ml transferred into 10 ml MRS broth 

(Oxoid) acidified to pH 3, 3.5, 4, 4.5 and 5 using lactic acid (L/0100/PB08, Fisher 

Scientific). The broths were incubated at 30
o
C (100 rpm; Gallenkamp), and 1 ml aliquots 

withdrawn at different time intervals for enumeration of the viable counts. Salt tolerance 

was examined under the same conditions by inoculating the strains in MRS broth 

containing 3.5, 5, 8 and 10% (w/v) sodium chloride (S/3160/60Fisher Scientific). Treated 

cells were enumerated on BHI agar as in §3.5.1. 
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3.4.3 Tolerance to desiccation  

A modified method based on Pedersen et al. (2008) was employed to examine the effect 

of relative humidity (RH) levels on the viability of Lactobacillus isolates. Cells from 1 ml 

of an overnight MRS broth culture grown as in §3.4.1 were harvested by centrifugation 

(9000 g; Eppendorf) for 1 min at 4
o
C. The pellet was washed and re-suspended in 1 ml 

MRD and vortexed for 2 min to de-clump the cells. Fifty micro-litre aliquots were 

aseptically added to two sets of U-shaped wells in 86 x 128 mm micro-titre plates (Nalge 

Nunc, USA) taking care to inoculate central wells of the tray. All un-inoculated wells 

were filled with 50 μl of sterile MRD (blank) to minimise non-uniform drying due to edge 

effects. The plates were placed in an incubator (Sanyo) for 24 h at 30
o
C to dry the cells 

onto the surface, and subsequently transferred to separate desiccators with RH levels 

established and maintained at 33±1 and 54±1% humidity by the presence of saturated 

solutions of magnesium chloride hexahydrate (C12, Acros Organics, USA) and 

magnesium nitrate hexahydrate (M5296, Sigma), respectively. A calibrated digital 

thermo-hygrometer (DT625, ATP, UK) was used to ascertain the RH values at the 

corresponding temperature. The desiccators were incubated (Sanyo) at 20±1
o
C for the 

remainder of the study (7 days) and viable counts enumerated at different time points as 

in §3.5.1. Desiccated cells were rehydrated for 30 min by adding 0.1 ml MRD, and then 

mixed by pipetting prior to plating on BHI agar. In order to ascertain the behaviour of the 

organism in absence of nutrients, the experiment was repeated by suspending the cells in 

SDW (R0581, Fermentas) prior to drying and desiccation.    

 

3.5 Screening for bacteriocin producing isolates 

3.5.1 Antimicrobial activity using plate agar overlay method 

Preliminary screening for bacteriocin producing lactobacilli was carried out against a 

series of selected indicator bacteria (Table 3.4) using the agar layer overlay method 

described by Powell et al. (2007) and Suwanjinda (2007). For each of the Lactobacillus 

isolates tested, 10-fold serial dilutions of an overnight MRS broth culture were prepared 

as in §3.4.1 and plated on MRS agar and incubated for 24 h at 30
o
C to obtain 10-100 

colonies per plate. The colonies were carefully overlaid with 0.7% (w/v) BHI agar, 

seeded with 10
6
 CFU/ml of the indicator strain. Lb. pentosus was seeded in 0.7% (w/v) 

MRS agar. The plates were allowed to solidify for ~20 min in a cold room, incubated for 

24 h at 37
o
C (Sanyo) and examined for distinct colonies surrounded by a clear halo zone. 

Colonies with the largest zones of growth inhibition were isolated, inoculated into MRS 
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broth and incubated for 24 h at 30
o
C. Pure cultures were obtained by streaking onto MRS 

agar and confirmation of antimicrobial activity was assessed using the disc diffusion 

assay on the most sensitive indicator strains as described in Section 3.5.2. Ped. 

acidilactici NCIMB 700993 (UNFCC) was used as the bacteriocin producing control 

strain. 

 

Table 3.4 Strains used for testing the antimicrobial activity of Lactobacillus isolates 

Indicator strain Source 

Staph. aureus Gkatzionis (2010) 

Salmonella Typhimurium  UNFCC  

Listeria monocytogenes NCTC 11944 '' 

E. 0157H-stx '' 

Staph. aureus NCTC 12100 '' 

Clostridium sporogenes '' 

Pseudomonas aeruginosa glaxo 3 '' 

Lc. lactis NCIMB 9918 '' 

Lb. pentosus NCIMB 8026 '' 

UNFCC - University of Nottingham Food Sciences Laboratory Culture Collection, UK 

NCTC - National Collection of Type Cultures, UK 

NCIMB - National Collections of Industrial, Marine and Food Bacteria, UK 

 

3.5.2 Antimicrobial activity using the paper disc diffusion assay 

Using a method described by Albano et al. (2007) and Buntin et al. (2008), antimicrobial 

activity of cell-free supernatants (CFS) and treated CFS of Lactobacillus isolates was 

assayed on Ps. aeruginosa, E. coli, L. monocytogenes and Lb. pentosus which had 

demonstrated the highest level of sensitivity to Lactobacillus isolates (§6.3.1).  

 

3.5.2.1 Antimicrobial activity of cell-free supernatants  

Lactobacillus isolates were grown in 10 ml MRS broth for 24 h at 30
o
C, 100 rpm. The 

culture was centrifuged (3400 g; Megafuge 40R, Thermo Fisher Scientific, Germany) for 

15 min at 4
o
C to obtain the CFS, which was used to screen isolates for antimicrobial 

activity. CFS was sterilised by membrane filtration (0.2 μm, Ministart AG37070, 

Sartorius) and stored at 4
o
C until use. Lb. pentosus was grown in 10 ml MRS broth for 24 

h at 30
o
C whereas Ps. aeruginosa, E. coli and L. monocytogenes were cultured in 10 ml 

BHI broth for 24 h at 30-37
o
C, depending on optimum temperature of the indicator strain. 
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For each of the latter three strains, Petri dishes filled with 20 ml of 1.5% (w/v) MRS agar 

were overlaid with 10 ml of BHI agar (0.7% agar) inoculated with 50 μl of the indicator 

strain (final concentration, 10
6
 CFU/ml). Conversely for Lb. pentosus, cells (final 

concentration, 10
6
 CFU/ml) were suspended in 10 ml MRS agar (0.7% agar) and overlaid 

on BHI agar in a Petri dish. All agar overlays were allowed to solidify for 15-20 min in a 

cold room. Thirteen milli metre sterile filter paper discs (Whatman AA, Fisher Scientific) 

were soaked in the supernatants for 30-60 min. The discs were applied to the seeded 

plates in duplicate and allowed to dry for 30 min at room temperature. All plates were 

incubated for 24 h at 37
o
C. The diameter (mm) of the resulting zone of inhibition was 

measured with a 100 mm ruler as the distance from the edge of the paper disc to the edge 

of the zone of clearing. Clear zones extending for 0.5 mm or more were considered as 

positive for inhibition (Litopoulou-Tzanetaki et al., 1989). Ped. acidilactici NCIMB 

700993 (UNFCC) was used as the bacteriocin-producing positive control strain.  

 

3.5.2.2 Antimicrobial activity of treated CFS  

The CFS from Lactobacillus isolates that gave positive results in the CFS assays were 

subdivided and treated as follows: (i) cell-free supernatant without any treatment (CFS), 

(ii) neutralised cell-free supernatant adjusted to pH 6.5-7 using 1 N NaOH (CFS-N), (iii) 

cell-free supernatant treated with 500 U/ml catalase (C3155, Sigma) (CFS-C), (iv) cell-

free supernatant treated with 1 mg/ml proteinase K (EO0491, Fermentas) (CFS-P), (v) 

cell-free supernatant adjusted to pH 6.5-7 and treated with catalase (CFS-N-C). Enzyme-

treated supernatants were incubated for 30 min at 37
o
C and thereafter the enzymes 

inactivated by boiling in water for 2 min (Bromberg et al., 2004). The treated CFS were 

used to determine the nature of antimicrobial activity as in §3.5.2.1. Paper discs treated 

with sterile MRS broth and 100 μg/ml chloramphenicol (C0378, Sigma) in MRS broth 

were used as the negative and positive controls, respectively, and in the CFS disc tests. 

 

3.6 Dynamics of viable microbial population changes  

3.6.1 Culture conditions  

Mixed culture studies of lactobacilli and Lc. lactis was ascertained in full cream UHT 

milk (ASDA Stores Limited, Leeds, LS11 5AD, UK) at 18 and 30
o
C according to the 

method of Martin-Platero et al. (2008). One hundred millilitres of the milk in a 250 ml 

sterile Duran bottle was inoculated with one Lactobacillus isolate and one Lactococcus 

strain (final concentration, 3 log10 CFU/ml for each species; Table 3.5) grown at 30
o
C as 
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in §3.4.1. Single strain cultures were used as controls. The inoculated samples were 

incubated for 48 h at 30
o
C (100 rpm; Gallenkamp) and changes in pH (§3.6.2) and viable 

counts enumerated by plating on Rogosa and MRS agar (§3.6.3). Subsequently, each of 

the fermented milk samples was divided into two portions. Salt (3.5%, w/v, Fisher 

Scientific) was added to one portion whilst the second portion (control) was not salted. 

All samples were further incubated for 12 weeks at 18
o
C and microbial populations and 

pH changes further monitored at different time intervals. 

 

Table 3.5 Bacterial strains used in mixed culture studies  

Strain Source (site of isolation) 

Lb. plantarum strain R2 Gkatzionis (2010) (outer crust) 

Lb. plantarum strain B30 Gkatzionis (2010) (blue veins) 

Lb. plantarum strain W8 Gkatzionis (2010) (white core) 

Lc. lactis NCIMB 6681 UNFCC 

Lc. lactis subsp. lactis '' 

Lc. lactis NCIMB 9918 '' 

UNFCC - University of Nottingham Food Sciences Laboratory Culture Collection, UK 

NCTC - National Collection of Type Cultures, UK 

NCIMB - National Collections of Industrial, Marine and Food Bacteria, UK 

 

3.6.2 pH determination 

The pH of the samples was determined by potentiometry. The pH meter glass probe (pH 

212, Hanna Instruments, Japan) was first calibrated using standard buffers (J/2820/15, 

Fisher Scientific) at pH 4 and 7 before being used to measure the sample pH. Sample pH 

was measured by submerging the tip of the probe into the sample for ~2 min until a stable 

reading was registered on the pH meter scale. 

 

3.6.3 Selective microbial enumeration  

One milli-litre samples from §3.6.1 were aseptically collected from the flasks into 9 ml 

sterile MRD (Oxoid) and used for bacterial enumeration as in §3.4.1. The mixed LAB 

cultures were differentially enumerated by incubating anaerobically for 48 h at 30°C on 

different selective media. Rogosa agar (Oxoid) was used for enumeration of Lb. 

plantarum whereas Lc. lactis was enumerated from MRS agar (Harris et al., 1992). MRS 

agar plates used for enumeration of lactococci in mixed culture (A) were replica plated on 
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Rogosa agar to ascertain lactobacilli counts (B) and then worked out the difference (A-B) 

to obtain the result for lactococci.   

 

3.7 Screening for proteolytic and lipolytic activity 

Production and activity of proteolytic enzymes for Lactobacillus isolates was assessed 

using the casein agar diffusion method as described by van den Tempel and Jakobsen 

(2000). Five grams of casein (acid hydrolysate; LP0041, Oxoid) was mixed with water 

(final volume, 50 ml) and autoclaved for 10 min at 110
o
C to obtain casein hydrolysate 

solution (CHS). The agar base medium [calcium hydroxide (21918-100, Fisher 

Scientific), 0.3 g/L; calcium chloride (C/1400/62, Fisher Scientific), 0.2 g/L; and 

bacteriological agar No. 1 (LP0011, Oxoid), 15 g/L; pH 5.8] was autoclaved for 15 min at 

121
o
C. CHS (50 ml) was added to 450 ml of the agar base medium to obtain a final 

concentration of 1% casein in the medium, which was gently mixed and aseptically 

distributed into sterile 20 ml Petri dishes. The medium was allowed to dry and kept at 4
o
C 

in a cold room until use.  

 

Isolates were resuscitated from -80
o
C and purified by streaking twice on MRS agar and 

incubated anaerobically for 48 h at 30
o
C. For each isolate, a colony was inoculated in 

MRS broth (Oxoid) and grown for 24 h at 30
o
C (~9 log10 CFU/ml), subjected to three 10-

fold dilutions in MRD and 20 µl spotted on casein agar in triplicate. Replicate plates were 

allowed to dry, and plates separately incubated aerobically and anaerobically for 1-3 

weeks at 18, 30 and 37
o
C, and examined for clear halo zones.  

 

Lipolytic activity was evaluated on tributyrin agar (TA; PM0004C, Oxoid) using the same 

approach. TA was supplied as a prepared homogenate of nutrient agar containing 1% 

(v/v) tributyrin (glyceryl tributyrate) and pH 7.5. The medium was liquefied in hot water 

for ~10 min, aseptically distributed into sterile 20 ml Petri dishes and allowed to solidify 

prior to use. Yarrowia lipolytica strain Y1 (Gkatzionis, 2010) was used as the lipolytic 

and proteolytic positive control, whereas E. coli NCTC 86 (UNFCC) was the negative 

control. Yarr. lipolytica was grown and maintained on Rose Bengal chloramphenicol 

(RBC) agar base (CM0549, Oxoid) supplemented with 100 mg/l chloramphenicol 

(SR0078, Oxoid). The strain was cultured in potato dextrose broth (P6685, Sigma) for 2 

days at 25
o
C, cells enumerated using a counting chamber (Weber Scientific, UK), diluted 

to 10
6
 CFU/ml and 20 µl spotted on the media as described above. E. coli was grown in 
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BHI broth for 24 h at 37
o
C (~9 log10 CFU/ml), subjected to three 10-fold dilutions in 

MRD and spotted on the media as above. 

 

3.8 Quantification of lactic and acetic acid production  

3.8.1 Culture conditions and preparation of the cell-free supernatants 

Lb. plantarum isolates and Ped. acidilactici NCIMB 700993 were grown in 10 ml MRS 

broth for 24 h at 30
o
C. The culture was serial diluted in sterile MRS broth (Oxoid), and 

0.1 ml corresponding with ~6 log10 CFU/ml inoculated into 30 ml of MRS broth in a 50 

ml sterile conical tube and incubated at 30
o
C (100 rpm; Gallenkamp). Five millilitre 

aliquots were withdrawn at different time points, transferred into 15 ml conical tubes and 

centrifuged (3500 g; Megafuge) for 10 min at 4
o
C to remove the cells. The cell-free 

supernatants (CFS) were sterilised by membrane filtration (Ministart) and stored at -20
o
C 

until use. 

 

3.8.2 Sample preparation for HPLC injection 

Organic acids in the CFS were extracted according to the method of Fernandez-Garcia 

and McGregor (1994). The hydrophobic impurities in the samples were removed using 30 

mg Strata-X polymeric reverse solid phase extraction (SPE) cartridges (8B-S100-TAK, 

Phenomenex, Macclesfield, UK).  

 

Using a vacuum pump, the cartridge column was conditioned by slowly passing 1 ml 

HPLC grade methanol (M/4062/17, Fisher Scientific) through it. It was then allowed 2 

min to drain completely. Methanol was washed off by slowly passing 1 ml of HPLC 

grade water under vacuum and allowed to equilibrate for 5 min at room temperature. 

Finally, 2 ml of the sample (CFS) was loaded into the cartridge and slowly (1-2 min) 

forced though the column using a 10 ml disposable syringe with the first few drops (~500 

µl) discarded and collecting the remainder (~1 ml) into a 2 ml glass vial (Chromocol 

VGA050-511C, Fisher Scientific). All samples were stored at -20
o
C prior to injection into 

HPLC. 
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3.8.3 Preparation of standards  

Standard solutions with a range of concentrations of lactic and acetic acid were prepared 

(Table 3.6). HPLC grade DL lactic acid (69785, Sigma; ~90%, 73.6 μl) and glacial acetic 

acid (A/0407/PB08, Fisher Scientific; 99.7%, 38.25 μl) were mixed with HPLC grade 

water (final volume, 4 ml) to give the stock standard solutions containing 10 and 20 g/L 

acetic and lactic acid, respectively. Subsequently, 1 in 2 serial dilutions were prepared by 

mixing 1 ml of the solution with 1 ml of water and repeating the procedure until the 

lowest dilution was obtained. 

 

Table 3.6 Concentration (g/L) of lactic and acetic acid in the standard solution 

 Concentration of lactic acid Concentration of acetic acid 

1 20 10 

2 10 5 

3 5 2.5 

4 2.5 1.25 

5 1.25 0.62 

6 0.62 0.31 

7 0.31 0.15 

 

 

3.8.4 HPLC system and chromatographic conditions 

The HPLC system used for analysis comprised an auto-sampler (Jasco AS2055, Japan) 

and a pump (Jasco PU1580, Japan). Organic acids were separated on an ion-exclusion 

Rezex ROA organic acid H
+ 

column phase (5 μm, 7.8x300 mm) (Phenomenex) operated 

at ambient temperature with 0.005 N H2SO4 as the mobile phase flowing at 0.5 ml/min, at 

a pressure of 50±5 kg/cm
2
. This low pH eluent prevented organic acids from undergoing 

dissociation. The sample (10 µl) was injected into the HPLC system using an auto-

sampler and organic acids detected using a refractive index (RI) detector (Jasco RI2031, 

Japan). The retention time (Rt) for lactic and acetic acid was 16 and 19 min, respectively. 

Analysis was completed in 25 min. Standard solutions covering a range of concentrations 

for lactic and acetic acid (Table 3.6) were run with the samples. Identification of the 

organic acids in sample extracts was based on matching Rt of standards. Quantification 

was carried out by linear integration of the data based on peak areas using Azur (1999-
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2005) software v.4.6 (Jasco). Mean values (g/L) were computed for individual organic 

acids after triplicate independent injections. 

 

3.9 Determination of volatile production 

Changes in the profile of aroma compounds of milk due to growth of LAB isolates was 

determined by solid phase micro-extraction gas chromatography-mass spectrometry 

(SPME GC-MS). 

 

3.9.1 Culture conditions and sample preparation  

Aliquots (5 ml) from §3.6.1 were taken at different time points for aroma analysis. The 

samples were transferred into 20 ml headspace vials (22.5 x 75.5 mm, Grace Alltech, 

UK). The vials were immediately sealed with a PTFE-Silicone lined magnetic cap (20 

mm diameter, 5 mm centre, Grace Alltech) and stored at -20
o
C until analysis. Samples 

were defrosted overnight at 4
o
C and allowed to equilibrate at room temperature for 30 

min prior to analysis. Un-inoculated milk was included as a control. Three independent 

replicates were prepared for all samples. 

 

3.9.2 Headspace analysis using SPME GC-MS 

A 1 cm Stableflex 50/30 μm SPME fibre with divinylbenzene-carboxen on 

polydimethylsilicone bonded to a flexible fused silica core (Supelco 5951, USA) was 

used for extraction of volatile compounds from the headspace of sample vials prepared in 

§3.9.1. The fibre was first conditioned for 60 min in the injection port at 230
o
C. The 

SPME needle was then introduced into the septum in the lid of the vial using a PAL auto-

sampler (CTC Analytics, Switzerland) and the fibre exposed to the headspace for 20 min 

at room temperature. The temperature of the injection port was 230
o
C.   

 

Chromatography was carried out with a Trace GC Ultra gas chromatograph (Thermo 

Electron Corporation, UK) using a 30 m Zebron ZB-5 capillary GC column (internal 

diameter 0.25 mm, film thickness 1 μm; Phenomenex). Helium gas was employed as the 

carrier gas at a constant pressure of 18 psi. The GC oven temperature programme was as 

follows: initial temperature was 40
o
C maintained for 2 min and increased at a rate of 8

o
C 

per min to a final temperature of 220
o
C. The transfer line from GC to MS was held at 

250
o
C. MS was performed with a DSQ mass spectrometer (Thermo Electron Corporation) 

operating in positive ionisation electron impact mode (EI+) at 70 eV. The detector was 
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operated in scan mode (2 scans/s) scanning from m/z 20-250. Source temperature was 

200
o
C and pressure 39 mtorr. Identification was based on linear retention indices and 

mass spectra matches with those published in the National Institute of Standards and 

Technology (NIST) mass spectral library (2008). Data were processed with Xcalibur 

software v.14 (Thermo Fisher Scientific). 

 

3.10 Statistical analysis 

All microbial counts were normalised by conversion to log10 CFU/ml and parametric 

statistics (means ± standard errors) and analysis of variance (ANOVA) computed using 

the Predictive Analytical Software (PASW), v.19. Pair-wise comparison of the data was 

performed using XLSTAT v.2013.4.05. The relationship between Lactobacillus isolates 

from different cheese sites (outer crust, blue veins and white core) and production of 

volatile compounds in presence or absence of Lc. lactis and salt was evaluated by  

principal component analysis (PCA) using the Unscrambler software v.9.0 (Camo Process 

AS., Norway). PCA and other techniques such as factor analysis and partial least squares 

regression (PLSR) are regarded as appropriate methods for determination of relationships 

between volatile compounds in dynamic or static headspace and their aroma and/or 

flavour attributes during food consumption (Lawlor et al., 2003). 
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CHAPTER 4 

 

 

DIVERSITY OF NON-STARTER BACTERIAL FLORA OF STILTON CHEESE 

 

 

4.1 Introduction 

Numerous processing parameters influence the microbiological profile of ripened cheese. 

Consequently, it is often difficult to predict the microbial content of cheese and to 

determine the impact of its biochemical properties on the quality of the product. This is 

because the contribution of microorganisms to the ripening process depends on the 

availability of substrates, pH, salt concentration, temperature and ripening time, all of 

which can vary within a single cheese product and between different manufacturers 

(Martley and Crow, 1993).  

 

The indigenous microflora of cheeses made from heat treated milk is often over shadowed 

by the activity of starter culture organisms whose primary function is to produce lactic 

acid which, together with rennet, promotes milk coagulation. In the majority of ripened 

cheeses, secondary flora is generally composed of complex mixtures of bacteria, yeasts 

and moulds and may include non-starter culture adjuncts as well as adventitious NSLAB 

present in the cheese as contaminants (Martley and Crow, 1993; Beresford et al., 2001). 

Although non-starter bacteria are often implicated in the production of enzymes involved 

in flavour generation in cheese (Beresford et al., 2001; Coolbear et al., 2008), the 

contribution of these organisms to the quality characteristics of Stilton cheese has not 

been widely studied.  

 

Stilton cheese has heterogeneous microenvironments with pronounced gradients of pH, 

salt, aw and redox potential (Fernández et al., 2009). The piercing step (after 6 weeks) 

causes considerable structural changes and influences the level and distribution of oxygen 

and carbon dioxide within the cheese. These factors influence the growth and biochemical 

activity of the resident microflora and impacts on the quality characteristics of the final 

product.  
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The initial aim of the study was to employ a polyphasic taxonomic approach based on 

phenotypic, biochemical and genotypic methods, to obtain reliable identification of the 

cultured microbial isolates obtained from different sites (outer crust, blue veins and white 

core) of Stilton cheese and to determine their contribution to the cheese quality and 

safety. Polyphasic taxonomy is appropriate for delineation of bacterial taxa at all levels of 

classification (Vandamme et al., 1996). The approach has been previously applied for 

studies on microbial composition of complex ecosystems such as ripened cheese 

(Mounier et al., 2005; Bora et al., 2007), marine (Park et al., 2009) and the human gut 

microflora (Turroni et al., 2009), and so was found appropriate for this work. The 123 

microbial strains which had been isolated from the outer crust, blue veins and white core 

of Stilton cheese were identified on the basis of their phenotypic, biochemical and 

genotypic characteristics as described in Sections 3.2-3.4.  

 

4.2 Results 

4.2.1 Preliminary identification  

Each of the microbial isolates from the three sampled sites of Stilton cheese was grown 

on MRS and BHI agar at 30-37
o
C. Ideally, the selective MRS agar should support the 

growth of all LAB species regardless of their individual growth requirements. BHI agar 

was used for preliminary examination of all microbial isolates that could not be recovered 

on MRS agar. On the basis of cell morphologies after Gram staining, 80 of the 123 

isolates were found to be bacteria while 43 were yeasts. As the yeast species had been 

studied extensively in a previous study (Gkatzionis, 2010), only the bacterial isolates 

were taken forward for identification. The bacterial isolates were examined for colony 

morphologies, cell shape and biochemical characteristics and classified into five groups 

(Group 1-5) (Table 4.1). Groups 1 & 5 grew on MRS and BHI agar and therefore were 

substantively identified as LAB. Groups 2-4 only grew on the non-selective BHI agar and 

therefore were regarded as non-LAB.  
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Table 4.1 Phenotypic and biochemical characteristics of bacterial groups isolated from 

Stilton cheese 

 

Group 

 

Site of isolation 

 

Catalase 

 

Oxidase 

Gram 

stain 

Cell morphology Number (%) 

of isolates 

 

1 

 

Outer crust 

 

- 

 

- 

 

+ 

 

cocci 

 

1 (1.25) 

2 Outer crust + - + cocci 5 (6.25) 

3 Outer crust + + - cocco-bacillus 14 (17.5) 

4 White core + - - cocco-bacillus 1 (1.25) 

5 Outer crust, blue 

veins, white core 

- - + rods 59 (73.8) 

 

 

4.2.2 Species identification using 16S rDNA sequence analysis  

Following the grouping of the isolates according to their macroscopic, microscopic and 

biochemical characteristics, 16S rDNA PCR was applied for molecular analysis in order 

to obtain a species identification. The universal V3 primers were used to amplify the 

variable V3 region of the partial 16S rDNA of Group 1-4 isolates whereas lactobacilli-

specific V6-V8 primers were applied for Group 5 isolates. PCR produced a single 

discrete band for each strain of the expected size, depending on the primers used (Fig. 

4.1a-b). The intensity
 
of individual bands varied among the isolates. Lanes without bands 

as in the case of Group 5 strains R22 and R36 (Fig. 4.1b) are suggestive of products 

below
 
the detection limit of PCR due to low levels of genomic DNA (Jordan et al., 1999). 

However, most of these were successfully amplified by doubling the amount of lysozyme 

in lysis buffer and extending the incubation time for cell lysis from 30 to 60 min at 37
o
C.  
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Figure 4.1a 16S rDNA PCR analysis of Stilton cheese bacterial isolates amplified with V3 primers giving expected product size of 200 bp. Lane 2, Group 1 isolate 

Ou9; lanes 3-6, Group 2 isolates Ou8, Ou10, Ou25 and Ou30; lanes 7-10, Group 3 isolates Ou7, Ou15, Ou22 and Ou23; lane 11, Group 4 isolate W22; lanes 12-15, 

Group 5 isolates R5 (outer crust),  R20, R27 (blue veins), R40 (white core); lanes 1 & 16, 100 bp ladder. The samples were run on 1% (w/v) agarose gel in 1X TAE 

buffer for 2 h at 70 V.  

 

 

Figure 4.1b 16S rDNA PCR analysis of Group 5 Stilton cheese isolates amplified with V6-V8 primers giving expected product size of 428 bp. Lanes 2-6, isolates R1, 

R2, R3, R4, R15 (outer crust); lanes 7-10, isolates R17, R19, R22, R24 (blue veins); lanes 11-14, isoalates R36, R37, R38, R39 (white core); lane 15, negative 

control; lanes 1 & 16, 100 bp ladder. The samples were run on 1% (w/v) agarose gel in 1X TAE buffer for 2 h at 70 V. 

1       2       3       4       5       6       7       8        9      10     11    12      13      14   15    16 

   1       2        3       4       5       6       7       8        9     10     11    12      13      14     15    16 

PCR products, 200 bp 500 bp 

500 bp 

PCR products, 428 bp 

1000 bp 
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The bands corresponding to the isolates (Group 1, n=1 of 1; Group 2, n=5 of 5; Group 3, 

n= 7 of 14; Group 4, n=1 of 1; Group 5, n=59 of 59) were excised from the agarose gels; 

DNA in these bands was extracted using the Zymoclean Gel DNA Recovery Kit as 

described in §3.3.4.5 and sent for sequencing. To obtain species identification, sequences 

were compared using the BLAST programme to query the National Centre for 

Biotechnology Information (NCBI) database and the results are given in Table 4.2. 

Results of database search demonstrated that most strains that gave visible bands with the 

partial 16S rDNA gene produced identifiable sequences. The discrimination of isolates 

belonging to Group 1-4 was good given the high %ID (95-98%) and low E values (2
-47

 to 

3
-72

) obtained. Similarly, good identification was obtained for Group 5 isolates as 

demonstrated by the high %ID (99-100) and low E values (2
-41 

to 4
-156

). Some Group 5 

strains such as R36 (white core), R7 (outer crust) and R25 (blue veins) were only able to 

produce bands with identifiable sequences when genomic DNA was amplified with V3 

primers (gel not shown). 

 

For each of the bacterial groups isolated from Stilton cheese, nucleotide sequences which 

gave similar species and percent identity (%ID) levels with BLAST were aligned to 

establish possible gene mismatches (Appendix 4.1). Minimal base shifts were observed 

when percent identity was 100% but more mismatches were noted as %ID decreased to 

98% and below. Variations (mismatches) generally ranged from single base pair change, 

substitutions, insertions or an omission, which implies that the strains involved could be 

genetically distant relatives (Jordan et al., 1999). However, the slight variation in base 

sequences may also be attributed to mutations, random variations or PCR errors and need 

further investigation.  
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Table 4.2 BLAST matches of the sequences from PCR amplification of genomic DNA from Group 1-5 isolates. Identification was based on 

variable V3 and V6-V8 regions of 16S rDNA 

Isolates  

 

Primer  
Amplicon size 

(bp) 

 

Closest relative 

 

% ID 

 

E-value 

Matching 

sequence length 

(nt) 

Genbank 

accession 

Number  

Group 1  V3 200 En. faecalis 99 2
-47

 111 NC004668 

Group 2 V3 200 Staph. aureus 97 8
-46 

- 4
-65

 155-157
*
 NC013450 

Group 3 V3 200 Ps. cryohalolentis 95-96
*
 2

-57
 - 8

-57
 94-145

*
 NC007969 

Group 4 V3 200 Ac. baumanii 95 4
-55

 144 NC011586 

Group 5a V6-V8 428 Lb. plantarum 99-100
*
 3

-72 
- 4

-156
 165-311

*
 NC012984 

Group 5b V6-V8 428 Lb. brevis 99-100
*
 2

-41 
- 1

-112
 98-231

*
 NC008497 

 

*
Results for a range of isolates: Group 2, 3 isolates; Group 3, 7 isolates; and Group 5, 32 isolates. 
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4.2.3 Phenotypic, biochemical and molecular characteristics of the isolates  

4.2.3.1 Group 1 

Group 1 isolate was found to be a Gram-positive, catalase and oxidase-negative coccus. 

The isolate formed large cream-whitish colonies on MRS and BHI agar. Under oil 

immersion microscopy, cells appeared slightly elongated and in short chains or pairs (Fig. 

4.2a). From the above characteristics, the isolate was presumptively identified as 

Streptococcus, Lactococcus or Enterococcus. As most streptococci would not grow on 

MRS agar, the genus Streptococcus was eliminated at this stage whereas the latter two 

were examined further in order to discriminate them. On sheep blood agar, the isolate 

formed small grey, non-haemolytic colonies confirming it was not streptococci as these 

exhibit either alpha or beta haemolysis. On the basis of this observation, the organism was 

presumptively classified as Enterococcus or Lactococcus as the former organisms may be 

haemolytic or not, while the latter are non-haemolytic (Collins et al., 1989). The 

Lancefield latex agglutination test categorised it as group D streptococci (Enterococcus) 

due to the ability to react with group D antisera on the reaction card. The isolate was 

assessed on KFSA and formed small reddish colonies typical of Enterococcus spp. (Fig. 

4.2a) and further identified as En. faecalis (%ID=99.7, t=0.66) using an API 20 Strep kit. 

 

  

Figure 4.2a Colony (A) and cell (B) morphology of the Group 1 Stilton cheese isolate on KFSA. 

The small reddish colonies obtained were typical of enterococci. 

 

 

A B 
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On the API strip, the isolate produced acetoin, β-glucosidase, arginine dehydrolase, 

leucine arylamidase, pyrrolidonylarylamidase as well as the enzymes that hydrolyse 

hippurate. The isolate also assimilated ribose, mannitol, sorbitol, lactose and trehalose, 

which were the basis for its identification. The API t-index was relatively low suggesting 

identification was not typical of the species obtained. However, API speciation was 

confirmed with 16S rDNA sequence analysis which identified the isolate as closest 

relatives of Enterococcus faecalis (Table 4.2). 

 

4.2.3.2 Group 2 

The five Gram-positive, catalase-positive cocci in this group were presumptively 

identified as Staphylococcus. Single, tetrad or grape-like clustered cells were observed 

under light microscopy (Fig. 4.2b). The colonies were round and cream-yellowish on BHI 

agar. On MSA, small pink-yellowish colonies surrounded by yellow agar resulting from 

acid production due to mannitol fermentation were observed (Fig. 4.2b), which is usually 

associated with coagulase-positive species. Further examination on BPA gave black, 

shiny and convex colonies that lacked the narrow, white edges surrounded by clear zones 

or opaque rings within clear zones (Fig. 4.2b), suggesting they were coagulase-negative 

staphylococci, and so were tested for coagulase production using the Staphytect 

agglutination card. On the reaction card, the isolates exhibited variable reactions, whereby 

four isolates gave a weak positive reaction, whereas one gave a negative result implying 

possible strain differences. Analysis of 16S rDNA sequences revealed that all the tested 

strains (n=5) were closest relatives of Staphylococcus aureus (Table 4.2). As pathogenic 

strains of these organisms are usually coagulase-positive and produce staphylococcal 

enterotoxins (SE), all the five Stilton cheese isolates were assessed for prevalence of the 

various SE encoding genes using multiplex PCR (Section 4.2.3.2.1), since they exhibited 

some (slight) level of coagulase activity. 
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Figure 4.2b Colony (A) and cell (C) morphology of Group 2 Stilton cheese isolate on mannitol 

salt agar. Colony morphology of the isolate (B) compared with the control strain, Staph. aureus 

NCTC 1803 (D) on Baird Parker agar. 
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4.2.3.2.1 Prevalence of SE encoding genes among staphylococcal isolates 

From the sequencing results, it was concluded that these isolates might be Staph. aureus 

which are potentially pathogenic (Collins et al., 1989) despite the poor coagulase test and 

atypical results on BPA. There was the need to establish the profile of possible SEs 

produced by the strains in order to evaluate their potential virulence. The first step was to 

screen the isolates for prevalence of SE encoding genes which would provide the baseline 

data for further assessment of gene expression in vitro. The genes encoding SE A, SE B, 

SE C and SE E are the most frequently encountered in most food products (Lamprell et 

al., 2004) and were therefore the main focus of this part of the study.  

Genomic DNA was extracted using CTAB method (Sharma et al., 2000) as described in 

§3.3.2 and used in multiplex PCR reactions. The reaction conditions were optimised to 

ensure that the target gene sequences were amplified using primers designed to target the 

non-homologous structural coding regions of the SE genes (Sharma et al., 2000). The 

primers had almost equal annealing temperature (49.1-53.2
o
C). Therefore, the average 

temperature used (50
o
C) reduced the possibility of occurrence of unwanted bands on the 

agarose gel, which usually originates from non specific amplification (Mehrotra et al., 

2000).  

As expected, DNA from Staph. aureus NCTC 10652 (SE A and SE D producer) formed 

three discrete bands of 270, 306 and 800 bp (Fig. 4.3, lane 2). Another band of 165 bp 

was obtained from Staph. aureus NCTC 10654 (SE B producer). Two close fragments 

ranging between 60-100 bp were evident from each of the Staph. aureus NCTC 10655 

(SE C producer) and Staph. epidermidis NCTC 12100 (Fig. 4.3, lanes 4 and 5, 

respectively). The latter strain of Staph. epidermidis is a known SE C carrier and was 

used by Sharma et al. (2000) to show the specificity of this multiplex PCR assay. These 

results corresponded to the predicted sizes (Table 3.2). However, only template DNA 

extracts from the positive control Staph. aureus strains gave PCR amplicons (Fig. 4.3, 

lanes 2-5). Although the DNA extract was amplifiable as shown from Fig. 4.2a (Section 

4.2.2), none of the target genes were amplified in the SE multiplex PCR reactions (Fig. 

4.3, lanes 6-10) from Stilton cheese staphylococcal isolates.  
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Figure 4.3 Gel analysis showing multiplex PCR amplification products for SE genes. Lanes 2-5, 

positive control Staph. aureus NCTC type strains: 10652 (SE A & D), 10654 (SE B), 10655 (SE 

C) and Staph. epidermidis NCTC 12100 (SE C); lanes 6-10, Stilton staphylococcal isolates: ou8, 

ou10, ou21, ou25 and ou30; lanes 11-12, negative control; lanes 1 and 13, 100 bp ladder. The 

samples were run on 2% (w/v) agarose gel in 1X TAE buffer for 2 h at 80 V.  

 

A representative band of two of the known amplicons was excised from the agarose gel. 

These were sequenced and subjected to BLAST analysis. As expected, the 270 bp 

amplimer from Staph. aureus NCTC 10652 was confirmed as part of the enterotoxin type 

A encoding gene from closest relatives of Staph. aureus (%ID=99%, E=2
-55

, gene 

accession no., NC002953). Also, the 165 bp amplimer from Staph. aureus NCTC 10654 

was found to be part of the enterotoxin B encoding gene from closest relatives of Staph. 

aureus (%ID=100%, E=3
-52

, gene accession no., NC002951). Following these results, it 

was evident that Stilton cheese staphylococcal isolates lacked the SE A to SE E encoding 

genes. Therefore, it was deemed unnecessary to probe the isolates further for SE gene 

expression (Schmitz et al., 1998) as they lacked the target SE genes.   

 

 

 

 

        1        2         3       4       5        6       7         8        9      10       11     12    13 

100 bp 

800 bp 

SE D 

500 bp 

SE A 

SE B 

SE C1 & C2 
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4.2.3.3 Groups 3 & 4 

The cells for Group 3 & 4 isolates were non-motile, catalase-positive and Gram-negative 

cocco-bacilli (Fig. 4.2c). Neither grew on MRS agar. Group 3 isolates were oxidase- 

positive and formed large smooth, circular, cream coloured, convex colonies with a sticky 

texture on BHI agar. The Group 4 isolate was oxidase-negative and formed small but 

thick, elevated off-white colonies on BHI agar. For both groups, under the microscope the 

cells often appeared single or in pairs (diploforms) with pointed ends. The Group 4 isolate 

could not grow on MacConkey agar implying it was sensitive to bile salts and therefore 

not an Enterobacteriaceae. All isolates in Group 3 & 4 were subjected to API 20 NE for 

preliminary identification. From this, the Group 4 isolate was identified as Sphingomonas 

paucimobilis (%ID=96.8, t=0.26). On the API strip, the isolate assimilated nitrate, urea, 

aesculin, D-maltose, potassium gluconate, N-acetyl glucosamine, D-glucose and D-

mannose. However, the low t-index obtained implies that the identification was not 

typical for this species. Group 3 isolates gave no positive reactions on the API strip and 

could not be identified from phenotypic and biochemical characteristics.  

 

From 16S rDNA sequence analysis, Group 3 & 4 isolates were respectively identified as 

closest relatives of Psychrobacter cryohalolentis and Acinetobacter baumanii (Table 4.2). 

Molecular identification of Group 4 isolate was in accord with the observed 

morphological (Gram-negative, cocco-bacilli) and biochemical (catalase-positive, 

oxidase-negative) characteristics typical of Acinetobacter species (Constantiniu et al., 

2004). Whereas API speciated the isolate as Sph. paucimobilis, the latter organisms are 

typically oxidase-positive (Ryan and Adley, 2010), which was not the case for the 

isolated strain tested in this study. On the basis of this, and given the low t-index obtained 

from API, molecular identification was regarded as definitive for the Group 4 isolate. 

Failure to metabolise L-arabinose, trisodium citrate and fatty acids (capric, adipic, malic 

and phenylacetic acid) on the second part of the API strip led to inappropriate API 

identification of Ac. baumanii leading to a different speciation, i.e. Sph. paucimobilis. 
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Figure 4.2c Colony and cell morphology of Group 3 (A, C) and Group 4 (B, D) Stilton cheese 

isolates on BHI agar. 
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4.2.3.4 Group 5 

This group consisted of Gram-positive, catalase and oxidase-negative, non-sporing rods 

presumptively identified as Lactobacillus. The strains formed profuse and small, round 

(elliptical) off-white colonies on MRS (Fig. 4.2d, A) and BHI agar. Cells appeared 

slender and short under the microscope (Fig. 4.2d, B). BLAST analysis of Group 5 

sequences demonstrated that the majority (97% of the 32 isolates) were closest relatives 

of Lactobacillus plantarum (Group 5a; Table 4.2) and two isolates were identified as 

closest relatives of Lactobacillus brevis (Group 5b; Table 4.2). As there were 60 isolates 

which had all come from a single cheese, they were assessed for substrate assimilation 

profiles (Section 4.2.3.4.1) and PFGE (Section 4.2.3.4.2) to determine their biochemical 

profiles and genotypic relatedness, respectively. 

 

  

Figure 4.2d Colony (A) and cell (B) morphology of Group 5 Stilton cheese isolate on MRS agar 

 

4.2.3.4.1 Substrate assimilation profiles for Lactobacillus isolates 

In order to evaluate the phenotypic relatedness and confirm the identity of the dominant 

non-starter bacterial flora obtained with 16S rDNA sequence analysis (Group 5), 

carbohydrate fermentation patterns of representative isolates from each sampled site and 

identified as closest relative of Lb. brevis (2 strains, outer crust) and Lb. plantarum (outer 

crust, n=3; blue veins, n=5; white core, n=7) were characterised based on API.  

 

A B 
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The API identification level for Lb. plantarum isolates ranged from 90.4 to 99.9% (t=0.4-

0.78) and 95-96.1% (t=0.47) for Lb. brevis isolates (Table 4.3). From these results, 80% 

of the isolates identified as Lb. plantarum had similar substrate assimilation profiles but 

20% showed a different pattern suggesting a mixed population of Lb. plantarum was 

present in Stilton cheese. The diversity was caused by the differences in the ability to 

assimilate L-rhamnose, methyl-αD-mannoside and D-melezitose (Table 4.3). In 

comparison with other Lb. plantarum isolates, isolates R4 & R5 (outer crust) and R37 

(white core) could assimilate D-melezitose and methyl-αD- mannoside but not L-

rhamnose. Also, there was variation in the assimilation profiles for the isolates identified 

as Lb. brevis. The variation was caused by differences in their ability to assimilate D-

galactose, D-glucose and α-keto-gluconate (Table 4.3). Isolate R9 from the outer crust 

could assimilate the above three carbohydrates whereas R15 (outer crust) could not. 

Compared with Lb. plantarum strains, the isolates identified as Lb. brevis could not 

assimilate most of the substrates on the API strip. In fact, Lb. brevis strains could only 

assimilate D-ribose, D-xylose, D-glucose, D-fructose and gluconate out of the 50 

substrates examined.  

 

API appropriately assigned the isolates to Lb. plantarum and Lb. brevis which was 

concordant with the 16S rDNA sequence identifications presented in Table 4.2. Although 

API results corresponded with 16S rDNA sequence identification, API t-indices were 

substantially lower than 1.0 suggesting that the profiles were not absolutely typical of the 

species. This is probably indicative of the fact that the API database does not contain a 

large number of wild isolates demonstrating the diversity of lactobacilli isolates selected 

in the cheese. However, the technique was found to be more sensitive than 16S sequence 

analysis as it was able to provide some measure of strain/biotype differentiation and gave 

valuable information on the inherent metabolic properties of Lactobacillus species 

obtained from different sites in Stilton cheese. The strains were subjected to sub-species 

typing using PFGE (Section 4.3.4) to evaluate their genotypic relatedness.  
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Table 4.3 Substrate assimilation profiles of Lactobacillus isolates. Data obtained from two independent determinations. 

 

Substrate 

                 Assimilation profiles for isolates identified as 

Lb. brevis    Lb. plantarum       

R9 R15  R2 R4 R5 B14 B27 R17 R23 R30 R36 R37 R40 R44 W10 W24 W26 

D-ribose + +  + + + + + + + + + + + + + + + 

D-xylose + +  - - - - - - - - - - - - - - - 

D-galactose  + -  + + + + + + + + + + + + + + + 

D-glucose  + +  + + + + + + + + + + + + + + + 

D-fructose  + +  + + + + + + + + + + + + + + + 

D-mannose  - -  + + + + + + + + + + + + + + + 

L-rhamnose  - -  + - - + + + + + + - + + + + + 

D-mannitol  - -  + + + + + + + + + + + + + + + 

D-sorbitol  - -  + + + + + + + + + + + + + + + 

Methyl- αD-mannoside - -  + - + + + + + + + + + + + + + 

N-acetyl glucosamine - -  + + + + + + + + + + + + + + + 

Amygdalin  - -  + + + + + + + + + + + + + + + 

Arbutin  - -  + + + + + + + + + + + + + + + 

Esculin ferric citrate  - -  + + + + + + + + + + + + + + + 
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Salicin  - -  + + + + + + + + + + + + + + + 

D-cellobiose  - -  + + + + + + + + + + + + + + + 

D-maltose  - -  + + + + + + + + + + + + + + + 

D-lactose  - -  + + + + + + + + + + + + + + + 

D-Sucrose  - -  + + + + + + + + + + + + + + + 

D-trehalose  - -  + + + + + + + + + + + + + + + 

D-melezitose - -  - + + - - - - - - + - - - - - 

Gentiobiose  - -  + + + + + + + + + + + + + + + 

D-arabitol - -  + + + + + - + + + + + + + + + 

Potassium gluconate  + +  - - - - - - - - - - - - - - - 

α-keto-gluconate + -  - - - - - - - - - - - - - - - 

%ID (API) 95 96.1  99.9 90.4 99.8 99.9 99.9 99.9 92.4 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

API t-index 0.47 0.7  0.6 0.72 0.6 0.6 0.6 0.74 0.4 0.6 0.6 0.73 0.6 0.6 0.6 0.6 0.6 

%ID (16S rDNA) 96 96  100 99 98 99 99 99 99 100 99 99 99 100 99 ND 99 

 

(+) positive reaction, (-) negative reaction, ND (not done). Isolates were obtained from the: outer crust (R2-R15), blue veins (B14-B27, R17-R30), and white 

core (R36-R44, W10-W26) 
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4.2.3.4.2 Species and sub-species typing of the lactobacilli using PFGE 

PFGE was carried out on the Lactobacillus isolates to determine their genetic relatedness. 

The restriction enzyme NotI was employed to digest genomic DNA from the 59 strains. 

This enzyme with the recognition sequence 5'-GC
▼

GGCCGC-3' had been previously 

successfully applied to cut genomic DNA producing suitable PFGE patterns for 

lactobacilli compared with other enzymes such as SmaI, XbaI, etc (Obodai, 2006; 

Vancanneyt et al., 2006). This is partly because these organisms have a relatively low 

guanine and cytosine content (35-47 G+C mol %) in their genome (Yeung et al., 2004). 

Therefore, NotI which recognises G+C rich sequences cuts the DNA less frequently 

giving fewer fragments which aids separation and visual evaluation of the resulting PFGE 

patterns (typical results shown in Fig. 4.4). 

 

Electrophoresis was performed for 21 h at 6 V/cm, ramping linearly from 4 to 45 s, 

temperature of running buffer, 14
o
C (§3.3.5.3), to obtain visually informative patterns 

from all isolates. Five to sixteen bands were produced with the highest number recorded 

from isolate W23 obtained from the white core whereas the lowest was recorded from 

isolate R6 obtained from the outer crust (gel not shown) suggesting differences in 

genomic composition of the lactobacilli isolates obtained from different sites in Stilton 

cheese. The size of resolvable fragments ranged from approximately 50 to ~700 kbp. 

Although a high degree of similarity was generally evident in PFGE band patterns above 

~700 kbp, the region between 50 to ~600 kbp delineated a relatively variable and 

heterogeneous band region. Another relatively constant and similar band pattern occurred 

below 50 kbp for all the strains.  
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Figure 4.4 PFGE patterns of Lactobacillus plantarum isolates obtained from Stilton cheese. 

Genomic DNA was cut with NotI and fragments separated by PFGE on 1% (w/v) pulse-field 

certified agarose gel at 6 V/cm with switch time ramped from 4 to 45 s for 21 h at 14°C. Lanes 1-

10, isolates from the white core: R36, R37, R38, R39, R40, R41, R42, R43, R44 and R45. Lane 

M, 50-1000 kbp marker.  

  

4.2.3.4.3 Cluster analysis 

Cluster analysis was conducted to establish the degree of genomic relatedness of the 59 

Lactobacillus isolates typed by PFGE. The dendrogram established by the average 

linkage method (UPGMA) of the PFGE patterns based on a Dice similarity coefficient 

with a 1.5% band position tolerance demonstrated a range of similarity levels between the 

lactobacilli as shown in Fig. 4.5. Five major geno-groups (clusters) were delineated at a 

similarity level of 52% (ΦPT=0.34; p<0.01). There was significant difference in molecular 

variance among the clusters (ΦPT=0.01-0.56, p<0.01; Appendix 4.3). All clusters (except 

III and IV) had heterogeneous PFGE profiles and only contained isolates from the blue 

veins and white core, which implies possible clonal relationship. Cluster I was the largest 

comprising 38 isolates whereas clusters II and IV were the smallest and comprised two 

isolates each. Interestingly, all isolates from the outer crust were grouped in clusters III 

  M       1       2       3       4       5      M      6       7       8       9      10     M    

300 kbp 

150 kbp 

550 kbp 

50 kbp 



 

78 

 

and IV suggesting they entered into the cheese from a common source. Isolate R24 was 

shown to be an outlier to geno-group II. Isolates R20 and R37 were also shown to be 

outliers with R20 being an outlier of geno-group V. In cluster I, isolates B27 & B28 (blue 

veins) and W9, W12 & W13 (white core) exhibited indistinguishable NotI macro-

restriction profiles producing 100% identity levels independent of their source of isolation 

and so were considered to be identical. Surprisingly, although Lb. brevis isolates (R9 and 

R15 from the outer crust) were aligned next to each other and clustered with Lb. 

plantarum from the outer crust (cluster III), the dendrogram did not indicate Lb. brevis as 

an outlier even though it is belongs to a different species. This suggests a high level of 

homology in genomic DNA of these LAB species although both had been earlier shown 

to exhibit different API profiles. As Lb. plantarum isolates with similar API phenotypes 

(R4 and R5, outer crust) were clustered close to each other (clusters III and IV), this 

demonstrated good sensitivity of PFGE. 
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Figure 4.5 Dendrogram showing the clustering of 59 Lactobacillus isolates obtained from Stilton 

cheese. Similarity values were obtained by UPGMA and the Dice coefficient methods with a 

1.5% band position tolerance. Strains from:  (■) outer crust, (■) blue veins, and (■) white core. 

All isolates were Lb. plantarum except for Lb. brevis (strains R9 and R15, cluster III). 
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4.2.4 Distribution of bacterial species obtained from different sites in Stilton cheese 

Although molecular sequence identifications were more accurate as demonstrated by the 

higher %ID and very low E-values obtained for all isolates, the results of 16S rDNA 

sequence analysis were congruent with the presumptive identifications obtained using the 

classical microbiological methods and API. On the basis of these results, the bacterial 

community structure of the outer crust was found to be more diverse and comprised five 

of the six species recorded (Fig. 4.6). In comparison, blue veins had the lowest (1 out of 

6) number of species isolated and only comprised Lb. plantarum.  

 

Lb. plantarum
(outer crust, 7 

isolates; blue 
veins, 27 isolates; 

white core, 25 
isolates)

74%

Lb. brevis      
(outer crust)

3%

En. faecalis 
(outer crust)

1%

Staph. aureus 
(outer crust)

6% Psychrobacter
spp. (outer crust)

15%

Ac. baumanii 
(white core)

1%

 

Figure 4.6 Diversity of the non-starter bacterial isolates obtained from different sites (outer crust, 

blue veins and white core) in Stilton cheese. 
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4.3 Discussion 

The main goal for this part of the study was to identify isolates of the bacterial flora from 

Stilton cheese. While Stilton cheese is made from pasteurised milk and should, therefore, 

be free from undesirable bacteria, the final product was dominated by secondary flora. Lc. 

lactis is normally added as a starter culture but was not detected in the community profile 

of the strains isolated. Lb. plantarum was the dominant species spatially distributed in the 

outer crust, blue veins and white core suggesting it was selected during the ripening 

process. The dominance of lactobacilli and the absence of lactococci in Stilton cheese 

showed good comparison with previous studies (Fitzpatrick, 1971; Whitley, 2002; 

Ercolini et al., 2003) implying the latter had been replaced by the more acid-tolerant 

lactobacilli from the environment (Hiscox et al., 2008). This has potential implications on 

the aroma and other quality characteristics of the ripened product.  

 

The NSLAB species isolated from Stilton cheese included Enterococcus faecalis, Lb. 

plantarum and Lb. brevis. Cogan et al. (2007) have summarised the NSLAB commonly 

identified in more than 50 varieties of ripened cheese. In most cheeses, regardless of 

whether they are made from raw or pasteurised milk, the dominant organisms are usually 

the facultative homofermentative lactobacilli (FHL) that produce predominantly lactic 

acid as the end product of carbohydrate fermentation. These commonly include Lb. casei, 

Lb. plantarum and Lb. curvatus, all of which normally grow from levels of 10
2
-10

4
 to 

~10
8
 CFU/g by the end of cheese ripening. Stilton cheese is made from pasteurised milk. 

Therefore, the presence of these organisms in the product may be attributed to inadequate 

heat treatment and/or post pasteurisation contamination from subsequent processing steps 

and the production plant environment (Robinson, 1990). Given that Lb. plantarum 

isolates were obtained from all the sampled sections of Stilton cheese, this suggests that 

these FHL could have been introduced into the cheese from various routes: strains 

introduced from equipment during curd milling prior to moulding, during the piercing 

step, or strains which could have been introduced to the cheese outer crust during ripening 

from the processing plant environment and handlers. 

 

Obligate heterofermentative lactobacilli (OHL) such as Lb. brevis on the other hand can 

produce alcohol or lactic acid from sugar fermentation (Mikelsaar et al., 2002; Ganzle et 

al., 2007). These are often found in low numbers in mould ripened cheeses (Fitzsimons et 

al., 2001; Gala et al., 2008), which is similar to this study. FHL normally dominate the 
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bacterial flora of high quality blue cheese and they are considered to enhance its flavour 

development and production of antimicrobial compounds (Whitley, 2002; Ercolini et al., 

2003). OHL particularly Lb. brevis sometimes interact with Lb. curvatus and produce 

metabolites such as acetic acid, carbon dioxide, ethanol and hydrogen peroxide that 

interfere with the cheese sensory properties (Patil et al., 2007). In Stilton cheese, Lb. 

brevis is considered undesirable as it is thought to reduce blueing and generates bad 

flavour notes in the cheese (Whitley, 2002). Lb. plantarum isolated from silage was 

shown to produce antifungal compounds including 3-phenyllactate and 2-cyclic 

dipeptides (Cogan et al., 2007) and participates in the release of free amino acids and 

fatty acids that contribute to mature cheese flavours (De Angelis et al., 2004).  

 

4.3.1 Enterococcus isolate 

Enterococci, particularly En. faecalis, En. faecium, and En. casseliflavus frequently occur 

as NSLAB in a variety of artisanal cheeses produced from raw or pasteurised milk, and 

occasionally in natural milk or whey starter cultures (Cogan et al., 2007). They contribute 

to cheese quality characteristics through proteolysis and lipolysis. These organisms also 

produce aroma compounds and bacteriocins (enterocins) that are inhibitory against 

pathogens such as Listeria monocytogenes, Staph. aureus, Vibrio cholerae, Clostridium 

spp. and Bacillus spp. (Giraffa, 2003). The presence of En. faecalis in the outer crust of 

Stilton cheese was not surprising as the organism is often isolated from highly acidic and 

salty dairy samples (Ercolini et al., 2003), due to cross-contamination from personnel. 

However, the occurrence of enterococci in food usually indicates poor bacteriological 

quality and poor hygiene during manufacture due to faecal contamination as their natural 

habitat is the mammalian intestinal tract (Franz et al., 1999). In fact, En. faecalis is often 

the most frequently occurring Enterococcus species in faeces of humans and dairy cows; 

however, En. faecium, En. hirae, En. avium, and En. durans have also been found 

(Gelsomino et al., 2002; Rathnayake et al., 2011). These organisms are also found in 

water, soil, plants, vegetables, and have been previously isolated from Cheddar-type 

cheeses during manufacture and ripening (Gelsomino et al., 2002). Although the role of 

En. faecalis in blue cheese is not well known, it has been suggested that the organism can 

be added as a starter culture adjunct for some semi-hard cheese varieties (Garde et al., 

1997). 
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4.3.2 Staphylococcal isolates 

The staphylococcal isolates grew on mannitol salt agar (MSA) giving colonies typical of 

Staph. aureus. As they were identified as Staph. aureus using 16S rDNA sequence 

analysis, the strains formed atypical colonies on Baird-Parker agar (BPA) and exhibited 

weak coagulase activity. The high salt content (7.5%) of MSA inhibits most other 

organisms and encourages growth of staphylococci regardless of coagulase status. BPA is 

selective for all staphylococci and can be used as a diagnostic medium for Staph. aureus. 

The medium contains sodium pyruvate which stimulates the growth of staphylococci. The 

tellurite additive in the medium is toxic to egg yolk clearing strains other than 

staphylococci and imparts a black colour to the colonies. Glycine and lithium chloride in 

BPA are inhibitory to organisms other than Staph. aureus. Lecithinase activity creates the 

clear zones in the egg yolk typical of coagulase-positive species. 

 

Four of the five isolates identified as Staph. aureus by 16S rDNA sequence analysis had 

weak coagulase activity and grew on BPA to form atypical black colonies lacking a zone 

of clearing (Fig. 4.1b). The presence of atypical colonies on BPA that do not show 

opacity or zones of clearing are known to occur among Staph. aureus isolated from foods 

of bovine origin (CDSC, 2005), and so this observation should not be the basis for 

invalidating the results obtained from this study. Staphylococci are facultative anaerobes 

and grow better in a less acidic environment, which is similar to the outer crust of Stilton 

cheese (pH ~6) from where they were isolated. The presence of Staph. aureus in Stilton 

cheese and other food products is generally undesirable especially when the count is 

greater than 10
2 

CFU/g. Low numbers of these halotolerant organisms is indicative of 

poor handling conditions whereas high counts are frequently associated with incidences 

of food poisoning (CDSC, 2005). Staph. aureus normally find their way into dairy 

products from the raw milk, personnel, animal skins and the environment (Roberson et 

al., 1998).  

 

Use of multiplex PCR to detect the presence of SE genes is an improvement over many 

other previously described PCR protocols, where individual primers are used to identify 

the various SE genes (Schmitz et al., 1998; Mehrotra et al., 2000). The three pairs of 

multiplex primers used in this study, to target the five structural SE genes were shown to 

be specific, reliable, and efficient in detection of the genes. Multiplex PCR revealed that 

the staphylococcal isolates lacked the SE encoding genes targeted. As an internal control, 
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Staph. epidermidis which only rarely harbours the SE C encoding gene was used in the 

assay. Whereas the study showed that the staphylococcal isolates lacked SE A-E encoding 

genes, it could be possible that the strains possessed other SE genes such as F-U (De 

Freitas et al., 2008) which were not targeted in this work. The prevalence of SE G, H, I 

and J encoding genes in Staphylococcus spp. from dairy products manufactured using 

milk from cows diagnosed with subclinical mastitis is normally high at 80.2% (De Freitas 

et al., 2008). Notably, these genes are often detected in instances where none of the genes 

encoding the classical SE A-E, toxic shock syndrome toxin 1 (TSST-1), and exfoliate 

toxins (ET A&B) may not be found (De Freitas et al., 2008). This is an aspect which 

requires further investigation for Staph. aureus strains isolated in the current study.  

 

It was evident that the Staph. aureus isolates lacked the SE A-E encoding genes. Johnson 

et al. (1991) highlighted that non-pathogenic strains of the same genus or species 

frequently overgrow the pathogens, and in the process, the latter may readily lose plasmid 

or phage mediated virulence factors such as enterotoxin genes. Although there is scant 

information about how frequently this phenomenon occurs, it has been reported that many 

phage-carrying human and animal staphylococcal strains do not produce enterotoxins 

(Honeyman et al., 2002). Some strains of Staph. aureus become able to produce 

enterotoxins through acquisition of a variable number of mobile genetic elements 

including transposons, temperate and defective bacteriophage, plasmids, pathogenicity 

islands and uncharacterised DNA inserts (Honeyman et al., 2002; Fusco et al., 2011).  

 

In general, the results from this study were accordant with previous findings in which it 

was reported that ripened cheese is relatively free from toxin producing strains of Staph. 

aureus (CDSC, 2005). Whereas SE A and D are the most commonly encountered 

enterotoxins (Balaban and Rasooly, 2000; Naffa et al., 2006; Fusco et al., 2011), the 

prevalence of SE genes in food and clinical isolates of Staph. aureus is relatively rare and 

varies with geographical region and, ecological origin of the organism (food, humans and 

animals) (Naffa et al., 2006). Considering the ability to amplify the DNA as an internal 

positive control (Section 4.2.2), provided assurance against false negative results and 

gave the confidence to conclude that the Staph. aureus growing in this Stilton cheese may 

not pose health hazards related with the presence of staphylococcal enterotoxins A-E.   

 

http://jmm.sgmjournals.org/search?author1=Randa+G.+Naffa&sortspec=date&submit=Submit
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The foods that are most often involved in staphylococcal food poisoning differ widely 

from one country to another. In the UK, 53% of the staphylococcal food poisonings 

reported between 1969 and 1990 were due to meat products, meat-based dishes, and 

especially ham; 22% of the cases were due to poultry and poultry-based meals, 8% were 

due to milk products implying Stilton cheese and other dairy products are relatively free 

from SE producing staphylococci (Le Loir et al., 2003). 

 

4.3.3 Psychrobacter isolates 

Psychrobacter cryohalolentis was only isolated from the outer crust of Stilton cheese 

where redox potential (Eh) is positive due to presence of air suggesting its potential to 

contribute to the microbial succession dynamics in this part of the cheese matrix. This 

lipolytic, strictly oxidative, psychrotolerant and moderately halotolerant organism usually 

lives in extremely cold habitats and mainly contaminates refrigerated poultry, seafood and 

meat products during storage under aerobic conditions (Pacova et al., 2001; Bakermans et 

al., 2006). Milk fermentation and the cheese ripening process are accompanied by 

reduction of oxygen to water (Beresford et al., 2001). As a consequence, the cheese 

interior essentially becomes more anaerobic (negative Eh) which excludes most obligate 

aerobes including Psychrobacter spp., but supports the growth of obligatory or facultative 

anaerobic microorganisms such as LAB (Beresford et al., 2001) as observed in the study. 

Although the genus Psychrobacter has a ubiquitous distribution in foods (Pacova et al., 

2001), Bakermans et al. (2006) reported that sea water, soil and sediment, as well as 

marine foods constitute its typical natural habitats. Other sources of Psychrobacter spp. 

include pigeon faeces, fish, dairy products and clinical sources. Although the 

development of these bacteria in cheese and their contribution to its aroma during 

ripening has not been widely studied, growth of lipolytic and proteolytic strains in a 

synthetic cheese medium has been found to produce pronounced ‘cheesy’ notes attributed 

to volatile sulphur compounds (Deetae et al., 2009).   

  

4.3.4 Acinetobacter isolate 

The sole Gram-negative cocco-bacillus isolate from the white core of Stilton cheese was 

identified as Acinetobacter baumannii. Some of these organisms are lipolytic (Pacova et 

al., 2001) but pathogenic strains are normally resistant to antibiotics and usually 

associated with nosocomial pneumonia especially among persons with compromised 

immune systems such as the wounded, elderly and children (Rello, 1999). Ac. baumanii is 

http://link.springer.com/search?facet-author=%22Pawinee+Deetae%22
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non-fermentative and exhibits resistance to antimicrobial compounds but
 
the mechanism 

of regulating this expression is not yet well defined (Hood et al., 2010). Sodium chloride 

is thought to enhance tolerance
 
of the organism to aminoglycosides, carbapenems, 

quinolones, colistin and other antibiotics by inducing genes that encode for putative
 
efflux 

transporters which are up-regulated in response
 
to the salt (Hood et al., 2010). The major 

factors that may be responsible for presence of Acinetobacter spp. in cheese and other 

food products include their ability to attach and persist on food contact surfaces, 

availability of essential nutrients such as iron and subsequent adhesion to epithelial cells 

of personnel working in the processing plants (Rello, 1999).  

 

The presence of En. faecalis, Staph. aureus and Psychrobacter spp. in the outer crust may 

be attributed to the oxidative nature of this part of the cheese and its higher pH (~6) which 

enhance their survival. The pH of the outer crust is elevated relative to that of the blue 

veins and white core due to metabolic activity of moulds, yeasts and coryneform bacteria 

that degrade lactic acid and liberate ammonia from amino acids (Zeuthen and Bùgh-

Sùrensen, 2003). These factors may also explain the presence of staphylococci in this part 

of the cheese sample because the organisms are known to be susceptible to acid (Ercolini 

et al., 2003).  

 

4.3.5 PFGE cluster analysis 

Based on cluster analysis of PFGE profiles, isolates are considered as belonging to 

different profiles if differing by five or more bands (Sood et al., 2002). The technique is 

normally used to discriminate strains of the same species based on differences in their 

genomic DNA. Although not applied in this study, the discriminatory index has been 

reported as an alternative for PFGE typing comparison and grouping. The index 

represents the probability that two unrelated strains are characterised as being of different 

types by a given typing system and is widely used in PFGE-RAPD for E. coli (Sood et 

al., 2002).  

 

Lactobacilli isolated from the outer crust were clustered together implying close clonal 

relationship. These isolates are likely to influence the quality properties of this cheese 

section in the same way (Gkatzionis et al., 2009) as evidenced by the majority (two out of 

the three tested strains) of the isolates having similar API characteristics. It was surprising 

that PFGE clustering could not clearly differentiate between Lb. plantarum and Lb. 
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brevis, whereas both species of these NSLAB isolates were effectively discriminated by 

API. The 16S rDNA cataloguing system has clustered Lb. plantarum and Lb. brevis 

together and closer to other species including Lc. lactis, Lb. acidophilus, Lb. helveticus, 

Lb. rumis, Lb. casei, Lb. bifermentans, Lb. fermentum and Ped. pentosaceus (IDF, 1988). 

However, PFGE was expected to show high sensitivity in discriminating Lb. brevis from 

Lb. plantarum as was the case for API 50 CHL. Moreover, both of these organisms have 

different chromosomal architectures. There is the need to re-examine this aspect using 

other typing methods or by application of two or more restriction enzymes in order to 

determine the reproducibility of these results. 

 

4.4 Conclusions 

The study demonstrated that Lb. plantarum is the dominant non-starter bacterial species 

within the outer crust, blue veins and white core of Stilton cheese at the end of ripening.  

Blue veins and white core had the highest proportion (85% of the 59 Lactobacillus 

isolates), whereas the outer crust only contained 15%. Identification of the five major 

non-starter bacterial groups was achieved by conventional microbiological and molecular 

protocols giving generally concordant results except for the isolates identified as 

Psychrobacter spp. which did not give significantly identifiable profiles with API. 

Species identification with 16S rDNA sequencing was generally more precise, simpler 

and faster than API. In cases where disagreement occurred, identification obtained with 

molecular methods was regarded as definitive.  

 

In general, the bacterial community structure was relatively complex and differentially 

distributed within the cheese sample. Whereas Lb. plantarum was present with other 

bacterial species in all sampled sites, the blue veins contained only this organism whereas 

the white core contained Lb. plantarum along with Ac. baumanii, implying the latter were 

more selective microenvironments than the outer crust. However, there is the possibility 

that the microbial diversity observed was limited due to the possible presence of other 

uncultivable microorganisms or having used a narrow spectrum of selective media and 

incubation conditions to recover the bacterial species identified. For instance, other 

studies have shown that, in addition to the bacterial species obtained from this study, the 

microflora of Stilton cheese is composed of Lb. curvatus (Whitley, 2002), Lc. lactis, Leu. 

mesenteroides and Staph. equorum (Ercolini et al., 2003), as well as various yeast species 
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including Candida catenulata, Yarrowia lipolytica, Kluyveromyces lactis, Debaromyces 

hansenii and Trichosporon ovoides (Gkatzionis, 2010).  

 

Lc. lactis and other common Stilton cheese starter culture strains such as Leuconostoc 

spp. could not be isolated despite the fact that they are usually added in the cheese-

making process suggesting they were probably on confluent plates and therefore did not 

produce single colonies to be isolated or they were metabolically impaired or were unable 

to withstand the high acidity, salt content and low aW levels characteristic of the ripened 

cheese. Some of these factors have been examined, the results of which are presented in 

Chapters 5 and 7. 

 

The presence of Lactobacillus in all the sampled sites implies they can grow in a broad 

spectrum of conditions such as acid, antimicrobial agents, oxygen, etc, and therefore can 

potentially influence the quality characteristics of the cheese through possible interaction 

with the other cheese microflora. This may partly arise from differential utilisation of the 

cheese nutrients due to varying degrees of response to factors such as antimicrobial 

compounds, pH, aW and salt content, all of which vary in the different sites of ripened 

Stilton cheese. The phenomenon is likely to be of significance in relation with the 

distribution of aroma and other quality attributes within the cheese and has been partly 

investigated in this study (Chapter 7). 

 

The absence of SE A-E encoding genes among staphylococcal isolates was definitively 

determined by multiplex PCR. There is the need to verify the lack of toxin production by 

the Stilton cheese staphylococcal isolates that exhibited some level of coagulase activity. 

The results obtained in this study cannot be regarded absolute as only one cheese sample 

taken at a single time point and from a single source was examined.  
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CHAPTER 5 

 

 

STRESS TOLERANCE RESPONSE OF LACTOBACILLUS PLANTARUM 

ISOLATES OBTAINED FROM STILTON CHEESE 

 

 

5.1 Introduction 

Adventitious NSLAB introduced into cheese as contaminants from raw milk and the 

environment usually grow from as low as 2 log10 CFU/g in the fresh curd to dominate the 

microflora of the mature cheeses (De Angelis et al. 2004). The NSLAB that grow in 

ripened cheese made from pasteurised milk mainly consist of the bacteria that survive the 

milk pasteurisation process and subsequently become part of its secondary flora 

(Briggiler-Marco et al., 2007). However, the non-starter microorganisms present in 

cheese are also considered to be part of the resident flora of the processing plant 

environment and can contaminate the product from the processing steps that follow milk 

pasteurisation (Briggiler-Marco et al., 2007). 

 

Stilton cheese at the beginning of the production process has an average pH of 4.5 and 

3.5% (w/w) salt. Piercing at 5-6 weeks and further ripening for 8-12 weeks result in 

considerable physical and chemical changes creating acid and water activity gradients in 

the different cheese sections (outer crust, blue veins and white core). By the end of 

ripening, the pH of the outer crust and blue veins (5-6) is higher than that of the white 

core (4.5-5) due to mould activity which produces ammonia from oxidative deamination 

of amino acids and amines (Fox et al. 2000). Conversely, the water activity (aW) of the 

outer crust is lower than that of the cheese interior due to moisture loss occurring during 

ripening.  

 

It is, therefore, logical to consider that Lactobacillus plantarum growing in Stilton cheese 

is well adapted to the cheese production process, milk fermentation and to the cheese 

ripening conditions, becoming the dominant microbiota of the final product after starter 

culture lactococci decrease. It was anticipated that Lb. plantarum isolates obtained from 

the white core in the current study, could be more acid tolerant as they were able to 

survive milk fermentation and the cheese ripening processes. The isolates obtained from 

the outer crust could have been introduced as contaminants from the environment and 



 

90 

 

introduced into the blue veins during piercing. As the latter lactobacilli were isolated from 

a relatively low aW/high pH microenvironment (outer crust) implies they could have been 

selected to be able to grow at a relatively low aW/high pH typical of this cheese section.  

 

Isolation and screening of microorganisms from natural sources has always been used as 

the most powerful approach for obtaining useful and genetically stable microbial strains 

for use as starter cultures and starter culture adjuncts in the dairy industry (Ibourahema et 

al., 2008). Several members of the Lactobacillus genus are frequently applied as culture 

adjuncts in the manufacture of ripened cheese and other fermented dairy products (Adnan 

and Tan 2003; Derzelle et al., 2003). Lactobacilli mainly improve the quality of ripened 

cheese through production of lactic acid which acts as a natural preservative as well as a 

flavour enhancer (Verluyten et al., 2004). Lb. plantarum is considered to have better 

potential for development into commercial culture adjuncts than obligate 

heterofermentative lactobacilli such as Lb. brevis (Adnan and Tan, 2003). This is because 

the organism produces fewer metabolites other than lactic acid, and poses a more 

predictable and controlled effect on the product quality characteristics. Although the role 

of Lb. plantarum in ripening of Stilton cheese has not yet been resolved, the inclusion of 

some strains of this organism with the starter culture lactococci is known for positive 

effects on release of free amino acids and fatty acids that contribute to improved flavour 

in mature cheeses (De Angelis et al., 2004; Spano et al., 2004; Briggiler-Marco et al., 

2007). There is a need to evaluate the potential of Lb. plantarum as a culture adjunct for 

Stilton cheese as the organism dominates its final microflora (Section 4.2).   

 

Viability and survival are the most important parameters for evaluation of the functional 

properties of bacteria used as starter culture and culture adjuncts (Succi et al., 2005). Acid 

and water activity (aW) significantly affect the viability of cheese microflora and 

consequently influence product quality characteristics (Spano et al., 2004; Succi et al., 

2005). Like other blue cheeses, Stilton has heterogeneous microenvironments with 

pronounced gradients of pH and aW (Fernández-Salguero et al., 1986) due to structural 

and compositional changes occurring in the cheese during ripening (Fox et al., 2000). As 

already discussed, Lactobacillus may be introduced into Stilton cheese from the 

processing equipment, or post-process contamination to the outer crust from the cheese 

environment. Subsequently, exposure to different gradients of acid and osmotic stresses 

may constitute an important selection criterion for presence of the different genotypes of 
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the organism and consequently influence their behaviour in the cheese. The surviving 

strains may interact with the starter cultures to modulate the quality characteristics of the 

final product. The aim of this work was to ascertain whether pasteurisation constituted a 

sub-lethal heat treatment for Lb. plantarum isolates and whether abiotic stresses 

associated with the microenvironments in Stilton cheese are important in selecting for the 

presence of different genotypes of the organism in the different sites (outer crust, blue 

veins and white core) within the ripened product as demonstrated by PFGE clustering 

(§4.2.3.4.2). In vitro methods were employed to determine the survival of genotypically 

different isolates at different levels of acid, salt and relative humidity.  

 

5.2 Experimental rationale 

Different genotypes of Lb. plantarum have been observed and discussed in Chapter 4. In 

preliminary experiments, six isolates (R2 & R4, outer crust; B14 & R25, blue veins; R40 

& W30, white core) represented isolates from the three major clusters at (I, III and V) at 

52% similarity level of the PFGE genotyping dendrogram (§4.2.3.4.2, Fig. 4.5), and each of 

the cheese sampled sites. However, as there was little variation, the work presented in this 

chapter is for stress tolerance response of three isolates, and were evaluated using the 

approach of Catte et al. (1999). Challenge studies involved exposure of the strains to heat 

treatment, lactic acid, salt and desiccation stresses which comprised the four factors. The 

three sites of isolation (outer crust, blue veins and white core) constituted the 

experimental blocks.  

 

As differences in Lb. plantarum genotypes have been seen in Stilton cheese whose 

production involves heat treatment of the milk, the impact of heat on different genotypes 

of the isolates was examined. The hypothesis was that the strains isolated from the white 

core could have survived the pasteurisation process and therefore could have higher heat 

resistance than those found from the outer crust which could have been introduced as 

contaminants from the environment after pasteurisation. It is known that there are 

pronounced gradients in pH and water activity (aW) levels within Stilton cheese 

(Fernández-Salguero et al., 1986) with the outer crust being a high pH/low aW 

microenvironment whereas the white core is a low pH/high aW section. Therefore, it was 

also hypothesised that Lb. plantarum genotypes present in the different cheese sites (outer 

crust, blue veins and white core) could have been selected to be able to grow in the 

different microenvironments from which they were isolated. 
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5.3 Methods 

5.3.1 Heat stress tolerance and recovery of injured cells 

Thermal tolerance of the isolates (~10
8
 CFU/ml) was evaluated at 72

o
C in cows’ milk 

(§3.4.1), as this is the menstruum that the isolates would be present in during 

pasteurisation. The thermal kinetics of the heating profile is shown in Appendix 5.1. 

Samples (0.1 ml) were withdrawn at different time points and immediately transferred 

into pre-cooled MRD. Each cooled sample was serially diluted in MRD and the dilutions 

were plated onto BHI agar for enumeration of the viable counts as in §3.5.1. Logarithmic 

counts of the data (log10 CFU/ml) were plotted against time (s) and the D72 values for each 

strain calculated from the linear portion of the curves using the linear regression method 

as described by Ahmed et al. (1995). The straight lines with correlation coefficients 

(r
2
)>0.90 were regarded as good estimates for estimating the D72 values (Jordan and 

Cogan, 1999). For Lb. plantarum isolates obtained from the blue veins (B14) and white 

core (W30), four values in the straight portion between 10-70 s were used for linear 

regression analysis. For the isolate obtained from the outer crust (R4), four values in the 

linear portion between 0-50 s were used as the latter could not be detected after 50 s (limit 

of detection, LOD, 1 log10 CFU/ml). Recovery from heat stress was assessed by 

enumeration of the viable counts on MRS and BHI agar after keeping the heat-treated 

milk samples in a cold room for 48 h at 4
o
C. Milk inoculated with different levels of each 

of the isolates (starting cell concentration, 10
2
, 10

4
 and 10

7
 log10 CFU/ml) and kept for 48 

h at 4
o
C was used as a control for the heat recovery experiments. 

 

5.3.2 Acid and salt tolerance  

Acid tolerance of an MRS broth overnight culture diluted to 5 log10 CFU/ml was 

determined at 30
o
C in MRS broth acidified to pH 3, 3.5, 4, 4.5, 5 and 6 (control) using 

lactic acid (§3.4.2) according to the method of Succi et al. (2005). Salt tolerance was 

examined using the method of Pelinescu et al. (2009) under the same conditions by 

inoculating the strains in MRS broth containing 0 (control), 3.5, 5, 8 and 10% salt as 

described in §3.4.2. Acid and salt tolerance was determined by enumerating the survivor 

viable counts from BHI agar as in §3.5.1.    

 

5.3.3 Desiccation tolerance  

Desiccation tolerance was determined at 33 and 54% RH by separately washing and 

suspending the cells of an overnight MRS broth culture (~9 log10 CFU/ml) in MRD and 
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SDW prior to desiccation at equilibrated relative humidity (ERH) as described in §3.4.3. 

Desiccation tolerance was determined by enumerating the survivor viable counts from 

BHI agar as in §3.5.1.     

 

5.4 Results 

5.4.1 Thermal inactivation  

Stationary phase cells of three representative Lb. plantarum isolates were heat-treated for 

70 s at 72°C in cows’ milk in order to compare the heat tolerance response of the isolates. 

The inactivation of the isolates is shown in Fig. 5.1. The linear regression plot of the data 

used for calculation of the D72 value is shown in Appendix 5.2.  
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Figure 5.1 Thermal inactivation kinetics of Lb. plantarum isolates obtained from Stilton cheese 

and heated in milk at 72±1
o
C. Isolates: (▲) W30 white core, (■) B14 blue veins, (♦) R4 outer 

crust. Counts were taken from BHI agar after incubating anaerobically for 72 h at 30
o
C. Values 

are means of six technical replicates obtained from two independent determinations ± standard 

errors of the means, p = 0.05. 100% survival corresponds with 8.21, 8.57 and 8.73 log10 CFU/ml 

for isolates R4, B14 and W30, respectively.   
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Incomplete inactivation over 70 s was recorded for isolates B14 (D72, 20.7 s, r
2
 = 0.95) 

and W30 (D72, 23.6 s, r
2
 = 0.98; p>0.05) under the time-temperature conditions studied, 

showing that both strains were more heat tolerant than isolate R4 (D72, 6.9 s, r
2
 = 0.92) 

which only survived for 50 s (p<0.05). The thermal inactivation curves for isolates B14 

and W30 were generally concave and showed progressive reduction in percent survival. 

The isolate from the outer crust showed greater susceptibility to heat rapidly losing 40% 

viability (0-10 s), followed by relative stability/gradual inactivation (10-30 s) and then 

rapid cell death to undetectable levels (30-50 s; LOD, 1 log CFU/ml). At 15 s, the 

reduction in percent survival for isolate R4 (42%) was significantly different from those 

of B14 (30%) and W30 (25%; p<0.05). However, all isolates could be detected (4.7 to 6.6 

log10 CFU/ml) at 15 s, showing they could survive the minimum recommended 

pasteurisation conditions for milk. These results showed that different genotypes of Lb. 

plantarum present different heat tolerances which may explain why these three isolates 

were part of lactobacilli as the dominant microflora of Stilton cheese as observed in 

Chapter 4. Lactobacillus isolates in the heat-treated samples were subsequently examined 

for recovery from the heat injury (Section 5.4.1.1).   

 

5.4.1.1 Recovery of heat-injured cells 

After heat treatment for 70 s at 72
o
C, viable counts of isolate R4 were undetectable (LOD, 

1 log10 CFU/ml) whereas isolates B14 and W30 could only grow on the non-selective 

BHI agar due to heat injury. When the sample preparations were incubated for up to 48 h 

at 4
o
C, viable counts were detected on BHI and MRS agar showing recovery from the 

heat injury. On BHI agar, a significant recovery correlating with increase in viable counts 

(p<0.05) was mostly observed for Lactobacillus isolates R4 and W30 obtained from the 

outer crust and white core, respectively (Fig. 5.2, p<0.05). At 48 h on this medium, the 

viable counts of isolates R4, B14 and W30 increased from <1, 3.4 and 4.3 log10 CFU/ml 

to 2.7, 3.6 and 5.1 log10 CFU/ml, respectively. In the case of isolates R4 and W30, the 

increase in cell number was due to recovery and not growth as all isolates were shown to 

give no significant increase in cell numbers over 48 h at 4
o
C (p>0.05) when incubated in 

milk as the medium (Appendix 5.3).   
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Figure 5.2 Recovery of stationary phase cells of Lb. plantarum (initial inoculum, ~9 log10 

CFU/ml) heated for 70 s at 72°C and incubated in sterile milk at 4°C for: (■) 0, (■) 24, and (■) 48 

h. Counts were taken from BHI agar after incubating anaerobically for 72 h at 30
o
C. Values are 

means of six technical replicates obtained from two independent determinations ± standard errors 

of the means. Bars with different letters are significantly different (p<0.05). 

 

5.4.2 Acid tolerance  

Acid tolerance of three Lb. plantarum isolates was examined at 30
o
C in MRS broth 

acidified to pH 3, 3.5, 4, 4.5, 5 and 6 (control) according to the method of Succi et al. 

(2005) as described in Section 3.4.2. Fig. 5.3 shows the results obtained when three 

different genotypes of Lb. plantarum (R2, outer crust; R25, blue veins; and R40, white 

core) were examined for growth between pH 3 and 6 in MRS broth acidified with lactic 

acid. Viable counts for all isolates were undetectable after 2 h at the highest acid 

treatment (pH 3) (data not shown). The isolates had different sensitivities to acid at pH 

3.5 leading to gradual cell death (Fig. 5.3). At 48 h, isolate R2 obtained from the outer 

crust (Fig. 5.3A) was found to be most sensitive (4.4 log10 CFU/ml reduction), whereas 

R25 from the blue veins (Fig. 5.3B; 2.9 log10 CFU/ml reduction) and R40 from the white 

core (Fig. 5.3C; 2.3 log10 CFU/ml reduction) were the most acid-tolerant isolates 

(p<0.05).  

 

b 
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LOD = 1 log CFU/ml 

a a 

bc c 

d 

e 



 

96 

 

For all isolates, the cells exposed to pH 4 were unable to grow in the medium and 

remained constant or showed a slight reduction in viable counts (Fig. 5.3A-C). In the pH 

range 4.5-5, growth of all Lb. plantarum isolates was evident and there was no significant 

difference to growth relative to pH 6 (control) (p>0.05).  
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Figure 5.3 Acid tolerance of Lb. plantarum isolates obtained from Stilton cheese: (A) R2, outer crust; (B) R25, blue veins; and (C) R40 white core, after 

incubation at 30
o
C in MRS broth at pH: (♦) 6, control; (■) 5; (▲) 4.5; (X) 4; and (●) 3.5. Counts were taken from BHI agar after incubating anaerobically for 

48 h at 30
o
C. Values are means of nine technical replicates obtained from three independent determinations ± standard errors of the means, p = 0.05. 
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5.4.3 Salt tolerance response  

Salt tolerance of the different genotypes of Lb. plantarum (R2, outer crust; B14, blue 

veins; and W30, white core) was examined at 30
o
C in MRS broth containing 3.5, 5, 8 and 

10% (w/v) sodium chloride according to a method of Pelinescu et al. (2009) as detailed in 

Section 3.4.2. Overall at 48 h, all the tested isolates demonstrated the ability to grow over 

the salt range 3.5-5% (Fig. 5.4) and showed no significant difference with the unsalted 

control (p>0.05) indicating their high halotolerance. Exposure to the highest salt 

concentration (10%) resulted in significant growth suppression (p<0.05) leading to 0.2, 

0.9 and 1.1 log10 CFU/ml reductions for isolates R2 (outer crust), W30 (white core) and 

B14 (blue veins), respectively by 48 h. At the end of this period at 8% salt, the Lb. 

plantarum isolates obtained from the blue veins (Fig. 5.4B) and white core (Fig. 5.4C) 

had higher sensitivity to salt showing only 0.3 and 0.3 log10 CFU/ml increases to attain 

5.7 and 5.9 log10 CFU/ml respectively (p>0.05), compared with the isolate obtained from 

the outer crust (Fig. 5.4A) which showed a 1.2 log10 CFU/ml increase to a final level of 

6.5 log10 CFU/ml. This, therefore shows, as anticipated, that lactobacilli from the outer 

crust had higher salt tolerance probably due to ecological selection which enabled these 

isolates to colonise this part of the cheese microecosystem which has a lower aW level 

than the cheese interior, as will be discussed later in Section 5.5.3.   
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Figure 5.4 Salt tolerance of Lb. plantarum isolates obtained from Stilton cheese. Isolates: (A) R2, outer crust; (B) B14, blue veins; and (C) W30, white core. 

The assay was conducted at 30
o
C in MRS broth containing different salt concentrations (%, w/v): (♦) 0, control; (■) 3.5; (▲) 5; (X) 8; and (●) 10. Counts 

were taken from BHI agar after incubating anaerobically for 48 h at 30
o
C. Values are means of nine technical replicates obtained from three independent 

determinations ± standard errors of the means, p = 0.05. 
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5.4.4 Desiccation tolerance  

Desiccation tolerance of the isolates was performed by drying cell suspensions made from 

overnight cultures (~9 log10 CFU/ml) suspended in MRD or SDW onto U-shaped Nunc 

immuno well plates made of highly uniform, immunochemical grade polystyrene. The 

choice of this surface was based on its recommended application for experimentation 

demanding uniform cell binding properties from well to well and plate to plate (Nalge 

Nunc). Cells on the plate surfaces were then exposed to an equilibrated relative humidity 

(ERH) of 33 or 54% set up with saturated salt solutions as described in §3.4.3. As most 

bacteria cease to grow at aw<0.5 corresponding with <50% ERH, desiccation tolerance 

was determined at ERH above and below this humidity. The cells were suspended in 

SDW in order to avoid salt stress during desiccation (Pedersen et al., 2008). MRD was 

included in order to highlight the protective role of peptone in microbial cells subjected to 

drying conditions. This would allow evaluation of nutrients as a potential risk factor for 

persistence and subsequent colonisation of microorganisms in the cheese production 

environment which may be the source of cross-contamination for Lactobacillus isolates 

obtained from the outer crust into the final product.  

 

The mean concentration of re-suspended cells prior to drying ranged from 8.9±0.1 to 

9.3±0.1 log10 CFU/ml (Table 5.1). The strains had variable sensitivities to initial drying 

(30
o
C) prior to holding (20

o
C) at the different ERH levels, and this depended on the 

medium in which the cells were suspended (Table 5.1). Suspending the cells in MRD 

caused slight reduction (0.4-0.6 log10 CFU/ml) in viable counts whereas in SDW, higher 

reductions (0.7-1.1 log10 CFU/ml) were observed (p<0.05). In both suspension media, 

isolate W30 obtained from the white core was the most tolerant to the initial drying step 

(4.59-7.15% decrease) compared with isolate B14 from the blue veins (6.27-10.53% 

reduction) and R2 from the outer crust (6.16-12.22% reduction) (p<0.05).  
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Table 5.1 Changes in viable counts of different genotypes of Lb. plantarum obtained from 

Stilton cheese after suspending in different media and drying for 24 h at 30
o
C 

 

Strain 

 

Overnight culture    

(log10 CFU/ml) 

After drying          

(log10 CFU/ml) 

Reduction             

(log10 CFU/ml) 

Percent 

reduction (%) 

MRD SDW MRD SDW MRD SDW 

R2, crust 9.3 8.68 8.12 0.57 1.13 6.16
a
 12.22

a
 

B14, veins 8.9 8.37 7.99 0.56 0.94 6.27
a
 10.53

a
 

W30, core 9.4 8.94 8.7 0.43 0.67 4.59
b
 7.15

b
 

Values in the column with different superscripts are significantly different (p<0.05). 

 

During exposure to a specified humidity, the sensitivity of isolates varied with the RH 

applied and the medium in which the cells were dried (Fig. 5.5). All strains were sensitive 

to 33% RH in SDW and became undetectable (LOD, 1 log10 CFU/ml) by 5 days of 

exposure (Fig. 5.5). However, all the isolates survived desiccation at the same RH (33%) 

in MRD (Fig. 5.5) over 7 days suggesting cellular protection by MRD. Isolates R2 and 

W30 showed a 3 log10 CFU/ml reduction over this period whereas B14 showed a 1 log10 

CFU/ml lower survival. Survival was more variable at 54% RH; in MRD, all isolates 

were sensitive to desiccation and died off by 7 days (Fig. 5.5A-C) with the greatest 

inactivation occurring between 5 and 7 days. In SDW, the Lb. plantarum R2 from the 

outer crust (Fig. 5.5A) was more sensitive and survived for only 5 days. Isolate B14 

obtained from the blue veins (Fig. 5.5B) showed a low level of survival (0.6 log10 

CFU/ml) by 7 days and W30 from the white core (Fig. 5.5C) showed better desiccation 

tolerance with 4.2 log10 CFU/ml survival up to 7 days. Taking into account results of the 

entire experiment, survival was better at 33% RH in MRD than all other treatments 

(p<0.05). It was, therefore, evident that survival of Lb. plantarum was dependent both on 

RH and the drying medium and was also strain dependent.   
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Figure 5.5 Desiccation tolerance of Lb. plantarum isolates obtained from Stilton cheese: (A) R2, outer crust; (B) B14, blue veins; and (C) W30, white core. 

The assay was performed at 20
o
C in presence of: (♦) 33% RH in MRD; (▲) 54% RH in MRD; (■) 54% RH in SDW; and (●) 33% RH in SDW. Counts were 

taken from BHI agar after incubating anaerobically for 48 h at 30
o
C. Values are means of nine technical replicates obtained from three independent 

determinations ± standard errors of the means, p = 0.05. Arrows represent the point at which cells were subjected to equilibrated relative humidity.  
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5.5 Discussion 

The aim of this study was to determine whether stress conditions associated with 

microenvironments in the different sites (outer crust, blue veins and white core) of Stilton 

cheese are important in selecting for the presence of different genotypes of Lb. plantarum 

resulting in different sub-populations within the ripened product. The results obtained 

from Chapter 4 showed that there were genotypically different isolates of Lb. plantarum 

spatially distributed in different sites within the cheese, which could be because the 

different strains of the organism had been selected during the ripening process or could be 

due to different routes of contamination.  

 

5.5.1 Thermal tolerance  

The use of survivor curves for the study of bacterial resistance to heat stress is a common 

practice. Jordan and Cogan (1999) and De Angelis et al. (2004) applied the logistic/log 

linear method involving equations of best fit (r
2
>0.9) to interpret the survival data of 

various Lactobacillus spp. subjected to heat stress. The major disadvantage of this 

approach is that it does not account for tailing of the survival curves which occurred after 

~10 s in this study. Tailing is normally attributed to cellular clumping during heat 

treatment (Jordan and Cogan, 1999); and this tends to underestimate microbial heat 

resistance. McCann et al. (2006) proposed that tailing is normally associated with the 

production of heat shock proteins in a sub-population, which protect cells from 

denaturation at high temperatures. Microscopic examination of the heat treated samples to 

reveal this phenomenon is a recommended practice to account for tailing of thermal death 

curves.  

 

Given the non-linearity of heat inactivation curves, D-values are usually derived from the 

linear portions and used for comparison of microbial heat resistance (Nguyen et al., 

2010). From this study, the lowest D72 value (6.9 s) was obtained from strain R4 obtained 

from the outer crust. Therefore, following pasteurisation at 72
o
C for 15 s, there would be 

~2 log reduction in cell numbers. Given an initial count of ~3 log10 CFU/ml usually 

present in cheese milk (Jordan and Cogan, 1999; De Angelis et al., 2004), the rate of 

survival could be greater than 1 CFU/ml of milk, which would be sufficient to result in 

survival and subsequent growth of the isolate in the cheese. The calculated D72 values for 

isolates B14 (blue veins) and W30 (white core) were 20.7 and 23.6 s, respectively. This 

implies that there would be a less than 1 log10 reduction in cell numbers for these isolates 
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during pasteurisation. It should be noted, however, that whereas survival over a given 

period is dependent on initial microbial levels, D-values are not absolute as the values 

obtained depend on factors such as heating menstruum, pH and aw, salt content and 

preservatives (De Angelis et al., 2004; Conesa et al., 2009). 

 

Pasteurised milk is usually the major source of the heat resistant (thermoduric) NSLAB 

associated with mature cheeses (Litopoulou-Tzanetaki et al., 1989). Strains from the outer 

crust were more heat sensitive suggesting they may have entered into the cheese post 

pasteurisation, which is also consistent with their location in the cheese. A study by 

Jordan and Cogan (1999) on Lactobacillus spp. associated with mature Cheddar cheese 

indicated that the heat resistance of different strains of MRS broth grown cultures of Lb. 

plantarum (8 log10 CFU/ml) at 50-57.5
o
C was high; with the z-values ranging between 

6.2-6.7
o
C. Milk-grown cultures of the organism showed greater heat resistance than broth 

grown cultures. A similar observation was reported by De Angelis et al. (2004). These 

researchers observed that stationary phase cells of the organism (7 log10 CFU/ml) had D 

values in sterile milk of 32.9, 14.7, and 7.1 s at 60, 72, and 75
o
C, respectively. Mid 

exponential phase cells had lower D values than stationary phase cells. This is generally 

compatible with the data from this study. Therefore, differences in heat tolerances 

amongst the different strains of Lb. plantarum could be innate as this has been found to 

vary not only with species (Jordan and Cogan, 1999) but also with different strains of the 

same species (De Angelis et al., 2004). This was the case for the results from the current 

study whereby heat tolerance of the isolates corresponded with the sites from which they 

were isolated. Isolates B14 and W30 obtained from the blue veins and white core 

respectively, demonstrated higher heat tolerance implying they could have survived the 

milk pasteurisation process and adapted to acidification (fermentation) as evident from 

the results presented in Section 5.4.2, and those to be presented later in Section 7.3.2.  

 

Most cheese production plants employ the energy efficient high temperature short time 

(HTST) milk pasteurisation process. The system involves thermal regeneration whereby 

the outgoing hot pasteurised milk is used to pre-warm the incoming cold raw milk before 

it is fed into the heat exchanger for subsequent heat treatment at 72
o
C. In this situation, 

the resident microflora in raw milk is pre-exposed to sub-lethal temperatures which may 

enhance their survival at subsequently higher temperature treatments. Heat adapted (42
o
C, 

1 h) mid-exponential and stationary phase cells of Lb. plantarum exhibit increased 
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thermal resistance at 72
o
C (De Angelis et al., 2004) due to expression of heat shock genes 

(Tao et al., 2006; Liao et al., 2010; Li et al., 2011) after induction of the class three stress 

gene repressor (CtsR) regulon. Russo et al. (2012) performed a global proteomic analysis 

of unstressed Lb. plantarum WCFS1 and ΔctsR mutant strains grown at optimal 

temperature (30
o
C) and those which were grown at 30

o
C and subsequently heat stressed at 

42
o
C for 30 min. These authors reported a moderate increase (1.25-5.7-fold upon 

temperature up-shift) of the general stress-induced chaperones GroES, GroEL and DnaK 

with greater induction in the ΔctsR mutant than in the wild-type strain. Levels of the heat 

shock peptides Hsp1 and Hsp3 also drastically increased when the bacteria were 

submitted to heat stress at 42
o
C.  

 

In the current study, the Lb. plantarum isolates were grown overnight at 30
o
C and then 

exposed to heat treatment at 72
o
C. Under normal growth conditions at 30

o
C, Lb. 

plantarum expresses a basal level of small heat shock genes such as hsp18.5 and hsp19.3 

(Spano et al., 2004) suggesting a housekeeping function for the relative proteins. It is, 

therefore, possible that Lb. plantarum isolates used in this study had developed some 

level of heat tolerance during the growth phase. Takemoto et al. (1993) reported that 

many major heat shock genes are efficiently expressed in the absence of stresses and such 

stress proteins are often essential for cell growth. However, expression of the genes 

increases when the stresses are imposed. Further research is needed to examine the 

response of the isolates to heat stress after heat shock induction at a higher temperature 

(42
o
C). Techniques such as microarray or RNA sequence analysis (Wall et al., 2007; 

Lebeer et al., 2008; Li et al., 2011) have proven useful to establish gene expression of the 

Lb. plantarum isolates under the conditions applied in the current study. 

 

Thermal tolerance in Lb. plantarum may be linked with other stress resistance 

characteristics which enhance the survival of the organism. For example, the strains used 

in the experiment were initially grown in MRS broth and caused significant acidification 

of the medium from pH 6.2 to 3.88-4.67. It could be possible that the organism had 

developed acid tolerance which could have induced specific groups of genes or regulons 

to cope with the subsequent heat stress in the challenge experiment as response to these 

stresses was reported to be linked in most Gram-positive bacteria including lactobacilli 

(Tao et al., 2006). It is well recognised that the heating menstruum affects the 

thermotolerance for Lactobacillus spp. (Jordan and Cogan, 1999). Cows’ milk contains a 
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substantial amount of fat (3.5%) which offers cellular insulation to extreme temperatures 

due to its low thermal conductivity (Robinson, 1990) and, may have therefore protected 

the cells against heat stress in the current study.  

 

Microorganisms subjected to sub-lethal stresses undergo metabolic injury, often 

manifested as the inability to form colonies on selective media on which uninjured cells 

can survive and grow (Hurst, 1977). The differential in counts between selective and non- 

selective media is used to determine the degree to which a microbial population is sub-

lethally injured. For all the isolates examined in this study, part of the cell population heat 

treated at 72
o
C for 70 s recovered from the heat injury during incubation in sterile milk at 

4
o
C for 48 h as manifested by an increased ability to grow on the non-selective BHI agar 

and to grow on the selective MRS agar when plated after storage. Overall, the isolate 

obtained from the outer crust showed better recovery than the isolates from the blue veins 

and white core. Kang and Siragusa (1999) reported similar results for heat stressed (60
o
C, 

90 s) E. coli O157:H7 and Salmonella Typhimurium (~6 log10 CFU/ml). Both organisms 

had low recoveries on the selective sorbitol MacConkey and xylose lysine decarboxylase 

agar respectively; whereas significant viability was observed on the non-selective tryptic 

soy agar showing that injured cells die on selective agar but grow on the non-selective 

medium. This study showed that injured cells of Lb. plantarum isolates recovered in milk 

to the level that they can grow on selective media. There are few previous studies 

available in which thermal tolerance of Lb. plantarum has been determined. There is need 

to determine the physiological mechanisms of response to heat stress for Lb. plantarum 

isolates. Further research in this field would help to provide insights regarding the 

presence and dominance of these organisms in ripened cheese. 

 

5.5.2 Acid tolerance  

It was noticeable from this study that isolates R25 and W30 from the interior of Stilton 

cheese were more acid tolerant at pH 3.5 than R2 obtained from the outer crust further 

highlighting the differential selection of the organism in the different ecological niches 

within the cheese matrix. A similar study was performed by Succi et al. (2005) on 

Lactobacillus rhamnosus isolated from Parmigiano Reggiano cheese produced in Italy. 

Their results indicated that at pH 3, injury due to an acidic environment caused a 2-3 log10 

CFU/ml reduction after 2-4 h of incubation whereas at pH 2, a 6-8 log10 CFU/ml was 

evidenced. Increasing the pH to 7 with sodium bicarbonate did not present an adverse 
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environment for all the tested strains, showing good survival at high pH. This was 

congruent with the present study. However, in presence of higher acid levels (pH 3.5) in 

this study, visible colonies could only be observed when the agar plates were incubated 

longer (96 h) at 30
o
C suggesting recovery of the injured cells. All the Lb. plantarum 

isolates exhibited good growth at pH 4.5-6. Given that the pH of the outer crust of Stilton 

cheese is 5-6 due to mould activity (Gkatzionis et al., 2009) compared to that of the white 

core (4.5-5); suggests that different genotypes of Lb. plantarum as observed in Chapter 4 

had been selected in the different cheese sites due to acid tolerance differences. Overall, 

the results highlighted the high acid tolerance of the Lactobacillus isolates and suggest 

their potential to contribute to secondary metabolism during cheese ripening.  

 

The un-dissociated form of lactic acid diffuses across the cell membrane towards the 

more alkaline cytosol where it dissociates to release hydrogen ions (H
+
) that reduce 

intracellular pH (pHi) (Pan et al., 2009). Acid-sensitive cells would fail to buffer 

hydrogen ions (H
+
) from the cell, which leads to a larger intracellular pH gradient (∆pHi) 

and consequently cell death as their buffering system becomes depleted (Pieterse et al., 

2005; Ahmed et al., 2009). Lb. plantarum tolerates the harmful effect of lactic acid by 

maintaining a lower ∆pHi (Ahmed et al., 2009). However, at high concentration of the 

acid, there is accumulation of the organic anion (lactate), which leads to end product 

inhibition, reduced aW, and failure to regenerate the co-factor NAD, all of which 

accelerate cell death (Pieterse et al., 2005). These factors may partly explain the failure of 

Lb. plantarum isolates to survive the treatment at pH 3-3.5 applied in the current study. 

Molecular tools should be employed to establish the target genes that show increased 

expression towards lactic acid for purposes of identifying the most acid resistant isolates.  

 

5.5.3 Salt tolerance  

In the present work, Lb. plantarum isolates showed optimal growth at 3.5-5% salt and 

were only sensitive at higher (8-10%) concentrations. The observations concurred with 

another study whereby growth of the organism in MRS broth was shown to correlate with 

various salt concentrations (Pelinescu et al., 2009). Similar to the findings from this 

study, these researchers observed that growth of Lb. plantarum was optimal at low (0.5-

5%) salt levels but higher concentrations (10-12%) were inhibitory for its growth.  
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Isolate R2 from the outer crust was more halotolerant at 8-10% salt than each of the 

isolates B14 and W30 from the blue veins and white core respectively, further 

highlighting differential ecological selection of the organism. Lactobacilli with the ability 

to grow in presence of more than 6.5% salt usually result from ecological selection during 

the cheese making process (Sawitzki et al., 2009). This is because the salt sensitive 

bacteria present at the beginning of the process tend to stop growing when the 

concentration becomes too high by the end of ripening (Sawitzki et al., 2009). In Stilton 

cheese, the initial salt concentration (2.1-3.5%; SCMA, 2009) in the dried curd is 

relatively low but by the end of ripening, the final concentration may increase up to 4.5-

6% (Sawitzki et al., 2009), with higher levels (>6%) occurring in the outer crust due to 

excessive moisture loss resulting from air drying. Salt stress leads to loss of turgor 

pressure, which affects the cell physiology, enzyme activity, water activity and 

metabolism. Osmotolerant bacteria overcome this effect by maintaining low ∆OPi 

through increased production of osmolytes such as glycine betaine (Ibourahema et al., 

2008). Lb. plantarum from the outer crust may have been similarly protected by this 

mechanism to be able to grow at 8% salt, albeit at a slower rate. There is scant 

information on quantitative differences in salt levels of the different sections (white core, 

blue veins and outer crust) of Stilton cheese and how these would change during ripening. 

Therefore, the data presented in this study may show some variation from the real growth 

kinetics of the isolates in situ in Stilton cheese, depending on the actual salt content of 

these cheese sites from which they were isolated. 

 

5.5.4 Desiccation tolerance  

Microorganisms survive prolonged drought in a desiccated state, where greater than 99% 

of the cell water has been lost (Chen and Alexander, 1973; Welsh, 2000; Alpert, 2005). 

Upon subsequent rehydration, the organisms rapidly swell and resume active metabolism, 

often within a few minutes. Whilst the underlying mechanisms of microbial desiccation 

tolerance are not fully understood, in yeast, the phenomenon has been shown to correlate 

with the accumulation of the non-reducing disaccharides, trehalose and to a lesser extent 

sucrose, and is independent of the growth phase (Welsh, 2000). The compatible solutes 

(CS) ectoine and hydroxyectoine as well as the induction of trehalose synthesis by 

osmotic shock promote increased desiccation tolerance in some strains of E. coli (Welsh, 

2000; Vriezen et al., 2007). 
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Robert et al. (2000) reported that glycine betaine (an amino acid derivative) is the major 

effective osmoprotectant in Lb. casei, Lc. lactis and Lb. plantarum. However, these 

organisms do not synthesise the compound de novo but preferentially accumulate it from 

MRS broth during growth (Ibourahema et al., 2008) as the medium contains yeast and 

beef extracts which contain significant amounts of this CS as well as choline, its 

precursor. As glycine betaine is known to offer increased desiccation tolerance in some 

LAB (Santivarangkna et al., 2008), it could be possible that the Lb. plantarum isolates 

examined in this study could have accumulated the substance from MRS broth during 

growth prior to the experiment resulting in the varying degrees of desiccation tolerance 

observed. At the lowest tested RH (33%), drying in MRD provided further protection 

from desiccation stress (compared with SDW which led to cell death by 5 days of 

exposure), whereby isolates R2 and W30 from the outer crust and white core respectively, 

showed better survival than B14 from the blue veins. At a higher RH level (54%) 

however, survival was more variable whereby in MRD, all isolates lost viability by 7 days 

whereas in SDW, isolate R2 was more sensitive than B14 and W30. These results suggest 

that desiccation tolerance of the Lb. plantarum isolates could be an innate trait varying 

with the genotypic characteristics of the isolates obtained from different sites (outer crust, 

blue veins and white core), the medium in which the cells were suspended and dried, as 

well as the RH level applied. These results corresponded with the salt tolerance data 

(Section 5.4.3) showing, as expected, that the Lactobacillus isolate from the outer crust 

which had been shown to be the most halotolerant at 8% salt (Fig. 5.4) was also found to 

be the most desiccation tolerant at 33% RH in MRD, probably due to ecological selection. 

 

The increased survival of cells suspended in MRD seen in some instances may have been 

due to the contribution of the medium to the cellular CS content which plays a vital role 

in protection of cells and intracellular macromolecules during desiccation 

(Santivarangkna et al., 2008). CS comprise low molecular weight organic solutes which 

do not interfere with cell functions but accumulate to high intracellular concentrations to 

balance the osmotic pressure of their surroundings and maintain cell turgor pressure 

enabling viability (Santivarangkna et al., 2008). CS also act as intracellular reserves of 

carbon, energy and nitrogen, and as more general stress metabolites involved in 

protection of cells against other environmental stresses including heat and freezing 

(Welsh, 2000). The high susceptibility of the Lb. plantarum isolates to desiccation at 33% 

in SDW may probably be due to increased plasmolysis following this treatment 



 

110 

 

(Iacobellist and Devay, 1986), whereas at 54% the effect was less pronounced which 

enhanced the survival (beyond 7 days) of isolate W30 from the white core.  

 

It was evident from the current investigation that both MRD and drying at 33% RH were 

more protective to Lb. plantarum isolates than other treatments, whereby isolates R2 and 

W30 from the outer crust and white core respectively, had better survival than B14 from 

the blue veins. There is scant literature about the effect of MRD on microbial desiccation 

tolerance. However, Mary et al. (1985) reported some work on different strains of 

Rhizobium grown overnight at 30
o
C. The cells were washed and suspended in a buffer (1 

g of K2HPO4 and 0.2 g of MgSO4 per litre of distilled water), and then subjected to 

desiccation at different RH following rapid (heated air), and slow drying as performed in 

this study. These researchers noted that after slow drying, viable numbers of all test 

strains decreased markedly throughout the first stages of storage (0-2 days) at 0, 22, and 

43% RH. Thereafter, the number of cells declined at a slower rate up to the end of the 

experiment (14 days). They observed that under conditions of slow drying, most strains of 

the organism could withstand 22 and 43% RH better than 0 and 83% RH, which is 

comparable with the data from this study. The authors reported that harmful effects of 

rapid drying on survival of Rhizobium during storage at 31% RH were evident and 

increasing the RH from 30 to 92% adversely affected the organism. Further research on 

the behaviour of Lb. plantarum isolates rapidly dried and stored at RH greater than 54% 

is necessary to support the hypothesis that the organism would show increased 

susceptibility to desiccation.  

 

Little is known about the possibility of rapid cell death following rehydration after 

desiccation. However, it was suggested that changes in membrane permeability, quantities 

of water retained at a known relative vapour pressure, dysfunction of intracellular 

enzymes, as well as rupture of the cell envelope when the internal pressure (due to water 

uptake) overcomes its weakened resistance may account for the low survivor counts 

obtained when desiccated cells are subsequently rehydrated (Mary et al., 1985; Vriezen et 

al., 2007).  

 

Enhanced survival of some of the isolates dried in MRD may be partly attributed to 

intracellular accumulation of trehalose (Morgan et al., 2006; Fukuda et al., 2010). E. coli 

cells treated with exogenous trehalose or when osmotically induced to accumulate the 
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disaccharide, retained 2-6% of the initial culture viability following 50 days of storage in 

an evacuated desiccator, whereas for cells treated with glycine betaine or intracellularly 

induced to accumulate the substance, no viable cells were present after 7-20 days under 

the same conditions (Welsh, 2000; Santivarangkna et al., 2008). Similar observations 

were made in Lactobacillus salivarius subsp. salivarius frozen for 1 h at -85
o
C and then 

subjected to freeze drying for 48 h. After these treatments, trehalose alone or in 

combination with sucrose enhanced survival of the organism from 13 to 85% and its 

subsequent stability during storage (50 days at      -85
o
C) compared with absence of these 

protective solutes (4% survival; Zayed and Roos, 2004).  

 

Although trehalose is not protective to Lb. plantarum cells air dried at very low RH (such 

as 3%) compared with maltose and sorbitol which improve residual metabolic activity of 

the organism by 66 and 79% respectively, due to antioxidant properties (Linders et al., 

1997), the substance is highly protective at higher RH (Welsh, 2000). The substance 

prevents inter-membrane fusion of the cell membrane, thereby maintaining cellular 

integrity upon subsequent rehydration (Morgan et al., 2006). Maltose protects cells from 

excessive loss of residual water (to ~2.8-5.6%) which is required for maintenance of 

metabolic activity (Zayed and Roos, 2004; Meng et al., 2008). Cells dried without sugars 

usually suffer fusion and complete loss of calcium transport activity upon rehydration. Lb. 

plantarum is among the 30 species of lactobacilli known to produce EPS including 

homopolymers, heteropolymers of neutral sugars (pentoses and hexoses) and anionic 

sugars (hexoses) (Badel et al., 2011). EPS has been shown to protect cells against 

physical stresses such as desiccation and osmotic stress (Fukuda et al., 2010; Badel et al., 

2011). 

 

The isolates used in the study were grown in MRS broth prior to the assay and caused 

acidification of the medium. Lowering pH during culturing of Lactobacillus reuteri 

induced greater protection to the cells during freeze drying, producing more than 90% cell 

recovery compared to 65% when the cells were grown at pH 6 (Morgan et al., 2006). 

Reducing pH of the growth medium produces changes in the bacterial membrane fatty 

acid composition and induces the production of acid shock proteins which also play a 

vital role in cellular protection during desiccation (Maus and Ingham, 2003). 

Microorganisms pre-exposed to low aW due to salt in the medium (osmotic stress), usually 

show increased survival during desiccation (Chen and Alexander, 1973; Vriezen et al., 
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2007). In Stilton cheese, the outer crust has lower aW than the interior of the cheese, 

which may partly explain the higher desiccation tolerance of isolate obtained from this 

cheese section at 33% RH in MRD. 

 

5.6 Conclusions 

Lb. plantarum isolates with different genotypic characteristics have been found to have 

different heat tolerances and recovery patterns as well as tolerances to acid, salt and 

desiccation stresses. This shows that the isolates could have entered into the cheese 

through different routes or strains with distinct genotypic properties could have been 

selected to grow in the various microenvironments within the ripened product. The data 

have supported the hypothesis that lactobacilli in Stilton cheese are able to survive the 

standard milk heat treatment process, adapt to acid during the initial stages of 

fermentation with Lc. lactis, and to the physical-chemical changes which occur during the 

ripening process.   

 

The different isolates showed optimal adaptation to the various stresses typical of Stilton 

cheese. For a strain to be used as a culture adjunct, as well as survival in the cheese, 

another important consideration would be its impact on the other microflora and in 

particular the Lc. lactis starter culture. In the next chapter, the antagonistic properties of 

the different isolates against the starter culture Lc. lactis, as well as some pathogenic and 

spoilage bacteria commonly associated with cheese are presented.  
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CHAPTER 6 

 

 

ANTIMICROBIAL ACTIVITY OF LACTOBACILLUS ISOLATES 

 

 

6.1 Introduction 

Within the LAB group, the genus Lactobacillus displays the broadest antimicrobial 

spectrum due to a complex antagonistic system involving production of metabolites such 

as ethanol, organic acids, hydrogen peroxide, carbon dioxide, diacetyl, acetoin, 

acetaldehyde and bacteriocins in varying quantities (Amin et al., 2009; Essid et al., 2009). 

The ability of lactobacilli to produce these antimicrobial substances provides resistance 

against colonisation by spoilage and pathogenic microorganisms in food systems (Amin 

et al., 2009). The level and spectrum of activity of the antimicrobial agents (Table 6.1) is 

largely dependent on the pH, temperature, medium composition (Maldonado et al., 2003), 

as well as on LAB species, strain and growth conditions (Raccach et al., 1989; Ammor et 

al., 2006), some of which have been examined in this work. Antimicrobial activity of 

several species of the genus Lactobacillus, including Lb. casei, Lb. rhamnosus, Lb. 

acidophilus, Lb. reuteri and Lb. fermentum, has been previously studied and some of 

these organisms are used as commercial culture adjuncts in fermented milk (Amin et al., 

2009). However, although Lb. plantarum was isolated as a major part of the Stilton 

cheese microflora, scant information is available on the role these play in influencing 

flora development or possible commercial applications of this species in Stilton and other 

blue cheeses. 
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Table 6.1 Mechanisms of antagonistic activity of some metabolites produced by LAB 

Metabolic product Mode of antagonistic activity 

Carbon dioxide Reduces cell membrane permeability though 

inhibition of decarboxylation enzymes 

  

Diacetyl Interacts with arginine binding proteins to 
inhibit the growth of Gram-negative bacteria 

 

Hydrogen peroxide Denatures enzymes and causes peroxidation of 

membrane lipids leading to loss of cell 

constituents due to high membrane 
permeability 

 

Lactic acid Un-dissociated lactic acid penetrates the 

membranes and lowers intracellular pH. Also 
interferes with cellular substrate oxidative 

phosphorylation 

 

Bacteriocins  Damage cell membranes through pore 

formation in the phospholipid bilayer. Also 
inhibit DNA and protein synthesis 

Source: Ammor et al. (2006) 

 

Cheese, like other dairy products, has the potential to support the growth of unwanted 

microorganisms introduced from pasteurised milk (thermodurics), processing equipment, 

personnel or from the environment (Obadina et al., 2006). From the present work, the 

microflora of Stilton cheese appears to be dominated by Lb. plantarum (Section 4.2.3.4) 

which is acid and salt tolerant (Sections 5.3.2-5.3.3), and could therefore survive 

processing stages if it was applied as a starter culture adjunct. The ability of lactobacilli to 

inhibit growth of other bacteria through the production of bacteriocins is well known 

(Patil et al., 2007; Yi et al., 2010). These organisms are generally regarded as safe 

(GRAS) and so are their bacteriocins which do not affect humans and other eukaryotes. 

Therefore, the ability of Stilton cheese Lb. plantarum isolates to inhibit the growth of L. 

monocytogenes and other undesirable microflora through bacteriocin production could be 

an important criterion for developing the organism into a commercial culture adjunct for 

the bio-preservation of the cheese against undesirable microflora. 
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Bacteriocins are peptides categorised into different classes. Class I (also known as 

lantibiotics such as nisin) are elongated shaped (type A) or globular molecules (type B) 

produced as precursor peptides that usually undergo extensive post-translational 

modification (Eijsink et al., 2002). Nissen-Meyer et al. (2010) have summarised that class 

II members are non-modified heat stable peptides which are further divided into four 

subclasses, class IIa, IIb, IIc and IId. Class IIa contains the low molecular weight, anti-

listerial one-peptide pediocin-like bacteriocins that have similar amino acid sequences; 

class IIb contains the two-peptide bacteriocins such as plantaricin EF whose genes are 

next to each other in the same operon; class IIc consists of the cyclic bacteriocins whose 

N- and C-termini are covalently linked; class IId contains the one-peptide non-cyclic 

bacteriocins that show no sequence similarity to the pediocin-like bacteriocins. Optimal 

antibacterial activity of the two-peptide batceriocins requires the presence of both 

peptides in about equal amounts. The two peptides of these bacteriocins form a membrane 

penetrating helix-helix structure involving helix-helix-interacting GxxxG motifs which 

induce the formation of pores in the sensitive bacteria due to conformational alteration in 

the membrane proteins of the latter which in turn causes membrane leakage. This mode of 

action is similar to the mode of action of the pediocin-like (class-IIa) bacteriocins and 

lactococcin A, a class IId bacteriocin. 

 

A wide variety of bacteriocins has been previously isolated from LAB including nisin 

from Lc. lactis (Bromberg et al., 2004), helviticin J from Lb. helveticus (Bonade et al., 

2001), bulgaricin from Lb. delbrueckii subsp. lactis (Boris et al., 2001) and various 

plantaricins from Lb. plantarum (van Reenen et al., 1998). A single strain of Lb. 

plantarum can produce multiple plantaricins encoded from the bacteriocin locus on the 

chromosome. The plantaricin gene cluster contains five plantaricin genes encoding for the 

two-peptide plantaricins EF, JK, NC8, J51 and a pheromone peptide plantaricin A with 

antimicrobial activity (Eijsink et al., 2002; Diep et al., 2009). van Reenen et al. (1998) 

determined that the organism also produces plantaricin 423, a heat resistant (80
o
C) 

plasmid-encoded bacteriocin with strong inhibitory activity against Bacillus cereus, 

Listeria, Clostridium and Staphylococcus spp. Whereas plantaricin loci from different 

strains of Lb. plantarum resemble each other in the organization of the bacteriocin 

transport and regulatory genes, there is variation in the spectrum of antimicrobial activity 

of the specific plantaricins (Cho et al., 2010). This variation has been attributed to 

differences in length of the plantaricins, amino acid sequence and composition, secretion 
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and processing machinery, post-translational modifications and antimicrobial activity 

alone or in combination with other peptides (Eijsink et al., 2002). Moll et al. (1999) 

proposed that plantaricins EF and JK form pores in the membranes of target cells and 

dissipate the transmembrane electrical potential and pH gradient. The plantaricin EF 

pores conduct small monovalent cations, but conductivity for anions is low or absent. 

Plantaricin JK pores show high conductivity for specific anions but low conductivity for 

cations. These bacteriocins are translated as pre-peptides; these are then processed by 

cleavage of the double glycine leader sequences to form active peptides with sizes of 33 

(PlnE), 34 (PlnF), 25 (PlnJ) and 32 amino acids (PlnK) (Diep et al., 2009). The individual 

peptides have low antimicrobial activity. However, potency increases by 1000-fold when 

combined with their cognate peptides indicating complementary ion selectivity which 

ensures efficient killing of target bacteria. 

 

Plantaricins A, EF and JK display relatively narrow inhibitory spectra, mostly being 

active against some species of lactobacilli (Lb. plantarum, Lb. casei, Lb. sakei and Lb. 

curvatus) in addition to other Gram-positive bacteria closely related to the producer Lb. 

plantarum  strains (Diep et al., 2009). Nissen-Meyer et al. (1993) pointed out that these 

bacteriocins have no antimicrobial activity towards Gram-negative bacteria or yeasts. It 

is, therefore, evident that plantaricins probably evolved to provide the producing 

organism with a selective advantage in a complex microbial ecosystem (Ammor et al., 

2006). The aim of the current work was to evaluate the antimicrobial activity of Lb. 

plantarum isolates obtained from different sites in Stilton cheese and to examine the 

possible mechanisms of inhibition. This could explain why these isolates dominated the 

final cheese flora as observed in Chapter 4. From this, Lactobacillus isolates with the 

potential as food bio-preservatives may be identified.  
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6.2 Methods 

Antimicrobial activity of MRS-grown broth cultures of 50 individual genotypes of Lb. 

plantarum against the various indicator bacteria (Table 3.5) was evaluated using the agar 

overlay and paper disc diffusion assays as outlined in Section 3.5. This range of Gram-

positive and Gram-negative indicator strains with different cell wall properties was 

chosen to establish whether antimicrobial activity was due to production of bacteriocins 

(plantaricins), organic acids, hydrogen peroxide or a combination of these compounds. 

Lb. plantarum is a facultative homofermentative organism and produces lactic as the 

dominant metabolite. However, depending on the environmental conditions, the organism 

can also produce acetic acid and other metabolites (in smaller quantities) with synergistic 

activity against yeasts, moulds and most Gram-negative bacteria. Lb. plantarum produces 

smaller quantities of hydrogen peroxide compared with other LAB such as Leuconostoc 

(Adesokan et al., 2010). The compound is inhibitory to some Gram-negative bacteria 

such as Pseudomonas spp. (Salminen et al., 2004) but is mostly active against LAB as 

well as other Gram-positive bacteria including Cl. butyricum and Cl. tyrobutyricum 

(Tuma et al., 2008). Staph. aureus produces catalase which breakdown hydrogen 

peroxide to enhance its survival from deleterious effects. This range of indicator bacteria 

was also used to demonstrate why lactobacilli prevail throughout milk fermentation to 

dominate the cheese microflora. Ped. acidilactici was included as the bacteriocin-

producing control. The latter had been shown to exert antimicrobial activity against a 

broad range of organisms including L. monocytogenes and Salmonella Typhimurium, 

Enterobacteriaceae, Staphylococcus, yeasts and moulds (Olaoye and Dodd, 2010).  

 

In order to establish the nature of any antimicrobial activity, the MRS broth culture was 

centrifuged (3400 g) to obtain a cell-free supernatant (CFS). Paper discs were soaked in 

CFS and in CFS treated with sodium hydroxide, catalase and a combination of sodium 

hydroxide & catalase in order to neutralise acids and hydrogen peroxide, respectively. 

Subsequently, the discs were applied onto agar overlays of the indicator strains as 

described in Section 3.5.2. CFS treated with proteinase K was used to determine if 

antimicrobial activity was due to plantaricin production as all these compounds are either 

proteins or peptides (Ammor et al., 2006). Paper discs treated with sterile MRS broth and 

100 μg/ml chloramphenicol in MRS broth were used as the negative and positive controls, 

respectively. As Lb. plantarum strains usually harbour the genetic determinants for at 

least three bacteriocin systems i.e., plantaricin N, as well as the two-peptide bacteriocins 
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plantaricins EF and JK (Diep et al., 1996; Kleerebezem et al., 2003), a PCR method 

(Section 3.3.4.3) adapted from Cho et al. (2010) and Yi et al. (2010) was used to ascertain 

the presence of plantaricin N, EF and JK operons encoding the respective plantaricin 

bacteriocins among the Lactobacillus isolates. However, production of other bacteriocins 

such as plantaricin W and NC8 has also been reported (Eijsink et al., 2002; Diep et al., 

2009). Sequencing and identification of the plantaricin genes determined by the operon 

was performed as in §3.3.4.3. 

 

6.3 Results 

6.3.1 Antimicrobial activity of lactobacilli using the agar overlay method   

In this assay, Lb. plantarum (50 isolates; 7 from outer crust, 19 from blue veins, 24 from 

white core) were evaluated for antimicrobial activity against examples of spoilage, 

pathogenic and closely related LAB strains (Table 3.4). Each of the Lb. plantarum 

genotypes showed antimicrobial activity against more than one bacterial species but the 

number of sensitive species varied with the Lactobacillus isolate and its site of isolation 

(Appendix 6.1). The majority (84% of 50) of Lb. plantarum isolates gave a positive 

reaction and formed a halo around their colonies on the plates due to lysis of the sensitive 

strains (Figure 6.1). In order to determine the antimicrobial effect of the different strains 

of the organism against the primary starter culture for Stilton cheese, Lactobacillus 

isolates from the different sites were tested against Lc. lactis. All the isolates obtained 

from the outer crust and blue veins were able to inhibit Lactococcus, whereas only 24% 

of the white core strains could inhibit the growth of this organism (Table 6.2).  
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Figure 6.1 Antimicrobial activity of different genotypes of Lb. plantarum obtained from Stilton 

cheese. Isolates: (A) B28 (blue veins) against E. coli; (B) R26 (blue veins) against Ps. 

aeruginosa; and (C) R45 (white core) against Lactobacillus pentosus. (D) Antimicrobial activity 

of the pediocin-producing control strain Ped. acidilactici NCIMB 700993 against L. 

monocytogenes NCTC 11944. Antagonism is demonstrated by the presence of a halo around the 

colony of the producing organism.   
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Table 6.2 Proportion of Lb. plantarum isolates that demonstrated inhibitory activity 

against the various indicator bacteria based on agar plate overlay assay 

 

Indicator strain 

*% Lb. plantarum strains inhibitory against the indicator 

strains 

Crust (n=7)  Veins (n=19) Core (n=24) (N=50) 

L. monocytogenes NCTC 11944 100 100 100 100 

Staph. aureus (Stilton isolate) 86 89 96 92 

Staph. aureus NCTC 12100 100 95 96 96 

E. coli 0157: H7-stx 100 100 100 100 

Salm. Typhimurium 100 95 96 96 

Ps. aeruginosa glaxo-3 100 100 100 100 

Cl. sporogenes 000 000 000 000 

Lc. lactis NCIMB 9918 100 100 24 100 

Lb. pentosus NCIMB 8026 100 100 100 100 

*Based on the presence (+) or absence (-) of a halo around the colonies of LAB strains 

 

There was no apparent pattern in antimicrobial activity, even amongst Lactobacillus 

isolates obtained from the same site. However, Lb. pentosus, Ps. aeruginosa, E. coli and 

L. monocytogenes were the most inhibited organisms showing 100% susceptibility, 

whereas the Staph. aureus isolate obtained from Stilton cheese (92%) and Salm. 

Typhimurium (96%) were inhibited by all but a few isolates (Table 6.2). Of the seven 

tested Lactobacillus isolates obtained from the outer crust, R5 and R6 were found to have 

a weaker antimicrobial activity against E. coli and Lc. lactis than other genotypes whereas 

strain R1 had no inhibitory activity against the Stilton cheese Staph. aureus isolate 

(Appendix 6.1). Isolates R22 and R23 obtained from the blue veins as well as R37 from 

the white core also exerted no antimicrobial activity towards the Stilton cheese Staph. 

aureus isolate. Similar results were obtained for Lb. plantarum isolates B30 and W13 

from the blue veins and white core respectively, on Salm. Typhimurium; as was the case 

for W30 (white core) on Staph. aureus NCTC12100. Compared with the isolates from the 

blue veins and white core, Lb. plantarum isolates from the outer crust had the highest 

level of inhibitory activity with only Cl. sporogenes and the Stilton cheese Staph. aureus 

isolate showing some resistance to these Lactobacillus isolates. Hence the study 

demonstrated that both Gram-positive and Gram-negative species were inhibited. 

However, none of the Lactobacillus isolates was inhibitory against Cl. sporogenes 
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suggesting spore-forming bacteria such as Clostridium could be resistant because their 

spores are not affected by the antimicrobials produced.   

 

The results indicated that Lb. plantarum genotypes could produce different antimicrobial 

compounds active against a broad range of bacterial species including LAB as well as 

Gram-negative and other Gram-positive organisms. As Lb. plantarum produces 

plantaricins with antimicrobial activity only against closely related LAB spp. (Diep et al., 

2009), the ability of the isolates to inhibit growth of other bacterial species could be 

attributed to other mechanisms. Hence, the isolates were further examined for inhibitory 

activity due to production of the diffusible substances including bacteriocins, acids, 

hydrogen peroxide or a combination of these compounds usually produced by the 

Lactobacillus spp. (Essid et al., 2009). The phenomenon was assessed on the most 

sensitive strains utilising paper discs soaked in cell-free supernatants (CFS) and CFS 

treated to eliminate the effect of acids and hydrogen peroxide in order to understand 

which antimicrobials could be acting against specific groups of the sensitive bacteria 

(Section 6.3.2). 

 

6.3.2 Antimicrobial activity of Lb. plantarum isolates using paper disc diffusion assay 

Cell-free supernatants from 50 Lb. plantarum isolates obtained from different sites within 

a Stilton cheese were examined for cross antagonistic activity against L. monocytogenes, 

E. coli and Ps. aeruginosa using the paper disc diffusion assay. This assay allowed for 

comparison of results obtained using the overlay method and also eliminated the 

possibility of Lb. plantarum growth being an inhibitory factor to the sensitive strains. In 

all cases, the cell-free supernatant (CFS) had a narrow spectrum of activity and only 

showed inhibitory reactions against E. coli and Ps. aeruginosa. The CFS could not inhibit 

the growth of L. monocytogenes and only formed a small faint halo regarded as negative 

for this indicator bacterium. Further examination of the effects of the CFS on the closely 

related LAB strains demonstrated that seven (of the 50) isolates had inhibitory activity 

against Lb. pentosus, but none was inhibitory against other LAB strains including Leu. 

mesenteroides, Lb. plantarum NCIMB 138914, Lc. lactis, Lb. fermentum and Strep. 

thermophilus. These results suggested that under the experimental conditions examined in 

this study, the CFS of Lb. plantarum isolates could only show antagonism against closely 

related members of the LAB group such as Lb. pentosus. Lb. pentosus is a pentose 

degrading organism commonly isolated from sewage and exhibits considerable 
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phenotypic and genomic homology with Lb. plantarum, which is why strains of this 

species are generally treated as synonymous with the latter and sometimes occupy the 

same niche (Zanon et al., 1987). 

 

CFS with inhibitory activity against Lb. pentosus was only obtained from the Lb. 

plantarum isolates obtained from the blue veins (1 of 7 strains) and white core (6 of 7 

strains) (Table 6.3). The growth conditions of Lb. plantarum isolates which produced 

antimicrobial activity against Lb. pentosus were examined at 30 and 37°C for 14, 24 and 

48 h, aerobically & anaerobically, with & without agitation in MRS broth supplemented 

with 0.6, 10 and 20% (w/v) glucose in an effort to establish the optimum conditions for 

production of antimicrobial substance(s). Maximal inhibition of Lb. pentosus was 

obtained when Lb. plantarum isolates were grown for 24 h at 30
o
C at 100 rpm in MRS 

broth supplemented with at least 0.6% glucose; the rest of the conditions had minimal 

influence. Consequently, these conditions were employed to obtain the CFS which were 

treated to neutralise acids and hydrogen peroxide in order to establish the mechanism of 

inhibitory activity. 
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Table 6.3 Inhibitory activity of treated and untreated cell-free supernatants of Lb. 

plantarum isolates against Lb. pentosus NCIMB 8026, and Ped. acidilactici NCIMB 

700993 against L. monocytogenes NCTC 11944 

  Lb. plantarum strains isolated from the  

Extract Control strain Blue veins  White core  

 Ped. 

acidilactici
*
 

R23
**

 R36
**

 R37
**

 R38
**

 R39
**

 R42
**

 R45
**

 

CFS +++ +++ +++ ++ +++ +++ +++ +++ 

CFS-N +++ +++ ++ ++ ++ ++ +++ ++ 

CFS-C +++ +++ ++ ++ ++ ++ +++ +++ 

CFS-N-C +++ ++ ++ ++ ++ +++ ++ ++ 

CFS-P - - - - - - - - 

 

(CFS) cell-free supernatant; (CFS-N) neutralised cell-free supernatant; (CFS-C) cell-free 

supernatant treated with catalase; (CFS-N-C) neutralised cell-free supernatant treated with 

catalase; (CFS-P) cell-free supernatant treated with proteinase K. 

(-) indicates that no zone of inhibition was observed or a zone less than 0.5 mm in diameter.  

(+) a zone of inhibition greater than or equal to 0.5mm but less than or equal to 1 mm in 

diameter. 

(++) a zone of inhibition greater than 1mm and less than or equal to 2 mm in diameter. 

(+++) a zone of inhibition greater than 2 mm in diameter 

*  tested against L. monocytogenes 

** tested against Lb. pentosus 

   

Untreated cell-free supernatants showed zones of inhibition greater than 2 mm (Table 

6.3). Varying inhibitory reactions against Lb. pentosus were observed when treated cell-

free supernatants were applied. Neutralised cell-free supernatants adjusted to pH 6.5-7 

(CFS-N) and catalase-treated cell-free supernatants (CFS-C) from Lb. plantarum isolates 

R36, R37 and R38 (white core) formed smaller halos (1-2 mm), whereas the 

corresponding cell-free supernatants from isolates R23 (blue veins), R42 and R45 (white 

core) showed halos greater than 2 mm. With the exception of Lb. plantarum R39 from the 

white core, catalase-treated cell-free supernatants adjusted to pH 6.5-7 (CFS-N-C) from 

all other Lb. plantarum strains formed halos of 1-2 mm against Lb. pentosus. For each of 

the isolates R23 (blue veins) and R42 (white core), a decrease in antimicrobial activity 

was only noted when the neutralised CFS treated with catalase (CFS-N-C) was applied 
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indicating the acid and hydrogen peroxide had similar levels of activity which was 

subsequently reduced after removal of both substances. The observed reduction in 

antimicrobial activity when neutralised (CFS-N) and catalase-treated CFS (CFS-C) were 

applied suggests that activity could, in part, be attributed to production of acid and 

hydrogen peroxide. These results were compatible with the data obtained when the 

growth medium was supplemented with glucose; this led to a greater pH reduction and 

corresponded with greater antimicrobial activity (data not shown). In contrast, all treated 

and untreated CFS of the pediocin producing control strain, Ped. acidilactici showed 

strong inhibition forming halos greater than 2 mm against L. monocytogenes. Activity of 

the untreated CFS was not different from that of the neutralised and catalase-treated CFS 

(Table 6.2) indicating further mechanisms other than acid and hydrogen peroxide 

production could account for inhibitory activity of the latter against L. monocytogenes.  

 

For each of the Lb. plantarum isolates tested, treated and untreated cell-free supernatants 

retained some inhibitory activity against Lb. pentosus (Fig. 6.2, A-E) implying that bio-

active substances additional to acids and hydrogen peroxide were produced. Cell-free 

supernatants treated with the proteolytic enzyme proteinase K lost inhibitory activity 

suggesting that a key part of the antagonism was due to a proteinaceous bacteriocin. 

Similar results were obtained with the pediocin producing control strain Ped. acidilactici 

against L. monocytogenes (Fig. 6.2, F-J), highlighting the proteinaceous nature of the bio-

active compound(s) involved. In cases where positive results were obtained, all catalase- 

treated cell-free supernatants were heat stable and retained activity when boiled for ~1 

min at 90
o
C.  The combined analysis of data from this assay and results from Section 

6.3.1 suggested that the antimicrobial activity of Lb. plantarum isolates obtained from 

Stilton cheese could be attributed to acid, hydrogen peroxide and bacteriocin production 

and provided the basis for further screening of the strains for presence of genes encoding 

the class IIb plantaricin bacteriocins as outlined in Section 6.3.3. 
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Figure 6.2 (A-E) Antimicrobial activity of Lb. plantarum strain R45 obtained from the white core of 

Stilton cheese; and (F-J) Ped. acidilactici NCIMB 700993. Positions: (A & F) cell-free supernatant; 

(B & G) neutralised cell-free supernatant; (C & H) cell-free supernatant treated with catalase 

(500U/ml); (D & I) neutralised cell-free supernatant treated with catalase; (E & J) cell-free 

supernatant treated with proteinase K (1mg/ml). (A-E) Lb. pentosus NCIMB 8026 (~10
6
 CFU/ml); 

(F-J) L. monocytogenes NCTC 11944 (~10
6
 CFU/ml,) were used as the sensitive strains. Inhibitory 

activity is demonstrated by formation of a clear halo around paper discs soaked in the supernatants for 

30-60 min at room temperature. 

A C E D B 

F G H I J 

 

Figure 6.2 (A-E) Antimicrobial activity of the Lb. plantarum isolate R45 obtained from the white 

core of Stilton cheese; and (F-J) Ped. acidilactici NCIMB 700993. Positions: (A & F) cell-free 

supernatant; (B & G) neutralised cell-free supernatant; (C & H) cell-free supernatant treated with 

catalase (500U/ml); (D & I) neutralised cell-free supernatant treated with catalase; (E & J) cell-

free supernatant treated with proteinase K (1mg/ml). (A-E) Lb. pentosus NCIMB 8026 (~10
6
 

CFU/ml); (F-J) L. monocytogenes NCTC 11944 (~10
6
 CFU/ml,) were used as the sensitive 

strains. Inhibitory activity is demonstrated by formation of a halo around paper discs soaked in the 

supernatants for 30-60 min at room temperature. 

 

 

 

 

 

 

 

 

 

Paper disc soaked in MRS broth (negative control)  
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6.3.3 Prevalence of plantaricin encoding genes  

Fifty four Lb. plantarum isolates were screened for presence of plantaricin N, EF and JK 

operons using PCR. The technique is highly sensitive (Yi et al., 2010), and therefore was 

used to ascertain isolates harbouring the operons in order to complement the results of 

qualitative assays obtained (Sections 6.3.1-6.3.2). Genomic DNA extracts (Section 3.3.1) 

used in PCR have been found to be appropriate for this work (Maldonado-Barragán et al., 

2009; Yi et al., 2010). The representative agarose gel of PCR amplification of the 

plantaricin EF operons is shown in Fig. 6.3. The majority (64.8% of the 54) of the isolates 

were successfully amplified with the primers to produce an amplicon of 428 bp. 

Confirmation that the amplimers were the plantaricin EF operons was ascertained by 

sequencing the PCR product followed by NCBI database search using the BLAST 

programme. PCR did not yield successful results when primers targeting amplification of 

other plantaricin operons including plantaricins JK and N were applied, and so the genes 

were regarded as absent from the genome.  

 

 

 

 

 

 

 

Figure 6.3 Agarose gel electrophoresis of PCR products for the detection of plantaricin EF 

operons in Lb. plantarum isolates obtained from Stilton cheese. Lanes: (1&16) 100 bp marker;  

(2-5) isolates from the outer crust R1, R2, R3 & R6; (6-10) isolates from the blue veins R25, B11, 

B13, B25 & B29; (11-14) isolates from the white core R37, R40, R45 & W24; (15) Lb. brevis 

(negative control). The samples were run on 1% (w/v) agarose gel in 1X TAE buffer for 2 h at 75 

V.  

 

 

 

1000 bp  

500 bp  
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The amplicon was mostly (6 out of 7) obtained from isolates from the outer crust and was 

least (15 out of 32) observed among the isolates obtained from the white core (Table 6.4). 

BLAST matches of the sequences obtained from amplimers of the isolates obtained from 

the blue veins and white core were identified as putative plantaricin (pln) EF bacteriocin- 

encoding gene from closest relatives of Lb. plantarum JDM1. Conversely, sequences of 

PCR product from the isolates obtained from the outer crust were identified as putative 

pln EF bacteriocin-encoding gene from closest relatives of Lb. plantarum WCFS1. For all 

samples analysed, the identification level ranged from 97 to 99% (E=2
-132

 to 9
-167

) 

homology and the gene translation gave the predicted protein sequence MKKFLVLSDR 

ELNAISGGVFHAYSARGVRNNYKSAVGPADWVISAVRGFIHG (52 amino acids).   

 

Table 6.4 Prevalence of plantaricin EF encoding operons among Lb. plantarum isolates 

obtained from different sites in Stilton cheese 

Site of isolation Sample size Number of positive samples % 

Outer crust 07 06 85.7 

Blue veins 22 14  63.6 

White core  32 15 46.9 

Total 54 35 64.8 

 

These findings correlated with the results of the agar overlay assay (§6.3.1) and indicated 

that Lb. plantarum isolates obtained from the outer crust were more inhibitory against the 

various indicator bacterial spp. tested. In fact, all isolates which were found not to contain 

the plantaricin EF operons could still exert antimicrobial activity albeit at a lower level 

(as demonstrated by smaller halos), with Salm. Typhimurium and Staph. aureus NCTC 

121000 showing some resistance to these isolates (Appendix 6.1). This was the case for 

isolate B30 from the blue veins as well as W13 and W30 obtained from the white core 

(Appendix 6.1). This therefore suggests that antagonism by these isolates could mainly be 

attributed to acid and hydrogen peroxide production as shown in Section 6.3.2.  

 

Presence of the plantaricin EF operons amongst the isolates showed some correspondence 

with the results from the agar overlay and paper disc assays (§6.3.2). For instance, all the 

isolates which gave positive results with Lb. pentosus after neutralisation and catalase 

treatment of their CFS (Section 6.3.2) were also found harbour the plantaricin EF operons 

suggesting expression. However, despite the high prevalence of the operons among Lb. 
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plantarum isolates obtained from the outer crust, none of these isolates could show CFS 

activity against Lb. pentosus implying failure to express the genes as will be discussed 

later in Section 6.4.2. In general, the study suggested that antimicrobial activity of Lb. 

plantarum isolates against non-LAB spp. could only be attributed to production of acid, 

hydrogen peroxide and/or other metabolites whereas in case of Lb. pentosus, antagonism 

from some of the Lactobacillus isolates was due to synergistic action of acid, hydrogen 

peroxide and plantaricin EF bacteriocins. As already discussed in the introduction, the 

overall results were in agreement with the reported biological activity of plantaricins. 

Nissen-Meyer et al. (1993) and Diep et al. (2009) pointed out that these bacteriocins have 

a relatively narrow inhibitory spectrum, mostly being active against bacterial species 

closely related to the producer Lb. plantarum  strains. 

 

6.4 Discussion 

6.4.1 Antimicrobial activity of the Lactobacillus isolates 

Results from the agar plate overlay indicated that Lb. plantarum isolates had a broad 

spectrum of antimicrobial activity against Gram-positive and Gram-negative bacteria. 

These results are supported by some of the available literature whereby Lb. plantarum 

from natural fermented foods was reported to show antimicrobial activity against a wide 

variety of bacteria including L. monocytogenes, B. cereus, Cl. perfringens, Staph. aureus 

and E. coli (Wilson et al., 2005; Sawitzki et al., 2009; Yi et al., 2010). In the present 

assay, there were some variations in levels of activity against the various indicator 

bacterial species tested. However, the majority of Lb. plantarum isolates obtained from 

different sites (outer crust, blue veins and white core) of Stilton cheese exhibited 

antimicrobial activity against 8 of the 9 tested indicator bacteria, highlighting their 

prospects as potential bio-preservatives for Stilton and other dairy products. 

 

The antagonistic effect of treated and untreated cell-free supernatants of the MRS broth 

cultures on various bacteria was also tested. Cell-free supernatants had a narrow spectrum 

of activity only showing inhibitory reactions against E. coli, Ps. aeruginosa and Lb. 

pentosus, which together with leuconostocs, pediococci and streptococci, is regarded as a 

natural competitor of Lb. plantarum (Gonzalez et al., 1994). These results are similar to 

those from other studies (Ennahar et al., 1996; Wilson et al., 2005; Obodai, 2006). The 

current study demonstrated that inhibition of Lb. pentosus was partly due to plantaricin 

production in synergy with acid and hydrogen peroxide production. Maximal activity was 
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recorded at early stationary phase (24 h, 8-9 log10 CFU/ml) at 30
o
C, which is similar to 

the data reported by other researchers (Nissen-Meyer et al., 1993; Messi et al., 2001; 

Todorov and Dicks, 2005). Todorov and Dicks (2005) reported that optimal bacteriocin 

production in Lb. plantarum may also occur at pH above 4.5 in presence of the surfactant 

Tween 80 which facilitates discharge of the bacteriocin from the cell surface of the 

producer strain. Bacteriocin production in the organism is also enhanced by tryptone (20 

g/L) and mannose (30 g/L) but supplementing MRS with more than 1 g/L glycerol 

inhibits production due to increased osmotic stress (Todorov and Dicks, 2005). This study 

recorded loss of bacteriocin activity after 24 h suggesting degradation; however, the 

isolates examined could not hydrolyse casein on agar plates (Section 7.3.3) showing the 

strains examined here could not produce extracellular proteases.  

 

Production of some other intracellular peptidases active against the bacteriocin may 

account for loss of activity due to degradation (Todorov and Dicks, 2005). Moll et al. 

(1999) reported that plantaricins EF (and JK) are unstable at low pH and suggested that 

activity of these bacteriocins occurs at a pH optimum of 6-6.5. In milk, Lb. plantarum 

usually employs a complex cell wall bound proteolytic system which is optimally active 

at 30
o
C and high pH; and consists of proteinases, peptidases, amino and peptide carriers  

used for degradation of casein to provide essential amino acids for growth (Marathe and 

Ghosh, 2009). However, this phenomenon cannot be extrapolated to the results obtained 

in the current study as the pH was found to be low (less than 4) and glucose was added to 

MRS broth in which the isolates were grown; this would enhance more acid production.     

 

None of the other Gram-positive and Gram-negative bacteria was inhibited by the cell-

free supernatants. Using thin layer chromatography, a previous study investigating the 

mechanism of anti-listerial activity of Lb. plantarum in MRS broth cell-free supernatant 

showed that inhibitory activity against L. monocytogenes occurs during late log or early 

stationary phase of Lb. plantarum growth and was attributed to lactic acid production 

alone (Wilson et al., 2005). Other studies have reported that Lb. plantarum produces 

bacteriocins with inhibitory activity against L. monocytogenes (Messi et al., 2001) but 

with no potency towards Gram-negative bacteria (Messi et al., 2001; Todorov and Dicks, 

2005). From the stand point of this study, antimicrobial activity of cell-free supernatants 

from Lb. plantarum was greatest in the presence of glucose which implies high acid 

conditions. There was weak evidence to assert with confidence that some of the isolates 
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could produce plantaricins as these only gave small halos (1-2 mm) against Lb. pentosus. 

However, the inhibitory spectrum of plantaricins from the producer Lb. plantarum 

isolates was consistent and appeared to be similar to that of the bacteriocins from 

Lactobacillus spp. such as lactacin B and helveticin J (Boris et al., 2001) whose activity 

spectra are rather narrow and include only strains belonging to the same genus (Gonzalez 

et al., 1994). Further research is required to establish why cell-free supernatants had 

weaker activity even though there was clear evidence of antagonism when the organism 

was tested using the plate agar overlay assay. None-the-less, antimicrobial activity may 

partly account for the presence and dominance of Lb. plantarum in Stilton cheese as 

evidenced in Chapter 4, with the different genotypes showing varying levels of activity 

towards the sensitive microbial strains. However, on the basis of the results from this 

study, the precise number of Lactobacillus clones isolated from Stilton cheese could not 

be effectively established and this an issue which should be further examined. 

 

Bacteriocins may be produced directly in foods as a result of starter culture or co-culture 

activity. Indeed, several studies have indicated that lactobacilli as starter cultures or co-

cultures are capable of producing the compounds in food matrices and consequently 

display antimicrobial activity against sensitive spoilage or pathogenic bacteria. This effect 

has been documented for meat products (Bromberg et al., 2004; Albano et al., 2007; 

Essid et al., 2009), sauerkraut (Wilson et al., 2005), sourdough (De Vuyst and Leroy, 

2007), and fermented dairy products such as Kefir (Powell et al., 2007) & soft cheese 

(Ennahar et al., 1996), and therefore has potential application in Stilton cheese. Stability 

of plantaricin EF produced by the Lb. plantarum isolates in the cheese matrix needs 

further investigation as this may offer potential application in Stilton cheese and other 

fermented foods. In order to select a microorganism as starter culture or starter culture 

adjunct, it is often recommended to consider evaluating the strain against a broad 

spectrum of microorganisms including pathogenic moulds and fungi (Sawitzki et al. 

2009) which is an aspect that needs further investigation for the isolates assessed in this 

study.  

 

Gálvez et al. (2007) compared the data from culture media with those from food systems 

and revealed that the efficacy of bacteriocins is about 10-fold lower in the latter and 

greatly depends on a number of food related factors including interaction with food 

components, precipitation, inactivation and poor solubility at pH greater than 6. Further 
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research should focus on predicting the kinetics of bacteriocin production by Lb. 

plantarum isolates in situ in Stilton cheese through mathematical modelling in 

conjunction with positive predictive microbiology (Khalid, 2011). The relationship 

between food, environment and kinetics of the starter cultures has been previously 

established (De Vuyst and Leroy, 2007; Varghese and Mishra, 2008; Zhang et al., 2012) 

and provided important insights about the potential of in situ production of bacteriocins 

and their effect on the sensitive target strains. Further research in this area for bacteriocin 

producing Lb. plantarum isolates is important given the increasing commercial 

application of bacteriocins and bacteriocin-producing LAB in various food systems 

(Gálvez et al., 2007).  

 

6.4.2 Prevalence of plantaricin EF genes 

In Lb. plantarum and most other LAB, two-peptide bacteriocins are the most potent 

antimicrobial peptides. They are characterised by the occurrence of the conserved amino 

acid sequence motif ‘YGNGVXCXXXXCXV’ in the N-terminus of the molecules (Yi et 

al., 2010). Currently, the ability to establish the presence of the gene encoding for this 

sequence motif is the basis for rapid screening of LAB which produce these bacteriocins 

(Eijsink et al., 2002; Yi et al., 2010). 

 

The prevalence of plantaricin EF operons among Lb. plantarum isolates was in agreement 

with other studies (Rojo-Bezares et al., 2007; Yi et al., 2010). These researchers proposed 

that when the gene encoding plantaricin F is expressed in Lb. plantarum, a heat stable 

bacteriocin (plantaricin F) normally active in a narrow pH range is produced, which may 

partly explain low activity of the CFS as observed in Section 6.3.2.  This study indicated 

that the operons encoding plantaricin EF occur in Lb. plantarum isolates obtained from 

Stilton cheese (pH, 4.5-6). If the gene encoding for plantaricin F was induced to produce 

the bacteriocin, it is possible the peptide would have lower antimicrobial effect, given the 

low pH of the product. The narrow spectrum of activity (i.e. small range of species acted 

against) may be partly attributed to an imbalance in the proportion of the two peptides (E 

and F). Nissen-Meyer et al. (2010) suggested that two peptide bacteriocins such as 

plantaricin EF display optimal activity when both peptides are present in about equal 

amounts. As these bacteriocins act by inducing formation of pores that display specificity 

with respect to the transport of molecules in the target cells (Nissen-Meyer et al., 2010), 
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the current study could also have been limited by the number of possible sensitive 

microbial groups examined. 

 

This study has shown that the genes encoding plantaricin EF were highly prevalent 

among the Lb. plantarum isolates with the highest level (86%) detected in the isolates 

obtained from the outer crust and the lowest (47%) from lactobacilli from the white core. 

These prevalence levels correlated with the data from the agar overlay assay (Section 

6.3.1) when the organism was cultured on solid media but could not be related with the 

CFS assays (Section 6.3.2) as there was no evidence for bacteriocin expression among the 

outer crust isolates in the latter assay. Also, as already mentioned in Section 6.4.1, the 

percent prevalence of the genes ending plantaricin EF obtained from this work (Table 6.4) 

could have been biased by failure to establish the precise number of Lactobacillus clones 

isolated from the cheese. Molecular techniques presented in Chapter 2 (Section 2.1.2) 

would be would provide future prospects to overcome this limitation. Messi et al. (2001) 

and Maldonado-Barragán et al. (2009) have reported that on solid media, well isolated 

colonies of Lb. plantarum normally produce acid, hydrogen peroxide and plantaricins B, 

423 and F which have broad spectrum of activity implying the phenomenon is a 

constitutive trait. However, the organism rarely produces the bacteriocins in liquid broth.  

 

In most organisms, bacteriocin production has been shown to be an unstable phenotype 

and environmental factors play an important role in regulation of the process. For 

example, sakacin A and curvaticin production by Lb. sakei and Lb. curvatus, respectively, 

is a temperature-sensitive process (Maldonado et al., 2004). Nevertheless, the mechanism 

by which the environment interacts with regulation of bacteriocin production is still 

poorly understood. Studies have proposed that most bacteriocins can be produced in 

liquid media when appropriate growth conditions have been fulfilled. Maldonado-

Barragán et al. (2009) have summarised that Lb. plantarum and some lactococci lose the 

ability to produce bacteriocins when inoculated in liquid media below a specific inoculum 

size (~10
5
 CFU/ml). In this case, the bacteriocin producing (Bac+) phenotype can be 

restored when the culture is either streaked onto solid media or by addition of the cell-free 

supernatant from a previous Bac+ culture.  
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Previous studies have shown that sometimes Lb. plantarum does not produce bacteriocins 

(including plantaricin EF) when inoculated as a pure culture in liquid medium regardless 

of inoculum size and growth conditions (Maldonado et al., 2004). However, co-culture of 

the organism with other specific Gram-positive bacteria or addition of its own specific 

auto-inducer peptide to broth culture results in bacteriocin production (Maldonado et al., 

2004). From this perspective, the isolates examined in this study were subsequently 

separately co-cultured with live cells of Lc. lactis, Ped. pentosaceus and Lb. acidophilus; 

these had been previously shown to induce plantaricin production in Lb. plantarum (Rojo-

Bezares et al., 2007). However, no induction of antimicrobial activity was observed in 

any case. 

 

Bacteriocin production in such LAB strains is regulated by a three component regulatory 

system composed by an auto-inducer peptide (AIP), histidine-kinase protein (HK) and 

response regulator (RR). AIP acts as an indicator of the cell density which is sensed by 

the corresponding HK, resulting in activation of RR which finally activates expression of 

all operons necessary for bacteriocin synthesis, transport and regulation. This quorum 

sensing (QS) or auto-induction mechanism mediated by AIP was found in various 

lactobacilli including Lb. salivarius, Lb. sake (Diep et al., 2009) and Lb. plantarum (Di 

Cagno et al., 2010). Maldonado-Barragán et al. (2009) suggested that differences in 

bacteriocin production between solid and liquid media may be attributed to differences in 

the rate of diffusion of the corresponding AIP. These authors reported that AIP does not 

diffuse in solidified agar as readily as in solution, allowing cells on solid media surface to 

come in closer contact with secreted AIP than in liquid medium. The possible 

functionality of AIP mechanism on solid and in liquid media needs to be addressed for the 

Lb. plantarum isolates examined in this study. However, this phenomenon would be 

important for Lb. plantarum growing in cheese where diffusion is likely to be limited due 

to its solid nature. 

 

The results of this work suggest that the substance(s) responsible for inducing production 

of plantaricin EF in Lb. plantarum may be either synthesised or activated by close cellular 

contact with the competing/sensitive microorganisms (Rojo-Bezares et al., 2007). This 

may explain why the isolates that were examined in this study maintained antimicrobial 

activity against other Gram-positive bacteria when both were co-cultured together on agar 

overlays but after removal of target cells (application of the CFS), the effect was only 
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expressed by fewer Lb. plantarum strains and antagonism was only limited to Lb. 

pentosus.  

 

In food fermentations, the narrow spectrum of antimicrobial activity of the CFS from Lb. 

plantarum isolates may be exploited in control of specific sensitive undesirable organisms 

without compromising the beneficial microflora of the product. There is the need to 

determine the genetic function and organisation of the regulon implicated in bacteriocin 

production among the Lb. plantarum isolates. This would give better understanding of 

how environmental conditions and other factors such as presence of target cells induce 

production and activity of plantaricin EF bacteriocins in the organism. In general, Lb. 

plantarum isolates presented interesting prospects as bio-preservatives due to their anti-

pathogen activity demonstrating that the isolates have potential to compete with other 

bacteria in solid systems such as cheese. However, prospects for application of the 

isolates as adjunct cultures for cheese production could be undermined by the observed 

ability of some isolates to inhibit Lc. lactis. Investigations on the viability of the organism 

as a probiotic in vivo in the human gut are worthwhile. Purification of the bacteriocins 

produced by the Lb. plantarum isolates would allow a more targeted approach for further 

evaluation in situ in Stilton cheese in order to control the undesirable bacteria such as 

Listeria in the final product.        

 

6.5 Conclusions 

In light of the results obtained using qualitative methods and PCR, it could be concluded 

that a cell contact inducible activity of antimicrobial activity against a wide range of other 

bacteria, including pathogens and spoilage organisms, was detected in Lb. plantarum 

isolates obtained from Stilton cheese. Whereas different antimicrobials were produced by 

different Lactobacillus isolates, activity against non-LAB bacterial species was mainly 

due to acid, and to a less extent, hydrogen peroxide production. 

 

Although the isolates had a high prevalence of plantaricin EF genes, there was weak 

evidence for plantaricin production in liquid medium assays. The plantaricin EF had a 

narrow spectrum of activity; this was only demonstrable among Lb. plantarum isolates 

obtained from the blue veins and white core against Lb. pentosus, implying the 

phenomenon was largely dependent on the genotype/isolate of Lb. plantarum and was 

only active against closely related lactic acid bacteria. 



 

135 

 

 

These results, together with the data presented in Chapters 4 and 5, showed that there 

were different genotypes of Lb. plantarum in the blue veins and white core compared 

with the isolates from the outer crust.  The latter group could only show antimicrobial 

properties on solid medium (agar plates) whereas the antimicrobial compounds from the 

former group were active both in liquid (CFS) as well as on solid media. 

 

At present Lb. plantarum is fortuitous in Stilton cheese, thus production of antimicrobials 

could influence the cheese microflora giving rise to batch-to-batch variation in the flora of 

the final product which may influence sensory characteristics. In the next chapter, 

different genotypes of the organism were examined for growth interaction(s) with the 

starter culture Lc. lactis and how the possible interactions could affect the aroma profile 

of milk under simulated cheese ripening conditions. 
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CHAPTER 7 

 

 

ACID PRODUCTION, POPULATION DYNAMICS AND VOLATILE PROFILES 

OF LACTOBACILLUS PLANTARUM ISOLATES  

 

 

7.1 Introduction 

It has previously been demonstrated that the non-starter bacterial flora from different sites 

(outer crust, blue veins and white core) of Stilton cheese is dominated by Lb. plantarum 

(Section 4.2.2) and that genotypically different isolates of the organism tolerate stress 

conditions typical of the microenvironments from which they were isolated (Sections 

5.3.2-5.3.4). A previous study by Gkatzionis et al. (2009) has also established that the key 

aroma compounds (alcohols and ketones) are differentially distributed in the above cheese 

sites. Lb. plantarum is known to contribute to flavour development in cheese through acid 

production and aroma formation (Whitley, 2002; Ghotbi, 2011). Moreover, the process 

involves complex metabolic pathways which can follow different routes in pure or mixed 

cultures (Gkatzionis, 2010). As the volatile aroma compounds in cheese originate from 

microbial, enzymatic and chemical transformation of substrates present in milk (Vítová et 

al., 2006), the current study aimed to examine how the different genotypes of the 

organism may influence the aroma profile of cheese and how this can be influenced by 

co-culture with different strains of Lc. lactis and salt addition. Isolates of the organism 

have been found to possess a broad antimicrobial spectrum on solid medium (Section 

6.3.1) and some isolates could produce bacteriocins (Sections 6.3.2). Therefore, it was 

also deemed interesting to establish the effect of the different genotypes of the organism 

on the growth and survival of the primary starter culture Lc. lactis. Indeed, Stilton cheese 

producers often have to deal with poor quality cheeses having low aroma scores (Whitley, 

2002) which could be due to low starter culture activity and it is important to establish if 

NSLAB could be a cause of such effects. 
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7.2 Methods 

7.2.1 Acid production 

In order to quantify acid production, Lb. plantarum isolates representing each sampling 

site (n=6) were selected from the six clusters of the PFGE dendrogram and evaluated for 

growth, and lactic and acetic acid production (dominant organic acids produced by LAB) 

under optimal growth conditions in MRS broth at 30
o
C as described in Section 3.8. Ped. 

acidilactici was included as an acid-producing control strain. The pH was measured to 

monitor the progress acid production in the medium. Organic acids were extracted from 

the cell-free supernatants at different growth time intervals and analysed by HPLC; 

samples were eluting through the solid phase extraction (SPE) cartridges which had been 

pre-conditioned with 100% methanol and SDW as outlined in Section 3.8.2. Un-

inoculated MRS broth was used to set the baseline level for quantification of lactic and 

acetic acid.  

 

7.2.2 Dynamics of viable populations and pH changes and volatile profiles analysis 

The dynamics of growth and survival, and the concomitant volatile production of pure 

and mixed cultures of the different Lb. plantarum geno-groups (R2, outer crust, B30, blue 

veins, W8, white core), and different strains of Lc. lactis: Lc. lactis subsp. lactis (acid 

producer) and Lc. lactis NCIMB 9918 (non acid-producer) was examined by culturing the 

isolates as pure or mixed cultures in UHT cows’ milk (3% fat) for 48 h at 30
o
C as in 

Section 3.6.1. Subsequently, each sample was subdivided into two portions; 3.5% NaCl 

was added to one portion whilst the other portion (control) was unsalted. All samples 

were further incubated for 12 weeks at 18
o
C and viable counts enumerated as detailed in 

§3.6.1. Simultaneously, 5 ml aliquots were also taken at 24 and 48 h (fermentation), and 

then at 4 and 7 weeks (ripening) for headspace analysis using SPME GC-MS as in 

Section 3.9.2. Un-inoculated milk was included as a control. 

 

These conditions were chosen to simulate, as much as possible, the initial stages of milk 

fermentation at 28-30
o
C and subsequent cheese ripening at 15-20

o
C. UHT milk was 

chosen as the model medium as it is a microbially controlled medium and has been used 

previously for studying microbial interactions in dairy matrices (Gkatzionis et al., 2009). 

Lc .lactis subsp. lactis was selected to represent, as much as possible, the commonly used 

lactic acid-producing primary starter culture (acid producer) during cheese production. 

Lc. lactis NCIMB 9918 was included in order to examine the effect on the aroma profile, 
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of the possible growth interactions between the non-starter Lb. plantarum isolates and the 

non acid-producing Lc. lactis strains which may occur naturally.  

 

Lb. plantarum from pure and mixed cultures was enumerated on Rogosa agar, a selective 

medium which does not support the growth of Lc. lactis. Lc. lactis was enumerated 

indirectly from MRS agar counts (Fig. 7.1) as detailed in Section 3.6.3. The difference 

between the total LAB viable counts obtained on MRS agar and Lactobacillus counts on 

Rogosa agar plates was used to ascertain the Lactococcus counts. The changes in pH were 

monitored using a pH meter as described in Section 3.6.2. Aroma compounds in the 

headspace above the sample in a 20 ml sealed vial were sampled using a stableflex SPME 

fibre, detected using GC-MS and identified and quantified based on their linear retention 

indices and mass spectra as in Section 3.9.2. 

 

 

Figure 7.1 Colony morphology of Lb. plantarum B30 obtained from the blue veins and Lc. lactis 

subsp. lactis (UNFCC) co-cultured in cows’ UHT milk for 24 h at 30
o
C. The sample (0.1 ml) was 

surface spread on MRS agar and incubated anaerobically for 48 h at 30
o
C.  
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7.3 Results 

7.3.1 Acid production  

The six isolates chosen for this study were selected to represent each of the cheese sites as 

well as the major clusters of the PFGE genotyping dendrogram. The data obtained from 

growth characteristics, pH changes and acid production of the Lb. plantarum isolates and 

Ped. acidilactici (control) are presented in Table 7.1. Fig. 7.2(A) represents the typical 

HPLC chromatogram obtained from standard solutions of lactic (1.25 g/L) and acetic acid 

(0.62 g/L). Fig. 7.2(B) shows the HPLC chromatogram of MRS broth inoculated with Lb. 

plantarum W30 obtained from the white core and incubated for 48 h at 30
o
C. The plot of 

the data in Table 7.1 is shown in Figure 7.3. From Fig 7.2A, there was good separation of 

lactic and acetic acid eluting at 16 and 19 min, respectively. Two of the peaks in the 

sample extracts could be identified as lactic and acetic acid because they gave similar 

elution times to those of the standard solutions. It was anticipated that the large peak at 

11.8 min could be attributed to glucose; this peak gave a decreasing trend as fermentation 

progressed. The method was fast and provided high throughput for sample analysis. 
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Figure 7.2 Chromatograms showing HPLC detection of lactic (1.25g/L) and acetic acid (0.62g/L) 

in (A) the standard solution; and (B) cell-free supernatant of MRS broth culture of Lb. plantarum 

W30 (white core) grown for 48 h at 30
o
C 
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Table 7.1 Viable counts, lactic and acetic acid production and pH changes of MRS broth inoculated with Ped. acidilactici NCIMB 700993 and different 

genotypes of Lb. plantarum  obtained from Stilton cheese. Values are means of three independent determinations ± standard errors of the means, p = 0.05. 

 

Time (h) R2 (crust) R6 (crust) B30 (veins) R25 (veins) R40 (core) W30 (core) Ped. acidilactici 

 

 

 

                                                                             Log10 CFU/ml 

0 3.69±0.1
f1,2

 3.69±0.5
d1,2

 3.58±0.1
e1,2

 3.18±0.2
f2

 3.31±0.2
d1

 3.89±0.1
e1,2

 3.79±0.1
e1,2

 

3 4.17±0.2
e1,2

 3.77±0.3
d2

 4.08±0.1
d1,2

 3.74±0.1
e2

 3.74±0.2
d1

 4.46±0.1
d2

 4.11±0.2
e1,2

 

6 4.71±0.1
d2

 4.36±0.2
c,d2

 4.71±0.2
c2

 4.56±0.1
d2

 4.56±0.2
c1

 5.32±0.1
c2

 5.58±0.2
d1

 

9 5.24±0.2
c3

 4.97±0.3
c3

 5.43±0.2
b2,3

 4.97±0.1
c3

 5.00±0.1
c2

 5.85±0.1
b3

 6.76±0.1
c1

 

24 8.32±0.2
b3

 7.63±0.5
b4

 8.43±0.1
a2,3

 8.10±0.1
b3,4

 7.90±0.2
b1,2

 9.03±0.2
a3,4

 9.28±0.1
a1

 

48 8.81±0.1
a2,3

 8.96±0.2
a1,2

 8.52±0.1
a3,4

 9.01±0.1
a1,2

 8.77±0.1
a1

 9.13±0.1
a2,3

 8.45±0.1
b4

 

 

                           

   

pH of the samples 

  

0 5.79±0.0
a1

 5.79±0.0
a1

 5.79±0.0
a1

 5.79±0.0
a1

 5.79±0.0
a1

 5.79±0.0
a1

 5.79±0.0
a1

 

3 5.69±0.1
b1

 5.53±0.1
b2

 5.46±0.1
c3

 5.43±0.1
c3

 5.46±0.1
c3

 5.41±0.1
c3

 5.39±0.2
b3

 

6 5.57±0.1
c1,2

 5.59±0.1
b1,2

 5.58±0.1
b1,2

 5.65±0.1
b1

 5.57±0.1
b1,2

 5.56±0.1
b2

 5.36±0.2
b3

 

9 5.56±0.1
c2

 5.72±0.1
a1

 5.60±0.2
b2

 5.79±0.1
a1

 5.57±0.2
b2

 5.61±0.1
b2

 5.34±0.2
b3

 

24 5.01±0.1
d3

 5.44±0.1
c1

 4.64±0.1
d4

 5.04±0.1
d3

 5.25±0.1
d2

 4.26±0.1
d5

 3.79±0.1
d6

 

48 4.07±0.1
e1,2

 4.09±0.1
d1

 3.92±0.1
e3

 3.93±0.1
e2,3

 3.98±0.1
e1,2,3

 3.76±0.1
e4

 3.98±0.1
c2,3

 

Values in columns with same superscript letters are not significantly different (p>0.05)                                                                                                                                                

Values in rows with same superscript numbers are not significantly different (p>0.05) 
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Time (h) R2 (crust) R6 (crust) B30 (veins) R25 (veins) R40 (core) W30 (core) Ped. acidilactici 

 

Lactic acid (g/L) 

 

0 0.00±0.0
c1

 0.00±0.0
c1

 0.00±0.0
c1

 0.00±0.0
c1

 0.00±0.0
c1

 0.00±0.0
c1

 0.00±0.0
c1

 

3 0.02±0.1
c1

 0.07±0.1
c1

 0.09±0.03
c1

 0.02±0.1
c1

 0.07±0.03
c1

 0.07±0.03
c1

 0.05±0.01
c1

 

6 0.03±0.1
c1

 0.09±0.02
c1

 0.01±0.1
c1

 0.05±0.01
c1

 0.04±0.03
c1

 0.04±0.04
c1

 0.01±0.1
c1

 

9 0.02±0.03
c1,2

 0.05±0.03
c1,2

 0.08±0.02
c1

 0.04±0.03
c1,2

 0.06±0.03
c1,2

 0.02±0.05
c2

 0.05±0.02
c1,2

 

24 2.14±0.1
b4

 0.75±0.3
b4

 4.36±0.4
b3

 1.84±0.5
b4

 1.14±0.2
b4

 7.99±0.9
b2

 10.30±0.9
b1

 

48 13.63±0.8
a2,3

 13.91±0.3
a2,3

 14.06±0.8
a2,3

 15.19±0.9
a2

 13.64±0.4
a2,3

 21.40±1.5
a1

 12.21±0.8
a3

 

 

Acetic acid (g/L) 

0 0.00±0.0
b1

 0.00±0.0
b1

 0.00±0.0
b1

 0.00±0.0
b1

 0.00±0.0
b1

 0.00±0.0
b1

 0.00±0.0
c1

 

3 0.15±0.5
b1

 0.30±0.22
b1

 0.26±0.2
b1

 0.35±0.3
b1

 0.33±0.3
a,b1

 0.27±0.3
b1

 0.60±0.2
b1

 

6 0.15±0.4
b1

 0.47±0.4
b1

 0.31±0.3
a,b1

 0.24±0.3
b1

 0.15±0.2
a,b1

 0.16±0.1
b1

 0.55±0.3
b,c1

 

9 0.15±0.3
b1

 0.24±0.3
b1

 0.37±0.3
a,b1

 0.23±0.2
b1

 0.26±0.3
a,b1

 0.07±0.2
b1

 0.66±0.1
b1

 

24 0.29±0.2
b2

 0.18±0.2
b2

 0.31±0.2
a,b2

 0.55±0.2
a,b1,2

 0.28±0.2
a,b2

 0.39±0.3
b1,2

 1.02±0.3
a,b1

 

48 1.75±0.5
a1

 1.37±0.5
a1,2

 0.99±0.3
a1,2

 1.06±0.1
a1,2

 0.71±0.2
a2

 1.34±0.1
a1,2

 1.43±0.3
a1,2
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As evident from the plot of the data (Fig. 7.3), lactic acid production was strongly 

associated with the growth phase, whereas the relationship was weaker for acetic acid 

production. At 0-9 h, there was minimal lactic acid production for all the tested isolates 

probably due to lag phase (Passos et al., 1994) or due to inability of the isolates to 

produce it during this growth phase. Exponential growth phase was observed at 9-24 h, 

during which noticeable pH decrease was detected due to concomitant lactic acid 

production. Subsequently (24-48 h), further pH decrease was recorded to the lowest value 

of 3.76±0.01 from Lb. plantarum W30 obtained from the white core. The low pH range 

(3.76±0.01-4.09±0.1) correlated with inhibition of cell growth. Between 24-48 h however, 

maximal lactic acid production was obtained for all the isolates (Fig. 7.3) which is why 

this phase was associated with the greatest pH decrease. At 48 h, Lb. plantarum W30 

obtained from the white core produced the highest level (21.40±1.5 g/L) of lactic acid, 

whereas Ped. acidilactici had the lowest (12.21±0.8 g/L) compared with other isolates 

examined (Table 7.1, p<0.05). 
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Figure 7.3 Data from Table 7.1 showing plots of lactic and acetic production (g/L), growth (log CFU/ml) (A1-C1) and pH changes (A2-C2) of representative 

Lb. plantarum isolates obtained from Stilton cheese. Isolates: (panel A) R2 from the outer crust, (panel B) B30 from the blue veins, (panel C) W30 from the 

white core. Solid line (black circle) log CFU/ml; broken line: (red diamond) lactic acid production, (blue square) acetic acid production; (green triangle) pH 

changes. The isolates were cultured in MRS broth for 48 h at 30
o
C. Points are means of nine technical replicates obtained from three independent experiments 

and error bars are ± standard errors of the means, p = 0.05. 
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All isolates produced low levels (0.15±0.5-1.75 g/L) of acetic acid throughout the growth 

period. At 48 h, the lowest proportion of acetic acid (0.71±0.2 g/L) was obtained from 

Lb. plantarum R40 (white core), whereas the highest (1.75±0.5 g/L) was produced from 

R2 (outer crust) (Table 7.1, p<0.05). On the basis of these results, it was possible to 

suggest that during short term fermentation in MRS broth (24-48 h), the different geno-

groups of Lb. plantarum caused acidification of the medium mainly due to lactic acid 

production, which is consistent with the view that the organism is homofermentative. Lb. 

plantarum isolates obtained from the white core produced the highest level of lactic acid 

whereas the lowest was recorded from isolates obtained from the outer crust. A vice versa 

relationship was noted for acetic acid production. Production of lactic acid is of 

significance in fermented foods where low pH due to acid formation is a desired flavour 

attribute as well as important for exerting antimicrobial effects in the final product 

(Ammor et al., 2006). Acetic acid has stronger antimicrobial properties than lactic acid 

and is often associated with a sour/vinegar note in ripened cheese. Therefore, the isolates 

of Lactobacillus were subsequently examined for possible growth interactions with Lc. 

lactis (Section 7.3.2) and how these could influence the aroma profile of fermented milk 

(Section 7.3.3). 

 

7.3.2  Dynamics of population changes  

NSLAB have been previously reported to influence flavour properties of ripened cheese 

positively (Grappin and Beuvier, 1997). Given that microbial aroma formation in milk 

follows a series of complex metabolic pathways driven by interactions between species 

(Gkatzionis et al., 2009), the current work aimed to establish how the possible population 

interactions (synergistic, competitive or antagonistic) between the different genotypes of 

Lb. plantarum (the dominant non-starter bacterial flora in Stilton cheese) and different 

strains of Lc. lactis could influence the profile of aroma compounds in milk. As there was 

little difference in acidification capabilities of Lactobacillus isolates obtained from a 

given cheese site (Table 7.1), one isolate from each site was considered for this part of 

the study. From the outer crust, isolate R2 was selected whereas B30 was chosen to 

represent the blue veins. None of the Lactobacillus isolates R40 and W30 (white core) 

was chosen for this part of the study. This is because preliminary work looking at flavour 

volatiles suggested that another isolate (W8) from this cheese section gave distinctive 

volatile spread. As these samples were to be used for growth and aroma analysis, it was 

regarded that W8 more appropriate (than R40 or W30) for examining the possible 
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differences in aroma properties of Lactobacillus isolates obtained from the different sites. 

In addition, only Lactobacillus isolates that were carriers of plantaricin EF genes were 

considered for the possible growth effects on the starter culture Lc. lactis. Isolate W8, like 

R2 and B30, carried these genes whereas W30 did not. 

  

7.3.2.1 Early fermentation 

During early fermentation (0-48 h) at 30
o
C, the three Lb. plantarum isolates in pure 

culture had similar growth characteristics (Fig. 7.4A1, p>0.05). Also, Lc. lactis subsp. 

lactis and Lc. lactis NCIMB 6681 (acid producers) in pure (Fig. 7.4B1) or in mixed 

culture (Fig. 7.5A2 and B2) had indistinguishable growth patterns irrespective of the 

isolate of Lb. plantarum inoculated in the co-culture (p>0.05). At 48 h, the final cell 

concentration of acid-producing Lc. lactis strains in pure (Fig. 7.4B1) or in mixed cultures 

(Fig. 7.5A2 and B2) was higher than that of Lc. lactis NCIMB 9918 (non acid-producer) 

in pure (Fig. 7.4B1) or in mixed cultures (Fig. 7.5C2) and Lb. plantarum isolates in pure 

(Fig. 7.4A1) or in mixed cultures (Fig. 7.5A1-C1, p<0.05). 
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Fig. 7.4 Viable populations (A1 & B1) and pH changes (A2 & B2) of pure cultures of: (panel A) Lb. plantarum isolates obtained from: outer crust (strain R2, 

black circle), blue veins (B30, red square) and white core (W8, green triangle) of Stilton cheese; (panel B) Lc. lactis NCIMB 6681 (open black circle), Lc. 

lactis subsp. lactis (UNFCC, open red square) and Lc. lactis NCIMB 9918 (open green triangle). Strains were cultured in cows’ milk for 48 h at 30
o
C. 

Enumeration was performed on Rogosa (for lactobacilli) and difference in counts between Rogosa and MRS agar (for lactococci). Points are means of nine 

technical replicates obtained from three independent experiments and error bars are ± standard errors of the means, p = 0.05. 
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Fig. 7.5 Viable populations of (A1-C1) Lb. plantarum isolates obtained from outer crust (strain R2, black circle), blue veins (B30, red square) and white core (W8, 

green triangle) of Stilton cheese in co-culture with: (panel A) Lc. lactis NCIMB 6681; (panel B) Lc. lactis subsp. lactis; (panel C) Lc. lactis NCIMB 9918. (A2-C2) 

viable populations of lactococci strains, (A3-C3) pH changes of the mixed cultures. Enumeration was performed on Rogosa (for lactobacilli) and difference in counts 

between Rogosa and MRS agar (for lactococci). Points are means of three independent experiments and error bars are ± standard errors of the means, p = 0.05. 
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Different genotypes of Lb. plantarum had no significant effect on the growth 

characteristics of the individual lactococci strains in mixed culture (p>0.05). In general, 

Lc. lactis grew rapidly in milk to reach 8-9 log10 CFU/ml at 12-48 h (Fig. 7.4B1 & 7.5A2-

C2). The viable counts of acid-producing lactococci remained stable at this level for both 

pure (Fig. 7.4B1) and mixed culture (Fig. 7.5A2-B2) treatments, whereas that of Lc. lactis 

NCIMB 9918 (non acid-producer) gradually decreased to 6-7 log10 CFU/ml (Fig. 7.4B1 & 

7.5C2). For each of the acid producers and non acid-producing lactococci, there was no 

significant difference in overall growth patterns of the strains in pure or in mixed cultures 

(p>0.05) although the acid producers attained a higher final count at 48 h than the non 

acid producing Lc. lactis.    

 

At 48 h, Lb. plantarum isolates had better overall growth in pure culture than in mixed 

culture (Fig. 7.6A-C). However, the final cell density of the isolates was higher when they 

were co-cultured with the acid-producing Lc. lactis subsp. lactis and Lc. lactis NCIMB 

6681 than with Lc. lactis NCIMB 9918 (non acid-producer) (Fig. 7.6A-C, p<0.05). At 

entry into stationary phase, the viable count of Lactobacillus isolates was higher when 

they were co-cultured with acid-producing lactococci compared with that obtained when 

co-inoculated with the non acid-producing Lc. lactis (p<0.05).  

 

During this growth phase (0-48 h), the viable count of Lb. plantarum B30 from the blue 

veins (Fig. 7.6B) was higher than that of the isolates obtained from the outer crust (Fig. 

7.6A, p<0.05) and the white core (Fig. 7.6C). Although Lb. plantarum B30 grew better 

when co-cultured with acid-producing lactococci (Fig. 7.6B), the isolate also exhibited 

better growth characteristics than other Lb. plantarum isolates in mixed culture (Fig. 

7.6A-C). Therefore this difference may be due to a difference in competitiveness of this 

isolate rather than it having an inherently greater growth rate than the other Lactobacillus 

isolates. Pure culture data showed no significant difference in the growth patterns of the 

Lactobacillus isolates over the 48 h period as evident in Fig. 7.6 (p>0.05). 
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Figure 7.6 Replotting of data from Figs. 7.4A1 and 7.5A1-C1 showing comparative plots of viable populations of Lb. plantarum isolates alone and in co-

culture. (A) isolate R2 from the outer crust, (B) isolate B30 from the blue veins, and (C) isolate W8 from the white core. The isolates were grown in cows’ 

milk for 48 h at 30
o
C as pure cultures (black circle), or as co-cultures with: (red diamond) Lc. lactis NCIMB 6681, (blue square) Lc. lactis subsp. lactis, 

(green triangle) Lc. lactis NCIMB 9918. Enumeration was performed on Rogosa (for lactobacilli) and difference in counts between Rogosa and MRS agar 

(for lactococci). Points are means of nine technical replicates obtained from three independent experiments and error bars are ± standard errors of the means, 

p = 0.05. 

 

 



 

151 

 

Lb. plantarum isolates in pure culture (Fig. 7.4A2) or in co-culture with Lc. lactis NCIMB 

9918 (Fig. 7.5C3) showed no significant pH drop (p>0.05) probably because of the high 

buffering capacity of the milk medium (Robinson, 1990). Similarly, there was no pH drop 

in the pure culture of Lc. lactis NCIMB 9918 (Fig. 7.4B2). Pure culture of Lc. lactis 

subsp. lactis and Lc. lactis NCIMB 6681 reduced the pH from 6.5 to 5.5 (Fig. 7.4B2, 

p<0.05). Lb. plantarum R2 obtained from the outer crust and W8 from the white core in 

co-culture with the acid-producing Lc. lactis strains (Fig. 7.5A3-B3) had a similar pH drop 

to that of these lactococci strains alone (Fig. 7.4B2). However, the acid-producing Lc. 

lactis strains in co-culture with Lb. plantarum B30 from the blue veins showed a 

significantly greater pH drop (p<0.05) (Fig. 7.5A3-B3) than all other treatments. The 

results are compatible with the data obtained from Section 7.3.1 (Table 7.1) and further 

highlight that Lactobacillus isolate B30 from the blue veins had better acid producing 

ability than isolate R2 from the outer crust. These results suggested that during early 

fermentation in milk, there was some suppression in overall growth characteristics of the 

different genotypes of Lb. plantarum due to low pH arising from acidification by Lc. 

lactis. However, isolate B30 tolerated this effect more than R2 and W8, adapting to attain 

a final viable count similar to that obtained in pure culture (Fig. 7.6B). The increased 

suppression of Lactobacillus isolates in co-culture with Lc. lactis NCIMB 9918 may be 

attributed to factors other than pH drop as this lactococci strain was a non acid-producer. 

It was also noticeable that pH changes at 48 h were mainly caused by growth of acid-

producing lactococci rather than the non acid-producing lactococci strain and Lb. 

plantarum isolates. It is possible that the Lactobacillus isolates and Lc. lactis NCIMB 

9918 had produced some acid but this was buffered by the milk medium due to its high 

protein content (Robinson, 1990). 

 

7.3.2.2 Long term ripening 

The effect of low temperature (18
o
C) and salt addition (3.5%, w/v) on the growth 

characteristics of Lb. plantarum isolates in pure or in co-culture with different strains of 

Lc. lactis is shown in Figs. 7.7-7.9. The viable counts of the Lb. plantarum isolates in 

pure (Fig. 7.7A1) or in mixed cultures (Fig. 7.8A1-C1) remained stable at 7-8 log10 

CFU/ml in both salted and unsalted milk. The viable counts of Lc. lactis NCIMB 9918 

(non acid-producer) in pure (Fig. 7.7B1) or in mixed cultures (Fig. 7.8C2) also remained 

stable at 6-7 log10 CFU/ml. However, the viable count of the pure cultures of Lc. lactis 
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subsp. lactis and Lc. lactis NCIMB 6681 (acid producers) in salted and unsalted milk 

decreased from 9 to 2-3 log10 CFU/ml (Fig. 7.7B1, p<0.05) by 12 weeks. 

 

After one week in salted milk, the viable count of acid-producing lactococci (APL) in co-

culture with Lb. plantarum B30 rapidly declined from 9 to 6.5 log10 CFU/ml followed by 

gradual decrease, whereas the population of these lactococci remained relatively stable at 

8-9 log10 CFU/ml in unsalted milk or when they were co-cultured with the other Lb. 

plantarum isolates (Fig. 7.8A2 and B2). Further incubation (2-7 weeks) resulted in similar 

overall death patterns for APL lactococci strains irrespective of salt addition or the isolate 

of Lb. plantarum with which they were co-cultured. At 12 weeks, APL in mixed culture 

(Fig. 7.8A2-B2) were undetectable (LOD, 3 log10 CFU/ml). Although results of early 

fermentation (48 h at 30
o
C) showed that the final cell density of Lb. plantarum isolates in 

mixed culture was lower when they were co-cultured with Lc. lactis NCIMB 9918 (non 

acid-producer; Fig. 7.6A-C), further incubation (4 weeks) at 18
o
C produced an increase in 

growth of lactobacilli isolates in co-culture with this lactococcal strain (Fig. 7.9A-C, 

p<0.05), attaining a similar final level to growth with the other lactococci. 
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Fig. 7.7 Viable populations (row 1) and pH changes (row 2) of pure cultures. (panel A) Lb. plantarum isolates: (black circle) isolate R2, outer crust; (red 

square) isolate B30, blue veins; (green triangle) isolate W8, white core. (panel B) Lactococcus strains: (black circle) Lc. lactis NCIMB 6681; (red square) Lc. 

lactis subsp. lactis; (green triangle) Lc. lactis NCIMB 9918. Strains were cultured in un-salted cows’ milk (solid lines, closed symbols) or in salted cows’ 

milk (broken lines, open symbols) for 12 weeks at 18
o
C. Enumeration was performed on Rogosa (for lactobacilli) and difference in counts between Rogosa 

and MRS agar (for lactococci). Points are means of nine technical replicates obtained from three independent experiments and error bars are ± standard errors 

(SE) of the means, p = 0.05. 
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Fig. 7.8 Viable populations (A1-C1 and A2-C2) and pH changes (A3-C3) of mixed cultures. (A1-C1) Lb. plantarum isolates obtained from Stilton cheese: (black 

circle) isolate R2, outer crust; (red square) isolate B30, blue veins; (green triangle) isolate W8, white core. (A2-C2) Lactococcus count from the respective 

Lactobacillus co-culture: (A2) Lc. lactis NCIMB 6681, (B2) Lc. lactis subsp. lactis, (C2) Lc. lactis NCIMB 9918. Strains were grown in un-salted cows’ milk 

(solid lines, closed symbols) or in salted cows’ milk (broken lines, open symbols) for 12 weeks at 18
o
C. Enumeration was performed on Rogosa (for 

lactobacilli) and difference in counts between Rogosa and MRS agar (for lactococci). Points are means of nine technical replicates obtained from three 

independent experiments and error bars are ± SE, p = 0.05. (Y) tiny colonies of Lc. lactis could not be enumerated on agar plates (in mixed culture) below the 

dilution level of 10
-3 

due to confluence of the large Lactobacillus colonies. 
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Figure 7.9 Replotting of data from Figs. 7.7A1 and 7.8A1-C1 showing comparative plots of viable populations of Lb. plantarum isolates. (A) isolate R2 from 

the outer crust, (B) isolate B30 from the blue veins, and (C) isolate W8 from the white core. The isolates were grown in un-salted cows’ milk (solid lines, 

closed symbols) or in salted cows’ milk (broken lines, open symbols) for 12 weeks at 18
o
C as pure cultures (black circle), or as co-cultures with: (red 

diamond) Lc. lactis NCIMB 6681, (blue square) Lc. lactis subsp. lactis, (green triangle) Lc. lactis NCIMB 9918. Enumeration was performed on Rogosa (for 

lactobacilli) and difference in counts between Rogosa and MRS agar (for lactococci). Points are means of nine technical replicates obtained from three 

independent experiments and error bars are ± standard errors of the means, p = 0.05. 
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At 12 weeks, the presence of salt caused some reduction of the viable count of the non 

acid-producing lactococcal strain in pure culture compared with the unsalted sample (Fig. 

7.7B1). In mixed culture however, salt had no effect on this Lactococcus strain (Fig. 

7.8C2, p>0.05). Salt also showed some inhibition of the growth of acid-producing Lc. 

lactis strains; this effect was mainly evident at 2-6 weeks in pure culture (Fig. 7.7B1, 

p<0.05), and at 1-6 weeks in mixed culture (Fig. 7.8A2-B2, p<0.05). However, the main 

factor which influenced Lactococcus survival was acid production, as the acid producers 

showed much poorer survival. Hence pH, and not salt, appears to be the main factor 

causing Lactococcus starter die off in maturing cheeses.  

 

As evident in Figs. 7.7 and 7.8, none of the Lactobacillus isolates had a marked effect on 

the growth patterns of lactococcal strains in mixed culture regardless of salt addition or 

not (p>0.05). This is due to the fact that the overall growth pattern of the latter 

Lactococcus strains in pure culture was similar to that of the mixed culture and followed a 

decreasing trend after 2-4 weeks in both the salted and unsalted milk, with and without 

co-inoculation with Lb. plantarum isolates.  

 

However, variable results were obtained for Lb. plantarum isolates when they were co-

cultured with the different strains of Lc. lactis in presence or absence of salt (Fig. 7.9A-

C). In the case of pure and mixed cultures in unsalted milk, there was no significant 

difference in the final cell density of Lactobacillus isolates R2 and W8 obtained from the 

outer crust and white core, respectively (p>0.05; Fig. 7.9A & C). In salted milk however, 

Lb. plantarum R2 had poorer growth when co-cultured with Lc. lactis NCIMB 6681 and 

Lc. lactis subsp. lactis (acid producers) compared with the non acid-producing Lc. lactis 

NCIMB 9918 (Fig. 7.9A). Salt addition also led to poorer growth in the pure culture of 

Lb. plantarum W8 as well as in all its co-inoculations with Lc. lactis strains (Fig. 7.9C, 

p<0.05). For Lb. plantarum B30 (blue veins), salt addition led to better growth when it 

was co-cultured with Lc. lactis NCIMB 9918 (p<0.05); for the rest of the samples, there 

was no significant difference in the final cell density of salted and unsalted cultures of this 

Lactobacillus isolate (p>0.05; Fig. 7.9B). Overall at 1-4 weeks, Lb. plantarum B30 grew 

better both in pure and mixed cultures than the other Lactobacillus isolates as evident 

from Fig. 7.9. 
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Similar with the results of HPLC (Section 7.3.1), pH changes at 18
o
C showed significant 

differences in acidification capabilities of the lactobacilli isolates and lactococcal strains 

(p<0.05). In pure culture, Lb. plantarum R2 (outer crust) and W8 (white core) produced 

significantly less acid than isolate B30 (blue veins) (p<0.05; Fig. 7.7A2). Lc. lactis subsp. 

lactis and Lc. lactis NCIMB 6681 in pure cultures showed more pH reduction than Lc. 

lactis NCIMB 9918 (Fig. 7.7B2). Salt addition had no significant effect on the pH changes 

of all pure culture inoculations (p>0.05). In mixed cultures however, the co-culture of the 

Lb. plantarum isolates and acid-producing lactococcal strains (Fig. 7.8A3-B3) produced 

more acid than that of Lb. plantarum isolates with Lc. lactis NCIMB 9918 (Fig. 7.8C3). 

Co-culture of Lc. lactis NCIMB 9918 and Lb. plantarum B30 produced significantly 

more acid (p<0.05) than with isolates R2 and W8 (Fig. 7.8C3). Salt addition had no 

significant effect on pH changes of the co-cultures (p>0.05). In general, pH drop during 

long term fermentation was faster in mixed cultures, highlighting the synergistic nature of 

some of the LAB species combinations examined. This synergism was demonstrated by a 

larger pH drop in the co-cultures compared with the additive effects of the individual pure 

cultures constituting the co-cultures. The microbial strains were subsequently evaluated 

for proteolysis and lipolysis (Section 7.3.3) and then examined for aroma profiles 

(Section 7.3.4). 

 

7.3.3 Production of proteolytic and lipolytic enzymes 

Lipolytic and proteolytic systems play an essential role in lipid and nitrogen metabolism 

of LAB in milk (Moulay et al., 2006). The process enhances bacterial growth and also 

contributes to flavour formation of the fermented milk (Liu et al., 2010). In cheese, these 

biochemical properties were previously attributed to endogenous milk enzymes but 

enzymes of fortuitous microorganisms and NSLAB have also been presumed to play a 

major role (Di Cagno et al., 2002). The objective of this part of the study was to identify 

Lb. plantarum isolates with lipolytic and proteolytic activity and to determine whether or 

not these properties could have an influence on the type and levels of volatile aroma 

compounds produced by the isolates in milk. 

 

Different genotypes of Lb. plantarum were selected from the sampled sites (outer crust, 7 

isolates; blue veins, 22 isolates; white core, 21 isolates; n=50) and screened for 

proteolytic and lipolytic activity on casein and tributyrin agar respectively, as described in 

§3.7. Isolates were grown in MRS broth overnight at 30
o
C and 20 µl spotted on the agar 
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plates in triplicate. Plates were separately incubated for 1-3 weeks at 18, 30 and 37
o
C, and 

examined for clear halos.  Casein agar was formulated to contain 1% casein hydrolysate 

whereas tributyrin agar was constituted to contain 1% tributyrin. Clear halo formation 

was the result of hydrolysis of casein and tributyrin in the media. The diameter of the 

clear halos was considered as proportional to the extent of lipolytic/proteolytic activity of 

the isolates. Yarrowia lipolytica and E. coli were used as the positive and negative 

controls, respectively. 

 

In all cases, Lb. plantarum isolates showed no enzymatic activity/clear halo formation 

implying the isolates did not possess either of these biochemical properties. 

Representative examples of clear halo formation on casein and tributyrin agar for Yarr. 

lipolytica are shown in Appendix 7.1. From this, it was evident that Yarr. lipolytica 

showed extensive proteolysis and lipolysis as demonstrated by pronounced hydrolysis of 

the media components. However, the results only became apparent after incubating the 

plates for 4-10 days even though yeast growth was evident on the agar plates within 1-2 

days of incubation. This was probably due to degradation of the media components after 

exhaustion of carbon and nitrogen sources during the logarithmic growth phase of the 

yeast strain (Van den Tempel and Jakobsen, 2000).   

 

7.3.4 Volatile aroma profile analysis 

7.3.4.1 Early fermentation  

The effect of growth interactions obtained from §7.3.2, on the volatile profiles of milk 

was examined further. Aliquots (5 ml) were taken at 24 and 48 h, transferred into 20 ml 

headspace vials and analysed for volatile profiles using SPME GC-MS as in §3.9.2. A 

range of compounds was detected in the headspace of milk samples inoculated with pure 

or mixed cultures of the Lactobacillus isolates (Appendix 7.7). The SPME GC-MS 

chromatograms consisted of 23 main peaks including six ketones, five alcohols, five 

esters, four carboxylic acids and three aldehydes as shown in Appendices 7.2-7.5. 

 

At 24-48 h, the volatile profiles of pure cultures of Lb. plantarum strains and of mixed 

cultures with Lc. lactis NCIMB 9918 (Lc99) were similar to that of milk (Appendices 

7.2-7.3). For the other samples, of the 23 compounds detected, only methyl aldehydes and 

methyl alcohols showed a significant increase relative to the control (Fig. 7.10). These 

compounds were mainly associated with the pure culture of Lc. lactis subsp. lactis (LcL). 
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The levels were amplified when the latter was co-cultured with the Lb. plantarum 

isolates. Co-culture of LcL with Lb. plantarum B30 from the blue veins gave the highest 

level of these branched volatiles compared with isolates R2 and W8 from the outer crust 

and white core, respectively. The dominant alcohol was 3-methyl butanol and was mostly 

detected (6.2x10
7
 area units, AU) in the B30-LcL co-culture. Three-methyl butanal was 

the aldehyde present at the highest level (1.3x10
8
 AU) and mainly associated with this 

mixed culture. Of all the ketones detected, only 3-hydroxy 2-butanone (acetoin) showed 

substantial increase and was mainly found in the pure culture of Lc. lactis NCIMB 9918 

(1.2x10
5
 AU) as well as its corresponding co-cultures with Lb. plantarum isolates 

(Appendix 7.2). 
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Figure 7.10 Levels of alcohols (closed bars) and corresponding aldehydes (open bars) detected in 

milk inoculated with pure or mixed cultures of Lb. plantarum B30 (blue veins), R2 (outer crust), 

W8 (white core), with Lc. lactis subsp. lactis (LcL). Samples were incubated at 30
o
C for (A) 24 h, 

and (B) 48 h. Compounds: (black) 2-methyl propanol/ 2-methyl propanal, (red) 3-methyl butanol/ 

3-methyl butanal, (green) 2-methyl butanol/ 2-methyl butanal. Values are means of three 

independent experiments and error bars are ± standard errors of the means, p = 0.05. The 

compounds were below threshold levels in the samples not shown on the plot.   
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At 48 h, these same samples showed an increase in levels of methyl alcohols and 

aldehydes (Fig. 7.10B). The B30-LcL co-culture had significantly higher levels of 3-

methyl butanol (2.9x10
8
 AU) and 2-methyl propanol (2.9x10

7
 AU) compared with the 

pure culture of LcL or its co-culture with other Lb. plantarum isolates (p<0.05). Similarly, 

2-methyl butanal (6.6x10
7
 AU) and 3-methyl butanal (2.2x10

8
 AU) increased in the B30-

LcL co-culture at 48 h, and the levels were greater than for the pure culture of LcL or its 

co-culture with other Lb. plantarum isolates. However, the level of 2-methyl propanal 

(4.6x10
6
 AU) in the B30-LcL co-culture, and that of 3-methyl butanal (7.8x10

6
 AU) in 

the pure culture of LcL (Fig. 7.10B) decreased compared with that (1.3x10
7
 and 5.1x10

7
 

AU, respectively) found at 24 h (Fig. 7.10A). Butanoic (3.1x10
5
 AU) and hexanoic acid 

(8.1x10
5
 AU), and their corresponding methyl esters showed progressive increase in the 

pure culture of LcL or in its co-culture with Lb. plantarum B30 in comparison with the 

control and other samples (Appendix 7.3).  

 

7.3.4.2 Long term ripening at 18
o
C 

7.3.4.2.1 Alcohols 

Similar with the results obtained in Section 7.3.4.1, methyl propanol, 2-methyl butanol 

and 3-methyl butanol were the most abundant alcohols showing further increase during 

ripening at 18
o
C (Fig. 7.11). At 4 and 7 weeks, these branched alcohols were mainly 

found in the pure cultures of Lb. plantarum B30 (blue veins) and W8 (white core) as well 

as in the pure culture of Lc. lactis subsp. lactis (LcL) and its co-inoculations with all Lb. 

plantarum isolates (Fig. 7.11). At 4 weeks (Fig. 7.11A), 2-methyl propanol was mostly 

detected in the pure culture of Lb. plantarum B30; but by 7 weeks, maximal levels of the 

compound were found in the B30-Lc99 co-culture. Levels of this compound at 4 weeks 

were reduced when the latter Lactobacillus isolate was co-cultured with the different 

strains of Lc. lactis. Salt presence had a marginal effect on the production of alcohols at 4 

and 7 weeks in the pure culture of LcL and in its co-culture with all Lb. plantarum 

isolates (Fig. 7.11). Salt addition also suppressed ethanol synthesis in these cultures 

(Appendix 7.4-7.5).  
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Figure 7.11 Levels of alcohols detected in milk inoculated with pure or mixed cultures of Lb. 

plantarum B30 (blue veins), R2 (outer crust), W8 (white core) with Lc. lactis subsp. lactis (LcL) 

or Lc. lactis NCIMB 9918 (Lc99). Samples were incubated at 30
o
C for 48 h and subsequently 

ripened at 18
o
C for (A) 4 weeks, and (B) 7 weeks. Compounds: (black) 2-methyl propanol, (red) 

3-methyl butanol, (green) 2-methyl butanol. (s): salt (3.5%, w/v) was added to the sample at 48 h. 

Values are means of three independent experiments and error bars are ± standard errors of the 

means, p = 0.05. The compounds were below threshold levels in the samples not shown in the 

plot.   
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7.3.4.2.2 Carboxylic acids 

The levels of organic acids showed an increase at 4-7 weeks compared to those obtained 

at 48 h. Analysis of pure culture data at 4 weeks revealed that acetic (Fig. 7.12) and 

hexanoic acid (Appendix 7.4) were the dominant organic acids produced. Acetic acid was 

mostly found in the pure culture of Lb. plantarum B30 (blue veins) as well as in all co-

inoculations involving this Lactobacillus isolate, irrespective of the Lactococcus strain 

with which it was co-cultured (Fig. 7.12). Salt addition had no significant effect on acetic 

acid production in these cultures. Hexanoic acid was mainly detected in the pure culture 

of Lb. plantarum W8 (white core) but salt addition suppressed synthesis (Fig. 7.12). The 

substantially high level of hexanoic (1.7x10
7
 AU) and butanoic acid (1.2x10

7
 AU) 

recorded from the pure culture of Lb. plantarum W8 in unsalted milk at 4 weeks 

(Appendix 7.4) rapidly declined to low levels by the end of the ripening period, probably 

due to biochemical conversion into corresponding ketones and esters (Lawlor et al., 

2003).  

 

At 7 weeks, acetic (Fig. 7.12) and octanoic acid (Appendix 7.5) were the dominant acids 

detected. Acetic acid was mainly detected in samples co-inoculated with Lb. plantarum 

isolates and either of the Lc. lactis strains. With the exception of Lb. plantarum B30 (blue 

veins), all pure culture inoculations had low levels of the compound. The greatest acetic 

acid synthesis (1.4x10
8
 AU) was recorded from the pure culture of Lb. plantarum B30 

and in the co-culture of this Lactobacillus isolate with Lc. lactis NCIMB 9918 (1.1x10
8
 

AU) as evident in Fig. 7.12. Salt addition reduced acetic acid production in the pure 

culture of Lb. plantarum B30 and in all co-inoculations involving Lb. plantarum isolates 

and Lc. lactis NCIMB 9918. Octanoic acid was mainly found in pure cultures of Lb. 

plantarum R2 (2.9x10
7
 AU) and W8 (1.8x10

9
 AU), and in their corresponding co-cultures 

with Lc. lactis NCIMB 9918 (Lc99) (Appendix 7.5). Salt addition reduced octanoic acid 

synthesis in the co-cultures as well as in the pure culture of Lb. plantarum R2. 
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Figure 7.12 Changes in levels of acetic acid in milk inoculated with pure or mixed cultures of Lb. plantarum B30 (blue veins), R2 (outer crust), W8 (white 

core) with Lc. lactis subsp. lactis (LcL) or Lc. lactis NCIMB 9918 (Lc99). Samples were incubated for 48 h at 30
o
C and subsequently ripened at 18

o
C. Acetic 

acid was detected at (■) 4 weeks, and (■) 7 weeks. (s): salt (3.5%, w/v) was added to the sample at 48 h. Values are means of three independent experiments 

and error bars are ± standard errors of the means, p = 0.05. The compound was below threshold levels in the samples not shown in the plot. 
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7.3.4.2.3 Ketones 

Similar to the results of early fermentation (Section 7.3.4.1), acetoin was the dominant 

ketone at 4 and 7 weeks (Fig. 7.13). In pure culture, the compound was mainly detected in 

Lb. plantarum B30 (blue veins) compared with Lc. lactis strains and the other 

Lactobacillus isolates. Co-culture of Lb. plantarum isolates with Lc. lactis NCIMB 9918 

(Lc99) was associated with greater acetoin synthesis than with Lc. lactis subsp. lactis 

(LcL). With the exception of the pure culture of Lc99 and the B30-Lc99 co-culture, levels 

of acetoin were higher at 7 weeks than at 4 weeks. Salt addition reduced acetoin synthesis 

in pure and mixed cultures, except in the R2-LcL (1.1x10
8
 AU) or B30-Lc99 (3.3x10

8
 

AU) co-cultures where increased levels were observed.  
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Figure 7.13 Changes in levels of acetoin in milk inoculated with pure or mixed cultures of Lb. plantarum B30 (blue veins), R2 (outer crust), W8 (white core) 

with Lc. lactis subsp. lactis (LcL) or Lc. lactis NCIMB 9918 (Lc99). Samples were incubated for 48 h at 30
o
C and subsequently ripened at 18

o
C. Acetoin was 

detected at (■) 4 weeks, and (■) 7 weeks. (s): salt (3.5%, w/v) was added to the sample at 48 h. Values are means of three independent experiments and error 

bars are ± standard errors of the means, p = 0.05. The compound was below threshold levels in the samples not shown in the plot. 
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In addition, 2-pentanone, 2-hexanone, 2-heptanone and 2-nonanone characterised the pure 

culture of Lb. plantarum W8 and its co-culture with Lc99 (Appendix 7.5). Salt addition 

stimulated synthesis of these ketones in pure cultures, whereas it was inhibitory in the co-

cultures. At 4 and 7 weeks, 2-hydroxy 3-pentanone was mainly detected in pure cultures 

of Lb. plantarum R2 and W8 relative to other samples. Salt addition stimulated synthesis 

of the compound in the pure culture of W8 (2.3x10
7
 AU), whereas it was inhibitory for 

strain R2 (8.1x10
5
 AU) in pure culture (Appendix 7.5). These data correspond with the 

high salt tolerance of the Lactobacillus isolates as observed in Chapter 5 and support the 

suggestion for their growth in cheese to produce a variety of compounds as already 

presented in Sections 7.3.4.1-7.3.4.2. 

 

7.3.4.2.4 Aldehydes 

The relatively higher level of aldehydes found in the pure culture of Lc. lactis subsp. 

lactis (LcL) and its co-culture with Lb. plantarum isolates at 24 h (Fig. 7.10A) was 

reduced to marginal levels at 4-7 weeks (Appendices 7.4-7.5), probably due to 

biochemical reduction into corresponding alcohols (Vítová et al., 2006), as these were 

found to increase at 7 weeks.  

 

7.3.4.2.5 Volatile esters 

Although early fermentation was characterised by less synthesis of volatile esters, a 

substantial amount of these compounds was found in some samples at 4 and 7 weeks with 

no apparent change in detectable levels obtained at the latter data points (Appendices 7.4-

7.5). Butanoic and hexanoic acid ethyl esters were mainly found in the pure culture of Lb. 

plantarum W8 (white core), whereby salt addition stimulated synthesis of both esters. In 

comparison, butanoic acid 2-methyl ester was mainly detected in the pure culture of LcL 

and in its co-culture with the Lb. plantarum isolates, with no apparent sensitivity to salt 

addition. At 4 weeks, propanoic acid methyl ester was mainly detected in unsalted pure 

culture of Lb. plantarum R2 (1.2x10
6
 AU) but rapidly declined to marginal levels by the 

end of the ripening period, probably due to biochemical reduction into propanol (Lawlor 

et al., 2003), as the latter showed a 2-fold increase between 4 and 7 weeks. 
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7.3.4.3 Principal component analysis (PCA) 

The PCA scores and loadings bi-plot of the mean peak area data for the 23 volatiles that 

showed significant variability among the samples at 7 weeks is shown in Fig. 7.14. The 

plot showed that two principal components (PC1 and PC2) accounting for 46% of the 

explained variance were needed to describe the differences in volatile compounds 

between the samples. PC1 accounted for 29% of the variation whereas PC2 was 

explanatory for only 17% of the observed total variation. The plot had good 

discrimination for branched primary alcohols (2-methyl butanol, 3-methyl butanol and 2-

methyl propanol), ketones (2-pentanone, 2-hexanone, 2-heptanone and 2-nonanone) and 

aldehydes (2-methyl propanal, 3-methyl butanal and 2-methyl butanal). These groups of 

volatiles generally influenced the distribution of compounds on the plot. Carboxylic acids 

were mainly plotted on PC2. The salted pure culture of Lb. plantarum W8 and co-culture 

of the latter with Lc99 were outliers and mainly produced ketones and alkyl esters of 

butanoic acid (PC1). Whereas acetoin was a major component of the volatile profiles 

detected (Fig. 7.13), the compound was not comparatively more dominant on the PCA 

plot. The B30-Lc99 co-culture in salted or unsalted milk was the major acetoin producer 

and clustered as an acetoin producer but the R2-Lc99 co-culture which produced high 

levels of the compound as evidenced in Fig. 7.13 was not grouped with the other acetoin 

producers (cluster 2) on the PCA. This could be attributed to a stronger influence of other 

volatiles produced by this culture rather than this sole compound (acetoin). For example, 

R2-Lc99 produced relatively higher levels of ethanol, octanoic acid, pentanone and 

butanoic acid ethyl ester in addition to acetoin (Appendix 7.5), when compared with other 

acetoin producers. 
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Figure 7.14 PCA plot of the aroma compounds obtained from SPME GC-MS peak area data after headspace analysis of milk samples inoculated with pure and 

mixed cultures of Lb. plantarum B30 (blue veins), R2 (outer crust), W8 (white core); Lc. lactis subsp. lactis (LcL; acid producer); and Lc. lactis NCIMB 9918 

(Lc99; non acid-producer). The cultures were incubated for 48 h at 30
o
C and subsequently ripened for 7 weeks at 18

o
C in salted (s) or unsalted milk.  
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Four clusters (1-4) were delineated. Most volatiles were associated with clusters 2 and 3. 

The pure culture of Lc. lactis subsp. lactis (LcL) was associated with minimal production 

of volatiles probably due to cell death (Section 7.3.2). The volatile profiles of pure 

cultures of Lc. lactis NCIMB 9918 (Lc99), and Lb. plantarum R2 (outer crust) and W8 

(white core) were generally similar to that of the milk control (cluster 3) and mainly 

comprised hexanol, 2-hydroxy 3-pentanone, octanoic acid, 3-methyl butanal and 2-methyl 

butanal (Fig. 7.14). These cultures produced substantial levels of acetoin (Fig. 7.13) but 

the compound was not plotted with cluster 3 as shown in Fig. 7.14. Co-culture of Lb. 

plantarum isolates with LcL, and pure or mixed cultures of Lb. plantarum B30 with Lc99 

were mainly associated with synthesis of alcohols and organic acids (clusters 1 and 2). 

The dominant acids associated with the latter combination include acetic, butanoic and 

hexanoic acid. The plot also demonstrated that salt addition had minimal effect on the 

distribution of volatiles except for the pure culture of Lb. plantarum W8 and its co-culture 

with Lc. lactis NCIMB 9918 (W8-Lc99) (Fig. 7.14). 

 

7.3.4.4 Overall changes in volatile profiles 

Pure or mixed cultures of Lb. plantarum isolates and Lc. lactis produced various groups 

of volatile compounds in milk at the different stages of fermentation (30
o
C) and 

subsequent ripening at 18
o
C. The level of alcohols, carboxylic acids and ketones 

increased with time whereas aldehydes and esters decreased. Co-culture of the organisms 

increased the levels of most volatiles demonstrating the possible symbiotic (mutuality) 

nature of these LAB species. The symbiotic effect was highlighted by an overall increase 

(p<0.05) in levels of the volatiles in mixed cultures compared with the sum of levels of 

individual volatiles detected in pure culture inoculations that comprised the mixed 

culture. Symbiosis was mainly evident in the production of acetic acid (97-17,964% 

increase), 3-methyl butanol (1,010% increase), 2-pentanone and 2-hexanone (1,403-

1,820% increase), and butanol 3-methyl acetate (1,515% increase) (p<0.05). In this 

context, acid production was mostly enhanced in co-cultures of Lb. plantarum R2 (outer 

crust) and W8 (white core) with Lactococcus strains, whereas alcohol synthesis was 

enhanced in the co-culture of Lb. plantarum B30 (blue veins) and Lc. lactis strains. 

Ketone synthesis was enhanced in all co-cultures, while increased aldehyde production 

was mainly associated with the co-culture of Lb. plantarum B30 and Lc. lactis subsp. 

lactis (p<0.05).   
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Salt addition stimulated alcohol synthesis in all inoculations involving Lc. lactis subsp. 

lactis (acid producer) (p<0.05). However, it was inhibitory for acetoin and acetic acid 

production. Salt addition in the co-culture of Lc. lactis NCIMB 9918 (non acid-producer) 

and Lb. plantarum B30 and R2 stimulated acetoin synthesis (p<0.05) which highlights 

that such a combination would contribute to producing a buttery aroma (Vítová et al., 

2006) in ripened cheese. Very volatile compounds such as dimethyl sulfide and acetone 

were detected in each sample with no apparent variation with the different experimental 

combinations examined (Appendix 7.7, p>0.05). Diacetyl (2,3-butanedione) and 2,3-

pentanedione are major aroma compounds of fermented milk (Otto et al., 1999). These 

diketones were also detected in the current study but only a slight increase in synthesis 

(p>0.05) was noted in some co-cultures during ripening at 18
o
C. 

 

7.4 Discussion 

7.4.1 Acid production 

Batch production of lactic and acetic acid by the different genotypes of Lb. plantarum 

was evaluated in MRS broth at 30
o
C in an effort to identify high acid-producing isolates 

that may have good compatibility with the starter cultures. The results indicated that lactic 

acid production occurred at stationary phase and the process was not inhibited by low pH, 

which is in agreement with other studies (Schepers et al., 2002). The greatest lactic acid 

production led to a pH drop of ~3 units and was largely dependent on the site from which 

the strains were isolated as demonstrated by the differences in pH levels obtained. The 

isolates obtained from the blue veins and white core produced more lactic acid than those 

from the outer crust. In Picon Bejes-Tresviso, a Spanish blue cheese, pronounced pH drop 

occurs at the beginning of ripening with an average pH value of 5.13±0.23 after salting 

(Prieto et al., 1999). It is well recognised that pH decrease in the cheese is a result of 

lactic acid production due to degradation of lactose (Olson, 1990; Prieto et al., 1999; 

Schepers et al., 2002).  

 

Whereas Lb. plantarum is a facultative bacterium and can utilise oxygen as electron 

acceptor for cell growth and for product metabolism (due to generation of additional 

ATP), Fu and Mathews (1999) have reported that presence of oxygen inhibits lactic acid 

production. This has been attributed to inhibition of cell growth due to accumulation of 

superoxide and hydrogen peroxide (Murphy and Condon, 1984), given that lactate 

production is principally a growth associated process. In the current study, production of 
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lactic and acetic acid was associated with cell density and growth phase. This observation 

was in agreement with other studies whereby different strains of Lb. plantarum grown in 

MRS medium (like in this study) at pH 4.5 produced significant levels of lactic acid with 

low levels of acetic acid detected (Passos et al., 1994), highlighting the homofermentative 

nature of the organism. Murphy and Condon (1984) also reported that Lb. plantarum 

produces lactic acid during the initial stages of fermentation in a glucose-rich medium 

(such as MRS broth), irrespective of incubation conditions, which is similar with the data 

obtained from this study. However, prolonged fermentation under aerobic conditions 

resulted in accumulation of acetate, whereas for anaerobic catabolism, it was lactate. 

Similar results were obtained when lactose and galactose were used as substrates. Fu and 

Mathews (1999) noted that the organism could only produce acetate when grown 

anaerobically in alkaline medium (pH 7.5 or above), which may partly explain the low 

levels of the acid recorded at low pH in the present study.  

 

Lb. plantarum is homofermentative for hexose sugars producing 2 moles of lactic acid for 

every mole of hexose sugars metabolised. Therefore, lactic acid production is sometimes 

defined as a function of the energy required to form new cell protoplasm and the energy 

for the normal metabolic activity irrespective of growth (Bergen, 1977; Passos et al., 

1994). While several studies have confirmed the validity of the linear relationship 

between lactic acid production and growth rate in most lactobacilli (Narendranath and 

Power, 2005), interpretation of this relationship has been previously found to be 

sometimes questionable (Passos et al., 1994). Therefore, although the current study 

indicated positive correlation between cell density and lactic acid production in MRS 

broth, in the real cheese matrix, growth and accompanying production of the acid by Lb. 

plantarum isolates may show some variation depending on a number of factors: 

physiological state of cells, differences in carbon and nitrogen sources as well as the 

presence or absence of other growth factors (Cogan et al., 2007) and this is an issue 

which requires further investigation. Fu and Mathews (1999) reported that in a pH 

controlled synthetic lactose medium, Lb. plantarum is homolactic and acid production is 

primarily growth associated. Similar to this study, the researchers pointed out that the 

greatest acid production occurred when pH of the medium was controlled at 5-6, with 

anaerobic fermentation giving 2.3 times higher yield than aerobic fermentation. Singh et 

al. (2003) suggested that Lb. plantarum can metabolise lactic acid and other substrates in 
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foods following prolonged ripening in presence of air to produce acetic acid, ethanol and 

acetoin which may also relate with the results obtained in this study (Section 7.3.4.2). 

 

In foods, lactic acid produced by LAB inhibits the growth of other microorganisms such 

as Strep. cremoris (Bibal et al., 1989) as well as most Gram-negative bacteria (Gill et al., 

1982), which may partly explain the antimicrobial activity of the isolates obtained in 

Chapter 6 (Section 6.3.1). It has been suggested that the molecule mainly exerts 

antimicrobial effects by creating an acidic pH (Fayol-Messaoudi et al., 2005). These 

authors proposed that L-lactic acid displays greater antibacterial activity than D or DL 

lactic acid. As a consequence, the broad spectrum of antibacterial activity observed 

among Lb. plantarum isolates in Section 6.3.1 could be related in part, to a greater 

proportion of L-lactate. Numerous parameters (microorganism, carbon and nitrogen 

source, fermentation mode, pH and temperature) affect the isometry of lactic acid 

produced (Hofvendahl and Hahn-Hägerdal, 2000). These authors reported that 

fermentation using a defined LAB strain results in production of only one of the isomers 

in an optically pure form. Synthetic production always results in a racemic mixture of DL 

lactic acid which highlights the role microorganisms can play in producing isometrically 

pure forms of lactic acid.  

 

Lactic acid also directly inhibits cell growth through its damaging effects on membrane 

potential (Ahmed et al., 2009). In this case, the un-dissociated form is more active against 

most of the sensitive organisms (Fu and Mathews, 1999). Dissociated lactic acid mainly 

inhibits growth of Gram-negative bacteria (Gill et al., 1982). The pKa for lactic acid is 

3.86. The relationship between pH, dissociated (L
-
) and un-dissociated lactic acid (HL) 

can be presented by the following Henderson-Hasselbalch equation: 

pKa = pH - log [L
-
]/ [HL] (Equation 7.1).  

 

 

 

 

 

 

http://rd.springer.com/search?facet-author=%22Bernard+Bibal%22
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Considering the data from the current study, the highest concentration of lactic acid 

(21.40±1.45 g/L) was obtained from Lb. plantarum W30 (white core; Table 7.1). 

Therefore, the total molar concentration of the acid species can be given as:  

 

[L
-
] + [HL] = 21.40 g/L = 0.238 M (Equation 7.2). 

 

From Eq. 7.1 and 7.2, at pH of 3.76 corresponding with total molar acid concentration 

0.238 M, it can be given that 56% of total lactic acid occurred in MRS broth in an un-

dissociated form making the medium inhibitory for the tested bacterial strains. This may 

also partly explain why at low pH (3.76-4.09) in the current study there was slow growth 

(24-48 h) for all the Lb. plantarum isolates examined. Fu and Mathews (1999) reported 

that at pH 5 in typical whey fermentations containing ~50 g/L lactic acid, 93% of total 

lactic acid is dissociated and only 7% is un-dissociated. However, when pH drops to ~4, 

un-dissociated lactic acid content reaches about 42% of the total acid concentration, 

which is close to the estimate from this study. 

 

Some studies have indicated that Lb. plantarum remains viable by maintaining an internal 

pH gradient (4.6-4.8) down to external pH 3 regardless of the type of acidulant present in 

the medium (Fu and Mathews, 1999; Ahmed et al., 2009). This may account for the 

observed ability for the organism to continue growing at pH 4 and below in the current 

study, albeit at a slower rate. Ped. acidilactici could not tolerate the harmful effect of low 

pH and started dying off after 24 h probably because it does not possess this protective 

mechanism.  

 

In the majority of ripened cheeses (pH ~5) where the typical concentration of lactic acid 

is ~50 g/L (Schepers et al., 2002), 93% of total lactic acid occurs in dissociated form and 

only 6.8% of the acid is un-dissociated (Fu and Mathews, 1999). Further pH drop to ~4 

could elevate the level (>42%) of un-dissociated lactic acid offering more inhibitory 

protection against undesired bacteria in these cheeses (Fu and Mathews, 1999). However, 

in blue cheese, the pH increases after piercing (6 weeks) due to lactic acid metabolism by 

the moulds. This may partly account for the presence of acid sensitive bacteria such as 

Staphylococcus in the outer crust of Stilton cheese (where pH is highest, ~6), as observed 

in Chapter 4 in the current study. 
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7.4.2 Dynamics of viable population changes 

In spite of increasing interest in studies on the microbiological diversity of ripened 

cheeses (Fitzsimons et al., 1999; Ercolini et al., 2003; Coda et al., 2006), until recently, 

little work has been conducted on examining the possible role of non-starter lactobacilli in 

ripening of Stilton cheese. Moreover, information about the impact of non-starter LAB on 

quality characteristics is regarded as crucial to the cheese making process (Cogan et al., 

2007). In the case of Stilton cheese, this could benefit growth of local industries and 

enhance marketing of products with consistent quality characteristics. The current work 

has investigated the impact of different genotypes of Lb. plantarum as the dominant 

NSLAB in Stilton cheese on the dynamics of growth and survival of different strains of 

Lc. lactis under simulated milk fermentation and cheese ripening conditions. Changes in 

pH and total viable counts were monitored during early fermentation (0-48 h) at 30
o
C and 

throughout the 12 weeks of ripening in cows’ milk at 18
o
C with the addition of salt.  

 

At 48 h, the viable counts of Lb. plantarum isolates (5.8-7.5 log10 CFU/ml) in pure and in 

mixed cultures were lower than Lc. lactis (7.4-9 log10 CFU/ml). The latter corresponds to 

the number (>10
9
 CFU/ml) usually found in a freshly prepared cheese curd (Broadbent et 

al., 2003). During the subsequent 12 weeks of ripening at 18
o
C, the viable counts of Lb. 

plantarum isolates in co-culture with the acid-producing Lc. lactis strains remained stable 

at 7 log10 CFU/ml whereas the population of these lactococci rapidly declined to 

undetectable levels. In comparison, Lb. plantarum isolates co-cultured with the non acid-

producing Lc. lactis maintained viability and continued to grow up to 7 weeks, whereas 

viable counts of this Lactococcus strain remained stable at 7 log10 CFU/ml. Salt addition 

had minimal effect on growth of the Lactobacillus isolates in pure culture but had 

variable effects in mixed culture. Salt also reduced the growth of acid and non acid-

producing lactococci in pure culture at 1-6 weeks (p<0.05). However, at 1-6 weeks in 

mixed culture, its inhibitory effect was mainly evident on the growth characteristics of 

acid-producing lactococcal strains, and not for the non acid-producing Lc. lactis. 

 

These results were in agreement with data from other researchers. Martin-Platero et al. 

(2008) reported that bacterial strains present at the beginning of cheese ripening are 

usually different from those at the end with Lactobacillus spp. being persistent throughout 

the process, which is similar to this study. Changes in environmental parameters such as 

relative humidity, redox potential, salt concentration, pH, presence or absence of proteins, 
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fatty acids and free amino acids are regarded as major factors that explain the microbial 

succession dynamics during cheese ripening (Martley and Crow, 1993; Martin-Platero et 

al., 2008). The same observation has been reported for Cheddar cheese, whereby the 

initial number of Lc. lactis starter bacteria seldom exceeds 10
9
 CFU/g, but the harsh 

cheese ripening environment (no residual lactose, pH 5-5.3, 4-6% salt in moisture and 5-

13
o
C ripening temperature) causes the lactococci starter culture viability to decline as 

maturation progresses (Broadbent et al., 2003). These researchers have shown that the 

NSLAB populations, typically dominated by mesophilic facultative heterofermentative 

lactobacilli whose initial numbers are typically below 10
3 

CFU/g, begin to grow and 

eventually plateau at cell densities of 10
7
-10

9
 CFU/g after 3-9 months of ageing. This is 

similar to the results obtained from this work.  

 

This study demonstrated that by the end of ripening at 18
o
C, the different genotypes of 

Lb. plantarum dominated the microflora of fermented milk which may partly account for 

the results obtained in Sections 4.2.1-4.2.2. The data also confirmed the hypothesis that 

acid-producing strains of Lc. lactis normally included in cheese ripening as the primary 

starter culture virtually disappear from the fermentation profile by the end of ripening. 

The major contribution of LAB cultures in ripening of Stilton cheese is thought to occur 

prior to piercing (6-8 weeks), after which Pen. roqueforti sporulates and dominates in the 

cheese matrix up to the end of ripening (12 weeks) (Ercolini et al., 2003). This study has 

shown that at 7 weeks, Lc. lactis strains and Lb. plantarum isolates remained viable. 

 

Although the LAB isolates used in the current study were found to be neither proteolytic 

nor lipolytic (Section 7.3.3), blue cheeses are frequently colonised by lipolytic and 

proteolytic yeast species including Yarr. lipolytica and Deb. hansenii which occur as 

contaminants (Van den Tempel and Nielsen, 2000; Gkatzionis, 2010). In this case, the 

cheese matrix would support the growth and metabolic activity of Lb. plantarum due to 

increased provision of less complex nutrients (Martley and Crow, 1993). Also, 

sporulation of the proteolytic/lipolytic Pen. roqueforti after piercing (6 weeks) would 

further provide essential nutrients that could enhance the growth and metabolism of Lb. 

plantarum during cheese ripening to impart desired effects on the quality characteristics 

of the product (if any).  
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The growth interaction presented in the current work may be defined as amensalism, 

whereby acid-producing lactococci strains were repressed by the acidic environment 

produced by the mixed culture but was tolerated by Lb. plantarum strains (Flambard et 

al., 1997). As it is a common phenomenon that microorganisms in mixed culture usually 

interact in more than one way (Flambard et al., 1997), other possible explanations for the 

observed growth suppression of acid-producing lactococci strains in mixed culture may 

include competition for nutrients and senescence (Martley and Crow, 1993), both of 

which normally increase susceptibility of cells to various antimicrobial compounds 

produced by lactobacilli. It has previously been established that the majority of Lb. 

plantarum isolates expressed a certain level of antimicrobial activity against Lc. lactis 

(Section 6.3.1). This effect may become pronounced in older cells of the latter when 

subjected to various stress conditions. In Parmigiano-Reggiano, a PDO cheese produced 

in Northern Italy, survival of Lactobacillus spp. including Lb. rhamnosus, Lb. casei and 

Lb. plantarum during later (24 months) stages of ripening was attributed to derivation of 

energy from autolysis of starter culture lactococci followed by DNA degradation 

providing nutrients for the cells in the particularly hostile nutritional environment 

occurring during this period of ripening (Gatti et al., 2008). Ramírez-Nuñez et al. (2011) 

proposed that strains of Lc. lactis used in cheese should autolyse at early stages of 

ripening to ensure faster and higher production of aroma compounds. The process 

releases an array of enzymes which interact with substrates present in the cheese matrix to 

generate desired flavours and aromas and is enhanced by low salt concentration (0.17 M), 

temperature, water activity and acidic pH (5.4). This may explain the observed rapid cell 

death of acid-producing lactococci during 4-7 weeks in the current study.  

 

It has been recognised that the net dynamics of growth, survival and biochemical activity 

of microorganisms in fermented food systems is the result of stress reactions in response 

to changes in physical and chemical conditions in their microenvironment (e.g. changes in 

gradients of pH, oxygen, water activity, salt and temperature) as the process progresses 

(Martley and Crow, 1993). On the basis of this, it can be predicted that the Lb. plantarum 

isolates examined in this study could have been more adapted to changes in the physical-

chemical properties of Stilton cheese at later stages of ripening (given their characteristics 

presented in Chapter 5) than Lc. lactis. This has also been supported by other authors 

(Broadbent et al., 2003; Crow et al., 2001). However, the current study was conducted 

using simple UHT models. Hence, there is the need to ascertain the behaviour of the 
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isolates in more complex models such as the cheese matrix. In a real cheese ecosystem, 

various microbial populations interact to give a community. However, this is not actively 

dictated by the cheese producer, and as such, there can be different microbial species 

and/or strains in cheeses obtained from one producer to another and from batch-to-batch. 

None-the-less, in cheese, cells are generally immobilised and localised in high densities. 

Therefore, cheese ripening or degradation is rarely the result of activities of an individual 

but that of a group of microorganisms (Giraffa, 2004). Thus, the actual growth, survival 

and activity of Lb. plantarum isolates in situ in Stilton cheese may be determined by co-

presence of other microorganisms and in situ cell-to-cell ecological interactions which 

often happen in a solid phase system (Giraffa, 2004; Giraffa and Carminati, 2008), which 

could deviate from the current data. 

 

7.4.3 Volatile profiles production 

Data from the current work have shown that, in contrast to the usual description of Lb. 

plantarum as homofermentative, the isolates examined were facultative 

heterofermentative and produced alcohols and lactic acid. The heterofermentative process 

normally occurs in presence of low oxygen (Årskold et al., 2008), which corresponds 

with the conditions (sealed vials) under which the current study was conducted. However, 

some air was frequently (every week) introduced into the cultures when collecting sample 

aliquots for analysis. Presence of oxygen usually leads to formation of hydrogen 

peroxide. In presence of air, Lb. plantarum sometimes utilises manganese as pseudo 

catalase to reduce oxygen concentration enabling the organism to utilise various carbon 

sources in an aerotolerant environment (Archibald and Fridovich, 1981), which may 

partly account for the various groups of compounds observed. 

 

The study has shown that co-culture of different genotypes of the Lb. plantarum with 

different strains of Lc. lactis results in production of a wide variety of compounds with 

different functional groups. Previous studies on blue cheese varieties manufactured from 

pasteurised milk have found high levels of carbonyl compounds, methyl ketones, 

alcohols, carboxylic acid and aldehydes at the end of ripening (Lawlor et al., 2003; 

Vítová et al., 2006; Gkatzionis et al., 2009). As most of these compounds have low 

sensory threshold levels in cheese and oil models (Appendix 7.6), this study showed that 

Lb. plantarum isolates can contribute substantially to their associated aroma notes during 

cheese ripening. The levels of the volatiles were partly dependent on the sites from which 
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Lb. plantarum isolates were obtained showing they are genetically different strains. The 

study has shown that while the total concentration of alcohols, organic acids and 

carbonyls increased with time among some cultures, the levels of the majority of 

individual ketones at progressive stages of ripening showed some fluctuation and in some 

cases inversely correlated with their corresponding alcohols and aldehydes, probably due 

to biochemical inter-conversion (Madkor et al., 1987
b
).  

 

Most high molecular weight ketones recorded from the study are products of free fatty 

acid metabolism. Therefore, inclusion of Lb. plantarum isolates as starter culture adjuncts 

in Stilton cheese undergoing extensive proteolysis and lipolysis (Madkor et al., 1987
a, b

) 

could have the concentration of these compounds intensified with substantial contribution 

to aroma characteristics of the cheese. Vítová et al. (2006) applied SPME GC-MS and 

identified 54 compounds in Niva, a soft blue cheese manufactured from pasteurised milk 

in Czech Republic. The compounds comprised three hydrocarbons, five aldehydes, three 

esters, 11 ketones, 18 alcohols, 10 fatty acids and four sulphur compounds, which is 

similar to this study. Lawlor et al. (2003) also reported that the dominant compounds in 

Stilton cheese include 2-methyl butanol, butanal, pentanal, methyl hexanoate, 2-butanone, 

2-pentanone, 2-hexanone, 2-heptanone and 2-nonanone, which is generally compatible 

with the current results.  

 

The most recent major study on the volatile profile of Stilton cheese focussing on 

differences between cheese sections (outer crust, blue veins and white core) and producer 

dairies was reported by Gkatzionis et al. (2009).  The authors evaluated the aroma 

profiles of Stilton cheese samples from different creameries using SPME GC-MS, solvent 

extraction GC-MS and atmospheric pressure chemical ionisation - mass spectrometry 

(APCI-MS). In concordance with Coda et al. (2006), these authors reported that although 

SPME GC-MS was semi-quantitative, the sensitivity of the technique was high and had 

better discrimination for the compounds detected in the different cheese sections and 

producer dairies. Their study summarised that ketones were the major compounds found 

in all the cheese samples and sections with nonanone, heptanone, pentanone and the 

alcohol 3-methyl butanol dominating. In addition, they found three times more alcohols in 

the white core than in the blue veins and outer crust. Blue veins had the highest amount of 

volatiles. This account is generally compatible with other blue cheese varieties including 

Gorgonzola (Moio et al., 2000), Roquefort (Gallois and Langlois, 1990) and Danablu 
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(Lawlor et al., 2003). The current study has demonstrated that Lb. plantarum isolates can 

contribute to the production of these compounds whereby levels of most of the volatiles 

increased as ripening progressed. However, synthesis and levels of specific volatiles was 

largely dependent the geno-group of the Lactobacillus isolate examined (as elaborated in 

the next paragraph) and co-presence of other microflora (strain of Lc. lactis in the case of 

this study); salt addition played a minor effect.  

 

The dominant volatiles at 7 weeks were ketones (principally acetoin), organic acids 

(acetic, hexanoic and butanoic acid), as well as the branched alcohols including 3-methyl 

butanol and 2-methyl propanol. In pure culture, these compounds were mainly produced 

by Lb. plantarum B30 as already presented on the PCA plot (Section 7.3.4.3). Gkatzionis 

et al. (2010) analysed the aroma volatiles from different sections of Stilton cheese and 

reported that all sections were dominated by ketones (outer crust, 72%; blue veins, 75%; 

and white core, 55%,). These authors also showed that there were more alcohols (three 

times higher) in the white core than in the outer crust (10%) or the blue veins (10%), but 

reported nothing about the presence and levels of organic acids in the cheese. Blue veins 

contained the highest amount of volatiles but levels were comparatively closer to those in 

the outer crust. Comparing these findings with the results obtained from the current study, 

it can be suggested that Lb. plantarum B30 could contribute to the production of acetoin, 

2-methyl butanol and 3-methyl butanol in the blue veins from where it was isolated. In 

fact, co-culture of this Lactobacillus isolate with Lc. lactis NCIMB 9918 (non acid-

producer) and salt addition led to a greater production these volatiles. As the compounds 

are commonly characterised by fruity, alcoholic and malty attributes (Lawlor et al., 2003; 

Gkatzionis et al., 2009), this suggests that Lb. plantarum B30 has the potential to 

contribute to these aroma notes in the blue veins. However, co-culture of the other Lb. 

plantarum isolates: R2 (outer crust) and W8 (white core) with the acid-producing Lc. 

lactis subsp. lactis was also associated with the some increase in acetoin and alcohol 

production demonstrating their potential to contribute the afore-mentioned notes in the 

respective sites from which they were isolated. The overall results of this study were in 

accordance with the model by Gkatzionis (2010) in which Lc99 was grown in UHT milk 

for 10 days at 25
o
C as pure or as mixed culture with Pen. roqueforti. The author observed 

that in pure culture, Lc99 produced considerable amounts of ethanol and acetoin. Its co-

culture with Pen. roqueforti increased ethanol and acetoin synthesis by four times.  
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The results presented in Section 7.3.2 revealed that viable counts of Lc. lactis subsp. 

lactis (LcL) which is normally included in cheese production had markedly declined at 7 

weeks compared with that of the non acid-producing Lc. lactis NCIMB 9918 (Lc99) or 

Lb. plantarum isolates. This suggests that LcL produces volatiles during primary 

fermentation (24-48 h) and early stages of ripening when it is still actively growing. From 

this point of view, the results from this study suggested that the volatiles produced by LcL 

could persist in the model and some of them were amplified when the organism was co-

cultured with Lb. plantarum isolates. This was the case for 2-methyl propanol, 2-methyl 

butanol and 3-methyl butanol. Since Lc99 remained viable in pure or in mixed cultures 

with Lb. plantarum isolates, the study suggested that the major volatiles (acetoin, ethanol 

and octanoic acid, particularly in co-culture) associated with Lc99 may be the result of 

continued metabolic activity or symbiotic association with Lb. plantarum, especially with 

lactobacilli isolates obtained from the blue veins as exemplified by strain B30. This 

suggests different enzyme activities leading to distinct metabolic pathways influencing 

the final flavour of the fermented milk in different ways depending on the types and 

levels of the compounds synthesised (Obodai, 2006).  

 

7.5 Conclusions 

It has been established that the different genotypes of Lb. plantarum obtained from Stilton 

cheese were acid tolerant (Section 5.3.2). The final concentration of lactic acid produced 

in MRS broth by the Lactobacillus isolates was found to be a function of the geno-group 

and cell numbers achieved during the growth phase. The growth and survival of the 

isolates was insensitive to lactic acid end product inhibition. The high acid tolerance of 

Lb. plantarum isolates as evidenced from Chapter 5 (Section 5.3.2) coupled with these 

results is indicative of its potential for industrial application.  

 

During early fermentation in milk or in MRS broth, acetic acid production was not 

strongly growth associated. However, during later stages of ripening in milk at 18
o
C, Lb. 

plantarum isolates synthesised acetic acid probably from lactic acid metabolism. Acetic 

acid synthesis was enhanced by co-culture with the non acid-producing Lc. lactis NCIMB 

9918.  In the co-cultures involving the Lb. plantarum isolate obtained from the white 

core, salt addition inhibited acetic acid synthesis. The study has demonstrated that Lb. 

plantarum isolates have the potential to produce lactic and acetic acid in the real cheese 

matrix as it is mainly constituted from milk. As well as having greater antimicrobial 
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activity (than lactic acid), acetic acid contributes to the sour/vinegar note in ripened 

cheese. Therefore, the results from this study suggest that co-culture of Lactobacillus 

isolates with Lc. lactis NCIMB 9918 would enhance these desirable properties in cheese. 

The effect of acetic acid in cheese would even be stronger in co-inoculations involving 

Lb. plantarum B30 from the blue veins; this isolate had the highest level of acetic acid 

synthesis compared with co-cultures involving the other Lactobacillus isolates.  

 

The results of aroma studies have shown that some aroma compounds of Lactobacillus-

Lactococcus cultures are already present in milk but a variety of others are synthesised 

during fermentation. Five groups of volatiles appeared during fermentation or were 

present in considerably increased amounts in the fermented milk compared to the control. 

Salt addition had a minimal effect, whereas pure and co-culture treatments had variable 

impacts on the volatile profiles synthesised at the different stages of fermentation and 

during ripening at 18
o
C. SPME GC-MS headspace analysis was found to be fairly 

reproducible and accurate for semi quantification of volatiles in the fermented milk. As 

lactobacilli are fortuitously introduced organisms, this study suggested that aroma 

production is largely dependent on which isolates enter into the cheese during production. 

The process may also vary with the type of starter culture used. Overall, this would lead 

to variation in product characteristics from batch to batch.  
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CHAPTER 8 

 

 

GENERAL DISCUSSION AND CONCLUSIONS 

 

 

Stilton cheese is one of the most popular traditional food products in the UK. The cheese 

is manufactured from pasteurised milk inoculated with single or a mixture of different 

strains of Lc. lactis (Lc. lactis subsp. lactis, Lc. lactis subsp. cremoris or Lc. lactis subsp. 

lactis biovar. diacetylactis), Ln. mesenteroides subsp. cremoris and Pen. roqueforti. 

Although the processing steps have been standardised over a long period of time, 

commercial producers of Stilton cheese are often faced with the challenge of variation in 

organoleptic characteristics within batches and between dairies (Whitley, 2002; 

Gkatzionis et al., 2009). Crow et al. (2001) have summarised that the standard plate count 

of high quality pasteurised milk used for cheese-making seldom exceeds 10
5
 CFU/ml, of 

which the number of organisms which survive pasteurisation (thermodurics) is normally 

less than 10
3
 CFU/ml. The survivor organisms mainly comprise NSLAB which can gain 

entry into the cheese manufacturing equipment and become lodged in sites from where 

they are shed into the product during manufacture.  

 

It is apparent from the above factors, that the total microbial population of Stilton cheese 

at the start of ripening can be derived from all contributing sources including deliberately 

added starter cultures, thermoduric organisms in milk and adventitious contaminants. 

Previous studies have demonstrated that at the onset of cheese ripening, the primary acid-

producing starter culture (Lc. lactis or Lc. cremoris) dominates (10
7
-10

9
 CFU/ml) in the 

curd (Broadbent et al., 2003). However, as ripening continues over a period of weeks and 

months, the cheese bacterial flora becomes dominated by NSLAB (typically lactobacilli) 

which grow better under the prevailing conditions i.e., less than 40% moisture, 4-6% salt, 

pH 4-6 and temperature 5-18
o
C. Secondary NSLAB can participate in a range of 

biochemical activities which can affect the cheese quality properties (Yim and Glover, 

2003). There are no published reports which have conclusively demonstrated that 

metabolic activities of secondary NSLAB can directly contribute to the aroma attributes 

of Stilton cheese. This study aimed to examine the influence of different 

microenvironments (outer crust, blue veins and white core) on selection of different 

genotypes of the NSLAB that grow in Stilton cheese and examine how the interaction of 
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the latter with the primary starter culture (Lc. lactis) could affect the volatile aroma 

profile of the cheese. 

 

This study has characterised the 80 bacterial isolates obtained from a ripened Stilton 

cheese. Few discrepancies were noted between colony characteristics on selective and 

non-selective media (phenotype), biochemical tests and genotypic identification 

protocols. The cheese sample was dominated by different genotypes of Lb. plantarum. 

The organism was recovered from all the sampled sites (outer crust, blue veins and white 

core) and co-existed with other species including Lb. brevis, Staph. aureus, 

Psychrobacter spp. and En. faecalis in the outer crust. None of these organisms is 

deliberately included during the cheese manufacture process. Therefore, their incidence in 

Stilton cheese could be a result of post-process contamination or survival of heat 

treatment (Briggiler-Marco et al., 2007). The dominance of Lb. plantarum in Stilton 

cheese during ripening has also been reported by other researchers (Whitley, 2002; 

Ercolini et al., 2003; Hiscox et al., 2008).  

 

8.1 Correspondence of phenotypic and genotypic characteristics 

Examination of carbohydrate fermentation patterns (API 50 CHL) of lactobacilli in the 

five major clusters of the PFGE dendrogram revealed some variations in the sugar 

utilisation profiles of the Lactobacillus isolates belonging to the same species. The 

majority (80%) of the isolates identified as Lb. plantarum had an API biochemical profile 

4; this was mostly revealed among the isolates obtained from the blue veins and white 

core which formed geno-group I (Appendix 8). A representative Lb. plantarum isolate 

from the blue vein isolates which clustered separately in cluster V (R28-R26) gave a 

different API profile. The outer crust lactobacilli gave different API profiles from other 

isolates and fell into two genotypes (clusters III-IV) with different biochemical profiles 

associated with each genotype (although in cluster III two different API profiles were 

evident).  Only one isolate gave the same biochemical profile as a strain with which it did 

not cluster and that was the outlier R37 from the white core which gave the same API 

profile as a genotype IV crust strain. Despite that PFGE clustered Lb. brevis with Lb. 

plantarum geno-group III suggesting low compatibility of the methodologies employed 

(i.e. 16 S rDNA sequence analysis showed a different species), phenotypic characteristics 

were generally compatible with the genotyping data including PFGE profiling and 16S 

rDNA analysis which was applied for molecular speciation (Appendix 8). 
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However the presence of the plantaricin EF (plnEF) operons showed no association with 

PFGE genotyping clusters. For instance, whereas PFGE indicated that cluster I contained 

the highest number of genetically similar Lb. plantarum isolates suggesting they could 

have been clones of a single strain, plnEF data highlighted some variations within this 

cluster; even closely related isolates within subclusters isolated from the same site gave 

different results. For example, in geno-group I the first subcluster of four isolates which 

formed at a similarity level of ~67% contained the isolates B15/B30 which were negative 

for plnEF and R23/R42b which were positive for this operon. This generally indicated 

that PFGE was not discriminatory enough for these Lactobacillus isolates. However, 

identical genotypes did give the same plnEF operon results as evident for isolates 

B27/B28/W9 and W12/W13. Thus, from these data, a PFGE genogroup does not define a 

single identical strain. Overall, the study revealed that there were different strains 

(subpopulations) of Lb. plantarum growing in the different sites of the Stilton cheese 

sample examined; some strains could be found at more than one site but others were very 

site-specific.  

 

Thus, the study showed high biodiversity among Lactobacillus isolates and confirmed the 

initial hypothesis that there were genotypically different strains of NSLAB in Stilton 

cheese. Girrafa and Neviani (1999) have also previously employed PFGE to demonstrate 

the presence of different strains (clusters) of Lb. helveticus in cheese. However, the 

method works with viable microbial isolates and may not find application for studying 

complex microbial communities in situ in the real cheese matrix.  

 

8.2 Stress tolerance of Lb. plantarum isolates 

The study has shown that different genotypes of Lb. plantarum had different thermal 

tolerances at 72
o
C. The isolate obtained from the outer crust was more sensitive to heat 

treatment (50 s) than those from the blue veins and white core which survived the process 

for up to 70 s. The fact that the organism can adapt to survive the heat process, and that 

the D72
 
value used may result in insufficient process to destroy the organism, could 

explain why these bacteria dominate the non-starter bacterial flora of ripened Stilton 

cheese as evidenced from Section 4.2.2 and from other studies (Whitley, 2002; Ercolini et 

al., 2003; Hiscox et al., 2008). However, it should be pointed out that this study was not 

designed to determine the ability of commercial HTST milk pasteurisation to inactivate 

Lb. plantarum as the system could not be adequately simulated under the laboratory 
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conditions. Also, the cell numbers (10
7
 CFU/ml) used in this study were much higher than 

the levels (10
2
-10

3
 CFU/ml) usually found in milk intended for cheese production. 

Therefore, there is need for evaluation of the isolates in the real cheese processing 

situation considering the fact that in the actual food systems, microbial strains may be less 

or more heat tolerant than in the conditions used in the laboratory. 

 

The ability of the isolates to survive the acid and salt stresses was tested in vitro utilising 

MRS broth as the medium. These important prerequisites of technological and probiotic 

interest also need to be assessed in situ in Stilton cheese, where all these factors are co-

present, in order to ascertain the real capacity of the organism to survive in the cheese 

matrix. Further research may focus on identification of acid stress-induced proteins 

coupled with a more in-depth understanding of their mode of action. This could lead to 

their exploitation towards identification of the most acid-resistant isolates that are more 

robust for use as starter culture adjuncts for blue cheese production. 

 

Given that the relative humidity of cheese processing industries in the UK ranges between 

75-90%, this study has demonstrated that Lb. plantarum isolates could survive for several 

days under desiccating conditions. The high survival rates in MRD imply that the isolates 

have the potential to persist in environments such as cheese production plants where 

protein, fats and other nutrients from milk contribute the bulk of organic soil. The isolate 

obtained from the outer crust was more desiccation tolerant than those obtained from the 

cheese interior suggesting this Lactobacillus isolate could have been introduced into the 

outer crust from the cheese production plant environment through handling or aerial 

contamination, and was able to survive in this cheese site due to its high desiccation and 

halotolerance as already shown in Chapter 5. Although it may not be possible to directly 

extrapolate the results of the desiccation experiment to the in situ situation in Stilton 

cheese, the behaviour of Lb. plantarum at different RH levels following slow drying in 

MRD at 30
o
C may be a convenient and rapid tool for screening for drought-tolerant 

lactobacilli in cheese and the cheese processing plants. Quantitative differences between 

the tested isolates were large enough to permit this criterion. Attention should also be 

given to the isolates obtained from the cheese interior as these demonstrated that they are 

able to withstand variations in RH in presence and absence of MRD. Experiments at 

higher RH (such as >80%) should be of particular interest in regard to survival of 

Lactobacillus in cheese undergoing ripening. Further research is required to establish the 
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resistance of the organism to cleaning and disinfection procedures used in the cheese 

production plants and to model its survival on different food contact surfaces.  

 

Overall, the study has demonstrated some properties of Lb. plantarum isolates which may 

be of importance to the cheese-making industry and highlighted that Lactobacillus in 

Stilton cheese represents a mixed flora with strains at different sites selected on the basis 

of their stress tolerances. These observations could be of interest in developing 

Lactobacillus starters and starter culture adjuncts with an improved resistance to multiple 

stresses for several applications including probiotics, where growth under harsh stress 

conditions would be an attribute. Use of Lb. plantarum as a starter culture adjunct for 

Stilton cheese would need to take the varying phenotypes into consideration. These 

results obtained at laboratory scale are a good estimation of stress tolerance that may be 

of importance in the cheese industry. Transcriptome and proteome studies coupled with 

microarray analysis may be applied to validate that stress tolerance of the isolates could 

be triggered by transient exposure of the organism to a wide range of sub-lethal factors 

including acid, salt, drying, oxidative stress and other conditions occurring at different 

gradients within the cheese matrix. Elucidation of these mechanisms would add to the 

understanding of how the organism survives the cheese ripening process and would 

enable a more targeted approach to non-starter culture adjunct selection for quality 

improvement, maintenance and reliability of Stilton cheese production. This may also 

improve the current industrial starter strains. In general, the results from these 

experiments concurred with data from Chapter 4 which indicated that Lb. plantarum 

isolates obtained from different sites in Stilton cheese had different biochemical and 

genotypic characteristics implying they were different strains. This may be the result of 

ecological selection following introduction into the cheese (Randazzo et al., 2002; 

Duthoit et al., 2003). 

 

8.3 Antimicrobial activity of Lb. plantarum isolates 

As most LAB produce bacteriocins, it was not surprising to find from this study that some 

Lb. plantarum isolates had the ability to produce the heat stable plantaricin EF 

bacteriocins. Although bacteriocin production was not a pronounced phenomenon and 

could only be demonstrable using Lb. pentosus as the sensitive organism, most of the 

isolates expressed a broad spectrum of antimicrobial activity against the various Gram-

positive and Gram-negative organisms on solid medium (Section 6.3.1), due to 
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production of acid, and to a less extent, hydrogen peroxide as highlighted in Section 6.3.2. 

This observation was in accordance with the results of SPME GC-MS (Sections 7.3.1 and 

7.3.4) which revealed that Lb. plantarum isolates produced lactic and acetic acid, acetoin 

and other metabolites. The combined effect of these substances normally results in pH 

drop which inactivates undesirable microflora, enhances biochemical conditions that 

contribute to organoleptic properties of the product and improves shelf life by inhibiting 

undesirable changes brought about by spoilage microorganisms (Gill and Newton, 1982; 

Essid et al., 2009). These factors may partly account for observed inhibition of some of 

the sensitive bacteria tested in the study. 

 

As Lb. plantarum was found to be tolerant to acid and other stresses conditions typical of 

the microenvironments within Stilton cheese (Chapter 5), inclusion of the isolates in solid 

food matrices such as cheese could find application in bio-preservation of these foods 

against undesirable microorganisms. However, prospects for application of the isolates as 

an adjunct culture for cheese production could be undermined by the observed ability of 

some isolates to inhibit Lc. lactis on media plates. However, as the Lactobacillus cell-free 

supernatants could not show any inhibition of the latter, it was possible that inhibition on 

the media plates was the result of acid production due fermentation by both LAB species. 

This is an aspect which is supported by the results obtained from the co-culture studies 

presented in Chapter 7 (Section 7.3.2); it has been shown that Lc. lactis could survive up 

to 12 weeks in fermented milk co-inoculated with Lb. plantarum isolates as long as the 

lactococcal strains were not acid producers. 

 

Selective use of bacteriocinogenic strains may find application in bio-control of spoilage 

and pathogenic bacteria in other fermented foods of dairy origin. Further research on the 

possible antimicrobial effects of the isolates against Pen. roqueforti is an issue of concern. 

Whitley (2002) conducted a detailed survey which associated good quality (sufficient 

blueing) Stilton cheese with the predominance of the homofermentative Lb. plantarum 

and Lb. curvatus and defective counterparts (poor blueing) with Lb. brevis as the 

dominant bacterial flora, as already elaborated in Chapter 2 (Section 2.3.1.2). From this 

account, it can be predicted with confidence that inclusion of Lb. plantarum isolates in the 

manufacture of Stilton cheese would enhance its flavour (as observed in Section 7.3.3), 

and blueing from Pen. roqueforti as well as offer antimicrobial protection against a 

variety of undesirable organisms. Further research should examine how this can be 
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affected by the complex (but normal) microflora of the cheese which comprises bacteria, 

yeasts and moulds. Future work may also look at in-depth evaluation of each of the 

isolates as a probiotic supplement for humans. Preliminary results from this work have 

shown that the isolates could tolerate up to 2% bile salts (data not shown) which is the 

approximate level present in the human gut. There is the need to determine the molecular 

mechanisms that may be used by these bacteria to exert probiotic effects, if any. 

 

8.4 Volatile profiles production 

It has been found from this study that Lb. plantarum isolates could, as expected, grow and 

remain viable in fermented milk for 12 weeks at low pH. Salt addition had minimal effect 

on the growth characteristics of Lactobacillus isolates irrespective of either the site of 

isolation or the strain of Lc. lactis with which they were co-cultured. The study has also 

indicated that in mixed culture, the acid-producing Lc. lactis (APL) strains were more salt 

tolerant and died out faster (1-4 weeks) after salting compared with the corresponding 

unsalted cultures and the non acid-producing Lc. lactis strain in single and mixed cultures 

(Chapter 7, Section 7.3.2.2). Reduced growth in presence of salt was even stronger when 

the APL were co-cultured with the most acid-producing Lb. plantarum isolate (B30) 

suggesting a combined antimicrobial effect on these lactococcal strains. 

 

Lb. plantarum isolates produced lactic acid and low levels of acetic acid in MRS broth at 

48 h (Section 7.3.1) and this depended on growth phase as well as the genotype of 

Lactobacillus examined. This is similar to results from the milk assay (Section 7.3.4). In 

fact, results of aroma analysis revealed marginal levels of acetic acid produced in milk 

between 24-48 h but synthesis was observed during further incubation (4-7 weeks) at 

18
o
C. From this account, it could be concluded that during early fermentation, Lb. 

plantarum isolates predominantly produced lactic acid. However, during long-term 

ripening in milk, the isolates metabolised the acid and other substrates to produce acetic 

acid, ethanol and acetoin (Singh et al., 2003) as evidenced in Section 7.3.4.2. As the latter 

volatiles have a positive contribution to the aroma profile of fermented milk (Vítová et 

al., 2006), Lb. plantarum isolates examined in this study may be considered to contribute 

positively to the fermentation and thus could be suitable for inclusion as starter culture 

adjuncts during the production of Stilton and other blue cheeses.  
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As is the case with its bacterial community structure (Ercolini et al., 2003), Stilton cheese 

has a complex fungal flora mainly comprising Pen. roqueforti and yeasts such as 

Kluyveromyces lactis, Yarrowia lipolytica, Candida catenulate, Trichosporon ovoides and 

Debaromyces hansenii (Whitley, 2002; Gkatzionis, 2010). Most of these organisms 

directly produce aroma compounds but also indirectly contribute to the cheese flavour 

through proteolysis and lipolysis (Lawlor et al., 2003; Gkatzionis, 2010). There is little 

evidence to suggest that the profile of compounds produced in Stilton cheese is a result of 

symbiotic interaction between Lb. plantarum isolates and these fungal communities. This 

aspect requires further investigation. There is also the need to determine the critical levels 

(or ratios) of the important microbial species whose interaction is of significance to the 

flavour properties of Stilton cheese. However, it was clear from this study that co-

presence of Lb. plantarum isolates and Lc. lactis resulted in increased synthesis of 

alcohols, organic acids and ketones, and as such could be a major contributory factor to 

the differences in aroma profiles of cheeses manufactured within similar or different 

batches and/or creameries. It has been previously demonstrated that proteolytic strains of 

Lc. lactis stimulate growth and sporulation of Pen. roqueforti in cheese (Hansen and 

Jakobsen, 1997). The possible interactions between Lc. lactis and Pen. roqueforti usually 

determine the cheese maturation time (8-12 weeks), aroma profile, texture and appearance 

of the final cheese during ripening (van den Tempel and Nielsen, 2000). Therefore, 

further research on how the possible interactions between the different genotypes of Lb. 

plantarum, Lc. lactis and Pen. roqueforti could influence the aroma properties of Stilton 

cheese are justifiable. 

 

Pen. roqueforti is the major mould in Stilton cheese and predominantly grows in the outer 

crust and blue veins but can be less active in the outer crust when inhibited by Yarr. 

lipolytica and other yeast species (Gkatzionis, 2010). High quality Stilton cheese is 

characterised by extensive blueing and growth of Deb. hansenii (van den Tempel and 

Jakobsen, 2000) and facultative homofermentative lactobacilli such as Lb. plantarum and 

Lb. curvatus (Whitley, 2002). Good quality Stilton is also associated with accumulation 

of alcohols in the white core and ketones in the blue veins (Gkatzionis et al., 2009). At 7 

weeks in this study, pure cultures of Lb. plantarum isolates and Lc. lactis subsp. lactis 

produced significant levels of ketones and alcohols, respectively. Therefore, these 

bacterial species may be partly responsible for accumulation of these compounds in these 

respective cheese sites. Strikingly, alcohol and ketone production was even enhanced 
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when these LAB species were co-cultured as was the case for ethanol, 2-methyl propanol, 

3-methyl butanol, 2-pentanone and acetoin (Section 7.3.4).  

 

Enhanced alcohol and ketone production by co-culturing Lb. plantarum and Lc. lactis can 

be utilised to improve the aroma profile of Stilton cheese especially if this synergistic 

effect can be confirmed in situ in the real cheese matrix. The present work has only 

applied instrumental methods to evaluate the potential contribution of different genotypes 

of Lb. plantarum to aroma properties of Stilton cheese. Further research is required for 

measurement of sensory perception using the human sensory panel or techniques such as 

flash profile analysis (Gkatzionis, 2010) in order to complement these results. There is 

also the need to establish the biochemical pathways involved in microbial synergies 

observed. The enzymes responsible for production of desirable metabolites could be 

isolated, characterised and applied in enzyme modified cheeses.  

 

As individual strains often pose profound effects on cheese flavour and body 

characteristics (Broadbent et al., 2003), the unpredictable and dynamic nature of presence 

of different strains of Lb. plantarum in Stilton cheese could be an important source of 

cheese flavour defects and production inconsistencies. This hypothesis has been 

supported by results of this study. Stringent control of undesirable non-starter organisms 

during cheese ripening in order to produce more consistent high quality products has been 

less successful (Broadbent et al., 2003). Use of Lb. plantarum isolates which have been 

evaluated in this study as adjunct cultures for Stilton cheese could provide one of the 

major strategies to accomplish this goal. 

 

8.5 Lb. plantarum isolates with potential for use as starter culture adjuncts 

The choice of Lb. plantarum isolates for application as starter culture adjuncts in Stilton 

cheese should be based on the following properties: good growth characteristics, 

antimicrobial activity towards undesirable microflora, acid production, compatibility with 

the cheese starter cultures, ability to tolerate the stress conditions in cheese and positive 

contribution to the volatile aroma profile of the cheese (Crow et al., 2001). On the basis 

of the above factors, there was conclusive evidence to show significant genotypic 

variability among the Lb. plantarum isolates examined and this could have arisen from 

selective pressures (stresses) present in the different sites of the cheese from where they 

were isolated. 
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Isolate B30 obtained from the blue veins was particularly found to have good growth 

characteristics and tolerated the stresses typical of Stilton cheese, inhibited the growth of 

spoilage and pathogenic microorganisms and consistently enhanced acid and aroma 

production in milk when co-cultured with different strains of Lc. lactis. As the isolate was 

well adapted to the microenvironments within Stilton cheese, Lb. plantarum B30 may be 

applied in the cheese without the need to modify its current traditional manufacturing 

process. The overall efficacy of enhancing flavour development of ripened cheese using 

NSLAB is strongly supported by other studies which have shown that starter culture 

adjuncts dominated by wild strains of lactobacilli play an important role during cheese 

ripening (Kocaoglu-Vurma et al., 2008) and, therefore, should be supported for this 

Stilton cheese Lb. plantarum isolate. 

 

However, the dynamic environment of cheese ripening and the possible variability 

imparted by differences in cheese composition, strains of the added starter cultures and 

enzymes, and the cheese manufacturing and ripening regimes may offer some challenges 

for universal performance of the proposed isolate in other cheese types. For example, 

manufacture of Gouda, Colby and the stirred variety of Cheddar cheese usually involves a 

washing step to remove lactose and lactic acid from the curd, which gives the finished 

cheese a lower acid content and a slightly higher pH (Martley and Crow, 1993; Broadbent 

et al., 2003). Also, some varieties of Cheddar cheese can be aged for years. Thus, 

adaptability of this Lactobacillus isolate under these conditions may differ from the 

results obtained in the present study. None-the-less, the study has provided fundamental 

insights about the behaviour of genotypically different isolates of Lb. plantarum under 

different experimental conditions. The knowledge would support future studies aiming to 

utilise the organism as a starter culture adjunct in Stilton cheese in a commercial context. 

As dairy industries are often faced with problems of failed fermentations arising from 

starter culture inactivation by bacteriophages (Garneau and Moineau, 2011), there is a 

need to assess phage resistance of the proposed adjunct isolate. 

In conclusion, there has been general concern that the dynamic and complex nature of the 

various microbial populations in Stilton cheese is a major source of quality defects and 

product inconsistencies (Whitley, 2002; Gkatzionis, 2010). The observed desirable 

properties of Lb. plantarum isolates would support future efforts to apply them as culture 

adjuncts in order to provide reliable and consistent quality characteristics of the cheese. 
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Lb. plantarum has been successfully applied as a culture adjunct in Swiss (Kocaoglu-

Vurma et al., 2008) and Irish Cheddar cheeses (Crow et al., 2001). Additional research is 

required to establish the impact of the isolates on the quality characteristics of other 

ripened cheese varieties. This approach is supported by the current keen interest to 

explore new possibilities that would enhance the biodiversity of matured cheeses through 

searching for potential starter organisms. Ideal strains for this purpose are required to 

have rapid and reliable acid production and reproducible development of appropriate 

flavour compounds (Obodai, 2006). It has been demonstrated that Lb. plantarum B30 

meets these criteria and further research on this isolate in line with the afore-mentioned 

approach needs to be considered. There is scant published literature about the microflora 

of Stilton cheese. This study has raised several questions which will serve as the gateway 

for further research using similar or different approaches on other properties of the 

cheese. 
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Appendix 1 Composition of the media used in the study 

 

1. API 50 CHL medium (API 50 CHL): bovine/porcine polypeptone, 10 g; yeast 

extract, 5 g; Tween 80, 1 ml; dipotassium phosphate, 2 g; sodium acetate, 5 g; 

diammonium citrate,  2 g; magnesium sulphate, 0.2 g; manganese sulphate, 0.05 g; 

bromocressol purple, 0.17 g; water, 1 l; pH 6.7-7.1. 

2. AUX medium (API 20 NE): ammonium sulphate, 2 g; agar, 1.5 g; vitamin 

solution, 10.5 g; trace elements, 10 ml; monosodium phosphate, 6.24 g; potassium 

chloride, 1.5 g; water, 1 l; pH 7-7.2. 

3. Baird-Parker agar: tryptone, 10 g; ‘Lab-Lemco’ powder, 5 g; yeast extract, 1 g; 

sodium pyruvate, 10 g; glycine, 12 g; lithium chloride, 5 g; agar, 20 g; egg yolk 

emulsion, 50 ml; potassium tellurite, 0.1 g; water, 1 l; pH 6.8±0.2. 

4. Brain heart infusion (BHI): calf brain infusion solids, 12.5 g; beef heart infusion 

solids, 5 g; proteose peptone, 100 g; glucose, 2 g; sodium chloride, 5 g; disodium 

phosphate, 2.5 g; water, 1 l; pH 7.4±0.2. 

5. Columbia blood agar: proteose peptone, 15 g; liver digest, 2.5 g; yeast extract, 5 

g; sodium chloride, 5 g; agar, 12 g; water, 1 l; pH 7.4±0.2. 

6. GP medium (API 20 Strep): L-cystine, 0.5 g; bovine/porcine tryptone, 20 g; 

sodium chloride, 5 g; sodium sulphite, 0.5 g; phenol red, 0.17 g; water, 1 l; pH 

7.4-7.6. 

7. M17 agar: tryptone, 5 g; soya peptone, 5 g; ‘Lab-Lemco’ powder, 5 g; yeast 

extract, 2.5 g; ascorbic acid, 0.5 g; magnesium sulphate, 0.25 g; disodium 

glycerophosphate, 19 g; agar, 11 g; water, 1 l; pH 6.9±0.2. 

8. MacConkey agar: peptone, 20 g; lactose, 10 g; bile salts No. 3, 1.5 g; sodium 

chloride, 5 g; neutral red, 0.03 g; crystal violet, 0.001 g; agar, 15 g; water, 1 l; pH 

7.1±0.2. 

9. Maximum recovery diluent: peptone, 1 g; sodium chloride, 8.5 g; water, 1 l; pH 

7.0±0.2. 

10. Mannitol salt agar: Lab-Lemco’ powder, 1 g; peptone, 10 g; mannitol, 10 g; 

sodium chloride, 75 g; phenol red, 0.025 g; agar, 15 g; water, 1 l; pH 7.5±0.2. 
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11. de Man, Rogosa, Sharpe (MRS): peptone, 10 g; ‘Lab-Lemco’ powder, 8 g; yeast 

extract, 4 g; D(+) glucose, 20 g; ‘Tween 80’, 0.1% (vol/vol); dipotassium 

hydrogen phosphate, 2 g; sodium acetate, 5 g; tri-ammonium citrate, 2 g; 

magnesium sulphate.7H2O, 0.2 g; manganese sulphate.4H2O, 0.05 g; water, 1 l; 

pH 6.2±0.2. 

12. Normal physiological saline: 0.85% sodium chloride, pH 7.4±0.2. 

13. Phosphate buffered saline: sodium chloride, 8 g; KCl, 0.2 g; Na2HPO4, 1.44 g; 

KH2PO4, 0.24 g; Tween 20, 2 ml; water, 1 l; pH 7.2±0.2. 

14. Potato dextrose broth: Potato Infusion from 200 g, 4 g; dextrose, 20 g; pH 

5.1±0.2. 

15. Rogosa agar: tryptone, 10 g; yeast extract, 5 g; glucose, 20 g; ‘Tween 80’, 1 ml; 

potassium dihydrogen phosphate, 6 g; ammonium citrate, 2 g; sodium acetate 

(anhydrous), 17 g; magnesium sulphate, 0.575 g; manganese sulphate, 0.12 g; 

ferrous sulphate, 0.034 g; agar, 20 g; water, 1 l; pH 5.4±0.2. 

16. Rose Bengal chloramphenicol (RBC) agar base: mycological peptone, 5 g; 

glucose, 10 g; dipotassium phosphate, 1 g; Magnesium sulphate, 0.5 g; Rose-

Bengal, 0.05 g; agar, 15.5 g; pH, 7.2±0.2 

17. Streptococcus Kennar faecal agar: enzymatic digest of animal tissue, 10 g; yeast 

extract, 10 g; sodium chloride, 5 g; sodium glycerophosphate, 10 g; maltose, 20 g; 

lactose, 1 g; sodium azide, 0.4 g; bromocressol purple, 0.015 g; 

triphenlytetrazolium chloride, 1%; agar, 20 g; water, 1 l; pH 7.2±0.2. 
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Appendix 4.1 Alignment of base sequences of 16S rDNA PCR amplicons (99% ID) of Lactobacillus isolates obtained from different sites in 

Stilton cheese. The base changes are highlighted in red. 

 

 
R6:       ATGGAGCACGCCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACT 

R28:                 GATGGAGCACGCCGCGTGAGTGAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACT 
R45:               TGATGGAGCACGCCGCGTGAGTGAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACATATCTGAGAGTAACTGTTCAGGTATTGACGGTATTTAACCAGAAAGCCACGGCTAACT 
R15:                      TGGAGCATGCCGCGTGAGTGAGAAGGGTTTCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACACCTTTGAGAGTAACTGTTCAAGGGTTGACGGTATTTAACCAGAAAGCCACGGCTAACT 
 
 

R6:    ACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCATCGGA 
R28:  ACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCATCGGA 
R45:  ACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCATCGGA 
R15:  ACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGGAGAAGTGCATCGGA 
 
 
R6:    AACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATAA 
R28:        AACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATAAA 
R45:        AACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATAAA 

R15:       AACTGGGAGACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAAT 

 
 

Key: 

Lactobacillus isolates were identified as close relatives of: (R6, outer crust) Lb. plantarum, (R28, blue veins) Lb. plantarum, (R45, white core) 

Lb. plantarum, (R15, outer crust) Lb. brevis 
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Appendix 4.2 List of bacterial isolates obtained from Stilton cheese and their NCBI 

BLAST match identification 

Isolate Site Close relative of Primer % ID Genbank    Accession 
Number 

R1 crust Lb. plantarum V3 98 NC012984 
R2 crust Lb. plantarum V6-V8 100 NC012984 
R3 crust Lb. plantarum ND ND ND 
R4 crust Lb. plantarum V3 99 NC012984 
R5 crust Lb. plantarum V3 98 NC012984 
R6 crust Lb. plantarum V6-V8 99 NC012984 
R7 crust Lb. plantarum V3 99 NC012984 
R16 veins Lb. plantarum ND ND ND 
R17 veins Lb. plantarum ND ND ND 
R19 veins Lb. plantarum V6-V8 100 NC012984 
R20 veins Lb. plantarum V3 98 NC012984 
R21 veins Lb. plantarum V6-V8 99 NC012984 
R22 veins Lb. plantarum ND ND ND 
R23 veins Lb. plantarum V6-V8 99 NC012984 
R24 veins Lb. plantarum ND ND ND 
R25 veins Lb. plantarum V3 99 NC012984 
R26 veins Lb. plantarum V6-V8 100 NC012984 
R27 veins Lb. plantarum V3 99 NC012984 
R28 veins Lb. plantarum V6-V8 99 NC012984 
R29 veins Lb. plantarum ND ND ND 
R30 veins Lb. plantarum V6-V8 100 NC012984 
B11 veins Lb. plantarum V6-V8 99 NC012984 
B13 veins Lb. plantarum V6-V8 99 NC012984 
B14 veins Lb. plantarum V6-V8 99 NC012984 
B15 veins Lb. plantarum V6-V8 99 NC012984 
B23 veins Lb. plantarum ND ND ND 
B24 veins Lb. plantarum ND ND ND 
B25 veins Lb. plantarum ND ND ND 
B26 veins Lb. plantarum V6-V8 99 NC012984 
B27 veins Lb. plantarum ND ND ND 
B28 veins Lb. plantarum ND ND ND 
B29 veins Lb. plantarum V6-V8 99 NC012984 
B30 veins Lb. plantarum V6-V8 99 NC012984 
R36 core Lb. plantarum V3 98 NC012984 
R37 core Lb. plantarum V3 98 NC012984 
R38 core Lb. plantarum ND ND ND 
R39 core Lb. plantarum ND ND ND 
R40 core Lb. plantarum V3 98 NC012984 
R42 core Lb. plantarum V6-V8 99 NC012984 
R43 core Lb. plantarum ND ND ND 
R44 core Lb. plantarum V6-V8 100 NC012984 
R45 core Lb. plantarum ND ND ND 
W8 core Lb. plantarum V6-V8 99 NC012984 
W9 core Lb. plantarum ND ND ND 
W10 core Lb. plantarum ND ND ND 
W11 core Lb. plantarum ND ND ND 
W12 core Lb. plantarum ND ND ND 
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W13 core Lb. plantarum ND ND ND 
W14 core Lb. plantarum V6-V8 99 NC012984 
W15 core Lb. plantarum ND ND ND 
W23 core Lb. plantarum ND ND ND 
W24 core Lb. plantarum V6-V8 99 NC012984 
W25 core Lb. plantarum ND ND ND 
W26 core Lb. plantarum ND ND ND 
W27 core Lb. plantarum ND ND ND 
W28 core Lb. plantarum ND ND ND 
W29 core Lb. plantarum ND ND ND 
W30 core Lb. plantarum V6-V8 99 NC012984 
 

R9 crust Lb. brevis V6-V8 99 NC008497 
R15 crust Lb. brevis V6-V8 99 NC008497 

 

W22 core Ac. baumanii V3 95 NC011586 

 

Ou9 crust En. faecalis V3 98 NC004668 

 

Ou8 crust Staph. aureus V3 97 NC013450 
Ou10 crust Staph. aureus V3 97 NC013450 
Ou21 crust Staph. aureus ND ND ND 
Ou25 crust Staph. aureus ND ND ND 
Ou30 crust Staph. aureus V3 97 NC013450 

 
Ou6 crust Ps. cryohalolentis ND ND ND 
Ou7 crust Ps. cryohalolentis V3 95 NC007969 
Ou8 crust Ps. cryohalolentis ND ND ND 
Ou11 crust Ps. cryohalolentis ND ND ND 
Ou12 crust Ps. cryohalolentis ND ND ND 
Ou14 crust Ps. cryohalolentis ND ND ND 
Ou15 crust Ps. cryohalolentis V3 95 NC007969 
Ou22 crust Ps. cryohalolentis V3 96 NC007969 
Ou23 crust Ps. cryohalolentis V3 95 NC007969 
Ou26 crust Ps. cryohalolentis ND ND ND 
Ou28 crust Ps. cryohalolentis ND ND ND 
Ou29 crust Ps. cryohalolentis V3 95 NC007969 

 
(ND) not done 
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Appendix 4.3 (a) AMOVA for testing the significance of clustering of PFGE profiles of 

Lactobacillus isolates obtained from Stilton cheese. 

 

Source of variation df SS MS Est. Var. %

Among Populations 5 423.74 84.75 10.34 34%

Within Populations 53 1071.14 20.21 20.21 66%

Total 58 1494.89 30.55 100%

Stat value P(rand >= data)

PhiPT 0.338 0.010  

Probability, P (rand >= data), for PhiPT is based on permutation across the full data set. 

 

 

Appendix 4.3 (b) Pair wise population PhiPT values from AMOVA analysis 

 

1 2 3 4 5 6

1 0.000 0.050 0.010 0.010 0.010 0.010 1

2 0.192 0.000 0.130 0.320 0.010 0.360 2

3 0.279 0.148 0.000 0.040 0.010 0.040 3

4 0.437 0.427 0.337 0.000 0.050 0.330 4

5 0.365 0.417 0.439 0.559 0.000 0.100 5

6 0.454 0.093 0.398 0.381 0.153 0.000 6

1 2 3 4 5 6  

(1-6), clusters were the clusters delineated at 52% similarity level 
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Appendix 5.1 Representative thermal profile of cows milk during heating experiments. 
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Appendix 5.2 Linear regression plot of the data used for calculation of the D72 values 

after thermal inactivation of Lb. plantarum isolates obtained from Stilton and heated in 

milk at 72±1
o
C. Isolates: (▲) W30, white core (■) B14, blue veins (♦) R4, outer crust. 
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Linear regression equations: 

R4 (outer crust): y = -0.1458x + 7.5883, R² = 0.92  

B14 (blue veins): y = -0.0484x + 6.6065, R² = 0.95 

W30 (white core): y = -0.0424x + 7.2065, R² = 0.98  
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Appendix 5.3 Behaviour of stationary phase cells of Lb. plantarum isolates R4 (outer crust), B14 (blue veins) and W30 (white core) in 

cows’ milk at 4°C after incubating for: (■) 0, (■) 24 and (■) 48 h. Counts were taken from BHI agar after incubating anaerobically for 48 h 

at 30
o
C Values are means of two independent determinations ± standard errors of the means. The milk was spiked with a final cell 

concentration of: (A) 10
7
; (B) 10

4
; and (C) 10

2
 log10 CFU/ml. 
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Appendix 6.1 Antimicrobial activity of different genotypes of Lb. plantarum obtained from Stilton cheese against the different indicator 

bacterial species. Activity was determined by the agar overlay method. 

 
 

Isolate 

 
 

site 

Plantaricin 
EF 

operons 

Staph. aureus 
NCTC12100 

L. 
monocyotgenes 

NCTC11944 

E. coli 
0157 -

stx 

Ps. 
aeruginosa 

glaxo3 

Lc. lactis 
NCIMB 

4918 

Salm. 
Typhimurium 

Cl. 
sporogenes 

Staph. 
aureus 

(Stilton) 

Lb. 
pentosus 

NCIMB 

8026 

R1 crust + + ++ +++ ++++ ++ + - - +++ 

R2 crust + + ++ +++ ++++ + + - +++ +++ 

R3 crust - + +++ +++ ++++ ++ + - +++ ++++ 

R4 crust + + +++ +++ ++++ ++ + - +++ ++++ 

R5 crust + + ++ + ++++ + + - + ++++ 

R6 crust + + +++ + ++++ + + - +++ ++++ 

R7 crust + + ++ +++ ++++ + + - ++ ++++ 

R16 veins + + ++ +++ ++++ + + - +++ ++++ 

R17 veins - + + ++ ++++ + + - ++ ++ 

R19 veins + + ++ + +++ + + - +++ ++ 

R22 veins + + +++ +++ ++++ ++ + - - ++++ 

R23 veins + + ++ + ++++ ++ + - - ++++ 

R24 veins - + ++ + ++++ + + - +++ ++ 

R25 veins + + +++ +++ ++++ + + - ++++ ++++ 

R26 veins + + +++ +++ ++++ +++ + - +++ ++++ 

R28 veins + + +++ +++ ++++ + + - ++ ++++ 

R29 veins - + +++ ++ ++++ ++ + - +++ ++++ 

B11 veins + + +++ +++ +++ +++ + - +++ ++++ 

B13 veins + + +++ +++ +++ ++ + - +++ ++++ 

B14 veins - + ++ +++ +++ ++ + - +++ ++ 

B15 veins - + ++ +++ +++ +++ + - +++ +++ 

B25 veins + + ++ +++ +++ + + - +++ ++ 

B26 veins + + + ++ +++ + + - +++ ++ 

B28 veins + + +++ +++ +++ +++ + - +++ +++ 

B29 veins + - +++ +++ +++ +++ + - +++ ++++ 

B30 veins - + +++ +++ ++++ +++ - - ++++ +++ 

R36 core + + ++ + ++++ ++ + - +++ ++++ 
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R37 core + + ++ ++ ++++ ++ + - - ++++ 

R38 core + + ++ +++ ++++ + + - +++ ++++ 

R39 core + + ++ ++ ++++ + + - +++ ++++ 

R40 core + + ++ ++ ++++ + + - ++ ++++ 

R42 core + + ++ ++ ++++ + + - +++ ++++ 

R43 core + + +++ ++ ++++ + + - +++ ++++ 

R45 core + + +++ ++ ++++ + + - +++ ++++ 

W8 core + + +++ ++ ++++ +++ + - +++ ++ 

W9 core + + +++ +++ ++++ +++ + - +++ ++ 

W10 core + + ++ ++ ++++ +++ + - ++ +++ 

W11 core + + ++ +++ ++++ ++ + - ++++ ++ 

W12 core - + +++ +++ ++++ +++ + - +++ +++ 

W13 core - + +++ +++ ++++ +++ - - +++ ++ 

W14 core + + +++ +++ ++++ ++ + - ++ ++ 

W15 core - + +++ +++ ++++ +++ + - +++ ++ 

W23 core - + +++ +++ ++++ +++ + - ++++ ++ 

W24 core + + +++ +++ +++ +++ + - ++++ +++ 

W25 core + + +++ +++ +++ +++ + - ++++ +++ 

W26 core - + +++ +++ ++++ +++ + - +++ ++++ 

W27 core - + +++ +++ ++++ +++ + - ++++ +++ 

W28 core - + ++ +++ ++++ +++ + - +++ ++++ 

W29 core - + ++ +++ ++++ +++ + - ++++ +++ 

W30 core - - ++ +++ +++ +++ + - ++++ ++++ 

Pedio   ND ++++ +++ ++++ ++ ND - + ND 

(+) Positive result; (-) negative result; (ND) not done; (Pedio) Ped. acidilactici NCIMB 700993. Lb. plantarum isolates obtained from: (R1-R7) outer 

crust; (R16-R29, B11-B30) blue veins; (R36- R45, W8-W30) white core. The number of +/- signs represents the intensity of reaction observed on the 
media plate. 
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Appendix 7.1 Photograph showing (A) lipolytic, and (B) proteolytic activity of Yarrowia 

lipolytica strain Y2 obtained from Stilton cheese. B30 is the Lb. plantarum isolate 

obtained from the blue veins of the cheese. Activity is demonstrated by the presence of a 

clear halo around the colony. Plates were incubated aerobically for 10 days at 25
o
C 

 

  
 

 

 

 

 

 

 

 

A B 

Colony of Yarrowia lipolytica surrounded by a clear halo  
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Appendix 7.2 Average SPME GC-MS signal intensities/peak areas (area units, AU) and standard deviations, SD (x10
5
) for major compounds 

detected from headspace samples of model milk fermented at 30
o
C for 24 h. (B30, R2 and W8) Lb. plantarum isolates from the blue veins, outer 

crust and white core respectively. (LcL) Lc. lactis subsp. lactis (acid producer); (Lc99) Lc. lactis NCIMB 9918 (non acid-producer). 

 

B30 R2 W8 LcL Lc99 B30-LcL R2-LcL W8-LcL B30-Lc99 R2-Lc99W8-Lc99
Alcohols

Mean 8 11 9 10 20 16 35 19 44 15 16 22
SD 6 10 3 2 9 5 21 10 14 10 17 21
Mean 4 4 3 4 26 3 48 29 29 5 4 3
SD 2 0.53 0.56 1 18 2 14 25 2 0.93 1 0.37
Mean 1 0.32 1 0.96 180 0.65 618 181 206 1 3 0.68
SD 0.97 0.08 2 0.38 104 0.26 145 102 51 0.21 4 0.38
Mean 4 3 4 3 63 3 155 66 60 2 4 2
SD 3 1 1 2 44 1 51 57 9 0.37 2 0.31
Mean 0.47 0.33 0.12 0.29 0.95 0.51 1 1 2 0.35 0.34 0.38
SD 0.42 0.12 0.00 0.12 0.77 0.12 0.60 0.91 1 0.20 0.15 0.24

Mean 0.44 0.12 0.23 0.41 0.11 0.25 0.17 0.19 0.22 0.08 0.42 0.38
SD 0.28 0.02 0.23 0.34 0.04 0.17 0.08 0.09 0.18 0.01 0.46 0.68
Mean 1 0.19 0.17 1 0.10 0.12 0.13 0.12 0.18 0.13 0.22 0.13
SD 2 0.10 0.05 1 0.02 0.07 0.04 0.05 0.06 0.07 0.15 0.06
Mean 1 0.11 0.10 7 0.09 0.38 0.12 0.11 0.18 0.08 0.20 0.12
SD 2 0.07 0.03 12 0.01 0.49 0.01 0.04 0.08 0.02 0.22 0.08
Mean 0.52 0.08 0.10 0.22 0.06 0.09 0.10 0.09 0.11 0.07 0.19 0.12
SD 0.73 0.01 0.02 0.19 0.01 0.04 0.04 0.02 0.02 0.03 0.24 0.06

Ethyl alcohol (ethanol)

2-Methyl propanol

3-Methyl butanol

Carboxylic acids

Compound

Hexanoic acid

Octanoic acid

Hexanol

Acetic acid

Butanoic acid

2-Methyl butanol

Lb. plantarum Lc. lactis

Pure culture Mixed culture

Lb. plantarum  + LcL Lb. plantarum  + Lc99

1592

LRI

406

459

461

Milk

917

399

479

1157
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B30 R2 W8 LcL Lc99 B30-LcL R2-LcL W8-LcL B30-Lc99 R2-Lc99W8-Lc99

Mean 29 20 20 22 19 23 19 20 22 19 19 19

SD 15 2 5 5 3 4 2 4 5 2 0.67 4

Mean 8 6 6 7 7 116 13 8 11 86 89 89

SD 5 2 2 2 3 34 1 5 5 10 3 15

Mean 4 2 2 3 2 3 3 2 3 2 2 2

SD 2 1 0.47 1 0.70 0.93 0.45 0.49 1 0.62 0.29 0.70

Mean 4 1 2 1 2 3 2 2 2 2 1 2
SD 3 0 1 0.76 0.73 0.42 0.39 1 1 1 0.39 0.69
Mean 206 124 134 172 125 191 127 134 144 117 136 126

SD 118 25 49 70 22 24 31 50 38 25 3 38

Mean 20 10 9 25 10 20 11 12 12 9 11 11

SD 15 6 4 27 4 10 4 5 6 2 0.90 6

Mean 1 0.83 0.79 0.97 70 1 126 66 95 0.75 0.68 0.80

SD 0.48 0.21 0.31 0.67 52 0.16 30 59 27 0.51 0.14 0.38

Mean 5 3 4 4 511 3 1303 402 532 4 3 3

SD 5 2 2 2 92 0.72 388 100 17 1 1 2

Mean 2 0.46 0.83 1 131 0.41 348 104 133 0.50 0.43 0.36

SD 1 0.14 0.39 0.29 37 0.08 110 39 8 0.24 0.22 0.05

Mean 0.53 0.33 0.23 0.28 1 0.44 2 2 2 0.26 0.30 0.20
SD 0.49 0.20 0.07 0.15 1 0.20 0.47 2 0.12 0.08 0.08 0.06
Mean 3 1 1 1 0.76 2 1 1 2 0.97 1 1
SD 3 0.31 0.66 0.65 0.39 0.81 0.61 0.42 0.74 0.21 0.20 0.34
Mean 0.47 0.19 0.25 0.30 0.28 0.27 0.41 0.34 0.26 0.17 0.25 0.13
SD 0.41 0.02 0.10 0.14 0.13 0.08 0.20 0.11 0.08 0.04 0.03 0.07
Mean 0.19 0.06 0.06 0.37 0.12 0.14 0.13 0.09 0.08 0.07 0.07 0.07
SD 0.17 0.03 0.02 0.48 0.05 0.08 0.07 0.04 0.02 0.03 0.04 0.04
Mean 6 1 1 0.73 1 6 0.70 0.62 0.78 0.52 2 1
SD 9 0.49 0.84 0.74 1 8 0.58 0.51 0.92 0.42 1 2

Ketones

Aldehydes

Butanol 3-methyl acetate

Hexanoic acid ethyl ester

Propanoic acid methyl ester

Butanoic acid 2-methyl ester

Butanoic acid ethyl ester

Esters

1189

2000

3-Methyl butanal

2-Methyl butanal

2-Hexanone

2-Hydroxy 3-pentanone

2-Heptanone

2-Pentanone

Acetoin

2-Nonanone

2-Methyl propanal

MilkCompound

Lb. plantarum Lc. lactis Lb. plantarum  + LcL Lb. plantarum  + Lc99
Pure culture Mixed culture

LRI

409

494

926

435

447

488

859

941

1410

305

420

424
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Appendix 7.3 Average SPME GC-MS signal intensities/peak areas (AU) and standard deviations, SD (x10
5
) for major compounds detected from 

headspace samples of model milk fermented at 30
o
C for 48 h. (B30, R2 and W8) Lb. plantarum isolates from the blue veins, outer crust and 

white core respectively. (LcL) Lc. lactis subsp. lactis (acid producer); (Lc99) Lc. lactis NCIMB 9918 (non acid-producer). 

 

B30 R2 W8 LcL Lc99 B30-LcL R2-LcL W8-LcL B30-Lc99 R2-Lc99W8-Lc99
Alcohols

Mean 8 8 13 9 12 17 18 15 27 18 23 30
SD 6 1 10 2 3 2 4 2 18 9 30 19
Mean 4 3 4 3 78 4 289 84 88 4 5 5
SD 2 1 3 0.46 11 3 11 10 16 1 1 2
Mean 1 1 2 1 248 3 2930 228 232 1 1 1
SD 0.97 0.25 1 0.33 74 5 180 19 31 1 0.45 0.31
Mean 4 2 3 3 244 5 774 233 249 3 3 3
SD 3 1 2 1 43 3 22 58 48 2 2 1
Mean 0.47 1 1 1 2 1 3 1 2 1 1 1
SD 0.42 0.33 1 0.21 1 1 0.38 0.23 1 0.22 0.43 1

Mean 0.44 0.18 0.27 0.22 0.22 1 2 0.17 0.17 0.17 0.14 0.22
SD 0.28 0.06 0.26 0.10 0.13 0.03 1 0.04 0.12 0.07 0.20 0.18
Mean 1 0.11 0.31 0.11 3 0.26 8 0.14 0.15 0.13 0.18 0.46
SD 2 0.06 0.32 0.04 5 0.10 3 0.02 0.03 0.04 0.17 1
Mean 1 0.09 0.20 0.17 8 0.13 2 0.09 0.26 0.15 0.13 0.20
SD 2 0.02 0.05 0.13 14 0.07 1 0.01 0.00 0.06 0.07 0.20
Mean 0.52 0.12 0.15 0.14 0.42 0.14 0.19 0.15 0.09 0.09 0.10 0.14
SD 0.73 0.01 0.07 0.05 1 0.00 0.07 0.07 0.03 0.02 0.07 0.15

Ethyl alcohol (ethanol)

2-Methyl propanol

3-Methyl butanol

Carboxylic acids

Compound

Hexanoic acid

Octanoic acid

Hexanol

Acetic acid

Butanoic acid

2-Methyl butanol

Lb. plantarum Lc. lactis

Pure culture Mixed culture

Lb. plantarum  + LcL Lb. plantarum  + Lc99

1157

1592

LRI

406

459

Milk

461

917

399

479
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B30 R2 W8 LcL Lc99 B30-LcL R2-LcL W8-LcL B30-Lc99 R2-Lc99W8-Lc99

Mean 29 19 25 19 19 25 18 19 18 21 23 26
SD 15 1 11 2 4 10 1 1 1 6 7 14
Mean 8 7 16 7 18 123 40 19 14 107 123 137
SD 5 1 8 3 5 53 3 9 2 39 59 82
Mean 4 2 3 2 2 3 2 2 2 2 3 3
SD 2 1 1 1 1 2 0.25 0.29 0.31 1 2 3
Mean 4 1 2 1 4 3 6 3 3 2 2 2
SD 3 0.39 1 1 2 2 1 1 0.44 0.44 0.49 1
Mean 206 121 175 121 122 179 130 104 101 134 168 189
SD 118 12 85 25 42 88 12 10 8 48 68 141
Mean 20 9 14 13 10 16 10 8 7 12 13 19
SD 15 2 11 8 5 12 1 1 1 7 8 20

Mean 1 1 1 ND 48 1 46 51 46 1 1 1
SD 0.48 0.31 0.34 ND 3 0.08 9 5 8 0.30 1 1
Mean 5 1 4 3 78 2 2237 108 76 3 3 3
SD 5 0.49 0.40 0.21 4 1 126 44 14 1 3 2
Mean 2 0.25 1 0.23 112 1 658 113 98 0.32 0.42 0.39
SD 1 0.10 1 0.10 9 1 63 17 11 0.25 0.36 0.14

Mean 0.53 0.26 1 0.18 4 0.39 16 5 6 0.20 0.34 0.36
SD 0.49 0.11 1 0.02 1 0.34 1 1 1 0.15 0.14 0.33
Mean 3 1 1 1 1 1 1 0.32 1 1 2 2
SD 3 0.28 1 0.41 1 1 0.33 0.25 0.42 0.45 1 2
Mean 0.47 0.14 0.18 0.15 0.29 0.30 4 0.21 0.41 0.14 0.15 0.28
SD 0.41 0.08 0.13 0.06 0.18 0.30 1 0.09 0.13 0.05 0.05 0.20
Mean 0.19 0.07 0.08 0.08 0.21 0.12 0.50 0.08 0.11 0.07 0.17 0.17
SD 0.17 0.07 0.02 0.05 0.22 0.08 0.02 0.01 0.06 0.05 0.12 0.15
Mean 6 0.15 2 0.23 0.32 1 0.17 0.43 0.13 0.33 4 1
SD 9 0.07 2 0.06 0.17 2 0.05 0.27 0.06 0.26 4 2

Butanol 3-methyl acetate

Hexanoic acid ethyl ester

Propanoic acid methyl ester

Butanoic acid 2-methyl ester

Butanoic acid ethyl ester

Esters

494

926

1189

2000

3-Methyl butanal

2-Methyl butanal

2-Hexanone

2-Hydroxy 3-pentanone

2-Heptanone

2-Pentanone

Acetoin

Aldehydes
2-Nonanone

2-Methyl propanal

MilkCompound

Pure culture Mixed culture

488

859

Lb. plantarum Lc. lactis Lb. plantarum  + LcL Lb. plantarum  + Lc99

Ketones
LRI

435

447

941

1410

305

420

424

409
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Appendix 7.4 Average SPME GC-MS signal intensities/peak areas (AU) and standard deviations, SD (x10
5
) for major compounds detected from 

headspace samples of model milk ripened for 4 weeks at 18
o
C. (B30, R2 and W8) Lb. plantarum isolates from the blue veins, outer crust and 

white core respectively. (LcL) Lc. lactis subsp. lactis (acid producer); (Lc99) Lc. lactis NCIMB 9918 (non acid-producer); (s) salt (3.5%, w/v) 

added to the sample. 
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W
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W
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Mean 18 27 10 26 9 14 17 20 39 21 19 23 18 17 38 37 241 41 36 14 30 29
SD 9 7 7 26 1 4 5 7 17 5 4 7 7 5 21 16 56 9 25 5 18 25
Mean 989 7 4 4 13 29 239 301 4 3 411 515 261 217 260 272 20 6 18 16 3 4
SD 52 3 1 1 14 42 83 13 2 1 40 107 68 27 75 39 6 2 23 22 2 1
Mean 1 1 1 1 240 3 330 405 2 1 3771 4417 384 329 432 398 9 1 4 1 1 1
SD 1 0.49 ### 1 509 2 91 3 0.35 0.13 200 558 73 28 162 82 5 1 3 0.42 1 0.43
Mean 2 2 2 2 49 4 899 1002 2 2 893 1078 954 748 1086 1006 2 4 2 2 4 3
SD 1 2 1 1 83 2 264 55 2 1 86 175 175 140 255 117 1 2 3 1 3 2
Mean 1 5 4 4 23 5 5 4 2 1 4 4 7 3 8 5 7 4 3 2 2 3
SD 1 2 1 0.11 36 1 2 2 0.37 0.16 2 3 3 1 5 1 4 1 3 1 1 2

Mean 809 347 ### 0.28 1 2 0.26 1 0.23 0.14 835 737 239 66 41 1 714 286 1 0.30 0.32 0.19
SD 118 126 ### 0.31 2 2 0.12 0.35 0.09 0.10 148 171 113 110 65 1 166 18 1 0.14 0.22 0.02
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Hexanoic acid

Octanoic acid

Lb. plantarum Lc. lactis
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Lb. plantarum  + LcL Lb. plantarum  + Lc99

2-Methyl propanol

3-Methyl butanol

Acetic acid

Butanoic acid

2-Methyl butanol

Carboxylic acids

Hexanol

Compound
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Ethyl alcohol (ethanol)
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Appendix 7.5 Average SPME GC-MS signal intensities/peak areas (AU) and standard deviations, SD (x10
5
) for major compounds detected from 

headspace samples of model milk ripened for 7 weeks at 18
o
C. (B30, R2 and W8) Lb. plantarum isolates from the blue veins, outer crust and 

white core respectively. (LcL) Lc. lactis subsp. lactis (acid producer); (Lc99) Lc. lactis NCIMB 9918 (non acid-producer); (s) salt (3.5%, w/v) 

added to the sample. 
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Pure culture Mixed culture

Lb. plantarum Lc. lactis Lb. plantarum  + LcL Lb. plantarum  + Lc99
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Appendix 7.6 Suggested odour notes of the major volatiles and their sensory threshold levels in different media. The compounds were detected 

from headspace samples of model milk fermented at 30
o
C for 24 h and subsequently ripened for 7 weeks at 18

o
C. The milk was inoculated with 

pure or mixed cultures of Lb. plantarum isolates B30 (blue veins), R2 (outer crust) and W8 (white core) with Lc. lactis subsp. lactis (acid 

producer) and Lc. lactis NCIMB 9918 (non acid-producer). Analysis was performed by using SPME GC-MS. 

 

Compounds Suggested odour note(s) Sensory thresholds (ppm) Reference 

    

Alcohols    

Ethanol  Strong, ropy, fruity 200
a
 Lawlor et al. (2003) 

2-methyl propanol Fruity, alcoholic and malty 45
a
 Lawlor et al. (2003) 

2-methyl butanol Fruity, alcoholic and malty 7.5
a
 Lawlor et al. (2003) 

3-methyl butanol Fruity, alcoholic and malty 7.5
a
 Lawlor et al. (2003) 

    

Organic acids    

Acetic acid Vinegar, sour  36
a
 Whetstine (2005)    

Butanoic acid Rancid, cheesy 0.86
a
 Whetstine et al. (2005) 

Hexanoic acid Sweaty  2.8
a
 Whetstine (2005)       

Octanoic acid  8.7
a
  

    

Ketones     

Diacetyl Buttery  10
b
 Ott et al. (2000)         

2-pentanone mouldy, strong (ropy) 0.0001
c
 Lawlor et al. (2003) 

Acetoin Buttery  0.8
c
 Vítová et al. (2006) 

2-hexanone  -  

2-hydroxy 3-pentanone  -  

2-heptanone Mouldy, strong (ropy) 0.05
a
 Lawlor et al. (2003)  

2-nonanone Mouldy, strong (ropy) 0.05
a
 Lawlor et al. (2003) 
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Aldehydes     

2-methyl propanal Malty 0.43
a
  

2-methyl butanal Dark chocolate 0.19
a
 Lawlor et al. (2003)  

3-methyl butanal Malty, green-grassy 0.19
a
 Vítová et al. (2006)    

    

Esters     

Butanoic acid 2-methyl ester Fruity, floral 0.25
c
 Belitz and Grosch (2009) 

Butanoic acid ethyl ester Sweet  0.1
c
 Belitz and Grosch (2009) 

Butanol 3-methyl acetate Fruity, floral  3
 c
 Lawlor et al. (2003)  

Hexanoic acid ethyl ester Fruity, floral - Lawlor et al. (2003) 

Propanoic acid methyl ester Fruity, floral 7
c
 Lawlor et al. (2003)  

 

  
a
Odour threshold of the compounds in goat milk Jack cheese model (Attaie, 2009) 

b
Odour threshold of the compounds dissolved in sunflower oil (Belitz and Grosch, 2009) 

c
Odour threshold of the compounds dissolved in water (Belitz and Grosch, 2009) 
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Appendix 7.7 List of compounds detected from headspace samples of model milk fermented for 48 h at 30
o
C and subsequently ripened for 7 

weeks at 18
o
C. The milk was inoculated with pure or mixed cultures of Lb. plantarum isolates B30 (blue veins), R2 (outer crust) and W8 (white 

core) with Lc. lactis subsp. lactis (acid producer) and Lc. lactis NCIMB 9918 (non acid-producer). Analysis was performed by using SPME GC-

MS. 

 

 Compound Functional 

group 

Molecular 

weight/molecular formula 

CAS No. Retention time 

(min) 

Key ion 

(m/z) 

1 Ethyl alcohol (ethanol) alcohol 46, C2H6O 64-17-5 2.10 31 

2 Acetone (2-propanone) ketone 58, C3H6O 67-64-1 2.44 58 

3 Dimethyl sulfide  62, C2H6S 75-18-3 2.79 47 

4 2-Methyl propanal aldehyde 72, C4H8O 78-84-2 3.28 72 

5 2,3-Butanedione (diacetyl)  86, C4H6O2 431-03-8 3.75 43 

6 2-Butanone ketone 72, C4H8O 78-93-3 3.90 72 

7 Acetic acid carbox. acid 60, C2H4O2 64-19-7 4.12 60 

8 Ethyl acetate ester 88, C4H8O2 141-78-6 4.25 61 

9 2-Methyl propanol (isobutanol) alcohol 74, C4H10O 78-83-1 4.47 43 

10 Butanoic acid 2-methyl methyl ester ester 116, C6H12O2 868-57-5 4.59 57 

11 3-Methyl butanal aldehyde 86, C5H10O 590-86-3 5.08 44 

12 2-Methyl butanal aldehyde 86, C5H10O 96-17-3 5.30 57 

13 2-Pentanone  ketone 86, C5H10O 107-87-9 5.78 86 

14 2,3-Pentanedione ketone 100, C5H8O2 600-14-6 5.94 57 

15 Pentanal  aldehyde 86, C5H10O 110-62-3 6.02 44 

16 3-Hydroxy 2-butanone (acetoin) diverse 88, C4H8O2 513-86-0 6.32 45 

17 2-Propenoic acid 2-methyl methyl ester ester 100, C5H8O2 80-62-6 6.37 69 

18 3-Methyl butanol alcohol 88, C5H12O 123-51-3 6.87 55 
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19 2-Methyl butanol alcohol 88, C5H12O 34713-94-5 6.97 57 

20 2,3 Dimethyl hexane alkane 71, C8H18 584-94-1 7.33 71 

21 Pentanol diverse 88, C5H12O 71-41-0 7.64 55 

22 Butanoic acid acid 88, C4H8O2 107-92-6 7.82 60 

23 2-Hexanone  ketone 100, C6H12O 591-78-6 8.22 58 

24 Butanoic acid ethyl ester ester 116, C6H12O2 105-54-4 8.47 71 

25 Hexanal aldehyde 100, C6H12O 66-25-1 8.49 56 

26 2-Hydroxy 3-pentanone ketone 102, C5H10O2 5704-20-1 8.68 45 

27 3-Methyl butanoic acid acid 102, C5H10O2 503-74-2 9.21 60 

28 3,7,11-Trimethyl dodecanol alcohol 228, C15H32O 6750-34-1 9.53 57 

29 Butanoic acid, 2-ethyl-, 1,2,3-propanetriyl acid 386, C21H38O6 56554-54-2 9.60 88 

30 Hexanol alcohol 102, C6H14O 111-27-3 10.09 56 

31 Pentanoic acid acid 102, C5H10O2 109-52-4 10.12 60 

32 Butanol 3-methyl acetate aldehyde 130, C7H14O2 123-92-2 10.29 70 

33 5-Hepten-2-one ketone 112, C7H12O 6714-00-7 10.31 112 

34 Octane alkane 142, C10H22 15869-87-1 10.37 57 

35 2-Heptanone ketone 114, C7H14O 110-43-0 10.65 58 

36 2-Heptanol alcohol 116, C7H16O 543-49-7 10.84 45 

37 Heptanal  aldehyde 114, C7H14O 111-71-7 10.92 70 

38 2,5-Dimethyl 3-hexanol alcohol 130, C8H18O 19550-07-3 12.05 69 

39 Hexanoic acid  acid 116, C6H12O2 142-62-1 12.34 60 

40 2-Octanone ketone 128, C8H16O 111-13-7 12.95 58 

41 Hexanoic acid ethyl ester ester 144, C8H16O2 123-66-0 13.07 88 

42 Heptanoic acid acid 130, C7H14O2 111-14-8 14.49 73 

43 8-Nonen-2-one ketone 140, C9H16O 5009-32-5 14.94 58 

44 2-Nonanone ketone 142, C9H18O 821-55-6 15.12 58 
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45 2-Nonanol alcohol 144, C9H20O 628-99-9 15.27 45 

46 Octanoic acid carbox. acid 144, C8H16O2 124-07-2 16.51 60 

47 Octanoic acid ethyl ester ester 172, C10H20O2 106-32-1 17.15 88 

48 Dodecane alkane 170, C12H26 13475-82-6 17.26 170 

49 2-Undecanone ketone 170, C11H22O 112-12-9 19.05 58 

50 3-Hydroxy dodecanoic acid  diverse 216, C12H24O3 1883-13-2 19.12 55 

51 Propanoic acid methyl ester ester 216, C12H24O3 74367-34-3 20.72 71 
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Appendix 8 PFGE dendrogram showing the variation in plantaricin EF genes and API 50 

CHL profiles of the different clusters of Lactobacillus spp. obtained from different sites in 

Stilton cheese. The profiles were based on inability to metabolise a particular carbohydrate(s) 
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Appendix 9 Summary of statistical analyses 

 

ANOVA for Fig. 5.3 Mean viable counts (log10 CFU/ml) of Lb. plantarum isolates after 

incubation in MRS broth acidified to pH 4-6 using lactic acid. 

 

Isolate growth pH Sum of Squares df Mean Square F Sig. 

B14 pH 4.0 Between Groups .216 5 .043 .942 .469 

Within Groups 1.377 30 .046   

Total 1.593 35    

pH 4.5 Between Groups 37.895 5 7.579 14.404 .000 

Within Groups 15.786 30 .526   

Total 53.681 35    

pH 5.0 Between Groups 92.748 5 18.550 1638.457 .000 

Within Groups .340 30 .011   

Total 93.087 35    

pH 6.0 Between Groups 114.380 5 22.876 1318.771 .000 

Within Groups .520 30 .017   

Total 114.900 35    

R2 pH 4.0 Between Groups 1.872 5 .374 3.042 .024 

Within Groups 3.691 30 .123   

Total 5.563 35    

pH 4.5 Between Groups 42.709 5 8.542 45.930 .000 

Within Groups 5.579 30 .186   

Total 48.288 35    

pH 5.0 Between Groups 64.492 5 12.898 107.546 .000 

Within Groups 3.598 30 .120   

Total 68.090 35    

pH 6.0 Between Groups 85.647 5 17.129 137.479 .000 

Within Groups 3.738 30 .125   

Total 89.385 35    

R25 pH 4.0 Between Groups .434 5 .087 1.743 .155 

Within Groups 1.495 30 .050   

Total 1.929 35    

pH 4.5 Between Groups 47.908 5 9.582 225.344 .000 

Within Groups 1.276 30 .043   

Total 49.184 35    

pH 5.0 Between Groups 69.530 5 13.906 353.235 .000 

Within Groups 1.181 30 .039   

Total 70.711 35    
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pH 6.0 Between Groups 89.688 5 17.938 527.492 .000 

Within Groups 1.020 30 .034   

Total 90.709 35    

R40 pH 4.0 Between Groups .040 5 .008 .049 .998 

Within Groups 4.899 30 .163   

Total 4.939 35    

pH 4.5 Between Groups 61.717 5 12.343 122.361 .000 

Within Groups 3.026 30 .101   

Total 64.743 35    

pH 5.0 Between Groups 96.696 5 19.339 222.104 .000 

Within Groups 2.612 30 .087   

Total 99.308 35    

pH 6.0 Between Groups 120.020 5 24.004 260.656 .000 

Within Groups 2.763 30 .092   

Total 122.783 35    

R6 pH 4.0 Between Groups 12.050 5 2.410 17.551 .000 

Within Groups 4.119 30 .137   

Total 16.169 35    

pH 4.5 Between Groups 12.312 5 2.462 8.561 .000 

Within Groups 8.629 30 .288   

Total 20.941 35    

pH 5.0 Between Groups 71.619 5 14.324 301.801 .000 

Within Groups 1.424 30 .047   

Total 73.043 35    

pH 6.0 Between Groups 105.502 5 21.100 218.537 .000 

Within Groups 2.897 30 .097   

Total 108.398 35    

W30 pH 4.0 Between Groups 1.099 5 .220 2.530 .050 

Within Groups 2.606 30 .087   

Total 3.705 35    

pH 4.5 Between Groups 57.545 5 11.509 70.820 .000 

Within Groups 4.875 30 .163   

Total 62.421 35    

pH 5.0 Between Groups 88.967 5 17.793 384.433 .000 

Within Groups 1.389 30 .046   

Total 90.355 35    

pH 6.0 Between Groups 111.113 5 22.223 466.425 .000 

Within Groups 1.429 30 .048   

Total 112.543 35    
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ANOVA for Fig. 5.4 Mean viable counts (log10 CFU/ml) of Lb. plantarum isolates after 

incubation in MRS broth containing different concentrations (0-10%, w/v) of NaCl. 

Isolate salt level applied Sum of Squares df Mean Square F Sig. 

B14 0 percent (control) Between Groups 75.258 5 15.052 385.610 .000 

Within Groups .468 12 .039   

Total 75.727 17    

3.5 percent Between Groups 69.139 5 13.828 1465.851 .000 

Within Groups .113 12 .009   

Total 69.252 17    

5.0 percent Between Groups 51.434 5 10.287 164.339 .000 

Within Groups .751 12 .063   

Total 52.185 17    

8.0 percent Between Groups .875 5 .175 4.638 .014 

Within Groups .453 12 .038   

Total 1.328 17    

10.00 Between Groups 1.900 5 .380 18.580 .000 

Within Groups .245 12 .020   

Total 2.145 17    

R2 0 percent (control) Between Groups 48.966 5 9.793 221.009 .000 

Within Groups .532 12 .044   

Total 49.498 17    

3.5 percent Between Groups 58.548 5 11.710 404.398 .000 

Within Groups .347 12 .029   

Total 58.895 17    

5.0 percent Between Groups 42.806 5 8.561 363.445 .000 

Within Groups .283 12 .024   

Total 43.088 17    

8.0 percent Between Groups 3.965 5 .793 19.842 .000 

Within Groups .480 12 .040   

Total 4.445 17    

10.00 Between Groups .067 5 .013 2.651 .077 

Within Groups .061 12 .005   

Total .127 17    

R25 0 percent (control) Between Groups 41.007 5 8.201 306.725 .000 

Within Groups .321 12 .027   

Total 41.328 17    

3.5 percent Between Groups 60.408 5 12.082 891.995 .000 

Within Groups .163 12 .014   

Total 60.570 17    
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5.0 percent Between Groups 52.270 5 10.454 553.608 .000 

Within Groups .227 12 .019   

Total 52.496 17    

8.0 percent Between Groups 7.372 5 1.474 79.359 .000 

Within Groups .223 12 .019   

Total 7.594 17    

10.00 Between Groups .648 5 .130 1.311 .323 

Within Groups 1.187 12 .099   

Total 1.835 17    

R40 0 percent (control) Between Groups 96.104 5 19.221 219.096 .000 

Within Groups 1.053 12 .088   

Total 97.157 17    

3.5 percent Between Groups 150.842 5 30.168 119.887 .000 

Within Groups 3.020 12 .252   

Total 153.861 17    

5.0 percent Between Groups 115.949 5 23.190 134.321 .000 

Within Groups 2.072 12 .173   

Total 118.020 17    

8.0 percent Between Groups 4.756 5 .951 1.703 .208 

Within Groups 6.703 12 .559   

Total 11.459 17    

10.00 Between Groups .319 5 .064 4.592 .014 

Within Groups .167 12 .014   

Total .486 17    

R6 0 percent (control) Between Groups 96.451 5 19.290 271.458 .000 

Within Groups .853 12 .071   

Total 97.303 17    

3.5 percent Between Groups 115.629 5 23.126 315.400 .000 

Within Groups .880 12 .073   

Total 116.509 17    

5.0 percent Between Groups 69.115 5 13.823 229.810 .000 

Within Groups .722 12 .060   

Total 69.837 17    

8.0 percent Between Groups 6.548 5 1.310 16.710 .000 

Within Groups .940 12 .078   

Total 7.489 17    

10.00 Between Groups .536 5 .107 7.953 .002 

Within Groups .162 12 .013   

Total .697 17    

W30 0 percent (control) Between Groups 66.356 5 13.271 183.614 .000 
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Within Groups .867 12 .072   

Total 67.223 17    

3.5 percent Between Groups 70.520 5 14.104 240.182 .000 

Within Groups .705 12 .059   

Total 71.225 17    

5.0 percent Between Groups 56.321 5 11.264 207.358 .000 

Within Groups .652 12 .054   

Total 56.973 17    

8.0 percent Between Groups 1.026 5 .205 6.830 .003 

Within Groups .360 12 .030   

Total 1.386 17    

10.00 Between Groups 1.167 5 .233 2.954 .058 

Within Groups .948 12 .079   

Total 2.115 17    
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ANOVA for Fig. 5.5 Mean viable counts (log10 CFU/ml) of Lb. plantarum isolates after 

incubation at different ERH levels (33 and 54%). 

 

Isolate relative humidity Sum of Squares df Mean Square F Sig. 

B14 33.00 Log CFU MRD Between Groups 40.987 6 6.831 5.459 .004 

Within Groups 17.520 14 1.251   

Total 58.507 20    

Log CFU SDW Between Groups 240.954 6 40.159 1262.861 .000 

Within Groups .445 14 .032   

Total 241.399 20    

54.00 Log CFU MRD Between Groups 175.581 6 29.264 95.894 .000 

Within Groups 4.272 14 .305   

Total 179.853 20    

Log CFU SDW Between Groups 132.859 6 22.143 90.074 .000 

Within Groups 3.442 14 .246   

Total 136.301 20    

R2 33.00 Log CFU MRD Between Groups 27.523 6 4.587 9.633 .000 

Within Groups 6.667 14 .476   

Total 34.189 20    

Log CFU SDW Between Groups 278.978 6 46.496 320.822 .000 

Within Groups 2.029 14 .145   

Total 281.007 20    

54.00 Log CFU MRD Between Groups 188.481 6 31.414 258.740 .000 

Within Groups 1.700 14 .121   

Total 190.181 20    

Log CFU SDW Between Groups 279.488 6 46.581 2961.580 .000 

Within Groups .220 14 .016   

Total 279.709 20    

R25 33.00 Log CFU MRD Between Groups 39.664 6 6.611 52.832 .000 

Within Groups 1.752 14 .125   

Total 41.415 20    

Log CFU SDW Between Groups 236.088 6 39.348 329.258 .000 

Within Groups 1.673 14 .120   

Total 237.761 20    

54.00 Log CFU MRD Between Groups 170.747 6 28.458 205.062 .000 

Within Groups 1.943 14 .139   

Total 172.690 20    

Log CFU SDW Between Groups 148.928 6 24.821 164.437 .000 

Within Groups 2.113 14 .151   
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Total 151.041 20    

R4 33.00 Log CFU MRD Between Groups 5.782 6 .964 5.023 .006 

Within Groups 2.686 14 .192   

Total 8.468 20    

Log CFU SDW Between Groups 257.247 6 42.875 211.921 .000 

Within Groups 2.832 14 .202   

Total 260.080 20    

54.00 Log CFU MRD Between Groups 185.632 6 30.939 131.649 .000 

Within Groups 3.290 14 .235   

Total 188.923 20    

Log CFU SDW Between Groups 157.627 6 26.271 33.503 .000 

Within Groups 10.978 14 .784   

Total 168.605 20    

R40 33.00 Log CFU MRD Between Groups 16.165 6 2.694 3.415 .027 

Within Groups 11.046 14 .789   

Total 27.211 20    

Log CFU SDW Between Groups 275.000 6 45.833 305.876 .000 

Within Groups 2.098 14 .150   

Total 277.098 20    

54.00 Log CFU MRD Between Groups 183.228 6 30.538 155.639 .000 

Within Groups 2.747 14 .196   

Total 185.974 20    

Log CFU SDW Between Groups 194.486 6 32.414 43.453 .000 

Within Groups 10.444 14 .746   

Total 204.929 20    

W30 33.00 Log CFU MRD Between Groups 31.924 6 5.321 8.365 .001 

Within Groups 8.904 14 .636   

Total 40.829 20    

Log CFU SDW Between Groups 239.780 6 39.963 100.584 .000 

Within Groups 5.562 14 .397   

Total 245.342 20    

54.00 Log CFU MRD Between Groups 191.364 6 31.894 62.511 .000 

Within Groups 7.143 14 .510   

Total 198.507 20    

Log CFU SDW Between Groups 76.926 6 12.821 24.848 .000 

Within Groups 7.224 14 .516   

Total 84.150 20    
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ANOVA for Table 7.1 Mean viable counts (log10 CFU/ml) of Ped. acidilactici NCIMB 

700993 and the different genotypes of Lb. plantarum obtained from Stilton cheese in 

MRS broth assayed for lactic and acetic acid production. 

 

Isolate Sum of Squares df Mean Square F Sig. 

B30 Between Groups 70.538 5 14.108 793.301 .000 

Within Groups .213 12 .018   

Total 70.751 17    

P. acidi Between Groups 75.956 5 15.191 961.468 .000 

Within Groups .190 12 .016   

Total 76.146 17    

R2 Between Groups 72.033 5 14.407 641.082 .000 

Within Groups .270 12 .022   

Total 72.302 17    

R25 Between Groups 86.104 5 17.221 1259.039 .000 

Within Groups .164 12 .014   

Total 86.268 17    

R40 Between Groups 76.428 5 15.286 509.141 .000 

Within Groups .360 12 .030   

Total 76.788 17    

R6 Between Groups 72.900 5 14.580 118.221 .000 

Within Groups 1.480 12 .123   

Total 74.380 17    

W30 Between Groups 77.357 5 15.471 1612.530 .000 

Within Groups .115 12 .010   

Total 77.472 17    

 

(P. acidi) Ped. acidilactici. Isolates of Lb. plantarum obtained from: (B30&R25) blue veins; (R2&R6) 

outer crust; (R40&W30) white core. All cultures were incubated aerobically for 48 h at 30oC. 
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ANOVA for Table 7.1 Mean pH of MRS broth inoculated with Ped. acidilactici NCIMB 

700993  and the different genotypes of Lb. plantarum obtained from Stilton cheese. The 

broths were assayed for lactic and acetic acid content 
 

strain name Sum of Squares df Mean Square F Sig. 

B30 Between Groups 5.346 5 1.069 622.808 .000 

Within Groups .010 6 .002   

Total 5.356 11    

P. acidi Between Groups 10.537 5 2.107 1708.667 .000 

Within Groups .015 12 .001   

Total 10.552 17    

R2 Between Groups 4.279 5 .856 863.061 .000 

Within Groups .006 6 .001   

Total 4.285 11    

R25 Between Groups 5.190 5 1.038 779.951 .000 

Within Groups .009 7 .001   

Total 5.200 12    

R40 Between Groups 4.287 5 .857 476.296 .000 

Within Groups .011 6 .002   

Total 4.297 11    

R6 Between Groups 4.033 5 .807 338.442 .000 

Within Groups .014 6 .002   

Total 4.047 11    

W30 Between Groups 7.064 5 1.413 623.291 .000 

Within Groups .014 6 .002   

Total 7.078 11    

 

(P. acidi) Ped. acidilactici. Isolates of Lb. plantarum obtained from: (B30&R25) blue veins; (R2&R6) 

outer crust; (R40&W30) white core. All cultures were incubated aerobically for 48 h at 30oC. 
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ANOVA for Table 7.1 Mean lactic acid content of MRS broth inoculated with Ped. 

acidilactici NCIMB 700993  and the different genotypes of Lb. plantarum obtained from 

Stilton cheese.  

 

strain name Sum of Squares df Mean Square F Sig. 

B30 Between Groups 476.948 5 95.390 716.198 .000 

Within Groups 1.598 12 .133   

Total 478.546 17    

P. acidi Between Groups 510.457 5 102.091 418.818 .000 

Within Groups 2.925 12 .244   

Total 513.382 17    

R2 Between Groups 445.842 5 89.168 758.521 .000 

Within Groups 1.411 12 .118   

Total 447.252 17    

R25 Between Groups 555.412 5 111.082 590.323 .000 

Within Groups 2.258 12 .188   

Total 557.670 17    

R40 Between Groups 450.029 5 90.006 2419.871 .000 

Within Groups .446 12 .037   

Total 450.475 17    

R6 Between Groups 471.627 5 94.325 3227.867 .000 

Within Groups .351 12 .029   

Total 471.978 17    

W30 Between Groups 1130.947 5 226.189 459.185 .000 

Within Groups 5.911 12 .493   

Total 1136.858 17    

 

(P. acidi) Ped. acidilactici. Isolates of Lb. plantarum obtained from: (B30&R25) blue veins; (R2&R6) 
outer crust; (R40&W30) white core. All cultures were incubated aerobically for 48 h at 30oC. 
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ANOVA for Table 7.1 Mean acetic acid content of MRS broth inoculated with Ped. 

acidilactici NCIMB 700993  and the different genotypes of Lb. plantarum obtained from 

Stilton cheese. 
 

strain name Sum of Squares df Mean Square F Sig. 

B30 Between Groups 1.626 5 .325 4.642 .014 

Within Groups .841 12 .070   

Total 2.467 17    

P. acidi Between Groups 3.476 5 .695 15.283 .000 

Within Groups .546 12 .045   

Total 4.021 17    

R2 Between Groups 6.518 5 1.304 11.119 .000 

Within Groups 1.407 12 .117   

Total 7.925 17    

R25 Between Groups 2.036 5 .407 9.939 .001 

Within Groups .492 12 .041   

Total 2.527 17    

R40 Between Groups .847 5 .169 3.673 .030 

Within Groups .554 12 .046   

Total 1.401 17    

R6 Between Groups 3.568 5 .714 8.506 .001 

Within Groups 1.007 12 .084   

Total 4.574 17    

W30 Between Groups 3.645 5 .729 21.451 .000 

Within Groups .408 12 .034   

Total 4.053 17    

 

(P. acidi) Ped. acidilactici. Isolates of Lb. plantarum obtained from: (B30&R25) blue veins; (R2&R6) 

outer crust; (R40&W30) white core. All cultures were incubated aerobically for 48 h at 30oC. 
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ANOVA for Figs. 7.3-7.4 Viable population (log10 CFU/ml) and pH changes of cows’ 

milk inoculated with single and mixed cultures of Lb. plantarum isolates and Lc. lactis 

strains and incubated for 48 h at 30
o
C 

 

 

culture type (single or mixed) Sum of Squares df Mean Square F Sig. 

Lc. lactis 

NCIMB6681 

Log 

CFU/ml 

Between Groups 87.888 6 14.648 981.522 .000 

Within Groups .209 14 .015   

Total 88.097 20    

pH Between Groups 109.117 6 18.186 21099.994 .000 

Within Groups .012 14 .001   

Total 109.129 20    

6681-Lb. 

plantarum 

B30 (veins) 

Log 

CFU/ml 

Between Groups 94.344 6 15.724 1068.621 .000 

Within Groups .206 14 .015   

Total 94.550 20    

pH Between Groups 108.002 6 18.000 68728.691 .000 

Within Groups .004 14 .000   

Total 108.006 20    

6681- Lb. 

plantarum 

R2 (crust) 

Log 

CFU/ml 

Between Groups 90.014 6 15.002 1215.933 .000 

Within Groups .173 14 .012   

Total 90.186 20    

pH Between Groups 108.677 6 18.113 37660.393 .000 

Within Groups .007 14 .000   

Total 108.684 20    

6681- Lb. 

plantarum 

W8 (core) 

Log 

CFU/ml 

Between Groups 89.989 6 14.998 2554.430 .000 

Within Groups .082 14 .006   

Total 90.071 20    

pH Between Groups 108.506 6 18.084 35163.948 .000 

Within Groups .007 14 .001   

Total 108.513 20    

Lc. lactis 

NCIMB9918 

Log 

CFU/ml 

Between Groups 63.071 6 10.512 279.994 .000 

Within Groups .526 14 .038   

Total 63.596 20    

pH Between Groups 112.030 6 18.672 5132.278 .000 

Within Groups .051 14 .004   

Total 112.081 20    

9918-B30 Log 

CFU/ml 

Between Groups 67.494 6 11.249 507.035 .000 

Within Groups .311 14 .022   

Total 67.804 20    

pH Between Groups 112.411 6 18.735 27322.093 .000 

Within Groups .010 14 .001   
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Total 112.420 20    

9918-R2 Log 

CFU/ml 

Between Groups 67.635 6 11.272 109.058 .000 

Within Groups 1.447 14 .103   

Total 69.082 20    

pH Between Groups 112.326 6 18.721 40530.069 .000 

Within Groups .006 14 .000   

Total 112.333 20    

9918-W8 Log 

CFU/ml 

Between Groups 67.646 6 11.274 472.103 .000 

Within Groups .334 14 .024   

Total 67.980 20    

pH Between Groups 112.245 6 18.708 45156.234 .000 

Within Groups .006 14 .000   

Total 112.251 20    

B30 Log 

CFU/ml 

Between Groups 46.489 6 7.748 736.925 .000 

Within Groups .147 14 .011   

Total 46.637 20    

pH Between Groups 113.848 6 18.975 33484.821 .000 

Within Groups .008 14 .001   

Total 113.856 20    

B30-6681 Log 

CFU/ml 

Between Groups 40.514 6 6.752 873.148 .000 

Within Groups .108 14 .008   

Total 40.622 20    

pH Between Groups 108.002 6 18.000 68728.691 .000 

Within Groups .004 14 .000   

Total 108.006 20    

B30-9918 Log 

CFU/ml 

Between Groups 16.608 6 2.768 184.650 .000 

Within Groups .210 14 .015   

Total 16.818 20    

pH Between Groups 112.411 6 18.735 27322.093 .000 

Within Groups .010 14 .001   

Total 112.420 20    

B30-Lc. 

lactis subsp. 

lactis (LLL) 

Log 

CFU/ml 

Between Groups 33.576 6 5.596 92.943 .000 

Within Groups .843 14 .060   

Total 34.419 20    

pH Between Groups 108.075 6 18.012 67546.851 .000 

Within Groups .004 14 .000   

Total 108.079 20    

LLL Log 

CFU/ml 

Between Groups 82.114 6 13.686 788.259 .000 

Within Groups .243 14 .017   

Total 82.357 20    
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pH Between Groups 108.674 6 18.112 24860.087 .000 

Within Groups .010 14 .001   

Total 108.684 20    

LLL-B30 Log 

CFU/ml 

Between Groups 92.493 6 15.415 756.544 .000 

Within Groups .285 14 .020   

Total 92.778 20    

pH Between Groups 108.075 6 18.012 67546.851 .000 

Within Groups .004 14 .000   

Total 108.079 20    

LLL-R2 Log 

CFU/ml 

Between Groups 85.847 6 14.308 535.776 .000 

Within Groups .374 14 .027   

Total 86.221 20    

pH Between Groups 108.364 6 18.061 51253.171 .000 

Within Groups .005 14 .000   

Total 108.369 20    

LLL-W8 Log 

CFU/ml 

Between Groups 94.558 6 15.760 401.738 .000 

Within Groups .549 14 .039   

Total 95.107 20    

pH Between Groups 108.240 6 18.040 17620.527 .000 

Within Groups .014 14 .001   

Total 108.255 20    

R2 Log 

CFU/ml 

Between Groups 51.930 6 8.655 355.265 .000 

Within Groups .341 14 .024   

Total 52.271 20    

pH Between Groups 113.660 6 18.943 18943.311 .000 

Within Groups .014 14 .001   

Total 113.674 20    

R2-6681 Log 

CFU/ml 

Between Groups 24.622 6 4.104 1133.895 .000 

Within Groups .051 14 .004   

Total 24.672 20    

pH Between Groups 108.677 6 18.113 37660.393 .000 

Within Groups .007 14 .000   

Total 108.684 20    

R2-9918 Log 

CFU/ml 

Between Groups 14.282 6 2.380 85.770 .000 

Within Groups .389 14 .028   

Total 14.670 20    

pH Between Groups 112.326 6 18.721 40530.069 .000 

Within Groups .006 14 .000   

Total 112.333 20    

R2-LLL Log Between Groups 23.968 6 3.995 255.913 .000 
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CFU/ml Within Groups .219 14 .016   

Total 24.187 20    

pH Between Groups 108.364 6 18.061 51253.171 .000 

Within Groups .005 14 .000   

Total 108.369 20    

W8 Log 

CFU/ml 

Between Groups 55.409 6 9.235 738.220 .000 

Within Groups .175 14 .013   

Total 55.584 20    

pH Between Groups 113.706 6 18.951 25842.331 .000 

Within Groups .010 14 .001   

Total 113.717 20    

W8-6681 Log 

CFU/ml 

Between Groups 24.109 6 4.018 222.293 .000 

Within Groups .253 14 .018   

Total 24.362 20    

pH Between Groups 108.506 6 18.084 35163.948 .000 

Within Groups .007 14 .001   

Total 108.513 20    

W8-9918 Log 

CFU/ml 

Between Groups 16.198 6 2.700 230.081 .000 

Within Groups .164 14 .012   

Total 16.362 20    

pH Between Groups 112.245 6 18.708 45156.234 .000 

Within Groups .006 14 .000   

Total 112.251 20    

W8-LLL Log 

CFU/ml 

Between Groups 25.294 6 4.216 68.830 .000 

Within Groups .857 14 .061   

Total 26.151 20    

pH Between Groups 108.240 6 18.040 17620.527 .000 

Within Groups .014 14 .001   

Total 108.255 20    
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ANOVA for Figs. 7.5-7.6 Viable population (log10 CFU/ml) and pH changes of cows’ 

milk inoculated with single and mixed cultures of Lb. plantarum isolates and Lc. lactis 

strains and incubated for 12 weeks at 18
o
C with and without the addition of NaCl. 

 

culture type (single or mixed) 

Sum of 

Squares df 

Mean 

Square F Sig. 

Lc. lactis NCIMB 

6681 (6681) 

Log CFU/ml, NO-

SALT 

Between 

Groups 

189.627 8 23.703 301.754 .000 

Within 

Groups 

1.414 18 .079 
  

Total 191.040 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

96.928 8 12.116 41.056 .000 

Within 

Groups 

5.312 18 .295 
  

Total 102.240 26    

pH, NO-SALT Between 

Groups 

3.152 8 .394 3.890 .008 

Within 

Groups 

1.823 18 .101 
  

Total 4.975 26    

pH, SALTED Between 

Groups 

1.709 8 .214 9.499 .000 

Within 

Groups 

.405 18 .022 
  

Total 2.113 26    

6681-Lb. plantarum 

strain B30 (veins) 

Log CFU/ml, NO-

SALT 

Between 

Groups 

183.991 8 22.999 130.404 .000 

Within 

Groups 

3.175 18 .176 
  

Total 187.165 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

137.343 8 17.168 65.516 .000 

Within 

Groups 

4.717 18 .262 
  

Total 142.060 26    

pH, NO-SALT Between 

Groups 

2.134 8 .267 8.790 .000 

Within 

Groups 

.546 18 .030 
  

Total 2.680 26    
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pH, SALTED Between 

Groups 

3.148 8 .393 13.266 .000 

Within 

Groups 

.534 18 .030 
  

Total 3.681 26    

6681-Lb. plantarum 

strain R2 (crust) 

Log CFU/ml, NO-

SALT 

Between 

Groups 

201.645 8 25.206 396.847 .000 

Within 

Groups 

1.143 18 .064 
  

Total 202.788 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

170.958 8 21.370 854.411 .000 

Within 

Groups 

.450 18 .025 
  

Total 171.408 26    

pH, NO-SALT Between 

Groups 

4.503 8 .563 12.686 .000 

Within 

Groups 

.799 18 .044 
  

Total 5.301 26    

pH, SALTED Between 

Groups 

5.099 8 .637 7.370 .000 

Within 

Groups 

1.557 18 .086 
  

Total 6.655 26    

6681-Lb. plantarum 

strain W8 (core) 

Log CFU/ml, NO-

SALT 

Between 

Groups 

203.463 8 25.433 421.074 .000 

Within 

Groups 

1.087 18 .060 
  

Total 204.550 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

175.101 8 21.888 474.634 .000 

Within 

Groups 

.830 18 .046 
  

Total 175.932 26    

pH, NO-SALT Between 

Groups 

4.211 8 .526 8.992 .000 

Within 

Groups 

1.054 18 .059 
  

Total 5.265 26    
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pH, SALTED Between 

Groups 

4.103 8 .513 27.638 .000 

Within 

Groups 

.334 18 .019 
  

Total 4.437 26    

Lc. lactis NCIMB 

9918 (9918) 

Log CFU/ml, NO-

SALT 

Between 

Groups 

1.805 8 .226 3.372 .015 

Within 

Groups 

1.205 18 .067 
  

Total 3.010 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

3.059 8 .382 2.782 .034 

Within 

Groups 

2.474 18 .137 
  

Total 5.534 26    

pH, NO-SALT Between 

Groups 

2.017 8 .252 11.612 .000 

Within 

Groups 

.391 18 .022 
  

Total 2.408 26    

pH, SALTED Between 

Groups 

2.415 8 .302 5.249 .002 

Within 

Groups 

1.035 18 .058 
  

Total 3.451 26    

9918- Lb. plantarum 

B30  

Log CFU/ml, NO-

SALT 

Between 

Groups 

24.246 8 3.031 8.789 .000 

Within 

Groups 

6.207 18 .345 
  

Total 30.453 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

5.470 8 .684 15.504 .000 

Within 

Groups 

.794 18 .044 
  

Total 6.264 26    

pH, NO-SALT Between 

Groups 

27.324 8 3.415 15.266 .000 

Within 

Groups 

4.027 18 .224 
  

Total 31.351 26    
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pH, SALTED Between 

Groups 

28.118 8 3.515 137.098 .000 

Within 

Groups 

.461 18 .026 
  

Total 28.580 26    

9918- Lb. plantarum 

R2 

Log CFU/ml, NO-

SALT 

Between 

Groups 

5.812 8 .727 3.367 .015 

Within 

Groups 

3.884 18 .216 
  

Total 9.696 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

4.743 8 .593 1.268 .319 

Within 

Groups 

8.418 18 .468 
  

Total 13.161 26    

pH, NO-SALT Between 

Groups 

13.865 8 1.733 9.055 .000 

Within 

Groups 

3.445 18 .191 
  

Total 17.311 26    

pH, SALTED Between 

Groups 

6.779 8 .847 32.439 .000 

Within 

Groups 

.470 18 .026 
  

Total 7.249 26    

9918- Lb. plantarum 

W8 

Log CFU/ml, NO-

SALT 

Between 

Groups 

7.096 8 .887 1.546 .210 

Within 

Groups 

10.326 18 .574 
  

Total 17.421 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

4.887 8 .611 4.578 .004 

Within 

Groups 

2.402 18 .133 
  

Total 7.288 26    

pH, NO-SALT Between 

Groups 

9.321 8 1.165 36.341 .000 

Within 

Groups 

.577 18 .032 
  

Total 9.898 26    



 

265 

 

pH, SALTED Between 

Groups 

3.551 8 .444 17.351 .000 

Within 

Groups 

.461 18 .026 
  

Total 4.012 26    

Lb. plantarum B30 Log CFU/ml, NO-

SALT 

Between 

Groups 

3.571 8 .446 108.281 .000 

Within 

Groups 

.074 18 .004 
  

Total 3.645 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

1.069 8 .134 6.467 .001 

Within 

Groups 

.372 18 .021 
  

Total 1.441 26    

pH, NO-SALT Between 

Groups 

17.863 8 2.233 67.001 .000 

Within 

Groups 

.600 18 .033 
  

Total 18.463 26    

pH, SALTED Between 

Groups 

16.937 8 2.117 120.749 .000 

Within 

Groups 

.316 18 .018 
  

Total 17.253 26    

B30- 6681 Log CFU/ml, NO-

SALT 

Between 

Groups 

5.061 8 .633 21.241 .000 

Within 

Groups 

.536 18 .030 
  

Total 5.597 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

3.467 8 .433 6.070 .001 

Within 

Groups 

1.285 18 .071 
  

Total 4.753 26    

B30-9918 Log CFU/ml, NO-

SALT 

Between 

Groups 

15.098 8 1.887 19.467 .000 

Within 

Groups 

1.745 18 .097 
  

Total 16.842 26    
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Log CFU/ml, 

SALTED 

Between 

Groups 

13.189 8 1.649 32.655 .000 

Within 

Groups 

.909 18 .050 
  

Total 14.097 26    

B30-Lc. lactis subsp. 

lactis (LLL) 

Log CFU/ml, NO-

SALT 

Between 

Groups 

4.819 8 .602 23.902 .000 

Within 

Groups 

.454 18 .025 
  

Total 5.273 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

4.004 8 .500 8.135 .000 

Within 

Groups 

1.107 18 .062 
  

Total 5.111 26    

LLL Log CFU/ml, NO-

SALT 

Between 

Groups 

190.082 8 23.760 338.823 .000 

Within 

Groups 

1.262 18 .070 
  

Total 191.345 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

79.432 8 9.929 80.424 .000 

Within 

Groups 

2.222 18 .123 
  

Total 81.655 26    

pH, NO-SALT Between 

Groups 

3.157 8 .395 8.720 .000 

Within 

Groups 

.815 18 .045 
  

Total 3.972 26    

pH, SALTED Between 

Groups 

1.866 8 .233 11.802 .000 

Within 

Groups 

.356 18 .020 
  

Total 2.222 26    

LLL- Lb. plantarum 

B30 

Log CFU/ml, NO-

SALT 

Between 

Groups 

76.646 8 9.581 94.049 .000 

Within 

Groups 

1.834 18 .102 
  

Total 78.480 26    
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Log CFU/ml, 

SALTED 

Between 

Groups 

138.273 8 17.284 133.522 .000 

Within 

Groups 

2.330 18 .129 
  

Total 140.603 26    

pH, NO-SALT Between 

Groups 

2.301 8 .288 10.353 .000 

Within 

Groups 

.500 18 .028 
  

Total 2.801 26    

pH, SALTED Between 

Groups 

3.132 8 .392 22.311 .000 

Within 

Groups 

.316 18 .018 
  

Total 3.448 26    

LLL- Lb. plantarum 

R2 

Log CFU/ml, NO-

SALT 

Between 

Groups 

204.578 8 25.572 743.061 .000 

Within 

Groups 

.619 18 .034 
  

Total 205.198 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

175.012 8 21.877 624.450 .000 

Within 

Groups 

.631 18 .035 
  

Total 175.643 26    

pH, NO-SALT Between 

Groups 

4.258 8 .532 8.560 .000 

Within 

Groups 

1.119 18 .062 
  

Total 5.377 26    

pH, SALTED Between 

Groups 

3.833 8 .479 18.382 .000 

Within 

Groups 

.469 18 .026 
  

Total 4.302 26    

LLL- Lb. plantarum 

W8 

Log CFU/ml, NO-

SALT 

Between 

Groups 

204.805 8 25.601 308.111 .000 

Within 

Groups 

1.496 18 .083 
  

Total 206.300 26    
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Log CFU/ml, 

SALTED 

Between 

Groups 

180.454 8 22.557 705.961 .000 

Within 

Groups 

.575 18 .032 
  

Total 181.029 26    

pH, NO-SALT Between 

Groups 

4.423 8 .553 9.038 .000 

Within 

Groups 

1.101 18 .061 
  

Total 5.524 26    

pH, SALTED Between 

Groups 

3.984 8 .498 30.668 .000 

Within 

Groups 

.292 18 .016 
  

Total 4.276 26    

Lb. plantarum  R2 Log CFU/ml, NO-

SALT 

Between 

Groups 

.104 8 .013 .111 .998 

Within 

Groups 

2.111 18 .117 
  

Total 2.216 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

.433 8 .054 .191 .989 

Within 

Groups 

5.102 18 .283 
  

Total 5.535 26    

pH, NO-SALT Between 

Groups 

10.976 8 1.372 8.357 .000 

Within 

Groups 

2.955 18 .164 
  

Total 13.931 26    

pH, SALTED Between 

Groups 

14.680 8 1.835 9.837 .000 

Within 

Groups 

3.358 18 .187 
  

Total 18.038 26    

R2-6681 Log CFU/ml, NO-

SALT 

Between 

Groups 

3.345 8 .418 13.851 .000 

Within 

Groups 

.543 18 .030 
  

Total 3.888 26    
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Log CFU/ml, 

SALTED 

Between 

Groups 

1.561 8 .195 1.077 .421 

Within 

Groups 

3.263 18 .181 
  

Total 4.824 26    

R2-9918 Log CFU/ml, NO-

SALT 

Between 

Groups 

15.857 8 1.982 51.361 .000 

Within 

Groups 

.695 18 .039 
  

Total 16.552 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

9.268 8 1.158 21.020 .000 

Within 

Groups 

.992 18 .055 
  

Total 10.260 26    

R2-LLL Log CFU/ml, NO-

SALT 

Between 

Groups 

2.938 8 .367 17.021 .000 

Within 

Groups 

.388 18 .022 
  

Total 3.326 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

1.734 8 .217 1.139 .385 

Within 

Groups 

3.424 18 .190 
  

Total 5.158 26    

Lb. plantarum  W8 Log CFU/ml, NO-

SALT 

Between 

Groups 

.920 8 .115 1.680 .171 

Within 

Groups 

1.232 18 .068 
  

Total 2.152 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

.614 8 .077 12.438 .000 

Within 

Groups 

.111 18 .006 
  

Total .725 26    

pH, NO-SALT Between 

Groups 

6.012 8 .751 51.316 .000 

Within 

Groups 

.264 18 .015 
  

Total 6.276 26    
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pH, SALTED Between 

Groups 

4.991 8 .624 13.084 .000 

Within 

Groups 

.858 18 .048 
  

Total 5.849 26    

W8-6681 Log CFU/ml, NO-

SALT 

Between 

Groups 

4.296 8 .537 29.287 .000 

Within 

Groups 

.330 18 .018 
  

Total 4.626 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

2.308 8 .289 7.279 .000 

Within 

Groups 

.714 18 .040 
  

Total 3.022 26    

W8-9918 Log CFU/ml, NO-

SALT 

Between 

Groups 

9.246 8 1.156 7.149 .000 

Within 

Groups 

2.910 18 .162 
  

Total 12.157 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

3.007 8 .376 7.931 .000 

Within 

Groups 

.853 18 .047 
  

Total 3.860 26    

W8-LLL Log CFU/ml, NO-

SALT 

Between 

Groups 

3.253 8 .407 10.197 .000 

Within 

Groups 

.718 18 .040 
  

Total 3.970 26    

Log CFU/ml, 

SALTED 

Between 

Groups 

1.851 8 .231 3.055 .023 

Within 

Groups 

1.363 18 .076 
  

Total 3.215 26    
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Appendix 9 cont’d (a) Summary statistics showing the log10 CFU/ml (HPLC) pair wise comparison of the data based on the Turkey test  

 

Summary of all pairwise comparisons of crust isolates for time (Tukey (HSD):

Analysis of variance, Log CFU/ml for HPLC data (Variable R2 (crust): Category LS means

48 8.813 A R2-crust

Source DF Sum of squaresMean squares F Pr > F 24 8.317 B

Model 5 71.946 14.389 640.651 < 0.0001 9 5.239 C

Error 12 0.270 0.022 6 4.713 D

Corrected Total 17 72.215 3 4.171 E

Computed against model Y=Mean(Y) 0 3.696 F

Analysis of variance, Log CFU/ml for HPLC data (Variable R6 (crust): Category LS means

48 8.958 A R6-crust

Source DF Sum of squaresMean squares F Pr > F 24 7.631 B

Model 5 72.947 14.589 119.047 < 0.0001 9 4.972 C

Error 12 1.471 0.123 6 4.362 C D

Corrected Total 17 74.418 3 3.776 D

Computed against model Y=Mean(Y) 0 3.686 D

Corrected Total 17 74.418

Computed against model Y=Mean(Y)

Groups

Groups
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Summary of all pairwise comparisons of veins isolates for time (Tukey (HSD):

Analysis of variance, Log CFU/ml for HPLC data (Variable B30 (veins): Category LS means

48 8.526 A B30-veins

Source DF Sum of squaresMean squares F Pr > F 24 8.427 A

Model 5 70.646 14.129 794.297 < 0.0001 9 5.431 B

Error 12 0.213 0.018 6 4.711 C

Corrected Total 17 70.860 3 4.077 D

Computed against model Y=Mean(Y) 0 3.581 E

Analysis of variance, Log CFU/ml for HPLC data (Variable R25 (veins): Category LS means

48 9.008 A R25-veins

Source DF Sum of squaresMean squares F Pr > F 24 8.103 B

Model 5 86.062 17.212 1269.297 < 0.0001 9 4.969 C

Error 12 0.163 0.014 6 4.559 D

Corrected Total 17 86.225 3 3.739 E

Computed against model Y=Mean(Y) 0 3.179 F

Groups

Groups
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Summary of all pairwise comparisons of core isolates for time (Tukey (HSD):

Analysis of variance, Log CFU/ml for HPLC data (Variable R40 (core): Category LS means

48 9.128 A R40-core

Source DF Sum of squaresMean squares F Pr > F 24 9.027 A

Model 5 77.298 15.460 1602.372 < 0.0001 9 5.850 B

Error 12 0.116 0.010 6 5.322 C

Corrected Total 17 77.414 3 4.465 D

Computed against model Y=Mean(Y) 0 3.889 E

Analysis of variance, Log CFU/ml for HPLC data (Variable W30 (core): Category LS means W30-core

48 8.773 A

Source DF Sum of squaresMean squares F Pr > F 24 7.898 B

Model 5 76.392 15.278 508.037 < 0.0001 9 5.003 C

Error 12 0.361 0.030 6 4.557 C

Corrected Total 17 76.753 3 3.740 D

Computed against model Y=Mean(Y) 0 3.313 D

Analysis of variance, Log CFU/ml for HPLC data (Variable Ped. acidilactici ): Category LS means

24 9.278 A Ped. acidilactici

Source DF Sum of squaresMean squares F Pr > F 48 8.456 B (control)

Model 5 75.983 15.197 973.407 < 0.0001 9 6.760 C

Error 12 0.187 0.016 6 5.585 D

Corrected Total 17 76.170 3 4.112 E

Computed against model Y=Mean(Y) 0 3.789 E

Groups

Groups

Groups
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Appendix 9 cont’d (b) Summary statistics showing the pH (HPLC) pair wise comparison of the data based on the Turkey test  

Summary of all pairwise comparisons of crust isolates for time (Tukey (HSD):

Analysis of variance, Log CFU/ml for HPLC data (Variable R2 (crust): Category LS means

48 8.813 A R2-crust

Source DF Sum of squaresMean squares F Pr > F 24 8.317 B

Model 5 71.946 14.389 640.651 < 0.0001 9 5.239 C

Error 12 0.270 0.022 6 4.713 D

Corrected Total 17 72.215 3 4.171 E

Computed against model Y=Mean(Y) 0 3.696 F

Analysis of variance, Log CFU/ml for HPLC data (Variable R6 (crust): Category LS means

48 8.958 A R6-crust

Source DF Sum of squaresMean squares F Pr > F 24 7.631 B

Model 5 72.947 14.589 119.047 < 0.0001 9 4.972 C

Error 12 1.471 0.123 6 4.362 C D

Corrected Total 17 74.418 3 3.776 D

Computed against model Y=Mean(Y) 0 3.686 D

Corrected Total 17 74.418

Computed against model Y=Mean(Y)

Groups

Groups
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Summary of all pairwise comparisons of veins isolates for time (Tukey (HSD):

Analysis of variance, pH for HPLC data (Variable B30 (veins): Category LS means

0 5.790 A B30-veins

Source DF Sum of squaresMean squares F Pr > F 9 5.590 B

Model 5 8.045 1.609 1405.904 < 0.0001 6 5.570 B

Error 12 0.014 0.001 3 5.453 C

Corrected Total 17 8.059 24 4.620 D

Computed against model Y=Mean(Y) 48 3.913 E

Analysis of variance, pH for HPLC data (Variable R25 (veins): Category LS means

9 5.803 A

Source DF Sum of squaresMean squares F Pr > F 0 5.790 A R25-veins

Model 5 7.648 1.530 1521.238 < 0.0001 6 5.653 B

Error 12 0.012 0.001 3 5.437 C

Corrected Total 17 7.661 24 5.043 D

Computed against model Y=Mean(Y) 48 3.940 E

Groups

Groups
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Summary of all pairwise comparisons of core isolates for time (Tukey (HSD):

Analysis of variance, pH for HPLC data (Variable R40 (core): Category LS means

0 5.790 A R40-core

Source DF Sum of squaresMean squares F Pr > F 9 5.560 B

Model 5 6.324 1.265 1054.030 < 0.0001 6 5.553 B

Error 12 0.014 0.001 3 5.457 C

Corrected Total 17 6.339 24 5.263 D

Computed against model Y=Mean(Y) 48 3.990 E

Analysis of variance, pH for HPLC data (Variable W30 (core): Category LS means

0 5.790 A W30-core

Source DF Sum of squaresMean squares F Pr > F 9 5.593 B

Model 5 10.574 2.115 1399.482 < 0.0001 6 5.533 B

Error 12 0.018 0.002 3 5.403 C

Corrected Total 17 10.592 24 4.243 D

Computed against model Y=Mean(Y) 48 3.757 E

Analysis of variance, pH for HPLC data (Variable Ped. acidilactici ): Category LS means

0 5.790 A Ped. acidilactici

Source DF Sum of squaresMean squares F Pr > F 3 5.393 B (control)

Model 5 10.537 2.107 1708.667 < 0.0001 6 5.360 B

Error 12 0.015 0.001 9 5.337 B

Corrected Total 17 10.552 48 3.977 C

Computed against model Y=Mean(Y) 24 3.790 D

Groups

Groups

Groups
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Appendix 9 cont’d (c) Summary statistics showing the lactic acid production (HPLC) pair wise comparison of the data based on the Turkey test  

Summary of all pairwise comparisons of crust isolates for time (Tukey (HSD):

Analysis of variance, lactic acid for HPLC data (Variable R2 (crust):

Category LS means

Source DF Sum of squaresMean squares F Pr > F 48 13.633 A R2-crust

Model 5 445.842 89.168 758.521 < 0.0001 24 2.140 B

Error 12 1.411 0.118 6 0.030 C

Corrected Total 17 447.252 3 0.020 C

Computed against model Y=Mean(Y) 9 0.020 C

0 0.000 C

Analysis of variance, lactic acid for HPLC data (Variable R6 (crust):

Category LS means R6-crust

Source DF Sum of squaresMean squares F Pr > F 48 13.910 A

Model 5 471.627 94.325 3227.867 < 0.0001 24 0.747 B

Error 12 0.351 0.029 6 0.093 C

Corrected Total 17 471.978 3 0.073 C

Computed against model Y=Mean(Y) 9 0.047 C

0 0.000 C

Groups

Groups

 



 

278 

 

Summary of all pairwise comparisons of veins isolates for time (Tukey (HSD):

Analysis of variance, lactic acid for HPLC data (Variable B30 (veins):

Category LS means B30-veins

Source DF Sum of squaresMean squares F Pr > F 48 14.057 A

Model 5 476.948 95.390 716.198 < 0.0001 24 4.363 B

Error 12 1.598 0.133 3 0.087 C

Corrected Total 17 478.546 9 0.080 C

Computed against model Y=Mean(Y) 6 0.013 C

0 0.000 C

Analysis of variance, lactic acid for HPLC data (Variable R25 (veins):

Category LS means R25-veins

Source DF Sum of squaresMean squares F Pr > F 48 15.190 A

Model 5 555.412 111.082 590.323 < 0.0001 24 1.843 B

Error 12 2.258 0.188 6 0.047 C

Corrected Total 17 557.670 9 0.043 C

Computed against model Y=Mean(Y) 3 0.023 C

0 0.000 C

Groups

Groups
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Summary of all pairwise comparisons of core isolates for time (Tukey (HSD):

Analysis of variance, lactic acid for HPLC data (Variable R40 (core):

Category LS means R40-core

Source DF Sum of squaresMean squares F Pr > F 48 13.637 A

Model 5 450.029 90.006 2419.871 < 0.0001 24 1.143 B

Error 12 0.446 0.037 3 0.073 C

Corrected Total 17 450.475 9 0.063 C

Computed against model Y=Mean(Y) 6 0.037 C

0 0.000 C

Analysis of variance, lactic acid for HPLC data (Variable W30 (core): W30-core

Category LS means

Source DF Sum of squaresMean squares F Pr > F 48 21.400 A

Model 5 1130.947 226.189 459.185 < 0.0001 24 7.993 B

Error 12 5.911 0.493 3 0.070 C

Corrected Total 17 1136.858 6 0.040 C

Computed against model Y=Mean(Y) 0 0.000 C

9 -0.020 C

Analysis of variance, lactic acid for HPLC data (Variable Ped. acidilactici ):

Category LS means Ped. acidilactici

Source DF Sum of squaresMean squares F Pr > F 48 12.213 A (control)

Model 5 510.457 102.091 418.818 < 0.0001 24 10.303 B

Error 12 2.925 0.244 3 0.050 C

Corrected Total 17 513.382 9 0.050 C

Computed against model Y=Mean(Y) 0 0.000 C

6 -0.010 C

Groups

Groups

Groups
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Appendix 9 cont’d (d) Summary statistics showing the acetic acid production (HPLC) pair wise comparison of the data based on the Turkey test  

 

Summary of all pairwise comparisons of crust isolates for time (Tukey (HSD):

Analysis of variance, acetic acid for HPLC data (Variable R2 (crust):

Category LS means

Source DF Sum of squaresMean squares F Pr > F 48 1.747 A R2-crust

Model 5 6.518 1.304 11.119 0.000 24 0.287 B

Error 12 1.407 0.117 9 0.153 B

Corrected Total 17 7.925 3 0.150 B

Computed against model Y=Mean(Y) 6 0.147 B

0 0.000 B

Analysis of variance, acetic acid for HPLC data (Variable R6 (crust):

Category LS means R6-crust

Source DF Sum of squaresMean squares F Pr > F 48 1.373 A

Model 5 3.568 0.714 8.506 0.001 6 0.473 B

Error 12 1.007 0.084 3 0.300 B

Corrected Total 17 4.574 9 0.243 B

Computed against model Y=Mean(Y) 24 0.183 B

0 0.000 B

Groups

Groups
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Summary of all pairwise comparisons of veins isolates for time (Tukey (HSD):

Analysis of variance, acetic acid for HPLC data (Variable B30 (veins):

Category LS means B30-veins

Source DF Sum of squaresMean squares F Pr > F 48 0.990 A

Model 5 1.626 0.325 4.642 0.014 9 0.373 A B

Error 12 0.841 0.070 6 0.307 A B

Corrected Total 17 2.467 24 0.307 A B

Computed against model Y=Mean(Y) 3 0.257 B

0 0.000 B

Analysis of variance, acetic acid for HPLC data (Variable R25 (veins):

Category LS means R25-veins

Source DF Sum of squaresMean squares F Pr > F 48 1.063 A

Model 5 2.036 0.407 9.939 0.001 24 0.550 A B

Error 12 0.492 0.041 3 0.347 B

Corrected Total 17 2.527 6 0.243 B

Computed against model Y=Mean(Y) 9 0.230 B

0 0.000 B

Groups

Groups
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Summary of all pairwise comparisons of core isolates for time (Tukey (HSD):

Analysis of variance, acetic acid for HPLC data (Variable R40 (core):

Category LS means R40-core

Source DF Sum of squaresMean squares F Pr > F 48 0.710 A

Model 5 0.847 0.169 3.673 0.030 3 0.327 A B

Error 12 0.554 0.046 24 0.277 A B

Corrected Total 17 1.401 9 0.260 A B

Computed against model Y=Mean(Y) 6 0.150 A B

0 0.000 B

Analysis of variance, acetic acid for HPLC data (Variable W30 (core): W30-core

Category LS means

Source DF Sum of squaresMean squares F Pr > F 48 1.337 A

Model 5 3.645 0.729 21.451 < 0.0001 24 0.387 B

Error 12 0.408 0.034 3 0.270 B

Corrected Total 17 4.053 6 0.157 B

Computed against model Y=Mean(Y) 9 0.073 B

0 0.000 B

Analysis of variance, acetic acid for HPLC data (Variable Ped. acidilactici ):

Category LS means Ped. acidilactici

Source DF Sum of squaresMean squares F Pr > F 48 1.430 A (control)

Model 5 3.476 0.695 15.283 < 0.0001 24 1.017 A B

Error 12 0.546 0.045 9 0.660 B

Corrected Total 17 4.021 3 0.597 B

Computed against model Y=Mean(Y) 6 0.547 B C

0 0.000 C

Groups

Groups

Groups

 

 


