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“To those who do not know mathematics it is difficult to get across a real feeling as

to the beauty, the deepest beauty, of nature ... If you want to learn about nature,

to appreciate nature, it is necessary to understand the language that she speaks in."

(R. Feynman, The Character of Physical Law (1965) Ch. 2)

“Quantum physics means anything can happen at any time for no reason."

(H. J. Farnsworth)
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Abstract

A central aim of the field of relativistic quantum information (RQI) is the investiga-

tion of quantum information tasks and resources taking into account the relativistic

aspects of nature. More precisely, it is of fundamental interest to understand how the

storage, manipulation, and transmission of information utilizing quantum systems are

influenced by the fact that these processes take place in a relativistic spacetime. In par-

ticular, many studies in RQI have been focused on the effects of non-uniform motion

on entanglement, the main resource of quantum information protocols. Early inves-

tigations in this direction were performed in highly idealized settings that prompted

questions as to the practical accessibility of these results. To overcome these limitations

it is necessary to consider quantum systems that are in principle accessible to localized

observers. In this thesis we present such a model, the rigid relativistic cavity, and its

extensions, focusing on the effects of motion on entanglement and applications such as

quantum teleportation.

We study cavities in (1+1) dimensions undergoing non-uniform motion, consisting

of segments of uniform acceleration and inertial motion of arbitrary duration that al-

low the involved velocities to become relativistic. The transitions between segments of

different accelerations can be sharp or smooth and higher dimensions can be incorpo-

rated. The primary focus lies in the Bogoliubov transformations of the quantum fields,

real scalar fields or Dirac fields, confined to the cavities. The Bogoliubov transforma-

tions change the particle content and the occupation of the energy levels of the cavity.

We show how these effects generate entanglement between the modes of the quantum

fields inside a single cavity for various initial states. The entanglement between sev-

eral cavities, on the other hand, is degraded by the non-uniform motion, influencing

the fidelity of tasks such as teleportation. An extensive analysis of both situations and a

setup for a possible simulation of these effects in a table-top experiment are presented.
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Aims of Relativistic Quantum Information

The topic of this thesis is part of the research area called Relativistic Quantum Information

(RQI). This young and thriving field aims to investigate questions that lie in the overlap

of quantum information theory, quantum field theory, quantum optics and special as

well as general relativity. The motivations and particular questions considered for such

studies are numerous, but a central theme originating from the first papers dedicated

to RQI (see, e.g., Refs. [60, 91, 96, 158, 159]) is the observer dependence of entanglement.

In a series of works [8, 9, 12, 55, 56, 62, 80, 81, 96, 111, 117, 150, 151, 188, 189] this

relativity of entanglement was first investigated for inertial observers. The preliminary

conclusion drawn from these papers is the following: The entanglement between inter-

nal degrees of freedom, such as spin and momentum, in systems with a fixed number

of relativistic particles depends on the chosen inertial frame. However, it remains un-

clear, whether this mathematical observation can be tested in any experiment, since

spin measurements are not independent of the particle momenta [171, 172]. In partic-

ular, investigations concerning the choice of relativistic spin operator are still a source

of scientific debate [22, 52–54, 153, 173].

In parallel to the studies of Lorentz symmetry of entanglement a second branch of

RQI was developed for the investigation of the effects of non-uniform motion [2, 11, 41,

85, 91, 133] and spacetime curvature [18, 90, 133–136] on the resources and protocols

of quantum information processing (see Ref. [10] for a recent review). Especially the

3
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studies of non-inertial motion established a close connection between RQI and effects

of quantum field theory on curved spacetimes (see Ref. [30] for an introduction), such

as the Unruh effect and Hawking effect [17, 48]. In this context the effects of the eternal,

uniform acceleration of idealized point-like observers on the entanglement between

global modes was the paradigm situation of interest. While such a highly simplified

toy model served well as a basis to analyze qualitative features of the effects of non-

uniform motion on entanglement, it is clear that it cannot be considered to be consistent

with any practical situation, see, for instance, the discussion in Ref. [66]. For instance,

it was left open if and how the chosen initial states could be prepared or measured for

modes with support in the entire spacetime. Additionally, it seems overly restrictive to

assume that accelerations need to be kept constant eternally to produce any effects. In

spite of their problems the initial toy models were helpful to understand some general

features and requirements of relativistic formulations of quantum information tasks.

To overcome the problems of the early models several systems were proposed that

allow for localized preparation and measurements while maintaining high flexibility

regarding the choice of trajectories in spacetime. One of these approaches is the so

called Unruh–DeWitt detector [30]. This detector model describes a localized quantum

system, such as a harmonic oscillator or two-level system, coupled to the quantum field

along a classical trajectory. We shall not discuss the intricacies of this approach here but

refer the interested reader to the relevant literature (see, e.g., Ref. [45, 110, 127]). The

second major attempt to construct a theoretical description of a quantum system that

can serve for the storage, processing, and transmission of quantum information in a rel-

ativistic spacetime is to confine the quantum field inside a cavity. This simple, yet rich

theoretical model has many advantages, one of which is its experimental accessibility.

For instance, cavities are well controlled systems in the context of quantum optics, as

recognized by the Nobel Prize in Physics 2012 (see, e.g., Ref. [164]), and they have been

extensively studied in connection with the dynamical Casimir effect [15, 64, 201]. Conse-

quently, cavities were naturally considered as objects for the rigorous relativistic study

of quantum information processing in RQI [44, 66]. Apart from these two systems also

other options were proposed, including wave packets [68] and covariant formulations

of single particles in curved spacetimes [152]. In this thesis we shall follow the second

path to describe the modes of quantum fields that are confined to cavities in relativistic

motion by appropriate boundary conditions. An outline of the discussion is provided

below.

Following on from the recent successes in identifying appropriate systems for RQI

the field has now entered into a new phase —the connection with experiments and ap-

4
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plications. The advances of the research on the mathematical foundations of RQI have

been accompanied by breakthroughs in cutting edge experiments, such as the obser-

vation of the dynamical Casimir effect [201], or the teleportation over distances where

effects of general relativity may become non-negligible [130]. It is thus now possible,

and, moreover, feasible for theoretical research in RQI to be tested in Earth-based labo-

ratories [89], which will help to provide insight into effects of space-based experiments,

for instance quantum communication between satellites [168].

Additionally, the well-developed tools of RQI are now ready for state-of-the-art

applications that open up entirely new directions of research, e.g., relativistic quantum

metrology [7, (xii)] —the study of high-precision parameter estimation using relativistic

settings [17, 67, 108, 109, 170]. Another area that connects to RQI is analogue gravity (see

Ref. [21] for a review, and Refs. [24, 115, 166, 169, 197, 198] for a selection of recent

advances), which aims to simulate quantum effects in curved spacetimes in compact,

laboratory-based experimental setups. The techniques of RQI are here able to provide

useful criteria for the presence of entanglement to identify crucial signatures of the

quantumness of the expected effects.

Outline of the Thesis

This thesis aims at presenting a thorough introduction into the description of cavities as

systems for quantum information processing in RQI, and the phenomena originating

from this treatment. In particular, we investigate the effects of the non-uniform motion

of rigid cavities in Minkowski spacetime on the entanglement between the field modes

within the cavity. Several scenarios for the creation and degradation of entanglement,

including applications to practical tasks such as a quantum teleportation are discussed.

Due to the interdisciplinary nature of RQI, the thesis relies on background knowledge

in the fields of quantum information theory, relativity, quantum field theory and quan-

tum optics. For this reason the thesis is partitioned into two parts.

Part I provides the basic concepts that are needed from each of the above-mentioned

fields. Chapter 1 introduces fundamental terminology and definitions from quantum in-

formation theory, focusing on entanglement theory and some simple applications. We

then direct our attention to the quantization of quantum fields in relativistic spacetimes in

Chapter 2, where we also discuss Bogoliubov transformations, a crucial concept for this

thesis. Readers familiar with the topics covered in either of the first two chapters may

skip the corresponding introductory chapters, but should be aware that most of the

notation and terminology of the thesis are established there.

5
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With the tools of Chapters 1 and 2 at hand we are in a position to discuss general fea-

tures of quantum information theory for quantum fields in Chapter 3. First we discuss the

description of bosonic fields in phase space in the so-called covariance matrix formalism.

Having established the relevant techniques we further discuss the role of entanglement

generation in bosonic quantum fields and we introduce criteria for entanglement res-

onances that are generalizing the results of Bruschi et al. from Ref. [42]. Finally, in the

last section of Part I we present the intricacies of quantum information processing in

fermionic Fock spaces, based on material published in Ref. [86, (viii)].

Part II, titled shaking entanglement, is entirely dedicated to the rigid cavity model that

was, in the context of RQI, first developed for bosonic fields by D. Bruschi, I. Fuentes,

and J. Louko [44] and subsequently generalized to bosonic Gaussian states [83, (vii)] and

fermionic fields [87, (iv)] by myself and collaborators. The aim is to give a pedagogical

introduction to the model of perfect, rigid cavities in motion and the corresponding

effects for quantum entanglement.

Part II is organized as follows. In Chapter 4 the basic model is introduced, i.e., we

discuss how bosonic and fermionic quantum fields are confined within rigid cavities in

non-uniform motion and how generic trajectories can be constructed. This chapter also

covers the results for smoothly changing accelerations from Ref. [47] by my collabora-

tors. We continue in Chapter 5 with the state transformation of initial Fock states and

Gaussian states.

Having set the stage we then proceed to Chapter 6, where we discuss the entangle-

ment generation phenomena within the non-uniformly moving cavities. The bipartite

case, based on my publications [82, (v)], and [83, (vii)], as well as Ref. [42] by my col-

laborators, is discussed in detail in Sections 6.1-6.3. The multipartite case, based on [84,

(vi)], is finally presented in Section 6.4.

Finally, in Chapter 7 we analyze entanglement degradation effects between several

cavities in motion, based on the results of Ref. [44] and my publications [87, (iv)]

and [89, (ix)]. In particular, we apply the formalism to study the influence on the

continuous-variable teleportation protocol between cavities in motion. A scheme to

test these predictions in a laboratory-based experiment using superconducting circuits

is briefly discussed, before we present the conclusions.
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CHAPTER 1

Basic Concepts in Quantum

Information

Naturally, any relativistic study of quantum information procedures requires a formal

understanding of the quantities of interest in standard quantum information theory.

We will give a brief introduction into the main concepts of quantum information theory,

focusing on entanglement theory. In particular, we shall restrict our attention to the

concepts needed for the purpose of this thesis and refer the reader to the literature for

topics that lie beyond the scope of this review chapter. For a detailed introduction to

quantum information theory consult, e.g., Ref. [144].

1.1 Pure & Mixed Quantum States

The essential ingredients for quantum information processing lie in the description of

quantum states, and operations (state preparation, manipulation, measurements, etc.)

carried out on these states. The notion of “state" encompasses our best knowledge of

the physical system and can take on various mathematical descriptions.

1.1.1 Pure States

Let us begin with the idealized notion of a pure state, where the maximal amount of

information about the physical system is available. In other words, a quantum system

in a pure state is perfectly controlled and it is described by a state vector ψ in a Hilbert

spaceH.

Definition 1.1. A Hilbert SpaceH is a vector space over the field C (or R) equipped

with an inner product 〈 . | . 〉 . In addition, a Hilbert space is required

to be complete with respect to the norm induced by the inner product.

The inner product 〈 . | . 〉 satisfies 〈 φ | ψ 〉 = 〈 ψ | φ 〉∗, whereψ, φ ∈ H . It is (anti-)linear

9
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in the (first) second argument, i.e.,

〈 c1φ1 + c2φ2 | ψ 〉 = c∗1 〈 φ1 | ψ 〉+ c∗2 〈 φ2 | ψ 〉 , (1.1a)

〈 φ | c1ψ1 + c2ψ2 〉 = c1 〈 φ | ψ1 〉+ c2 〈 φ | ψ2 〉 , (1.1b)

where c1,2 ∈ C , φ1,2, ψ1,2 ∈ H , and the asterisk denotes complex conjugation. The

inner product on H is further positive semi-definite, i.e., 〈 ψ | ψ 〉 ≥ 0 , with equality if

and only if ψ = 0 . The reflexivity of the Hilbert space, i.e., H coincides with its (con-

tinuous) dual space, allows us to employ the so-called Dirac notation, that is, we write

vectors in H as | ψ 〉 , while the elements of the (continuous) dual Hilbert space H∗ are

denoted as 〈 ψ | = | ψ 〉† . We further require physical states to be normalized, such that

〈 ψ | ψ 〉 = 1 .

We can then consider (bounded) linear operators, i.e.,A : | ψ 〉 7→ | φ 〉 = A | ψ 〉 , on

such a Hilbert space, where the adjoint operatorA† is defined by the relation 〈 A†φ | ψ 〉 =

〈 φ | Aψ 〉 . Operators that satisfy A†|D(A) = A , with domains D(A†) ⊇ D(A) , are

called Hermitean. Such operators represent physical observables, for instance, the en-

ergy of the quantum system. The eigenvalues of these operators are real and they corre-

spond to possible outcomes of individual measurements, in which the state is projected

onto the corresponding eigenstates. The expectation values

〈 A 〉ψ = 〈 ψ |A | ψ 〉 , (1.2)

which represent averaged measurement outcomes, are real as well. It can be easily

seen that the projection | ψ 〉〈 ψ | into the state | ψ 〉 is such a Hermitean operator. Op-

erators U that satisfy U † = U−1 are called unitary and leave the inner product invariant,

〈 Uφ | Uψ 〉 = 〈 φ | ψ 〉 . Operations such as rotations and the dynamics of closed sys-

tems are encoded in unitaries.

An interesting feature of quantum theory is the fact that a quantum system in a

pure state can be in a coherent superposition of states that correspond to different pos-

sible measurement outcomes for a given observable. For instance, the system may be

in a superposition of different energy eigenstates. This superposition principle has far-

reaching conceptual consequences, for instance for interference effects or for the notion

of entanglement, see Section 1.2.

1.1.2 Mixed States

In practice the knowledge about the quantum state produced in a given preparation

scheme is not perfect — one typically does not know for sure which pure state a quan-

tum systems is in. Instead of a single pure state one needs to consider an ensemble of

10
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pure states, weighted with their relative probabilities. The appropriate descriptions for

these mixed states are density operators ρ that we can write as convex sums of projectors

on pure states, i.e.,

ρ =
∑
i

pi | ψi 〉〈 ψi | , (1.3)

where
∑

i pi = 1, and the real weights pi satisfy 0 ≤ pi ≤ 1. The operators of Eq. (1.3),

also called density matrices, are Hermitean operators on the Hilbert space H of pure

states. They are normalized, i.e., Tr(ρ) =
∑

i 〈ψi | ρ |ψi 〉 = 1 , where {|ψi 〉} is a com-

plete orthonormal basis (CONB) of H, satisfying
∑

i |ψi 〉〈ψi | = 1 , and 〈ψi |ψj 〉 = δij .

Furthermore, density operators are positive semi-definite, ρ ≥ 0, which means that their

eigenvalues are non-negative. The decomposition of ρ in Eq. (1.3) into a pure state en-

semble is not unique, but can always be chosen such that the |ψi 〉 form a CONB.

The expectation value of Eq. (1.2) can readily be generalized to mixed states by

considering a weighted average of the expectation values of a complete, orthonormal

ensemble of pure states,
∑

i pi 〈 ψi |A | ψi 〉. By inserting the identity in terms of the

same CONB and writing ρ in the decomposition of Eq. (1.3) one naturally arrives at

〈 A 〉ρ = Tr(Aρ) . (1.4)

The trace operation can further be used to define an inner product ( . , . )HS , via

( ρ , σ )HS = Tr(ρ†σ) , (1.5)

which promotes the space of the density operators to a Hilbert space, the so-called

Hilbert-Schmidt space, which we are also going to denote as H in a slight abuse of no-

tation. Every pure state is trivially represented in this space through its projector, for

which ρ2 = ρ , whereas this is not the case for any mixed state that cannot be repre-

sented by a single state vector. This fact can be used to quantify the mixedness of — the

lack of knowledge about — a given density operator via the linear entropy SL(ρ)

Definition 1.2. The linear entropy SL(ρ) of a density matrix ρ is defined as

SL(ρ) := 1 − Tr(ρ2) .

The linear entropy is bounded, i.e., 0 ≤ SL(ρ) ≤ 1 − 1
d , where d = dim(H), and it

can be normalized by a factor d
d−1 if desired. It vanishes only for pure states, while it is

strictly greater than zero for mixed states. The upper bound (1 − 1
d) is attained for the

maximally mixed state ρmix = 1
d1d . Another conventional measure for the mixedness

is the von Neumann entropy SvN , to which SL is a linear approximation.

11
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Definition 1.3. The von Neumann entropy SvN(ρ) of a density matrix ρ is given by

SvN(ρ) = −Tr(ρ log(ρ)) .

The basis of the logarithm in Definition 1.3 is often chosen to be 2, but here we are

going to use the natural logarithm and denote it as “ln" in the following. We can write

SvN in terms of the eigenvalues λi of the density operator ρ , i.e.,

SvN(ρ) = −
∑
i

λi ln(λi) , (1.6)

from which it can be seen that SvN is the straightforward generalization of the classical

Shannon entropy. As before, the von Neumann entropy is strictly zero if, and only if,

the state is pure, while the largest value ln d is obtained for the maximally mixed state.

Both SL and SvN are invariant under unitary transformations onH

SL,vN(UρU †) = SL,vN(ρ) . (1.7)

The von Neumann entropy will be of further interest to us in the context of entan-

glement detection in Section 1.3. For now we shall turn our attention to a useful

parametrization of density matrices, the Bloch decomposition. For a single qubit, a two-

dimensional quantum system with Hilbert space C2, a general mixed state may be

written as

ρ =
1

2
(12 + aiσi) , (1.8)

where ai = Tr(ρσi) ∈ R with aiai ≤ 1 (i = 1, 2, 3), and we are using the Einstein summa-

tion convention for indices that are repeated once as superscript and once as subscript.

The σi are the usual, traceless, Hermitean Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.9)

The ai can be interpreted as the components of a vector a = (ai) ∈ R3, the Bloch vector,

whose length indicates the mixedness of the state. For |a| = 1 the state is pure and

lies on the surface of the so-called Bloch sphere, while all |a| < 1 describe mixed states

within the sphere. The state parametrization of Eq. (1.8) is very descriptive for spin-
1
2 systems, where the direction of the vector a = (ai) represents the spin orientation

of the state ρ . The Bloch decomposition can be extended to describe single quantum

systems of (finite) dimension d, called qudits, see Ref. [28], but we shall instead turn

our attention to a generalization for composite systems that is usually referred to as

12
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the generalized Bloch decomposition (also called Fano decomposition [76]). Any two-qubit

density operator on a Hilbert space C2 ⊗ C2 can be written as

ρ =
1

4
(14 + ai σi ⊗ 12 + bi 12 ⊗ σi + tij σi ⊗ σj) . (1.10)

In this decomposition a = (ai) and b = (bi) are the Bloch vectors of the first and sec-

ond qubit, respectively, while the tij = Tr(ρ σi⊗σj) are the components of the correlation

matrix t[ρ], which encodes correlations between the two qubits. We will encounter this

object again in Section 1.5.2 where it plays a role for the violation of Bell inequalities.

1.2 Entanglement of Pure States

Let us now turn to a more general description of composite quantum systems and

their correlations. In particular, we are going to study a property called entanglement,

a fundamental resource for quantum information tasks which is a simple consequence

of applying the superposition principle (see p. 10) of quantum mechanics to composite

systems. A pedagogical review of this topic can be found in Ref. [50], while a more

extensive review is given in Ref. [107]. In this section the case of bipartite pure states

is discussed, before we continue with bipartite mixed states in Section 1.3 and multi-

partite systems in Section 1.4. The chapter will be concluded with a brief look at appli-

cations of entanglement, such as Bell inequalities and quantum teleportation in Section 1.5.

Let us consider two Hilbert spaces, HA and HB , with dimensions dim(HA) = dA

and dim(HB) = dB , and bases {| ψi 〉A} and {| ψi 〉B} , respectively. Any bipartite pure

state of the composite Hilbert space HAB = HA ⊗ HB , with dAB = dim(HAB) = dAdB ,

can be written in terms of these bases as

| ψ 〉
AB

=

dA,dB∑
i,j=1

c ij | ψi 〉A ⊗ | ψj 〉B , (1.11)

such that the coefficients c ij ∈ C satisfy
∑

i,j |c ij |2 = 1 . However, for pure, bipartite

states there exists a more economical choice of basis—the Schmidt basis—than the dAB
tensor products of the basis vectors of the individual Hilbert spaces. Let us formulate

this in the Schmidt decomposition theorem, originally formulated in Ref. [177].

Theorem 1.1. For every pure bipartite state | ψ 〉
AB

there exist orthonormal bases

{| χi 〉A ∈ HA} and {| χi 〉B ∈ HB}, the Schmidt-bases, such that

| ψ 〉
AB

=
dmin∑
i=1

√
pi | χi 〉A ⊗ | χi 〉B ,

where 1 ≤ dmin ≤ min(dA, dB), and the real Schmidt numbers pi ≥ 0

satisfy
∑

i pi = 1 .

13
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A proof of this well-known theorem can be found, for instance, in Ref. [80, p. 30].

For any state there is an optimal decomposition in terms of a minimal number dopt—the

Schmidt rank—of linearly independent vectors | χi 〉A⊗| χi 〉B . States of Schmidt rank 1

are called separable, while those with dopt = min(dA, dB) are called maximally entangled.

Definition 1.4. A bipartite pure state | ψ 〉
AB
∈ HAB is called separable with respect to

the bipartition ofHAB intoHA ⊗HB if it can be written as

| ψ 〉
AB

= | φ 〉
A
⊗ | χ 〉

B
, for some | φ 〉

A
∈ HA and | χ 〉

B
∈ HB .

Having established the notion of separability, the definition of entanglement fol-

lows from Definition 1.4 by negation.

Definition 1.5. A state is called entangled, if it is not separable.

For entangled states, not all information about the total state can be encoded in the

states of the subsystems. Consequently, the reduced state density matrices, ρA and ρB

of the subsystems A and B, respectively, are mixed. The reduced states are obtained

from the bipartite state ρAB by partial tracing, i.e.,

ρA = TrB(ρAB) =
∑
i

(
1A ⊗ 〈 ψi |B

)
ρAB

(
1A ⊗ | ψi 〉B

)
, (1.12)

where {| ψi 〉B} is a CONB ofHB and similarly ρA = TrB(ρAB) . For compactness of nota-

tion we are going to drop the tensor product symbol, i.e., | ψ 〉
A
⊗| φ 〉

B
= | ψ 〉 | φ 〉 from

now on and identify the corresponding subspaces by the ordering of the vectors. It is

further convenient to indicate the subspaces operators are acting upon solely by their

subscripts and drop any identity operators in a tensor product such that 1A⊗OB = OB .

For density operators ρAB corresponding to pure states | ψ 〉
AB

the mixedness of the

reductions can be entirely attributed to the entanglement —the quantum correlations

—between the subsystems. Moreover, from Theorem 1.1 it can be immediately seen

that ρA and ρB have the same rank and the same non-zero eigenvalues, given by the

Schmidt rank and the Schmidt numbers pi , respectively. Consequently, any function of

these eigenvalues alone, in particular the (von Neumann) entropy, takes on the same

value for either reduced state. This allows us to unambiguously quantify the entangle-

ment of any bipartite pure state by the so-called entropy of entanglement.

Definition 1.6. The entropy of entanglement E of a bipartite pure state | ψ 〉
AB

is

defined as the von Neumann entropy SvN of its reductions ρA and ρB ,

E(| ψ 〉
AB

) = SvN(ρA) = SvN(ρB) .
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Paradigmatic examples for entangled pure states are the two-qubit Bell states

| φ± 〉 = 1√
2

(
| 0 〉 | 0 〉 ± | 1 〉 | 1 〉

)
, (1.13a)

| ψ± 〉 = 1√
2

(
| 0 〉 | 1 〉 ± | 1 〉 | 0 〉

)
, (1.13b)

where | 0 〉 and | 1 〉 form a basis in C2. The Bell states, on the other hand, form a

complete basis of C2 ⊗C2. They are further examples of maximally entangled states, i.e.,

pure states for which the reductions have maximal rank, or, in other words, for which

the reduced states are maximally mixed.

1.3 Entanglement of Mixed States

For mixed states the notion of separability is somewhat more involved, since it needs

to leave the possibility of incoherent mixtures of uncorrelated product states ρA ⊗ ρB .

Definition 1.7. A bipartite mixed state ρAB ∈ HAB is called separable with respect

to the bipartition ofHAB intoHA ⊗HB if it can be written as

ρAB =
∑
i
pi ρ

i
A
⊗ ρ i

B
,

for some ensembles {ρ i
A
∈ HA} and {ρ i

B
∈ HB} .

As before, a state is called entangled, if it is not separable.

By this definition all separable states can be created using local operations and classical

communication (LOCC), i.e., any operations restricted to either of the subsystems and

classical communication between the corresponding observers, usually referred to as

Alice and Bob. However, in general it is not straightforward to determine whether a

given state admits a decomposition of the form of Definition 1.7, but we shall discuss

some useful separability criteria and measures of entanglement in Sections 1.3.1 and 1.3.2,

respectively.

1.3.1 Detection of Entanglement

In contrast to the pure state case, it is not unambiguously possible to attribute the

mixedness of the subsystems to the overall entanglement. Neither is it conclusive to

compute the entropy of entanglement for the pure states in a particular decomposi-

tion of ρAB, since there is no preferred pure state decomposition for any mixed state.

Nonetheless, a sufficient (but not necessary) criterium for the presence of bipartite en-

tanglement can be formulated in the following entropy inequalities. A state ρAB is entan-

gled if the entropy of any of the reductions, ρA or ρB, is larger than the entropy of ρAB ,
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i.e., ρAB is entangled if

S(ρAB) − S(ρA) < 0 , (1.14a)

or S(ρAB) − S(ρB) < 0 , (1.14b)

where we have omitted the label for the chosen entropy. A proof for the von Neumann

entropy SvN as well as selected other entropy measures can be found in Ref. [190].

Let us now consider a more geometric method for the detection of entanglement

—entanglement witnesses as in, e.g., Refs. [29, 50]. From Definition 1.7 it can be easily

seen that the separable states form a closed, convex subset S ⊂ H of the Hilbert space

of states, while all entangled states form the complement. Since any entangled state is

represented by a single point in H, which is trivially a compact, convex subset of H,

the Hahn-Banach theorem of functional analysis allows to separate this point from S by

a hyperplane, see Ref. [167, p. 75]. Such a hyperplane can be interpreted as a linear

functional on H, realized by a Hermitean operator. Let us phrase this in the following

entanglement witness theorem, which was introduced in Ref. [103].

Theorem 1.2. For any entangled state ρ there exists an entanglement witness, i.e., a

Hermitean operator OW, such that (OW , ρ )HS < 0 , while

(OW , σ )HS ≥ 0 for all separable states σ ∈ S.

Although this does not directly supply an operational criterion for the detection of

entanglement many operational criteria can be considered special cases of the entangle-

ment witness theorem, see, e.g., Ref. [27]. One example is the Clauser-Horne-Shimony-

Holt (CHSH) criterion for two qubits, that we are going to discuss in Section 1.5.2.

In a similar approach it was suggested by A. Peres in Ref. [157] to use the partial

transposition 1A ⊗ TB to detect entanglement. Since the transposition preserves the pos-

itivity of operators, it is easy to see from Definition 1.7 that separable states remain

positive under partial transposition. In Ref. [103] M., R., and P. Horodecki were then

able to use Theorem 1.2 to prove that this condition for separability is sufficient only as

long as dAB = dAdB ≤ 6. Let us phrase this in the following theorem, known as positive

partial transpose (PPT) criterion, or Peres-Horodecki criterion.

Theorem 1.3. A bipartite state ρAB ∈ C2 ⊗ C2 or C2 ⊗ C3 is separable if, and only if,

the partial transposition (see p. 19) of ρAB is positive, i.e.,

ρ
TB
AB = (1A ⊗ TB)ρAB ≥ 0 .
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The subsystems A and B in the PPT theorem can of course be exchanged. We see

that for two-qubit states, or states of one qubit and one qutrit, all entangled states have

a negative partial transpose (NPT), while in general there exist entangled states with pos-

itive partial transpose, called bound entangled states. It was shown in Ref. [104] that

these PPT entangled states are undistillable, i.e., it is not possible to obtain any pure,

maximally entangled states from n copies of the given mixed state by LOCC, but we

shall not be further concerned with entanglement distillation in this thesis (see, e.g.,

Ref. [50] for a pedagogical review of this topic). However, we shall return to the PPT

criterion for the construction of useful entanglement measures —negativity measures

—in Section 1.3.2, and, in the context of bosonic Gaussian states in Section 3.1.4.

1.3.2 Measures of Entanglement

As we have seen, it is not trivial to establish criteria for the separability of a given

mixed state. Consequently, there are also many issues in the definition of mixed state

entanglement measures, and many candidates have been proposed to suit the plethora

of requirements. An extensive review of the various available entanglement measures,

entanglement monotones, and their connections can be found in Ref. [162]. For the pur-

pose of this thesis we shall restrict the discussion to two representatives of these mea-

sures, the entanglement of formation and related concurrence, followed by an overview

of the so-called negativity measures. Let us begin with a list of requirements which are

usually imposed on (bipartite) entanglement measures E(ρ).

Definition 1.8. An entanglement measure is a map from density operators ρ to the

non-negative real numbers E(ρ) ∈ R+
0 that satisfies:

(i) E(ρ) = 0 for all separable states ρ ∈ S.

(ii) E(ρ) is non-increasing under LOCC.

It is sometimes customary in the literature to add further requirements for genuine

entanglement measures, the most popular of which are continuity, reduction to the en-

tropy of entanglement (recall Definition 1.6) for pure states, i.e., E(|ψ 〉〈ψ |) = E(|ψ 〉) ,

convexity, i.e., E(
∑

i piρi) ≤
∑

i piE(ρi) , and (full) additivity E(ρAB ⊗ ρCD) = E(ρAB) +

E(ρCD) . In the case of such additional requirements for a genuine entanglement mea-

sure, Definition 1.8 is said to define an entanglement monotone. For our purposes it will

suffice to introduce the above convention. It should also be noted that requirement (ii)

implies that entanglement is invariant under local unitary operations UA ⊗ UB since the

corresponding inverse transformations are also LOCC.
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Convex Roof Constructions

A mathematically intuitive way of generalizing the entropy of entanglement E of Defi-

nition 1.6 to mixed state ensembles is the entanglement of formation EF(ρ) introduced in

Ref. [26].

Definition 1.9. The entanglement of formation EF(ρ) of a bipartite state ρ is given by

EF(ρ) := inf
{(pi, |ψi 〉)}

∑
i

pi E(|ψi 〉) ,

where the infimum is taken over all pure state ensembles (pi , |ψi 〉)
that realize ρ =

∑
i pi |ψi 〉〈ψi | .

The entanglement of formation constitutes an entanglement measure in the sense

of Definition 1.8 and is an example for a so-called convex roof construction. Therefore it

is convex by construction and trivially reduces to the von Neumann entropy for pure

states. In spite of the elegance of its formal definition, the entanglement of formation

is in general not a practical measure of entanglement, since the minimization in Def-

inition 1.9 cannot be carried out in a closed form for arbitrary systems. However, for

some situations that exhibit high symmetry, or are specifically simple, this calculation

can be performed analytically. In particular, for the simple case of two qubits, a closed

expression is provided by (see Refs. [26, 205])

EF(ρ) = h
( 1 +

√
1− C2(ρ)

2

)
, (1.15)

where h(p) is the Shannon entropy H({p, 1− p}) of the Bernoulli distribution {p, 1− p},

h(p) = − p ln(p) − (1− p) ln(1− p) , (1.16)

and C(ρ) is the so-called (Wootters) concurrence for two-qubits

C(ρ) = max{ 0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4 } . (1.17)

The λi ∈ R+
0 are the eigenvalues of the matrix ρ(σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2) in decreasing

order, λ1 ≥ λ2,3,4. Since the entanglement of formation is a monotonous function of

the concurrence only, the latter is sometimes used instead of EF even though it derives

its meaning via its relation to EF. In Section 3.1.4 we shall encounter another simple

situation, symmetric two-mode Gaussian states on infinite dimensional Hilbert spaces,

for which the entanglement of formation can be computed explicitly as well [95]. The

quantity C2(ρ) = τ(ρ), where C(ρ) is the two-qubit concurrence of Eq. (1.17), can be

defined as the convex roof construction over the linear entropy [148], i.e.,

τ(ρAB) := inf
{(pi, |ψi 〉)}

∑
i

pi SL
(
TrB[ |ψi 〉〈ψi | ]

)
, (1.18)
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in complete analogy to the entanglement of formation in Definition 1.9. The definition

of this measure—the tangle —now naturally extends to two systems of arbitrary dimen-

sions. Beyond two qubits the tangle is generally an upper bound to — not identical to

— the square of the corresponding concurrence (see, e.g., Ref. [147]). Nonetheless, a

very useful feature of the tangle is that it captures the so-called monogamy of entan-

glement. For three qubits A, B and C the tangle satisfies the Coffman-Kundu-Wootters

(CKW) inequality

τ(ρAB) + τ(ρAC) ≤ τ(ρA(BC)) , (1.19)

where ρAB = TrC(ρABC), ρAC = TrB(ρABC) and τ(ρA(BC)) is the tangle with respect to the

bipartition A|BC. The inequality (1.19) was proven in Ref. [59], and subsequently ex-

tended to an arbitrary number of qubits in Ref. [148]. Loosely speaking, the monogamy

of entanglement means that a given qubit cannot be maximally entangled with more

than one qubit at a time. Any gain in entanglement between qubits A and C must be

compensated by a reduction in entanglement between A and B. The monogamy in-

equalities using the tangle do not generally hold beyond qubits (see, e.g., Ref. [149]),

but possible extensions to qudits relying on other measures of entanglement have been

proposed [119], for instance squashed entanglement satisfies monogamy restraints in

arbitrary dimensions [120]. Monogamy can further be restored for Gaussian states in

infinite dimensional systems [100].

Despite the useful properties of the convex roof measures, it is more desirable for

our purposes here to consider easily computable measures of entanglement, one of

which we shall turn to now.

NPT Entanglement

The negativity measures, based on the PPT criterion (Theorem 1.3) and introduced in

Ref. [194], quantify —loosely speaking—how much a given state fails to be positive

after partial transposition. To implement the partial transposition we write a general

bipartite mixed state ρ ∈ HAB in terms of local bases {| i 〉 ∈ HA} and {| j 〉 ∈ HB} as

ρ =
∑
i,i′,j,j′

ρij,i′j′ | i 〉〈 i ′ | ⊗ | j 〉〈 j ′ | . (1.20)

The partial transposition of ρAB is then obtained by exchanging the indices on the op-

erators on one of the subspaces,

ρTB = (1A ⊗ TB)ρ =
∑
i,i′,j,j′

ρij,i′j′ | i 〉〈 i ′ | ⊗ | j ′ 〉〈 j | . (1.21)
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Definition 1.10. The negativity N (ρ) of a bipartite state ρ is given by

N (ρ) := 1
2

∑
i

(
|λi| − λi

)
,

where the λi ∈ [−1
2 , 1] are the eigenvalues of ρTB .

In other words, the negativity is the modulus of the sum of the, at most [165, 174],

(dA−1)(dB−1) negative eigenvalues of the partial transposition, where as usual, dA =

dim(HA) and dB = dim(HB). Alternatively, the negativity can be defined in terms of the

trace norm || · ||1 , i.e., N (ρ) = 1
2(||ρTB ||1− 1) , where ||ρ||1 = Tr

√
ρ†ρ . By Definition 1.8

the negativity is an entanglement measure, and is further convex, but the negativity

does not reduce to the entropy of entanglement for pure states and it is not additive.

The latter issue can be amended by defining the so-called logarithmic negativity EN as

EN (ρ) = log2 ||ρTB ||1 = log2(2N (ρ) + 1) , (1.22)

which is additive, but still does not reduce to the entropy of entanglement in the pure

case, and it is not convex [161]. Clearly, because of their relation to Theorem 1.3 neither

of the negativities is able to capture bound entanglement. Nonetheless, the negativity

measures are widely used because of their computational simplicity. Finally, we can

relate the entanglement of formation and the negativity measures. It was shown in

Ref. [192] that for a two-qubit state with given concurrence C [recall Eq. (1.17)] the

negativity is bounded by

1
2

(√
(1− C)2 + C2 − (1− C)

)
≤ N ≤ 1

2C . (1.23)

We will use the measures described above to quantify the bipartite entanglement be-

tween modes of quantum fields. However, in such scenarios we will naturally en-

counter also systems of more than two modes. It is therefore of interest to take a brief

look at entanglement in multipartite systems, as we will do in the next section.

1.4 Multipartite Entanglement

In a multipartite system with a fixed number of subsystems A,B, . . . , N the entan-

glement structure is much more involved than in the bipartite case, but also much

richer. In general these structures are not well understood beyond three qubits, see,

e.g., Refs. [50, 92, 98], but already in the tripartite case several inequivalent classes of

multipartite entanglement are known. We shall mainly be concerned with the detec-

tion of genuine multipartite entanglement (GME), discussed in Section 1.4.2, but first we

are going to introduce this concept.
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1.4.1 Genuine Multipartite Entanglement

We can start as before by defining N -partite states in HAB · · ·N = HA ⊗ HB ⊗ · · · ⊗ HN

that do not contain any entanglement.

Definition 1.11. A pure, N -partite state | ψ 〉
AB · · ·N ∈ HAB · · ·N is called fully separable,

if it can be written as | ψ 〉
AB · · ·N = | φA 〉 ⊗ | φB 〉 ⊗ · · · ⊗ | φN 〉 , for

some | φA 〉 ∈ HA , | φB 〉 ∈ HB , · · · | φN 〉 ∈ HN .

The state is called n-separable if it can be written as a tensor product

with respect to some partition ofHAB · · ·N into n ≤ N subsystems.

For n = 2, i.e., for pure bi-separable states, one essentially obtains the pure, bipartite

case where the two subsystems contain additional structure. While Definition 1.11 is

straightforward, it is nonetheless involved to test whether a given state is n-separable.

In contrast to the bipartite case only very specific states admit a generalized Schmidt

decomposition (see Ref. [156]). To check a general given state for n-separability thus

requires to compute the reductions of all the subsystems and verify that they are pure.

We shall therefore define genuine multipartite entanglement for pure states in the follow-

ing way:

Definition 1.12. A pure state | ψ 〉
AB · · ·N is called genuinely N -partite entangled

if it is not bi-separable inHAB · · ·N .

For mixed states we simply extend the notion of n-separability to the convex sum.

Definition 1.13. A mixed state ρAB · · ·N is called n-separable if it admits at least one

decomposition into a convex sum of pure n-separable states.

Conversely, a mixed state ρAB · · ·N is genuinely N -partite entangled

if it is not bi-separable (n = 2) inHAB · · ·N .

While these definitions seem straightforward, let us consider some of their impli-

cations. Firstly, if a given state is n-separable, then it is automatically also n′-separable

for all n′ < n. The sets Sn of n-separable states are thus convexly nested in each other,

i.e., Sn ⊂ Sn−1 ⊂ . . . ⊂ S1. What complicates matters is the fact that the individual

states in the decomposition of a bi-separable mixed state into bi-separable pure states

need not be separable with respect to the same bi-partitions.
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Therefore, a given mixed state can be n-separable, even though it is entangled with

respect to specific partitions. This feature makes it rather difficult to determine whether

a given state is n-separable. However, as we will discuss shortly, one can construct

witness inequalities whose violation detects GME [92].

1.4.2 Detection of Genuine Multipartite Entanglement

For the detection of genuine multipartite entanglement a seemingly mundane prop-

erty of n-separable pure states can be used—permutational symmetry in the exchange

of corresponding subsystems of two copies of the state. Let us start with two copies,

| ψ 〉
A1A2

and | ψ 〉
B1B2

, of a bi-separable pure state | ψ 〉
1, 2

= | φ 〉
1
| χ 〉

2
, where Ai and

Bi (i = 1, 2) label the i-th subsystem of two otherwise identical copies A and B, respec-

tively. The subsystemsA2 andB2 of the first and second copy may be freely exchanged,

π(A1|A2)2 | ψ 〉A1A2
⊗ | ψ 〉

B1B2
= | ψ 〉

A1B2
⊗ | ψ 〉

B1A2
, (1.24)

where we have defined the permutation operator π(A1|A2)2 , that exchanges the second

subsystem of the two copies with respect to the partition (A1|A2) . This statement triv-

ially extends to multipartite entanglement, i.e., a pure state that is n-separable with

respect to a n-partition P(n) = (A1|A2| · · · |An) is invariant under permutations πP(n)i ,

i.e., exchanges of the i-th subsystems Ai and Bi of the two copies. Using this statement

the following theorem was formulated in Ref. [92].

Theorem 1.4. Every N -partite, n-separable state ρ satisfies

(
〈 Φ | ρ⊗2

∏
i

πP(n)i | Φ 〉
) 1

2 ≤
∑
P(n)

( n∏
i=1

〈 Φ |π†P(n)i ρ
⊗2 πP(n)i | Φ 〉

) 1
2n
,

for every fully separable (2N)-partite pure state | Φ 〉 .

Proof. Let us quickly sketch the proof for this inequality. If ρ is a pure, N -partite, n-

separable state, then it must be n-separable with respect to one of the n-partitions P(n)

in the sum on the right hand side. The corresponding term of the sum over all P(n)

then cancels with the left hand side since the fully separable state | Φ 〉 can trivially

be written as a tensor product of two N -partite states, i.e., | Φ 〉 = | ΦA 〉 | ΦB 〉, and

ρ = | ψ 〉〈 ψ | is pure. The remaining terms on the right hand side are products of (2n)th

roots of diagonal entries ρkk of the density operator ρ, and therefore strictly positive.

Thus the inequality is trivially satisfied. To extend the proof to mixed states one simply

notes that the left hand side is the modulus —a convex function—of a density matrix
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element ρkl, while the (2n)th roots on the right hand side are concave functions of the

matrix elements, i.e.,

|
∑
i

pi ρ
i
kl| ≤

∑
i

pi |ρikl| , (1.25a)

(∑
i

pi ρ
i
kk

) 1
2n ≥

∑
i

pi
(
ρikk
) 1

2n , (1.25b)

which concludes the proof.

We will use detection inequalities of this type to study GME between modes of quan-

tum fields in cavities in Section 6.4.

1.5 Applications of Entanglement

1.5.1 The EPR Paradox

We have previously introduced the mathematical notion of entanglement—establishing

that the superposition principle, applied to composite systems, gives rise to this in-

triguing property. But one might ask what distinguishes entanglement from other cor-

relations. Fur this purpose, let us turn to the EPR thought experiment formulated by

Albert Einstein, Boris Podolsky, and Nathan Rosen (EPR) in 1935. In their seminal pa-

per “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?"

(Ref. [73]) they used an entangled state to argue that quantum theory does not meet

their criteria of locality, reality, and completeness.

(i) Locality: There are no instantaneous interactions between distant

physical systems.

(ii) Realism: If the value of a physical quantity can be predicted with

certainty without disturbing the system, then this

quantity corresponds to an element of physical reality.

(iii) Completeness: A theory is complete if every element of physical reality

is assigned to a corresponding element in the theory.

In short, their argument asserts that the existence of maximally entangled states in

quantum mechanics gives rise to elements of reality that are not accounted for in quan-

tum mechanics, which, according to EPR, is therefore incomplete. In spite of the far-

reaching conceptual consequences of this paradox it was mostly ignored or considered

to be a purely philosophical problem. In particular the reply by Niels Bohr in Ref. [33]

supported this point of view. It was not until 1957 that the problem pointed out by EPR

was appreciated, when David Bohm and Yakir Aharonov published their version [32] of
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the paradox, which we shall present here using the language of quantum information

theory.

Let us consider two spatially distant qubits, A and B, in the Bell state | ψ− 〉
AB

of

Eq. (1.13b). If both subsystems are measured in the basis {| 0 〉 , | 1 〉} then the mea-

surement results are always perfectly anti-correlated. In particular, if “0” is measured

in subsystem A, then A can predict the outcome of B to be “1” with certainty, en-

dowing this result with physical reality according to requirement (ii) above. However,

the same argument can be made for any other single qubit basis such that all of these

results should have simultaneous physical reality. Quantum mechanics on the other

hand states that measurements in different bases do not generally commute. Therefore

the corresponding results cannot have independent physical reality, which leads to the

apparent paradox.

Since it seemed imprudent to remove the requirement for locality, an obvious so-

lution was considered to be to equip quantum mechanics with a set of hidden variables

that determine the measurement outcomes, thus completing the theory in the sense

of requirement (iii). Those “completions" of quantum mechanics in terms of so-called

hidden variable theories (HVTs) are severely constrained by no-go theorems such as Bell’s

theorem [19] or contextuality arguments (see Refs. [121, 139, 155]), some of which we are

going to discuss in Section 1.5.2.

1.5.2 Bell Inequalities & Non-Locality

In 1964 John Stewart Bell elevated the discussion of the EPR paradox to a new level. He

formulated an inequality that allowed to decide experimentally whether or not com-

pleteness in the sense of the EPR argument can be achieved by a local HVT. We will not

consider Bell’s original inequality here, but instead consider a more easily testable ver-

sion —the Clauser-Horne-Shimony-Holt (CHSH) inequality introduced in Ref. [58]. How-

ever, irrespectively of the specific type of Bell inequality that is being tested we can

formulate Bell’s theorem in the following way.

Theorem 1.5. All HVTs that are local and realistic in the sense of the EPR requirements

(i) and (ii), respectively, are incompatible with the predictions of quantum

mechanics for the outcome of certain experiments.

Let us put this theorem into a mathematical framework in terms of the CHSH in-

equality. Let us consider two distant parties, Alice and Bob, who are measuring di-

chotomic quantities A(a) and B(b), respectively, where a = (ai) and b = (bi) cor-
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respond to the measurement settings. To implement the reality requirement (ii) of the

HVT one can assume that the measurement results also depend on some set λ of hidden

parameters. The locality assumption (i) simply means that the outcomes A(B) are in-

dependent of the measurement settings b(a) of the other party, i.e., A(a, λ) = ±1, 0 and

B(b, λ) = ±1, 0, where ±1 represent successful measurements, while 0 corresponds

to failed detections. The expectation value 〈(a, b)〉λ for the joint measurements of A

and B for a hidden variable λ with (normalized) distribution ρ(λ) is then given by

〈(a, b)〉λ =

∫
dλ ρ(λ)A(a, λ)B(b, λ) . (1.26)

We can then formulate Theorem 1.5 in terms of the CHSH inequality [58].

Theorem 1.6. The expectation values 〈(a, b)〉λ of a local, realistic theory satisfy

〈(a, b)〉λ − 〈(a, b̃)〉λ + 〈(ã, b)〉λ + 〈(ã, b̃)〉λ ≤ 2 .

For a pedagogical proof see, e.g., Ref. [80, pp. 47-48]. For the purpose of check-

ing this theorem in a quantum mechanical computation the CHSH inequality can be

reformulated in terms of the following two-qubit observable on C2 ⊗ C2,

OCHSH = amσm ⊗ (bn + b̃n)σn + ãmσm ⊗ (bn − b̃n)σn , (1.27)

where summation over repeated indices is implied, and the σn are the Pauli matri-

ces (1.9). The quantum mechanical expectation value of the observable in (1.27) can

reach 〈 OCHSH 〉QM ≤ 2
√

2 > 2, both in theory and in experiment (see, e.g., Ref. [79]),

in clear violation of the CHSH inequality. The possible violation of a Bell inequality

by a given state, often referred to as non-locality, has a profound connection with the

separability of that state. In fact, one can easily construct an entanglement witness in

full analogy to Theorem 1.2.

Theorem 1.7. A two-qubit state ρ can violate the CHSH inequality

( ρ , 21 − OCHSH )HS ≥ 0 ,

where OCHSH is given by (1.27), only if it is entangled.

In fact, it was shown in Ref. [97] that the CHSH inequality can be violated for every

entangled pure state. This is in general no longer the case for mixed states. The issue

that Theorem 1.7 has in common with the entanglement witnesses discussed earlier, is

to determine a suitable operator for a given state ρ . However, for the CHSH inequal-

ity this problem can be circumvented by the following theorem —the CHSH criterion

—proven in Ref. [102].
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Theorem 1.8. The maximally possible value of the CHSH expectation value 〈 OCHSH 〉ρ

for a given two-qubit state ρ is given by 〈 Omax
CHSH 〉ρ = 2

√
µ1 + µ1 ,

where µ1 and µ2 are the two largest eigenvalues of Mρ = t[ρ]T t[ρ] , and

t[ρ] is the correlation matrix t[ρ]ij = Tr(ρ σi ⊗ σj) of Eq. (1.10).

The criterion does not require us to determine the measurement directions a,b, ã, and

b̃, but instead provides us with a simple way to use Theorem 1.7 for the detection of

entanglement. In Section 1.5.3 we will study the protocol known as quantum teleporta-

tion and following Ref. [106] we shall discover the connection this protocol has to the

violation of the CHSH inequality.

1.5.3 Quantum Teleportation

To conclude this chapter we are now going to discuss a paradigmatic protocol of quan-

tum information processing —quantum teleportation —introduced in Ref. [25] and gen-

eralized to mixed resource states in Ref. [163].

The Teleportation Protocol

The setup is the following: two observers, Alice and Bob, share a two-qubit state ρAB .

Alice additionally has access to an unknown pure, single-qubit state | φ 〉
X

in a subsys-

tem that we label by X . Alice wishes to send the state of the third qubit to Bob using

only classical communication and local operations. To this end she performs a Bell mea-

surement, i.e., she projects the subsystems X and A into the Bell basis {| φ± 〉 , | ψ± 〉} of

Eq. (1.13). With probability pk the total state is then transformed to the state

1

pk

[
(Pk)XA ⊗ 1B

] [
(Pφ)X ⊗ ρAB

] [
(Pk)XA ⊗ 1B

]
, (1.28)

where k = 1, 2, 3, 4, labels the four Bell states, Pχ denotes a projector on the state | χ 〉 ,
Pχ = |χ〉〈χ | , and the probability pk for the outcome k is given by

pk = Tr
([

(Pk)XA ⊗ 1B
] [

(Pφ)X ⊗ ρAB
])
. (1.29)

Finally, Alice communicates the outcome k to Bob by sending two bits of classical in-

formation. Bob can then perform a local unitary operation Uk on subsystemB to obtain

the state

ρk =
1

pk
TrXA

([
(Pk)XA ⊗ (Uk)B

] [
(Pφ)X ⊗ ρAB

] [
(Pk)XA ⊗ (U †k )B

])
. (1.30)

For a pure, maximally entangled resource state, e.g., for ρAB = |ψ± 〉〈ψ± | , the trans-

mission of the quantum state | φ 〉 becomes perfect, i.e., ρk = |φ〉〈φ | ∀ k .
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Optimized Teleportation & Teleportation Fidelity

For general mixed states ρAB the teleportation is afflicted with errors and the scheme

can therefore profit from variations. For instance, one can define a generic teleportation

protocol T[ρXAB] that allows for (trace preserving) local operations and classical com-

munication [105, 193] between Alice’s and Bob’s subsystems, (XA) andB, respectively,

i.e., transformations that cannot increase the shared entanglement between A and B .

For such a protocol the final state of subsystem B is given by

ρB, T = TrXA
(
T
[
(Pφ)X ⊗ ρAB

])
. (1.31)

A figure of merit for this protocol is the teleportation fidelity F(T, ρAB), defined as [105]

FT(ρAB) =

∫
dφ 〈 φ | ρB, T | φ 〉 , (1.32)

where the integral is carried out over a uniform distribution of input states | φ 〉 . This

teleportation fidelity can be understood as the overlap between the final state ρB, T and

the target state | φ 〉 , averaged over all inputs. For a separable state the teleportation

fidelity cannot exceed 2
3 , in other words FT(ρsep) ≤ 2

3 (see, e.g., Ref. [193]). Conse-

quently, any state for which the fidelity can exceed the value of 2
3 is called useful for

teleportation. Interestingly, the fidelity of the standard teleportation protocol can be re-

lated to the violation of the CHSH inequality [106] —any state that violates the CHSH

inequality is useful for teleportation. The corresponding fidelity, maximized over Bob’s

local rotations Uk, is given by

Fmax(ρAB) =
1

2

(
1 +

1

3

∑
i

√
µi
)
, (1.33)

where the µi are the eigenvalues of MρAB = t[ρAB]T t[ρAB] from Theorem 1.8. As the

µi ≤ 1 one finds
∑

i

√
µi ≥

√
µ1 + µ2 , where µ3 ≤ µ1,2 . It then immediately follows

that

Fmax(ρAB) ≥ 1

2

(
1 +

1

12
〈 Omax

CHSH 〉ρAB
)
, (1.34)

which is larger than 2
3 only if 〈 Omax

CHSH 〉ρAB > 2 . All mixed two-qubit states that vi-

olate the CHSH inequality are useful for teleportation. However, it should be noted

that states that do not violate a Bell inequality can still be useful for some teleportation

schemes (see Ref. [163]).

We will consider the effects on the possible teleportation fidelity between modes

of both fermionic and bosonic quantum fields confined to different cavities in non-

uniform motion in Chapter 7. Now, let us turn to the description of these quantum

fields.
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CHAPTER 2

Quantum Fields in Flat and Curved

Spacetimes

Let us now turn to the second pillar of RQI: relativity, in particular, relativistic quan-

tum field theory. We shall here consider the quantization of relativistic fields and study

quantum information procedures in the corresponding Fock spaces. We note here in

passing that it is possible to consider only a sector of the Fock space with a fixed num-

ber of relativistic particles in a covariant way. Such situations have been studied exten-

sively in the context of RQI (see, e.g., Refs. [8, 9, 12, 22, 52, 53, 60, 81, 96, 111, 117, 151,

152, 158, 171–173, 188, 189], or see Ref. [80] for an introduction to the topic), but the

discussion of these results lies beyond the scope of this thesis. Here we are interested

in studying a genuine relativistic multi-particle theory that allows for particle creation

phenomena.

Naturally, the question arises: Why is it necessary to consider quantum fields in RQI?

First and foremost, one may answer that field quantization is needed to endow the

solutions of relativistic field equations with an appropriate interpretation where the

usual procedure of interpreting wave functions fails. In this context quantum field

theory provides a natural extension of quantum mechanics. We will further elaborate

on this problem in Section 2.2. Another reason for the necessity to consider quantum

fields in the context of RQI lies in the observer dependence of particle content [30] and

entanglement [10]. Any model with a fixed particle number cannot hope to capture

the intriguing effects attributed to non-uniform motion and spacetime structure, such

as the Unruh effect, the Hawking effect, the dynamical Casimir effect, or the effects of non-

uniformly moving cavities that we are going to discuss in Part II. We will now establish

the basic framework of quantization in (non-interacting) quantum field theory that is

needed in the following chapters. For a thorough introduction to the numerous ad-

ditional aspects of quantum field theory we direct the interested reader to standard

textbooks, e.g., Refs. [30, 160].
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Our aim in this chapter is the quantization of Lorentz invariant field equations. We

shall be concerned with two representatives of the irreducible, unitary representations

of the Poincaré group — relativistic fields: In Section 2.2 we will discuss the real scalar

field and in Section 2.3 the Dirac field will be introduced. First we are going to establish

some conventions for the description of relativistic spacetimes in Section 2.1.

2.1 Relativistic Spacetimes

We are interested in constructing our quantum fields in a spacetime, i.e., a smooth,

connected, differentiable manifold M , which can be locally covered with coordinates

{xµ |µ = 0, 1, 2, . . . , n − 1} in open subsets of Rn . For a more thorough introduction

to curved spacetimes and general relativity see, for example, Ref. [196]. Practically, we

are here interested in the (3 + 1)-dimensional case and we shall work in units where

c = ~ = 1 from now on. In addition the spacetime is equipped with a Lorentzian metric

tensor g:

Definition 2.1. A Lorentzian metric is a non-degenerate, symmetric, bilinear form g( . , . )

with signature (−,+,+,+) that maps two elements of each tangent space

of M to a real number. The line element is given by

ds2 = gµν dx
µdxν . (2.1)

Summation is implied for repeated indices. Alternatively and equivalently, the con-

vention (+,−,−,−) may be chosen for the signature of the metric, which would result

in sign changes in several of the following definitions. We shall keep the convention

stated in Definition 2.1 throughout this document.

A special case of the general (curved) metric gµν is the flat space Minkowski metric

ηµν = diag{−1, 1, 1, 1}with the line element ds2 = ηµν dx
µdxν = −dt2+dx2+dy2+dz2 .

The metric is not positive-definite, i.e., it is not Riemannian, but we can classify vectors

and distances into three categories. Following our sign convention for the metric we

define:

Definition 2.2. A vector v = v µ, with g(v, v) = gµνv
µv ν = v µvµ is called

time-like if v µvµ < 0 ,

null if v µvµ = 0 ,

space-like if v µvµ > 0 .

Likewise, a curve xµ(λ) is called time-like/null/space-like if its tangent

vector v µ = dxµ(λ)/dλ is time-like/null/space-like at every point.
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All massive particles and, consequently, all observers follow time-like curves — world-

lines, while light is confined to null rays. Along any time-like curve Ct the proper

time τ , i.e., the time that elapses on a clock moving along the curve, is given by

τ =

∫
Ct

√
−ds2 =

∫
Ct

√
−gµν dxµdxν , (2.2)

where the line element ds2 is given by Eq. (2.1). Similarly, along any space-like path Cx
the proper length l can be defined as

l =

∫
Cx

√
ds2 =

∫
Cx

√
gµν dxµdxν . (2.3)

For practical purposes the symmetries of a given metric g are of great interest. Such

symmetries are represented by isometries G, i.e., diffeomorphisms (a differentiable bi-

jection with a differentiable inverse) that leave the metric invariant. Any one-parameter

group of isometries such that

G(a)g = eaξg = g , (2.4)

is generated by a Killing vector ξ that satisfies the Killing equation

∇µ ξν + ∇ν ξµ = 0 . (2.5)

Here ∇µ is the covariant derivative with respect to the metric g (see Ref. [196] for de-

tails). Alternatively, Killing vector fields may be defined via the Lie derivative of the

metric, i.e., Lξg = 0 , see Ref. [196]. For the analysis of quantum fields Killing vectors

play an essential role in distinguishing positive and negative frequency solutions of the

field equations, as we shall see in Section 2.2.2.

2.2 The Klein-Gordon Field

2.2.1 The Classical Klein-Gordon Field

As a first representative of a quantum field let us consider the real scalar field φ(x). We

start from the classical Lagrangian (density) for the free field φ on a general (curved)

background described by the metric g, i.e.,

L = − 1
2

√
−det g

(
gµν(∂µ φ) (∂ν φ) + m2φ2

)
. (2.6)

This Lagrangian describes a non-interacting field that is not coupled to the gravita-

tional field (see, for instance, Ref. [30, p. 43]). The constant m will later be interpreted

as the mass of the particles in the quantized theory. Having included the factor of
√
−det g in the Lagrangian we can straightforwardly write the action S as

S =

∫
d4xL(φ, ∂µφ) . (2.7)
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Varying the action (2.7) with respect to the field, and demanding the action to be sta-

tionary, i.e., δS = 0, one finds the usual Euler-Lagrange equations

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0 . (2.8)

Note that Eq. (2.8) is covariant because (∂L/∂(∂µφ)) transforms as a vector density. For

the Lagrangian (2.6) this action principle yields the curved spacetime Klein-Gordon equation

∂µ
(√
−det g gµν ∂ν

)
φ −

√
−det gm2φ = 0 . (2.9)

If the spacetime is equipped with a (translational) symmetry represented by a Killing

vector ξµ, then the Noether current J µ, given by

Jµ = ξν T µ
ν =

1√
−det g

ξν
( ∂L
∂(∂µφ)

∂νφ − δµ νL
)
, (2.10)

where T µ
ν is the stress-energy-momentum tensor, is conserved, i.e.,∇µJ µ = 0 .

2.2.2 Quantizing the Klein-Gordon Field

Let us now turn to the solutions φn — the mode functions — of the Klein-Gordon equa-

tion (2.9). Following Ref. [30] we define the (pseudo) inner product

(φ1 , φ2 )KG = −i
∫

Σ
dΣµ

(
φ1∂µφ

∗
2 − φ∗2∂µφ1

)
, (2.11)

where Σ is a spacelike Cauchy surface (assuming global hyperbolicity of the spacetime)

— a surface that is intersected by every inextendible, causal (time-like or null) curve

exactly once — and dΣµ = gµνdΣν , with gµλ gλν = δ ν
µ . The volume form dΣµ for the

three-surface Σ is given by [187, p. 10]

dΣµ =
1

3!

√
−det g εµµ1µ2µ3 dx

µ1 ∧ dxµ2 ∧ dxµ3 , (2.12)

where εµµ1µ2µ3 , with ε0123 = 1, is the totally antisymmetric Levi-Civita symbol. Note

that the inner product is independent of the chosen hypersurface Σ , see Ref. [30]. One

can choose a complete set of orthonormal solutions with respect to the pseudo inner

product (2.11) such that (φm , φn )KG = −(φ∗m , φ
∗
n )KG = δmn , and (φm , φ

∗
n )KG = 0 .

The positive and negative frequency solutions (see below) to the Klein-Gordon equa-

tion then form Hilbert spaces, respectively. We should note here that we have assumed

a discrete set of solutions for the sake of simplicity, but the treatment can easily be re-

formulated for a continuous spectrum.

In a general spacetime there is no preferred splitting into the solutions {φn} and

{φ∗n}. Such a distinction can be uniquely made with respect to a time-like Killing vector
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field ξµ and the corresponding conservation of energy [see Eq. (2.10)]. The solutions

can then be naturally split into positive frequency solutions φn and negative frequency

solutions φ∗n according to the signs of their eigenvalues,

i ξ φn = +ωn φn , (2.13a)

i ξ φ∗n = −ωn φ∗n , (2.13b)

where ωn > 0 . Because the Klein-Gordon product of Eq. (2.11) is not positive-definite,

linear combinations of mode functions φn and φ∗n cannot be interpreted as single parti-

cle wave functions. It thus becomes necessary to promote the Klein Gordon field to an

operator of the form

φ =
∑
n

(
φn an + φ∗n a

†
n

)
, (2.14)

where the annihilation operators an and the creation operators a†n satisfy the commutation

relations

[am , a
†
n ] = δmn , (2.15a)

[am , an ] = [a†m , a
†
n ] = 0 . (2.15b)

In Chapter 4 we are going to consider explicit solutions to the Klein-Gordon equation in

both Minkowski and Rindler coordinates, both subject to appropriate cavity boundary

conditions.

2.2.3 The Bosonic Fock Space

We now turn to the physical interpretation of the annihilation and creation operators.

As their names suggest, the operators an annihilate a particle in the state φn , while the

operators a†n create such a particle. The corresponding Fock space is a Hilbert space that

is constructed from a vacuum state | 0 〉 that does not contain any particles. Mathemat-

ically, the vacuum state is defined via the relation

an | 0 〉 = 0 ∀n . (2.16)

Any single boson (1-b) state |φ1-b 〉 can be simply obtained by acting on the vacuum

with a linear combination of creation operators, i.e.,

|φ1-b 〉 =
∑
i

θi |φi 〉 , (2.17)

where θi ∈ C , |φi 〉 = a†i | 0 〉 and
∑

i |θi|2 = 1 . The states |φn 〉 form a complete basis

of the single boson Hilbert space H1-b . The vacuum state, on the other hand, is an
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element of the Hilbert space H0-b = C. When a second particle is added we need to

keep in mind that the particles are indistinguishable from each other, such that we have

to symmetrize the tensor product with respect to the exchange of the two particles

|φm, φn 〉 = a†ma
†
n | 0 〉 = |φm 〉 ◦ |φn 〉 := 1√

2

(
|φm 〉 ⊗ |φn 〉 + |φn 〉 ⊗ |φm 〉

)
. (2.18)

The two-boson states are thus elements of the symmetrized tensor product space of two

single-boson Hilbert spaces, i.e.,

H2-b = S
(
H1-b ⊗H1-b

)
. (2.19)

Similarly, states with higher particle content need to be symmetrized as well, and we

can write the bosonic Fock space F as the direct sum over all boson numbers of the sym-

metrized Hilbert spaces, i.e.,

F(H1-b) =

∞⊕
m=0

S
(
H⊗m1-b

)
= H0-b ⊕H1-b ⊕ S

(
H1-b ⊗H1-b

)
⊕ . . . , (2.20)

where H⊗m denotes the m-fold tensor product and we write H0-b as H⊗0
1-b. A general

state in the space F can be written as

| ΦF 〉 = θ0 | 0 〉 +
∑
i 6=0

θi |φi 〉+
∑
j,k

θjk |φj , φk 〉 + . . . , (2.21)

where θ0, θi, θjk, . . . ∈ C , and the vectors “| · 〉" in all sectors of fixed particle content

are understood as being extended to the total Fock space F via the direct sum with zero

vectors for all other sectors, e.g., |φi 〉 = 00-b⊕ |φi 〉 ⊕ 02-b⊕. . . . For ease of notation we

are going to make some adjustments to the way we denote these states. We shall use

the occupation number notation where non-zero numbers of particles in each mode are

indicated by integers with the corresponding mode labels as subscripts, for instance,

|φm, φn 〉 = |1m 〉 |1n 〉, such that

〈1m | 〈 1n | 1i 〉 |1j 〉 = δniδmj + δnjδmi , (2.22)

and we have dropped the symbol “◦” for the symmetrized tensor product. For several

excitations in the same mode i our conventions imply

ai |n i 〉 =
√
n i |n i − 1〉 , (2.23a)

a†i |n i 〉 =
√
n i + 1 |n i + 1〉 . (2.23b)

We note here in passing that we have chosen the split notation |1m 〉 |1n 〉, rather than

|1m, 1n 〉 because this proves to be a more useful notation for computations with fermions

in Part II. Thus, we can rewrite Eq. (2.21) as

| ΦF 〉 = θ0 | 0 〉 +
∑
i 6=0

θi |1i 〉 +
∑
j,k

θjk |1j 〉 |1k 〉 + . . . . (2.24)
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2.2.4 Bosonic Bogoliubov Transformations

In Sections 2.2.2 and 2.2.3 we have quantized the scalar field for a particular set of mode

functions φn and we have further classified them into positive and negative frequency

solutions using a time-like Killing vector field. However, typically such choices are

not unique, in other words, a different basis {φ̃n, φ̃∗n} can be chosen. Furthermore, if

a different time-like Killing vector is chosen to separate particles (positive frequency)

and antiparticles (negative frequency) then also the particle content of a given state will

be affected. The transformations that connect the two choices of solutions are called

Bogoliubov transformations.

Definition 2.3. A bosonic Bogoliubov transformation is an isomorphism (a bijective

map) between two representations of the commutation relation algebra of

Eq. (2.15). The transformation is unitary with respect to the (pseudo)

inner product ( . , . )KG of Eq. (2.11) and the inner product of the bosonic

Fock space.

For two given sets of mode functions {φn, φ∗n} and {φ̃n, φ̃∗n} with mode operators

{an, a†n} and {ãn, ã†n}, respectively, we can write the Bogoliubov transformation as a

linear transformation of the mode functions and mode operators,

φ̃m =
∑
n

(
αmn φn + βmn φ

∗
n

)
, (2.25a)

ãm =
∑
n

(
α∗mn an − β ∗mn a

†
n

)
, (2.25b)

respectively, where the complex numbers

αmn = ( φ̃m , φn )KG , (2.26a)

βmn = − ( φ̃m , φ
∗
n )KG , (2.26b)

are called the Bogoliubov coefficients. If the β-type coefficients are absent, the remaining

α coefficients do not change the particle content of a given state, but simply shift excita-

tions between different modes. The coefficients αmn can hence be understood as a form

of generalized rotation in the space of positive or negative frequency solutions, respec-

tively. The coefficients βmn , on the other hand, change the particle content, which can

be easily seen from Eq. (2.25b) since βmn relates annihilation and creation operators.

The unitarity of the transformation demands that the Bogoliubov coefficients satisfy∑
n

(
α∗nm αnl − βnm β

∗
nl

)
= δml , (2.27a)∑

n

(
αnm β

∗
nl − β ∗nm αnl

)
= 0 . (2.27b)
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The linear transformations of the mode operators can alternatively be written as

unitary operations on the states in the Fock space. These transformations are realized

by exponentials of Hermitean operators that are quadratic in the mode operators. In

other words, all linear, unitary transformations on the Fock space can be represented

by Bogoliubov transformations. Throughout this thesis we will make extensive use of

Bogoliubov transformations to describe physical transformations of states in the Fock

space.

2.3 The Dirac Field

Now, let us turn to the description of fermionic fields, in particular, the Dirac field.

2.3.1 Quantizing the Dirac Field

Mirroring the approach when introducing the scalar field we start from a Lagrangian

density for the Dirac field in a curved spacetime, given by

L =
√
−det g

(
i
2

[
ψ̄γ µ∇µψ − (∇µψ̄)γ µψ

]
− mψ̄ψ

)
. (2.28)

where ∇µ is the appropriate covariant derivative (see, e.g., Ref. [13, 199] for details), m

is the mass of the field excitations, γ µ are the curved space Dirac γ matrices satisfying

the anticommutation relation

{γ µ, γ ν} = − 2gµν , (2.29)

and ψ̄ denotes the Dirac conjugate ψ̄ = ψ†γ0 . For a more detailed construction of this

Lagrangian see Ref. [30, p. 85].

As in Section 2.2.1 we invoke an action principle to obtain the Euler-Lagrange equa-

tions [see Eqs. (2.7) and (2.8)] which here yields the curved space Dirac equation(
iγ µ∇µ − m

)
ψ = 0 . (2.30)

One is then interested in a complete set of solutions that are orthonormal with respect

to the inner product

(ψ1 , ψ2 )D =

∫
Σ
dΣµ ψ̄1γµψ2 , (2.31)

with the conventions for dΣµ as used in Eq. (2.11). In the presence of a time-like Killing

vector field the solutions can be meaningfully classified into positive and negative fre-

quency solutions. However, since we will allow the excitations of the Dirac field to
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carry electric charge we will choose different symbols for the mode operators that an-

nihilate or create particles or antiparticles. In addition we use non-negative (negative)

numbers to label the (anti)particle solutions, such that the quantized field can be writ-

ten as

ψ =
∑
n≥0

bnψn +
∑
n<0

c†nψn , (2.32)

where the operators bn annihilate a Dirac fermion in the state ψn , while the cn annihi-

late an antifermion. As before we have simplified the discussion to a discrete spectrum

for further convenience. The mode operators satisfy the anticommutation relations

{bm , b†n } = {cm , c†n } = δmn , (2.33a)

{bm , bn } = {cm , cn } = {bm , cn } = {bm , c†n } = 0 , (2.33b)

where { . , .} denotes the anticommutator. We will study some explicit examples for

solutions to the Dirac equation in Chapter 4 when we consider Dirac fields contained

in cavities. For now we are more interested in the construction of the fermionic Fock

space.

2.3.2 The Fermionic Fock Space

In analogy to our approach in the bosonic case, let us now construct the fermionic

Fock space. As previously, we start from a vacuum state that is annihilated by all

annihilation operators, bm | 0 〉 = cn | 0 〉 = 0 ∀m ≥ 0, n < 0 . The creation operators

b†m and c†n acting upon the vacuum state | 0 〉 will populate the vacuum with single

excitations of particles and antiparticles, respectively, i.e.,

|ψm 〉 = b†m | 0 〉 , (2.34a)

|ψn 〉 = c†n | 0 〉 , (2.34b)

where we assume that the mode labels m ≥ 0 and n < 0 distinguish the particle and

antiparticle mode solutions. As can be quickly seen from this property and Eq. (2.33a),

the states |ψi 〉 are orthonormal and they further form a complete basis of the single-

fermion Hilbert space H1-f , whereas | 0 〉 ∈ H0-f 6= H1-f . We write a general state in the

fermionic single-excitation spaceH1-f as

|ψ1-f 〉 =
∑
i

µi |ψi 〉 , (2.35)

with µi ∈ C and
∑

i |µi|2 = 1 such that 〈 ψ1-f | ψ1-f 〉 = 1 . The form of the states of

Eq. (2.35) may be further restricted by superselection rules. For instance, conservation
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of charge would exclude any superpositions of states of different charge. We shall

not explicitly include such restrictions, but any superselection rule can be applied to

the Fock space construction we present here. Let us now turn to states of multiple

fermions. A second fermion can be added to the state (2.34) by the action of another

creation operator b†m or c†n , e.g.,

b†mb
†
n | 0 〉 ∝ |ψm, ψn 〉 . (2.36)

Clearly, the anticommutation relations (2.33) require the two-fermion state to be an-

tisymmetric with respect to the exchange of the mode labels m and n. We therefore

define

|ψm, ψn 〉 = b†mb
†
n | 0 〉 = |ψm 〉 ∧ |ψn 〉 = 1√

2

(
|ψm 〉 ⊗ |ψn 〉 − |ψn 〉 ⊗ |ψm 〉

)
. (2.37)

The two-fermion states are thus elements of the antisymmetrized tensor product space

of two single-fermion Hilbert spaces, i.e.,

H2-f = S̄
(
H1-f ⊗H1-f

)
, (2.38)

and a general state within this space can be written as

|ψ2-f 〉 =
∑
i,j

µij |ψi, ψj 〉 , (2.39)

where the coefficients µij ∈ C form an antisymmetric matrix. States with more than two

fermions can then be constructed by antisymmetrizing over the corresponding number

of single-fermion states. Finally, the fermionic Fock space F̄ is simply given as the direct

sum over all fermion numbers of the antisymmetrized Hilbert spaces, i.e.,

F̄(H1-f) =

∞⊕
m=0

S̄
(
H⊗m1-f

)
= H0-f ⊕H1-f ⊕ S̄

(
H1-f ⊗H1-f

)
⊕ . . . . (2.40)

where, as before, H⊗m denotes the m-fold tensor product and we write H0-f as H⊗0
1-f .

A general state in the space F̄ can be written as

| ΨF̄ 〉 = µ0 | 0 〉 +
∑
i 6=0

µi |ψi 〉 +
∑
j,k

µjk |ψj 〉 ∧ |ψk 〉 + . . . , (2.41)

where µ0, µi, µjk, . . . ∈ C , and the vectors “| · 〉" in all sectors of fixed particle content

are understood as being extended to the total Fock space F̄ via the direct sum with

zero vectors for all other sectors, e.g., |ψi 〉 = 00-f ⊕ |ψi 〉 ⊕ 02-f ⊕ . . . . Let us now

simplify the notation. To distinguish more clearly from the bosonic case we will from

now on denote states in the fermionic Fock space by double-lined Dirac notation, i.e.,

|| . 〉〉 instead of | . 〉, where the antisymmetric “wedge” product is implied when two
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vectors are multiplied, i.e., || . 〉〉 || . 〉〉 = || . 〉〉 ∧ || . 〉〉. Furthermore, let us again use the

common occupation number notation and write 1n instead of ψn to denote an excitation

in the mode n. With this convention in mind we can rewrite Eq. (2.41) as

||Ψ 〉〉 = µ0 || 0 〉〉 +
∑
i 6=0

µi ||1i〉〉 +
∑
j,k

µjk ||1j 〉〉 ||1k 〉〉 + . . . . (2.42)

For the adjoint space we use the convention [compare to Eq. (2.37)]

〈〈1n || 〈〈1m || := 〈〈 0 || bnbm =
(
b†mb

†
n || 0 〉〉

)†
= − 1√

2

(
〈ψn | ⊗ 〈ψm | − 〈ψm | ⊗ 〈ψn |

)
,

(2.43)

which allows us to write

〈〈1m || 〈〈 1n || 1i 〉〉 ||1j 〉〉 = δniδmj − δnjδmi , (2.44)

which is convenient for computations in the fermionic Fock space. It should be noted

that, in standard quantum information notation, e.g., as used in Chapter 1, the position

of a “ket” corresponds to a particular ordering of the subspaces with respect to the

tensor product structure of the total space. Here, however, there is no tensor product

structure corresponding to different modes according to which the vectors || . 〉〉 can be

naturally ordered. We shall return to this issue in Section 3.2 in Chapter 3.

2.3.3 Bogoliubov transformations of the Dirac Field

Similarly as for the bosonic case (see Definition 2.3) one can define a change of basis in

the set of mode solutions to the Dirac equation as a fermionic Bogoliubov transforma-

tion.

Definition 2.4. A fermionic Bogoliubov transformation is an isomorphism (a bijective

map) between two representations of the anticommutation relation algebra

of Eq. (2.33). The transformation is unitary with respect to the inner product

( . , . )D of Eq. (2.31) and the inner product of the fermionic Fock space.

Given two sets of mode solutions to the Dirac equation (2.32), {ψm} and {ψ̃n} we can

write the fermionic Bogoliubov transformation as

ψ̃m =
∑
n

Amnψn . (2.45)

Although our notation allows us to use only a single symbol for all fermionic Bogoli-

ubov coefficients, it is obvious that coefficients Amn = (ψn , ψ̃m )D with m,n ≥ 0 or

m,n < 0 are α-type coefficients, while those with subscripts with mixed signs repre-

sent β-type coefficients responsible for particle creation phenomena. The unitarity of

the transformation is expressed as the unitarity of the matrix A = (Amn), i.e.,

A†A = 1 . (2.46)
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CHAPTER 3

Entanglement in Relativistic

Quantum Fields

With the definitions and methodology of Chapters 1 and 2 at our disposal we now turn

to some elementary concerns in relativistic quantum information (RQI) — entangle-

ment in relativistic quantum fields. The appropriate relativistic treatment of quantum

correlations requires to work with quantum fields and the corresponding Fock spaces.

As in the previous chapter we separate the discussion of bosonic and fermionic quan-

tum fields into Sections 3.1 and 3.2, respectively. Starting with bosons we review the

tools available (see, e.g., Ref. [1] for a detailed introduction) for the important class of

Gaussian states in Sections 3.1.1–3.1.4. We include a short discussion of teleportation

with Gaussian states and the construction of entanglement resonances as introduced in

Ref. [42] and Ref. [43, (xi)] . Finally, quantum information techniques for fermionic Fock

spaces originally presented in Ref. [86, (viii)] are examined in Section 3.2.

3.1 Entanglement in Bosonic Quantum Fields

The first question encountered when studying entanglement in bosonic Fock spaces is

the choice of bipartitions. In other words, one has to address the question of selecting

appropriate subsystems. Since the particle content is not fixed it becomes necessary to

consider instead the entanglement between different modes of the quantum field. The

Fock space is not naturally equipped with a tensor product structure with respect to

different modes. Nonetheless, the symmetrization in Eq. (2.20) allows a unique one-to-

one mapping between states in F(H1-b) and a tensor product spaceH1⊗H2⊗H3⊗ . . .,
where the subscripts (1, 2, 3, . . .) label the modes of the quantum field. Note that such

an argument cannot be made in a straightforward way for fermions, as discussed in

Section 3.2.

In addition, working in a bosonic Fock space naturally raises the question how the
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infinite dimensions are handled. Practically there are two simple ways to circumvent

this complication. The first option is to justify a truncation to finite dimensions by

considering density operators in F(H1-b) that have finite rank. We shall consider such

an approach in Section 5.1. The other option is to switch from the Fock space to the

phase space, which we shall explore in the following sections.

3.1.1 Continuous Variables: Gaussian States

Instead of the Hilbert space description we have used in Chapter 1 quantum sys-

tems can be represented by a characteristic function in phase space, e.g., the Wigner func-

tion W (q, p) for n-modes, given by (see, e.g., [93, p. 173])

W (q, p) =
1

πn

∫
Rn
dnq̃ 〈 q − q̃ | ρ | q + q̃ 〉 ei q̃Tp , (3.1)

where q, p ∈ Rn and | q 〉 are the eigenstates of the quadrature operator q̂i := 1√
2
(ai+a

†
i ),

i.e., q̂i | q 〉 = qi | q 〉 with q = (q1, q2, . . . , qi, . . . , qn)T . The Wigner function is a quasi

probability distribution since it can take on negative values. Note that the quadratures q

and p are phase space variables, but do not necessarily correspond to positions and

momenta in spacetime. For the class of Gaussian states the defining feature is that the

Wigner function, or other characteristic functions of choice (see Ref. [1, p. 30]), are

multivariate Gaussian distributions. Such distributions are completely determined by

the vector of first moments 〈X〉ρ , where

X :=
(
q̂1, p̂1, q̂2, p̂2, . . . , q̂n, p̂n

)T
, (3.2)

and the real, symmetric covariance matrix Γ with components

Γij :=
〈
XiXj + XjXi

〉
ρ
− 2
〈
Xi
〉
ρ

〈
Xj
〉
ρ
. (3.3)

Here 〈 . 〉ρ is the expectation value in the state ρ, see Eq. (1.4), and the operators an and

a†n have been combined into the quadrature operators

q̂n :=
1√
2

(an + a†n) , (3.4a)

p̂n :=
−i√

2
(an − a†n) . (3.4b)

From Eq. (2.15) it immediately follows that the Hermitean quadrature operators satisfy

the canonical commutation relations

[ q̂k , p̂l ] = i δkl , (3.5a)

[ q̂k , q̂l ] = [ p̂k , p̂l ] = 0 . (3.5b)
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Let us now consider some examples for Gaussian states. The simplest and most fun-

damental representative is the vacuum state | 0 〉, for which the first moments vanish

and, in our conventions, the covariance matrix is proportional to the identity matrix,

Γvac = 1 . The family of coherent states | α 〉 is obtained from the vacuum by displace-

ments in phase space. Physically, coherent states can be used, for instance, for the de-

scription of the electromagnetic field of a laser beam. Note that the notation using the

symbol α is customary in the literature (see, e.g., Ref. [93, p. 150]) and is not to be con-

fused with the notation for the matrix of Bogoliubov coefficients αmn from Eq. (2.26a).

For any mode k the displacement operator

Dk(α) = eαa
†
k +α∗a

k (3.6)

with α ∈ C, takes the vacuum state to a coherent state, D̂k(α) | 0 〉 = | αk 〉 . The dis-

placement shifts the corresponding first moments to 〈 q̂k 〉 =
√

2 Re(α) and 〈 p̂k 〉 =
√

2 Im(α), respectively, while it leaves the covariance matrix unchanged, i.e., Γα = 1 .

A single-mode squeezed state, on the other hand, is obtained by a quadratic combination

of creation and annihilation operators acting on the vacuum, i.e., for mode k we have

US(sk) = e
sk
2

(a†2k − a
2
k) (3.7)

where sk ∈ R is the single-mode squeezing parameter for mode k . While coherent

states can be thought of as quasi-classical, i.e., they approximate the classical descrip-

tion of light as closely as possible (see, e.g., Ref. [93, p. 148]), squeezed states are con-

sidered to be truly non-classical. For our discussion it is sufficient to consider a real

squeezing parameter, since squeezing along other quadratures can be achieved by ap-

plying additional local rotations. The covariance matrix for a single-mode squeezed

state | sk 〉 = US(sk) | 0 〉 is given by

ΓS(sk) =

(
e2sk 0

0 e−2sk

)
. (3.8)

As can be easily seen from the form of ΓS(sk) , a positive squeezing parameter indi-

cates squeezing in the p-quadrature, while the orthogonal q-quadrature is broadening,

such that the product of the covariances remains constant, satisfying the Heisenberg

bound. All the Gaussian states we have mentioned so far are pure, i.e., det(Γ) = 1 .

As a last example in this section let us consider the family of mixed thermal states. The

covariance matrix for a thermal state of mode k with frequency ωk at temperature T is

given by Γth = coth
( ~ωk

2kBT

)
1, where we have explicitly inserted Planck’s constant ~ and

Boltzmann’s constant kB for clarity. For vanishing first moments, the average particle

number n̄k of mode k is given by

n̄k =
〈
a†kak

〉
= 1

4

[
Tr(Γ)− 2

]
, (3.9)
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such that the average particle number of the thermal state is distributed according to

Bose-Einstein statistics, i.e., n̄k =
(
exp[ ~ωkkBT

]− 1
)−1.

3.1.2 Symplectic Operations

To formalize our treatment of the phase space the canonical commutation relations (3.5)

can be conveniently combined to define the symplectic form Ω via the relation

[Xk ,Xl ] = iΩkl , (3.10)

such that the symplectic form for n modes has the matrix representation

Ω =

n⊕
i=1

Ωi with Ωi =

(
0 1

−1 0

)
. (3.11)

The symplectic form can be used to express a bona fide condition, i.e., Γ + iΩ ≥ 0,

which is satisfied by any covariance matrix Γ representing a physical state. Linear

transformations S that leave Ω invariant, i.e.,

S ΩST = Ω , (3.12)

are called symplectic transformations and they correspond to unitaries on the Fock space

that are generated by Hamiltonians that are quadratic in the quadrature operators, see,

e.g., Eq. (3.7). Such transformations, along with displacements (3.6) and partial tracing

over any number of modes preserve the Gaussian character of states. The symplectic

transformations on nmodes form the real, symplectic group Sp(2n,R) . It is precisely this

group of operations that can be realized by Bogoliubov transformations of the kind of

Eq. (2.25b), and displacements can be incorporated by adding a constant offset α to

each mode

ãm =
∑
n

(
α∗mn an − β ∗mn a

†
n

)
+ αm , (3.13)

where the parameters αm correspond to the displacements [see Eq. (3.6)] of each mode.

Symplectic transformations can be written explicitly in terms of the Bogoliubov coeffi-

cients in a straightforward fashion [83, (vii)],

S =


M11 M12 M13 . . .

M21 M22 M23 . . .

M31 M32 M33 . . .

...
...

...
. . .

 , (3.14)

i.e., we decompose the transformation matrix into the 2× 2 sub-blocksMmn given by

Mmn =

 Re(αmn − βmn) Im(αmn + βmn)

− Im(αmn − βmn) Re(αmn + βmn)

 . (3.15)
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The transformed covariance matrix Γ̃ is then simply obtained as

Γ̃ = S ΓST , (3.16)

and partial tracing over any modes is achieved by simply removing the corresponding

rows and columns from the covariance matrix. It is convenient to characterize different

types of symplectic transformations, following Ref. [204] we distinguish:

(i) Passive symplectic transformations SP are represented by orthogonal, symplec-

tic matrices S TP SP = 1 and they form a subgroup of Sp(2n,R). Practically,

passive transformations can be realized, for instance, by passive/linear optical

elements, such as (ideal) beam splitters or phase space rotations.

(ii) Active symplectic transformations SA are represented by symmetric, symplec-

tic matrices S TA = SA . Active transformations, such as single- and two-mode

squeezing, can be realized by active/non-linear optical elements and they change

the energy and average particle number, as opposed to passive transforma-

tions.

Every symplectic transformation can be decomposed into passive and active transfor-

mations, in particular we may decompose any symplectic matrix as S = SPSA, see

Ref. [16]. We have already encountered the single-mode squeezing operation (3.7) as

an example for an active symplectic transformation and it gains additional significance

via the Boch-Messiah reduction [38].

Theorem 3.1. Every n-mode symplectic transformation S can be written in the Bloch-

-Messiah decomposition

S = SP

(
SS(s1)⊕ SS(s2)⊕ · · · ⊕ SS(sn)

)
S ′P ,

where SS(si) is the symplectic representation of the single-mode squeezing

of Eq. (3.7) in mode i , while SP and S ′P are passive n-mode operations.

A proof of Theorem 3.1 can be found in Ref. [38]. Finally, let us consider the diagonal-

ization in phase space. Every nmode covariance matrix can be brought to the so-called

Williamson normal form ΓW, given by

ΓW =
n⊕
i=1

(
νi 0

0 νi

)
, (3.17)

by a symplectic transformation, ΓW = SΓST , see Ref. [200]. The symplectic eigenval-

ues νi ≥ 1, which are invariant under global symplectic transformations, form the sym-

plectic spectrum of the covariance matrix and they can be computed as the eigenvalues
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of |iΩΓ| . In addition to the symplectic spectrum the determinant of the covariance ma-

trix, det(Γ), is a global symplectic invariant. This can be easily seen from Eq. (3.12),

which implies that det(S) = 1 for all symplectic operations S . We now have all the

ingredients for the discussion of entanglement in phase space.

3.1.3 Two-Mode Squeezed States

The powerful tools of Gaussian states can be used to study the entanglement between

different bosonic modes. As we have mentioned, a complete description of Gaussian

states is provided by the first and second moments. However, the first moments can

be arbitrarily adjusted using the displacements of Eq. (3.6) — operations that act locally

on the phase spaces of particular modes. Therefore, all necessary information about

the entanglement between Gaussian states is encoded solely in the covariance matrix Γ.

For the intents and purposes of this thesis it is sufficient to consider two-mode Gaus-

sian states only, but the analysis can be extended to more modes if so desired [6]. The

paradigm for an entangled Gaussian state is the two-mode squeezed state, which can be

produced, for example, in parametric down conversion using non-linear optical crys-

tals, see, e.g., Ref. [93, pp. 391]. For two modes k and k′ we can create such a state by

acting on the vacuum with the operator

UTMS(r) = e
r(a†ka

†
k′ − akak′ ) , (3.18)

where r ∈ R is called two-mode squeezing parameter. Similar as in the case of single-

mode squeezing it is possible to redefine the operator in Eq. (3.18) using a complex

squeezing parameter. However, this is equivalent to applying local rotations — squeez-

ing along different directions. For a real squeezing parameter the two-mode covariance

matrix ΓTMS(r) representing the state UTMS(r) | 0 〉 is given by

ΓTMS(r) =


cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 − sinh(2r)

sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 cosh(2r)

 . (3.19)

The corresponding symplectic transformation STMS(r) , such that STMS(r)ΓvacS
T
TMS(r) =

ΓTMS(r) , is given by STMS(r) = ΓTMS( r2) . Alternatively, one may initially prepare the

two modes in an antisymmetrically (i.e., sk = −sk′ = s) single-mode squeezed state

ΓS(s)⊕ΓS(−s) by applying local squeezing operations and combine the two modes on

an ideal, balanced beam splitter to obtain a two-mode squeezed state ΓTMS(r = s) —

a straightforward application of the Bloch-Messiah reduction (Theorem 3.1). The ideal

beam splitter for the modes k and k′ is realized by a passive symplectic transformation
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represented [see Eqs. (3.14) and (3.15)] by the Bogoliubov coefficients αkk = −αk′k′ =

cos Θ and αkk′ = αk′k = sin Θ , while all other coefficients are zero, and the beam

splitter is called balanced for Θ = π
4 . This construction is in fact even more profound,

every pure, two-mode Gaussian state is locally equivalent to a two-mode squeezed

state. In other words, for pure, two-mode Gaussian states the entanglement is fully

characterized by the squeezing parameter r and every such state can be brought to the

form of Eq. (3.19) by local rotations and single-mode squeezings that do not change the

entanglement.

The Standard Form of Two-mode Gaussian States

For general, mixed states of two modes k and k′, given by the covariance matrix

Γ =

(
Γk C

CT Γk′

)
, (3.20)

where Γk , Γk′ and C are real 2 × 2 matrices, it is customary to introduce the standard

form ΓSt , given by

ΓSt =

(
ΓSt-k CSt

CSt ΓSt-k′

)
, (3.21)

where ΓSt-k = diag{γk, γk} , ΓSt-k′ = diag{γk′ , γk′} , and CSt = diag{γ+, γ−} , with

γk, γk′ , γ± ∈ R . Every covariance matrix can be converted to its standard form by

local symplectic operations Sk⊕Sk′ [182], and the standard form is unique if an order-

ing is specified for γ±, e.g., γ+ ≥ |γ−|. The determinants of the 2 × 2 sub-blocks, i.e.,

det(ΓSt-k) = det(Γk), det(ΓSt-k′) = det(Γk′), and det(CSt) = det(C), are local symplectic

invariants. Two-mode Gaussian states for which ΓSt-k = ΓSt-k′ are called symmetric.

3.1.4 Entanglement of Gaussian States

We now turn to the quantification of entanglement of Gaussian states. As mentioned,

the entanglement between two modes in a pure, Gaussian state is completely charac-

terized by the two-mode squeezing parameter r. However, we wish to find a quantifi-

cation that also relates to our previous treatment of non-Gaussian states in Chapter 1.

Fortunately, we can directly connect to the tools introduced in Section 1.3.2. As shown

in Ref. [182] the Peres-Horodecki criterion (Theorem 1.3) provides a necessary and suf-

ficient condition for entanglement of two-mode Gaussian states.

The partial transposition is implemented on the phase space by a mirror operation

— a sign flip — of the p-quadrature of one of the modes. The “partially transposed"
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covariance matrix
^

Γ is then simply
^

Γ =
^

Tk′Γ
^

Tk′ , where
^

Tk′ = 1 ⊕ diag{1,−1} . In

complete analogy to the usual partial transposition, the symplectic eigenvalues [see

Eq. (3.17)] of
^

Γ do not necessarily correspond to a physical state anymore. The smallest

eigenvalue ^ν− ≥ 0 of |iΩ
^

Γ| , where spectr(iΩ
^

Γ) = {±^ν−,±^ν+} with ^ν+ ≥ ^ν− , can be

smaller than 1, see Ref. [182].

Theorem 3.2. A two-mode Gaussian state represented by the covariance matrix Γ is

entangled if, and only if the smallest eigenvalue of |iΩ
^

Γ| is smaller than 1 ,

0 ≤ ^ν− < 1 .

The smallest symplectic eigenvalue ^ν− (we will omit the suffix “of the partial trans-

pose" from now on and rely on the distinction made by the “
^

" symbol) can then be

used to construct the usual negativity measures.

Entanglement Measures for Gaussian States

Both the logarithmic negativity EN [see Eq. (1.22)] and the negativity N (see Defini-

tion 1.10) are monotonously decreasing functions of ^ν− [5] such that we can write the

simple expressions

EN (Γ) = max{0,− log2(^ν−)} , (3.22a)

N (Γ) = max{0, (1 − ^ν−)/2^ν−} . (3.22b)

For symmetric two-mode states, i.e., for which the local symplectic invariants ΓSt-k and

ΓSt-k′ are the same, it is even possible to compute the entanglement of formationEF (see

Definition 1.9). The involved minimization procedure reveals that the corresponding

state decomposition is realized within the set of two-mode Gaussian states [95] and the

entanglement of formation can be expressed as

EF =

 h(^ν−) if 0 ≤ ^ν− < 1

0 if ^ν− ≥ 1
, (3.23)

where the entropic function h(^ν−) is defined as

h(^ν−) :=
(1 + ^ν−)2

4 ^ν−
ln

(1 + ^ν−)2

4 ^ν−
− (1− ^ν−)2

4 ^ν−
ln

(1− ^ν−)2

4 ^ν−
. (3.24)

Operationally it is also quite straightforward to check if a given covariance matrix is a

symmetric two-mode Gaussian state — a necessary and sufficient condition is det(Γk) =

det(Γk′) . Moreover, for symmetric states the smallest symplectic eigenvalue ^ν− pro-

vides a unique characterization of the entanglement, i.e., all (known) entanglement
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measures are monotonously decreasing functions of ^ν− and they provide the same or-

dering of entangled states [4]. Unfortunately, this is no longer true for non-symmetric

two-mode Gaussian states — the answer to the question “Is one state more entangled than

another?" generally depends on the chosen measure of entanglement [4].

As an example, let us consider again the two-mode squeezed state of Eq. (3.19).

The smallest symplectic eigenvalue for this state is directly related to the two-mode

squeezing parameter r via the relation ^ν−(r) = e−2|r| . It can be easily seen that max-

imal entanglement can only be achieved in the limit r → ∞ . Practically, squeezing

parameters of approximately 1
2 ln(2) can be reached in the current experiments with

optical squeezing in the microwave regime, see, e.g., Refs. [72, 78, 138].

Teleportation with Gaussian States

Let us illustrate the role of continuous variable entanglement with the help of the tele-

portation protocol. In Section 1.5.3 we have discussed this fascinating application of

entangled resource states for two qubits. A continuous variable teleportation protocol

for the teleportation of coherent states (3.6) may be introduced in complete analogy to

the qubit scenario, see Refs. [39, 191]. In this version of the teleportation scheme the

observers share an entangled two-mode Gaussian state with vanishing first moments.

Alice wishes to teleport an unknown coherent state, i.e., its first moments, to Bob. To

this end she mixes the unknown state with her mode of the resource state on a balanced

beam splitter (see p. 46) and performs homodyne detection — projective measurements

in quadrature eigenstates (see Ref. [77, pp. 49] for details) — on the two outputs. As

usual she sends the measurement results to Bob via a classical channel. Bob, in turn,

can then perform the necessary displacements to retrieve, approximately, the unknown

input state.

A crucial difference to the qubit teleportation lies in the imperfection of the shared

entanglement. Perfect correlations between two modes of a continuous variable state

— EPR correlations — would require an infinite amount of squeezing. The teleporta-

tion fidelity F(Γ) for the continuous variable teleportation protocol with an entangled

resource state represented by the covariance matrix Γ is given by [131]

F =
2√

4 + 2 Tr(N) + det(N)
, (3.25)

where the 2×2 matrix N = ZΓkZ+ZC+CTZ+Γk′ is given in terms of the sub-blocks

of the two-mode covariance matrix from Eq. (3.20) and Z = diag{1,−1} . The fidelity is

strictly smaller than 1 for finite squeezing. We note in passing a typographical error in
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Eq. (1) of Ref. [89, (ix)] as compared to Eq. (3.25) above. As in the qubit case the telepor-

tation fidelity may be optimized over local operations that do not increase the shared

entanglement [3]. The fidelity Fopt , optimized over all local Gaussian operations, can

be bounded by functions that depend only on the smallest symplectic eigenvalue of the

partial transpose [131], i.e.,

1 + ^ν−
1 + 3^ν−

≤ Fopt ≤
1

1 + ^ν−
. (3.26)

The upper bound becomes tight for symmetric two-mode Gaussian states, see Ref. [3].

We shall make use of these tools to study the effects of non-uniform motion on the

continuous variable teleportation protocol in Chapter 7.

Entanglement Resonances

The last sections have demonstrated that the entanglement of Gaussian states can be

easily described, quantified and used for tasks such as quantum teleportation. In addi-

tion it is useful to understand how entanglement can be enhanced by successive sym-

plectic transformations, for instance in applications in analogue gravity systems [43,

(xi)], or non-uniform cavity motion, see Refs. [42] and [84, (vi)].

As we have established in Section 3.1.2 any symplectic transformation can be de-

composed into a passive, orthogonal transformation SP and an active, symmetric trans-

formation SA = S T
A , i.e., S = SPSA (see Ref. [16]). For two modes the passive trans-

formations include rotations and beam splitters, while the active transformations can

involve single-mode and two-mode squeezing. Let us now consider a symplectic trans-

formation S for two modes that leaves the quadratures of the individual modes on

equal footing, i.e., without any overall single-mode squeezing. The active part of the

transformation thus consists only of pure two-mode squeezing, SA = STMS(r) .

In addition, we assume that the initial covariance matrix of the two modes is pro-

portional to the identity, Γ = 1 . This is the case if the initial state is the vacuum state

or, given that the two modes have the same frequency, a thermal state at temperature T

(see p. 43). For simplicity let us pick the vacuum state. If the physical transformation

that is embodied by the symplectic matrix S = SPSTMS(r) can be repeated, then the en-

tanglement will grow with the number of repetitions if the resonance condition (see [42]

and [43, (xi)])

[S , S T ] = 0 . (3.27)
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is satisfied. This condition has a very intuitive interpretation. The condition is ful-

filled if the state ΓTMS that is created by the two-mode squeezing, ΓTMS = STMSS
T
TMS is

invariant under the passive transformation SP, i.e.,

SP ΓTMS S
T
P = ΓTMS . (3.28)

At this stage it is essential to note that the two-mode squeezing operations form a one

parameter subgroup of the symplectic group Sp(2n,R),

STMS(r1)STMS(r2) = STMS(r1 + r2) . (3.29)

It is then straightforward to see that the resonance condition of Eq. (3.27) indicates

when the repeated symplectic transformation realizes consecutive squeezing along the

same direction and, consequently, accumulates entanglement. Such procedures have

been suggested for various physical systems, including entanglement generation in

BECs for analogue gravity experiments [43, (xi)] and for modes of quantum fields in

non-uniformly moving cavities, see Refs. [42] and [84, (vi)]. We will turn our attention

back on entanglement resonances in Section 6.2.2.

For now, let us return to fermionic systems and analyze the description of quantum

information tasks for anticommuting field operators.

3.2 Entanglement in Fermionic Quantum Fields

Fermionic systems have been analyzed as agents for quantum information processing

in a multitude of studies, ranging from discussions of fermionic modes of relativistic

quantum fields [11, 48, 82, 84, 85, 87, 90, 133, 142, 181, 183], and fermionic lattices [207],

to discussions of the entanglement between fixed numbers of indistinguishable parti-

cles [51, 71, 94, 113, 128, 154, 175, 176, 180, 202, 203]. In the latter case, only pure states

of fixed particle numbers are considered and a selection of entanglement measures are

available, see, e.g., Ref. [203]. However, these restrictions seem to be much more limit-

ing than required. From the point of view of quantum information theory it is natural

to ask for an extension to incoherent mixtures of quantum states, see Section 1.1.2. Fur-

thermore, from the perspective of a relativistic description particle numbers are not

usually conserved, i.e., the particle content of a given pure state is observer dependent

(see, e.g., the discussion in Section 2.2.4 or 2.3.3). The description of fermionic entan-

glement should therefore include coherent and incoherent mixtures of different particle

numbers. Any required superselection rules, e.g., for (electric) charge [185] or parity,

can then be considered as special cases of such a framework.
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In the light of this fact it is therefore reasonable to consider the entanglement be-

tween fermionic modes, in a similar way as is conventionally done for bosonic modes,

see, for instance, the treatment in Section 3.1. In this section we give an account of the

material published in Ref. [86, (viii)], albeit with slightly altered notations to better fit

the framework of this thesis. We show that the entanglement of a system of fermionic

modes can be defined unambiguously by enforcing a physically reasonable definition

of its subsystems. This procedure is completely independent of any superselection

rules.

A central question that appears in practical situations is: Can fermionic modes be

considered as qubits? The short answer to this question is “No." Due to the Pauli exclu-

sion principle, fermionic modes are naturally restricted to two degrees of freedom, i.e.,

each mode can be unoccupied or contain a single excitation. This has provided many

researchers with an ad hoc justification for the comparison with qubits — two-level sys-

tems used in quantum information, which has incited debates among scientists, see,

e.g., the exchange in Refs. [36, 37, 140, 141]. In limited situations certain techniques

from the study of qubits can indeed be applied to fermionic systems. However, while

mappings between fermionic systems and qubits are possible in principle, e.g., via the

Jordan-Wigner transformation [20], the problem lies in the consistent mapping between

the subsystems. In the following we shall give a more precise answer to the question

above, along with a detailed description of the problem as published in Ref. [86, (viii)].

Any superselection rules further restrict the possible operations that can be per-

formed on single-mode subsystems, and it was argued that this should lead to a mod-

ified definition of the entanglement between modes [203]. At least for fixed particle

content this problem can be circumvented [99]. Moreover, even if quantum correla-

tions are not directly accessible, a transfer of the entanglement to systems that are not

encumbered by such restrictions should be possible. In other words, entanglement may

be swapped from the fermionic modes to systems that are not subject to superselection

rules, thus justifying the use of unmodified measures for mode entanglement.

The main aim of Section 3.2 is establishing a clear framework for the implementa-

tion of fermionic field modes as vessels for quantum information tasks. To this end we

present an analysis of the problem at hand, i.e., how the modes in a fermionic Fock

space can be utilized as subsystems for quantum information processing. We present a

framework that is based on simple physical requirements in which this can be achieved.

We further discuss the issues and restrictions in mapping fermionic modes to qubits
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and we show how previous work and proposed solutions, e.g., invoking superselec-

tion rules [37], fit into this framework.

Section 3.2 is structured as follows: In Section 3.2.1 we start with a brief discus-

sion of the implementation of density operators in the fermionic Fock space intro-

duced in Section 2.3.2. We then go on to formulate the “fermionic ambiguity” that has

been pointed out in Ref. [140] in Section 3.2.2. Subsequently, we reinterpret this as an

ambiguity in the definition of mode subsystems, which can be resolved by physical

consistency conditions, in Section 3.2.3. Finally, we discuss the implications for the

quantification of entanglement between two fermionic modes in Section 3.2.4, before

we investigate situations beyond two modes in Section 3.2.5.

3.2.1 Density Operators in the Fermionic Fock Space

In complete analogy to the usual case of mixed states (1.3) on tensor product spaces we

can now construct incoherent mixtures of pure states in a fermionic Fock space. For

simplicity, we now restrict our analysis to a finite dimensional n-mode fermionic Fock

space F̄n [see Eq. (2.40)]

F̄n(H1-f) =

n⊕
m=0

S̄
(
H⊗m1-f

)
. (3.30)

Let us first consider the projector on the state ||Ψ 〉〉 from Eq. (2.42), i.e.,

||Ψ 〉〉〈〈Ψ || = |µ0|2 || 0 〉〉〈〈 0 || +
∑
i,i′

µi µ
∗
i′ ||1i〉〉〈〈1i′ || +

∑
i

(
µi µ

∗
0 ||1i〉〉〈〈 0 || + H. c.

)
+

∑
j,j′,k,k′

µjk µ
∗
j′k′ ||1j 〉〉 ||1k 〉〉〈〈1j′ || 〈〈1k′ || + . . . , (3.31)

where “H. c." denotes the Hermitean conjugate, (O + H. c.) = (O +O†). We can check

that such an object satisfies the criteria for a density operator:

(i) It can be immediately noticed that (3.31) provides a Hermitean operator.

(ii) The normalization, i.e., Tr
(
||Ψ 〉〉〈〈Ψ ||

)
= 1 , is guaranteed by the normalization

of ||Ψ 〉〉 . In other words, the trace of (3.31) is well defined and independent of

the chosen (complete, orthonormal) basis in F̄n .

(iii) Positivity: Finally, the eigenvalues of ||Ψ 〉〉〈〈Ψ || are well defined, i.e., (3.31) can

be represented as a diagonal matrix with diagonal entries {1, 0, 0, . . .}, which

clearly is a positive semidefinite spectrum.
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Incoherent mixtures of such pure states can then simply be formed using convex sums,

i.e.,

% =
∑
n

pn ||Ψn 〉〉〈〈Ψn || , (3.32)

where
∑

n pn = 1 , to construct the elements of the Hilbert-Schmidt space HS(F̄n) over

the fermionic Fock space. Properties (i) and (ii) can trivially be seen to be satisfied for

such mixed states. The positivity of (3.32) — condition (iii), however, requires some

additional comments. The operator % can be diagonalized by a unitary transformation

U on F̄n, which in turn can be constructed from exponentiation of Hermitean or anti-

Hermitean operators formed from algebra elements bn , b†m , cn and c†m . Operationally

this procedure is rather elaborate. A simpler approach is the diagonalization of a matrix

representation of % . As we shall see in Section 3.2.2, the matrix representation of % is not

unique, but all possible representations πi(%) are unitarily equivalent, such that their

eigenvalues all coincide with those of % , i.e.,

spectr
(
πi(%)

)
= spectr

(
%
)
∀ i . (3.33)

3.2.2 The Fermionic Ambiguity

Let us now turn to the apparent ambiguity in such fermionic systems when quantum

information tasks are considered. It was pointed out in Ref. [140] that the anticom-

mutation relations (2.33) do not suggest a natural choice for the basis vectors of the

fermionic Fock space for the multi-particle sector, i.e., for two fermions in the modes m

and n, either

||1m〉〉 ||1n〉〉 or ||1n〉〉 ||1m〉〉 = − ||1m〉〉 ||1n〉〉 (3.34)

could be used to represent the physical state. This becomes of importance when we

try to map the states in a fermionic n-mode Fock space to vectors in an n-fold tensor

product space, i.e.,

πi : F̄n −→ H1 ⊗ . . .⊗Hn (3.35a)

|| ψ 〉〉 πi7−→ | ψ(i) 〉 (3.35b)

%
πi7−→ πi(%) (3.35c)

where the spaces Hi = C2 (i = 1, . . . , n) are identical, single-qubit Hilbert spaces. The

mappings πi are unitary, i.e., 〈〈 φ ||ψ 〉〉 = 〈 φ(i) | ψ(i) 〉 and Tr(%σ) = Tr(πi(%)πi(σ)) .

This implies that the maps πi for different i are unitarily equivalent. In particular,

the different matrix representations πi(%) are related by multiplication of selected rows

54



CHAPTER 3: ENTANGLEMENT IN RELATIVISTIC QUANTUM FIELDS

and columns of the matrix by (−1) . In the language of quantum information theory

the states ψ(i) are related by global unitary transformations. It thus becomes apparent

that the entanglement of πi(%) with respect to a bipartition

Hµ1 ⊗ . . .⊗Hµm |Hµm+1 ⊗ . . .⊗Hµn (3.36)

will generally depend on the chosen mapping. Clearly, this is an unfavorable situa-

tion, but the inequivalence of entanglement measures for different such mappings has

been noted before (see, e.g., Refs. [35, 37, 51]), while other investigations [82, 84, 87] did

not suffer from any problems due to this ambiguity. Recently, the authors of Ref. [37]

suggested that the ambiguity can be resolved by restrictions imposed by charge su-

perselection rules, while Refs. [140, 142] suggested a solution by enforcing a particular

operator ordering. We will discuss both of these approaches in Section 3.2.3, where we

present simple and physically intuitive criteria for quantum information processing on

a fermionic Fock space. Most importantly, we will show in Sections 3.2.3 and 3.2.5 that

mappings of the type of (3.35) can only be considered to be consistent for special cases,

e.g., when the analysis is limited to two fermionic modes obeying charge superselec-

tion.

3.2.3 The Partial Trace Ambiguity

While the sign ambiguity in the sense of the different mappings πi is the superficial

cause of the issue, we want to discuss now a separate, and in some sense more funda-

mental problem: partial traces over “mode subspaces." We are interested in the entan-

glement between modes of a fermionic quantum field. However, in the structure of the

Fock space, there is no tensor product decomposition into Hilbert spaces for particular

modes [see, e.g., Eq. (2.37)]. Only a tensor product structure with respect to individual

fermions is available, but since the particles are indistinguishable, the entanglement

between two particles in this sense has to be defined very carefully [203]. This issue

is not unique for fermions and is sometimes referred to as “fluffy bunny” entanglement

(see Ref. [202]).

For the decomposition into different modes we only have a wedge product struc-

ture available. In Ref. [37] the authors suggest that entanglement should be considered

with respect to this special case of the “braided tensor product." As far as the construc-

tion of the density operators with respect to such a structure is concerned, we agree

with this view (see Section 3.2.1), and no ambiguities arise regarding the description

of the total n-mode system. However, the crucial problem lies in the definition of the

partial tracing over a subset of the n modes. This is best illustrated for a simple exam-
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ple: Consider a system of two fermionic modes labelled κ and κ′, where we assume

without loss of generality that both are positive frequency modes. A general, mixed

state of these two modes can be written as

%κκ′ = c1 || 0 〉〉〈〈 0 || + c2 ||1κ′ 〉〉〈〈1κ′ || + c3 ||1κ〉〉〈〈1κ || + c4 ||1κ〉〉 ||1κ′ 〉〉〈〈1κ′ || 〈〈1κ ||

+
(
d1 || 0 〉〉〈〈1κ′ || + d2 || 0 〉〉〈〈1κ || + d3 || 0 〉〉〈〈1κ′ || 〈〈1κ || + d4 ||1κ′ 〉〉〈〈1κ ||

+ d5 ||1κ′ 〉〉〈〈1κ′ || 〈〈1κ || + d6 ||1κ〉〉〈〈1κ′ || 〈〈1κ || + H.c.
)
, (3.37)

where appropriate restrictions on the coefficients ci ∈ R and dj ∈ C apply to ensure

the positivity and normalization of %κκ′ . Here we have, for now, disregarded superse-

lection rules. Let us now determine the corresponding reduced density operators (on

the Fock space) for the individual modes κ and κ′. Usually one would select a basis of

the subsystem that is being traced over, e.g., for tracing over mode κ′ one could choose

{|| 0 〉〉 , ||1κ′ 〉〉}. This clearly cannot work since basis vectors with different numbers of

excitations are orthogonal. We thus have to define the partial trace in a different way.

This is equally true for bosonic fields as well. However, in contrast to the fermionic

case, no ambiguities arise in such a redefinition for bosonic fields. For the diagonal

elements of the reduced fermionic states the redefinition of the partial trace is straight-

forward as well. These elements are obtained from

Trm
(
|| 0 〉〉〈〈 0 ||

)
:= || 0 〉〉〈〈 0 || , (3.38a)

Trm
(
||1n〉〉〈〈1n ||

)
:= (1− δmn) ||1n〉〉〈〈1n || + δmn || 0 〉〉〈〈 0 || , (3.38b)

Trm
(
||1m〉〉 ||1n〉〉〈〈1n || 〈〈1m ||

)
:= ||1n〉〉〈〈1n || (m 6= n) , (3.38c)

where n,m = κ, κ′ . While the diagonal elements are unproblematic and do not suffer

from any ambiguities, we have to be more careful with the off-diagonal elements. Three

of these will not contribute, i.e.,

Trm
(
||1m〉〉〈〈1n ||

)
= Trm

(
|| 0 〉〉〈〈1m || 〈〈1n ||

)
= Trm

(
||1n〉〉〈〈1m || 〈〈1n ||

)
= 0 , (3.39)

and two more are unproblematic as well, i.e.,

Trm
(
|| 0 〉〉〈〈1n ||

)
:= (1− δmn) || 0 〉〉〈〈1n || . (3.40)

The last element,

Trm
(
||1m〉〉〈〈1m || 〈〈1n ||

)
= −Trm

(
||1m〉〉〈〈1n || 〈〈1m ||

)
= ± || 0 〉〉〈〈1n || , (3.41)

however, presents an ambiguity. If a mapping πi to a two-qubit Hilbert space is per-

formed, the choice of map will determine the corresponding sign in the partial trace
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over either of the qubits. The differences in entanglement related to the fact that πi(%)

and πj(%) are related by a global unitary are thus explained by the relative sign between

the contributions of Eq. (3.40) and Eq. (3.41) to the same element of the reduced density

matrix.

However, simple physical requirements restrict the choice in this relative sign. Any

reduced state formalism has to satisfy the simple criterion that the reduced density

operator contains all the information about the subsystem that can be obtained from

the global state when measurements are performed only on the respective subsystem

alone. Let us put this statement in more mathematical terms. For any bipartition A|B
of a Hilbert space H (with respect to any braided tensor product structure on H) and

any state ρ ∈ H the partial trace operation TrB must satisfy

〈On(A) 〉ρ = 〈On(A) 〉TrB(ρ) , (3.42)

where 〈O〉ρ denotes the expectation value of the operator O in the state ρ and {On(A)}
is the set of all (Hermitean) operators that act on the subspace A only. For the operator

%κκ′ from Eq. (3.37) the condition (3.42) can be written as

Tr
(
On(κ)%κκ′

)
= Tr

(
On(κ)%κ

)
, (3.43)

where %κ = Trκ′(%κκ′) . This consistency condition uniquely determines the relative

signs between different contributions to the same elements of %κ . Let us consider the

(Hermitean) operators (bκ + b†κ) and i(bκ − b†κ) . Their expectation values for the global

state %κκ′ are given by

Tr
(

(bκ + b†κ)%κκ′
)

= 2 Re( d2 + d5 ) , (3.44a)

Tr
(
i(bκ − b†κ)%κκ′

)
= 2 Im( d2 + d5 ) . (3.44b)

For the mode κ′, on the other hand, we compute

Tr
(

(bκ′ + b†κ′)%κκ′
)

= 2 Re( d1 − d6 ) , (3.45a)

Tr
(
i(bκ′ − b†κ′)%κκ′

)
= 2 Im( d1 − d6 ) . (3.45b)

Equations (3.44) and (3.45) determine the sign in Eq. (3.41) and we find the reduced

states

%κ = Trκ′
(
%κκ′

)
= (c1 + c2) || 0 〉〉〈〈 0 || + (c3 + c4) ||1κ〉〉〈〈1κ || (3.46a)

+
(

(d2 + d5) || 0 〉〉〈〈1κ || + H.c.
)
,

%κ′ = Trκ
(
%κκ′

)
= (c1 + c3) || 0 〉〉〈〈 0 || + (c2 + c4) ||1κ′ 〉〉〈〈1κ′ || (3.46b)

+
(

(d1 − d6) || 0 〉〉〈〈1κ′ || + H.c.
)
,
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for the modes κ and κ′, respectively. Notice that this formally corresponds to tracing

“inside out," that is, first (anti)commuting operators towards the projector on the vac-

uum state before removing them, such that

Trm
(
b†m || 0 〉〉〈〈 0 || bmbn

)
= || 0 〉〉〈〈1n || . (3.47)

We have now arrived at a point where we can make a general statement about the

consistency conditions. Let us formulate this in the following theorem.

Theorem 3.3. Given a density operator %1,...,n ∈ HS(F̄n) for n fermionic modes (labelled

1, . . . , n) the consistency conditions (3.42) completely determine the

reduced states onHS(F̄m) for any m with 1 < m < n.

Proof. This can be seen in the following way: for any matrix element

ϕ b†µ1 . . . b
†
µi || 0 〉〉〈〈 0 || bν1 . . . bνj (3.48)

of an (n− 1)-mode reduced state %1,...,(n−1) = Trn(%1,...,n), where ϕ ∈ C and the sets

µ := {µ1, . . . , µi} ⊆ {1, 2, . . . , (n− 1)} (3.49a)

and ν := {ν1, . . . , νj} ⊆ {1, 2, . . . , (n− 1)} (3.49b)

label subsets of the mode operators for the (n− 1) modes, can have contributions from

at most two matrix elements of %1,...,n , i.e.,

Trn
(
ϕ1 b

†
µ1 . . . b

†
µi || 0 〉〉〈〈 0 || bν1 . . . bνj

)
, (3.50a)

and Trn
(
ϕ2 b

†
µ1 . . . b

†
µib
†
n || 0 〉〉〈〈 0 || bnbν1 . . . bνj

)
. (3.50b)

The composition of ϕ into ϕ1 ∈ C and ϕ2 ∈ C, i.e., ϕ = ϕ1 ± ϕ2 , is determined by the

consistency conditions of Eq. (3.42). For every matrix element (3.48) with correspond-

ing partial trace contributions from (3.50) there exists a pair of Hermitean operators

Ox(λ, τ) = bλ1 . . . bλkb
†
τ1 . . . b

†
τl

+ bτl . . . bτ1b
†
λk
. . . b†λ1 , (3.51a)

Op(λ, τ) = bλ1 . . . bλkb
†
τ1 . . . b

†
τl
− i bτl . . . bτ1b

†
λk
. . . b†λ1 , (3.51b)

with λ := {λ1, . . . , λk} = µ/ν and τ := {τ1, . . . , τl} = ν/µ , that uniquely determine

the relative sign of ϕ1 and ϕ2 . These operators are unique up to an overall multi-

plication with scalars. The tracing procedure can be repeated when any other of the

(n − 1) remaining modes are traced over. Since the order of the partial traces is of no

importance for the final reduced state, all reduced density operators are completely

determined.
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Consequently, the reduced density matrices in the fermionic Fock space can be con-

sidered as proper density operators, i.e., they are Hermitean, normalized, and their

eigenvalues are well defined and non-negative. Moreover, since the eigenvalues are

free of ambiguities, all functions of these eigenvalues, in particular, all entropy mea-

sures for density operators, are well defined. Also, the operator ordering that was

suggested in Ref. [140] is consistent with our consistency condition. Let us stress here

that this analysis does not depend on any superselection rules that might be imposed

in addition. We will see how these enter the problem when mappings to qubits are

attempted in Section 3.2.4.

3.2.4 Entanglement of Fermionic Modes

We are now in a position to reconsider a measure of entanglement between fermionic

modes. We can define the entanglement of formation ĒF for fermionic systems with

respect to a chosen bipartition A|B as

ĒF(%) = inf
{(pn,||Ψn〉〉)}

∑
n

pn E(||Ψn〉〉) , (3.52)

in complete analogy to the previous Definition 1.9. Here the minimum is taken over all

pure state ensembles {(pn, ||Ψn〉〉)} that realize % according to Eq. (3.32) and E(||Ψ〉〉)
denotes the entropy of entanglement (Definition 1.6) of the pure state ||Ψ〉〉. Since

the entropy of entanglement is a function of the eigenvalues of the reduced states

TrB
(
||Ψ〉〉〈〈Ψ||

)
or TrA

(
||Ψ〉〉〈〈Ψ||

)
alone, we can conclude that this is a well-defined

quantity. As pointed out in Ref. [51], the minimization in Eq. (3.52) can be restricted to

pure state decompositions that respect superselection rules. Since this restriction limits

the set of states over which the minimization is carried out, the quantity without this

restriction will be a lower bound to the “physical” entanglement of formation. For two

fermionic modes the minimization over all states that respect superselection rules can

indeed be carried out (see Ref. [51]). However, in general this step will be problematic.

Let us now turn to some computable entanglement measures, in particular, let us

investigate if and how the negativity N (see Definition 1.10 or Ref. [194]) and the con-

currence C (see Eq. (1.17) or Ref. [26]) can be computed to quantify fermionic mode

entanglement. Both of these measures are operationally based on the tensor product

structure of qubits, since the partial transposition is a map that is well defined only for

basis vectors on a tensor product space. To employ this measure, let us therefore try to

find a mapping πi to such a tensor product structure that is consistent with the condi-

tions of Eq. (3.42). Starting with the two-mode state %κκ′ of Eq. (3.37), we are looking for
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a map π that takes {|| 0 〉〉 , ||1κ〉〉 , ||1κ′ 〉〉 , ||1κ〉〉 ||1κ′ 〉〉} to {| 00 〉 , | 01〉 , |10 〉 , |11〉}, where

| mn 〉 = | m 〉 ⊗ | n 〉 ∈ Hκ ⊗Hκ′ , such that

% 7−→ π(%) , (3.53a)

%κ 7−→ π(%κ) = Trκ′
(
π(%)

)
, (3.53b)

%κ′ 7−→ π(%κ′) = Trκ
(
π(%)

)
. (3.53c)

The condition for a consistent mapping can be represented in the following diagram:

%κκ′
π7−→ π(%κκ′)

Trκ′ ↓ ↓ Trκ′ (3.54)

%κ
π7−→ π(%κ)

In other words, a mapping π : % 7→ π(%) from the spaceHS(F̄2) toHκ⊗Hκ′ is considered

to be consistent if it commutes with the partial trace operation. It is quite simple to

check that these requirements generally cannot be met, i.e., writing %κκ′ of Eq. (3.37) as

a matrix with respect to the basis {|| 0 〉〉 , ||1κ〉〉 , ||1κ′ 〉〉 , ||1κ〉〉 ||1κ′ 〉〉} we get

% =


c1 d1 d2 d3

d∗1 c2 d4 d5

d∗2 d∗4 c3 d6

d∗3 d∗5 d∗6 c4

 . (3.55)

A mapping of the desired type should be obtained by multiplying any number of rows

and the corresponding columns by (−1) and considering the resulting matrix as the

representation π(%) onHκ ⊗Hκ′ . The desired result should have a relative sign switch

between d1 and d6, while the signs in front of d2 and d5 should be the same. This clearly

is not possible unless some of the coefficients vanish identically, e.g., by imposing su-

perselection rules. For example, conservation of charge would require the coefficients

d1, d2, d5, d6, and, depending on the charge of the modes κ and κ′, either d3 or d4 to

vanish identically. In this way only incoherent mixtures of pure states with different

charge are allowed, but no coherent superpositions.

We thus find that two fermionic modes can only be consistently represented as two qubits

when charge superselection is respected. In that case only one off-diagonal element can

be non-zero and the sign of this element is insubstantial, i.e., it does not influence the

reduced states or the value of any entanglement measure. In particular, the results for

entanglement generation and degradation between two fermionic modes presented in
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Refs. [82, 85, 87, (iii-v)] respect both charge superselection and the consistency condi-

tions of Eq. (3.42).

Let us return to the choice of entanglement measure for the permitted mappings to

two qubits. We now restrict the entanglement of formation ĒF as defined in Eq. (3.52)

to states that obey charge superselection, as suggested in Ref. [51]. As discussed earlier,

this means the usual entanglement of formation EF of Definition 1.9 provides a lower

bound to ĒF, i.e.,

EF ≤ ĒF . (3.56)

For two qubits EF = EF(C) is a monotonically increasing function of the concur-

rence C. We propose an analogous functional dependence of ĒF = ĒF(C̄) on a pa-

rameter C̄, that we call “fermionic concurrence." Evidently, the function C̄(%) is an en-

tanglement monotone that is bounded from below by the usual concurrence C. As

can be seen from Eq. (1.23) (see also Ref. [192]), the negativity N further provides a

lower bound to the concurrence, i.e., in our convention of Definition 1.10, 2N ≤ C.

Consequently, the negativity provides a lower bound to C̄, i.e.,

2N ≤ C ≤ C̄ . (3.57)

For two modes it is thus at least possible to compute lower bounds to entanglement

measures explicitly. It was suggested in Ref. [203] that conventional entanglement

measures overestimate the quantum correlations that can physically be extracted from

fermionic systems. The operations that can be performed on each single-mode sub-

system are limited by (charge) superselection as well. However, we conjecture that

the inaccessible entanglement between the fermionic modes can always be swapped to

two (uncharged) bosonic modes for which the local bases can be chosen arbitrarily.

3.2.5 Fermionic Entanglement Beyond Two Modes

Finally, let us consider the entanglement between more than two fermionic modes. In

principle, any measure of entanglement that is based on entropies of the subsystems is

well defined on the fermionic Fock space, as we have discussed. However, we would

like to employ computable measures. Let us therefore start by attempting a consistent

mapping from three fermionic modes to three qubits, in analogy to the two-mode case

in Section 3.2.4. For simplicity we assume that the modes κ, κ′, and κ′′ all have equal
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charge such that the most general mixed state of these modes can be written as

%κκ′κ′′ = µ1 || 0 〉〉〈〈 0 || + µ2 ||1κ′′ 〉〉〈〈1κ′′ || + µ3 ||1κ′ 〉〉〈〈1κ′ || + µ4 ||1κ′ 〉〉 ||1κ′′ 〉〉〈〈1κ′′ || 〈〈1κ′ ||

+ µ5 ||1κ〉〉〈〈1κ || + µ6 ||1κ〉〉 ||1κ′′ 〉〉〈〈1κ′′ || 〈〈1κ || + µ7 ||1κ〉〉 ||1κ′ 〉〉〈〈1κ′ || 〈〈1κ ||

+ µ8 ||1κ〉〉 ||1κ′ 〉〉 ||1κ′′ 〉〉〈〈1κ′′ || 〈〈1κ′ || 〈〈1κ || +
(
ν1 ||1κ′′ 〉〉〈〈1κ′ || + ν2 ||1κ′′ 〉〉〈〈1κ ||

+ ν3 ||1κ′ 〉〉〈〈1κ || + ν4 ||1κ′ 〉〉 ||1κ′′ 〉〉〈〈1κ′′ || 〈〈1κ || + ν5 ||1κ′ 〉〉 ||1κ′′ 〉〉〈〈1κ′ || 〈〈1κ ||

+ ν6 ||1κ〉〉 ||1κ′′ 〉〉〈〈1κ′ || 〈〈1κ || + H.c.
)
. (3.58)

The relevant consistency conditions to construct the three different reduced two-mode

density matrices %κκ′ , %κκ′′ and %κ′κ′′ are given by

Tr
(

(b†κbκ′ + b†κ′bκ) %κκ′κ′′
)

= 2 Re(ν3 + ν4) , (3.59a)

Tr
(

(b†κbκ′′ + b†κ′′bκ) %κκ′κ′′
)

= 2 Re(ν2 − ν5) , (3.59b)

Tr
(

(b†κ′bκ′′ + b†κ′′bκ′) %κκ′κ′′
)

= 2 Re(ν1 + ν6) . (3.59c)

Again, the correct partial traces are obtained by tracing “inside out" [see Eq. (3.47)].

This is not a coincidence. The prescription for the partial trace to anticommute op-

erators towards the projector of the vacuum state before eliminating them takes into

account the number of anticommutations occurring in computations of the expectation

values of Eq. (3.42). A matrix representation of the three-mode state %κκ′κ′′ is given by

%κκ′κ′′ =



µ1 0 0 0 0 0 0 0

0 µ2 ν1 0 ν2 0 0 0

0 ν∗1 µ3 0 ν3 0 0 0

0 0 0 µ4 0 ν4 ν5 0

0 ν∗2 ν∗3 0 µ5 0 0 0

0 0 0 ν∗4 0 µ6 ν6 0

0 0 0 ν∗5 0 ν∗6 µ7 0

0 0 0 0 0 0 0 µ8


. (3.60)

Similar as before, one can try to interpret Eq. (3.60) as a matrix representation of

a three-qubit state and exchange the signs of the basis vectors in the three qubit state

such that the consistency conditions of Eq. (3.59) are met, i.e., opposite signs in front

of ν2 and ν6, while the signs in front of the pairs ν3, ν4 and ν1, ν6 are each the same.

This is not possible, even though superselection rules are respected. This suggests that

the superselection rules only coincidentally aid the fermionic qubit mapping for two

modes. They simply force all the problematic coefficients to disappear. However, for

more than two modes we find here that a mapping to a tensor product space cannot be
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performed consistently in general. Therefore, computing a measure like the negativity

to determine the entanglement between more than two modes appears to be meaning-

less. Due to the lack of practical alternatives, the minimization over all states consistent

with charge superselection to find ĒF of Eq. (3.52) should be considered since the re-

striction of the set of permissable states could make this computation feasible.

Let us briefly summarize the key aspects of Section 3.2. We have discussed the

implementation of fermionic modes as fundamental objects for quantum information

tasks. The foundation of this task is the rigorous construction of the notion of mode

subsystems in a fermionic Fock space. We have demonstrated that this can be achieved

despite the absence of a simple tensor product structure. Our simple consistency con-

ditions give a clear picture of this process, which can be easily executed operationally

by performing partial traces “inside out." Thus we show that fermionic mode entangle-

ment, quantified by the (fermionic) entanglement of formation or any other function of

the eigenvalues of the reduced states, is indeed a well-defined concept, free of any am-

biguities and independent of any superselection rules.

However, problems arise when mappings from the fermionic Fock space to qubit

spaces are attempted. We have explicitly demonstrated in two examples, for two and

three modes, that such mappings cannot generally succeed. Only in the limited case

where only two modes are considered and the quantum states obey charge superselec-

tion can one meaningfully speak of an equivalence between the two fermionic modes

and two qubits. In this case the application of tools such as the negativity or concur-

rence is justified. We have argued that these measures will at least provide a lower

bound to genuine measures of fermionic mode entanglement.

Nonetheless, open questions remain. In particular, it is not clear if any practically

computable measures exist for situations beyond two qubits. In Ref. [84, (vi)], which

we will discuss in Section 6.4, we have employed the witnesses for genuine multipartite

entanglement presented in Theorem 1.4 (see also Refs. [92, 112]) for fermionic modes.

These witnesses are completely compatible with the framework we have presented

here, but they can only provide lower bounds to entropic entanglement measures.

Finally, we have conjectured that the entanglement in fermionic modes is accessible

even in spite of superselection rules that restrict the possible operations performed on

single modes by means of entanglement swapping. The investigation of this question,

while beyond the scope of this thesis, will certainly be of future interest.
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CHAPTER 4

Constructing Non-Uniformly

Moving Cavities

It is the aim of this chapter to establish the mathematical model for relativistically

rigid cavities that has been introduced by David Bruschi, Ivette Fuentes, and Jorma Louko

in Ref. [44] in the context of quantum information procedures, but shares features

with earlier work, see e.g., Refs. [14, 61, 63–65]. The framework has later been ex-

tensively expanded, including extensions to (1 + 1) dimensional cavities for massless

fermionic fields [87, (iv)] and smoothly varying accelerations for cavities containing

bosonic fields [47]. Recently, the cavity model has been further extended in Ref. [88,

(x)] to allow for fully (3 + 1) dimensional quantum fields, including massive and mass-

less scalar fields, massive and massless Dirac fields, as well as the electromagnetic field.

The initial motivation for a relativistic cavity model originates in RQI. Relativistic

quantum fields are affected by the kinematics of spacetime, changes in boundary con-

ditions, and the presence of horizons. Therefore, well known phenomena such as the

Hawking-effect, or the Unruh-effect, associated to black holes and accelerated motion

respectively (see, e.g., Ref. [30]), are expected to influence relativistic quantum infor-

mation processing [10]. However, for a meaningful, operational description of RQI it

is essential to enforce some notion of localization. In other words, the “local" (in the

sense of the tensor product) observer needs unrestricted control over his quantum sys-

tem, which, in turn, requires the system to be spatially localizable with respect to the

observer. This is certainly not the case for global modes of a quantum field in the whole

Minkowski spacetime. Such solutions can be regarded as a means to handle a scatter-

ing theory, but for the purpose of RQI other approaches have to be considered.

The ideas for localization in RQI are numerous, e.g., by considering wave-packets [68,
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69], or Unruh-DeWitt type detectors [40, 45, 127]. The confinement of a quantum field

in a cavity of finite length is the method that we shall discuss here. This framework will

not remove issues inherent to quantum field theory, for instance, we are not proposing

our method as a solution to conceptual problems of relativistic quantum measurement

theories [184]. However, it seems reasonable to assume that measurements in a labora-

tory involve length scales of, say, centimeters, rather than lightyears, which may well

also practically remove the conceptual issues raised in [184]. With these restrictions in

mind, the relativistic cavity model provides a conceptually satisfying theoretical ap-

paratus to study the fundamental connection between non-uniform motion, particle

creation and quantum correlations.

Recently, the relativistic cavity model, using a scalar field as representative for elec-

tromagnetic radiation [88, (x)], has generated interest also as a possible system for ex-

perimental tests employing superconducting circuits. The conceptual similarity to the

dynamical Casimir effect (see Section 4.4.3), which has recently been verified for such

materials [123, 201], in principle allows for analogous tests of more general effects of

non-uniform motion. Such an experimental setup was proposed in Ref. [89, (ix)] and

we shall discuss the setup in Chapter 7. The fermionic cavity model, on the other hand,

is motivated by the prospect of simulating effects of non-uniform motion in analogue

fermionic solid state systems, see, e.g., Refs. [31, 114, 208].

This chapter is structured as follows: in Section 4.1 we discuss the geometric aspects

of rigid cavities in Minkowski spacetime. In Sections 4.2 and 4.3 we then go on to study

respectively the quantized scalar field and Dirac field in inertial and uniformly accel-

erated cavities. We match the segments of uniform motion to construct rigid cavities

that are moving non-uniformly. In Section 4.4 different trajectories — travel scenarios

— are constructed, including smoothly varying accelerations.

Note that we are using unit where ~ = c = 1 throughout.

4.1 The Relativistically Rigid Cavity

Before we start to consider quantum fields in cavities, let us ask about the cavity itself.

In particular we have to inquire “How can we describe a rigid cavity in relativity?" We

attempt to answer this question by explaining the notion of rigidity we have chosen for

our model. Ultimately, every model needs to be compared with empirical data, but we

will argue here that the construction introduced in Ref. [44] is a conceptually satisfying

approach.
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Inertial Rigid Cavity

The starting point is an ideally lossless, inertial cavity of fixed length L in a (1 + 1)

dimensional Minkowski spacetime. We pick a co-moving inertial frame with coordi-

nates (t, x) such that for all times t the boundaries of the cavity are located at xL and

xR , respectively, where xR − xL = L > 0 , see Fig. 4.1.

L

L Rx x
x

t

Figure 4.1: Inertial rigid cavity: From the point of view of a co-moving observer with

coordinates (t, x), the inertial, rigid cavity has boundaries at x = xL and x = xR , such

that the cavity has the proper length L = xR − xL .

From the point of view of inertial observers that are moving with a constant ve-

locity v with respect to this cavity its length Lv is seen to be Lorentz contracted, i.e.,

Lv = L
√

1− v2, where L is the proper length [see Eq. (2.3)] as measured by the ob-

server co-moving with the cavity. In technical terms, x(t) = xL and x(t) = xR are

integral curves of the global time-like Killing vector ∂t , see Definition 2.2 and Eq. 2.5.

In other words, the cavity walls are “dragged along" by the Killing vector ∂t . In princi-

ple the coordinates could have been picked such that xL = 0 and xR = L but the choice

of xL > 0 will be more convenient for the accelerating cavity.

Accelerated Motion — Rindler Coordinates

In order to accelerate the cavity walls we consider appropriate coordinates — Rindler

coordinates (η, χ), see Ref. [187]. For the quadrant |t| < x (without loss of generality we

accelerate towards increasing x) we choose the hyperbolic Rindler coordinates

t = χ sinh(η) , (4.1a)

x = χ cosh(η) , (4.1b)
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where 0 < χ < ∞ and −∞ < η < ∞ , see Fig. 4.2. Let us see why these coordinates

are suitable for accelerated motion. From Eqs. (4.1) one can easily see that the lines of

constant χ are time-like (see Definition 2.2) and can therefore be used to describe an

(ideally point-like) observer. From Eq. (2.2) it can be straightforwardly verified that the

proper time τ along a worldline χ = const. is given by τ = χη . The coordinate time η

is thus proportional to the proper time for fixed χ. Parameterizing the worldline by τ

and taking the second derivative with respect to the proper time one arrives at

aµ(τ) =
d2

dτ2
xµ(τ) =

1

χ

(
sinh(τ/χ)

cosh(τ/χ)

)
. (4.2)

The magnitude a of this vector (with respect to the (1 + 1) dimensional Minkowski

metric diag{−1,+1}), i.e., where a2 = aµaµ, is called the proper acceleration and it is

here given by a = 1/χ . Physically the proper acceleration is the Newtonian acceler-

ation along the worldline as measured in the instantaneous rest frame. In conclusion,

lines of constant χ correspond to worldlines of (ideally point-like) observers with fixed

proper acceleration 1/χ towards increasing values of x and proper time χη. If so cho-

sen, leftward acceleration can be described by a second set of Rindler coordinates for

the quadrant |t| < −x with the replacement x→ −x in Eqs. (4.1), see p. 77.

x

t

t = x

t = -x

Χ = const.

Η = const.

Figure 4.2: Rindler coordinates: Lines of constant χ (dashed green confocal hyperbolae)

and constant η (solid blue radial lines) are shown for selected values of the coordinates

in the right Rindler wedge |t| < x. The Rindler horizon is indicated by the solid black

lines t = x and t = −x . The hyperbolae χ = const. describe a family of (point-like)

observers that are eternally uniformly accelerated.
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Accelerated Rigid Cavity

To use Rindler coordinates in the construction of an accelerating cavity it is still nec-

essary to give some thought to the notion of rigidity. Let us consider one cavity wall

that is following a worldline of constant χ = χ
L

. At every instant of the coordinate

time η the plane of simultaneity from the perspective of an observer identified with the

cavity wall is the line of constant η . Note that the proper distance [Eq. (2.3)] between

two different hyperbolae χ = χ
L

= const. and χ = χ
R

= const. along lines of fixed η

is constant as well. Thus, a cavity of length L = χ
R
− χ

L
with walls that are uniformly

accelerating with different proper accelerations 1/χ
L

and 1/χ
R

, respectively, can be con-

sidered to be rigid. The argument can be extended to any part of the cavity between the

two walls, e.g., an observer placed in the centre of the cavity whose proper acceleration

is given by 2/(χ
R

+ χ
L
) experiences the walls at fixed proper distance L/2 throughout

the journey. In analogy to the inertial case the uniformly accelerated boundaries can

now be considered to be “dragged along" by the Killing vector ∂η = x∂t + t∂x .

L

L R

Χ = Χ Χ = ΧL R

I

II

x x
x

t

Figure 4.3: Relativistically rigid cavity: The rigid inertial (region I) and uniformly ac-

celerated (region II) cavities can be combined by pasting together the boundaries x = xL

and x = xR , with χ = χ
L

and χ = χ
R

, respectively, at η = t = 0 . The proper length with

respect to a co-moving observer is L = xR− xL . The dashed lines indicate the light cone

at the origin.

At last, the inertial cavity depicted in Fig 4.1 can be uniformly accelerated by past-

ing the inertial and uniformly accelerated trajectories of the cavity walls along slices of

fixed η , such that χ
L

= xL and χ
R

= xR. The tangent vectors of the trajectories are or-

thogonal to the corresponding line η = const. in the sense of the Minkowski metric (see

p. 30), see Fig. 4.3. We shall extend this framework to generic trajectories in Section 4.4.
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4.2 Scalar Fields in Rigid Cavities

For the quantization of the fields we adopt the same strategy as for the geometric con-

struction. We first consider the quantization procedure for the scalar field individually

for an inertial and a uniformly accelerated cavity before we match the two. The whole

programme is then repeated for the Dirac field in Section 4.3.

4.2.1 Cavity in Uniform Motion — Scalar Field

Scalar Field in Inertial Cavity

Let us consider a real, scalar field φ in a (1+1) dimensional Minkowski spacetime with

metric ds2 = ηµνdx
µdxν = −dt2 + dx2 . The field satisfies the Klein-Gordon equation [see

Eq. (2.9)] (
−� + m2

)
φ(t, x) = 0 , (4.3)

where � = η µν∂µ∂ν is the scalar Laplacian and m ≥ 0 is the mass to be associated with

the excitations of the quantum field. To confine the mode solutions φn to the inertial

cavity discussed in Section 4.1 we impose the Dirichlet boundary conditions

φn(t, xL) = φn(t, xR) = 0 . (4.4)

Alternatively, other boundary conditions, for instance Neumann boundary conditions

may be chosen. This is of relevance when a Maxwell field is considered in a cavity,

for which the two polarization degrees of freedom behave like Dirichlet and Neumann

scalar fields, respectively [88, (x)]. The qualitative features of the scalar field cavity

model under these two types of conditions are the same, and the Dirichlet conditions

seem to be the intuitively most natural restrictions to model perfectly reflecting cavity

walls for the scalar field. Therefore, we shall be content to focus our discussion on

the Dirichlet boundary condition of Eq. (4.4) above. For the situation here the Klein-

Gordon (pseudo) inner product of Eq. (2.11) reads

(φm , φn )KG = −i
xR∫
xL

dx
(
φm∂tφ

∗
n − φ∗n∂tφm

)
. (4.5)

A standard basis of orthonormal [w.r.t. the inner product (4.5)] solutions to Eq. (4.3),

subject to the boundary conditions of Eq. (4.4), can be found to be

φn(t, x) =
1√
ωnL

sin

(
nπ(x− xL)

L

)
e−iωnt . (4.6)
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The field modes φn are labelled by the discrete index n = 1, 2, 3, . . . , and are of positive

frequency

ωn =
1

L

√
M2 + (πn)2 , (4.7)

where we have introduced the dimensionless parameter M := mL , with respect to the

Minkowski time-translation Killing vector ∂t . The phase in Eq. (4.6) has been chosen

such that ∂xφn > 0 at (t, x) = (0, xL) . In the inertial region the field can be decomposed

as

φ =
∑
n

(
φn an + φ∗n a

†
n

)
, (4.8)

where the field operators an and a†n satisfy the commutation relations of Eqs. (2.15).

Scalar Field in Uniformly Accelerated Cavity

To quantize the field in the accelerated region II of Fig. 4.3 we again employ the Rindler

coordinates (η, χ) of Eq. (4.1) for which the line element is

ds2 = −χ2dη2 + dχ2 . (4.9)

Since now
√
−det g = χ and gµν = diag{−1/χ2, 1} we can rewrite the Klein-Gordon

equation (2.9) in Rindler coordinates,(
−∂2

η + (χ∂χ)2 − m2χ2
)
φ(η, χ) = 0 . (4.10)

Before applying the boundary conditions it is useful to make the ansatz φ(η, χ) =

f(χ)e−iΩη for the solutions such that Eq. (4.10) can be cast into the form(
χ2∂2

χ + χ∂χ − [m2χ2 + (iΩ)2]
)
f(χ) = 0 . (4.11)

With a simple coordinate re-scaling χ → mχ , where ∂χ → m−1∂χ and we assume

m > 0, it becomes apparent that Eq. (4.11) is the modified Bessel equation [145]. At this

stage we enforce the Dirichlet boundary conditions

φ̃n(η, χ
L
) = φ̃n(η, χ

R
) = 0 , (4.12)

for the region II field modes φ̃n in complete analogy to Eq. (4.4). The inner product of

Eq. (2.11) for the metric (4.9) now reads [187]

( φ̃m , φ̃n )KG = −i
χR∫
χL

dχχ−1
(
φ̃m∂η φ̃

∗
n − φ̃∗n∂η φ̃m

)
. (4.13)
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A basis of mode functions that are orthogonal in the inner product (4.13) and that are

of positive frequency with respect to the time-like boost Killing vector ∂η are given by

φ̃n(η, χ) = Nn e
−iΩnη [ I−iΩn(mχ

L
) IiΩn(mχ) − IiΩn(mχ

L
) I−iΩn(mχ)

]
, (4.14)

where Nn is a normalization constant, the modes are labelled n = 1, 2, 3, . . . , and the

quantities I±iΩn(mχ) are the modified Bessel functions of the first kind [145]. Finally, the

Rindler frequencies Ωn , which are ordered by ascending mode label, i.e., Ωm > Ωn for

m > n , are determined by the second boundary condition φ̃n(η, χ
R
) = 0 . The partic-

ular form of Ωn and the choice of Nn are best discussed in the context of the transition

between the inertial region I and the accelerated region II, which we shall do in the

following Section 4.2.2. The quantum field in region II is now naturally decomposed

into the modes φ̃n as

φ =
∑
n

(
φ̃n ãn + φ̃∗n ã

†
n

)
, (4.15)

where the field operators ãn and ã†n satisfy [ ãm , ã
†
n ] = δmn and [ ãm , ãn ] = 0 .

4.2.2 Matching: Inertial to Rindler — Scalar Field

Consider now the transition between the inertial region I and the uniformly accelerated

region II. At t = 0 the cavity walls suddenly accelerate, such that their velocity changes

smoothly but their proper accelerations have finite jumps, 0 → 1/χ
L

and 0 → 1/χ
R

,

respectively. We model the instantaneous change in the mode structure by a linear

transformation — a Bogoliubov transformation, see Definition 2.3, which is of the form

φ̃m =
∑
n

(
oαmn φn + oβmn φ

∗
n

)
, (4.16)

as illustrated in Fig. 4.4. From the field decompositions (4.8) and (4.15) the Minkowski

to Rindler Bogoliubov coefficients oαmn and oβmn can be written as

oαmn = ( φ̃m , φn )KG , (4.17a)

oβmn = − ( φ̃m , φ
∗
n )KG , (4.17b)

where one may either evaluate the inner product (4.5) at t = 0 or, equivalently, (4.13)

at η = 0 . Unfortunately, even though it is straightforward to write the abstract defi-

nitions of Eq. (4.17), the corresponding integrals do not yield expressions in terms of

known elementary functions. However, it is convenient to perform a suitable power

expansion of the integrand. To this end it is useful to parameterize the cavity geometry

by the quantities L and h, where the dimensionless parameter

h = ac L (4.18)

74



CHAPTER 4: CONSTRUCTING NON-UNIFORMLY MOVING CAVITIES

Φ n

Φ m
~

°Α mn

° Β mn

x

t

Figure 4.4: Minkowski to Rindler Bogoliubov transformation — scalar field: The cav-

ity modes φn in the inertial region and the modes φ̃m in the uniformly accelerated re-

gion are related by a Bogoliubov transformation with coefficients oαmn and oβmn , see

Eq. (4.16).

is the product of the proper acceleration ac = 2/(χ
R

+χ
L
) (see p. 70) at the centre of the

cavity and its width L = (χ
R
− χ

L
). The cavity boundaries, expressed through h and L

read

χ
L

=

(
1

h
− 1

2

)
L , (4.19a)

χ
R

=

(
1

h
+

1

2

)
L , (4.19b)

where 0 < h < 2 such that the acceleration at both ends remains finite. We shall work

perturbatively in h from now on, i.e., we are interested in finding Taylor-Maclaurin

expansions around h = 0 for all quantities of interest. First, noting that the coordinate

time η is dimensionless we find that the proper time observed at the centre of the cavity

is given by Lη/h . The angular frequencies ω̃n with respect to this proper time are then

obtained from the dimensionless Rindler frequencies Ωn as

ω̃n =
h

L
Ωn =

nπ h

2L artanh(h/2)
= ωn (1 + O(h2)) , (4.20)

where O(x) denotes a quantity for which O(x)/x is finite for x → 0 . To leading order

in the expansion the Minkowski and Rindler mode functions, φn and φ̃n , must be

equal up to a phase factor, which we set to unity in the normalization constant Nn of

Eq. (4.14) such that ∂χφ̃n > 0 at (η, χ) = (0, χ
L
) . Since both the order and the arguments

of the modified Bessel functions I±iΩn(mχ
L
) in Eq. (4.14) diverge at h = 0 we have to

use the corresponding uniform asymptotic expansions [70] to obtain the perturbative
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expansion of the inner products in (4.17). With some computational effort expansions

of the Bogoliubov coefficients are obtained as

oαmn = oα
(0)

mn + oα
(1)

mn h + oα
(2)

mn h
2 + O(h3) , (4.21a)

oβmn = oβ
(1)

mn h + oβ
(2)

mn h
2 + O(h3) , (4.21b)

where the superscripts (n) indicate the coefficients of hn . The leading order is oα
(0)

mn =

δmn , while oα
(1)

nn = oβ
(1)

nn = 0 . For m 6= n we find the linear terms

oα
(1)

mn = −
π2mn

(
1− (−1)m+n)

L4√ωmωn (ωm − ωn)3 , (4.22a)

oβ
(1)

mn =
π2mn

(
1− (−1)m+n)

L4√ωmωn (ωm + ωn)3 , (4.22b)

with ωn given by Eq. (4.7). Note that the linear coefficients vanish for mode pairs (m,n)

with equal parity, i.e., oα
(1)

mn = oβ
(1)

mn = 0 if (m+n) is even. The second order coefficients

can be obtained with the same procedure, but we will not need their explicit form in the

following. However, we shall note that it has been verified that the Bogoliubov coeffi-

cients up to and including second order are satisfying the Bogoliubov identities (2.27)

when terms proportional to h2 are kept. In addition, the second order coefficients oα
(2)

mn

and oβ
(2)

mn are proportional to (1 + (−1)m+n) and, consequently, vanish for index pairs

(m,n) with opposite parity, i.e., if (m+ n) is odd.
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M
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Α

H1L

Hm,nL = H1,2L

Hm,nL = H2,1L

Hm,nL = H2,3L

Hm,nL = H3,2L

Hm,nL = H1,4L

Hm,nL = H4,1L

mn°

Figure 4.5: Minkowski to Rindler Bogoliubov coefficients — scalar field α’s: The be-

haviour of the leading order “mode mixing" Bogoliubov coefficients oα
(1)
mn from (4.22a)

is shown for increasing mass of the (1 + 1)-dimensional real scalar field with Dirichlet

boundary conditions. A selection of the coefficients oα
(1)
mn is plotted against the dimen-

sionless combination M := mL. The coefficients are proportional to M2 as M → ∞ ,

while the intersections with the vertical axis give the massless limit, m→ 0 , of Eq. (4.22a).
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Figure 4.6: Minkowski to Rindler Bogoliubov coefficients — scalar field β’s:

The behaviour of the leading order “particle creation" Bogoliubov coefficients oβ
(1)
mn

from (4.22b) is shown for increasing mass of the (1+1)-dimensional real scalar field with

Dirichlet boundary conditions. A selection of the coefficients oβ
(1)
mn is plotted against

the dimensionless combination M := mL. The coefficients are proportional to M−4 as

M →∞ , while the intersections with the vertical axis give the massless limit, m→ 0 , of

Eq. (4.22b).

We trust the perturbative expansion for h � 1 when the indices of the coefficients

are bounded from above by any constant. For non-zero mass we additionally require

that Mh � 1 but within this regime we allow for M � 1 such that M2h . 1 . In that

case the dominant contributions to the coefficients oα
(1)

mn behave asM2, while the coeffi-

cients oβ
(1)

mn are suppressed as M−4 . Further considerations regarding the perturbative

regime will be presented as demanded by the applications, for instance in Chapter 5.

Finally, even though it was assumed that m > 0 to obtain (4.14) it can be verified that

the limit m→ 0 in (4.21) coincides with the results obtained if the mass m is set to zero

from the start, see, e.g., Ref. [44].

Leftward Acceleration

As explained in Section 4.1 we have so far considered acceleration towards increasing

values of x . For accelerations towards decreasing x we may repeat the whole proce-

dure laid out in the previous sections in a similar way. Instead of (4.1) we may intro-

duce Rindler coordinates (η′, χ′) for the quadrant |t| < −x via

t = χ′ sinh(η′) , (4.23a)

x = −χ′ cosh(η′) . (4.23b)
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The metric now reads ds2 = −χ′ 2dη′ 2 + dχ′ 2, as before in (4.9) but with the primed

Rindler coordinates. For the inertial cavity the positions of the left and right cavity

boundaries are now at −xR and −xL , respectively, i.e., the cavity geometry has been

mirrored with respect to x = 0 . For the leftward accelerated region the left and right

wall now follow segments of the hyperbolae χ′ = χ
R

and χ′ = χ
L

, respectively, see

Fig. 4.7. The Bogoliubov coefficients, i.e., the inner products (4.17) of the mirrored

L

LR

Χ = ΧΧ = Χ LR

I

II ''

-x-x
x

t

Figure 4.7: Acceleration to the left: The cavity is mirrored to the left Rindler wedge

|t| < −x . The spatial reflection leaves the Bogoliubov coefficients unchanged but the

inverted signs of the odd modes have to be taken into account when matching the phases

of the modes.

cavity modes φ′n and φ̃′m, are left unchanged by such a reflection. However, to match

our previous phase convention we require ∂xφn|t=0 > 0 and ∂η′ φ̃
′
m|η=0 > 0 at the left

boundaries. For the even modes m,n = 1, 3, 5, . . . , this is automatically satisfied, but

we have to compensate for the sign flip of the odd modes m,n = 2, 4, . . . , acquired

due to the reflection. Therefore we include factors of (−1)n+1 and (−1)m+1 for the

Minkowski and (left wedge) Rindler modes, respectively. In conclusion we find that

the coefficients for leftward acceleration are obtained from the rightward acceleration

coefficients oαmn and oβmn in (4.17) by inclusion of a factor (−1)m+n . Practically this

may be implemented by assuming the expansions (4.21), including h2 contributions, to

hold for both cases with positive (negative) h indicating acceleration towards increas-

ing (decreasing) values of x.

As a last comment before we turn to the Dirac field in Section 4.3 we note that the

case of linear acceleration in (1 + 1) dimensions immediately generalizes to higher di-

mensions. The momenta in the spatial directions transverse to the acceleration simply

contribute to the mass in the (1 + 1) dimensional analysis, see Eq. (5.12).
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4.3 Dirac Fields in Rigid Cavities

It is the aim of this section to consider a Dirac spinor field that is confined to an acceler-

ating cavity. The motivation for this approach is two-fold. First, we wish to gain insight

into the influence of particle statistics on the mechanisms of the transformation to iden-

tify features of the effects of non-uniform motion that are independent of the chosen

quantum field. Second, possible applications in solid state systems [31, 114, 208] may

offer the possibility of experimental verification of particle creation effects in fermionic

systems. We proceed in a similar way as in Section 4.2.1, presenting the results obtained

in Refs. [87, (iv)] and [88, (x)].

4.3.1 Cavity in Uniform Motion — Dirac Field

Dirac Field in Inertial Cavity

Let us consider a Dirac field ψ in (1+1) dimensional Minkowski spacetime with metric

ds2 = ηµνdx
µdxν = −dt2 + dx2 . The Dirac equation [see Eq. (2.30)] now reads(

i γ µ ∂µ − m
)
ψ = 0 , (4.24)

where the Dirac gamma matrices satisfy {γ µ, γ ν} = −2ηµν , and m again denotes the

mass of the field quanta. As for the scalar field, additional spatial dimensions can be

added, but the formalism reduces to the (1 + 1) dimensional case by Fourier decompo-

sition, such that the momenta transverse to the chosen direction supply strictly positive

contributions to the mass m > 0 , see Eq. (5.12). Working in the (1+1) dimensional case

we can work only with 2× 2 representations of γ 0 and γ 1 , for instance

γ 0 =

(
1 0

0 −1

)
, γ 1 =

(
0 1

−1 0

)
. (4.25)

The matrices further satisfy (γ 0)2 = −(γ 1)2 = 1 and it is convenient to multiply (4.24)

by γ 0 to rewrite the Dirac equation as

i ∂t ψ = HD ψ =
(
−i γ 0γ 1 ∂x + m γ 0

)
ψ . (4.26)

We then introduce a basis {u±} consisting of eigenspinors of γ 0γ 1 such that

γ 0γ 1u± = ±u± , (4.27a)

γ 0u± = u∓ . (4.27b)

The basis is orthonormal in the sense that u†±u± = 1 , and u†±u± = 0 . For the represen-

tation of Eq. (4.25) the basis takes the specific form

u± =
1√
2

(
1

±1

)
. (4.28)
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As for the scalar field we separate the variables to find the linearly independent solu-

tions of Eq. (4.26), which can be expressed as

ψ+,k =
(

cos[ξ(k)]u+ + sin[ξ(k)]u−
)
eikx−iωk t , (4.29a)

ψ−,k =
(

sin[ξ(k)]u+ + cos[ξ(k)]u−
)
e−ikx−iωk t , (4.29b)

where k is a non-zero real number, ξ(k) := 1
2 arctan(mk ) , and the eigenvalues ωk of the

Dirac Hamiltonian HD of Eq. (4.26) are given by

ωk = sgn(k)
√
m2 + k2 . (4.30)

The functions ψ+,k and ψ−,k represent right-movers and left-movers respectively. We

are now in a position to introduce the cavity for the Dirac field with boundaries at

x = xL and x = xR as discussed in Section 4.1. A natural way to restrict the fermions

to this region is to require the (spatial) probability current to vanish at the boundaries,

i.e.,

ψ̄1 γ
1 ψ2

∣∣
x = xL

= ψ̄1 γ
1 ψ2

∣∣
x = xR

= 0 , (4.31)

where ψ̄ = ψ†γ 0 as in Section 2.3. Following the procedure laid out in Ref. [34] to obtain

the deficiency indices for the Dirac Hamiltonian HD on the finite interval [xL, xR] we

find that the self-adjoint extensions of HD are determined by two independent phases.

Physically these represent the phase shifts at the reflections on the cavity walls. Impos-

ing the boundary conditions of Eq. (4.31) individually at each wall gives the solutions

xL : ψ =
[
e−i

π
4 cos(ξ(k)− ξL) − ei

π
4 sin(ξ(k) + ξL)

]
e−ikxL ψ+,k (4.32a)

+
[
ei
π
4 cos(ξ(k)− ξL) − e−i

π
4 sin(ξ(k) + ξL)

]
eikxL ψ−,k ,

xR : ψ =
[
e−i

π
4 cos(ξ(k)− ξR) − ei

π
4 sin(ξ(k) + ξR)

]
e−ikxR ψ+,k (4.32b)

+
[
ei
π
4 cos(ξ(k)− ξR) − e−i

π
4 sin(ξ(k) + ξR)

]
eikxR ψ−,k .

The real parameters ξL and ξR , parameterizing the U(1) phases mentioned above, spec-

ify the boundary conditions at the left and right cavity wall, respectively. To single out

physically significant choices of these parameters we turn to the MIT bag boundary con-

ditions [57, 74], named after the affiliation of the authors of [57] — the Massachusetts

Institute of Technology. These boundary conditions, originally developed for the de-

scription of composite hadrons, emerge when the field inside the “bag" is matched to a

field with a different mass outside the boundaries and the latter mass is subsequently

taken to infinity. In this sense the MIT bag boundary conditions are the analogue of

the Dirichlet boundary conditions in (non-relativistic) quantum mechanics, which arise
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in the limit when the height of the walls of a potential well are taken to infinity, see

Ref. [23]. Using our notation here the MIT bag boundary conditions read(
1 − i γ 1

)
ψ
∣∣
x = xL

=
(
1 + i γ 1

)
ψ
∣∣
x = xR

= 0 . (4.33)

Applying the conditions (4.33) to Eqs. (4.32a) and (4.32b), respectively, we find that the

MIT bag boundary conditions correspond to the choices ξL = 0 and ξR = π
2 . When the

Dirac field is confined to the cavity by application of the boundary conditions at both

walls the corresponding (normalized) mode function spinors are found to be

ψkn =

√
ω2
kn

2L
(
ω2
kn

+ [m/L]
) (e−iξ(kn) e−iknxL ψ+,kn + i eiξ(kn) eiknxL ψ−,kn

)
, (4.34)

where ψ±,kn and ξ(kn) are as in (4.29), the frequencies are given by Eq. (4.30), and

the kn ∈ R, labelled by consecutive integers n, take on the discrete values that satisfy

the transcendental equation
tan(knL)

knL
= − 1

mL
. (4.35)

The positive and negative frequencies appear symmetrically in the spectrum, see Fig. 4.8.
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Figure 4.8: Transcendental equation: For fixed parameters m and L the allowed fre-

quencies ωkn from Eq.(4.30) for the Dirac field modes in the cavity are determined by

the positive and negative numbers kn that satisfy the transcendental equation (4.35).

The roots of the function tan(kL)/(kL) + 1/M determine the possible values of (knL) .

Curves are shown here for discrete steps, M ∈ { 2l
100 |l = 1, 2, . . . , 50} (l increasing from

top to bottom), of the dimensionless combination M = mL .
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The phase in Eq.(4.34) has been chosen such that the spinors at (t, x) = (0, xL) are

positive multiples of (u+ + iu−) . The Dirac field within the cavity can now be decom-

posed as

ψ =
∑
m≥0

ψkm bm +
∑
n<0

ψkn c
†
n , (4.36)

where we have chosen the convention thatm ≥ 0 and n < 0 label positive and negative

frequency solutions, respectively. The solutions appear symmetrically in the spectrum

even though they are not symmetrically labelled, i.e., the lowest energy solutions are

labelled by m = 0 and n = −1 . The operators b†m and c†n create particles and antipar-

ticles, respectively, in the modes m ≥ 0 and n < 0 , respectively, and they satisfy the

anticommutation relations of (2.33). Finally, we consider the massless limit, m→ 0 , for

which the possible values of kn coincide with the frequencies of Eq. (4.30), such that

ωkn = kn =
π

L

(
n + 1

2

)
, (4.37)

which corresponds to the case (s, θ) = (1
2 ,

π
2 ) discussed in Ref. [87, (iv)]. Note that there

is no zero mode. With the notation of (4.37) the cavity spinors (4.34) for the massless

Dirac field take the form

ψkn =
1√
2L

(
eiωkn (x−xL) u+ + i e−iωkn (x−xL) u−

)
e−iωkn t . (4.38)

Dirac Field in Uniformly Accelerated Cavity

For the Dirac field in the accelerated region we have to determine the form of the Dirac

equation (2.30) in Rindler coordinates . To this end we express the covariant derivative

∇µψ = (∂µ − Γµ)ψ (see, e.g., Ref. [13] and mind our sign convention for the metric)

in terms of the spin connection coefficients Γµ (Note that we have chosen the symbol

Γµ here to adhere to usual conventions for this object even though we have used Γ to

denote the covariance matrix in Section 3.1 and the two concepts are unrelated.). The

spin connection coefficients for the Rindler coordinates (4.1) can be obtained from a

straightforward procedure [137] which yields Γχ = 0 and

Γη = −1

2
γ 0γ 1 , (4.39)

where the γ µ are the Minkowski space gamma matrices from (4.25). With this the Dirac

equation for the right Rindler wedge becomes

i ∂η ψ̃ =
(
−i γ 0γ 1 [χ∂χ + 1

2 ] + m γ 0χ
)
ψ̃ . (4.40)

For a formal derivation of (4.40) involving the explicit construction of the dyads see,

e.g., Refs. [13, 125, 126]. We proceed, as in the inertial case, by finding the linearly
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independent solutions to this equation, given by

ψ̃+,Ω =
(
IiΩ− 1

2
(mχ)u+ + IiΩ+ 1

2
(mχ)u−

)
e−iΩη , (4.41a)

ψ̃−,Ω =
(
I−iΩ+ 1

2
(mχ)u+ + I−iΩ− 1

2
(mχ)u−

)
e−iΩη , (4.41b)

where Ω are the real dimensionless Rindler frequencies, while the I±iΩ± 1
2
(mχ) and

I±iΩ∓ 1
2
(mχ) are the modified Bessel functions of the first kind [145]. Let us briefly illustrate

how to arrive at this form of the solutions by concentrating on the solutions (4.41a). We

insert the ansatz

ψ̃+,Ω =
(
Ĩ+(χ)u+ + i Ĩ−(χ)u−

)
e−iΩη , (4.42)

where Ĩ±(χ) are yet unknown functions, into Eq. (4.40). Consecutively, the orthonor-

mality of the spinors u± from (4.27) is used, i.e., u†+ or u†− are applied from the left to

arrive at either of the equations(
iΩ − 1

2 − χ∂χ
)
Ĩ+(χ) + mχ Ĩ−(χ) = 0 , (4.43a)(

iΩ + 1
2 + χ∂χ

)
Ĩ−(χ) − mχ Ĩ+(χ) = 0 . (4.43b)

Assuming (mχ) 6= 0 , the function Ĩ− can be expressed from (4.43a) and inserted into (4.43b),

or vice versa for Ĩ+, to obtain the modified Bessel equation [145](
χ2∂2

χ + χ∂χ − [m2χ2 + (iΩ ∓ 1
2)2]

)
Ĩ±(χ) = 0 , (4.44)

revealing Ĩ±(χ) = IiΩ∓ 1
2
(mχ) , as claimed in (4.41a). As before, we apply the vanishing

current boundary conditions (4.31) at the cavity walls χ = χ
L

and χ
R

individually, i.e.,

χ
L

: (4.45a)

ψ̃ =
[
(1 + eiξ̃L tanh[mχ

L
]) I−iΩ− 1

2
(mχ

L
) − (eiξ̃L + tanh[mχ

L
]) I−iΩ+ 1

2
(mχ

L
)
]
ψ̃+,Ω

+
[
(eiξ̃L + tanh[mχ

L
]) IiΩ− 1

2
(mχ

L
) − (1 + eiξ̃L tanh[mχ

L
]) IiΩ+ 1

2
(mχ

L
)
]
ψ̃−,Ω ,

χ
R

: (4.45b)

ψ̃ =
[
(1 + eiξ̃R tanh[mχ

R
]) I−iΩ− 1

2
(mχ

R
) − (eiξ̃R + tanh[mχ

R
]) I−iΩ+ 1

2
(mχ

R
)
]
ψ̃+,Ω

+
[
(eiξ̃R + tanh[mχ

R
]) IiΩ− 1

2
(mχ

R
) − (1 + eiξ̃R tanh[mχ

R
]) IiΩ+ 1

2
(mχ

R
)
]
ψ̃−,Ω ,

where the real parameters ξ̃L and ξ̃R specify the boundary conditions at χ
L

and χ
R

,

respectively. Once again we specialize to the MIT bag boundary conditions [57, 74], here

of the form (
1 − i γ 1

)
ψ̃
∣∣
χ = χL

=
(
1 + i γ 1

)
ψ̃
∣∣
χ = χR

= 0 , (4.46)
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which singles out ξ̃L = 0 and ξ̃R = π . Enforcing both boundary conditions we arrive at

the cavity spinor solutions

ψ̃Ωn
= NΩn

([
I−iΩn− 1

2
(mχ

L
) − I−iΩn+ 1

2
(mχ

L
)
]
ψ̃+,Ωk(n) (4.47)

+
[
IiΩn− 1

2
(mχ

L
) − IiΩn+ 1

2
(mχ

L
)
]
ψ̃−,Ωn

)
,

where the discrete frequencies Ωn , satisfying the transcendent equation

Re
([
I−iΩn− 1

2
(mχ

L
) − I−iΩn+ 1

2
(mχ

L
)
][
I−iΩn− 1

2
(mχ

R
) + I−iΩn+ 1

2
(mχ

R
)
])

= 0 , (4.48)

are labelled by consecutive integers n . The normalization constant NΩn appearing in

Eq. (4.47) is determined from the inner product

(ψ1 , ψ2 )D =

χR∫
χL

dχψ†1ψ2 , (4.49)

which follows from (2.31) by noting that γ η = (1/χ)γ 0 . The forms of Ωn and NΩn

become more apparent when we match the accelerated cavity to the inertial one. We

further note that the exchange Ω→ −Ω takes the order of the modified Bessel functions

to their complex conjugates. Consequently, Eq.(4.48) is invariant under this mapping

and the spectrum is again symmetric with respect to positive and negative frequency

modes. We select the mode labelling such that integers n ≥ 0 (n < 0) indicate solutions

of positive (negative) frequency with respect to the time-like Kiling vector ∂η , such that

we can decompose the field as

ψ =
∑
n≥0

ψ̃Ωn
b̃n +

∑
n<0

ψ̃Ωn
c̃†n . (4.50)

The operators b̃n, c̃n and their Hermitean conjugates satisfy the anticommutation rela-

tions from (2.33). As a last consideration here we take the limit m→ 0 and obtain

ψ̃Ωn
=

e−iΩnη√
2χ ln(χ

R
/χ

L
)

((
χ

χ
L

)iΩn
u+ + i

(
χ

χ
L

)−iΩn
u−

)
, (4.51)

where the massless Rindler frequencies Ωn are given by

Ωn =
π

ln(χ
R
/χ

L
)

(
n + 1

2

)
=

(n + 1
2)π

2 artanh(h/2)
, (4.52)

where h is as in (4.19), and the normalization NΩn in (4.47) was chosen so that the

phases of the Minkowski and Rindler modes match at t = η = 0 , i.e., at (η, χ) = (0, χ
L
)

the modes (4.51) are positive multiples of (u+ + iu−). Equations (4.51) and (4.52) again

reproduce the case (s, θ) = (1
2 ,

π
2 ) analyzed in Ref. [87, (iv)].
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4.3.2 Matching: Inertial to Rindler — Dirac Field

We match the inertial and accelerated cavity containing the Dirac field at the junction

t = η = 0 , as laid out in Section 4.1, where we assume the acceleration to be towards

increasing values of x. The Minkowski (region I in Fig. 4.3) spinors (4.34) and the

Rindler (region II in Fig. 4.3) spinors (4.47) are related by a Bogoliubov transformation

(see Section 2.3.3 and Fig. 4.9)

ψ̃Ωm
=
∑
n

oAmn ψkn (4.53)

where the Bogoliubov coefficients are of the form

oAmn = (ψkn , ψ̃Ωm
)D , (4.54)

and the Dirac inner product is given by (4.49). Since both sets of modes are normalized

the matrix oA = (oAmn) is unitary∑
j

oA
∗
jk oAjl = δkl . (4.55)

Ψ kn

ΨW m

~

°A mn

x

t

Figure 4.9: Minkowski to Rindler Bogoliubov transformation — Dirac field: The cav-

ity modes ψkn in the inertial region and the modes ψ̃Ωm in the uniformly accelerated

region are related by a Bogoliubov transformation with coefficients oAmn , see Eq. (4.53).

As in Section 4.2.2 we now turn to the small h approximation. In other words,

we wish to find the Taylor-Maclaurin expansion of the Bogoliubov coefficients oAmn

as functions of the parameter h = acL around the value h = 0 . In this regime a

comparison of (4.34) and (4.47) reveals that the leading order of the Rindler frequencies

is proportional to h−1 . This complicates the uniform expansion of the modified Bessel
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functions because their order approaches the imaginary axis as h goes to zero. For

details on the intricacies of the uniform expansions see Ref. [146]. We therefore choose a

slightly different procedure than in Section 4.2.2, i.e., we perform the power expansion

in h directly for the differential equation to which Eq. (4.41) provides the solutions.

This task is simplified by the introduction of a new dimensionless variable λ, where

χ =
L

h
(1 + hλ) , (4.56)

such that at χ
L

and χ
R

we have λL = −1
2 and λR = 1

2 , respectively. This procedure

reveals

Ωn =
L

h
ωkn (1 + O(h2)) , (4.57)

where the kn are determined by Eq. (4.35). Note that we have used the same symbol Ωn

for the Rindler frequencies of both the scalar [see (4.20)] and Dirac field [see (4.57)], but

they do not generally match and neither do the corresponding Minkowski frequencies

ωn [see (4.7)] and ωkn [see (4.30)]. Finally, a lengthy but straightforward computation

provides the Bogoliubov coefficients for the Dirac cavity field between the inertial re-

gion I and the accelerated region II (see Fig. 4.3)

oAmn = oA
(0)

mn + oA
(1)

mn h + oA
(2)

mn h
2 + O(h3) , (4.58)

where the superscript (n) in brackets indicates the coefficients of hn, and oA
(0)

mn = δmn .

The non-vanishing coefficients linear in h are

oA
(1)

mn =
2
(
(−1)m+n − 1

)
|kmkn|C 2

km
C 2
kn

(Ckm + Ckn)(CkmCkn + m2)√
L2ω2

km
+ mL

√
L2ω2

kn
+ mL (Ckm − Ckn)3 (CkmCkn −m2)3

, (4.59)

for m 6= n , and Ckn = kn + ωkn , where ωkn is given by (4.30). The consecutive in-

dices m,n ≥ 0 (< 0) label positive (negative) frequency modes. Coefficients that relate

modes of the same frequency sign correspond to α-type coefficients for bosonic fields,

while those that connect positive and negative frequency modes are β-type coefficients,

responsible for particle creation. It is interesting to note that the MIT bag boundary con-

ditions prevent particle creation in pairs of modes with equal energies, i.e., the leading

order coefficients oA
(1)

mn vanish identically for modes m and n with ωkm = −ωkn . The

linear coefficients in (4.59) form an anti-Hermitean matrix, as required, and they con-

sistently reduce to the case s = 1
2 of Ref. [87, (iv)] in the massless limit, i.e., for m 6= n

and m→ 0 we have

oA
(1)

mn =

(
(−1)m+n − 1

)
(m + n + 1)

2π2 (m − n)3
. (4.60)
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Figure 4.10: Minkowski to Rindler Bogoliubov coefficients — Dirac field: The be-

haviour of the leading order Bogoliubov coefficients oA
(1)
mn from (4.59) for the (1 + 1)-

dimensional Dirac field with MIT bag boundary conditions is shown for increasing mass.

The coefficient oA
(1)
mn is plotted against the dimensionless combination M := mL. Figure

4.10 (a) shows a selection of Bogoliubov coefficients that relate modes with the same sign

of the frequency (α-type coefficients): These mode-mixing coefficients are proportional

toM2 asM →∞ . Figure 4.10 (b) shows a selection of Bogoliubov coefficients that relate

positive frequency modes with negative frequency modes (β-type coefficients). These

particle creation coefficients are proportional to M−6 as M → ∞ . For all curves the

intersections with the vertical axis are given by the massless coefficients of Eq. (4.60).

On the other hand, for large mass, taking the limit M = mL → ∞, it can be shown

from (4.59) that the mode-mixing α-type coefficients behave as M2 (Fig. 4.10 (a)), while

the β-type coefficients decrease as M−6 (Fig. 4.10 (b)). As in the bosonic case we em-
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phasize that the perturbative expansions can be trusted for h � 1 when the indices

of the coefficients are bounded from above by any constant. For non-zero mass we

additionally require Mh � 1 but we allow for M � 1 within this regime as long as

M2h . 1 .

The second order coefficients oA
(2)

mn are complicated and won’t be needed explicitly

in this work, but we note that they are proportional to (1+(−1)m+n) as their scalar field

counterparts (see Section 4.2.2) and it has been verified [88, (x)] that the unitarity condi-

tions (4.55) are satisfied when terms of order h2 are included. A similar argument (see

Ref. [88, (x)]) as for the bosonic field (see pp. 4.2.2) can be applied to consider leftward

acceleration. For this procedure it is required to keep in mind that a spatial reflection

changes the sign of the spatial components of γ µ in the Dirac equation, reversing the

roles of u+ and u− . As before, matching the conventions established for the phases

leads to the conclusion that leftwards acceleration can be described to second order

in h by the exchange h→ −h .

4.4 Grafting Generic Cavity Trajectories

With Eqs. (4.22) and (4.59) we have established, to leading order in h , the Bogoliubov

transformations for the real scalar field and Dirac field, respectively, for an instanta-

neous transition from an inertial to a uniformly accelerated cavity according to the

geometry depicted in Fig. 4.3. This allows us to study the effects on the states of the

quantum field when the cavity is suddenly accelerated. Conceptually the role of the

observer is clearly laid out. Without loss of generality we may consider the observer

at the centre of the cavity, who experiences excitations with frequencies ω̃n from (4.20).

Nonetheless, the fact that the cavity in Fig. 4.3 is accelerated eternally evokes the ques-

tion how more general non-uniform motion of the cavity can be described. We are now

going to investigate exactly this issue.

4.4.1 The Basic Building Block

The key to understanding more general cavity trajectories (see Section 4.4.2) lies in the

transition from an inertial cavity, back to an inertial cavity, with a single intermediate

period of uniform acceleration — the basic building block. Let us first briefly return to

the geometry of the rigid cavity as inspected in Section 4.1. As we have noted there the

inertial and uniformly accelerated cavities are connected along a slice of fixed Rindler

coordinate time η . We follow this recipe also when inverting the procedure. Stopping
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the acceleration of the cavity at η = η1 = const. we maintain rigidity, see Fig. 4.11. The

cavity walls of the inertial cavity after the acceleration (region III in Fig. 4.11) are again

parallel and at a distance L, as measured by the co-moving observer. For an observer

that is at rest with respect to the initial cavity in region I the cavity in region III is

moving at a constant speed such that the final cavity’s length is Lorentz contracted. It

is interesting to note that the requirement of rigidity in relativity suggests that different

parts of the cavity need to accelerate at different rates and for different durations (in

terms of proper time).

L R

Η = Η1

I

II

III

°B

°B -1

x x
x

t

Figure 4.11: Basic building block: The rigid cavity is at rest initially (region I), then

undergoes a period of uniform acceleration from t = 0 to Rindler coordinate time η = η1

(region II) and is thereafter again inertial (region III). The transitions between periods

of inertial motion and uniform acceleration induce Bogoliubov transformations oB (I→
II) and oB

−1 (II→ III) .

To construct the Bogoliubov transformation (see Sections 2.2.4 and 2.3.3) corre-

sponding to the basic building block let us denote the abstract transformation between

the inertial region I and the accelerated region II by oB . For now, we postpone to distin-

guish between bosons and fermions. For each case all the Bogoliubov coefficients can

be combined into formally infinite-dimensional matrix representations of oB . From

the Lorentz symmetry between regions I and III it becomes evident that the transfor-

mation at the junction between regions II and III can be chosen to be simply the inverse

transformation oB
−1 . This means that the same phase conventions are chosen for the

region III solutions at η = η1 as we have previously established at η = 0 for the region I

solutions and the phases acquired by the Rindler modes in region II are accounted for
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separately by a diagonal matrix G̃(η1) , such that

BB = oB
−1 G̃(η1) oB . (4.61)

Let us now consider the representations of (4.61) for bosons and fermions separately.

The Bosonic Building Block

For the scalar field we represent oB and its inverse by the matrices oA and oA−1, re-

spectively, in which we combine the matrices oα = (oαmn) and oβ = (oβmn) , i.e.,

oA =

(
oα oβ

oβ
∗

oα
∗

)
, oA−1 =

(
oα
† −oβ

T

−oβ
†

oα
T

)
. (4.62)

From the Bogoliubov identities (2.27) one can easily verify that the inverse of oA is

formed by the map ( oα, oβ)→ ( oα
†, −oβ

T ) such that oA−1
o A = 1 . The bosonic basic

building block transformation can then be written as

BA = oA−1 G̃(η1) oA , (4.63)

where G̃(η1) = G(η1)⊕G∗(η1) , and the diagonal matrix G = diag{Gn|n = 1, 2, . . .} has

entries Gn(η1) = exp(iΩnη1) . The transformation BA can be decomposed into matrices

Bα and Bβ , i.e.,

Bα = oα
†G oα − oβ

T G∗ oβ
∗ , (4.64a)

Bβ = oα
†G oβ − oβ

T G∗ oα
∗ , (4.64b)

analogously to the decomposition (4.62), such that the modes φn in region I and the

Minkowski modes in region III, denoted by φ̂m , are related by

φ̂m =
∑
n

(
Bαmn φn + Bβmn φ

∗
n

)
. (4.65)

We now wish to obtain the small h expansion of the Bogoliubov coefficients Bαmn and

Bβmn . The phase factors Gn(η1) can be conveniently written in such an expansion as

Gn(η1) = exp(iΩnη1) = exp(iωnτ̃1) + O(h2) = G(0)
n (τ̃1) + O(h2) (4.66)

by substituting the proper time τ̃ = Lη/h at the centre of the cavity and the Minkowski

frequencies ωn [see Eq. (4.20)]. Given Eq. (4.66) as well as the expansions (4.21) and (4.22)

of the Minkowski to Rindler coefficients we obtain

Bα = Bα
(0) + Bα

(1) h + O(h2) (4.67a)

= G(0) +
(
G(0)

oα
(1) + oα

(1)†G(0)
)
h + O(h2) ,

Bβ = Bβ
(1) h + O(h2) =

(
G(0)

oβ
(1) − oβ

(1)T G(0)∗
)
h + O(h2) . (4.67b)
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Using the antisymmetry and symmetry, respectively, of the real matrices oα
(1) and

oβ
(1) (4.22) we can conveniently write the coefficients of Bα

(1) and Bβ
(1) as

Bα
(1)

mn = oα
(1)

mn

(
G(0)
m − G(0)

n

)
, (4.68a)

Bβ
(1)

mn = oβ
(1)

mn

(
G(0)
m − G(0)∗

n

)
. (4.68b)

The Fermionic Building Block

For the fermionic representation BA of the basic building block transformation in Fig. 4.11

we write

BA = oA
−1G(η1) oA = oA

†G(η1) oA , (4.69)

where the phases for the spinor modes are encoded in the matrix

G = diag{Gn| . . . ,−2,−1, 0, 1, . . .} , (4.70)

and the individual phases Gn are as in (4.66) but with the appropriate frequencies Ωn

and ωkn for the Dirac spinors. With this the spinor mode solutions of the final inertial

region III, denoted by ψ̂m , are obtained from the region I solutions ψn by

ψ̂m =
∑
n

BAmn ψn . (4.71)

The power expansion of BA for h� 1 is of the form

BA = G(0) +
(
G(0)

oA
(1) − oA

(1)G(0)
)
h + O(h2) , (4.72)

where we have used the unitarity of the Minkowski to Rindler transformation, which

implies that oA
(1) is anti-Hermitean. In components the linear order of the fermionic

Bogoliubov coefficients for the basic building block reads

BA
(1)

mn = oA
(1)

mn

(
G(0)
m − G(0)

n

)
. (4.73)

As a special case, let us consider the massless quantum fields. If m = 0 the frequen-

cies of both the scalar and Dirac field are equally spaced. Consequently, the Bogoliubov

coefficients for the basic building block are periodic in the duration of the acceleration.

In Chapter 6 we shall reconsider this periodicity for select examples of more generic

travel scenarios, which are investigated in the following Section 4.4.2.
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4.4.2 Generalized Travel Scenarios

With the basic building block transformations of Eqs. (4.63) and (4.69) at hand we are

now in a position to construct more complicated trajectories. The key ingredient is to

notice that two basic building blocks can be straightforwardly connected by an interme-

diate period of inertial coasting of proper time τ . The inertial segment is represented

by a matrix G(τ), composed as G̃ in (4.63) for the scalar field or as (4.70) for the Dirac

field, but the basic phase factors Gn are replaced by their leading order terms G(0)
n .

With this notation the Bogoliubov transformation B for a generic travel scenario con-

necting two inertial regions with n intermediate periods of uniform acceleration can be

written as

B = BBn G(τn−1) BBn−1 . . . G(τ2) BB2 G(τ1) BB1 . (4.74)

The individual building block transformations BBi are given by their representatives BAi =

BA(η i, hi) from (4.63) and BAi = BA(η i, hi) from (4.69) for the scalar and Dirac field, re-

spectively. Assuming that the accelerations hi of all segments are small, i.e., |hi| � 1 we

can perform a power expansion for all of these parameters. The leading order of (4.74)

is then given by

B(0) = G(τtot) = G(

n−1∑
i=1

τi +

n∑
j=1

τ̃j) , (4.75)

where τtot is the total proper time as measured at the centre of the cavity between the

initial and final inertial segment. The coefficients B(1i)

mn of the linear term
∑

i B(1i)hi

in the expansion are all proportional to the linear Minkowski to Rindler coefficients,

oα
(1)

mn , and oβ
(1)

mn , or oA
(1)

mn from (4.22) and (4.59), respectively, and therefore share their

basic structure. The linear terms B(1i)

mn vanish identically for pairs of modes (m,n) that

have the same parity, i.e., for which (m + n) is even, in particular for m = n . Up to

and including second order terms in the expansion the direction of the acceleration in

the i-th building block may be controlled by the sign of hi (see pp. 77). Assuming for

simplicity of notation that every hi can be written as εi h , for a fixed h and εi ∈ R,

we can thus conclude that the coefficients for a generic travel scenario have a power

expansion of the form

αmn = G(0)
m δmn + α(1)

mn h + α(2)

mn h
2 + O(h3) , (4.76a)

βmn = β (1)

mn h + β (2)

mn h
2 + O(h3) , (4.76b)

Amn = G(0)
m δmn + A(1)

mn h + A(2)

mn h
2 + O(h3) , (4.76c)

where the appropriate forms of G(0)
m = G(0)

m (τtot) apply for the scalar and Dirac field,

and the diagonal first order coefficients vanish, i.e., α(1)

nn = β (1)

nn = 0 and A(1)

nn = 0. We

92



CHAPTER 4: CONSTRUCTING NON-UNIFORMLY MOVING CAVITIES

insert the expansions (4.76) into the Bogoliubov identities for bosonic (2.27) and fermionic

fields (2.46), respectively, to express these unitarity requirements for the linear coeffi-

cients in the perturbative expansion as

G(0)∗
m α(1)

mn + G(0)
n α(1)∗

nm = 0 , (4.77a)

G(0)∗
m β (1)

mn − G(0)∗
n β (1)

nm = 0 , (4.77b)

G(0)∗
m A(1)

mn + G(0)
n A(1)∗

nm = 0 . (4.77c)

It is convenient to consider also the second order of the Bogoliubov identities, i.e.,

G(0)∗
m α(2)

mn + G(0)
n α(2)∗

nm = −
∑
l

(
α(1)∗
lm α(1)

ln − β (1)

lmβ
(1)∗
ln

)
, (4.78a)

G(0)∗
m β (2)

mn − G(0)∗
n β (2)

nm = −
∑
l

(
α(1)∗
lm β (1)

ln − β (1)

lmα
(1)∗
ln

)
, (4.78b)

G(0)∗
m A(2)

mn + G(0)
n A(2)∗

nm = −
∑
l

A(1)∗
lm A(1)

ln , (4.78c)

which will be helpful in the following chapters. Let us now illustrate the construction

of generic trajectories for a specific example in the next section.

Trip to Alpha-Centauri

A particular example of interest is a travel scenario where the cavity undergoes two

periods of uniform acceleration such that the cavity comes to rest in the same inertial

frame it started from, but is possibly located at a remote location in spacetime. To

illustrate this travel scenario one may think of a spaceship carrying the cavity on a

one-way trip to Alpha Centauri [44].

We decompose the Bogoliubov transformation into two basic building blocks of

the same duration τ̃ as measured at the centre of the cavity and equal, but opposite

accelerations, here represented by±h in a slight abuse of notation. In between we leave

a period of inertial coasting for the (proper) time τ , such that the total transformation

is of the form

αcB = BB(τ̃ ,−h)G(τ) BB(τ̃ , h) . (4.79)

For the scalar field we substitute BA from (4.63) for BB and immediately obtain the

decompositions

αcα = Bα(τ̃ ,−h)G(0)(τ) Bα(τ̃ , h) + Bβ(τ̃ ,−h)G(0)∗(τ) Bβ
∗(τ̃ , h) , (4.80a)

αcβ = Bα(τ̃ ,−h)G(0)(τ) Bβ(τ̃ , h) + Bβ(τ̃ ,−h)G(0)∗(τ) Bα
∗(τ̃ , h) , (4.80b)
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Figure 4.12: Trip to Alpha Centauri: The travel scenario contains two periods of uniform

acceleration of the same duration τ̃ and proper acceleration as measured at the centre of

the cavity. One of these segments is towards increasing, the other towards decreasing

values of x . The periods of uniform acceleration are separated by a segment of inertial

coasting at fixed velocity for the (proper) time τ , allowing the cavity to reach a (possibly)

remote location such as Alpha Centauri [44].

from which we obtain the power expansion coefficients

αcα
(0)

mn = δmnG
(0)
m (2τ̃ + τ) , (4.81a)

αcα
(1)

mn = oα
(1)

mn

[
G(0)
m (2τ̃ + τ) − G(0)

m (τ̃ + τ)G(0)
n (2τ̃) (4.81b)

− G(0)
m (τ̃)G(0)

n (τ̃ + τ) + G(0)
n (2τ̃ + τ)

]
,

αcβ
(1)

mn = oβ
(1)

mn

[
G(0)
m (2τ̃ + τ) − G(0)

m (τ̃ + τ)G(0)∗
n (2τ̃) (4.81c)

− G(0)
m (τ̃)G(0)∗

n (τ̃ + τ) + G(0)∗
n (2τ̃ + τ)

]
.

A similar computation for the fermionic Bogoliubov transformation reveals

αcA
(0)

mn = δmnG
(0)
m (2τ̃ + τ) , (4.82a)

αcA
(1)

mn = oA
(1)

mn

[
G(0)
m (2τ̃ + τ) − G(0)

m (τ̃ + τ)G(0)
n (2τ̃) (4.82b)

− G(0)
m (τ̃)G(0)

n (τ̃ + τ) + G(0)
n (2τ̃ + τ)

]
,

with the appropriate frequencies for the Dirac spinor modes in the phase factors. Fi-

nally, let us consider the possibility of smooth transitions between segments of inertial

motion and uniform acceleration in Section 4.4.3.
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4.4.3 Smoothly Varying Accelerations

As a last step in the construction of generic travel scenarios let us reconsider the as-

sumptions of sharp transitions between inertial motion and uniform accelerations. Cer-

tainly, accelerations can be thought of as switching instantaneously if the change in

acceleration occurs much faster than the characteristic timescale of the cavity. Such a

timescale can be constructed from the propagation speed in the cavity and its length.

However, it is also of interest to study the effects of non-uniform motion for which

the acceleration is allowed to vary smoothly in time, without sharp jumps. Let us con-

struct the corresponding Bogoliubov transformation as a limit of Eq. (4.74), following

Ref. [47]. Since the acceleration can now take on arbitrary values we can remove the

inertial segments and we fix only an initial time τ0 and a final time τ , such that we have

B(τ, τ0) = lim
N→∞
τ̃→0

BB(τ̃N , hN ) BB(τ̃N−1, hN−1) . . . BB(τ̃1, h1) (4.83)

where the total time is fixed

N∑
n=1

τ̃n = τ − τ0 = const. . (4.84)

An infinitesimal increase in time, i.e., τ → τ + dτ , is then achieved by applying the

transformation BB(dτ, h) to B(τ, τ0) of (4.83) from the left,

B(τ + dτ, τ0) = BB(dτ, h)B(τ, τ0) . (4.85)

Neglecting terms of O(dτ2) the infinitesimal basic building block transformation can

be written as

BB(dτ, h) = oB
−1(h) G̃(h, dτ) oB(h) = oB

−1(h)
(
1 + i Ω̃(h) dτ

)
oB(h) , (4.86)

where we define the matrix Ω̃ individually for the scalar and Dirac field,

scalar: Ω̃(h) := diag{Ωn|n = 1, 2, . . .} ⊕ diag{−Ωn|n = 1, 2, . . .} , (4.87a)

Dirac: Ω̃(h) := diag{Ωn|n = . . . ,−2,−1, 0, 1, . . .} . (4.87b)

This enables us to write the derivative of B(τ, τ0) with respect to the proper time τ as

∂

∂τ
B(τ, τ0) = lim

dτ→0

B(τ + dτ, τ0) − B(τ, τ0)

dτ
= i oB

−1(h) Ω̃(h) oB(h) B(τ, τ0) . (4.88)

95



CHAPTER 4: CONSTRUCTING NON-UNIFORMLY MOVING CAVITIES

The simple differential equation (4.88) can be immediately recognized to be of the

form of the Schrödinger equation. Since h = h(τ) is now time-dependent the solution to

Eq. (4.88) is given in terms of a time-ordered integral (see, e.g., Ref. [160, pp. 84])

B(τ, τ0) = T exp

 i

τ∫
τ0

oB
−1(h(τ ′)) Ω̃(h(τ ′)) oB(h(τ ′)) dτ ′

 . (4.89)

From (4.89) it can be seen that the transformation reduces to the acquisition of phases

for any time interval for which h = const. . In addition, no small h approximation

has been performed yet and it can therefore be argued quite generally, that any effects

of mode mixing and particle creation are due to the changes in acceleration. In other

words, the non-uniformity of the acceleration is responsible for any effects. In the case

of the small h approximation we find the leading terms of the expansion for the scalar

field from (4.88) and (4.21) as

sαnn = G(0)
n (τ − τ0) + O(h2) , (4.90a)

and for m 6= n the leading order coefficients are

sαmn = i L (ωm − ωn) oα
(1)

mnG
(0)
m (τ − τ0)

τ∫
τ0

ei(ωm−ωn)(τ ′−τ0) ac(τ
′) dτ ′ , (4.90b)

sβmn = i L (ωm + ωn) oβ
(1)

mnG
(0)
m (τ − τ0)

τ∫
τ0

ei(ωm+ωn)(τ ′−τ0) ac(τ
′) dτ ′ , (4.90c)

where G(0)
m (τ) = exp(iωmτ) , ωm is given by (4.7), and we have assumed the cavity

length L to be fixed, while the proper acceleration ac(τ) at the centre of the cavity

varies smoothly. The product h(τ) = ac(τ)L � 1 is assumed to be small throughout

the journey. The linear order in the expansion of the Bogoliubov coefficients is thus

given by a Fourier transform of the time-dependent acceleration. A similar calculation

involving (4.88) and (4.58) supplies the fermionic counterparts [88, (x)]

sAnn = G(0)
n (τ − τ0) + O(h2) , (4.91a)

sAmn = i L (ωm − ωn) oA
(1)

mnG
(0)
m (τ − τ0)

τ∫
τ0

ei(ωm−ωn)(τ ′−τ0) ac(τ
′) dτ ′ , (4.91b)

(m 6= n)

with the frequencies determined by (4.30) and (4.35). Since all the linear coefficients

for the scalar and Dirac field are proportional to the Minkowski to Rindler coefficients

we can conclude that the linear coefficients vanish for mode pairs of equal parity, i.e.,

if (m+n) is even, regardless of the travel scenario or the smoothness of the acceleration.
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The magnitude of the coefficients for a given travel scenario depends on the jumps

in the acceleration. If ac(τ) changes much slower than the oscillating terms in (4.90)

or (4.91) the effects governed by the magnitude of the coefficients are significantly re-

duced. One such effect is the dynamical Casimir effect (see, e.g., Refs. [63, 64, 124, 143]),

in which one or both of the boundaries of a cavity undergo periodic motion at a res-

onance frequency to produce pairs of particles. The cavity model as described in this

chapter accounts for this effect in its incarnation where the two walls are kept at a

fixed distance throughout this oscillation, e.g., by letting the acceleration in (4.90) be

sinusoidal [46, 47].
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CHAPTER 5

State Transformation by

Non-Uniform Motion

The analysis of Chapter 4 has provided the Bogoliubov transformations between the

mode functions and mode operators of a rigid cavity undergoing non-uniform motion.

The cavity is assumed to confine massive scalar or Dirac fields in (1+1) dimensions and

additional spatial dimensions can be included by their strictly positive contributions to

the mass. The motion of the cavity is assumed to be inertial at the start and finish

of the journey, but is non-uniform in between, possibly including smooth as well as

sharp transitions between different accelerations. For practical reasons a perturbative

approach is adopted. The coefficients of the Bogoliubov transformation between the

initial “in-region" and the final “out-region" are obtained as Taylor-Maclaurin expan-

sions in the parameter h = acL � 1 , where ac is the proper acceleration at the centre

of the cavity, and the length L of the cavity is considered to be fixed. A discussion of

the numerical values for the expansion parameter can be found in Section 7.1.4. For a

generic travel scenario the expansions of the coefficients are of the form given in (4.76).

The in-region mode functions and annihilation operators for bosons and fermions are

denoted by φn , an , and ψn , bn , cn , respectively, while the out-region quantities are

denoted as φ̂n , ân , ψ̂n , b̂n , and ĉn .

The purpose of the present chapter is to implement these Bogoliubov transforma-

tions on the corresponding Fock spaces (see Sections 2.2.3 and 2.3.2) as well as in phase

space (see Section 3.1). We separate the description of the bosonic and fermionic trans-

formations. In Sections 5.1 and 5.2 we study the transformation in the bosonic Fock

space and phase space, respectively, before we turn to the fermionic Fock space trans-

formations in Section 5.3.

This chapter combines results that were derived as part of the research conducted

for related investigations by myself [82–84, 87, 89, (iv)-(vii), (ix)] and others [44].
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5.1 Bosonic Fock State Transformation

5.1.1 Bosonic Vacuum Transformation

To construct the Bogoliubov transformation on the bosonic Fock space (see Section 2.2.3)

the natural starting point is the vacuum, i.e., relating the in-region vacuum state | 0 〉
and the out-region vacuum | 0̂ 〉 . Since the Bogoliubov transformation is linear in the

mode operators it can be represented by exponentials of quadratic combinations of the

operators am and a†n , see Section 3.1.2. Such a transformation can further be split into

passive and active transformations (see p. 45). The former leave the vacuum invariant,

while the active transformations are generated by quadratic combinations of the form∑
p,q

(
Vpq â

†
p â
†
q − V ∗pq âp âq

)
, (5.1)

with Vpq ∈ C . Since an | 0̂ 〉 = 0 , and a quick application of the commutation rela-

tions (2.15) shows that also [ â†p â
†
q , âp′ âq′ ] | 0̂ 〉 = 0 , the transformation between the

vacua can be written as [75]

| 0 〉 = Nvac exp(W ) | 0̂ 〉 = Nvac exp
(

1
2

∑
p,q

Vpq â
†
p â
†
q

)
| 0̂ 〉 , (5.2)

where we have included a factor of 1
2 for convenience. If the in-region and out-region

Fock spaces are unitarily equivalent the state is normalized by a finite constant Nvac .

We shall return to this criterion on page 101. The next step of our investigation is to

determine the symmetric matrix V = (Vpq) in (5.2). We exploit the property that the in-

region vacuum | 0 〉 is annihilated by all operators an , where we insert the Hermitean

conjugate of the inverse Bogoliubov transformation from (2.25b) to write

an | 0 〉 = Nvac
∑
m

(
αmn âm + β∗mn â

†
m

)
exp(W ) | 0̂ 〉 = 0 . (5.3)

The Hadamard Lemma of the Baker-Campbell-Hausdorff formula, i.e.,

X eY = eY
(
X + [X ,Y ] + 1

2! [ [X ,Y ] , Y ] + . . .
)
, (5.4)

is then used to commute an and exp(W ) . One straightforwardly obtains the commuta-

tors

[ âm ,W ] =
∑
p

Vpm â
†
p , (5.5a)

[ â†m ,W ] = [ [ âm ,W ] ,W ] = 0 . (5.5b)

Combining (5.3)-(5.5) we arrive at the condition∑
m

Vpm αmn + β∗pn = 0 . (5.6)
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Since the matrix α = (αmn) is invertible [195] we can rephrase (5.6) to directly express V

as

V = −β∗ α−1 . (5.7)

Returning to the perturbative treatment we employ the expansions (4.76) to get

V (0)

pq = 0 , (5.8a)

V (1)

pq = −G(0)∗
q β (1)∗

pq , (5.8b)

V (2)

pq = G(0)∗
p G(0)∗

q

∑
m

β (1)∗
mp α

(1)

mq − G(0)∗
q β (2)∗

pq , (5.8c)

where we have used the identity (4.77b) to rewrite the second order terms (5.8c).

Unitarity of the Transformation — Bosons

A subtlety in the transformation is the question whether the in-region and out-region

Fock spaces are unitarily equivalent. In other words, it is not guaranteed that Eq. (5.2)

is well-defined. The condition for the unitarity of the transformation is that the ma-

trix V from (5.7) is Hilbert-Schmidt (see, e.g., Ref. [101, 122, 178, 179]), i.e., the norm

induced by the inner product (1.5) is finite. Indeed, assuming that α is bounded it is

enough [75, 122, 195] to require this for the matrix β = (βmn) such that the normal-

ization constant in (5.2) is finite. We examine this condition perturbatively to leading

order in h , where only the coefficients β (1)

mn contribute, see (5.8b). The Hilbert-Schmidt

condition to leading order is then ∑
m,n

|β (1)

mn|
2 < ∞ . (5.9)

In spite of the plethora of available travel scenarios there are essentially two cases of in-

terest, the sharp transition from Minkowski to Rindler solutions with coefficients oβ
(1)

mn

from (4.22b), and the smoothly changing accelerations with coefficients sβ
(1)

mn from (4.90c).

Starting with the sharp transitions, we first consider the case M = 0 , for which we get∑
m,n

|oβ (1)

mn(M = 0)|2 =
8

π4

∑
m even
n odd

mn

(m+ n)6
=

1

48π4

(
28 ζ(3) − 31 ζ(5)

)
, (5.10)

where ζ(z) is the Riemann zeta function, which is finite for Re(z) > 1 and real for z ∈ R .

For M > 0 elementary estimates for the left hand side of (5.9) are obtained by treating

the sum as a Riemann sum. Substituting x = mπ/M and y = nπ/M the Riemann sum

can be written as [88, (x)]

M2
∑
m,n

|oβ (1)

mn(M)|2 → 2

π2

∫
x>0
y>0

x2 y2 dx dy
√

1 + x2
√

1 + y2
(√

1 + x2 +
√

1 + y2
)6 =

1

90π2
,

(5.11)
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suggesting the Hilbert-Schmidt condition is satisfied for the (1 + 1) dimensional scalar

cavity field for all M . To extend this line of argument to additional spatial dimensions

we note that the transverse momenta k⊥ enter into the dimensionless parameter M via

the substitution

M →
√

m2 + k2
⊥ L . (5.12)

For the Hilbert-Schmidt condition it is necessary to sum over the transverse momenta

of the additional n dimensions and the estimate of (5.11) involves integrals of the form∫
xi>0

dx1 . . . dxn
1

1 +
∑n

i=1 x
2
i

, (5.13)

which diverge for n ≥ 2 . These contributions suggest that the Hilbert-Schmidt condi-

tion for the sharp transitions is still satisfied in (2 + 1) dimensions, while the unitarity

requirement fails in (3 + 1) (or higher) spacetime dimensions. However, a remedy for

this predicament is provided by the Bogoliubov transformations for smoothly varying

accelerations. The corresponding coefficients sβ
(1)

mn (4.90b) are given by Fourier trans-

forms of the acceleration ac(τ) . If the acceleration changes smoothly the rapid fall-off

of the Fourier transform at infinity guarantees that the leading order of the sum∑
k⊥

∑
m,n

|sβmn|2 (5.14)

remains finite for all spacetime dimensions. Hence, unitarity is established.

Perturbative Expansion of the Transformed Bosonic Vacuum

We return to the transformation of the vacuum state with the perturbative expansion

of the normalization constant Nvac . We insert (5.8) into (5.2) and require 〈 0 | 0 〉 = 1 to

obtain

Nvac = 1 − 1
4

∑
p,q

|β (1)

pq |
2 h2 + O(h4) . (5.15)

Consecutively we can express the transformed vacuum state as

| 0 〉 = | 0̂ 〉 + h 1
2

∑
p,q

V (1)

pq â
†
p â
†
q | 0̂ 〉 + h2 1

2

∑
p,q

(
V (2)

pq â
†
p â
†
q −

1
2 |β

(1)

pq |
2 (5.16)

+ 1
4

∑
p′,q′

V (1)

pq V
(1)

p′q′
â†p â

†
q â
†
p′
â†
q′

)
| 0̂ 〉 + O(h3) ,

with V (1)

pq and V (2)

pq given by (5.8b) and (5.8c), respectively. To leading order the state

remains unchanged, while the linear corrections add pairs of excitations to the super-

position. To linear order the changes to the state are governed by the coefficients β (1)

mn .
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The density operator corresponding to (5.16) is then simply

| 0 〉〈 0 | = | 0̂ 〉〈 0̂ | + h 1
2

∑
p,q

(
V (1)

pq â
†
p â
†
q | 0̂ 〉〈 0̂ | + H. c.

)
(5.17)

+ h2 1
2

∑
p,q

[ (
V (2)

pq â
†
p â
†
q | 0̂ 〉〈 0̂ | + H. c.

)
− |β (1)

pq |
2 | 0̂ 〉〈 0̂ |

+ 1
4

∑
p′,q′

(
V (1)

pq V
(1)

p′q′
â†p â

†
q â
†
p′
â†
q′
| 0̂ 〉〈 0̂ | + H. c.

)
+ 1

2

∑
p′,q′

V (1)

pq V
(1)∗
p′q′

â†p â
†
q | 0̂ 〉〈 0̂ | âp′ âq′

]
+ O(h3) ,

where “H. c." denotes the Hermitean conjugate, (O + H. c.) = (O + O†). Noting that

Vpq is symmetric and the diagonal leading order terms vanish, V (1)

nn = 0 , the right hand

side of Eq. (5.17) can be quickly seen to be normalized, i.e., Tr(| 0 〉〈 0 |) = 1 +O(h3) .

5.1.2 Transformation of Bosonic Particle States

To obtain the out-region decomposition of any other Fock states we express the in-

region creation operators in terms of their Bogoliubov transformation to the out-region

operators, i.e.,

a†m =
∑
n

(
α∗nm â

†
n + βnm ân

)
. (5.18)

Consecutively, we apply the operators to the vacuum state in the decomposition (5.16)

and expand the Bogoliubov coefficients as in (4.76). To illustrate the procedure we

consider Fock states with a single excitation in a particular mode and such with an

excitation each in two different modes.

Bosonic Single Particle States

For the single excitation in an in-region mode labelled by k we apply the creation op-

erator a†k to the vacuum to study the transformation of the state a†k | 0 〉 = | 1k 〉 . The

power expansion in h gives

| 1k 〉 = G(0)∗
k | 1̂k 〉 + h

(∑
m

α(1)∗
mk â

†
m + 1

2 G
(0)∗
k

∑
p,q

V (1)

pq â†p â
†
q â
†
k

)
| 0̂ 〉 (5.19)

+ h2
[∑
m

(
α(2)∗
mk â

†
m +

∑
p

β (1)

pk V
(1)

pm â
†
m

)
+ 1

2 G
(0)∗
k

∑
p,q

(∑
m

G(0)

k α(1)∗
mk V

(1)

pq â†p â
†
q â
†
m

+ V (2)

pq â†p â
†
q â
†
k −

1
2 |β

(1)

pq |
2 â†k + 1

4

∑
p′,q′

V (1)

pq V
(1)

p′q′
â†p â

†
q â
†
p′
â†
q′
â†k

)]
| 0̂ 〉 + O(h3) ,

where V (1)

pq and V (2)

pq are given by (5.8b) and (5.8c), as previously. In addition to the

creation of particle pairs the linear order terms now feature the coefficients α(1)

mk shifting
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the excitation of mode k to other modes. The density operator for the state (5.19) is

given by

| 1k 〉〈 1k | = | 1̂k 〉〈 1̂k | + h
[∑
m

(
G(0)

k α(1)∗
mk â

†
m | 0̂ 〉〈 1̂k | + H. c.

)
(5.20)

+ 1
2

∑
p,q

(
V (1)

pq â†p â
†
q | 1̂k 〉〈 1̂k | + H. c.

)]
+ h2

[∑
m,m′

α(1)∗
mk α

(1)

m′k
â†m | 0̂ 〉〈 0̂ | âm′

+
∑
m

{
G(0)

k α(2)∗
mk â

†
m | 0̂ 〉〈 1̂k | + 1

2

∑
p,q

G(0)∗
k α(1)

mk V
(1)

pq â
†
p â
†
q | 1̂k 〉〈 0̂ | âm

+ G(0)

k

∑
p

β (1)

pk V
(1)

pm â
†
m | 0̂ 〉〈 1̂k | + H. c.

}
+ 1

2

∑
p,q

{(∑
m

G(0)

k α(1)∗
mk V

(1)

pq â†p â
†
q â
†
m

+ V (2)

pq â†p â
†
q â
†
k −

1
2 |β

(1)

pq |
2 â†k + 1

4

∑
p′,q′

V (1)

pq V
(1)

p′q′
â†p â

†
q â
†
p′
â†
q′
â†k

)
| 0̂ 〉〈 1̂k |

+ 1
4

∑
p′,q′

V (1)

pq V
(1)∗
p′q′

â†p â
†
q | 1̂k 〉〈 1̂k | âp′ âq′ + H. c.

}]
+ O(h3) ,

The normalization of (5.20) can be verified using the Bogoliubov identity (4.78a) and

the trace

Tr
(
â†p â

†
q | 1̂k 〉〈 1̂k | âp′ âq′

)
=
(
δpp′δqq′ + δpq′δqp′

)(
2δpk(1− δqk) (5.21)

+ 2δqk(1− δpk) + (1− δpk)(1− δqk) + 6δpkδqk

)
,

where (2.23b) is taken into account. As before with (5.16) the state remains pure, as

required by the unitarity of the transformation, if no modes are traced over. We shall

consider tracing over subsets of the modes in Chapters 6 and 7 to study entanglement

of the remaining modes.

Bosonic Particle Pair

For the state | 1k 〉 | 1k′ 〉 we apply the creation operator a†
k′

to (5.19). For simplicity of

notation in this illustration we keep terms up to linear order in h and obtain

| 1k 〉 | 1k′ 〉 = G(0)∗
k G(0)∗

k′ | 1̂k 〉 | 1̂k′ 〉 + h
[

1
2

(
G(0)∗
k β (1)

kk′
+ G(0)∗

k′ β (1)

k′k

)
| 0̂ 〉 (5.22)

+
∑
m

G(0)∗
k α(1)∗

mk′
â†m | 1̂k 〉 +

∑
m

G(0)∗
k′ α(1)∗

mk â
†
m | 1̂k′ 〉

− 1
2 G

(0)∗
k G(0)∗

k′

∑
p,q

G(0)∗
q β (1)∗

pq â†p â
†
q | 1̂k 〉 | 1̂k′ 〉

]
+ O(h2) .

The corresponding density operator is given by the projector on | 1k 〉 | 1k′ 〉 . As can be

inferred from (5.17) and (5.20) the density operator decomposition becomes more and

more involved when additional excitations are added. For more complicated states it

thus becomes cumbersome to study the Bogoliubov transformation in this fashion.
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5.2 Transformation of Bosonic Gaussian States

5.2.1 Symplectic Representation of Non-uniform Motion

A computationally much simpler way of handling more complicated states is the sym-

plectic representation of the Bogoliubov transformation in phase space as explained in

Section 3.1.2. The symplectic transformation S for an arbitrary travel scenario can be

decomposed into blocksMmn as given in (3.14), see Ref. [83, (vii)]. For fixed m and n

the 2× 2 matrixMmn is given by (3.15), which we may expand in a power series in h ,

Mij = M(0)

ij + M(1)

ij h + M(2)

ij h
2 + O(h3) , (5.23)

where the non-vanishing leading order coefficient matrices in the expansion are given

by

M(0)

ii =

(
cos(ωiτ̃) sin(ωiτ̃)

− sin(ωiτ̃) cos(ωiτ̃)

)
, (5.24)

with ωi given by (4.7). The coefficient matrices of hn take the form

M(n)

ij =

 Re(α(n)

ij − β (n)

ij ) Im(α(n)

ij + β (n)

ij )

− Im(α(n)

ij − β (n)

ij ) Re(α(n)

ij + β (n)

ij )

 , (5.25)

where α(n)

ij and β (n)

ij are as in (4.76).

5.2.2 Transformed Covariance Matrix Example

Specializing to Gaussian states we are interested in the effect of the non-uniform motion

described in Chapter 4 on the covariance matrix, which encodes all the information

about the entanglement of the state. The symplectic transformation S for a given travel

scenario takes the in-region covariance matrix Γ to

Γ̂ = S ΓST . (5.26)

We examine a particular example for an initial state more closely. A fully separable

state, represented by the covariance matrix Γ =
⊕

n Γn of an arbitrary number of modes

with individual covariance matrices Γn (n = 1, 2, . . .) . The transformed covariance

matrix Γ̂ decomposes into the diagonal blocks Γ̂m for the individual modes, and off-

diagonal blocks Ĉmn encoding the correlations between modes m and n . In terms of

the matricesMmn from (3.15) these 2× 2 matrices read

Γ̂m =
∑
i

Mmi ΓiMT
mi , (5.27a)

Ĉmn =
∑
i

Mmi ΓiMT
ni . (5.27b)
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Transformed Single-mode Squeezed States

To examine our example more closely we select particular initial states Γn , i.e., we

assume that each single mode can be squeezed with squeezing parameters sn ∈ R , such

that the matrices Γn are given by (3.8)

Γn(sn) =

(
e2sn 0

0 e−2sn

)
. (5.28)

Employing the perturbative expansion of (5.23) we get Γ̂m from (5.27a) as a power

series in h ,

Γ̂m = Γ̂(0)
m + Γ̂(1)

m h + Γ̂(2)
m h2 + O(h3) . (5.29)

The symmetric coefficient matrices in the expansion are expressed in components order

by order, that is

(Γ̂(0)
m )11 = cosh(2sm) + sinh(2sm) cos(2ωmτ̃) , (5.30a)

(Γ̂(0)
m )22 = cosh(2sm) − sinh(2sm) cos(2ωmτ̃) , (5.30b)

(Γ̂(0)
m )12 = − sinh(2sm) sin(2ωmτ̃) . (5.30c)

The coefficients of h in the expansion of Γ̂m in (5.29) vanish identically but the second

order coefficients are non-zero and given by

(Γ̂(2)
m )11 = 2 cosh(2sm) Re

(
G(0)
m

[
α(2)∗
mm − β

(2)

mm

])
+ sinh(2sm) Re

(
G(0)
m

[
α(2)

mm − β
(2)∗
mm

])
+
∑
n

[
cosh(2sm)

(
|α(1)

mn|
2 − 2 Re(α(1)

mnβ
(1)

mn) + |β (1)

mn|
2
)

(5.31a)

+ sinh(2sm) Re
(

(α(1)

mn)2 − 2α(1)

mnβ
(1)∗
mn + (β (1)

mn)2
)]
,

(Γ̂(2)
m )22 = 2 cosh(2sm) Re

(
G(0)
m

[
α(2)∗
mm + β (2)

mm

])
− sinh(2sm) Re

(
G(0)
m

[
α(2)

mm + β (2)∗
mm

])
+
∑
n

[
cosh(2sm)

(
|α(1)

mn|
2 + 2 Re(α(1)

mnβ
(1)

mn) + |β (1)

mn|
2
)

(5.31b)

− sinh(2sm) Re
(

(α(1)

mn)2 + 2α(1)

mnβ
(1)∗
mn + (β (1)

mn)2
)]
,

(Γ̂(2)
m )12 = 2 cosh(2sm) Im

(
G(0)
m β (2)

mm

)
− 2 sinh(2sm) Im

(
G(0)
m α(2)

mm

)
(5.31c)

+
∑
n

[
2 cosh(2sm) Im

(
α(1)

mnβ
(1)

mn

)
− sinh(2sm) Im

(
(α(1)

mn)2 + (β (1)

mn)2
)]
.

Similarly, the off-diagonal blocks Ĉmn are expanded as

Ĉmn = Ĉ (1)
mn h + Ĉ (2)

mn h
2 + O(h3) , (5.32)
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where the lowest order in the expansion is linear in h . The corresponding components

of these coefficients are given by

(Ĉ (1)
mn)11 = cosh(2sm) Re

(
G(0)
m

[
α(1)∗
nm − β

(1)

nm

])
+ cosh(2sn) Re

(
G(0)
n

[
α(1)∗
mn − β

(1)

mn

])
+ sinh(2sm) Re

(
G(0)
m

[
α(1)

nm − β
(1)∗
nm

])
+ sinh(2sn) Re

(
G(0)
n

[
α(1)

mn − β
(1)∗
mn

])
,

(5.33a)

(Ĉ (1)
mn)22 = cosh(2sm) Re

(
G(0)
m

[
α(1)∗
nm + β (1)

nm

])
+ cosh(2sn) Re

(
G(0)
n

[
α(1)∗
mn + β (1)

mn

])
− sinh(2sm) Re

(
G(0)
m

[
α(1)

nm + β (1)∗
nm

])
− sinh(2sn) Re

(
G(0)
n

[
α(1)

mn + β (1)∗
mn

])
,

(5.33b)

(Ĉ (1)
mn)12 = cosh(2sm) Im

(
G(0)
m

[
β (1)

nm + α(1)∗
nm

])
+ cosh(2sn) Im

(
G(0)
n

[
β (1)

mn − α
(1)∗
mn

])
− sinh(2sm) Im

(
G(0)
m

[
α(1)

nm + β (1)∗
nm

])
− sinh(2sn) Im

(
G(0)
n

[
α(1)

mn − β
(1)∗
mn

])
,

(5.33c)

(Ĉ (1)
mn)21 = cosh(2sm) Im

(
G(0)
m

[
β (1)

nm − α
(1)∗
nm

])
+ cosh(2sn) Im

(
G(0)
n

[
β (1)

mn + α(1)∗
mn

])
− sinh(2sm) Im

(
G(0)
m

[
α(1)

nm − β
(1)∗
nm

])
− sinh(2sn) Im

(
G(0)
n

[
α(1)

mn + β (1)∗
mn

])
.

(5.33d)

We shall study the entanglement of the transformed single mode squeezed states in

Chapter 6. For now, let us briefly return to the Fock space treatment, this time for the

fermions.

5.3 Fermionic State Transformation

5.3.1 Fermionic Vacuum Transformation

We pursue the construction of the Bogoliubov transformation on the fermionic Fock space

(see Section 2.3.2) in a completely analogous fashion as the previous bosonic case in

Section 5.1 by starting from the fermionic vacuum state || 0 〉〉 . Following Ref. [(iv)][87],

a similar argument as that made for bosons on page 100 allows us to make the ansatz

|| 0 〉〉 = Ñvac exp(W) || 0̂ 〉〉 = Ñvac exp
(

1
2

∑
p≥0
q<0

Vpq b̂ †p ĉ †q
)
|| 0̂ 〉〉 , (5.34)

where Vpq ∈ C and Ñvac is a normalization constant. We then examine the prop-

erty bn || 0 〉〉 = 0 by inserting the Bogoliubov transformation of bn ,

bn =
∑
m≥0

Amn b̂m +
∑
m<0

Amn ĉ
†
m . (5.35)
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Now turning again to the Hadamard Lemma of (5.4) the commutators

[ b̂m ,W ] =
∑
q<0

Vmq ĉ †q , (5.36a)

[ ĉ †m ,W ] = [ [ b̂m ,W ] ,W ] = 0 , (5.36b)

provide the criterion (for n ≥ 0, q < 0)∑
m≥0

Amn Vmq = −Aqn , (5.37a)

while the same procedure using cn || 0 〉〉 = 0 gives (for n < 0, p ≥ 0)∑
m<0

A∗mn Vpm = A∗pn . (5.37b)

If one of the blocks of A = (Amn) where the indices are either both non-negative or

both negative is invertible then the conditions (5.37a) or (5.37b), respectively, uniquely

determine the matrix V . If both blocks are invertible (5.37a) and (5.37b) are equivalent

by virtue of the unitarity of A , i.e., A†A = 1 .

Unitarity of the Transformation — Fermions

To ensure that the fermionic in-region and out-region vacua can indeed be unitar-

ily related a closer examination of the Hilbert-Schmidt condition is in order. For the

fermionic case it manifests as the condition that the blocks of A = (Amn) that relate

positive and negative frequency solutions are Hilbert-Schmidt, see Ref. [122]. In com-

plete analogy to (5.9) the leading order presents the requirement∑
p≥0
q<0

|A(1)

pq |
2 < ∞ . (5.38)

We proceed, as before, with the sharp transitions between the Minkowski and Rindler

solutions in (1+1) dimensions, and we consider first the case of zero mass. The leading

order coefficients for M = 0 are given by (4.60)∑
p≥0
q<0

|oA(1)

pq (M = 0)|2 =
1

96π4

(
28 ζ(3) − 31 ζ(5)

)
< ∞ , (5.39)

where ζ(z) is the Riemann zeta function. For the massive case we use an analysis as

in (5.11), where we consider an estimate in terms of a Riemann sum [88, (x)]. Substitut-

ing x = mπ/M and y = nπ/M we write

M2
∑
p≥0
q<0

|oA(1)

pq (M)|2 → 8

π2

∫
x>0
y>0

(√
1 + x2 + x−

√
1 + y2 − y

)2(√
1 + x2 + x+

√
1 + y2 + y

)6 (5.40)

×
[
(
√

1 + x2 + x)(
√

1 + y2 + y)− 1
]2[

(
√

1 + x2 + x)(
√

1 + y2 + y) + 1
]6 × x2y2(

√
1 + x2 + x)4(

√
1 + y2 + y)4

(1 + x2)(1 + y2)
dx dy ,
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where oA
(1)

pq are the coefficients of (4.59). The integral in (5.40), where we have set

x = |p|/µ and y = |q|/µ , can be evaluated by the substitution x = (u − u−1)/2 and

y = (v − v−1)/2 , which reveals

M2
∑
p≥0
q<0

|oA(1)

pq (M)|2 → 7

45π2
− 1

64
< ∞ . (5.41)

We can thus conclude that the Hilbert-Schmidt condition is satisfied for the (1 + 1) di-

mensional Dirac cavity field for all M . The addition of extra spatial dimensions suffers

from the same limitations as the bosonic case [see Eq. (5.13)] such that the unitarity of

the Bogoliubov transformation for sharp transitions holds only in (1 + 1) and (2 + 1)

dimensions, but fails in (3 + 1) dimensions and beyond. For smooth accelerations the

rapid fall-off of the Fourier transform in Eq. (4.91b) again guarantees the unitarity for

all cases. With this in mind we return to the transformation of the vacuum state.

Perturbative Expansion of the Transformed Fermionic Vacuum

We now perform the perturbative expansion of Eq. (5.37a) with the coefficients of (4.76c),

which yields

Vpq = V (1)

pq h + V (2)

pq h
2 + O(h3) , (5.42)

where the expansion coefficients are given by

V (1)

pq = −G(0)∗
p A(1)

qp , (5.43a)

V (2)

pq = −G(0)∗
p A(2)

qp − G(0)∗
p G(0)

q

∑
m≥0

A(1)

mpA
(1)∗
mq . (5.43b)

With this the normalization constant in (5.34) is immediately obtained as

Ñvac = 1 − 1
2

∑
p≥0
q<0

|A(1)

pq |
2 h2 + O(h4) . (5.44)

In the following we will assume that the first (second) index of Vpq is always non-

negative (negative) unless otherwise stated. The vacuum state can then be straightfor-

wardly expanded in terms of powers of h ,

|| 0 〉〉 = || 0̂ 〉〉 + h
∑
p,q

V (1)

pq b̂
†
p ĉ
†
q || 0̂ 〉〉 + h2

∑
p,q

(
V (2)

pq b̂
†
p ĉ
†
q − 1

2 |A
(1)

pq |
2 (5.45)

+ 1
2

∑
p′,q′

V (1)

pq V
(1)

p′q′
b̂ †p ĉ

†
q b̂
†
p′ ĉ
†
q′

)
|| 0̂ 〉〉 + O(h3) ,

where we keep in mind the fermionic anticommutation relations (2.33b) that imply that

no second particle or antiparticle can be added to the same mode — the Pauli exclusion
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principle. To progress further it is convenient to introduce an additional label in the

fermionic Fock states of Section 2.3.2. We distinguish excitations of positive (negative)

frequency modes by a superscript sign + (−) on the double-lined ket notation, i.e.,

b†p || 0 〉〉 = || 1p 〉〉+ , (5.46a)

c†q || 0 〉〉 = || 1q 〉〉− , (5.46b)

and similarly for the co-vectors. With this notation at hand we may rewrite Eq. (5.45),

|| 0 〉〉 = || 0̂ 〉〉 + h
∑
p,q

V (1)

pq || 1̂p 〉〉
+|| 1̂q 〉〉− + h2

∑
p,q

[
V (2)

pq || 1̂p 〉〉
+|| 1̂q 〉〉− − 1

2 |V
(1)

pq |
2 || 0̂ 〉〉

+ 1
2

∑
p′,q′

V (1)

pq V
(1)

p′q′
(1− δpp′)(1− δqq′) || 1̂p 〉〉+|| 1̂q 〉〉−|| 1̂p′ 〉〉+|| 1̂q′ 〉〉−

]
+ O(h3) , (5.47)

where we have suppressed the symbol for the anti-symmetrized tensor product (see

Section 2.3.2). To conclude this section we form the density operator for the trans-

formed vacuum state

|| 0 〉〉〈〈 0 || = || 0̂ 〉〉〈〈 0̂ ||+ h
∑
p,q

[
V (1)

pq || 1̂p 〉〉
+|| 1̂q 〉〉−〈〈 0̂ ||+ H. c.

]
− h2

∑
p,q

[
|V (1)

pq |
2 || 0̂ 〉〉〈〈 0̂ ||

− 1
2

∑
p′,q′

(
V (1)

pq V
(1)

p′q′
(1− δpp′)(1− δqq′) || 1̂p 〉〉+|| 1̂q 〉〉−|| 1̂p′ 〉〉+|| 1̂q′ 〉〉−〈〈 0̂ || + H. c.

)
−
(
V (2)

pq || 1̂p 〉〉
+|| 1̂q 〉〉−〈〈 0̂ ||+ H. c.

)
−
∑
p′,q′

V (1)

pq V
(1)∗
p′q′
|| 1̂p 〉〉+|| 1̂q 〉〉−−〈〈 1̂q′ ||+〈〈 1̂p′ ||

]
+O(h3).

(5.48)

5.3.2 Transformation of Fermionic Particle & Anti-Particle States

We continue with the fermionic Fock states with particle or antiparticle content, by ap-

plying the respective creation operators b†n (n ≥ 0) and c†n (n < 0) with Bogoliubov

decompositions

b†n =
∑
m≥0

A∗mn b̂
†
m +

∑
m<0

A∗mn ĉm , (5.49a)

c†n =
∑
m≥0

Amn b̂m +
∑
m<0

Amn ĉ
†
m . (5.49b)

Fermionic Single Particle States

For the single fermion state || 1κ 〉〉+ , an excitation in a mode labelled by κ ≥ 0 , we

apply the operator b†κ of (5.49a), with coefficients expanded as in (4.76c) to the vacuum
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state (5.47) and we get

|| 1κ 〉〉+ = G(0)∗
κ || 1̂κ 〉〉+ + h

[∑
m≥0

A(1)∗
mκ || 1̂m 〉〉

+ +G(0)∗
κ

∑
p,q

V (1)

pq (1− δpκ) || 1̂κ 〉〉+|| 1̂p 〉〉+|| 1̂q 〉〉−
]

+ h2
{∑
m≥0

A(2)∗
mκ || 1̂m 〉〉

+ +
∑
p,q

[∑
m≥0

A(1)∗
mκ V

(1)

pq (1− δmp) || 1̂m 〉〉+|| 1̂p 〉〉+|| 1̂q 〉〉−

− A(1)∗
qκ V

(1)

pq || 1̂p 〉〉
+ + G(0)∗

κ V (2)

pq (1− δpκ) || 1̂κ 〉〉+|| 1̂p 〉〉+|| 1̂q 〉〉− − 1
2 G

(0)∗
κ |V (1)

pq |
2 || 1̂κ 〉〉+

− 1
2 G

(0)∗
κ

∑
p′,q′

V (1)

pq V
(1)

p′q′
(1− δpp′)(1− δqq′)(1− δκp)(1− δκp′)

× || 1̂κ 〉〉+|| 1̂p 〉〉+|| 1̂p′ 〉〉+|| 1̂q 〉〉−|| 1̂q′ 〉〉−
]}

+ O(h3) . (5.50)

To leading order the state remains unchanged apart from the phase that is picked up

during time evolution. At linear order in h Eq. (5.50) illustrates the role of the α and

β-type coefficients. The block of A(1)

mn where both indices are non-negative shifts the

available excitation into a superposition of excitations in positive frequency modes.

On the other hand, the block of A(1)

mn that mixes negative and non-negative indices is

responsible for terms in the superposition with additional pairs of particles and an-

tiparticles. The appropriate expression, to second order in h , for the density operator

of the pure state || 1κ 〉〉+ is given by

|| 1κ 〉〉++〈〈 1κ || = || 1̂κ 〉〉++〈〈 1̂κ || + h
[∑
p,q

V (1)

pq (1− δpκ) || 1̂κ 〉〉+|| 1̂p 〉〉+|| 1̂q 〉〉−+〈〈 1̂κ ||

+ G(0)
κ

∑
m≥0

A(1)∗
mκ || 1̂m 〉〉

++〈〈 1̂κ || + H. c.
]

+ h2
{ ∑
m,m′≥0

A(1)∗
mκA

(1)

m′κ
|| 1̂m 〉〉++〈〈 1̂m′ ||

+
∑
p,q
m≥0

(
G(0)∗
κ A(1)

mκV
(1)

pq (1− δpκ) || 1̂κ 〉〉+|| 1̂p 〉〉+|| 1̂q 〉〉−+〈〈 1̂m || + H. c.
)

+
∑

p,q,p′,q′

V (1)

pq V
(1)∗
p′q′

× (1− δpκ)(1− δp′κ) || 1̂κ 〉〉+|| 1̂p 〉〉+|| 1̂q 〉〉−−〈〈 1̂q′ ||+〈〈 1̂p′ ||+〈〈 1̂κ || +
[
G(0)
κ

∑
m≥0

A(2)∗
mκ

× || 1̂m 〉〉++〈〈 1̂κ || +
∑
p,q

(
G(0)
κ

∑
m≥0

A(1)∗
mκ V

(1)

pq (1− δmp) || 1̂m 〉〉+|| 1̂p 〉〉+|| 1̂q 〉〉−+〈〈 1̂κ ||

− G(0)
κ A(1)∗

qκ V
(1)

pq || 1̂p 〉〉
++〈〈 1̂κ || + V (2)

pq (1− δpκ) || 1̂κ 〉〉+|| 1̂p 〉〉+|| 1̂q 〉〉−+〈〈 1̂κ ||

− 1
2 |V

(1)

pq |
2 || 1̂κ 〉〉++〈〈 1̂κ || − 1

2

∑
p′,q′

V (1)

pq V
(1)

p′q′
(1− δpp′)(1− δqq′)(1− δκp)(1− δκp′)

× || 1̂κ 〉〉+|| 1̂p 〉〉+|| 1̂p′ 〉〉+|| 1̂q 〉〉−|| 1̂q′ 〉〉−+〈〈 1̂κ ||
)

+ H. c.
]}

+ O(h3) . (5.51)

Fermionic Single Anti-Particle States

For the single anti-fermion state || 1κ′ 〉〉−, an excitation in a mode labelled by κ′ < 0 ,

we apply the operator c†κ′ of (5.49b), with coefficients expanded as in (4.76c), to the
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vacuum state (5.47) to get

|| 1κ′ 〉〉− = G(0)

κ′ || 1̂κ′ 〉〉
− + h

[∑
m<0

A(1)

mκ′
|| 1̂m 〉〉− +G(0)

κ′

∑
p,q

V (1)

pq (1− δqκ′) || 1̂p 〉〉+|| 1̂q 〉〉−|| 1̂κ′ 〉〉−
]

+ h2
{∑
m<0

A(2)

mκ′
|| 1̂m 〉〉− +

∑
p,q

[∑
m<0

A(1)

mκ′
V (1)

pq (1− δmq) || 1̂p 〉〉+|| 1̂q 〉〉−|| 1̂m 〉〉−

+ A(1)

pκ′
V (1)

pq || 1̂q 〉〉
− + G(0)

κ′ V
(2)

pq (1− δqκ′) || 1̂p 〉〉+|| 1̂q 〉〉−|| 1̂κ′ 〉〉− − 1
2 G

(0)

κ′ |V
(1)

pq |
2 || 1̂κ′ 〉〉−

− 1
2 G

(0)

κ′

∑
p′,q′

V (1)

pq V
(1)

p′q′
(1− δpp′)(1− δqq′)(1− δκ′q)(1− δκ′q′)

× || 1̂p 〉〉+|| 1̂p′ 〉〉+|| 1̂q 〉〉−|| 1̂q′ 〉〉−|| 1̂κ′ 〉〉−
]}

+ O(h3) . (5.52)

In complete analogy to (5.51) we express the density operator for the pure state || 1κ′ 〉〉−

as

|| 1κ′ 〉〉−−〈〈 1κ′ || = || 1̂κ′ 〉〉−−〈〈 1̂κ′ ||+ h
[∑
p,q

V (1)

pq (1− δqκ′) || 1̂p 〉〉+|| 1̂q 〉〉−|| 1̂κ′ 〉〉−−〈〈 1̂κ′ ||

+ G(0)∗
κ′

∑
m<0

A(1)

mκ′
|| 1̂m 〉〉−−〈〈 1̂κ′ || + H. c.

]
+ h2

{ ∑
m,m′<0

A(1)∗
mκ′

A(1)

m′κ′
|| 1̂m 〉〉−−〈〈 1̂m′ ||

+
∑
p,q
m<0

(
G(0)

κ′ A
(1)∗
m′κ′
V (1)

pq (1− δmq) || 1̂p 〉〉+|| 1̂q 〉〉−|| 1̂κ′ 〉〉−−〈〈 1̂m || + H. c.
)

+
∑

p,q,p′,q′

V (1)

pq V
(1)∗
p′q′

× (1− δqκ′)(1− δq′κ′) || 1̂p 〉〉+|| 1̂q 〉〉−|| 1̂κ′ 〉〉−−〈〈 1̂κ′ ||−〈〈 1̂q′ ||+〈〈 1̂p′ || +
[
G(0)∗
κ′

∑
m<0

A(2)

mκ′

× || 1̂m 〉〉−−〈〈 1̂κ′ || +
∑
p,q

(
G(0)∗
κ′

∑
m<0

A(1)

mκ′
V (1)

pq (1− δmq) || 1̂p 〉〉+|| 1̂q 〉〉−|| 1̂m 〉〉−−〈〈 1̂κ′ ||

+ G(0)∗
κ′ A

(1)

pκ′
V (1)

pq || 1̂q 〉〉
−−〈〈 1̂κ′ || + V (2)

pq (1− δqκ′) || 1̂p 〉〉+|| 1̂q 〉〉−|| 1̂κ′ 〉〉−−〈〈 1̂κ′ ||

− 1
2 |V

(1)

pq |
2 || 1̂κ′ 〉〉−−〈〈 1̂κ′ || − 1

2

∑
p′,q′

V (1)

pq V
(1)

p′q′
(1− δpp′)(1− δqq′)(1− δκ′q)(1− δκ′q′)

× || 1̂p 〉〉+|| 1̂p′ 〉〉+|| 1̂q 〉〉−|| 1̂q′ 〉〉−|| 1̂κ′ 〉〉−−〈〈 1̂κ′ ||
)

+ H. c.
]}

+ O(h3) . (5.53)

Fermionic Particle–Anti-Particle Pair

As a last example we consider the leading order correction in the transformation of a

pair of one particle in mode κ ≥ 0 and one antiparticle in mode κ′ < 0 . By applying

either b†κ to the state of Eq. (5.52), or, equivalently, applying c†κ′ to (5.50) we obtain

|| 1κ 〉〉+|| 1κ′ 〉〉− = G(0)∗
κ G(0)

κ′ || 1̂κ 〉〉
+|| 1̂κ′ 〉〉− + h

[
G(0)

κ′ A
(1)∗
κ′κ
|| 0̂ 〉〉 (5.54)

+ G(0)

κ′

∑
m≥0

A(1)∗
mκ || 1̂m 〉〉

+|| 1̂κ′ 〉〉− + G(0)∗
κ

∑
n<0

A(1)

nκ′
|| 1̂κ 〉〉+|| 1̂n 〉〉−

+ G(0)∗
κ G(0)

κ′

∑
p,q

V (1)

pq (1− δpκ)(1− δqκ′) || 1̂κ 〉〉+|| 1̂p 〉〉+|| 1̂q 〉〉−|| 1̂κ′ 〉〉−
]

+ O(h2) .
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To linear order in h the density operator for the out-region Fock space is

|| 1κ 〉〉+|| 1κ′〉〉−−〈〈 1κ′||+〈〈 1κ || = || 1̂κ 〉〉+|| 1̂κ′〉〉−−〈〈 1̂κ′||+〈〈 1̂κ || + h
[
G(0)
κ A(1)∗

κ′κ
|| 0̂ 〉〉−〈〈 1̂κ′||+〈〈 1̂κ ||

+ G(0)
κ

∑
m≥0

A(1)∗
mκ || 1̂m 〉〉

+|| 1̂κ′〉〉−−〈〈 1̂κ′||+〈〈 1̂κ || + G(0)∗
κ′

∑
n<0

A(1)

nκ′
|| 1̂κ 〉〉+|| 1̂n 〉〉−−〈〈 1̂κ′||+〈〈 1̂κ ||

+
∑
p,q

V (1)

pq (1− δpκ)(1− δqκ′) || 1̂κ 〉〉+|| 1̂p 〉〉+|| 1̂q 〉〉−|| 1̂κ′ 〉〉−−〈〈 1̂κ′||+〈〈 1̂κ || + H. c.
]

+O(h2) .

(5.55)

We find that the linear Bogoliubov coefficients create coherence between the initial state

and those states where either one of the excitations is shifted or an additional particle-

antiparticle pair is created.

The states we have considered in this chapter illustrate how the Bogoliubov trans-

formations manifest on the Fock space (or phase space) of all modes of a single cavity.

It has been verified that when terms proportional to h2 are kept the transformed states

are normalized, Hermitean and have a non-negative spectrum to second order in the

perturbative expansion (see also the discussion in Section 6.1.1). The transformations

are hence implemented unitarily for smoothly changing accelerations in any dimension,

or for sharply varying accelerations in up to (2 + 1) dimensions. In this sense the

transformations are global unitaries on the Fock space of the cavity modes. We shall see

in Chapter 6 how the transformations affect the entanglement between chosen sets of

these modes.
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CHAPTER 6

Motion Generates Entanglement

In this chapter we discuss the structure of the entanglement that is generated between

the modes of quantum fields that are confined to cavities in non-uniform motion. The

motivation for this analysis lies in the prospect of employing the specific structure of

the created quantum correlations in the verification of the genuine quantumness of par-

ticle creation phenomena in quantum field theory. In other words, particle creation

phenomena and related transformations in the Fock space that occur due to the motion

of the cavity boundaries are not arbitrary. They have a rich structure that may allow to

unambiguously identify the source of the created particles as a quantum field theory

effect, see, e.g., Ref. [201]. Furthermore, in settings similar to those presented in Ref. [7,

(xii)] the entanglement between the modes may possibly be used to estimate specific

parameters of the transformations with better precision. In addition, via monogamy

arguments (see pp. 19) the insights into the entanglement generation within a single

cavity will be useful in determining the source of entanglement degradation effects

when several entangled cavities are considered in Chapter 7.

This far we have established the Bogoliubov transformations for cavity modes of

quantum fields in a cavity that undergoes a change in motion from an inertial in-region

to an inertial out-region (see Chapter 4). Consecutively, we have shown in Chapter 5

how initial quantum states in their Fock space or phase space representations are trans-

formed to the out-region. In this chapter we are going to draw from material published

in Refs. [82–84, (v-vii)]: Based on the transformed states presented in Chapter 5 we are

going to study the reduced states of two modes and the entanglement generated therein.

As previously the treatment of bosonic Fock states and Gaussian states is separated

into Sections 6.1 and 6.2, respectively, before we turn the attention to fermionic states

in Section 6.3. The chapter is concluded in Section 6.4 by an analysis of the structure of

multipartite entanglement within the non-uniformly moving cavity [84, (vi)].
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6.1 Entanglement Generation in Bosonic Fock States

6.1.1 Bosonic Vacuum

A convenient starting point for the analysis of the entanglement in the transformed

states is the vacuum state. The out-region decomposition of the in-region vacuum is

given by the density matrix (5.17). We are here interested in the bipartite entanglement

between a chosen pair of modes labelled by k and k′ , respectively. To obtain the re-

duced out-region state for these two modes we trace out all other modes from (5.17). In

contrast to the fermionic case (see Section 3.2.2) this can be done in a straightforward

way since mapping bosonic modes to a tensor product space is free of ambiguities.

For the purpose of partial traces we can assume a tensor product of mode subspaces

and write the resulting reduced state again as a density operator on a Fock space with

an appropriately reduced number of modes. Taking into account the structure of the

Bogoliubov coefficients (4.76) some lengthy but straightforward algebra reveals

vacρkk′ := Tr¬k,k′
(
| 0 〉〈 0 |

)
= | 0̂ 〉〈 0̂ | − h

[
G(0)

k′ β
(1)

kk′
| 0̂ 〉〈 1̂k′ |〈 1̂k | + H. c.

]
(6.1)

+ h2
[(
−2fβk¬k′ − 2fβk′

)
| 0̂ 〉〈 0̂ | + 2fβk¬k′ | 1̂k 〉〈 1̂k | + 2fβk′¬k | 1̂k′ 〉〈 1̂k′ |

+ |β (1)

kk′
|2 | 1̂k 〉| 1̂k′ 〉〈 1̂k′ |〈 1̂k | +

(
V (2)∗
kk′
| 0̂ 〉〈 1̂k′ |〈 1̂k | + 1√

2
V (2)∗
kk | 0̂ 〉〈 2̂k |

+ 1√
2
V (2)∗
k′k′
| 0̂ 〉〈 2̂k′ | + (V (1)∗

kk′
)2 | 0̂ 〉〈 2̂k′ |〈 2̂k | + H. c.

)]
+ O(h3) ,

where Tr¬k,k′ denotes the trace over all modes except k and k′, V (1)

pq and V (2)

pq are given

by (5.8b) and (5.8c), respectively, and we have introduced the abbreviation

fβm¬n = 1
2

∑
i 6=n
|β (1)

mi|
2 . (6.2)

Cutting off the power expansion at second order effectively truncates each of the two

modes in (6.1) to a three dimensional system. Hence, the reduced state can be repre-

sented on the tensor product space of two qutrits by the matrix

vacρkk′ =

1− 2h2
(
fβ
k¬k′ + fβ

k′
)

0 h2
√
2
V

(2)
k′k′ 0 hG

(0)∗
k′ β

(1)∗
kk′ + h2V

(2)
kk′ 0 h2√

2
V

(2)
kk 0 h2(V

(1)
kk′ )2

0 2h2fβ
k′¬k 0 0 0 0 0 0 0

h2
√
2
V

(2)∗
k′k′ 0 0 0 0 0 0 0 0

0 0 0 2h2fβ
k¬k′ 0 0 0 0 0

hG
(0)
k′ β

(1)
kk′ + h2V

(2)∗
kk′ 0 0 0 h2|β(1)

kk′ |
2 0 0 0 0

0 0 0 0 0 0 0 0 0
h2√
2
V

(2)∗
kk 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

h2(V
(1)∗
kk′ )2 0 0 0 0 0 0 0 0


,

(6.3)
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where we have neglected terms of order h3 . The Hilbert-Schmidt condition (5.9) en-

sures that the quantities fβm¬n are finite and, consequently, the state in Eq. (6.1) is a

well defined density operator. One can easily see that it is normalized and Hermitean.

Working out the eigenvalues is somewhat more complicated and needs a more detailed

examination.

Perturbative Diagonalization

To determine the eigenvalues of the density operator perturbatively one has to be care-

ful. In typical perturbation theory approaches it is assumed that a given matrix is

perturbed by a term that is linear in the expansion parameter. However, in our case the

density operator is expanded as

ρ = ρ(0) + h ρ(1) + h2 ρ(2) + O(h3) , (6.4)

and we wish to obtain the leading order corrections to the eigenvalues λ(0)

i of the un-

perturbed matrix ρ(0) . To begin one may approximate the perturbative corrections to

ρ(0) by only the linear term hρ(1) . In that case corrections to the eigenvalues of ρ(0) that

are linear in h can be computed using the standard procedure: first the unperturbed

matrix is diagonalized, i.e.,

ρ(0) | λ(0)

i 〉 = λ(0)

i | λ
(0)

i 〉 . (6.5)

Subsequently, any degeneracies in the unperturbed eigenvalues need to be taken into

account. For any non-degenerate eigenvalues λ(0)

i the corrections are computed as the

expectation values of the leading order perturbation ρ(1) in the corresponding unper-

turbed eigenstate | λ(0)

i 〉, i.e.,

λ(1)

i = 〈 λ(0)

i | ρ
(1) | λ(0)

i 〉 , (6.6)

and one arrives at λi = λ(0)

i + hλ(1)

i + O(h2). For any degenerate eigenvalues λ(0)

i1
=

λ(0)

i2
= . . . = λ(0)

in
the appropriate leading order corrections are given by the eigenvalues

of the matrix Λi with components

(Λi)mn = 〈 λ(0)

im
| ρ(1) | λ(0)

in
〉 . (6.7)

Similarly, if the linear corrections to the density matrix vanish, i.e., ρ(1) = 0 , one

may perform the same procedure for ρ(2) to obtain leading order corrections that are

quadratic in h . We shall use this procedure throughout Chapters 6 and 7 to compute

the eigenvalues of partially transposed density operators.
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Nonetheless, for finding the corrections to the eigenvalues of the density matrix

itself this strategy is not successful. The density matrix of Eq. (6.1) has non-zero lin-

ear corrections ρ(1), but no linear corrections to the unperturbed eigenvalues {λ(0)

1 =

1, λ(0)

2 = 0, λ(0)

3 = 0, . . .} , i.e., λ(1)

i = 0 ∀i 6= 1 . The leading order corrections λ(2) must

therefore be found by diagonalizing (6.1) by hand. In other words, to determine the

diagonal form ρdiag = diag{λi|i = 1, 2, . . .} of the density matrix we make the ansatz

U = U (0) + hU (1) + h2 U (2) + O(h3) (6.8)

for the diagonalizing unitary, such that ρdiag = UρU † . Next, we switch to a more com-

pact notation for the density matrix (6.3) by splitting the matrix into the subspaces

corresponding to the unperturbed eigenvalues λ(0)

1 = 1 and λ(0)

i 6=1 = 0 , i.e., we write

vacρkk′ =

(
1 0

0 0

)
+ h

(
0 v (1) †

v (1) 0

)
+ h2

(
ρ(2)

11 v (2) †

v (2) ρ(2)′

)
+ O(h3) , (6.9)

where ρ(2)

11 = −2(fβk¬k′ + fβk′) and the components of the vectors v (1) , and v (2) , and the

6 × 6 matrix ρ(2)′ can be read off directly from vacρkk′ in Eq. (6.3). A straightforward

computation provides the expansion of the diagonalizing unitary

U =

(
1 0

0 16

)
+ h

(
0 v (1) †

−v (1) 0

)
+ h2

(
−1

2v
(1) † v (1) v (2) †

−v (2) −1
2v

(1) v (1) †

)
+ O(h3) ,

(6.10)

and the second order corrections to the eigenvalues of (6.1). Including second order

terms the non-zero eigenvalues turn out to be

λ1 = 1− h2
(
2 fβk¬k′ + 2 fβk′¬k

)
+ O(h3) , (6.11a)

λ2 = h2 2 fβk¬k′ + O(h3) , (6.11b)

λ3 = h2 2 fβk′¬k + O(h3) . (6.11c)

Entanglement Generation in the Bosonic Vacuum

From Eqs. (6.11) we clearly see that the eigenvalues of (6.1) are non-negative and well-

defined, at least up to and including second order corrections. However, the partial

trace leaves the transformed state mixed, which can be quickly verified by computing

the linear entropy SL(ρ) (see Definition 1.2),

SL

(
Tr¬k,k′

(
| 0 〉〈 0 |

))
= h2

(
2 fβk¬k′ + 2 fβk′¬k

)
+ O(h3) . (6.12)

To determine the entanglement between the modes k and k′ we need to employ a mea-

sure that is computable for a mixed state of two qutrits. The negativity from Defini-

tion 1.10 provides such a tool, although one might miss bound entanglement. To cal-

culate the negativity we determine the eigenvalues of the partially transposed density
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matrix. For the state (6.1) it is given by

(vacρkk′)
Tk′ =

1− 2h2
(
fβ
k¬k′ + fβ

k′
)

0 h2
√
2
V

(2)∗
k′k′ 0 0 0 h2

√
2
V

(2)
kk 0 0

0 2h2fβ
k′¬k 0 hG

(0)∗
k′ β

(1)∗
kk′ + h2V

(2)
kk′ 0 0 0 0 0

h2
√
2
V

(2)
k′k′ 0 0 0 0 0 h2(V

(1)
kk′ )2 0 0

0 hG
(0)
k′ β

(1)
kk′ + h2V

(2)∗
kk′ 0 2h2fβ

k¬k′ 0 0 0 0 0

0 0 0 0 h2|β(1)
kk′ |

2 0 0 0 0

0 0 0 0 0 0 0 0 0
h2
√
2
V

(2)∗
kk 0 h2(V

(1)∗
kk′ )2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


.

(6.13)

We can proceed as laid out on page 117 to determine the eigenvalues of the partial

transpose. If the modes k and k′ have opposite parity, that is, if (k+k′) is odd, the linear

corrections to (6.13) are non-zero , see Eq. (4.22b). Keeping only the linear corrections

it becomes evident that the eigenvalues of the matrix

h

(
0 G(0)∗

k′ β
(1)∗
kk′

G(0)

k′ β
(1)

kk′
0

)
(6.14)

provide the corrections ±h|β(1)
kk′ | to the degenerate unperturbed eigenvalue 0 . We thus

find the linear contribution N (1) to the negativity

N (vacρkk′) = hN (1)(vacρkk′) + O(h2) = h |β (1)

kk′
| + O(h2) . (6.15)

We see that, to linear order in h, the entanglement as measured by the negativity (6.15)

is generated by the coherent excitation of two particles in the modes k and k′. Now

let us turn to the case where (k + k′) is even, i.e., the two modes have the same parity.

Then β (1)

kk′
= 0 and, consequently, also V (1)

kk′
= 0, see Eq. (5.8b). This leaves a non-zero

2× 2 block of the second order corrections to the partially transposed state (6.13) in the

subspace of the degenerate eigenvalue 0, given by

h2

(
2 fβk′¬k V (2)

kk′

V (2)∗
kk′

2 fβk¬k′

)
. (6.16)

There is only one possibly negative correction to the eigenvalue 0 and the leading order

correction to the negativity is then simply found to be

N (vacρkk′) = h2N (2)(vacρkk′) + O(h3) (6.17)

= h2 max
{

0,

√(
fβk¬k′ − fβk′¬k

)2
+ |V (2)

kk′
|2 −

(
fβk¬k′ + fβk′¬k

)}
+ O(h3) .
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The entanglement is now generated by the coefficient V (2)

kk′
from (5.8c), which has con-

tributions from β (2)

kk′
— pairs of particles that are created directly in the modes k and k′

— and products β (1)∗
mk α

(1)

mk′
— a pair of particles is created in modes k and m and the ex-

citation in m is subsequently shifted to k′. These terms compete with the (anti)particle

creation where only one constituent of the created pair is generated in k or k′. An

illustration of the corrections is shown in Fig. 6.1.

(a) 0.2 0.4 0.6 0.8 1.0
u

0.005

0.010

0.015

0.020

N
H1L Hvac Ρkk'L

(b) 0.2 0.4 0.6 0.8 1.0
u

0.002

0.004

0.006

0.008

0.010

N
H2L Hvac Ρkk'L

Figure 6.1: Entanglement generation — bosonic vacuum: The coefficients N (1) [see

Eq. (6.15)] and N (2) [see Eq. (6.17)] of the negativity generated from the vacuum state

are plotted in Fig. 6.1 (a) and Fig. 6.1 (b), respectively, for the basic building block travel

scenario of Section 4.4.1. For the (1 + 1) dimensional massless scalar field used in this

illustration the Bogoliubov coefficients are periodic in the dimensionless parameter u :=

hτ/[4L artanh(h/2)] [see Eq. (4.20)], where τ is the duration, as measured at the centre of

the cavity, of the single segment of uniform acceleration. Curves are shown for the mode

pairs (k, k′) = (1, 2) (solid), (2, 3) (dashed), (3, 4) (dotted), and (1, 4) (dotted-dashed) in

Fig. 6.1 (a), and for (1, 3) (solid), (2, 4) (dashed), (3, 5) (dotted), and (1, 5) (dotted-dashed)

in Fig. 6.1 (b).
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6.1.2 Bosonic Single Particle States

For the bosonic single particle state | 1k 〉we select the density operator from (5.20) and

again trace over all modes except k and k′ to obtain the reduced state

1-kρkk′ := Tr¬k,k′
(
| 1k 〉〈 1k |

)
= | 1̂k 〉〈 1̂k | − h

[√
2G(0)

k β (1)

k′k
| 1̂k 〉〈 1̂k′|〈 2̂k | (6.18)

− G(0)

k α(1)∗
k′k
| 1̂k′〉〈 1̂k | + H. c.

]
+ h2

{
2 fαk¬k′ | 0̂ 〉〈 0̂ | + |α(1)

kk′
|2 | 1̂k′〉〈 1̂k′|

− 2
(
fαk + fβk′¬k + 2fβk

)
| 1̂k 〉〈 1̂k |+ 2 fβk′¬k | 1̂k 〉| 1̂k′ 〉〈 1̂k′|〈 1̂k |+ 4 fβk¬k′ | 2̂k 〉〈 2̂k |

+ 2 |β (1)

kk′
|2 | 2̂k 〉| 1̂k′〉〈 1̂k′|〈 2̂k |+

([
G(0)

k α(2)∗
k′k
− 2 Re(G(0)

k G(0)∗
k′

∑
p

β (1)

pk β
(1)∗
pk′

)
]
| 1̂k′〉〈 1̂k |

− G(0)

k G(0)

k′

∑
p

α(1)∗
pk β

(1)

pk′
| 0̂ 〉〈 1̂k′|〈 1̂k | −

√
2 (G(0)

k )2
∑
p6=k′

α(1)∗
pk β

(1)

pk | 0̂ 〉〈 2̂k |

+
√

2α(1)

kk′
β (1)

kk′
| 1̂k′〉〈 1̂k′|〈 2̂k |+

√
2α(1)

k′k
β (1)

k′k
| 1̂k 〉〈 2̂k′|〈 1̂k |+

√
2V (2)∗

kk′
| 1̂k 〉〈 1̂k′|〈 2̂k |

+
√

3
2 V

(2)∗
kk | 1̂k 〉〈 3̂k |+

√
3 (G(0)

k β (1)

k′k
)2 | 1̂k 〉〈 2̂k′|〈 3̂k |+ H. c.

)}
+ O(h3) ,

where, in analogy to (6.2), we define the quantity

fαm¬n = 1
2

∑
i 6=n
|α(1)

mi|
2 . (6.19)

As before, a quick computation provides the linear entropy SL (see Definition 1.2),

SL
(

1-kρkk′
)

= h2
(
8 fβk¬k′ + 4 fβk′¬k + 4 fαk¬k′

)
+ O(h3) , (6.20)

which immediately reveals that the state (6.18) is mixed, as expected. To evaluate the

entanglement that is produced between the modes k and k′ we again employ the nega-

tivity. If the modes k and k′ have opposite parity the partial transpose of (6.18) features

corrections linear in h . In the subspace of the degenerate unperturbed eigenvalue 0 we

find the linear perturbation

h


0 G(0)

k α(1)∗
k′k

0

G(0)∗
k α(1)

k′k
0 −

√
2G(0)

k β (1)

k′k

0 −
√

2G(0)∗
k β (1)∗

k′k
0

 . (6.21)

To leading order this supplies one negative eigenvalue and we get the negativity

N (1-kρkk′) = hN (1)(1-kρkk′) + O(h2) = h

√
|α(1)

kk′
|2 + 2 |β(1)

kk′ |2 + O(h2) . (6.22)

In contrast to (6.15) the entanglement is now generated by both coherent excitations of

particle pairs in the modes k and k′, and the shift of excitations from mode k to mode k′

by the coefficient α(1)

kk′
. An illustration of these results is shown in Fig. 6.2 (a).
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Figure 6.2: Entanglement generation — bosonic single particle state | 1k 〉: The coeffi-

cients N (1) [see Eq. (6.22)] and N (2) [see Eq. (6.26)] of the negativity generated from the

state | 1k 〉 are plotted in Fig. 6.2 (a) and Fig. 6.2 (b), respectively, for the basic building

block travel scenario of Section 4.4.1. For the (1 + 1) dimensional massless scalar field

used in this illustration the Bogoliubov coefficients are periodic in the dimensionless pa-

rameter u := hτ/[4L artanh(h/2)] [see Eq. (4.20)], where τ is the duration, as measured

at the centre of the cavity, of the single segment of uniform acceleration. Curves are

shown for the mode pairs (k, k′) = (1, 2) (solid), (2, 3) (dashed), (3, 4) (dotted), and (1, 4)

(dotted-dashed) in Fig. 6.2 (a), and for (1, 3) (solid), (2, 4) (dashed), (3, 5) (dotted), and

(1, 5) (dotted-dashed) in Fig. 6.2 (b).

When k and k′ have the same parity the situation is slightly more complicated. As

previously, all the corrections to the reduced density matrix that are linear in h vanish.

We further ignore the row and column of the partial transpose corresponding to the

subspace of the unperturbed eigenvalue 1 because a small perturbation cannot possibly

change this eigenvalue enough to become negative. The non-zero corrections in the
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subspace of the unperturbed eigenvalue 0 decompose into two independent blocks.

The first block, given by the matrix

h2

(
|α(1)

kk′
|2

√
2α(1)

kk′
β (1)

kk′√
2α(1)∗

kk′
β (1)∗
kk′

2 |β(1)
kk′ |

2

)
(6.23)

provides one positive eigenvalue, while the other eigenvalue vanishes identically. The

second block is represented by

h2

 2 fα
k¬k′ G

(0)
k α

(2)∗
k′k − 2 Re(G

(0)
k G

(0)∗
k′ gββ

kk′ ) −
√

2 (G
(0)
k )2gαβ ∗

kk¬k′

G
(0)∗
k α

(2)
k′k − 2 Re(G

(0)
k G

(0)∗
k′ gββ ∗

kk′ ) 2 fβ
k′¬k

√
2V

(2)∗
kk′

−
√

2 (G
(0)∗
k )2gαβ

kk¬k′
√

2V
(2)
kk′ 4 fβ

k¬k′

 (6.24)

where we have simplified the notation with the abbreviations

gββkk′ =
∑
p

β (1)

pk β
(1)∗
pk′

, gαβkk¬k′ =
∑
p 6=k′

α(1)

pkβ
(1)∗
pk . (6.25)

The eigenvalues of (6.24) are given by the solutions to a cubic equation. It is not dif-

ficult to see that the off-diagonal elements of this matrix are responsible for possible

entanglement generation, competing with the noise that is introduced by the diagonal

elements. If the quantities fαk¬k′ , f
β
k′¬k , and fβk¬k′ were zero, while the off-diagonals are

non-vanishing the matrix (6.24) would supply at least one negative eigenvalue. Practi-

cally, the negative solutions to the cubic equation mentioned above are best evaluated

numerically, and the modulus of the negative eigenvalue of the matrix (6.24) provides

the negativity

N (1-kρkk′) = h2N (2)(1-kρkk′) + O(h3) (6.26)

illustrated in Fig. 6.2 (b). Finally, it should be noted that the presence of a non-zero

negativity allows us to unambiguously conclude that the transformation creates en-

tanglement. Vanishing negativity, on the other hand, does not rule out the presence

of entanglement in principle (see pp. 19) because neither are the states under consid-

eration Gaussian, nor can the modes be truncated to qubits. However, in the explicit

examples that we have analyzed, e.g., the basic building block (see Section 4.4.1) in

Fig. 6.1 and Fig. 6.2, the negativity vanishes only when the corresponding Bogoliubov

coefficients also disappear and the state is left unchanged — separable. This indicates

that no bound entanglement is produced in the situations considered.

6.2 Entanglement Generation in Bosonic Gaussian States

The analysis of Section 6.1 has demonstrated that entanglement is generated from ini-

tially separable Fock states within the cavity. However, as excitations are added the
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calculations quickly become computationally demanding. Moreover, there seems to be

no natural restriction to the choice of the initial states. Put bluntly, there does not seem

to be ample motivation to study, for instance, the state | 5k 〉| 3k′ 〉 rather than | 17k 〉 . A

class of states that distinguishes itself from general bosonic states is the group of Gaus-

sian states, see Section 3.1.1, which we are going to restrict ourselves to in this section.

6.2.1 Single-Mode Squeezed States

To study entanglement generation phenomena it is prudent to start with an initial state

that is separable. For example, a state where all modes are uncorrelated but individ-

ually (single-mode) squeezed, see pp. 106. Since we are particularly interested in the

entanglement that is generated between the modes k and k′ we allow for non-zero

squeezing only for these modes, i.e., sn = 0 ∀n 6= k, k′ . The 4× 4 covariance matrix for

the modes k and k′ is decomposed as

Γ̂ =

(
Γ̂k Ĉkk′

Ĉ T
kk′ Γ̂k′

)
, (6.27)

where the leading order coefficients in the series expansions of the components of the

2 × 2 matrices Γ̂k , Ĉkk′ , and Γ̂k′ can be read off directly from Eqs. (5.30) and (5.33).

Given these perturbative expressions we can proceed to evaluate the entanglement

of this state. Taking Theorem 3.2 as a starting point we wish to obtain the smallest

symplectic eigenvalue of the partial transpose of the covariance matrix (6.27). Since

this essentially entails perturbatively determining the eigenvalues of the matrix

iΩ
^

Tk′ Γ̂
^

Tk′ , (6.28)

where Ω is the symplectic form (3.11) and
^

Tk′ = 1 ⊕ diag{1,−1} represents the par-

tial transposition, we can turn to the procedure described on pp. 117 to do so. The

symplectic eigenvalues of the partial transpose of the unperturbed state are given by

spectr(iΩ
^

Tk′ Γ̂
(0)

^

Tk′) = {−1,−1,+1,+1} , (6.29)

as expected for a separable pure state, and we note that the eigenvalues are twice de-

generate. Our aim is then to find the leading order negative correction to the eigenvalue
^ν (0)

− = ^ν (0)

+ = 1. At this stage we specialize to the case where (k + k′) is odd, i.e., the

modes have opposite parity, such that the leading order correction to Γ̂(0) is linear in h.

In the next step we have to diagonalize the subspace of the correction iΩ
^

Tk′ Γ̂
(1)

^

Tk′ cor-

responding to the unperturbed eigenvalue ^ν (0)

± = 1. In other words, the eigenvalues of

the matrix (
〈 ^ν (0)

+ | iΩ
^

Tk′ Γ̂
(1)

^

Tk′ | ^ν (0)

+ 〉 〈 ^ν (0)

+ | iΩ
^

Tk′ Γ̂
(1)

^

Tk′ | ^ν (0)

− 〉
〈 ^ν (0)

− | iΩ
^

Tk′ Γ̂
(1) vTk′ | ^ν (0)

+ 〉 〈 ^ν (0)

− | iΩ
^

Tk′ Γ̂
(1)

^

Tk′ | ^ν (0)

− 〉

)
(6.30)
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need to be determined, where the non-zero elements of Γ̂(1) are given by (5.33) and

| ^ν (0)

± 〉 are the eigenstates of iΩ
^

Tk′ Γ̂
(0)

^

Tk′ with eigenvalue ^ν (0)

± = 1 . The eigenstates

| ^ν (0)

± 〉 are given by

| ^ν (0)

+ 〉 = N(sk, ωkτ̃)
( i cos(ωkτ̃) + exp(sk) sin(ωkτ̃)

exp(sk) cos(ωkτ̃) − i sin(ωkτ̃)
, 1 , 0 , 0

)T
, (6.31a)

| ^ν (0)

− 〉 = N(sk′ , ωk′ τ̃)
(

0 , 0 ,
i cos(ωk′ τ̃) − exp(sk′) sin(ωk′ τ̃)

exp(sk′) cos(ωk′ τ̃) + i sin(ωk′ τ̃)
, 1
)T

, (6.31b)

where the normalization constants N(sn, ωnτ̃) are given by

N(sn, ωnτ̃) =
( 1 + exp(2sn)

exp(2sn) cos2(ωnτ̃) + sin2(ωnτ̃)

)− 1
2
. (6.32)

This allows us to obtain the perturbative expansion of the symplectic eigenvalues of

the partially transposed covariance matrix to linear order in h , i.e.,

^ν± = 1 + h ^ν (1)

± + O(h2) . (6.33)

We find that ^ν (1)

+ = −^ν (1)

− ≥ 0 , which further allows us to express the leading order

correction to the negativity from Eq. (3.22b) in the following form

N = hN (1) + O(h2) = h
|^ν (1)

− |
2

+ O(h2) , (6.34)

where the leading order coefficient N (1) is given by

N (1) =
1√
2

(
|α(1)

kk′
|2
[
cosh(2sk) cosh(2sk′)− 1

]
+ |β (1)

kk′
|2
[
cosh(2sk) cosh(2sk′) + 1

]
− Re

[
(G(0)∗

k α(1)

kk′
)2 + (G(0)∗

k β (1)

kk′
)2
]

sinh(2sk) sinh(2sk′) − 2 Re
[
(G(0)∗

k α(1)

kk′
)(G(0)

k β (1)∗
kk′

)
]

× cosh(2sk) sinh(2sk′) + 2 Re
[
(G(0)∗

k α(1)

kk′
)(G(0)∗

k β (1)

kk′
)
]

sinh(2sk) cosh(2sk′)
) 1

2
. (6.35)

Alternatively, one may obtain the expression in (6.35) by a different line of argument.

To linear order in h the Bogoliubov transformation does not affect the purity of the

initial state. In particular, the initially pure states we have chosen remain pure when

terms proportional to h2 are neglected. Recall now that every pure two-mode Gaus-

sian state is equivalent up to local symplectic transformations to a two-mode squeezed

state (3.19), see also Ref. [4]. Since we work with small perturbations of the state, the

corresponding two-mode squeezing parameter r can be assumed to satisfy r � 1. We

may therefore relate the local symplectic invariant det(Ĉkk′) to r via the relation

det(Ĉkk′) = − sinh2(2r) = − 4 r2 + O(r4) , (6.36)

where we have performed a power expansion assuming r � 1 in the last step. Since

the squeezing parameter is also directly related to ^ν− , i.e., ^ν− = e−2|r| , the expression
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Figure 6.3: Entanglement generation — symmetric single-mode squeezing: The coeffi-

cient N (1) [see Eq. (6.35)] of the negativity generated from a symmetrically single-mode

squeezed state is plotted for the basic building block travel scenario of Section 4.4.1 for

squeezing parameters sk = sk′ = 1 . For the (1 + 1) dimensional massless scalar field in

this illustration the Bogoliubov coefficients are periodic in the dimensionless parameter

u := hτ/[4L artanh(h/2)] [see Eq. (4.20)], where τ is the duration, as measured at the

centre of the cavity, of the single segment of uniform acceleration. Curves are shown for

the mode pairs (k, k′) = (1, 2) (solid), (2, 3) (dashed), (3, 4) (dotted), and (1, 4) (dotted-

dashed).

in Eq. (6.35) can be calculated from det(Ĉkk′) in a straightforward manner. Moreover,

we can conclude that, to leading order, the transformed state is locally equivalent to

a two-mode squeezed state with squeezing parameter r = hN (1) . The correction to

the negativity is consistent with the expression obtained for symmetric single-mode

squeezing, sk = sk′ , in Ref. [83, (vii)], which is illustrated in Fig. 6.3. In the limit of van-

ishing initial squeezing, i.e., for sk = sk′ = 0 , we further recover the correct expression

for the entanglement generated from the vacuum, see Eq. (6.15).

As expected, and as can be inferred from a quick comparison of Figs. 6.1 and 6.3, the

presence of squeezing in the initial state can greatly enhance the entanglement produc-

tion. However, the perturbative treatment restricts the validity of these considerations.

We trust the perturbative corrections as long as the main features of the state, e.g., the

mixedness, are not significantly altered. More precisely, we quantify the mixedness by

the linear entropy SL (see Definition 1.2). For a Gaussian state corresponding to the

covariance matrix Γ it is given by (see, e.g., Ref. [1, p. 38])

SL(Γ) = 1 − 1/
√

det(Γ) . (6.37)
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For the symmetrically single-mode squeezed state (sk = sk′ = s) considered in Fig. 6.3

we have

det
(

Γ̂
)

= 1 + h2
[
4
(
fβk¬k′ + fβk′¬k

)
[cosh(2s) + 1] + 4

(
fαk¬k′ + fαk′¬k

)
[cosh(2s) − 1]

− 4 sinh(2s)
∑
n 6=k,k′

Re
(
α(1)

nkβ
(1)∗
nk + α(1)

nk′
β (1)∗
nk′
)]

+ O(h3) , (6.38)

with fαm¬n and fβm¬n as in Eqs. (6.19) and (6.2), respectively. The dominant correction

in (6.38) is given by the terms proportional to fαk¬k′ and fαk′¬k and it is then easy to see

that the validity of the perturbative treatment is expressed in the condition

h2
(
fαk¬k′ + fαk′¬k

)
e2|s| � 1 . (6.39)

Finally, a note on the choice of entanglement measure is in order. To linear order in h

we have a symmetric two-mode Gaussian state for which the entanglement of forma-

tion (3.23) can be computed. However, this entanglement measure is based on the

quantification of the mixedness in the reduced state of one mode arising from tracing

out the other mode. But, as we have argued before, the mixedness does not change

unless second order terms are included, i.e., if only terms linear in h are kept, the state

remains pure. However, when terms proportional to h2 are kept, we are left with a non-

symmetric state, det(Γ̂k) 6= det(Γ̂k′) , for which the entanglement of formation cannot

be computed. Hence, the negativity is the most suitable measure for our purposes.

6.2.2 Resonances of Entanglement Generation

The analysis we have undertaken up to this point has established the entanglement

generation from various initial states in terms of the Bogoliubov coefficients for generic

travel scenarios, including smoothly varying accelerations, as described in Section 4.4.

As we have seen from the examples under scrutiny, for instance in Figs. 6.1, 6.2 and 6.3,

the choice of initial state influences the amount of generated entanglement. Now we

shall inquire if it is possible to enhance the entanglement production simply by mov-

ing the cavity in a particular way — we want to find entanglement resonances — possibly

with an accompanying restriction of the initial states. The results we present here are

based on the results of Section 3.1.4 and the insights gathered from Refs. [42] and [47].

Let us start with the resonance condition of Eq. (3.27). For initial states with a

covariance matrix proportional to the identity, i.e., the vacuum or coherent states, a

vanishing commutator [S , S T ] indicates that the entanglement produced by the sym-

plectic transformation S can be linearly increased with the number of repetitions of

the transformation if the operation represented by S is restricted to contain no overall
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single-mode squeezing and if it is possible to perform the transformation successively

in principle. Both of these conditions are met by the Bogoliubov transformation for

non-uniform cavity motion when we select an arbitrary travel scenario between two

inertial regions and terms are kept only up to linear order in h . The latter condition

ensures that the coefficients β (2)

nn, which would introduce single-mode squeezing, can

be neglected. Under these premises let us proceed by examining the mechanism of the

resonance condition perturbatively.

First we note that the linear order of corrections introduced by the Bogoliubov

transformation for non-uniform cavity motion correlates modes only pairwise. Thus,

neglecting second order corrections can be considered as a two-mode truncation [42] and

we can restrict the analysis to only two modes k and k′ . Further assuming that the

initial state is represented by Γkk′ = 1 we write the transformed covariance matrix as

Γ̂kk′ = S ST = 1 + h Γ̂(1)

kk′ + O(h2) . (6.40)

The entanglement is determined by the smallest symplectic eigenvalue of the partial

transpose, in other words, the smallest positive entry of the diagonal matrix

iUΩ
^

Tk′ Γ̂kk′
^

Tk′U
† , (6.41)

where U is the diagonalizing unitary. In particular, since we start with a separable state

it is the correction term

iUΩ
^

Tk′ Γ̂
(1)

kk′

^

Tk′U
† = diag{±^ν (1)

− ,±^ν (1)

+ } (6.42)

that generates the entanglement, specifically, the quantity ^ν (1)

− , see Eq. (6.34). From

Eq. (6.40) it then follows immediately that N -fold repetition of a transformation sat-

isfying the resonance condition of Eq. (3.27) will produce a state represented by the

covariance matrix

(S)N (ST )N = (S ST )N = 1 + hN Γ̂(1)

kk′ + O(h2) . (6.43)

Consequently, the correction to the smallest symplectic eigenvalue afterN repetitions is

given by N^ν (1)

− . In other words, the entanglement production grows linearly with the

number of repetitions. Let us therefore investigate how the resonance condition can be

satisfied by inserting the expansions of (5.23)-(5.25) into (3.14), whilst restricting to the

two modes k and k′ . To linear order the commutator of the resonance condition (3.27)

has two independent non-zero entries

Re(G(0)

k −G
(0)

k′ ) Re(β (1)

kk′
) + Im(G(0)

k +G(0)

k′ ) Im(β (1)

kk′
) = 0 , (6.44a)

Re(G(0)

k −G
(0)

k′ ) Im(β (1)

kk′
) − Im(G(0)

k +G(0)

k′ ) Re(β (1)

kk′
) = 0 . (6.44b)
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The two conditions in (6.44) can be conveniently combined into the single requirement(
G(0)∗
k − G(0)

k′
)
β (1)

kk′
= 0 . (6.45)

Further noting that β (1)

kk′
needs to be non-zero to create entanglement at all [see Eq. (6.15)]

one finds that the resonances are purely governed by the phases that are acquired dur-

ing the free time evolution. For any mode pair k and k′ the arbitrary travel scenario

that is to be repeated has to be timed appropriately to satisfy (G(0)∗
k −G(0)

k′ ) = 0, i.e., the

duration of a single repetition as measured at the centre of the cavity has to take on one

of the discrete values

τn =
2πn

ωk + ωk′
, (6.46)

with n = 1, 2, 3, . . ., for which β (1)

kk′
takes on a non-zero value, see Ref. [42]. An illustra-

tion of the resonance peaks of the created entanglement for fixed mode pairs is shown

in Fig. 6.4.
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Figure 6.4: Entanglement resonances — β’s: The coefficient |β (1)

kk′
| that generates entan-

glement from the vacuum [see Eq. (6.15)] is plotted against the dimensionless parameter

u := hτ/[4L artanh(h/2)] for a massless (1 + 1) dimensional scalar field. The travel sce-

nario, which is illustrated in Fig. 6.5 (b) for N = 2 , has N segments of uniform proper

acceleration h/L and duration τ/2 as measured at the centre of the cavity, separated by

(N − 1) segments of inertial coasting of the same duration (to linear order in h). The

curves are plotted for N = 15, (k, k′) = (1, 2) (blue, solid) and (k, k′) = (2, 3) (purple,

dashed). The vertical dashed lines indicate the potential resonance times as given by

Eq. (6.46) for (k, k′) = (1, 2) and (k, k′) = (2, 3), respectively.

Subsequently, one may ask about possible resonances for states that are not de-

scribed by a covariance matrix that is proportional to the identity. For instance, in-

specting Eqs. (6.22) and (6.35) it seems that a strong increase of |β (1)

kk′
| [see Fig. 6.4 (a)]
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may also increase the entanglement that is produced from these states, but the role

of the coefficients α(1)

kk′
requires separate inspection. Indeed, a graphical analysis [see

(a)
1
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Figure 6.5: Entanglement resonances — α’s: The coefficient |α(1)

kk′
| that contributes to the

entanglement generation, e.g., for squeezed states [see Eqs. (6.22) and (6.35)] is plotted in

Fig. 6.5 (a) against the dimensionless parameter u := hτ/[4L artanh(h/2)] for a massless

(1 + 1) dimensional scalar field. The travel scenario, which is illustrated in Fig. 6.5 (b)

for N = 2 , has N segments of uniform proper acceleration h/L and duration τ/2 as

measured at the centre of the cavity, separated by (N − 1) segments of inertial coasting

of the same duration (to linear order in h). The curves in Fig. 6.5 (a) are plotted for

N = 15, (k, k′) = (1, 2) (blue, solid) and (k, k′) = (2, 3) (purple, dashed). For comparison

the quantity |β (1)

kk′
| (red, dashed) from Fig. 6.4 is shown for (k, k′) = (1, 2).
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Fig. 6.5 (a)] shows that some resonances occur for both the coefficients α(1)

kk′
and β (1)

kk′
,

which suggests that the entanglement production is significantly enhanced, growing

(at most) linearly with the number of repetitions, also for squeezed states and single

particle states.

Finally, following Ref. [47] we turn to the case of smoothly varying acceleration

discussed in Section 4.4.3. Let us assume that the proper acceleration at the centre of

the cavity is a sinusoidal function

ac(τ) = a0 sin(ωcτ) , (6.47)

with an amplitude a0 that is much smaller than the inverse length of the cavity. The ex-

pressions for the leading order Bogoliubov coefficients from Eqs. (4.90b) and (4.90c) are

oscillatory for an arbitrary value of the oscillation frequency ωc . However, for specific

choices of ωc two cases can be distinguished. If ωc = ωk + ωk′ the integral in (4.90c) for

the coefficient sβkk′ grows linearly with the overall time of acceleration. Such particle

creation resonances are at the heart of the dynamical Casimir effect (DCE). We refer the

interested reader to the recent review Ref. [64] and references therein. In particular, the

DCE has been investigated in a variety of media, such as Bose-Einstein condensates

(see, e.g., Ref. [115]), or superconducting microwave circuits [116, 123, 201].

On the other hand, for ωc = |ωk − ωk′ | we obtain a linear growth of the coeffi-

cient sαkk′ with increasing overall time of the oscillation. Such a mode-mixing resonance

could in principle be exploited for desktop experiments at mechanical frequencies [47],

as well as for entanglement generation, e.g., in simulations of cavity motion in mi-

crowave circuitry, see Refs. [89, (ix)] and [186].

Note that in all resonance scenarios that we have discussed here we are still lim-

ited by the perturbative regime. The overall perturbation to any quantity of interest

still needs to remain small if the approximations we have made are to hold. Nonethe-

less, the resonance formalism presents an elegant way of enhancing the corrections by

orders of magnitude, possibly even to observable levels.

6.3 Entanglement Generation in Fermionic States

In this section we study the entanglement generation between the modes of a Dirac

field that is confined to a non-uniformly moving cavity. Mirroring the analysis of the

bosonic case in Section 6.1 we start from the vacuum state in Section 6.3.1 before we

add particle content in Sections 6.3.2 and 6.3.3. In contrast to the bosonic situation two

practical issues already arise at this stage of the analysis. First, in the selection of the

131



CHAPTER 6: MOTION GENERATES ENTANGLEMENT

two modes between which entanglement generation is studied we have the choice be-

tween distinct particle and antiparticle modes. Second, in the partial tracing to recover

the reduced states of the two chosen modes the consistency conditions (3.42) have to be

respected, which requires tracing “inside-out." With these considerations in mind we

proceed with the vacuum state.

6.3.1 Entanglement from the Fermionic Vacuum

A quick inspection of the off-diagonal elements of Eq. (5.48) suggests to start by tracing

over all modes except a particle mode labelled by κ and an antiparticle mode labelled

by κ′ . Using (5.43) and (4.77c) one quickly arrives at

vac%κκ′ = Tr¬κ,κ′
(
|| 0 〉〉〈〈 0 ||

)
= || 0̂ 〉〉〈〈 0̂ || + h

[
G(0)

κ′ A
(1)∗
κκ′
|| 1̂κ 〉〉+|| 1̂κ′ 〉〉−〈〈 0̂ ||+ H. c.

]
+ h2

[
2f̄Aκ¬κ′ || 1̂κ 〉〉

++〈〈 1̂κ || + 2fAκ′¬κ || 1̂κ′ 〉〉
−−〈〈 1̂κ′ || − 2(f̄Aκ¬κ′ + fAκ′) || 0̂ 〉〉〈〈 0̂ || (6.48)

+ |A(1)

κκ′
|2 || 1̂κ 〉〉+|| 1̂κ′ 〉〉−−〈〈 1̂κ′ ||+〈〈 1̂κ || +

(
V (2)

κκ′
|| 1̂κ 〉〉+|| 1̂κ′ 〉〉−〈〈 0̂ || + H. c.

)]
+ O(h3) ,

where we have defined the abbreviations

fAm¬n = 1
2

∑
i≥0
i 6=n

|A(1)

mi|
2 , f̄Am¬n = 1

2

∑
i<0
i 6=n

|A(1)

mi|
2 . (6.49)

For two modes we may unambiguously map the two fermionic modes to two qubits,

see Section 3.2.4 and Ref. [86, (viii)], and compute entanglement measures such as

the negativity (see Definition 1.10) or the concurrence (1.17) with respect to the tensor

product of the two-qubit space. However, perturbative calculations of the concurrence

present practical difficulties, see Ref. [87, (iv)] or Section 7.2.1. It is thus more conve-

nient to compute the negativity instead, which allows for simple comparisons with our

previous results for bosons. Hence, we continue by representing the partial transpose

of the two-qubit state associated to Eq. (6.48) as1− h2 2(f̄A
κ¬κ′ + fA

κ′ ) 0 0 0

0 h2 2fA
κ′¬κ hG

(0)
κ′ A

(1)∗
κκ′ + h2 V(2)∗

κκ′ 0

0 hG
(0)∗
κ′ A

(1)
κκ′ + h2 V(2)

κκ′ h2 2f̄A
κ¬κ′ 0

0 0 0 h2 |A(1)
κκ′ |

2

 . (6.50)

Specializing to the case where (κ + κ′) is odd the linear corrections to the off-diagonal

elements persist and we find the corrections to the degenerate unperturbed eigenvalues

λ(0)

1,2,3 = 0 to linear order as {±h|A(1)

κκ′
|, 0} using the procedure from page 117. We thus

find the negativity that is generated from the fermionic vacuum to linear order in h ,

i.e.,

N (vac%κκ′) = hN (1)(vac%κκ′) + O(h2) = h |A(1)

κκ′
| + O(h2) . (6.51)
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Alternatively, we may select two modes with the same parity, (κ + κ′) even, such that

only corrections quadratic in h remain in (6.50). In this case the diagonalization of the

3 × 3 sub-block corresponding to the unperturbed eigenvalue 0 also has one possibly

negative eigenvalue and the negativity

N (vac%κκ′) = h2 max
{

0,

√(
f̄Aκ¬κ′ − fAκ′¬κ

)2
+ |V(2)

κκ′ |2 −
(
f̄Aκ¬κ′ + fAκ′¬κ

)}
+O(h3) (6.52)

is obtained, see Fig. 6.6. Note the similarity between the bosonic and fermionic case by

comparing Eq. (6.15) with (6.51), and Eq. (6.17) with (6.52), respectively.
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Figure 6.6: Entanglement generation — fermionic vacuum: The coefficients N (1) and

N (2) [see Eq. (6.51) and (6.52)] of the negativity generated from the fermionic vacuum

are plotted in Fig. 6.6 (a) and Fig. 6.6 (b), respectively, for the basic building block travel

scenario of Section 4.4.1. The effects for the (1 + 1) dimensional Dirac field used here are

periodic in the dimensionless parameter u := hτ/[4L artanh(h/2)] [see Eq. (4.52)], where

τ is the duration of the acceleration, as measured at the centre of the cavity. Curves

are shown for the modes (κ, κ′) = (0,−3), (2,−1) (solid), (0,−5), (4,−1) (dashed), and

(3,−2), (1,−4) (dotted) in Fig. 6.6 (a), and for (1,−1), (0,−2) (solid), (1,−3), (2,−2)

(dashed), and (0,−4), (3,−1) (dotted) in Fig. 6.6 (b).
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6.3.2 Entanglement from the Fermionic Particle State

Let us pursue the same strategy for the single fermion state as chosen before for the

fermionic vacuum in Section 6.3.1, i.e., we consider the density matrix of Eq. (5.51) and

trace over (see Section 3.2.3) all modes except for κ ≥ 0 and κ′ < 0 to arrive at

Tr¬κ,κ′
(
|| 1κ 〉〉++〈〈 1κ ||

)
= || 1̂κ 〉〉++〈〈 1̂κ || + h2

[
2 fAκ′¬κ || 1̂κ 〉〉

+|| 1̂κ′ 〉〉−−〈〈 1̂κ′ || +〈〈 1̂κ ||

− 2
(
fAκ′¬κ + fAκ

)
|| 1̂κ 〉〉++〈〈 1̂κ || + 2 fAκ || 0̂ 〉〉〈〈 0̂ || (6.53)

(for κ ≥ 0, κ′ < 0) −
(
G(0)∗
κ G(0)

κ′

∑
m≥0

A(1)

mκA
(1)∗
mκ′
|| 1̂κ 〉〉+|| 1̂κ′ 〉〉−〈〈 0̂ || + H. c.

)]
+O(h3) ,

where fAκ and fAκ′¬κ are as in Eq. (6.49). Mapping this state to two qubits it is quite

straightforward to see that the subspace of degenerate eigenvalues of the partial trans-

pose of has no negative corrections to second order in h . Thus, no entanglement is

generated from the state || 1κ 〉〉 between any chosen pair of modes with opposite sign

of frequency. However, we may select two modes of positive frequency instead, such

that κ, κ′ ≥ 0 . One then finds the reduced state

Tr¬κ,κ′
(
|| 1κ 〉〉++〈〈 1κ ||

)
= || 1̂κ 〉〉++〈〈 1̂κ || − h

[
V (1)

κκ′
|| 1̂κ 〉〉++〈〈 1̂κ′ || + H. c.

]
(6.54)

+ h2
[

2 fAκ¬κ′ || 0̂ 〉〉〈〈 0̂ || + |A(1)

κκ′
|2 || 1̂κ′ 〉〉++〈〈 1̂κ′ || −

(
fAκ + f̄Aκ′

)
|| 1̂κ 〉〉++〈〈 1̂κ ||

+ 2 f̄Aκ′ || 1̂κ 〉〉
+|| 1̂κ′ 〉〉++〈〈 1̂κ′ || +〈〈 1̂κ || −

(
V (2)

κκ′
|| 1̂κ 〉〉++〈〈 1̂κ′ || + H. c.

)]
+ O(h3) ,

(for κ, κ′ ≥ 0)

where we have used the Bogoliubov identities (4.77c) and (4.78c), and the definition of

the components Vpq (p ≥ 0, q < 0) has been extended to indices of all sign combina-

tions via their perturbative expansions in (5.43), such that the indices p and q can take

on both negative and non-negative values. For two fermionic modes we can consis-

tently represent (see Section 3.2.4) the reduced state to second order in h as a two-qubit

density matrix 1-κ%κκ′ with partial transpose
2h2 fAκ¬κ′ 0 0 −hV (1)∗

κκ′
− h2 V (2)∗

κκ′

0 h2 |A(1)

κκ′
|2 0 0

0 0 1 − h2 (fAκ + f̄Aκ′) 0

−hV (1)

κκ′
− h2 V (2)

κκ′
0 0 2h2 f̄Aκ′

 . (6.55)

If the modes κ and κ′ have opposite parity, (κ+ κ′) is odd, we find the negativity to be

N (1-κ%κκ′) = hN (1)(1-κ%κκ′) + O(h2) = h |A(1)

κκ′
| + O(h2) , (6.56)

formally the same expression as in Eq. (6.51), but with the appropriate non-negative
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value for κ′. Similarly, if the modes have the same parity, i.e., if (κ+κ′) is even, we find

N (1-κ%κκ′) = h2N (2)(1-κ%κκ′) + O(h3) (6.57)

= h2 max
{

0,

√(
fAκ¬κ′ − f̄Aκ′

)2
+ |V (2)

κκ′
|2 −

(
fAκ¬κ′ + f̄Aκ′

)}
+ O(h3) .

An illustration of the entanglement generated from || 1κ 〉〉+ is shown in Fig. 6.7.
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Figure 6.7: Entanglement generation — fermionic particle state: The coefficients N (1)

and N (2) [see Eq. (6.56) and (6.57)] of the negativity generated from || 1κ 〉〉+ are plotted

in Fig. 6.7 (a) and Fig. 6.7 (b), respectively, for the basic building block travel scenario of

Section 4.4.1. The effects for the (1 + 1) dimensional Dirac field used here are periodic

in the dimensionless parameter u := hτ/[4L artanh(h/2)] [see Eq. (4.52)], where τ is the

duration of the acceleration, as measured at the centre of the cavity. Curves are shown

for the modes (κ, κ′) = (0, 1) (solid), (1, 2) (dashed), (2, 3) (dotted), and (0, 3) (dotted-

dashed) in Fig. 6.7 (a), and for (0, 2) (solid), (1, 3) (dashed), (2, 4) (dotted), and (0, 4)

(dotted-dashed) in Fig. 6.7 (b).
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Entanglement from the Fermionic Antiparticle State

The analysis of Section 6.3.2 can be repeated step by step if we start instead from a

single-antiparticle state || 1κ̂ 〉〉− and trace over all modes except two modes κ̂, κ̂′ < 0 .

However, since the positive and negative frequency solutions appear symmetrically in

the spectrum (see Section 4.3) the corresponding results can be directly obtained by

setting κ and κ′ in Eq. (6.56) and (6.57) to |κ̂ + 1| and |κ̂′ + 1| . The same is true for the

sample plots in Fig. 6.7.

6.3.3 Entanglement from the Fermionic Particle-Antiparticle Pair

For the initial state || 1κ 〉〉+|| 1κ′ 〉〉− of a pair of one particle (κ ≥ 0) and one antiparticle

(κ′ < 0) we expand Eq. (5.55) to second order in h . Keeping terms proportional to h2

and tracing over all modes except κ and κ′ one arrives at the expression

Tr¬κ,κ′
(
|| 1κ 〉〉+|| 1κ′ 〉〉−−〈〈 1κ′ ||+〈〈 1κ ||

)
= || 1̂κ 〉〉+|| 1̂κ′ 〉〉−−〈〈 1̂κ′ ||+〈〈 1̂κ || (6.58)

− h
[
V (1)

κκ′
|| 1̂κ 〉〉+|| 1̂κ′ 〉〉−〈〈 0̂ || + H. c.

]
+ h2

[
|A(1)

κκ′
|2 || 0̂ 〉〉〈〈 0̂ || + 2 fAκ || 1̂κ′ 〉〉

−−〈〈 1̂κ′ ||

+ 2 f̄Aκ′ || 1̂κ 〉〉
++〈〈 1̂κ || −

(
2Aκ + 2 f̄Aκ′ + |A(1)

κκ′
|2
)
|| 1̂κ 〉〉+|| 1̂κ′ 〉〉−−〈〈 1̂κ′ || +〈〈 1̂κ ||

−
(
V (2)

κκ′
|| 1̂κ 〉〉+|| 1̂κ′ 〉〉−〈〈 0̂ || + H. c.

)]
+ O(h3) .

Comparing with the case for the fermionic vacuum one immediately finds the negativ-

ity

N (1-κ,1-κ′%κκ′) = hN (1)(1-κ,1-κ′%κκ′) + O(h2) = h |A(1)

κκ′
| + O(h2) , (6.59)

for modes with opposite parity, that is, if (κ + κ′) is odd, while mode pairs with equal

parity provide a correction to the negativity that is quadratic in h , i.e.,

N (1-κ,1-κ′%κκ′) = h2N (2)(1-κ,1-κ′%κκ′) + O(h3) (6.60)

= h2 max
{

0,

√(
fAκ − f̄Aκ′

)2
+ |V (2)

κκ′
|2 −

(
fAκ + f̄Aκ

)}
+ O(h3) .

Formally, these expressions are remarkably similar to the results for the fermionic vac-

uum in Eq. (6.51) and Eq. (6.52). In fact, the linear corrections are exactly the same

and one may consult Fig. 6.6 (a) for an illustration. The quadratic corrections, on the

other hand, are slightly different. The sums f̄Aκ and fAκ′ in Eq. (6.52) represent particle

creation coefficients, while the quantities fAκ and f̄Aκ′ in Eq. (6.60) are responsible for

shifting excitations from the mode κ (κ′) to other positive (negative) frequency modes

— mode mixing α-type coefficients. This alteration makes for all the difference: even

for a choice of modes with minimal energy for a (1 + 1) dimensional Dirac field the
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entanglement generation by the particle creation coefficient |V (2)

κκ′
| cannot compete with

the much larger contributions by fAκ and f̄Aκ′ that add noise to the reduced state. The

partial transpose of the two-qubit density matrix representing the state (6.58) has one

possibly negative eigenvalue, but graphical analysis shows it remains non-negative,

see Fig. 6.8. For higher dimensions, higher mode numbers, or increased mass, the

noise introduced by fAκ and f̄Aκ′ will only increase. Consequently, no entanglement is

created from the state || 1κ 〉〉+ || 1κ′ 〉〉− for mode pairs (κ, κ′) with equal parity.

0.2 0.4 0.6 0.8 1.0
u

0.2

0.4

0.6

0.8

Λ-�h2

Figure 6.8: Entanglement generation — fermionic particle-antiparticle pair: The sec-

ond order coefficient of the only possibly negative eigenvalue λ− = h2[fAκ + f̄Aκ ] −
h2
√

[fAκ − f̄Aκ′ ]2 + |V (2)

κκ′
|2 of the partial transpose of the two qubit representation for the

state Eq. (6.58) is shown. Curves are plotted for the basic building block travel sce-

nario of Section 4.4.1 for a (1 + 1) dimensional Dirac field against the dimensionless

parameter u := hτ/[4L artanh(h/2)] [see Eq. (4.52)], where τ is the duration of the ac-

celeration, as measured at the centre of the cavity. Curves are shown for the modes

(κ, κ′) = (1,−1), (0,−2), (0,−4), (3,−1) (solid), and (1,−3), (2,−2) (dashed). Since the

correction is positive throughout no entanglement is generated.

6.4 Generation of Genuine Multipartite Entanglement

The investigation carried out up to this point has revealed that entanglement is cre-

ated by the non-uniform motion between pairs of modes of the quantum fields. The

amount of entanglement and, indeed, if any entanglement is created at all, depends

on the choice of initial state and chosen modes. In particular, the fermionic systems

suffer from limitations in the creation of entanglement due to the Pauli exclusion prin-

ciple, while bosonic systems are more susceptible to the required particle creation and

shifting of excitations. Conceptually, it is of further interest to learn how the quantum
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correlations connect more than two modes. We may ask if and how genuine multipartite

entanglement (GME) emerges from the Bogoliubov transformations. The analysis here

is based on material published in Ref. [84, (vi)]. For simplicity we restrict our deliber-

ations to the multipartite entanglement of the transformed vacuum states, the bosonic

vacuum in Section 6.4.1, and the fermionic counterpart in Section 6.4.2. It is further

useful to recall the discussion of Section 1.4 for the basic concepts and definitions.

6.4.1 Genuine Multipartite Entanglement — Bosonic Vacuum

For the case of bosonic GME we return to the transformed vacuum state of Eq. (5.17)

and we reduce the state to three modes, k, k′, and k′′. At this stage we specialize to

the case where not all three modes have the same parity. Without loss of generality we

pick (k + k′) and (k′ + k′′) to be odd, which implies that (k + k′′) is even, such that the

first order coefficient V (1)

kk′′
as well as the second order coefficients V (2)

kk′
and V (2)

k′k′′
vanish.

One then obtains the reduced state

vacρkk′k′′ := Tr¬k,k′,k′′
(
| 0 〉〈 0 |

)
= | 0̂ 〉〈 0̂ | − h

[
V (1)

kk′
| 1̂k 〉| 1̂k′〉〈 0̂ |+ V (1)

k′k′′
| 1̂k′〉| 1̂k′′〉〈 0̂ |

+ H. c.
]

+ h2
[
2fβk¬k′ | 1̂k 〉〈 1̂k |+ 2fβk′¬k,k′′ | 1̂k′〉〈 1̂k′|+ 2fβk′′¬k′ | 1̂k′′〉〈 1̂k′′| − 2

(
fβk¬k′

+ fβk′¬k′′ + fβk′′
)
| 0̂ 〉〈 0̂ |+ |β (1)

kk′
|2 | 1̂k 〉| 1̂k′〉〈 1̂k′|〈 1̂k |+ |β (1)

k′k′′
|2 | 1̂k′〉| 1̂k′′〉〈 1̂k′′|〈 1̂k′|

+
(
V (2)

kk′′
| 1̂k 〉| 1̂k′′〉〈 0̂ |+ 1√

2
V (2)

kk | 2̂k 〉〈 0̂ |+ 1√
2
V (2)

k′k′
| 2̂k′〉〈 0̂ |+ 1√

2
V (2)

k′′k′′
| 2̂k′′〉〈 0̂ |

+ (V (1)

kk′
)2 | 2̂k 〉| 2̂k′〉| 0̂ 〉+ (V (1)

k′k′′
)2 | 2̂k′〉| 2̂k′′〉| 0̂ 〉+

√
2V (1)

kk′
V (1)

k′′k′
| 1̂k 〉| 2̂k′〉| 1̂k′′〉〈 0̂ |

+
∑
p 6=k′

V (1)

pk V
(1)

pk′′
| 1̂k 〉〈 1̂k′′| + H. c.

)]
+ O(h3) , (6.61)

where V (1)

mn and V (2)

mn are given by (5.8b) and (5.8c), respectively. In the face of the com-

plicated decomposition of the reduced state (6.61) a simple method for the detection of

GME is invaluable. It is particularly convenient to invoke the GME witness inequalities

of Theorem 1.4. Keeping terms proportional to h2 in the Taylor-Maclaurin expansion

effectively truncates the problem at hand to a three qutrit system, i.e., each mode is

mapped to a three dimensional Hilbert space. For this situation we use the techniques

from [92, 129, 206] to construct the particular witness inequality [84]

2
( ∣∣〈 0̃ | vacρkk′k′′ | 1̃k 〉 | 2̃k′ 〉 | 1̃k′′ 〉

∣∣− √〈 1̃k | vacρkk′k′′ | 1̃k 〉 〈 1̃k′′ | 〈 2̃k′ | vacρkk′k′′ | 2̃k′ 〉 | 1̃k′′ 〉

−
√
〈 1̃k′′ | vacρkk′k′′ | 1̃k′′ 〉 〈 2̃k′ | 〈 1̃k | vacρkk′k′′ | 1̃k 〉 | 2̃k′ 〉 (6.62)

−
√
〈 2̃k′ | vacρkk′k′′ | 2̃k′ 〉 〈 1̃k′′ | 〈 1̃k | vacρkk′k′′ | 1̃k 〉 | 1̃k′′ 〉

)
≤ 0 .
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As we have discussed in Section 1.4 such inequalities are always satisfied by any bi-

separable states and their violation therefore unambiguously detects GME. Moreover,

the violation of this type of inequality can be regarded as a lower bound to actual

measures of GME, see Refs. [206]. Performing the perturbative expansion of Eq. (6.62)

we find the simple inequality

2
∣∣〈 0̂ | vacρkk′k′′ | 1̂k 〉| 2̂k′〉| 1̂k′′〉

∣∣ − O(h3) = 2
√

2h2 |β (1)

kk′
| |β (1)

k′k′′
| − O(h3) ≤ 0 . (6.63)

We find that the inequality indeed is generally violated, showing that GME is created

between the three chosen modes by coherently exciting pairs of particles in (k, k′) and

(k′, k′′). Moreover, a quick glance at Fig. 6.4 reveals that joint entanglement resonances

can occur. For instance, the individual coefficients |β (1)

kk′
| and |β (1)

k′k′′
| for a massless

scalar field in (1 + 1) dimensions increase linearly with the number of repetitions of

some basic travel scenario when the basic travel time (as measured at the centre of the

cavity) is τ = 2nL/(k+k′) or τ = 2mL/(k′+k′′), n,m ∈ N+, respectively, see Eq. (6.46).

Both of these resonances coincide if n = p(k+k′) andm = p(k′+k′′), such that τ = 2pL,

p ∈ N+, see Fig. 6.4.

At this resonance time, which happens to be independent of the chosen modes, the

lower bound on the GME increases quadratically with the number N of repetitions of

the basic travel scenario. Simultaneously, the terms fβk¬k′ , f
β
k′¬k,k′′ , and fβk′′¬k′ , which in-

troduce mixedness into the reduced state, scale quadratically at the mode-independent

resonance. Nonetheless, the validity of the perturbative approach is guaranteed be-

cause all second order terms are at most proportional to N2h2 � Nh, which in turn is

required to be much smaller than 1 if the perturbative approach is to be justified.

6.4.2 Genuine Multipartite Entanglement — Fermionic Vacuum

For the fermionic counterpart of the situation studied in Section 6.4.1 we may also

select three modes κ, κ′, and κ′′, that do not all have the same parity. In addition, we

now have the choice between positive and negative frequency modes. The analysis

of Section 6.3.1 taught us that entanglement is generated from the vacuum between

modes of opposite frequency sign. We thus choose two positive frequency modes, κ ≥
0 and κ′ ≥ 0, of the same parity, (κ+κ′) is even, while the third mode κ′′ < 0 is selected

from the negative frequencies such that it has opposite parity to the particle modes,

i.e., (κ + κ′′) and (κ′ + κ′′) are odd. Tracing out all other modes from the transformed
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vacuum of Eq. (5.48) we arrive at

vac%κκ′κ′′ = Tr¬κ,κ′κ′′
(
|| 0 〉〉〈〈 0 ||

)
= || 0̂ 〉〉〈〈 0̂ || + h

[
V (1)

κκ′′
|| 1̂κ 〉〉+|| 1̂κ′′ 〉〉−〈〈 0̂ || (6.64)

+ V (1)

κ′κ′′
|| 1̂κ′ 〉〉+|| 1̂κ′′ 〉〉−〈〈 0̂ || + H. c.

]
+ h2

[
− 2

(
f̄Aκ¬κ′′ + f̄Aκ′¬κ′′ + fAκ′′

)
|| 0̂ 〉〉〈〈 0̂ ||

+ 2 f̄Aκ¬κ′′ || 1̂κ 〉〉
++〈〈 1̂κ || + 2 f̄Aκ′¬κ′′ || 1̂κ′ 〉〉

++〈〈 1̂κ′ || + 2 fAκ′′¬κ,κ′ || 1̂κ′′ 〉〉
−−〈〈 1̂κ′′ ||

+ |A(1)

κκ′′
|2 || 1̂κ 〉〉+|| 1̂κ′′ 〉〉−−〈〈 1̂κ′′ ||+〈〈 1̂κ ||+ |A(1)

κ′κ′′
|2 || 1̂κ′ 〉〉+|| 1̂κ′′ 〉〉−−〈〈 1̂κ′′ ||+〈〈 1̂κ′ ||

+
(
V (1)

κκ′′
V (1)∗
κ′κ′′
|| 1̂κ 〉〉+|| 1̂κ′′ 〉〉−−〈〈 1̂κ′′ ||+〈〈 1̂κ′ ||+

∑
q<0
q 6=κ′′

V (1)

κq V
(1)∗
κ′q
|| 1̂κ 〉〉++〈〈 1̂κ′ ||+ H. c.

)]
+O(h3).

At this stage an impasse is reached. As we have argued in Section 3.2.5, three fermionic

modes cannot in general be consistently mapped to three qubits without changing

the entanglement properties. However, the specific structure of the Bogoliubov trans-

formations at hand removes some of the otherwise possible elements in the state of

Eq. (6.64) as compared to Eq. (3.58). As it happens, this difference is already enough to

allow us to write down a consistent three-qubit density matrix representation of (6.64)

keeping only terms up to order h2, i.e.,



1− 2h2
(
f̄A
κ¬κ′′ + f̄A

κ′¬κ′′ + fA
κ′′
)

0 0 hV(1)∗
κ′κ′′ 0 hV(1)∗

κκ′′ 0 0

0 2h2fA
κ′′¬κ,κ′ 0 0 0 0 0 0

0 0 2h2f̄A
κ′¬κ′′ 0 h2

∑
q<0
q 6=κ′′

V(1)∗
κq V

(1)
κ′q 0 0 0

hV(1)
κ′κ′′ 0 0 h2|A(1)

κ′κ′′|2 0 h2V(1)∗
κκ′′ V

(1)
κ′κ′′ 0 0

0 0 h2
∑
q<0
q 6=κ′′

V(1)
κq V

(1)∗
κ′q 0 2h2f̄A

κ¬κ′′ 0 0 0

hV(1)
κκ′′ 0 0 h2V(1)

κκ′′V
(1)∗
κ′κ′′ 0 h2|A(1)

κκ′′ |2 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



.

(6.65)

In other words, all reductions of the fermionic three-mode state (6.64) are equiva-

lent to the corresponding partial traces of the three-qubit density matrix (6.65). This

allows us to employ a witness inequality for GME. However, since we are dealing

with fermions restricted by the Pauli exclusion principle the particular witness used

in Eq. (6.62) will be of no use. Instead we use the techniques described in Ref. [112]

to construct a witness. For convenience let us map the three-qubit witness for genuine
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tripartite entanglement back to the three fermionic modes and write it as∣∣∣〈〈 0̂ || vac%κκ′κ′′ || 1̂κ 〉〉+|| 1̂κ′′ 〉〉−
∣∣∣ +

∣∣∣〈〈 0̂ || vac%κκ′κ′′ || 1̂κ′ 〉〉+|| 1̂κ′′ 〉〉−
∣∣∣−√〈〈 0̂ || vac%κκ′κ′′ || 0̂ 〉〉

×
√
−〈〈 1̂κ′′ ||+〈〈 1̂κ || vac%κκ′κ′′ || 1̂κ 〉〉+|| 1̂κ′′ 〉〉− + −〈〈 1̂κ′′ ||+〈〈 1̂κ′ || vac%κκ′κ′′ || 1̂κ′ 〉〉+|| 1̂κ′′ 〉〉−

−
√
−〈〈 1̂κ′′ || vac%κκ′κ′′ || 1̂κ′′ 〉〉− +〈〈 1̂κ′ || vac%κκ′κ′′ || 1̂κ′ 〉〉+ −

√
−〈〈 1̂κ′′ || vac%κκ′κ′′ || 1̂κ′′ 〉〉−

×
√

+〈〈 1̂κ || vac%κκ′κ′′ || 1̂κ 〉〉+ ≤ 0 . (6.66)

As previously, the inequality is satisfied for all bi-separable pure states and its valid-

ity is extended to mixed states by the virtue of the convexity of the absolute value,

see Eq. (1.25a), and the concavity of the square roots of the density matrix elements, see

Eq. (1.25b). This means that a positive value for the right hand side of (6.66) unambigu-

ously detects GME. We insert the perturbative expansion of the transformed vacuum

state of Eq. (6.64) to reduce the witness inequality to

|A(1)

κκ′′
| + |A(1)

κ′κ′′
| −

√
|A(1)

κκ′′
|2 + |A(1)

κ′κ′′
|2 + O(h) ≤ 0 . (6.67)

One can then use the triangle inequality to see that Eq. (6.67) can be violated when-

ever A(1)

κκ′′
and A(1)

κ′κ′′
are both nonzero. Hence, we find that even though no mode can

be occupied by more than one excitation it is nonetheless the combination of the co-

efficients that create bipartite entanglement between κ and κ′′, as well as κ′ and κ′′,

respectively, that are responsible for the generation of genuine tripartite entanglement

from the fermionic vacuum.

We can thus conclude this chapter noting that both bipartite and genuine multipar-

tite entanglement are created from a variety of initial states. The Bogoliubov transfor-

mations correlate modes depending on their relative parity and energy levels. Most

importantly, entanglement can be created between specific modes by selecting appro-

priate travel scenarios, see Section 6.2.2, which may be used to verify the quantumness

of the created radiation. In other words, the entanglement that is produced may serve

as a clear indicator of the origin of the produced radiation being a quantum field theory

effect.

The transformations induced by the motion of the cavity may further be interpreted

as quantum gates — weak two-mode squeezing [42] or beam-splitting gates [47], or even

as gates generating GME states [84, (vi)]. This, in turn, is of conceptual interest and can

be considered to be a first step towards the possible future implementation of quantum

information processing on the basis of relativistic motion, possibly complemented by

alternative approaches [132].
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All modes that are being traced over, e.g., which we do not have access to due

to limited measurement possibilities, add to the mixedness of the reduced state since

information about their correlations with the modes under scrutiny is lost. It is exactly

this issue that leads to the entanglement degradation that will be discussed in the final

Chapter 7.
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CHAPTER 7

Degradation of Entanglement

between Moving Cavities

The previous chapters have analyzed the entanglement generation between the modes

of quantum fields that are confined to non-uniformly moving cavities. We have argued

that, indeed, the radiation produced due to the transitions between orbits of different

Killing vector fields (see Section 4.1) is entangled for most initial states and chosen

pairs of modes. Such effects may be of interest to identify effects of quantum field the-

ory by distinguishing the produced particles from uncorrelated background noise, see,

e.g., Refs. [201] and [43, (xi)]. In principle, the entanglement that is being produced is

distillable and could be utilized for quantum information tasks. The transformations

effectively act as weak entangling gates on pairs of modes [42, 84], but the perturbative

approach limits the practical applications for this scheme of entanglement generation

as a resource. However, as we shall see in this chapter, the motion of the cavities may

influence quantum information processing tasks in a different way.

Let us now consider two cavities, controlled by the observers Alice and Rob, respec-

tively, see Fig. 7.1. Alice and Rob wish to use entanglement between their cavities as

a resource for quantum communication tasks, for instance, for quantum teleportation

(see Sections 1.5.3, 7.1.3 and 7.2.2). For practical reasons the entanglement shared be-

tween the cavities will be restricted to certain finite sets of modes that are controlled by

the observers. For the sake of the argument let us consider entanglement between one

mode in each cavity only. The entanglement generation inside individual cavities then

entangles the selected modes with all other modes in the respective spectra. Since Alice

and Rob do not have access to the entire spectrum of their cavities, information is lost

and the resource entanglement between their initial modes is degraded. This process

may be interpreted as decoherence, and is indeed a consequence of the monogamy of

entanglement (see page 19).
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Rob in-region

out-region

Alice

x

t

Figure 7.1: Quantum communication between two cavities: Alice and Rob each control

a cavity containing a quantum field. They share an initially entangled state between one

mode in each cavity to be used in a quantum communication task, e.g., quantum tele-

portation. Rob’s cavity is undergoing non-uniform motion, which entangles all modes

in the spectrum of his cavity. Consequently the entanglement shared between Alice and

Rob is degraded by the motion.

In the following we shall make this phenomenological description more precise. In

Section 7.1 we analyze the entanglement degradation between two types of entangled

initial states for the scalar field — Bell-states (based on results presented in Ref. [44])

and two-mode squeezed states (based on Ref. [89, (ix)]), accompanied by an application

to the continuous variable teleportation protocol in Section 7.1.3. We finalize the investi-

gation of the bosonic case with a brief look at a simulation in superconducting circuits in

Section 7.1.4. At last we perform the corresponding analysis for the Dirac field as inves-

tigated in Ref. [87, (iv)], including effects on teleportation and Bell inequality violation,

in Section 7.2.

7.1 Entanglement between Two Bosonic Cavities

7.1.1 Bosonic Bell States

For the scalar field we start with the Bell states φ+ and φ− from Eq. (1.13a) between two

selected modes, k in Alice’s cavity and k′ in Rob’s cavity, i.e.,

| φ± 〉
AR

= 1√
2

(
| 0 〉

A
⊗ | 0 〉

R
± | 1k 〉A ⊗ | 1k′ 〉R

)
, (7.1)
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where we have written the tensor product explicitly to point out that particles in the

two cavities are now distinguishable by their association to either Alice’s or Rob’s cav-

ity. The corresponding in-region density operator is then given by

ρ±AR = 1
2

(
| 0 〉〈 0 | ⊗ | 0 〉〈 0 | ± | 0 〉〈 1k | ⊗ | 0 〉〈 1k′ | (7.2)

± | 1k 〉〈 0 | ⊗ | 1k′ 〉〈 0 | + | 1k 〉〈 1k | ⊗ | 1k′ 〉〈 1k′ |
)
,

and we have dropped the label for Alice’s and Rob’s cavity and assume that the po-

sition in the tensor product is sufficient for this distinction. Rob now undergoes non-

uniform motion as described in Chapter 4, which means that we have to transform the

right hand sides of the tensor products in Eq. (7.2) to the out-region. The expressions

for the transformed versions of the projectors | 0 〉〈 0 | and | 1k′ 〉〈 1k′ |were already ob-

tained in Chapter 5 and are given by Eq. (5.17) and, with appropriate relabelling, by

Eq. (5.20). For the off-diagonal matrix element | 0 〉〈 1k′ | we combine Eq. (5.16) with

the Hermitean conjugate of Eq. (5.19) with the relabelling k → k′. Subsequently we

trace over all of Rob’s modes except k′ and we obtain the transformed matrix element

Tr¬k′
(
| 0 〉〈 1k′ |

)
= G(0)

k′ | 0̂ 〉〈 1̂k′|+ h2G(0)

k′

[
(G(0)∗

k′ α
(2)

k′k′
− 4fβk′) | 0̂ 〉〈 1̂k′| − gαβk′k′ | 1̂k′〉〈 0̂ |

+ 2
√

2 fβk′ | 1̂k′〉〈 2̂k′| +
√

2V (2)

k′k′
| 2̂k′〉〈 1̂k′| +

√
3
2 V

(2)∗
k′k′
| 0̂ 〉〈 3̂k′|

]
+ O(h3) , (7.3)

where we have used the abbreviations gαβk′k′ and fβk′ from Eqs. (6.25) and Eq. (6.2), re-

spectively, and V (2)

k′k′
is given by Eq. (5.8c). The partial traces of the transformed diago-

nal elements | 0 〉〈 0 | and | 1k′ 〉〈 1k′ | are most easily obtained from Eq. (6.1) and, again

with appropriate relabelling, from Eq. (6.18), respectively. We obtain

Tr¬k′
(
| 0 〉〈 0 |

)
= | 0̂ 〉〈 0̂ | + h2

[
−2fβk′ | 0̂ 〉〈 0̂ | + 2fβk′ | 1̂k′〉〈 1̂k′| (7.4a)

+ 1√
2

(
V (2)∗
k′k′
| 0̂ 〉〈 2̂k′| + H. c.

) ]
+ O(h3) ,

Tr¬k′
(
| 1k′ 〉〈 1k′ |

)
= | 1̂k′〉〈 1̂k′| + h2

[
2fαk′ | 0̂ 〉〈 0̂ | − 2

(
fαk′ + 2fβk′

)
| 1̂k′〉〈 1̂k′| (7.4b)

+ 4fβk′ | 2̂k′〉〈 2̂k′| −
(√

2(G(0)

k′ )2gαβ∗k′k′ | 0̂ 〉〈 2̂k′| + H. c.
) ]

+ O(h3) ,

where we have also used the shorthand fαk′ from Eq. (6.19). Inserting Eqs. (7.3) and (7.4)

into Tr¬k,k′(ρ±AR) we find that the perturbative expansion truncates the transformed

state to a 2 × 4 dimensional system. Since we are now dealing with a mixed state we

can quantify the entanglement of the transformed state via the negativity (see Defini-

tion 1.10). As can be easily seen from Eq. (7.2) the unperturbed partial transposition

has three positive eigenvalues λ+ = 1
2 and one negative eigenvalue λ− = −1

2 , while

all other eigenvalues vanish, regardless of the sign in | φ± 〉 of Eq. (7.1). The subspace
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of the vanishing unperturbed eigenvalues contains only one positive correction 4h2fβk′ .

The positive unperturbed eigenvalues cannot be turned into negative eigenvalues by

the small perturbative corrections. Hence, the only correction to the negativity stems

from the leading order perturbation to the unperturbed, non-degenerate eigenvalue

λ− = −1
2 . Following the prescription detailed on page 117 we quickly get the corrected

value of the negativity as reported in Ref. [44]

N (ρ±AR) = N (0) − h2N (2) + O(h3) = 1
2 − h2 (2fβk′ + fαk′) + O(h3) , (7.5)

where we have used Eq. (4.78a). The entanglement is thus degraded by information

loss due to the generation of particle pairs, where one constituent is created in Rob’s

mode k′, as well as information loss due to the possibility of shifting excitations from

the mode k′ to other energy levels in Rob’s cavity. The coefficients fαk′ and fβk′ that are

degrading the entanglement are illustrated in Fig. 7.2 and Fig. 7.3, respectively.

7.1.2 Two-Mode Squeezed States

Although the Bell state that we have analyzed in Section 7.1.1 is a simple example for

an entangled two-mode state, more general entangled states — two-mode squeezed states

(see Section 3.1.3), with superpositions of various particle numbers are allowed. For

convenience we shall switch again from the Fock space treatment to the phase space

and work with the covariance matrix only. As we have explained in Section 3.1 the

covariance matrix encodes all relevant information about the entanglement between

modes of Gaussian states. Let us assume now that Alice and Rob are sharing a two-

mode squeezed state between their modes k (Alice) and k′ (Rob), represented by the

covariance matrix ΓTMS(r) from Eq. (3.19) that is decomposed into 2× 2 blocks, i.e.,

ΓTMS(r) =

(
Γk Ckk′

CT
kk′ Γk′

)
, (7.6)

where Γk = Γk′ = cosh(2r)12 , Ckk′ = sinh(2r)σ3 , and σ3 is the third Pauli matrix from

Eq. (1.9). Now we employ the formalism of Section 3.1.2 to transform the covariance

matrix to the out-region after Rob has undergone non-uniform motion. The 2×2 blocks

of the out-region covariance matrix Γ̂TMS(r) are given by Γ̂k = Γk ,

Γ̂k′ = cosh(2r)Mk′k′MT
k′k′ +

∑
n6=k′
Mm′nMT

k′n , (7.7)

and Ĉkk′ = Ckk′MT
k′k′ , where the matricesMmn are decomposed into the correspond-

ing Bogoliubov coefficients according to Eq. (3.15). We then proceed with the pertur-

bative expansion of these blocks by inserting the expansions from (4.76a) and (4.76b).
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We find

Γ̂k′ = Γ̂(0)

k′ + h2 Γ̂(2)

k′ + O(h3) , (7.8a)

Ĉkk′ = Ĉ (0)

kk′ + h2 Ĉ (2)

kk′ + O(h3) , (7.8b)

where the leading order is given by Γ̂(0)

k′ = Γk and

Ĉ (0)

kk′ = sinh(2r)

(
cos(ωk′ τ̃) − sin(ωk′ τ̃)

− sin(ωk′ τ̃) − cos(ωk′ τ̃)

)
, (7.9)

with ωk′ from Eq. (4.7) and τ̃ is the proper time at the centre of the cavity (see Sec-

tion 4.1). Note that we have not included the time evolution of the mode k in Alice’s

cavity here explicitly but this may be achieved by replacing ωk′ τ̃ by (ωk′ τ̃+ωkτ̃A), where

ωk is the frequency of the mode k and τ̃A is Alice’s proper time. The coefficients of the

corrections that are quadratic in h are

Γ̂(2)

k′ = 2 cosh(2r)

(
fβk′ − f

α
k′ − Re

(
G(0)

k′ β
(2)

k′k′
)

Im
(
G(0)

k′ β
(2)

k′k′
)

Im
(
G(0)

k′ β
(2)

k′k′
)

fβk′ − f
α
k′ + Re

(
G(0)

k′ β
(2)

k′k′
)) (7.10a)

+ 2

(
fαk′ + fβk′ + Re

[
(G(0)

k′ )2gαβ∗k′k′
]

− Im
[
(G(0)

k′ )2gαβ∗k′k′
]

− Im
[
(G(0)

k′ )2gαβ∗k′k′
]

fαk′ + fβk′ − Re
[
(G(0)

k′ )2gαβ∗k′k′
]) ,

Ĉ (2)

kk′ = sinh(2r)

(
Re
(
α(2)

k′k′
− β (2)

k′k′
)
− Im

(
α(2)

k′k′
− β (2)

k′k′
)

− Im
(
α(2)

k′k′
+ β (2)

k′k′
)
−Re

(
α(2)

k′k′
+ β (2)

k′k′
)) , (7.10b)

where fαk′ and fβk′ are given by Eqs. (6.19) and (6.2), respectively, while gαβk′k′ is as in

Eq. (6.25), and we have used the Bogoliubov identity of Eq. (4.78a). As expected from

our deliberations in Chapter 6 the reduced state of the two modes k and k′ is mixed, as

can be seen from the determinant of Γ̂TMS(r) [see Eq. (6.37)], which is found to be

det
(
Γ̂TMS

)
= 1 + 4h2

([
cosh(2r) + 1

]
fβk′ +

[
cosh(2r)− 1

]
fαk′
)

+ O(h3) . (7.11)

The perturbative nature of the calculation demands that the corrections do not dras-

tically change the state, in particular, the mixedness. From Eq. (7.11) it can be seen

that this imposes the restriction e2|r|h2 � 1. Let us now proceed by evaluating the en-

tanglement of the transformed state. Since the transformed state is a mixed Gaussian

two-mode state, but it is not symmetric, we again employ the negativity (see Defini-

tion 1.10). More specifically, we use Eq. (3.22b), which means we have to determine the

perturbative corrections to the smallest symplectic eigenvalue of the partial transpose. The

eigenvalues of the unperturbed matrix iΩ
^

Tk′ Γ̂
(0)
TMS

^

Tk′ are found to be {±e2r,±e−2r}.
When sgn(r) = ±1 the smallest positive eigenvalue is given by e∓2r. The correspond-

ing eigenvectors are

| ^ν (0)

− 〉 = 1
2

(
∓iG(0)∗

k′ , ∓G
(0)∗
k′ , i, 1

)T
. (7.12)
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Since the eigenvalues are non-degenerate and the leading order corrections to the co-

variance matrix are quadratic in h we expect an expansion of the form

^ν− = ^ν (0)

− + h2 ^ν (2)

− + O(h3) , (7.13)

and we can compute the correction to the smallest symplectic eigenvalue of the partial
transpose as the expectation value [89, (ix)]

^ν (2)

− = 〈 ^ν (0)

− | iΩ
^

Tk′ Γ̂
(2)
TMS

^

Tk′ | ^ν (0)

− 〉 = (1 − e−2|r|)fαk′ + (1 + e−2|r|)fβk′ , (7.14)

where we have again used the identity (4.78a) in the last step. The result depends on

the value of the squeezing parameter r but its validity is limited by the perturbative

approach. In particular the small corrections cannot remove the non-degeneracy of the

symplectic eigenvalues of the partial transpose, such that h2 � sinh(2|r|). With this in

mind we finally obtain the corrected negativity

N (Γ̂TMS) = N (0) − h2N (2) + O(h3) (7.15)

= 1
2

(
e2|r| − 1

)
− h2 e2|r|

(
1
2

[
e2|r| − 1

](
fβk′ + fαk′

)
+ fβk′

)
+ O(h3) .

Illustrations of the functions fαk′ and fβk′ that are responsible for the entanglement degra-

dation are shown in Fig. 7.2 and Fig. 7.3, respectively.

0.2 0.4 0.6 0.8 1.0
u

0.5

1.0

1.5

2.0

2.5

f Α

k'

Figure 7.2: Entanglement degradation — fαk′ : The coefficient fαk′ that is degrading the

entanglement between Alice and Rob as quantified by the negativity [see Eq. (7.5) and

Eq. (7.15)] is plotted for the basic building block travel scenario of Section 4.4.1 for a

(1 + 1) dimensional massless scalar field. The effects are periodic in the dimensionless

parameter u := hτ/[4L artanh(h/2)] [see Eq. (4.20)], where τ is the duration of the uni-

form acceleration, as measured at the centre of the cavity. Curves are shown for the

modes k′ = 1 (solid), k′ = 2 (dashed), k′ = 3 (dotted), and k′ = 4 (dotted-dashed).
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Figure 7.3: Entanglement degradation — fβk′ : The coefficient fβk′ that is degrading the

entanglement between Alice and Rob as quantified by the negativity [see Eq. (7.5) and

Eq. (7.15)] is plotted for the basic building block travel scenario of Section 4.4.1 for a

(1 + 1) dimensional massless scalar field. The effects are periodic in the dimensionless

parameter u := hτ/[4L artanh(h/2)] [see Eq. (4.20)], where τ is the duration of the uni-

form acceleration, as measured at the centre of the cavity. Curves are shown for the

modes k′ = 1 (solid), k′ = 2 (dashed), k′ = 3 (dotted), and k′ = 4 (dotted-dashed).

7.1.3 Fidelity of Teleportation

The entanglement between Alice’s mode k and Rob’s mode k′ is degraded due to the

non-uniform motion. For practical reasons we have used the negativity to quantify the

loss of correlations even though this measure does not have a direct operational inter-

pretation. Now we wish to place this result in the context of a practical application —

the teleportation protocol (see pp. 49). We wish to analyze the influence of the entangle-

ment degradation on the teleportation scheme that is illustrated in Fig. 7.4. The fidelity

of the teleportation protocol for Gaussian states is given by Eq. (3.25) (see Ref. [131]).

We insert the perturbative expansions of the transformed covariance matrix elements

from Eqs. (7.8)-(7.10) into Eq. (3.25) to obtain the expression

F(Γ̂TMS) = F (0) − h2F (2) + O(h3) , (7.16)

where the coefficients are found to be

F (0) =
(
1 + cosh(2r) − cos(ωk′ τ̃ + ωkτ̃A) sinh(2r)

)−1
, (7.17a)

F (2) =
(
F (0)

)2(
1 + e−2r

)[
fβk′ + fαk′ tanh(2r)

]
. (7.17b)

We have specifically included the time evolution of Alice’s mode in Eq. (7.17b) and one

should note that the phases accumulated by both modes k and k′ affect the un-
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Figure 7.4: Quantum teleportation between two cavities: Alice and Rob wish to use the

initially shared entanglement that is supplied by the EPR source to teleport an unknown

coherent state. After the initial state has been prepared Alice performs a Bell measure-

ment on the (unknown) state that is to be teleported and her mode k of the entangled

resource state. Subsequently, she sends the measurement outcomes to Rob via a classical

channel. Meanwhile, Rob undergoes a finite period of non-uniform motion, after which

he receives the classical information necessary to retrieve the unknown input state by

performing a local unitary U . By measuring their respective proper times and applying

corresponding local rotations Alice and Rob can optimize their teleportation scheme.

-perturbed teleportation fidelity F (0). However, the effect of the time evolution can be

easily corrected — Alice and Rob can simply keep track of their respective proper times

and apply local rotations to remove the phases. These operations can be performed

independently by the two observers and they do not require any knowledge about the

other’s state of motion. Since these corrections can be implemented by local unitaries

the amount of entanglement that is shared is not altered. Incidentally, the local rotations

also remove the phase dependence from the correction term in Eq. (7.17b) and we arrive

at the optimal teleportation fidelity

Fopt(Γ̂TMS) = F (0) − h2F (2) + O(h3) , (7.18)

where the coefficients are given by [89, (ix)]

F (0)

opt =
(
1 + e−2r

)−1
, (7.19a)

F (2)

opt = F (0)

opt

[
fβk′ + fαk′ tanh(2r)

]
. (7.19b)

Using Eq. (7.13) and (7.14) it can be immediately seen that the upper bound of (3.26) is

achieved. The correction F (2)

opt in Eq. (7.19b) thus isolates the degrading effect of Rob’s

non-uniform motion.
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7.1.4 Simulations in Superconducting Circuits

With the practical application to the teleportation protocol in mind we now want to

gain insight about the numerical values of the relative size of the perturbative correc-

tions. So far we have considered the dimensionless expansion parameter h in units

where the speed of light is set to unity, c = 1. Inserting the speed of light explicitly the

perturbative parameter is

h :=
acL

c2
, (7.20)

whereL is the length of the cavity and ac is the proper acceleration at its centre. Assum-

ing that the cavity size is well below the length scale of one meter it becomes clear that

the perturbative approach can easily accommodate accelerations of 1017ms−2. In other

words, the accelerations must reach extremely large values to produce observable ef-

fects for arbitrary setups. However, selecting particular initial states and exploiting the

effects of transverse momenta (see Eq. (5.12) and Fig. 4.5) the overall corrections may

yet reach observable levels [47]. We shall explore a different route here by studying a

setup that simulates the mechanical motion of the cavity walls.

Following Ref. [89, (ix)] we envisage a one-dimensional transmission line for elec-

tromagnetic radiation in the microwave domain that is terminated by two superconduct-

ing quantum interference devices (SQUIDs). Similar setups, e.g., with an open transmis-

sion line terminated by a single SQUID, have been extensively used to study the related

dynamical Casimir effect, see, for instance, Refs. [116, 123, 201]. The role of the SQUID,

which consists of a superconducting circuit with two parallel Josephson junctions, is to

generate the boundary conditions for the electromagnetic field in the transmission line

(see Ref. [116] for details). Each SQUID is threaded by a magnetic flux, which can be

externally tuned at will, that determines the boundary condition. In particular, the

parameters can be tuned to mimic perfectly reflecting mirrors whose distances to the

SQUIDs depend on the chosen magnetic fluxes, see Fig. 7.5. Two such SQUIDs thus

constitute a cavity for the electromagnetic radiation and the position of the “walls", i.e.,

the boundary conditions, can be varied by adjusting the magnetic fluxes. Indeed, the

cavity setup we propose has already been implemented in a laboratory, see Ref. [186].

To emulate the motion of a relativistically rigid cavity as described in Section 4.1

the fluxes of the two SQUIDs need to be changed in a particular fashion. Let us imag-

ine an observer undergoing a chosen travel scenario (see Section 4.4 for examples). If

the magnetic fluxes are selected such that the positions of the boundary conditions re-

main at a fixed distance Leff with respect to this observer the effective cavity can be
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thought of as rigid and undergoing the same travel scenario. From the point of view

of the laboratory no piece of the equipment is in motion, and the magnetic fluxes are

not changing symmetrically. The imaginary observer, on the other hand, would see the

distance L0 between the SQUIDs vary in time — the cavity would be contracting and

expanding according to the relative velocity of the observer with respect to the labo-

ratory. Finally, let us insert typical values for the parameters to estimate the relative

Leff

L0 d HtL
-

d HtL
+

Figure 7.5: Superconducting cavity simulation: A one-dimensional transmission line

for microwave radiation is interrupted by two SQUIDs at a distance L0 with respect to

each other. The SQUIDs are threaded by time-dependent magnetic fluxes that create

boundary conditions — effective mirrors — at distances d±(t) away from the SQUIDs.

This creates a cavity of effective length Leff that can simulate non-uniform motion by

changing the fluxes in time such that the lengthLeff = d++L0+d− = const., as measured

by a potentially co-moving observer, remains constant.

correction. We consider a cavity of length L = 1.2cm that is undergoing accelerations

of up to ac = 3× 1017ms−2, while the effective speed of light in the transmission line is

around 1.2× 108ms−1, similar to the setting in Ref. [201]. This combines to an estimate

of h2 ≈ 0.06 for the expansion parameter. As a resource we select a two-mode squeezed

state with squeezing parameter r = 1
2 , which is well within the limits of current tech-

nology [72, 78, 138]. For the mode k′ = 3, corresponding to an (angular) frequency of

2π × 15GHz, the approximate value of the function fαk′ is 1.5, while the contribution

from fβk′ can be neglected, see Fig. 7.3. Hence, the relative correction to the optimal

teleportation fidelity of Eq. (7.18) is given by

h2|F (2)

opt|
F (0)

opt

= h2
[
fβk′ + fαk′ tanh(2r)

]
≈ 0.04 , (7.21)

that is, a 4% relative correction, which is both reasonably small to fit the perturbative

regime, but also large enough to be detected in possible future experiments. We thus

conclude that the experimental verification or simulation of the effects of non-uniform

motion on entanglement can in principle be achieved in current laboratories.
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7.2 Entanglement between Two Fermionic Cavities

To complete our analysis, let us consider the fermionic counterpart of the situation

studied in Section 7.1. We copy the previous scenario, i.e., an entangled state shared

between Alice’s and Rob’s cavity and we let Rob undergo non-uniform motion, see

Fig. 7.1. However, this time Dirac fields are confined to the cavities in question. In

Section 7.2.1 we consider the entanglement degradation of an initially maximally en-

tangled state as reported in Ref. [87, (iv)], before we briefly analyze the consequences

for practical applications, Bell inequalities and teleportation, in Section 7.2.2.

7.2.1 Fermionic Bell States

For the Dirac field we can consider a maximally entangled Bell state [see Eqs. (1.13)]

between Alice’s mode κ and Rob’s mode κ′ , given by

|| φ± 〉〉
AR

= 1√
2

(
|| 0 〉〉

A
⊗ || 0 〉〉

R
± || 1κ 〉〉A ⊗ || 1κ′ 〉〉

+

R

)
, (7.22)

where we have assumed that κ′ ≥ 0 is a positive frequency mode, while the frequency

of the mode κ is inconsequential for our present analysis and we therefore have not

specifically indicated it in Eq. (7.22). Since the positive and negative frequency modes

appear symmetrically in the spectrum we can be content to study the case of κ′ ≥ 0,

but the interested reader may find the expressions for the case κ′ < 0 in Ref. [87, (iv)].

Assuming that the fermions can be distinguished by their appearance in either Alice’s

or Rob’s cavity we can assume a tensor product between the Fock spaces of different

cavities. The density operator that corresponds to the state in Eq. (7.22) is given by

%±AR = 1
2

(
|| 0 〉〉〈〈 0 || ⊗ || 0 〉〉〈〈 0 || ± || 0 〉〉〈〈 1κ || ⊗ || 0 〉〉+〈〈 1κ′ || (7.23)

± || 1κ 〉〉〈〈 0 || ⊗ || 1κ′ 〉〉+〈〈 0 || + || 1κ 〉〉〈〈 1κ || ⊗ || 1κ′ 〉〉++〈〈 1κ′ ||
)
,

where we have dropped the labels for Alice and Rob. Subsequently, we transform the

matrix elements on the right hand side of the tensor product to the out-region to take

into account Rob’s motion. The corresponding transformed versions of || 0 〉〉 and || 1κ′ 〉〉
are given by (5.45) and, with appropriate relabelling (5.50), respectively. We then trace

out all modes except κ and κ′ from the relevant matrix elements, i.e.,

Tr¬κ′
(
|| 0 〉〉〈〈 0 ||

)
= (1− 2h2f̄Aκ′) || 0̂ 〉〉〈〈 0̂ ||+ 2h2f̄Aκ′ ||1̂κ′ 〉〉

++〈〈1̂κ′ ||+O(h3), (7.24a)

Tr¬κ′
(
||1κ′ 〉〉++〈〈1κ′ ||

)
= (1− 2h2fAκ′) ||1̂κ′ 〉〉

++〈〈1̂κ′ ||+ 2h2fAκ′ || 0̂ 〉〉〈〈 0̂ ||+O(h3), (7.24b)

Tr¬κ′
(
|| 0 〉〉+〈〈1κ′ ||

)
= G(0)

κ′ || 0 〉〉
+〈〈 1̂κ′ || + h2A(2)

κ′κ′
|| 0 〉〉+〈〈 1̂κ′ || + O(h3) , (7.24c)
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where the functions fAκ′ and f̄Aκ′ are as in Eq. (6.49). For the situation we are dealing

with here the two fermionic modes can be mapped to two qubits without problems

(see Section 3.2). We represent the transformed state of the modes κ and κ′ by the

two-qubit density matrix
1
2 − h

2f̄Aκ′ 0 0 ±1
2G

(0)

κ′ ±
1
2h

2A(2)

κ′κ′

0 h2f̄Aκ′ 0 0

0 0 h2fAκ′ 0

±1
2G

(0)∗
κ′ ±

1
2h

2A(2)∗
κ′κ′

0 0 1
2 − h

2fAκ′

 , (7.25)

where we have neglected terms of O(h3). Next, we can compute the negativity for this

state. The partial transposition shifts the off-diagonals towards the centre along the

anti-diagonal and for the unperturbed state one immediately finds three positive eigen-

values λ(0)

+ = 1
2 and one negative eigenvalue λ(0)

− = −1
2 . Since there are no corrections

linear in h we can find the leading order correction to the negative eigenvalue as the

expectation value of the perturbations of %±AR in the eigenvector | λ(0)

− 〉 corresponding

to the negative unperturbed eigenvalue. That eigenvector is given by

| λ(0)

− 〉 = 1√
2

(
0, 1, ∓G(0)

κ′ , 0
)T
, (7.26)

and, using the Bogoliubov identity (4.78c), we find the negativity

N (%±AR) = N (0) − h2N (2) + O(h3) = 1
2 − h2

(
fAκ′ + f̄Aκ′

)
+ O(h3) . (7.27)

The quantities fAκ′ and f̄Aκ′ are illustrated in Fig. 7.6.

Perturbative Expressions for the Concurrence

With the results of the previous sections at hand it is not surprising that the entan-

glement in Eq. (7.27) is degraded due to Rob’s motion. Nonetheless, we also wish to

supply a quantitative description of the entanglement loss that relates to practical ap-

plications. One such measure is the entanglement of formation, which, for two qubits,

is fully determined by the concurrence, see Eq. (1.17). However, as we have hinted at

in Section 6.3.1, computing the concurrence in a perturbative approach proves to be

somewhat impractical, as we shall demonstrate here. For the calculation we need to

determine the eigenvalues of the matrix %±AR(σ2 ⊗ σ2)%±∗AR (σ2 ⊗ σ2), where σ2 is the sec-

ond Pauli matrix from Eq. (1.9) and %±AR is taken from (7.25), which, to second order

in h, can be written as
1
2 − h

2
(
fAκ′ + f̄Aκ′

)
0 0 ±1

2G
(0)

κ′ ± h
2
(

1
2A

(2)

κ′κ′
−G(0)

κ′ f̄
A
κ′
)

0 0 0 0

0 0 0 0

±1
2G

(0)∗
κ′ ± h

2
(

1
2A

(2)∗
κ′κ′
−G(0)∗

κ′ f
A
κ′
)

0 0 1
2 − h

2
(
fAκ′ + f̄Aκ′

)

 . (7.28)
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The unperturbed matrix has the eigenvalues λ(0)

1 = 1 and λ(0)

2,3,4 = 0. Applying the tech-

niques described on pp. 117 to determine the corrections to these eigenvalues, and with

the help of Eq. (4.78c) we find that none of the degenerate eigenvalues are perturbed

when terms proportional to h2 are included. The non-degenerate eigenvalue, on the

other hand, is corrected such that

λ1 = λ(0)

1 + h2 λ(2)

1 + O(h3) = 1 − 2h2
(
fAκ′ + f̄Aκ′

)
+ O(h3) . (7.29)

When we now wish to evaluate the concurrence from Eq. (1.17) we have to take the

square roots of the perturbed eigenvalues and we encounter an issue. The expansion
√
λ1 = 1 − h2

(
fAκ′ + f̄Aκ′

)
+ O(h3) is easily determined, but all other square roots van-

ish to leading order. However, without further computations we cannot exclude the

possibility that the eigenvalues λ2,3,4 receive fourth order corrections when terms pro-

portional to h4 are kept throughout the calculation. These corrections could contribute

to the second order corrections of the concurrence. The present calculation thus only

allows us to specify an upper bound on the degraded concurrence. But, with the aid

of the inequality (1.23) and the negativity from Eq. (7.27) we can supply also a lower

bound, such that the perturbed concurrence is bounded by

1 − 2h2
(
fAκ′ + f̄Aκ′

)
≤ C(%±AR) + O(h3) ≤ 1 − h2

(
fAκ′ + f̄Aκ′

)
. (7.30)

7.2.2 Non-Locality & Fidelity of Teleportation

Since the perturbative evaluation of the concurrence proved to be rather intricate, let us

turn to more accessible means of supplying an operational picture for the entanglement

degradation in fermionic systems. In Sections 1.5.2 and 1.5.3 we have seen that the

correlation matrix t[ρ] (see Theorem 1.8 or Ref. [102]) of a two-qubit state can be used

to determine the maximally possible violation of the CHSH inequality as well as the

optimal teleportation fidelity. We thus determine the matrix M%±AR
= t[%±AR]T t[%±AR] for the

two-qubit density matrix in Eq. (7.25) and we obtain
1 − 2h2

(
fAκ′ + f̄Aκ′

)
0 0

0 1 − 2h2
(
fAκ′ + f̄Aκ′

)
0

0 0 1 − 4h2
(
fAκ′ + f̄Aκ′

)
 + O(h3) , (7.31)

where we have again used Eq. (4.78c). Since the matrix is already diagonal we can

straightforwardly find the maximally possible violation of the CHSH inequality from

Theorem 1.8 as

〈 Omax
CHSH 〉%±AR = 2

√
2
(
1 − h2

[
fAκ′ + f̄Aκ′

])
+ O(h3) , (7.32)
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while the maximal teleportation fidelity, optimized over Rob’s local rotations, is found

to be
Fmax(%±AR) = 1 − 2

3 h
2
(
fAκ′ + f̄Aκ′

)
+ O(h3) . (7.33)

An illustration of the functions fAκ′ and f̄Aκ′ is shown in Fig. 7.6. The quantities of

Eqs. (7.32) and (7.33) provide clear operational meaning for the entanglement degrada-

tion effects of the fermionic modes, and may hopefully allow for simulations of these

effects in analogue materials, see, e.g., Refs. [31, 114, 208].
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Figure 7.6: Entanglement degradation — fAκ′ and f̄Aκ′ : The quantities fAκ′ and f̄Aκ′ that are

degrading the entanglement between Alice and Rob [see Eqs. (7.27), (7.32) and (7.33)]

are shown in Fig. 7.6 (a) and Fig. 7.6 (b), respectively, for the basic building block travel

scenario of Section 4.4.1 for a (1 + 1) dimensional massless Dirac field. The horizontal

axis shows the dimensionless parameter u := hτ/[4L artanh(h/2)] [see Eq. (4.20)], where

τ is the duration of the uniform acceleration at the centre of the cavity. Curves are shown

for the modes κ′ = 0 (solid), κ′ = 1 (dashed), κ′ = 2 (dotted), and κ′ = 3 (dotted-dashed).
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Conclusions

In this thesis we have presented the model of relativistically rigid cavities in the context

of relativistic quantum information (RQI), which was first introduced in Ref. [44]. We

have discussed the geometric aspects of the rigid cavity in Minkowski spacetime and

we have analyzed the confinement of bosonic scalar fields as well as fermionic Dirac

fields to the cavity when it is undergoing non-uniform motion. The quantum fields

can be massless or have non-zero mass and are confined to the cavity by boundary

conditions that enforce that either the mode functions or the spatial probability current

vanish at the cavity walls. The motion can consist of individual segments of inertial

motion and uniform acceleration that are related by sharp transitions, or the proper

acceleration can vary smoothly. For (1 + 1) and (2 + 1) dimensions both options can

be implemented unitarily on the Fock spaces of the bosonic and fermionic field op-

erators, respectively. However, in (3 + 1) dimensions unitarity fails for non-smooth

transitions [88, (x)].

The main focus of the analysis was aimed at the investigation of the role of the cav-

ity as a system for the storage and manipulation of quantum information. We have

shown how the Bogoliubov transformations that are induced by the non-uniform mo-

tion create entanglement between previously unentangled modes of the quantum fields

inside the cavities. Quantum correlations are created for various initial states, includ-

ing bosonic Fock states [82, (v)] and squeezed states [83, (vii)], as well as for different

fermionic Fock states. Moreover, we have reviewed how the production of entangle-

ment can be resonantly enhanced, see Refs. [42] and [43, (xi)] and even generate gen-

uine multipartite entanglement [84, (vi)]. These entanglement generation effects may

be of interest for the identification of the quantumness of particle creation phenomena

similar to the dynamical Casimir effect via the specific signature of the created quantum

correlations. This may allow to assign observed radiation unambiguously to the ef-

fects of non-uniform motion. Moreover, the entanglement generation is conceptually

interesting since it suggests that the motion of the cavity may be interpreted as (weak)
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quantum gates [42, 47]. Certainly, this opens avenues for further investigation around

the central motive: “Can quantum information processing tasks or quantum computation be

performed by simply moving quantum systems in spacetime?"

Finally, we have turned our attention to entanglement degradation effects when quan-

tum communication tasks, for instance, teleportation between two different cavities, are

considered. If the observers do not have access to all of the modes in the spectrum —

typically only a finite number of modes can be addressed — the motion of the indi-

vidual cavities degrades the initially shared entanglement. This is the case because the

particle creation and shifting of excitations within one cavity entangles the modes in the

spectrum with each other. Subsequently, some of the entangled modes are traced over,

which leads to a loss of information that can be viewed as decoherence. We have stud-

ied such situations for cavities containing scalar fields [44] as well as Dirac fields [87,

(iv)]. For the special case of Gaussian two-mode squeezed states of the bosonic fields

we have investigated the effects on the quantum teleportation protocol [89, (ix)], and we

have presented a setup where the mechanical motion of the cavity mirrors may be sim-

ulated in superconducting circuits.

The significance of this direction of our research lies in the basic need to estab-

lish assessments of the robustness of quantum communication procedures against the

effects of relativistic motion. Our treatment has significantly advanced the previous

toy models in RQI addressing such questions, taking them from the realm of thought

experiments with global modes, and eternal uniform accelerations towards practical

settings that may be emulated with current technology, see Refs. [116, 123, 186, 201]

and [89, (ix)]. However, the analysis presented here covers only one specific type of

quantum system used for the manipulation of quantum information, and it will hence

be of interest for future investigations to study relativistic effects on other tools for

quantum communication. In addition, a whole zoo of other relativistic effects, besides

those described here, may emerge from further research in this direction.

We have also come across issues relating to the practical treatment of fermionic

modes for the purpose of quantum information processing [86, (viii)]. Although com-

putations can be carried out in a meaningful way for the situations we have considered

here, we showed that this is not the case in general. Briefly summarized, fermionic

modes are not qubits, which calls for a reevaluation of standard techniques in quantum

information for fermionic modes. In particular, the quantification of fermionic mode

entanglement remains an open question for theoretical research that might possibly

also inspire experimental tests.
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We conclude that the effects of the non-uniform motion, although small compared

to common day-to-day experience, may be large enough for experimental observation

in modern cutting-edge laboratories, for instance using superconducting technology

that was recently employed for the confirmation of the dynamical Casimir effect [201].

The rapidly progressing technological advancement, e.g., in the control and manip-

ulation of individual quantum systems [164], suggests that even previously negligible

effects may become relevant in the near future. Quantum communication is already op-

erating at length scales where relativity plays a role [49, 130, 168], and so it seems pru-

dent to study relativistic effects on such tasks. Moreover, relativistic effects may pro-

vide novel ways to estimate kinematical parameters and spacetime properties [7, 67].

In combination, recently established, as well as well-known theoretical and exper-

imental techniques, and yet-to-be-made discoveries in the overlap of relativity and

quantum information science will form the core for the next generation of quantum

technologies.
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