Cavity mode entanglement in relativistic quantum informationTools Friis, Nicolai (2013) Cavity mode entanglement in relativistic quantum information. PhD thesis, University of Nottingham. This is the latest version of this item.
AbstractA central aim of the field of relativistic quantum information (RQI) is the investigation of quantum information tasks and resources taking into account the relativistic aspects of nature. More precisely, it is of fundamental interest to understand how the storage, manipulation, and transmission of information utilizing quantum systems are influenced by the fact that these processes take place in a relativistic spacetime. In particular, many studies in RQI have been focused on the effects of non-uniform motion on entanglement, the main resource of quantum information protocols. Early investigations in this direction were performed in highly idealized settings that prompted questions as to the practical accessibility of these results. To overcome these limitations it is necessary to consider quantum systems that are in principle accessible to localized observers. In this thesis we present such a model, the rigid relativistic cavity, and its extensions, focusing on the effects of motion on entanglement and applications such as quantum teleportation.
Available Versions of this Item
Actions (Archive Staff Only)
|