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Abstract 

Sox proteins are a family of transcription factors characterised by the 

presence of a conserved HMG box domain that mediates their binding to 

DNA. Ten groups of Sox proteins have been identified on the basis of their 

sequence similarities and named A-J. In particular, the SoxB1 subgroup is 

composed by highly conserved transcription factors that are involved in 

the differentiation of the cells towards a neural fate and the specification 

of neural tissue. During the embryonic development of several vertebrate 

species the first of the SoxB1 proteins to be expressed is Sox3, which is 

known to act both as a transcriptional activator and a transcriptional 

repressor at different stages of development. At the present time, little is 

known about the regulation of the balance between these two functions. 

Therefore, this study was aimed to identify the regions of Sox3 that are 

involved in its functioning as a repressor or as an activator. In order to 

meet this aim a deletion mutagenesis approach was developed to 

investigate how the deletion of different regions of Sox3 would have 

changed the protein’s function. A specific cloning strategy was designed in 

order to obtain twelve Sox3 deletion mutants, each carrying a deletion of 

about 20 amino acids, so that the regions deleted covered most of the 

protein sequence. The effects caused by the over-expression of each 

deletion mutant were then tested on zebrafish embryos and compared to 

the effects of over-expression of the wild type Sox3. Western blot analysis 

confirmed that microinjection of all the mutants into 1- 4 cell stage 

embryos, as well as microinjection of wild type sox3, resulted in similar 

levels of protein expression at sphere stage. The embryos microinjected 

with sox3 deletion mutants showed different phenotypes at 24 hours post 

fertilization (hpf), confirming that they affected the functioning of the 

protein differentially. In order to investigate deeper these functional 

changes, microinjected embryos were analysed at earlier stage of 

development. In zebrafish, Sox3 acts as a repressor of the organizer 

formation at sphere stage.  Analysis of the effects of over-expression of 
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Sox3 deleted mutants on the expression of the organizer marker genes 

bozozok and goosecoid, and the comparison with the effects caused by the 

over-expression of wild type Sox3, led to the identification of protein 

regions involved in Sox3 transcriptional repressor function. Analysis of the 

ability of Sox3 deletion mutants to induce the transcription of a luciferase 

reporter gene, compared to the wild type Sox3, allowed the identification 

of regions of Sox3 involved with its transcriptional activator function. The 

data obtained allowed us to draw a presumptive functional map of Sox3. 

The consistency of this map with evidence found in the literature led to the 

formulation of different hypotheses that would explain the functions 

associated with the regions identified. These promising data provide a 

basis for future studies, which will be aimed to the validation of the 

hypothesis formulated and to the identification of the amino acid residues 

that are responsible for the functions mediated by the regions identified.  
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1. Introduction 

1.1. The Zebrafish (Danio rerio) 

The Zebrafish (scientific name Danio rerio, Fig. 1.1) is a bony fish whose 

natural habitats are the tropical fresh water rivers of northern India, 

northern Pakistan, Nepal, and Bhutan. Because of its small size and ease of 

culture, it has become one of the embryologists’ favourite and most used 

model organisms for the study of vertebrate development. 

 

1.1.1. History and Advantages of the use of Zebrafish as 

a Model Organism 

Zebrafish has been largely used as model organism since George 

Streisinger, a scientist of the University of Oregon, started using it in the 

1970s.  The reasons why Streisinger, who was also a fish hobbyist, started 

working with the zebrafish at the University of Oregon was that it was a 

simpler model than the mouse and easier to manipulate genetically 

(Streisinger et al. 1981). Moreover, the zebrafish is easy to breed and 

maintain, and it is small enough to easily house large numbers, but also 

large enough to allow experimental manipulations. Another useful 

Figure 1.1 The Zebrafish (Credit: ScienceDaily®). 
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characteristic of this fish is the rapid development: in the first 24 hours 

post fertilization (hpf), all major organs form and within 3 days the fish 

hatches. After three to four months the fish are sexually mature and ready 

to generate new offspring. A single zebrafish female can lay up to 200 eggs 

in a week. A great advantage of using the zebrafish as a model for 

embryonic development is that zebrafish embryogenesis is very similar to 

the higher vertebrates, including humans. However, unlike mammals, it 

develops from a fertilised egg to an adult outside the female in a 

transparent egg. This means that it is possible to observe the developing 

embryo in its natural environment. Moreover, the embryos themselves are 

transparent during the first few days of their lives, so researchers can 

observe the formation of internal organs live inside the living organism 

(Fig. 1.2). The use of zebrafish as a model also has advantages from a 

genetic point of view, as many mutations that disrupt embryonic 

development have now been identified, many of which may serve as 

models for human diseases (van Heyningen 1997; Zon 1999; Barut and 

Zon 2000; Dodd et al. 2000; Dooley and Zon 2000; Yan and Gu 2013). 

These mutants will help us to understand the genetic network controlling 

the development of vertebrates, including humans. 

 

Figure 1.2 Zebrafish embryos 24 hours post fertilization (Credit: 

Flickr.com, picture by WithoutFins). 
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1.1.2. Stages of Embryonic Development in Zebrafish 

A study published by Kimmel et al. in 1995 describes extensive studies on 

the morphological changes that define the zebrafish body plan during the 

first three days of embryonic development. Here I describe the 

developmental changes occurring in first 24 hpf of the zebrafish embryos, 

adapted from this study (Kimmel et al. 1995).  

The zebrafish egg consists of a cytoplasm and yolk floating within a 

prospective chorion. After fertilization, which occurs at the prospective 

animal pole, the cytoplasm divides from the yolk and becomes the 

blastodysc, which sits upon the yolk syncytium, and defines the animal-

vegetal axis. From this moment every 15 minutes (min) numerous rapid 

meroblastic cleavage divisions occur synchronously and give rise to a 

blastoderm, which is formed by cells called blastomeres (Fig. 1.3). The 

blastomeres perch on top of the yolk as a mound of cells by the 128 cell 

stage, which is the blastula stage. This continues until approximately 4 hpf. 

During the blastula stage several important processes take place, such as 

the mid-blastula transition (MBT), which occurs at the 512-cell stage and 

defines the beginning of zygotic gene expression (Fig. 1.3). Maternal 

factors drive early developmental processes before MBT, although it is 

possible that a few zygotic genes are also transcribed prior to MBT. 

Moreover, cell cycles lengthen and become asynchronous and complex 

morphogenetic rearrangements begin (Kane and Kimmel 1993; Kimmel et 

al. 1995). At the interface between the yolk and the blastoderm the 

multinucleate yolk syncytial layer (YSL) takes shape, as the cells at the 

margins fall into the yolk. At this point a process called epiboly starts: the 

morphology of the blastoderm changes and it forms a multi-layered cup 

which, together with the YSL, thins and spreads radially over the surface of 

the yolk by complex streaming movements. Epiboly, a process that defines 

the beginning of the late blastula stage, occurs approximately 4 hpf and 

continues until the late gastrula stage. A largely used method for indicating 

developmental stages is the measure of the percentage of the enveloped 

yolk during epiboly. At 50% epiboly (5 hpf) another process, called 
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gastrulation, begins              (Fig. 1.4B):  blastoderm cells at the leading 

edge/margin converge from more lateral/ventral regions, 

involute/ingress (internalise) and extend (Kimmel et al. 1995). Because 

this process of convergence occurs at a specific single point, this area 

becomes thicker and breaks radial symmetry (Fig. 1.4C); this area is now 

the dorsal part of the embryo       (Fig. 1.4 D, E). This thickening become 

clearly visible by 60% epiboly and is called the shield (Fig. 1.6). It 

corresponds to the position of the dorsal embryonic organizer (the 

functional equivalent of the Xenopus Spemann-Mangold organizer (see 

following paragraph for further description). During gastrulation 

involuting cells converge mediolaterally and extend towards the yolk and 

then upwards towards the animal pole thereby elongating embryonic 

tissue anterioposteriorially underneath the overlying blastoderm (Kimmel 

et al. 1995), (Fig. 1.5). Through this process two layers are formed within 

the proper embryo. The involuting cells form the hypoblast/mesendoderm 

(the prospective mesoderm and endoderm) which lies underneath the 

epiplast (the prospective ectoderm). Both gastrulation and epiboly finish 

by the late gastrula stage (10 hpf), when the yolk is completely 

surrounded by the three germ layers of cells which are now positioned at 

their final anteroposterior and dorsoventral locations; ectoderm is the 

outer layer, mesoderm is the middle layer and endoderm is the internal 

layer (Fig. 1.4 D). By 24 hpf CNS structures are apparent (Kimmel et al. 

1995). 
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Figure 1.3. Zebrafish embryo developmental stages. The hours post 

fertilization (hpf) indicated are to be considered approximated as they can 

vary due to different reasons such as, for example, the temperature of 

incubation (pictures adapted from Cebra-Thomas,  2004 

http://www.swarthmore.edu/NatSci/sgilber1/DB_lab/DB_lab.html). 
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Figure 1.4 Movements of the cells during gastrulation in the zebrafish embryo: blastoderm 

at 30% epiboly (A); at 50% epiboly the involution of the cells at the margin of the 

blastoderm create a thickened area were the embryonic shield is loclised (B, C); the 

embryonic shield corresponds to the region that later becomes dorsal part of the embryo (D, 

E). (Figure adapted from Gilbert 6th ed.). 

Figure 1.5 Dorsal view of the cell movements that occur during gastrulation in zebrafish 

embryo. Epiboly moves the blastoderm over the yolk, involution generates the hypoblast. 

Starting from 50% epiboly convergence and extension movements bring the epiblast and 

hypoblast (mesendorem) cells towards the dorsal region, forming the organizer. (Figure 

adapted from Gilbert 6th ed.). 
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1.1.3. The Role of the Organizer During Development 

In zebrafish the formation of the organizer, also known as embryonic 

shield, is an essential process for the establishment of dorsal-ventral 

patterning and the induction of neural cell fate. In the following paragraph 

I briefly describe the molecular mechanisms that regulate this process 

(Appel 2000; Schier and Talbot 2005).  

The firsts understanding of the mechanisms involved in organiser 

formation came, as in many other biological studies, from the investigation 

of mutants. Dorsalised (expansion of neural tissue) and ventralised 

(reduction of neural tissue) mutant phenotypes have been investigated 

through large scale mutagenic screenings (Driever et al. 1996; 

Hammerschmidt et al. 1996; Mullins et al. 1996). The mutations that were 

causing these phenotypes were mapped in genes that are part of the 

canonical Wnt/β-catenin pathway (Kelly et al. 2000) and the Bone 

Morphogenetic Protein (BMP) pathway (Hammerschmidt et al. 1996; 

Hammerschmidt et al. 1999). These pathways are essential for the 

establishment of the right patterning of the dorsal-ventral axis (Appel 

2000; Schier and Talbot 2005). 

Figure 1.6 At 60% epiboly the thickening 

corresponding to the embyonic shield becomes visible 

at the dorsal side of the embryo (white arrows). Lateral 

view (A) and view from the animal pole (B) of a 60% 

epiboly embryo (Stemple 2005). 
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When the Wnt/β-catenin signalling pathway is activated at the dorsal side 

of the zygote, β-catenin accumulates in the nucleus, displaces the co-

repressor Groucho and partners with members of the TCF/LEF family of 

transcription factors, thus activating the expression of target transcription 

factors genes (Fig. 1.7). These genes include bozozok (also known as 

dharma) and the nodal-related extracellular signalling molecule squint, 

whose function is crucial for the formation of the presumptive mesoderm. 

The Wnt/β-catenin signalling pathway overlaps with the Nodal signalling, 

thus defining a specific region on the dorsal part of the embryo called 

Nieuwkoop Centre. The Nieukoop Centre, which is located in the area 

corresponding to the presumptive endoderm (in the vegetal part of the 

embryo), induces the formation of the embryonic shield. This is a small 

group of cells located at the dorsal mesoderm edge, and it is functionally 

equivalent to the Spemann/Mangold organizer found in Xenopus (Saúde et 

al. 2000; Niehrs 2004) and to the primitive node found in mouse 

(Beddington 1994; Shih and Fraser 1996). The zebrafish organizer, as well 

as the Xenopus Spemann/Mangold organizer, can induce the formation of a 

secondary body axis (including neural tissue and mesoderm) if 

microsurgically transplanted to the ventral region of another embryo 

(Shih and Fraser 1996; Driever et al. 1997; Spemann and Mangold 2001). 

A key function of the organizer is to act as a regulatory element 

determining the dorsal fate of the ectoderm cells by secreting dorsalising 

signals. These signalling factors are secreted outside of the cells and act in 

the dorsal region antagonizing BMP such as Bmp2b/7, which are 

ventralising signalling molecules. Bmp activates the expression of different 

genes in a concentration-dependent fashion, thus acting as a “morphogen”. 

Some examples of the proteins expressed in the organizer are Chordin, 

Noggin and Follistatin; they prevent BMP signals from binding DNA and 

thus induce the cells to become organizer, and then notochord, tissue. 

Moreover Bozozok, which is induced by the Nieukoop-Centre, represses 

Bmp2b (Leung et al. 2003) as well as the ventralising signals activated by 

Bmp2b, such as vox/vent/ved (repressors that inhibit Boz and Chd). This 

results in a de-repression of the organizer genes (such as Chordin) 
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mediated by Boz. The dorso-ventral regions that give rise to the 

neural/non-neural ectoderm is defined by the resulting gradient of BMP 

morphogens. The establishment of the neural/ectodermal fate is described 

by the “neural default model” (Munoz-Sanjuan and Brivanlou 2002) 

according to which ectodermal cells are destined to become neural cells 

unless they are targeted by BMP signals, which is prevented in the dorsal 

region by mesoderm secreted factors such as Chordin (Fig. 1.8). This 

means that the organizer induces dorsal fate by secreting dorsalizing 

factors that block the ventralising BMP proteins, rather than inducing it 

directly (Linker and Stern 2004; Stern 2005; Stern 2006). In the region 

where the ventralizing factors are absent, which in other words is the 

presumptive ectoderm, there is accumulation of transcription factors that 

induce neural fate (Mizuseki et al. 1998; Kudoh et al. 2004; Dee et al. 

2007). 
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Figure 1.8 The neural default model. According to the “neural default model” ectodermal cells 

are destined to the neural fate unless they are targeted by ventralising BMP signals, which act in a 

concentration-dependent fashion. In the dorsal region corresponding to the organizer, dorsalizing 

signals, such as chordin, block BMP signalling and thus indirectly induce neural fate. 

Figure 1.7 Activation of the Wnt/β-catenin pathway in the dorsal side of the zebrafish 

embryo. Areas of the embryo that correspond to the Nieukoop Centre and to the organizer (A). In 

the organizer the activation of Wnt signalling and the nuclear localization of β-catenin determine 

the transcriptional activation of target genes through the displacement of the co-repressor Groucho 

and the binding to TCF/LEF operated by β-catenin. The activated target genes include bozozok and 

squint, which activate goosecoid and chordin (B). 
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1.2. The Sox Family 

1.2.1. The Family History 

In the late 1980s many laboratories were investigating the identity of the 

so called “testis-determining factor” (Tdy or TDF), a gene located on the Y 

chromosome that was thought to be responsible for the switch in 

developmental fate occurring in mammals from the default ovarian 

pathway to that of the testis (Koopman et al. 1991; Hacker et al. 1995; 

Collignon et al. 1996). The gene was finally identified as the “Sex 

Determining Region of the Y chromosome” (Sry), which encodes for a 

transcription factor containing a 79 amino acid DNA-binding domain, the 

High Mobility Group box (HMG-box), which participates in DNA binding 

and in some cases also in interactions with partner proteins 

(Chakravarthy et al. 2008). The HMG-box derived its name by the original 

technique used for sorting proteins closely associated with the DNA: the 

electrophoresis of denatured proteins through an agarose gel (Lefebvre et 

al. 2007), which showed that the peptides carrying the HMG-box travelled 

further than other proteins and thus determined the denomination “High 

Mobility Group”. The Sry gene later became the founding member of the 

family of genes known as the Sox family, initially discovered through 

homology comparisons between the human and the mouse Sry genes 

(Gubbay et al. 1990; Sinclair et al. 1990; Denny et al. 1992; Denny et al. 

1992; Lefebvre et al. 2007). On the basis of sequence homology with the 

Sry HMG-box about thirty other Sry-related genes were later discovered 

and named “Sry-related HMG-box” (Sox) and numbered chronologically 

with their discovery, the first to be named were Sox1, Sox2 and Sox3. 

1.2.2. The Members of the Family 

The nomenclature of the members of the Sox family includes a number 

indicating the chronological order of discovery and in some cases a prefix 

indicating the species.  
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All the genes identified as part of the Sox family have a minimum of 50% of 

sequence similarity with respect to the HMG-box of Sry. In an extensive 

evolutionary analysis Bowles et al. recognised ten Sox groups (named A-J) 

based on previous studies as well as full-length protein structure, HMG 

domain sequence similarity (Fig. 1.9) and structural characteristics such 

as intron-exon gene organization (Gubbay et al. 1990; Wright et al. 1993; 

Pevny and Lovell-Badge 1997; Bowles et al. 2000; Schepers et al. 2002). 

Subgroup A contains mammalian proteins, the members of the subgroups 

B, C, D, E and F are found in a large number of metazoan taxa (Jager et al. 

2006; Larroux et al. 2008) and the subgroups G to J contains members that 

are specifics for particular lineages (Zhong et al. 2011). 

Each one of these subgroups is composed of members with a sequence 

similarity of between 60% and 90% (Bowles et al. 2000; Kamachi et al. 

2000) and while some of them are species-specifics, others can be found in 

a wide range of organisms (Wegner 1999; Bowles et al. 2000; Wegner 

2010). About twenty Sox genes were found in the mouse as well as in the 

human genome (Schepers et al. 2002). The majority of vertebrate family 

subgroups have been found to be represented in invertebrates by a single 

Sox gene (Wegner 1999; Bowles et al. 2000).  

Except for the similarity in the HMG-box sequence, the members of distant 

subgroups have high variability in the rest of their sequences (Bowles et 

al. 2000), while the Sox proteins that belong to the same subgroup often 

show functional redundancy when they are co-expressed. This can be 

explained by the presence of conserved structural domains outside the 

HMG-box (Fig. 1.10), (Bowles et al. 2000). Such domains are localised at 

the C-terminus of the proteins and are implicated in transcriptional 

regulation.  
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Figure 1.9 Unrooted phylogeny tree of the Sox HMG domain. Branch lengths are representative 

of the extent of divergence. For groups of presumed mammalian orthologues (other than group A—

Sry), only one representative is indicated. Different groups (A-J) are written with different colours. 

The insert shows group B, which contains the subgroups B1 and B2. Invertebrate sequences are 

underlined. Abbreviations: al, Alligator mississippiensis (alligator); ce, Caenorhabditis elegans 

(nematode); ch, Gallus gallus (chicken); dr, Drosophila melanogaster (fruit-fly); du or d, Sminthopsis 

macroura (marsupial); fu, Saccharomyces cerevisiae (fungi); hu or h, Homo sapiens (human); mo or 

m, Mus musculus (mouse); or, Pongo pygmaeus (orangutan); pi or p, Sus scrofa (pig); ra or r, Rattus 

norvegicus (rat); tw, Macropus eugenii (marsupial); sh or s, Ovis aries (sheep); tr, Oncorhynchus 

mykiss (rainbow trout); se, Strongylocentrotus purpuratus (sea urchin); xe, Xenopus laevis (frog); zf, 

Danio rerio (zebrafish). Image from Bowles et al. (2000). 
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Figure 1.10 Schematic representation of some of the members of different groups (and 

subgroups) of Sox family proteins that highlights the structural conservation of functional 

domains and gene organization. Demonstrated and putative structural domains are shown. 

Picture from Bowles et al. (2000). 
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1.2.3. DNA-binding Property of the Sox Proteins 

All the members of the Sox family share high level of similarity and are 

thought to function as transcription factors (Laudet et al. 1993). The Sox 

proteins contain a single canonical HMG domain composed of 79 amino 

acids that contains the conserved sequence motif “RPMNAFMVW”; this 

motif differentiates the Sox proteins from the other members of the HMG 

superfamily. Due to the presence of the HMG domain, Sox proteins are able 

to recognise and bind specific sequences of DNA. In particular they bind to 

the consensus sequence “5’-WWCAAW-3’” (where W=A/T) (Harley et al. 

1994). However some of these proteins, such as Sox9, showed a higher 

binding preferences for slightly different consensus sequences (Mertin et 

al. 1999). The secondary structure of the HMG-box is composed by three 

α-helices and one β-sheet forming a “L” shape which binds to the minor 

groove of the DNA helix (Fig. 1.11), (van de Wetering and Clevers 1992; 

Read et al. 1994; Weiss 2001; Lefebvre et al. 2007). This binding process is 

a unique feature of the HMG-box as it causes a widening of the minor 

groove that leads to the bending of the DNA structure (Fig. 1.12), (Ferrari 

et al. 1992; van de Wetering and Clevers 1992; Lefebvre et al. 2007). In 

fact the majority of the DNA-binding proteins bind to the major DNA 

groove and cause minor changes in its spatial conformation, by contrast 

the binding of the HMG with the minor groove can bend the DNA with an 

angle from 30 to 110 degrees depending on experimental conditions 

(Ferrari et al. 1992; Connor et al. 1994; Pontiggia et al. 1994; Kamachi et 

al. 1999; Kamachi et al. 2000; Weiss 2001). Such characteristic can be 

explained if we consider that the conformation adopted by the DNA might 

render it more accessible to other proteins. For this reason it has been 

proposed that Sox factors function as architectural transcription factors 

that recruit other protein through their binding to the DNA. According to 

this model the proteins recruited would be other transcription factors, 

chromatin re-modellers or other regulatory partners that would act co-

activating (or co-repressing) target genes (Pontiggia et al. 1994). 
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Figure 1.12 Three-dimensional PDB model of mouse Sox2 binding and bending 

DNA. The presence of three α-helices and a β-sheet give to the domain a characteristic 

“L” shape. As a result of the binding, the DNA helix result to be dramatically bended of 

about 90˚. Picture from Chakravarthy et al. (2008).  

Figure 1.11 Three-dimensional representation of mouse Sox2 HMG domain 

binding its target sequence on the FGF-4 HMG/POU cassette (indicated in red). 

The HMG domain is composed by three α-helices and a β-sheet (pictured in green) and 

binds to the minor groove of the DNA which participate in DNA binding as well as 

interactions with partner proteins.  Hydrogen bonds are indicated as white dotted 

lines. Picture from Chakravarthy et al. (2008).  
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1.2.4. Transcriptional Regulation Activity of the Sox 

Proteins 

It has been demonstrated that Sox proteins also function as classical 

transcription factors regulating the expression levels of target genes 

(Pevny and Lovell-Badge 1997). They are mostly described as activators of 

target gene expression. Many of them contain a trans-activation domain at 

the C-terminus, and this includes the SoxB1 proteins (Kamachi et al. 1995; 

Kamachi 1996; Kamachi et al. 1998; Kamachi et al. 1999; Chakravarthy et 

al. 2008), SoxC proteins (van de Wetering et al. 1993; Chakravarthy et al. 

2008), SoxE proteins (Bell et al. 1997; Ng et al. 1997; Kamachi et al. 1999; 

Chakravarthy et al. 2008) and SoxF (Chakravarthy et al. 2008). If these 

proteins are deleted at their C-terminus and fused to VP16 (a 

transactivation domain constitutively active), they function as activators, 

which is in contrast with the fusion with repressors domains (Koster et al. 

2000; Bylund et al. 2003; Wegner 2010). However some of the Sox factors, 

for example the SoxB2 group (Uchikawa et al. 1999), act as transcriptional 

repressors. 

1.2.5. The Sox Proteins: a Family of Flexible 

Transcription Factors 

All the Sox proteins bind to the DNA by recognizing a specific motif that is 

present many times throughout the whole genome. This consensus motif 

is quite short and degenerate (Wegner 2010). Moreover, the specificity 

with which the HMG-box domains of these different Sox proteins bind and 

bend the DNA is comparable when they are tested in the same in vitro 

conditions (Kamachi et al. 1999; Mertin et al. 1999; Kamachi et al. 2000). It 

has been shown that there may be several Sox factors able to bind a 

certain site in vitro, but when tested in vivo only one of them is still able to 

bind that site. For example, although Sox1, Sox2, Sox3 and Sox9 have been 

shown to have a C-terminal capable of acting as transactivation domain 

(Ng et al. 1997; Kamachi et al. 1999; Kamachi et al. 2000), they do not bind 

DNA with sufficient affinity compared to the classical transcription factors 
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(Lefebvre et al. 2007). Therefore, theoretically they would not be able to 

bind the DNA and act as transcriptional regulators in vivo (Kamachi et al. 

2000). Moreover, given that Sox factors elicit their function in many of 

different tissues, cell types and developmental stages and that in mammals 

only twenty of them have been identified in spite of the high number of 

functions that they have, it is logical to think that they must be strictly and 

specifically regulated. Given all this, how is it then possible for each of the 

Sox factor to act in a cell-specific way activating (or in some cases 

repressing) specific target genes (Kamachi et al. 2000)? 

It is logical to think that Sox factors have to be necessarily flexible in order 

to function in many diverse contexts as they were passepartout regulators 

(Wegner 2010). This can be explained by the interaction of these proteins 

with co-factors, whose presence would be regulated in a developmental 

stage- and cell-specific fashion. According to this model the transcriptional 

regulation activity of the Sox proteins could function only when the 

proteins and the specific co-factors are co-expressed. Each specific 

partnering between a given Sox protein and a given co-factor would 

therefore regulate specific target genes and regulate different processes, 

as for example cell differentiation, in a cellular, tissue and temporal-

specific fashion (Fig. 1.13). Moreover, this could explain why the Sox 

proteins that in vitro have been shown to bind the DNA loosely, on the 

other hand act as effective transcription factors in vivo. Therefore, the Sox 

proteins contain regions that specifically recruit different co-factors 

depending on the context (Kamachi et al. 2000; Wilson and Koopman 

2002). Because of the high homology between the HMG-box domains, it is 

thought that such motifs would be generally present in the rest of the 

sequence, which is highly variable. Sox factors that belong to different 

subgroups and act as trans-activators have low homology in their primary 

structure, and this could be explained by the necessity of recruiting 

different partners (Wegner 2010). For example, the C-terminal region of 

Sox2 recruits p300 and partners with OCT3/OCT4 to activate the enhancer 

fgf4 (Bernadt et al. 2004; Wegner 2010). Some contexts in which Sox 
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protein action is dependent on the cell-specific presence of co-factors have 

already been identified. For example, Sox2 (a member of the SoxB1 

subgroup) is implicated in lens development, but it can recognise the DC5 

target enhancer and regulate this process only when interacting with Pax6 

(Kamachi et al. 2001; Inoue et al. 2007). Through Chromatin 

Immunoprecipitation (ChIP) techniques it has been demonstrated that 

Sox2 and Pax6 are not able to bind DC5 enhancer stably when alone, but 

they do so only when co-expressed, as during normal lens development 

process (Kamachi et al. 1995; Kamachi 1996; Kamachi et al. 1998).  
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Figure 1.13 (A) Different members of some of the groups (and subgroups) of the Sox family 

of transcription factors. The name of the groups is indicated in black, the group B contains the 

two subgroup B1 and B2. (B) Some examples of how Sox proteins partner with specific co-factors in 

order to determine cell differentiation. The figure represents the interactions between some of the 

Sox proteins and various co- factors, the target genes selectively activated as a result of the 

interactions,  and the results in terms of cell differentiation. Picture drawn from image on Graduate 

School of Osaka University website (http://www.fbs.osaka-u.ac.jp/eng/labo/06/). 
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1.3. The SoxB Group 

1.3.1. Classification of the Members of SoxB Group 

The SoxB subgroup of transcription factors, which include Sox1, Sox2, 

Sox3, Sox14 and Sox21, plays a central role in several processes during the 

embryonic development of vertebrates and insects, such as neurogenesis, 

gonadogenesis and morphogenesis (Nambu et al. 1996; Soriano and 

Russell 1998; Uchikawa et al. 1999; Lefebvre et al. 2007; Phochanukul and 

Russell 2010). 

Sox1, sox2 and sox3 belong to this group and they were the first sox genes 

to be isolated and characterised as Sry-related (Gubbay et al. 1990). In 

addition to these three genes two others were later classified in the same 

subgroup because of the high sequence homology of their HMG-box 

domains: sox14 (Wright et al. 1993) and sox21 (Rex et al. 1997). However, 

a further subdivision into subgroups SoxB1 and SoxB2 has been proposed 

on the basis of the full-length sequence alignment and the different roles 

of these proteins in chick (Uchikawa et al. 1999) as well as in other 

vertebrates (Bowles et al. 2000). The homology of the full-length 

sequences is high in proteins belonging to the same subgroup, but there is 

no similarity between the sequences of proteins of different subgroups, 

except for the HMG-box domains and a short proximal C-terminal region. 

Therefore, the similarity between the sequences outside the HMG-box of 

members of the different SoxB subgroup (SoxB1 and SoxB2) is low as it is 

for the members of different Sox groups; for this reason the phylogenetic 

analysis of the SoxB1 and SoxB2 members have been largely based on the 

HMG-box sequences (Zhong et al. 2011).   

In zebrafish the SoxB1 subgroup contains other two members: Sox 19a 

(Sox19) (Vriz and Lovell-Badge 1995) and Sox19b (Sox31) (Girard et al. 

2001), which have been identified as orthologues of Sox15 (which belong 

to the mammalian SoxG group) and are thought to derive from a further 

genome duplication event (Okuda et al. 2006; Okuda et al. 2010).  
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1.3.2. Roles of the Members of SoxB Group 

Regarding the functions of SoxB proteins, SoxB1 transcription factors are 

generally considered to act as activators, while SoxB2 are thought to act as 

repressors. 

SoxB1 proteins contain a C-terminus that act as transcriptional activator. 

However, it has been shown that Sox14 and Sox21 have a putative 

repressor C-terminus domain. This evidence is in contrast with the 

findings on other Sox proteins (Kamachi et al. 1995; Kamachi et al. 1998; 

Kamachi et al. 1999). In fact, it has been shown that they repress the 

expression of the δ-crystalline enhancer DC5, while other SoxB1 members 

activate it in the same experimental conditions (Uchikawa et al. 1999). 

However, it now seems that SoxB1 and SoxB2 can be either activators or 

repressors and that their function is highly dependent on the context of 

when and where they are expressed. This context-dependency could be 

correlated with the interacting partners of the SoxB factors or with post-

transcriptional modifications as, for example, SUOMylation. This is the 

covalent attachment of a short peptide (the SUMO) to a consensus region 

of the protein and it is thought to be correlated to this switch between 

transcriptional activation and repression functions of the SoxB factors 

(Savare et al. 2005; Savare and Girard 2005; Taylor and Labonne 2005; 

Haldin and LaBonne 2010)  

1.4. The SoxB1 Subgroup 

Compared with all the other Sox factors, the members of the SoxB1 

subgroup show higher sequence conservation (Bowles et al. 2000). 

Moreover, their functions are conserved during evolution as they are all 

involved in the process of differentiation of the cells towards the neural 

fate and the specification of the neural tissue. The expression pattern of 

these proteins during the early stages of embryonic development is also 

conserved.  
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Some SoxB1 factors are maternally-derived and they regulate axis 

formation by modulating the expression of nodal-like proteins. This has 

been shown to be the case for Xenopus Sox3 (Zhang et al. 2003; Zhang et al. 

2004; Zhang and Klymkowsky 2007), of mouse Sox2 (Avilion et al. 2003) 

and Sox3-Sox19b in zebrafish (Okuda et al. 2006). 

Sox1, Sox2 and Sox3 proteins were found to be present in the dividing 

neuroepithelium of metazoans embryo during CNS development. It had 

been demonstrated that their co-expression is crucial for maintaining the 

proliferative potential of these multipotent progenitor cells by blocking 

their differentiation. Accordingly, when these neuroepithelial progenitor 

cells start to differentiate and the post-mitotic neural genes start to be 

transcribed, the expression of SoxB1 factors begin to be down-regulated 

(Collignon et al. 1996; Pevny and Lovell-Badge 1997; Pevny et al. 1998; 

Uchikawa et al. 1999; Wood and Episkopou 1999; Bylund et al. 2003; 

Graham et al. 2003; Kan et al. 2004; Pevny and Placzek 2005). Moreover, 

the constitutive overexpression of these proteins in the neural tube of the 

chicken (Bylund et al. 2003; Graham et al. 2003) or in the neural plate of 

Xenopus (Rogers et al. 2009) inhibits the neural differentiation process 

and leads to an increase in the number of progenitor cells that causes the 

expansion of the population of proliferative stem-like cells. When 

constitutive activator versions of Sox2/3 are over-expressed, they 

suppress the process of neural differentiation with the same extent of the 

wt proteins. On the other hand, overexpression of dominant repressor 

forms of Sox3 has been shown to cause premature exit from the cell cycle 

and neural differentiation of the cells. These data suggests that the SoxB1 

factors inhibit neural differentiation by acting as transcriptional activators 

instead of repressors (Bylund et al. 2003). 

As mentioned earlier, SoxB1 proteins can be maternally-inherited by the 

zygote and their pattern of expression during early stages of 

embryogenesis is evolutionarily highly conserved.  For example Sox3 is 

maternally-inherited in the Xenopus embryo and its regulation of nodal-

like protein expression is essential for the axis formation (Zhang et al. 
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2003; Zhang et al. 2004; Zhang and Klymkowsky 2007), while in the 

mouse embryo Sox2 is maternally-derived in a similar way (Avilion et al. 

2003). On the other hand, some small differences in the spatial and 

temporal patterns of expression of the SoxB1 factors have been identified. 

In fact Sox3 is the first of the SoxB1 proteins to be expressed in 

vertebrates (except for mammals), and while Sox2 starts to be expressed 

in the neurectoderm at the beginning of gastrulation, Sox1 is expressed 

only after gastrulation (Rex et al. 1997; Mizuseki et al. 1998; Wood and 

Episkopou 1999; Nitta et al. 2006).  

SoxB1 factors are thought to be functionally redundant during the 

formation of the CNS because of the high similarity of their primary 

structure and the overlapping patterns of their expression (Collignon et al. 

1996; Pevny and Rao 2003). Miyagi, Masui et al. showed that the 

conditional knockout of Sox2 is compensated by the up-regulation of Sox3 

expression in mouse (Miyagi et al. 2008). Moreover loss-of-function 

experiments demonstrated that that the knockdown of Sox3 in zebrafish 

(Dee et al. 2008) and in Xenopus (Rogers et al. 2009) causes only mild 

defects in the development of the nervous system. The phenotypes that 

result from these experiments affect only the cells (or the tissues) where 

that specific SoxB1 factor is usually expressed alone. For example in 

mouse, mutated Sox1 and Sox3 cause lens fibre and pituitary or cranio-

facial defects (Nishiguchi et al. 1998; Rizzoti et al. 2004; Rizzoti and Lovell-

Badge 2007). In humans, different retinal abnormalities, microphthalmia 

and anophthalmia are due to mutations in the Sox2 gene (Fantes et al. 

2003; Williamson et al. 2006). 
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1.5. Sox 3 

1.5.1. The Importance of Studying Sox3  

At the present little is known about the roles of Sox3 in the earliest stages 

of the embryonic development. Knowing the structure of the protein and 

how it interacts with its co-factors would help to give a clearer picture. 

However, its secondary structure is still unknown (except for the HMG 

domain) and the interacting co-factors are still being identified. Sox3 

amino acid sequence, though, does show high similarity with the other 

SoxB1 proteins, Sox1 and Sox2. As shown in figure 1.14, the physical-

chemical properties of the amino acid sequences are conserved among the 

three SoxB1 factors in zebrafish. This is consistent with the findings that 

SoxB1 factors have overlapping expression patterns and that these highly 

homologous proteins have redundant roles in nervous system 

development (Rogers et al. 2009; Zhong et al. 2011). Therefore the 

understanding of the roles and mechanisms of function of Sox3 is very 

important. In fact, knowing the molecular mechanisms of Sox3 could on 

one hand clarify the earliest events that lead to the formation of the neural 

tissue and, on the other help to understand the mechanisms of action of 

the other SoxB1 factors in the later stages of development. Since Sox3 is 

the first of the SoxB1 proteins to be expressed in several vertebrate 

species, and since its presence was detected at very early stages even 

before the specification of neural and non-neural domains (Rex et al. 1997; 

Dee et al. 2007), it is thought to be a key factor for the subsequent 

development of the neural tissue. 
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1.5.2. Expression and Roles of Sox3 During Zebrafish 

Development 

Sox3 is one of the first and most generally expressed transcription factors 

during neural development of a huge range of vertebrate species, which 

include the zebrafish (Okuda et al. 2006; Dee et al. 2008), Xenopus (Penzel 

et al. 1997; Zhang et al. 2003; Zhang et al. 2004; Zhang and Klymkowsky 

2007),  chicken (Rex et al. 1997) and mouse (Collignon et al. 1996; Wood 

and Episkopou 1999).  

In zebrafish, as well as Xenopus, Sox3 protein is thought to be maternally-

inherited (Zhang et al. 2003; Zhang et al. 2004) and the mRNA is barely 

detected at 32-cell stage (Okuda et al. 2006). While sox3 transcript is 

detectable in the zygote at the beginning of gastrulation and 

differentiation of the ectoderm towards neural/non-neural fate, sox1 and 

sox2 are not detectable until 30% epiboly (Mizuseki et al. 1998; Nitta et al. 

2006; Okuda et al. 2006; Rogers et al. 2008).  

In particular, sox3 has been showed to be present at the MBT (Mid-

Blastula Transition) and its expression increases throughout the 

developing epiblast by 30% epiboly (Okuda et al. 2006). At the shield stage 

it is uniformly confined at the presumptive ectoderm (Okuda et al. 2006) 

and at the same time it is lost from the prospective mesodermal and 

endodermal cells. At the mid-gastrula stage sox3 expression becomes 

confined to the neural plate (Koyano et al. 1997; Rex et al. 1997; Okuda et 

al. 2006; Dee et al. 2007; Dee et al. 2008). In later development sox3 

expression becomes even more confined and overlaps with the other 

soxB1 factors (sox1-2) maintaining the stem cells pluripotency state 

(Bylund et al. 2003; Graham et al. 2003). The presence of sox3 throughout 

the ectoderm by shield stage has inspired the idea that it could play a role 

in the earliest fate decisions (Dee et al. 2008). In the experiments 

documented by Dee et al. (2008) the ectopic over-expression of Sox3 led 

to the duplication of the central nervous system or to other similar 

phenotypes characterised by the formation of additional neural tissue 
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located at the head or the trunk of the developing embryo. This was 

thought to be due to cell-autonomous effects of the ectopic expression of 

the protein in the ectoderm, which would have promoted the expansion of 

the dorsal cells, fated to differentiate into neural tissue during earlier 

neural induction, towards more ventral regions. A model was proposed 

according to which Sox3 transcription factor directly activates the 

expression of sox2 and sox31 (both of which are markers for neural fate 

specification) and at the same time it directly inhibits gata2 (a non-neural 

marker) thus re-programming the cells towards a neuro-ectodermal 

destiny. Therefore, this re-programming process would be the reason why 

the nervous system expands. Moreover, it has been showed that in 

zebrafish Sox3 acts both as a transcriptional activator and as a 

transcriptional repressor (Dee et al. 2008; Shih et al. 2010; Kuo et al. 

2013). 

1.5.3. Sox3 Acts as Transcriptional Activator During 

Neurogenesis 

It has been demonstrated that in the chicken spinal cord Sox3 acts by 

activating the expression of target genes downstream of the pro-neural 

basic Helix-Loop-Helix transcription factors (bHLH family), and maintains 

the stem-like status of neural progenitor cells (Bylund et al. 2003), 

counteracting proneural proteins (normally directed by bHLH activity). In 

Xenopus, gain-of-function and loss-of-function experiments showed that 

Sox3 acts during primary neurogenesis by directly activating sox2 and 

geminin, two early neural genes, in the absence of protein synthesis, and at 

the same time by indirectly inhibiting the Bmp target Xvent2. The resulting 

phenotypes included an increase of proliferative cells, expansion of the 

neural plate, delay in the neurogenesis process and, subsequently, in the 

neural specification (Rogers et al. 2009). This same effect was caused by 

the expression of the constitutive active form of Sox3 (Sox3HMG-VP16) 

and it is consistent with over-expression experiment conducted in other 

model organisms (Bylund et al. 2003; Graham et al. 2003; Dee et al. 2008).  
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In Xenopus, Sox3 also has an indirect repressor effect on Xvent2, probably 

by inducing the expression of a repressor; in fact, the expression of either 

ectopic Sox3 or Sox3HMG-Vp16 led to a similar repression effect, resulting 

in a decrease of epidermogenesis. This effect was not observed after the 

expression of the dominant repressor form of Sox3 (Sox3HMG-EnR) 

(Rogers et al. 2009). Together, these data suggest that Sox3 plays a role as 

a transcriptional activator during neurogenesis. However, as explained in 

the next paragraph, Sox3 has been shown to act as a transcriptional 

repressor in earlier stages of development. 

1.5.4. Sox3 Acts as Transcriptional Repressor During 

Organizer Formation 

In the Xenopus zygote, Sox3 protein and mRNA are maternally-inherited 

(Zhang et al. 2003; Zhang et al. 2004) and therefore present before the 

specification of the three germ layers. This suggested that Sox3 could play 

a role in the specification of the germ layers (Penzel et al. 1997; Rex et al. 

1997). Accordingly, it has been demonstrated that maternal Sox3 is 

involved in axis formation by blocking mesoderm differentiation during 

the specification of the germ layers (Zhang et al. 2003; Zhang et al. 2004; 

Zhang and Klymkowsky 2007). It has been shown that the expression of 

the constitutive active version of Sox3 (Sox3HMG-VP16), knockdown of 

endogenous Sox3 by morpholinos, or injection of anti-Sox3 antibodies that 

prevented the protein from binding DNA, all caused up-regulation of Xnr5 

(Zhang et al. 2003) and Xnr6 (Zhang et al. 2004), two genes that are 

regulated by endogenous VegT and β-catenin and induce the formation of 

dorsal mesoderm. The data indicate that Sox3 directly binds sites within 

the promoter regions of Xnr5 and Xnr6 and down-regulates their 

expression, resulting in a suppression of dorsal axis specification and 

therefore in ventralised phenotypes. Moreover, it has been demonstrated 

that this is not related with Sox3 ability to inhibit Wnt signalling by 

binding β-catenin or by competing with TCF/Lef (which are transcription 

factors regulated by β-catenin)  (Zorn et al. 1999; Zorn et al. 1999; Zhang 

et al. 2003; Heeg-Truesdell and LaBonne 2006; Sinner et al. 2007). 
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Injection of affinity purified anti-Sox3 antibodies into zebrafish embryos 

resulted in the up-regulation of the nodal-related protein Cyclops and 

gastrulation abnormalities, both of which could be rescued by co-injection 

with mRNA encoding the dominant repressor sox3HMG-EnR or the nodal 

inhibitor cerS (Zhang et al. 2004). These data suggest that Sox3 acts as 

transcriptional repressor of nodal signalling in zebrafish as well as in 

Xenopus.  

Sox3 plays a crucial role in the formation of the zebrafish organizer by 

acting as a transcriptional repressor in multiple steps of this process and 

confining the organizer formation both spatially and temporarily (Shih et 

al. 2010). Ectopic over-expression of Sox3 in the early zebrafish embryos, 

realised by RNA microinjection, caused down-regulation of squint (a 

mesoderm-derived nodal factor), of the organizer marker goosecoid (gsc), 

and of chordin (chd) and noggin1 (nog1), which are BMP antagonists 

produced within the organizer. Moreover, in these experiments also the 

Nieukoop centre marker bozozok (boz, also known as dharma) was down-

regulated by Sox3 ectopic over-expression and this is consistent with the 

observation that in Xenopus Sox3 down-regulates the expression of 

siamosis, whose function corresponds to the zebrafish bozozok (Zhang et 

al. 2003). This repression activity of Sox3 has been demonstrated to be 

direct and not caused indirectly by interference of β-catenin. In fact, over-

expression of Sox3HMG-EnR had the same effects of the ectopic 

expression of wt Sox3 on all the analysed organizer markers, but this was 

found not to be the case of Sox3HMG-VP16. Chromatin 

Immunoprecipitation PCR analysis (ChIP PCR) demonstrated that Sox3 IP 

robustly precipitates a bozozok promoter fragment located 1.3 kb 

upstream of the transcription start region (Shih et al. 2010). The 

expression of dominant negative versions of Sox3, which would block Sox3 

ability to bind its target regions on the DNA, led to ectopic expression of 

chordin, goosecoid, noggin1 and squint into both dorsal and ventral areas 

of the animal pole in embryos 24 hours post-fertilization. The resulting 

phenotypes showed vary levels of axis duplications (Shih et al. 2010). 
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Currently, the molecular mechanisms implicated in Sox3 repression 

function are still not completely solved. It is important to mention that 

recent studies proposed the implication of SUMOylation in the switch 

between Sox3 activation and repression functions (Gill 2005; Gill 2005; 

Savare et al. 2005; Savare and Girard 2005; Taylor and Labonne 2005; 

Fernandez-Lloris et al. 2006; Girard and Goossens 2006; Tsuruzoe et al. 

2006). 

1.6. Aim of the Study 

The aim of the present study was to gain a deeper insight into the 

mechanisms that regulate the ability of Sox3 to act both as a 

transcriptional activator and as a transcriptional repressor in the several 

developmental processes mentioned above (Paragraph 1.5). Since 

previous studies focused on specific regions of the protein, I decided to 

proceed with a more comprehensive approach.  Therefore I designed a set 

of experiments that would allow the functional screening of the whole 

Sox3 amino acid sequence in order to identify and associate specific 

regions of the protein with their function/s.  

The use of zebrafish as animal model for the experiments was due to its 

ease to be cultured and bred, and because its embryos develop fast but at 

the same time are considered to be a good model for studying vertebrate 

early development. The study was focused on the zebrafish Sox3 with the 

awareness of the high level of similarity that it shares with its vertebrate 

homologues both structurally (primary structure) and functionally, in the 

early stages of embryonic development. Therefore it is highly probable 

that the protein has conserved functions and roles in molecular regulation 

in the earliest stages of embryonic development among all the vertebrates. 

In particular, attention was focused on one of the earliest functions of 

Sox3, which is the spatial and temporal regulation of the embryonic 

organizer formation (see Paragraph 1.5.1 for further description), together 

with its involvement in neural fate specification.  
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Because it is known that Sox3 acts as a transcriptional repressor in the 

context of organizer formation (Shih et al. 2010; Kuo et al. 2013), the 

present study aimed to investigate the regulation of the activity of Sox3 

both as a transcriptional repressor and a transcriptional activator. Further 

analyses were performed in order to assess the activator function of Sox3 

in vitro. 

Therefore, the present study has been designed and performed in order to 

build the basis for subsequent, more specific analyses of the relationship 

between Sox3 structure and functions as a transcriptional activator and 

repressor. In particular, I wanted to identify large regions of the protein 

that contain domains or residues essential for regulating the activation or 

repression functions of Sox3, in order to obtain a functional map of Sox3 

that could be useful for subsequent analysis.  

To summarise, the objectives of the present study were: 

1. The design of a strategy that could allow the functional screening of 

zebrafish Sox3 sequence by creating mutant constructs of the 

protein, based on what is known about its structure (Chapter 3.1: 

Design of Recombinant Forms of Sox3 for Structural-Functional 

Analysis);  

2. The development and optimization of a cloning strategy that would 

allowed to obtain all the designed constructs (Chapter 3.2: 

Development of a Deletion Cloning Strategy);  

3. The development and optimization of experimental techniques that 

allowed ectopic over-expression of wt and mutant Sox3 proteins in 

the zebrafish embryos at comparable levels (Chapter 3.3: Protein 

Overexpression in zebrafish Embryo);  

4. The comparison between the effects of ectopic over-expression of 

wt and mutant Sox3 on the development of the Central Nervous 

System (Chapter 3.4: Effects of the Expression of Recombinant Sox3 

on Neural Development);  
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5. The comparison between the functions of wt and mutant Sox3 

proteins in the early stages of development, in particular in the 

context of embryonic organizer formation (Chapter 3.5: Effects of 

the Expression of Recombinant Sox3 on Organizer Formation); 

6. The comparison between the transcriptional activation function of 

wt and mutant Sox3 proteins (Chapter 3.6: Transcriptional 

Activation Function of wt and Deletion Mutant Sox3 proteins).
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2. Materials and Methods 

2.1. Purification of Plasmid DNA 

Bacteria containing pβUT2-zfSox3-HA plasmid were grown overnight at 

37˚C on agar plates containing 1% agarose and 100 µg/ml ampicillin 

(Amp). A single colony was then picked and grown at 37˚C overnight 

shaking in 5 ml of Mu Broth culture medium (Section 6.1.1) with Amp 100 

µg/ml. 

2.1.1. Minipreparation of Plasmid DNA 

Bacteria were centrifuged at 16000 x g for 3 min. Plasmid DNA was 

purified using a GenEluteTM Plasmid Miniprep Kit (Sigma-Aldrich) 

following manufacturer’s instructions. Final elution from the column was 

performed using DEPC water (Sigma-Aldrich) at 37˚C.  

2.1.2. Determination of Quality and Concentration of 

Purified DNA 

DNA concentration was measured with a Nanodrop spectrophotometer 

(ND-1000). Only minipreparations with 260/280 ≥ 1.8 were considered of 

good quality and therefore used for subsequent experiments. The quality 

of purified DNA was then further evaluated by gel electrophoresis using a 

1% (w/v) agarose gel. 
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2.2. PCR Cloning 

2.2.1. Polymerase Chain Reactions 

Primers were manually designed and purchased online from Sigma-

Aldrich. All reagents were mixed in a different area of the laboratory prior 

to the addition of template DNA. The reagents used were the followings: 

Forward Primer (20 μM) 2.5 μl 

Reverse Primer (20 μM) 2.5 μl 

DMSO 1.5 μl 

2X Phusion® Master Mix* 16.5 μl 

Diluted template DNA  2.5 ng 

DEPC water up to 50 μl 

Total Volume 50 μl 

*2X Phusion® High-Fidelity PCR MM w/HF Buffer Master Mix and 100% DMSO by New 

England Biolabs® Inc. 

PCR reactions were performed with the following program on a G-Storm 

machine: 

• Heated lid 110 °C; 

• Hot Start 98 °C 1min; 

• 1st stage: 6 times, 95 °C 5 seconds (sec), 58 °C 10 sec, 72 °C 1min 30 

sec; 

• 2nd stage: 30 times, 95 °C 5 sec, 62 °C 10 sec, 72 °C 1min 30 sec; 

• 3rd stage: 1 time, 72°C 10 sec; 

• Storage: 10 °C. 
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2.2.2. Purification of PCR Products 

PCR reactions were run on 1% (w/v) agarose gel. The bands 

corresponding to PCR product expected size were cut out of the gel and 

DNA was purified using QIAquick Gel Extraction Kit (50). 

Quality and concentration of purified DNA were analysed using a 

Nanodrop spectrophotometer and by gel electrophoresis. 

2.2.3. Phosphorylation and Ligation 

After gel extraction PCR products were phosphorylated before ligation. It 

was performed a negative control lacking of kinase enzyme in order to 

verify that gel extraction excluded all parental plasmid. 

Phosphorylation reactions were performed under the following 

conditions: 

 Control Phosphorylation 

DNA template 50 ng 50 ng 

DEPC water  up to 45 μl up to 43 μl 

 

• Heating at 70 °C for 10 min;  

• Chilling on ice; 

• Addition of: 

 Control Phosphorylation 

T4 Ligase Buffer (10X)* 5 μl 5 μl 

T4 Polynucleotide Kinase* / 20 units (2 μl) 

Total Volume 50 μl 50 μl 

*T4 Ligase Buffer and T4 Polynucleotide Kinase by New England Biolabs® 

Inc. 
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• Incubation at 37 °C for 30 min; 

• Heat inactivation at 65°C for 20 min; 

• Chilling on ice; 

• Storage at -20 °C. 

Ligation reactions of both control and phosphorylated DNA were 

performed under the following conditions: 

DNA template 5 μl 

T4 Ligase Buffer 2 μl 

T4 Ligase* 400 units 

DEPC water up to 20 μl 

Total Volume 20 μl 

*T4 Ligase Buffer and T4 Ligase by New England Biolabs® Inc. 

Reactions were then incubated at 4 °C overnight. 

2.2.4. Transformation and Purification of Recombinant 

DNA 

Competent cells (Alpha-Select Bronze or Gold Efficiency by Bioline 

Reagents Ltd.) were thawed on ice then added with ligation reaction (20 

µl) and gently mixed. They were then placed on ice for 30 min, heated at 

42 °C for 1 min and placed back on ice for 5 min. Transformation reaction 

was added with 1 ml SOC medium and incubated at 37 °C for 1 h. 

After incubation bacteria were pelleted by centrifugation (7000 x g for 3 

min), re-suspended in 100 µl Mu Broth medium (Section 6.1.1) and spread 

onto petri dishes containing a layer of Mu Broth Agar medium (Section 

6.1.2) added with 100 µg/ml Amp. Petri dishes were then incubated at 37 

°C overnight. The same protocol was applied for transformation with 

phosphorylated or negative control (without addition of T4 kinase) DNA. 
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After overnight incubation 4 colonies from each plate were picked and 

growth in 5 ml mu medium added with 100 µg/ml  Amp at 37 °C shaking 

overnight. 

DNA from each colony was purified trough plasmid minipreparation (see 

Paragraph 2.1.1). Quality and Concentration of purified plasmids were 

checked both with electrophoresis and Nanodrop measurement ( see 

Paragraph 2.1.2).  

2.2.5. Assessment of the Clones’ Sequences 

The clones obtained were analysed through the following two steps: 

1) Firstly, a restriction digestion with NaeI was performed to identify 

the recombinant clones. Both wt Sox3 (pβUT2-zfSox3-HA plasmid) 

and mutant forms of Sox3 were digested with NaeI (New England 

Biolabs® Inc.) with the following protocol: 

 

Digestion reactions were incubated at 37 °C for 2 h then analysed.  

2) After the identification of the presumptive mutant clones through 

restriction digestion, sequencing was performed in order to confirm 

the sequences of each of the selected clones. An amount of 0.5 µg of 

each predicted mutant was sent to Source Biosciences 

(http://www.sourcebioscience.com/) for sequencing. Sequencing data 

were read with FinchTV (http://www.geospiza.com/) and the 

 Wt Sox 3 Recombinant 

Buffer  2 μl 2 μl 

DNA ̴0.3 to 0.5 µg ̴0.3 to 0.5 µg 

Nae I (10.000 units/ml) 1 μl 1 μl 

DEPC water up to 20 μl up to 20 μl 

Total Volume 20 μl 20 μl 



39 
 

sequences were aligned were using Nucleotide BLAST 

(http://blast.ncbi.nlm.nih.gov/).  

2.2.6. Storage of the Clones Obtained 

Competent cells containing the recombinant plasmid were grown from a 

single colony in 5ml Mu Broth medium (Section 6.1.1) for 16 hours at 37 

°C. Bacteria were subsequently spin down and pellet was resuspended in 

500 µl or 800 µl Mu Broth medium (Section 6.1.1). After mixing an amount 

of 500 µl or 200 µl of 90% glycerol was added in order to obtain 45% and 

18% glycerol stocks. The stocks obtained were stored at -80 °C. 

2.3. In Vitro Transcription 

In vitro transcription was performed on plasmids containing green 

fluorescent protein gene (pCS2nlsGFP, see map in Appendix 6.2), wild-type 

sox3 (wtSox3, plasmid pβUT2-zfSox3-HA, see map in Appendix 6.1) and the 

deletion mutant constructs of sox3 (same plasmid as wtSox3) in order to 

obtain capped RNA for embryo microinjection. 

2.3.1. Digestion and Purification of the Template 

Template DNA was obtained from glycerol stocks (see Appendix 7.1 and 

Appendix 7.2 for the maps of the vectors containing wtSox3 and GFP) of 

from the transformed colonies of competent cells in the case of the mutant 

Sox3 constructs. Glycerol stocks were transported on ice and bacteria 

were scraped and added to 5 ml mu, previously added with Amp, using a 

filtered pipette tip. Cells were grown for 16 hours at 37 °C and then DNA 

was extracted using GenEluteTM Plasmid Miniprep Kit (Sigma-Aldrich).  
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Plasmids were subsequently digested with EcoRI or NotI(New England 

Biolabs® Inc.) according to the following protocol: 

Buffer  8 μl 

DNA 2,5 µg 

EcoRI (NotI for GFP) 2 μl 

DEPC water up to 80 μl 

Total Volume 80 μl 

Digestion reactions were incubated at 37 °C for 2 h, then 1µl of digest was 

run on 1% (w/v) agarose gel in order to check digestion. 

Phenol-Chloroform extract was performed in order to clean digested DNA 

template according to the following protocol: 

1. Addition of 1 vol. Phenol:Chloroform:Isoamyl Alcohol (purchased 

from Sigma-Aldich: Phenol:Chloroform:Isoamyl Alcohol 25:24:1 

saturated with 10 mM Tris, pH 8.0, 1 mM EDTA); 

2. Vortex 3 sec; 

3. Centrifuge at 16000 x g for 3 min; 

4. Transfer of the upper layer into a clean eppendorf tube;  

5. Repetition of steps 1,2, 3 and 4; 

6. Addition of 1 vol. of Chloroform; 

7. Vortex 30 sec; 

8. Spin at 16000 x g for 3 min; 

9. Transfer of the upper layer into a clean eppendorf tube; 

10. Repetition of steps 6, 7, 8 and 9; 

11. Addition of 0.1 vol. NaAc 3M and 2.5 vol. EtOH; 

12. Incubation at -20 °C for 30 min; 

13. Spin at 16000 x g for 30 min at 4 °C; 

14. Rinse of the pellet with ice cold 70% EtOH; 

15. Spin at 16000 x g for 5 min at 4 °C; 

16. Removal of EtOH and air drying of the pellet for 10 min; 

17. Resuspension of the pellet in 10 µl RNAse free H2O; 
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18. Storage at -20 °C. 

After extraction, 1 µl of DNA was run on 1% (w/v) agarose gel in order to 

check it was not lost during proceedings.  

2.3.2. In Vitro Transcription and RNA Purification 

In vitro transcription reactions were performed using mMessage 

mMachine® T3 (for obtaining GFP transcript mMessage mMachine® SP6, 

both by Ambion) transcription kit according to the following protocol: 

Linear template DNA 1 μg 

2 x NTP / CAP 10 μl 

10 x Reaction Buffer 2 µl 

Enzyme Mix 2 μl 

Total Volume 20 μl 

The reaction was incubated at 37 °C for 5 h, and then put on ice while 

running 1 µl of each reaction was tested by gel electrophoresis. 

Phenol-Chloroform Extraction was performed to clean capped RNA as 

follows: 

1. Addition of 115 µl Nuclease-Free H2O (from kit) and 15 µl 

Ammonium-Acetate STOP Solution; 

2. Extraction with 1 vol. Phenol:Chloroform:Isoamyl Alcohol 

(purchased from Sigma-Aldich: Phenol:Chloroform:Isoamyl Alcohol  

25:24:1 saturated with 10 mM Tris, pH 8.0, 1 mM EDTA), vortex 30 

sec then spin at 16000 x g for 3 min; 

3. Extraction with 1 vol. Chloroform, vortex 30” then spin at 16000 x g 

for 3 min; 

4. Addition of 1 vol. isopropanol to precipitate RNA; 

5. Incubation at -20 °C for 30 min; 

6. Spin at 16000 x g for 15 min at 4 °C; 

7. Removal of supernatant, air drying of the pellet and resuspention in 

30 µl Nuclease-Free H2O; 
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8. Run 1 µl on 1% (w/v) agarose gel at 150 volt for 25 min and 

Nanodrop measurement of RNA concentration. 

2.3.3. Storage of Capped RNA 

A 15 µl aliquot of the capped RNA (CAP RNA) was directly stored at -80 °C. 

The remaining 15 µl were diluted with Nuclease-Free H2O to a final 

concentration of 100 ng/µl and stored in 5 µl aliquots at -80 °C.  

2.4. Embryo Injection 

2.4.1. Set Up of Zebrafish and Harvesting of the 

Embryos 

Pairs of fishes were set up in the late afternoon in order to allow them to 

lay fertilized eggs the following morning. Small plastic boxes with mesh 

bottom were fitted into larger boxes and filled with water. A pair of fish 

was placed into each of the plastic boxes, divided from each other by a 

transparent plastic device. The device was removed the following morning 

and after 20 min the fish were removed as well as the top container. The 

embryos, which collected from the bottom container, were washed and 

placed into petri dishes filled with water containing dimethylene blue 

(2ml of 0.1% methylene blue into 1L of water). 

2.4.2. Microinjection of Capped RNA in Zebrafish 

Embryos 

Needles were fabricated by heating and pulling borosilicate glass capillary 

tubes in a micropipette puller device, and then stored in petri dishes on 

top of a small stripe of clay. CAP RNA was thawed on ice then used for 

backloading needles using a microloader pipette. The tip of the needle was 

broken with steel tweezers, then the needle was inserted into the 

microinjector. One-two cell stage zebrafish embryos were aligned on a 

petri dish against a glass microscope slide and then microinjected with 50 
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pg of CAP RNA. The RNA was microinjected directly into the cytoplasm 

(Fig. 2.1). 

 

Figure 2.1 RNA microinjection into Zebrafish 1-cell stage embryos (Credits: Grabner Lab 

website and Dominik Paquet website). 
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2.4.3. Incubation of the Embryos 

Microinjected embryos and their uninjected siblings were incubated all at 

the same time at 28 ˚C for the required time, which ranged from 4.5 hpf to 

24 hpf. 

2.5. Western Blot 

2.5.1. Preparation of Samples for Western Blot 

After microinjection and incubation at 28 ˚C until reaching Sphere Stage, 

30 embryos for each sample were collected and the chorions were 

removed using steel tweezers. Water was removed and replaced with 200 

µl of Deyolking Buffer (55 mM NaCl, 1,8 mM KCl, 1,25 mM NaHCO3 in 

SDW) and embryos were homogenized by pipetting with 200 µl filtered 

pipette tip for 20 times. Samples were then centrifuged in eppendorf tubes 

at 124 x g  for 5 min, supernatant was removed and 30 µl of 2X Laemmli 

Sample Buffer (Sigma-Aldrich) were added to each sample before mixing 

and storing them at -80 ˚C. 
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2.5.2. Preparation of Denaturing Gel and Apparatus for 

SDS-PAGE 

Running gel (12.5% w/v of polyacrylamide) was prepared according to 

the following recipe, poured between two gel plates in a gel castor and 

covered with 70% EtOH: 

Reagent Vol. 

Acryl-Bis 29:1 2.14 ml 

Solution B* 1.43 ml 

SDW 1.44 ml 

APS 10% 75 µl 

TEMED 7.5 µl 

*Solution B: 1.57 M Tris HCl pH 8,8 and 0.4% SDS. 

 

After removal of EtOH a stacking gel (12.5% w/v of polyacrylamide) was 

prepared according to the following recipe and poured over polymerized 

running gel: 

Reagent Vol. 

Acryl-Bis 29:1 0.65 ml 

Solution C** 1.25 ml 

SDW 1.73 ml 

APS 10% 75 µl 

TEMED 7.5 µl 

**Solution C: 0.5 M Tris HCl pH 6,8 and 0.4% SDS. 
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After solidification the gels were transferred into the gel tank, which was 

then filled with SDS Running Buffer (Section 6.2.1). 

2.5.3. Gel Running and Electrophoretic Transfer 

Samples were thawed on ice for 10 min, then boiled at 110 ˚C for 10 min 

on heating block, placed back on ice for 10 min and centrifuged at 124 x g 

for 5 min. Only supernatant was collected and loaded on the SDS gel 

together with 5 µl of ladder (SeeBlue® Plus2 Pre-Stained Standard, 

Invitrogen). When performing western blot with recombinant Sox3 forms, 

half of the supernatant of each sample was loaded into each of two gels. 

This allowed performing the loading control (α-actin) and detecting Sox3 

HA-tagged avoiding superposition of the corresponding bands.  

The gels were run at 40 V until all the samples has reached the running 

gel, then at 90 V until the markers contained into Laemmli Sample Buffer 

(Sigma-Aldrich) had reached the bottom of the gel. The gel were then 

removed and a sandwich was made by putting together sponge, filter 

paper, gel, membrane, filter paper, then sponge again. The sandwich was 

made by soaking all the components in the same Transfer Buffer (Section 

6.2.2), which was later used also to fill the transfer tank. 

The transfer was run either at 35 V overnight or 110 V for 1 h RT. The 

membrane was then removed and washed into 5% Marvel Milk in PBST 

for at least 1 h at RT, with gentle shaking. The primary antibodies (rabbit 

anti-HA or anti-actin for loading control, both purchased from abcam®) 

were diluted 1/4000 in 2% w/v Marvel Milk powder in PBST and used to 

soak the membrane overnight at 4 ˚C gently shaking. The following 

morning the membrane was washed in PBST for 3 times 5 min each gently 

shaking, then it was replaced with secondary antibody (LiCor anti-rabbit, 

purchased from LI-COR®) diluted 1/4000 in 2% Marvel Milk in PBST and 

incubated for at least 1 h RT. After washing with PBST for 3 times 5 min 

each, the membrane was finally scanned using LiCor Scanner. 
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2.6. Whole Mount In Situ Hybridization 

2.6.1. RNA Microinjection 

RNA microinjection was performed as described in Chapter 2.3 together 

with each construct GFP capped RNA (50 pg) was injected. After 

incubation only embryos showing fluorescence under UV light were 

selected and fixed. This was carried on in order to make sure that 

microinjection had been effective for all the embryos analysed.  

2.6.2. Fixation and Storage of the Embryos for In Situ 

Hybridization 

After incubation at 28˚C until the embryos reached the desired 

developmental stage, only viable (and fluorescent) embryos were 

collected, washed once with Phosphate-Buffered Saline containing 0.1% 

Tween20 (PBST) and fixed with 4% Paraformaldehyde (PAF) in 

Phosphate-Buffered Saline (PBS) for a few minutes shaking at RT, then 

overnight at 4 ˚C. 

After fixation embryos were washed four times with PBST, then the 

chorions were removed using steel tweezers and washed with an 

increasing gradient of methanol at RT gently shaking: 

Washing Time 

100% PBST                                 5 min 

25% MeOH + 75% PBST           5 min 

50% MeOH + 50% PBST           5 min 

75% MeOH + 25% PBST           5 min 

100% MeOH                           4x5 min 

Embryos were then stored at -20 ˚C for at least overnight. 
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2.6.3. Preparation of DNA Template for Synthesis of 

Riboprobes 

Cells containing the plasmids with the genes of interest were striped from 

glycerol stocks on petri dishes containing a layer of Mu Broth Agar 

medium (Section 6.1.2) with addition of 100 µg/ml Amp, and then grown 

at 37˚C for 16 h. Single colonies were then transferred into 5 ml Mu Broth 

(Section 6.1.1) added with Amp 100 µg/ml and grown at 37˚C for 16 h 

shaking. Plasmid DNA was prepared as described in Section 2.1. The 

templates were subsequently digested overnight (75 μg DNA in a tot vol. 

of 40 µl) with the required restriction enzyme, and then gel purified 

(GenEluteTM Plasmid Miniprep Kit by Sigma-Aldrich). The concentration of 

template DNA was subsequently checked both running 1 μl on gel 

electrophoresis and with Nanodrop measurement before storage at -20 ˚C.  

Sequencing was performed by sending 0.5 µg of each digested template to 

Source Biosciences. 

2.6.4. DIG-labelled Riboprobes Synthesis 

The following labelling reaction was set up on ice and then incubated for 

3h at 37˚C. 

5x Buffer* 4 µl 

DTT* 
2 µl 

10X MIX** 2 µl 

RNasin* (40 u/μl) 
0.5 µl 

Polymerase* 2 µl 

DNA template 
800 ng 

DEPC water 
up to 20 µl 

Total Volume 20 µl 

*purchased from Promega, **purchased from Roche. 
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Probes were cleaned using illustraTM MicroSpinTM G-50 Columns (by GE 

Healthcare), then checked running 1 µl on 1% (w/v) agarose gel at 150 

volt for 25 min and stored at -80˚C after addition of 1 vol. of Hybridization 

Buffer. 

Probes were synthetized for all the following genes: 

Gene Restriction 

Enzyme 

RNA 

polymerase 

Vector 

bozozok (boz) Bam HI T7 pCR II 

chordin (chd) Not I T7 pCS2 

goosecoid (gsc) Sma I T7 pCS2 

n-cadherin (ncad) Xho I SP6 unknown 

notail (ntl) Xho I T7 unknown 

squint (sqt) Bam HI T7 pCS2 

 

2.6.5. In Situ Hybridization 

All the buffers necessary for the experiment were previously prepared 

according to the recipes described in Section 6.3. 

Embryos were rehydrated into PBST through a gradient:  

Washing Time 

75% MeOH + 25% PBST           5 min 

50% MeOH + 50% PBST           5 min 

25% MeOH + 75% PBST           5 min 

100% PBST                              4x5 min 

Then they were washed once for 5 min with 50% PBST + 50% 

Hybridization Buffer and incubated with pre-Hybridisation Buffer for 3h at 

67˚C. 
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The pre-hybridisation buffer was subsequently replaced with 100µl 

Hybridization Buffer containing a 1:200 dilution of probe and incubated 

overnight at 67˚C. The Hybridization Buffer containing the probe was then 

stored at -20 ˚C and reused at least twice. 

The following washings were then performed at 67˚C with occasional 

agitation:  

Washing Time 

100% Hybridization Buffer 1x10 min 

75% Hybridization Buffer + 25% 2x SSC 1x10 min 

50% Hybridization Buffer + 50% 2x SSC 1x10 min 

25% Hybridization Buffer + 75% 2x SSC 1x10 min 

2x SSC 1x10 min 

0.2x SSC 4x15 min 

The following washings were performed at RT gently shaking: 

Washing Time 

75% 0.2x SSC + 25% MABTw                5 min 

50% 0.2x SSC + 50% MABTw                5 min 

25% 0.2x SSC + 75% MABTw                5 min 

100% MABTw                                         5 min 

Blocking was performed with 2% Boehringer Blocking ReagentTM in MAB 

for 1h RT gently shaking. 

This was then replaced with antibody (anti-Dig-AP Fab fragments 1:5000 

in MAB Blocking buffer), shake for 5 min at RT then incubated at 4˚C 

overnight. 
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The following morning the samples were shaken for 1 h at RT, then 

antibody solution was removed and samples were wahsed 8x15 min with 

MABTw .  

The embryos were then equilibrated with BCL buffer III 3 times 5 min 

each at RT. This was replaced with developing buffer containing BCL 

buffer + BM PurpleTM 1:1 and incubated at 4 ˚C protected from light for at 

least overnight or until the colour had developed. The reaction was 

stopped by washing with PBST 20mM EDTA 3 times 5 min each, then the 

embryos were fixed in 4%Paf in PBST for 20 min RT. Paraformaldehyde 

was replaced with PBST by washing 3 times 5 min each and finally the 

embryos were put into 90% glycerol and stored at 4 ˚C.  

2.6.6. Evaluation of Embryos after In Situ Hybridisation 

After in situ hybridization embryos were evaluated by comparison 

between uninjected controls, embryos injected with wt Sox3 and embryos 

injected with the different Sox3 mutant forms under a Nikon SMZ15000 

microscope. Pictures were taken using a Nikon DS-5M camera and the 

Nikon ACT-2U 1.40 software. In order to get objective results the 

evaluation of the stained embryos was always performed with a “blind” 

approach, which included covering the samples’ labels and mixing them 

before analysing. 

2.7. Luciferase Reporter Assay 

2.7.1. Preparation of the Samples 

Embryos were co-injected with 50 pg of GFP CAP RNA, 50 pg of wt/mut 

Sox3 CAP RNA and 5 pg of pGL3-3XSX plasmid (for a map of the plasmid 

see Appendix 7.4). Subsequently they were incubated at 28 ˚C, collected at 

Sphere Stage and visualised with an optic microscope under UV light: only 

embryos that were expressing GFP diffusely and at similar level were 

selected. For each group about 50 embryos were injected and 30 were 

selected for the analysis. The chorion was removed from each one of the 
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selected embryos live using steel tweezers. The embryos were then 

diluted with Passive Lysis Buffer (5X PLB Promega, 5 µl of 1X PLB in SDW 

was used for each embryo), vortex and stored at -80 ˚C for up to one week.  

For each experimental group the experiment was repeated three times, 

each with samples of 10 embryos.  

2.7.2. Luciferase Reporter Assay 

The samples, which contained 10 embryos each, were thawed on ice, 

centrifuged at 16000 x g for 5 min and 35 µl of supernatant was 

transferred into fresh eppendorf tubes. They were then centrifuged again 

at 16000 x g for 5 min and 25 µl of supernatant was transferred into white 

96-well plate. The reading was made with a GloMax luminometer using the 

Luciferase Assay System (Promega).  
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3. Results 

3.1. Design of Sox3 Deletion Mutants for Structure-

Function Analysis  

3.1.1. Introduction 

As described in Chapter 1, Sox3 sequence and functions have been highly 

conserved during evolution. However, at the present time it is still not 

clear which regions of the protein are involved in its different functions as 

a regulator of gene expression at different stages of embryonic 

development. The aim of the present study was therefore to screen 

through the entire Sox3 protein sequence looking for regions involved in 

either organizer repressor function or neural induction function. 

Experiments were designed in order to allow rapid and individual testing 

of the involvement of different parts of the protein in such mechanisms by 

testing the effects of their deletions on target genes and comparing them 

to the effects of wt Sox3.  

3.1.2. Development of a Screening Strategy Based on the 

Evolutionary Conservation of Sox3 

The aim of the study was to find a link between Sox3 structure and 

function in early embryo development. As the three-dimensional structure 

of Sox3 has not yet been solved, the main idea of the project was based on 

the assumption that highly conserved positions in proteins are often 

indicative of structural and/or functional importance (Ashkenazy et al. 

2010). Multiple alignment of the protein sequence of Danio rerio (bony 

fishes), Carassius auratus (bony fishes), Amphiprion melanopus (bony 

fishes), Gallus gallus (birds), Taeniopygia guttata (birds), Mus musculus 

(rodents), Xenopus silurana (frogs), Xenopus laevis (frogs), Pan troglodytes 
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(primates) and Homo sapiens (primates), showed higher grade of 

conservation of some regions of the gene with respect to others (Fig. 3.1). 
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3.1.3. Design of Deletion Mutants of Zebrafish Sox3 

The strategy developed for this study was to delete both conserved and 

non-conserved regions, grouping the amino acids on the basis of 

conserved/not conserved clusters. Deletions of about 20 amino acids each 

were designed in order to cover the entire protein sequence but at the 

same time creating a reasonable number of mutants for a first scan of 

Sox3. The HMG-box domain was not removed nor modified not to affect 

Sox3 DNA binding ability. The total number of mutants designed was 

eleven (Fig. 3.2, Table 3.1 and Appendix 7.4) and they were numbered 

chronologically on the basis of when they were designed. During cloning 

experiments a twelfth clone was created and maintained as a negative 

control during all the following experiments. This clone (Mut12) contains 

the HMG-box domain and about 39 amino acids of the C-terminal region of 

the protein but lacks of the central portion; it was expected to lack most of 

the functions and its over-expression was therefore considered unlikely to 

affect embryo development.   
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Name Deletion Level of Conservation 

Mut1 P100-G123 Highly conserved region 

Mut2 G140-L163 Medium conserved region 

Mut3 A201-G221 Poorly conserved region 

Mut4 G124-V139 Poorly conserved region 

Mut5 A164-M179 Poorly conserved region 

Mut6 H180-N200 Medium conserved region 

Mut7 A226-G250 Medium conserved region 

Mut8 D251-G263 Highly conserved region 

Mut9 Q273-G290 Poorly conserved region 

Mut10 V291-I300 Highly conserved region 

Mut11 Y2-I3 Quite high conserved region 

Mut12 P100-P122 + 

P128-P261 

- 

 

Table 3.1 Nature of deleted regions of mutant forms of Sox3 that carry deletion in different 

regions of the protein. 
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3.2. Development of a Deletion Cloning Strategy  

Zebrafish Sox3 had been previously cloned into the pβUT2 vector 

including an HA tag downstream the gene in order to allow 

immunohistochemical detection of the protein. The same plasmid was 

used for all the experiments described (Appendix 7.1). The cloning 

strategy was designed to meet two main objectives: firstly to realise 

deletions without altering dramatically the remaining part of the protein, 

and secondly to provide a fast way to screen the clones to identify those 

containing the mutations before sequencing. The strategy was to replace 

the deleted region with a restriction site, so that it could be possible to 

assess the presence of the mutation just performing a restriction digestion 

followed by gel electrophoresis (Fig. 3.3). The enzyme chosen for these 

experiments was NaeI (restriction site 5’GCCGGC3’) as its translation 

produced Alanine-Glycine, amino acids that were expected to have low 

impact on the protein secondary structure.  

The ability of NaeI to cut pβUT2-zfSox3-HA was tested both using NEB 

cutter V2.0 (http://tools.neb.com/NEBcutter2/index.php) and performing 

restriction digestion followed by gel electrophoresis. The test showed that 

the enzyme did not cut the parental plasmid, while it cut the recombinant 

plasmids that contained the restriction site (Fig. 3.4 and Fig. 3.5). 
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Figure 3.3 Schematic representation of the cloning strategy. For each mutant two primers 

were designed: a reverse primer located towards the region of the gene corresponding to the     

N-terminus of the protein, and a forwards primer located towards the region of the gene 

corresponding to the C-terminus of the protein (1). The PCR products obtained (2) with each pair 

of primers were phosphorylated and ligated (3), then used for transforming competent cells that 

were grown on agar plates (4). In order to identify the recombinant colonies, the plasmid DNA 

was purified (5), digested with NaeI and analysed through gel electrophoresis (6). For each of the 

eleven deletion mutants one colony was selected and the exact sequence of each recombinant 

plasmid purified from the selected colonies was subsequently obtained through DNA Sanger 

sequencing (7).  
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Figure 3.5 Gel represented in point 6 of figure 3.3. Light blue arrows indicate the wt plasmid

(pβUT2-zfsox3-HA); green arrows indicate plasmids that were successfully digested by NaeI and 

presumably contain the desired deletion; red arrows indicate plasmids that were not digested by 

NaeI. The first lane corresponds to 1kb DNA ladder (by New England Biolabs®, 0,05 µg), the 

second lane to pβUT2-zfsox3-HA, the third and the fourth lanes correspond to different 

concentrations of pβUT2-zfsox3-HA after digestion with NaeI (same reaction conditions used for

the presumptive mutant plasmids). The four lanes indicated as “Mut1” correspond to the same 

four plasmids represented in Fig3.4 after digestion with NaeI, the four lanes indicated as “Mut2” 

correspond to the same four plasmids represented in Fig3.4 after digestion with NaeI. The 

enzyme proved to partially digest the parental plasmid (this is more evident in the fourth lane, 

which contains high concentration of digested parental plasmid and where three bands are 

visible). This explains why the lanes corresponding to digested mutants contain multiple bands. 

Figure 3.4 Gel represented in point 5 of figure 3.3. The first lane corresponds to 1kb DNA 

ladder (New England Biolabs®, 0,05 µg), the second lane corresponds to the wt Sox3 plasmid

(pβUT2-zfsox3-HA), the folllowing four lanes, which are indicated as “Mut1”, correspond to 

plasmids purified from four different colonies of competent cells transformed with mut1 PCR 

products. The last four lanes, which are indicated as “Mut2”, correspond to plasmids purified 

from four different colonies of competent cells transformed with mut2 PCR products. 
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3.2.1. Primers Design 

For each clone a pair of primers of between 19 and 27 nucleotides was 

designed (Appendix 7.3), so that the primer located towards the                

5’-terminus of the gene (region codifying for the N-terminus of the 

protein) was the Reverse Primer and the primer located towards the        

3’-terminus of the gene (region codifying for the C-terminus of the 

protein) was the Forward Primer (Fig. 3.3). This approach allowed 

performing a single ligation reaction after PCR. Both the Reverse and the 

Forward primers had a “GGC” triplet added at their 5’-end in order to 

obtain the Nae I restriction site inserted in the final transcript. 

3.2.2. Results of the Cloning 

The first part of this project was to design and develop the cloning strategy 

described above. This involved the optimization of the protocol, including 

the testing of different experimental conditions during different steps, 

such as PCR reaction, ligation and transformation. In particular, the 

experiments involved the testing of different volumes of reagents and 

different temperatures for the PCR reaction. Moreover, different ligase 

enzymes and different steps and times of incubation were tested for the 

ligation and phosphorylation reactions. Also the transformation protocol 

was developed through the testing of different conditions, such as the use 

of different types of competent cells. Once the protocol was optimized, all 

the designed mutants were effectively obtained through this cloning 

strategy. Figures 3.6 and 3.7 show, respectively, the nucleotide sequence 

of wt Sox3 and the sequence of one of the deletion mutant constructs 

obtained with the cloning strategy described above.  

The cloning strategy that was developed allowed the creation of large 

deletions and to insert a new restriction site by inserting just minor new 

modifications in the final protein. In fact, the inserted site is translated into 

Alanine-Glycine, small un-charged amino acids. In addition, the deletions 

were designed, when possible, in order to include an Ala, or a Gly, or both 
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at the ends of the deleted regions, so that they would have been replaced 

by the restriction site (Table 3.2). 
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1   ATGTATAACATGATGGAAACCGAGATTAAAAGCCCCATTCCGCAGTCCAA 

51  CACGGGCTCGGTGACGGGCGGCAAAAACAACAGTGCCAACGACCAGGACC 

101 GGGTGAAGCGGCCTATGAATGCTTTCATGGTGTGGTCTCGCGGGCAGCGG 

151 AGGAAGATGGCTCAGGAGAATCCTAAAATGCACAACTCGGAGATCAGCAA 

201 GCGCCTCGGTGCTGACTGGAAACTTTTGACTGACGCCGAGAAGAGACCCT 

251 TCATTGACGAGGCCAAGCGGTTACGAGCCATGCACATGAAGGAGCACCCG 

301 GATTACAAATACCGTCCCCGCAGGAAGACCAAGACCCTGCTGAAGAAAGA 

351 CAAGTATTCTTTGCCAGGGGGACTCCTGGCGCCCGGTGCCAACGCTGTCA 

401 ACAACGCGGTGTCTGTGGGCCAGCGGATGGACTACACGCACATGAACGGA 

451 TGGACGAACAGCGCATACTCCCTCATGCAGGACCAGCTGGCCTACCCTCA 

501 ACATCCCAGCATGAACAGCCCCCAGATCCAGCAGATGCACCGGTACGACA 

551 TGGCGGGACTTCAGTACCCAATGATGTCCACGGCTCAGACCTACATGAAC 

601 GCCGCGTCCACGTACAGCAGCATGTCACCAGCATACACGCAACAAACTTC 

651 CAGTGCAATGGGTTTGGGCTCCATGGCTTCGGTGTGCAAGACGGAGCCCA 

701 GCTCCCCTCCTCCGGCCATAACCTCTCACTCTCAGCGTGCTTGTTTGGGA 

751 GACCTGAGAGATATGATAAGCATGTACCTGCCGCCCGGTGGAGACAGCGC 

801 CGACCACTCCAGTCTACAGACCAGTCGGTTACACAGCGTTCATCCGCACT 

851 ATCAAAGCGCAGGGACAGGCGTGAACGGAACGCTACCCCTAACCCACATT 

First codon of the gene 

HMG domain 

Region to be deleted for creating Mut1 

Last codon of the insert 

 

  

Figure 3.6 Sequence of the wt Sox3 gene inserted in the pβUT2-zfSox3-HA 

vector. The region highlighted in purple indicates the region that is missing in the 

Mut1 construct.  
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1   ATGTATAACATGATGGAAACCGAGATTAAAAGCCCCATTCCGCAGTCCAA 

51  CACGGGCTCGGTGACGGGCGGCAAAAACAACAGTGCCAACGACCAGGACC 

101 GGGTGAAGCGGCCTATGAATGCTTTCATGGTGTGGTCTCGCGGGCAGCGG 

151 AGGAAGATGGCTCAGGAGAATCCTAAAATGCACAACTCGGAGATCAGCAA 

201 GCGCCTCGGTGCTGACTGGAAACTTTTGACTGACGCCGAGAAGAGACCCT 

251 TCATTGACGAGGCCAAGCGGTTACGAGCCATGCACATGAAGGAGCACGCC 

301 GGCGGACTCCTGGCGCCCGGTGCCAACGCTGTCAACAACGCGGTGTCTGT 

351 GGGCCAGCGGATGGACTACACGCACATGAACGGATGGACGAACAGCGCAT 

401 ACTCCCTCATGCAGGACCAGCTGGCCTACCCTCAACATCCCAGCATGAAC 

451 AGCCCCCAGATCCAGCAGATGCACCGGTACGACATGGCGGGACTTCAGTA 

501 CCCAATGATGTCCACGGCTCAGACCTACATGAACGCCGCGTCCACGTACA 

551 GCAGCATGTCACCAGCATACACGCAACAAACTTCCAGTGCAATGGGTTTG 

601 GGCTCCATGGCTTCGGTGTGCAAGACGGAGCCCAGCTCCCCTCCTCCGGC 

651 CATAACCTCTCACTCTCAGCGTGCTTGTTTGGGAGACCTGAGAGATATGA 

701 TAAGCATGTACCTGCCGCCCGGTGGAGACAGCGCCGACCACTCCAGTCTA 

751 CAGACCAGTCGGTTACACAGCGTTCATCCGCACTATCAAAGCGCANGGAC 

801 AGGCGTGAACGGAACGCTACCCCTAACCCACATT 

 

First codon of the gene 

HMG domain 

NaeI site, which replaced the deleted region 

Last codon of the insert 

 

 

  

Figure 3.7 Sequence of  Mut1 obtained through sequencing. The region of the 

wt gene that was deleted has been successfully replaced with the restriction site of 

NaeI (highlighted in yellow), which will be translated in the amino acids Alanine-

Glycine.  
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Name of the construct 

and deleted region 

Length of the deletion 

(nucleotides) 

Residues that replaced 

the deleted region 

Mutant 1 (P100-G123) 24 Ala 

Mutant 2 (V139-L163) 25 Ala-Gly 

Mutant 3 (A201-G221) 21 - 

Mutant 4 (G124-G140) 17 Ala 

Mutant 5 (A164-M179) 16 Gly 

Mutant 6 (H180-N200) 21 Ala-Gly 

Mutant 7 (A226-G250) 25 - 

Mutant 8 (D251-G263) 13 Ala 

Mutant 9 (Q273-G290) 18 Ala 

Mutant 10 (V291-I300) 10 Ala-Gly 

Mutant 11 (Y2-I13) 12 Ala-Gly 

Mutant 12 (P100-P122 + 

P128-P261) 
157 Ala 

Table 3.2 Deletion mutants of Sox3 carrying deletions in different regions of the protein. The 

table indicates the number of nucleotides deleted from each construct and the amino acids that 

replaced the deletion.  



67 
 

3.3. Protein Overexpression in Zebrafish Embryos 

3.3.1. A Strategy to Induce Ectopic Protein Expression in 

Early Zebrafish Embryos 

In recent years the use of microinjection to study gene function in the 

zebrafish has become widespread (Rosen et al. 2009) . This includes 

ectopic expression of genes by injecting DNA or RNA into embryos or 

introduction of blocking molecules, such as RNA encoding truncated 

proteins or antibodies, in order to alter the activity of endogenous gene 

products (Paul T. Sharpe and Mason 1999; Dee et al. 2008). The method 

involves microinjection of DNA or RNA molecules directly into the 

cytoplasm of 1-4 cell stage fertilized zebrafish embryos using a pressure 

microinjector and micromanipulator, as described in Section 2.4. DNA 

microinjection results into only a small fraction of the cells within the 

embryo inheriting the foreign DNA, because of the delay in integration and 

rapid cell division of the early zebrafish embryos. Hence, the expression of 

the transgene is highly mosaic and the germ-line transmission of the 

transgene has low efficiency. In the experiments described below 

microinjection of in vitro-synthetized capped RNA was performed in order 

to obtain transient (up to 3 days) and widespread ectopic overexpression 

of Sox3 (or its deleted forms)(Guille 1999).  The aim of using this 

technique instead of DNA microinjection is to obtain rapid translation and 

more readily diffusion of the construct, avoiding mosaic overexpression 

which would have perturbed the analysis (Hyatt and Ekker 1999). In the 

following part of the study, microinjection of capped RNA was used to 

investigate the functional roles of Sox3 by comparing morphological and 

molecular changes in embryos overexpressing the wt protein versus 

mutant forms carrying deletions. 
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3.3.2. Over-expression of wt Sox3 in Early Zebrafish 

Embryos 

Western blot analysis was performed to assess whether microinjection of 

capped RNA resulted in ectopic overexpression of protein in embryos at 

Sphere Stage (about 4 ½ hpf). For assessing overexpression of wt Sox3, 15 

embryos were injected with 50 pg of zfsox3-HA RNA and dechorionated 

live at Sphere Stage (about 4 ½ hpf) together with 15 uninjected embryos 

at the same developmental stage (negative control), followed by SDS 

PAGE. Western blot was performed to detect the HA tag of the ectopic 

Sox3-HA (Fig. 3.8 A) and the membrane was subsequently re-blotted to 

detect endogenous α-actin as loading control (Fig. 3.8 B). The experiment 

lead to a clear detection of zfSox3-HA as well as  α-actin, as demonstrated 

by the existence of strong bands of about 36 and 38 kDa, respectively, thus 

verifying successful ectopic expression of the foreign gene at Sphere Stage. 

HA was not detected in uninjected embryos since it is not endogenously 

expressed in zebrafish. The other bands that are visible in both samples 

were probably due to non-specific binding of the antibodies. 

 

A B 

A B 
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Figure 3.8 Western blot analysis of embryos uninjected (UN) or injected with wt sox3-HA (Sox3) 

at 1-4 cell stage and incubated until sphere stage. Figure A shows detection of HA: the two bands 

seen in both  lanes correspond to non-specific signals, the third strong band in lane 3 corresponds to 

ectopic Sox3. Figure B shows an additional blotting of the same membrane for detecting α-actin as 

loading control (white arrows).  
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3.3.3. Over-expression of Sox3 Deletion Mutants in 

Early Zebrafish Embryos 

Western blot analysis was performed on Sphere Stage embryos 

microinjected with the Sox3 deletion mutants in order to assess whether 

the efficiency of over-expression of the protein products was affected by 

the deletions.  

 An amount of 45 embryos were injected at 1-4 cell stage with each 

construct, including wt sox3-HA and mutants 1 to 12 (all containing HA tag 

fused to the gene), and incubated until they reached Sphere Stage 

(approximately 4 ½ hpf), while 45 embryos were incubated without any 

prior injection to be used as negative control (UN). For each of the 

injection groups 30 embryos were selected, dechorionated live, treated as 

described in Section 2.4.1, then divided into two half and run on two 

separate SDS PAGE gels. The gels were then transferred on two 

membranes, which were incubated respectively with anti-α-actin primary 

antibodies or anti-HA primary antibodies. This approach was used in 

order to avoid any superposition between the bands corresponding to      

α-actin and Sox3, as it could have interfered with the clarity of the blot. 

The Western Blot for HA showed upper bands that were thought to be 

non-specific signals, as they were present in the negative control as well as 

in all the other samples (Fig. 3.10 A) and also in the previous western blot 

experiment (Fig. 3.8). The third lane of the blot, which correspond to the 

wtSox3-HA protein, presented another clear large band, which 

corresponds to the ectopic Sox3. All the lanes corresponding to the 

deletion mutants contained large bands corresponding to the recombinant 

proteins but of various sizes. At the same time another Western Blot was 

performed for each of the samples and incubated with primary antibody 

specific for α-actin (Fig. 3.10 B). This blot served as a loading control and 

confirmed that the amounts of embryos analysed were similar in all the 

samples. 
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Although the blot of the Sox3 deletion mutants was not perfect (there was 

insufficient time to repeat the experiment), the variation in the sizes of the 

bands corresponded well to the sizes of the deletions present in each of 

the constructs microinjected (Fig. 3.10 A, Table 3.2) and the amount of 

protein seemed quite similar in all the samples, except Mut12. Even 

though it is possible that the high intensity of the band corresponding to 

Mut12 was due to the small size of the construct, a higher expression of 

such construct was presumed not to be a problem since this construct was 

a negative control.   

Importantly, this analysis proved that the effects of the over-expression of 

Sox3 mutants showed in the subsequent experiments were not due to the 

absence, or to the modified expression of the Sox3 deletion constructs. 
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Figure 3.10 Western blot analysis of embryos uninjected (UN) or injected with different 

constructs at 1-4 cell stage and incubated until sphere stage. The embryos were kept uninjected 

(UN) or injected with respectively wt sox3-HA (wt), mut1 (1), mut2 (2), mut3 (3), mut4 (4), mut5 (5), 

mut6 (6), mut7 (7), mut8 (8), mut9 (9), mut10 (10), mut11 (11) or mut12 (12). Figure A: detection of 

HA, the number of amino acids deleted in each construct is indicated above. Figure B: loading 

control, detection of endogenous α-actin. 

Figure 3.9 Schematic representations of the deletion constructs that were 

analysed through western blot. The light blue bars indicate the wt gene and the 

blue bars represents the HMG domain. For each construct the deleted region is 

represented as a red bar numbered accordingly to the name of the construct (for 

example 1 indicates the region missing in Mut1).   

98 kDa 

64 kDa 

50 kDa 

36 kDa 

UN wt 1 3 2 4 6 5 8 7 11 9 10 12 

98 kDa 

64 kDa 

50 kDa 

36 kDa 

UN 

A 

B 

wt 1 3 2 4 6 5 8 7 11 9 10 12 
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3.4. Effects of the Over-expression of Sox3 Deletion 

Mutants on Neural Development 

3.4.1. Introduction 

The ectopic expression of wt Sox3 in zebrafish embryos causes a 

duplication of the Central Nervous System (CNS) as demonstrated by 

previous experiments (Dee et al. 2008). In order to investigate whether 

one or more of the regions that were deleted from the protein are involved 

in this phenomenon, and thus might play a role in Sox3 functioning in the 

determination of the neural fate, embryos were analysed 24 hpf after 

microinjection of RNA. In particular, the aim of this experiment was to 

dissect whether the over-expression of the deletion constructs caused 

different effects on the development of the nervous system, compared to 

the effects caused by over-expression of wt Sox3.  In order to allow clear 

visualization of the CNS, the 24 hpf embryos were hybridized with n-

cadherin riboprobes (ncad) by whole mount in situ hybridization. 

Cadherins are a family of Ca2+-dependent cell adhesion proteins that are 

essential during several steps of vertebrate embryo development 

(Takeichi 1988; Halbleib and Nelson 2006). Ncad, in particular, is a 

cadherin implicated in many aspects of development, including the 

formation of the neural tube and it is expressed throughout the developing 

nervous system (Kintner 1992; Klymkowsky et al. 2010). The expression 

of Ncad is quite ubiquitous during early vertebrate development, and only 

at later stages it becomes restricted to specific regions of the CNS. For this 

reason in our experiment we decided to use ncad as a marker for the 

visualization of the zebrafish developing CNS. 
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3.4.2. Ectopic Expression of wt zfSox3 Induces 

Duplication of the CNS 

Firstly, experiments were carried out in order to determine the ideal 

conditions to see clearly the effects of over-expression of wt Sox3 

(wtSox3), compared to uninjected (UN) and GFP-injected control embryos 

(GFP). The reason why a control was performed by injecting embryos with 

only GFP, was to confirm that the phenotypes were not affected by the 

injection procedure itself. Moreover, microinjection of mut12 deletion 

construct was also carried out as negative control, since this mutant was 

expected to have lost Sox3 function. 

The experiment was performed by injecting embryos with 50pg of CAP 

RNA as reported in the literature (Dee et al. 2008; Shih et al. 2010). The 

resulting phenotypes (Fig. 3.11) were divided into four categories: normal, 

when the nervous system was not affected by the experiment (Fig. 3.12 A, 

B, C), mild CNS duplication, when the nervous tissue showed local 

duplication or expansion to a range of extents (Fig. 3.12 D, E, F), severe 

CNS duplication, when the duplication involved most of the length of the 

CNS (Fig. 3.12 G, H, I), and major disruption of neural tissue, when the 

embryo appeared disrupted and in most cases very poorly developed and 

the nervous tissue was very disrupted (Fig. 3.12 L, M, N).  

The results of the experiment were the following (Fig. 3.13 and Table 3.3): 

1) Both the UN and the GFP controls were unaffected by the 

procedure, as they showed 100% normal embryos; 

2) Microinjection of wt sox3 severely affected the development of the 

CNS, as 25% of the embryos showed mild CNS duplication, 71% 

severe CNS duplication and 3% major disruption of the neural 

tissue; 

3) Microinjection of mut12 did not affect the development of the CNS, 

as 100% of the embryos had a normal phenotype, suggesting a total 

loss-of-function of wt Sox3. 
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Since these results showed a clear difference between the phenotypes of 

the controls (UN and GFP) and the phenotypes caused by injection of wt 

sox3, all the subsequent experiments were repeated performing injections 

of 50pg of CAP RNA and whole mount in situ hybridization with N-

cadherin probes. Moreover, the injection of mut12 as a control of the loss-

of-function of wt Sox3 was also repeated. 
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Figure 3.11 Embryos uninjected (A) or injected with wt sox3 (B), fixed 24 hpf and analysed 

through whole mount in situ hybridization for ncad (a neural marker). It is clearly visible how 

the over-expression of Sox3 affected the development of the nervous system as the neural tissue 

appeared much more disrupted in the majority of the embryos shown in picture B compared to 

picture A. 

Figure 3.12 Categories of the phenotypes obtained with whole mount in situ hybridisation

for ncad on 24 hpf embryos uninjected or injected with wt/mut sox3. The four categories 

are: normal (A, B, C), mild CNS duplication (black arrows in figures D, E, F), severe CNS 

duplication (G, H, I) and major disruption of the neural tissue (L, M, N). Each embryo is shown 

from the lateral side (A, D, G, L), from the frontal side (B, E, M) and from the dorsal side (C, F, I, 

N). In picture H the embryo is shown from the dorsal side but slightly turned in order to 

visualize entirely the duplication of the CNS.   
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normal 
mild CNS 

duplication 

severe CNS 

duplication 

major 

disruption of 

neural tissue 

tot 

UN 106 0 0 0 106 

GFP 78 0 0 0 78 

wt sox3 0 16 45 2 63 

mut 12 56 0 0 0 56 

Table 3.3 Numbers of 24 hpf embryos analysed with whole mount in situ hybridisation for ncad. 

The data shown are the raw numbers that correspond to the percentages shown in figure 3.13. 
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Figure 3.13 Results of whole mount in situ hybridisation for ncad performed on 24 hpf embryos 

respectively uninjected (UN), injected with GFP, wt sox3 or mut12.  

56 78 63 106 
Total number 

of embryos 
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3.4.3. Analysis of Embryos 24 hpf After Microinjection 

of Sox3 Deletion Mutants 

The experiments were carried out in order to analyse whether the over-

expression of the Sox3 deletion mutants caused different phenotypes in 

embryos at 24 hpf compared to those caused by over-expression of wt 

Sox3 (wt Sox3). Two experimental controls were performed: a group of 

uninjected embryos (UN) were treated with the same procedures as all the 

other groups, and a group of embryos were injected with 50pg GFP CAP 

RNA (GFP). The effects caused by all the Sox3 deletion mutants were 

analysed in two separate sets of experiments, as the use of a high number 

of samples for the same experiment could have caused delays in the 

experimental procedures (especially in the whole mount in situ 

hybridisation protocol) and therefore could have affected the results. Both 

the UN and GFP control were repeated in the two experiments as 

microinjection and in situ hybridization can show some variability 

between different experiment and this would have rendered the 

comparison between wt and mutants Sox3 less reliable. The resulting 

phenotypes were assigned to four categories (Fig. 3.14A and Fig. 3.14B): 

normal, when the nervous system was not affected by the experiment; 

mild CNS duplication, when the nervous tissue showed to be locally 

duplicated or expanded in a range of extents; severe CNS duplication, 

when the duplication involved the CNS in all its length; and major CNS 

disruption, when the embryo appeared disrupted and in most of the cases 

not developed and the nervous tissue was completely disrupted. 

Moreover, it has been observed that almost half of the embryos 

microinjected with mut10 presented an additional unique phenotype   

(Fig. 3.15). Because these embryos were characterised by a dramatic 

disruption of the nervous tissue, they were considered to belong to the 

“major disruption of the neural tissue” phenotype. However, it is 

important to note that this phenotype differed from the others in the same 

category. 
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In the first set of experiments, uninjected embryos (UN), embryos injected 

with only GFP and embryos injected with GFP and wt sox3 were compared 

to embryos injected with GFP together with mut2, mut3, mut4, mut5, mut6, 

mut7 and mut12 (Fig. 3.16 ,Table 3.4). The results were as follows: 

1) Both UN and GFP controls exhibited 100% normal phenotypes 

embryos. 

2) Microinjection of wt sox3 resulted in only 3% normal phenotypes, 

while 23% of the embryos presented mild CNS duplication, 55% 

severe CNS duplication and 20% major CNS disruption. 

3) Microinjection of mut2 seemed to cause slightly less disruption of 

the CNS, as 21% of the embryos were normal, 67% had mild CNS 

duplication, 10% severe CNS duplication and 1% major CNS 

disruption. This suggests mild loss of Sox3 function. 

4) The embryos microinjected with mut3 showed 20% mild CNS 

duplication, 57% severe CNS duplication and 23% major CNS 

disruption. These data are comparable to those obtained for the wt 

and suggest that Mut3 did not present loss of function. 

5) Microinjection of mut4, mut5 and mut6 caused phenotypes very 

similar to microinjection of wt sox3. The total amount of embryos 

that were affected was almost the same in all these groups 

compared to wt sox3, as they presented respectively only 14%, 4% 

and 8% of embryos with normal phenotypes (versus the 3% 

presented in wt sox3 injected embryos). However, they did show a 

higher amount of mild phenoypes than wt sox3 (respectively 79%, 

70% and 81% of mild CNS duplication, versus the 23%  of wt sox3) 

and a lower amount of severe phenotypes (respectively 3%, 11% 

and 0% of severe CNS duplication versus the 55% of wt sox3 and 

3%, 15% and 12% of major disruption of neural tissue versus the 

20% of wt sox3). This suggests mild loss of Sox3 function. 

6) Microinjection of mut7 caused effects comparable to those of wt 

sox3, presenting 2% of embryos with normal phenotypes, 32% with 

mild CNS duplication, 59% with severe CNS duplication and 7% 
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with major neural tissue disruption. This suggests no loss of Sox3 

function. 

7) Finally, as expected, microinjection of mut12 did not affect the 

development of the nervous system as its over-expression caused 

normal phenotype in 100% of the embryos. 

In the second set of experiments UN and GFP-injection controls were 

repeated, as well as injections of mut12 and wt sox3, whose effects were 

compared to the effects of microinjecting mut1, mut8, mut9, mut10 and 

mut11 (Fig. 3.17 ,Table 3.5): 

1) Both UN embryos and embryos microinjected with GFP showed 

100% normal phenotypes; 

2) Microinjection of wt sox3 caused 100% severe CNS duplication 

phenotypes; 

3) Interestingly, embryos microinjected with mut1 presented mostly 

normal phenotypes (58%) in addition with 37% of mild CNS 

duplication, only 3% of severe CNS duplication and no major 

disruption of neural tissue; 

4) Microinjection of mut8 and mut9 did cause milder phenotypes as 

compared to wt sox3. These groups presented the majority of 

embryos with mild CNS duplication (respectively 63% and 75%), 

only a few with normal phenotypes for mut8 (9%) and none for 

mut9, in addition to 17% with severe CNS duplication in both mut8 

and mut9, and respectively 11% and 8% with major CNS 

disruption. 

5) Microinjection of mut10 caused mild CNS duplication in 15% of the 

embryos, severe CNS duplication in 36% of the embryos and major 

CNS disruption in 48% of the embryos. These last data are 

indicated in figure 3.17 and in Table 3.3 with a different colour 

(violet) than the other “major neural tissue disruption” data (red) 

as although they belonged to the same category (the embryos were, 

in most of the cases, not developed and the nervous tissue was 

completely disrupted), their appearance was distinctly different, 
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resembling the early bud stage, when neural plate forms. This topic 

is further discussed in Section 4.2. 

6) Microinjection of mut11 resulted in no normal phenotypes, mild 

CNS duplication in 32% of the embryos, severe CNS duplication in 

48% of the embryos and major CNS disruption in 20% of the 

embryos. 

7) Microinjection of mut12 confirmed the data obtained with the 

previous experiments, causing 100% normal phenotypes. 

The experiments described above showed that microinjection of Sox3 

deletion mutants had different effects in 24 hpf embryos compared to 

microinjection of wt Sox3. Therefore, the deletions did modify the function 

of the protein. The deletion of such large regions of the protein could have 

disrupted its functionality dramatically, and in this case the injections 

would have caused the same phenotypes in all the groups of injected 

embryos. However, the data presented above demonstrated that 

microinjection of different deletion mutants caused different phenotypes, 

showing that the deletion approach adopted was effective to identify 

different functions of Sox3.  

However, the analysis of the phenotypes that the embryos presented at 24 

hpf was insufficient to determine which were the different effects caused 

by each deletion, as many other regulatory pathways are involved in the 

formation of the neural tissue at this stage. Moreover, the functional 

redundancy showed by the other SoxB1 factors can interfere with the 

analysis at such a late stage of development (Okuda et al. 2006; Miyagi et 

al. 2009; Shih et al. 2010). For these reasons, in order to investigate how 

the deletions changed Sox3 activity, further experiments were carried out 

at earlier stage of development, when Sox3 is the only SoxB1 factor 

expressed and it is possible to analyse its function more directly.  
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Figure 3.14A “Normal” and “mild CNS duplication” phenotypes obtained through whole 

mount in situ hybridization for ncad on 24 hpf embryos uninjected or injected with GFP

or/and wt/mut sox3. Each embryo is shown from the lateral side, from the dorsal side and 

from the animal pole side. Black arrows indicate localised duplications or abnormalities of the 

CNS. 
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Figure 3.14B “Severe CNS duplication” and “major disruption of the neural tissue” 

phenotypes obtained through whole mount in situ hybridization for ncad on 24 hpf 

embryos uninjected or injected with GFP or/and wt/mut sox3. Each of the embryos with 

severe CNS duplication is shown is from the lateral side, from the dorsal side and from the 

animal pole side. Each of the embryos with major disruption of the neural tissue is shown from 

the dorsal view and from the animal pole. 
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Figure 3.15 Embryos 24 hpf that were microinjected with mut10

presented a unique phenotype that involved major disruption of 

the neural tissue but was different from the phenotypes caused 

by injection of the other constructs. The top panel shows a normal 

24 hpf embryo (A, B, C), the following four panels show different 

embryos that were microinjected with mut10 (pictures from D to O) 

and the last panel shows an embryo that was injected with wt sox3

and was characterised by major disruption of the neural tissue (P, Q). 
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Figure 3.16 The top of the figure shows a schematic representation of the deletion 

constructs: the regions deleted in each of the mutants is represented as a red bar numbered 

accordingly to the name of the mutant.  The chart shows the results of whole mount in situ 

hybridisation for ncad performed on 24 hpf embryos uninjected (UN), injected with GFP 

(GFP), co-injected with GFP and wt sox3  or co-injected with GFP and mut2, mut3, mut4, mut5, 

mut6, mut7 or  mut12. 

  

Total number of 

embryos 
43 38 66 70 35 29 27 26 41 26 



86 
 

 

 

Table 3.4 Numbers of 24 hpf embryos analysed with whole mount in situ hybridisation for 

ncad in the second set of experiments. The data shown correspond to the percentages shown in 

figure 3.16. 

  

  

normal 
mild CNS 

duplication 

severe CNS 

duplication 

major 

disruption of 

neural tissue 

tot 

UN 43 0 0 0 43 

GFP 38 0 0 0 38 

wtSox3 2 15 36 13 66 

Mut2 15 47 7 1 70 

Mut3 0 7 20 8 35 

Mut4 4 23 1 1 29 

Mut5 1 19 3 4 27 

Mut6 2 21 0 3 26 

Mut7 1 13 24 3 41 

Mut12 26 0 0 0 26 



87 
 

 

 

 

 

 

 

Figure 3.17 The top of the figure shows a schematic representation of the deletion 

constructs: the regions deleted in each of the mutants is represented as a red bar numbered 

accordingly to the name of the mutant.  The chart shows the results of whole mount in situ 

hybridisation for ncad performed on 24 hpf embryos respectively uninjected (UN)or 

injected with GFP (GFP)or co-injected with GFP and wt sox3 or Mut1, Mut8, Mut9, Mut10, 

Mut11,  Mut12. The data shown in purple indicates the unique phenotype presented by embryos 

injected with mut10 (Fig. 3.15). 
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Table 3.5 Numbers of 24 hpf embryos analysed with whole mount in situ hybridisation for 

ncad in the first set of experiments. The data shown correspond to the percentages shown in 

figure 3.17. The data shown in purple indicates the unique phenotype presented by embryos 

injected with mut10 (Fig. 3.15). 

  

  

normal 
mild CNS 

duplication 

severe CNS 

duplication 

major 

disruption of 

neural tissue 

tot 

UN 35 0 0 0 35 

GFP 35 0 0 0 35 

wtSox3 0 0 12 0 12 

1 22 14 2 0 38 

8 3 22 6 4 35 

9 0 39 9 4 52 

10 0 5 12 16 33 

11 0 8 12 5 25 

12 44 0 0 0 44 
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3.5. Effects of the Over-expression of Sox3 Deletion 

Mutants on Organizer Formation 

3.5.1. Introduction 

In order to get deeper insight into the relation between structure and 

function of Sox3, and in particular to dissect how deletions affected Sox3 

functions, the following experiments focused on the early stages of the 

development, where the regulatory mechanisms are better known and the 

phenotypes are likely to be a more direct result of the over-expression of 

the protein. In particular, we analysed the function of Sox3 in the context 

of the organizer formation, at 4.5 hpf. Therefore, 1-4 cell stage embryos 

were microinjected with CAP RNA, incubated for 4.5 hpf, then fixed and 

subsequently analysed with whole mount in situ hybridization. In situ 

hybridization was performed in order to detect the expression of the 

organizer markers bozozok and goosecoid; 

� bozozok (also known as dharma) is a homeobox gene that in 

zebrafish is essential for the formation and/or the induction of the 

Nieuwkoop center and, therefore, for the subsequent formation of 

the organizer (Ryu et al. 2001). In the developing zebrafish embryo, 

prior to axis formation, there is accumulation of β-catenin in the 

nuclei situated in that part of the yolk syncytial layer that lies 

beneath the cells that will later become the organizer (Schneider et 

al. 1996). In the late blastula nuclear localization of β-catenin 

activates organizer genes such as bozozok (boz) and squint. This 

homeodomain protein is a transcription factor that works in many 

different ways: firstly, it can repress BMP and wnt genes, which 

promote ventralization, secondly it suppresses the inhibitor of 

transcription vega1, allowing the activation of the organizer genes, 

and thirdly it acts with Squint in the activation of goosecoid (gsc), 

noggin and dickkopf (Gritsman et al. 2000; Kawahara et al. 2000; 

Solnica-Krezel and Driever 2001).  
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� Goosecoid is a homeobox gene and it is one of the earliest markers 

expressed during organizer formation (Cho et al. 1991; Stachel et 

al. 1993; Toyama et al. 1995). Gsc blocks the Bone Morphogenetic 

Proteins (BMPs) and Wnts allowing the formation of the neural 

ectoderm and the dorsal mesoderm (De Roberts et al. 1992; Yasuo 

and Lemaire 2001).  

Ectopic expression of wt sox3 obtained through capped RNA 

microinjection has been shown to repress organizer formation, as 

demonstrated in previous studies from our laboratory (Shih et al. 2010; 

Kuo et al. 2013). In the following experiments the effects caused by ectopic 

over-expression of sox3 deletion mutants were investigated through the 

analysis of the expression of boz and gsc in vivo. 

3.5.2. Ectopic Over-expression of wt zfSox3 Represses 

Organizer Markers 

In order to optimise the experimental conditions for the comparison 

between the effects of ectopic expression of wt Sox3 and its deletion 

mutants, zebrafish embryos uninjected (UN) or injected with wt Sox3 RNA 

were incubated until the sphere stage and fixed with 4% 

paraformaldehyde. The embryos were then analysed through whole 

mount in situ hybridization in order to test the efficiency of newly 

synthetized DIG-labelled oligo-probes for bozozok and goosecoid. 

Moreover, the experiment was aimed to test whether that the 

experimental conditions allowed the visualisation of a clear signal that 

would have subsequently be essential for comparing with wtSox3 over-

expression. All the uninjected embryos showed a strong purple staining 

localised in the region of the organizer for both bozozok and goosecoid 

probes (Fig. 3.18). The signal was strong enough to see clearly the 

difference between the uninjected embryos and the embryos injected with 

wt Sox3 (Fig. 3.19), and presumably to determine whether the deletion 

mutant constructs would have caused changes in the signal compared to 

the wt protein. For this reason the subsequent experiments were 
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performed under the same experimental conditions: microinjection of 50 

pg of RNA, incubation of the embryos until sphere stage and whole mount 

in situ hybridization for boz or gsc. 

 

Figure 3.18 Whole mount in situ hybridization of sphere stage embryos with oligo-

probes for bozozok (A, B, C, D) and goosecoid (E, F, G, H). Each embryo is shown from the 

lateral view (A, C, E, G) and from the animal pole view (B, D, F, H). The dark staining 

developed in the organiser region, which corresponds to the region where boz and gsc are 

expressed, is localised and clearily visible. 

Figure 3.19 Sphere stage embryos uninjected (A) and microinjected with wt sox3 (B) 

analysed through whole mount in situ hybridization for boz. While the majority of the embryos 

shown in picture A present a strong signal, the embryos shown in picture B present just faint or 

totally absent signal. 
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3.5.3. Expression of bozozok in Embryos Microinjected 

with Sox3 Deletion Mutants  

In the following experiments zebrafish embryos at 1-4 cell stage were 

microinjected with RNA encoding GFP, wt Sox3 or each of deletion mutant 

Sox3 proteins, incubated at 28˚C until they reached Sphere Stage and 

analysed with whole mount in situ hybridization using bozozok DIG-

labelled riboprobes. The same experiment was performed on uninjected 

embryos as negative control. The embryos injected with only GFP were 

used as negative control to assess that the injection procedure did not 

affect the analysis. All the other groups of embryos were co-injected with 

the desired sox3 construct together with GFP: this allowed verification that 

the injections were effective by visualising the fluorescence of the 

expressed GFP under UV light after the incubation of the embryos. As for 

the analysis of 24 hpf embryos, two separate sets of experiments were 

performed to analyse all the constructs; each one of the experiments was 

performed together with the uninjected (UN) and the GFP (GFP) controls, 

as well as the wt Sox3 (wtSox3).  

Normal expression levels of boz were expected in uninjected and GFP-

injected embryos, while lower expression was expected in wt Sox3-

injected embryos. These expectations were indeed confirmed in both the 

experiments, where the resulting phenotypes were categorised in three 

groups: normal expression, when the staining developed was dark purple 

and clearly visible especially from the lateral view (Fig. 3.20 E, F), partial 

repression, when the staining was lighter than the normal phenotype from 

the lateral view and barely visible from any other side of the embryo (Fig. 

3.20 C, D), and total repression, where the staining was not detectable 

from any side of the embryo, which looked completely white (Fig. 3.20 A, 

B). Moreover, an additional phenotype (ectopic expression of boz) was 

identified only in embryos co-injected with GFP and mut1 (Fig. 3.21).  

In the first set of experiments boz expression levels found in UN, GFP-

injected and wt sox3-injected embryos were compared to the expression 
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caused by microinjections of mut2, mut3, mut4, mut5, mut6, mut7 and 

mut12 (Fig. 3.22, Table 3.6). The results were as follows: 

1) The data confirmed that ectopic expression of wt Sox3 causes a 

decrease in boz expression levels when compared to the controls, 

as 98% of UN embryos showed normal expression of boz as well as 

94% of GFP embryos, while only 20% of wt sox3-injected embryos 

showed normal expression and the other 80% showed partial 

repression (40%) or total repression (40%).  

2) The comparison between injection of wt sox3 and injections of Sox3 

deletion mutants showed that the level of repression caused by 

mut2, mut3 and mut4 is lower than the wt sox3 as the percentages 

of normal embryos are higher, the percentages of partial repression 

comparable, and the percentages of total repression are lower. 

However, mut2, mut3 and mut4 did show a repressive effect on boz 

expression as demonstrated by the comparison with UN and GFP 

controls.  

3) Conversely, it appeared that injections of mut5 and mut6 caused a 

substantially milder repressive effect on boz expression, showing 

almost as many normal embryos as the controls, low percentages of 

partial repression (respectively 8% and 16%) and no total 

repression.  

4) Microinjection of mut7 resulted in a percentage of normal embryos 

comparable to mut2, mut3 and mut4, which is lower than UN and 

GFP, but higher than wt sox3, however there was no embryos 

showing partial repression and 42% showing total repression.  

5) As expected, injection of mut12 caused a percentage of normal 

embryos comparable to the UN and GPF (88% compared to 98% 

and 94%) together with a few embryos showing partial repression 

(13%).  

In the second set of experiments the UN and GFP controls were repeated, 

as well as the mut12 control, which was expected to have lost Sox3 

repressor function. In these experiments the levels of expression of boz 
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were compared between the controls, embryos microinjected with GFP 

and wt sox3 and embryos injected with GFP and mut1, mut8, mut9, mut10, 

mut11 and mut12 (Fig. 3.23, Table 3.7). The results were as follows: 

1) Both UN embryos and embryos injected with GFP showed 100% 

normal phenotypes, while embryos injected with wt sox3 showed 

only 11% normal phenotypes and the other 89% of embryos 

caused partial repression (49%) or total repression (40%). This is 

consistent with the results of the first experiment.  

2) Also the effects caused by injecting mut12 were consistent with 

previous data as comparable to the UN and GFP controls, showing 

97% normal embryos and 3% partial repression.  

3) Interestingly, injection of mut1 caused a unique phenotype in 35% 

of the embryos. This phenotype was not found in any other sample 

and was characterised by ectopic expression of boz outside the 

organizer region (Fig. 3.20). Moreover, the remaining 65% of 

mut1-injected embryos showed a normal phenotype a none 

showed repression of boz.  

4) Microinjections of mut8, mut9 and mut10 had milder repressive 

effects than microinjections of wt sox3, showing higher 

percentages of normal embryos and lower percentages of embryos 

showing partial and total repression of boz.  

5) Microinjection of mut11 caused a lower repression of boz 

compared to wt Sox3: 86% of the embryos had a normal 

phenotype, while only 8% partial repression and 6% total 

repression.  
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Figure 3.20 Pictures representing the three categories of 

phenotypes obtained through whole mount in situ

hybridization for boz on sphere stage embryos uninjected or 

injected with GFP or/and wt/mut sox3. The phenotypes include: 

total repression of boz (A, B), partial repression of boz (C, D) and 

normal expression of boz (E, F). 
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Figure 3.21 Microinjection of mut1 variable ectopic expression of 

bozozok in sphere stage embryos. Each panel shows the same embryo 

viewed from different sides. The phenotype of these embryos is 

characterised by variable ectopic expression of boz outside the organizer 

region. 
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Figure 3.22 The top of the figure shows a schematic representation of the deletion 

constructs: the regions deleted in each of the mutants is represented as a red bar numbered 

accordingly to the name of the mutant.  The chart shows the results of whole mount in situ 

hybridisation for boz performed on Sphere Stage embryos respectively uninjected (UN)or 

injected with GFP (GFP)or co-injected with GFP and wt sox3 or mut2, mut3, mut4, mut5, mut6, 

mut7,  mut12. 
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Figure 3.23 The top of the figure shows a schematic representation of the deletion 

constructs: the regions deleted in each of the mutants is represented as a red bar numbered 

accordingly to the name of the mutant.  The chart shows the results of whole mount in situ

hybridisation for boz performed on sphere stage embryos respectively uninjected (UN)or 

injected with GFP (GFP)or co-injected with GFP and wt sox3 or mut1, mut8, mut9, mut10, 

mut11, mut12. 

Total number of 

embryos 
35 34 35 34 34 34 35 36 35 
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Table 3.6 Numbers of Sphere Stage embryos analysed with whole mount in situ 

hybridisation for boz in the first set of experiments. The data shown correspond to the 

percentages shown in figure 3.22. 

 

 

 

Table 3.7 Numbers of Sphere Stage embryos analysed with whole mount in situ 

hybridisation for boz in the second set of experiments. The data shown correspond to the 

percentages shown in figure 3.23. 

  

  
normal 

partial 

repression 

total 

repression 
total 

UN 50 0 1 51 

GFP 30 1 1 32 

wtSox3 7 14 14 35 

Mut2 18 13 2 33 

Mut3 19 10 4 33 

Mut4 30 15 4 49 

Mut5 37 3 0 40 

Mut6 27 5 0 32 

Mut7 15 0 11 26 

Mut12 35 5 0 40 

  
ectopic normal 

partial 

repression 

total 

repression 
total 

UN 0 35 0 0 35 

GFP 0 34 0 0 34 

wtSox3 0 4 17 14 35 

Mut1 12 22 0 0 34 

Mut8 0 26 4 4 34 

Mut9 0 19 7 8 34 

Mut10 0 24 7 4 35 

Mut11 0 31 3 2 36 

Mut12 0 34 0 1 35 
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3.5.4. Expression of goosecoid in Embryos Microinjected 

with Sox3 Deletion Mutants 

In order to get a deeper insight into the effects of the different Sox3 

mutant constructs on the formation of the organizer, the in situ 

hybridization analysis was repeated with the organizer marker goosecoid 

(gsc). Also in this case the experiments were performed in two separate 

sets, in order to test the effects of the over-expression of all the twelve 

Sox3 deletion constructs compared to the wt Sox3. The phenotypes 

resulting from the experiments were categorised as normal, when the 

colour developed by in situ hybridization was dark purple and clearly 

visible in the organizer region (Fig. 2.24 G, H, I) partial repression, when 

the signal was barely visible (Fig. 2.24 D, E, F) and total repression, when 

the embryo appeared completely white (Fig. 2.24 A, B, C). 

In the first set of experiments uninjected embryos (UN), embryos injected 

only with GFP (GFP) and embryos injected with GFP and wt Sox3 (wtSox3) 

were compared to embryos injected with GFP and mut2, mut3, mut4, mut5, 

mut6, mut7 and mut12 (Fig. 3.25, Table 3.8). The results were as follows: 

1) All UN embryos showed the normal phenotype (100%).  

2) The 68% of the embryos injected with GFP showed normal 

expression of gsc and the remaining 32% partial repression. 

3) As expected, over-expression of wt sox3 resulted in a strong 

repression of gsc as 41% of the embryos showed partial repression 

phenotype and 59% total repression. 

4) Also injections of mut2 and mut3 had a comparably strong 

repressive effect, as only 3% of the embryos were normal after 

injection of mut2 a none after injection of mut3. Moreover, 

microinjection of mut2 and mut3 caused partial repression in 

respectively 72% and 43% of embryos and total repression in 25% 

and 57% of embryos. 

5) Microinjection of mut4 seemed to repress gsc slightly less than 

microinjection of wt sox3: 34% of the embryos injected with mut4 
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were found to be normal, but still 34% showed partial repression 

and 31% total repression. 

6) Injection of mut5, as well as mut7, repressed gsc with the same 

extent of wt sox3, having respectively 26% and 39% of partial 

repression, 74% and 61% of total repression and no normal 

embryos. 

7) On the other hand, injection of mut6 caused 48% normal 

phenotype, which seemed to be quite comparable to the 68% found 

for the GFP-injected embryos, 43% of partial repression and only 

9% of total repression. 

8) Surprisingly, injections of mut12 did not cause any normal 

phenotype, but it caused partial repression in 67% of the embryos 

and total repression in 33% of the embryos. 

In the second set of experiments the UN and GFP experimental controls 

were repeated, as well as mut12 and wt sox3 for the same reasons 

previously explained in the context of bozozok expression analysis 

(Chapter 3.5.3). In these experiments the expression on gsc was compared 

between embryos uninjected, or microinjected only with GFP or 

microinjected with GFP and wt sox3, or mut1, mut8, mut9, mut10, mut11, 

mut12 (Fig. 3.26, Table3.9). The results were as follows: 

1) UN and GFP showed respectively 88% and 89% of normal 

phenotype, in addition with 12% and 11% of partial repression; 

2) Microinjection of wt sox3 caused 57% normal phenotype, 17%  

partial repression and 26%  total repression; 

3) The effects caused by injection of mut1 were comparable to the UN 

and GFP controls, as it seemed not to repress gsc expression. In 

fact, 89% of embryos injected with mut1 presented normal 

phenotype and 11% partial repression. 

4) Injections of mut8, mut9 and mut10 caused a milder repression of 

gsc compared to wt sox3. In fact, they caused higher percentage of 

normal phenotypes compared to wt sox3, even though they still 

showed repression of gsc. 
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5) Interestingly, injection of mut11 seemed not to cause repression of 

gsc, as it resulted in a normal phenotype in 94% of the embryos 

(versus the 57% of wt sox3 and the 88% and 89% of UN and GFP) 

and partial repression in only the 6% of the embryos, which is 

comparable to the 12% and 11% found for the UN and GFP 

controls. 

6) Injection of Mut12 did not presented any repressive effect as gsc 

was normally expressed in 100% of the embryos. 

It is quite evident that the results obtained with the two set of 

experiments had some variability. In fact, in the first set of 

experiments UN embryos showed 100% normal phenotype, while in 

the second set 88% showed normal phenotype and 12% partial 

repression (Fig. 3.25 and Fig. 3.26). Also GFP-injected embryos 

seemed to present variability of gsc expression between the two sets 

of experiments, showing 32% of embryos with partial repression 

phenotype in the first set, while 11% in the second one (Fig. 3.25 and 

Fig. 3.26). However, although it seemed to be an overlapping between 

the normal phenotype and the partial repression phenotype, there 

were no embryos presenting total repression in UN or GFP controls, 

therefore the experiments were considered reliable. The reasons that 

could explain the variability of gsc expression are presented and 

discussed in Section 4.3.2.    
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Figure 3.24 Pictures representing the three categories of phenotypes obtained 

through whole mount in situ hybridization for gsc on sphere stage embryos 

uninjected or injected with GFP or/and wt/mut sox3. The phenotypes include: 

total repression of gsc (A, B, C), partial repression of gsc (D, E, F) and normal 

expression of gsc (G, H, I). 



104 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

100%

68%

3%

34%

48%

32%

41%

72%

43%

34%

26%

43%

39%

67%

59%

25%

57%

31%

74%

9%

61%

33%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UN GFP wt

sox3

mut 2 mut 3 mut 4 mut 5 mut 6 mut 7 mut 12

normal partial repression total repression

Figure 3.25 The top of the figure shows a schematic representation of the deletion 

constructs: the regions deleted in each of the mutants is represented as a red bar numbered 

accordingly to the name of the mutant.  The chart shows the results of whole mount in situ

hybridisation for gsc performed on sphere stage embryos respectively uninjected (UN)or 

injected with GFP (GFP)or co-injected with GFP and wt sox3 or mut2, mut3, mut4, mut5, mut6, 

mut7,  mut12. 

45 34 37 32 36 44 29 43 23 31 
Total number of 

embryos 
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Figure 3.26 The top of the figure shows a schematic representation of the deletion 

constructs: the regions deleted in each of the mutants is represented as a red bar numbered 

accordingly to the name of the mutant.  The chart shows the results of whole mount in situ

hybridisation for gsc performed on Sphere Stage embryos respectively uninjected (UN)or 

injected with GFP (GFP)or co-injected with GFP and wt sox3 or mut1, mut8, mut9, mut10, 

mut11, mut12. 

34 35 35 36 35 35 37 34 35 
Total number of 

embryos 
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Table 3.8 Numbers of sphere stage embryos analysed with whole mount in situ hybridisation 

for gsc in the second set of experiments. The data shown correspond to the percentages shown in 

figure 3.25. 

  normal partial repression total repression total 

UN 34 0 0 34 

GFP 21 10 6 37 

wtSox3 0 13 19 32 

Mut2 1 26 9 36 

Mut3 0 19 25 44 

Mut4 10 10 9 29 

Mut5 0 11 32 43 

Mut6 11 10 2 23 

Mut7 0 12 19 31 

Mut12 0 30 15 45 

Table 3.9 Numbers of sphere stage embryos analysed with whole mount in situ hybridisation 

for gsc in the first set of experiments. The data shown correspond to the percentages shown in 

figure 3.26. 

  normal partial repression total repression total 

UN 30 4 0 34 

GFP 31 4 0 35 

wtSox3 20 6 9 35 

Mut1 32 4 0 36 

Mut8 27 5 3 35 

Mut9 24 2 9 35 

Mut10 24 4 9 37 

Mut11 32 2 0 34 

Mut12 35 0 0 35 
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3.6. Transcriptional Activation Function of wt and 

Deletion Mutant Sox3 Proteins 

Luciferase reporter assay analysis was performed in order to determine 

whether the deletions in Sox3 constructs modified the ability of wt Sox3 to 

activate the transcription of a target gene. Zebrafish 1-4 cell stage embryos 

were incubated uninjected (UN control), or after co-injection with  sox3 

(wt or deletion mutants) capped RNA (50pg) and GFP capped RNA (50pg) 

together with a plasmid containing three Sox3 binding sites upstream the 

Firefly luciferase gene (pGL3-3XSX, 5 pg, Appendix 7.4). The experiment 

was also performed on a control group of embryos that were co-injected 

with GFP RNA and pGL3-3XSX plasmid, as the endogenous Sox3 was also 

expected to cause expression of the luciferase.  

The co-injection of embryos with GFP together with the sox3 constructs 

allowed the selection of the embryos that showed similar levels of 

expression of GFP. Microinjection of RNA does not result in the protein 

being uniformly expressed throughout the entire embryo, it can be quite 

variable. This can be due to different reasons, including the stage when the 

embryo is injected and the position of the needle when injecting. In other 

words, since the manual component of this technique is relevant, it cannot 

be perfectly reproducible. However, the injection of GFP allowed 

visualisation of the expression pattern of the injected construct under UV 

light after the incubation of the embryos until sphere stage (Fig. 3.27). 

Therefore, only embryos that showed similar and diffuse expression of 

GFP were selected and used for the analysis. 
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Figure 3.27 Sphere Stage embryos that were previously co-

injected at 1-4 cell stage with GFP RNA (50 pg), wt Sox3 RNA (50 

pg) and pGL3-3XSX plasmid (5 pg) and then incubated for 

approximately 4 ½ hours. The embryos are shown under UV light to 

visualise expression of GFP, which can vary due to the microinjection 

procedure. This is clearly visible in fig.D, where the left embryo shows 

GFP expression in a restricted area, while the right embryo shows a 

diffused expression of GFP. Highly expressed GFP appears as blue due 

to the printing of the image. 
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The aim of the study was to investigate the activity of Sox3 as a 

transcriptional activator and repressor. The selection of the constructs to 

be analysed with the Luficerase Reporter Assay was based on the data 

obtained with the previous experiments, which showed the repression 

function of Sox3. For this reason, the experiment was performed on the 

experimental groups shown in Table 3.10. For each experimental group 

the experiment was repeated three times on three different groups of 

embryos in order to normalise the results and check that they had not 

been affected by technical errors.  

The results of the experiments are represented in Fig. 3.28-3.29 and Table 

3.11. As expected, the UN control showed a low level of luminescence (the 

mean of raw readings is 23), which was due to background luminescence. 

As shown in Fig. 3.28, Fig. 3.29 and Table 3.11, the reporter gene was 

activated in the GFP co-injected embryos, presumably due to the presence 

of endogenous Sox3. The reading for wtSox3-injected embryos presented 

a two-fold increase compared to GFP. Mut1 activated the luciferase gene 

with a two-fold increase compared to wtSox3, while Mut2 did not activate 

it. Mut5 showed a remarkably strong activation effect, which was 

approximately tenfold increase compared to wtSox3. The reading for Mut6 

is comparable to wtSox3. Mut7 failed to activate the reporter, while Mut10 

did show an activation remarkably lower than the GFP control.  Mut11 

strongly activated the reporter gene compared to wtSox3. Finally, as 

expected, Mut12 failed to activate the reporter gene, but the reading was 

even lower than the GFP control. 

 

 

 

 

 



110 
 

Name 
Microinjected 

constructs 
Reasons 

UN - 
Negative control  

GFP 
• GFP RNA  

• pGL3-3XSX 

Control for the activation of the reporter gene 

by endogenous Sox3 

wtSox3 

• wt Sox3 RNA 

• GFP RNA 

• pGL3-3XSX 

Necessary for the comparison with the 

deletion mutants 

Mut1 

• mut1 RNA 

• GFP RNA 

• pGL3-3XSX 

Caused ectopic expression of boz and did not 

repress gsc expression. 

Mut2 

• mut2 RNA 

• GFP RNA 

• pGL3-3XSX 

The deleted region contains highly conserved 

amino acid patterns and is located between 
the HMG domain and the region deleted in 

Mut5 and Mut6. 

Mut5 

• mut5 RNA 

• GFP RNA 

• pGL3-3XSX 

Did not caused repression of boz. 

Mut6 

• mut6 RNA 

• GFP RNA 

• pGL3-3XSX 

Did not caused repression of boz and gsc. 

Mut7 

• mut7 RNA 

• GFP RNA 

• pGL3-3XSX 

The deleted region contains the SUMOylation 
site (Chapter 1.3.2). The inability to be 

SUMOylated could affect the activity of Sox3 
as transcriptional activator. 

Mut10 

• mut10 RNA 

• GFP RNA 

• pGL3-3XSX 

Caused unique and distinctive phenotypes 24 

hpf embryos. 

Mut11 

• mut11 RNA 

• GFP RNA 

• pGL3-3XSX 

The deleted region is the N-terminal region of 

the protein, which is thought not to be 

involved in the activation function. 

Mut12 

• mut12 RNA 

• GFP RNA 

• pGL3-3XSX 

Good control as it contains only the N-

terminal region and the DNA binding domain; 

it is expected not to be able to activate the 
reporter gene. 

Table 3.10 Experimental groups chosen for performing Luciferase Reporter Assay, 

constructs injected in the embryos of each group and reasons why each construct was 

chosen. 
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Figure 3.28 The top of the figure shows a schematic representation of the deletion 

constructs: the regions deleted in each of the mutants is represented as a red bar 

numbered accordingly to the name of the mutant. The chart represents the mean 

values of the three readings of the Luciferase Reporter Assay made for each of the 

experimental groups of embryos. The groups included: uninjected embryos (UN), 

embryos injected with GFP only (GFP), and embryos co-injected with GFP and wt sox3 or 

mut1, mut2, mut5, mut6, mut7, mut10, mut11, mut12. The error bars were built using the 

standard deviation of the values (Table 3.10).  
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Column1 1 2 3 mean st. dev. 

UN 30 17 22 23 5.35 

GFP  256 213 247 239 18.52 

wtSox3 523 455 430 469 39.30 

Mut1 838 803 794 812 18.98 

Mut2 126 123 138 129 6.48 

Mut5 5513 5302 5016 5277 203.67 

Mut6 523 537 573 544 21.06 

Mut7 112 135 87 111 19.60 

Mut10 39 64 78 60 16.13 

Mut11 2063 2181 1762 2002 176.41 

Mut12 103 89 86 93 7.41 

Table 3.11 Raw data of the Luciferase Reporter Assay made on sphere stage embryos 

uninjected (UN), or microinjected with GFP only (GFP), or co-injected with GFP and wt/mut 

sox3. The first three columns of data correspond to the reading of three different groups of embryos 

(1, 2, 3), the fourth column contain the mean of the readings and the last column correspond to the 

standard deviation (st. dev.). 
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Figure 3.29 The chart represents the values of the three readings (1, 2, 3) of the 

Luciferase Reporter Assay made for each of the experimental groups of embryos. The 

groups included: uninjected embryos (UN), embryos injected with GFP only (GFP), and 

embryos co-injected with GFP and wt/mut sox3. 
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4. Discussion 

4.1. Deletion Cloning and Expression of Mutant 

Proteins in Zebrafish Allowed Functional 

Screening of the Entire Sequence of Sox3  

The design of the deletions in this study was made entirely on the basis of 

the pattern of conservation of Sox3 amino acids sequence between 

different species. This was made without considering any other 

information known (or presumptive) about the protein, such as post-

transcriptional modifications (for example SUMOylation or 

phosphorylation) or presumptive localisation of functional domains (for 

example the C-terminal region is thought to contain a trans-activation 

domain as do the other SoxB1 factors). The reason of this approach was to 

analyse the entire protein without preconception, so that the results 

obtained could have confirmed or dispute previous evidence. 

Furthermore, this approach could have given new clues onto the 

mechanisms of function of Sox3, thus providing new starting points for 

subsequent studies that could focus on more restricted regions of the 

protein.   

The design of many different deletions to be realised in the same gene led 

to problems in the cloning experiments because the efficiency of the 

cloning proved to be highly variable between different mutants. For this 

reason the design of a high efficiency cloning strategy was a key step for 

this study: a strategy that worked for creating all the clones allowed a 

more reliable comparison of their effects and, on the other hand, also a 

faster way to obtain all the constructs. In fact, the design of different 

approaches for different constructs would have added variability in the 

experiments and would have also required more time for the development 

and realisation. Moreover, an important feature of the cloning strategy 

that was developed is that it enabled the generation of large deletions and 
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the insertion of a diagnostic restriction site by inserting in the final protein 

just one or two additional amino acids (alanine and/or glycine).  

Since the design of the deletion did not take into account any other factor 

than the amino acids sequence, the obtained constructs could be missing 

regions necessary for the protein expression or regions that would have 

radically modified the levels of expression. The results of Western Blot 

analysis confirmed that the expression of all the mutant proteins was not 

affected by the mutation at sphere stage, and that the levels of expression 

were similar for all the constructs, including the wt.   

Therefore, the results obtained with the cloning experiments and with the 

Western Blot built the basis for all the subsequent experiments, which 

were based on the functional comparison between the different constructs 

obtained.  
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4.2. Analysis of the CNS at 24hpf Highlighted 

Differing Functions of the Sox3 Deletion 

Mutants 

  Each of the Sox3 mutant constructs contained a deletion of about 20 

amino acids, which is quite a large region considering the full-length 

protein is only 300 amino acids long. Therefore, such big deletions could 

have just caused disruption of the three-dimensional integrity of the 

protein, resulting in complete loss of function. In this case the over-

expression of the constructs would not have caused changes in the 

phenotypes of 24 hpf embryos, or the resulting phenotypes would have all 

been similar, as the mutant Sox3 proteins would have just been disrupted 

and not functioning, no matter where the different deletions were 

localised. However, the results of the experiments conducted on 24 hpf 

embryos clearly showed that different deletions caused different effects, 

especially in the cases of Mut1, Mut10 and Mut12. 

The results presented in Chapter 3.4 demonstrated that the over-

expression of wt Sox3 caused severe duplications of the CNS in the 

majority of the embryos, while most of the mutants showed milder effects. 

This means that by deleting the corresponding regions of Sox3, the 

function of the protein has been changed.  
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4.3. The Deletion of Different Regions of Sox3 

Caused Different Effects on the Protein’s 

Repressor and Activator Functions 

The analysis of the effects that microinjection of Sox3 deletion mutants 

had in 24 hpf embryos was followed by the analysis of their effects at the 

sphere stage. This analysis was more direct, as it was possible to 

investigate whether a known function of Sox3 (repression of organizer 

formation) was changed at a stage when no other SoxB1 proteins are 

known to be expressed, and therefore no functional redundancy should be 

present. Over-expression of different Sox3 deletion mutants caused 

different changes in the expression of the organizer markers compared to 

the wt protein and allowed us to get a better understanding of how the 

different deletions affected the repressor function of Sox3.  

While the data obtained through the analysis of the expression of bozozok 

were very consistent between the two sets of experiments performed, the 

results obtained on the transcriptional regulation of goosecoid (Section 

3.5.4) did show a difference between the two sets of experiments 

performed. In fact, if comparing the two sets of results, it may seems that 

the repressive effects were generally stronger in the first set, and milder in 

the second set, which showed higher percentages of normal phenotypes in 

all the samples analysed. However, there are different reasons that could 

explain this phenomenon. Firstly, the two sets of experiments correspond 

to two different in situ hybridisation experiments, which means that the 

difference can be due to the technical repetition: for example, a change in 

the temperature during the phases of hybridisation, or longer time in the 

manipulation of the samples can cause a difference in the hybridization of 

the probes to the target transcripts. Another factor that can cause 

variations between different replicas of this technique is the different 

solutions that are used, and that can be slightly different. However, both 

the sets of experiments were performed together with two different 

control groups each (UN and GFP), and the consistency of these controls 
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allows to trust the results obtained. In fact, in both the sets of experiments 

the control showed percentages of normal phenotypes higher than the wt 

Sox3, which means that the repressive effect that Sox3 had on gsc 

expression is visible and consistent in both the sets of experiments, even 

though it may seem more severe in the first data compared to the second 

ones. For the reasons just explained it is not correct, however, to compare 

the results obtained with different experiments without considering the 

results obtained for the controls: in particular, the GFP control seemed to 

be more severely affected by injection in the first set of experiments, but it 

seemed that the decrease in the development of the purple signal is due to 

the experimental technique rather than a more severe repressive effect on 

gcs expression. Moreover, as discussed below, the data obtained are also 

consistent with the results on the expression of bozozok. In addition, in 

interpretation of the results obtained by the analysis of the expression of 

goosecoid must be taken in count that the repressive effect that Sox3 has 

on gsc is not as direct has the one that it has on boz. In fact, it had been 

shown that Sox3 represses gsc through at least two mechanisms: one is 

direct repression, the other is mediated by the repression of boz, which 

normally activates gsc (Fig. 4.1), (Shih et al. 2010). The reason why in this 

project it was chosen to study the expression of gsc, together with boz 

(instead of squint for example), was to observe the effects that Sox3 

deletion mutants would have caused on target genes located at different 

steps of the signalling pathway and repressed through different 

mechanisms by Sox3.  
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The luciferase reporter assay allowed the analysis of how the deletions 

changed the activator function of Sox3. As explained in the Introduction 

(Chapter 1.6), the main aim of this study was to identify regions of Sox3 

that are involved in its ability to function both as a transcriptional 

repressor and a transcriptional activator with context-dependency. While 

the results obtained through the analysis of the effects that the different 

deletion mutants have on the formation of the organizer provided 

information about the regions of Sox3 that are involved in its repression 

function, the experiments performed in the Luciferase Assay were meant 

to provide information about Sox3 activation function. In fact, this assay 

measures the ability of the protein to activate target genes. However, 

because Sox3 is both an activator and a repressor, it is uncertain whether 

an increase in luciferase activity is due to an increase in the activator 

function of Sox3, or to a decrease in its repressor function. Since all the 

mutant Sox3 constructs created in this study lacked specific regions of the 

protein, we can presume that if a mutant caused an increase in the 

luciferase activity, than the deleted region might contain residues that are 

important for Sox3 repression function. On the other hand, a decrease in 

the luciferase activity would indicate that a region important for Sox3 

activation function is missing. Alternatively, it is also possible that the 

decrease in the luciferase activity is due to a dominant-negative 

interaction of the mutant protein on the endogenous Sox3, which would 

no longer be able to activate the reporter gene with the same extent.    

Figure 4.1 Model of the transcriptional repression role of Sox3 during the formation of the 

organizer. Sox3 represses Gsc both directly (1) and through the repression of Boz (2). Picture 

adapted from Shih et al. (2010). 
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In the following paragraphs the deletion mutants that generated 

consistent data in the analysis of 24 hpf embryos, in the analysis of the 

expression of organizer markers and in the luciferase reporter assay are 

discussed together with the hypotheses that could explain their effects. 

The other deletion mutants (Mut2, Mut3, Mut4, Mut8 and Mut9) did 

generally show milder repressive effects on the organizer marker genes if 

compared to wt Sox3, but the data were not sufficient to formulate more 

specific hypothesis for explaining these effects. Only Mut2 was also 

analysed through Luciferase Reporter Assay and it activated the reporter 

gene less than the GFP control. This could mean that Mut2 lost the 

repressor function and also that it acted as a dominant-negative on 

endogenous Sox3. In order to explain these effects more experiments are 

needed. Moreover, these data also suggest that it could be interesting to 

conduct further analysis also on Mut3, Mut4, Mut8 and Mut9.  
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4.3.1. Mutant 1 

 

Figure 4.2 Schematic representation of sox3 showing the region deleted in Mut1. 

The region missing from Mutant 1 is located imediately C-terminal to the 

HMG domain (Fig. 4.2). Microinjection of mut1 affected the development of 

the CNS in 24 hpf embryos substantially less than microinjection of wt 

Sox3. The over-expression of Mut1 caused a unique pattern of expression 

of bozozok: it was found that this organizer marker was expressed in the 

region of the organizer but also ectopically in other regions (Fig. 4.3B). 

This particular phenotype has already been seen in other experiments, 

where dominant negative forms of Sox3 were over-expressed in zebrafish 

embryos (Fig. 4.3A), (Shih et al. 2010). Shih et al. tested the ability of two 

different dominant negative Sox3 to repress organizer markers. One of the 

dominant negative (Sox3N40I) contained a point mutation in the HMG 

domain that prevented the binding to DNA, while the other (Sox3dNLS) 

contained three point mutations, again in the HMG domain, that prevented 

the nuclear localisation of the protein. Both the mutants induced ectopic 

expression of the organizer markers bozozok, squint, goosecoid, chordin 

and no tail. Moreover, microinjection of mut1 did not repress the 

expression of gsc, as it caused phenotypes similar to both UN and GFP 

controls. Therefore, the data obtained indicates that this mutant present a 

loss of the repressor function compared to the wt. 

In the luciferase reporter assay Mut1 caused a two-fold increase of the 

luciferase activity compared to wt Sox3. This could be due to the fact that 

the deletion made in Sox3 did remove a region involved in Sox3 repressor 

function, thus altering the balance between the activation and repression 

function of the protein and causing greater activation of the reporter gene.  

Two hypotheses that would explain why the over-expression of mut1 had 

a milder impact than the wt on the organizer formation are that the 

deletion affected Sox3 DNA binding properties, or that it affected the 
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nuclear localisation of the protein. These hypotheses would also be 

consistent with the activation of the luciferase reporter gene observed 

after over-expression of Mut1. According to the first hypothesis, a 

decrease in the ability of binding DNA would allow a lower amount of the 

over-expressed protein to bind target sequence and activate/repress 

target genes, therefore mitigating the effect of the over-expression. If, on 

the other hand, the second hypothesis was true, than it would mean that 

the amount of protein transported into the nucleus after translation would 

have decreased (but not completely), and for this reason the mutant Sox3 

would have been less efficient in regulating target genes. 

Another hypothesis that would explain the ectopic expression of boz is 

that Mut1 lost the ability to compete with the Wnt effector factors Tcf/Lef 

for binding to β-catenin, and thus it interfered with the Wnt/β-catenin 

signalling pathway (Fig. 4.4). In fact, in order for β-catenin to bind DNA 

and activate target genes, the interaction with Tcf/Lef is required; in 

Xenopus it has been shown that Sox3, as well as other Sox proteins, can 

interfere with this interaction (Zorn et al. 1999; Zorn et al. 1999). This is 

consistent with the observation that several other Sox proteins have been 

shown to be able to interact with β-catenin, sometimes causing repression 

and other times causing activation of target genes (Zorn et al. 1999; Sinner 

et al. 2004). In zebrafish, it has been shown that Sox3 acts as a repressor of 

the Wnt/β-catenin signalling causing the repression of organizer marker 

genes and confining the formation of the organizer at the correct time and 

position (Shih et al. 2010). It is also known that the activation of boz is 

induced by β-catenin (Fig. 4.1 and Fig. 4.4), (Schier and Talbot 2005); 

therefore, it could be possible that the ectopic expression of boz caused by 

the over-expression of Mut1 was due to the fact that the region deleted in 

Mut1 is involved in the ability of Sox3 to interact with β-catenin. The 

reason why Mut1 did not cause ectopic expression of gsc could be because, 

as mentioned above, Sox3 does not repress gsc as directly as it does 

repress boz (Fig. 4.1). This is consistent with the observation that Mut1 did 

not repress gsc expression. 
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Zebrafish Sox3 (zfSox3) was found to contain two presumptive 

SUMOylation sites (Laghari 2010) located respectively in the positions 

113-123 and 228-238. SUMOylation consists in the covalent or, in some 

cases, non-covalent (Merrill et al. 2010) attachment of a SUMO 

polypeptide to a lysine flanked by specific residues on the target protein 

and it was found to affect different types of proteins, including 

transcription factors. SUMOylation has been shown to regulate the 

transcriptional activity of different transcription factors, including Sox 

proteins (Gill 2005). It is thought that the covalent attachment of SUMO 

polypeptides to zfSox3 modulates the transcriptional repressor and 

activator function of this transcription factor. However, at the present time 

this mechanism is still being studied. The observation that one of the 

presumptive SUMOylation sites, which is located in the position 113-123, 

is completely deleted in Mut1 suggests another hypothesis for the function 

of the deleted region. It is possible that the SUMOylation of this region of 

the protein is involved in the repressor function of Sox3. That would 

explain why the deletion caused the loss-of-function in the organizer 

repression activity and the activation of the luciferase, which could also be 

caused by a loss of repression function. 
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Figure 4.3 Dominant-negative Sox3 constructs induce ectopic 

expression of boz causing the same phenotype as mut1. Shih et al. showed 

that microinjection of dominant-negative forms of sox3 (sox3N40I and 

sox3dNLS) causes ectopic expression of boz (A), (Shih et al. 2010). The same 

phenotype was found to be caused by microinjection of mut1 (B). The 

pictures show different embryos viewed from the animal pole. 

Figure 4.4 One of the hypotheses that would explain ectopic expression 

of boz caused by over-expression of Mut1. Β-catenin binds the DNA 

together with Tcf/Lef to activate boz (A); Sox3 can compete with this 

interaction causing the repression of boz (B). If Mut1 lost the ability of 

interfering with β-catenin-Tcf/Lef interaction, this would explain why boz

was expressed ectopically (C). 
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4.3.2. Mutant 5 

 

Figure 4.5 Schematic representation of sox3 showing the region deleted in Mut5. 

Mutant 5 carried deletion of a region of 16 amino acids located 

approximately in the middle of the protein (A164-M179, Fig. 4.5). The over-

expression of Mut5, as well as Mut6, did not cause repression of boz 

compared to wt Sox3. However, microinjection of mut5, as well as 

microinjections of mut2, mut3 and mut7 seemed not to cause different 

effects on gsc expression compared to the wt. This observation is 

interesting considering that Mut4, which lacks a region located just before 

Mut2, and Mut6, which lacks the region between the deletions made in 

Mut5 and Mut3, and Mut4, did cause significantly milder effects (Fig. 4.6). 

Therefore, the deletion of regions that are next to each other cause 

different effects on the organiser repression function. This proved that the 

deletion strategy developed for the present study is effective to identify 

regions of the protein that have different functions. The reason why Mut5 

did not show the same loss-of-function in the repression of both boz and 

gsc is probably because, as mentioned above, gcs is not only directly 

repressed by Sox3, but also through the repression of boz. 

 

 

 

Figure 4.6 Schematic representation of sox3 showing the positions of the regions deleted in 

Mut2, Mut3, Mut5 and Mut7. 
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Mutant 5 caused a remarkably strong activation of the luciferase 

compared to wt Sox3. Such dramatic effect could be caused by the lack of a 

region that mediates the repressive function of Sox3. This is consistent 

with the findings that Mut5 is unable to repress the expression of bozozok. 

Both experiments support the hypothesis that Mut5 lost the repression 

function of wt Sox3.  

Interestingly, a previous student in the laboratory identified two 

presumptive Groucho binding sites in the sequence of chicken Sox3 

(cSox3) (Laghari 2010). Grouchos are a family of co-repressors that have 

been proven to interact with Tcf, a Sox-like HMG transcription factor 

(Brantjes et al. 2001; Kuo et al. 2013) and it has been suggested that they 

may interact with Sox2 (Liu 2011). The interaction between Tcf and 

Grouchos cause repression of target genes, while the binding with β-

catenin leads to the release of Tcf from Groucho, thus activating the target 

genes (Brantjes et al. 2001; Kuo et al. 2013). It is possible that Grouchos 

interact with Sox3 and regulate the balance between the activator and the 

repressor function of Sox3. The presumptive Groucho binding sites that 

were identified in cSox3 correspond to the amino acids 194-203 and 292-

307. In the zebrafish Sox3 (zfSox3) these regions are conserved and 

corresponding residues are located in the positions 179-188 and 276-291 

(Fig. 3.1). The first of these two presumptive binding sites has been 

deleted in Mut5 and Mut6: Mut5 (A164-M179) was missing the first amino 

acid of the binding site and Mut6 (H180-N200) was missing the rest of the 

site. The second presumptive Groucho binding site was deleted in Mut9 

(Q273-G290) and in Mut10 (V291-I300). 

Therefore, according to this hypothesis, in Mut5 the removal of a region 

involved in the binding of Sox3 with the co-repressor Groucho caused a 

loss of the repressor function and changed the balance between the 

activator and repressor function, causing the failure in the repression of 

boz and the activation of the luciferase reporter. 

Mut2 led to a reduction in the luciferase activity compared to the GFP 

control, where the activity was due only to the endogenous Sox3. This 
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could mean that Mut2 also interfered with the activity of the endogenous 

Sox3. This observation is interesting considering that the deletion of the 

region next to the one deleted in Mut2 caused a totally different effect: the 

dramatic activation showed by Mut5. 

 

4.3.3. Mutant 6 

 

Figure 4.7 Schematic representation of sox3 showing the region deleted in Mut6. 

Mutant 6 lacks of a region of 21 amino acids (H180-N200, Fig. 4.7) which is 

located approximately in the middle of the protein sequence (Fig. 4.7). The 

over-expression of Mut6 did not cause repression of the organizer 

markers compared to wt Sox3 and this could indicate a loss-of-function in 

the repressor activity. These observations are consistent with the 

hypothesis that the removal of a part of a Groucho binding site (179-188) 

changed or prevented the interaction of Mut6 to with Groucho, thus 

leading to the inability of the protein to repress boz and gsc. The fact that 

the phenotypes of the embryos 24 hpf did not differ particularly from the 

embryos microinjected with wt Sox3 is probably due to the functional 

redundancy existing between different SoxB1 factors at later stages of 

development. 

However, Mut6, in contrast to Mut5, did not activate luciferase more than 

wt Sox3. If the above hypothesis that lack of repression is due to loss of 

interaction with Grouchos, then this cannot be the explanation for the 

increased luciferase activity caused by Mut5. Only by analysing interaction 

with Grouchos directly can these possibilities be tested. 
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4.3.4. Mutant 7 

 

Figure 4.8 Schematic representation of sox3 showing the region deleted in Mut7. 

Mutant 7 contained a deletion of 25 amino acids located towards the         

C-terminus of the protein (A226-G250, Fig. 4.8). The over-expression of this 

construct did not show any repressive effect on boz compared to wt sox3. 

However, it seemed to have quite a strong effect on gsc expression, as it 

caused a severe phenotype in almost half of the embryos and a normal 

phenotype in the others, but no mild phenotypes. Moreover, Mut7 

activated the luciferase reporter gene less than the GFP control, in which 

the activation of the reporter is thought to be caused by the endogenous 

Sox3. Therefore, Mut7 seemed to interfere with the transcriptional 

activator function of the endogenous Sox3. These data suggest that the 

deletion made in Mut7 caused a loss of the transcriptional activator 

function of Sox3, and therefore that the deleted region is involved in the 

functioning of Sox3 as activator. 

As mentioned above, zfSox3 was found to contain a presumptive 

SUMOylation site in the position 228-238, which is comprised in the 

deletion made in Mut7. In contrast to what was observed for Mut1, in 

which the other presumptive Sox3 SUMOylation site was deleted, Mut7 

seemed to present a loss of activation function compared to wt Sox3. This 

suggests that SUMOylation of the two different presumptive sites could 

have opposite effects inducing Sox3 to act as a transcriptional repressor 

(site deleted in Mut1) or as activator (site deleted in Mut7). However, it is 

not yet known if SUMOylation occurs at either of these sites.  
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4.3.5. Mutant 10 

 

Figure 4.9 Schematic representation of sox3 showing the region deleted in Mut10. 

Mutant 10 contained a deletion of 10 amino acids located at the very end 

of the C-terminal region of the protein (V291-I300, Fig. 4.9). The over-

expression of mut10 caused a unique phenotype in nearly half of the 

embryos analysed 24 hpf (Fig. 4.8). This phenotype differed from all the 

others found in the same experiment and presented a distribution of ncad 

transcript that resembled the one expected for embryos at approximately 

bud stage (Harrington et al. 2007; Warga and Kane 2007; Dee et al. 2008). 

Normally, at this stage the dorsal epiblast becomes thicker anteriorly and 

forms the neural plate. The neural plate is the earliest recognizable dorsal 

ectodermal primordium of the CNS and forms near the end of gastrulation, 

at about 9-10 hpf. Therefore it seems that the over-expression of Mut10 

affected the development of the CNS in a different way compared to 

wtSox3. Instead of leading to defects that involve duplication or ectopic 

expression of neural tissue, Mut10 seemed to block development at an 

earlier stage, when the first primordium of the nervous system begins to 

form. In particular, it seems possible that embryos injected with Mut10 

presented defects in the extension and conversion cellular movements 

that occur during gastrulation, and therefore retarded their development 

before the completion of gastrulation. This hypothesis is consistent with 

the appearance of these embryos (Fig. 4.10).  

Interestingly, at sphere stage embryos over-expressing mut10 did not 

show any particular difference in the expression of the organizer markers, 

compared to the embryos over-expressing wt sox3. Therefore, it seems 

that the mechanisms that were affected by the deletion and that caused 

the particular phenotype observed 24 hpf are related to processes that 

occur after the sphere stage. 
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The reading of the luciferase activity was lower in embryos over-

expressing Mut10 than embryos over-expressing wt Sox3. This suggests 

that the deletion caused a loss in the transcriptional activator function of 

the protein. 

Together, the data obtained by the analysis of the effects caused by the 

over-expression of Mut10 suggest that this mutant interferes with the 

development of the CNS at a later stage than the sphere stage, presumably 

around the bud stage, and that it lost Sox3 activator function. Therefore, 

the data confirmed the observation that the C-terminal region of Sox3 

contains a trans-activation domain (Bowles et al. 2000; Xia et al. 2000; 

Sutton et al. 2011).  As mentioned in the Introduction (Chapter 1.5.3), Sox3 

acts in Xenopus as a transcriptional activator during the formation of the 

nervous system inducing the neural progenitor markers sox2 and geminin 

(Rogers et al. 2009). It is possible that the deletion made in Mut10 

interfered with the activation of target genes, such as sox2, which are 

normally expressed after the sphere stage in zebrafish and are involved in 

the specification of the neural tissue. 
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Figure 4.10 Microinjection of mut10 caused defects in the development 

of the CNS, which seems not to develop beyond the bud stage. The figure 

shows the expression of ncad in a normal embryo 24 hpf (A), in embryos 24 

hpf injected with mut10 (B, C, D, E) and in a normal embryo at bud stage (F, 

(Dee et al. 2008)). Each picture shows a different embryo viewed from the 

dorsal side. It is clearly visible that the embryos 24 hpf microinjected with 

mut10 presented a phenotype remarkably different to a normal embryo 24 

hpf, but similar to the phenotype of an embryo at bud stage. 
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4.3.6. Mutant 11 

 

Figure 4.11 Schematic representation of sox3 showing the region deleted in Mut11. 

Mutant11 contained a deletion of 11 amino acids that included all the N-

terminal region of the protein, except the initial methionine, but not the 

HMG domain (Fig. 4.11). Interestingly, over-expression of Mut11 did not 

caused the repression of organizer markers compared to wt Sox3. This 

result was unexpected because, while it is thought that the C-terminal 

region of Sox3 contains a trans-activation domain, no particular functions 

have yet been associated with the short N-terminal end of the protein. The 

over-expression of Mut11 induced a fivefold increase in the activity of the 

luciferase and this would suggest that the deleted region is involved in 

Sox3 repressor function. Together these data suggest the hypothesis that 

the short N-terminal region could be involved in Sox3 repressor function. 

Although the HMG domain is clearly involved in DNA binding, there is also 

evidence that it can mediate interactions with other proteins (Harley et al. 

1996; Wilson and Koopman 2002; Zhang et al. 2003). Therefore, another 

hypothesis that would explain the effects caused by the over-expression of 

Mut11 is that the deleted region is normally involved, together with the 

HMG box, in the interaction with a co-repressor. The disruption of such 

interaction would cause the loss of Sox3 repressor function.  
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4.4. Mapping Different Functions of Zebrafish Sox3 

The data obtained with this study allowed drawing a presumptive 

functional map of Sox3 that is represented Table 4.2. 
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Mutant Deletion Function Experiments  Hypotheses  

Mut11 Y2-I13 
Transcriptional 

repression 

• Expression of 

Boz and Gsc 

• Luciferase 

Reporter 

Assay 

• Binding of 

co-

repressors 

together 

with the 

HMG box 

Mut1 
P100-

G123 

Transcriptional 

repression 

• Expression of 

Boz and Gsc 

• Luciferase 

Reporter 

Assay 

• DNA binding 

and/or 

nuclear 

localisation  

• Interaction 

with Wnt/β-

catening 

signalling 

• SUMOylation 

induced 

repressor 

function 

Mut5 
A164-

M179 

Transcriptional 

repression 

• Expression of 

Boz 

• Luciferase 

Reporter 

Assay 

• Binding with 

Groucho  

Mut6 
H180-

N200 

Transcriptional 

repression 

• Expression of 

Boz and Gsc 

 

• Binding with 

Groucho 

Mut7 
A226-

G250 

Transcriptional 

activation 

• Luciferase 

Reporter 

Assay 

• SUMOylation 

induced 

activator 

function 

Mut10 
V291-

I300 

Transcriptional 

activation 

• Luciferase 

Reporter 

Assay 

• Trans-

activation 

Table 4.2 The region deleted in each of the construct was associated with a presumptive function and 

one or more hypothesis that would explain these functions. The first column of the table indicates the 

name of the constructs (Mutant), the second indicates the regions deleted (Deletion), the third the 

presumptive function of Sox3 associated with the deleted region (Function), the fourth the experiments that 

suggested the functions and the last column indicates the hypothesis suggested that would explain the 

presumptive functions. The bar at the left represents the sequence of wt Sox3 (N-terminus upwards and       

C-terminus downwards).  The deletions made in each mutant are indicated with a number that refers to the 

name of the constructs. The regions with presumptive repressor function are represented in red while the 

regions with presumptive activator function are represented in green. 
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4.5. General Discussion and Future Studies 

Currently, the mechanisms involved in the modulation of Sox3 function as 

a transcriptional activator or repressor in early embryogenesis are still to 

be solved. It is certain that the HMG domain is involved in the binding of 

the DNA, but there is no certain evidence about the functions mediated by 

other regions of the protein. The functional screening strategy that was 

designed and developed in this study allowed the identification and 

mapping of large regions that are located outside the HMG box and 

presumably associated with the functioning of Sox3 as an activator or as a 

repressor. The consistency of the data obtained with the observations 

found in the literature is encouraging; therefore this study could be 

continued with the aim of drawing a more complete functional map of 

Sox3. The first step would be the repetition of the experiments in order to 

get a statistical confirmation of the data observed. Moreover, other 

experimental approaches are now being considered in order to meet two 

main objectives: firstly, the validation, or the rejection, of the hypothesis 

presented that would explain the function of the regions identified; 

experiments focused on the study of protein-protein interactions, such as 

the interaction between Sox3 and the co-repressor Groucho, or the 

interaction of Sox3 with β-catenin, are now being designed to meet this 

first objective. Secondly, the aim of further studies will be the 

identification of the specific residues involved in the functions associated 

with the regions identified in this study; for this purpose a point mutation 

approach is being considered.       
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6. Media Recipes  

 

6.1. Buffers for Bacterial Growth 

6.1.1. Mu Broth culture medium 

Bactotryptone 
10g 

Yeast Extract 
5g 

NaCl 
10g 

NaOH (1M) 
2ml 

H2O 
up to 1L 

Total Volume 1L 

6.1.2. Mu Broth Agar culture medium 

Bactotryptone 
10g 

Yeast Extract 
5g 

NaCl 
10g 

NaOH (1M) 
2ml 

agar 
1% 

H2O 
up to 1L 

Total Volume 1L 
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6.2. Buffers for Western Blot 

6.2.1. SDS Running Buffer 

 

Tris 30.3 g 

Glycine 188 g 

10% SDS (in SDW) 10 ml 

SDW up to 1L 

Total Volume 1L 

6.2.2. Transfer Buffer 

 

MeOH 200 ml 

Tris 3.03 

Glycine 14.4 

SDW up to 1L 

Total Volume 1L 
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6.3. Buffers for In Situ Hybridization 

6.3.1. 20XSSC Solution 

NaCl 876 g 

Tri-Sodium Citrate 

dehydrate 441 g 

SDW up to 1L 

Total Volume 1L 

The pH of the solution was adjusted to 7.0. 

All SSC solutions made from 20xSSC also contain 0.1% Tween20. 

 

6.3.2. Hybridization Buffer 

Formamide  250 ml 

20x SSC 125 ml 

tRNA (50 mg/ml) 0.5 ml 

Heparin(100 mg/ml) 25 µl 

Citric Acid (1M) 4.6 ml 

Tween20 (20%) 2.5 ml 

H2O 112.5 ml 

Total Volume 500 ml 
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6.3.3. Prehybridization Buffer 

Before preparing the buffer 50 ml Hybridization Buffer were pre-

cooled at -20˚C, while waiting for tRNA and Heparin to thaw on ice. 

Hybridization Buffer  49.5 ml 

tRNA (50 mg/ml) 0.5 ml 

Heparin (100 mg/ml) 25 µl 

Total Volume 50 ml 

The buffer was stored at -20˚C. 

6.3.4. Maleic Acid Buffer (MAB) 

 

Maleic Acid 0.1 M 

NaCl 0.15 M 

The pH of the solution was adjusted to 7.5 using NaOH. The 

solution was then autoclaved. 

6.3.5. Blocking Buffer 

MAB + Boehringer Blocking ReagentTM 2% w/v, incubated at 80˚C 

overnight. The buffer was stored at -20˚C. 
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6.3.6. BCL Buffer III 

1M Tris-HCl (pH 9.5) 5 ml 

5M NaCl 1 ml 

0.5M MgCl2 5 ml 

Tween20 (20%) 0.25 ml 

SDW up to 50 ml 

Total Volume 50 ml 



152 
 

 

7. Appendix 

7.1. Map of the pβUT2-zfSox3-HA Vector 

 The vector contains Xenopus β-globin 5’-UTR (Hind III – Bgl II blunt) and 

3’-UTR from PSP64T (Bg I – Hind III) at either ends of Bluescribe’s 

polylinker (pβUT1), replaced with Xba-Kpn with synthetic polylinker 

(pβUT2). 

 

 

  

                                 Sox3 (1-900)   
  XbaI                                                                                  Xho I                           Bam HI 
TCT AGA TTA AGA ATG TAT AAC …. ACC CAC ATT TCT CGA GAC GTC GAC GGA TCC  
         HA 

 
CGA TAT CCA TAC GAT GTT CCA GAT TAC GCG TAT CCA TAC GAT GTT CCA GAT TAC  
        

                  Kpn I 
GCG TGA TAG GTA CC 
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7.2. Map of the pCS2nls.GFP Vector 

To create pCS2nlsGFP, an oligomer encoding a nuclear localisation signal 

derived from SV40, a large T antigen was inserted into plasmid pCS*mt-

SGP (Klymkowsky 1996). Oligonucleotide sequences used were:  

• nlsF: aat tcc cca aaa aag aag aga aag gta gaa t 

• nlsR: cta gat tct acc ttt ctc ttc ttt ttt ggg g  

More information on: pCS2*mt-SGP at http://spot.colorado.edu/~klym/  
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7.3. Primers Designed and Used for the Cloning of 

Deletion Mutant Sox3 Constructs 

• Mutant 1 (P100-G123) 

PRIMER N’R: ggc gtg ctc ctt cat gtg cat ggc 

Length=24  Tm= 65˚C  G+C= 63%  

PRIMER C’F: ggc gga ctc ctg gcg ccc ggt 

Length=21  Tm=70˚C G+C=81% 

 

• Mutant 2 (V139-L163) 

PRIMER N’R: ggc cga cac cgc gtt gtt gac agc 

Length=24   Tm=67˚C    G+C=67% 

PRIMER C’F: ggc gcc tac cct caa cat ccc agc 

Length=24    Tm=67˚C    G+C=67% 

 

• Mutant 3 (A201-G221) 

PRIMER N’R: ggc gtt cat gta ggt ctg agc cgt 

Length=24   Tm=64˚C    G+C=58% 

PRIMER C’F: ggc ttg ggc tcc atg gct tcg gtg 

Length=24   Tm=67˚C    G+C=67% 

 

• Mutant 4 (G124-G140) 

PRIMER N’R: ggc ccc tgg caa aga ata ctt gtc 

Length= 24 Tm= 62˚C  G+C= 54%  
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PRIMER C’F: ggc cag cgg atg gac tac acg cac  

Length= 24 Tm=66˚C G+C=67% 

 

 

• Mutant 5 (A164-M179) 

PRIMER N’R: ggc cag ctg gtc ctg cat gag gga  

Length= 24 Tm= 67˚C  G+C= 67%  

PRIMER C’F: ggc cac cgg tac gac atg gcg gga 

Length=24  Tm=69˚C G+C=71% 

 

• Mutant 6 (H180-N200) 

PRIMER N’R: ggc cat ctg ctg gat ctg ggg gct 

Length=24  Tm= 67˚C  G+C= 67%  

PRIMER C’F: ggc gcc gcg tcc acg tac agc agc 

Length=24  Tm=70˚C G+C=75% 

 

• Mutant 7 (A226-G250) 

PRIMER N’R: ggc cat gga gcc caa acc cat   

Length=21  Tm= 63˚C  G+C=63 %  

PRIMER C’F: ggc gac ctg aga gat atg ata agc 

Length=24  Tm=57˚C G+C=50% 

 

• Mutant 8 (D251-G263) 
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PRIMER N’R: ggc tcc caa aca agc acg ctg aga 

Length=24  Tm= 64˚C  G+C= 58%  

PRIMER C’F: ggc gga gac agc gcc gac cac tcc 

Length=24  Tm=70˚C G+C=75% 

 

• Mutant 9 (Q273-G290) 

PRIMER N’R: ggc tag act gga gtg gtc ggc gct 

Length=24  Tm= 67˚C  G+C= 67%  

PRIMER C’F: ggc gtg aac gga acg cta ccc cta 

Length=24  Tm=68˚C G+C=71% 

• Mutant 10 (V291-I300) 

PRIMER N’R: ggc gcc tgt ccc tgc gct ttg ata 

Length=24  Tm= 66˚C  G+C= 63%  

PRIMER C’F: ggc tct  cga gac gtc gac gga tcc 

Length=24  Tm=65˚C G+C=67% 

 

• Mutant 11 (Y2-I13) 

PRIMER N’R: ggc cat tct taa tct aga gtc gat ctg 

Length=27  Tm= 57˚C  G+C= 42%  

PRIMER C’F: ggc ccg cag tcc aac acg g         

Length=19  Tm=65˚C G+C=74% 
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7.4. Map of the Reporter Plasmid Used for the 

Luciferase Reporter Assay 

The basic pGL3 vector was modified by insertion of F1 promoter followed 

by 3 repetitions of Sox3 binding sites and the firefly luciferase gene. The 

plasmid also contains the Ampicillin resistance gene. The insert is shown 

in the next page. 
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Insert of the pGL3-3XSX plasmid as follows: 

 

TGATNTTCAGCATCTTTACTTTCNCCAGCGTTTCTGGGNGAGCAAAANCAGGAANGCAAAATGCCGC

AAAAAAGGGAATNANGGCGNCACGGAAATGTTGAATACTCATACTCTTCNTTTTTCAATATTATTGAA

GCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAG

GGGTTCCGCGCACATTTCCCCGAAAAGTGCCACNTGACGCGCCCTGTAGCGGCGCATTAAGCGCGGC

GGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTT

TCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGG

GTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTG

GGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCT

TGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGAT

TTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAAC

GCTTACAATTTGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTT

CGCTATTACGCCAGCCCAAGCTACCATGATAAGTAAGTAATATTAAGGTACGTGGAGGTTTTACTTGCT

TTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTG

TTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTT

CACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATGGTACTGTAACTGAGCTAACATA

ACCCGGGAGGTACCGAGCTCTTACGCGTGCTAGCTCGAGATCCGCGCCTTTGTTCTCCCCAGATCCGC 

                     KpnI        SacI         MluI           NheI     XhoI 

GCCTTTGTTCTCCCCAGATCCGCGCCTTTGTTCTCCCCAGATCTACTTGGGCATAAAAGGCAGAGCAGG

GCAGCTGCTGNTAAGCTTGGCATTCCGGTACTGTTGGTAAAGCCACCATGGAAGACGCCAAAAACAT 

               HindIII 

AAAGAAAGGCCCGGCGCCATTCTATCCGCTGGAAGATGGAACCGCTGGAGAGCAACTGCATAAGGCT

ATGAAGAGATACGCCCTGGTTCCTGGAACAATTGCTTTTACAGATGCACATATCGAGGTGGACATCAC

TTACGCTGAGTACTTCGAAATGTCCGTTCGGTTGGCAGAAGCTATGAAACGATATGGGCTGAATACAA

ATCACAGAATCGTCGTATGCAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGTTATTTA

TCGGAGTTGCAGTTGCGCCCGCGAACGACATTTATAATGAACGTGAATTGCTCAACAGTATGGGCATT

TCGCAGCCTACCGTGGTGTTCGTTTCCAAAAAGGGGTTGCAAAAAATTTTGAACGTGCAAAAAAAGCT

CCCAATCATCCAAAAAATTATTATCATGGATTCTAAAACGGATTACCAGGGATTTCAGTCGATGTACAC

GTTCGTCACATCTCATCTACCTCCCGGTTTTAATGAATACGATTTTGTGCCAGAGTCCTTCGATAGGGA

CAAGACAATTGCACTGATCATGAACTCCTCTGGATCTACTGGTCTGCCTAAAGGTGTCGCTCTGCCTCA

TAGAACTGCCTGCGTGAGATTCTCGCATGCCAGAGATCCTATTTTTGGCAATCAAATCATTCCGGATAC

TGCGATTTTAAGTGTTGTTCCATTCCATCACGGTTTTGGAATGTTTACTACACTCGGATATTTGATATGT

GGATTTCGAGTCGTCTTAATGTATAGATTTGAAGAAGAGCTGTTTCTGAGGAGCCTTCAGGATTACAA

GATTCAAAGTGCGCTGCTGGTGCCAACCCTATTCTCCTTCTTCGCCAAAAGCACTCTGATTGACAAATA

CGATTTATCTAATTTACACGAAATTGCTTCTGGTGGCGCTCCCCTCTCTAAGGAAGTCGGGGAAGCGG

TTGCCAAGAGGTTCCATCTGCCAGGTATCAGGCAAGGATATGGGCTCACTGAGACTACATCAGCTATT

CTGATT 

 

Ampicillin resistance 

F1 promoter 

CTTTGTT 3X repeat of Sox3 binding sites 

luciferase- firefly 

 

 


