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ABSTRACT

This project aims to provide an insight into the behaviour of cemented sand

under high pressures, and to further the understanding of the role of particle

crushing. The discrete element method is used to investigate the micro

mechanics of sand and cemented sand in high-pressure triaxial tests and one-

dimensional normal compression.

Using the software PFC3D, a new triaxial model has been developed, which

features an effective flexible membrane that allows free deformation of the

specimen and the natural failure mode to develop. The model is capable of

exerting and sustaining high confining pressures. Cementation has been

modelled using inter-particle bonds, and a full investigation of the bond

properties is presented, highlighting their influence on the macroscopic

behaviour (e.g. failure mode and volumetric response).

A simple particle breakage mechanism is used to model the one-dimensional

normal compression of sand. By considering the stresses induced in a particle

due to multiple contacts, and allowing particles to fracture without the use of

agglomerates, this work aims to explain the mechanics of normal

compression. The influence of the mechanics of fracture on the slope of the

normal compression line is investigated, and the normal compression is linked

to the evolution of a fractal particle size distribution. A new equation for the

one-dimensional normal compression line is proposed, which includes the

size-effect on average particle strength, and demonstrates agreement with

experimental results. It is shown that this new equation holds for a wide

range of simulations. The time dependence of particle strength is

incorporated in to this model to simulate one-dimensional creep tests,

leading to a new creep law.

The normal compression of cemented sand is investigated, and the results

show that bonding reduces particle crushing, and that it is both the
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magnitude and distribution of bond strengths that influence the compression

curve of the structured material. Simulations are also presented that show

that it is possible to capture the effects of particle crushing in high-pressure

triaxial tests on both sand and cemented sand. Particle crushing is shown to

be essential for capturing realistic volumetric behaviour, and the intrusive

capabilities of the discrete element method are used to gain insight into the

effects that cementation has on the degree of crushing.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The understanding of the mechanical behaviour of granular soils has long

been an area of interest in the civil engineering community. A knowledge of

the strength and stiffness of soil is essential for the safe design of any

construction project.

Cemented granular materials in general have been of particular interest, due

to their unique behaviour and natural abundance. Both naturally and

artificially cemented soils have been subjected to extensive laboratory testing

throughout the years (e.g. Coop and Atkinson, 1993). Among the various

tests, the triaxial is the most commonly used for analysing the stress and

strain characteristics of granular soils, due to the ability to control drainage

and measure deformations. The significant majority of triaxial testing has

been at conventional pressures; typically less than 1 MPa. More recently,

cemented sands have also been subjected to high-pressure laboratory testing

(e.g. Marri, 2010), and it is under such pressures that particle crushing in sand

becomes prominent and has a large influence on the macro-scale behaviour

(Yamamuro and Lade, 1996). However, during typical laboratory tests, it is

not possible to observe internal particle mechanisms, nor is it possible to

discover the true properties and behaviour of the inter-particle bonding that

results from cementation. In general, little is known about the soil response

at the grain level; this is particularly true at high pressures.

Particle crushing is also highly significant in the normal compression of

granular soils; the yield point and slope of the ensuing normal compression

line have long been attributed to crushing. In comparison to cohesive soils

such as clay, there have been comparatively few experimental studies on the

one-dimensional or isotropic compression of sands, in particular silica sands
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due to the high pressures required. Nonetheless, there have been studies

investigating the influence that factors such as initial voids ratio, and particle

shape, strength and size have on crushing during compression (e.g. Hagerty et

al., 1993; Nakata et al., 2001a; Nakata et al., 2001b). The compression of

sand has also been associated with the evolution of fractal particle size

distributions (e.g. Turcotte, 1986), with authors such as McDowell and

Bolton (1998) and Russell (2011) linking the linear slope of the normal

compression line to the theory of fractal crushing, using energy equations. So

although the role of particle crushing in granular soils has been

acknowledged, the micro mechanics have not been truly investigated—for

example, it is not possible to observe and investigate fracture mechanisms

and properties such as the distribution of strengths and size-hardening laws,

and their influence on the macroscopic behaviour.

The discrete element method (DEM) is a branch of numerical methods for

calculating the behaviour of an assembly of particles, an effective technique

for modelling granular mechanics. DEM, which was originally developed by

Cundall and Strack (1979), is commonly used to model discontinuous

materials, and is an effective alternative to continuum methods. The

fundamental purpose of DEM is to recreate the microscopic mechanics of the

independent particles to allow understanding of the macroscopic behaviour,

and most significantly, to enable the investigation of the micro mechanics of

materials that would otherwise be difficult or impossible to study in physical

tests. Hence, it provides a useful numerical tool for studying soil mechanics,

and is used herein to investigate micro mechanics of sand and cemented sand

under high pressures.

1.2 AIMS AND OBJECTIVES

The principal aims of this research are to improve understanding of cemented

sand and to gain insight to the micro mechanics of particle crushing at high

pressures, ultimately allowing better predictions of the behaviour of soil to be
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made. Using the discrete element method software PFC3D, the objectives

can be summarised as follows:

o To create a realistic triaxial model, capable of simulating high-pressure

triaxial shear tests, and featuring a flexible membrane that allows the

specimen to deform realistically.

o To develop a practical method of modelling cementation, allowing

cemented sand to be modelled, and the micro properties to be fully

investigated.

o To implement an effective particle breakage mechanism, enabling the

soil model to exhibit realistic particle crushing at high pressures and

allowing the mechanics of fracture to be investigated.

o To study the behaviour of sand and cemented sand in high-pressure

triaxial shearing and normal compression, and gain an insight into the

role of particle crushing, and its influence on the macroscopic

behaviour.

1.3 SCOPE

This thesis presents a numerical-based investigation into the mechanical

behaviour of granular soil. The soils studied are sand and cemented sand,

with a focus on the drained behaviour of these soils in triaxial shear and one-

dimensional normal compression, at high pressures.

The study includes discussion on how cementation influences the behaviour

of sand in such tests; particular attention is also given to the role of particle

crushing, which is of considerable importance at high pressures.

There were some limitations, however, which should be mentioned regarding

the use of the discrete element method:

o The DEM software used, PFC3D (v3.1), uses two entities: walls and

balls. Therefore all soil particles were modelled simply by using



4

spheres, which failed to reflect the irregular shape of real sand

particles. Incorporating realistic shape would change the mechanical

behaviour of the virtual soil, which is discussed where relevant.

However, the work presented is a necessary, fundamental step

required before implementing realistic shape using ‘clumps’ of balls.

o Cementation was modelled by using virtual bonds, which appeared to

capture the effects of cementation successfully. However, these

bonds failed to reproduce the change in grading that the addition of

cement fines causes in laboratory tests. After breaking, the virtual

bonds had no affect on the behaviour of the soil, whereas the

presence of broken cement in reality would be expected to still have

an influence after breaking.

o Time and computational constraints meant that only a relatively small

number of particles were used in simulations throughout the thesis.

This was primarily due to the fact that the time taken for calculations,

and to update the system after a single ‘timestep’ is proportional to

the total number of particles; hence it was not possible to use a

realistic quantity.

o Similarly, these constraints also limited the extent of the simulations;

several of the simulations in Chapters 4 and 5 were terminated when

the ‘size’ of the timestep became too small. The size of the timesteps

were most greatly influenced by the range of particle sizes in the

system. Simulations with wide ranges of particle sizes had very small

timesteps, therefore requiring a much larger number of timesteps to

progress. Hence the simulations with extensive crushing were ended

when they became too onerous. The desktop computer used had an

Intel® Core™ 2 Quad 3.00 GHz CPU; with 3.00 GB of RAM. The

simulations presented in Chapter 3 all took approximately between

1–3 weeks to complete. In Chapter 4, the shortest simulation was

completed in 2 weeks; while the key simulation of silica sand ran for

approximately 10 weeks before it was terminated. In Chapter 5, the
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longest triaxial simulation (at the highest confining pressure) ran for

approximately 10 weeks before it was terminated.

1.4 THESIS OUTLINE

This thesis consists of six chapters; the following five are organised as follows:

Chapter 2 provides a literature review, which covers both experimental and

numerical research. A general background on cemented sand is given,

accompanied by an analysis of the behaviour of such granular soils in both

triaxial shearing and normal compression. This is followed by a review of

particle crushing and relevant applications of the discrete element method in

modelling soil.

Chapter 3 describes the triaxial model developed to simulate high-pressure

shear tests. Details are provided of the flexible membrane, which allows

correct failure modes to develop, and a study of bond parameters used in

modelling cemented sand is given.

Chapter 4 gives details of the basic particle breakage mechanism and fracture

criterion developed to model particle crushing. The one-dimensional normal

compression of sand is modelled using an oedometer; various mechanisms

and strength parameters are investigated, and the compression is linked to

the evolution of a fractal particle size distribution.

Chapter 5 presents three applications of the particle crushing mechanism.

Creep is modelled and investigated by incorporating a time-dependency on

particle strengths, a study of the one-dimensional compression of cemented

sand is then presented, and finally the high-pressure triaxial behaviour of

crushable cemented and uncemented sand is analysed.

Chapter 6 contains the conclusions from this work and the recommendations

for future research.
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CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

The literature review focuses on the behaviour of cemented sand at high

pressures, and the role of particle crushing.

An introduction to the behaviour of uncemented sand is given, as well as a

background on cemented sand, after which a thorough review of literature on

the mechanical behaviour of cemented sand in conventional and high

pressure triaxial shearing is given, highlighting the influence of cementation

and confining pressure. A review of the normal compression of cemented

sand is provided.

A review of particle crushing is also included, along with related phenomena

such as the occurrence of fractal distributions. Finally, a background on the

discrete element method (DEM) is presented, followed by a review of

contemporary literature that uses DEM to model such behaviour.

2.2 BACKGROUND ON CEMENTED SAND

Cemented soils can be divided into two groups: those occurring naturally and

those that are artificially cemented. Natural soil cementation can occur from

a number of complex causes—such as the deposition of either silica,

carbonates, hydroxides or organic matter at particle contacts, the re-

crystallization of minerals during weathering, or cold welding under high

pressures at particle contacts (Leroueil and Vaughan, 1990). These processes

‘bind’ the soil grains together, and can take millions of years; generally

occurring below the water table. Soils are artificially cemented primarily to

improve their performance. Cemented soil is stronger than most naturally

occurring uncemented soil and is therefore commonly used in slope

protection, pipe bedding, and in intermediary subbase layers protecting the

subgrade in road construction.
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The strength and stiffness associated with bonding or cementation were

previously only really considered in rock mechanics, but are now commonly

accepted in many materials recognised as soils. Schnaid et al. (2001) aptly

describe cemented soils as an intermediate class of geomechanics, placed in

between rock mechanics and classical soil mechanics.

Important research into cemented soils has been conducted in the last few

decades. Clough et al. (1981) contributed significantly to this area by carrying

out laboratory tests on both naturally and artificially cemented samples. The

samples tested varied from very weak to very strong naturally cemented

sands, as well as a range of artificially cemented sands to determine the

effects of the amount of cementing agent and sand density on soil response.

Further studies were triggered by the widely reported difficulties

encountered during the construction of the North Rankin platform off North

West Australia, in 1982. Piles were driven into large amounts of cemented

calcarenites (soils containing high proportions of calcium carbonate). There

were concerns over the pile shaft friction capacity, and this led to much

research and testing of extracted soil samples (King and Lodge, 1988, Jewell

and Andrews, 1988, Jewell and Khorshid, 1988), as noted by Coop and

Atkinson (1993).

A key feature of naturally cemented samples is their high variability; the

carbonate soils extracted from North Rankin varied greatly in both grading

and degree of cementation, ranging from loose uncemented sediments to

very strongly cemented calcarenites. Some of this variation is generally

attributed to the different causes of natural cementation, as these depend

directly on the chemistry of the local environment, and as such there is

significant scatter. In addition, there are difficulties when extracting soil while

avoiding sample disturbance (e.g. loss of particle contacts and damage to

cement bonds), which causes a decrease in stiffness and strength (Leroueil

and Vaughan, 1990) so an alternative approach is often pursued: the testing

of artificially cemented samples.
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This raises the question as to whether artificial samples accurately simulate

the behaviour of naturally cemented samples. Leroueil and Vaughan (1990)

showed that ‘structured soils’, i.e. cemented soils, clays and weak rocks, all

follow a general pattern—stiff behaviour followed by yield. They determined

that it is the physical properties of the cemented soil that govern its

behaviour, rather than the individual cause of cementation. This justifies the

study of artificially cemented samples instead, avoiding the aforementioned

difficulties in studying natural samples. This was demonstrated further by

Airey (1993).

2.3 TRIAXIAL BEHAVIOUR

2.3.1 Uncemented Sand

The triaxial behaviour of sand (both cemented and uncemented) has long

been an area of interest, as triaxial tests are one of the most commonly used

methods of measuring the strength of soil. This is due both to the ability to

control drainage conditions and that pore water pressure or volume change

can be measured easily. However, much of the available research on the

triaxial behaviour of soils is at conventional pressures (typically under 1 MPa).

Before reviewing literature on drained triaxial shearing of cemented sand, a

brief discussion of the behaviour of uncemented sand will be given.

The general understanding of the behaviour of soil under triaxial shearing has

been covered extensively, and can be idealized according to the critical state

concept first developed by Roscoe et al. (1958). It is widely accepted that at a

given low confining pressure, loose sands will undergo strain hardening and

contraction until they reach a steady (critical) state; dense sands at the same

confining pressure will demonstrate a peak stress state and strain softening,

localised failure in the forms of shear bands, and undergo volumetric dilation

(Figure 2.1). Peak stresses are caused by the density of the sample and are

directly related to the dilatancy, with the peak stress and maximum rate of

dilation coinciding (Bolton, 1979). Increasing the confining pressure
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decreases the density at the critical state, thereby suppressing the dilation

and peak states of the sand.

Critical states are defined by a state of continuous shearing with no changes

in volume. All the critical states for a given soil form a critical state line (CSL),

defined in its simplest form as either:

[2.1]

where q is deviatoric stress, M is a frictional constant determining the

magnitude of deviatoric stress needed to keep the soil flowing continuously

and p’ is the mean effective stress, or:

[2.2]

(a)

(b)
Figure 2.1 Drained Triaxial Behaviour of 'loose' and 'dense' samples of the same soil at the

same confining pressure (Bolton, 1979)
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where v is the specific volume, and Γ0 and λ are soil constants, where λ 

describes the rate the volume of soil decreases as the logarithm of mean

effective stress increases (Figure 2.2). A simplified explanation of the

behaviour of sand during triaxial shearing utilizing critical state soil mechanics

can be found in Bolton (1979).

Typical triaxial results, highlighting the effects of confining pressure and initial

density are given in Figure 2.3 from Wanatowski and Chu (2007), which shows

the drained triaxial behaviour of silica sand at conventional pressures. Figure

2.3(a) shows the behaviour of samples in a very loose state (voids ratios of

approximately 0.90) tested under confining pressures between 35–225 kPa.

All results demonstrated strain hardening and volumetric contraction. Both

the deviatoric stress and the volumetric strain increased gradually before

reaching steady values. Similar tests on the same material with denser initial

states (voids ratio approximately 0.66) are shown in Figure 2.3(b)—these

(a)

(b)
Figure 2.2 Critical state lines in q-p' and e-p' space (Bolton, 1979)
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demonstrated volumetric dilation and mild peak stress states. The ultimate

(and failure) states of the loose samples formed a critical state line, shown in

Figure 2.4.

Coop (1990) performed a series of drained triaxial tests on uncemented

carbonate sands at both conventional and high pressures. This work is of

note, as carbonate soils are often cemented—although not exclusively.

Carbonate soils are those in which carbonate minerals form a large

Figure 2.4 Drained triaxial stress paths for a loose sand sheared under a range of confining
pressures (Wanatowski and Chu, 2007)

(a) (b)
Figure 2.3 Drained Triaxial Behaviour of loose (a) and dense (b) sand across a range of

confining pressures (Wanatowski and Chu, 2007)
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constituent, and are found in many of the continental shelves and cover most

of the underwater abyssal plains. Carbonate sands themselves are highly

compressible due to the weak nature of the individual grains and low

densities—however, Coop (1990) showed they exhibit the same qualitative

behaviour as conventional sands, such as the silica sand shown above.

Triaxial results from Coop (1990) demonstrated that critical states could be

reached (i.e. a state of continuous shearing with no changes in volume) for

carbonate sands, thus the behaviour is consistent with the principles of

critical state soil mechanics, which at first was uncertain due to the weak

particles of such soils.

At high pressures, Yamamuro and Lade (1996) and Marri (2010) presented

drained triaxial tests on sand to pressures in excess of 50 MPa. At such stress

levels, the sands invariably exhibited strain hardening, volumetric contraction

and particle breakage, even when in a dense initial state.

2.3.2 Cementation

Carbonate sands, as mentioned earlier are very widely distributed, and these

sands often develop bonds between the particles due to carbonate

precipitation and carbonate crystal growth on the grains, resulting in

cemented soil with highly irregular variation. These form the majority of

naturally encountered cemented sands. Airey (1993) conducted drained

triaxial shear tests on a range of natural calcarenites, and the inherent

variation in density and cement content of their natural specimens was

evident from the significant scatter seen in the drained triaxial responses,

given in Figure 2.5(a). However, they were able to observe that cementation

had two main effects on soil during shearing: it increased both the shear

modulus and the size of the yield locus. From conducting many further tests,

they were able to observe that most samples approached a constant stress

ratio (q/p’) which indicated a critical state, and when these points were

plotted in specific volume–mean effective stress space, a critical state line

was estimated, as shown in Figure 2.5(b).
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Artificially cemented sands on the other hand, are typically formed by mixing

various quantities of gypsum, Portland cement, calcite or lime with a base

sand. The cementing agent chosen can depend on a number of reasons, but

primarily to either simulate natural cementation or to achieve desired soil

improvement factors such as an increase in strength or density. In the

literature there have been key studies on naturally and artificially cemented

sands with various cementing agents, including carbonates: Airey (1993),

Coop and Atkinson (1993), Cuccovillo and Coop (1997, 1999), Lagioia and

Nova (1995); Portland cement: Abdulla and Kiousis (1997), Consoli et al.

(2007), Haeri et al. (2005a), Lo et al. (2003), Marri et al. (2012), Schnaid et al.

(2001); Gypsum: Haeri et al. (2005b), Huang and Airey (1998); Lime or Calcite:

Asghari et al. (2003), Ismail et al. (2002a). There are also studies in which

various cementing agents are compared, such as by Ismail et al. (2002b) and

Haeri et al. (2006).

(a)

(b)
Figure 2.5 Natural calcarenite: typical drained triaxial behaviour (a), and estimated critical
state line (b), where arrows indicate the direction the tests were heading at termination

(Airey, 1993)
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In addition to various cementing agents, a variety of sands have been used in

the available literature, often rendering a direct comparison difficult.

Nonetheless, Leroueil and Vaughan (1990) showed that ‘structured soils’, i.e.

cemented sands, over-consolidated clays and weak rocks all follow the same

principal behaviour, and can be considered within the same framework. They

stated that despite different origins, cementation within sand causes an

increase in strength and increases the domain in which the soil exhibits stiff

behaviour. In addition to cemented sands, they analysed the behaviour of

clays and weak rocks, and reported that all these exhibited similar behaviour

under drained triaxial shearing.

It is generally accepted that the shear strength of cemented soils can be

represented by linear Mohr-Coulomb style failure envelopes, defined by a

friction angle and cohesion intercept, and that under shear deformation,

cemented soils exhibit stiff behaviour up until yield, which is largely

controlled by the cementation followed by a progressive loss of structure.

In a series of drained triaxial tests carried out on artificially cemented sands,

Coop and Atkinson (1993) established that the addition of cementitious

material into sand introduced well defined yield points into the stress-strain

response during shearing, which is related to the breakage of cement bonds.

Both cemented and uncemented specimens reached a critical state after large

strains during shearing, and appeared to have the same critical state line.

They also defined three modes of shearing behaviour of sands (Figure 2.6).

The first mode is when the sample is sheared at relatively low confining

pressures, causing a peak stress state to occur. The third mode of behaviour

is when the sample reaches its yield point during confinement (i.e. isotropic

compression before shearing commences), and the shearing produces

behaviour similar to that of an uncemented soil, with no clear yield point.

The second mode occurs at intermediate confining pressures, and although

the cement bonds are initially intact, they yield during shearing and any peak

state is governed by frictional behaviour.
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Lagioia and Nova (1995) also performed tests on specimens of calcarenites,

and provided a useful theoretical analysis of the behaviour during triaxial

shearing. Their analysis focused on what they described as a ‘destructuration

phase’, in which marked the transition from rock-like behaviour to soil-like

behaviour. In their tests they categorised three phases: an initial elastic,

reversible phase; an easily recognisable destructuration phase; and a

hardening or softening phase which leads to an ultimate state. At low

confining pressures, the destructuration phase was associated with a peak,

while at higher confining pressures this phase was marked by approximately

constant stress, both of which are shown in Figure 2.7.

(a)

(b)
Figure 2.6 Schematic diagram showing modes of shearing behaviour for cemented sands

(Coop and Atkinson, 1993)
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Huang and Airey (1998) stated that for drained triaxial tests in which the

confining pressure was less than the apparent preconsolidation stress, i.e.

yield stress, cementation caused an increase in stiffness, peak strength,

maximum dilation rate and the specimens became more brittle and these

effects increased with increasing cement content. For confining pressures

greater than the yield stress, the cementation appeared broken down and

normalised stress-strain responses for various cement contents were almost

identical. These results could essentially be described as mode one and mode

three according to the categories of triaxial behaviour of a cemented sand

proposed earlier by Coop and Atkinson (1993).

Schnaid et al. (2001) performed a number of drained tests on sand bonded

with Portland Cement up to 5% dry weight. From comparing their results of

cement contents ranging from 0% (uncemented) to 5%, it can be clearly seen

in Figure 2.8 that soil behaviour is largely dependent on the cement content.

As one would expect, the cemented samples display initially stiff, apparently

linear behaviour up to a well defined yield point after which the soil

undergoes plastic deformation until failure. Increasing the cement content

appears to cause an increase in peak strength and initial stiffness. Schnaid et

al. (2001) observed that cemented sands undergo an initial volumetric

contraction followed immediately by a strong dilation, with the maximum

rate of dilation occurring after the peak strength, as opposed to coinciding as

observed for uncemented samples. This was attributed to the peak strength

Figure 2.7 Triaxial response of naturally cemented sand at two confining pressures, showing
the ‘destructuration’ phase (Lagioia and Nova, 1995)
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being controlled by cement bonds rather than density, an observation also

made by Coop and Atkinson (1993). The peak stresses decreased until critical

states were reached. At failure, visible shear planes were reported. Their

results were in agreement with those of Coop and Atkinson (1993) as they all

showed the specimens to reach a similar ultimate stress, regardless of the

cement content. Although it should be noted that Schnaid et al. (2001)

contested using the percentage of dry weight to describe the degree of

cementation.

Asghari et al. (2003) and Haeri et al. (2005a) also observed similar behaviour

as discussed, and proposed a general pattern of failure modes: barrelling for

uncemented samples, and shearing for most cemented samples (Figure 2.9),

although confining pressure heavily influenced the failure behaviour. All

cemented samples sheared at relatively low confining pressures

demonstrated brittle failure with shear zones (Figure 2.9), with brittleness

(a)

(b)
Figure 2.8 Triaxial response for artificially cemented sand with various cement contents,

shearing under a confining pressure of 60 kPa (Schnaid et al., 2001)
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increasing with cementation. Asghari et al. (2003) suggested that the

thickness of the shear zone was dependant on the amount of cementation,

while Haeri et al. (2005a) observed that the inclination of the shear bands

increased with degree of cementation. They both stated that the strain

associated with peak strength decreased with an increase in cementation,

and that the post-yield behaviour is highly dependent on degree of

cementation. The failure envelopes from Asghari et al. (2003) were linear for

uncemented and destructured soils, but were curved for the cemented

specimens (Figure 2.10).

(a)

(b)
Figure 2.9 Failure modes of cemented sand: barrelling in uncemented samples (a) and shear

zones in cemented samples (b) (Asghari et al., 2003)
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Cuccovillo and Coop (1997) studied two naturally structured sands: a

calcarenite consisting of a medium carbonate sand bonded by calcium

carbonate, and a silica sand bonded by iron oxide. They attempted to

distinguish between the effects of inter-particle bonding and ‘fabric’ (i.e. the

arrangement and distribution of the soil particles comprising the soil). They

analysed the shear behaviour under very small strains, and reported that

yielding is noticeable by a rapid decrease in stiffness, degradation of bonding

and the development of plastic strains. They claimed that for the bonded

silica sand, the structure predominantly arises from the interlocking soil

fabric, whereas for the carbonate sand the structure arises solely from

bonding. For the bonded carbonate sand, they observed a progressive

transformation of the bonded soil into a frictional material, with the shear

stiffness becoming more controlled by state, rather than structure. For the

silica sand, they observed that despite bond degradation, the influence of

structure still persisted, giving higher values of shear stiffness at comparable

strains. They concluded that the loss of bonding must precede any disruption

to the fabric, i.e. particle arrangement.

Cuccovillo and Coop (1999) went on to further analyse the triaxial behaviour

of the two soils across large strains. Although the two soils shared behaviour

typical of structured soils, they once again highlighted the influence of fabric.

They claimed that the bonded silica sand, which was considered to have

significant fabric, could not be adequately described by the bonding alone,

Figure 2.10 Failure envelopes for cemented sand with various degrees of cementation
(Asghari et al., 2003)
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and that the behaviour of ‘fabric-dominated’ sands is considerably frictional,

and the deformation is dominated by dilation. During the triaxial tests, the

yielding of the calcarenite was coincident with the peak stress and was

followed by rapid loss of strength and contraction. However the yielding of

the silica sandstone was accompanied by dilation and plastic strains which

developed after the soil had yielded, suggesting the peak strength was in fact

frictional, as opposed to the calcarenite which had a cohesive peak strength.

The failure envelopes showed that the peak states were much higher for the

cemented soils when compared with the reconstituted soil, and the peak

envelope appeared to converge to the CSL at high confining pressures.

Finally, they summarised that interlocking fabric could not be described

adequately by conventional framework, in particular the mechanisms

described by Coop and Atkinson and shown in Figure 2.6. They identified a

new schematic, depicted in Figure 2.11. They proposed that for much of the

range of confining pressures considered, the stress-strain behaviour would be

non-linear (mode 2b), and any linearity seen would be limited to the initial

part of shearing (mode 2a).
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Lo et al. (2003) provided a similarly useful insight into the mechanics of

cemented sands. They carried out drained triaxial testing on two artificially

cemented soils: a quartz sand, and a natural silt; bonded with a Portland

cement fly ash mixture. Principally, they confirmed Leroueil and Vaughan’s

(1990) hypothesis that all structured soils behave within the same framework.

Lo et al. (2003) thoroughly investigated the direct contribution of a bonding

agent to the behaviour of soil, and, like Cuccovillo and Coop (1999) they

observed that some soils may already possess structure, and the addition of a

cementing agent simply increases the structure, and gives the soil a larger

yield surface. They investigated the gradual degradation of bonding by

monitoring the irreversible decrease in stiffness and peak strength during

virgin loading, as can be seen in Figure 2.12.

Haeri et al. (2006) provided one of the few comprehensive studies of the

effects of cement type on the triaxial behaviour of a cemented sand.

(a)

(b)
Figure 2.11 Schematic diagram showing modes of shearing behaviour for a cemented sand (Cuccovillo

and Coop, 1999)
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Although several authors have shown that all structured soils, and therefore

all cemented sands can be considered within the same framework, Haeri et al.

(2006) compared the behaviour of a gravelly sand cemented with Gypsum,

Portland cement and lime. Tests results for samples with low cement

contents (1.5%) indicated that in general, cementation by Gypsum gave the

highest shear strength, however at higher cement contents (e.g. 4.5%), the

samples with Portland Cement consistently provided the highest shear

strength (Figure 2.13). They concluded that Gypsum appeared the most

brittle cementing agent, and Portland cement seemed the most ductile. The

gypsum samples consistently developed shear planes, and at relatively low

cement contents underwent the largest dilation. The behaviour of the

samples bonded with Portland cement was largely dependent on the actual

cement content: only at relatively high contents (e.g. 4.5%) did they exhibit

significant dilation and shear planes.

Figure 2.12 Virgin loading and reloading stress-strain curves for a cemented quartz sand, with
a confining pressure of 20 kPa (Lo et al., 2003)
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2.3.3 Confining Pressure

Confining pressure plays an equally as important role as cement content on

the behaviour of cemented soil in triaxial shearing. Much of the literature

already mentioned included tests across a range of confining pressures, with

the common observation that increasing the confining pressure suppresses

the effects of cementation, and renders the behaviour more ductile/less

brittle.

As described earlier, Leroueil and Vaughan (1990) and Coop and Atkinson

(1993) described three modes of behaviour for cemented sand. Coop and

Atkinson (1993) concluded that for triaxial tests on cemented soils at low

confining pressures, shearing may result in yield at strengths higher than the

frictional failure envelope of the equivalent uncemented soil, leading to strain

softening (mode 1). At higher confining pressures yield often occurs during

(a)

(b)
Figure 2.13 Triaxial behaviour of a gravelly sand with 4.5% cement content of various

cementing agents (Haeri et al., 2006)
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compression, in which case the strength is frictional and leads to strain

hardening (mode 3), shown in Figure 2.6.

At relatively low confining pressures, a moderate cement content causes

sands to demonstrate brittle behaviour with shear planes upon failure. An

increase in confinement generally causes a transition to ductile failure,

resulting in barrelling (e.g. Clough et al., 1981; Schnaid et al., 2001; Asghari et

al., 2003). Haeri et al. (2005a) observed that the inclination of any shear

bands caused by the addition of cement decreased with increasing confining

pressure.

It is accepted that although the addition of a cementitious material increases

the brittleness of a soil, with this effect increasing with cement content, the

effect decreases with an increase in confining pressure. Typical results, such

as those from Asghari et al. (2003) in Figure 2.14 show the effects of

increasing confining pressure on the drained triaxial response of sand bonded

with Portland cement: an increase in both peak and ultimate deviatoric stress,

an increase in the axial strain associated with peak deviatoric stress, less

dilation (more contraction) and in general the effects of cementation are

suppressed and the behaviour tends towards that of the uncemented sand.

There is also an increase in the initial stiffness, in agreement with

observations also made by Huang and Airey (1998).

Abdulla and Kiousis (1997) and Asghari et al. (2003) showed that increasing

the confining pressures caused uncemented samples to demonstrate more

contraction during shear, while cemented samples still exhibited dilation. At

low confining pressures by comparison, all samples exhibited dilation

regardless of cement content. Asghari et al. (2003) demonstrated that the

relative peak strength—the peak strength of the cemented sample

normalised by that of the uncemented material—of cemented samples

decreases with confinement, as shown in Figure 2.15.
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Cuccovillo and Coop (1999) and Lo et al. (2003) both gave the failure

envelopes of cemented sand, obtained from performing triaxial tests with a

range of confining pressures. The failure envelopes showed that failure stress

increased with confining pressure. They also appeared to converge with the

critical/ultimate state line at higher pressures, which highlighted the reducing

Figure 2.15 Influence of confining pressure on the increase in strength due to cementation
(Asghari et al., 2003)

(a)

(b)
Figure 2.14 Triaxial behaviour of a sand cemented with 3% Portland cement across a range of

confining pressures (Asghari et al., 2003)
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influence of cementation, as the increasing confining pressure breaks the

inter-particle bonds and destructures the soil (Figure 2.16).

Although the literature offers a respectable amount of research on the

drained triaxial behaviour of cemented soils under triaxial conditions, there is

comparatively little to date using high confining pressures (generally

exceeding 1 MPa). Marri (2010) performed an extensive set of experiments

under such pressures on Portaway sand with a range of Portland cement

contents (0–15% dry weight). Broadly speaking, the same observations can

be made at these high pressures; the addition of cement causes an increase in

peak deviatoric stress, a reduction in the strain associated with this stress,

and an increase in dilation. As with lower confining pressures, an increase in

cement content causes the behaviour to become more brittle.

Marri (2010) showed that uncemented specimens sheared under high

pressures (1–12 MPa) exhibit strain hardening with no peak deviatoric stress,

and undergo contraction during shearing, i.e. they demonstrate completely

ductile behaviour. The addition of cement causes a peak stress to occur, with

the peak increasing and becoming more distinguished with higher cement

content. This is consistent with the discussed literature at low pressures (e.g.

Abdulla and Kiousis, 1997).

Marri (2010) showed that by increasing the cement content, the axial strain

associated with the peak reduces, the initial modulus of deformation

Figure 2.16 Peak and failure states and envelopes for silica sandstone (Cuccovillo and Coop,
1999)
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becomes higher, and increases both the amount and the rate of dilation. For

a given high confining pressure, both uncemented and cemented deviatoric

stress responses appeared to converge, or were approaching convergence

after large strains, due to the cemented specimens becoming destructured,

i.e. the behaviour tended towards uncemented (Figure 2.17). However, even

at high pressures they did not always converge, especially at high cement

contents such as 10 or 15% dry weight, due to a significant portion of bonds

remaining intact, which resulted in groups of particles behaving as larger

particles, effectively changing the macroscopic grading.

At high pressures, an increase in pressure still has a large influence on the soil

behaviour, suppressing the effects of cementation and rendering the

behaviour from ductile to brittle. Marri (2010) demonstrated that increasing

(a)

(b)
Figure 2.17 Triaxial responses of sand with various cement contents, sheared under a

confining pressure of 8 MPa (Marri, 2010)
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the confining pressure (e.g. from 1 to 12 MPa) resulted in a higher maximum

deviatoric stress and reduced dilation (increased contraction). At the highest

pressures no clear peak stress was apparent, and all specimens displayed

ductile behaviour with gradual strain hardening. These specimens all

underwent contraction, in contrast to the heavily cemented samples sheared

at relatively lower pressures. However, the effects of cementation were still

very evident at high confining pressures demonstrated in Figure 2.18 which

shows the response of sand with 10% cement content sheared under various

high pressures.

Finally, Marri (2010) showed the failure envelopes for various cement

contents up to high confining pressures. As shown at conventional pressures,

the cementation caused the failure envelope to move upwards in q-p’ space,

and the envelopes exhibited curvature towards the ultimate state line of the

uncemented sand (Figure 2.19). In addition, Marri plotted the failure stress

ratio against confining pressure, which also showed the suppression of

cementation with increasing confining pressure; the difference in peak and

failure stress reduced greatly as pressure was increased (Figure 2.20).
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Figure 2.19 Drained triaxial failure envelopes of sand with various cement contents (Marri,
2010)

(a)

(b)
Figure 2.18 Triaxial responses of sand with 10% Portland cement, sheared under a range of

confining pressures (Marri, 2010)
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2.3.4 Stress-Dilatancy

Cement content and confining pressure have both been shown to influence

the volumetric strain of sand subjected to triaxial shearing. The actual

tendency of dense granular materials to dilate, i.e. to increase in volume

when sheared is termed as the dilatancy, and plays an important role in

understanding the shear strength. According to the critical state concept,

both the effective stress state and initial soil density affect the dilation of soil,

and as shown in the previous sections cement content also has a dramatic

influence. The general stress-dilatancy relation is usually expressed in the

form , where R is the stress ratio (σ’1 / σ’3), K is a constant and D is the

dilatancy (1 - δεv / δε1). Rowe (1962) is generally credited with introducing

the ‘stress-dilatancy theory’, which was deduced from the minimum energy

considerations for particle sliding, and was described as follows:

[2.3]

where σ’1 and σ’3 are the major and minor principal effective stresses, δεv and

δε1 are the increments of volumetric and major principal strains respectively,

c is the interparticle cohesion and φ’f is the friction angle. Rearranging, the

above equation can be written as:

Figure 2.20 Effect of confining pressure on the stress ratio at failure for a range of cement
contents (Marri, 2010)
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[2.4]

which shows that the dilatancy of a soil is influenced by the stress state,

inter-particle friction and the cohesion. It is clear from equation [2.4] that the

dilatancy of a soil is inhibited by the presence of cohesion, or cementation

between the particles, which is in accordance with experimental data (e.g.

Coop and Atkinson, 1993; Cuccovillo and Coop, 1999; Lo et al., 2003).

Moreover, in the previous section it was shown that increasing the confining

pressure changes the behaviour of cemented sand from brittle to ductile, and

because cementation is brittle, this suggests that at higher confining stresses

the behaviour is primarily frictional rather than cohesive. This is somewhat

represented in equation [2.4], where the inter particle bonding represented

by c is normalized by the triaxial confining pressure, σ’3.

Cuccovillo and Coop (1999) analysed the dilatancy of cemented soils during

triaxial shearing, and reported significantly higher dilatancy for intact

specimens when compared to reconstituted specimens, in which much of the

structure and bonding was already degraded. However, despite this

difference between intact and ‘destructured’ samples, the peak dilatancies

(Dmax) for a given soil all followed the expression . Prior to the

peak, two interesting observations were made: intact samples at a given

stress ratio exhibited less dilatancy than the reconstituted samples,

confirming that c inhibits dilatancy; and that the rate of dilation for intact

samples decreased with reducing confining pressure (Figure 2.21). However

these delays were compensated for by much faster dilation which culminated

at the peak dilatancy. They postulated that if work is spent on degrading the

bonding, the rate of dilation has to decrease; up to yielding, the bonding

prevents the intact soil from dilating. After yielding, the gradual degradation

initially inhibited dilation, but this was recovered by a rapid increase until a

maximum dilatancy was reached.
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Similarly, Lo et al. (2003) showed that at low strains, cemented soil displayed

lower dilatancy than the equivalent parent soil, which they attributed to the

presence of bonds which suppressed dilation. However, at large strains, the

breakage of bonds resulted in a soil fabric that was more dilatant than the

parent soil, leading to significantly higher dilatancy. This increase in dilatancy

was attributed to the change in grading caused by the broken bonds, and this

dilatancy in turn resulted in higher shear strength.

Yu et al. (2007) also analysed the stress-dilatancy of cemented sand, and

developed a modified constitutive model for bonded granular materials. By

manipulating Rowe’s equation, and ensuring compatibility with critical state

soil mechanics, the dilatancy could be expressed:

[2.5]

where δεv and δεq are the increments of volumetric and deviatoric stain

respectively, M is the critical state parameter defining the slope of the critical

state line in q-p’ space, η is the stress ratio (q / p’), and c is the inter-particle

cohesion. Yu et al. (2007) plotted idealised dilatancy curves (Figure 2.22)

using equation [2.5] which demonstrated that when sheared under the same

confining pressure, the effect of increasing c was to shift the dilatancy curve

to the left, reducing or preventing dilatancy at a given stress. Increasing the

Figure 2.21 Stress-dilatancy relationships of intact and reconstituted silica sandstone over a
range of confining pressures (Cuccovillo and Coop, 1999)
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cohesion was also seen to linearise the dilatancy curve. Increasing the mean

effective stress (larger confining pressure) shifted the plot to right, increasing

the dilatancy. Their plot suggested that the presence of bonding would cause

a material to reach the critical state, i.e. intercept the y-axis at a higher stress

than the equivalent unbonded material. However, they emphasised that the

bonding, i.e. c, is not constant during shear, and implemented a cohesion

degradation rate which allowed realistic stress-dilatancy plots to be modelled.

The inclusion of bond degradation caused the maximum rate of dilatancy to

occur after the peak strength, with the dilatancy line changing direction to

approach the purely frictional (i.e. c / p’ = 0) dilatancy line. Yu et al. (2007)

also presented dilatancy plots for artificially cemented sands from the triaxial

tests performed at low pressures by Schnaid et al. (2001), shown in Figure

2.23 and the correct patterns of behaviour were observed: increasing the

cement content shifted the plot to the left; while increasing the confining

pressure shifted the plot to the right, confirming the relationship expressed in

equation [2.5].

Marri et al. (2012) presented stress-dilatancy plots in a similar manner as Yu

et al. (2007) for samples of Portaway sand bonded with Portland cement

sheared at high confining pressures. For a given confining pressure,

increasing the cement content from 5 to 10 and 15% shifted the dilatancy

curve upwards in stress ratio–dilatancy space, shown in Figure 2.24(a). This

resulted in larger stress ratios at the peak and ultimate states. For a given

Figure 2.22 Idealised stress-dilatancy curves showing the effect of the cohesion intercept
(Yu et al., 2007)
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stress, increasing the cement content was seen to increase the bonding

between particles. However, the differences in dilatancy curves for various

cement contents were far less pronounced than those reported by Yu et al.

(2007), showing how the effects of cementation diminish at high confining

pressures. For a given cement content, increasing the confining pressure was

seen to reduce dilatancy at a given stress, shown in Figure 2.24(b).

(a)

(b)
Figure 2.23 Stress-dilatancy responses for artificially cemented sands: showing the effect of

cement content (a) and confining pressure (b) (Yu et al., 2007)
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2.3.5 Other Factors influencing Behaviour

A number of other factors influence the behaviour of cemented sands during

shear, most notably the soil particle properties and the density of the

specimen. Particle properties include the size and grading, intrinsic particle

strength and shape (e.g. angularity). There is a moderate amount of

literature highlighting the effects of varying the specimen density of

cemented soils, although the same cannot be said for particle properties.

Abdulla and Kiousis (1997) questioned previously published research on the

behaviour of cemented soils, scrutinising the variation in specimen size,

shape, and preparation methods used by various authors. They found that

for triaxial testing, the diameter of samples ranged from 38 mm to 83 mm,

with 50 mm the most common. They suggested 38 mm to be too small to

(a)

(b)
Figure 2.24 Stress-dilatancy responses for artificially cemented sands sheared under high
confining pressures: showing the effect of cement content (a) and confining pressure (b)

(Marri, 2010)
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provide reliable results, as smaller samples demonstrate stiffer and stronger

behaviour when compared to larger samples tested under the same

conditions. They also analysed the shape of samples used in the literature,

i.e. the aspect ratio (height ÷ diameter), however almost all research available

on triaxial testing of cemented materials use samples with an aspect ratio of

2, albeit with some variation in size.

Some of the research already discussed included triaxial tests on a given

material with a range of different initial densities. For example, Huang and

Airey (1998) took into account the influence density had on the effect of

cementation, and as such recommended against using the proportion by

weight as a measure of cement content. They claimed that any measure

based on proportion by dry weight (as is the usual procedure) would be

unable to describe the changing influence of cementation with density, and

furthermore, such a measure would be difficult to determine in natural soils.

They suggested instead using the strength of the bonded soil in proportion to

the strength of the unbonded soil as a gauge of the degree of cementation.

Huang and Airey (1998) observed that for a given cement content (e.g. 20%),

a increasing the density increased both the shear modulus and strength.

However, they suggested the relative effects of cementation decrease with

increasing density. The addition of cement resulted in a relatively larger

increase in strength and modulus for the looser specimens. Figure 2.25 shows

that for a given overconsolidation ratio (estimated from the apparent

preconsolidation pressure of the cemented samples), the addition of cement

increased the stiffness, and had a greater influence on the specimens with

smaller dry unit weight. They stated that for the addition of a given amount

of cement, the effectiveness reduced with increasing density, and suggested

this be the case for all cemented soils, which echoed previous work by Airey

(1993). They suggested at high densities, particle friction and interlocking are

more important than at lower densities, where the contribution of cement is

more influential. They acknowledged that the addition of cement fines has an

effect even on uncemented samples, due to the inherent changes in density
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and grading that this causes, and appreciated the difficulties in completely

isolating these factors. Marri (2010) investigated the influence of density on

the behaviour of cemented sands at moderately high pressures, in particular

influence on dilation. He found that increasing the initial relative density

resulted in a higher rate of dilatancy, and an increased level of dilation, similar

to the effects described and widely known for uncemented sands, as

highlighted in Figure 2.26.

Ismail et al. (2002a) investigated the influence of various particle

characteristics, and found that for a soil bonded with calcite the strength

increases with: strength of the individual grains, density, decreasing particle

size and roundness of the grains. Using various base soils, and with the aid of

microscopy images they concluded that geometry of particles determines the

shape and distribution of the contact surfaces between grains, and that

spherical particles form the most efficient mechanism to transfer load when

Figure 2.26 Effect of relative density on the dilation of cemented sand sheared under a
confining pressure of 1 MPa (Marri, 2010)

Figure 2.25 Influence of dry unit weight on the normalised shear modulus for artificially
cemented sand with 20% gypsum (Huang and Airey, 1998)
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bonded together. In addition, they postulated that spherical particles will in

general be exposed to more points of contact with other particles. In

comparison, irregularly shaped particles will have fewer contacts, less

efficient bonding mechanisms and will lead to a concentration of stresses;

however it was unclear if they considered density in making this observation.

With regard to particle size, Ismail et al. (2002a) showed that for a given initial

density, grading and cement content, reducing the particle size results in a

higher strength after cementation. This was mainly due to the increase in

contact points (and therefore number of inter-particle bonds).

2.3.6 Summary

Data obtained from naturally cemented sediments are often highly scattered,

therefore artificially cemented sands have been tested to develop a general

framework for the behaviour. The key points that have been discussed are

the influence of cementation, degree of cementation, and confining pressure

on the stress-strain response, volumetric behaviour, dilatancy, and failure

modes.

The introduction of cement induces clear peak stresses into the deviatoric

stress curve (increasing the failure stress), increases the initial stiffness of the

material, the maximum rate of dilation, overall dilation, and renders the

material more brittle. Increasing the cement content amplifies these effects

while reducing the axial strain at the peak stress and maximum rate of

dilation. Confining pressure on the other hand suppresses these effects and

renders the materials more ductile, as the cementation is more readily broken

down. Brittle failure is associated with shear planes, while ductile failure is

associated with no strain localisation and barrelling. Cement content has

been shown to have no major influence on the CSL in q-p’ space.

Although much of the available studies are at conventional pressures, the

essential influence of cementation is still evident at high pressures. The same

trend in behaviour is observed, but dilation is greatly suppressed, with
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cemented sand specimens almost exclusively demonstrating volumetric

contraction.

2.4 COMPRESSION BEHAVIOUR

2.4.1 Uncemented Sand

The behaviour of soil in compression has always been a topic of interest in

geotechnical engineering, and as such there is a wealth of literature on the

subject. The normal compression of a soil generally describes the change in

volume of an element of soil when subjected to a normal stress. It is most

often expressed in terms of specific volume, v or voids ratio, e against either

mean effective stress p’ (for isotropic normal compression), or vertical

effective stress σv’ (for one-dimensional normal compression). For a soil

being compressed for the first time (virgin compression), it is widely accepted

that the relationship between volume and the natural logarithm of applied

effective stress following yield is approximately linear, where yield is defined

as the transition between elastic and plastic deformation. This line—the

normal compression line (NCL) comprises equilibrium states for the soil in

virgin compression after yield, and can be described by the equation:

[2.6]

for isotropic normal compression, and:

[2.7]

for one-dimensional normal compression, where λ is the gradient of the

normal compression line, and e0 is the voids ratio at a stress of 1 kPa,

represented in Figure 2.27. Although one-dimensional and isotropic normal

compression have slightly different measurements, the equation describing

the change in volume with stress takes the same form for each; soils exhibit

the same phenomena and similar behaviour under both types of

compression. It is generally accepted soils have the same compression slope

in one-dimensional and isotropic compression, and for convenience will be
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considered analogous herein. Jaky (1948) proposed that the coefficient of

lateral earth pressure at rest, K0, which describes the ratio between horizontal

and vertical effective stress in soil subject to zero lateral strains:

[2.8]

could be related to the effective angle of friction, φ’:

′ [2.9]

and so is a soil property, therefore leading to the assumption that p’ is linearly

proportional to σ’v (e.g. Wroth, 1984; Coop, 1990).

For unloading and reloading the behaviour is much stiffer and is considered

elastic, and idealised as a straight line in voids ratio–ln stress space with a

gradient κ:

[2.10]

where eκ is the voids ratio at a stress of 1 kPa, also shown in Figure 2.27.

If common logarithms are used, then the compressibility index, Cc and

recompression index, Cr are used in place of λ and κ respectively:

[2.11]

Figure 2.27 Schematic showing the definition of a normal compression line
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[2.12]

Typical one-dimensional compressions plots for uncemented silica sand are

given in Figure 2.28 from McDowell (2002). The sands demonstrated classic

stiff elastic behaviour followed by linear plastic compression, with a distinct

yield point. The normal compression lines shown have the same slope, as the

compressibility index Cc is a material constant.

Yielding is considered to signify the onset of particle crushing (e.g. Coop,

1990; Hagerty et al., 1993; McDowell and Bolton, 1998; Nakata et al., 2001a),

and as such, the yield stress is related to the individual particle strengths.

Samples that consist of the same material, compressed at the same initial

density but with dissimilar initial particle sizes will have different yield

stresses, although they will have the same compressibility index. A sample

comprising fine particles will exhibit a larger yield stress than an equivalent

sample made up of larger particles, due to the size effect on particle strength,

i.e. smaller particles are statistically stronger. Nakata et al. (2001b)

demonstrated this by conducting compression tests on samples with identical

initial voids ratios but with various initial particle sizes, shown in Figure

2.29(a). Furthermore, a looser assembly of a given material will exhibit a

lower yield stress than a denser sample with the same particle size

distribution, demonstrated by further compression tests performed by

Nakata et al. (2001b) shown in Figure 2.29(b). This behaviour is due to the

looser assembly having fewer particle contacts, thus having larger inter-

particle stresses for a given applied macroscopic stress (Hagerty et al., 1993).
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One-dimensional and isotropic compression lines for sands usually have

compressibility indices in the region 0.4–0.5 (Pestana and Whittle, 1995), and

there exist a number of theoretical explanations for these values (e.g.

McDowell, 2005; Russell, 2011), all of which associate the reduction in volume

with particle crushing. Pestana and Whittle (1995) proposed a new

(a)

(b)
Figure 2.29 Compression plots showing the effects of particle size (a) and initial voids ratio (b)

(Nakata, et al. 2001b)

Figure 2.28 Compression plots for various uniform initial gradings of silica sand (McDowell,
2002)
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framework to describe the compression of cohesionless soils, featuring a

‘limiting compression curve’ (LCC) which is linear in a double logarithmic plot

of voids ratio versus effective stress, highlighted in Figure 2.30. Their LCC

compression model essentially consisted of three parameters: a reference

stress, the slope of the LCC curve in log-log space, and one parameter

characterizing the plastic transition (yielding).

Their suggestion of plotting the compression in double logarithmic space has

gained attention in recent years, and was justified kinematically by McDowell

(2005) using fractal crushing theory. McDowell (2005) suggested that normal

compression lines should be linear when plotted on such graphs, and,

assuming a constant fractal dimension emerges for compressible granular

materials, was able to relate the slope of the NCL to the strengths and size-

hardening law of the particles. Russell (2011) on the other hand, suggested

that the slope of the NCL for a crushable soil was solely a function of the

fractal dimension of the particle size distribution, although this would suggest

most soils would in fact have the same slope, as experiments have shown

fractal distributions with a dimension of 2.5 to consistently emerge for

granular materials under pure crushing (e.g. McDowell, 2005).

2.4.2 Cementation

The effects of cementation on the compression behaviour of any soil is best

illustrated when compared with the behaviour of the equivalent uncemented

soil, i.e. the same material including cement fines but in an unbonded state.

Figure 2.30 Conceptual model of compression behaviour, showing the linear relationship on
double logarithmic axes (Pestana and Whittle, 1995)
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This is generally achieved through either destructuring naturally cemented

soil samples or artificial preparation.

On the whole, the behaviour of cemented soils can be considered similar to

uncemented soils during compression: they both exhibit an initially stiff

elastic response followed by yielding. Leroueil and Vaughan (1990) stated

that yielding in cemented soils appears similar in manner to the yielding of

uncemented sands in compression, but emphasised that it is in fact a

different mechanism, and different terminology should be used. In general,

cemented sands display a higher yield stress under compression compared to

the equivalent uncemented sands and can reach states outside of the

uncemented NCL (e.g. Leroueil and Vaughan, 1990; Coop and Atkinson, 1993;

Cuccovillo and Coop, 1999), meaning cemented soil can exist in states

impossible for the uncemented soil. These states lie within ‘structure-

permitted space’ on the voids ratio–stress plot, bounded by the compression

line of the uncemented soil in its loosest state and that of the densest, most

cemented soil (Figure 2.31).

Coop and Atkinson (1993) highlighted that cementation causes a sand to have

a more distinct yield point, and that the onset of bond breakage often

coincides with the onset of particle crushing. Typical compression responses

of cemented sand are given in Figure 2.32, from Airey (1993), which show the

compressive response of naturally cemented calcarenites along with an

estimated normal compression line.

Figure 2.31 Comparison of structured and unstructured soils in compression (Leroueil and
Vaughan, 1990)
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Later, Huang and Airey (1998) performed series of isotropic compression tests

on a sand cemented with various gypsum cement contents (0–20%). They

found that all the cemented soils demonstrated a stiff elastic response up to a

well-defined yield stress, upon which the soils underwent large plastic strains

following a normal compression line. They proposed that the slopes of the

NCLs were independent of the cement content, and as the cement content

increases, the NCL simply shifts to the right in a voids ratio–log stress plot.

This shift was attributed to the change in grading caused by the addition of

cement fines, and resulted in an increase in yield stress with cement content,

which appeared to be a linear relationship.

Although they tested a highly organic soil, Bobet et al. (2011) presented

experimental data that suggested that increasing the quantity of Portland

cement shifts the compression curves to the right in e–log σv space (Figure

2.33). The plots show that the greater the cement content, the greater the

yield stress, and the greater the vertical stress that could be sustained at a

given voids ratio.

Figure 2.32 Typical compression responses of natural calcarenites (Airey, 1993)
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Cuccovillo and Coop (1999) however, suggested that samples of a given soil

all converge to a single NCL, regardless of cement content. They observed

that soils with any initial voids ratio will follow a compression path unique for

a given degree of cementation, with strongly cemented materials reaching

states far outside the normal compression line of the uncemented soil, before

converging to the behaviour of the unbonded material, outlined in the

schematic in Figure 2.34(a). They commented that the ‘post-yield

compression line’, unique for a given cement content, defined the boundary

for possible states attainable in compression. The position of the post yield

compression line (which was related to the yield stress) and its inclination (i.e.

the rate at which it approached and converged with the uncemented NCL)

were controlled by the degree of cementation, shown in Figure 2.34(b) and

(c). An increasing cement content caused the post yield compression line to

shift to the right and increased its inclination, resulting in a larger ‘structure-

permitted space’ as described by Leroueil and Vaughan (1990).

Rotta et al. (2003) tested cemented specimens cured under stress and

reported much the same findings, however they described a yield locus,

located between the post yield compression line and intrinsic normal

compression line of the uncemented material, demonstrated in Figure 2.35.

However, Rotta et al. (2003) remarked that actual convergence between the

cemented and uncemented soils was not always observed, conceding that

much higher stresses would need to be applied to confirm if convergence

Figure 2.33 Compression plots showing the behaviour of increasing content of Portland
cement, for a highly organic soil (Bobet et al., 2011)
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occurs for moderate degrees of cementation. In addition to the above

effects, an increasing degree of cementation has been observed to increase

the bulk modulus of sands subjected to compression (Huang and Airey, 1998),

however the unloading appears unaffected by the cement content.

(a)

(b)

Figure 2.34 Schematic diagram showing behaviour of cemented sand in isotropic compression
(a), and the isotropic compression responses of strongly cemented (b) and weakly cemented

sand (c) (Cuccovillo and Coop, 1999)

(c)
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Dos Santos et al. (2009) and Marri et al. (2012) also investigated the influence

of cement content on the isotropic compression of cemented silica sand.

They both used Portland cement, and observed that the degree of

cementation reduced the compressibility of the sand, although whether the

assorted compression curves were convergent or independent from one

another was unclear. Marri et al. (2012) concluded that cement suppressed

particle breakage, because it is particle breakage that facilitates the large

plastic reduction in volume during compression.

Liu and Carter (1999) studied the virgin compression of structured soils, and

proposed a new equation for describing both isotropic and one-dimensional

normal compression. As shown in the literature, for a given applied stress the

voids ratio for an intact structured soil is higher than that of the reconstituted

soil of the same mineralogy. During compression, the intact soil becomes

destructured and the voids ratio sustained by the structure decreases, and

the compression curve of the structured soil usually tends towards that of the

reconstituted (unbonded) soil, idealised in Figure 2.36(a). Liu and Carter

(1999) idealised this behaviour, and said the post-yield behaviour in one-

dimensional compression could be described by:

[2.13]

Figure 2.35 Behaviour observed during isotropic compression of cemented materials,
showing the post-yield compression line, yield locus and intrinsic normal compression line of

the unbonded material (Rotta et al., 2003)
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where Δe is the additional part of the voids ratio sustained by the soil

structure.  If the soil has no structure, then Δe = 0, and equation [2.13]

reduces to the familiar expression for one-dimensional compression in

equation [2.7]. Their model proposed that the additional component of voids

ratio, Δe is inversely proportional to the applied effective vertical stress (or

mean effective stress in the case of isotropic compression), expressed as:

[2.14]

where S is a soil parameter termed the ‘structure index’, σ’s,y is the vertical

stress at which yielding of the structured soil occurs, and σ’v is the current

vertical effective stress. In their work, values of S were calculated from test

data. Although most of the data they used was from the compression of clay,

and few from cemented sands, both soils exhibit structure, and as mentioned

earlier, Leroueil and Vaughan (1990) illustrated that structured soils should be

considered within the same framework. Although equations [2.13] and [2.14]

fitted their data (mostly clays) reasonably well, they imply that all structured

soils become destructured and approach the behaviour of the equivalent

unbonded at the same rate. They rectified this and accounted for varying

rates of destructuring later (Liu and Carter, 2000) by introducing a

‘destructuring index’, β into a modified equation for Δe:

[2.15]

The parameter β quantified the rate of destructuring, with a value of 0

indicating that the additional voids ratio sustained by structure remains

unchanged during compression, therefore no destructuring takes place; a

value of infinity indicates that the soil structure collapses immediately after

the yield stress is reached. The effects of β are illustrated in Figure 2.36(b).

This new equation was able to accurately match data on the compression of

various structured soils including clays and artificially cemented sand.
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2.4.3 Other Factors influencing Behaviour

It has been shown across the literature, that for a given uncemented soil, the

initial packing has a significant influence on the behaviour during

compression. However, there are relatively few studies looking solely at

factors such as particle size and shape on the compression of cemented sand.

Leroueil and Vaughan (1990) studied the effects of the density of cemented

sands under compression, and from reviewing the work of Maccarini (1987),

they commented that yielding in isotropic compression is much more clearly

defined at larger initial voids ratios.

Although cementation enables soils to exist at higher voids ratios under a

given pressure than the equivalent uncemented soil (e.g. Leroueil and

Vaughan, 1990), Huang and Airey (1998) noted that the addition of cement is

associated with increases in density and a change in gradation, hence the

reported changes in the position of the NCL. They reported that increasing

(a)

(b)
Figure 2.36 Idealisation of structured soils in compression (a) and the effects of the

destructuring index, β on this behaviour (b) (Liu and Carter, 1999, 2000)
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the density alone leads to an increase in the number of particle contacts,

therefore increasing the resistance to further compression and the yield

stress. The effects of increasing density were observed to be more

substantial with coarser grained materials, although this was somewhat

dependent on particle angularity and mineralogy. Huang and Airey (1998)

also suggested that increasing the density of a cemented sand has a greater

effect than increasing the cement content, which can be seen from Figure

2.37 where the yield stress is plotted as a function of cement content for

various initial dry unit weights. Like with increasing the cement content,

density had no effect on the unloading line. Essentially, their study showed

that the relative effects of cementation diminishes with increasing density, as

the contribution of inter particle friction and interlocking become more

significant. Similar results were observed by both Cuccovillo and Coop (1999)

and Rotta et al. (2003).

2.4.4 Summary

In the literature, the normal compression of sand has unequivocally been

linked to the onset of particle crushing. The behaviour of uncemented and

cemented sand has been reviewed in this section, with an emphasis on the

influence of cementation.

Both cemented and uncemented sand exhibit stiff elastic initial behaviour

before yielding. Cementation has been shown to increase the yield stress,

with bond breakage coinciding or preceding particle breakage. Cementation

Figure 2.37 Variation of yield stress with dry unit weight and cement content (Huang and
Airey, 1998)
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also increases the zone in e–ln σv space that the material can exist in, with

these effects increasing with degree of cementation. The NCLs of cemented

materials are speculated to converge with the intrinsic NCL of the equivalent

unbonded material at high stresses, with increasing degree of cementation

increasing the disparity of these lines.

2.5 PARTICLE FRACTURE

2.5.1 Introduction

The global behaviour of a soil, in particular the strength and strain is largely

affected by the degree of particle crushing, or fragmentation. The degree of

crushing itself is controlled by the particle size distribution, particle shape, the

mineralogy and strength of the grains, density, the water condition of the soil,

the stress path, and arguably most importantly the effective stress state. As

such, the influence of particle crushing is greatest at high pressures (i.e. stress

states causing particles to exceed their strength). Particle crushing is

responsible for the irreversible reduction in volume in one-dimensional and

isotropic compression, and causes a significant reduction in dilation during

triaxial shearing at high enough confining pressures (Hardin, 1985).

2.5.2 Single Particle Breakage

McDowell and Amon (2000) demonstrated that Weibull (1951) statistics can

successfully be applied to the fracture of soil grains. It is widely accepted that

the failure of a spherical particle under pure compression is tensile, and also

that fractures initiate from existing flaws and the associated stress

concentrations. Jaeger (1967) proposed that the tensile strength of grains

could be measured by diametral compression between flat platens as:

where σf is the tensile stress at failure, F is the diametral force measured from

the platens and d is the diameter of the grain at failure. Using this equation,

McDowell and Bolton (1998) reported that the tensile strengths obtained

[2.16]
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from single particles of various sizes crushed between flat platens could be

related to size by:

where b describes the size-hardening effect (after Billam, 1972; Lee, 1992).

A Weibull distribution in itself is described by two parameters: one defining

the shape of the probability distribution, usually termed the Weibull modulus,

m; and the other defining the magnitude/scale, usually a characteristic value

of the distribution such that 37% of random variables are greater. For a given

magnitude, increasing the modulus decreases the variability of the random

variable. The effect of increasing the Weibull modulus for a random variable

X is shown in the cumulative distributions given in Figure 2.38.

Weibull (1951) studied the tensile strength of brittle ceramics and stated that

for a tested block to survive, all of its constituent parts must remain intact.

He proposed that for a block of material of volume V under a uniform tensile

stress σ, the probability of survival of the block Ps(V) could be given by:

which rearranges to:

[2.17]

[2.18]

Figure 2.38 Cumulative distribution functions for various Weibull distributions, with a
characteristic value X0 = 1, showing the influence of the Weibull modulus
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where V0 is a reference volume of material, such that

and σ0 is the value of tensile stress at which 37% (i.e. exp[-1]) of the total

number of tested blocks (of volume V0) survive, and m is the Weibull

modulus. The Weibull modulus increases with decreasing variability in tensile

strength. McDowell and Bolton (1998) showed that for a block of material of

volume V1 under tension, equation [2.19] gives the 37% strength σ1 as:

Using equation [2.19] and assuming that sand particles are geometrically

similar, McDowell and Bolton then gave the survival probability of a particle

of size d under diametral compression as:

where σ was the tensile stress induced in the particle given by equation

[2.16], and σ0 was the value of induced tensile stress at which 37% of the

tested particles of size d0 survive. Equations [2.21] and [2.22] both show that

the value of stress for a block of material such that 37% of tested specimens

survive is a function of size. From equation [2.22], this characteristic value of

stress, σ0,d, for particles of size d can be shown to be:

[2.19]

[2.20]

[2.21]

[2.22]
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which is of the same form as equation [2.17]. McDowell and Amon (2000)

confirmed this could be applied to sand particles by single particle crushing

tests. Grains of a range of sizes were crushed, and for each particle size

category, the survival probability was determined for each induced tensile

stress at failure. The Weibull modulus was determined from plotting

ln (ln (1/Ps))) against ln σc, as well as the 37% strength, σ0,d. All grain sizes for

a particular sand revealed very similar values for the Weibull modulus, m, and

plotting the 37% strength as a function of particle size at failure on a double

logarithmic graph confirmed the relationship given in equation [2.23].

McDowell (2001, 2002) further investigated the distribution of strengths for a

given size of particle, and emphasized the importance of correctly measuring

the variance as well as the average strength for a given size of soil particle.

The strength as a function of size for silica sand is illustrated in Figure 2.39,

where the measured strengths are plotted along with a trend line

corresponding to equation [2.23]. This work assumed that bulk fracture

dominates during the breakage of particles. In later work Lim and McDowell

(2004) considered surface facture as the dominant mode of breakage, which

implies particles break once a critical value of surface stress is reached. Using

the same working as introduced by McDowell and Amon (2000) and

summarised above, this lead to an alternative expression for the size effect on

characteristic strength:

[2.23]

[2.24]
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2.5.3 Particle Crushing during Shear

Yamamuro and Lade (1996) performed a series of drained triaxial tests with

confining pressures up to 52 MPa on dense sand to investigate the role of

particle crushing. As they stated, relatively few high pressure triaxial studies

have been performed, with high pressure behaviour only extensively

investigated during compression. Figure 2.40 shows the triaxial behaviour

with confining pressures up to 52 MPa. Figure 2.40(a) shows the principal

stress ratio versus axial strain and Figure 2.40(b) displays the volumetric strain

as a function of axial strain. The former shows that as the confining pressure

is increased, the inclination of the initial part of the deviatoric stress–axial

strain curves tend to decrease, and the maximum principal effective stress

ratio tends to decrease in magnitude. This was associated with in an increase

in the amount of volumetric compression, and an increase in the axial strain

at failure. Focusing on the tests at the highest pressures (20–52 MPa), all

stress-strain plots in Figure 2.40(a) appear very similar, with three apparent

‘sections’: an initial steep linear portion, a prominent middle linear section

between approximately 2–20% axial strain, and a final horizontal section at

the failure stress ratio. The middle section, i.e. the part of the curve indicated

by a steady gradient before reaching the ultimate state, was reported to be

indicative of continual particle breakage; samples with a highly pronounced

‘middle section’ of the normalised stress-strain curve had greatly decreased

slopes of volumetric strain upon failure, suggesting that the majority of

crushing had already taken place. Most revealing in the work of Yamamuro

Figure 2.39 Strength as a function of particle size for silica sand, with the trend line
corresponding to equation [2.23] (McDowell, 2002)
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and Lade (1996) was the observation that for confining pressures in excess of

17.2 MPa, volumetric contraction appears to stop increasing, and actually

begins to decrease, visible in Figure 2.40(b). This was suggested as being due

to large amount of volumetric contraction that occurred during the isotropic

consolidation phase prior to shearing, although alternatively it could be

related to the stress paths taken to reach the CSL in v-p’ space. With very

high confining pressures, the samples are sheared at initially lower voids

ratios, resulting in stiffer samples.

Yamamuro and Lade (1996) attempted to quantify the amount of particle

breakage by using Hardin’s (1985) relative breakage parameter, Br. This

parameter is a measure of the difference in grading curves before and after

shearing, with a higher value indicating more particle breakage. As one would

expect, their tests showed that this parameter increases with increasing mean

effective stress at failure, demonstrated in Figure 2.41 and was seen to

(a)

(b)
Figure 2.40 Triaxial behaviour of dense sand: principal stress ratio (a) and volumetric strain
(b) versus axial strain with confining pressures up to 52 MPa (Yamamuro and Lade, 1996)
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increase rapidly for mean effective failure stresses above 4 MPa. This

matched with observations of strain at failure—both volumetric strain at

failure and axial strain at failure were also seen to increase rapidly with mean

effective stress at failure above 4 MPa. This indicated that the sharp rise in

strains at high pressures is caused by a marked increase in particle crushing.

As the volumetric strain stopped increasing, and actually started to decrease

at very high confining pressures, the relative breakage appeared to have

stabilised, with no further increase in breakage observed. Later, Lade et al.

(1996) went on to define their own quantification of breakage, which was

related to total input energy, which could be applied to a variety of tests

other than triaxial shearing.

Marri (2010) analysed particle breakage resulting from high pressure triaxial

tests on cemented and uncemented sand. Marri provided photographic

images of samples after shearing to approximately 30% axial strain, covering a

range of confining pressures and cement content, given in Figure 2.42. The

images compare an uncemented sample of sand (a) and a sample with 15%

content of Portland cement (b), both sheared under a confining pressure of

20 MPa. Marri (2010) suggested that the amount of particle crushing

appeared less in the cemented soil—although both images reveal what

appear to be broken particles. However, the images are non-intrusive, and in

the case of the cemented sand, the cementation obscures the particles

somewhat, so the images may be considered inconclusive. The image of

Figure 2.41 The influence of increasing stress on particle breakage during drained triaxial
shearing (Yamamuro and Lade 1996)



59

highly cemented sand (15% dry unit weight) sheared under a confining

pressure of 1 MPa (c), appears to reveal less breakage, indicating that

increasing the confining pressure resulted in increased particle crushing.

Marri (2010) reported that the cemented soil sheared at 1 MPa mainly

showed only broken cement bonds (along the shear plane), while the soil

sheared at 20 MPa displayed both bond and particle breakage.
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(a)

(b)

Figure 2.42 Photographs showing close ups of specimens after drained triaxial shearing:
uncemented sand under 20 MPa confining pressure(a); sand with 15% cement content under

20 MPa (b); sand with 15% cement content under 1 MPa (c) (Marri, 2010)

(c)
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2.5.4 Particle Crushing during Compression

Hagerty et al. (1993) performed extensive one-dimensional compression tests

on a range of granular materials, with a focus on the fundamental role of

particle crushing, and the phenomena associated with it, rather than on the

macroscopic behaviour of the compressed material. It has been widely

accepted in the literature (see earlier) that the slope of the normal

compression line for a material is determined by particle crushing, allowing a

decrease in volume; Hagerty et al. investigated how crushing itself was

influenced by initial voids ratio, particle size, particle angularity, and material

composition by performing tests up to 689 MPa. The yield stress in

compression, which Hagerty et al. (1993) termed the ‘break point stress’,

indicated the onset of crushing, and like in previous literature was shown to

increase with decreasing initial voids ratio, regardless of the material being

compressed. The location of the yield stress was also seen to be affected by

the angularity of the particles, which was revealed by compression tests on

spherical versus angular glass beads. The larger particles showed an earlier,

lower yield stress, and the final grading analysis (Figure 2.43) revealed the

larger particles had undergone a greater degree of crushing, the larger initial

median grain size meaning fewer inter-particle contacts and therefore larger

stresses. Angular glass beads also revealed a greater degree of crushing,

again due to fewer contacts.

Figure 2.43 The particle size distributions before and after compression for large and small
glass beads (Hagerty et al., 1993)
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McDowell et al. (1996) and McDowell and Bolton (1998) provided both a

numerical and experimental study of the irrecoverable compression of

aggregates, and related the continuous splitting of grains to the progressive

evolution of a particle size distribution. Firstly, they declared that the

conventional relationship for one-dimensional compression given in equation

[2.7] is dimensionally inconsistent, and that the vertical stress ought to be

normalized by some material parameter. They suggested that it is the

continuous fracture of the smallest particles that results in a linear NCL in

voids ratio–log stress space: these particles continue to crush under

increasing stress, filling the voids and facilitating the decrease in volume. As

such, they proposed that the current applied macroscopic stress during

compression, σc should be proportional to the average strength of the

smallest particles, σs:

where k is a constant, independent of particle size due to self-similarity across

different orders of particle size. If the yield stress in compression is

proportional to the average tensile strength of the grains, which they

proposed, then they suggested the vertical effective stress could be

normalized by a reference stress, if the voids ratio at that stress is known,

thus the equation for a linear normal compression line can be expressed:

[2.26]

where σ is the vertical stress, σc is simply a stress on the normal compression

line, proportional to the strength of the smallest particles at that stress, and

ec is the voids ratio at that applied stress.

Nakata et al. (2001a) performed a series of one-dimensional compression

tests on silica sand and related the macroscopic behaviour to fundamental

crushing mechanics. They related the curvature of the compression line at

yield to the initial grading of the material: uniformly graded sand had a much

[2.25]
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more marked, distinct yielding; well-graded sand had a less distinct, less rapid

yielding. They reported a direct relationship between the initial coefficient of

uniformity and the curvature of the yield point of the NCL. They observed

that the compressibility index, Cc increased with vertical effective stress until

reaching a steady value at approximately 20–30 MPa, regardless of initial

grading. From marking individual particles and tracking their progress, it was

found that the majority of particle fragmentation occurred in the period

between the yield stress and the point at which Cc reached a steady value. It

was seen that of the tracked particles, approximately 60% had suffered

‘major’ grain splitting at the end of the test. From tracking particles in the

graded sample, it was observed that larger grains were more likely to undergo

‘surface grinding’, or breakage of asperities, while smaller particles were

more likely to under ‘major’ splitting. Finally, they suggested that the grain

size distribution curves for the smaller size particles evolved towards a

common line, alluding towards a critical grain size distribution for one-

dimensional compression.

Nakata et al. (2001b) later related the macroscopic compression behaviour, in

particular the one-dimensional yield stress, to single particle crushing

strength. They performed one-dimensional compression tests on materials

consisting of single sized particles, coupled with single particle crushing tests

to establish individual strength characteristics. Results showed that the yield

stress reduced with increasing median particle size, which was due to the

Figure 2.44 Compressibility index as function of increasing vertical effective stress (Nakata et
al., 2001a)
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observed size-strength relation observed from crushing tests. Furthermore,

their results indicated that for a mixture of soil consisting of grains of two

different materials, it is the stronger material which dominates the crushing

behaviour, e.g. the yield stress.

McDowell and Humphreys (2002) confirmed the observation that one-

dimensional yield stress is proportional to the average strength of the grains

by performing single particle crushing tests as well as one-dimensional

compression tests on a range of uniformly graded materials, including pasta

and cereals as well as sand. The compression curves of these materials,

plotted against stress normalised by the strength of the constituent grains,

shown in Figure 2.45 share similar normalised yield stresses. The negative

voids ratios were a result of using the estimated density of rice krispies and

corn flakes to calculate the voids ratio.

2.5.5 Creep

Granular materials, and soils in particular have long been observed to

undergo creep, i.e. to deform plastically under a constant stress. Sand is

known to exhibit creep under constant effective stress (Murayama et al.,

1984; Leung et al., 1996; Lade and Liu, 1998), such that creep strain is usually

reported to be proportional to the logarithm of time:

[2.27]

Figure 2.45 Voids ratio plotted against vertical stress normalised by particle strength for a
range of materials (McDowell and Humphreys, 2002)
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where C is the creep coefficient, and t0 is the time from which creep strains

are measured; stereotypical linear behaviour is shown in Figure 2.46.

In one-dimensional conditions, creep has often been related to the continuing

fracture of grains (e.g. Leung et al., 1996; Pestana and Whittle, 1998), with

the rate of strain dependent on the stress state, time and material properties.

Bowman and Soga (2003) related the creep of dense sands in triaxial

conditions not only to breakage, but also to particle rearrangement, when

subjected to high stress ratios.

McDowell (2003) proposed a theoretical explanation for observed creep

behaviour, relating creep to the time dependence of particle strength, and

showed that equation [2.27] was consistent with equation [2.26] for a

granular material subjected to creep at constant stress under one-

dimensional conditions. According to equation [2.26] ( )

an assembly of soil particles will be in equilibrium with a voids ratio ec under

an applied stress σc. Recalling that the current macroscopic stress, σc should

be proportional to the average strength of the smallest particles σs, McDowell

substituted equation [2.25] into equation [2.26] to give:

[2.28]

McDowell (2003) then applied the well-established law for the time

dependence of strength of ceramics (Davidge, 1979; Ashby and Jones, 1986)

Figure 2.46 Variation of vertical strain (pile settlement) with the logarithm of time (Leung et
al., 1996)
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to soil particles. For a tensile test on a ceramic specimen, if the standard test

used to measure the tensile strength, σTS, takes a time t(test), then the stress

σt that the sample will safely support for a time t is given by:

[2.29]

where n is the slow-crack growth exponent. Data for n is limited, but is

usually between 10–20 for oxides at room temperature (Ashby and Jones,

1986). If σs,0 is the average particle strength measured at time t = t0 then the

average strength σs after time t, would according to equation [2.29] be:

[2.30]

McDowell then substituted equation [2.30] into equation [2.28] to give:

[2.31]

Hence the reduction in voids ratio Δe as a function of time after time t0 is:

Δ [2.32]

McDowell and Khan (2003) went on to demonstrate the validity of this theory

by conducting one-dimensional compression tests and creep tests on pasta:

linear normal compression lines emerged and creep strain appeared to be

proportional to the logarithm of time. They also observed that a higher rate

of creep was linked to a higher degree of particle crushing.

2.5.6 Fractal Distributions

Turcotte (1986) investigated the phenomenon of fractal size distributions

resulting from fragmentation, and defined a ‘fractal’ by the relationship
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between number and size: if the number N of objects with a characteristic

linear dimension r is given by:

[2.33]

then a fractal is defined with a fractal dimension of Dfr. Considering a

granular material, a fractal size distribution is one such that the number of

particles N of size L greater than d, N(L > d), is given by:

[2.34]

The nature of this equation means that a fractal particle size distribution

would appear linear on a distribution plot with two logarithmic axes, with the

fractal dimension emerging as the slope. Most granular materials (not only

soils but materials such as coal, fault gouge, ice) under pure crushing evolve

towards a distribution with a fractal dimension between 2.0 and 3.0,

remarkably usually about 2.5 (Turcotte, 1986; Sammis et al. 1987; Palmer and

Sanderson, 1991; Steacy and Sammis, 1991, McDowell and Daniell, 2001), and

demonstrated in Figure 2.47.

McDowell et al. (1996) presented a numerical study investigating the

irrecoverable compression of aggregates, and related the splitting of grains to

the evolution of fractal particle size distributions. At a given applied

macroscopic stress, the likelihood of a particle fracturing decreases with

Figure 2.47 Particle size distributions for various crushed materials, showing consistent fractal
dimensions of 2.5 (Turcotte, 1986)
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reducing particle size but increases with reducing coordination number. The

study showed that if coordination number is the most dominant factor

influencing the probability of fracture, then a fractal distribution emerges

with a realistic fractal dimension. If the opposite is considered: if size was the

dominant factor influencing probability of fracture, then because smaller

particles are stronger than large particles, the largest particles would be

always the most likely to fracture, leading to a uniform matrix of fine

particles, behaviour which is not evident in the literature. McDowell et al.

(1996) stated that although the smallest particles are the strongest, they also

have the fewest contacts, which increases the induced tensile stress (Jaeger,

1967). So there are two opposing effects on particle ‘survival’, and evidence

suggests coordination number is the most important. They proposed that it is

indeed the smallest particles which continue to fracture as stress is increased,

and these particles become statistically stronger and fill the voids. From one-

dimensional compression tests on a carbonate sand, and using digital

photography, Cheng et al. (2001) showed that once the ‘fractal’ NCL has been

reached, many particles had undergone a large number of successive

fractures. McDowell and Bolton (1998) applied the McDowell et al. (1996)

model to experimental data, and used a work equation which considered the

energy dissipated by the fracture of particles and the assumption of a Weibull

distribution of particle strengths, justified a linear normal compression line

plotted on a voids ratio–log stress graph.

McDowell and Daniell (2001) investigated why a fractal dimension of 2.5

consistently emerges for soils and other granular materials. They analysed

simulations from Steacy and Sammis (1991) which featured arrays of uniform

blocks with various fragmentation mechanisms, and who proposed that

fragmentation occurs to eliminate same-sized neighbours. Using a

deterministic mechanism such that no neighbouring blocks could exist at the

same size, two-dimensional simulations produced the fractal pattern shown

in Figure 2.48. Simulations using three-dimensional blocks resulted in a

fractal dimension of 2.6. The criteria for what defined two blocks to be
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considered ‘neighbouring’ were investigated by Steacy and Sammis (1991), as

well as giving blocks a probability of failure dependent on the number of

same-sized neighbours. Also investigated was the effect of a ‘stress bias’,

which rendered particles more vulnerable to breakage if they were near a

previous breakage. These different permutations resulted in fractal

dimensions between 2.0 and 2.9. McDowell and Daniell (2001) drew

attention to the fact that a value of 2.5 emerged when neighbouring blocks

were defined as blocks having finite contact area, and a ‘stress bias’

influenced the probability of fracture, although it should be recognised that

this was using cubes, not irregular particles.

McDowell (2005) later used fractal crushing theory to justify use of a double

logarithmic compression plot, and suggested that in fact normal compression

lines should be linear when plotted on a log voids ratio–log stress graph in

accordance with earlier suggestions by Pestana and Whittle (1995). Assuming

a fractal of 2.5 emerges, as is the case for many granular materials under pure

crushing, and using equation [2.34], McDowell gave the number of particles

N(L ≥ ds) greater than or equal to a size ds as:

[2.35]

Figure 2.48 Typical fractal pattern produced from 2D simulations, in which no neighbouring
particles can have the same size (Steacy and Sammis, 1991)
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the number of particles N(L≥ds-1) greater than or equal to a size ds-1 as:

[2.36]

and then that the number of the smallest N(L = ds) particles satisfied:

[2.37]

Given that the volume of a smallest particle is proportional to ds
3, the total

volume of all of the smallest particles was given as:

[2.38]

As mentioned earlier, McDowell and Bolton (1998) proposed that the smallest

particle size is a function of stress level. For the silica sand in Figure 2.28,

McDowell (2002) found the Weibull modulus m to be approximately 3 and

therefore the size effect on the average strength σ0 to be:

And, assuming that the current stress level was proportional to the average

strength of the smallest grains according to equation [2.25], substituting

equation [2.39] into equation [2.38] implied:

Finally, McDowell (2005) proposed that the void space is proportional to the

total volume of all the smallest particles once a fractal distribution has

emerged, therefore:
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Which evidently gives the slope of the compression curve in log e–log σv as

0.5, which matches the slope of the experimental curve when plotted on

double logarithmic axes, as shown in Figure 2.49.

2.5.7 Summary

The crushing of particles is controlled by many factors, as briefly summarised

in this section. The failure of a particle is generally tensile, and the literature

on single particle breakage shows that the tensile strengths of soil grains can

be fitted to distributions and related to particle size.

The phenomena of crushing during laboratory tests have been discussed, with

the quantity of crushing directly linked to particle strength and macroscopic

stress. In triaxial testing, particle breakage accommodates the large

volumetric contraction during shear.

In isotropic and one-dimensional normal compression, particle crushing

allows the decrease in volume with increasing applied stress, and has also

been shown to be responsible for observed creep. The evolution of particle

size distributions have also been discussed, with fractal distributions shown to

consistently emerge as a result of crushing.

2.6 DISCRETE ELEMENT METHOD

2.6.1 Introduction

The discrete element method (DEM) is a branch of numerical methods for

calculating the behaviour of an assembly of particles. DEM can be defined as

Figure 2.49 Compression behaviour for silica sand plotted on log e–log σv axes (McDowell,
2005)
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a numerical technique for modelling granular mechanics, which emphasises

inter-particle contacts. Although originally designed primarily or modelling

the behaviour of granular materials, DEM is now an effective alternative to

continuum methods such as the finite element method. It has grown in

popularity in recent years, and is widely used to model discontinuous

materials. The increase in use is mainly due to modern advances in

computing, as DEM is inherently computationally expensive.

Granular materials are defined as consisting of small-scale discrete particles,

which behave individually and only interact at contacts. The fundamental

purpose of DEM is to recreate the microscopic mechanics of the independent

particles to allow understanding of the macroscopic behaviour. The

properties of the discrete particles determine the complex behavioural

response of the whole assembly, analogous to the behaviour of real soils as

outlined earlier.

Discrete element method has a range of applications, and has been used to

model materials such as grains, cereals, sugars, avalanches, proteins, and

chemicals (e.g. Tijskens et al., 2003; Banton et al., 2009; Fu et al., 2006) as

well as soils, but this document will focus on its applications to geotechnical

engineering and soils, in particular the modelling of triaxial tests, cemented

sand and particle crushing. A major advantage of using DEM to model such

scenarios is the ability to provide information difficult to obtain from physical

models, such as the micro-scale inter-particle behaviour and contact force

distributions, and the repeatability of simulations.

The general principle of DEM was developed by Cundall and Strack (1979)

who initially applied it in the field of rock mechanics. They later developed

this and pioneered a method directly applicable to soil mechanics, referred to

as the distinct element method, based on the finite difference formulation of

the equation of motion. They also validated the use of DEM as a research

tool by comparing numerical results with photoelasticity. There have been

numerous other discrete element methods developed over the years, such as
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the discontinuous deformation analysis (Shi, 1998), the lattice type model

(Budhu et al. 1997) and modal methods (Williams and Mustoe, 1997)—as

noted by O’Sullivan (2002), who gave a fairly comprehensive summary of the

many discrete element methods.

Until the last few years, much of the modelling using DEM was in two

dimensions, however the increase in availability of high-performance

computers has enabled many situations to be modelled in three-dimensions.

The behaviour of an assembly can be determined by tracing the movements

and forces of individual particles. The fundamental basis of this method

involves breaking down the behaviour using time increments, then for a given

increment, the initial positions and velocities of the particles are known. The

algorithm proposed by Cundall and Strack (1979), which is most commonly

used for geotechnical problems, then applies Newton’s Second Law to the

particles and a force-displacement law to the contacts to determine the

forces acting at the contacts, and the resulting accelerations, and obtains the

particle positions and information at the end of the time increment.

2.6.2 Particle Flow Code in Three Dimensions

The software used in this research is Itasca’s Particle Flow Code in 3

Dimensions 3.1, referred to herein as PFC3D. A detailed description of the

underlying theory behind the code can be found in the manual (Itasca, 2005).

PFC3D is currently the most commonly used DEM software, and uses two

entities: a ball and a wall to model interactions and Newton’s 2nd Law

together with a contact law to establish accelerations, velocities and

displacements of particles via a time-stepping scheme. Key assumptions

include treating the particles as spherical, rigid bodies, and the behaviour at

the contacts use a soft-contact approach where the rigid particles are allowed

to overlap one another. The magnitude of this contact is related to the

contact force via the force-displacement law, and all overlaps are small in

relation to particle sizes. Two principal contact laws are used: linear springs,

and Hertzian, which will be detailed later, as well as the various bonds which

can exist at contacts.
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The behaviour of a model in PFC3D is represented numerically by a time-

driven algorithm, in which the velocities and accelerations are assumed to be

constant within each timestep. At all times, the forces on each particle are

resolved by determining the interaction with other particles/walls in contact.

The speed at which a disturbance can propagate is a function of the physical

properties of the discrete system, so the timestep is chosen to satisfy this

constraint. The calculations alternate between applying Newton’s 2nd Law to

the particles and a force-displacement law at the contacts. Newton’s 2nd Law

is not applied to walls, since the wall velocity is always defined by the user, so

only the force-displacement law is used at ball-wall contacts.

The actual calculation cycle is a timestepping algorithm, and requires

repeatedly applying the law-of-motion to each particle, the force-

displacement law to each contact, and constantly updating the wall positions.

At the beginning of each timestep, the set of contacts (either ball-ball or ball-

wall) is updated from the known positions of all entities. The force-

displacement law is then applied to all contacts, obtaining new contact forces.

Using Newton’s second law of motion, the acceleration of each particle is

determined from the resultant forces and moments arising from contacts and

body forces. The acceleration of each particle is integrated to obtain its

updated velocity and then again to determine displacement and its position,

while the wall positions are simply updated from their specified velocities.

The calculations in the boxes in Figure 2.50 can effectively be done in parallel.

Figure 2.50 Calculation cycle used in PFC3D (Itasca, 2005)



75

The force displacement law relates the relative displacement between two

entities at a contact to the contact force acting on them. All contacts are

considered to occur at a single point. For contacts between balls, a distributed

stress and moment can act if there is a parallel bond present. The contact

point between two balls occurs on a contact plane described by a unit normal

vector, which is directed along the line between ball centres. For contacts

between a ball and wall, the normal vector is directed along the line defining

the shortest distance between the ball centre and the wall. The contact force

for any contact is broken down into a normal component and shear

component, acting in the direction of the normal vector and the contact plane

respectively. The components of force are related to the corresponding

components of displacement by the force-displacement law using the normal

and shear stiffnesses at the contact. The normal contact force vector is

calculated by:

[2.42]

Where Kn is the normal secant stiffness, relating total displacement and force,

Un is the overlap of the two entities, and ni is the unit normal defining the

contact plane. The shear force is calculated in an incremental fashion; when

the contact is formed, the total shear contact force is initialized to zero.

Subsequent increments of shear displacement result in an increment of shear

force that is added to the current value, this vector is calculated by:

[2.43]

Where ks is the tangent shear stiffness at the contact, and ΔUi
s is the shear

component of the contact displacement increment vector. Note that

uppercase, K denotes secant stiffness; lowercase, k denotes tangent stiffness.

The new shear contact force is then calculated by summing the shear force

vector at the start of the timestep with the increment shear force vector:

[2.44]
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The Law of Motion dictates that the motion of a particle is determined by the

resultant force and moment vectors acting upon it. The translational motion

of a particle is described in terms of its position, velocity and acceleration,

while the rotational motion is described in terms of its angular velocity and

angular acceleration. These two equations of motion are integrated using a

centred finite-difference procedure involving a timestep, Δt. PFC3D

determines a critical timestep, below which the system remains stable. The

software is based upon the idea that the timestep chosen may be so small

that, during a single timestep, disturbances cannot propagate further from

any particle than its immediate neighbours—since the speed at which a

disturbance can propagate is a function of the physical properties of the

discrete system, the timestep can be chosen to satisfy the above constraint.

PFC uses a relatively simple procedure to determine this value, which can be

summarised as:

for translational motion [2.45]

for rotational motion [2.46]

Where mp is the mass, I is the moment of inertia, ktran is the translational

stiffness and krot is the rotational stiffness for an individual particle.

PFC3D applies the above to each degree of freedom to each particle; the final

critical timestep is taken to be a fraction of the minimum of all critical

timesteps calculated. The manual can be consulted for a thorough

demonstration of the procedure for determining the critical timestep for a

system (Itasca, 2005).

In PFC3D, in general the loading of an assembly is applied by application of

gravity or wall movement. For walls, the user is able to specify velocities, but

not forces directly—this requires a user-created servo-function. Additionally,
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it is possible for the user to apply forces, moments and velocities to each ball

in the assembly.

The constitutive model at an individual contact consists of three parts: a

stiffness model; a slip model; and a bonding model. The stiffness model gives

an elastic relation between the contact force and the relative displacement

via the force-displacement laws in equations [2.42] and [2.43]. The

stiffnesses used in these equations are assigned different values depending

on whether the linear model or Hertz-Mindlin model is employed. The linear

contact model is a simple, linear formulation that is defined by the normal

and shear stiffnesses, kn and ks respectively, of the two contacting entities.

This model is commonly used in DEM due to the ease of implementation, and

the fact that it is one of the least computationally demanding contact

models—and is used in the initial simulations presented in Chapter 3.

However, it fails to capture the nonlinearity one would expect from two

interacting elastic spheres, and in the case of particles of various sizes, needs

to be scaled accordingly to reflect the material elastic modulus. The linear

contact stiffnesses, Kn and ks, are computed assuming that the stiffnesses of

the entities act in series:

[2.47]

[2.48]

note that the for linear model, the normal tangent stiffness kn is equal to the

normal secant stiffness, Kn.

The Hertz-Mindlin contact model is a nonlinear formulation based on the

theory of Mindlin and Deresiewicz (1953) as described by Itasca (2005). The

theory is only applicable to spheres in contact, although it does not reproduce

the continuous nonlinearity in shear. This model is more computationally
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demanding than the linear springs model, but is considered more realistic,

and is used from Chapter 4 onwards. In addition to capturing the non-linear

stiffness of two interacting spheres, it also automatically accounts for the

variation of contact stiffness with particle size. The Hertz-Mindlin model is

defined by the shear modulus, G and Poisson’s ratio, ν of the two contacting

balls. The contact normal secant stiffness is given by:

[2.49]

and the contact shear tangent stiffness by

[2.50]

where Un is the sphere overlap, and |Fi
n| is the magnitude of the normal

contact force. The multipliers are a function of the geometric and material

properties of the two entities in contact, and are given by:

[2.51]

[2.52]

[2.53]

for ball-to-ball contacts, and the following for ball-to-wall contacts:

[2.54]

[2.55]
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[2.56]

where G is the elastic shear modulus, ν is the Poisson’s ratio, R is the sphere

radius, and [A] and [B] denote the two spheres in contact. Note that the

normal tangent stiffness (kn) and the normal secant stiffness (Kn) are related

by:

[2.57]

The slip model provides a relation between the shear and normal contact

forces so that the two contacting balls may slip relative to one another. This

model is defined by the friction coefficient at the contact, μ, which is taken to

be the minimum friction coefficient of the two contacting entities. If the

overlap is greater than zero, then maximum allowable shear contact force is

calculated:

If |Fi
s| > Fmax

s, then slip occurs during the following calculation cycle by setting

the magnitude of Fi
s equal to Fmax

s.

The bonding model acts to limit the total normal and shear forces that the

contact can bear by enforcing bond-strength limits. Two models are provided

in the software, the contact bond model and the parallel bond model. Once a

bond is created, it continues to exist until it is broken.

The contact bond can be envisioned as a pair of elastic springs with constant

normal stiffnesses acting at the contact point, with specified shear and tensile

normal strengths. The contact bond precludes the possibility of slip, and the

normal and shear constitutive behaviour is shown in Figure 2.51.
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The parallel bond model can be envisaged as a piece of cementitious material

deposited between two particles, or as a set of elastic springs with constant

normal and shear stiffnesses uniformly distributed over a circular disk on the

contact plane. This additional elastic interaction acts in parallel with the slip

model, and can transmit both forces and moments between particles. Total

force vectors are resolved into normal and shear components and

respectively, as is the total moment vector, to and . These vectors are

illustrated in Figure 2.52.

(a)

(b)

Figure 2.51 Constitutive behaviour relating the normal (a) and shear (b) components of
contact force and relative displacement for particle contact (Itasca, 2005)
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The maximum tensile and shear stresses acting on the bond periphery are

calculated by:

Where A is the area of the bond disc, J is the polar moment of intertia of the

disc cross-section, I is the moment of inertia of the disc about an axis through

the contact point, and is the radius of the bond disc.

2.6.3 Triaxial Tests

Much of the available literature involving modelling triaxial tests using DEM is

limited to two-dimensions, for example Utili and Nova (2008). However, the

widespread availability of commercial DEM codes and recent advances in

computing have enabled triaxial tests to begin to be modelled in three-

dimensions. Many researchers have simulated true triaxial tests, i.e. a cubical

Figure 2.52 Schematic of parallel bond, depicted as a cylinder of cementitious material
(Itasca, 2005)
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sample with flat rigid boundaries (e.g. Sitharam et al., 2002; Ng, 2004;

Belheine et al., 2009; Salot et al., 2009).

For the purpose of simulating accurate laboratory conditions, it is essential

that any membrane allows the correct confining pressure to be applied while

allowing free deformation. In laboratory testing, although membrane effects

have been acknowledged (Henkel and Gilbert, 1952) real membranes still

allow free deformation of the specimen, and the natural failure mode to

develop. The importance of flexible membranes in numerical models has

been highlighted in recent years. In two-dimensions, biaxial tests with flexible

membranes have been modelled by researchers such as Iwashita and Oda

(1998), Wang and Leung (2008), and Jiang et al. (2011), etc. who used

membranes consisting of smaller particles bonded together, demonstrated in

Figure 2.53.

In three-dimensions, authors such as Cheung and O’Sullivan (2008) and

O’Sullivan and Cui (2009) simulated the effects of confining pressure by

applying forces directly to the sample and allowing it to deform freely. This

Figure 2.53 Diagram showing flexible membrane consisting of bonded particles, in 2D (Wang
and Leung, 2008)
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resembles real laboratory conditions more closely than rigid walls, however it

is unclear how accurately they account for the change in surface area of the

sample during shearing. They projected the coordinates of the outer particles

in the specimen to a rectangular plane, then used Voronoi cells (displayed in

Figure 2.54) to obtain the corresponding area of each outer particle.

Although somewhat effective, this method assumed the sample and

‘membrane’ remains cylindrical, which is not true for a triaxial test with

flexible boundaries. Furthermore, the virtual confining forces applied by

Cheung and O’Sullivan (2008) were always directed to the centre of the

specimen, as shown in Figure 2.55, rather than normal to the specimen

surface which does not quite recreate true confining pressure, and finally

their method did not give consideration to the vertical component of

confining pressure, considering only the x and y components, as visible from

the figure.

Figure 2.54 Voronoi diagram derived from the projected coordinates of outer particles
(Cheung and O’Sullivan, 2008)
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Cheung and O’Sullivan (2008) did however show the significant advantages of

flexible membrane in allowing the correct deformation and avoiding

significant non-uniformities in stress along the boundary. The deformation

was observed by plotting the cumulative particle rotations, given in Figure

2.56 which revealed strain contrasting strain localisation. The simulation with

the flexible membrane displayed concentrated particle rotations around the

centre, accompanied by bulging, akin to barrelling failure (a) while the

rotations from the rigid-walled specimen displayed shear planes (b), as

irregular deformation of the membrane was not permitted.

The flexible boundary also indicated a reduction in non-uniformities in the

stresses along the boundaries. Figure 2.57 shows the applied forces on the

Figure 2.56 Particle rotations (scale in radians) on a central plane through 3D specimens, for
simulation with flexible membrane (a) and rigid wall membrane (b) (Cheung and O’Sullivan,

2008)

(a) (b)

Figure 2.55 Direction of the calculated components of confining pressure, applied to
membrane spheres (Cheung and O’Sullivan, 2008)



85

outer particles of the simulations with a flexible membrane, alongside the

contact forces between the outer particles and the cylindrical wall from the

simulation with rigid boundaries, on a projected plane. It shows that the rigid

wall, by not allowing irregular deformation, produces stress concentrations.

In comparison, the flexible membrane results in a much more uniform

distribution of stress.

Cheung and O’Sullivan (2008) reported a slight difference in stress strain

response for the two boundary conditions (the rigid-walled simulation

displays a slightly higher peak stress), as did Wang and Tonon (2009), who

Figure 2.57 Contours indicating the distribution of outer particle forces on a projection plane
for flexible boundary (a) and rigid boundary (b) (Cheung and O’Sullivan, 2008)

(a)

(b)
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simulated the effects of confining pressure in a similar approach. Another

disadvantage of solely modelling the effects of confining pressure and not the

actual membrane is that it does not leave scope for investigating the role the

membrane plays, and how its properties influence the macroscopic behaviour

of the material being tested. Nonetheless, these works highlight the

important role of flexible boundaries, and demonstrate how rigid boundaries

inhibit correct strain localization, and cause significant non-uniformities in the

stresses along the boundary.

2.6.4 Cemented/Bonded Granular Materials

In the literature, there exist a number of attempts at modelling in DEM the

effects of bonding using various techniques. For example Jiang et al. (2005,

2006) outlined an approach to capture the bonding effect in structured sands

using a bond contact model which included a rigid bond element at the

contact and developed their own code, NS2D. They showed that it is possible

to effectively capture the effect of cementing material between particles by

implementing bonds into a two-dimensional sample which was subjected to

isotropic compression. The normal compression lines from their simulations

were able to exist in part of the voids ratio–log stress space that is not

accessible to unbonded materials, and post yield, the compression lines

converged (Figure 2.58). However, no particle breakage was considered,

somewhat invalidating the post yield parts of the NCLs, and as mentioned,

their simulations were limited to two-dimensions.

Figure 2.58 Isotropic compression simulations on a bonded granular material with various
initial densities, with bond strength 10 N (Jiang et al., 2006)
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Wang and Leung (2008) published simulations on triaxial testing of cemented

sands in two-dimensions. Their work included a flexible membrane and they

bonded the sand particles by introducing fine cement particles and using

parallel bonds, illustrated in Figure 2.59. The introduction of cementation

was seen to produce a more stable and uniform force-chain network, with

longer force-chains and less irregular stress concentrations. The cemented

samples demonstrated strain softening (Figure 2.60) and exhibited shear

bands during shearing, and within these shear bands it was possible to

observe intense bond breakage, particle movement and rotations, and

concentrated force-chains. Although two-dimensional, their work provided a

useful insight into the micromechanics of cemented sand. They observed that

the presence of bonds initially resisted volumetric dilation and caused the

stress ratio to increase rapidly. At the peak stress state the strength was

influenced by two competing but related processes: the breakage of bonds

decreased the strength, but also triggered dilation which increases shear

strength. As such, the peak strength and dilatancy were found to be directly

linked to cement content, as expected, and as witnessed in experimental

results, the maximum rate of dilation and peak strength did not coincide. At

ultimate state, there still existed intact bonds, which helped to maintain the

overall volumetric dilation.
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Although Cheung and O’Sullivan (2008) used their triaxial model to simulate

tests on cemented sand, the use of a bonded material was solely to

demonstrate the capabilities of the flexible boundaries, and as such the

mechanics of cemented sand were not studied thoroughly.

Camusso and Barla (2009) presented simulations of loose uncemented and

cemented sand also in two-dimensions, with a rigorous calibration of micro-

properties. Although their model didn’t feature flexible boundaries, they

included irregular particle shape by use of clumps, and their results

demonstrated good qualitative agreement with observed behaviour, and

most notably they commented that a combination of weak and strong inter-

Figure 2.60 Triaxial behaviour showing strain softening and dilation for 2D simulations of
cemented sand (Wang and Leung, 2008)

Figure 2.59 Diagram showing cementation consisting of smaller particles bonded with parallel
bonds (Wang and Leung, 2008)
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particle bonds was needed for realistic strength characteristics, failure, and

force chains. Different failure modes for these bond combinations are shown

in Figure 2.61.

Jiang et al. (2011) went on to further investigate the mechanisms of bondage,

comparing their previous bonding model with the contact bond model

available in PFC3D. This time they simulated two-dimensional biaxial

behaviour, featuring a flexible membrane consisting of bonded particles. The

two alternative bonding mechanisms yielded similar results, they both

induced strain softening behaviour and shear dilatancy, compared to strain

hardening and shear contraction associated with the unbonded simulation.

Analysis of the shear plane (given in Figure 2.62), showed that as the sample

was sheared, thick columnar force chains developed, which became almost

perpendicular to the plane. The shear plane also displayed concentrated

particle rotation and bond breakage.

Figure 2.61 Numerical specimens at failure (left) and after testing to 3% axial strain (right), for
samples with single bond strengths (a) and a combination of weak and strong bond strengths

(b) (Camusso and Barla, 2009)

(a)

(b)
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Several authors have used DEM to simulate the behaviour of rock, which is

similar in essence to cemented sand. Potyondy and Cundall (2004) for

example used PFC3D to investigate the mechanical behaviour of rock by

bonding a dense packing of spheres. Notably, they thoroughly calibrated the

micro-properties of the model to real values, and were able to recreate some

realistic behaviour, however most of their work was two-dimensional and

focused on comparisons with continuum models and applications such as

excavations. Utili and Nova (2008) simulated a two-dimensional analysis of a

simplified cliff failure, and demonstrated the ability of DEM to reproduce

well-established theoretical behaviour, and as a useful tool as an alternative

to continuum methods. Wang and Tonon (2009) modelled three-dimensional

triaxial tests on rock, also consisting of bonded spheres. Their model featured

a flexible membrane, and they were able to reproduce the classic peak

strengths and strain softening associated with such materials, however, the

main focus of their work was to showcase the advantage of flexible

boundaries and not the micro-mechanics of bonded soil. Ergenzinger et al.

(2011) used DEM to model the failure of rock in uniaxial compression in a

similar manner to Potyondy and Cundall (2004), however of particular

interest was their investigation of various particle size distributions, bond

strength distributions and their implementation of a progressive failure

mechanism. This consisted of reducing the strengths of bonds locally to

Figure 2.62 Images showing numerical specimen (a), contact force distribution (b) and bond
breakages (c) after biaxial test (Jiang et al., 2011)

(a) (b) (c)
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resemble the effects of stress concentrations near crack tips which do not

arise in particle models.

2.6.5 Particle Breakage

Using DEM, crushing has generally been modelled in the literature via two

alternative methods: replacing ‘breaking’ grains with new, smaller fragments;

or by using agglomerates—groups of bonded particles with finite bond

strengths. Åström and Herrmann (1998) were amongst the first to show that

it was possible to model the fragmentation of grains in two-dimensions using

DEM, by subjecting a 2D array of particles to pressure by decreasing the size

of the enclosing ‘box’, and replacing breaking grains with new smaller

particles. They investigated two principal variables: fracture criterion and

fracture mode. Two fracture criteria were studied: the first was a threshold

value of pressure on a grain, i.e. the total compressive force on a particle; the

second was a threshold value for the largest compressive force at a single

contact, although no significant differences were observed between the two,

and it was unclear if they used a size-strength law.

Åström and Herrmann (1998) investigated the fracture mechanism with three

aims in mind: to keep the number of new fragments at each breakage low; to

pack the new fragments in such a way to reduce local pressure; and to mimic

the real event as closely as possible. Again, they used two different

mechanisms: the first simply replaced the breaking grain with two new equal

fragments; the second involved replacing a grain with twelve new fragments,

of three different sizes both inside and outside the area of the original

particle. The resulting arrays of particles are shown in Figure 2.63. The latter

mechanism, shown in Figure 2.63(b) caused the radii to decrease much faster,

meaning small fragments quickly surrounded large, unbroken grains. This

resulted in more unbroken grains remaining, contrasting with the first

fracture mechanism (replacing grains with two new fragments) in which no

grains remained unbroken. However, the fragment size distributions that
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resulted from crushing over many repeated simulations appeared very similar

for the two cases.

Tsoungui et al. (1999) used the second fracture mechanism described by

Åström and Herrmann (1998) to simulate oedometric compression in two-

dimensions (illustrated schematically in Figure 2.64). Their simulations,

coupled with experiments using plaster disks revealed that initially,

fragmentation increased rapidly with compression, characterised by grains

close to the boundaries and then in the centre of the specimen fracturing,

evident from images in Figure 2.65. Then as the grains become surrounded

by many smaller particles, the effect of hydrostatic pressure slows down the

rate of fragmentation, with particle breakage becoming more difficult.

Figure 2.64 Disk breakage configuration for 2D simulations (Tsoungui et al., 1999)

Figure 2.63 Resulting assortments of particles for two alternative breakage mechanisms:
replacing breaking particles with 2 new spheres (a), and 12 new spheres (b) (Åström and

Herrmann, 1998)

(a) (b)
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In a similar fashion, Lobo-Guerrero et al. (2006) modelled particle crushing in

two-dimensions by replacing broken grains with smaller grains but did not

obey conservation of mass. For the fracture criterion, they considered only

grains with 3 or less contacts, then assumed ‘Brazilian test’ conditions, i.e.

diametral compression to estimate the induced tensile stress. They described

a size-hardening law thereby giving smaller particles higher strengths than

larger particles. They also analysed the evolution of a grain size distribution,

and suggested the final emerged distribution was fractal in nature, although

conservation of mass was not observed.

Ben-Nun and Einav (2010) developed their own fracture criteria and

mechanisms in two-dimensions. They described two criteria, the first of

which used a measure of shear stress obtained from the stress tensor for a

particle, and the second of which allowed particles to break under hydrostatic

stress, similar in essence to the two fracture criteria investigated by Åström

and Herrmann (1998). Ben-Nun and Einav (2010) developed a fracture

mechanism which involved replacing broken grains with new smaller

particles, initially of smaller size to avoid any overlap, then gradually

expanding them to maintain conservation of mass while minimizing any

artificial pressure spikes. The particles had strengths fitting a Weibull

distribution, with a size-hardening effect. The new particles were randomly

orientated, and various numbers of new particles were investigated (3, 5 and

6), also illustrated in Figure 2.66. From subjecting the array of particles to

uniaxial compression, they consistently observed an ultimate grain size

distribution with a fractal dimension of about 1.1–1.4, which did not appear

Figure 2.65 Successive stages of 2D simulations, showing progressive particle breakage
(Tsoungui et al., 1999)
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to be affected by initial porosity, initial grading, or fracture mechanism (Figure

2.67). The fractal nature of the final distribution was also evident in the

topology of the sample after crushing, with random self-similarity observed

(Figure 2.68).

Figure 2.67 Final particle size distribution for typical 2D simulation, with the slope giving a
fractal dimension of 1.16 (Ben-Nun and Einav, 2010)

Figure 2.66 Three alternative breakage configurations, showing the random rotation followed
by expansion of the new particles(Ben-Nun and Einav, 2010)
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In the literature, crushing has also been modelled by use of agglomerates, for

example McDowell and Harireche (2002a), who represented individual soil

grains by bonding a number of discrete particles. Typically, a 0.5 mm soil

particle was modelled with an agglomerate consisting of approximately 140

bonded balls (Figure 2.69), with the bond strengths proportional to the grain

fracture stress. The desired distribution of strengths and Weibull modulus for

a given size of soil particle was obtained by removing a random number of

balls from within the agglomerate. It was observed that the correct size

effect on strength was only achieved by correctly introducing enough random

flaws within an agglomerate. McDowell and Harireche (2002b) later used

their agglomerates to model the yielding and normal compression of sand,

and confirmed numerically that yield during compression is the onset of

particle breakage, and that yield stress is proportional to the average strength

of the grains. They used a basic oedometer to simulate normal compression

on aggregates of different sized agglomerates, and approximately linear

normal compression lines emerged after yielding (Figure 2.70). Subsequently,

they investigated cyclic loading (McDowell and Harireche, 2003) and showed

again that volumetric strain is almost exclusively related to particle crushing.

Lim and McDowell (2005) used the same methodology but with larger

Figure 2.68 Final topology of crushed 2D sample, showing self-similarity across scales (Ben-
Nun and Einav, 2010)
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agglomerates to model the degradation of railway ballast, including

oedometer tests.

Cheng et al. (2003) also used bonded agglomerates to simulate crushable soil,

simulating both compression and triaxial shearing (using a rigid, cubical cell,

Figure 2.71). Using crushable agglomerates of the same nature as McDowell

and Harireche (2002a), Cheng et al. (2003) subjected the aggregate to

isotropic compression then investigated various stress paths attempting to

establish a critical state line in voids ratio–mean stress space. The ability of

the grains to crush during drained triaxial shearing allowed significant

contraction to occur, broadly consistent with reality, although not conforming

completely to stress-dilatancy theory, as volume continued to decrease after

the deviatoric stress reached a stable value. Cheng et al. (2004) later

thoroughly explored the critical state behaviour of soil using the same

agglomerates and investigating a more extensive range of stress paths. They

also highlighted the importance of allowing grains to break during shearing by

Figure 2.70 Compression behaviour of an array of agglomerates (McDowell and Harireche,
2002b)

Figure 2.69 Typical 0.5 mm agglomerate, with randomly removed balls (McDowell and
Harireche, 2002a)
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comparing behaviour of crushable and uncrushable simulations. They

quantified crushing by monitoring the percentage of bonds broken, and

plotted yield surfaces at various levels of bond breakage. Bolton et al. (2008)

then used the same model to further investigate the fundamental role of

crushing in triaxial shearing, and showed that allowing breakage enabled

realistic volumetric contraction to be achieved (Figure 2.72). They analysed

the various types of particle breakage—i.e. asperity breakage, internal shear

cracking and internal tensile cracking. Although the triaxial simulations were

using a rigid, cubical cell, the use of agglomerates allowed realistic particle

shape effects to be captured, enabling insightful plots showing how the

average coordination number for the agglomerates and the deviatoric ‘fabric’

changed with strain.

Figure 2.71 3D sample consisting of an array of agglomerates (Cheng et al., 2003)
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2.6.6 Summary

The basic concepts and background of the discrete element method have

been discussed, and the general workings of the software PFC3D briefly

described.

As a relatively new tool, which is highly reliant on computing power, it is only

quite recently that DEM simulations using moderate numbers of particles or

in three-dimensions have been completed. A brief review of the available

relevant literature was given, focusing first on triaxial models, which have

demonstrated the necessity of flexible membranes. Modelling of bonded

granular materials was then discussed, including the various methods for

simulating cementation. Finally the modelling of particle breakage was

reviewed, comparing the agglomerate method with directly replacing broken

grains.

Figure 2.72 Triaxial behaviour of breakable and unbreakable agglomerates, subjected to a
range of confining pressures, using a rigid cubical cell (Bolton et al., 2008)

(a)

(b)
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CHAPTER 3

DISCRETE ELEMENT MODELLING OF HIGH-PRESSURE

TRIAXIAL TESTS ON CEMENTED SAND

3.1 INTRODUCTION

The high pressure triaxial apparatus has the capacity of applying confining

pressures as high as 64 MPa. The apparatus features the use of flexible

membranes, which often vary in thickness according to the confining

pressure. Although membrane effects have been acknowledged (Henkel and

Gilbert, 1952) they still allow free deformation of the specimen, and the

natural failure mode to develop.

For the purpose of simulating accurate laboratory conditions, it is essential

that any membrane allows the correct confining pressure to be applied while

allowing free deformation. The importance of such boundaries has already

been shown using DEM, as discussed in the literature review, by authors such

as Cheung and O’Sullivan (2008) and Wang and Tonon (2009). However, the

numerical membranes proposed were numerically complex in the case of

using Voronoi diagrams, and had numerous limitations. A new triaxial model,

which features an effective flexible membrane which satisfies the above two

criteria, and is capable of exerting and sustaining high confining pressures is

presented.

Using the software PFC3D (Itasca, 2005), this chapter aims to show that it is

possible to simulate high-pressure triaxial tests on cemented sand, with

cementation modelled using bonding between particles. The bond properties

are explored, with their influence on the macroscopic behaviour (in particular

the failure mode and volumetric dilation) presented and discussed.
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3.2 TRIAXIAL MODEL

3.2.1 Specimen

The numerical specimens used in simulating triaxial tests are based on the

standard size cylindrical triaxial samples, with a height of 100 mm and a

diameter of 50 mm. Sand grains are represented by spherical particles,

generated using the radii expansion method. This involves creating a

predetermined number of particles at a size much smaller than desired,

before gradually expanding them.

The sample developed in this model requires the user to specify 3

parameters: initial voids ratio e0, coefficient of uniformity (Cu = d60 / d10) and

the minimum sample particle diameter (dmin). The sample is continuously

graded, with a simplified grading curve derived from the coefficient of

uniformity (Cu), similar to the method described by Potyondy and Cundall

(2004). The coefficient of uniformity Cu, can also be interpreted as the

gradient of the particle size distribution between these values, and for

simplicity this gradient is assumed to be applicable to the full grading curve,

illustrated in Figure 3.1.

From these three parameters, the total number of required particles is

calculated, and the particles are then created at random locations within the

bounding cylinder, a factor of 0.2 times the required size, before being

expanded over 100 increments to satisfy the desired grading. Thus for a given

voids ratio and packing, the specified minimum diameter, dmin directly

Figure 3.1 Schematic of simplified grading curve for triaxial samples
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determines how many particles are generated. The size of the smallest

particle controls the numerical timestep as well as the total number of

particles which in turn influences the calculation time. Varying dmin does not

necessarily change the packing geometry; it shifts the position of the grading

curve. For the following simulations, the purpose of which is to model a

triaxial apparatus capable of applying high confining pressures, the

continuously graded sample has a minimum particle diameter, dmin of 2 mm, a

coefficient of uniformity, Cu of 2.0 (resembling that of Portaway sand used by

Marri, 2010) and a voids ratio of 0.55. This gives a sample consisting of 6759

particles, shown in Figure 3.2.

The linear spring contact model is used for efficiency and simplicity. Wang

and Leung (2008) suggested using a normal particle stiffness of the order

10 x 106 N/m for quartz sand, and also that the same value can be used for

both normal and shear stiffness. In these simulations, the sand particles were

given a normal stiffness of 10 x 106 N/m, and to reduce the number of input

parameters particle shear stiffness was also assigned this value. Density was

set at 2650 kg/m3, reflecting the density of the sand used in the

Figure 3.2 Numerical specimen, consisting of approximately 7000 particles
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aforementioned laboratory experiments (Marri, 2010), and a particle friction

value of 0.5 was attributed. The properties are summarized in Table 3.1.

Table 3.1 Summary of DEM properties of the triaxial sample

Triaxial Sample Properties

Size: height x diameter (mm) 100 x 50
No. of particles 6759
Particle friction coefficient 0.5
Contact model Linear springs
Normal stiffness, kn (MN/m) 10
Shear stiffness, ks (MN/m) 10
Density (kg/m3) 2650
Coefficient of uniformity, Cu 2.0
Minimum particle diameter, dmin (mm) 2.00
Median particle diameter, d50 (mm) 4.00
Voids ratio, e0 0.55
Wall friction coefficient 0

The numerical triaxial samples in this chapter are invariably created in

relatively very dense states (e = 0.55). For the given particle size distribution,

this was found to be the densest state possible using the radii expansion

method while avoiding any locked-in stresses. Samples are created in such a

way to avoid excessive compaction during the application of the (isotropic)

confining pressure. At the pressures considered (σ3 > 1 MPa), loose

unbonded samples compact to a dense state during isotropic compression,

resulting in volumetric dilation during shearing, similar to the initially dense

simulations. This inability to maintain volume and resist compaction arises

from the lack of irregular shape offered by the spherical particles. Loose

bonded samples on the other hand will undergo less compaction during

consolidation, with the parallel bonds maintaining the looser soil skeleton,

and will demonstrate volumetric contraction upon shearing. This is in

disagreement with experimental literature, in which the introduction of

cement usually increases dilation. However, this phenomenon in the

simulations is similar in essence to the observations made by Yamamuro and

Lade (1996)—who saw the volumetric contraction begin to decrease at very

high pressures. This was attributed to the excessive decrease of volume in
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isotropic consolidation prior to shearing. To avoid this incongruity, samples

are created as dense as possible to minimise the reduction in volume prior to

shearing.

3.2.2 Flexible Membrane

The membrane developed in this study consists of a cylindrical array of

bonded particles encasing the lateral boundary of the specimen, with discrete

forces applied to each particle to give the effect of confining pressure. The

membrane particles are hexagonally arranged; the identity of each

membrane particle is known, allowing their properties to be retrieved and

manipulated easily. It is important that the membrane particles are small

enough to prevent penetration of the specimen particles through the

membrane; however their size impacts on the calculation time, so with this in

mind, the membrane particles are generated a factor of times the smallest

sample particle, dmin.

The membrane particles are bonded using contact bonds (Itasca, 2005), the

details of which were given in section 2.6.2, which transmit no moments,

ensuring membrane flexibility. The bonds are defined by shear and normal

tensile strengths, set arbitrarily high enough (1 x 109 N) that the membrane

does not split. Contact bonds are not attributed values of stiffness; for tensile

displacement, the particle stiffness is used, which is discussed in section 3.2.4.

Considering the membrane as a series of individual rows means the vertical

surface area can be calculated. Each row consists of a series of particles

connected in a loop. The vertical position of a given row is obtained by

averaging the z-coordinates of the component particles, and the row

thickness is approximated by interpolation between the position of that row

and the adjacent rows (Figure 3.3), although all rows have equal thickness

initially. The length of each row is obtained from summing the distance

between each neighbouring row particle, obtained from their coordinates. By

multiplying this length by the thickness, the vertical surface area of the row

can be determined: summing for all rows gives the total vertical membrane
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surface area. Repeating this process, but considering the planar area

enclosed by the row (the area of the polygon created by the membrane

particles) instead of the length, gives the volume (Figure 3.4).

For a row of membrane particles, the total horizontal force is the product of

the confining pressure and vertical surface area; this force distributed equally

to the particles in the row. This ensures the confining pressure is applied

evenly to the specimen regardless of significant changes in shape and avoids

complex calculations used by authors such as Cheung and O’Sullivan (2008).

Each discrete horizontal particle force is applied in a direction normal to the

Figure 3.4 Schematic diagram illustrating the length and cross sectional area of a given row of
membrane particles

Figure 3.3 Detail showing the thickness of row i (consisting of Nrow number of particles)
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membrane surface, i.e. bisecting the line joining the two adjacent spheres,

illustrated in Figure 3.5.

The vertical component of force necessary to give the true confining pressure

has little effect on the results until large strains, however it is calculated and

applied in a similar manner. If the cross-sectional area enclosed by a row of

membrane particles is considered, as well as that for the row above and the

row below, this gives a measurement of the local shape of the membrane,

and the vertical component of confining pressure can then easily be inferred.

For example, initially, the horizontal area enclosed by every row of membrane

particles will be approximately 0.002 m2 - the cross-sectional area of the

sample before deformation. Because each row has the same horizontal area,

this implies no vertical component of confining pressure. After deformation,

considering the cross-sectional area of a given row, if the corresponding area

of the row above is larger and the row below has a smaller area, this implies

an upwards component of force which can be estimated from the disparity in

area. The membrane extends beyond the platens by 20%, and the top and

bottom loops of particles are fixed to simulate the effects of o-rings (Figure

3.6). Platen friction is set to zero. After generation of the sample and

Figure 3.5 Diagram showing the direction of the horizontal component of confining pressure
applied to a membrane particle
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membrane, the confining pressure is applied after which the top platen is

accelerated over 100000 timesteps to a velocity of 0.05 m/s, which was

deemed to be the highest value while avoiding dynamic effects.

3.2.3 Measurements

The primary variables monitored and recorded during the simulations are the

deviatoric stress q, the major principal (axial) strain, ε1 and volumetric strain,

εv. The deviatoric stress is the difference between the major (σ1) and minor

(σ3) principal stresses (where the major principal stress is obtained from the

average stress acting on the top and bottom platens):

[3 1]

although the platen velocity is kept low enough to ensure there is no

significant difference between the top and bottom platen stress until

significant deformation has taken place. The minor principal stress, σ3 (which

Figure 3.6 Numerical membrane consisting of bonded particles
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is equal to the confining pressure in triaxial conditions), is retrieved by

measuring the radial stress acting on the membrane particles or via

measurement spheres (see section 3.2.4). The mean effective stress is

calculated and recorded as follows:

[3.2]

The axial strain (i.e. the major principal strain in a triaxial test) is simply

obtained from the vertical displacement of the top platen after confinement,

Δl, divided by the original height of the specimen, l0:

[3.3]

The volumetric strain, εv (i.e. the sum of the principal strains) is calculated

from the change in volume divided by the original volume of the specimen:

[3.4]

where the volume at any time is calculated using the locations of the

enclosing membrane particles, as briefly detailed above (section 3.2.2). The

voids ratio:

[3.5]

which is also recorded during the simulations can either be deduced from the

current sample volume (V) and the volume of the particles (Vballs), or

estimated from the voids ratios returned from measurement spheres.

However, the first method doesn’t account for overlaps between particles,

and second method is not accurate in the case of there being individual

overlaps between three or more particles. Furthermore measurement

spheres only return local measurements, i.e. the voids ratio within the
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measurement sphere. For this reason, the voids ratio is calculated manually

by discretising the three-dimensional model space into finite-sized cells, and

summing the vacant cells and those occupied by particles. The discrete cells

are cubical, with linear dimensions equal to of the diameter of the

smallest particle, dmin; a simplified diagram of this scheme is provided in

Figure 3.7. Each cell is scanned, and if the centroid is within the radius of any

sample particle, then the cell is marked as solid; cells that are not occupied by

any particle are marked as being voids. The volume of the cells marked as

voids are summed to give the volume of voids, Vv; likewise the cells marked as

solid are summed to give the total volume of solids, Vs. The model space

outside of the membrane is ignored, and the volume of voids and solids are

totalled to confirm the calculation of volume outlined in section 3.2.2.

The radial strain εr (which is equivalent to the minor principal strains) is

calculated from the change in diameter of the specimen:

[3.6]

Where dmem,0 is the original membrane diameter, and the current diameter,

dmem is estimated from the volume and height of the sample using:

Figure 3.7 Diagram showing how the three-dimensional model space is discretised (not to
scale)
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[3.7]

These enable the deviatoric/shear strain, εq to be calculated from:

[3.8]

And finally, the dilatancy, D is recorded from:

[3.9]

3.2.4 Properties for High Confining Pressures

Due to the standard contact model considering stiffnesses to act in series

between two interacting objects, as in equation [2.47], it is not possible to

calibrate the numerical membrane with laboratory conditions. If the

membrane particle normal stiffness (used in tension as well as compression

when bonds are used) is adjusted so that the membrane has a realistic ‘elastic

extension modulus’ (Henkel and Gilbert, 1952), excessive overlap occurs

between the membrane and the sample when subjected to high confining

pressures. The membrane particles completely enter the specimen,

disappearing and causing sand particles to escape, as shown in Figure 3.8.

Using an artificially high stiffness to prevent this leads to unwanted hoop

tension being induced when the specimen expands.
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Additionally, the contact normal stiffness is important for particle interaction

within the membrane; if the bonded membrane particles are given a high

compressive stiffness and low tensile stiffness (user-defined contact model),

the particles don’t stay aligned. Because of the high pressures, the discrete

forces applied to the membrane particles are large enough to render the

resistance to tensile displacement between bonded particles negligible; the

membrane particles slide apart and behave as if unbonded, demonstrated in

Figure 3.9.

Figure 3.8 Failure of the membrane due to low particle stiffness causing excessive overlap
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To avoid a complex user-defined contact model, the membrane particles are

given artificially high stiffnesses (for the duration of the simulations), with a

system in place to adjust the radii of certain membrane particles relieving the

unwanted hoop tension. As the specimen begins to deform the material

typically expands; as the membrane stretches, rows of membrane particles

will cover an increased length, accommodated by tensile displacement

between the bonded membrane particles. For each row, the mean

displacement between neighbouring particles is monitored, and if this

exceeds 1% of the particle radius, then all the particles in the row are

expanded, alleviating the associated forces and avoiding unwanted pressure.

The value of 1% means the radii are only expanded by 0.5% at a time,

ensuring a gradual process with no sudden overlaps.

Any value of stiffness above a threshold proportional to confining pressure

can be attributed to membrane particles to prevent them entering the

sample. This value is determined by trial and error; for the membrane

Figure 3.9 Failure of the membrane due to particles not staying correctly aligned
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described earlier and a confining pressure of 12 MPa, the minimum required

value of stiffness is 0.6 MN/m, which is sufficient to prevent membrane

particles sliding apart from one another. Lower values cause the membrane

to fail at high strains, while higher values have no effect on the results. The

details of the membrane parameters are given in Table 3.2.

Table 3.2 Summary of DEM parameters for the triaxial membrane

Triaxial Membrane Properties

No. of particles 11979
Friction coefficient 0
Contact model Linear springs
Normal stiffness, Kn (MN/m): e.g. for σ3 = 12 MPa 0.6
Shear stiffness, ks (MN/m): e.g. for σ3 = 12 MPa 0.6
Density (kg/m3) 1000
Particle diameter, d0 (mm) 0.67

The minor principal stresses are checked using ‘measurement spheres’ (a

function of the software) to ensure the confining pressure is being applied

correctly. Measurement spheres are able to return the stress tensors for

specified spherical volumes. Several are used, throughout the height of the

specimen, as large as possible without protruding outside the sample. Using

the sample depicted in Figure 3.2 (described by the properties in Table 3.1),

the membrane’s ability to maintain a constant pressure can be demonstrated.

The results of two simulations sheared under confining pressure of 1 MPa are

shown in Figure 3.10. Both have the same membrane (Figure 3.6, Table 3.2);

one alleviates hoop tension by the method described, the other allowing

hoop tension to be induced. The simulation which alleviates hoop tension by

expanding particles ensures a constant minor principal stress; the alternative

simulation displays an increasing value, with the rate of increase determined

by the membrane particle stiffness. This effect is also visible in the higher

value of deviatoric stress. The minor principal stresses are checked for all

simulations, and in any case never deviate more than 5% from the applied

pressure in the simulations with no hoop tension.
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For the simulation with constant confining pressure (i.e. alleviating additional

hoop tension), increasing the membrane particle stiffness further has a

negligible effect on the results. Increasing the membrane particle size

reduces the number of contacts between the membrane and the specimen,

and if large enough can lead to specimen particles penetrating the

membrane. Giving the membrane particles friction leads to a slight increase

in peak stress, although further work is needed to fully clarify the role

membrane friction plays in laboratory tests.

3.2.5 Failure Behaviour

As a prelude to modelling cemented sand, but primarily to demonstrate

brittle deformation and the ability of the flexible boundary to accommodate

various potential failure modes, a series of simulations featuring a bonded

granular material have been conducted across a range of confining pressures.

As shown extensively in the literature review, there has been much

experimental work on cemented sand; in which there have been categorised

failure modes: brittle failure/shear planes for cemented samples, and

barrelling failure for equivalent uncemented samples. An increase in

confining pressure suppresses the effects of cementation and causes a

transition from brittle to ductile behaviour.

The sample particles are bonded using parallel bonds (details provided in

section 2.6.2), which have been used in previous studies such as Potyondy

Figure 3.10 Minor Principal stress and deviatoric stress versus axial strain for unbonded
samples sheared at 1 MPa confining pressure
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and Cundall (2004), and Wang and Leung (2008). These consist of a finite-

sized cylindrical piece of material between the two particles, which acts in

parallel with the standard force-displacement contact model. The bonds are

defined by normal and shear stiffness (stress/displacement), normal and

shear strength (stress) and size.

A detailed exploration of the parallel bond input parameters is given later in

the section on modelling cemented sand (3.3). For the purpose of these

simulations however, the parallel bond size, dbond is set equal to the minimum

sample particle size, i.e. dbond = dmin. Parallel bond stiffnesses have been

defined to give values equal to the particle stiffnesses (in terms of

force/displacement) in pure tension and shear. The bond strengths have

been defined as 15.92 N/mm2 so as to give strengths of 50 N also in pure

tension or shear. The same numerical sample is used, and parallel bonds are

installed at existing contacts between particles before the sample is subjected

to confinement, resulting in approximately 17000 bonds.

The use of bonds causes a peak deviatoric stress to appear and increases the

maximum stress; varying the magnitude of the bond strength changes the

maximum stress and prominence of the peak. Figure 3.11 shows the triaxial

results for the same bonded material sheared at 1, 4, 8 and 12 MPa confining

pressures. Increasing the confining pressure leads to a higher maximum

deviatoric stress, comparable to experimental data in Figure 2.18 (Marri,

2010). The strain associated with the maximum stress increases with

confining pressure. The peak is much more prominent at lower pressures,

becoming less distinguished at 12 MPa. There is a transition from brittle to

ductile behaviour, with the effects of the bonds being suppressed by

increasing confinement. The dilation also decreases with increasing confining

pressure.
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The flexibility of the membrane is demonstrated by observing the failure

modes after deformation. Cemented specimens sheared at relatively low

confining pressures have been shown to exhibit shear planes (e.g. Figure 2.9),

while uncemented specimens, or cemented specimens sheared at high

confining pressures demonstrate barrelling (Marri, 2010). This contrast in

behaviour in the numerical samples is best observed by plotting particle

rotations. Figure 3.12 shows the particle rotations on a vertical plane at 1 and

12 MPa confining pressures, at the point of maximum rate of dilation (1.0%

and 7.5% axial strain respectively). No clear shear plane is visible at 12 MPa,

whilst there is a prominent shear plane visible at 1 MPa. The samples sheared

at higher pressures display the correct barrelling failure and in between these

pressures there is transitional behaviour. Without a flexible membrane, the

formation of these failure modes would be inhibited, as shown by Cheung and

O’Sullivan (2008).

(a)

(b)

Figure 3.11 Triaxial response of bonded material sheared across a range of confining
pressures
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These simulations highlight the ability of the developed triaxial model to

accommodate various failure modes. The membrane is capable of applying a

high, constant confining pressure while exhibiting a non-uniform shape as the

sample distorts. The flexible boundary also allows the vertical component of

confining pressure to be applied to the specimen.

3.3 TRIAXIAL SHEARING OF CEMENTED SAND

3.3.1 Sand

Most of the current literature modelling cemented sand using DEM has been

limited to two dimensions, for example Jiang et al. (2005, 2006) Wang and

Leung (2008), Utili and Nova (2008), Camusso and Barla (2009), with very

limited material in three dimensions.

(a) (b)

Figure 3.12 Images displaying particle rotation at maximum rate of dilation: 1 MPa confining
pressure (a), and 12 MPa confining pressure (b). Dark greyscale indicates particles which

have undergone the most rotation; white denotes the least.
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The sand used as the basis of the following simulations is Portaway sand (full

details of which can be found in Wang, 2005), the sand used in experiments

by Marri (2010) using the high-pressure triaxial system at the University of

Nottingham. The sand particles are modelled as described in the previous

section (details provided in Table 3.1), with parameters chosen to reflect

those of the real sand. The notable difference is the particle size—the

numerical sample having a median grain size, d50 of 4.0 mm, as opposed to a

size of 0.4 mm for Portaway sand. This artificially large value gives a total

number of particles in the specimen of 6759, which although is not realistic, is

larger than the number of particles used in most of the aforementioned

literature on DEM (typically less than 2500). However, having a smaller size

and greater quantity of particles results in an impractical simulation length,

and considering the size and number of particles required for the membrane,

6759 was deemed acceptable. As before, platen friction was set to zero, and

after confinement was applied, the top platen was accelerated gradually to

0.05 m/s. The numerical and experimental particle size distributions are

visible in Figure 3.13.

3.3.2 Inter-Particle Bonding

The high-pressure triaxial tests performed by Marri (2010), which will be used

as the benchmark for modelling cemented sand in DEM, used Portland

cement as the bonding agent. Following on from section 3.2, cement bonds

are modelling using the parallel bond feature of the software (section 2.6.2;

Figure 3.13 Particle size distributions for both Portaway sand and the numerical sand
specimen
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Itasca, 2005). To recap, these are defined by normal and shear stiffness (in

terms of stress/displacement), normal and shear strength (in terms of stress)

and size.

With regard to the literature, it is somewhat unclear how to simulate the size

of cement bonds. One might consider them as small relative to the particles,

occurring just at the contacts and independent of particle size, or alternatively

to consider them as proportional to the particles, filling much of the void

space. Both of these approaches seem justifiable depending on

interpretation of the nature of cementation and analysis of images. Initially,

in order to isolate and investigate bond strength distributions, all bonds are

created with equal size; the bond diameter, dbond is set equal to the smallest

specimen particle, i.e. dbond = dmin (unless stated otherwise). This gives all

bonds the same moment resistance. To clarify, parallel bond stiffnesses have

been defined to give values equal to the particle stiffnesses (in terms of

force/displacement), except where mentioned—this is to reduce the number

of variables, and because the current simulations are not exclusively

concerned with calibration against physical tests. The influence of parallel

bond size is explored later in section 3.3.4, which investigates modelling an

increasing degree of cementation.

Bonds are installed at existing inter-particle contacts. For the dense

arrangement of particles with the parameters described above, and shown in

Figure 3.2, this method installs approximately 5 bonds per particle, and leaves

a small number (4%) of free particles with no bonds. This is a result of the

simulations having no gravity; if gravity was applied, there would be less

‘floating’ particles, although no significant effects on the results. A series of

simulations have been conducted to investigate solely the bond strength

distributions, using a triaxial sample with approximately 17000 parallel

bonds—meaning each particle has an average of 5 neighbouring particles

bonded to it.
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The principal effects of the parallel bonds are evident in Figure 3.14 where

the deviatoric stress, volumetric strain, and remaining bonds versus axial

strain responses are shown from simulations of the cemented material

showing the effects of varying strength, along with the behaviour of the

uncemented sample all sheared under a confining pressure of 1 MPa. The

bonded samples have completely uniform bonds, i.e. there is no strength

distribution. All bonds are equal in size, stiffness and strength in each test,

with only the bond strength varied across the three simulations. The three

different parallel bond strengths have been defined as 7.96, 15.92 and

31.83 N/mm2, to give strengths of 25, 50 and 100 N respectively in pure shear

and tension.

It is immediately evident that the introduction of cement bonds with

strengths 50 and 100 N cause a large peak deviatoric stress to appear and

increases the maximum stress compared to the unbonded sample. The

simulation with bonds of strength 25 N has a smaller peak stress, with almost

all the bonds breaking soon upon commencement of shearing, after which

behaviour similar to the uncemented sample is observed. The peak stress

witnessed in the cemented simulations is caused by the presence of bonds,

with the peak appearing to coincide with the onset of major bond breakage.

All bonded samples exhibit a stiffer initial response compared to the

unbonded equivalent. The cemented samples approach the stress state of

the uncemented simulation as the bonds eventually become broken down,

and the material becomes destructured. Inspecting the graphs of volumetric

strain versus axial strain shows that the most strongly bonded sample

undergoes slightly more dilation than the other simulations.



120

Figure 3.15 shows the deviatoric stress, volumetric strain, and remaining

bonds versus axial strain responses from simulations of the cemented

material with varying bond stiffness, alongside the unbonded sample

(sheared under a confining pressure of 1 MPa). The bond stiffnesses are

varied by the same magnitudes as the strengths above: normal and shear

stiffnesses of 5, 10, and 20 x 106 N/m are used. The differences resulting from

varying bond stiffnesses are less pronounced, with very similar peak values of

Figure 3.14 Stress-strain behaviour of simulations with various bond strengths: deviatoric
stress (a), volumetric strain (b) and unbroken bonds (c) versus axial strain

(a)

(c)

(b)
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stress and dilation. The simulation with the stiffest bonds has the slightly

lower peak strength, and the fewest bonds remaining after shearing. The

increased stiffness causes the bonds to break earlier, and therefore fewer

remain to resist deformation.

Figure 3.15 Stress-strain behaviour of simulations with different bond stiffnesses: deviatoric
stress (a), volumetric strain (b) and unbroken bonds (c) versus axial strain

(a)

(c)

(b)
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3.3.3 Bond Strength Distributions

From considering the figures in the last section, in particular Figure 3.14, the

bond uniformity is reflected in the graphs; the very sharp peak indicates

extremely brittle failure and rapid onset of bond breakage. It is apparent

from the graph that there is initially a linear relationship between deviatoric

stress and axial strain, during which no bonds have broken, particularly for

the 100 N bond strength. This seems somewhat unrealistic, especially at

these stress levels. It is evident from the literature (e.g. Airey, 1993; Asghari

et al., 2003; Lo et al., 2003) that one might expect such a sharp peak with an

initially linear response at very low pressures (typically under 100 kPa),

however as is visible in the work of Asghari et al. (2003) or Marri (2010), in

Figures 2.14, 2.17 and 2.18 respectively, no sharp peaks or such brittle

behaviour is witnessed at higher pressures, with only the highest cement

content producing a rounded peak. In other words, the yielding of bonds

occurs before failure, and a curve characteristic of type 2 in the schematic

given in Figure 2.11 is expected. One might therefore assume that a

distribution of bond strengths would yield more realistic results, i.e. a more

rounded peak stress with gradual bond failure. This echoes the sentiment of

Camusso and Barla (2009), who declared that a combination of weak and

strong bonds are required for realistic behaviour. Figure 3.17 compares the

results of cemented simulations with the same initial setup as the previous,

but with parallel bond strengths satisfying three different probability

distributions: uniform, normal and Weibull—the probability density functions

are given in Figure 3.16.
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Figures 3.17(a) and 3.17(b) show the deviatoric stress response of samples

with bond strengths satisfying two alternative uniform distributions and two

normal distributions, all with the same mean strength of 50 N. The bonds

with uniformly distributed strengths have ranges of 50 and 100 N, and the

normally distributed bonds have coefficient of variations of 0.2 and 0.4. Also

included is the response of the simulation with completely uniform bonds

with unique strength of 50 N, as well as the unbonded simulation.

Figure 3.16 Probability density functions of the various uniform (a), normal (b) and Weibull (c)
distributions used for parallel bond strengths

(a)

(c)

(b)
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It can be seen that the samples with uniformly distributed bond strengths

show lower maximum stresses, with the peaks more rounded. The sample

with bond strengths ranging from 0–100 N experiences bond breakage

immediately, and as such has the lowest and most rounded peak deviatoric

stress. The simulation with the narrower range, i.e. bond strengths ranging

from 25–75 N has a finite minimum bond strength, so there will be an initial

linear region during which no bond breakage is witnessed.

The samples with normal bond strength distributions give similar stress-strain

results, despite exhibiting slightly different bond breakage. The simulation

with the smaller coefficient of variation behaves very similarly to the sample

with no strength distribution, while the sample with the larger coefficient

displays an earlier, less sudden onset of breakage. However, both the

simulations with uniform and normal bond strength distributions still display

sharp distinct peak stresses, indicating sudden failure due to most bond

strengths lying close to the mean value. All of these simulations display

approximately the same volumetric strain during shearing.

Figure 3.17(c) shows the results from 3 simulations with bond strengths from

Weibull distributions, all with the same mean value but with differing

distribution parameters. A Weibull distribution (as described in section 2.5.2)

is defined by two variables: the modulus, m; and a characteristic value of the

variable that determines the scale of the distribution, denoted at this juncture

as F0 (which is the value of bond strength such that 37% of bonds are

stronger). The modulus determines the shape of the distribution; the

parameter F0 determines the size/range. The mean of a Weibull distribution

is given by:

[3.10]

and so is affected by both parameters; Г is the gamma function. Changing the

modulus (shape) of a Weibull distribution slightly alters the mean, so the scale

of the distribution needs to be adjusted to maintain the same mean. For a
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given scale, F0, increasing the modulus results in a narrower distribution

(shown earlier in Figure 2.38). Weibull probability is used widely in materials

science, especially in failure probability of brittle materials, so it seems

reasonable that such a distribution of strengths may be applicable to

cementation. It has also been used in the field of geomechanics, in particular

particle breakage, for example McDowell & Amon (2000) and McDowell

(2001).

Examining the results of the various Weibull distributions of bond strengths

reveals that the lower the modulus, the more rounded the peak stress. A

higher value of m—i.e. the simulation with m = 2—renders the distribution

and behaviour of the bonded sample similar to that with a normal distribution

of strengths. A lower value of m—i.e. less than or equal to 1—produces a

positively skewed, very wide distribution of strengths. It can be seen that the

sample with a modulus m = 0.5 produces a rounded peak stress, which

appears the most similar to the experimental stress-strain curves at high

pressures shown in Figure 2.17 or Figure 2.18 from Marri (2010). The

simulation exhibits a yield point prior to peak failure, much like work reported

in the literature (e.g. Lagioia and Nova, 1995; Asghari et al., 2003). This

indicates a much less sudden onset of bond breakage, which is also apparent

from the graph displaying the number of intact bonds versus axial strain.

Although a significant number of bonds are broken during consolidation, the

maximum rate of breakage during shearing is slightly lower.

The full triaxial results for the Weibull simulations are shown in Figure 3.18,

which also shows the volumetric strain versus axial strain, and the number of

intact bonds versus strain. The simulation with the lowest m value

demonstrates the most dilation and also the fewest remaining bonds for a

given axial strain, a different trend to that in Figure 3.14(a), where the

greatest dilation is associated with the largest number of intact bonds after

shearing. This suggests that for the simulation with a Weibull modulus of 0.5,

although fewest bonds remain, the bonds that do remain heavily influence

the behaviour. For the simulation with m = 0.5, after shearing (20% axial
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strain) the remaining bonds (approximately 2000) have a mean strength of

256 N covering a range of 2992 N. In contrast, the simulation with m = 2.0

has approximately 4200 bonds remaining with a mean strength of 63 N

covering a range of 158 N.

Figure 3.17 Deviatoric stress versus axial strain for simulations with various uniform (a),
normal (b) and Weibull (c) bond strength distributions, with mean strength of 50 N

(a)

(c)

(b)
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Figure 3.19 shows histograms for the bond strength distributions for the three

simulations with Weibull moduli 0.5, 1.0 and 2.0, before and after shearing.

Figure 3.19(a) shows the three histograms before consolidation, before any

bonds have broken. Most bonds in the simulation with m = 0.5 have

strengths between 0 and 40 N, whereas in the simulation with m = 2.0, most

bond strengths lie around the mean value of 50 N. Although some bonds

Figure 3.18 Triaxial behaviour of simulations with Weibull bond strength distributions with
various m values: deviatoric stress (a), volumetric strain (b) and remaining unbroken bonds

(c), versus axial strain

(a)

(c)

(b)
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break during consolidation, most breakage occurs at the start of shearing, as

demonstrated by the plots in Figure 3.18(c). Figure 3.19 shows histograms

plotting the residual bond strengths after shearing to approximately 20% axial

strain, in which the difference in the quantity of remaining bonds can also be

observed. While the simulation with m = 2.0 (narrower distribution of

strengths) has a greater number of unbroken bonds remaining, the remaining

bonds in the simulation with m = 0.5 are significantly stronger—there are a

large portion of bonds remaining with strengths over 500 N, and almost all of

the weaker bonds have yielded. This suggests that it is the strength of the

strongest bonds that most influence the behaviour.

Figure 3.19 Histograms showing the character of bond strength distributions before (a) and
after (b) triaxial shearing

(a)

(b)
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Inspecting the sheared samples reveals contrasting patterns of breakage; the

simulation with the wider range of bond strengths (m = 0.5) shows intact

bonds distributed throughout the height of the sample, while the opposing

specimen with m = 2.0 displays localised bond breakage, with most of the

remaining intact bonds located close to the platens (Figure 3.20). During

shearing, it tends to be the particles in the middle of a given specimen that

will undergo the most displacement, and the images suggest that for the

sample with a narrow range of bond strengths (m = 2.0), the bonds offer little

resistance to this deformation, with almost no bonds remaining around the

middle. For the sample with the much wider distribution (m = 0.5), fewer

total bonds remain unbroken however there are still bonds distributed

throughout the height of the sample, which offer most resistance to shear

deformation, hence the higher dilation. This reveals that it is the strongest

bonds which control the dilatation of the material. Groups of particles

bonded together in ‘clusters’ exist, which behave as larger, irregular shaped

particles, effectively changing the grading—similar to laboratory observations

mentioned previously.

Figure 3.20 Diagrams showing remaining unbroken bonds on a cross-sectional plane through
the sample after 20% axial strain: sample with Weibull bond distribution with (a) m = 0.5 and

(b) m = 2.0

(a) (b)
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3.3.4 Cement Content

There are potentially numerous ways in which one may consider simulating

an increasing degree of cementation. Analysis of experimental data could

suggest altering the variation or magnitude of bond strengths and stiffness, or

various combinations thereof, while physical analysis may suggest altering the

quantity of bonds and/or bond size.

The effects of increasing the magnitude of bond strength have been shown

previously in Figure 3.14. While there is an increase in peak strength, there is

little effect on the volumetric behaviour, and increasing the bond strength

increases the strain at which the peak occurs, contrary to real behaviour. If

the bond stiffness alone is increased (Figure 3.15), this causes a slight

decrease in the axial strain to the peak strength, however the peak stress is

decreased, and there is little effect on the amount of dilation. Figure 3.21

highlights the effects of increasing the size of the parallel bonds. It shows the

simulation from earlier where the parallel bonds have a strength of 50 N and

are equal in diameter to the smallest sample particle, dmin, and a simulation

using parallel bonds with a strength of 50 N and diameter equal to 2 x dmin. If

larger bonds are installed, the correct increase in dilation is observed,

however there is very little change in the peak strength, and no effect on the

specimen’s initial stiffness. The increase in dilation is likely due to the

increased moment resistance offered by the bonds, which hinders particles

rolling over one another.
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If one considers the quantity of bonds, it appears common practise when

modelling bonded granular materials to install bonds at existing inter-particle

contacts (e.g. Potyondy and Cundall, 2004; Wang and Leung, 2008). For the

dense sample described above, this method installs approximately 5 bonds

per particle and leaves a small number of free unbonded particles.

Considering that the numerical sample has an approximately equal coefficient

Figure 3.21 Triaxial behaviour of a simulation with standard bond size (equal to the diameter
of the smallest particle, dmin), and a simulation with larger bond size (equal to double the

diameter of the smallest particle)

(a)

(c)

(b)
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of uniformity and a density approximately equal to those values of the

material from the results by Marri, shown in Figure 2.17, this configuration of

bonds can be considered analogous to a given material, i.e. Portaway sand

with 5% cement content.

Visually inspecting SEM images of the cemented sand shown in Figure 3.22

evidently suggests that a greater number of bonds are required to accurately

represent varying levels of cementation. The cement can be seen to fill voids

and connect particles which otherwise would not be in contact. Inspecting

the figure which shows a specimen with 5% cement content, a typical sand

particle visibly has 5 or 6 surrounding particles bonded to it, whereas a sand

particle in the specimen with 15% cement content appears to have typically

more—as many as 9 bonded to it which are visible. Bearing in the mind the

planar nature of the images, one could expect a particle not on the surface of

a cemented specimen to have an even greater number of surrounding

particles bonded to it.
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(a)

Figure 3.22 Images of cemented sand prepared with various cement contents: 5% (a); 10%
(b); 15% (c) (Marri, 2010)

(b)

(c)
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Using the bond parameters which give the most realistic stress behaviour (i.e.

Weibull strength distribution with m = 0.5 and mean strength 50 N), a series

of triaxial simulations have been performed with an increasing number of

bonds. Considering the quantity of bonds (in this work measured by the

average number of bonds per sand particle) as a gauge of cement content,

results are presented for simulations with an average of 5, 10 and 20 parallel

bonds per sand particle (considered lightly, moderately and highly cemented

respectively), alongside an unbonded simulation. All simulations are sheared

under a confining pressure of 1 MPa. The increased number of bonds is

achieved by bonding particles which aren’t necessarily touching, but which lie

within a specified proximity of one another. Adjusting this proximity results in

a larger or smaller number of bonds among the sand particles.

From Figure 3.23, it can be seen that the correct qualitative behaviour with

regard to modelling increased cement content is reproduced by increasing

the number of bonds. There is an increase in the peak and maximum

deviatoric stress, a higher initial stiffness, and there is a more dilative

response. The peak stress appears at approximately the same axial strain

regardless of the number of bonds. The stress-strain responses appear to

converge at large strains. Considering the increasing number of bonds to be

representative of 5, 10 and 15% cement contents respectively, the results

demonstrate good qualitative agreement with the results in Figure 2.17 from

Marri (2010).
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It has been shown experimentally in the literature (e.g. Coop and Cuccovillo,

1999, Yu at al., 2007) that the presence of cohesion inhibits dilatancy, and the

same observation can be made in Figure 3.24(a), which shows the stress-

dilatancy curves for the simulations with a range of cement contents. It can

be seen that prior to the peak stress ratios, the most highly cemented sample

(with 20 parallel bonds per particle) exhibits less dilatancy than the samples

Figure 3.23 Triaxial results for simulations with various numbers of bonds representing
increasing cement content: deviatoric stress (a), volumetric strain (b) and remaining

unbroken bonds (c) versus axial strain

(a)

(c)

(b)
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with lesser degrees of cementation, suggesting that the cohesion arising from

the parallel bonds inhibits dilatancy. This is in agreement with Cuccovillo and

Coop (1999), who theorised that if work is spent on degrading the bonding,

which is evident from Figure 3.23(c), the rate of dilation has to decrease, with

the bonds preventing the intact material from dilating. Prior to the peak

stress ratio, Yu et al. (2007) also proposed that cohesion shifts the dilatancy

curve to the left when plotted on η-D space. As in experimental findings, this

‘delay’ in dilatancy is compensated for by a rapid increase culminating in the

peak dilatancy, which was largest for the most highly cemented simulation.

Marri (2010) showed that for a given confining pressure, increasing the

degree of cementation shifts the dilatancy curve upwards, resulting in larger

stress ratios at the peak and ultimate states. Experimental results are

repeated in Figure 3.24(b) for comparison. The same pattern can be observed

from the simulations, although there is not a considerable difference between

the ultimate states.
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3.3.5 Confining Pressures

Using the bond parameters which give the most realistic stress-strain

behaviour (i.e. Weibull distribution with m = 0.5 and mean strength 50 N)

triaxial simulations have been performed over a range of high confining

pressures (1–12 MPa) and various cement contents. Assuming that the

average number of bonds per particle is representative of a given cement

content, Figure 3.25 shows the effects increasing the confining pressure has

on the behaviour of cemented sand. The behaviour of samples with an

average of 0, 5, 10 and 20 bonds per particle (considered uncemented, and

lightly, moderately, and highly cemented respectively) are plotted for

confining pressures of 1, 4, 8 and 12 MPa.

From the graphs in Figure 3.25, it is clear that increasing the confining

pressure leads to a higher maximum deviatoric stress. The strain associated

with the maximum deviatoric stress increases with confining pressure. The

Figure 3.24 Stress–dilatancy curves from simulations (a) showing the effect of increasing the
degree of cementation, compared with experimental results (b) from Marri (2010)

(a)

(b)
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simulation with the medium cement content in Figure 3.25(c) is comparable

with the experimental results shown earlier in Figure 2.18—the strain

associated with the maximum deviatoric stress increases with confining

pressure, and the peak is much more prominent at lower pressures, becoming

less distinguished at 12 MPa. As with experimental results, there is a

transition from brittle to ductile behaviour, with the effects of

cementation/bonds being suppressed by increasing confinement.

Confining pressure also greatly reduces the volumetric dilation, with the

samples becoming more contractive with increased confining pressure. It can

be seen that the axial strain associated with the maximum rate of dilation

increases with increasing confining pressure, in the same manner as the

experimental results shown in Figure 2.18. However, the correct magnitude

of contraction is impossible to attain in the simulations without taking particle

crushing into consideration. This also is the reason why there exists a peak in

the deviatoric stress graphs, even at pressures as high as 12 MPa.
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The dilatancy plots for the moderately cemented simulations with confining

pressures 1–12 MPa are given in Figure 3.26(a). Increasing confining pressure

reduces the peak dilatancy, as well as reducing peak stress ratio. Increasing

the confining pressure generally shifts the dilatancy curve downwards in η-D

space, which offers good agreement with the experimental work by Yu et al.

(2007) and Marri (2010) shown in the literature review (section 2.3.4), the

latter of which is repeated below in Figure 3.26(b).

3.3.6 Failure and Characteristics and Critical State

The peak failure data from the triaxial simulations for all cement contents are

plotted in Figure 3.27. The envelopes are obtained by fitting linear trend-lines

to the failure points from simulations across the full range of confining

pressures. While it is not accurately possible to observe if the failure

envelopes are curved as seen in some experimental studies (e.g. Asghari et

al., 2003), it can be seen that increasing the cement content moves the failure

Figure 3.26 Stress–dilatancy curves from simulations (a) showing the effect of increasing the
confining pressure, compared with experimental results (b) from Marri (2010)

(a)

(b)
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envelopes upwards to higher stress levels in q-p’ space, as one would expect.

The failure envelopes also show that the failure stress increases with

confining pressure. The inclination of the envelopes appears to decrease

slightly with increasing cement content, suggesting convergence towards very

high pressures, as alluded to by Cuccovillo and Coop (1999), Lo et al. (2003)

and Figure 2.19 from Marri (2010). As discussed in the literature, this

observation indicates that the strength from cementation reduces when

under high mean effective stresses, as bonds are broken during consolidation.

Therefore the influence of cement is greatest at lower pressures, as shown by

authors such as Asghari et al. (2003). The envelopes are extrapolated, which

give increasing failure stresses at zero confinement with increasing cement

content, supporting the idea that increasing the cement content (i.e. the

number of inter-particle bonds) increases the cohesion.

Increasing the number of bonds for a given confining pressure produces the

correct transition from ductile to brittle failure. The difference in failure

modes is most visible in Figure 3.28 which displays the particle rotations at

approximately the point of maximum rate of dilation (2-3% axial strain) for

simulations with various cement contents sheared at 1 MPa. The unbonded

and lightly cemented samples display no clear patterns, and exhibit classic

barrelling failure, while the moderately cemented sample (10 bonds per

particle) displays a pair of shear bands, and the most heavily cemented

sample displays a prominent steep shear plane, typical of a highly cemented,

brittle material. The transition is in agreement with the literature (e.g.

Figure 3.27 Failure envelopes of simulations with various cement contents
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Schnaid et al., 2001; Asghari et al., 2003). Also visible from (c) and (d) is the

indication that increasing cementation increases the inclination of the shear

band, as suggested by Haeri et al. (2005a).
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(a) (b)

Figure 3.28 Images displaying particle rotation for samples sheared under 1 MPa confining
pressure at maximum rate of dilation: unbonded sample (a), lightly cemented (b), moderately
cemented (c) and heavily cemented sample (b). Dark greyscale indicates particles which have

undergone the most rotation; white denotes the least.

(c) (d)
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The change in failure behaviour resulting from increasing the confining

pressure (from brittle to ductile) is also visible in the sheared samples: Figure

3.29 plots the particle rotations at approximately the maximum rate of

dilation (approximately 2–6% axial strain) for the moderately cemented

simulations sheared under 1, 4, 8 and 12 MPa confining pressures. Conjugate

shear bands are visible in the simulation at 1 MPa confining pressure, with

shear zones barely visible in the 4 MPa simulation, and no distinct patterns

visible at 8 or 12 MPa. Figure 3.30 shows the final numerical specimens

(again with moderate cement content) from the 1 MPa and 12 MPa

simulations after 20% axial strain, alongside the equivalent laboratory

samples from Marri (2010). From the images of the laboratory specimens

after shearing, conjugate shear planes can be observed through the

membrane for the sample with 10% cement content sheared at 1 MPa.

Similar failure can be seen in the corresponding image of the numerical

sample, which has fairly distinctive non-uniform deformations. The same

material shearing under a confining pressure of 12 MPa displays barrelling

failure, i.e. expansion which is uniform in the radial direction, and

concentrated around the mid height of the specimen.
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(a) (b)

Figure 3.29 Images displaying particle rotation for moderately cemented samples at
maximum rate of dilation (2–6% axial strain): 1 MPa (a), 4 MPa (b), 8 MPa (c) and 12 MPa
confining pressure (d). Dark greyscale indicates particles which have undergone the most

rotation; white denotes the least.

(c) (d)
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The ultimate/critical state lines from the experimental triaxial tests by Marri

(2010) for the cemented sand are given in Figure 3.31, alongside the

equivalent plots obtained from the simulations in Figure 3.32. In deviatoric

stress–mean effective stress space, the data from Marri (2010) all followed a

slightly curved line. It was not possible to determine if the critical state lines

were coincident, as suggested by authors such as Cuccovillo and Coop (1999)

or, if as indicated from Figure 3.31, increasing the cement content shifts the

Figure 3.30 Cemented numerical sample (a) and laboratory sample (b; Marri, 2010) after
shearing to 20% axial strain under 1 MPa (i) and 12 MPa (ii) confining pressures

(a)

(i)

(b)

(ii)

(i) (ii)
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CSL line upwards in q-p’ space. As such, Marri suggested a critical state zone

may be more appropriate. In specific volume–mean effective stress space,

the data displayed significantly more scatter, with all the points from the

cemented materials located to the right of the uncemented material. The

CSLs obtained from this plot were almost parallel, with slightly steeper lines

revealed by the cemented material. This shift in volume-stress space was

attributed to the change in grading caused by the addition of cement fines,

which change the critical state voids ratio, ecr.

The critical states from the simulations however, can both be seen to

approximately lie on single critical state lines in Figure 3.32. In q-p’ space, the

simulations offer good agreement with experimental data, and the plot is in

harmony with the hypothesis that that a material has a single CSL (in q-p’

space ) regardless of cement content (e.g. Airey, 1993; Coop and Atkinson,

1993; Cuccovillo and Coop, 1999). In v-p’ space, there is some scatter, with

increasing cement content possibly shifting the critical states to the right.

However, there is no clear trend, and the points may be considered to lie

about the same line. Although this is dissimilar to experimental results, it is

explicable by the fact that increasing the degree of cementation in the

simulations doesn’t change the grading as such, and once the materials have

become completely destructured they have identical particle size

distributions. Parallel bonds fail to capture the change in grading associated

in reality with the addition of cement fines. Any difference in critical/ultimate

voids ratio can therefore be attributed to the continuing presence of bonds

maintaining a higher voids ratio.
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3.4 CONCLUSIONS

Using the discrete element method, simulations of high-pressure triaxial tests

on cemented and uncemented sand have been presented. The triaxial model

developed has a flexible membrane allowing the correct failure modes to

develop, without inhibiting deformation as rigid boundaries have been shown

to. The model uses a simple and effective method to apply the correct

confining pressure after the sample becomes distorted and exhibits a non-

uniform shape. The flexible boundaries also allow the vertical component of

confining pressure to be applied to the specimen.

In the series of simulations of cemented sand, the cementation has been

modelled with parallel bonds, and the influence of bond size, stiffness and

Figure 3.32 Critical states for simulations ranging from unbonded to highly cemented, plotted
in q-p’ space (a) and v-p’ space (b)

(b)(a)

Figure 3.31 Critical states lines for experimental testing on Portaway sand with various
Portland cement contents (Marri, 2010), plotted in q-p’ space (a) and v-p’ space (b)

(a) (b)
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strength has been investigated, as well as a variety of bond strength

distributions. For a given mean bond strength, a Weibull distribution with a

low modulus, such as 0.5 appears to give the most realistic results; with some

bonds failing during consolidation and immediately after commencement of

shearing, while the strongest remain intact throughout the tests. Such a

distribution produces a sharp peak strength at lower confining pressures, and

a more rounded peak at the highest pressures. The presence of bonds, which

represent cementation, also cause additional dilation when compared to the

uncemented simulations. For a sample with a given number of bonds and

initial density, the results indicate that it is the strength of the strongest

bonds which govern any additional dilation caused by cementation.

Increasing the quantity of bonds in a given sample appears to be the most

effective way of modelling increased cement content. For a distribution of

bond strengths, increasing the quantity, by bonding particles to neighbouring

ones which aren’t in contact but lie within a specified proximity, results in the

correct qualitative change in behaviour that an increase in cement content

causes in laboratory triaxial tests. It causes a more clearly defined peak

strength, an increase in strength (maximum deviatoric stress), increases the

dilation, and renders the behaviour more brittle.

The flexible membrane used has allowed the correct failure modes to

develop, allowing contrasting brittle and ductile failure modes caused by

varying the cement content. By plotting the individual particle rotations, it

has been shown that for a given confining pressure such as 1 MPa, increasing

the number of bonds (i.e. the degree of cementation) increases the strength

and brittleness of the material, with shear planes produced in the most highly

cemented simulations. For a given cement content, increasing the confining

pressure to 12 MPa suppresses the behaviour of the cementation, with no

shear planes visible for even the most highly cemented samples. In between

these pressures there is ‘transitional’ behaviour where the material behaves

neither completely brittle nor ductile. DEM has therefore been shown to be
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able to capture the behaviour of cemented sand under a range of confining

pressures and cement contents.

However, particle crushing needs to be incorporated into the model to enable

realistic magnitude of volumetric contraction to be observed, which will have

an effect on the stress response, especially if a distribution of particle

strengths are used.
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CHAPTER 4

MODELLING PARTICLE BREAKAGE—ONE-

DIMENSIONAL COMPRESSION

4.1 INTRODUCTION

The role of particle crushing and its significance with regard to the behaviour

of soil has been summarised in section 2.5. To recap, there are several factors

which control the degree of crushing (particle size distribution, particle shape,

mineralogy and strength of the grains, density, water conditions of the soil,

the stress path and the effective stress state), with the influence of crushing

greatest at high pressures. Particle crushing causes a great reduction in the

volumetric dilation observed during triaxial shearing at high confining

pressures, which is evident from the previous chapter (section 3.3) where no

overall contraction was observed during simulations with unbreakable

particles at high pressures. It therefore seems essential to incorporate

particle crushing into the simulations to enable the samples to exhibit realistic

volumetric strains.

As such, a simple breakage mechanism has been developed, which is

presented in this chapter. A review of the literature on modelling particle

breakage was given in section 2.6.5, which described two main schemes:

modelling particles as agglomerates, consisting of groups of smaller, bonded

particles; or replacing ‘breaking’ grains with new, smaller fragments.

Using agglomerates, McDowell and Harireche (2002b) used DEM to show that

for normal compression, yielding was the onset of bond breakage for an

aggregate of agglomerates and that normal compression lines resulted from

the one-dimensional compression of an aggregate of agglomerates.

However, their aggregates only contained a small number of agglomerates.

The bonds within the agglomerates were such as to give a Weibull

distribution of particle strengths when crushed between flat platens. They

did not consider the evolution of a particle size distribution during normal
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compression due to the insufficient number of agglomerates in the model.

Similar work was published by Cheng et al. (2003) and Bolton et al. (2008),

who investigated various stress paths in addition to isotropic compression,

although again a limited number of agglomerates were used.

Using the latter method, i.e. replacing breaking grains by new fragments,

Åström and Herrmann (1998) showed it was possible to model the

fragmentation of grains in two dimensions using DEM. This work was

supplemented by Tsoungui et al. (1999), while Lobo-Guerrero and Vallejo

(2005) developed a similar 2D model of granular crushing but in that model

mass was not conserved. Ben-Nun and Einav (2010) and Ben-Nun et al.

(2010) used their own 2D model of grain fracture to explore the particle and

force-chain topology, and the evolution of fractal distributions, and also used

a distribution of particle strengths. A similar approached is adopted in this

work, where the crushing model is calibrated by modelling one-dimensional

normal compression of sand using a simple oedometer.

To recap from the literature review, McDowell and Bolton (1998) related the

normal compression of granular materials to the evolution of a fractal

distribution of particle sizes using a work equation and the assumption of a

Weibull distribution of particle strengths giving a particle size effect on

strength. They did not consider the stresses induced within a particle by

multiple contacts and simply considered the strength of a particle as

measured by crushing between flat platens. Their work proposed that normal

compression lines should be linear on a plot of voids ratio e against the

logarithm of applied stress log σ. There has been much theoretical work

since: for example Russell et al. (2009), who did consider the internal stress

field within particles with regard to crushing; and Russell (2011), who also

linked the compression line to the evolving fractal particle size distribution.

McDowell (2005) showed analytically that based on the kinematics of particle

fracture and the void collapse caused by the fracture of a particle, that normal

compression lines according to this argument should be linear in log e–log σ
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space. No consideration was given to the complex distribution of loads on

each particle at its multiple contacts.

By modelling one-dimensional normal compression, this chapter not only

shows a calibration of the crushing model, but aims to make the next step in

understanding the mechanics of normal compression, by allowing particles to

fracture without the use of agglomerates and by considering the stresses

induced in a particle due to the multiple contacts. The normal compression is

linked using the DEM software to the evolution of a fractal distribution of

particles and the influence of the mechanics of fracture on the slope of the

normal compression line are properly investigated.

4.2 NORMAL COMPRESSION

4.2.1 Oedometer

The sample consists of 620 spheres of diameter 2 mm, in a dense random

packing, in a scaled-down oedometer with rigid boundaries, a diameter of 30

mm and a height of 7 mm, displayed in Figure 4.1. These dimensions mean

initially only relatively short particle force chains can form between the top

and bottom platens, however, it was decided to have such a geometry as is

used in real oedometer (one-dimensional) experiments (in this case the

aspect ratio is chosen to reduce wall friction). It was also deemed important

to have a large enough diameter to permit a sufficient number of force chains

to develop. Although a larger initial sample and/or more initial particles

would be ideal, exploratory simulations using larger samples appeared to

result in the same compression behaviour, but were unable to reach high

pressures due to the large number of particles covering a very wide range of

scales rendering the timestep too small. This relatively small number (620) of

initial particles means that the behaviour is initially sensitive to particle

breakage, however this diminishes once a large number of particles have

been produced. Different strength characteristics, hardening laws and

mechanisms of fracture are examined to investigate the influence on the
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resulting particle size distribution and the slope of the normal compression

line for the simulations.

The initial monodisperse sample was created using the radii expansion

technique (Itasca, 2005) resulting in a relatively dense random packing

without any locked in forces or overlap. The voids ratio calculated for the

compression plots was calculated using the total solid volume for

convenience while the simulation was running. Retrospective calculations,

using the same method outlined in section 3.2.3 which accounts for overlaps

between particles demonstrated no significant difference (less than 0.5%

difference in volume of solids).

For these simulations, the density of the particles is set as 2650 kg/m3,

reflecting that of silica sand as mentioned before, and a particle friction

coefficient of 0.5 is again attributed. In contrast to the earlier simulations, the

Hertz-Mindlin contact model is now used, as a very wide range of particle

sizes are generated during the simulations. As outlined in section 2.6.2, the

linear springs model is a simplification, primarily used to improve calculation

time. The Hertzian model is more computationally demanding, but is more

realistic as it captures the nonlinear stiffness of spheres in contact—hence is

more suitable for these simulations, in which the stress induced in the

particles is of such importance. As a very wide range of particle sizes are

generated during the simulations, another advantage is that the Hertzian

model automatically accounts for the different stiffness of particles of

different sizes, by utilizing the shear modulus. The input value of shear

modulus for the particles was arrived at assuming sand grains have an elastic

Figure 4.1 Oedometer sample, consisting of 620 particles
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modulus of 70 GPa, a typical value for quartz, and an approximate value of

0.25 was given as the Poisson’s ratio. The particle input parameters are listed

in Table 4.1.

The sample is loaded one-dimensionally, i.e. the top platen is moved

downwards to impose a vertical stress on the particles. The vertical stress is

applied in increments of 1 MPa, by gradually accelerating the top platen,

which is decelerated as the target stress is approached. The vertical stress

(which is always effective) is measured from the top and bottom platens:

[4.1]

although the platen velocity is capped at 0.1 m/s to eliminate any loading rate

effects.

Table 4.1 Summary of DEM parameters for the oedometer sample

Oedometer Sample Properties

Size: height x diameter (mm) 7 x 30
No. of particles 620
Particle friction coefficient 0.5
Contact model Hertz-Mindlin
Shear modulus, G (GPa) 28
Poisson’s ratio, ν 0.25
Density (kg/m3) 2650
Particle diameter, d0 (mm) 2.00
Voids ratio, e0 0.90
37% Strength, q0 (MPa) 37.5 (for d = d0)
Weibull Modulus, m 3.3
Wall Friction Coefficient 0

4.2.2 Particle Strengths

McDowell and Bolton (1998) assumed that for a particle of diameter d

compressed diametrically between flat platens by a force F, the characteristic

stress, σ induced within the particle was:

[4.2]
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after Jaeger (1967) and that the values of this stress at failure followed a

Weibull distribution (Weibull, 1951). The 2D models mentioned earlier (such

as Tsoungui et al., 1999; Ben-Nun and Einav, 2010 etc.) generally used

fracture criteria based on shear stress derived from the principal stresses -

which took into account the various possible combinations of loads on a

particle. In the work on particle strength using agglomerates by McDowell—

e.g. Lim and McDowell (2004), although agglomerates could break under

complex distributions of loads, no consideration was given to the stress

induced by multiple contacts other than for simple diametral loading.

In deciding whether a particle in an aggregate under multiple contacts should

fracture or not, it is possible to make use of the stress tensor function within

PFC3D, which will return the stress tensor for a sphere—similar to methods

employed by Tsoungui et al. (1999) and Ben-Nun and Einav (2010) using discs.

For a particle under multiple contacts, it would not be feasible to use the

mean stress to establish whether a particle should break or not, because the

particle, if under a high hydrostatic stress but low deviatoric stress, would be

unlikely to break due to being loaded uniformly over its surface.

A decision was therefore taken to use the octahedral shear stress induced

within each sphere, to determine whether fracture should occur or not. The

octahedral stress in a particle is derived from the principal stresses, and is

given by:

[4.3]

where σ1, σ2 and σ3 are the major, intermediate and minor principal stresses,

respectively. While the use of this equation to determine whether fracture

should occur or not is a simplification, it provides a simple criterion to

facilitate breakage taking into account multiple contacts on a particle surface

while avoiding the use of agglomerates. The decision was taken that if a

particle is, for example, under diametral point loads, equal in three mutually

orthogonal directions, then the particle would not break under this
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hydrostatic stress (q = 0). In PFC3D (Itasca, 2005), the average stress tensor in

a particle is:

[4.4]

where V is the volume of the particle, Nc is the number of contacts, xi
(c) and

xi
(p) are the locations of the contact and particle respectively, ni

(c,p) is the unit-

normal vector directed from the particle centroid to the contact location and

Fj
(c) is the force at the contact (Itasca (2005). For the case of a particle

compressed diametrically between platens, the major principal stress is:

[4.5]

From equation [4.3], it can be seen that the value of octahedral shear stress q

for a sphere compressed diametrically between two walls is then given by:

[4.6]

which is the value of q returned by PFC3D for a sphere compressed between

two walls; hence the average octahedral shear stress in a particle is

proportion to the characteristic stress from equation [4.2]. Therefore the

assumption was made that for particles loaded under multiple contacts, the

particle would break if the octahedral shear stress was greater than or equal

to its ‘strength’, where the strengths of the particles satisfy a Weibull

distribution of q-values.

The Weibull distribution, which was described in more detail in section 2.5.2,

and used for modelling cement bonds in the previous chapter, is one of the

most commonly used tools for analysing the fracture of disordered material,

and has a wide range of applications. The Weibull distribution of strengths

used here was taken from McDowell (2002) for silica sand, and is described in
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this chapter by the Weibull Modulus, m, and the 37% strength, q0. The

quantity q0 is the value of octahedral shear stress for a particular particle size

such that 37% of particles are stronger, and is related to the characteristic

induced tensile stress. Size effects on the tensile strength of materials are

usually described in the form of equation [2.17]: σ  db, where σ is the

strength, d the size and b is a material constant. Using the working shown in

section 2.5.2, but considering the octahedral shear strength q0, instead of the

tensile strength σ0, it is possible to derive the following relation from

Weibull’s survival probability for a block of material:

[4.7]

assuming bulk fracture dominates and Weibull gives a volume ‘effect’ on

particle strength (McDowell and Bolton, 1998). Values of q0 derived from

McDowell (2002) are plotted in Figure 4.2 along with the values of q0 used in

the following simulation according to the above law in equation [4.7]. As

mentioned in section 2.5.2, if surface flaws dominate, a different relation is

appropriate, which is investigated later.

4.2.3 Simple Diametral Splitting

In a similar approach to the previous work with discs (e.g. Åström and

Herrmann, 1998; Tsoungui et al., 1999; Lobo-Guerrero and Vallejo, 2005; Ben-

Nun and Einav, 2010), in the interest of computational efficiency, allowing a

large number of particles to be generated and fragments to be self-similar in

Figure 4.2 Strength as a function of particle size for silica sand
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shape, each sphere was allowed to split into two equal spheres, without loss

of mass, when the value of q was greater than or equal to its Weibull

strength. Although the fragments of broken spheres are not spheres, realistic

particle shape has not been employed in this work. However, using

fragments that are similar in shape to the original particle does not seem too

improbable; for example Bowman et al. (2001) analysed the change in particle

shape resulting from crushing silica sand using Fourier descriptor analysis. For

a processed, laboratory-grade silica sand, crushing resulted in only slight,

statistically-insignificant changes in elongation and shape, although these

were with initially angular particles, not spheres. One would expect

implementing particle shape into the simulations to affect both the packing

and coefficient of lateral earth pressure, in a similar way to adjusting the

particle friction.

It has been acknowledged in the sphere of DEM that it is impossible to

simulate a realistic fracture mechanism using discs, as typified by the various

solutions adopted by others modelling two-dimensional problems such as

Åström and Hermannn (1998), Lobo-Guerrero and Vallejo (2005) and Ben-

Nun and Einav (2010)—shown in the literature in section 2.6.5. The same

applies to three dimensions, where a solution needs to be as physically

realistic as possible, while using only spheres and allowing a large number of

breakages.

In the presented work, new sphere fragments overlap enough to be

contained within the bounding parent sphere with the axis joining their

centres aligned along the direction of the minor principal stress, as shown in

Figure 4.3. This produces undesirable local pressure spikes during a breakage,

however this overlap causes the particle fragments to move along the

direction of the minor principal stress for the original parent particle, just as

might occur for a single particle crushed between flat platens.

To ensure sample stability and to accommodate the artificial pressure

increase due to the imposed elastic energy before particle release, particle
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breakages are updated at once (for the whole sample) after a number of

computational cycles equivalent to 0.003 seconds (the actual number of

cycles during this time interval is inversely proportional to the ‘timestep’).

This period was deemed sufficient to allow the artificially induced energy to

dissipate: increasing it has no effect on overall breakage. After each stress

increment (1 MPa), the sample is cycled continuously until no further

breakage occurs.

As mentioned, the particles are given a shear modulus of 28 GPa, assuming an

elastic modulus of 70 GPa. It was found that the particle stiffness only

affected the elastic component of the compression line. That is to say, before

yield, the stiffness would affect the slope of the compression line. The value

chosen was deemed to be realistic, and as a result the slope was shown to be

small on unloading. In reality, the elastic modulus is related to the critical

fracture stress according to Griffith (1921), and would influence the opening

of cracks. More recently, Einav (2007) applied and extended this theory to

granular material. Particle friction has also been investigated and has no

effect on the plastic compressibility; it only affects the lateral earth pressure

coefficient.

Figure 4.3 Equal diametral splitting mechanism
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McDowell’s compression plots and evolving particle distributions for the silica

sand are reproduced in Figures 4.4 and 4.5 respectively. The resulting normal

compression line and particle size distributions from the simulations as a

function of applied stress level are shown in Figures 4.6 and 4.7. Figure 4.6

also shows the unloading curve, from which it is evident that the elastic

component of deformation during normal compression is negligible. An

images of the numerical sample after compression is presented in Figure 4.8

(Figure 4.1 shows the sample before).

Figure 4.5 Evolving particle size distributions for silica sand (McDowell, 2002)

Figure 4.4 Normal compression lines for silica sand (McDowell, 2002)
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Following yield, a linear normal compression line emerges in e–log σ space

(using common logarithms), with a plastic compression index Cc of

approximately 0.5. Data points are plotted at frequent intervals

(approximately 1 MPa) to show the compression line has a consistent slope.

This is in line with published experimental findings, for example Figure 2.44

from Nakata et al. (2001a), which showed the compressibility value stabilising

and reaching a steady value after yield. Minor fluctuations are visible due to

the relatively small number of particles in the simulation, especially at lower

pressures, similar to observations made by McDowell and Humphreys (2002)

Figure 4.8 Oedometer sample after compression to 30 MPa

Figure 4.7 Evolving particle size distribution for simulation of silica sand

Figure 4.6 One-dimensional compression plot for simulation of silica sand
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when subjecting pasta shells to normal compression (refer to Figure 2.45).

When the sample reaches a voids ratio much less than 0.5, the timestep

becomes unsustainable due to the very wide range of particle sizes

(dmax / dmin > 1000) and the simulation is halted. Significant crushing is still

occurring at high stresses, however it is the smaller particles with low mass

that are breaking, which is why the rate of change of the mass grading curve

reduces at high pressures. The general trend in Figure 4.7 is the same as

Figure 4.5, although the numerical sample is initially monodisperse; while the

silica sand sample is reasonably uniformly graded. As stress increases, the

overall number of contacts increase, particularly for the larger particles which

become protected by the smaller fragments; the smaller particles continue to

break, becoming statistically stronger.

In Figure 4.9 the lateral earth pressure coefficient, K0 (= σv / σh) is plotted as a

function of stress. K0 increases until around 10–15 MPa, following the point

at which yield is observed on the normal compression plot. After this it

remains at a fairly constant value of 0.75. This is in line with the long-standing

theory of lateral earth pressure at rest, given in equation [2.9]—that K0 for

normally consolidated soils is a function of the angle of shearing resistance,

and therefore is a material constant. The value of 0.75 is conspicuously large

for a real sand, and is attributable to the spherical nature of the numerical

particles.

Figure 4.9 Lateral earth pressure coefficient as a function of vertical applied stress for
simulation of one-dimensional compression of silica sand
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Figure 4.10 shows the effects of increasing the initial strength q0. The normal

compression lines for all values of q0 appear to have the same gradients, with

the yield point for the material with q0 = 80 MPa occurring at the highest

stress. It is clear that the yield stress in one-dimensional compression, for a

given initial voids ratio and grading, is proportional to the strength of

individual grains, which agrees with the proposition first made by McDowell &

Bolton (1998). Just how influential the individual grain strengths are is further

demonstrated in the graph showing the normalised stress values (σ / q0), in

which the compression lines coincide. As one would expect, the weaker

assemblies exhibit more breakage for the same magnitude of stress (30 MPa):

a more well-graded aggregate has evolved in Figure 4.11.

Figure 4.10 One-dimensional compression plot for various particle strengths q0 (a) and plot
showing vertical stress σ normalised by particle strength q0 (b)

(a)

(b)
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For real soils subjected to one-dimensional clastic compression, the

compression line is commonly observed to experience a change in curvature

at very high stresses (e.g. McDowell, 2002). This is usually attributed to the

largest particles being well protected by many neighbours meaning low

tensile stresses are induced, and the smallest particles reaching the

comminution limit, meaning fracture is no longer possible. Repeating the

initial simulation (using parameters for the silica sand) but limiting the

smallest permitted particle size reveals similar results. Capping the smallest

particle size ds at 0.5 mm (25% of d0)—i.e. particles of size ds have infinite

strength—results in the compression line and grading curve shown in Figure

4.12 (compared with those from the initial simulation). The comminution

limit clearly causes a change in curvature of the compression line at high

stresses. The grading curve reveals the slightly different nature of the

evolving material. As one would expect, the grading curve for the material

with a finite minimum size curtails to 0% passing at a larger diameter than the

uncapped material. The increasing quantity of unbreakable small particles

necessitates the larger particles to break, which is also evident in the grading

curve. For a vertical applied stress of approximately 30 MPa, the uncapped

material has a larger percentage of particles larger than 0.8 mm and 1.6 mm

compared with the material with a comminution limit.

As mentioned earlier, the above simulation became unsupportable when low

voids ratios were reached, which was the case for the following simulations

Figure 4.11 Particle size distributions at a vertical stress of 30 MPa for various initial particle
strengths
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where it was not possible to achieve as high macroscopic stresses as in the

experimental work (e.g. 100 MPa).

Due to the monodispersity and lack of particle shape, it is difficult to conduct

oedometer tests at different voids ratios. However, Figure 4.13 compares the

initially monodisperse simulation with another featuring a broader, graded

particle size distribution. The two simulations have the same strength

parameters (q0 = 37.5 MPa, m = 3.3) and use the same assumed hardening

law defined in equation [4.7]. Both simulations have the same median grain

size (d50 = 2 mm), however the graded sample has a coefficient of uniformity,

Cu, of 1.5 giving minimum and maximum initial grain sizes of 1.3 mm and

3.0 mm respectively, starting with 820 initial particles. The sample is again

generated in a random relatively dense state resulting in an initial voids ratio

lower than the monodisperse sample. The compression lines have similar

yield points but more significantly they appear to have the same slope, which

agrees with experimental observations (e.g. Nakata et al., 2001a; McDowell,

2002) where, for a given sand, the plastic compression index is a constant

independent of initial grading.
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Simulations have been performed on monodisperse assemblies with the same

initial size d0 and strength q0, but with various Weibull Moduli. Decreasing

the modulus increases the variability in strength and also governs the

assumed size-hardening law according to equation [4.7]. With d0 = 2 mm and

q0 = 37.5 MPa, q0 as a function of particle size is plotted for various values of

Weibull Modulus which are related to the slope of the lines in Figure 4.14,

Figure 4.13 Effects of different grading on the normal compression plot

Figure 4.12 Effects of a comminution limit on the normal compression plot (a) and the
particle size distribution (b) after compression to 30 MPa

(a)

(b)
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according to equation [4.7]. The resulting normal compression lines and the

ensuing particle size distributions as a function of applied stress for

assemblies with varying Weibull moduli are shown in Figure 4.15.

It is apparent from the normal compression curves that for a given initial

value of q0, the Weibull modulus dictates the rate of onset of yielding (the

maximum curvature of the plot). Furthermore, because it has been assumed

to control the hardening law as defined in equation [4.7], it also affects the

gradient of the normal compression line following yield. As the modulus

decreases, there is more variation in particle strengths for any given particle

size. This means a portion of weaker particles hence the earlier onset of

yielding and a less well-defined yield point.

The modulus of 4.0 means a fairly narrow distribution of strengths, which

explains why this simulation demonstrated the latest and most sudden

yielding. It also reduces the hardening effect (i.e. d reduces more rapidly with

increasing stress), so has the steepest normal compression line and most

overall breakage. The final number of particles is greater than all lower values

of m. The lowest modulus, m = 1.0 shows some very early breakage, but a

more gradual, early yield point followed by a shallower normal compression

line. The grading curves reveal that the lowest modulus exhibits fewest

breakages and the least developed grading; the highest modulus displays the

most breakage and evolved grading curve. Because the hardening law in

equation [4.7] has been assumed, m governs both the rate of onset of yield

and the plastic compressibility index, which will be separated later in the

chapter.

A lower modulus implies material ‘disorder’. Considering critical flaw size

with regard to Griffith’s Law (Griffith, 1921), high Weibull moduli would imply

that as grain size decreases, the size of the critical flaw becomes a higher

proportion of the particle, meaning a narrower overall distribution of critical

flaws (and critical stress) and less variability, regardless of particle size. A low

modulus however implies that as particle size increases, the critical flaw size
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increases at a greater rate (suggesting an upper limit of particle size), and

resulting in much more variation in critical flaw size and fracture stress.

4.2.4 Alternative Breakage Mechanisms

Two alternative breakage mechanisms have also been explored: splitting into

3 and 4 equal fragments. For these mechanisms, the new particles created

Figure 4.15 One-dimensional normal compression plots (a) and the particle size distributions
(b) for various Weibull moduli

(a)

(b)

Figure 4.14 Strength as a function of size for various Weibull moduli with initial strength
37.5 MPa, using the hardening law in equation [4.7]
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overlap and are completely within the boundary of the original particle. This

is similar to some of the investigative work performed by Ben-Nun and Einav

(2010), except in 3D and with different breakage criteria and mechanisms.

Ben-Nun and Einav explored three breakage configurations: splitting in to 3, 5

and 6 particles, each case randomly orientated. However, the kinematic

constraints of this process are very different in three dimensions.

When splitting into three fragments—trilateral breakage—the emergent

particles are placed at equal distance from one another and from the centre

of mass of the original particle, illustrated in Figure 4.16(a). One emergent

particle is placed in the direction of the major principal stress, while the axis

connecting the centres of the two other emergent particles lies in the

direction of the minor principal stress. The three fragments move outwards,

along the lines connecting their centres of mass to that of the original parent

particle.

For the case of splitting into four equal fragments—quadrilateral breakage—

the emergent particles are placed in an equal quadrilateral arrangement,

aligned with the major and minor principal stress axes. The overlap causes

the particles to move outwards radially from the central point, in equal

directions in the minor-major stress plane, shown in Figure 4.16(b). The same

initial sample was used, with d0 = 2 mm and m = 3.3, and an initial strength of

q0 = 37.5 MPa.
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As can be witnessed in Figure 4.17, there is not much difference in the normal

compression lines; the curves appear to have very similar yield points and the

same gradient. This suggests that the manner of breakage does not alter the

normal compression line, which only depends on the particle strength as a

function of size, which is a material constant. This seems logical when it is

well known that various densities of the same material converge upon the

same normal compression line (e.g. McDowell 2002). The fact that the

Figure 4.16 Alternative splitting mechanisms: trilateral splitting into 3 equal particles (a), and
quadrilateral splitting into 4 equal particles (b)

(a)

(b)
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breakage mechanisms have little or no effect on the compression lines would

imply that they also have little effect on the grading curves at a given stress.

As can be viewed in Figure 4.17(b), this seems consistent—there is not much

effect on the particle size distributions, however they are not fully evolved so

it is difficult to confirm categorically that this is the case. Ben-Nun and Einav

(2010) reported that changing the breakage configuration did change the final

grain size distributions with regard to the fractal dimension, although this was

in 2D, where the kinematic constraints are very different.

4.2.5 Alternative Hardening Laws

It seems rational to investigate size hardening laws which are independent of

the Weibull modulus, isolating the size effect from the distribution of

strengths. As such, two additional alternative laws have been employed.

Each hardening law has its own degree of justification, however, the purpose

Figure 4.17 One-dimensional compression plots for various breakage mechanisms (a) and the
associated final particle size distributions (b)

(a)

(b)
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here is to determine the sole effects the size hardening law has on normal

compression, rather than which provides the most realistic results.

The first alternative assumes that surface-initiated flaws dominate fracture.

This would mean the surface area of a particle is the influential factor instead

of volume. Using Weibull statistics as before, and as shown in section 2.5.2,

one can arrive at the following relationship:

[4.8]

A second alternative, based on Griffith’s Law of fracture mechanics (Griffith,

1921), assumes that the size of the critical flaw, a, in a particle is proportional

to its size, i.e. a  d. Griffith (1921) states that the fracture stress is

proportional to the square root of the flaw size, so one can say:

[4.9]

Using strength and size parameters as before (q0 = 37.5 MPa, d0 = 2 mm, and

m = 3.3) it is possible to compare the various size hardening laws for a given

initial distribution of strengths. Figure 4.18 shows the corresponding normal

compression lines and final grading curves for the three laws described above.

For the alternative hardening rules, i.e. equations [4.8] and [4.9], the plastic

compressibility changes for a given Weibull modulus. This results in such a

degree of particle breakage and reduction in voids ratio that it was not always

possible to reach high stresses. This is evident in the normal compression

graph: if the compression lines remained linear they would approach very low

void ratios before reaching a stress such as 100 MPa. In reality the

compression line would undergo a change in curvature due to the

comminution limit as discussed earlier. All three compression lines have the

same yield point and rate of onset of yield because the Weibull modulus is

the same. This confirms that the initial distribution of strengths determine

the nature of yielding. It is evident that Griffith’s hardening law, which gives

the smallest size-effect on particle strength, gives the steepest compression
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line. When a particle breaks in the simulation with the original hardening law,

given in equation [4.7], the new fragments have higher strengths than in the

other two simulations, giving the compression line a shallower gradient as

larger stresses are required to break particles and reduce the void ratio. This

shows that it is the hardening law exclusively that determines the slope of the

compression line. This is consistent with what was observed in Figure 4.15

when changing the modulus, but this time without altering the strength

distribution. If one considers the extreme case where particles of all sizes

have equal strengths, this would lead to a catastrophic collapse in void

volume after yield.

4.2.6 Alternative Strength Distributions

Continuing to separate the dual effects of the hardening law and strength

distribution, it is possible to vary the distribution of strengths for a given size

Figure 4.18 Effects of alternative hardening rules on the one-dimensional normal
compression lines (a) and the particle size distributions (b) for a given stress

(a)

(b)
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of particle while keeping the size effect on strength constant. Using the

assumed law from equation [4.7], with a Weibull modulus of 3.3, simulations

were conducted using alternative distributions of particle strengths, so that

Weibull cannot be deemed to be essential for normal compression. The

variance of the distribution of initial strengths determines the rate of onset of

yield, and to establish if non-Weibullian distributions have the same effect,

different distributions have been employed. Two dissimilar uniform

distributions of strengths were used, as well as a simulation using a single

particle strength. All distributions (including single strength) had the same

initial mean strength and size hardening law. The mean value of strength, qm

for Weibull distribution is given by:

[4.10]

where is the gamma function. Values of m = 3.3 and q0 = 37.5 MPa give a

mean strength of 33.6 MPa, so the non-Weibullian distributions are given this

average initial strength to enable comparison. Because qm  q0, average

strength has the same hardening law. That is to say, for each strength

distribution, including a single strength as a function of size, it was assumed

that:

[4.11]

For the first alternative, the particle strengths for a single particle size satisfy a

uniform distribution with a fixed range of 60 MPa, i.e. for particles of size d,

crushing strengths lie within the range qm,d ± 30 MPa. The second alternative

simulation also makes use of uniform distributions but with a constant

coefficient of variation so that the standard deviation in particle strength for a

given size is proportional to its mean with a minimum strength of 0 MPa.

The normal compression lines for these three simulations, along with the

simulation using a Weibull distribution of strengths are given in Figure 4.19.
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As expected, all simulations display the same slope at high stresses (about

0.5). The lines appear to converge, although there is a slight deviation

exhibited by the simulation with varying range (constant coefficient of

variation). It is clear that the distribution of strengths governs the rate of

onset of yield, but it is the average strength as a function of particle size

which governs the slope of the normal compression line. All plots have

approximately equal slopes at approximately 30 MPa. The simulation with

single particle strengths for a given size shows the latest, most sudden onset

of yield before a sharp reduction in voids ratio. This is consistent with

experiments on glass beads which tend to have a low variability in strength

(m ≈ 6) and uniform grading (Nakata et al, 2001a).  The two simulations with 

uniformly distributed strengths undergo a more gradual onset of yielding, as

does the simulation with strengths satisfying a Weibull distribution.

4.2.7 Fractal Distributions

Inspecting the respective particle size distribution suggests that a fractal

distribution has emerged. To recall equation [2.34] from section 2.5.6, a

fractal distribution is one such that:

[4.12]

Where N is the number of particles of size L, greater than size d, and Dfr is the

fractal dimension (Turcotte, 1986). The nature of this equation means that a

fractal distribution would appear linear on a distribution plot with two

Figure 4.19 Plastic compression responses for simulations with the same mean particle
strength (33.6 MPa) but varying particle strength distributions
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logarithmic axes, with the fractal dimension emerging as the slope. It was

shown in the literature review that most granular materials (not only soils but

materials such as coal, fault gouge, and ice) under pure crushing evolve

towards a distribution with a fractal dimension between 2.0 and 3.0,

remarkably usually about 2.5 (Turcotte, 1986; Sammis et al., 1987; Palmer

and Sanderson, 1991; Steacy and Sammis, 1991; McDowell and Daniell, 2001),

with two-dimensional materials developing a dimension between 1.0 and 2.0.

The simulations of Ben-Nun and Einav (2010) resulted in fractal dimensions of

around 1.1–1.4 for discs.

Considering only the initial sample with silica sand parameters (d0 = 2 mm,

q0 = 37.5 MPa, m = 3.3), as this simulation has the most fully evolved grading,

it certainly appears a fractal distribution has emerged. The number of

particles by percentage with a larger diameter is plotted against diameter on

a logarithmic scale in Figure 4.20. The curves appear exponential. This data is

plotted again with the percentage by number of particles also on a

logarithmic axis in Figure 4.21, and the linearity implies fractal geometry. The

slope becomes steeper (i.e. the fractal dimension increases) with increasing

stress, with the slope appearing to become constant, indicating a steady value

has been reached. As the stress increases, the linear portion of the curve

from which the fractal dimension can be obtained increases in length,

suggesting a more reliable value. The final slope (30 MPa) gives a value of

Dfr = 2.5, which is encouraging considering what is observed for natural

granular materials. Plotting the absolute number of particles (also on a

logarithmic axis) against diameter, in Figure 4.22, shows that it is almost

solely the smallest particles which are fracturing as the stress is increased.

Despite encompassing approximately 20000 particles, the final distribution

only covers approximately 1 log cycle of sizes—which should be considered a

narrow range. In Ben-Nun and Einav’s (2010) 2D analysis, their final

distributions spanned almost 2 log cycles.
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As discussed earlier, McDowell and Daniell (2001) investigated why a value of

about 2.5 consistently emerges for soils and other granular materials. From

analysis of simulations of uniform blocks by Steacy and Sammis (1991), they

remarked a fractal dimensions of 2.5 emerged if blocks of the same size with

finite contact area could not exist, and if a ‘stress bias’ influenced the

probability of fracture. Hence it would seem worthwhile to examine

Figure 4.22 Evolving particle size distribution form the simulation of silica sand plotted using
the absolute number of particles on double logarithmic axes

Figure 4.21 Evolving particle size distribution form the simulation of silica sand plotted on
double logarithmic axes

Figure 4.20 Evolving particle size distribution form the simulation of silica sand
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neighbouring particles in the simulations of silica sand after undergoing one-

dimension compression. Defining neighbouring particles simply as two

particles which are in direct contact (i.e. there exists an overlap and force

acting between them), it is possible to observe how many same-sized

particles are neighbours. The number of neighbouring particles of equal size,

in terms of percentage of total particles in contact, is plotted against

macroscopic vertical stress in Figure 4.23 for the original simulation based on

data for silica sand. For the initially uniform sample, all contacts are between

equal-sized particles; after loading to 30 MPa approximately 15% of all

contacts are between particles of the same size. This value appears to exhibit

little change after about 15 MPa, suggesting a steady condition. This is not

quite the 0% speculated by Steacy & Sammis (1991), but it seems very

reasonable when recognising that particles are considered most vulnerable

when loaded by neighbouring particles of the same size, as this allows the

particle to be loaded at opposite poles, inducing the maximum tensile stress.

If you compare Figure 4.23 with Figure 4.24, which shows the fractal

dimensions derived from the progressive grading curves for the same

simulation, it shows a similar development under increasing stress: that is to

say the fractal dimension reaches 2.5 when the number of same-sized

neighbours reaches a minimum.

Figure 4.23 Percentage of equally sized neighbouring particles as a function of applied stress
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However, more is revealed by examining the contacts within the final crushed

sample with regard to individual particle sizes. The particles can be described

in terms of their hierarchical ‘rank’, or size—with the largest (initial) particle

size d0, with fragmentation producing subsequent particle sizes d1, d2,...,ds,

where ds is the smallest. After compression, there are approximately 202

largest particles, size d0, which have an average of 22.2 contacts each. For

these 202 particles, the number of particles having 1 or more same-sized

neighbours is 163, giving an average number of contacts with same-sized

neighbours of 1.4. The remaining contacts are with smaller grains, as no

larger particles exist. Considering the next sizes of particles (d1, d2, ...,d8) each

rank increases in quantity as the particle size decreases, with approximately

3,000 particles of size d8 (0.32 mm). As one would expect, the average total

number of contacts per ball reduces with decreasing particle size. However,

interestingly, what remains constant is the number of contacts with particles

of equal or larger size. Particles of all these sizes have an average of

approximately 2 contacts with particles of equal or larger diameter. This

number remains constant across the range of sizes, while the average number

of contacts with smaller particles (and hence the average total number of

contacts) per ball decreases steadily with reducing particle size. This apparent

self-similarity is also visible in Figure 4.25, where similar random packing is

visible across the scales. These observations imply the particle size

distribution is indeed fractal in character, at least across the intermediate

range of the discrete distribution. The subsequent ranks of particles, i.e. d9,

Figure 4.24 Fractal dimension as a function of applied stress
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d10,... up to d32 , decrease in number and have not fully evolved, with just 4

particles of size d32 = 0.0012 mm.

It appears that it is breakage of particles which are primarily loaded by same-

sized or larger particles that leads to a stable, fractally-distributed material. In

this model, almost all particles regardless of rank have an average of 2

contacts with equally-sized or larger particles, however, the smallest particles

have far fewer total contacts, and are therefore much more likely to have a

high induced octahedral shear stress, and therefore continue to fracture as

stress increases, leading to a fractal distribution of particle sizes, apparently

tending towards an ultimate fractal dimension of 2.5.

With regard to the effect of a ‘stress bias’, there is almost certainly an

influence when a single particle breakage is considered. The vertical load

which was carried through the original particle will be apportioned to the

surrounding particles, causing an increased stress concentration in the

surrounding area. The simulations performed by Steacy & Sammis (1991) did

not involve loading the array of blocks, which is why they deemed it necessary

to implement an artificial influence. It seems sensible to assume there is such

an influence in a loaded, stress-controlled simulation. For a single incidence

of breakage, scanning the new fragments reveals that usually between 20–

30% of them are within 2 radii distance of a particle which broke on the

previous occasion, which supports this idea.

4.2.8 New Compression Law: Log e–Log σ

A double logarithmic plot was suggested by Pestana & Whittle (1995), who

described typical values for the compression slope for sand lying between 0.4

Figure 4.25 View of a virtual cutting plane through the numerical sample across several scales
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and 0.5, usually towards the upper limit of 0.5. The compression line for silica

sand from McDowell (2002) has a slope of 0.46 (≈ 0.5) when plotted on 

double logarithmic axes. The simulation in this chapter using the data of

McDowell’s silica sand has a corresponding slope of 0.5, which shows

impressive agreement, and both are within the correct range. The slopes are

displayed in Figure 4.26.

McDowell (2005) justified the use of a double logarithmic plot, and went on

to validate the slope of the compression line physically using fractal crushing

theory, which was outlined briefly in section 2.5.6. McDowell used an

assumed fractal dimension of 2.5, which is what many granular materials

evolve to under pure crushing (Turcotte, 1986; McDowell and Daniell, 2001).

The plots in Figures 4.21 and 4.22 show fractal dimensions in good agreement

with this, and from Figure 4.24 one might assume that the value of 2.5

Figure 4.26 One-dimensional compression plots for silica sand from McDowell (a) and from
the numerical simulation (b), plotted on log e–log σ axes

(a)

(b)
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remains consistent at higher stress levels with further crushing. Assuming a

value of 2.5, McDowell (2005) showed that for a granular material with

strengths forming a Weibull distribution with a modulus of approximately 3,

the slope of the normal compression line should be about 0.5 on a log e–log σ

plot.

Assuming the same fractal dimension (i.e. 2.5), just as McDowell (2005) did,

from equation [4.12] it is possible to say that the number of particles N

greater than or equal to a size di is given by:

[4.13]

Considering again a hierarchical splitting model, with largest (initial) particle

size d0, and subsequent broken particle sizes d1, d2,...,ds. The distribution of

discrete sizes can be approximated to be fractal if it covers a wide range of

scales (Turcotte, 1986; Palmer and Sanderson, 1991). Using equation [4.13]

and considering the next smaller size of particle di+1, we can write:

[4.14]

Subtracting gives the number of particles with size equal to di+1:

[4.15]

This can be written:

[4.16]

where n is the number of fragments produced by each fracture and is

constant. Equation [4.16] implies a constant probability of fracture between

each size (see Turcotte, 1986; Palmer and Sanderson, 1991). This is sensible

because the normal compression lines have been shown to be independent of

the distribution of strengths for a given particle size, and therefore the
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probability of fracture must be dominated by the loading geometry, as

discussed earlier. It can be inferred that for the smallest size, (i.e. particles of

size ds) some of which will break when stress is increased (a proportion of

each particle size in the hierarchical splitting model remains as stress

increases, this is what gives the fractal distribution):

[4.17]

which, considering volume leads to:

[4.18]

The size of the smallest particle is a function of stress level according to the

assumed hardening law for the soil. Recalling the original hardening law in

[4.7], re-written for the smallest particles as:

[4.19]

and given that the current macroscopic stress, σ is proportional to the

average strength of the smallest grains, rearranging and substituting equation

[4.19] into [4.18], gives:

[4.20]

McDowell (2005) proposed that the void space is dominated by the smallest

particles—it is well known, for example, that soil permeability is governed by

the smallest particle sizes (Hazen, 1911). McDowell (2005) then proposed,

and justified in terms of the implied particle kinematics, that the void space is

proportional to the total volume of the smallest particles once a fractal

distribution has emerged. In this case, [4.20] implies:

[4.21]
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A power law in this form makes sense when one considers that the void space

is dependent on the smallest particle size. The smallest particle must in turn

be related to the stress level according to the size effect on strength—which

is a power law, and is assumed in this case to be governed by the Weibull

modulus. The void space should therefore be a power function of stress,

giving a linear normal compression line on double logarithmic axes.

The value of 3.3 used in the simulations, for all intents and purposes, can be

considered equivalent to the value of 3 for which McDowell (2005) attained a

slope of 0.5. Using the same approach for the assumed hardening law in

equation [4.7], materials with Weibull moduli of about 4, 3, 2, and 1 should

have slopes equal to approximately 0.7, 0.5, 0.3 and 0.2 respectively,

according to equation [4.21]. The normal compression lines are plotted in

Figure 4.27 for the range of m values used in the above simulations. For

moduli of approximately 4, 3, 2, and 1, the slopes are 0.7, 0.5, 0.3 and 0.2

respectively. These values agree with the values predicted using McDowell’s

physical justification. All the lines appear linear, confirming a power law.

Pestana & Whittle (1995) supposed that sands should have a slope in the

region of 0.3–0.5 which, assuming the original hardening law in equation [4.7]

is applicable, would correspond to a material with crushing strengths obeying

Weibull statistics with a modulus in the range of 1.8–3.0. This fits data from

the literature: typical values of m for various sands are in the region 1.5 to 3.3

(e.g. McDowell, 2001, Nakata et al. 1999).

Figure 4.27 Normal compression lines on a double logarithmic plot for q0 = 37.5 MPa with
various Weibull moduli, assuming hardening law given in Equation [4.7]
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Considering the alternative hardening laws, if surface flaws are alleged to

dominate fracture and equation [4.8] is assumed, then the following

relationship can be arrived at in a similar fashion to above:

[4.22]

Whereas if the other alternative hardening relationship assuming Griffith’s

Law, in equation [4.9] is used, the following relationship is obtained:

[4.23]

These would predict slopes of about 0.8 and 1.0 for former and latter

hardening laws respectively, and Figure 4.28 appears encouraging, and

indicates similar values for the slopes, although the compression lines aren’t

considered long enough to confirm this is the case.

It has therefore been shown that the plastic compressibility of granular

materials is solely a function of the size effect on particle strength. This has

implications for the prediction of the compressibility of aggregates comprising

very large particles. For example, if one is interested in the compressibility of

a rockfill dam, then by crushing individual rocks and obtaining the size effect

on strength, one would be able to predict the compressibility.

If particle strengths are related to size by a law in the form:

Figure 4.28 Normal compression plots far various hardening laws using double logarithmic
axes
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[4.24]

and one-dimensional compression can be described by the following

equation:

[4.25]

it is shown that the compression index, Cc, is a function of the parameter b:

Cc = f(b). Specifically, the following relationship can be inferred from the

physical justification by McDowell (2005) and results of simulations with

various assumed hardening laws:

[4.26]

Hence, the end result is that for the first time, there is the following equation

for the normal compression line:

[4.27]

where b controls the particle size effect on strength. Strictly speaking, to be

dimensionally consistent, equation [4.27] should be rewritten as the

following:

[4.28]

where ey is the value on the linear log-log plot at a stress corresponding to the

yield stress σy, and σy is proportional to the average particle strength.

In addition, for the first time, simulations in 3D have used a reasonable

number of particles which holds much promise for use in boundary value

problems.
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4.3 CONCLUSIONS

In this chapter, DEM has been used to simulate one-dimensional compression

to investigate particle crushing, the associated phenomenon of fractal particle

size distributions. Particle fracture has been simulated using a range of very

simple mechanisms, replacing the breaking particle with new smaller particles

while maintaining constant mass. Previously only agglomerates have been

used to simulate particle crushing in 3D during compression, these demand a

very large number of initial particles and bonds. Particle fracture was

governed by the octahedral stress within a particle, which takes into account

multiple contacts, and has been related to data measured from single particle

crushing tests.

Normal compression lines are clearly observed, and the observed slope is

consistent with the theoretical prediction. For an initially uniform particle

size, the rate of onset of yield is a function of the distribution of particle

strengths. For an initial voids ratio and given Weibull modulus (coefficient of

variation), the yield stress is proportional to the average particle octahedral

shear strength. The slope of the normal compression line and the particle size

distribution appear to be independent of the breakage mechanism or the

distribution of strengths, and solely dependent on the size effect on average

particle strength. This appears to clearly show, for the first time, that the

plastic compressibility index is simply the hardening law due to the smallest

particles breaking and becoming statistically stronger. This has implications

for the prediction of the compressibility of aggregates comprising large

particles.

The evolution of a fractal particle size distribution appears to be triggered by

the tendency of similar sized neighbouring particles to fracture. The results

show clearly that a fractal distribution of particle sizes emerges, with a fractal

number of 2.5. The simulations also show the correct behaviour if a

comminution limit is included, such that the compressibility index reduces at

high stresses.
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The compression lines have also been plotted in log e–log σ space and the

prediction for silica sand shows agreeable similarity to the experimental

results, and the slope is in agreement with McDowell’s (2005) theoretical

prediction.

The overall results show encouraging similarity with widely reported physical

behaviour. Given that the simplest assumptions have been made—particles

split according to octahedral shear stress and the fragments move in the

direction of the minor principal stress—the resulting simulations have shown

an insight into one-dimensional compression and replicated this process

correctly in 3D for the first time. It would appear that the micro mechanics of

normal compression have finally been exposed.

The model holds much promise in the application to solving boundary value

problems, now that agglomerates are not required to simulate the crushing

process.
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CHAPTER 5

APPLICATIONS OF PARTICLE CRUSHING MODEL

5.1 CREEP

5.1.1 Introduction

In Chapter 4, a new equation for the one-dimensional normal compression

line was proposed, which contained a parameter controlling the size effect on

average strength. It was shown that this new equation held for a wide range

of DEM simulations of crushable aggregates. This section incorporates the

time dependence of particle strength, and a new equation is proposed and

examined using simulations of one-dimensional creep.

Creep strain is traditionally reported as being linearly proportional to the

logarithm of time, e.g. Figure 2.46 (Leung et al., 1996). However, although

typical creep behaviour may seem linear on a plot of voids ratio against the

logarithm of time, this section aims to show that the new proposed law,

which is linear when voids ratio is also plotted on a logarithmic scale, is more

appropriate. The simulations in this section examine the effect of the size-

hardening law, the strength-time dependency and stress level and it is shown

that the new equation holds for each case.

5.1.2 New Creep Law

McDowell (2003) proposed a theoretical explanation for observed creep

behaviour, which will be briefly described again here. Granular materials

creep under constant effective stress (Murayama et al., 1984; Leung et al.,

1996; Lade and Liu, 1998), such that creep strain is usually reported to be

proportional to log time:

[5.1]

where t0 is the time from which creep strains are measured. Recalling from

the literature review, it has been shown that the creep of granular materials is
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accompanied by particle crushing (e.g. Leung et al., 1996; Lade and Liu, 1998).

McDowell (2003) proposed that a linear normal compression lines in voids

ratio–log stress space (McDowell and Bolton, 1998):

[5.2]

was consistent with equation [5.1]. The assumptions were that the current

macroscopic stress should be proportional to the average strength of the

smallest particles in the aggregate: these particles continue to crush under

increasing stress levels, becoming statistically stronger and filling voids.

According to equation [5.2], an aggregate should be in equilibrium with a

voids ratio ec under an applied stress c, where c is proportional to the

average strength of the current smallest particles s, so that:

[5.3]

where k is independent of particle size due to self-similarity across different

orders of particle size. Substituting equation [5.3] into equation [5.2] gave:

[5.4]

To recap, the law for the time-dependent strength of ceramics is that for a

tensile test on a ceramic specimen: if the standard test used to measure the

tensile strength TS, takes a time t(test), then the stress σt which the sample

will support safely for a time t is given by the equation:

[5.5]

where n is the slow-crack growth exponent (Ashby and Jones, 1986; Davidge,

1979). Data for n is very limited, but n is 10–20 for oxides at room

temperature. It is widely accepted that the failure of a spherical body under

diametral compression is, in fact a tensile failure (e.g. Jaeger, 1967)—hence if
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s,0 is the average particle strength which could be measured at time t = t0,

then the average strength s after a time t, according to equation [5.5] would

be:

[5.6]

and substituting equation [5.6] into equation [5.4] then gives:

[5.7]

hence the reduction in voids ratio, Δe as a function of time after time t0 is

simply:

Δ [5.8]

so that the log time effect is observed. Taking an initial voids ratio e0 = 0.5,

for example, at the onset of creep, the creep coefficient in equation [5.1],

given as:

[5.9]

ranges typically from about 0.0015 (taking λ = 0.1, n = 100) to 0.03 (taking

λ = 0.2, n = 10). Most of the values of creep coefficients published by Leung

et al. (1996) for one-dimensional compression of sand at high stress level fall

within this range.

In the previous chapter focusing on particle crushing during the compression

of sand, it was shown that the one-dimensional normal compression law is

actually given by the equation:
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[5.10]

where b controls the particle size-effect on mean particle strength, σm:

[5.11]

and ey is the value on the linear log-log plot at a stress corresponding to the

yield stress σy, and σy is proportional to the average particle strength for an

initially uniformly graded aggregate. In this case, if the analysis described

above in section 5.1.2 is reapplied to the new compression line described by

equation [5.10], the following can be directly obtained:

[5.12]

which is the new creep law proposed in this chapter.

5.1.3 Oedometer Sample

As with the simulations in the preceding chapter, an oedometer with a

diameter of 30 mm and a height of 7 mm is used. The details are given in

Table 4.1. The initial dense random sample consists of 620 particles with

uniform size d0 = 2 mm. The same breakage model is used whereby the

octahedral shear stress, given in equation [4.3] is used to determine whether

particle fracture should occur or not. When the stress within a particle is

found to exceed the individual strength, it is replaced with two new

fragments, in the manner of Figure 4.3. The particles have strengths as those

in Chapter 4 for the simulations modelling silica sand, i.e. the characteristic

value of octahedral shear strength, q0 is 37.5 MPa for the initial particles (d0 =

2 mm), the Weibull modulus, m is 3.3, and the size-hardening law is governed

by equation [4.7]. In the subsequent simulations, the sample is loaded to a

given vertical stress as before, but the particles are also subjected to a time-

strength dependency.
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5.1.4 Creep of Crushable Agglomerates

In this section, simulations are performed to establish whether equation

[5.12] applies to a simple sample of crushable particles subjected to normal

compression, and subsequently creep using DEM. To simulate creep, a

strength-time dependency is introduced to the model already used and

described in detail in Chapter 4. The oedometer sample is compressed

beyond yield until the applied axial stress was 10 MPa, for a sample of

spheres having a Weibull modulus m of 3.3 and a 37% q0 strength of

37.5 MPa, which were the parameters used previously to model experimental

data by McDowell (2002). Then, using a value of t0 = 0.001 s, all particle

strengths are decreased according to the relation given in equation [5.6]. The

simulation is then cycled while continuously monitoring the octahedral shear

stresses within each particle. When the stress within a particle is found to

exceed the individual strength, it is replaced with two new fragments.

Immediately afterwards, a number of computational cycles are completed to

dissipate the artificial pressure increase due to the overlap between new

fragments, the same method as used before. During this period, time is not

considered. The top platen is then gradually reloaded to maintain the

constant axial stress of 10 MPa. The stresses are then checked again and if

any particles are found to be in a state of breakage, the process is repeated—

i.e. particles are replaced with new fragments, the energy is allowed to

dissipate, then the platen reloaded to a stress of 10 MPa. Once no more

particles are in a state of breakage under a constant axial stress of 10 MPa,

the current voids ratio and elapsed time are recorded, after which

consideration of time is resumed, and the strength-time dependency is

reapplied.

Figure 5.1(a) shows the results for voids ratio as a function of the logarithm of

time for three different time exponents n. Figure 5.1(b) shows the same data

plotted on a log-log scale according to equation [5.12]. The slopes are shown,

and the predicted values according to equation [5.12] are also shown. If a

larger value of t0 is used, any plots of voids ratio against log time would have
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the same slope according to equation [5.12], with the curve simply shifted to

the right due to the higher starting value. However, the larger increments of

time would necessitate a higher number of computational timesteps to

complete the simulations.

Figure 5.2 shows results for the same initial sample, with a time exponent

n = 1, and three different Weibull moduli values of 1.0, 2.0 and 3.3 (all with

q0 = 37.5 MPa). Figure 5.2(a) shows the conventional plot of voids ratio

against log time, and Figure 5.2(b) shows the results on the log-log plot, with

the calculated slopes and the predicted values according to equation [5.12].

Figure 5.1 Voids ratio as a function of time for various time exponents n, plotted on
conventional semi-logarithmic axes (a) and double logarithmic axes (b)

(a)

(b)
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Figure 5.3(a) shows the creep response for the sample with q0 = 37.5 MPa,

m = 3.3 and n = 10, one-dimensionally loaded to stresses of 10 MPa and

15 MPa. The same results are plotted in the log-log space in Figure 5.3(b).

The simulation loaded to 15 MPa has undergone a higher degree of

compression, so has a lower voids ratio at the start of creep. Although the

initial voids ratios are different, the slopes are the same and agree with the

predicted value according to equation [5.12]. The data points on the log e–

log σ plots in all three figures do not fall on perfectly straight lines; this is

simply because the initial sample contained only 620 balls. However the

figures show clearly that the new equation [5.12] holds for each time

exponent, size-effect on strength and stress level considered.

Figure 5.2 Voids ratio as a function of time for simulations with various Weibull moduli m,
plotted on conventional semi-logarithmic axes (a) and double logarithmic axes (b)

(a)

(b)
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5.1.5 Conclusions

The discrete element method has been used to show that the time-

dependent law for the strength of ceramics gives rise to the correct creep

behaviour under one-dimensional conditions. The simulation results

presented agree with the hypothesis that the creep behaviour should be

linear when the logarithm of voids ratio is plotted against the logarithm of

time. The slope of the line has been shown to be given by a new equation

[5.12], which also includes the size effect on average strength as well as the

exponent for the time-dependent strength. Therefore, by performing

standard tests to obtain the size effect on average tensile strength of grains of

a material by crushing between flat platens, and if the exponent for time-

dependent strength can be measured by allowing particles to be loaded

Figure 5.3 Voids ratio as a function of time for simulations with the same strength
characteristics and time exponent under effective stresses of 10 MPa and 15 MPa, plotted on

conventional semi-logarithmic axes (a) and double logarithmic axes (b)

(a)

(b)
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under constant stress and measuring the time to failure, then the creep

behaviour of an aggregate of such grains can be predicted.

However, the assumption that all particle strengths degrade with time at the

same rate may be somewhat unrealistic; as particles under no (or very low)

stress are unlikely to experience the same decrease in strength, assuming that

strength degradation is caused by stress-induced crack growth. A more

fundamental analysis, relating strength, time and induced stress for each

particle may be more appropriate.

5.2 ONE-DIMENSIONAL COMPRESSION OF CEMENTED SAND

5.2.1 Introduction

In this section, simulations are presented which simulate the one-dimensional

normal compression of cemented sand. The behaviour of uncemented sand

in compression has been investigated thoroughly in Chapter 4, and in the

current section, the same model (using a scaled-down oedometer) is used but

incorporating inter-particle bonding to simulate cementation.

In the previous chapter, it was shown that it is possible to accurately model

the one-dimensional normal compression of uncemented sand. In the

literature review it was shown that cemented and uncemented materials

exhibit some similarities in compression, with both exhibiting stiff elastic

behaviour before yield and particle crushing. However, the addition of

cement is generally expected to increase the yield stress and enlarge the zone

in voids ratio–log stress space that a material can exist in, with these effects

increasing with the degree of cementation. Leroueil and Vaughan (1990)

defined this as ‘structure-permitted space’, which is bounded by the

compression line of the uncemented soil in its loosest state and that of the

densest, most cemented soil.

The general consensus from the available literature is that after yielding, the

normal compression lines of cemented and uncemented materials either run

parallel (e.g. Huang and Airey, 1998; dos Santos, 2009; Bobet et al., 2011) or
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converge at high pressures to a single ‘intrinsic’ line (e.g. Cuccovillo and Coop,

1999; Rotta et al., 2003), with the degree of cementation controlling the

distance between them and/or the rate at which they converge (these

schemes are compared in Figure 5.4).

Typical compression behaviour of a silica sand (which is the sand modelled in

this work) bonded with Portland cement is shown in Figure 5.5 from Marri

(2010). Silica sands are generally much stronger than naturally occurring

carbonate sands and organic soils (such as those from Figure 5.4) and so

exhibit larger yield stresses in compression. The effects of cementation are

clearly visible in Figure 5.5, although the applied stress is not high enough to

conclude if the NCLs are converging or independent of one another.

Figure 5.5 The effect of cementation on the behaviour of a silica sand in compression (Marri,
2010)

(a) (b)

Figure 5.4 Compression plots depicting the behaviour of cemented sands in compression,
showing parallel NCLs (a) from Bobet et al. (2011), and converging NCLs (b), from Cuccovillo

and Coop (1999)
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5.2.2 Oedometer Sample

The oedometer used in these simulations has the same dimensions as before:

a diameter of 30 mm and a height of 7 mm. However, the initial sample is

slightly denser, consisting of 640 particles of uniform size d0 = 2 mm, with a

voids ratio e0 = 0.84. The sample was created at the absolute densest state

possible to minimise the change in volume when a low stress is applied. As

will be shown in the figures, the bonded samples (representing cemented

sand) can sustain a higher voids ratio when the macroscopic stress is first

applied, causing the compression curves to appear to start at different initial

voids ratios. Other than a larger number of initial particles (and therefore

lower initial voids ratio) the properties are the same as those given in Table

4.1. The particles have strengths as before for the simulations modelling silica

sand; the characteristic value of octahedral shear strength, q0 is 37.5 MPa for

the initial particles (d0 = 2 mm), the Weibull modulus, m is 3.3, and the size-

hardening law is governed by equation [4.7].

The numerical sample is loaded in the same way as described previously, i.e.

the stress is increased in increments, and the particles strengths are checked

at once to allow for any breakages. When the octahedral shear stress

according to equation [4.3] within a particle is found to exceed the individual

strength, it is replaced with two new fragments, in the manner of Figure 4.3.

However, a smaller stress increment of 0.25 MPa is used herein, as the

sample is much stiffer due to the presence of bonds, although the data is still

only plotted at approximately every 1 MPa for clarity.

5.2.3 Inter-Particle Bonding

Building on the simulations investigating cementation in triaxial tests in

Chapter 3, cementation is once again modelled using the parallel bond

feature of the software (Itasca, 2005)—details of which were given in section

2.6.2. In a similar fashion to before, parallel bonds are installed between

contacting particles within the oedometer, with the noticeable difference

between these simulations and those in Chapter 3 being the contact model

used. In these simulations, the Hertz-Mindlin model is employed, as this was
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deemed necessary when modelling particle breakage. Parallel bonds, which

are defined by five parameters are set equal in size to the particles—i.e.

dbond = d0 = 2 mm. The parallel bond normal and shear stiffnesses (which are

defined in terms of stress per displacement) are set equal to one another to

minimise input variables. The parallel bond normal stiffness in terms of stress

per displacement should be equal to the elastic modulus divided by the length

of the bond (assumed equal to 2 x rball). This gives a value of approximately

15 x 1012 Pa/m for bonds between balls of diameter 2 mm, assuming that

cement has an elastic modulus of around 30 GPa (Ashby and Jones, 1986).

The parallel bond strengths and strength distributions are investigated later,

but at first are arbitrarily given uniform values of 37.5 MPa (in both pure

shear and tension) for simplicity—equal to the strength (q0) of the initial

particles.

Bonds are installed via the same method described in Chapter 3 to create an

average of 5 parallel bonds per sand particle. Another key difference

between the previous simulations that utilized parallel bonds and the current

set are that bonds are now only allowed to break at given intervals – in the

same manner as the particles. To recap, after particles are allowed to break

in the simulations, a number of computational timesteps are completed to

allow the elastic energy from new overlaps to dissipate, and avoid triggering a

chain reaction of breakage. So rather than allowing bonds to break in real

time, the same approach to particle breakage is adopted: after the sample is

loaded one-dimensionally, the parallel bonds are checked at once and if the

normal or shear stress at any contact exceeds the strength of the bond (if one

is present), then the bond is considered broken and removed. After the

bonds have been checked and allowed to break, the octahedral shear stresses

within the particles are then checked to allow for any particle breakages, after

which a number of computational timesteps are completed to allow the

artificially induced energy to dissipate. By comparison, if the bonds were

allowed to break in real time, a large portion would fail immediately after

particles have broken due to the artificial pressure spike caused by the
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creation of new particles. After each stress increment (0.25 MPa), the sample

is cycled continuously until no further breakage occurs.

In these initial simulations, if the octahedral shear stress q of any particle

exceeds its strength, then the particle will break, regardless of whether it is

bonded or not. If a breaking particle does happen to be bonded, when the

broken particle is deleted and replaced by smaller fragments, the bonds

associated with the original particle by default are also deleted (depicted in

Figure 5.6).

Figure 5.7 displays the normal compression line from the unbonded

simulation, which has the same slope as the equivalent simulation of silica

presented in Chapter 4, as well as the normal compression lines from two

bonded simulations (the parallel bonds in the two bonded materials have

uniform strengths of 37.5 MPa and 75.0 MPa) showing the effects of

increasing bond strength.

Considering just the unbonded simulation and the simulation with bond

strengths of 37.5 MPa – although the two simulations are initially created at

the same voids ratio (0.84), the unbonded material readily compacts to a

denser state when a low macroscopic stress is applied, which is evident from

the plot in Figure 5.7 where the compression lines appear to start at different

voids ratios. The parallel bonds resist compression when the vertical stress is

Figure 5.6 Schematic showing the results of particle fracture on the particle’s parallel bonds
(parallel bonds not to scale)
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applied, and help to maintain a looser packing; when the bonds break at

approximately 4 MPa, the bonded NCL almost converges to that of the

unbonded simulation. The bond breakage is catastrophic, with only 8%

remaining at 5 MPa, compared with over 99% at 4 MPa. It appears as though

the catastrophic bond breakage is triggered, or at least coincides with particle

breakage, as 51 particles also break at a vertical stress of approximately 4

MPa, which is the first significant fragmentation (only 5 particles had broken

previously). The bonded NCL then continues apparently parallel to the

unbonded NCL until about 8 MPa, at which point most of the remaining bonds

break, and the compression line then converges with the unbonded

equivalent (the intrinsic compression line). The unbonded simulation exhibits

little particle breakage up until the yield point at around 9 MPa. It is evident

that the bonds enable the material to exist at higher voids ratios at low

macroscopic stresses, which is in accordance with the experimental literature

discussed in Section 2.4.3; the bonded NCL displaying similar behaviour to

that depicted in Figure 2.34(a) or Figure 5.4(b) from Cuccovillo and Coop

(1999) for a weakly bonded cemented sand. However, the bonded NCL does

not extend beyond the unbonded intrinsic compression line and exhibit a

larger yield stress, as strongly cemented sands have been shown to (e.g.

Figure 5.4).

Increasing the bond strength has little effect on this—the NCL of the same

bonded material but with double the strength of the parallel bonds (75 MPa)

Figure 5.7 Normal compressions lines for bonded simulations, showing the effects of
increasing the bond strength along with the unbonded material
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is also shown in Figure 5.7. The compression lines of both bonded materials

are very similar, with both exhibiting a higher voids ratio than the unbonded

material until bond breakage occurs at around 4 MPa. The sample with the

stronger bonds does not converge quite as rapidly as the more weakly

bonded sample to the unbonded material, but nonetheless by a vertical stress

of 9 MPa, all three simulations have converged and are essentially at the

same state, with a voids ratio of around 0.76 and approximately 800 particles

each. At this stage, there are almost no parallel bonds remaining in either of

the bonded simulations, and all three NCLs all then follow the same path and

exhibit the same slope during compression, which has been shown to be

controlled by the size-hardening law of the particles.

An alternative particle and bond breakage mechanism is now presented—

which does not automatically remove bonds when a particle breaks. Instead,

new parallel bonds are installed between the new fragments and the

corresponding particles which were bonded to the original particle prior to

breakage. This new configuration, with ‘durable’ bonds seems feasible if one

considers that in reality when a sand particle breaks, any cementation will

certainly not disappear, and may continue to provide cohesion between

broken fragments and surrounding particles. This seems plausible from

Figure 5.8, which displays a magnified close-up of cemented sand particles

after being compressed to a mean effective stress of approximately 50 MPa.

The figure shows a particle which has suffered significant fracturing while still

appearing to have cement bonded to it, although it is unclear from the image

if the cementitious bonds to neighbouring particles are intact.

The new parallel bonds are given the exact same properties as the bonds

which exist before the broken particle is deleted (i.e. the same size, strength

and stiffness), and this configuration is shown in Figure 5.9. Bonds still break

in the same manner—that is they are checked and allowed to break at once.
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The compression lines of two simulations using this configuration are shown

in Figure 5.10, again with bond strengths of 37.5 and 75 MPa to show the

effects of increasing the strengths of the parallel bonds, as well the results

from the unbonded simulation. In Figure 5.10, the two bonded compression

lines appear very similar to the previous set of simulations; both bonded

materials initially exhibit a higher voids ratio at low stresses, before

undergoing major bond breakage and the NCLs converge with the unbonded

material. The material with ‘durable’ parallel bond strengths of 37.5 MPa

displays a slightly lower bond yield stress than the equivalent previous

simulation, with major bond breakage occurring after approximately 3 MPa.

Although one may expect that they would exhibit bond breakage at the same

Figure 5.9 Schematic showing the installation of new replacement parallel bonds after a
particle has fractured (parallel bonds not to scale)

Figure 5.8 SEM image showing close up of a fractured particle from a sample of sand bonded
Portland cement, after compression to 50 MPa (Marri, 2010)
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stress as in the previous simulations, those with durable bonds (i.e. using the

bond mechanism depicted in Figure 5.9) experience some bond breakage at

very low stresses. At a vertical stress of 3 MPa, shortly before catastrophic

bond breakage occurs, only 75% of the bonds remain unbroken. The previous

simulation (without durable bonds) with the same bond strengths still had

over 99% of the parallel bonds intact. This increased quantity of broken

parallel bonds is most likely due to the new fragments being bonded as soon

as they are created, while still overlapping by a large degree. The new

fragments (as discussed in Chapter 4), will move quite rapidly outwards in the

direction of the minor principal axis, due to the artificial overlap—if parallel

bonds exist between these new fragments and surrounding particles, this

sudden excessive force will be transferred to the parallel bonds potentially

causing additional bond breakage.

Again, the NCLs of the bonded simulations do not extend beyond the intrinsic

NCL of the uncemented simulation and do not display a larger yield stress.

Increasing the bond strength also has very little effect, with catastrophic bond

breakage occurring at a slightly higher macroscopic stress. Both bonded

compression curves swiftly converge with the unbonded curve, and after an

applied stress of approximately 6 MPa, all three simulations display

approximately equal voids ratio and total number of particles, and the

compression lines appear coincident.

Figure 5.10 Normal compression lines for simulations bonded with ‘durable’ parallel bonds,
showing the effects of increasing bond strength
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Figure 5.11 shows the particle size distributions at a stress of 20 MPa from the

unbonded simulation and two bonded simulations with the alternative bond

breakage configurations (see Figures 5.6 and 5.9). Both the simulation with

‘standard’ bonds and that with ‘durable’ bonds have almost identical particle

size distributions to the unbonded material at the given stress, further

indicating the parallel bonds have no significant effect on the simulations of

the compression of sand. Other than maintaining a looser packing in the early

stages of compression, the bonds have little or no effect on the overall one-

dimensional behaviour of the sand. It is possible that increasing the parallel

bond strengths further could result in more realistic cemented normal

compression lines—i.e. bonding sufficiently strong enough compared to the

sand particle strengths to allow the sample to reach states outside of the

uncemented NCL. However, it seems somewhat unrealistic having parallel

bond strengths with magnitudes higher than the particle strengths, as cement

by its nature is weaker than sand, and is known to have a very low fracture

toughness (Ashby and Jones, 1986).

Coop and Atkinson (1993) suggested that bond breakage precedes or

coincides with particle breakage—however, as mentioned, in the above

simulations particles could break regardless of whether they were bonded or

not (and in the first case, any parallel bonds associated with breaking particles

were deleted by default). There is no conclusive evidence in the literature

with regard to how cementation affects particle crushing, although authors

Figure 5.11 Final particle size distributions for the unbonded material, and simulations with
‘standard’ and ‘durable’ parallel bonds with uniform strengths of 75 MPa
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such as Marri et al. (2012) proposed that during compression, cementation

reduces particle crushing. This was based on the observation that increasing

the cement content of the sand reduces the compressibility—i.e. the

reduction in volume for a given vertical stress. This proposition seems

feasible if one envisages a sand particle bonded by cement to other

particles—the cement will increase the contact area, which would reduce the

induced tensile stress (Jaeger, 1967). With this in mind, a final alternative

configuration is presented with the aim of reproducing the behaviour of

cemented sand in compression, in which bond breakage must precede any

particle breakage. This is achieved by simply not allowing any particle to

break if there exists one or more parallel bonds attached to it—shown in

Figure 5.12. This approach is reasonable if one considers a particle coated in

cement, or heavily bonded (such as those previously shown in Figure 3.22)—

for the particle to be loaded diametrically (which has been shown to give the

highest octahedral shear stress) then the cementation will have to be broken

first.

The compression results of these simulations are presented in Figure 5.13,

which displays the compression curves of three bonded simulations, along

with that of the uncemented simulation. It includes the compression curves

of a simulation with uniform parallel bond strengths of 37.5 MPa as well as

one with double (75.0 MPa) and half (18.75 MPa) the magnitude. All three

Figure 5.12 Schematic showing how particles can only break once all contacting parallel
bonds have also broken (not to scale)
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bonded simulations display higher voids ratios in the early stages of

compression, and this time they display a clearly defined yield point, at higher

stresses than the unbonded simulation. The yield stress appears directly

proportional to the parallel bond strengths, with the most strongly bonded

sample not yet yielded at a macroscopic applied stress of 50 MPa. The other

two bonded simulations, i.e. those with parallel bond strengths of 18.75 and

37.5 MPa, display catastrophic bond breakage followed by rapid convergence

to the intrinsic compression line of the unbonded material. For both of these

simulations, immediately prior to the catastrophic bond breakage (at stresses

of 12 and 26 MPa, respectively) almost all the parallel bonds remain intact,

and furthermore, no particles have broken. After this, nearly all bonds have

broken, which is accompanied by significant particle breakage. Once the

bonded compression lines converge with the unbonded compression line, all

simulations follow the same slope, and contain a similar number of particles

at a particular voids ratio. This is representative of the behaviour of a very

brittle cemented sand, and is similar in essence to that of the calcarenite in

isotropic normal compression from Lagioia and Nova (1995), shown in Figure

5.14, although calcarenites in general are much weaker, hence the lower yield

stress.

Figure 5.13 Normal compression lines for simulations with parallel bonds that prevent
particle fracture, showing the effects of increasing bond strength
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Figure 5.15 shows the particle size distributions from these simulations at a

stress of 20 MPa, which confirms the convergent behaviour. The unbonded

simulation and that with bond strengths of 18.75 MPa have almost identical

grading curves, showing that after the bonds have broken, the latter material

demonstrates the same behaviour as the unbonded material. The two

simulations with higher bond strengths (37.5 and 75.0 MPa), which have not

yet yielded at this stress, display no particle breakage and hence have the

same grading curve as at the start of the simulations.

Although using this approach (not allowing bonded particles to fracture)

results in the correct form of NCL—i.e. the bonded NCLs exhibit a higher yield

stress, and exist in structure-permitted space (Leroueil and Vaughan, 1990)—

the NCLs jump at once to the unbonded compression line, and do not

reproduce the gradual yielding and convergence, or parallel nature that is

observed in the literature (e.g. Leroueil and Vaughan, 1990; Cuccovillo and

Figure 5.15 Particle size distributions at a stress of 20 MPa, for simulations with parallel bonds
that prevent particle fracture

Figure 5.14 Normal compression line for a calcarenite, demonstrating brittle yielding followed
by convergence to unbonded/destructured NCL (Logioia and Nova, 1995)
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Coop, 1999; Bobet et al., 2011; Dos Santos, 2009; Marri, 2010). The post-yield

compression lines for the bonded simulations are very steep, due to the

catastrophic bond breakage whereby nearly all break at once.

5.2.4 Bond Strength Distributions

Using the same logic when investigating and modelling cemented sand in

triaxial shearing (Chapter 3), one-dimensional compression tests have been

performed utilizing various distributions of bond strengths. Using the criteria

which displayed the correct qualitative compression curve (whereby bonded

particles aren’t allowed to fracture), simulations with four different Weibull

distributions of parallel bond strength are now presented, with the

compression curves shown in Figure 5.16.

All four bonded simulations (representing cemented sand) have mean parallel

bond strengths of 37.5 MPa, but with Weibull moduli m of 0.5, 1.0, 2.0 and

3.0. The Weibull distribution (see Figure 2.38) has been used to model

cementation previously in Chapter 3. To recap, a low Weibull modulus

signifies high variability. The simulation with a parallel bond strength

distribution with a Weibull modulus of 0.5 has the widest distribution of

strengths, and from Figure 5.16 it can be seen that this compression line

displays the earliest onset of yield, and has the most gradual convergence to

the intrinsic compression line. Following this yield, there appears a post-yield

compression line and behaviour which fits the schematics depicted previously

in Figures 2.34–2.36 and 5.4(b). The simulation with the bond strength

distribution with the highest Weibull modulus (m = 3.0) displays the latest and

most catastrophic bond yielding, similar to both a brittle cemented sand (e.g.

Lagioia and Nova, 1995) and the previous simulation showed in which there is

a uniform bond strength of 37.5 MPa (Figure 5.13).
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Liu and Carter (1999, 2000) developed a framework to describe the idealised

behaviour of structured soils in compression. They proposed that the post-

yield behaviour in one-dimensional compression could be described by:

[5.13]

where Δe is the additional part of the voids ratio sustained by the soil

structure, in this case cementation, although to be consistent with equation

[4.28], this can be written:

[5.14]

A value of Δe = 0 represents unstructured soil, in this case the uncemented

silica sand. The additional component of voids ratio sustained by the

structure is expressed as:

[5.15]

where S is a soil parameter called the structure index, σs,y is the vertical stress

at which yield of the structured soil occurs, β is the destructuring index, and σ

is the current vertical stress (Liu and Carter, 2000). The value of S can be

calculated if the yield stress of the structured soil and the voids ratios of both

the structured and unstructured soils at the yield stress are known.

Figure 5.16 Normal compression lines for simulations with parallel bond strengths with
various Weibull moduli
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Using this framework, the simulation with a bond strength distribution with a

Weibull modulus of 0.5 has a destructuring index, β of approximately 5,

shown in Figure 5.17(a). The simulation with the narrowest distribution of

bond strengths (m = 3) has a destructuring index of around 50, shown in

Figure 5.17(b). Experimental data for values of β for cemented sands is quite

limited: Liu and Carter (2000) found a value of 3 for artificially cemented silica

sand (after Maccarini, 1987), and a value of 35 for a calcarenite (from Lagioia

and Nova, 1995); shown in Figure 5.18.

It is clear that the parameter β, i.e. the rate at which destructuring occurs, is

representative of the brittleness of the structured material. Higher values

indicate very brittle cementation, while lower values are typical of more

ductile cementation. For the simulations, it is the distribution of bond

Figure 5.18 Compression behaviour with predictions using Equation [5.15] for an artificially
cemented sand and a calcarenite (Liu and Carter, 1999)

Figure 5.17 Compression behaviour from the simulations of sand with a parallel bond
strength distribution with Weibull moduli of 0.5 (a), and 3.0 (b), with the destructuring

indices β and predictions using equation [5.15] shown

(a) (b)
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strengths that control the destructuring index, leading to the conclusion that

brittle cemented sands such as naturally occurring cemented carbonate sands

have a narrow distribution of bond strengths. On the other hand, ductile

cemented sands, for instance those bonded with materials such as Portland

cement would appear to have a much wider distribution of bond strengths.

This fits with observations from Haeri et al. (2006) who concluded that of

Gypsum, lime and Portland cement; the latter was the most ductile

cementing agent.

In these simulations, the parallel bonds by their nature have a significant

influence on particle crushing, and as a result noticeably affect the

compression of the material. While intact, the parallel bonds prevent bonded

particles from breaking, thereby resisting significant reductions in volume.

The simulation which displays the most gradual convergence to the intrinsic

compression line, i.e. the simulation which requires the largest increase in

stress from yielding to convergence, is the simulation with the widest

distribution of bond strengths. This simulation, with a parallel bond

distribution Weibull modulus of 0.5 has some parallel bonds with significantly

higher strengths than the other simulations (although the mean strength is

the same). This means there are still intact parallel bonds reducing particle

crushing at high macroscopic stresses, which sustain an additional voids ratio.

Figure 5.19 shows the percentage of parallel bonds remaining unbroken

versus applied stress, which confirms the influence bonds have on the

compression behaviour. The simulation with m = 0.5 exhibits a steady decline

in the number of intact bonds from first loading, with 6% of the parallel bonds

remaining unbroken at termination. The corresponding simulation, with m =

3.0 displays very sudden, catastrophic bond breakage after which no bonds

remain intact, which corresponds to the sudden yielding and convergence

with the intrinsic compression line shown in Figures 5.16 and 5.17(b). These

observations certainly suggest that cementation (or at least the parallel bonds

in the simulations) reduces particle crushing, which in turn reduces the

compressibility, in line with the speculation by Marri et al. (2012).
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The final particle size distributions are given in Figure 5.20 for the simulations

with various Weibull distributions of bond strengths. These are obtained at a

vertical stress of 23 MPa (the highest stress all simulations reached), at which

point the compression curves have essentially converged. Although the

particle size distributions appear similar, the two simulations with a portion of

bonds remaining unbroken (m = 0.5 and 1) have experienced less crushing

and demonstrate less-developed grading curves.

5.2.5 Cement Content

The literature showing the effects of increasing cement content on the

behaviour of cemented sand in compression is relatively limited, especially

with regard to artificially cemented silica sand. For example, in Figure 5.4:

Bobet et al. (2011) performed one-dimensional compression tests

Figure 5.20 Final grading curves for the simulations with bond strengths with Weibull
distributions with various moduli

Figure 5.19 Percentage of intact parallel bonds remaining as a function of vertical applied
stress
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investigating the effects of increasing quantities of Portland cement using an

organic soil (with a loss on ignition of approximately 50%); Cuccovillo and

Coop (1999) meanwhile compared the behaviour of weak and strong

naturally cemented carbonate soils.

The effects of increasing the quantity of Portland cement for a cemented

silica sand are shown in Figure 5.21 from Marri et al. (2012). As with Figure

5.5, Figure 5.21 shows that the addition of cement appears to cause the

compression curve to extend beyond the intrinsic curve of the uncemented

material, increasing the yield stress. The graph shows that increasing the

content of cement reduces the compressibility, i.e. the reduction in volume

for a given applied stress, however the applied stresses are not large enough

to determine the true nature of the cemented NCLs. As mentioned, there is

some discrepancy between the observed effects during compression of

increasing the degree of cementation: some authors speculating parallel

normal compression lines, and others suggesting NCLs unique for each

cement content, converging to the intrinsic compression line. It is generally

accepted however that the degree of cementation, or at least the strength of

the cementation, increases the yield stress and the extent at which the

cemented compression curves extends in to ‘structure-permitted space’.

There are several ways in which one may approach modelling an increasing

degree of cementation using DEM, which were discussed in Chapter 3 (such

as altering the variation/magnitude of bond strengths and stiffness, or various

Figure 5.21 Effect of Portland cement content on the isotropic compression of silica sand
(Marri et al., 2012)
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combinations thereof; or altering the quantity of bonds and/or bond size).

The effects of increasing the bond strength have already been shown;

increasing the stiffness simply results in earlier bond breakage; increasing the

bond size has little effect on compression. From the triaxial simulations

presented earlier, it was shown that the most effective method, i.e. that

which produced the correct qualitative change in behaviour, was increasing

the quantity of parallel bonds within the sample.

In the current section thus far, neighbouring particles and those within very

close proximity are bonded to one another – the proximity defined so as to

result in an average of 5 parallel bonds per sand particle. Additional one-

dimensional compression simulations have been completed for samples with

an average of 10, 15 and 20 parallel bonds per particle, by increasing the

bonding proximity to achieve the desired quantity/degree of bonding: the

compression lines shown in Figure 5.22.

It is visible from Figure 5.22 that increasing the quantity of bonds, measured

in these simulations by the average number of parallel bonds per particle,

magnifies the effects of cementation—resulting in an increase in yield stress

with increasing number of bonds. The simulations representing cemented

sand converge towards the intrinsic NCL, with increasing the quantity of

bonds causing the post-yield compression line (which begins at the yield

point) to become steeper. This agrees with the framework described by

Cuccovillo and Coop (1999) and shown in Figure 5.4(b). The compression

curves also appear to be in harmony with those from Marri (2010) shown in

Figure 5.21, although the curves of the cemented material in the latter figure

haven’t fully yielded, and don’t reach stresses high enough to determine

whether they converge or run parallel. Considering just the pre-yield

compression curves of the simulations in Figure 5.22 (i.e. up to a stress of

approximately 12 MPa), equating the number of bonds to cement content

reveals the same pattern of behaviour as the experimental results in Figure

5.21.
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Marri et al. (2012) also suggested that particle crushing reduces with

increasing degree of cementation, due to the associated reduction in

compressibility. This makes sense when one considers that the reduction in

volume experienced in compression is facilitated by the crushing of particles.

This is confirmed in the simulations by comparing the particle size

distributions at a given stress—Figure 5.23 compares the grading curves for

the simulations with various degrees of bonding at an applied stress of 20

MPa. As can be seen, the two most heavily cemented simulations (those with

an average of 15 and 20 parallel bonds per particle) have the least developed

grading curve, and so have experienced the least amount of crushing. These

two simulations also display the largest current volume. The unbonded

simulation displays the greatest degree of crushing in Figure 5.23, followed by

the simulations with an average of 5 and 10 parallel bonds per particle. These

simulations underwent the largest decrease in volume.

Figure 5.23 Particle size distributions for simulations with increasing number of parallel
bonds, at an applied stress of 20 MPa

Figure 5.22 Compression curves for simulations with increasing number of parallel bonds
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5.2.6 Conclusions

Simulations have been presented showing that the behaviour of cemented

sand in one-dimensional compression can be replicated using DEM. The

cementation has been modelled with parallel bonds, and it has been shown

that if the bonds are configured so to prevent particle breakage, the correct

transition is witnessed in the compression curves—the cemented simulations

extending into structure-permitted space and displaying stronger yield

stresses. Although the influence of certain bond parameters such as size and

stiffness have not been investigated in this section (see Chapter 3), the

distribution of bond strengths has been shown to control the post-yield

compression line.

A narrow bond strength distribution results in a sudden and catastrophic

failure of bonds, i.e. brittle yielding whereby the post-yield compression line

converges immediately to the intrinsic NCL. A much wider bond strength

distribution produces a less rapid onset of yield, and more gradual

convergence to the intrinsic compression line. A distribution with a low

modulus such as 0.5 gave the most realistic behaviour with regard to

modelling a strongly cemented sand, and analysing the simulations using Liu

and Carter’s (1999, 2000) framework for the compression of structured soils,

the value of the destructuring index, β appeared to be in the correct range.

The destructuring indices obtained from the simulations appeared to be a

function of the bond strength distribution.

The simulation with the widest distribution of parallel bond strengths still had

some of the strongest bonds remaining at high pressures (> 20 MPa). The

presence of bonding within the material was shown to reduce the

compressibility and also the degree of particle crushing for a given applied

stress, which confirms speculation from Marri et al. (2012). The Weibull

modulus for the distribution of parallel bond strengths has been shown to

control the post-yield compression line and appears to have a direct influence

on the destructuring index.
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It was shown previously in triaxial simulations that increasing the quantity of

bonds appears to be the most effective way of modelling increasing cement

content, the same appears to be the case in one-dimensional normal

compression. Increasing the quantity of bonds magnifies the effects of

cementation, i.e. it increases the yield stress, renders the sample more brittle

and reduces the degree of particle crushing for a given applied macroscopic

stress. Therefore it appears that increasing the degree of cementation

suppresses particle crushing.

This section has therefore shown that it is possible to capture—using DEM—

the essential features of the mechanical behaviour of cemented sand under

one-dimensional normal compression.

5.3 HIGH-PRESSURE TRIAXIAL TESTS

5.3.1 Introduction

It has been shown in the literature (e.g. Bolton et al., 2008), that particle

crushing is necessary for achieving realistic levels of volumetric contraction in

triaxial simulations of granular soils. This observation was also evident in

Chapter 3, in which triaxial simulations of uncemented sand, even with

confining pressures as high as 12 MPa, all exhibited dilation. This section aims

to show that it is possible to simulate the phenomenon of particle crushing in

high-pressure triaxial tests on cemented and uncemented sand, using the

discrete element method. Using the triaxial model presented in Chapter 3

(which features a flexible membrane allowing accurate deformation), and

incorporating the simple breakage mechanism from Chapter 4 the following

work aims to show that particle crushing is essential to replicate realistic

behaviour of uncemented sand in high-pressure simulations. The general

effects of particle crushing during shear are explored, as well as the influence

of particle strength, packing and confining pressure on the degree of crushing.
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Finally, using the criteria developed earlier in this chapter (section 5.2) for the

combined breakage of parallel bonds and particles—i.e. breakage of

cementation must precede particle fragmentation—the behaviour of

cemented sand under high-pressure triaxial shearing is modelled. While

some authors speculate that cementation suppresses particle crushing during

shear (e.g. Marri, 2010), using the intrusive capabilities of DEM, an insight on

the effects cementation has on the degree of crushing is hereby presented.

5.3.2 Triaxial Model

The triaxial model used in this section is an adaptation of that described in

detail in Chapter 3. The triaxial specimen has the same dimensions as used in

that section, i.e. a cylinder with a height of 100 mm and a diameter of 50 mm;

although it should be noted that a different grading is used in the following

simulations. How the triaxial model is generated, and the general procedure

is the same as given previously, and won’t be repeated. The only notable

differences to the model mechanism, which will be described here are that

the Hertz-Mindlin contact model is used, and that strain is applied in

increments, rather than a constant strain rate; both due to the

implementation of the particle crushing mechanism.

The use of the Hertz-Mindlin contact model means that particle stiffnesses

are defined by the Poisson’s ratio ν and shear modulus, G. The sand particles

are given the same values used in the crushing simulations, i.e. ν = 0.25 and

G = 28 GPa. The membrane particles are ascribed a Poisson’s ratio of 0.5 (a

typical value for rubber), and for the same reasons outlined in section 3.2.4,

are given an arbitrarily high shear modulus. An empirical value of G = 1 GPa

(for a confining pressure of 1 MPa) was found sufficient to prevent the

penetration previously shown in Figure 3.8. Membrane particles are now

bonded with parallel bonds, as the contact bonds used previously are

incompatible with the Hertz-Mindlin contact model. The membrane parallel

bonds are defined as having radii equal to 1 x 10-10 times that of the

membrane particles, (mimicking the contact bonds used previously, which act

on an infinitely small point). The normal and shear strengths are set
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arbitrarily high again to prevent the membrane from splitting (equivalent to a

force of approximately 5 x 1012 N in pure shear or tension). The membrane

parallel bond stiffnesses (defined in terms of stress per displacement) are

given values of 1 x 1030 Pa/m (equivalent to about 60 kN/m) for a confining

pressure of 1 MPa. This value was found to prevent the problem of

membrane particles not staying aligned, shown in Figure 3.9.

The second major difference here is that strain is applied in increments,

rather than simply applying a constant velocity to the top platen, as done

previously—this is due to the particles not being allowed to break in real time.

In these simulations, axial strain increments of 0.0001 are used, i.e. the top

platen is accelerated and moved downwards, then decelerated and stopped

after an increase in axial strain of 0.01%. After each increment, the particles

are checked and allowed to break (any broken particles are replaced with new

fragments), until no further breakages occur and then the next strain

increment is applied. Particle breakage is determined by the same criteria as

throughout Chapters 4 and 5, using the octahedral shear stress according to

equation [4.3]. Breaking particles are replaced by new fragments in the

manner depicted in Figure 4.3. The particles have strengths as before for the

simulations modelling silica sand, although the initial particles are larger: the

characteristic value of octahedral shear strength, q0, is 20.0 MPa for the initial

particles (d0 = 4 mm); the Weibull modulus, m, is equal to 3.3; and the size-

hardening law is governed by equation [4.7].

The details of the specimen and membrane used in the following simulations

are given in Table 5.1, unless otherwise stated. As these simulations are

solely intended to investigate particle crushing during shear, and not

calibration against experimental results, the simulations all start with an

initially mono-disperse sample. Hence the coefficient of uniformity, Cu, of the

initial specimen is equal to 1 (except for the simulation which investigates the

effect of grading on the degree of particle crushing). In general, all specimens

have an initial voids ratio of 0.75; this was chosen as a somewhat arbitrary

value. The densest initial state that could be achieved without any locked-in
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forces was a voids ratio of 0.66, so the simulations with e = 0.75 could be

considered relatively loose; however without irregular particle shape, the soil

samples invariably compact to a denser state during isotropic consolidation,

and are unable to maintain large voids. Nonetheless, the effects of varying

initial density are investigated later.

Table 5.1 Summary of DEM parameters for triaxial model

Triaxial Sample Properties

Size: height x diameter (mm) 100 x 50
No. of particles 3350
Particle friction coefficient 0.5
Contact model Hertz-Mindlin
Shear modulus, G (GPa) 28
Poisson’s ratio, ν 0.25
Density (kg/m3) 2650
Coefficient of uniformity, Cu 1.0
Particle diameter, d0 (mm) 4.00
Voids ratio, e0 0.75
37% Strength, q0 (MPa) 20.0 (for d = d0)
Weibull Modulus, m 3.3
Wall Friction Coefficient 0

Triaxial Membrane Properties

No. of particles 3224
Friction coefficient 0
Contact model Hertz-Mindlin
Shear modulus, G (GPa) 28
Poisson’s ratio, ν 0.25
Density (kg/m3) 1000
Particle diameter, d0 (mm) 1.33
Parallel bond diameter (mm) 1.33 x 10-10

Parallel bond stiffness (Pa/m) 1 x 1040

Parallel bond strength (Pa) 1 x 1030

5.3.3 General Factors Influencing Particle Crushing

In this section, the general effects of particle crushing during triaxial

simulations will be demonstrated, as well as the influence that factors such as

the particle strength, initial density and initial grading have on the degree of

crushing. As such, the simulations are all sheared under a confining pressure

of 1 MPa, and have the properties and initial grading given in Table 5.1, apart

from where stated.
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Firstly, to demonstrate the effects of particle crushing, simulations with and

without the possibility of crushing are presented. Figure 5.24 presents the

triaxial results of simulations of three mono-disperse samples (d0 = 4 mm),

with initial voids ratios of 0.75, subjected to shearing under 1 MPa confining

pressure. The results comprise one simulation with unbreakable particles,

and two with particles that can break—demonstrating the influence of

particle strength on crushing. Of the breakable simulations, one has particle

strengths of silica sand (as given in Table 5.1), i.e. q0 = 20 MPa for the initial

particles, the other has strengths half the magnitude, i.e. q0 = 10 MPa. The

sand particle strengths in both of these crushable simulations have a Weibull

modulus, m of 3.3, and follow the same hardening law expressed in [4.7].

There is not much difference visible between the unbreakable simulation and

the material with the strength of silica sand (q0 = 20 MPa) in the stress-strain

responses. They demonstrate almost identical deviatoric stress curves, and

there is almost no difference in the volumetric strain curves either, although

it is possible to see that the material with no particle breakage is exhibiting

slightly higher dilatancy at the end of the test. For the weaker crushable

material, the very initial part of the deviatoric stress response (usually

considered elastic), is the same until an axial strain of approximately 1%, after

which the stress curve of this weaker material becomes less inclined.

However, this curve appears to lead to a value of ultimate (and critical)

strength similar to the stronger material. This would suggest that the two

breakable soils (and indeed the unbreakable material) have the same critical

state parameter M, meaning the frictional resistance is the same; the same

deviatoric stress is required to keep the soil flowing continuously at a critical

state. This is to be expected, as the two soils—although consisting of

different quantities and sizes of particles after crushing—have the same

particle friction coefficient and particle shape. The simulations with

breakable particles produce a more fluctuating deviatoric stress curve, which

is a result of the particles fracturing. Immediately after particles have broken

and been replaced with new fragments, the stress on the platens decreases—
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and due to the relatively small overall number of particles, this has a

noticeable effect on the stress response.

Figure 5.24(b) shows that the breakable material with weaker particles

undergoes much less volumetric dilation compared to the unbreakable

simulation, this is not surprising and is the same observation as that made by

Bolton et al. (2008), who subjected breakable and unbreakable agglomerates

to shearing using a rigid cubical cell (Figure 2.72). The weaker crushable

material also shows markedly less dilation than the stronger crushable

material; the weaker sample only just displaying an overall dilation. This

makes sense, as when the weaker sample is sheared, to accommodate the

macroscopic strain, particles in contact are more likely to break. In the

stronger sample (or the unbreakable one), by comparison, the particles are

less likely to, or will not fracture and will need to rearrange by sliding and

rolling over one another, requiring dilation. The two breakable materials

therefore have different final voids ratios: 0.63 and 0.66 for the weaker and

stronger materials respectively. If these are considered to be the critical voids

ratios (or approaching such states), then one may conclude that the critical

state lines in specific volume–mean stress space are different, and that the

position of the CSL is dependent on the characteristic strength of the

particles. This is in accord with the findings in Chapter 4, where it was shown

that the position of the normal compression line is related to the average

particle strength (Figure 4.10)—as the critical state line (in volume-stress

space) is assumed to be parallel with the normal compression line (e.g.

Bolton, 1979; Coop, 1990; Craig, 2004), as shown in Figure 2.27 (with the

separation a property of the soil). So one may assume that decreasing the

particle strengths shifts both the CSL and NCL to the left in volume–stress

space.
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The stronger crushable material experiences 40 breakages by an axial strain of

20%, with a fairly constant rate of breakage throughout the test. Out of the

original 3350 specimen particles, 3312 remain at this stage, i.e. 38 have been

crushed. The weaker material by comparison has experienced 463 breakages

by the same axial strain, significantly more than the stronger sample. A total

of 316 of the original particles have fractured, i.e. 9.43% by mass, compared

to just 38—1.13% by mass—in the stronger simulation. Despite such a large

number of particles undergoing fracture, only 7 particles break during

isotropic confinement to 1 MPa; essentially all breakage occurs during

shearing. The three final specimens—with the broken fragments

highlighted—are shown in Figure 5.25. The material with unbreakable

particles is displayed in Figure 5.25(a), and as can be seen from Figure 5.25(b)

which shows the stronger crushable sand, the relatively small number (40) of

breakages that occur are uniformly distributed throughout the height of the

Figure 5.24 Triaxial results of an unbreakable sample, and two breakable materials with
different particle strengths: deviatoric stress response (a) and volumetric behaviour (b)

(a)

(b)



227

specimen. The weaker material is shown in Figure 5.25(c), and also in Figure

5.25(d), which gives an internal view of the same sample revealing all broken

fragments throughout the depth of the material. From these two images of

the weaker sample, it appears that there is a concentration of breakage close

to the platens and reduced breakage close to the membrane. These two

observations are attributable to the fact that if a particle is loaded equally in

all directions—e.g. has contacts uniformly spread over its surface—then the

particle will have a high mean stress but a low octahedral shear stress;

particles that are primarily loaded in one direction—e.g. diametral loading—

will have a high induced shear stress. It is clear that the particles in contact

with either of the platens are unlikely to be surrounded by particles,

especially when the neighbouring particles are of the same size. Particles in

contact with the membrane on the other hand are more likely to be loaded

uniformly, due to the membrane being flexible and consisting of smaller

particles, spreading the load.
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A series of simulations using the same crushable sand as in the above

simulation are now presented, which demonstrate the effects of initial

density and grading on the degree of particle crushing during triaxial shearing.

Figure 5.25 Images of the final specimens after shearing under 1 MPa of confining pressure to
20% axial strain: unbreakable simulation (a), crushable simulation with q0 = 20 MPa (b),

crushable simulation with q0 = 10 MPa (c), and internal view of the same crushable simulation
with q0 = 10 MPa (d)

(a) (b)

(c) (d)



229

The effects of varying initial density are shown in Figure 5.26. The figure

shows the triaxial results of the simulation above, with initial voids ratio of

0.75 alongside looser and denser simulations with initial voids ratios of 0.85

and 0.66 respectively (before the confining pressure of 1 MPa is applied). All

simulations use particle strengths obtained from silica sand (q0 = 20.0 MPa for

d0 = 4 mm). The voids ratio of 0.66 was found to be the densest stress-free

initial state achievable, and so can be considered relatively very dense; while

the voids ratios of 0.75 and 0.85 can both be considered relatively loose and

very loose correspondingly.

The stress-strain response of the densest material (which originally consisted

of 3530 particles) is initially noticeably steeper, almost displaying a peak

stress. The loosest material (initially comprising 3165 particles) has the least

steep deviatoric stress curve at the start of shearing. All three simulations

appear to have essentially the same value of ultimate deviatoric stress, as

well as the same final voids ratio. The three simulations—with increasing

initial densities—begin shearing at voids ratios of approximately 0.64, 0.64

and 0.58 accordingly—all have a final value of e = 0.66 at 20% axial strain.

Hence the densest sample displays a greater amount of dilation, as one would

expect. Although the differences in behaviour between the simulations are

not as pronounced, the stress-strain results show classic behaviour of loose-

versus-dense sand in triaxial shearing, with the results comparable to those

shown in Figure 2.1.

The densest material exhibits a slightly larger quantity of breakages, with 46

breakages occurring by an axial strain of 20%, compared to 38 for the loosest

initial material. Further inspection reveals that of these 46 breakages in the

dense simulation, 42 of them were related to the original particles—that is to

say 42 of the 3530 initial particles have broken, constituting 1.19% of the

mass of the sample. In the intermediate simulation, 1.13% of the original

material has been crushed by this stage, while in the loosest simulation,

1.17% of the material has been crushed. Although the densest material

displays a marginally higher amount of crushing, there is no clear correlation;
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in all simulations between 1.1–1.2% of the material has undergone

fragmentation. The simulations suggest that while a denser material will

undergo a higher number of particle breakages, the increased number of

broken particles is most likely a result of having a larger number of particles

to begin with, and that the degree of crushing (if measured by mass of the

sample that has broken) is fairly consistent across the various initial densities.

The following graphs compare the triaxial response of the same mono-

disperse sample with an initial voids ratio of 0.75, with that of a material with

the same initial voids ratio but with a graded particle size distribution. The

graded specimen has a coefficient of uniformity, Cu of 2: giving a total of 5986

initial particles, with minimum and maximum particle sizes of 2 and 8 mm

respectively, and 12584 membrane particles. The two initial particle size

distributions are given in Figure 5.27, and Figure 5.28 shows the triaxial

results of the two materials sheared under 1 MPa of confining pressure.

Figure 5.26 Triaxial results from three breakable samples with various initial voids ratios:
deviatoric stress response (a) and volumetric behaviour (b)

(a)

(b)



231

The graded sample appears to have a lower ultimate deviatoric stress,

although one may expect them to display the same values due to the reasons

mentioned above discussing the simulations with varying particle strengths.

Although the difference in ultimate strength is conspicuous (approximately

0.25 MPa), they can be considered similar in view of the fact that the samples

have such different fabrics (even at the end of the simulations, the initially

graded material has in excess of 2700 more particles than the initially mono-

disperse simulation). The simulation which displays the higher deviatoric

stress also exhibits the largest dilation; one may assume that after much

larger strains, the materials would approach the same ultimate stress.

Figure 5.28(b) shows that the graded specimen also undergoes significantly

less volumetric dilation, which can largely be attributed to this material being

relatively looser, despite having the same initial value of e0—the final voids

ratio of the graded simulation is 0.54 (much lower than 0.66). This difference

would also suggest that the CSL in volume-stress space is lower for the graded

(Cu = 2) material. Authors such as Muir Wood and Maeda (2008) and Yan and

Dong (2011) conducted 2D and 3D simulations, shearing various gradings of a

given material, and both presented critical state lines unique to each initial

grading. They suggested the more well-graded a material is, the smaller the

gradient and lower the position of the CSL in v-p space. However, they did

not consider particle breakage, although Muir Wood and Maeda (2008)

suggested the crushing limits the extent of the CSL, and causes it to move

Figure 5.27 Particle size distributions for the mono-disperse (Cu = 1) and graded (Cu = 2)
samples of sand
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downwards as the grading evolves. If indeed the critical state line is parallel

with the normal compression line, one would expect the CSLs of different

gradings of a given material to converge and have the same slope at high

stresses. If, for example, the two simulations in Figure 5.28 were repeated

but at a much higher confining pressure, one would expect significantly more

crushing, and if they reach the same normal compression line, one would

expect the two final samples also to approach the same critical state line.

With regard to particle crushing, the initially graded sample has experienced

89 breakages at an axial strain of 20% (compared with 40 for the initially

mono-disperse simulation). Of these 89 particles that have broken, 77 were

original sample particles, constituting 1.06% of the original specimen by mass

(compared with 1.13% for the mono-disperse simulation). Further analysis

reveals that of these 77 sample particles that have broken to form new

fragments, 47 of them had diameters in the region dmin–d20, and 21 were of

the region d20–d40. So clearly it is the smallest particles that account for most

of the breakages. This agrees with the findings expressed in Chapter 4 in

which it was shown that it is the smallest particles that are most susceptible

to fracture due to the increased possibility of being loaded diametrically (and

therefore having the largest induced shear stress). It is interesting to note

that while a larger quantity of original particles have fractured in the graded

sample, the broken fragments constituted a smaller proportion by mass of

the original specimen when compared to the mono-disperse simulation. It is

known that the continued breaking of the smallest fragments is what leads to

fractal particle size distributions; this appears to be the case in triaxial

shearing.
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5.3.4 Confining Pressure

Simulations of crushable sand subjected to triaxial tests with confining

pressures up to 4 MPa are now presented. All simulations start with identical

specimens, the same as outlined above: the initial voids ratio is 0.75, the

mono-disperse sample consists of spheres of diameter 4 mm, and the initial

characteristic particle strength q0 is 20.0 MPa.

The stress-strain results of four simulations, with confining pressures of 1, 2, 3

and 4 MPa are displayed in Figure 5.29, in which the simulations reproduce

the well-known behaviour of sand in triaxial shearing when subjected to an

increase of confining pressure. There is an increase in maximum deviatoric

stress (and a slight increase in the axial strain to this stress) and dilation is

greatly suppressed causing an overall contraction to be observed. For

comparison, an equivalent set of simulations using unbreakable particles are

Figure 5.28 Triaxial results from two breakable simulations, one with a mono-disperse sample
with coefficient of uniformity, Cu = 1, the other a graded sample with Cu = 2: deviatoric stress

response (a) and volumetric behaviour (b)

(a)

(b)
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presented in Figure 5.30. The same pattern of behaviour is observable in the

graph giving the deviatoric stress response; although the ultimate values of

shear strength are higher. The most visible difference however is in the

volumetric responses; the non-crushable simulations in Figure 5.30(b) reveal

very little difference between the simulations, with shearing at all levels of

confining pressure resulting in dilation. Both of these differences are due to

the inability of the particles to break, and the fact that the samples all assume

very similar dense packing upon application of the confining pressure (in turn

due to the lack of irregular particle shape). The graphs in Figures 5.29 and

5.30 show the same behaviour as presented by Bolton et al. (2008), whose

triaxial simulations on unbreakable agglomerates displayed higher ultimate

deviatoric stress, and dilation even under confining pressures as high as

40 MPa.

Figure 5.29 Triaxial results from simulations on crushable sand at various high confining
pressures: deviatoric stress response (a) and volumetric response (b)

(a)

(b)
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In the simulations using breakable particles, due to the nature of the particle

breakage mechanism—as mentioned earlier—there are major fluctuations

visible in Figure 5.29(a), particularly in the simulations with confining

pressures of 3 and 4 MPa. Due to such a large proportion of particles

breaking and being replaced with smaller fragments at any particular

occasion, there are noticeable drops in the stress exerted on the platens (and

hence the deviatoric stress), which are only recovered after a moderate

amount of further axial strain. The simulation with a confining pressure of

4 MPa was terminated at approximately 13% axial strain; the amount of

crushing causing it to become onerous (very small timestep and a large

number of different-sized particles).

In the simulations with larger confining pressures (3 and 4 MPa), it may be

reasonable to consider the average peak values of deviatoric stress as the

ultimate values. Aside from the fact that the ultimate values of shear

Figure 5.30 Triaxial results from simulations on sand with unbreakable particles, at various
high confining pressures: deviatoric stress response (a) and volumetric response (b)

(a)

(b)
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strength would otherwise be too close to the simulation at 2 MPa, the peaks

observed in the simulations at 3 and 4 MPa confining pressure are recovered

and appear to be a result of the particle breakage mechanism (as opposed to

a single peak resulting from the soil fabric/structure, followed only by strain

softening). The breakage mechanism used (Figure 4.3) causes a complete loss

of contact in the major principal stress direction (due to the placement of the

new fragments), which would naturally cause an imminent drop in the global

major principal stress. In reality, in a dense sample of sand, any particle

breakage would not necessarily cause a complete loss of contact, and in any

case due to the larger total number of particles and the fact that breakage

can occur at any moment in time, the effects on the deviatoric stress would

not be as visible. With this in mind, the ultimate stresses increase with

increasing confining pressure, with the simulations that were taken to 20%

axial strain displaying fairly constant values. The simulations with σ3 = 1 and

2 MPa appear to have reached (or be approaching) a state of constant

volume, indicative of a critical state; the simulation with σ3 = 3 MPa appears

as though it could be still contracting slightly; while the simulation with 4 MPa

of confining pressure, which was terminated early, clearly still appears to be

contracting.

The ability of the sand particles to crush enables the simulations at higher

confining pressures to exhibit significant contraction, which was not observed

in the simulations using unbreakable particles. This more realistic volumetric

strain can also be observed in the stress-dilatancy plots, which are presented

in Figure 5.31, and show that the simulations under the highest confining

pressure display very little positive dilatancy and have lower peak values of

dilatancy and stress ratio.
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The stress ratio versus axial strain for the four crushable simulations is shown

in Figure 5.32. The sand displays a similar ultimate stress ratio at the lower

levels of confinement, which could suggest a steady critical state parameter

M. However, at a confining pressure of 3 MPa, the ultimate value of stress

ratio appears slightly lower, whereas the simulation with 4 MPa of confining

pressure did not reach comparable strains. It is possible that continuing the

simulations to higher axial strains would result in convergence in the ultimate

values of stress ratio, especially when one considers the graphs from Marri

(2010) or for example Figure 2.40 from Yamamuro and Lade (1996), in which

steady/critical states were only reached at or above 30% axial strain. In

Figure 5.32, increasing the confining pressure appears to reduce the initial

steepness/inclination of the normalised stress curve, and hence increases the

axial strain at which the steady, ultimate stress is reached. If one overlooks

the fluctuations in the deviatoric stress responses for the simulations at 3 and

4 MPa, this graph shows good agreement with that shown in Figure 2.40(a)

from Yamamuro and Lade (1996), albeit not to the same level of axial strain.

Figure 5.31 Stress-dilatancy plots for uncemented simulations across a range of confining
pressures
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The end point for most of the simulations was 20% axial strain, however the

simulation at the highest confining pressure (4 MPa) was terminated prior to

this, due to a large number of particles covering a wide range of sizes

rendering the calculation time impractical (at the point of termination, the

simulation with 4 MPa of confining pressure had undergone over 3300

breakages). Nonetheless, comparing the state of the simulations at an axial

strain of 10%, for example reveals an increasing degree of particle crushing

with increasing confining pressure. At this strain, the simulations with σ3 = 1,

2, 3 and 4 MPa had experienced 16, 195, 677 and 1949 breakages

respectively. Of the original specimens, 15, 159, 394, and 703 particles had

broken, which represent 0.45, 5.82, 11.76 and 20.99% by mass of the original

specimens, respectively. There is a clear correlation between level of

confining pressure and the degree of crushing exhibited during shear.

Figure 5.33 plots the overall number of breakages (at 10% axial strain) as a

function of confining pressure, as well as the number of original particles

broken. The upper curve shows that the overall number of breakages

increases rapidly, and non-linearly with confining pressure. The lower curve

however, suggests that the actual number of original particles that break

during shearing increases more steadily (although not linearly) with confining

pressure. These two curves together show that at higher pressures, most of

the particles that are breaking are themselves fragments of larger broken

particles.

Figure 5.32 Graph showing the stress ratio versus axial strain for the four simulations across
various high confining pressures
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Figure 5.34 shows the total number of particles as a function of axial strain,

for the four simulations at different confining pressures. The graph confirms

the observation from the previous figure that confining pressure greatly

increases the degree of crushing. The trends of the curves in Figure 5.34,

particularly for the simulations at 3 and 4 MPa confining pressures,

demonstrate that breakage increases rapidly with shearing, and that breakage

shows no indication of reducing as steady states are approached. However, it

appears that most of breakages that continue to occur are the fragments,

which comprise the smallest particles; this would suggest that the particle size

distributions are still evolving, potentially tending to fractal distributions.

Figure 5.35 displays the total surface area of the particles as a function of

axial strain. The curves in this figure appear to increase more linearly than

those in Figure 5.34, although they also show no indication of reaching

ultimate values. This suggests that there is still significant crushing occurring

Figure 5.34 Graph showing the total number of particles, as a function of axial strain for the
four simulations at various confining pressures

Figure 5.33 Graph showing the overall number of breakages, and the number of original
particles that have fragmented by an axial strain of 10%, as a function of confining pressure
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when the simulations were terminated, which one may not expect at critical

states, when the volume is constant. However, Miura and Yamamoto (1976)

and Miura and O-hara (1979)—who quantified breakage during triaxial

shearing by measuring the change in surface area—showed that the particle

surface area was still increasing at axial strains as high as 50%; when the

deviatoric stress and volumetric strain appeared to be reaching stable values.

Coop et al. (2004) also conducted a series of ring shear tests, and showed that

not only particle crushing, but also volumetric strains continue to occur at

very high strains. Although the rate of change of volume was small, Coop et

al. (2004) showed that in most cases the volumetric strain only completely

stabilised at shear strains of around 2000%. Hence this would suggest that

crushing continues to very high strains during shear, and that the volume also

may continue to change, although by a very small amount. Although crushing

is still clearly occurring in the simulations, it is largely the smaller particles

that are continuing to fragment; in reality, the smallest particles would

eventually stop breaking due to the comminution limit, leading to an ultimate

particle size distribution, which was also suggested by Coop et al. (2004).

Inner views of the samples showing the broken fragments are given in Figure

5.36, which reveal the increasing degree of crushing experienced by the four

simulations. The images are taken at 10% axial strain, and all the crushed

fragments are highlighted, throughout the depth of the sample.

Figure 5.35 Graph showing the total surface area of the particles as a function of axial strain
for the four simulations at various confining pressures
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For the simulations at 1 and 2 MPa of confining pressure, the peak (failure)

stress coincides with the ultimate deviatoric stress. For the two simulations

with higher confining pressures, it is the average peak values in Figure 5.29

which are considered the ultimate deviatoric stress in the following analysis

Figure 5.36 Inner views of specimens after shearing to 10% axial strain, showing highlighted
broken fragments from simulations across a range of confining pressures: 1 MPa (a),

2 MPa (b), 3 MPa (c) and 4 MPa (d)

(a) (b)

(c) (d)
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(this is because the stress troughs are caused by particle breakage, and are

recovered; as opposed to a single peak resulting from the soil packing, as

mentioned earlier). Although Figure 5.29 suggests that the soils haven’t yet

all reached critical states, the ultimate states are plotted in deviatoric stress–

mean effective stress space in Figure 5.37, alongside the equivalent

simulations using unbreakable particles from Figure 5.30.

The disparity between the crushable and non-crushable simulations at σ3 = 3

and 4 MPa would suggest different critical state lines, and hence different

values of M for the two materials; with the non-crushable material having a

slightly higher value (approximately equal to 1). The points from the

crushable simulations give lower ultimate values of deviatoric stress, q, and

indicate a curved line—the angle of friction appearing to decrease with

confining pressure. This is similar to the observations by Cheng et al. (2004),

who conducted constant p’ shear tests using agglomerates in a cubical cell.

They showed that the maximum angle of internal friction continued to

decrease with the logarithm of mean stress, apparently approaching the angle

of inter-particle friction, even after deviatoric strains of 40%. With regard to

experimental data—for example Figure 3.31(a) from Marri (2010)—the

critical state line for Portaway sand also appeared curved in q-p’ space, similar

to the numerical results for the crushable sand.

It is worth noting that all points from the simulations appear typically low; if

realistic particle shape was incorporated, any critical state lines would appear

much steeper and give more realistic M values.
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The ultimate states for both the crushable and non-crushable sands are

plotted on the conventional specific volume–mean stress space in Figure 5.38.

The two sets of points are distinct from one another, although neither suggest

completely linear critical state lines. However, if comparison is drawn

between the crushable and non-crushable simulations, one can see that the

points for the crushable simulation indicate a critical state line that has a

noticeably larger negative gradient—i.e. steeper or more declined. Fitting a

trendline to the points of the crushable simulation gives a gradient of

approximately 0.08, which is reassuring, as typical values range from around

0.01–0.05 at low pressures, and larger at higher pressures (e.g. Wang, 2005;

Wanatowski and Chu, 2007; Marri, 2010). There crushable material therefore

again appears to offer much more realistic behaviour compared to the non-

crushable simulations. It is important to note however that the crushable

simulation at the highest confining pressure (4 MPa) was terminated

prematurely at an axial strain of about 13%, well before appearing to

approach a state of constant volume. Although one may assume the values of

ultimate stress for this simulation may not change significantly, it is evident

from the graph of volumetric strain in Figure 5.29(b) that one would expect

the sample to continue contracting.

Figure 5.37 Critical/ultimate states of simulations on crushable and non-crushable sand under
a range of confining pressures, plotted in q-p’ space
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These states for the crushable sand are plotted in voids ratio–mean effective

stress space in Figure 5.39, with double-logarithmic axes. If the critical state

line is indeed parallel with the normal compression line, then as proposed in

Chapter 4 it will also be linear when plotted in this space, and can be

described by:

[5.16]

where e is the voids ratio, e0 and p’0 define a reference point on the critical

state line, and Cc is the rate at which the volume of voids decreases as the

logarithm of mean effective stress increases—and is the slope of the normal

compression line (compressibility index), governed by the size-hardening law

of the particles according to equation [4.26].

The slope of the one-dimensional NCL for the material used in these triaxial

simulations has a negative slope of approximately 0.5 as according to

equation [4.26]—a critical state line with this ideal slope (0.5) is also shown in

Figure 5.39. At low mean effective stresses, critical state points in e-p’ or v-p’

space often do not conform to the CSL at high stresses; if the linear CSL at

high stresses is extrapolated, at low stresses critical state points usually lie

below this line (e.g. Wood, 1990; Russell and Khalili, 2004). Considering that

the rightmost point is still contracting and moving downwards towards the

idealised CSL (as indicated by an arrow), the points appear to be approaching

Figure 5.38 Critical/ultimate states of simulations on unbonded, crushable sand under a range
of confining pressures, plotted in v-p’ space
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a critical state line that is parallel with the normal compression line, and linear

in log e–log p’ space, although further points at higher pressures are desired.

5.3.5 Cemented Sand

Simulations are now presented of triaxial tests on cemented sand with

crushable particles. Using the same initial triaxial sample as above, and the

same technique for modelling cementation (parallel bonds), simulations

ranging from unbonded to highly cemented have been performed.

Experimental data for triaxial tests on sand bonded with various quantities of

Portland cement are shown in Figure 5.40 from Marri (2010). The graphs

show the deviatoric stress, stress ratio and volumetric strain responses from

tests conducted under 1 MPa confining pressure. The effects of cementation

are easily observed, with the graphs demonstrating an increase in strength,

stiffness and dilation caused by the addition of cement.

Figure 5.39 Critical/ultimate states from simulations of unbonded, crushable sand and
idealised critical state line plotted in e-p’ space
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The numerical sample used in the following simulations, is the same as that

used throughout this section and described in Table 5.1. The parallel bonds

are installed in the same manner as throughout the work on cemented sand,

and have the properties described in section 5.2.3. Summarily, the initial

sample is mono-disperse, comprising particles with diameter 4 mm, with an

initial voids ratio of 0.75 (relatively loose). The particles are given a shear

Figure 5.40 Experimental triaxial results for sand with a range of Portland cement contents:
deviatoric stress (a), stress ratio (b) and volumetric response (c), versus stain (Marri, 2010)

(a)

(b)

(c)



247

modulus of 28 GPa and a Poisson’s ratio of 0.25. The parallel bonds are equal

in diameter to the particles (dbond = 4 mm), are assumed to have an elastic

modulus of 30 MPa (Ashby and Jones, 1986), and an arbitrary characteristic

strength of approximately 10 MPa (in both pure shear and tension). The

effects of varying the bond strength in triaxial simulations is not investigated

here (see Chapter 3). The parallel bond strengths fit a Weibull distribution

with a modulus, m of 0.5 (this was shown in Chapters 3 and 5 to result in the

most qualitatively correct behaviour with regard to Portland cement).

Increasing the degree of cementation is again implemented by increasing the

quantity of inter-particle bonds, achieved by increasing the proximity in which

non-touching particles are bonded. All simulations are subjected to 1 MPa of

confining pressure. As detailed in section 5.2.3, parallel bonds, while intact,

prevent particle breakage and hence bond breakage must precede particle

crushing.

The triaxial results of four simulations ranging from uncemented to heavily

cemented sand are shown in Figure 5.41. The increasing number of average

parallel bonds per particle reflects increasing degree of cementation, i.e.

cement content. The simulations with an average of 5, 10 and 15 bonds per

particle can be considered lightly, medium and heavily cemented sand

respectively. The results show the correct trend that one would expect from

an increase in cement content: there is an increase in the peak and maximum

deviatoric stress, a higher initial stiffness and there is a more dilative

response; in general the material displays more brittle stress-strain

behaviour. The peak deviatoric stress appears to occur at slightly earlier axial

strains with an increasing degree of cementation, in agreement with typical

experimental results such as those shown in Figure 5.40. Interestingly, the

deviatoric stress responses do not appear to completely converge at large

strains (as opposed to earlier simulations in Chapter 3). However, the graphs

display good agreement with the experimental results shown in Figure 5.40,

which also do not converge, even at strains as high as 30%. Both numerical

and experimental stress ratio graphs display the same pattern of behaviour,
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and reveal slightly different final values of η for the various materials. The

most heavily cemented samples display the highest final stress ratios,

suggesting that there is still active cementation at high strains under such a

confining pressure. This is confirmed by the quantity of intact parallel bonds:

at the end point of the simulations (i.e. εa = 20%), the lightly, medium, and

heavily cemented simulations had 1029, 1262 and 1738 parallel bonds

remaining respectively. Repeating the tests with a higher confining pressure

would be expected to reduce the difference in the final values of stress ratio.
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Figure 5.42 shows the corresponding results for simulations using

unbreakable particles. The stress-strain behaviour is largely the same as

above, with the introduction of cement producing the same results: an

increase in peak/maximum deviatoric stress, higher initial stiffness and

increased dilation; with these effects increasing with cement content. The

unbreakable simulations however appear to display very slightly higher values

of peak stress and dilation. This is for the same reasons as outlined earlier for

Figure 5.41 Triaxial results for simulations of crushable sand with an increasing degree of
cementation: deviatoric stress (a), stress ratio (b) and volumetric response (c) versus strain

(a)

(b)

(c)
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uncemented simulations; as particles are unable to break in these

simulations, they will need to rearrange to accommodate the macroscopic

strain by sliding and rolling over one another (as opposed to breaking),

requiring additional dilation.

At the end of these simulations (20% axial strain), the quantities of intact

bonds are 1048, 1352, and 1682, respectively for the lightly, medium and

heavily cemented non-crushable materials; similar to the crushable cemented

sand simulations above.
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The stress-dilatancy response for the crushable simulations is presented in

Figure 5.43, in which the stress ratio, η is plotted against dilatancy, D (in terms

of δεv / δεq). As shown in the literature review, Yu et al. (2007) proposed that

increasing the cohesion shifts the dilatancy curve leftwards in η-D space and

hence reduces dilatancy—but this is followed by a rapid increase which

culminates in the peak value. This ‘delay’ in dilatancy is attributed to the

cementation which prevents the intact material from dilating. This was in

Figure 5.42 Triaxial results for simulations of non-crushable sand with an increasing degree of
cementation: deviatoric stress (a), stress ratio (b) and volumetric response (c) versus strain

(a)

(b)

(c)
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accordance with authors such as Cuccovillo and Coop (1999), who theorised

that if work is spent on degrading the bonding, the rate of dilation has to

decrease. Marri (2010) and Marri et al. (2012) meanwhile proposed that at

high confining pressures, increasing the cement content rather shifted the

dilatancy curve upwards at a given confining pressure, as shown earlier in

Figure 2.24(a).

It can be seen from Figure 5.43 that increasing the degree of cementation in

the simulations initially inhibits dilatancy, with all the cemented samples

extending further to the left than the uncemented equivalent. The cemented

samples all display a rapid increase in dilatancy, culminating in peak values

greater than that of the uncemented simulation. The most heavily cemented

sample—with an average of 15 bonds per particle—demonstrates the highest

peak dilatancy, as well as the highest values of peak and ultimate stress ratio

η. Although Marri (2010) didn’t provide the stress-dilatancy behaviour for

sand with various cement contents at this confining pressure (1 MPa), the

numerical results shown in Figure 5.43 in general agree with his experimental

results, for example those shown Figure 2.24(a). Increasing the degree of

cementation shifts the dilatancy response upwards in η-D space, and results

in larger peak and ultimate stress ratios.

Increasing the cement content (by increasing the quantity of parallel bonds)

causes the material to become more brittle; this is also evident in the

deformation. Figure 5.44 displays the particle rotations on a vertical cutting

Figure 5.43 Stress-dilatancy plots for the crushable simulations at 1 MPa confining pressure
with various cement contents
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plane at approximately 4% axial strain (roughly the point of maximum

dilation). The rotations are given for the unbonded and most heavily bonded

simulations, for both crushable and non-crushable simulations. Both

unbonded simulations in Figure 5.44(a) display no clear pattern, while the

heavily cemented simulations in Figure 5.44(b) display localised failure with

mild shear planes. This indicates that the ability for particles to crush has

little effect on the failure mode and the overall deformation of cemented

sand.
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From experimental work, comprising series of triaxial tests covering a range of

confining pressures and cement contents, Marri (2010) presented

photographic images of samples after being subjected to shearing to 30%

axial strain (given in Figure 2.42). From Figures 2.42(a) and 2.42(b), Marri

(a)

(b)

(i) (ii)

(ii)(i)

Figure 5.44 Particle rotations on a vertical cutting plane through the samples, at 4% axial
strain: unbonded simulations (a) and heavily cemented simulations (b), with unbreakable

particles (i) and breakable particles (ii). Dark indicates the most rotation
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(2010) suggested that the inclusion of cement appeared to reduce the

amount of particle crushing at a given confining pressure (in that case,

20 MPa). The SEM photographs were of the ‘bulging’ section of the

uncemented sand, and of the external part of the shear zone in the heavily

cemented sand. Despite Marri’s (2010) suggestion, there is still crushing and

surface fracture of the particles visible in the image of heavily cemented sand

in Figure 2.42(b). However, it should be noted that the cementation in Figure

2.42(b) somewhat obscures the particles, and furthermore that SEM

photographs by their nature are non-intrusive and do not reveal the interior

micro-scale behaviour.

With regard to the crushable simulations, the unbonded and most heavily

cemented samples (with an average of 0 and 15 bonds per particle

respectively) sheared under 1 MPa confining pressure are shown in Figure

5.45(a), after shearing to 20% axial strain. Although the broken fragments are

highlighted, no major differences with regard to the amount of crushing are

externally visible. However, the cemented material has experienced a total of

244 breakages. Overall, 140 original particles have undergone fragmentation,

meaning 4.18% by mass has crushed. This is markedly more crushing than the

unbonded specimen, in which only 1.13% of the sample has broken at the

same stage. These numbers can be confirmed visually in Figure 5.45(b),

which presents similar images of the samples, but reveal the inner breakages.
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Considering just the heavily cemented sample, the broken fragments are

shown again in Figure 5.46, in which a horizontal view at 4% axial strain is

presented (all fragments are displayed, throughout the sample), taken from

the same point of view as Figure 5.44(b)(ii). The crushing does not appear to

occur uniformly throughout the sample, rather it appears very localised. The

fragments indicate a shear plane, in harmony with the Figure 5.44(b)(ii),

which displays the particle rotations from an identical point of view. From

Figure 5.45 External views of the samples (a), with the broken fragments highlighted, and
inner views showing all broken fragments (b); for the unbonded simulation (i) and heavily

cemented (ii)

(a)

(ii)(i)

(b)

(i) (ii)
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this same point of view, Figure 5.47(a) shows the remaining unbroken parallel

bonds at the same axial strain (for clarity, only bonds on a vertical cutting

plane through the centre of the sample are displayed). Most bond breakages

have occurred in the same area as crushing (Figure 5.46), which is

unsurprising considering bond breakage must precede particle fragmentation.

Particle crushing, bond breakage and the particle rotations all conform to the

same shear plane, showing that the deformation and failure is brittle, and

highly localised. At the same strain, the uncemented simulation has

experienced only 8 breakages.

Figure 5.46 Inner view of heavily cemented specimen after 4% axial strain, with all broken
fragments highlighted
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Therefore the simulations suggest that the presence of cement—contrary to

what Marri (2010) proposed—actually increases the degree of crushing,

although the crushing is localised and concentrated around the shear plane.

Increasing the degree of cementation/cement content in the simulations (by

increasing the quantity of parallel bonds) increases not only the number of

overall breakages but also the percentage of mass of the original material that

undergoes breakage; with 1.13%, 2.36%, 2.96% and 4.18% by mass of the

original samples undergoing crushing in the simulations with averages of 0, 5,

10 and 15 bonds per particle respectively. However, the introduction of

crushing does not largely affect the overall stress-strain behaviour of the

cemented sand, at least at a confining pressure of 1 MPa.

The observation that increasing the degree of cementation increases the

amount of crushing during shear is intriguing, and may seem somewhat

contrary to the conclusions from section 5.2—in which cementation was

shown to decrease the amount of crushing for a given applied stress during

one-dimensional compression. There are a number of differences which

could explain these phenomena, such as that the one-dimensional

compression simulations were stress-controlled tests and the triaxial

Figure 5.47 Remaining intact parallel bonds in the heavily cemented, crushable simulation on
a vertical cutting plane through the sample, after 4% axial strain
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simulations were strain-controlled tests. The principal difference, however is

that during the one-dimensional compression simulations, the cemented sand

specimens could exhibit deformation in only one direction (the z-axis); during

the triaxial simulations the specimens could deform freely in all three

directions. In the triaxial shear test simulations, increasing the quantity of

bonds rendered the material more brittle, and changed the method of

deformation/failure mode. A high level of cementation resulted in localized

failure in the form of a shear plane (regardless of whether the particles could

break or not); across which parallel bonds broke as the macroscopic strain

was applied. According to classical soil mechanics, a shear plane separates

two intact ‘blocks’ of soil, and after rupture, the soil only shears on this plane,

which becomes much weaker than the rest of the sample and continues to

distort. As shearing only takes place between these two intact blocks, the

particles on this plane are subjected to much larger shear stresses than

elsewhere in the sample. This explains the concentration of breakages on the

shear plane witnessed in the simulation of heavily cemented sand—and can

also explain the increased overall amount of crushing. If one considers the

uncemented crushable simulation, as axial strain is applied to the specimen,

there is fairly uniform deformation, resulting in barrelling failure, as indicated

by Figure 5.45(a)(i). To accommodate the macroscopic strain, all particles are

free to move relative to each other; by sliding, rotating and rolling over one

another. This means that local shearing takes place throughout the whole

sample (on a particle-to-particle scale), and therefore almost all particles are

subjected to local shear stresses—however, the individual particle stresses

will be relatively uniform, and not as high as those on the shear plane in the

heavily cemented, brittle material.

In the simulations of one-dimensional normal compression by comparison, all

samples regardless of cement content exhibited the same mode of failure and

deformation, during which, as the applied stress increased, so did all the local

particle stresses. This is in contrast to the triaxial simulations, in which the
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bonded particles within the intact ‘blocks’ were largely not subjected to

increasing shear stresses as the test progressed.

5.3.6 Conclusions

The series of simulations presented in this section has demonstrated that it is

possible to simulate high-pressure triaxial tests on a crushable soil, using a

flexible membrane that allows free deformation. Sand was modelled using an

aggregate of crushable particles, in which the octahedral shear stress was

used as the fracture criterion. Significantly, it was shown that allowing

particles to break enables realistic volumetric strain to be observed, with the

crushable materials able to exhibit overall contraction instead of dilation. The

particle strength had a major influence on the degree of crushing, which in

turn influenced the amount of contraction. The initial density and grading

were also investigated, as well as the confining pressure, which was shown to

increase the quantity of breakage exponentially (Figure 5.33). The

distribution of broken fragments after shearing was also explored, and it was

found that breakage is slightly concentrated around the platens. In the

simulations at higher confining pressures, it was shown that it was the

breaking of the fragments themselves that accounted for the majority of

overall breakages; showing that particle size distributions evolve to span

wider ranges of scales as shearing progresses. The simulations were still

exhibiting breakage at axial strains of 20%, which could indicate the eventual

emergence of fractal particle size distributions.

From the results of simulations under a range of confining pressures, using

the strength characteristics of a silica sand, the critical states were

investigated. Critical states were plotted in deviatoric–mean stress space and

voids ratio–mean stress space (as well as the conventional specific volume–

mean stress space). According to the hypothesis put forward in Chapter 4—

which stated that the slope of the normal compression line is a function of

the size-hardening law—an idealised CSL with this theoretical slope was also

plotted in voids ratio–mean stress space, under the assumption that the CSL

and NCL are parallel at high stresses—once a significant number of particles
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have resulted from crushing. The results were encouraging, and points from

the simulations with the highest confining pressures appeared to be

approaching this theoretical CSL; however, further tests at much higher

confining pressures are needed to fully define the critical state line in three-

dimensional volume-stress space.

Cemented sand was modelled by incorporating cementation using parallel

bonds, in the same manner as in section 5.2. The existence of a parallel bond

on a sand particle prevented the particle from breaking, and the presence of

parallel bonds in general was shown to cause the correct qualitative change in

behaviour that an increase in cement content causes in laboratory tests: a

clearly defined peak strength, an increase in maximum strength, an increase

in dilation, and more brittle deformation. Increasing the degree of

cementation—by increasing the quantity of bonds—in concurrence with the

simulations in Chapter 3, magnified these effects. The most heavily cemented

material resulted in the most brittle failure, with a clear shear plane visible,

which was manifested in the location of broken fragments, broken parallel

bonds, and the particle rotations. In the cemented material, an increase in

the degree of crushing was observed with increasing cement content, with

this observation attributed to the change in deformation and failure from

ductile to brittle; particle breakage appeared localised and concentrated on

the failure plane.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

The discrete element method (DEM) has been used, via the software PFC3D

(Itasca, 2005) to perform extensive simulations on uncemented and

cemented sand under high pressures.

A high-pressure triaxial model has been developed, which has a flexible

membrane that allows the correct failure mode to develop, without inhibiting

deformation, as rigid boundaries have been shown to. The model allows the

triaxial specimen to become distorted and exhibit non-uniform shape, while

maintaining the correct confining pressure. In the series of simulations in

Chapter 3, cemented sand was modelled using an aggregate of spherical

particles bonded with parallel bonds, and the influences of bond size,

stiffness, strength, and strength distribution were explored. It was shown

that for a given mean bond strength, a Weibull distribution with a modulus of

0.5 gave the most realistic results, with some bonds failing during

consolidation and immediately after commencement of shearing, while the

strongest remain intact throughout the tests. Such a distribution produced a

sharp peak strength at lower confining pressures, and a more rounded peak

at the highest pressures. The presence of bonds—representing

cementation—also caused additional dilation when compared to the

uncemented simulations. For a sample with a given number of bonds and

initial density, the results indicated that it is the strength of the strongest

bonds which govern any additional dilation caused by cementation.

Increasing the quantity of bonds in the material appeared to be the most

effective way of modelling an increased cement content. For a distribution of

bond strengths, increasing the quantity (by bonding particles to neighbouring

ones which aren’t necessarily in contact, but lie within a specified proximity),

resulted in the correct qualitative change in behaviour that an increase in
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cement content causes in laboratory triaxial tests (a more clearly defined

peak strength, an increase in strength, increased dilation, and more brittle

behaviour). The flexible membrane permitted the correct failure modes to

develop, allowing contrasting brittle and ductile failure modes caused by

varying the cement content. By plotting the individual particle rotations, it

was shown that increasing the number of bonds (i.e. the degree of

cementation) increased the strength and brittleness of the material at a given

confining pressure, with shear planes visible in the highly cemented

simulations.

DEM was then used in Chapter 4 to simulate the one-dimensional

compression of sand to investigate particle crushing, which is an essential

feature of the behaviour of granular soils under high pressures, as well as the

associated phenomenon of fractal particle size distributions. Particle fracture

was simulated using a range of breakage mechanisms, replacing breaking

particles with new smaller fragments while maintaining constant mass and

avoiding the use of agglomerates. The octahedral shear stress was used as

the fracture criterion, based on the assumption that particles are unlikely to

break under just hydrostatic stresses. Normal compression lines were clearly

observed, and the slope was consistent with theoretical predictions. For an

initial voids ratio and given Weibull modulus (coefficient of variation) for the

distribution of particle strengths, the yield stress was shown to be

proportional to the average particle octahedral shear strength. For an initially

uniform particle size, the rate of onset of yield was then shown to be a

function of the distribution of particle strengths. The slope of the normal

compression line and the particle size distribution appeared to be

independent of both the breakage mechanism and the distribution of

strengths, and solely dependent on the size effect on average particle

strength. This appeared to clearly demonstrate that the plastic

compressibility index is simply the hardening law due to the smallest particles

breaking and becoming statistically stronger, which led to a new equation for

the one-dimensional normal compression of sand. The evolution of fractal
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particle size distributions was triggered by the tendency of similar sized

neighbouring particles to fracture. The results showed evidently that a fractal

distribution of particle sizes emerges, with a fractal dimension of 2.5. The

simulations also showed the correct behaviour when a comminution limit was

included, such that the compressibility index reduced at high stresses. The

compression lines were also plotted in double logarithmic space (log e–log σ)

and the NCL for the simulation of silica sand showed good agreement to both

the experimental results and McDowell’s (2005) theoretical prediction.

In Chapter 5 the discrete element method was used to show that the time-

dependent law for the strength of ceramics gives rise to the correct creep

behaviour under one-dimensional conditions. The simulation results agreed

with the hypothesis that creep behaviour should be linear when the logarithm

of voids ratio is plotted against the logarithm of time. The slope of the line

was shown to be given by a new equation, which included the size effect on

average strength as well as the exponent for the time-dependent strength.

Therefore, by performing standard tests to obtain the size effect on average

tensile strength of grains of a material by crushing between flat platens, and if

the exponent for time-dependent strength can be measured by allowing

particles to be loaded under constant stress and measuring the time to

failure, then the creep behaviour of an aggregate of such grains can be

predicted.

The behaviour of cemented sand in one-dimensional compression was also

replicated using DEM. The cementation was modelled with parallel bonds,

and it was shown that if the bonds were configured so to prevent particle

breakage, the correct transition is witnessed in the compression curves—the

cemented simulations extended into the structure-permitted space, and

displayed stronger yield stresses. The distribution of bond strengths was

shown to control the post-yield compression line: a narrow bond strength

distribution resulted in a sudden and catastrophic failure of bonds (i.e. brittle

yielding whereby the post-yield compression line converges immediately to

the intrinsic NCL); a much wider bond strength distribution produced a less
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rapid onset of yield, and a more gradual convergence to the intrinsic

compression line. A distribution with a low modulus such as 0.5 gave the

most realistic behaviour with regard to modelling a strongly cemented sand,

and analysing the simulations using Liu and Carter’s (1999, 2000) framework

for the compression of structured soils, the value of the destructuring index, β

appeared to be in the correct range. The destructuring indices obtained from

the simulations appeared to be a function of the bond strength distribution.

The presence of bonding within the material was shown to reduce the

compressibility and also the degree of particle crushing for a given applied

stress, which confirms speculation from Marri et al. (2012). The Weibull

modulus for the distribution of parallel bond strengths also appeared to have

a direct influence on the destructuring index. Increasing the quantity of

parallel bonds again appeared to be the most effective way of modelling

increasing cement content—increasing the quantity of bonds magnified the

effects of cementation (i.e. it increased the yield stress, rendered the sample

more brittle and reduced the degree of particle crushing for a given applied

macroscopic stress).

The final series of simulations presented demonstrated that it is possible to

simulate high-pressure triaxial tests on a crushable soil, using a flexible

membrane that allows free deformation. Sand was modelled using an

aggregate of crushable particles, in which the octahedral shear stress was

used as the fracture criterion. Allowing particles to break enabled realistic

volumetric strain to be observed, with the crushable materials able to exhibit

overall contraction instead of dilation. The particle strengths had a major

influence on the degree of crushing, which in turn influenced the amount of

contraction. The initial density and grading were also investigated, as well as

the confining pressure, which was shown to drastically increase the quantity

of breakage. Critical states were also investigated, and plotted in deviatoric–

mean stress space as well as in specific volume–mean stress space. It

appeared as though the position of the CSL in volume-stress space was

influenced by the characteristic particle strengths, similar to the NCL.
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According to the proposition from Chapter 4—that the slope of the normal

compression line is a function of the size-hardening law—an idealised CSL was

also plotted in voids ratio–mean stress space, under the assumption that the

CSL and NCL are parallel at high stresses. The results were encouraging, with

the points from the simulations with the highest confining pressures

appearing to approach this theoretical CSL; although tests at higher confining

pressures are required to fully define the critical state line in e-p space.

Cemented sand was then modelled by incorporating cementation using

parallel bonds in the familiar manner (the existence of a parallel bond on a

sand particle prevented the particle from breaking). The presence of parallel

bonds in general was shown to cause the correct qualitative change in

behaviour that an increase in cement content causes in laboratory tests: a

clearly defined peak strength, an increase in maximum strength, an increase

in dilation, and more brittle deformation. Increasing the degree of

cementation—by increasing the quantity of bonds—magnified these effects.

The most heavily cemented material resulted in the most brittle failure, with

a clear shear plane visible, which was manifested in the location of broken

fragments, broken parallel bonds, and the particle rotations. In the cemented

material, an increase in the degree of crushing was observed with increasing

cement content; particle breakage appeared localised and concentrated on

the failure plane. This observation was attributed to the change in

deformation and failure—from ductile to brittle—caused by increasing the

degree of cementation.

6.2 RECOMMENDATIONS

The current research has provided a useful insight into the fundamental

behaviour of sand under high pressures, in particular during one-dimensional

compression, and has highlighted the importance of particle crushing. The

behaviour of both uncemented and cemented sand during shear and

compression has been investigated, however there remain many areas in

which future research is desirable.
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The simple breakage model presented in Chapter 3 has been shown to be an

effective way of capturing particle crushing, and has many potential

applications, in addition to those pursued in Chapter 5.

With regard to the compression of sand—as with any numerical modelling—

there is a desire to improve the efficiency and realism of the simulations

presented in this thesis. In general, the simulations became unsustainable

upon reaching applied stresses of approximately 30 MPa, and contained

around 20000 particles. The limiting factor was the range of particle sizes,

rather than sheer quantity, which greatly reduced the numerical timestep.

Ideally, with future advances in computing and DEM software, it would be

highly desirable to conduct simulations that comprise significantly higher

numbers of particles, compressed to higher pressures. This would enable

wider, more continuous fractal particle size distributions to be observed, and

longer compression lines that display fewer fluctuations to be plotted.

Alternatively, as the breakage mechanism was shown to not affect the overall

compressibility of resultant particle grading, different mechanisms could be

explored, (e.g. Ben-Nun and Einav, 2010)—which could reduce the number of

computational steps required to dissipate the artificial elastic energy induced

following breakage.

Further work fully exploring not only the one-dimensional compression but

also the isotropic normal compression of sand is an immediate objective. A

full investigation of isotropic compression would shed light on how the

macroscopic loading conditions influence the induced shear stresses and

evolution of fractal particle size distributions. The separation of the one-

dimensional and isotropic compression lines could be investigated, including

simulations of soils with various coefficients of lateral earth pressure (K0). To

fully and realistically model the behaviour of sand in one-dimensional or

isotropic compression, the incorporation of particle shape is a necessity. All

of the principal work presented in Chapter 3 could be repeated with irregular

shaped particles, using the clump feature of PFC3D, however the breakage
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mechanism would need attention with regard to replacing particles with

fragments self-similar in shape.

There are also plenty of opportunities for further work progressing from the

triaxial model; primarily involving the modelling of crushable soils. Clearly,

the simulations presented could be repeated to further axial strains to ensure

critical states are reached. Additionally, further simulations at higher

confining pressures are desired to predict accurate critical state lines in both

deviatoric–mean stress space and voids ratio–mean stress space. However,

as shown at the end of Chapter 5, the triaxial simulations also became

unsustainable with a confining pressure of 4 MPa, which was not only due to

the timestep and the range of particle sizes, but also the use of the flexible

membrane. An obvious way of improving the efficiency of such simulations is

to eliminate the use of a particle-based membrane—this comprised a high

proportion of the total particles, which were inherently required to be smaller

than the specimen particles. Avoiding the use of such a membrane, for

example by using a rigid cylindrical boundary—while not providing realistic

laboratory triaxial conditions (as outlined in Chapter 3)—would render the

simulations significantly more economical and could enable a fuller analysis of

the critical state line. However, this would not allow the natural deformation

to occur; hence an alternative model, which does provide a flexible boundary

but that is computationally less demanding than the particle-based

membrane would be the ideal solution.

By analysing the critical state line to high pressures, it would be possible to

shed light on the micro mechanics of critical state soil mechanics, and

determine how the slope and position of the CSL in volume-stress space is

related to both the micro properties of the soil and the evolving particle size

distribution. It would also be possible to explain the true nature of the CSL in

volume-stress space—for example: to determine if it is indeed parallel with

the NCL line (and at what pressures is this the case); and, if it is parallel with

the NCL in log voids ratio–log mean stress space, then the conventional use of

specific volume could be questioned. This work should also involve the use of
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realistic particle shape, not only to gauge its effects, but to ensure the

simulations replicate soil as realistically as possible.
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