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ABSTRACT

The human placenta is characterised by a unique circulatory arrangement, with numerous
villous trees containing fetal vessels immersed in maternal blood. Placental tissue therefore
manifests a multiscale structure balancing microscopic delivery of nutrients and macroscopic
flow. The aims of this study are to examine the interaction between these scales and to under-
stand the influence of placental organisation on the effectiveness of nutrient uptake, which can
be compromised in pathologies like pre-eclampsia and diabetes.

We first systematically analyse solute transport by a unidirectional flow past an array of
microscopic sinks, taking up a dissolved nutrient or gas, for both regular and random sink
distributions. We classify distinct asymptotic transport regiines, cach characterised by the
dominance of advective, diffusive or uptake effects at the macroscale, and analyse a set of sim-
plified model problems to assess the accuracy of homogenization approximations as a function
of governing parameters (Péclet and Damkohler numbers) and the statistical properties of the
sink distribution. The difference between the leading-order homogenization approximation and
the exact solute distribution is determined by large spatial gradients at the scale of individual
villi (depending on transport parameter values) and substantial fluctuations that can be corre-
lated over lengthscales comparable to the whole domain. In addition, we consider the nonlinear
advective effects of solute-carriers, such as red blood cells carrying oxygen. Homogenization
of the solute-carrier-facilitated transport introduces an effective Péclet number that depends
on the slowly varying leading-order concentration, so that an asymptotic transport regime can
be changed within the domain. At large Péclet and Damkohler numbers (typical for oxygen
transport in the human placenta), nonlinear advection due to solute-carriers leads to a more
uniform solute distribution than for a linear carrier-free transport, suggesting a “homogenizing”
effect of red blood cells on placental oxygen transport.

We then use image analysis and homogenization concepts to extract the effective transport
properties (diffusivity and hydraulic resistance) from the microscopic images of histological
sections of the normal human placenta. The resulting two-dimensional tensor quantities allow
us to assess the anisotropy of placental tissue for solute transport. We also show how the
pattern of villous centres of mass can be characterised using an integral correlation measure,
and identify the minimum spatial scale over which the distribution of villous branches appears
statistically homogeneous.

Finally, we propose a mathematical model for maternal blood flow in a placental functional
unit (a placentone), describing flow of maternal blood via Darcy’s law and steady advective
transport of a dissolved nutrient. An analytical method of images and computational integration
along streamlines are cmployed to find flow and solute concentration distributions, which are
illustrated for a range of governing system parameters. Predictions of the model agree with
experimental radioangiographic studies of tracer dynamics in the intervillous space. The model
supports the hypothesis that basal veins are located on the periphery of the placentone in order
to optimisc delivery of nutrients. We also explain the importance of dilatation of maternal spiral
arterics and suggest the existence of an optimal volume fraction of villous tissue, which can both
be involved in the placental dysfunction. Theoretical studies of this thesis thus constitute a step

towards modelling-based diagnostics and treatment of placental disorders.
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“ INTRODUCTION

1.1 Basic structure and function of the human placenta

We shall start by quoting Bernard Shaw [241]: “Except during the nine months before he
draws his first breath, no man manages his affairs as well as a tree does.”

The human placenta (Fig. 1.1) incorporates almost all functions of the adult body, acting as
the fetal lung, digestive and immune systems, to mention a few. It is therefore not surprising that
many complications of the pregnancy are associated with failures of this life-support system [33],
such as intrauterine growth restriction (IUGR) of the fetus, diabetes, gestational hypertension
(pre-eclampsia) that manifest in more than 5% of all pregnancies [266]. Thus, it is essential
to understand how the structure of the placenta influences and is influenced by its transport
function: delivery of nutrients and oxygen to the fetus.

The vascular morphology of the human placenta consists of supplying spiral arteries and

draining decidual veins from the maternal side, and a complex network of vessels in the villous

Figure 1.1. (a) Schematic diagram (modified from [33]) of the nearly mature human placenta in
situ, composed of the chorionic plate (CP) and the basal plate (BP) surrounding the intervillous
space (IVS). The villous trees containing fetal vasculature (communicating with the fetus via
the umbilical cord (UC)) project from the CP into the IVS and are directly surrounded by
maternal blood that emerges from spiral arteries (SA) in the BP and circulates, as indicated
by arrows in lobule L;, to leave the IVS through the decidual veins (DV); terminal branches of
the chorionic villi are not shown in L;. Note the single villous tree in the peripheral lobule L,
demarcated by the placental septum (S), as opposed to several trees in the central lobule Ls.
(b) A cross-section of a normal peripheral placental lobule showing villous branches in the IVS
(section taken parallel to the BP, about 1 mm from the decidua).
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trees from the fetal side. The dense terminal branches of villi (with enormous surface arca of
the order of 10 m? in a mature placenta) form an interface for metabolic exchange between the
two circulatory systems. The mature placenta is subdivided into 60 to 70 villous trees (or fetal
cotyledons) that are grouped in 10 to 40 lobules [33] (Fig. 1.1a).

1.2 The concept of the placentone

Our modern understanding of blood flow in the primate and human placenta is based on the
pioneering studies by Freese, Ramsey, Reynolds, Wilkin and co-authors [96, 207, 216, 272, 274].
Using a combination of radioangiography and casting techniques they visualised the flow pat-
terns of maternal blood and the morphological relationship between the uteroplacental vascu-
lature and fetal chorionic villi. Schuhmann et al. confirmed the topological findings of Freese
and others by demonstrating different zonal enzymatic activities in the fetal cotyledon [235].
Schuhmann also coined the term “placentone” for a functional placental circulatory unit [236].

According to Schuhmann, this term was modified by him and Wehler from “placentom”,
previously used to denote a placental unit in ruminants and humnan by Strahl and Strauss, be-
cause “the ending ‘-om’ is widely used for tumors whereas the ending ‘-one’ in the morphological
nomenclature characterizes functional units (osteon, nephron, chondron)” {237]. However, the
common semantics for a functional or structural unit in biology and physics is given by the suffix
‘-on’ (ion, photon, electron, soliton, etc.) as opposed to the integral description of a system as
a whole by the ‘-ome’ suffix (genome, proteome, cardiome, physiome, etc.) [158]. Nevertheless,
we will follow the historical name “placentone” adopted in the literature as a reference to a
functional placental unit in primates and human [33].

The functional circulatory unit of the human placenta, a placentone, is defined as a single
fetal villous tree and its corresponding decidual vessels. Maternal blood, ejected from a spiral
artery, passes between the branches of the villous tree before leaving the placentone through
decidual veins., Although strict anatomic borders cannot always be found between these func-
tional units {237], this arrangement is most clear in the peripheral lobules of the mature human
placenta [33]. The distinguishing features of the placentone are a central cavity of the fetal
villous tree with less differentiated villi, a dense lateral portion, the functional decidual arterial
opening into the central cavity, and basal venous openings near the periphery [98, 237] (Fig. 1.2).

Although this one-to-one arrangement is most clear in the peripheral lobules of the mature
human placenta [33], a general tendency to pair-wise villous tree and spiral artery organisation
can be observed [96, 272], and has also been reported in macaque Rhesus (98, 205]. Moreover,
the fetal cotyledons without a corresponding decidual artery were found to have a considerably
different shape, and it was suggested that these “artery-free” villous trees are more specialised
to have a secretory rather than sorptive function [98]. It has also been shown that the number
of decidual arterial openings decreases throughout the first trimester of pregnancy [197]. This
may support the concept that the quantity of arterial openings at term should be comparable
to the number of fetal villous trees.

An important determinant of the successful preparation of the maternal side for gestation

is the dilatation and suppression of contractile activity in spiral arteries. This is believed to
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(b)

Figure 1.2. (a) A cast of a large villous tree from the human term placenta (incomplete injec-
tion), showing differences in density of villi forming a central cavity (top). Reproduced from [98].
(b) A scheme of the placentone at term, enclosed between the basal (BP) and chorionic (CP)
plates. Maternal blood enters the central cavity (CC) via the spiral artery (SA) and is drained
through the decidual veins (DV) at the periphery. Note the anchoring stem villi (AV) surround-
ing the CC and connecting the CP with the BP. The dashed lines show the central cavity and
notional outer boundary of the placentone. The intermediate and terminal villi are not shown.
Modified from [33].

be largely achieved through the invasion of the extravillous trophoblast, derived from the shell
covering the villous trees [33]. It is the ability of these trophoblast cells to migrate and invade
the spiral arteries, converting them into high-capacity nearly passive conduits, that contributes
to their remodelling, pioneered by Pijnenborg and others [194, 195].

Intrauterine blood flow and the development of villous structure are addressed both in the
experimental works by Kaufmann, Freese, Ramsey, et al. [70, 72, 99, 131, 142, 148, 207, 235]
and by mathematical modelling of Erian, Longo, Power and others [86, 143, 153, 160, 211, 255].
There were long debates concerning the presence of intervillous maternal blood circulation in
the first trimester [56, 65, 246, 263 and the existence of a central cavity in the fetal villous tree
(97, 108, 237]. Now most investigators agree that a considerable rise in blood flow through the
intervillous space happens between the 8th and 12th weeks of gestation [144, 195], and that a
typical mature placentone exhibits structural and metabolic differences between its central and
peripheral portions [237].

However, the problem of obtaining a quantitative statistical description of the villous struc-

ture of a placentone and of the distribution of decidual spiral arteries and veins is still open [33].
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Even the total number of basal arterial openings at term is uncertain. Reported values vary from
80 — 100 [186] and 100 — 150 [163] to 25 — 320 [33, 49]. Also, one should distinguish between
anatomic and functional openings of spiral arteries, since the number of observed functional
openings in ultrasonic and radioangiographic studies is less than cited above [49]. Thus, Boyd
and Hamilton have given an estimate of about 100 functional openings [49], which is comparable
with the number of fetal villous trees in the mature placenta.

The number and distribution of basal venous orifices are also quite uncertain; the total
amount varies from around 70 [49] to 50 — 200 [33]. There are three main hypotheses for
the distribution of venous openings: random; concentrated near placental margins (“marginal
lakes”); and concentrated in the periphery of placentones and near the placental septum [49].
Recent studics show the potential role of marginal decidual veins in lateral placental growth by
trophoblast invasion [78]. The hypothesis that placental septa originate as a result of a growing
venous network, and of mechanical stresses in the decidua associated with anchoring villi 48],
is also more consistent with basal venous orifices being located on or near the elevated septum.

While researchers have studied separately maternal and fetal angiogenesis, the mechanism
governing the spatial co-organisation of the fetal and maternal circulatory systems has been
largely overlooked. For example, the arrangement of anchoring villi with respect to the spiral
arteries, and especially the dynamics of anchoring throughout a pregnancy, is unclear; however,
there is evidence that the villi tend to surround the central cavity of the placentone containing
a spiral artery [65, 215]. The questions of whether there is random or regular architecture in
the relative position of villous trees and decidual vessels, and what guides their development, if
it is not random, remain open.

Based on a review of literature on the biochemistry of growth factors, and the effects of
haemodynamical forces and oxygen concentration on villous development (see Appendix A), we
conclude that the available data tends to support the concept that a villous tree develops around
a specific spiral artery, optimising its spatial arrangement for effective metabolic exchange. As
remarked by Freese [98]: “There is a nicely designed system of maternal blood flow in the
intervillous space.”

Having established the ordered development and the ultimate design of a placentone, one
would question its implications for haemodynamics and metabolic exchange in the human pla-
centa. Mathematical models can assist in investigating the impact of such a design on intervil-

lous flow and solute transport.

1.3 Review of theoretical models of placental circulation and

metabolic exchange

Theorctical studies of the placental circulation and metabolic exchange were started more
than 40 years ago by Faber, Kirschbaum, Longo, Moll and co-workers [25, 88, 143, 160]. Never-
theless, we still do not have complete understanding of many phenomena related to intrauterine
fetal growth restriction and macrosomia (abnormally large birth-size of a neonate), and it is
also unclear how these pathologies are connected to placental structure, haemodynamics and

regulatory activity.
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The first lumped-parameter (or compartmental) models focused on oxygen and carbon diox-
ide exchange between the maternal and fetal circulatory systems, ignoring spatial flow patterns
of maternal blood, where Fick’s law was used to approximate diffusive mass transfer across the
placental barrier 88, 121, 122, 143, 153]. Interestingly, one of the carliest and most cited models
by Bartels and Moll [25, 179} contains an incorrect attempt to generalise the “theory of heat
exchangers” to the multivillous feto-maternal vascular arrangement in the human placenta using
double-exponential growth for net uptake rate, due to misinterpretation of ordinary differential
equations for solute exchange. This indicates a danger of superficial compartmental modelling
of placental circulation. On the other hand, Power et al. showed experimentally a considerable
heterogencity of maternal and fetal circulations in a cotyledon (the placentone analoguc) of the
sheep placenta [200].

Later approaches, such as the influential paper of Erian et al. [86], accounted for spatial
effects and included linear and nonlinear laws for flow of maternal blood in the villous tissue
described as a porous medium, which was generalised by Smith, Wilson and Duffy to include
inertial effects near the spiral artery in the framework of Forchheimer’s equation [248] (which
will be discussed in Sce. 1.4.2 below); other models took account of the radial oxygen diffusion
at the scale of a single capillary in the intervillous space {77, 109, 116], and considered blood
flow and pressure in the spiral artery with a terminal expansion as a function of arterial radius

using Poiscuille’s law for a conical tube [57]. A brief description, and main outcome, of cach
relevant model is summarised in Table 1.1.

Model Description Main results
Kirschbaum, Equilibrium mass transfer in the lamb pla-  The influence of the placental shunts
Shapiro centa. A system of algebraic cquations is de-  is investigated.

The distribution of
blood flow-rate-fraction participating

in materno-fetal gas exchange is pre-

(1969) [143) rived from Fick’s law for diffusion and Hill’s

law for uptake.

sented.

Faber (1969) Steady transfer of inert solutes is considered  Three  non-dimensional paramecters

(88] for concurrent, countercurrent, crosscurrent  representing  placental permeability,
and “pool flow” arrangement of placen-  materno-fotal blood fow rates and
tal circulation based on a onc-dimensional  solute transport rates are identified.
advection-mass transfer model. The effec-  The isolines of solute transport rates
tiveness of solute transport with respect to  are plotted for homogencous and het-
the placental type and model parameters is — crogencous blood flows and placental
analysed. barrier permeability.

Guilbeau, Steady and unsteady oxygen transfer in a Spatio-temporal distributions of OXy-

Renean, capillary-scale unit of the human placenta, gen partial pressure in maternal and

Knisely which is deseribed by a system of diffusion-

fetal blood necar the exchange unit are
(1972) [109]

convection-reaction cquations in a three-

layer cylinder, with the Hill equation for

oxygen saturation; placental shunts are ne-
glected.

computed. The cffect of time-varying

velocity of maternal blood on oxygen
content is explored,

Table 1.1. Mathematical models proposed for the utcroplacental blood flow

(ODE = Ordinary differential equations).

and solute transport.
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Model

Description

Main results

Hill, Power,
Longo (1973)
[122]

Lardner
(1975) [153]

Erian,
Corrsin, Davis
(1977) [86]

Aifantis
(1978) (6]

Wilbur,
Power, Longo
(1978) [273]

Heilmann,
Grebner,
Mattheck,
Ludwig (1979)
[116]

Schroder
(1982) [234]

Schiid-
Schénbein
(1988) [232]

Unsteady gas transfer in the human pla-
centa. A system of ODEs is obtained based
on Fick’s law in terms of O, and COy partial
pressures, using cxponential and Hill-type
dissociation kinetics in red blood cells.

Steady one dimensional oxygen transfer in
the human placenta. The model is described
by a system of nonlinear ODEs, with com-
bined lincar and Hill-type uptake kinctics.

Steady maternal blood flow in a single pla-
centone of the human placenta. Darcy’s law
with constant, spatially non-uniform and
local maternal flow-velocity-dependent hy-
draulic conductivity is uscd.

A general scheme of hacmodynamics and
heat transfer in the human placenta, based
on mixture theory.

Unsteady water and solute exchange in the
human placenta as a generalisation of [122].
The modcl is given by a system of 36 ODEs,
taking account of hydrostatic and osmotic
pressures as well as chemical reactions for a
varicty of solutes.

Unstcady radial oxygen diffusion in a human
placentone, described as two-layer Krogh
cylinder with different diffusion coefficients
for the blood-filled intervillous space and
trophoblastic tissue; no oxygen uptake and
zero maternal blood flow are assumed.

Unsteady passive transport of solutes in
the guinca-pig placenta. A onc-dimensional
mathematical model uses a generalisation of
Fick’s law to take account of hydrostatic and
colloid osmotic pressure differences across
a placental membrane at constant arterial
flow rates.

A schematic analysis of steady flow of
maternal blood in the intervillous space
as a porous medium is presented. The
Poiscuille’s and Darcy’s flows are compared
and contrasted, using algcbraic reclations
and the empirical Kozeny-Carman formula
for placental hydraulic conductivity.

The time course of Oz, CO, partial
pressures in the maternal and fetal ery-
throcytes and in plasma is obtained.
The influence of kinetic parameters on
transient processes is studied.

A sct of non-dimensional paramcters
characterising diffusion, uptake and
flow rates is proposed. The depen-
dence of oxygen uptake and partial
pressure on these parameters is given.

The cffect of villous distortion duce to
matcernal blood flow on flow patterns
is studicd. A short-circuiting of ma-
ternal blood entering the placentone is
obscrved.

A critical review of existing models is
presented. A plan of future develop-
ments is proposed.

Steady distribution of water and solute
transfer rates between mother and fe-
tus along placental membrane is given.
Reversed exchange near the end of a
fetal capillary is observed. A scnsitiv-
ity analysis to the model parameters is
performed.

The model studies the rheological ef-
fect of a sudden occlusion in the in-
tervillous space, caused by erythro-
cyte aggregation. The typical time of
a physiologically significant decay in
oxygen partial pressure is given.

Steady distributions of concentrations,
hydrostatic and osmotic pressure along
a placental membrane arce obtained for
both concurrent and counter-current
flows. The computed osmotic pressure
effect on transplacental bulk water ex-
change is compared with experimental
data.

Experimental techniques to  identify
the phenomenological paramecters arc
proposed. An explanation of x-ray im-
ages of radio-opaque tracer as “per-
colating chromatographic fronts” is
given. The role of non-Newtonian
blood rheology at small flow velocities
is highlighted.

Table 1.1. (continued).
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Model Description Main results
Groome Steady onc-dimensional oxygen transport in The cffect of placental oxygen con-

(1991) [107)

Costa,
Constantino,

Fumero
(1992) [77]

Finn, Leach,
Gowland,
Jensen (2004)
[91]

Sengers,
Pleasc, Lewis

(2010) [238]

the human placenta, described by a system
of nonlincar ODEs with a Hill-type law for
hacmoglobin dissociation, and Michaclis-
Menten kinetics for uptake by syncytiotro-
phoblast.

Steady oxygen exchange in the human pla-
centa, based on one-dimensional diffusion
and uptake in an individual fetal capillary.
Anatomical capillary network data is em-
ployed.

Unsteady haemodynamics and mass trans-
fer in a single maternal lobule of the hu-
man placenta. The 2D model incorporates
the fluid dynamics of almost incompress-
ible maternal blood, solved by the lattice-
Boltzmann method, and linecar diffusion-
reaction-uptake cquation.

A compartmental model for unstecady cx-
change of three amino-acids (serine, alanine
glycine) through the placental barrier is de-
veloped, taking account of the active trans-
porters in the syncytiotrophoblast mem-
branes via Michaclis-Menten-type kinetics,
assuming steady diffusion and uniform ad-
vection across the placenta.

sumption, duc to metabolism, on
the fetal oxygenation in a micro-
scopic uteroplacental unit is investi-
gated. Placental vascular shunts arc
taken into account.

The dependence of oxygen partial pres-
surc in fetal blood on gestational age
and on thickness of the materno-fetal
barrier is calculated.

The spatio-temporal distributions of
maternal blood pressure, flow veloc-
ity and solute concentration in a com-
plex geometry reconstructed from his-
tological sections. The effect of mater-
nal blood flow pulsatility and incrtia is
studied.

The paramcters of the model are fitted
to ez vivo perfusion data. The com-
putations reproduce experimental ob-
servations, examine the sensitivity of
amino-acids to the kinctic parameters
of transporters, and suggest the accu-
mulation of counsidered amino-acids in
the syncytiotrophoblast compartment.

Table 1.1. (continued).

The modelling of the placental transport function therefore falls into three broad groups:
(i) homogeneous trans-membrane exchange and diffusion of oxygen, carbon dioxide, water,
amino-acids and other species at constant maternal and fetal flow rates [77, 88, 107, 116,
122, 143, 153, 212, 238]; (ii) steady (Darcy-type) percolation of maternal blood without solute
uptake [57, 86, 232], and (iii) unsteady two-dimensional flows with a linear uptake and the
inertial effects [91, 248].

A shortcoming of many previous models is that they focus on metabolic exchange but assume
uniform blood flow distribution across the placenta, paying little attention to the spatial solute
patterns; or they consider complex flows ignoring nonlincar uptake kinetics (such as in the casc
of glucose transport [114]). Also, no previous model provides a systematic account of micro-
geometry in the macroscopic flow and transport (see Fig. 1.3). Thus, a gap in understanding
the interplay between placental circulation at macroscales and nutrient delivery at microscales

is yet to be bridged.
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~ 10 mm

~ 0.5 mm

Figure 1.3. Hierarchy of scales in the human placenta: (a) spiral artery entering a mature
placentone; (b) cross-sections of the terminal villi in the placentone (magnification of (b) is ca.
%20 over (a)). Modified from [96, 98].

1.4 Review of theoretical studies of flow and transport across

multiple scales

The theory of homogenization is a combination of the multiscale analysis and the averaging
technique that has been successfully applied to a variety of physical, engineering and biomedical
problems since it was developed by Babuska, Berdichevsky, Bakhvalov, Keller, Papanicolaou,
Sénchez-Palencia, et al. [15, 19, 34, 36, 135, 227]. The applications are as diverse as homog-
enization of standard equations of mathematical physics with rapidly oscillating coefficients
(on a domain with periodic microstructure) [20], homogenization of wave-propagation in fibre-
reinforced poroelastic media [190], and homogenization of molecular strain energy of DNA with
respect to the twist angle [165].

The homogenization method provides a convenient analytical tool for obtaining the effective
macroscopic description of underlying phenomena at fine scales if a representative periodic
structural unit at these scales can be devised or the assumptions of statistical homogeneity and
ergodicity can be applied to the system [261]. This method is essentially based on the two-scale
expansions procedure, which was put forward by Lick and others as a natural approach bringing
together advantages of the method of matched asymptotic expansions and Lighthill's method
of stretched coordinates [32, 159].

The original motivation and most common application of the homogenization method is the
physics of composite materials [227], with much effort put to the problems of convergence of
differential operators and functionals in the theory of ordinary and partial differential equations
with rapidly oscillating coefficients [20, 34, 282]. However, recent interest in biomechanical
applications unveils a new potential of averaging and homogenization approaches [71, 242, 275].

Below we present a brief review of homogenization and other effective description techniques.
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1.4.1 Effective description of heterogeneous mass and heat transport

The problem of the cffective, or average, description of heterogeneous media has long at-
tracted attention since Maxwell suggested in 1873 analytical estimates of the effective electrical
(or thermal) conductivity of a medium with conductivity ko that contains a dilute cubic array

of identical spheres of conductivity k; and has a volume fraction ¢ [170]

bt | _ 31— ki/ko)

—_— , 1; 1.4.1
ko STk O 0 (14.1)

Lord Rayleigh calculated the corrections up to ¢'3/3 in 1892 [208]. In subsequent works, Keller,
Batchclor, Sangani, and others [28, 133, 230] verified and gencralised these estimates for a
variety of packings and ranges of volume fractions of cylindrical or spherical inclusions. The
role of advective transport in bulk heat exchange between a conducting liquid and a fixed array
of heated spheres was first investigated by Acrivos et al. [3] for small volume fractions and
small Péclet numbers Pe (a ratio of advective to conductive heat (or diffusive mass) transport).
They showed that even at small Péclet number and small but finite volume fractions (Pe? «
¢ < 1), the average temperature difference depends on details of the flow. Recent progress
in microfluidic devices and biomedical applications has renewed interest in these analytical
and numerical results, as reviewed in [130, 279]. Below we present a short review of different

approaches and results known up to date.

Transport in periodic arrays

The successive multipole moments approach to estimate the effective electric conductivity
was suggested by Rayleigh [208], corrected by Runge [222] and experimentally verified and de-
veloped by Meredith and Tobias [178] and by McKenzic and McPhedran {174, 176]. Alternative
approaches of Keller, Batchelor, Acrivos, Sangani and co-authors [28, 133, 230] established a set
of comprehensive and accurate estimates of the bulk electrical or heat conductivity for small or
high volume fractions of conducting or isolating spheres as the composite’s constituents. Since
the hydraulic conductivity (at low Reynolds number) is proportional to the cffective clectrical
conductivity of the same porous medium composed of a non-conducting solid part and filled
with a conducting liquid electrolyte [14], these results have a broad applicability.

The spectral properties of singularities method introduced by Bergman [37] is based on
the property of an cffective complex diclectric conductivity being an analytical function of the
constituent-conductivities’ ratio kj /kg, except for a finite number of simple poles at the negative
real axis (sce, e.g. (1.4.1)). A lincar Hermitian opcrator based on the Green function for the
Laplace operator reduces the problem of counting the poles and their magnitudes (residues) to
a spectral problem for this operator. The method has been successfully applied to a systematic
analysis of scveral composite arrangements, and has proved especially useful when ki/ko is
negative and near its singular value (resonance) [38]. The method has been further developed
by Bergman and Milton to provide rigorous bounds of effective conductivity [39, 183].

In the framework of homogenization and multiscale averaging techniques, Sangani and Acrivos

with co-authors have studied by a hybrid numerical-analytical approach the effect of flow at
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low [3, 229] and high [264] Péclet number on heat exchange at fixed source strength; using
infinite-volume homogenization (taking the limit of a large averaging volume over a heteroge-
neous medium, in the case of ergodicity of the medium and boundedness of the field quantities),
Sangani has obtained the effective diffusivity of polymers with inclusions obeying the nonlinear
Langmuir sorption law at zero Péclet number [228]; Mauri [168] considered several different
scalings of Péclet and Damkoéhler numbers for the first-order irreversible reaction kinetics in
a periodic porous medium and obtained the corresponding effective equations, which he later
extended to non-reactive transport in a random velocity field (e.g. for a medium composed of
solid spheroidal inclusions) [169]; and recently Mikelié¢ et al. [180] and Allaire & Raphael [7] pro-
vided rigorous estimates for convergence of the homogenised solutions to an advection-diffusion-
reaction problem at large macroscopic Péclet and Damkohler numbers. A homogenization of
an advection-diffusion-reaction problem with evolving (time-dependent) microstructure that
permits transformation to a static reference periodic domain was also briefly considered [192].

Using the framework of generalised Taylor dispersion, Brenner and Shapiro [51, 240] have
calculated effective parameters of an advection-diffusion-reaction equation for first-order kinetics
by studying the properties of statistical averages (moments) of a solute “Brownian particle”

introduced into a spatially periodic porous medium.

Transport in random arrays

Estimates of the rigorous bounds of effective material properties, which represent the original
progress in the averaged description of heterogeneous media, are due to fundamental works by
Prager {202], and Hashin & Shtrikman [110, 111] based on wariational principles. They are
important because of their applicability to a wide class of composite microstructures, including
irregular ones, and the possibility to obtain geometry-independent upper and lower bounds
depending only on the constituents’ physical properties and volume fractions [39]. The essence of
the variational-bounds method is in using a trial, or reference, homogeneous composite property
for an “energy” functional describing the effective medium [261]. An alternative method of
looking for rigorous bounds, proposed by Bergman and Milton [39, 183], exploits analyticity of
the effective property as a complex function of the constituents of two-phase composites. Further
development is due to works by Keller, Talbot & Willis, Papanicolaou, Torquato, Berryman,
and many others [41, 103, 146, 166, 219, 220, 256]. In particular, the n-point correlation
(probability) functions formalism of Torquato and co-authors has largely assisted in calculating
the geometry-specific bounds [41, 260].

The stochastic homogenization method of Papanicolaou et al. [34, 35] was proposed almost
simultaneously with homogenization of periodic structures. In the case of statistically homo-
geneous and ergodic microstructure, virtually all results for periodic porous media are directly
applicable here and vice versa [261]. Advection-diffusion in turbulent and random flow fields has
also been extensively studied and is shown to be largely equivalent to convection in a periodic
velocity field [89, 173, 175, 223].

The volume averaging method by Whitaker and others [262, 268, 283] deals with volume-
averaged microscopic equations simplified by use of the Reynolds transport theorem (for volume-

averaging of time-derivatives of quantities) and its spatial analogue {268, 270]; this is comple-
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mented by the “closure cell problems” for perturbation over mean values, where a periodicity
assumption is often employed. Recently Whitaker, Wood, et al. have applied this approach
to find effective nonlinear reaction-diffusion in biofilms, using Michaelis-Menten-type reaction
kinetics [275, 276]. Although the volume-averaging approach allows one to obtain cffective trans-
port equations and their coeflicients without assuming periodicity of the medium, this requires
some heuristic estimates to be made about the terms in the equations that are used to “close”
the averaged problem (see [40] for more detailed discussion and comparison of homogenization
and volume-averaging methods).

Recent advances in stochastic geometry allow one to approach non-lincar time-dependent
growth models (such as angiogenesis), where global scalar fields of the medium affect the ge-
ometry of the microstructure and wice versa, providing a feedback loop across different length-
scales, as done by Capasso and co-authors by means of mesoscale hybrid homogenization of
random branching-and-growth [62, 63]. This method involves systematic coupling of stochastic
differential equations for evolution of the microstructure (c.g. a growing nectwork of vessels)
at the microscale with deterministic averaged partial differential equations for transport of the

underlying scalar field (e.g. concentration of diffusible growth factors) at the macroscale [53].

1.4.2 Effective description of flow in a porous medium

Empirical and phenomenological laws of flow in a porous medium (filtration) are due to
works of Darcy [79], Forchheimer [94], Brinkman [52], and Biot [43]. The mass conservation of

incompressible liquids in the absence of sources and sinks is expressed by the condition
V.-u=20,

and the momentum conservation equations in these models are as follows:

u= —IKL VP, (Darcy)

u(l+ ﬁ Blu*t) = —% VP, (Forchheimer)
- _K 2 N

u=— (VP — p, V*u), (Brinkman)

where u is the superficial average (over the entire volume of a representative element of a porous
medium) velocity of fluid, P is the pressure of the liquid phase, K is the superficial average
hydraulic permeability of the medium, x and p are the dynamic viscosity and density of the
fluid, B and n are the Forchheimer drag cocfficient and velocity exponent (empirically usually
set to be n = 2), and p; is the Brinkman effective viscosity. Both 3 and g, are functions of K
and the volume fraction ¢ of the solid phase.

The quasi-static Biot model [43] that couples Darcy’s law for the fluid and lincar clasticity

for the solid phasc, for an isotropic and homogenecous porous medium filled with incompressible
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liquid in the absence of external volume forces and sources, is given, following [244], by

47

?—(Z—'5—)+v-u=o, uz—%VP,
L (Biot)

V.o=0, o=—-aPl+A (VE+VE) +X(V-O)I,

where § is the solid matrix displacement vector, u is the superficial average fluid velocity relative
to the solid deformation velocity 9€/0t, « is the Biot-Willis pressure—deformation coupling
constant, A; and A2 are the Lamé shear and dilation elasticity moduli of the porous medium,
and | is the unit tensor. If the porous medium is assumed to be static (§ = £(x)), the Biot
system reduces to Darcy flow in a solid phase skeleton deformed according to the static elasticity
problem for a given pressure field. For small deformations, or coupling constant « much less
than 1, the fluid problem also decouples from the solid problem.

Although the Darcy, Biot and Forchheimer laws have been systematically obtained from
microstructure by homogenization techniques, the Brinkman cquation that relates Stokes flow
(for volume fraction ¢ — 0; K — oo, pp — p) and Darcy flow (for ¢ — 1; py — 0) is still
subject to controversy [187]. For example, the velocity u in the non-Darcy term is thought to
be an intrinsic fluid-phase average in contrast to the conventional superficial (whole volume)
average [269], the Brinkman viscosity pyp strongly depends on the microstructure of a porous
medium, and the equation itself scems to be applicable only for very small volume fractions
¢ [187]. However, the Brinkman equation can be useful in handling the boundary conditions
at the interfaces of a transition region between Darcy flow in a porous medium and free Stokes
flow [120]. A typical matching boundary condition is due to Beavers and Joscph {30]: u =
up + g‘?ﬁ, where n is a unit normal to the interface, u, u, arc the tangential velocities in free
flow at the interface and in a porous medium respectively, K is the hydraulic permeability, and

7v is a constant characteristic of the porous medium.

Flow in periodic arrays

The derivation of Darcy’s law by homogenization was historically one of the first applications
of the newborn homogenization method by Keller, Sanches-Palencia and others [85, 136]. We
shall illustrate this derivation shortly.

In the search for a theoretical justification of the Forchheimer’s account for fluid inertia,
a quadratic correction (n = 2) was obtained by Whitaker [269] using the volume-averaging
method, and a cubic correction (n = 3) by Auriault and Mei within the homogenization frame-
work [177]. The recent careful homogenization analysis and numerical calculations by Balhoff,
Mikeli¢ and Wheeler [23] show that for flow at small local Reynolds number Re < 1 in an
isotropic porous medium, the generalisation of Darcy’s law consists of an infinite power series
in velocities with only odd power-terms present, thereby confirming Auriault and Mei's result
and questioning the capability of the voluine-averaging method to account for nonlinear incrtial
effects at the microscale.

The Brinkman correction to flow in a porous medium was obtained via volume averag-
ing [269] and by the homogenization technique for a porous medium with a pore-size comparable

with a characteristic distance between two adjacent pores [12]; however, the Brinkman term is
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shown to be a correction of the order of O(g?) to Darcy’s law for a macroscopically uniform and
isotropic porous medium [12]. The Beavers—Joseph boundary slip condition, matching the flows
near the interface between free flow and a porous medium, has been justified for a microscopic
Stokes flow by Miceli¢ et al., using the homogenization method [181].

The Biot model of poroelasticity was first rigorously studied by Auriault and Sanchez-
Palencia [13] in the quasi-static case by homogenization, and Burridge and Keller [54] recon-
structed the full dynamical Biot model from the linearised Navier-Stokes and linear elasticity
equations at the microscale, also using the homogenization technique.

Estimates of effective viscous drag or its rigorous bounds in an array of spheres and cylinders
were found by Hasimoto using the Green function for the Stokes equations [112], by Keller using
lubrication theory [134], by Berdichevsky by means of variational principle [36], and by Sangani
& Acrivos who generalised the results of Hasimoto and re-derived Keller’s findings [229].

Flow in random arrays

Prager [201] was the first to obtain bounds of hydraulic permeability by a variational prin-
ciple, expressing the lower limit of permeability via averages of two- and three-point correlation
functions (describing the statistical properties of micro-geometry of a porous medium [261]).

Stochastic homogenization and rigorous bounds are generally used to obtain effective equa-
tions and cocfficients, similar to the methods of studying effective transport equations and prop-
crties of random media described in Scetion 1.4.1. Darey’s law in a random porous medium has
been reconstructed from microstructure by Rubinstein & Torquato [221]. However, there has
been less progress on restoring the fundamental laws of filtration for a random porous medium
that is not statistically homogeneous compared to the case of a regular medium; studies are
still ongoing [137, 261}, and some theoretical considerations have been given towards flow in a

fractal porous medium [147, 280].

Flow and transport in tubes and channels

The first analytical treatinent to the problem of convection-enhanced diffusion (dispersion)
of a solute in a long and narrow tubce of radius ¢ was given by Taylor in 1953 {258, 259] and
confirmed by Aris [9]:

2

Dg=D(1+5%), (1.4.2)

where Dgg is the effective coefficient of diffusion, D is the molecular diffusivity of the solute,
Pe = aU/D is the Péclet number, and U is the mean velocity of the laminar Poiseuille flow.

Since then multiple approaches have been developed that systematically recover and gen-
eralise this result: generalised Taylor-Aris stochastic moment-matching scheme by Brenner,
Edwards, Shapiro and others [50, 51}, which has been extended to the case of a suspension of
actively moving inertial particles (e.g. swimming microorganisms) by Bees et al. [31]; volume av-
eraging method by Whitaker and others [268, 270]; homogenization approach by Papanicolaou
et al. [175], Horsthemke et al. [173, 223], Mauri [168], and Mikeli¢ et al. [180].
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S
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Figure 1.4. A unit cell domain € of size [ with internal interface I' and external boundary S.
The microscopic flow velocity u and pressure P obey equations (1.4.3) and the solute transport
is described by advection-diffusion-uptake equation (1.4.16) for solute concentration C. The
inward normal to I' is n.

Homogenization example: derivation of the Darcy’s law from the first principles

As an example of the application of homogenization technique, we derive Darcy’s law of
filtration, following [177]. Let us consider a medium with rigid periodic microstructure filled
with an incompressible Newtonian liquid. We use Stokes flow together with incompressibility
conditions to describe the flow in a representative unit cell (see Fig. 1.4) of size [ small compared

to the size L of the macroscopic domain of interest:
V-u=0, VP=puV?%u, (1.4.3)

where u and P are fluid velocity and pressure respectively, and p is the fluid viscosity. The
system of equations (1.4.3) is subject to no-slip boundary condition on I' (ulp = 0), and
we demand periodicity of flow and pressure fields on the external boundary S, owing to the
periodicity of microstructure represented in a unit cell (Fig. 1.4).

We choose the following dimensionless variables: u = Uu’, P = PyP', V =1"'V’, where
Py = pUL/I* (so that the pressure gradient equates local viscous dissipation), and rewrite the
system of equations (1.4.3), subject to boundary conditions, in the non-dimensional form (the

primes over the variables are dropped):

V-u=0, VP=eV?u,

(1.4.4)
ulp =0,

where u and P are periodic on S, and € = [/L is a small parameter characterising the separation
of scales (¢ ~ 1072 for the mature human placentone, taking the size of a typical placentone
L ~ 1 cm [98] and the average diameter of a cross-section of the villous branches in a mature
placenta to be [ ~ 0.1 mm [33, 126]).
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Since the system has a small parameter, we apply two-scale asymptotic expansions to look
for solutions of (1.4.4):
u=1i(xX), P=PxX),

(1.4.5)
V=V,+¢eVx,

a(x,X) =u®(x,X) + euV(x, X) +2u? (x, X) + ...,

- 1.4.6
P(x,X) = POx,X) +e PO (x,X) + 2 P (%, X) + ..., (1.46)

here X = ex, where x represents the local “micro-coordinates” of the unit cell 2, and X is
slowly varying “macro-coordinates” of the macroscopic problem (x and X are further treated
as independent variables).

Using (1.4.5) we can rewrite the system (1.4.4) as follows:

V. 04+eVy-1=0,
VoP+eVxP =¢[Via+2e(V, Vy)i+e? V4], (1.4.7)

alp =0.

Substituting (1.4.6) in (1.4.7) and collecting the terms at the powers of ¢, we find at O(e?)
and O(e):
Ve u® =0, v, -ul +vy -u?® =0, (1.4.8)

VmP(O) = 0, _Viu(o) + V:tp(l) = _VXP(O)a (149)

subject to the boundary conditions u®|p = 0 and u'¥, P are periodic on § (i = 1,2).
Equation (1.4.9a) implies that the pressure field at leading order can only depend on the
macro-coordinates but not on the local coordinates x: P(©) = pP0)(X).
Averaging cquation (1.4.8b) over the fluid-phase subdomain of the unit cell 2y, of volume
|€2s|, we obtain

1
M. ndS. +Vy- -y, =0
|Qf|/“ n dSe + Vi - (s =0, (1.4.10)
00

where (u®); = ]ﬁlﬂ fo u® dx, is the intrinsic average of fluid velocity, ¢ = 1-|Q;|/|Q| is the
volume fraction of solid skeleton in the unit cell, which is constant as we neglect the skeleton’s
deformations; the boundary of 0y is 9y = SUT, and n is the unit normal to J§2, pointing
outwards from Qy (sce Fig. 1.4)

If we take into account the no-slip flow boundary condition on I' and the periodicity of

ul .n on S, the boundary integral in (1.4.10) vanishes to give
Vx - (u®; =0. (1.4.11)

In order to get a complete system of equations, we consider a closure problem for u® and
P() that obey equations (1.4.8a), (1.4.9b) in the unit cell, subject to no-slip condition on T
and z-periodicity on S. We observe that the source term Vx P© in (1.4.9b) depends only on

the macro-variable X, which can be treated as a parameter in each unit cell, and therefore a
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solution of this lincar system can be written in the following form [177):

u® = —K.vy PO (1.4.12a)

PO = _q.vx PO 4 pél)’ (1.4.12b)

where K = K(x, X) is the permeability tensor, q = q(x, X) is a vector, and P(gl) = P(gl)(X) is a
scalar,
Averaging of equation (1.4.12a) over the liquid phase of the unit cell 2 leads to a macroscopic

relation between fluid pressure and velocity in the leading order:
), = —(K); - Vx PO, (1.4.13)

Substituting (1.4.12) in (1.4.8a) and (1.4.9b) with corresponding boundary conditions, we

obtain a linear elliptic “closure” problem for K and q in a unit cell:

Ve -K=0, V,q=V3K+I, inQ
(1.4.14)
Kir =0, q, K are periodic on §,

which completes the averaged flow equations (1.4.11) and (1.4.13).
We denote superficial average velocity over the whole unit cell as (u) = (1 - ¢) (u®), =
TfllT ij u® dx, and fluid-phasc intrinsic average pressure as (P); = PO = WIIT[ fﬂf PO dx to

rewrite the resulting macroscopic flow problem (1.4.11), (1.4.13) as follows:
V-(u)y=0, (u)=-Kg-Vx(P)y, (1.4.15)

which is known as Darcy’s law of flow in a porous medium, empirically found by Darcy while
studying water flow through sand as an application to a fountain system [79]. Here K. =
ﬁf’ﬂf K(x,X)dx is the effective conductivity tensor given by (1.4.14), which reduces to a
constant scalar for a homogenecous and isotropic medium ((Keg)ij = kdij, k = const) [177].
Analogous technique has been used to investigate effective macroscopic transport phenomena

for a family of advection-diffusion-reaction equations, e.g.

9C L u.ve =pvic - _2¢

—_— _ 1.4.16
ot km 4 Cm ’ ( )

describing the microscopic processes (175, 228, 276]. Here C is the concentration of a solute,
u is the flow velocity field, D is the molecular diffusion coefficient and «, k, m are reaction
parameters. The effective diffusivity tensor Do, a counterpart of the conductivity tensor Keg in
(1.4.15), is found in these works [175, 228, 275]. The existing studics, however, have been mainly
focused on either advection-diffusion in periodic and random velocity fields [89, 90} or diffusion-
reaction in various media [228, 276], not addressing sufficiently the combined advection-uptake

effects (see also Sec. 1.4.1).
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1.5 The objectives and structure of the thesis

As has been shown in Sections 1.1 and 1.2, the human placenta is characterised by a unique
circulatory arrangement, with numerous villous trees containing fetal vessels in close contact
with maternal blood (Fig. 1.1a). Placental tissue thus manifests a multiscale structure balanc-
ing microscopic delivery of nutrients and macroscopic flow distribution (Fig. 1.3). Despite a
long history of ultrasound diagnostics, the many complications of pregnancy associated with
placental pathology can often be confidently identified only post-delivery, due to insufficient
spatial resolution and specificity of ultrasound scans [113]. Recent advances in in vivo colour
and power Doppler ultrasound and magnetic resonance imaging [26, 95, 113, 148, 205] provide
a potential for modelling-aided diagnostics; however, a theoretical framework for accurate av-
craging of intervillous flow and transport, while preserving the key properties of fine placental
structure, is urgently necded.

The aim of this study is to examine the influence of placental structure on the effectiveness
of nutrient uptake, which can be compromised in pathologies like pre-eclampsia and diabetes.
The study comprises a theoretical analysis of solute transport across multiple scales, a spatial
statistical analysis of histological images (Fig. 1.1b), and a sclf-consistent mathematical model
for intervillous flow and transport in a single placentone.

The thesis sets three primary goals: (i) advancing a theoretical framework for multiscale
flow and transport in regular and irregular geometries, and in the presence of active solute
carriers (e.g. red blood cells); (ii) developing a methodology for characterising micro-geometry
of villous branches and cxtracting key parameters, required for effective description of the
placental transport function, from histological sections and, potentially, from ultrasound scans;
(iii) testing the existing physiological hypotheses concerning peripheral basal veins’ distribution
and of the damaging effect of failed dilatation of maternal spiral arteries.

We now briefly outline the content of the thesis.

Chapter 2 focuses on a one-dimensional model of advection-diffusion-uptake in a periodic
array of point sinks, an idealised model of maternal flow past villous branches. We classify
leading-order parameter regimes for the solute transport and estimate the accuracy of the
homogenized description for different parameter values.

We address the stochastic nature of the placental micro-geometry in Chapter 3 by considering
effective transport and the accuracy of the lecading-order approximation in a disordered array of
sinks, extending the model of Chapter 2 to random geometries. The magnitude and correlation
properties of homogenization error are assessed for different spatial statistics of the micro-
geometry.

The model of flow and transport past arrays of sinks is further developed and generalised
in Chapter 4 to account for two-dimensional effects and nonlinear solute carriers, such as
hacmoglobin. We show, in particular, how the presence of a nonlinear advective component
can dynamically change the transport regime in a parameter space, and formulate correspond-
ing closure cell problems in linear and nonlinear cases.

Chapter 5 is devoted to the experimental imaging of a normal human placenta, which is

used to systematically characterise its fine structure, complementing the developed theoretical
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framework of Chapters 2-4. We test the statistical properties of villous distribution and analyse
computationally a unit cell problem for the obtained villous shapes.

In Chapter 6, we develop and study a simplified three-dimensional model of flow and advec-
tive transport of a passive solute in a single placentone. This model is used to test a hypothesis
concerning the location of venous openings on the basal plate, to offer a theoretical basis for
radioangiographic experiments, and to quantitatively assess the role of the dilatation of decidual
vasculature, impaired in certain placental pathologies.

We discuss the results and potential extensions of the study in Chapter 7.
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HOMOGENIZATION OF ADVECTION-DIFFUSION
IN A ONE-DIMENSIONAL ARRAY OF SINKS

2.1 Introduction

In order to understand how the placenta functions as an organ of nutrient exchange, we
here use a simple mathematical model to examine the combined effects of transport of solutes
such as glucose or oxygen by maternal blood flow and uptake by the fetal circulation in villous
trees. We consider competition between advection, diffusion and uptake characterised by a
Péclet number Pe (relating the strength of advection to diffusion) and a Damkdohler number Da
(relating the rate of reaction or uptake to diffusion).

The human placenta exhibits a complex geometry formed by the villous branches where
the uptake of solutes from the maternal blood takes place, with an irregular pattern of smaller
terminal villi and a more regular arrangement of larger anchoring stem villi (see Figs 1.1, 1.2).
This chapter aims to address the problem of classification and accuracy of effective asymptotic
regimes of steady advective-diffusive transport with sorption in a regular periodic medium.

Although previous extensive studies provide numerous insights into flow and transport phe-
nomena in porous media, it is still remains to be understood how the delicate interplay between
different characteristic non-dimensional parameters, such as Péclet, Damkohler and Reynolds
numbers, affects macroscopic and microscopic transport.

We start by considering a one-dimensional periodic array of sinks subjected to a uniform fow
with a prescribed inlet concentration. We investigate the role of both the Péclet and Damkdéhler
numbers on the macroscopic and microscopic concentration profiles (in Sec. 2.3 & 2.4, below),
and compare the obtained map of asymptotic transport regimes against numerical simulation
(Sec. 2.5, below).

We further use our idcalised theoretical model to asscss how governing parameters (Pe, Da)

affect the accuracy of homogenization approximations (Sec. 2.6, below).

2.2 Model assumptions and problem statement

Consider a one-dimensional equispaced array of N identical point sinks of strength ¢q
(Fig. 2.1). The size of the domain is L, and [ is the distance between two adjacent sinks
(< L, L= (N + 1)I). The flow ficld u = (ug,0,0) is assumed to be uniform over the domain
(as if driven by a constant pressure drop according to Darcy’s law); the concentration Cy at the
inlet is prescribed, and the concentration at the outlet is sct to be zero. The concentration field
C*(x*) is required to be non-negative, and therefore, for sufficiently strong uptake, we have to
define an internal free boundary at x* = z§ such that C* > 0 for 0 < 2* < z§, and C* = 0 for
rg<z* < L.
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C=0Cy —_— qo

?
;

Figure 2.1. The model geomcetry.

The model is described by the steady advection-diffusion equation, subject to boundary
conditions, as follows:

dc* dQC* .
Uy —— e = - qo "Z:I(S ¥ —x;), O0<a* <[, (2.2.1a)
= (Cy, (2.2.1b)
. . dac” .
C*yezr, =0 or C =0, for 0<axy<L, (2.2.1c)

de* | . .
=T

where D is the diffusion coeflicient, and ug is a flow velocity, which are both assumed constant;
x}h =nl(n=1...N) are the sink locations. The no-flux boundary condition at xf; results from
the non-negativeness constraint on concentration, i.c. if solute concentration falls to zero before
reaching the outlet, it stays at zero despite all the sinks downstream.
We introduce non-dimensional variables C* = Cy C, z* = lx and rewrite (2.2.1) in dimen-

sionless form as

Peg—dc—D Za z—n), O<z<el,

d
T n=1 (2.2.2)

dC
Cll‘:O - 1, C‘g;:&-—l =0 or CII:.’L'() = E = 0,

Ir=ro
where Pe = ugl/D and Da = qol/(D Cp) are the local Péclet and Damkohler numbers respec-
tively, and zo = x5/l
Note that (2.2.2) can be equivalently rewritten as

dac d*cC 1

Pca_— =1 O<zr<e™, z#n, (2.2.3a)

Clomo = 1, (2.2.3b)
dC )

Clyee-1 =0 or Clz=z, = — =0 for 0<oy<e ", (2.2.3¢)
dfll r=x(m

Cle=n- =Cle=ny, n=12,...,N; N=¢""~1, (2.2.3d)

[£ — Pe C] = Da, (2.2.3¢)

dx r—n

where [f ]o = fle+ — flz— denotes a jump of function f at the point z.
The original problem (2.2.1) in dimensional variables describes an interplay between diffu-
sive, advective and uptake concentration fluxes (or timescales), which are determined by the

Péclet, Damkéhler numbers and reference lengthscales. We assume that the macroscale (or
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global) fluxes are characterised by a concentration drop Cy across the domain of length L (in
dimensional variables). Therefore, the reference global diffusive, advective and uptake fluxes

across the macroscale domain are

DCy
L b

Qi = .4y = uy Co, (I)upt =q N~ e qo - (224)

Alternatively, we can characterise solute transport via local ! and global 79 timescales:

2o ! ¢, Col

[}
T ~ — T g, ~ — Ti ™

diff D’ adv up ’ upt 0 )

\ (2.2.5)

, X, L, oL
T5: N —— 7" ~ — T ~ —

diff D’ adv o ! upt @ )

-1

o — (1 1 1
, Da= (Tllpt/Tdiﬂ") :
Advective and uptake fluxes approximately balance cach other (®,qy ~ ®ypt) when the local

uptake rate at each sink matches the global advection rate (77

adv

so that Pe = (Tidv/'rcliiff)

~ tl), which is cquivalent
to Da ~ ePe. We can also identify a distinet regime of mutual balance when all three global
fluxes are approximately equal

D ptake ~ Paav ~ Paifr
or (2.2.6)

e ?Da ~ e 'Pe ~ 1.

This defines a special “triple” point, or “organising centre”, (Pe, Da) = (O(e), O(¢?)) in param-
eter space (sce Fig. 2.2a) that is important for subsequent asymptotic analysis.
Because of the two distinct lengthscales [ and L (¢ = /L <« 1) present in the model, we

look for solutions of (2.2.2) in the form
Cz)=C(x,X), X=e¢z, (2.2.7)

introducing a slowly varying spatial variable X. As ¢ tends to zero, x and X become independent
in a sense of the weak two-scale convergence of solution of (2.2.2) to a limit (leading-order)
solution CO(z, X)

1/

2
Oz, X) p(z, X)dz (2.2.8)
—-1/2

! 1
lim/ C(x) o(z,ex) dm:/ dX
e—0 0 0

for every ¢ from the appropriate class of z-periodic test functions [191] (the integral on the
right-hand-side is taken over a single periodic unit cell —=1/2 <2’ =2 —n < 1/2 due to the
translational invariance of (2.2.3a)).

The differential operators change accordingly:
d 0 0 d? a? 0? s 02

&0z TOX a@ R T mox TC oxT (229)




CHAPTER 2: HOMOGENIZATION OF TRANSPORT IN AN ARRAY OF SINKS 22

O 01 02 03 04 05 06 07 08 08 1

05

Figure 2.2. (a) Asymptotic regimes in (Pe, Da)-parameter space for transport past a periodic
sink distribution with £ = 0.05. Solid lines demarcate six distinct regions (uptake-dominated
Up, Ua, UY; diffusion-dominated D; advection-dominated A, A®). Exact solution to (2.2.2)
converges to the homogenized solution (2.3.9) strongly (in the H! norm) in the green region.
The yellow region above the dashed lines indicates the domain of weak convergence of exact
solution to the homogenization approximation (in the L, but not the H! norm); the homog-
enization approximation fails in the red region for large Da; the dash-dotted line indicates an
approximate balance between the net solute supply and uptake, according to (2.3.10). (b) Con-
centration profiles (2.3.9) for points (1-5) in the parameter space (Pe = 1,£2,¢%,1,e! and
Da = £96 2¢2 3 14 1 respectively), showing the leading-order approximation C?) (1-4) and
the full solution (5) computed with € = 0.05; circles show the locations of the 19 sinks. (c) Cor-
rections C!) given by (2.4.13) at points (1) and (5), within a unit cell with the sink at = 0.
(The asymptotic and numerical results in (a-c) are explained in the following sections below.)
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Substituting (2.2.7) and (2.2.9) into (2.2.3), we get

Pe(Cr+eCx)=Crr+26Cox +e2Cxx, O<a<e™!, 0<X <1, (2.2.10a)
Clx—o =1, (2.2.10b)
Clx=1=0 or Clx=x,=Cxly=x, =0, 0<Xy<1, (2.2.10¢)
Clren- = Clo=nt n=12...,N, (2.2.10d)

Gy +eCy - Pe C] __=Da, (2.2.10¢)

The transport regime therefore depends on the local Péclet and Damkohler numbers, and
of the scale-separation paramcter €. As long as the continuity condition [C‘] r=n = 0 holds, we
can simplify the jump of flux at a sink as [C’I + Eé,\’]z:n = Da.

We further assume that C(z, X) is an z-periodic function with a period of 1 (with the scale
separation valid everywhere outside a possible thin boundary layer at the outlet for large Pe).
This assumption will be verified in Section 2.5 by comparison of asymptotic and numerical
solutions. A representative simulation is shown in Fig. 2.2(c, case (5)) (black solid line), which
is essentially indistinguishable from asymptotic solution (blue dashed line).

Before embarking into the detailed analytical and numerical analysis of transport regimes,
we briefly outline the main features of the (Pe, Da) parameter space we seek to explore. Fig-
ure 2.2(a) shows how for a given ¢, two organising centres at Pe = O(¢), Da = O(g?), and
Pe = O(1), Da = O(e) can be identified. By deriving distinct asymptotic limits for C' around
cach organising centre, we can obtain a comprchensive overview of the effective transport regimes
across parameter space. We see that the dominating transport regime affects considerably the
concentration profile (Fig. 2.2(b,c)), and two-scale transport phenomena become apparent for
case (5) (most relevant to the advective-dominated transport of oxygen or glucose in a pla-
centone, as will be discussed below), where fast local oscillations are superimposed on a slowly

varying global concentration profile. It is this scale-separation that we will study in more detail.

2.3 Small microscopic Péclet number transport regime

Given (2.2.6), we first consider the special case of Pe = O(¢) and Da = O(g?), setting
Pe = ep, Da = €2¢ and assuming p,q = O(1) as € — 0.

We look for an approximate solution of (2.2.10) in the form of an asymptotic power series
Clx)=Cz, X)=CO%, X) + e CV (2, X) + 2 CO(z, X) + ... . (2.3.1)

We will show that the concentration field at leading order varies only with the ‘global’ X
(but not the ‘local’ ) coordinate.
Substituting (2.3.1) into (2.2.10) and collecting terms in powers of ¢, we get at O(1)

CO =0, -1/2<zx<1/2 0<X<1, (2.3.2a)
CO],y=0, [CV],,=0, (2.3.2b)

COxoo=1, COyo; =0 or COx_x, = C¥lx=x, = 0; (2.3.2¢)
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here we limit our consideration to a single periodic unit cell —=1/2 <2’ =2 —n < 1/2 (the
prime on x is omitted) without loss of generality due to the translational invariance of (2.2.10a)
and the assumed z-periodicity of C(z, X).
Equations (2.3.2a,b) imply that there is no local variation of C(® in cach unit cell. C© is
determined therefore only by the global boundary conditions (2.3.2¢), so that C(© = CO)(X).
Collecting the terms in (2.2.10) at O(e), then gives

pCO =c) +2¢9Q, [cV],mo=0, [ +CV],_, =0,

(2.3.3)
CWix_o=0, CYxoy =0,

which is equivalent to

Cglr) =0, [C(l)] r=0 — 0, [Ci'l)]m:() =0,

(2.3.4)
CWix_0=0, COjxoy =0.

Therefore CV = 0.
Collecting the terms in (2.2.10) at O(e?), we obtain

p(ci+cf) =c@ +2cl + X,
(Cc?),_,=0, [P +c{)._, =4, (2.3.5)
CPlxoo=0, CP|x_ =0,

which reduces to

pCcy{ =@+, (2.3.6a)
[C®],0=0, [CP],o =47, (2.3.6b)
C¥lx=0 =0, C®|x=1 =0. (2.3.6¢)

At this level we see competition between advection (p) and uptake (q).
Averaging (2.3.6a) over the unit cell —=1/2 < x < 1/2, outside a small neighbourhood (-4, 6)

of x = 0, leads to

-5 1/2
0 b b b
pC{ -y = / c§§>dx+/c;;>dx = CO = CPLe1 - CP, . (237)
-1/2 +6

We assume periodicity of c? in a unit cell (in addition to the assumption of z-periodicity
of C®), uge the jump condition [C,(,-2)]0 = ¢, and complement equation (2.3.7) with boundary
conditions (2.3.2¢) to get a macroscopic averaged problem for the leading-order concentration
field:

ctk -pC{ =4. (2.3.80)

COlxog=1, COyo1 =0, 0<X<1 forg<Qp) (2.3.8b)
COyg=1, C¥lxex, =0, 0< X <X, for > Q(p) (2.3.8¢)
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with ¢ = Q(p) defined such that C&Q)(l) =0, and Xg defined such that C(X,) = 0.
The solution to (2.3.8) is

e -1

(F-1) T X+t a<Qe)

c(x) = ‘ (2:3.9)
e’ —1
pw——%x+1, g > Q(p)
where > p
p-c -p X g+n2

Q(p) = G-DeP+1’ Xo = —,l)e P04 %é— (2.3.10)

The macroscopic solution (2.3.9)! allows us to describe all asymptotic behaviour at leading
order with respect to parameters (p, q) = (Pe/e, Da/e?), as shown in Fig. 2.2(a).

We now consider asymptotic limits of (2.3.9) with respect to parameters (p, q), represent-
ing (Pe, Da). First, we explore (2.3.9) near the distinguished balance of global fluxes (2.2.6),
represented by the boundaries between the diffusion (D), advection (A) and uptake-dominated

(U) regions (sec Fig. 2.2a):
(D/A) taking the limit of (2.3.9) along the vertical line p = O(1), ¢ < 1 (Pe = O(e), Da < €?)

. X . . e .
gives C0 ~ 1 — L—C,,_—' , which represents the advection-diffusion balance (independent of
uptake);

(D/U) taking the limit of (2.3.9) along the horizontal line ¢ = O(1),p < 1,9 < Q(p) = 2
(Pe < 1, Da = O(g?) < 2¢?) gives C1O ~ X%~ (4+1)X + 1, which represents the

diffusion-uptake balance (independent of advection);

(A/U) taking the limit of (2.3.9) along the diagonal line ¢ = O(p),p > 1,9 < Q(p) = p
X

(Da = O(ePe), Pe > ¢, Da < ¢Pe) gives C(0) ~ 1—% X+ (% - 1) 51)—;7;_—1 , which represents

the advection-uptake balance (with a boundary layer of width O(1/p) at the outlet, where

diffusion balances advection locally); the composite asymptotic form for C© captures

both a slow linear drop in concentration and an advective-diffusive boundary layer near

the exit (as illustrated in Fig. 2.2(b), case (4)).

In addition, analysis of (2.3.8) indicates that the lengthscale {4 ~ 1/p of the advective-
diffusive boundary layer is comparable to the advective-uptake dominated lengthscale Iy ~ p/q
when g ~ p? (Da ~ Pe?) (see case (1) in Fig. 2.2). This subdivides the uptake region U into
two subdomains: Up (g > p%, ¢ > 1), where no downstream boundary layer can be formed,
and Up (p < ¢ < p?), where a boundary layer with the exponential decay of solute appears

downstream of the inlet. The corresponding asymptotic form of (2.3.9) is as follows:

(Up/Up) taking the limit of (2.3.9) along the boundary ¢ = O(p?), ¢ > 1, ¢ > Q(p); (Da = O(Pe?),

. X _
Da > max(e?, ePe)) gives C0 ~ 1 — X+ ’% ‘—CTY“—I , where Xy ~ ?—)

Simplifying the limits of the codimension-one asymptotic expressions (D/A), (D/U), (A/U)
and (Up/Us) we obtain four leading-order parameter regimes in which (2.3.9) has distinct

asymptotic forms:

!The uniqueness of the solution 0 < X <1 to (2.3.10b) as a fixed point is determined by the contraction
mapping property [150]: [le(X1)—@(X2)|| < v X1—-Xz2fl, 0 < v <1 foro(X) = —% e PX +const (p > 0), with
l¢'(Xo)| = e ~PX0 < | for any Xp > 0. The convergence thus justifies the iteration procedure X"t = o(Xx{").
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(D) Diffusion between boundaries: taking p ~ ¢ < 1 (Pe < O(g), Da <« O(e?)) gives
C® ~1-X (linear concentration profile, as illustrated in Fig. 2.2(b), case (3));

L]

(Up) Uptake upstream of outlet: taking p < 1, max(1, p?) « q < e2
(Pe < O(¢), max(e?,Pe?) « Da <« 1) gives

2

CO) (1—%) L 0SS X < Xo, e Xo=2/q< 1

(parabolic profile with an internal free boundary at distance of O(1/,/q) from the inlet,
as illustrated in Fig. 2.2(b), case (2));

(Up) Uptake with a diffusive inner boundary layer: taking p > 1, p < ¢ < min(p/e, p?)
(Pe > O(e), ePe <« Da < min(Pe, Pe?)) gives

COm1—F - Ae™X0-Y <X <Xy, e Xpmplg<l
(linear profile stretching to the distance O(p/q) with an internal boundary layer of thick-

ness O(1/p), as illustrated in Fig. 2.2(b), case (1)),

(A) Advection with a diffusive boundary layer near the outlet: taking p > 1, ¢ < p
(Pc > O(e), Da « €Pe) gives

CO~1- 1x —e 1=
(linear profile with a boundary layer of thickness O(1/p), as illustrated in Fig. 2.2(b),
casc (4));

Note that in the special case of p = ¢ (Da = €Pe) the leading-order concentration profile
(2.3.9) is exactly lincar, showing no effect of the outlet in this case (Fig. 2.2c). We also observe
that the concentration profile at leading order is generally parabolic in small Péclet number
(Pe < ¢) regimes (D and Up), ezponential at moderate or intermediate values ¢ < Pe < 1
(A and UA), and linear at large Péclet nuimnber Pe > 1 (A"' and U:}'); here index s indicates the
presence of advective “staircases” in the concentration profile due to microscale inhomogeneities
(see Fig. 2.2b). However, to understand this microscale effect we need to consider the first non-
vanishing correction to the leading-order solution.

To find the correction C®), we substitute (2.3.8a) in (2.3.6) to get the cell problem

Ccl? = —q,

xr

(2.3.11)
Cc@] _,=0, [C?],_,=4q,

which has a unique solution if we demand periodicity of C@ and a calibration condition
1/2
(C®)) = const in a unit cell, were (f) = [ fda.
-1/2
The solution to (2.3.11) is therefore
4P+ +(CPy, —1/2<2<0
Cc(z) = { . ( §) + (7 / (2.3.12)
T2

f(x® -2+ 1)+ (CH), 0<zr<1/2.

In order for the correction C?) to satisfy the global boundary conditions (2.3.6¢), we ob-

serve that cach border (at X = 0, 1) contains a half of the unit cell (see Fig. 2.1), so that
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Figure 2.3. The second correction (2.3.12) in the asymptotic expansion (2.3.1) of concentration
in a unit cell for different values of Damkéhler number Da = £2¢ (¢ = 0.05, (C?) = ¢/12).

CP o4 = CP g = 0 due to (2.3.6c) and z-periodicity. The constant (C?)) is therefore
identified from (2.3.12) to be ¢/12.

Fig. 2.3 shows a concentration profile of the second correction for different values of Damkéhler
number (Da = €2q). We compare this asymptotic correction against mumnerical computations
below.

Relation (2.3.12) implies that C(?) is proportional to Da/e?. One can see that when Da

2 and €2 C® becomes comparable to C(¥)

approaches 1, the second correction approaches €~
in order of magnitude, violating the convergence of the asymptotic expansion (2.3.1). Equiva-
lently, the leading-order term C(© in the solution decays considerably (of the order of O(1)) on
lengthscale of a few sinks. This imposes a restriction for the maximal value of local Dainkshler

number allowing the homogenization procedure to be performed (see Fig. 2.2a).

2.3.1 Case Pe = O(¢), Da = O(¢?): Summary

We have obtained cffective macroscale equation (2.3.8) for C{O(X) in case of small-to-zero
microscopic Péclet numbers Pe = ep and for Damkéhler number scaled as Da = €2 (p,q =
O(1)). Equation (2.3.8) is an advection-diffusion equation with a uniform sink. Therefore, the
form of the governing microscale equation (2.2.3a) is preserved at the macroscale after averaging
(with microscopic boundary effects at the sinks incorporated in the uniformly distributed sink
term). It can be demonstrated (see Section B.2 of Appendix B) that the effect of a finite size
of the sinks (expressed by a volume fraction ¢ (0 < ¢ < 1) occupied by the sink in a unit cell)
leads to a modified sink term ¢/(1 — ¢) on the right-hand side of (2.3.8), indicating stronger net
uptake at large volume fractions, e.g. of villous tissue.

We have also shown that there is a critical relation (2.3.10) between Péclet and Damkohler

numbers
P82 e PC/E

Da. = ’
! (Pe/e — 1)ePe/e 41
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so that an internal free boundary in the concentration profile develops for Da > Dac,. The
limiting cases for this relation, Dag, ~ 2¢? for Pe « ¢ and Dag. = ePe for Pe > ¢, agree with
the approximate balance of fluxes obtained from a priori dimensional analysis (2.2.6).

Analysis of the limiting form of (2.3.9) along the advective-uptake boundary (A/U) shows a
downstream boundary layer (of thickness 1/p) developing when g ~ p > 1 (Pe > €, Da ~ €Pe).
In the local “microscopic” coordinates, the thickness of the boundary layer is  ~ X/e ~ 1/(ep);
therefore, to capture this lengthscale, homogenization of (2.2.10) for p = O(e ') (Pe = O(1))
is required.

The first non-zero correction is of the second order in € and is given by the diffusion problem
(2.3.11) in a periodic unit cell, which provides solution (2.3.12). However, correction (2.3.12)
does not depend on Péclet number and hence cannot explain the appearance of microscopic
“stairs“ in the concentration profile at Pe > ¢ (as shown in Fig. 2.2(b), case 5).

We therefore need to choose different scaling to address these questions. Correction (2.3.12)
is of magnitude €% q, becomes O(e) when ¢ = O(1/e), motivating new regime Pe = O(1),
Da = O(e) that provides approximate balance between advective and uptake fluxes according
to (2.2.6).

2.4 Regime of moderate microscopic Péclet number

We now consider the case of Pe = O(1) and Da = O(g) = eq1, ¢1 = O(1). Substituting
(2.3.1) into (2.2.10) and collecting terms in powers of €, we obtain at O(1)

PeC” = C, (€], =0, [C],p=0, (24.1a)
COlyg=1, COlxoy=0 or COxox, =CQ)xox, =0, (2.4.1b)

which implics, analogously to (2.3.2a), cO = cO(x).
Collecting the terms in (2.2.10) at O(e!), we have

pe (049 + € = ) + 203
0

cM),_o=0, [V +CP),_ =a, (2.4.2)

COx_o=0, CW|xo1 =0 or CWlxox, =CYx=x, =0,

which reduces to

cl) —Pect) =PeCy’, (2.4.3)
[€M],—0 =0, CV),0=a1, (2.4.3b)
CW|x=0 =0, CWjx_1 =0 or COfx_y, = CP|xox, = 0. (2.4.3¢)

Averaging equation (2.4.3a) over the unit cell (—1/2 < z < 1/2) and assuming periodicity
of C1) and Ci-l) in a unit cell (C(l)‘r:_.l/g = C(1)|I=1/2, C;l)‘l-____l/g = C;E;l)|$=]/2), we get

PeC) = — (C1)],_,+Pe [CV],_y (2.4.4)
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using the jump boundary conditions at the sink (2.4.3b) and macroscopic boundary conditions

(2.4.1b), we find an averaged advection-diffusion problem

Pe CE?) =-q, (2.4.5a)
COxoo=1, (2.4.5b)
with a linear function as a solution:
cO=1_24 x (2.4.6)
Pe

where q;/Pe < 1 if the concentration profile extends to the outlet (X = 1), and ¢,/Pe = 1/X)
if the solute concentration drops to zero at X = Xy < 1.

Note that (2.4.5a) allows us to satisfy only one macroscopic boundary condition, while the
other (C(O)|X=1 =0 or C(O)|x=x(J = C‘(\?)|X=XU = 0) leads to a diffusive boundary layer of
the original problem, which is not preserved in this scaling and may be too narrow (of the
lengthscale O(1/p) ~ £/Pe « 1, see Sec. 2.3) to homogenize, as shown in Fig. 2.2(b), cases (1)
and (4).

Equations (2.4.3a)-(2.4.3b) provide a cell problem for the first correction:

ct) —pPeCM = peCy,

(2.4.7)
[C(l)]r:O = 07 [C;g)]z=0 =4q.

0 . - . o .
Because the source terms C/(Y) and q; in this linear problem arc independent of z, it is convenient

to use the superposition principle and look for a solution in the form
CW(z, X) = —b(z)PeCY + a(x) q1 , (2.4.8)
where a(z) and b(x) are periodic with period 1 and satisfy the following cell problems:

yr — Pea, =0,
alz=0- = @le=0+, (@z)lr=0+ — (az)lz=0- =1, (2.4.9)

alz:—]/? = a|r=1/2»

byr — Peby, = -1,
blz=0- = bla=0+,  (bz)la=0+ — (bs)la=0- =0, (2.4.10)
ble=-1/2 = blz=1/2 -

The solutions to (2.4.9) and (2.4.10) are

. (epc/z _ 1) el’cx .
T Pe Tgres2 _ g-pes2 +aps t <a> , —1/2<z<0
a(zx) = P (2.4.11)
: (e——Pv/2 _ 1) e cT .
T Pe T gPe/2 _ g-Pejz | 2Pe +(a), 0<a<1/2,
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Figure 2.4. The first correction (2.4.13) in the asymptotic expansion (2.3.1) of concentration in
a unit cell for Da = ¢ (¢, = eg = 1) at different values of Péclet number (e = 0.05, (C) is
given by (2.4.14)).

Per

() = — b —O

" Pe gre/2 _ g-Pe/2

k(@) O, —1/2<0<1/2. (2.4.12)

We use (2.4.6) to compute the global concentration gradient C‘(\? ) = —$ which transforms
(2.4.8) to CV) = ¢; (a(z) + b(z) ), and therefore (2.4.11) and (2.4.12) give

i (_exp(Pe(z+3)) 2 + Pe 0
Pe \ 7 cMy, —1/2<z<0
Pe ( 2 sinh(Pe/2) Tt 5pe |t () /2L
P = (2.4.13)
a (_exp(Pe(z - 3)) 2—Pe (1) <r<
Pe \ ' 1/2
Pe ( 2 sinh(Pe/2) Y o +(C), 0<z<1/2,

which is plotted in Fig. 2.4.

The average of the first correction, (C()), is identified from (2.4.13) using the global bound-
ary conditions (2.4.3¢c), which are equivalent to the local condition in cach unit cell: CW)—0 =0
(analogous to the computations of (C(?) in (2.3.12)). Thus

my - @ (<" —2+PC>:i th(P 2—2) 2.4.14
(e 2Pe (sinh(Pe/Q) Pe 2Pe \°° (Pe/2) e/’ (24.14)

therefore (C1) = b (1= ]—)2;) at large Pe > 1 and (C)) ~ % at small Pe < 1, in agrecment
with previous results of correction average (for q; = €¢; see Section 2.3).
One can show that, for Pe « 1, (2.4.13) takes the form:

—(2 4+ —1/2 < ;
c(1>={ L(2+2+§)+ 4 +0(@Pe), -1/2<2<0 (2.4.15)

L (2 -2+ §) + & +O0(qiPe), 0<z<1/2.

In this limiting case C1) tends to eC®) from the small Péclet number regime (2.3.12) as ¢;Pe

tends to zero, with g = € ¢ (see regions A and Uy in Fig. 2.2a).
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Figure 2.5. The first correction (2.4.13) to the leading-order concentration in a unit cell for
Da = ePe at different values of Péclet number (¢ = 0.05, (C{1) is given by (2.4.14)).

Analogously, at large Pe > 1, (2.4.13) reduces to

<$+%_C—l>c|r|>+§‘1f)3, -1/2<z <0,

. | (2.4.16)
(:L 2)+2Pc’ OS‘ES]‘/Q’

qau

C(]) ~ Pe

qa

Pe

with a boundary layer of thickness O(Pe™') upstrcam of the sink (sce Fig. 2.5). This case

corresponds to regions Uy and A’ in Fig. 2.2(a). Note that this limit for CW is a discontinuous

function at 2 = 0, so that the no-jump condition [CM)]__, = 0 is violated at each sink, leaving

only the total flux Pe C(1) — ¢tV to be continuous. This suggests that problem (2.2.10) becomes

non-uniform at large Péclet numbers, with a diffusive inner boundary layer of width €/Pe near

cach sink. We can verify this discontinuity by deriving a cell problem for (2.2.10), using an

appropriate scaling for Pe and Da numbers. Homogenization analysis for Pe = O(¢™!) and

Da = O(1) shows that the regular limit (2.4.16) of (2.4.13) is valid in this case (see Section B.4
in Appendix B for verification of this asymptotic result).

Correction (2.4.13), depicted in Figure 2.4, together with its limiting cases (2.4.15) and
(2.4.16) show that microscopic “stairs” in the concentration profile occur when local Péclet
number is larger than 1, thus bisecting the leading-order asymptotic regimes A and Up of
Fig. 2.2(a) into A & A® and Uy & UJ respectively. The total number of asymptotic transport
regimes for problem (2.2.2) is raised to six and is summarised in Fig. 2.2(a).

It can also be shown that the second and all the successive corrections in (2.3.1) vanish (sce
Appendix B.3).

2.4.1 Case Pe = O(1), Da= O(g): Summary

We have obtained an effective macroscale equation (2.4.5) for C(V(X) in case of modcrate
microscopic Péclet numbers (Pe = O(1)). Equation (2.4.5) is an advection-reaction equation

with a uniformly distributed sink, representing the net effect of an array of point sinks. This
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Figure 2.6. (a) a comparison of composite analytical (dots) and numerical (solid) solutions to
problem (2.2.2) for Pe = 10, N = 19 ¢ = 0.05; (b) absolute difference between the composite
analytical solution (2.5.1) computed on 400 grid points for cach unit cell (with 200 uniform
points per boundary layer) and numerical computation of the concentration profile on a mesh
consisting of 640 elements.

equation agrees with an “advective” limit of (2.3.8) for p = Pe/e > 1.

We have found solutions of cell problems for CV) and C?, demonstrated that their asymp-
totic behaviour follow the solution obtained in Section 2.3 for Pe « 1, and studied their regular
limit for Pe > 1.

We can also observe from (2.4.13) that the asymptotic analysis breaks down, with e C1)
becoming of the same order as C(¥ in (2.3.1), when q;/Pe = O(¢~!), i.e. Da ~ Pe. This imposes
a limit of homogenization applicability Da <« Pe for Pe 2 1, and together with the result of

Section 2.3 defines the overall upper “homogenization limit” for the Damkoéhler number:
Da <« max(1, Pe),

as shown in Fig. 2.2(a).

2.5 Comparison with numerical simulations

Preliminary tests for comparison between asymptotic and numerical solutions to the ad-
vection-diffusion-uptake problem (2.2.2) are performed using the stationary finite element solver
of COMSOL Multiphysics with the UMFPACK (multi-frontal LU-factorisation) algorithm for solv-
ing sparse lincar systems and sinks located at the mesh nodes.

Another hybrid analytical-numerical solution to linear problem (2.2.2) has been constructed
by using the exact solution C;(X) = A, ele(X=Xii)fe | B;, and matching the concentrations
and fluxes at cach sink to identify the constants A, and B;, where X; is the position of the
i-th sink in macroscopic coordinates (i = 1,...,N) and X¢y = 0, Xny41 = 1. The boundary

conditions
Cilx=0=1, Cnsi]lx=1=0,

Cis1=Ci, (Cit1)yx — (Ci),\’ =Da/e at X =X,

define a composite analytical solution to (2.2.2) as follows:
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Ci(X) = Aje™W - XD/le g X, < X<X;,i=1,...,N+1, (2.5.1a)
Al + Bl - 17
et g A= -8 =1, N
. (2.5.1b)
Bi — Biy1 = %,
" T ANE gy + By =0,

where the linear system (2.5.1b) with a sparse well-conditioned matrix is solved to obtain the
coefficients Aj,..., An+1, and By, ..., Bxyy.

Numerical solution has relative inaccuracy much less than 1% (absolute inaccuracy
max|Cyum — Canalyi| S 107%) for a mesh consisting of 640 clements, Pe = 10 and N = 19. The
maximal contribution to the error comes from the steep concentration gradient in a boundary
layer developed at each sink, as shown in Figure 2.6 (where analytical and numerical solutions
arc essentially indistinguishable).

Figs. 2.7 and 2.8 show the numerical and asymptotic solutions in the range of small-to-
moderate and moderate-to-large microscopic Péclet numbers respectively, which demonstrate a
good agreement with asymptotic results of Sections 2.3 and 2.4 respectively. Note a pronounced
development of “stairs” at Pe > 1. Already at Péclet number of the order of 1, we observe
that the asymptotic symmetric cell solution (2.3.12) obtained around the organising centre
(Pe,Da) = (O(¢),0(£?)) deviates from the numerical cell solution due to the development of
flow-induced asymmetry (see Fig. 2.7(c), inset). The corresponding asymptotic cell solution
(2.4.13) about the second organising centre (Pe,Da) = (O(1),0(e)) clearly agrees with the

simulation (Fig. 2.8(a), inset), as anticipated from our preceding analysis.

2.6 Convergence rates and limitations of homogenization on
periodic arrays

In order to consider the difference between the homogenized (C(® (X)) and exact (C) solu-
tions to the original problem (2.2.1), we introduce the following measures:

df

dXx

2
L.+

| f lmax = Ym?xl]lfI, llf

“ )

1 9 1
b= [Pax 17 Ba= 1 = [rax,
0 2 0
(

2.6.1)

These are, respectively, the supremum (Chebyshev), mean-squared (Lg) and Sobolev (H!)
norms, and the mean of f.

The modes of convergence of C to C¥, ie. of f = C — C© to zero, as defined in (2.6.1),

are arranged in descending order in (2.6.1) with respect to their “strength” (except for the

Sobolev norm), e.g. || C — C© || ax - 0 implies the convergence of || C — C(© ||,, and the
convergence in || - ||z, implies the conirgrgence in mean, while the converse is generally not true.
Convergence in the Sobolev norm, which takes account of the first derivative, is stronger than
convergence in the mean-squared norm in a sense that || - |1, < || - |1 (see, e.g. [191] for a

more systematic treatment).
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Figure 2.7. (a,b,c) Numerical solution C (solid black) to the advection-diffusion problem (2.2.2).
(a,b) also show the numerical second correction e =2 (C'—C(®) (solid blue) computed in CoMsOL
and analytical second correction C® (dashed black) in a unit cell given by (2.3.12) for Pe = 0,
Da = &2 (at the border D/Up in the parameter space; see Fig. 2.2a) and Pe = 2z, Da = 3¢2
(about the main organising centre in Fig. 2.2a) respectively; (c) the first correction e~ (C'—C(®)
and its analytical estimate e~! C® according to (2.3.12) for Pe = 1, Da = ¢ (at the border
A/Uy; see Fig. 2.2a). The sink positions are marked by red circles; two vertical dotted lines
indicate the borders of a unit cell (¢ = 0.05).

Observing from (2.3.1) that

C(z) = C*(X) ~ CO(X) +eCM(X/e), Cx~CP +eCP=0P+cP, and

1 1/2 (2.6.2)
/ W (X/e) dX = / CW(z) dz (due to z-periodicity) ,
0 ~1/2

where X = ¢z and the superscript (%) is adopted to distinguish the exact solution for a fixed ep-
silon from the two-scale-limit solution, we use the analytical solution (2.4.13) for the correction
C™ to estimate (with the aid of the computer algebra system Maple) the order of magnitude

of the homogenization residue
rf(X) = C(X) - CcO(X). (2.6.3)

For instance, in the case of large Péclet number with Da = ¢ Pe, by integrating (2.4.13) and
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Figure 2.8. (a-d): Numerical solution C (solid black) to the advection-diffusion problem (2.2.2),
numerical first correction e~! (C' — C©) (solid blue) and analytical correction C'(!) given by
(2.4.13) (dashed black) are plotted for Pe = 1; 4; 10; 50 respectively and Da = zPe. The
sinks’ position is marked by red circles; two vertical dotted lines indicate the borders of a unit
cell (¢ = 0.05).

Irllzz | rkllzz | () | (r%) | max[r] | max |rk]
Pe>»1| O() |O(Pe) | O() 0 O(e) | O(Pe)
Pe< 1| O(cPe) | O(Pe) | O(Pe)| 0 | O(cPe) | O(Pe)

Table 2.1. Analytical convergence rates of homogenization residue ¢ = C*—C(® for Da = & Pe.
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Figure 2.9. Convergence rates of homogenization residue 7* = C¢ — C'©) for a periodic array:
(a) numerical solution C' (N = 49) and (c¢) homogenization residue r* (N = 1019; scaled by
el = N +1) for Pe = 10, Da = £Pe; (b) numerical (circles) and asymptotic (dashed line)
convergence rates in Lo-norm vs. number of sinks for Pe = £~1/2, Da = ¢Pe; (d) convergence
rates in Chebyshev (max|r®|; squares) and mean-squared (||r¢||r,; circles) norms, and in mean
(|{(r®)|; diamonds) (see (2.6.1)) for Pe = 10, Da = ¢Pe.

expanding the result as a power series of 1/Pe, we find ||C¢ — C©)||;, = ¢ ||C(1)||L2(x€[_%,%]) =
% e[1—9%Pe ! + 8 Pe?+ O(Pe ?)], where the equality between the residue and the cor-
rection is used due to the vanishing of all the higher order terms in the asymptotic expansion
(2.3.1). The results for this and other measures in (2.6.1) are summarised in Table 2.1 (where r5
denotes the derivative of the residue with respect to the global spatial coordinate). Figure 2.9
shows the numerical verification of analytical predictions for convergence rates. An example
of the exact solution (for N = 49) is given in (Fig. 2.9a), and the corresponding residue (for
N =1019) is plotted in panel (c). We observe a good agreement for both high-order asymptotic
approximation of |||z, (Pe = e~'/2; Fig. 2.9b) and for leading-order convergence rates in the
Chebyshev and mean-squared norms, and in mean (Pe = 10; Fig. 2.9d).

We see from Table 2.1 that the magnitude of the homogenization residue is typically linear
in &, while its derivative does not necessarily converge (see Fig. 2.10a,b). At the same time,
the mean of r§ vanishes exactly to zero, giving an example of the striking difference between
“weaker” and “stronger” types of convergence. Although the results of Table 2.1 are presented
for a fixed ratio ¢q;/Pe = Da/cPe = 1, we see from (2.4.13) that the residue scales with ¢, /Pe.
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e = COz, | IIC* = CO|
Pe>1| O(Re) 0 (L)
Pe< 1 O(Da) O (B2)

Table 2.2. Analytical convergence rates for arbitrary Pe and Da: weak vs. strong convergence

rates.
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Figure 2.10. Gradient of C (equal here to r§ — 1) for N = 9 (a) and N = 39 (b) (Pe = 10,
Da = =Pe; yellow region of weak convergence in Fig. 2.2a) does not converge to the leading order

constant Cg?) = -1 ase ~ 1/N — 0. Convergence rates of homogenization residue r§ in H!-

norm (mean-squared with first derivative) vs. number of sinks for Pe = ¢~/2, Da = £%75\/Pe
(in the “weak-convergence” yellow region of Fig. 2.2a) (c) and for Pe = ¢~1/2, Da = £!25/Pe
(in the “strong-convergence” green region of Fig. 2.2a) (d).

Therefore, multiplying the entries of Table 2.1 by Da/cPe, we obtain weak (||r°||z,) and strong
(|7%||z2) convergence rates for the homogenization residue r¢, covering the entire parameter
space, as shown in Table 2.2 and Figure 2.2(a).

We can therefore split the parameter space (Fig. 2.2a) into three regions: in the green region,
there is a “strong” convergence (in the Sobolev norm); the lightly shaded (yellow) region is
characterised by the loss of the convergence of derivatives, so that C* converges to C'®) only
in a weak sense (in the mean-squared norm); and the darkly shaded (red) region manifests in



CHAPTER 2: HOMOGENIZATION OF TRANSPORT IN AN ARRAY OF SINKS 38

the complete breakdown of the two-scale analysis, with macroscopic variations in concentration
at lengthscales less than the inter-sink spacing (see Fig. 2.2a). The existence of a range of
parameters in problem (2.2.2) with strong convergence of the leading-order solution is unusual
for homogenization approach, which typically provides only weak convergence at the leading
order [34].

2.7 Homogenization for non-periodic sink distributions

It is possible to perform the homogenization procedure in 1D for a more general sink dis-
tribution, relaxing the periodicity condition and using a boundedness argument to derive a
solvability coudition as the scale-separation paramcter € tends to zero [124]. We illustrate this
for the parameter regime Pe = O(g), Da = O(e?).

Consider the following advection-diffusion-reaction problem:
d’C dC

2 Par
Cl.’t:O = 17 C|1=5—1 = Oa

=e?qf(z,er), O<z<e!, exl

N
which is identical to the problem (2.2.2) considered above for f = 3 §(z —n), N = ¢}
n=1
Pc=ep, Da=¢?q (p,g=0(1)).
Following [124], we require f to be a double-integrable function, and that there exist fy,(X)
and fas(X) (or constants, when f is independent of the slowly varying coordinate X = ex) such

that

£ fnl(X) < / F(€,X) de <z far(X), (27.2)
0

for all z € (0,e7!) and X € (0,1) as ¢ tends to zero.
N
This boundedness requirement is satisfied for f = Y d&(z — n). Indeed, we find that
n=1

Iy SN | 8(€ —n) d€ = |z], where |z] is the floor integer value of x, and there are constants
0<a<1,8>1suchthat oz < |z] < Bx.

We usc the two-scale asymptotic expansion (2.3.1) and the substitution for differential op-
erators (2.2.9) to rewrite (2.7.1) as

éxx+2€éle+EQC~‘X‘Y—5P<CQ'+EC‘,¥> =62qf(:L',X), 0<:E<€—l, O<X<1,

(2.7.3)
Collecting the terms in (2.7.3) at O(1), we have

c0 =0, COxz0=1, C9x =0, (2.7.4)

which gives C(z, X) = A(X)z + B(X). The first term A(X)z is a secular term unbounded

as T — oo (¢ — 0), and therefore we require A = 0 to obtain a bounded solution in the limit of
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small £, so that
0 = cOx). (2.7.5)

The terms in (2.7.3) at O(e) give
Ci+20) - pC =0, CWixop=CW|xoy =0,
which, according to (2.7.5), reduces to
R =0, CWixoo=0W|xo1 =0, (2.7.6)

Then, analogously to (2.7.4), C{)) = ¢(V(X), and due to homogeneous boundary conditions in
(2.7.6), we have
c)=0. (2.7.7)

Collecting the terms in (2.7.3) at O(?), we obtain
c@ 120+ p(C§1)+C§9))=qf($,X),
CP|x_g=C®|xo =0,
which simplifies to
cR = _ (Cﬁ?}Y —pcf,?)) faf@X), O<z<el, 0<X<1 (2.7.8a)

CAxmo=CP|x21 =0, (2.7.8b)

due to (2.7.5) and (2.7.7).
Integrating cquation (2.7.8a) with respect to = over (0, e™!), we have

1/e

CO|mr = — (c;,( C“’)) +/ af(s,X) ds +A(X), (2.7.9)

N P 0

O(é‘"’) O(;r—l)
I/E S
C@,_ :—(C(,?;(— <°> e* +/ ds/ (& X) de+ A(X)e 'V +B(X), (2.7.10)
< 2 N——’
o) 0 L 06
O(e-2)

T

where we use (2.7.2) to show that f, (X ?2— f s [f(&,X)dE < fu(X) %
0

To climinate the secular terms in (2.7.10) 0 demand the first two terms to balance each

other as ¢ — 0 (z — oc) and impose also A(X) = 0. The solvability condition is therefore

1/6 s

. g2
i | (¢ —pC) 5 - [ as [ariex) ag| =0,

0] 0
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or, equivalently,

2.7.1 Examples of microstructure

Example 2.1 (periodic array):

To illustrate, wec now average the source-term for a periodic array of sinks:

N = Ve  s|l/e]
f=3 6(x—n), N~e7! Here f= lin(l) 2¢? [ ds [ Y 8(y —n) dy, and the inner integral
n=1 £ 0 0 n=I

: 1/e
equals the number of sinks between y = 1 and y = s (s <e7!), ie. f = lim 2¢2 [ Ls] ds.
e 0

Since [|s| ds = [sds for large z, we finally have f= liII(l) 2e? g = 1, and leading-order
0 0 &

averaged equation (2.7.11), subject to boundary conditions, takes the form identical to (2.3.8)
obtained in Section 2.3 under the periodicity assumption. We consider some further examples

of deterministic aperiodic microstructure in Appendix B.5.

Example 2.2 (spatially homogeneous random array):

If we allow N ~ 7! sinks to be uniformly randomly distributed between 2 =0 and z = ¢!,

N
the source term can be written as f(z) = Y 8(z — &), & ~U(0, e7!). Taking into account the
i=1
spatial statistical homogeneity of f(x), we further assume an ergodicity property for sufficiently
8
small € (large z), so that [ f(y)dy =~ E[N{& : 0 < & < s}] = s, where E denotes the expec-
0

tation (ensemble average) of the number of sinks in the interval [0, s] C [0, e7!]. Ultimately,
- 1/e
we find cffective source-term f = lirr(l) 2¢? [ sds =1, which is identical to the expression in
g— 0
case of a periodic sink distribution. We therefore expect the same solute distribution at leading

order, as ¢ tends to 0.

The predictions of Examples 2.1 and 2.2 are confirmed by direct simulation shown in Fig-
ure 2.11 that presents the results for periodic (dashed) and uniformly random (solid) sink

distributions computed for € = 0.05.

2.8 Discussion

To sum up, we have obtained the effective averaged macroscopic equations for advection-
diffusion in a one-dimensional periodic array of sinks. We have considered different ranges of
microscopic Péclet number (Pe = ug{/D) and Damkéhler number (Da = go /(D Cp)), and have
demonstrated a match of asymptotic behaviour among the solutions as well as their agrecment

with numerical simulations.
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Figure 2.11. The comparison of concentration profiles on periodic (dashed) and uniformly
random (solid) sink distributions, computed for D/Up transport regime (Pe = &2, Da = 2¢?
e = 0.05). Bottom circles indicate the position of N = 19 sinks of the random array and the
top circles correspond to the periodic array of the same size.

Our analysis indicates that the advection-diffusion-uptake equation for the leading-order con-
centration

e? C‘(\E)l),( —¢Pe ng) = Da (2.8.1)

gives adequate macroscopic description for a wide range of Péclet number (0 < Pe < O(e™1)),
where ¢ = [/L is the scale separation parameter, providing that Da <« max(Pe, 1). Equa-
tion (2.8.1) is also shown to be applicable to more general non-periodic sinks distributions as
discussed in Section 2.7.

Solution (2.3.9) to the effective macroscopic equation (2.8.1) allows us to classify distinct
regimes in (Pe, Da) parameter space. The parameter space is subdivided in three regions by
relations Pe ~ ¢, Da~ €2 and Da ~ ¢Pe (as shown in the schematic Fig. 2.2a), cach region
being characterised by the dominance of advective, diffusive or uptake effects at the macroscale.
In addition, dimensional analysis of equation (2.8.1) indicates that the lengthscale of diffusive
boundary layer gives another relation, Da ~ Pe?. Analysis of the residual (2.4.13) shows that the
parameter space is further subdivided by Pe = O(1) into two subregions: one with no advective
effects and a smooth solution (the first non-vanishing correction to C® being of O(e?); sce
Fig 2.3); and an advective region, where “staircases” are manifested at the macroscale (the first
non-vanishing correction to C{9 is of O(e)). In total, we can distinguish 6 asymptotic parameter
regimes: diffusion-dominated D, advection-dominated A & A%, and uptake-dominated Up, Uy
& UR (and 6 transitional regimes of co-dimension 1 at the boundaries; sce Fig. 2.2(a) and
Scc. 2.3).



CHAPTER 2: HOMOGENIZATION OF TRANSPORT IN AN ARRAY OF SINKS 42

Our analysis also demonstrates that for given Pe, there is a critical Da (2.3.10), equivalent to

PC‘2 e Pe/e

(Pe/e —1)ePe/e 41

Dac,(Pe) = (2.8.2)
such the solute is fully absorbed within the domain (i.e. for X < X < 1) for Da > Da(Pc).
This threshold in (Pe, Da)-space asymptotes to the boundary between asymptotic regions U and
Up for Pe <« ¢ (when Dag; ~ 2¢?) and the boundary between regions A and Uy (and Ag and
U3) for Pe > ¢ (when Dac, =~ ePe). Thus (2.8.2) demarcates a region where uptake by sinks
can be considered optimal: for Da > Dag,, all the solute is absorbed upstrcam of the outlet,
making some sinks redundant; for Da < Dac, substantial solute escapes past the sinks to the
outlet.

We can estimate the parameter regimes corresponding to the passive transport of certain
solutes, such as oxygen or glucose, in the placenta. Taking the size of a typical placentonc
to be L ~ 1 cm (98] and the average diameter of a cross-section of the villous branches in a
mature placenta to be [ ~ 100 pm [33, 126], we get ¢ = [/L ~ 1072, Taking the number
of functional spiral arterial openings at term to be ~ 100 [33, 49] and the nct flow rate of
incoming blood per placenta about 500 ml/min [186], we get the flow rate per a single spiral
artery (placentone) to be @ = 5 ml/min. Mass conservation implies the average velocity in
a placentone to be ug ~ Q/L? ~ 1 — 10 ci/min (which is also consistent with the filling
time (= 10 — 30 s) of the intervillous space by tracers injected into the maternal circulation
[96, 205]). Assuming the molecular diffusivity (based on the values in blood plasma) for oxygen
to be Do, ~ 1073 cm?/min [24] and for glucose to be Dgjyc ~ 107! cm?/min [217] we get a range
of the local Péclet number: Pe = ugl/D ~ 10 — 103, or Pe = O(e~'/2) — O(¢~3/2). Placental
uptake rates are harder to estimate confidently, but assuming the net oxygen uptake rate to
be ~ 1 mmol/min [114, 122], which, divided by the total villous surface area ~ 10 m? {33],
gives the uptake flux density gy ~ 107° mmol/(cm? - min), and taking the reference arterial
concentration of the dissolved oxygen Cy to be ~ 0.1 mM = 10~* mmol/cm3 [122], we get a
range of the local Damkéhler number: Da = gol/(D Cp) ~ 1—10, that is Da = O(1) - 0(e~1/?),
clustered about the advective-uptake balance relation Da = O(ePe), as expected. Therefore,
placental transport of at least some passive solutes occurs at large Péclet number and likely
belongs to the regime A®/UZ in the (Pe, Da) parameter space (see, for example, Fig. 2.2(a,b),
case (5)).

Finally, the upper bound for applicability of homogenization and validity of equation (2.8.1)
is represented by the relations Da < max(1, Pe). We have demonstrated that if Da fails to obey
this restriction, the length of the inner diffusive boundary layer is less than the distance between
two sinks in a periodic array. These restrictions are summarised in Figure 2.2(a), showing the
regions of ‘soft-fail’ and ‘hard-fail’ in the accuracy of the homogenized description.

Although the homogenized leading-order concentration profile is applicable to a wide range of
stationary random sink distributions, as illustrated in Fig. 2.11, it remains for us to understand
the impact of stochasticity on the accuracy and convergence rate of solutions to the homogenized
solution, which is particularly important for finite ¢ (moderate scale-separation), the case most

relevant to physiological applications. This is the subject of the next chapter.
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HOMOGENIZATION ON RANDOM ARRAYS:

ERROR BOUNDS AND CONVERGENCE RATES

3.1 Introduction

ﬂlongside many naturally occurring media, the human placenta exhibits a great degree
of irregularity in the arrangement of villous branches, in particular, of the terminal villi — the
primary sites of solute uptake (see Figs 1.1 and 1.3).

We have indicated in Section 2.7 of Chapter 2 that the leading-order (effective) description
of the advection-diffusion-uptake is applicable not only to a periodic but also to a random,
statistically homogeneous distribution of sinks. However, it remains for us to understand the
accuracy of the averaged homogenized description, compared to the established accuracy for a
periodic medium, by looking beyond the leading-order approximation [75].

This chapter considers different random sink distributions and estimates the corresponding
magnitudes and statistical properties of the homogenization residue r¢ = C¢ — C(O(X).

We show, in particular, how randomness leads to large fluctuations in solute distributions

that can be correlated over the distances comparable to the size of the whole domain.

3.2 Sink distribution as a spatial point process

We generalise the advection-diffusion-uptake problem (2.2.2) to allow for a random sink

distribution:
&ec  _ dc Al
— —Pe—=Daf(z), f=) 6(zx—-§&), O0<z<el
dx? dz ; ' (3.2.1)
Cll‘:() d 1» Clx:e“l = Os
where &; denotes the position of the " sink (i = 1,..., N), as illustrated in Figure 3.1.

We now consider different types of irregular arrays in order to understand the accuracy of an

homogenization description in these cases. Since we deal with point objects, it is convenient to
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Figure 3.1. A schematic random array of N sinks (circles), located at z = §;; ticks indicate the
position of sinks in a periodic array of the same size (all variables are given in a dimensionless

form).
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Figure 3.2. Top: Concentration profiles (2.5.1) for (a) uniformly random distribution of sinks,
(b) Matérn hard-core type II process with d = 0.65¢ and (c) normal perturbations of a periodic
array with o = 10¢; for N =49, ¢ = 1/(N + 1), Pe = 10, Da = ¢Pe. Bottom: Homogenization
residue ¢ = C — C'©) scaled by ¢! for uniformly random (d), Matérn hard-core (¢) and normal
perturbations (f) point processes with the same parameters (for N = 1019, Pe = 10, Da = ¢Pe).
The corresponding correlation properties are shown in Fig. 3.4.

use standard random point processes to construct sink distributions. Apart from the uniformly
random distribution of N sinks in the open interval X € (0,1) (sce a single realisation of
the solution C in Fig. 3.2(a) for N = 49 and of the homogenization residue ¢ in Fig. 3.2(d)
for N = 1019), we use the Matérn hard-core type II (simple sequential inhibition) process that
imposes a minimal allowed distance d (0 < d < ¢ = (N+1)7!) between sinks (see Fig. 3.2(b,e)),
making this distribution closer to applications such as the human placenta.

An algorithm for hard-core array generation is as follows: the location of cach sink at
X =¢€& € (0,1) is sampled from a uniform distribution; a sink is accepted if it does not fall
closer than a distance d (in X) to the existing sinks or boundaries; the process is continued until
a given number N of sinks is reached or no gap > 2d between two sinks is left [82]. There exists
therefore a critical upper bound d for the minimal allowed distance d, corresponding to the
maximal packing density that can be achicved for all N sinks [82]. The theoretical statistical
properties of this upper bound are still unknown; however, experiments with random packing
of rigid spheres and numerical simulations suggest (in the sense that “many mathematicians
believe and all physicists know” [253]) that the maximal volume fraction (d/e in 1D case) does
not exceed 7/v/18 =~ 0.74, at lcast in three dimensions [253]. For a one-dimensional Matérn
hard-core distribution, d/e = 0 is equivalent to a uniformly random distribution and d/e =
represents a (generally unreachable) periodic array. A numerical estimate of the (ensemble
averaged) critical minimal distance is de /e ~ 0.743 (see Appendix B.6 for the details of the
estimation algorithm) for large N, which agrees with an empirical upper bound 7/v/18. This
is related to the still open 18th Hilbert’s problem of the densest random packing of identical
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Figure 3.3. Covariance matrix Cov(A,,,A,,) of inter-sink distance A,, for a hard-core point
1 2 1 I
process (N = 99, d = 0.65¢, computed for an ensemble of 5 x 10° arrays).

spheres [119].

Another random distribution considered is the normal perturbation of a periodic array (also
called normal perturbations), where each sink is displaced normally (with a given standard
deviation ¢ ) about its position in a periodic array (shown in Fig. 3.2(c,f)). According to the
properties of a normal distribution, we expect 99% of sinks to remain in their original unit cells
for 0 < ¢ < £/6. In the limit of small standard deviations (¢ — 0), the normally-perturbed
array tends to an unperturbed periodic array, and a normally-perturbed array approaches a
uniformly random distribution as ¢ /¢ becomes >> 1 (with periodic boundary conditions imposed
upon sinks falling out the domain). As o increases, the sinks start swapping their unit cells and
sorting of their new positions has to be applied.

Therefore, we consider three stochastic forms of the source term f = Z,\:, 0(x — &) in
(3.2.1):

(i) f = fu: a uniformly-random distribution, where &; are independent ordered values drawn

from U[0,e~"];

(ii) f = fu(d): a Matérn hard-core type-II distribution, where & ~ Ule~1d,e7 (1 — d)]

(0 < d < ¢), provided that |§; — §;j| > d/e for any i # j;

(iii) f = fn(o): a normally-perturbed periodic distribution satisfying & ~ N(i, (o/¢)?), for

. 2
some varilance o-.

where &; denotes the position of the i*" sink in local coordinates (see Fig. 3.1).

Figure 3.3 shows a reference covariance matrix Cov(A,,,A,,) = IE{ (An, — E[An,))
(Bny; — IE[A,,,_,])} for the inter-sink distance A, = €41 — €, (n=1,...,N — 1) of a hard-core
point process (f), where the strong diagonal dominance of the matrix indicates the absence of
a long-range correlation between sinks’ position. The other two random sink distributions ( f,

and f,) exhibit the same property.
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Figure 3.4. Top: Autocorrelation function R(n) of inter-sink distances vs. discrete shifting index
n for (a) uniformly random, (b) Matérn hard-core type II with d = 0.65¢ sink distributions
and (c¢) normal perturbations with o = 10e (N = 1019, € = 1/(N + 1)); solid black line shows
cnsemble average over 1000 samples; Dashed line indicates the threshold long-to-short-term
memory asymptotic dependence O(1/n).

Another important characteristic of a random process is the autocorrelation function, show-
ing the degree of correlation (or “memory” ) between spatial points separated by a given distance.
We consider an autocorrelation function for the inter-sink distance A;:

IE[ (Ai — ]E[Ai]) (Ai+n - ]E[Ai+n])]

Var[A;) , A= - &, (3.2.2)

R(n) =

where stationarity of the corresponding discrete random process is assumed. The autocorrelation
function is plotted in Figure 3.4 for different random sink distributions.
The asymptotic behaviour of the “tail” of an autocorrelation function is classified as follows:

a > 1 (short-term memory),
R(r) ~ 77%, forlarge T (3.2.3)
0<a<1l (long-term memory),

where a is the correlation or mizing factor [21, 47].
Figure 3.4 shows that the ensemble mean of the autocorrelation function for all three random
sink distributions (fy, fin and f,) does not jump above the short-term-memory threshold O(1/n),

at least for n < 102, as expected from their properties.

3.3 Statistical measures of convergence

In order to investigate the convergence rates for the homogenization residue r¢(X) =
C:(X) - CO(X) of the solution to (3.2.1) on a random array (C° = C(X/e, X)), we need
to introduce statistical modes of convergence, generalising the deterministic measures (2.6.1)
defined in Chapter 2, by taking expectation E and other statistical operators of deterministic

norms for a spatial random process. In particular, we consider
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F, ([lC’6 - C(0)|l> = F ( IIC — C(O)H) , (convergence in distribution)

1/2
IE[ |cs = c© ||] — 0, ]E[ |ce - ]|2] -0, (convergence in mean)  (3.3.1)

Var[ Ci(X) - CO(X) ] -0, (pointwise convergence in variance)

where F; is the continuous distribution function of ||r?|| (from (2.6.1)) as a random variable for
finite €, and F' is the limiting distribution. The measures in (3.3.1) are sorted from the “weakest”
to the “strongest” in the same sense as in (2.6.1) [106] (herc we use the term “weaker” with
reference to a hierarchy of inequalities between the corresponding norms, and not as convergence
in the space of linear functionals or two-scale convergence (see, e.g [191])).

We now verify the rate of convergence of solution C¢(X) to the lecading-order solution
CO(X) of problem (3.2.1) by means of the numerical simulation for a varying number of sinks
N, e=1/(N +1). The measures of convergence used are the Chebyshev norm ]E[rnax(re )],
the mean E[(r)] ((r€) = f] 7°dX), the mean-squared norm E[||r¢||.,] and the pointwise
standard deviation {Var[rf(X = %)]}1/2 (see also the definitions (2.6.1)). All integrals are
approximated with trapezium quadrature. The results are summarised in Figure 3.5.

Computations show that the convergence rate of the exact to the homogenized solution
is O(y€) (¢ ~ N7!) for both uniformly random and Matérn hard-core sink distributions
(Fig. 3.5(a,b)). However, the solution on a normally-perturbed periodic array has convergence
rate O(e) for large N (Fig. 3.5¢), even with ¢ = 10¢, implying strong mixing of sinks. Only
in a “weak” sense, in mean, do all three distributions have the same rate of convergence O(¢)
(Fig. 3.5(d-f)).

Furthermore, according to the Corollary to Theorem 2.1.2 by Lukacs [162], the convergence
of series 3" %_; E[[Un —U|?] implies the almost sure convergence of a random variable Uy to U:
Prob(limy—coc Uy =U) = 1. Taking Uy =r°(X = %), where € ~ N™1, we observe that point-
wise variance Var[Un] = E[|Un — E[Un]|?] is O(1/N) for f, and f, and O(1/N?) for f, (sce
Fig. 3.5(a-c)). Therefore, noting that in this case U = E[Uyn], we conclude that the homog-
enization residue 7€ converges pointwise and almost surely to E[rf] for a normally-perturbed
array (at least for the parameter values considered in Fig. 3.5), but cannot prove the almost
sure convergence of ¢ for a uniformly-random or hard-core distributions.

We now investigate further the correlation properties of 7€ for all three random processes

(fu, fr and f,,) and test their dependence on the distribution parameters o and d.

3.4 Correlation properties and parameter dependence of
homogenization residue

In order to study the spatial correlation of the homogenization residue ¢, apart from point-

wise variance Var[r¢(X)] and covariance Cov(r®(X),r(Y’)), we adopt the transverse covariance

Covp(re) = Cov(rf(X), 7 (1 - X)) = E[ (r*(X) — E[F¥(X)]) (r*(1 - X) = E[rf(1 = X)]) ],
(3.4.1)

which characterises the degree to which fluctuations are correlated across the domain.
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Figure 3.5. Convergence rates of the homogenization residue r* = C* — C(© for different
types of random arrays as a function of the number of sinks N (Pe = 10, Da = ¢Pe, ¢ =
1/(N +1)): (a) uniformly random distribution; (b) Matérn hard-core type II (d = 0.65¢); (c)
normal perturbations of a periodic array (o = 10¢). Convergence of r* in mean for uniformly
random (d), Matérn hard-core (e), and normal perturbation (f) for the same set of parameters.
(Ensemble average over 1000 realisations for uniformly random and hard-core, and over 500
for normal perturbations; triangular markers denote the 95% confidence interval (+2 standard
errors) of the pointwise standard deviation (confidence intervals of the other two measures are
too small to be visible); see the text for the definition of measures of convergence.)
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Figure 3.6. (a) Homogenization residue r° for one realisation of a uniformly random sink
distribution (solid) for Pe = €2, Da=¢Pe, q = Da/EQ, e = 0.01, with mean (dashed) and 95%-
level pointwise confidence interval (dotted) computed for an ensemble of Neps = 5 x 10* samples
(all curves are scaled by 1/(gy/2)). (b) Ensemble mean of r¢ scaled by 1/(eq) (circles) and
theoretical approximation 0.5X (1 — X) (dashed line); dotted lines indicate £2 standard errors
for the estimate. (c¢) Spatial distribution of variance Var[r€] (circles) and transverse covariance
Cov(r¢(X),r¢(1 — X)) (diamonds) computed for an ensemble of size Neys (scaled by 1/(g¢?)),
and corresponding theoretical predictions (3.4.27) and (3.4.28) (dashed lines). (d) Covariance
matrix Cov(r5(X),r*(Y)), scaled by 1/(£¢*), computed at 100 equispaced points.

3.4.1 Numerical estimates of the covariance of the homogenization residue

Covariance matrices for the homogenization residue computed on a uniformly random
(Fig. 3.6d) and on a hard-core-distributed array (Fig. 3.7d) show a prominent cloud about
the main diagonal, giving evidence for long-range spatial correlations (which are investigated in
more detail in Figs 3.6(c) and 3.7(c) respectively). In the case of a normally-perturbed periodic
array, however (3.8d), we observe a thinner band about the main diagonal, suggesting a weaker
long-range correlation. The computed variances and transverse covariances for f,, f, are in
very good agreement with theoretical predictions, which will be obtained below. Panel (a) in
Figures 3.6-3.8 summarise the statistical properties of the homogenization residue r¢ by plot-
ting an individual realisation of r*(X) (solid line) together with a 95%-confidence interval (£2
standard errors (SE), SE=1/Var[r¢]/Nens; dotted lines) and the ensemble mean E[r¢] (dashed
lines; the ensemble mean is shown in more detail in Figs 3.6-3.8(b)).

We investigate further the correlation properties by considering the case of locally bal-

anced advection-diffusion (Pe = O(1)), plotted in Figure 3.9, and the advection-dominated case
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Figure 3.9. Top: mean E[r°] of homogenization residue for (a) uniformly random, (b) hard-
core (with d = 0.65¢) and (c) normally-perturbed (with o = 0.5¢) sink distributions for
Pe = 1, Da = ePe. Middle: variance Var[rf] (blue circles) and transverse covariance
Cov(rf(X),r*(1 — X)) (black diamonds) for (d) a uniformly random, (e) hard-core and (f)
normally-perturbed processes (with the same parameters); dashed lines in (f) indicate theoret-
ical predictions (3.4.46) and (3.4.47) scaled by (g q;00)~2. Bottom: covariance matrix of the
homogenization residue for (g) a uniformly random, (h) hard-core and (i) normally-perturbed
processes. (computed for € = 0.01, ¢g; = Da/e, q;/Pe = 1, using 5 x 10* realisations; all plots,
apart from (f), are scaled by e~ 1).

(Pe > 1), plotted in Figure 3.10. For the normally-perturbed distribution f,, in both cases,
we observe a marked drop in transverse covariance (see Figs 3.9(f) and 3.10(f)) and a very
narrow band about the main diagonal of the covariance matrix (Fig. 3.9(i), similar to Fig. 3.3),
indicating a greater independence of each unit cell in the case of f,, as compared to f, or f,. We
also note the overall similarity of correlation properties for the uniformly-random and hard-core
distributions, with the variance and covariance of fj being a scaled version of f, (Figs 3.9(d,e)
and 3.10(d,e)).

We finally present Monte-Carlo simulations of the homogenization residue for f,, f, and f,
sink distributions at large Péclet number. Figure 3.10(a-c) combines representative fluctuations
of the residue (solid line) with the ensemble mean (dashed) and 95%-confidence interval (dotted;

based on the corresponding variances shown in Fig. 3.10(d-f)). Comparing with the analogous
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plots for small Péclet number (Figs 3.6-3.8(a)), we observe that the distribution of the amplitude
of the residue ¢ over the domain becomes more uniform for f, and f;, and essentially constant
for fn, indicating the reduced spatial correlations in 7¢ in the presence of stronger advective
transport.

It is also interesting to highlight that the parabolic variance and transverse covariance of the
residue for a normally-perturbed array at small Pe (3.8(c)) closcly resemble the shape of Var([r€]
and Covr[rf] for a uniformly-random or hard-core arrays for moderate-to-large Pe (Figs 3.9(d,e)
and 3.10(d,e)); at the same time, the residue for a normally-perturbed array (Figs 3.9(f) and
3.10(f)) develops boundary layers (of the thickness O(e/Pe), as suggested by our analytical
results below).

Figure 3.10(g,h) shows how the magnitude of the homogenization residue depends on d (for
fn) and o (for f,), for different values of €. (Recall that for d = 0, f), is equivalent to f,,
and that f, resembles f, for sufficiently large o.) Collapse of the data for different € indicates

that in both cases the residue E(||7¢]|1,) is O(c'/?) for sufficiently small d and sufficiently large

o (as expected from [47]), although the error falls in magnitude as the distributions become
more regular (either by increasing d towards de, or reducing o close to zero). Indeed for o = 0
the residue has exactly the scaling predicted by asymptotics for the periodic sinks, namely
l7€ 1L, ~ 0.451¢ (for Pe = 10, Da = £Pe). The magnitude of the residue approaches the value
of the uniformly-random distribution for ¢ 2 0.3.

3.4.2 Analytical estimates of covariance in the diffusion-dominated case
(Pe = O(¢), Da = O(e?))

We now focus on the corrections to the leading order solution C(©) in the case of uniformly-
random or normally-perturbed sink distributions for Pe = O(e), Da = O(¢?) (again writing
Pe = ep and Da = €%¢q). By using the statistical propertics of these distributions and an
exact solution for a cell problem we can estimate analytically the mean and covariance of the
homogenization residue.

When sinks are distributed non-periodically we can derive the homogenized approximation
of (3.2.1) as follows. We initially use

dce o9C

N dC
€ _ - (0 (1) == - 3.4.2
CE=C(z, X)=CV (2, X)+eCV(, X))+ ..., i i +68X, ( )

to rewrite (3.2.1) as

Coz +26Cox +2Cxx —ep(Co +eCx ) =%f, (O<ax<e',0<X <),
- o p( ) (3.4.3)
Clx=0=1, C|x=1=0.

(For brevity we assume here that C does not fall to zero upstream of X = 1). We allow
C) and C@ to have fluctuations, assuming that these are not large enough to disrupt the
proposed expansion. At leading order, C'S;) =0, COlx_ = 1 and C(O)L\':] = 0. Thus
CO(z, X) = A(X)r + B(X). The first term must be suppressed to avoid sccular growth, so
that C©) = CO(X). Likewise at the following order we find that c) = ¢ (X). Collecting
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Figure 3.10. (a—c) Homogenization residue ¢ = C — C'® (solid) scaled by ~1/2 for (a) uni-
formly random, (b) hard-core (d = 0.65¢) and (c) normally-perturbed (o = 10¢) point processes
for € = 0.001, Pe = 10, Da = ¢Pe. Dashed line shows population mean from Neps = 1000 sam-
ples, dotted line shows mean + two standard deviations. (d—f) Variance (solid) and transverse
covariance (3.2.2) (dashed), scaled with £~!, corresponding to (a—c) (the dotted line shows
X(1-X) in (d)). (gh) Dependence of homogenization error (estimated from n = 1000 sam-
ples) on the minimal inter-sink distance d for f = fj (g) and on the standard deviation o for
f = fa (h) (scaled by £7%/2 for £ = 0.1,0.01,0.001; Pe = 10, Da = ¢Pe). Error bars are +2
standard errors (SE), where SE = /Var|||7¢]|z,]/Nens, calculated using a standard unbiased
estimate.
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the terms in (3.4.3) at O(e?), we obtain

C® = q(f - F), where ¢qF(X)= C(O) - pC, (3.4.4)

with f = Z 8(x — &;). This is to be solved subject to C) = C® =0 atz =0 and z = 1.
Thus in {z < r <4, fori=0,1,2,..., N, treating x and X as independent,

c? = —%qF(w — &) + (x — &) + B (3.4.5)

for some «;, B;, taking & = 0 and €ny; = e~!. We define Ay = & — & and
(R, S;, T;, U;) = ijl(fj, AJQ-,EjAj,ﬁjz) so that & = Z;zl A; and we note the following iden-

tities:

Z% 1=Uisi 3 ZA (G-1)=(T-R)-Tioi=i& - Ri.  (346)
Integrating (3.4.4) across the ith sink’s location = =¢ gives C®|gy = C@®_ and
C;:2)|£l+ - ;2)|51_ =qfori=1,2,...,N,so (3.4.5) provides the following recurrence relations:

o; = i1 +¢q (1 - FAI) , (3.4.7&)
8; = Bi_1 — %qFA? + ais14;. (3.4.7b)

We take By = 0 to satisfy C®) = 0 at £ = 0. From (3.4.7), assuming F is independent of 7 to

leading order (verified a posteriori), fori =1,2,..., N,
a; =g + q(i — F&;), (3.4.8a)
5=~ 4oFS+ o6+ gL A~ 1= Fep). (3.4.80)
Substituting (3.4.8) into (3.4.5), expanding and using (3.4.6) gives, after some algebra,
C® = _1gFe? + apz +qliz — Ri], for &<w<&i,i=12,...,N. (3.4.9)

Imposing C® = 0at x = e} = N+ 1 gives a9 = %qu‘l — q[N —eRy], and so, for
éi <z < £i+11

C® =1gFz(e' — 1)+ ql(exRy — R)) +x (i — N)], i=12,...,N. (3.4.10)

This expression relates solute fluctuations directly to sink distributions.
We note that all terms but exRy — R, = XRy — R; (setting ¢ = X/e) in (3.4.10) are

deterministic, and therefore

CO_ECP)=q(XRy-R), R=R-E[R)],i=1...,N, (&<z<&u). (34.11)
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[he ]
[}

Likewise Cov(c<2>( ) C<2>(Y)) = ¢?Cov(XRy — R(X), YRN — R(Y)), where X, Y € (0,1),

ZLE IYJ (i = [e7'X] i = 1,...,N), so that R(1 — X) = ZJ{\;LEMI‘\’J 13
(due to e N1 - )J N — [e7'X] = N — i), and therefore we have
Cov(C(X),CP(1 - X)) = ¢*Cov(XRy — R, (1 — X)Ry — Ry—;). The choice of N — i

instead of N + 1 — ¢ docs not affect the results at leading-order, owing to large N > 1 and

&

smooth X-dependence of the variance and the transverse covariance, as will be shown below.
Thus, by applying the definition (3.4.1) to (3.4.11), the variance and the transverse covari-
ance of the correction are expressed in terms of the partial sums R; = Zj: 1 & of the sink

distribution &; as follows:
Var[C®] = ¢E[(X Ry — R:)?] = ¢* {X*Var[Rn] — 2XCov(R;, Ry) + Var[R]}, (3.4.12a)

Covr[CP) = PE[{XAn — R} {(1 - X)Rn — Rn_i}] = (3.4.12D)
= ¢*{X(1 - X)Var[Ry] — (1 = X)Cov(R;, Rn) — XCov(Rn_i, Rn) +
+ COV(Ri, RN-i) } .

Our task therefore reduces to finding the corresponding variances and covariances of the
partial sums R; for a specific sink distribution.
The case of a normally-perturbed sink distribution

When f = f,, then, denoting o = o/e, we have & ~ N(i,08) ~ i + aoN(0,1). Therefore
(owing to the independence of &; for small oq)

i
R~ N(j,a8) ~ N(“’;”,iag) , (3.4.13)
j=1

where we used the linearity property of expectation E I:Z;’:l Ej] = Z;:] pj =i(i+1)/2 and the
property of a non-central x? distribution with one degree of freedom: ]E[Ej] = /t? ‘ol =3
in this case.

It remains to obtain Cov(Ry, Ry) = E[RyR,] — E[Ri] E[R,] for k # p. The independence of
& and &, i.e. Cov(§;,&) =0, for j 7é 1, assuming that og is small cnough for sinks not to swap

places and k < p, gives

k p kK k
Cov(Ri, Ry) = > > {El5;&] - EIGIEE]} = Y ) {El§; &) - EI§]Elé)} +
j=11=1 j=11=1
kop ko k k
+ Y ) Cov(g,&) = [ZZ& a} [Z E,} Z = Var[Ry],
j=1 l(: )1 J=11=1 =1
(3.4.14)
reducing the covariance (for & < p) to the corresponding variance.
From (3.4.13) and (3.4.14) we therefore have
B[Ry = "D yarlRy) = Cov(Be, Ry) = ko?, (k< p). (3.4.15)

2 b
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Thus (3.4.12) simplifies to

Var[C?] = ¢® { X?Var[Ry] + (1 - 2X)Var[Ri]}, (X <1, i < N), (3.4.16a)
Covr[C®] = ¢*{ X (1 — X)Var[RN] + X Var[R;] - X Var[Ry_;] }, (X < 1, i < &).
(3.4.16b)

Note that by sctting i =(i—z)+¢e7 !X and N=¢7! -1, we obtain from (3.4.15),
E[XRy — R]=31XN(N+1)—i(i+1) =21 X(1 - X) = J(x +4)(i + 1 — x). Substituting

this into (3.4.10), we get an expectation of the correction in the case of normal perturbations:
ECH)=e2lg(F-1)X1-X) + gz -)+1-2). (3.4.17)

To ensure the original expansion is asymptotic, we must take F = 1 at O(e~2), yielding from
(3.4.4) the periodic leading-order equation (2.3.8a) for C(©) and recovering the parabolic cell
solution (2.3.12), obtained in Chapter 2. Simulations indicate that the contribution at O(e~!)
(and hence C(V) vanishes (Fig. 3.8b); however, sinulations also show that a further correction
to E[rf] of the order of €2 is present, presumably involving a closure condition for the correction
at higher order.

Substituting the variance and covariance of the partial sums R; (3.4.15) into (3.4.16), setting
i=e ' X+y (y=i-z=0()) and N = ¢! — 1, and retaining the leading-order term in

powers of ¢, we find, after some algebra, that (3.4.16a) gives
Var[C®] = e 1?0 X(1 - X) + 0(1), (3.4.18)

and using (3.4.16b) for 0 < X < %, i < N — i (owing to the symmetry of the covariance) gives

IA
i

Cov1~[C(2)] =

e o2 X2+ 0(1), <X
790 () (3.4.19)
< X

e g of (1 - X)* +O(1), %

IA

in a good agreement with simulations (Fig. 3.8c). Thus while C(?) has O(1) mcan, r¢ is domi-
nated by fluctuations of relative magnitude O(e%/2). This approximation holds as long as sinks
do not exchange places, which can be expected once og becomes sufficiently large. Because
Var[C(z)] scales with oy, (3.4.18) suggests that the fluctuations in the case of stronger mixing
of perturbed sink locations will be larger than O(e%2).

The case of a uniformly random sink distribution

When f = f,, we turn to Matuswana [167], who determined the distribution of linear
combinations of order statistics drawn from U(0,1) (i.e. combinations of él, e ,f:N, where
éi = ¢§;) as a mixture of scaled Beta distributions.

Let us consider é,, t=1,...,N to be the ordered values from a sample of N independent
uniformly distributed random variables on [0, 1], where §, < EJ for i < j, and also set & =0 and
§N+1 = 1 to account for the boundary conditions. Let V; = & fl Li=1,...,N+1andso
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(Vi,..., Vn41) has a Dirichlet distribution with (N + 1)-vector of paramecters (1,1,...,1) [167].
From the properties of the Dirichlet distribution we know that

1 N -1

]E‘/iz—__—v V( ‘/l: ) V’V: ¢ ) 3.4.
Vi=x577 VlVi=Gmimary 0= Gmrormsy G40
where i # 4, 4,7=1,...,N.
Consider the partial sums of order statistics &
Ly= Zb Vi, Tp= Zc,, > (3.4.21)

q=1

where b;, ¢, are given deterministic weights. Then, from (3.4.20) and the linearity property of

expectation we have

k
Z
E[Li) = Zb]E — (3.4.22a)
k k k
k k Z b‘? Z z beI
(L] = b;biCov(V;, Vi i=1 Sl Ll , 3.4.22b
Var[Ly) ;l; CovViV) = NI (N +2) - (NTIE(N+2) ( )
k »
kE p Zl Zl bjcg {(N +1)dj, — 1}
=1 9=
4.
Cov(Li, Tp) ;Xz:bchOV V,V,) = LR , (3.4.22¢)

where k,p=1,...,N, k < p and djq is the Kronecker delta-function.
We now consider expressions for the mean, variance and covariance of the partial sums
of the order statistics:

P

k k
=Y =) (k-j+1V;, Rp= *Zg,, Y p-q+ 1)V, (3.4.23)
j=1

j=1 g=1

with coefficients of (3.4.21) being
bj=k—-j+1, ¢=p—q+1, (k,4,p,q=1,...,N). (3.4.24)

We also note the following identities for (3.4.24):

Y

k+1 - k+1)(2k+1)
Z =

_kE+ 1)@k +1) | kD@ k)
6 2 '

k
2h 4

; (3.4.25)
21

Hence, from (3.4.22), (3.4.23) and (3.4.25), using ¢~} = N + 1, we get the mean, variance
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and covariance of Ry:

Bl = e EIL) = k'(k_;i) ' (3.4.26a)
Cov(Ri, Ry) = e~2Cov(Ly, Ty) = &+ 1)((2]’;: ;))(N +1) |kt 12)EN 2))(N +1)
E[RJER,) (3.4.26¢)
“TNio o kR

By using (3.4.26a), which is identical to E[R;] for the normally-perturbed distribution
(3.4.15), we thereby again recover (3.4.17) from (3.4.10), requiring that F = 1 + O(e), so
once more C satisfics the leading-order equation for a periodic array (2.3.8a).

Substituting (3.4.26(b,c)) into (3.4.12) and again writing i = ¢7'X + (i — x) (taking
|t — x| = O(1)), we find to leading order in € (using Maple) the variance and the transverse

covariance of the correction for the case of a uniformly random sink distribution:

Var[CP] = e ¢* L X2 (1 - X)? + O(e72), (3.4.27)
'32LX21—6X+7X2 + O(e7?), <X<i,

Covr[C?] = X ) ‘ ™) - (3.4.28)
-3¢ —1§(I—X)2(2—8X+7X2)+O(€_2), <X<1,

which are in an excellent agreement with numerical solutions shown in Figure 3.6(c).
Furthermore, assuming Var[C(!)] = 0, we obtain Var[rf] = e¢®% X%(1 - X)? to leading
order in €, consistent with simulations (see Fig. 3.6c)). The fluctuations about C©) are thus
O(e'/?), which is significantly larger than O(e?) error for homogenization on periodic arrays
(see e.g. Table 2.1 of Chapter 2, for Pe = O(¢)).
Simulations also show that E[rf] = %Eq X(1 — X) (sec Fig. 3.6b), suggesting a contribution

from C1) which presumably must be determined by a closure condition at higher order.

3.4.3 Analytical estimates of covariance for the case of balanced advection-diffusion
(Pe = O(1), Da = O(¢))

It remains to establish the statistical properties of the homogenization residue in the case of
moderate-to-large local Péclet numbers Pe = O(1), Da = O(e) = e2q1, q1 = O(1)), when (3.2.1)

transforms to the following problem:

N

C’zz + 25C~':cX + EQé,Y,Y — Pe (Cl + 60,\’> =eqif, f= Z O — &) (3 4 29)
i=1 T

é X=0— 1, élx=1 = 0

(again assuming here, without loss of generality, that C does not fall to zero upstream of X = 1).
At O(e?), we get 9 _pec® = o, COlx—p = 1 and CO|x-; = 0. Thus OOz, X) =
a(X)e’*® + b(X), @,b being arbitrary constants of X. The first term must be suppressed to
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avoid secular growth (since z = ™! — oo as € — 0), so that again C(9 = CV)(X),
Collecting the terms in (3.4.29) at O(e), we obtain

Cl) —pPeCH = q(f(z) — F(X)), where ¢ F(X)=—-Pe Cf\?) : (3.4.30)

This is to be solved between each two sinks & and &1 (2 = 0,..., N, taking again £ = 0 and
Ens1 = e 1), subject to CV =0 at £ =0 and £ = ¢!, Thus

C(g) = %%F(m—fi)-f—diepe(z—&)-%-éi, &<z <&yq fori=0,...,N, (3.4.31)

with some é;, Bi to be determined.
Integrating (3.4.30) across £ = &; gives the balance of concentrations and fluxes: C(l)|£l+ =
C(l)lfi— and C£1)|5i+ — C'i-l)[fl_ = q1, which (using (3.4.31) for §;, < r < &1 and &) < x < &)

allows us to obtain the following recurrence relations:

a; = ai1e % 4 &, (3.4.32a)
Bi = Bi-1 + p5(F A~ 1), (3.4.32b)

where A; = & — &y, fori =1,2,...,N.
Summing (3.4.32b), taking the product of (3.4.32a) for j = 1,2,...,7, and assuming that F'

is independent of i to leading order, we find

i ),
a; =e' % (ao +f e C£J), (3.4.33a)
5=1
B =Po+ & (F&—1i), (3.4.33b)

where we again used the identity Z;zl Aj =&
We define ‘
[3

Q=) e Y (3.4.34)

j=1

and substitute (3.4.33) into (3.4.31) to find

Pex

CO =t (Fr—i)+ (Go+&8Q)e " +h &<w<&i,i=0,...N. (3.4.35)

Imposing C? =0at z =0 (i =0) and x = 7! (i = N) to satisfy the global boundary
-~ dag—! dog— ! .
conditions, gives @ = —fp = — R [Fe™! = N+ Qn ePee7 /(e — 1), and so, after some

algebra, we obtain

Pex
m _-_F—l_NE__‘lJ_ 3.4.36
C o [(Fm i) — (Fe ) P ( )

- lq—l/if—/ [(e‘“ —1)Qn —eF(1 - e“"“/f)Qi], & <2 <&, i=0,...,N.
— €

This expression again relates solute fluctuations directly to sink distributions.

Analogously to Section 3.4.2, we observe that statistical properties of the correction c,
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and thus homogenization residue 7¢ ~ C — C1)| are entirely defined by the combination of
exponential partial sums Q; and Qu in the second term of (3.4.36).
Therefore (setting £ = X/e) in (3.4.10), we have

C — Ele) = ——albe (PNl 1) — e PN/ o7 |

—Pe/e

e (3.4.37)
Qi=Qi-E|Q], i=1,...,N.

Applying the definition of variance and transverse covariance (3.4.1) to (3.4.37), expanding
and taking the expectation, we express Var[C(V)] and Covr[C(V)] in terms of the partial sums

@; of a sink distribution &; as follows:

/ : Pe X /e S Pe X /e ~Po/ey 4 12
> 2 e 2
= (%;) { (GP e 1) Var[@Qn] - (3.4.38)

—eleN/e (e PeX/e _ 1) (1 - e_l)c/e> Cov(Qi, Qn) + e X/e (1 - O-PO/E)2 V"“'[Qi]}’

2 ( . e X e 2
Comn(et] = () 2| {1 - Dy 20}
{(CPC(]_‘\,)/E _1)QN_I’,CP(‘(]—4Y)/€Q°N—1}] —

2 » 3 - X P
= (ﬁqll)_c) { (] _eP X/e _CIe(l Ve i c/e) Var[QN] n (3.4.39)
("7 =Pl Cov(@i @) + 1 (7 T — o) CoviQu-i, Q) +
+n%e"*/F Cov(Q:, Qn—i) },

where =1 — e /%,

Our task once again is in finding the corresponding variances and covariances of the partial

sum (3.4.34) for a specific sink distribution.

The normally-perturbed sink distribution

Consider f = f,,, then, for oy = o/e, we have & ~ N(i,08) (El&] = pi = i, Var[§)] = 03),
i=1,...,N.
Assuming small standard deviation oy/pu; < 1, we can find the corresponding expectation,

—P . .
variance and covariance for g(§) =e¢ Pet by expanding it about the mean y;:

Elg(pi + (& — )] = gi + 3 g/ Varlg] + L g/ B[(& — p)' ]+ ..., gi=g(m).  (3.4.40)
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For a normally distributed & with E[(& — ;)] = 30§, (3.4.40) gives

~-Pei

i i 5 .
= ~Pej Pelo2 Pelad 1-¢
E[Q:] = ZIIE[g(fj)] ~ [1+ § Pe?o? + L Pelof ] Zle V=14 S04 e
j= i=
(3.4.41)
no
where we used the geometric progression ) s7 = s(s"™ — 1)/(s — 1) to compute the sum.

J=1
Analogously

Varlg(&)] = E[g(&:)?] — (Elg(&)))® ~ (90)* Varl&] + (3 919" + § (91)%) E[(& — )], (3.4.42)
and since Var[Q;] = Z; 121 {E[g(€5)g(&)) — Elg(&)] Elg(ér)]} = Z;:l Var[g(&;)] due to

the independence of §; and &, i.c. Cov(g(&i),g(&k)) = 0, for j # k and small oy, we get from
(3.4.42) the variance

; —2Pci
: L —92P¢ i . ‘ l1-—e
Var[Qi] = Pe?02 [1+ $ Pe?o2] 3 e 7277 = Pe?o? [1+ § P?0f + O(0) | —5p—— !
(3.4.43)

It remains to find the covariance Cov(Q;, Qi) = E[Q:Qk] — E[Q:] E[Qk] for i # k. We denote
G = g(&) — E[g(&)], so that E[§] = 0 and E[§?] = Var[g(&;)]. Then, for ¢ < k,

Cov(Qi, Qx) = f: i E[g;q.] = Z E[97] + Z Z Elg;d) =

J (I¢J)

1 i k
ZVaY[J &)+ Z >~ Cov(g(&), (&)
i=1 j=1

)

(3.4.44)

e
B

(£

with the first sum on the right-hand side of (3.4.44) being equal to (3.4.43) and the second
sum vanishing due to the independence of g(&;) and g(&), i.c. Cov(g(&:),g(&)) =0 (j # 1), for

sufficiently small o, providing the covariance

—2Pci
. sy 1 —e
Cov(Qi, Qi) = Var[Q;] = Pe?ad [ 1 + § Pe?af | —w o sk (3.4.45)
e’ —

Substituting (3.4.43), (3.4.45), i ~ ¢! X and N ~ 7! into (3.4.38) and (3.4.39), after some
algebra, we find

ey - De ' Pe(y _
1\+ef(1 X)_oRu+n) _Re-x) | 2 5_1)

Var[CW] ~ 22} o5 (1+ 3 05 Pe?) (
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Figure 3.11. Monte-Carlo estimates of variance Var[rf] (blue circles) and transverse covari-
ance Cov(r®(X),r¢(1 — X)) (black diamonds) for a normally-perturbed random process with
o = 0.5¢, computed for Pe = el/2, q1 = Da/(ePe) =1, € = 0.01, using 5 x 10" realisations; the
dashed lines indicate the corresponding theoretical predictions (3.4.46) and (3.4.47). All data
are scaled by (e q; 09) ™2

. =1/ I -2 Le Peqp_x
Covr[CW) xe?¢? 0l (1 + %ag Pc?) (GQPC - 1) (c < — 1) (20 R A

Do e - Pc Poerog Peri _oy Peoy Pe
b2 -X) L Baaax) o BOHX) g re-x) | oo e ok ~~1>,
0<X<i
= = 9
(3.4.47)

where (CovT[C(l)] for % < X <1 corresponds to substituting X with 1 — X in (3.4.47), owing
to the symmetry of the covariance.

By taking the limit of (3.4.46) and (3.4.47) for small Pe < O(e), we find at leading order
Var[CW] ~ e 1¢? 02 X(1 — X) and Covp[CV] ~ e7!¢? 02 X2, which arc identical to the
variance (3.4.18) and transverse covariance (3.4.19) respectively (with g = e¢).

Theoretical predictions (3.4.46), (3.4.47) agree very well with simulations at transient Péclet
number Pe = ¢!/2 (O(e) « Pe « O(1)), as shown in Figure 3.11; however, they differ by a
factor of ca. 1.3 for Pe = O(1) (Fig. 3.9f), which can be attributed in part to neglecting the
O(Pe) terms, compared to the leading-order O(Pe/¢), in the exponents of (3.4.46) and (3.4.47).

In order to estimate the magnitude of the Auctuations, we take the Chebyshev norm ||7€]|4 =
maxy Var[r€] = eVar[CM]| y_, /2 as a conservative measure (being an upper bound of the other
norms defined in (2.6.1)). Then (3.4.46) gives (after some algebra)

re
€

2¢40202(14+30%Pe?) 1 -¢"~
Lreaog(ItsopPe)1-e2e (3.4.48)
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Figure 3.12. Approximate asymptotic upper bound (3.4.49) (solid) for the applicability of
homogenization in the case of a normally-perturbed sink distribution (plotted for ¢ = 0.001,
oo = o/e = 1). The dashed and dash-dotted lines indicate the periodic (mean) upper bounds
Da = 1 and Da = Pe respectively; the dotted line marks the theoretical upper bound Da =
2e1/2 /o4 of random fluctuations for small Péclet number.

When ||7¢||c = O(1), the homogenization fails, defining the critical Damnkohler number

1/2
. } : (3.4.49)

which is plotted in Figure 3.12. We can therefore divide the (Pe, Da) parameter space into two
regions: for Pe < O(g), Dacr ~ O(0y ' €1/2) and for O(e) < Pe <« O(1), Dag, ~ ()(UO'1 Pe).
By repeating the calculations (3.4.40)-(3.4.43) up to O(c§), taking into account that
l/mf_oooo t6¢ /24t = 15 and hence E[(& — 1i)®] = 1508, we find, after some algebra, that
Var|Q;] ~ Pe?c 1 + %Pe%g + % Pelo] + O(a§)] ~ ePetal (e P _ 1), which is related to the

variance of the log-normal distribution of e Feds [150]. Since this series becomes exponentially

1

D e2PC_1 1+e—,
Aoy A ,
“ 202 (1+ 302Pe?) | _ o1

Wil N)—
™ IF - ‘

large for ogPe > 1, the approximation (3.4.48) is not applicable for large Pe > 1. However, the
simulations (sec e.g. Fig. 3.5¢) indicate that for a normally-perturbed array with small standard
deviation g, the stochastic part of the homogenization residue at large Péclet number becomes
comparable or even less in magnitude than the deterministic (mean) part, leaving the upper

bound Da., ~ O(Pe) of the periodic case unperturbed.

3.4.4 Correlation properties of the homogenization residue: Summary

In this Section, we have obtained and verified the theoretical predictions of Sections 3.4.2
and 3.4.3 for the diffusion-dominated case and for locally-balanced advection-diffusion (Pe <« 1
and Pe = O(1) respectively), and provided numerical estimates of the homogenization residue
in the case of large local Péclet numbers (Pe > 1).

Despite the fact that the individual sinks in all three considered random point processes
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U(0,1) | Hard-core | N(i,02) | Periodic (mean)

Pe< 1| O(gve) | O(gvE) | O(qgane’/?) O(qe?)
Pe21 | O(& &) | O(&VE) | O ope) O(& ¢)

Table 3.1. Asymptotic convergence rates of homogenization residue maxy [r¢| or ||[r¢]|., for
periodic and random arrays (¢ = Da/e?, q; = Da/e, o9 = o/¢). The estimates for Pe < 1
arc based on rigorous analytical results of Sec. 3.4.2; the estimates for Pe 2 1 are suggested by
the analysis of Sec. 3.4.3 and direct simulations (see Figs 3.5(a-c), 3.10(h,g) and 3.13(c,d)) and
therefore remain a conjecture.

U(0,1) Hard-core | MN(i,08) | Periodic (mean)

Pe<1| Ogve) | O(gve) O(qe) O(qe)

Pe>1 | O(f vPe) | O(# VPe) | O(# VPe) O(f% VPe)

~ [

Table 3.2. Asymptotic convergence rates of homogenization residue in the Sobolev norm (mean-
squared with the first derivative) ||r¢|| ;1 for periodic and random arrays. Sec also Table 3.1.

fu, fn and f, appearing to be uncorrelated (see Scc. 3.2), the homogenization residue r¢ for
uniformly-random and hard-core processes, as well as for normally-perturbed arrays with small
Pe or large o, exhibits distinctly long-range correlations (scc Figs 3.6-3.10). Morcover, the
amplitude of variations in the residue 7 (as a random process) seems to be directly related to
the degree of cross-correlations in r¢, quantified by the transverse covariance.

We now combine the results to survey the accuracy of the stochastic homogenization in the

(Pe, Da) parameter space.

3.5 Applicability and accuracy of homogenization on random

arrays

Based on the analytical and numerical results of Sections 3.4.1, 3.4.2 and 3.4.3 we can
generalise the error bounds of the solute transport homogenization (the magnitude of the residue
7¢), given in Sec. 2.6 of Chapter 2 for periodic arrays, to the case of disordered media. We also
note that the fluctuations for f, and f,-distributed sinks (3.4.18) and (3.4.27) are polynomial
in X and do not depend on the local coordinate x at leading order; therefore, Var[r§] has
the same order of magnitude as Var[rf}, facilitating the estimation of the strong norm ||r€||;1.
Tables 3.1 and 3.2 summarise the findings.

The regions of convergence for uniformly-random (f,) or hard-core (f),) sink distributions
are illustrated in Figure 3.13(a) and the corresponding map for a normally-perturbed periodic

array (fy,) is shown in Figure 3.13(b). The effect of the stochasticity on the convergence rates
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Figure 3.13. Types of convergence in (Pe, Da)-space for stochastic homogenization of solute
transport with (a) uniformly random distributed sinks, and (b) normally-perturbed sinks (for
oo = O(1)). The region of “strong” convergence in the Sobolev (H 1) norm is shaded in green,
the region of “weak” convergence in the mean-squared norm (Lz)-norm is shaded in yellow, and
the region of global divergence (in Lo-norm) is shaded in red (plotted for € = 0.05). The black
dashed lines in (a,b) indicate the lower border of the divergence region in the case of a periodic
array (see Fig. 2.2a). The convergence rates for the points (1) Pe = 1, Da = &2 (solid line) and
(2) Pe = £~1/2, Da = £3/2 (dashed line) from the parameter space (a) are illustrated in panels
(c,d) (ensemble average over 1000 samples for each N); triangles give a theoretical slope, in
accord with Tables 3.1 and 3.2.
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is the greatest for small Péclet number Pe < 1, while the presence of strong advection scems to
alleviate the damaging effect of fluctuations due to an irregular microstructure. Interestingly,
in the case a uniformly random distribution (Fig. 3.13a) for Pe < O(e), the magnitude of the
fluctuations is such that the region of strong convergence (green; in || - |[;;1) and the region
of divergence (red) of the homogenization residuc collapse to eliminate the transitional weak
convergence region (yellow; in || - ||z,).

When diffusion dominates at the microscale (Pe = O(e), Da = O(e?)), the pointwise variance
varies smoothly over the whole domain, as we show analytically (see Section 3.4.2). However
its magnitude depends strongly on the degree of periodicity in the underlying structure, with
fluctuations rising from O(e%2) for almost periodic sink distributions to O(e'/?) for uniformly
random sink distributions. Correspondingly, the range of validity of the homogenization ap-
proximation when f = f, is significantly smaller than in the periodic case: we estimate that
this requires Da <« €3/2 for Pe <« € and Da « ¢!/2Pe for Pe > ¢ (see Table 3.1 and Fig. 3.13).
The normally-perturbed distribution f,, with small standard deviation o therefore takes a dis-
tinctly privileged position among the considered random geometries, in terms of the effect on

the homogenization accuracy.

3.6 Discussion

We have demonstrated that, in the case of Pe > 1 and Da = ¢Pe (relevant to the placental
transport of solutes, such as oxygen or glucose), both uniformly-random and hard-core distri-
butions have the cxact solution converging to the homogenized leading-order solution as O(/¢)
in the Chebyshev, Ly and pointwise-variance norms (with the f;, distribution increasing the
absolute accuracy, by making smaller a constant in O(y/€), but not the rate of convergence);
however, f, still follows asymptotically the rate of convergence O(e) for a periodic array (see
Fig. 3.5(a-c)). Only in a weaker measure, the average over the length of an array, do we obscrve
a fast convergence rate O(e) for all three random distributions (Fig. 3.5(d-f)). This indicates
the robustness of the homogenization technique for periodic arrays and guarantees higher ac-
curacy for a dense sorbing medium with underlying regularity than for an intrinsically random
microstructure.

Even though the Matérn hard-core process (with d = 0.65¢; Fig. 3.2b) appears closer
to the regular array than the normal perturbations (with o = 10e; Fig. 3.2¢) for N = 49, the
solution on a hard-core-distributed array converges slower to C{®) than on a normally-perturbed
array for sufficiently large N (small ). This apparent difference in the convergence properties
is explained by the lower degree of long-range correlations between unit cells for the normal
perturbations (c¢f. panels (e) and (f) in Fig. 3.10), since cach sink in f;,, for small o, is expected
to be displaced symmetrically and independently about its position in a regular array. However,
the homogenization error for a normally-perturbed array quickly ceases to exhibit its unique
properties as sink fluctuations increasc, becoming essentially indistinguishable from the residue
for a uniformly-random array when o 2 0.3, i.e. for fluctuations over a third of the whole
domain (sce Fig. 3.10h).

We also remark on the clustering phenomenon occurring in a uniformly-random distribution
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(or in normal perturbations for large o) (as can be scen in Fig. 3.2a) that significantly contributes
to the deviation of the exact solution from a homogenized one. The presence of clusters can
be treated asymptotically either by considering an array of sinks of varying strength (e.g. al-
ternating ¢ and 2q) with larger inter-sink distance, or by introducing a third lengthscale for
inter-cluster spacing ¢, intermediate between the regular microscale € and the global scale 1
(e < €1 <« 1), and then performing reiterated homogenization [34].

Our analysis of the fluctuations of the homogenization residue in this chapter extends the
upper bounds for applicability of homogenization from the periodic arrays (Fig. 2.2a) to the
random sink distributions (Fig. 3.13(a,b)). Although the homogenized lcading-order concentra-
tion profile is asymptotically applicable to a wide range of stationary random sink distributions,
we observe a pronounced shrinkage of the convergence region in the (Pe, Da)-parameter space
(Fig. 3.13), especially for small Péclet number. This suggests that corrections to the leading-
order approximation cannot be neglected even when the exact solution is sufficiently “smooth”.

We can compare our analytical and numerical predictions with existing theorctical results
for random homogenization of the problems similar to (3.2.1) that take into account the spatial
autocorrelation properties of coefficients of corresponding governing equations. Bourgeat and
Piatnitski [47] show in their Lemma 4.2 that the homogenization error of a one-dimensional
diffusion-reaction equation (without advective transport) is IE[m’z(mx [76(X) [2]1/2 < O(v/%) when
the diffusion coefficient is a stationary random process with “short-term memory” (o > 1 for
the corresponding autocorrelation function (3.2.2)), and IE[III)E(IX 17¢12]1/2 < O(e*/2) for a “long-
term memory” coefficient (0 < a < 1). Bal and Jing [22] generalise these results for a linear
transport-attenuation-scattering equation in two and threce dimensions and show that when the
equation coefficients are bounded functions of a Poisson point process (with short-terin memory,
a > 1), the following estimate holds: ]E[||r5||§42 ]2 < O(y/€). Since the source term in (3.2.1),
defined by a sink distribution, is a short-term-memory stationary process (see Figs 3.3 and 3.4),
one might expect similar upper bound on the residue 7¢ being applicable. We indeed observe
that the homogenization crror for all three stochastic sink distributions (fy, fi and f,) are
bounded by O(v/¢) for Pe 2 1, Da = O(ePe) (Fig. 3.5(a-c)). This upper bound is exact for a
uniformly-random or hard-core distributions; however, it considerably overestimates the error
in the casc of a normally-perturbed sink distribution (which can be as low as O(e) for this
parameter regime), highlighting the importance of direct distribution-specific error estimation.

To sum up, the magnitude of the difference between the homogenization approximation and
the exact solution depends on how one chooses to measure it. In a weak (L) norm, the residue
with a periodic sink distribution is typically O(e) (for example for Pe = O(1), Da = O(e)),
falling to O(e?) at sufficiently low Pe and Da. However when sinks have a uniformly random
distribution, the residue (in the appropriate norm) rises to O(e/2) in both cases ((3.4.27),
Figure 3.10(a,b)). The magnitude of the residue falls for distributions with a greater degree of
periodicity ((3.4.18), Figure 3.10(g,h)) but grows with increasing sink strength. Significantly,
even when sink distributions are correlated only over short distances, the residues appear to
be correlated over distances comparable with the domain size when advection dominates at the
macroscale (Figure 3.10(d,e,f)). This is also the case when diffusion dominates at the microscale,

as revealed by estimates of the transverse covariance (Figs 3.6(c)-3.8(c)). One can estimate
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crudely to be between 0.001 and 0.01 (taking the overall size of the placentone ~ 1 cm and the
size of an individual villous branch ~ 10 — 100 um [33]), suggesting errors in homogenization
approximations due to stochasticity of up to 10% that fluctuate across distances comparable to
an individual placental lobule.

We will further analyse the impact of the findings of this chapter by identifying which, if
any, of the three random distributions (fy, fr, fn) describes the villous pattern of the normal
human placenta. However, since the histological images are two-dimensional (see Fig 1.1b), we

first need to extend some of the results to the case of two spatial dimensions.
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HOMOGENIZATION OF FLOW AND
TRANSPORT IN Two DIMENSIONS AND

NON-LINEAR EFFECTS

4.1 Introduction

Many physiological systems involve phenomena at different spatial scales. One of the
cxamples is the human placenta, whose tortuous villous structure provides an interface of the
feto-maternal exchange with enormous surface arca per unit volume (of the order of 10 m?
for the whole mature placenta) [33] (see Figs 1.1 and 1.3 of Chapter 1). In addition to the
geometrical complexity, we need to take into account the microscopic nonlinear effects of solute
carriers, such as hacmoglobin, on transport at the macroscale.

In order to understand the impact of these effects, while preserving the essential informa-
tion about the structurc and physico-chemical processes at the microscale, we again adopt a
homogenization technique to generalise the models studied in Chapter 2.

The aim of this Chapter is to derive the effective description of advective-diffusive solute
transport in a flow orthogonal to an array of sorbing cylinders with nonlincar dissociation
kinetics, mimicking solute transport in the intervillous space (Fig. 4.1).

Apart from placental transport, potential applications of these models include gas exchange

U '

Figure 4.1. A schematic diagram of flow in the intervillous space, facilitated by the solute
carriers (up,, uy and C,,, Cy denotes the maternal/fetal fluid velocities and concentrations
respectively).
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Figure 4.2. The model geometry.

in a capillary network [271], solute transport in certain bioreactors (1], dialysis machines [118]
and other artificial organs [145]. The role of erythrocytes as oxygen carriers can be shared in
full or in part by artificial blood substitutes [141].

4.2 Advection-diffusion in an array of point sinks

We start by considering a model for a square-periodic array of point sinks (see Fig. 4.2),
extending the problem (2.2.1) studied in Chapter 2 to two dimensions.

Although Hasimoto and others (112, 229] have shown that the local flow past cylinders of
vanishing radius retains the spatial dependence due to logarithmic singularities, we assume a
uniform flow past the array, which will be justified later in Section 4.3.4, at leading order, for

averaged solute transport in an array of cylinders, taking the limit of their radii tending to zero.

4.2.1 Problem statement

Let steady advection-diffusion in a two-dimensional array (L x L) of N? point sinks be

subjected to a horizontal inlet flow of given velocity ug and solute concentration Cy:

ac* o’cr  o9*cr .
U 5 =D <8x*2 + = > (10111215 ¥ —x7)0(y" —y}), (4.2.1a)
O0<zr* <L, 0<y*<L,

Cler=0 = Co, (4.2.1b)
Colarar =0 or CMlormyy = % =0, for 0<ux <L, (4.2.1c)
T*=x

oct ocr
Clyr=0 = Clyr=, - = = , (periodicity) 4.2.1d
|y 0 y*=L (9:1/* yr=0 ay* =L ( ( )
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where D is the molecular diffusion coefficient, gg is the solute uptake rate (flux density per
unit cell, in [mol/(m?-s)]), [ is the inter-sink distance, z} = il, y; =4l (4, =1,...,N) are
positions of the sinks in a square array (see Fig. 4.2), and z§ = z§(y*) defines an internal free
boundary for a sufficiently strong uptake.

In dimensionless variables C* = Cy C, z* =lz, y* =ly, (4.2.1) takes the form

oCc 9*C 0°C N
Peo—r = =" 4 =~ _D: — NSy — v -1 -1 ,
® oz 9.2 T 32 Ddi]z:ltS(I )dy—y;), 0<z<elO<y<e (4.2.2a)
Cle=0o =1, (4.2.2b)
0
Clyee-1 =0 or Cle=zy = E—xc_ =0, for O0<uag<e}, (4.2.2¢)
=g
ocC ocC
Cly=0=Cly—e 1, H—| =5 : (4.2.2d)
Yy y=€ 0y y=0 ay S

where e = [/L, Pe = ugl/D is a local Péclet number and Da = go{/(D Cy) is a local Damkéhler

number.

4.2.2 Small microscopic Péclet number transport regime

Let Pe = O(e) = ep, Da = O(e?) = €2q (p,q = O(1)), representing the global advective-
diffusive-uptake flux balance, analogous to (2.2.6) of Chapter 2.
Analogous to the one-dimensional case, we look for an approximate solution to (4.2.2) in

the form of two-scale asymptotic power series

C(x,y) = C’(:c,i X, Y) = C(O)(m,y,X,Y) + EC(I)(x,v VX, Y) + €2 0(2)(:1:,1 X, V) + .,
(4.2.3)
with slowly varying global coordinates X = ez, Y = €y.
Substituting (4.2.3) into (4.2.2) and collecting the terms at powers of €, we get at O(1):

CO+c® =0, -1/2<z,y<1/2,0<X,Y <1, (4.2.4a)
COlxop=1, COxoy =0 or COx_x, = C|xox, = 0; (4.2.4b)
COlyg =COyoy, CO%veo=COlyo, (4.2.4¢)

which implies independence of the leading-order solution on the local (microscopic) coordinates:
O =X, v). (4.2.5)
Collecting the terms at O(g) and taking into account (4.2.5), we have

c)+cD =0, -1/2<z,y<1/2,0<X,Y <1, (4.2.6a)
CWjx=g=C"|xo1 =0, (4.2.6D)
CWHly=g = CWlyoy, Cf,l)lvzo = Cg(,l)h’:l ) (4.2.6¢)
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leading to
cM=o. (4.2.7)

Collecting the terms at O(e?), accounting for (4.2.5) and (4.2.7), we get

N
0 0 0
Cx + O —pC =¢ > b - )y —yy) - (CA + 2y, (4.2.8a)
i,j=1
CPly—o=CP|x1 =0, (4.2.8D)
COly—o =Cyo1, CPly—o=CPly-. (4.2.8¢)

Integrating (4.2.8) over the unit cell (z; — % <z <a+ %, Yj — % <y<yi+ %), we obtain

y;+1/2 ri+1/2
0 0 0
CO + 9 —pc? =g —/ (C}ﬂ[zz% - CP),_y) dy —/ (¢l - CPlyemy) da,
yy—1/2 " 7 12 ~ g

(4.2.9)

which, due to the periodicity assumption for C(?), reduces to

0 0 0

Cx + O —pCP = 4. (4.2.10)

Equation (4.2.10), together with the Y-periodic boundary conditions (4.2.4c), implies that!
c® =0 (x), (4.2.11)

and the averaged leading-order concentration field therefore obeys

c{k -pc{ =q. (4.2.12a)
COlxp=1, €Oy =0 or C9)xox, = Clx=x, =0, (4.2.12b)

that is identical to the leading-order problem (2.3.8) for advection-diffusion in a one-dimensional
array of sinks. The corresponding distinct asymptotic forms of the solution to (4.2.12) are
plotted in Fig. 2.2(b).

We now consider cell problems to find the first non-vanishing correction to the leading order
solution.

Substituting (4.2.10) in (4.2.8), we can write the problem for a single unit cell:

CH) +Cy) = 46(2) 8(y) —q, (4.2.130)
C® is z, y-periodic in a unit cell, (4.2.13b)
C|x—0 = C®|x_ =0, (4.2.13¢)
COlyoo =CBlyo1, CPlyoo=CPly=r, (4.2.13d)

where we translated the local coordinates to the centre of the unit cell by 2’ = x -z, 3 = y—y;

(primes over the variables are dropped).

YA (Y-periodic and bounded) solution to (4.2.10) can be sought in the form C» = ¢, (X) + g2(X,Y), where
g1 satisfies (4.2.12) and g2 is a trivial (constant) solution to the corresponding homogeneous problem.
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Since Goo = 3= In /22 + 42 is the 2D fundamental solution of V3G = 5(z)6(y) in R?, the

corresponding cell solution, satisfying the no-flux symmetry boundary conditions is G(x,y) =
o
1,j=—00

of a unit cell (z =y = 0).
Therefore the solution to (4.2.13) is

Goo(z — 1,y — j), in accord with an infinite system of images for the sink in the middle

m

COay)m—3 S L@+ =) + 2@ +4) | + O, —l<a y<!

i,j=-m

b

&
N|—

(4.2.14)
where m > 1 is the number of the images for the fundamental solution (Neumann Green’s func-
tion), and C® is a constant dependent on m and the global boundary conditions. Correction
(4.2.14) generalises one-dimensional diffusion-dominated solute transport (2.3.12) C?)(z) =
—4 (—|z[+ 22+ 1) + (C?) to the case of two dimensions.

Numerical simulation of the original problem (4.2.2) is performed using a Finite Element-
based solver of COMSOL Multiphysics. The problem, in the framework of the Finite Ele-
ment Method, is approximated using a discretised weak formulation, multiplying equations and
boundary conditions by an appropriate piecewise-polynomial test function Ciey and integrating
over the entire domain or its boundary respectively (a sccond-order basis function, giving a
piccewise-quadratic test function, is used in simulations). Each point sink thercfore reduces to
a prescribed value f O(x — x:)6(y — y5)Chost dx dy = Clest (i, yj) over the corresponding finite el-
ement of the mesh. The mesh convergence is tested by successive refinements and by comparing
against the analytical solution.

The analytical solution (4.2.14) is compared to simulations performed for a square array of
19 x 19 sinks, using ca. 300,000 finite elements (the absolute inaccuracy is less than 1073 in
the Chebyshev || - |[max norm and less than 107 in the Ly-norm), as shown in Figure 4.3 for
C@ = ~139.081, m = 10, and demonstrates a good agreement. Although the average of the
partial sum in (4.2.14) grows with m, it can be renormalised by subtracting an appropriate
constant C?| and the accuracy rapidly saturates with increasing m. For example, for m = 0
(Pe = ¢, Da = €Pe, ¢ = 0.05), the absolute inaccuracy between the numerical and analytical
correction C® is about 0.01, while for m = 5 the difference is less than 0.001. Figure 4.3(b,d)
also shows how the average of the residue r* = C — C©) depends on the vertical position g
within the unit cell, due to the uniform global boundary conditions at X = 0; 1.

We observe that the microscopic correction C(?) becomes O(e™!) when ¢ = Da/e? = O(e™!)
(Da = O(¢)), suggesting another asymptotic regime at Pe = O(1), Da = O(1), analogous to
Section 2.3.

4.2.3 Regime of moderate microscopic Péclet number

Let Pe = O(1), Da=0(e) =eq1 (@1 = O(1)).
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Figure 4.3. Comparison of analytical and numerical solutions to (4.2.2) (a) Numerical solution
C (colours) for Pe = ¢, Da = £Pe in a square array of N x N point sinks (N = 19, € = 0.05);
black circles indicate the sinks’ position. (b-d) Correction C?) = C' — (1 — X) scaled by 2
plotted in a cross-section at yo = 0.01 (b), yo = 0.2 (¢), yo = 0.5 (d) in local coordinates
(Yp = 0.5 + € yo, indicated by a dashed line in (a)); numerical solution is shown in solid blue
and analytical solution (4.2.14) is given in dashed black; the boundaries of a single unit cell are
indicated by dotted lines.

Substituting (4.2.3) into (4.2.2) and collecting the terms at powers of £, we get at O(1):

PeC{” =CQ +CD, -1/2<z,y<1/2, 0< X, Y <1, (4.2.15a)
COlxo=1, COlx_1=0 or CO)x=x, = CQ|x=x, =0; (4.2.15b)

COly—o=COy1, CPly—o=COlyo1, (4.2.15¢)
which implies independence of the leading-order solution on the local (microscopic) coordinates:

cO = cO(x,Y). (4.2.16)
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Collecting the terms at O(e) and taking into account (4.2.16), we have

N
PeC =CQ+C) — a0 Y oz — )y — vy), (4.2.17a)
ij=1
CW)x=0=CW|x=1 =0, (4.2.17D)
COlyog=CVyoy, CPly_o=CP v, (4.2.17¢)

Integrating (4.2.17) over the unit cell (z; — % <r<a+ %, Yj — —% <y<y+ ]E) and using

the periodicity assumption for C)| we get
C‘(\(-)) = —q/Pe, (4.2.18)

Equation (4.2.18), together with the Y-periodic boundary conditions (4.2.15¢), implies that

cQ = q1/Pe, (4.2.192)
COx_y=1, COxo =0 or COxoy, =C¢lx=x, =0, (4.2.19b)

where the leading concentration profile is essentially one-dimensional (¢ = c0)(X)). We can
therefore treat (4.2.19) as a regular limit of (4.2.12) for Pe = ep = O(1) and Da = e2q = O(e).
Substituting (4.2.18) in (4.2.17), we can formulate the problem for a single unit cell

—PeCM 4+ ) +C0) = q16(2)6(y) — a1 (4.2.20a)
CY is z,y-periodic in a unit cell, (4.2.20b)
CVxmp = CM|xo1 =0, (4.2.20¢)
CWlyoo=CWlyoy, CPly=o =C{ly=r, (4.2.20d)

where we translated the local coordinates to the centre of the unit cellby 2/ = z—u;, ¥ = y—vy;
(primes over the variables are dropped).
Following [247], we look for a fundamental solution G of 2D advection-diffusion differential

operator

—Pe % + V3G = 6(z)d(y), (x,y) € R? (4.2.21)

Pe | —_Por
in the formm G(z,y) = e ? " g(z,y), which (according to the property e IL"(5(;L') = 4(x)) trans-

forms (4.2.21) into a fundamental problem for the Helmholtz-type operator:

Vg - P g = 5(2)8(y), (x,y) € R, (4.2.22)

. . . . - 1 Pe
which has a solution g = —3= Ko (% y/22 +¢?).
Therefore, the fundamental solution to the advection-diffusion operator (4.2.21) in R? is

Goo=—pbc?? I\’O(%« /2T 1 42 y2> L (@242 >0) (4.2.23)

We again construct the fundamental solution that preserves no-flux symmetry condition
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Figure 4.4. (a) Numerical solution C' (colours) to (4.2.2) for Pe = 15, Da = ¢Pe in a square-
periodic array of 19 x 19 point sinks (¢ = 0.05); black circles indicate the sinks’ position. Note a
concentration wake created about each sink. (b) Contours of the fundamental solution (4.2.23)
taken at the level of 0.75 max |G| for Pe = 0.01, 1, 20, showing the formation of a wake at
high Pe. (c,d) Numerical solution C and correction C) = C' — (1 — X) scaled by ¢! (¢ = 0.05)
close to the centre of the unit cell (yp = 0.01) for Pe = 1 (c¢) and Pe = 15 (d); (e,f) Numerical
solution and correction at the boundary of the unit cell (yo = 0.5) for Pe = 1 (e) and Pe = 15
(f); analytical solution (4.2.24) is shown in dashed black within a unit cell (vertical dotted lines).

at the boundary of the unit cell by adding an infinite system of images at (z,y) = (i,7),
i,j =0,£1,42,..., to obtain G(z,y) = Y Gz — i,y —j), =,y€[-3, 3]

1,j=—00
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Figure 4.5. Numecrical estimate of the homogenization residue magnitude C — C — (C — C(9))
vs. Péclet number for Da = ¢Pe (q;/Pe = 1) in an array of N = 19 point sinks (¢ = 0.05). The
residue is integrated over X at yo = 0.01 using the mean-squared Lo-norm (solid), Chebyshev
norm (dash-dotted) and mean-squared with first derivative H'-norm (dashed) (sce definitions
of the norms (2.6.1)).

Then, by the superposition q; G — £ z, the solution to the cell problem (4.2.20) is

m

Peyr—i Do ; ; ~
Oy~ - & Y e K (§ V=0T -JP) - geo+CV, —f<ays

1,j=—m

Y

8ol—

(4.2.24)
subject to global boundary conditions (4.2.20(c,d)), and with m > 1. Solution (4.2.24) extends
the corresponding one-dimensional cell solution (2.4.13) of Chapter 2 to a two-dimensional
periodic array.

Analogously to the solution (4.2.14) at small Péclet numbers, the divergence of the partial
sum in (4.2.24) is compensated by the choice of the constant C!) for each m. Figure 4.4 shows
the result of simulations in COMSOL Multiphysics, which demonstrates a good agreement with
theoretical predictions, with m = 30, C(!) ~ 31.58 for Pe = 1 (Fig. 4.4(c,d)) and m = 10,
C() =11 for Pe = 15 (Fig. 4.4(c.f)).

Taking the limit of large Péclet number Pe > 1 in (4.2.24), we obtain

m Pe | _ 2y Y 2 — 4)2
C(l)(m,y)z__gl_ Z exp(2 [(x i) \/(:l )2+ (y —J) D B _q_l__.erC(l),
e VAT (@ -2+ (y - )Y Pe

(4.2.25)
for -—% <ry< %, where we have used the asymptotic form of a modified Bessel function of
the sccond kind [150]: Ko(2) = /F e™*//z for z > 1.

Based on (4.2.25), we expect C1) to be O(q1/vPe) at large Pe, away from the sink
(z? + y% > 0). Computations of the magnitude of the homogenization residue (like shown by a
blue solid line in Fig. 4.4(c,d)) about its mean value for q;/Pe = Da/(ePe) = 1 agree with the
asymptotics (approaching /Pe for large Pe, as presented in Fig. 4.5). The asymptotic behaviour
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Figure 4.6. A schematic representation of previous results in effective description of advection-
diffusion-reaction in two dimensions. The range of (Pe, Da) values considered by different au-
thors is shown as a grey shade in the parameter space, with grey dots being the principal scaling
chosen. The upper bound of homogenization applicability in 2D for Pe > 1 (thick dashed) is
conjectured based on (4.2.25) and Fig. 4.5. Shaded areas at the edges indicate the limits of
Pe — 0 (left), Pe — oo (right), and Da — 0 (bottom). See Section 1.4 of Chapter 1 for details.

of the residue thus differs from a one-dimensional case (see, e.g. (2.4.16)), where the magnitude
of ¥ = C — C® remains constant for q;/Pe = 1, Pe > 1. Figure 4.5 also indicates that a
significant non-smoothness of the concentration distribution at large Péclet number makes the
residue ¢ greater than O(1) in the Sobolev H'-norm, implying only weak convergence (e.g. in

Ly-norm) in this region, similarly to the one-dimensional case (see Fig. 2.2(a)).

4.2.4 Transport in a 2D array of point sinks: Summary

In this section we have generalised the effective description of advective-diffusive-uptake
solute transport in a one-dimensional periodic array (developed in Chapter 2) to the two-
dimensional case.

The concentration at leading-order (4.2.12) is shown to be identical in both cases. Therefore,
all the transport regimes of Fig. 2.2 remain valid.

The 1D and 2D cases however differ in the properties of the correction to the leading-
order solution C'©). At small local Péclet number (Pe < 1) the homogenization residue
¥ =C —CO x~ 20 (4.2.14) becomes O(1) for Da = €2 ¢ = O(1), as in the one-dimensional

case; however, our results suggest that at large Péclet number (Pe > 1), the residue r¢ ~ ¢C'(!)
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(4.2.24) approaches O(1) for Da = € q; = O(V/Pe), in contrast to Da = € q; = O(Pe) for the 1D
case. Homogenization in 2D therefore becomes inapplicable for Pe > O(e7%) (¢f. Figs 2.2(a)
and 4.6), extending the results of Auriault and Adler [11] for uptake-free transport.

We conclude this section with Figure 4.6 that summarises the litcrature overview presented
in Section 1.4 of Chapter 1 with respect to a systematic classification of asymptotic transport
regimes. The map in (Pe, Da)-parameter space is strictly valid for a periodic array of sinks with
constant (zeroth-order) uptake kinetics; however, the analysis of the global fluxes balance for a

transport equation with first-order reaction kinetics

N
aC 2 & v
Pegy ~V ¢=-DaC VZ} 6(z — 1) 6(y — yy), (4.2.26)
1,j=
with Da = «al/D, a being an uptake rate, and the corresponding leading-order cquation

pCf\?) - C'I(\f);( - Cg,o)), = —qC®, suggests that although the shape of asymptotic concentration
profiles is different, the map of the leading-order transport regimes still applies.

One can note that despite a long history of the homogenized transport description research,
the special “triple” point (Pe, Da) = (O(e), O(¢?)) has not been considered, and an appreciable
amount of white space on the map (Fig. 4.6) has remained to be filled. It remains however to
understand the impact of a finite sink’s size (such as the cross-section of a villous brunch in the

human placenta) on the flow and transport, which we will address in the next Section.

4.3 Advection-diffusion in an array of sorbing cylinders

This section extends two-dimensional homogenized solute transport to the case of sinks of

a finite size, modelled as cylinders.

4.3.1 Model assumptions and problem statement

We assume the liquid to be an incompressible and Newtonian fluid; solute uptake at the
interface is considered to be by passive diffusion only; we also approximate the shape of the
interface by a circle (see Fig. 4.1).

In addition, we assume that there is a representative periodic domain (unit cell) 2 composed
of the liquid-phase subdomain ,,, simulating the maternal space, and (not necessarily simply-
connected) villous solid region Q\Q;,, with an interface I' where uptake takes place (sce Fig. 4.7).

We consider a two-dimensional array of size L x L, composed of N? unit cells of size I x
(N = (L/l)—1). The steady flow of incompressible liquid in a unit cell §2 is given by the Stokes
equations

V-u'=0, VP =uVi*, (4.3.1)

where p is the viscosity of the maternal blood, subject to a no-slip boundary condition on T’
(u*|r = 0). We set the global conditions to be a uniform speed ug at the inlet (u*
free flow (zero normal total stress) at the outlet ( —e,P* +pe, - [Vu* + (Vu*) ]| ;oo = 0) and

* y‘:L)

re=0 = Up€z),

a periodic global boundary condition in the transverse to flow direction (u*|y«=p = u*

(see Fig. 4.2).
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Figure 4.7. A two-dimensional unit cell £ of size | x [, containing a solid cylinder of perimeter
P = 7d. Local solute concentration and flow velocity fields are C' and u respectively (the stars
over the dimensional variables are omitted). The flux density qo is prescribed at the interface
I', with n being the unit normal to I" pointing out of the liquid-phase (maternal) subdomain
Q. All field quantities are periodic on the outer cell boundary S.

We describe steady solute transport by the advection-diffusion equation for the dissolved

concentration C*
(uw*-V)C*=-V-F*, F*'=-DVC*, (4.3.2)

were F* is the diffusive flux density. Equation (4.3.2) is subject to the boundary condition
n - F*|p = gy, where qo is a given flux density ([go] = mol/(m?:s)) across the interface T,
n is the normal vector to I' (pointing outwards §2). Note that the uptake of the solute in
the placenta is shared between the chemical reactions in the villous tissue and the advective
transport with the fetal circulation along the capillaries, the latter can be represented by a
cross-section averaged balance between the advection and diffusive mass-transport. Therefore,
in the case of a constant concentration gradient along the fetal capillary, the contribution from
the fetal circulation can be considered as uptake with zeroth-order kinetics, giving flux density
(averaged over capillary length) (n - F*)|p = const. This assumption is not uniformly valid,
and for solute transport at high Péclet number in fetal villous capillaries, a linear first-order
uptake could be more appropriate. Although in this chapter we limit our analysis to the case
qo = const, we address the effect of a variety of uptake kinetics in Chapter 6.

The transport equation (4.3.2), subject to boundary conditions, describes the competition
between advection, diffusion and uptake. We take the inlet concentration to be Cy at z* = 0,
set the outlet concentration to zero at z* = L (so that the global concentration drop AC = Cy),
and apply periodic boundary conditions at y* = 0, L. Integrating (4.3.2), we get the reference

global fluxes across the macroscopic domain:
®ogy ~ upCo L, @it~ DCo, Pypt ~ N2gol~ qo L*/1. (4.3.3)

Let us define Pe = ugl/D as the local (microscopic) Péclet number, Da = ¢y l/(D Cp) as the
local Damkohler number, and € = I/L as the scale-separation parameter, the three parameters

that entirely define the nature of solute transport at the microscale. The balance between
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all three fluxes (Paqy ~ Pair ~ Pupt) is therefore achieved when e 'Pe ~ 1 ~ e 2Da, giving
Pe = O(e), Da = O(ePe) = O(e?).

We choose the following dimensionless variables: u* = wyu, P* = ByP, C* = CyC,
F* = [LF, x* = Ix, where Py = pugL/I? (so that the pressure gradient Py/L, equal to
the global pressure drop per the entire domain length, approximately balances local viscous
dissipation pug/l1?) and Fy = D Cy/L (using the global diffusive flux density as a reference),
and rewrite the system of equations (4.3.1)-(4.3.2), subject to boundary conditions, in the

non-dimensional form:

v-u:o, VP:E‘vzu’
ulr =0, P, u are periodic on S, (flow problem) (4.3.4)
ux—o=e;, e -(—Pl+eVu+(Vu)'])|x=1=0,

Pe(u-V)C=-¢V-F, ¢F=-VC,
en-F|p =Da, C, F arc periodic on S, (transport problem) (4.3.5)
Clx=0=1, Clx=1=00r Clx=x,=n-F|lx-x, =0 for 0< Xp <1,

subject to Y-periodicity of the fields on Y = 0 and Y = 1, with (1);; = §;; being a unit tensor
and (Vu);; = g—;‘; being an outer (dyadic) product.

We can estimate € based on the typical volume fraction ¢ of normal villous tissue in a
fully developed normal human placenta, being about 0.5 [172]. If we consider a square unit
cell of side I, we have ¢ = nd?/4l%, and hence [ =d \/W ~ 100 pm for the terminal villus
diameter d ~ 100 um [33, 126]. Taking the reference macroscale size (of a placentone) to be
L ~ 1 cm [98], we obtain the cstimate € = I/L ~ 1072, in agreement with our estimate for a

one-dimensional array in Scc. 2.8 of Chapter 2.

4.3.2 Small microscopic Péclet number transport regime

Based on the balance of global fluxes (4.3.3), we take Pe = O(¢) = ep, Da= O(e?) = ¢,
with p,q = O(1) (analogous to Section 4.2.2).
Since the scale-separation parameter ¢ is small, following (11, 177, 228], we consider the

two-scale spatial dependences of the problem variables
P=P(xX), u=i(xX), C=CxX), F=FxX), (4.3.6)

where X = ex, and hence V = V, 4+ ¢V x . Here x represents the local “micro-coordinates” of
the unit cell § (at the scale of individual villi), and X is the slowly changing global coordinates
of the macroscopic problem (at the scale of the entire placentone).

Using (4.3.6) we can rewrite the system (4.3.4),(4.3.5) as

Ve i+eVy 0=0, (4.3.7a)
VeP+eVxP=¢[Via+2e(Vy  Vx)a+e? V], (4.3.7h)
ajr =0, P, i are periodic on S, (4.3.7¢)
ilxeo = €, €5 (_Pl +e[Veli+eVyii+ (Vo +e vxa)T])\le =0, (4.3.7d)
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ep [vr (CE) +eVy- (éﬁ)] = _¢ [v, Ftevy. F] , (4.3.8a)
eF=-v,C-eVyC, (4.3.8b)
en- F|[‘ =¢e?q, C, F are periodic on S, (4.3.8¢)
Clx=o=1, Cx—1=0or Clx=x, =n-Flx_x, =0 for 0< Xy <1. (4.3.8d)

where we have used the incompressibility condition (4.3.4a) and identity V - (Cu) = (u-V)C +
C(V - u) to transform the advective term in (4.3.5a) into conscrvative form.

We look for an approximate solution of (4.3.7),(4.3.8) in the form of power series in ¢
P=pPO 4 cp0) 4 2p@ 4

i =u® +5u(1) +52u(2) + ..,
(4.3.9)

C=CO 404200 4,
F=FO 4 cF) 4 2F@ 4 .

Substituting (4.3.9) in (4.3.7),(4.3.8) and collecting the terms in powers of £, we find at
O(£%):

vV, u® =0, v, PO=90, (4.3.10)
v.C® =0, (4.3.11)
subject to the local boundary condition u(0)|1~ = 0 and the corresponding global boundary

conditions: u(®|y—¢ = e;, PO|x=; =0, CO|x_o =1, COx=; =0.
Equations (4.3.10b),(4.3.11) imply that the pressure and concentration fields at leading-order

are independent of the local coordinates x:
PO = pO(X), Cc®=CcO(X). (4.3.12)

Collecting the terms in (4.3.7),(4.3.8) at O(c!), we have the following equations:

Ve u) +Vy u® =0, v.PO 4+vxPO =v2u® (4.3.13)
pVe- (C(O) u<°>) = -V, FO (4.3.14)
FO = v, cM) —vxC©, (4.3.15)

and local boundary conditions: uV|p = 0, n- F®|r = 0, and global boundary conditions:
uW|y_g = CW|xy—g1 =0, er- (—PD 1+ [Voull + (Vou)T] xo; = 0, and ulV), ¢V are
Y -periodic with period 1.

Using (4.3.10a) and (4.3.11), we reduce (4.3.14) to

V. FO =9, (4.3.16)
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Collecting the terms in (4.3.7) and (4.3.8) at O(e?), we get
Ve u® 4+ Vy - uM =0, V,P®4vxPV=v2u) +2(v, Vx)u®, (4.3.17)

» [VI- (C(l) u©® 4 c© u(l)) +Vy- (C(o) u(O))] = -V, - FD _vy .FO (4.3.18)
FO = v, c® —vycW, (4.3.19)

and local boundary conditions: u®|r =0, n-FD|p = 4.

Averaging (4.3.13a) and (4.3.18) over the fluid-phase (maternal) sub-domain of the unit ccll
(of volume |Q,,|, with the boundary 92, consisting of the fluid-solid interface I' and the outer
boundary of the unit cell § (8€Q,, = SUT); sce Fig. 4.7) and using the no-slip boundary
condition u® = u® =0 on T, we have

1
|Qm| /u(l) .ndSIJrVX '<u(0)>'” =0, (4.3.20)
S
L[ A0 1 (0) 1,(1) (0) (4,(0) _
Pl [ €V ndS+ o [ €00 ~ndSl-+Vx-<C (u >) -
™5 s (4.3.21)

- "mil [B® nas. - ml 1 [F0 0 s, - Ty O,
m S m r

where (f),, = ]—917[ me f dV,, denotes an averaged “macroscopic” variable. Since the volume
of the whole unit cell || = 1, the volume fraction of the fluid in the unit cell (porosity)
ém = |Qml, 0 < ¢y, < 1, which is constant (as we neglect the deformations of the medium) and
relates to the solid-phase volume fraction ¢ as ¢, = 1 — ¢. The average of the leading-order
concentration is (C9),, = C®) in accord with (4.3.12).

We further take into account periodic boundary conditions for the flow and concentration
fields (namely, for C(Vu©.n, C© u”.n and FM.n)) on S to sct the corresponding boundary
integrals to zero. Equations (4.3.20)—(4.3.21 ) then reduce to

V- (u), =0, (4.3.22)

0) /4,0 _ 0 1)
va : (C( )<u( )>m) = "VX ) <F( ))m - m /F( ‘n dS.v- (4'3_23)
3
The integral in (4.3.23) represents the “interfacial” flux between the maternal and fetal circula-
tions [275]. We estimate this integral using the boundary condition n - F)|r = ¢, and we also

apply the incompressibility condition (4.3.22) to simplify the advective term:
P
p (<u(°>>m : vx) CO = _vx . (FO),, — 0 (4.3.24)
m

where P is the perimeter of the interface I' (with dimensional perimeter P* = [P), at which

uptake takes place (see Fig. 4.7).
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To complete the macro-scale description, we need to find a relation between the pressure PO
and the averaged velocity field (u(®),,, and between the concentration C®) and the averaged
concentration flux (F(®),,. It is the examination of the micro-scale equations (4.3.10)-(4.3.16)
that allows us to find these dependences.

Closure problems

It follows from (4.3.10a) and (4.3.13b), complemented by our assumption of x-periodicity
of the flow and pressure fields, that we can relate u(®), P(® and P() by the micro-scale flow

problem
Ve ul® =0, v,PO_v2u® =_vyPO(X), inQ
(4.3.25)
u®) =0, u® P are periodic on S.

Since the source Vx P does not depend on x, the solution to the linear problem (4.3.25)
is proportional to VPO,

Analogously to the flow problem, (4.3.15) and (4.3.16) give the micro-scale transport for

F(© and c):
V.- FO = 0, V. cV 4 FO = ~-Vx C’(O)(X), in Q
(4.3.26)
n FO. =0, FO M) are periodic on S

Again, since the problem (4.3.26) is lincar and Vy C(© is constant in the unit cell, the
solution to (4.3.26) is proportional to Vx C(®),
Therefore, without loss of generality, we look for solution to (4.3.25)- (4.3.26) in the following
form [177, 228]:
u® = K. vy PO PO = —m.Vy PO 4 Pél), (4.3.27)

FO = —A. vy, ¢V =_b.vyc®+c, (4.3.28)

where K = K(x,X) and A = A(x, X) are permeability and diffusivity tensors; m = m(x, X),
b = b(x, X) are vectors, and Pé]) = Pé])(X), (gl) = él)(X) are scalars.
We substitute (4.3.27), (4.3.28) into (4.3.25)-(4.3.26) to find the coefficients:

V. -K=0, V.m=VK+I, inQ
(4.3.29)
Klr =0, m, K arc periodic on S,

Ve-A=0, A=-V;b+1I, in Q
(4.3.30)

A-n|p =0, b, A are periodicon S,
where | = §;; is the Kronecker-delta unit tensor, n = n; is the unit normal vector to I'. The
tensor inner product and the vector outer product for a tensor T and vectors u, v are denoted
as T-u = T;; u; and uv = u; v; respectively; and the summation convention over thie repeating
index is used.
The linear elliptic problems (4.3.29) and (4.3.30) constitute the closure to the averaged

macro-scale flow and transport equations (4.3.22) and (4.3.24), subject to boundary conditions,
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through relations (4.3.27)--(4.3.28).

Effective macroscale flow and transport problems: small Pe regime.
We perform the averaging of (4.3.27a) over the volume of €, to find a relation between the
pressure gradient and the averaged local fluid velocity:

<u(0)>m = —<K>m Vx P(O) : (4331)

Averaging (4.3.15) over the unit cell and using (4.3.28b), we obtain the closure relation

between the concentration flux and the averaged concentration gradient of solute in €2,,:
(FO),, = = (1 = (Va b)) - Vx CO. (4.3.32)

Therefore, (4.3.32) transforms the transport equation (4.3.24) to

p (@) V) €O =Ty - (1= (Vb)) - Vi CO) - ¢£ a, (4.3.39)
m
Following [276], we define superficial average over the whole unit cell as (f) = ¢, (f),, =
917! [o £dV, for £ = u®, FO, K, b, and (f) = f = |Q7 [ f dV; for f = PO CO),
Dropping the superscripts over the variables and the subscript x in Vx, we obtain, from
(4.3.22), (4.3.31) and (4.3.33), the effective flow and transport description at leading order

V-(u=0, (u=-(K) -V({P)), (4.3.34a)
(u)|x=0 = €z, (P)lx=1 =0, (u)isY-periodic, (4.3.34b)
p(u)-V(C) =V (Degr - V(C)) — Pgq, (4.3.35a)
(C)x=0=1, (C)lx=1=0, (C)is Y-periodic, (4.3.35D)

where D.g is the effective diffusivity tensor

(Dem)ij = (1 = @) 6ij — (Va b)ij = (1 — ¢) &5 — /”i bj dSq, (4.3.36)
r

simplified by applying a generalised Gauss’s Theorem me Vb dV, = f(mm bn dS, and using
the x-periodicity of bon S (8Q,, = SUT). Here ¢ is the villous volume fraction per unit cell
volume (¢ = 1 — ¢,) and n; is a component of the unit normal to I'. The superficial average of
permeability tensor K and the effective diffusivity tensor Dy are to be found from solutions to
the closure cell problems (4.3.29) and (4.3.30).

Note that since ug is the reference scale for u, Py = pugL/I? for P and 1/L for V, (4.3.34a)
implies that the dimensional permeability K* equals (2 K, [ being the size of a unit cell. Analo-
gously, (4.3.35a) gives the dimensional form of effective diffusivity as Dy = D Dy, where D is

the molecular diffusivity of a solute.
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Equations (4.3.34a) represent the Darcy flow at the macroscale, which arc together with
equation (4.3.35a), subject to boundary conditions in the macroscopic domain, provide a com-
plete macro-scale description of solute flow and transport in the case Pe = O(¢e), Da = O(¢?).
In Sections 4.3.5 and 4.3.6 below, we estimate the effective permeability and diffusivity for
a simple gecometry as a computational benchmark for processing the experimentally acquired
villous shapes of the human placenta in Chapter 5.

Before moving to a direct numerical simulation for the small Péclet number (Pe = O(¢)), we
observe that the transport cell problem (4.3.30) does not contain parameters (p, ¢) and depends
only on the shape and size of the (materno-fetal) interface I', so that the effective diffusivity
tensor Deg < O(1), as will be shown below. Thus, in the limit of large Pe and Da (p ~ ¢ > 1),
the average transport equation (4.3.35a) becomes of an advective-uptake type. Similarly to the
case of a two-dimensional array of point sinks (see Sec. 4.2.2), this suggests a new transport
regime at Pe = O(1), Da ~ ¢Pe = O(¢) (in accord with the global flux-balance relation (4.3.3)).

4.8.3 The transport regime for moderate local Péclet number.

We therefore consider the case Pe = O(1), Da = O(e) = eq1 (@1 = O(1)). Using (4.3.6),

analogously to Section 4.3.2, we rewrite (4.3.5) as

Pe [V, (C&)+eVy-(C ﬁ)] = ¢ [vx Ftevy F|, (4.3.37a)
eF=-v,C-eVyC, (4.3.37h)
en-Flr=eq, C, F are periodic on S, (4.3.37¢)
Clxwo =1, Cx=1=0or Clx=x,=n Flx_x, =0 for 0< Xy <1. (4.3.37d)

Substituting (4.3.9) in (4.3.37) and collecting the terms at powers of €, we find at O(e"):
Pe Vs - (C’(O) u(O)) =0, (4.3.38)

v.Cc9 =9, (4.3.39)

subject to the boundary conditions u®|p =0, C©|x_o =1, C'l(‘fr))=1 = 0 (assuming, for brevity,
C® >0for0< X <1).
Equation (4.3.38) is identically satisfied, taking into account (4.3.10a) and (4.3.39), and
(4.3.39) again implies a slowly varying leading-order concentration ficld c = cO(X).
Collecting the terms in (4.3.37) at O(e!), we have

Pe [vz ~ (c“) u© + O u(1)> +Vx- (C“’) u<0>)] =V, FO (4.3.40)

FO = _v_ cV) - vy CO (4.3.41)

with local boundary conditions: u(1)|p =0, n-FO|r =gq.
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Using (4.3.13a) and (4.3.39), we rewrite (4.3.40) as follows:
Pe [vm (CWu®) 4y .y xc“”] = -V, F© (4.3.42a)
n-: F(0)|p =q, u(o)lp =0, u(o), F(O), c) are periodic on §. (4.3.42Dh)

Averaging (4.3.42a) over the fluid-phase sub-domain of the unit cell §2,,, and using periodicity

to eliminate surface integrals over S (0Q,,, = SUT; see Fig. 4.7), we get

1 1
Pe | — / (c“) u<0>) ndS, + ), . vyc®| = - — /F(O) ‘ndS,. (4.3.43)
¢m ¢7n
r
We apply the local no-slip and flux boundary conditions (4.3.42b), so that (4.3.43) reduces
to P
Pe (u®),, - VxC©® = e (4.3.44)
m

or, using the superficial average (u®) = ¢, (u®),,, € = (C©) and dropping the super-
script © gver the variables and the subscript x in Vy, we obtain the effective macroscopic

transport problem at moderate Péclet number, subject to the global boundary conditions

Pe (u) - V(C)=-Paq,
(4.3.45)

(C)|lx=0=1, (C)is Y-periodic,

which is a regular limit of (4.3.35) for large p = O(e™') (p = Pe/e, ¢ = q1 /).
Although (4.3.45) for (C) = C© is already in a closed form, we estimate the first correction

CW to understand the role of advective transport at the micro-scale.

Transport cell problem: moderate Pe regime
Equations (4.3.41), (4.3.42a) constitute the following transport problem in a unit cell that
relate C(1) and F(© with C(O
Pe [vx A(CMu®) 4yl -V,\C(O)] =-V,-FO  n.FO| =g, (4.3.46a)
FO = _v,c) -y, O, (4.3.46b)

subject to the local boundary conditions (4.3.42b). Substituting (4.3.46b) into (4.3.46a) and
using V, - u(® = 0 from (4.3.10a), we have

v2c) — Pe u® . v, = Pe ul® . vy C®, (4.3.47a)

n- v, =_-n.vyc® L (4.3.47h)
. .

u@r=0, u®, C" are periodic on S. (4.3.47¢)

Since the linear transport problem (4.3.47) has source terms proportional to ¢; and PeV xC ©)
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which are independent of x, we look for a general solution in the form
CM = a;(x) g1 - Peby(x)- Vx CO + ¢V, (4.3.48)

where C(()l) is a scalar independent of x, and a; = a,(x), by = by(x) are some cocflicients that
satisfy the following ccll problems:

Vial — Pe u(o)‘VIal =90,

n-V;a=-1onT, (4.3.49)

0)

u(O)lp =0, ul , ay are periodic on S, {(a;) = const;

Vib; — Peu® . V. by = —u®,

n-V,by=Pe'n onT, (4.3.50)
u(0)|1~ =0, u®, by are periodic on S, (by) = const.

We observe that (4.3.49)-(4.3.50) generalise the corresponding unit cell problems (2.4.9)—(2.4.10)
in 1D, derived in Chapter 2. When Pe « 1, (4.3.50) approaches (4.3.30) for b = Peb; and
for ¢ = q1/e = O(1), and we have, from (4.3.48) C(V) = —b(x) - Vx C©® + C(()]) + O(e), as

expected.

4.8.4 Limiting case of small villous volume fraction

Setting the limit of small villous volume fraction ¢ <« 1 or, equivalently, the surface
area |I'| —» 0, we find from (4.3.36) that D.g — 1, and from (4.3.29) that (K) — kI, k =
= (—=0.738 — 0.51In(¢) + O(¢)) [112]. Relation (4.3.27a) thercfore implics that for small but
finite volume fraction, (u(®) = —k(¢) Vx P (X) is independent of local coordinates x, and
the global boundary conditions (4.3.34b) then give (u(®)) = e, . Finally, assuming that the net
concentration flux across I' remain finite as [I'| ~ P — 0, we have Pg — ¢*. Problem for the
effective transport (4.3.35) therefore transforms to the corresponding problem (4.2.12) that has
been derived in Section 4.2 for an array of point sinks (with ¢ = ¢*). Having justified solute
transport in an array of point sinks at leading order, we note that the velocity field u® does
not, in general, become uniform in the limit of small volume fraction. The unit cell problem
(4.3.47) for the next-to-leading-order correction to the concentration field at high Péclet number
thus differs from the case of a point array of sinks, as will be shown below.

The closure cell problem (4.3.30) for transport coefficients A, b, at small Pe number, can
be rewritten in polar coordinates (r,8) for a unit cell with the circular interface I' = {r = a}
(a = d/2), normal n = (-1,0) to I, pointing outwards of the domain (see Fig.4.7), aud the
outer product

T n) 4 ()
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Figure 4.8. Maximal absolute value of the horizontal component b; of a solution to the cell
transport problem (4.3.30) vs. the area fraction ¢ of the cylinder: numerical simulations (solid)
and the asymptotic estimate (dashed).

giving
10 ab; 1 02 b; L .
-TT_T(TE‘-)+;'§—5—6_§-=O‘ r>a,0<0<2r, i=12, (4.3.514)
0 b 0 by
- =1, — =0, 4.3.51b
ar r=a 8T r=a ( ’ )
by 2 are periodic on S, (4.3.51c)

where b; and b, are the radial and azimuthal components of the vector b = (b1, bg). The
boundary conditions and the symmetry of the problem (4.3.51) imply by = b;(r), by = const,
reducing the problem to
Vib = P 5(r—a) in Q,
2mr (4.3.52)

b, is periodic on S.

The solution to the linear elliptic problem (4.3.52) is proportional to the perimeter P = 27a ~
V@ at small arca fractions ¢ = ma? < 1 (sce Fig. 4.8). Therefore as P tends to 0, we get
b = const, and thus, from (4.3.28), C) = C()(X), i.e. C(V) is constant in cach unit cell. In
order to satisfy the global boundary conditions C(l)lxzo =0, C(1)|X=1 =0 or C(l)|,¥=,\'(, =
Cg(l)| X=X, = 0, we must demand C!) = 0. In other words, the first correction to the leading-
order concentration profile at small Péclet number vanishes for small villous volume fraction
¢ ~ P? — 0, giving the homogenization error O(e?).

Analogously, the cell problem (4.3.47) at moderate Péclet number, in the limit |I'| ~ P — 0,
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takes the form

oo
vic®) —pe AR ST VoCY = —Pg +Pq 6)8(y) + Pe - vxC® | (4.3.53a)
i@ = u© _ (uO), (4.3.53b)
2@, oM are periodic on S, (4.3.53c)

where we have used (u(®) = e, and (4.3.45a), and neglected the O(P) term on the right-
hand-side of (4.3.53a), assuming that P ¢; remains finite. We accordingly find that the limiting
form (4.3.53) for C1), in the case of moderate Pe and small ¢, differs from the corresponding
cell problem (4.2.20) obtained for a periodic array of point sinks (where q; is substituted with
g} = P q;) by the terms containing a perturbation @(?)(x) of the unit-cell averaged leading-order
flow field (u(®) (indicating that the important features of flow do not disappear in the limit of

solute transport past an array of “needles”; see also {112, 229]).

4.3.5 Numerical solution to the closure cell problem: effective permeability

We now verify the homogenization results by solving the flow cell problem (4.3.29) and
comparing the effective permeability with existing theoretical approximations. We note that
(4.3.29) can be equivalently rewritten as two Stokes flow problems, driven by unit pressure

gradients in the horizontal and vertical directions respectively

V.o =0, VA=V +f, A=1,0T inQ,

A (4.3.54)
a1r =0, Py, 0 are periodic on S,
V-te=0, VB =Va+f, fo=0,1)1 inQ,
(4.3.55)

2| =0, P, Gip are periodic on S,

where 1 = (Kj1, Kj2), G2 = (K1, Ko2), m = (151,132), and we dropped the subscript in V.
The two flow problems (4.3.54)-(4.3.55) with no-slip condition on I" and periodic boundary
conditions on S (sec Fig. 4.7) are solved by a stationary lincar finite-clement solver of COMSOL
Multiphysics, where an absolute error for 9478 elements is less than 1078 An example of
obtained field quantities K and ¢; for d/l = 0.5 (¢ ~ 0.2) is shown in Figure 4.9. The corre-

sponding effective permeability, averaged over the unit cell §2, is

002 0
(K) ~ : (4.3.56)
0 0.02

which is isotropic, as expected from the symmetry of the problem.
We compare the numerical solution for varying area fraction ¢ of the cylinder with the

empirical Kozeny—Carman formula (derived for a porous medium treated as a set of parallel
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x10°
KlZ

Figure 4.9. Numerical solution to the closure flow problem (4.3.54)—(4.3.55) in a unit cell for
¢ = wd?/(4l%?) ~ 0.2 (d/l = 0.5). (a-d) components of the symmetric permeability tensor
K, corresponding to the velocity fields (colours) and streamlines (solid white); (e) the first
component of the vector m, corresponding to the pressure field (colours).
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Figure 4.10. (a,b) Effective permeability (K1) vs. area fraction ¢ of the cylinder in the unit cell.
Solid blue line shows the numerical solution to the cell problem (4.3.29) at different ¢, which
is compared to the Kozeny-Carman relation (4.3.57) in (a) and to the limiting approximations
(4.3.58) and (4.3.59) in (b).

channels of equal length and arbitrary cross-section) [29]

2 1_¢3
(Kll)za_c( ¢2)7

- (4.3.57)

where (Ki;) = (K22), a is an average size of the solid phase “particle” of a porous medium
(defined here as a = \/qm, in dimensionless variables) and ¢ = 15 is an empirical “shape-factor”
constant, adjusted to agree with experimental data. The comparison is given in Figure 4.10.
Note that (4.3.57) becomes singular at ¢ = 0 and therefore, in general, Kozeny-Carman is a
poor approximation for small volume (area) fractions (Fig. 4.10a).

We also verify the homogenized solution against the asymptotic expressions, obtained by
Hasimoto, Sangani and Acrivos [112, 229] for small volume fraction ¢ (using the point-force
fundamental-solution approximation)

1

(Ku) = 2= (-0.738 - 05n(¢) + 6+ 0(¢%) , <1, (4.3.58)
and by Keller [134] for ¢ close to the maximal value ¢max = 7/4 ~ 0.79 (using the lubrication
theory)

2\/§ 2 \/5 5/2
RN § L L R o L 4.3.59
k)~ 22 (1-22) 7 oo (4.3.59

which demonstrate a good agreement (Fig. 4.10b).

4.3.6 Numerical solution to the closure cell problem: effective diffusivity

Analogously to Section 4.3.5, we solve the transport closure problem (4.3.30) and compare
the effective diffusivity with existing theoretical approximations. We observe that (4.3.30) can
be equivalently rewritten as two diffusion problems in a periodic cell, with a concentration flux
at the inner boundary I" proportional to the horizontal and vertical components of the outward
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unit normal n = (n;, ng) to I' respectively

V3¢, =0 in Q,,

. . (4.3.60)
n-VCy,=n, onTl, C is periodic on S,
VQCQ =0 in Q,n y

) ) (4.3.61)
n-Véy=ny on I, C, is periodic on S,

where b = (by, by) = (C‘l, Cz) and we dropped the subscript in V. Note that the solution to
(4.3.60)—(4.3.61) is defined up to an arbitrary additive constant; however, it is the derivatives
of b that determine the effective diffusivity D.g (4.3.36), which is therefore unique.

Figurc 4.11(a-c) shows a sample solution to the flow problems (4.3.60)-(4.3.61), obtained by
an adaptive stationary finite-element solver of COMSOL Multiphysics for 36411 clements with
an absolute error less than 1079, d/l = 0.5 (¢ = 0.2). The corresponding effective diffusivity
(4.3.36), averaged over the unit cell 2, is

Dei=(1-¢)1 - / nbdS,~ | , (4.3.62)
r 0 067

which is diagonal, as expected.

We compare the homogenized solution for varying arca fraction ¢ of the cylinder with the
asymptotic expressions obtained by Fricke [100, 101] for small volume fraction ¢ (estimating
the contribution of adjacent ellipsoidal “inclusions” via the superposition principle; this formula

generalises the pioneering homogenization result by Maxwell (1.4.1), discussed in Chapter 1)

1 - 1, cylindrical inclusions, )
1A=9) e1, 4= Y (4.3.63)

(Defr)yy =
an v+ 2, spherical inclusions,

and by Keller [133] for ¢ close to the maximal value ¢pax = m/4 = 0.79 (exploiting small aspect-
ratio of the narrow gaps hetween the cylinders in a cubic array and using harmonic function

theory) »
1
(Doﬂ)]] ~ — (1 — @> , @ 5 O(l) . (4364)

™ us

Figure 4.11(d) demonstrates a good agreement between the analytical and homogenized solu-

tions, especially in the regions of ¢ < 0.4 and ¢ 2 0.75.

4.3.7 Flow and transport in an array of cylinders: Summary

In this Section, we have obtained effective flow (4.3.34) and transport (4.3.35) descriptions
at leading order, with corresponding closure unit cell problems (4.3.29) and (4.3.30). We have

demonstrated that the effective macroscopic transport equation (4.3.35a)

p)-V(C) = V- (Der- V(C)) - Py, (4.3.65)
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Figure 4.11. (a-c) Numerical solution to the closure flow problem (4.3.60) in a unit cell for ¢ ~
0.2 (d/l = 0.5): the first component of the auxiliary vector b, corresponding to the concentration
field is shown in (a; colours), and the corresponding derivatives 9, by, 9,b; are plotted in
(b,c) respectively. (The solution b to the conjugated problem (4.3.61) is the m/2-rotated anti-
clockwise relative to b; due to the symmetry of the geometry). (d) Effective diffusivity (Deg)11
vs. area fraction ¢ of the cylinder in the unit cell. Solid blue line shows the numerical solution
to the cell problem (4.3.60) for different ¢, which is compared to the limiting approximations
(4.3.63) (dash-dotted line) and (4.3.64) (dashed line).
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Derr S O(1) being determined from (4.3.30), is valid for both small and moderate Péclet numbers
(Pe = O(e) — O(1)), so that it becomes independent of the cell problem for Pe ~ ¢! Da > O(¢)
(p~gqg>1)
() - V(C) = —p D& (4.3.66)
e Pe

We have shown that the transport problems at leading order (4.3.65), (4.3.66) agree with
respective problems for an array of point sinks in the limit of infinitesimal villous volume fraction
¢ ~ P2 And for example, when Pe = O(g) (p ~ ¢ = O(1)), the limiting form (4.3.52) indicates
that for small but finite ¢, the homogenization residue is proportional to /¢ (sce Fig. 4.8):
r"=C-00 ~ max{()(s V), 0(62)}, whereby causing a slight drop in the accuracy of
homogenization on a periodic array of finite sink-size.

We have also obtained the dependence of the effective permeability on the villous volume
fraction by solving numerically the closure flow problem (4.3.29), which is approximated rea-
sonably well by the empirical Kozeny—Carman formula for ¢ 2 0.4 (Fig. 4.10a). Numerical
solution to the transport closurc problem (4.3.30) (Fig. (4.11d) shows that the net cffect of
“non-conducting inclusions” represented by the solid-phase (villous) subdomain bounded by T’
(see Fig. 4.7) is in hindering free molecular diffusion, thereby reducing the cffective diffusivity.
However, the drop in the effective diffusivity with increasing ¢ is not as rapid as for the effective
conductivity (Fig. 4.10a).

The developed computational framework is straightforward to gencralise to anatomically
rcalistic non-circular two-dimensional shapes of the materno-fetal interface I, which we will
study in the next chapter with the aid of image analysis.

It is also noteworthy that if the flux density (¢ = ¢(x), x € I') is non-uniform on I', the sink
term P ¢ in (4.3.65) must be replaced with [ g(x) dS,; the rest of the results remain unchanged.

r

We neglect, in the framework of the present model, the following features relevant to the

placental transport:

e elastic deformations of the interface I' (villous surface) or its deviation from the central
position in a unit cell;
e nonlinear uptake kinetics for certain solutes, such as glucose, at the interface T', due to

the presence of active transporters;

e solute carriers, such as haemoglobin, contributing to the advective transport of oxygen

and carbon dioxide.

It is the role of the latter that we address in the following section.

4.4 Non-linear effects of solute carriers

We consider a steady motion of liquid with suspended particles, e.g. red blood cells con-
taining hacmoglobin, capable of carrying solute molecules in the maternal subdomain €, with
inner boundary T' (sec Fig. 4.7). We assume that the interface I' is permeable to the freely
dissolved molecules but not to the solute-carrying particles. We also neglect diffusivity of the

solute-carrying particles compared to the diffusivity of the free solute molecules.
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4.4.1 Problem statement

Let Cf,; be the total local concentration of the solute in the fluid, C* be the local concen-

tration of the frecly dissolved solute, and CY be the concentration of the solute bounded to

ound
the solute-carriers. Then the advected concentration can be represented, following [153], as

Ct*ot(x) =C* + Cgound’ Cl’:ound = C;:lax (C*) ) (441)

where C;, .

and f(C*) is a nonlinear sigmoid function (association/dissociation curve) describing the equi-

is the maximal local concentration of solute bounded to the fully saturated carriers

librium betwceen the dissolved and bounded states of the solute, which is given, for example, by

Hill's law (in dimensionless variables, C = C*/Cj):

Cn

- ‘ 4.4.2
Wt Cn (4.4.2)

f(C)
where n is a dissociation factor (about 2.65 for oxygen [76]) and k is the half-saturation constant,
which are identified by fitting to experimental data (see Fig. 4.12(a) for oxygen kinetics of
maternal and fetal blood, and Fig. 4.12(b) for haemoglobin- and perfluorocarbon-based blood
substitutes). The implicit assumption of the quasi-steady balance between free- and oxygen-
bound haemoglobin has been justified theoretically in many cases (76, 271] (with the error up
to about 10%, particularly in the regions of very low oxygen concentration), and the typical
time for oxygen unloading of haemoglobin from 80% to 30% of saturation is about 0.04 s [76].

Obscrving that the advective term (u- V) C in (4.3.5a) (in a dimensionless form) becomes
(u-V)Ciota = [1 + ggé(*)m "(C))(u- V) C, the transport problem (4.3.5) then is modifies to

Pe[l + a0 f(C)](u-V)C =—-eV F, ¢F=-VC,

en-F|r =Da, C, F are periodicon S, (4.4.3)

Clx=0=1, Clx=1=0o0r C|lx=x, =n -Flx=x,=0for 0< Xy <1,

subject to Y-periodicity of C. Here ag = C;./Co is the dimensionless solutc-carricr capacity,
and Cj is the inlet concentration.
Observing from (4.4.2) that (f'(C)) = O(1) and integrating (4.4.3a) over §, similarly to

Section 4.3, we get the reference global fluxes across the macroscopic domain:
Dqv ~agugCo L, Pgir~ DCo, Pypy ~ N? qgol ~ e} qo L. (4.4.4)

Therefore, the flux-balance ®aqy ~ Pair ~ Pupt (elagPe ~ 1 ~ €72 Da) gives the first
organising centre (Pe, Da) = (¢/ag, £2).

Using ag = 60 —~ 70 for oxygen [153, 179] and taking € ~ 102 (as has been estimated carlier
in Sec. 4.3), we have ag = O(e™1).

As has been estimated in Section 2.8, a likely range of Péclet number for intervillous trans-
port of oxygen in the human placenta is Pe ~ 10 — 102. However, analogously to Section 4.3,
we need to start by considering an asymptotic expansion around the main organising centre

(Pe,Da) = (€2, €?), which provides the leading-order description valid for a wide range of Pe



CHAPTER 4: HOMOGENIZATION OF FLOW AND TRANSPORT IN 2D 97

100 - o - =
(a) r - -
0 I" b
I’
Fetol ’
sof 37°C, pHT40 1
T0p 4
L]
L}
3
s sor Maternal 1
s 37°C, pH 7.40
3
S %OF 4
“n
)
& ‘o 1
[
30F 1
of HUMAN ]
/}
/
0r 7
/
V
L 1 A A vl 'l 4 v el
10 20 30 40 50 60 70 00 90 100
PO, (0, Portial Pressure) ~mmHg
(b) 25 4
) 0 !
' ' |
~wd 1 !
] v ‘
3 . ' WB (15gHb/dL) !
! ' | oDC=5mL :
e | | ~
; 15 e IY : /’/‘/
3 | ! T o
§ | A Hb_Ratfimer (10 gHb/dL) -
Y el
@0 [/ | |0ODC=4a3mL T
1 ]
> od b | T | ~ 5.
3 / ! PFBOC (607G PFOB/aL), | OPC 50t
/| 1 [ PE !
Q I V 1 L, A
8 s{f! | T |
1 ! - I} -
: L | |oDC - 5.0mL E
L~ T §opc=13m | !
0 : | . 4 . | . .
0 100 200 300 400 500 600 700
$ }
PvO, Pa0, PO, (mm Hg)

Figure 4.12. (a) Oxygen-hacmoglobin dissociation curves for human fetal and maternal blood.
Abscissa shows partial pressure of oxygen (Po,); ordinate expresses the percentage saturation of
haemoglobin with oxygen (Sp,) (reproduced from [179]). (b) Oxygen carrying capacity versus
oxygen partial pressure for normal whole blood (WB), hacmoglobin-based blood substitute
(Hb_Raffimer) and perfluorocarbon-based blood substitute (PFBOC). The physiological range
of partial pressures in the veins and arteries are marked by PvO; and PaO, respectively. Note
a Hill-type dissociation law (4.4.2) for the first two curves and the linear relation for PFBOC.
Reproduced from [141].
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number values, as will be shown below. In doing so, we also broaden the scope of potential
applications of the solute-carrier-facilitated transport model to other media, such as dialysis ma-

chines [265] and bioreactors [1], which may be characterised by a smaller value of Péclet number.

4.4.2 Small microscopic Péclet number transport regime

Based on the above flux-balance estimates (4.4.4), we consider the following scaling:
ag=0(E") =¢ela, Pe=0(e?) =€?p,, Da=0(?) =¢€%q, a,ps,q=0(1).
Using the two-scale dependence (4.3.6), we rewrite (4.4.3) as

ey 1+ af(O)] [Vo (CW) +eVx - (C8)] = —¢ [Vo F+eVx-F|,  (4d50)
eF=-V,C-:VxC, (4.4.5b)
en-Flr =¢%q, C, F are periodic on §, (4.4.5¢)
Clx=o=1, Cx=1=0, C is Y-periodic. (4.4.5d)

again using the incompressibility condition (4.3.4a) to transform the advective term in (4.4.3a)
into conservative form.
Substituting two-scale asymptotic series (4.3.9) in (4.4.5), we again find at the order €Y,
V. C =0 and hence
c® = cO(x), (4.4.6)

satisfying the global boundary conditions C@|x—o = 1, C’f\f))zl =0, CO is Y-periodic.
Noting the asymptotic Taylor expansion for the derivative of the dissociation curve f'(C)

C=CO+eCc +e2C® +0(%),

= 2 [y o)y @) L L e g o0y [ A1) 2 g, (44.7)
FI(O) = (00) + [N CW 42 1/ €+ 37C) (V)] + O,

and collecting the terms in (4.4.5) at O(e!), we have
e a f(CO) T, - (C’(O) u(O)) - -V, -FO (4.4.8)
FO = _v,c)_vycO®, (4.4.9)

where, using (4.3.10), relation (4.4.8) reduces to
v, FO =9, (4.4.10)
Collecting the terms in (4.4.5) at O(e?), we get
e a f'(C©) [VI . (Cm u® 4 O u(])) +Vy - (C(m u«n)] n

(4.4.11)

+pa [1 + o f'(CO) C“)] v, - (Cw) uw)) = -V, -FV _vy.FO,

FO = _v,c@ _v.cW, (4.4.12)



CHAPTER 4: HOMOGENIZATION OF FLOW AND TRANSPORT IN 2D 99

and local boundary conditions: u(O)lr =0, n- F(‘)|r =yq.
Incompressibility (4.3.10a), (4.3.13a) and slowly varying leading-order concentration (4.4.6),
reduce (4.4.11) to

Pe a f'(C) [Vm : (C(” u“”) +u@vy. C(")} = -V, -FO vy .FO (4.4.13)

Averaging (4.4.13) over the maternal sub-domain §,,, using the no-slip condition u(®|r = 0,
periodic boundary conditions for the flow and concentration fields and a given interfacial flux

n-FO|r = q, we have

Pa o f(CO) (D), - V) CO = -V - (FO),, - P (4.4.14)

m
which generalises the leading-order averaged linear transport (4.3.24), by taking into account
the advective nonlinearity.

We observe that the cell closure problem, constituted by (4.4.10) and (4.4.12) is identical
to the cell problem in the linear case (4.3.15) and (4.3.16), studied in Section 4.3.2. The
resulting closure relation (4.3.32) between the local averaged concentration flux (F(©),, and

global concentration field C(® allows us to complete the effective transport deseription.

Effective nonlinear transport: small Pe regime.

The closure relation (4.3.32) between the averaged local and global concentration gradients

in €2, transforms the transport equation (4.4.14) to
pa @ f(C) () - V) €O = Vi (1= (Vab)) - VxCO) = Zg, (44.15)

Using the superficial average (u(®) = ¢, (u®),, and (C®) = C, dropping the super-
scripts over the variables and the subscript x in Vy, we obtain, from (4.4.15), the effective

description of transport in presence of solute-carriers for Pe = O(e)

pa @ f'({C)) (u) - V(C) = V- (Deri - V(C)) — Py,
(4.4.16)
(CYlx=0=1, (C)|x=1=0, (C)is Y-periodic,

where p, = Pe/e?, g = Da/e?, and Dy is the effective diffusivity tensor (4.3.36), which is found
from a solution to the cell closure problem (4.3.30).

To account for advective effects at the microscale for oy Pe 2 1, analogously to Section 4.3.3,
we repeat the homogenization procedure around the next organising centre (balancing global ad-
vective and uptake fluxes @4y ~ Pupy in (4.4.4)): (Pe, Da) = (O(1/ ), O(e)) for ag = O(e™}).

4.4.8 Moderate microscopic Péclet number transport regime

Setting ag = O(e™!) = e 'a, Pe=O(e) =ep, Da=0(e) =eq, (a,p,q1 = O(1)) and
using (4.3.6), we write (4.4.3) as
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ep [1 +ela f’(é)] [vz (Cii) +eVy - (éa)] = —¢ [vz Frevy. F] L (44.17a)
eF =-V,C -eVxC, (4.4.17h)
en-Flp=¢q, C, F are periodic on S, (4.4.17c)
Clx=o=1, Cx=1=0, C is Y-periodic. (4.4.17d)

Substituting two-scale asymptotic series (4.3.9) in (4.4.17), and expanding the derivative f’
according to (4.4.7), we find at O(e?)

paf(CO) v, (c<0> u(O)) =0, (4.4.18)

v.Cc =0, (4.4.19)

which again reduces to C(© = C0)(X), subject to the global boundary conditions (4.4.17d).
Collecting the terms in (4.4.17) at O(e!), we have

paf(CO) [V, (CVu® +COuM) + vy (COu®)] +

(4.4.20)
+p[1+a () c] v, (cOu®) = -v, . FO,
and
FO = _v,cV _vyxcO, (4.4.21)
where (4.4.20), similarly to (4.4.11), simplifies to
paf(C9) [vr (W u®) +u@ vy C<°>] =-V, - FO, (4.4.22)

subject to n - FO|p = ¢q).
Averaging (4.4.22) over the fluid-phase subdomain €, of the unit cell, applying the no-slip
condition u!® | = 0, periodic boundary conditions for ul®, FO and ¢ on S (see Fig. 4.7),

and a given interfacial diffusive flux n - F(O)Ip = q;, we get

p af/(C(O)) <<u(0)>m ’ VX) cO = _f_ a1, (4.4.23)
®m
which generalises the leading-order averaged linear transport at moderate Péclet number (4.3.44),
by taking into account the advective nonlinearity, and it is also a regular limit of (4.4.14) for
Pa~q> 1.
Although the leading-order concentration field CO(X) again decouples from the microscopic
cell problem given by (4.4.21)-(4.4.22) at large Pe, we analyse the governing equations for c
in the following subsection to understand the role of nonlinear advection at the micro-scale.
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Nonlinear transport cell-problem: moderate Pe regime

Equations (4.4.21)(4.4.22), subject to boundary conditions and (4.3.10a), constitute the

following unit cell problem:

paf(C®) [u(m v.C 4 4© .VXC<0>] = _v,.FO
FO = _y,c) vy O (4.4.24)
n-FOp=¢q, €M, FO are periodic on S,

or

I v oY ¢ ) ), (1) — _,{0) . (0)
T (0)) V>C"' +u V.C'/' = —u VxCY%,
(4.4.25)

n-v,c P -n-VyxC©® - q , c is periodic on S,

generalising the linear problem (4.3.47).

We see that although the unit cell problem (4.4.25) depends not only on the global concen-
tration gradient but also on the slowly varying leading-order concentration itself, it remains a
linear elliptical problem, albeit with inhomogeneous coefficients. Therefore, from the structure

of source terms in (4.4.24a), similarly to (4.3.48), we look for a general solution in the form
M = a1(x,C) g, — by (x,C9) - Vx CO + OV (4.4.26)

where C(()l) is a scalar independent of x, and a; = a;(x,C®), b; = by(x,C®) are some

coefficients that satisfy the following cell problems:

Viap = paf(CO)u? . V,a =0,

n-Vya; =—-1 onT, (4.4.27)

a) is periodic on S, (a;) = const,

V2by — pa f(CO)u® .V, by = -paf(CO)u®,

n-Vyby=n onT, (4.4.28)

b is periodic on S, (bj) = const.

Here u® is given by the corresponding microscopic Stokes flow (4.3.25). Setting f/(C©) to 1
and pa = Peag to Pe in (4.4.27)—(4.4.28), we obtain the linear advection-diffusion-uptake of
Section 4.3.3. In general, however, microscopic transport depends on a slowly varying leading-
order concentration ficld. There is potential therefore to modulate the balance between advee-
tion and diffusion across the whole domain and within each unit cell, depending on the local
value of C©),

To expose more clearly the effect of nonlinear advection, we consider the limiting case of
a uniform flow and one-dimensional transport in array of point sinks (which becomes exact at

leading-order for a vanishingly small villous volume fraction ¢ = |€,,]/]Q|).
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4.4.4 The role of non-linear advection in oxygen transport: one-dimensional point-
sink-array example

Oxygen transport (4.4.3) in a one-dimensional periodic array of N point sinks is described by

d 2
Pe [l +ap f(C)] — ¢ dC—D de—n O<z<el

dr ~ dx? (4.4.29)

Clx=0=1, Clx=1=0o0r Clx=x, =Cxlx=x,=0 for 0< Xy <1,

We first illustrate the dynamics of (4.4.29) by solving the problem numerically, using a non-
linear adaptive solver of COMSOL Multiphysics. Results are shown in Figure 4.13(b). One can
define the effective microscopic Péclet number Pe.g = Pe (1 + ag f'(C)), which is a slowly vary-
ing function of the concentration field. Since the derivative of the dissociation curve (Fig. 4.13a)
rises rapidly as the dissolved in blood oxygen concentration falls, this can lcad to a significant
increase in the cffective Péclet number. Figure 4.13(b) indeed shows that therc is a switch
from an uptake-dominated (for X < 0.7) to an advection-dominated (for X 2 0.7) macroscopic
transport regime (solid line), coinciding with a peak in Peqg (dash-dotted line). This is further
demonstrated by comparing with a linear solution (Fig. 4.13(c)) for two piecewise-constant val-
ues of f'(C) averaged over the segments (0, Cyy,) and (Cyp, 1), where the threshold concentration
to switch between the two levels is set to Cy, = 0.7. Since the Damkoéhler number is fixed to
Da = 2¢2, we find the effective Péclet number moving in the (PeDa)-parameter space from
Up-asymptotic transport regime at the inlet to A-regime near the outlet (see Fig. 2.2(a) of
Chapter 2).

We now explore the problem (4.4.29) within the homogenization framework. Similarly to
the limiting case of Sec. 4.3.4, using p,a = e ! Peayg, ¢ = e 2Da and assuming P q = const
as P ~ /¢ — 0, the effective leading-order transport (4.4.14a) reduces to

e~ Peag f/(C?) Y = C¥% — e ?Da, (4.4.30)
for small Péclet number, and to
Peayg f'(C®) CY = —¢~! Da, (4.4.31)

for moderate Péclet number, subject to global boundary conditions C{9|xy_o = 1, C9|x-; = 0,
or Clx=x, = Cx|x=x, =0, for some (0 < Xy < 1). We also remark on a diffusive boundary
layer of thickness O( (Peag)~!) developed at the downstream end, which is not captured by the
lcading-order problem (4.4.31) for large Pe, so that only a boundary condition at the inlet can
be used.

Using Hill’s law (4.4.2) to approximate oxygen-haemoglobin dissociation kinetics, and rewrit-
ing (4.4.31) as

df(C(O)) _ Da _oom
dX = ePeag’ f(C)_k”—#C"’

COlxo0 =1, (4.4.32)
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Figure 4.13. (a) Hill-type dissociation curve (4.4.2) for f(C') (solid), its derivative (dashed) and
a piecewise-constant approximation of f’(C) (dash-dotted). (b) Numerical solution to (4.4.29)
(solid) and the corresponding effective Péclet number Pe.g = Pe (1 + ag f'(C)) (dash-dotted)
on a periodic array for Pe = ¢2, Da = 2¢%, a9 = 70, n = 2.5, k = 0.25, ¢ = 0.05. The
corresponding linear solution (for ey = 0) is shown by the dashed line. (c) The nonlinear
solution (solid) with continuously varying effective Péclet number and its linear approximation

with piecewise-constant Pe (dashed) (chosen as shown by the dashed-dotted line in panel (a)).
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Figure 4.14. (a) Numerical solution to the nonlinear transport problem (4.4.29) (solid blue),
leading-order solution (4.4.33) (dashed black) and its approximation (4.4.35) (dash-dotted red)
for Pe = e701, Da = 0.5Pe, ag = ¢! (Xp = 2), n = 2.5, k = 0.25, ¢ = 0.05; the corresponding
leading-order solution for linear transport (2.4.6) is given by a dotted line. (b) Exact leading-
order solution C'°) (4.4.33) (solid) and its approximation (4.4.35) (dashed) for Xo = 0.5, 1, 2, 5
respectively.

we find the exact solution

1

COX) =k {[(1 XX - 1} " 0< X <min(Xo/(1+E"), 1), (4.4.33)

where p p
= Ereqp _ eq
Ao Da =~ Da'’

is a non-dimensional parameter characterising the nonlinear advection-uptake balance.

(4.4.34)

Since, for oxygen, k ~ 0.25 and n ~ 2.5 [153], we can neglect k" compared to 1, approxi-
mating (4.4.33) by

=31
CO ~ k (% - 1) , 0< X < min(Xp, 1), (4.4.35)

which matches the exact solution reasonably well (Fig. 4.14). This is to be compared with the
corresponding leading-order solution (2.4.6) C(” =1— D& X to the linear transport problem
(2.4.5). We note that when the nonlinearly-advected solute concentration extends to the entire
domain (Xy = 1), the concentration in the case of linear (solute-carrier-free) transport drops to
zero at a characteristic distance sPe/Da = Xo/ap < 1 (see the dotted line in Fig. 4.14a).

4.4.5 Flow and transport in the presence of solute carriers: Summary

In this section, we have obtained the effective transport description for a solute, such as
oxygen, in the presence of solute carriers, such as red blood cells, in a periodic media in one and
two dimensions. We have found that the averaged macroscopic nonlinear transport equation
(4.4.16a) is given by

e~ Pe ag f/({C)) (u) - V(C) = V- (Deg - V(C)) — € 2PDa, (4.4.36)
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where P is the perimeter of the villous section (solid phase) in a unit cell and D,y is the effective
diffusivity tensor (4.3.36) to be found from a solution to the linear elliptical closure cell problem
(4.3.30), which is identical to the case of no solute carriers being present.
Equation (4.4.36) is valid for both small and moderate Péclet numbers (Pe = O(e) — O(1)),
and decouples from the microscopic cell problem for Peag ~ ¢! Da > O(e):
_ PDa

(u) - Vf({C)) = TPoay (4.4.37)

In this case, the cell problem for the first correction C1) (4.4.25) remains linear in C1), but with
f(C©) as a parameter, allowing for a slow modulation of the microscopic solution across the
whole domain (sce, e.g. the increasing steepness of the “stairs” from left to right in Fig. 4.14a).
Since the ratio of solute carricr-capacity to blood plasma-capacity aq is typically very large (153,
179], we can approximate the effective Péclet number by Peey ~ Peag f/(C©), which thus
becomes a slowly varying function of the macroscopic concentration field. This can lead to a
switch from a diffusion- or uptake-dominated to an advection-dominated macroscopic transport
regime within the same domain at constant Pe, as has been shown in Figure 4.13(b,c).
Furthermore, in the limit of small villous volume fraction, the solution to (4.4.37) can bhe

approximated by (4.4.35)

1
CO) (% - 1> " Xo= 51;:“0 . 0< X <min(Xg, 1), (4.4.38)
which incorporates in a compact form all transport and dissociation-kinetic parameters and ex-
hibits a markedly different behaviour compared to a lincar concentration drop for solute-carrier-
free transport (Fig. 4.14a). The primary characteristics of the transport in a suspension of solute
carriers is an enhanced advection in the regions of low dissolved solute concentration (by releas-
ing the solute from the bounded form into the blood plasma). This makes the solute distributed
more uniformly across the entire domain and allows for homogenization at higher Da than for

linear transport. For example, the 1D homogenization limit becomes Da <« max{1, aq Pe}.

4.5 Discussion

To sum up, we have studied the effective macroscopic solute transport models and their
corrections, extending the results of Chapter 2 to two spatial dimensions and accounting for
nonlinear cffects.

In particular, we have generalised the map of asymptotic transport regimes in (Pe, Da)-
parameter space for the case of a 2D periodic array of point sinks (Fig. 4.6). We have developed
a computational framework for estimating the effective diffusivity and permeability for sinks of a
finite size, exploring the role of villous volume fraction. The transport regime and the accuracy
of the effective (averaged) solute transport description thercfore in general depend on the villous
volume fraction @, Péclet and Damkohler numbers, as well as on the statistical propertics of
the micro-geometry (characterised for a regular media by the scale-scparation parameter €; see
also Sec. 3.6 of Chapter 3).
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Figure 4.15. (a) Numerical solution C (colours) to (4.2.2) for a single realisation of a normally-
perturbed square-periodic array of 19 x 19 point sinks (¢ = 0.05), with Pe = 4, Da = ¢Pe,
and the standard deviation o = ¢; black circles indicate the sinks’ position. (b) The corre-
sponding concentration profile C' along the horizontal cross-section through the middle of the
array (Y = 0.5).

Further studies could focus on understanding the statistical properties of the homogenization
residue for transport in random arrays in two dimensions. For example, if one considers a
normally-perturbed square-periodic array on a torus (with periodic boundary conditions), as
shown in Figure 4.15(a), stochasticity breaks the transverse symmetry of the solute distribution
(cf. Fig. 4.4a). However, cross-sections of the concentration field (Fig. 4.15b) can be studied
and compared against corresponding one-dimensional results of Chapter 3.

Finally, we have investigated the role of solute carriers and developed further Lardner’s
analysis [153] of oxygen exchange to understand the effect of placental microstructure on non-
linear advective transport. The homogenized effective equations are similar to the results of
Salathe et al. [224, 226] obtained by volume averaging in vascular networks; however, the ho-
mogenization results of this chapter offer more details on the interaction between the macro-
and macro-scales. We have shown, for example, that the transport regime in (Pe, Da)-parameter
space becomes dynamic, sensing the leading-order concentration and “homogenising” the so-
lute distribution across the oxygen-poor parts of the domain (see Fig. 4.13c). Indeed, as has
been discussed in Section 2.8 of Chapter 2, a likely range of Péclet and Damkéhler numbers
for intervillous transport of oxygen is Pe ~ 10 — 10?2, Da ~ 1 — 10. Taking € ~ 1072, we have
Da/(ePe) 2 1. Therefore, without a contribution of the solute carriers, the distribution of solute
could be highly non-uniform, with the solute concentration falling sharply close to the inlet (as
illustrated in Fig. 4.14(a) for Da/(¢Pe) = 10). Apart from placental transport, potential appli-
cations of this model include gas exchange in a capillary network [225, 271], solute transport in
certain bioreactors [1], dialysis machines [265] and other artificial organs [145, 213]. The role
of haemoglobin-containing erythrocytes as oxygen-carriers can be shared in full or in part by
other biological metalloproteins, such as haemocyanin [102], and by artificial blood substitutes,
such as Polyheme or Perftoran [141].
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We now apply the developed computational framework for the effective flow and trans-
port parameters at leading order (4.3.34)-(4.3.35), with corresponding microscopic unit cell
problems (4.3.29)-(4.3.30) (see also Figs 4.9 and 4.11), to anatomically realistic two-dimensional
shapes of the materno-fetal interface T' in a unit cell that will be obtained in the next chapter

from histological images of the human placenta.
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PLACENTAL SHAPE ANALYSIS AND

EFFECTIVE PARAMETER ESTIMATION

5.1 Introduction

q-ilis chapter describes imaging techniques and statistical tools to analyse placental geom-
etry. The purpose of the “homogenized” description outlined in Chapters 2-4 is to inform a
macroscopic model with the properties of the microstructure, gathered from experimental data.
In the human placenta this amounts to characterising the geometry of villous tissue.

Stereology (or “quantitative microscopy”) is a quantitative statistical description of three-
dimensional heterogencous material composition from its two-dimensional microscopic sections,
utilising systematic random sampling [16, 171]. Placental stereology has provided estimates of
bulk quantities (e.g. total villous volumes, surface areas and lengths) and local measures such
as star volumes (the mean volume of all parts of a space which are visible when viewed in all
directions from a given point within it) [206]. For a spatially homogeneous isotropic media, all

the following empirical cstimates are asymptotically unbiased [16]:

Gvolume = Parca = Plincar = Test points ratio, (5.1.1)
where duolume = @, Parca, Plinear are the volumetric, area and linecar fraction (or density)
of a given phasc in heterogeneous media, and Test points ratio = N(x € phase)/Nyoa is a

proportion of Ny, random test points falling onto this phase. Although stereology provides
unbiased and computationally efficient estimates, it should be pointed out that “if the material
is not spatially homogencous and isotropic, classical stereological methods do not apply” [16].
Therefore, owing to the complexity of placental anatomy, further mecasures, particularly of
averaged bulk properties and statistical variability at different spatial scales, are necessary in
order to develop comprehensive models of placental transport.

We use fluorescent immunohistochemistry and ionic toluidine blue staining to visualise his-
tological sections of normal placentas. Using histological images, we illustrate how methods of
spatial statistics [82] can be applied to characterise some of the important underlying length-
scales in villous trees. We further compute microscopic flow and transport in a sample unit cell
to extract the effective permeability and diffusivity of the medium. The images from the digital
microscopy are post-processed and analysed with open-source software packages ImageJ and R

as described below.

5.2 Methods

The experimental data of this chapter is based on placentas from pregnancies monitored

at the Queen’s Medical Centre in Nottingham. Local ethics committee approval and written
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patient consent were obtained (for more details, scc [156]). All tissue sections were cut from
a single maternal lobule taken from the periphery of a normal full-term human placenta (de-
livered by elective cesarian section). The placental lobule was frozen in liquid nitrogen-cooled
isopentane (at ca. -160 °C), stored in a -80 °C freezer and defrosted to about -20 °C before
cutting into 8 um-thick sections, according to a systematic random sampling protocol shown in
Figure 5.1. Note that a single placental lobule, delineated by the grooves of the placental septa,
can contain several chorionic trees (see Figs 1.1, 1.2) and therefore is not necessarily identical
to a single placentone; however, the smaller peripheral lobules tend to match the corresponding

placentones [33] (sece Fig. 5.2).

5.2.1 Specific and non-specific staining for digital microscopy

Digital microscopy of tissue samples requires them to be biochemically stained in order to
get acceptable contrast and reduce the amount of background noise and artifacts.

One of the most common non-specific staining used to highlight all tissue structures is the
tolonium chloride (Toluidine Blue) dye that reacts with the most common anionic (negatively
charged) groups (e.g. COO™, SOi') of DNA, polysaccharides, and other molecules in cells.
The cell nuclei are stained in blue while the extracellular matrix is stained in purple (81, 218].
The benefit of this method is in giving uniformly high-contrast contours of the chorionic villi
as well as medium-to-large feto-placental vasculature. The images can be taken at any resolu-
tion allowed by a conventional bright-field objective (x1.5 to x100, using the available micro-
scopes Nikon LaboPhot-2 and Zeiss Axioplan, in conjunction with the digital camcras Nikon
DS-Fil 1.2 Mpx and QImaging MicroPublisher 5 Mpx respectively). The shortcomings of the
non-specific staining are the inability to distinguish between vascularised and non-vascularised
villi, especially of the terminal villi and immature villous sprouts [33], and the higher level of
artifacts in the intervillous space as compared to the specific staining.

The specific staining in histochemistry is primarily due to the use of antibodies raised as a
result of the immunologic response to a biological structure (antigen) of interest in laboratory
animals. In the indirect method, the primary antibody of, say mouse, binds specifically with
a high affinity to, e.g. human cytokeratin-7 found in the epithelial and trophoblast cells. The
secondary antibody is raised in the rabbit against mouse antibodies and is subsequently conju-
gated with a detectable label (radioactive isotope, chemically active enzyme or fluorescent dye).
The secondary antibody therefore reacts specifically with the layer of the primary (mouse) an-
tibodies and amplifies the overall staining [198] (see Fig. 5.3). We used the protocols developed
by Leach et al. [157], where two different sets of primary and secondary antibodies are employed
for double-immunostaining (Fig. 5.4a). The limitations of the fluorescent immunostaining are
the spatially varying staining brightness, due to a non-uniform distribution of antibodies over
the section, and the need for a higher optical magnification (x6.3 and more) in order to obtain
appropriate resolution and contrast of the microscopic images. Figure 5.4 shows the acquired

images for specific (a) and non-specific (b) staining of samples from the normal human placenta.
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Figure 5.1. Approximate positions of 16 horizontal sections (of 8 pm thickness each) of a single
peripheral maternal lobule of the normal human placenta used in the protocol for cutting with
a cryostat. The initial and intermediate cutting positions were randomised. All dimensional
values are given in pm.

Figure 5.2. A macroscopic survey of the toluidine blue-stained cross-section No. 11 of a normal
peripheral placental lobule (see protocol in Fig. 5.1) with a superimposed reference millimetre
grid. Note a loose central area (arrow), resembling the central cavity of a placentone (cf.
Fig. 1.2).
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Figure 5.3. A schematic of the indirect immunostaining method, where the primary antibody
is specific for the antigen (a part of the cellular structure of tested tissue), and the secondary
antibody, labelled with a fluorescent dye, is specific for the primary antibody.

(a) (b)

Figure 5.4. Sample images of the normal human placental chorionic villi: (a) fluorescent
immunostaining specific for V-Cadherin of endothelial junctions in vessels (green) and for
Cytokeratin-7 of trophoblast cells (orange)! (optical magnification x20); (b) non-specific Tolui-
dine Blue staining of most cellular structures (nucleic-acids, carbohydrates, etc.) in cross-section
No. 11 at optical magnification x2.5, revealing the chorionic villi and the medium-to-large blood
vessels within them. (the reference grid with 1 mm spacing is shown as a grey shadow).

5.2.2 Morphology image processing and spatial statistics

In order to extract the statistical properties of the villous geometry from the histological
sections we use the methods of statistical shape analysis [83] and spatial point processes [82].

The open-source software ImageJ is used for a semi-automated morphological analysis (com-
puting area fractions, identifying villous contours, calculating their perimeters and centres of
mass) [189]. The command menu sequence is as follows: (i) Image — Adjust — Threshold
— Black & White (converts a greyscale/colour bitmap to a black & white 8-bit bitmap); (ii*)
Image — Color — Edit LUT — Invert (sets black particles on white background); (iii) Analyze
— Set Scale (relates the “distance in pixels” to a known dimensional length, e.g. by using the
reference millimetre grid over-imposed on the slide during microscopy as shown in Fig. 5.4b);

(iv*) Process — Noise — Despeckle (deletes sharp-contrast noise of a few pixels in diameter

'Tissue sample obtained from the central placental lobule by Ruta Deshpande.
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Figure 5.5. A test image with randomised positions and sizes of geometrical objects used to
verify the accuracy of ImageJ morphology analysis.

the operation (iv) can be repeated several times); (v*) Process — Binary — Watershed (breaks
continuous villous contours into independent particles in the thinnest junctions); (vi) Analyze
— Set Measurements — Center of Mass, Perimeter, Area; (vii) Analyze — Analyze Particles —
Show: Outlines, Display Results, Summarize (performs morphology analysis). The operations
marked with * are optional when calculating only villous area fractions but they are required
for more specific information on villous “particles”.

We employ the statistical package R to analyse the pattern of the villous centres of mass
extracted by ImageJ. The K-function is used to estimate the cross-correlation of intervillous
distances and to test the pattern for regularity or clustering as compared to the “complete
spatial randomness” represented by a Poisson point process [82], which will be explained in

more detail below.

5.3 Estimation of the unit-cell-size with respect to the villous

area fraction

The accuracy of the “Analyze Particles” algorithm of ImageJ has been tested using an image
with known total area fraction (¢ ~ 0.24) and particle centres of mass coordinates, generated
with Matlab (Fig. 5.5). The output of the ImageJ algorithm differs from the exact values by
less than 1%.

The question to be addressed is how the area fraction depends on the window size used
for its calculation. When the window size is less than the spatial dimension of terminal villi
(~ 100 pm), we expect substantial oscillations of the villous area fraction between zero and
one, depending on whether the window falls in the villous tissue or in the intervillous space.
As we increase the window size, the sensitivity of the window's position on the area fraction
reduces, and at large enough macroscopic spatial scales we can treat the homogeneous porous

medium as a continuous medium of constant (or at least slowly varying) area fraction. The
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Figure 5.6. Volumetric fraction of i*! phase in a porous medium ws. volume of considera-
tion AU;. The minimal volume AUj that significantly reduces microscopic noise effects is a
representative clementary volume (REV) of the porous medium (reproduced from [29]).

smallest size of the window that ensures negligible variation of area fraction duc to fluctuations
of the microstructure is called a representative elementary area (REA) (being a two-dimensional
analogue of representative elementary volume (REV), shown in Fig. 5.6). The REA defines a
meso-scale of 2D porous medium, being intermediate between the micro-scale of an individual
villus and the macro-scale of the whole placentone. It is the meso-scale of REA (or REV) at
which Darcy’s law of flow in a porous medium (1.4.15) operates most accurately.

Keeping the REA concept in mind, we study the variability of the villous area fraction with
size of the selection window in ImageJ. We process the right-hand-side of cross-section No. 11
(obtained according to the protocol; see Fig. 5.1) taken at optical magnification x2.5. Following
the procedures described in Sec. 5.2.2, we compute void arca fractions (1 — ¢) of the inverted
black-and-white image at different sizes of the selection window (sec Fig. 5.7)2.

Figure 5.7 shows how the villous area fraction ¢ depends on the size W of the window used
to compute it. When W is comparable to the diameter of terminal villi (below 100 pm), we see
vigorous oscillations of ¢, depending whether the window falls in villous tissuc or intervillous
space. As W increases, variations in ¢ fall and are significantly reduced for W 2 1 mm. Above
this threshold, we can recasonably treat the intervillous space in this sample as a continuous
medium of uniform (or at least slowly varying) area fraction, as was assumed in (74, 86] for
example. Wy = 1 mm can be used as a reference size for the unit cell in the homogenization
method (see Scc. 4.3 of Chapter 4).

20ne should note that the reference millimetre grid could affect the thresholding procedure, described in
Scc. 5.2.2, by sharpening some boundaries; however, the effect of the grid is believed not to affect the results due
to the low contrast and large grid-spacing compared to the contrast and lengthscales of the villous tissue.
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Fig. 5.4b.
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5.4 Spatial villous pattern of the normal human placenta

In order to quantify the distribution of the villous “particles” in the histological cross-
sections and to test the pattern for regularity or clustering, we introduce the first- and second-
order measures of spatial statistics [82}. The first-order intensity or “density” of a spatial point

process is

Ax) = E[N{x': x' € dA(x)}]

T |dA|—0 | dA] ' (5:4.1)

Le. it is the expected number N of points per unit arca, where dA(x) is an infinitesimal arca
around a given point x.

The second-order intensity or two-point correlation function is defined as

_ E[N{dA(x1)} N{dA(x2)}]

/\2(X1,X2) - IdA(X1)| 'dA(XQ)‘ ) IdA(Xl)l,IdA(X2)| - 0? (542)

that is a normalised joint number of points expected around two given points x; and x;.
A stationary point process is characterised by the spatial translational invariance of first-,
second- and higher-order intensity functions, so that Ao(x; + a,x2 + a) = Ae(x),X3)), giving
A = const, Aa(x1,X2) = Ao(|x; — x2|) [261]. Therefore (5.4.2) is related to the probability
density function of two-point distances for a stationary point process [82].

Another useful quantity for a stationary point process is an integral measure of two-point

correlation, called K -function [82]:

r
2

K(r) = :l\—IE[N{x Dx—x0] <1} = 3z / Ao(r)yrdr. (5.4.3)
0
The empirical meaning of the K-function is an average number of points within a given distance
r from an arbitrary fixed point xg, scaled with the point density A (expected number of points
per unit area), so that for a completely random spatial point process (Poisson process) we have
this number equal to the area of a circle with point xg in the centre, i.c. equal to mr? (with
two-point correlation function Aa(r) = A2 being constant over the entire domain due to the
independence of all points in this case).
We use the following estimate K for the K-function by Ripley [82]:

5 1 = ¢ n-=1
Eery=—= Y wi'l(lxi-x|<r), A= e (5.4.4)
ni Py
(#))

where n is the total number of points in a given rectangular domain of arca |A|, T is an indicator
function that is equal to 1 if x;, x; lic within a distance r, and is equal to 0 otherwise; w;; is
Ripley’s trigonometric weighting function to correct for the cdge cffects [82].

To estimate the variance of K for a completely random (uniformly Poisson) distribution, we

employ the formula by Lotwick and Silverman
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E[kPoisson] = 7TT2 )
|Al?

Var []A(Poisson] = m

(2b(r) — ai(r) + (n = 2)az(r)) ,

where a;, ay and b are Lotwick and Silverman’s polynomials [161]: a;(r) = |A|7%(0.21P 73 +
1.374), aa(r) = |A|73(0.24P r5+2.6270) and b(r) = 7r2|A|~ (1 —7r2| A1) +|A|"2(1.0716P r3+
2.237571%), P being the perimeter of the domain. The estimate (5.4.5b) is exact for 7 not
exceeding 1/4 of the smallest side of a rectangular domain [161]. We estimate K in (5.4.4) and
(5.4.5) using the Kest function of the Spatstat package for R [17].

Before analysing the villous pattern, we illustrate the K-function by considering some
standard point distributions shown in Figures 5.8-5.9. The uniformly random distribution
(Fig. 5.8(a,b)) has the K-function indistinguishable (within a theoretical 95%-confidence inter-
val, shown by dashed lines), from a Poisson process, as expected, while the K-function for a
more regular hard-core distribution (Fig. 5.8(c,d) generated by a sequence of points drawn from
a uniform distribution, not closer than distance d apart) falls below the lower bound of the
theoretical confidence interval at small distances, with no points at » < d. On the other hand,
for a Neyman-Scott cluster process (Fig. 5.8(e,f)), the K-function demonstrates higher average
number of points than for a Poisson process. The Neyman-Scott cluster process is gencrated
by a two-level algorithm [253]: first, “parent” points, defining the centres of clusters, are drawn
from a Poisson process of a given intensity (mean number of points per unit area); next, the
“daughter” points (e.g. representing the actual villous branches) are generated within cach clus-
ter of a fixed radius according to a hard-core distribution (mimicking the finite size of the villous
cross-sections). Note that at larger distances both hard-core and Neyman-Scott distributions
can become indistinguishable from a uniformly random; this however strongly depends on the
parameter values of the distributions.

In addition we consider, following [257], a distribution with underlying regularity, such as
a normally-perturbed square periodic array (with a given standard deviation o and periodic
boundary conditions). The K-function corresponding to the normally-perturbed distribution
(Fig. 5.9(a,b) exhibits clear oscillations near the theoretical curve for a Poisson process at
moderate o, approaches the uniformly random case for large o (Fig. 5.8b) and develops clear
steps in the limit of ¢ = 0 (Fig. 5.9(c,d)). Finally, we highlight the limitations of the K-function
inference approach by drawing a “cell” point process of Baddeley and Silverman [18], which has
the same first- and second-order intensities, and thus K-function, as a homogencous Poisson
process (Fig. 5.9f), while qualitatively exhibiting a more regular pattern with occasional dense
clusters than one expects from a completely random distribution (cf. Figs 5.8(a) and 5.9(e)).
The Baddeley-Silverman cell-process is generated by subdividing the domain into a regular
lattice of rectangular cells, where each cell contains 10 uniformly randomly distributed points
with probability 1/90, 1 point with probability 8/9, or no points with probability 1/10 [18].

We now proceed with the analysis of actual histological data of a normal mature placenta.
The centres of mass of villous “particles” from a cross-section sample were extracted with ImageJ
according to the protocol described in Sec. 5.2.2. We estimate the K-function (5.4.4) and the

sample variance of a Poisson distribution (5.4.5), representing “complete spatial variance”, using
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Figure 5.8. Examples of standard point patterns (left) and corresponding computed K-functions
(right). (a) Uniformly-random distribution of N = 400 points, and (b) the corresponding

linear v/K-function (solid), with a 95%-confidence theoretical interval (IE[K] + 2\/Var[f(] ) e
(dashed) given by (5.4.5) for a completely random (Poisson) point distribution; (c,d) Hard-
core (simple sequential inhibition) point process with N = 400 points and minimal-distance
parameter d = 0.6e (¢ = 1/v/N = 0.05); (e,f) Neyman-Scott cluster process for parent cluster-
centre intensity A = 50, cluster radius R = 0.054, number of daughter points N = 10 and
daughter hard-core parameter d = 0.4¢ (¢ = 2R/V'N = 0.03).
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Figure 5.9. Figure 5.8 contd. (a,b) Normally-perturbed square periodic array 20x 20 (o = 0.15¢,
€ = 0.05); (c,d) square periodic array 20 x 20, used as an unperturbed configuration for (a);
(e,f) Baddeley-Silverman'’s cautionary example of a non-Poisson process (for the domain divided
into 20 x 20 equal cells), giving “false-positive” conclusion of a complete spatial randomness, as
indicated by the K-function (f).
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- Theoretical for Poisson process

—— Villous centres of mass
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Figure 5.10. Villous ‘particles’ contours produced by the morphology analysis of ImageJ from

section No. 11 (Fig. 5.4b). Each particle is marked with an ordinal number.
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and the square root of corresponding K-function (solid lines) in the whole domain (a,b) and

Figure 5.11. The spatial point process generated by the centres of mass of villous cross-sections
in the central subdomain 0.7 x 0.7 mm (c,d), shown as a solid square in (a).

Theoretical

95%-confidence interval (mean +2 std. err.; dashed lines) and the mean (dotted line) of the

v K-function for a Poisson point process are computed using (5.4.5).
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Figure 5.12. A histogram of the nearest-neighbour distances for the villous point pattern shown
in Fig. 5.11(a).

Kest function of R-package (see Figs 5.10, 5.11).

Fig. 5.11 shows that at inter-point distances larger than about 100 pum, the spatial point
pattern is indistinguishable, for the given sample, from a completely random (Poisson) distribu-
tion within confidence intervals. At the distances below this lengthscale (r < 100 pum) the point
process deviates from a complete spatial randomness towards a more regular pattern, resembling
a hard-core distribution (Fig. 5.8d). No villous centres of mass lie closer than approximately
30 pm (Fig. 5.11(b,d)). This, in part, reflects the finite size of terminal villous branches of a
mature human placenta, of typical diameter ca. 50 pum [33]. By plotting a histogram of the
distances between each villous centre-point and its nearest neighbour (Fig. 5.12; performed by
nndist function of R), we observe the distribution with a peak around 50 pm and the mean
value at approximately 57 pum, as expected. This lengthscale, together with the typical size of
a single villous tree (~ 10% pum [98]), gives the smallest value for the scale-separation parameter
e=1/L 2 0.6 x 1072, which has been used in Chapters 2-4.

5.5 Effective permeability and diffusivity of the human placenta

in two dimensions

Using the computational and theoretical framework from Sections 4.3.5 and 4.3.6 of Chap-
ter 4, we now estimate the effective hydraulic permeability and solute diffusivity of the normal
mature human placenta.

In order to extract the actual shape of the materno-fetal interface I' (see Fig. 4.7), we first
performed fluorescent immunohistochemistry (cytokeratin-7 staining of the normal human pla-
centa at term; see methods in Sec. 5.2.1) and digital microscopy (at x20 optical magnification)
of terminal villi, followed by semi-automated harmonic interpolation for 24 equiangular points
on the villous surface (estimating the centre of mass with trapezium quadrature and using
MATLAB fast Fourier interpolation routine interpft), as shown in Figure 5.13(a). Finally, we
compute solutions to the cell problems (4.3.54)-(4.3.55) and (4.3.60)-(4.3.61) for the obtained
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%

Figure 5.13. (a) Harmonic equiangular shape fitting of villous cross-sections (obtained from a
normal placenta stained with trophoblast-specific cytokeratin-7; optical magnification x20)7;
(b) Final geometry and mesh generated for a unit cell used to compute the permeability tensor.

geometry (Fig. 5.13b), using COMSOL Multiphysics steady adaptive finite-element solver with
second-order Lagrange elements. The resulting fields are shown in Figures 5.14 and 5.15.
The corresponding effective permeability tensor (calculated as described in Sec. 4.3.5 and

averaged over the unit cell ) for this particular example is

0.0140 —0.0004
(K) ~ : (5.5.1)
—0.0004  0.0153

Because the permeability is a positive-definite matrix [85], it is diagonalisable with positive
eigenvalues. Thus, from (5.5.1), we have eigenvalues A\; &~ 0.0139, A2 ~ 0.0153 and eigenvectors
vi ~ (1.00,0.25), vo =~ (—0.25,1.00). The degree of anisotropy in the permeability in the

considered unit cell is therefore

|A1 — Ao

——— ~ 0.096, 0.1
max{A;, A2} |

n
o

Advective anisotropy =

and the angle between the coordinate axes (ex = (1,0) and ey = (0,1)) and the principal axes
of the unit cell (see Fig. 5.16) is

‘V1 - e o
arctan (————V> ~ 14" .

¥l O

Analogously, the effective diffusivity tensor (defined by (4.3.36) and computed as described
in Sec. 4.3.6) is
0.1605 —0.0063

Deg=(1—0)1 — / nb dS; =
JT —0.0063  0.0815

*The samples were kindly provided by Dr Ruta Deshpande.
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Figure 5.14. Components of permeability tensor K (colours, where dark-red corresponds to the
field maxima and dark-blue to the minima) and streamlines (solid white lines) for a periodic
unit cell, with geometry of Fig. 5.13.

Figure 5.15. Components of the auxiliary vector b (colours, where dark-red corresponds to the
field maxima and dark-blue to the minima), used to compute the effective diffusivity tensor
(4.3.36) for a periodic unit cell, with geometry of Fig. 5.13.
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Figure 5.16. Principal axis of the unit cell (dashed), defined by the eigenvectors (vq,vg) of the
permeability and diffusivity tensors.

with villous volume fraction ¢ ~ 0.13, eigenvalues A\; =~ 0.1610, Ay =~ 0.0810 and eigenvectors
vi = (1.00,-0.079), va =~ (—0.079,1.00). The degrec of anisotropy in the diffusivity in the
considered unit cell is therefore

[A1 = Agf

—— = 0.50, 5.5.4
max{A;, Az} 05 (5:5.4)

Diffusive anisotropy =
and the angle between the coordinate axes (ex = (1,0) and ey = (0,1)) and the principal axes

of the unit cell (see Fig. 5.16) is

arctan (M> ~ —4.5°.
Vi r€x

We see from (5.5.2) that, at scales larger than the size of the considered unit cell, we can
treat the medium permeability (and hence the advective solute transport) as close to isotropic,
since A differs from A; in less than 10%. Interestingly, for the same geometry, (5.5.4) indicates
that effective diffusivity in the horizontal and vertical directions differ in about 50%, suggesting
stronger anisotropy of the intervillous space with respect to diffusive transport. The latter result
however may not be significant for solutes (such as oxygen and glucose) transported at high
Péclet numbers (see estimates in Sec. 2.8 of Chapter 2). Nevertheless, more data are needed to
justify these findings for larger averaging windows, as well as to test the variability of placental
structure within the population.

To estimate the dimensional permeability cocflicient £* (K* & k* 1), we recall (see the end of
Sec. 4.3.2) that the dimensional form of the permeability tensor K* = [2 K can be measured in
m?, with [ ~ 100 pm ~ 1074 m being a reference lengthscale of the unit cell used in averaging
(Fig. 5.13a). Therefore, from estimate (5.5.1), we have k ~ 1072 (K = k), resulting in the
placental permeability k* =~ 2k ~ 10719 m?, which is in agreement with the estimates based

on ez vivo perfusion experiments and empirical permeability -volume fraction relations [92].
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5.6 Discussion

Heterogeneous and disordered biological media such as the human placenta require careful
consideration of the statistical properties of the underlying micro-geometry when simulating
transport processes, in particular, for the solutes such as oxygen or glucose which appear to
operate in the advection/uptake-dominated regime (see Sec. 2.8 of Ch. 2).

In this chapter, we have illustrated how sampling villous area fraction (Fig. 5.7) and esti-
mation of the K-function (Fig. 5.11) reveal important intrinsic lengthscales in the distribution
of villous branches. For the sample considered, our data show no cvidence against uniformly
random distribution patterns of villous trees over sufficiently large distances and no evidence
of underlying periodicity that would give rise to clear steps in the K-function [257]. The
K-function instead resembles a hard-core distribution at shorter lengthscales (Fig. 5.11(b,d)),
consistent with the requirement that branches cannot overlap.

Apart from the K-function-aided inference of the regularity /randomness of underlying pla-
cental microstructure, we have used the semi-automated identification of villous branch outlines
and computation of their area fraction ¢ as a function of window size (Fig. 5.7). Area fraction os-
cillations can be employed as a measure of medium heterogeneity at different scales [29] and has
been used to identify the reference size for a representative unit cell. We observe that ¢ becomes
insensitive to the local fluctuations in microstructure at the scales (~ 1 mm) larger than the
distances at which the villous centres appear uniformly randomly distributed (2 0.1 mm), which
can be in part attributed to the intricate non-circular shapes not captured by the K-function.
Further development of semi-automated image analysis, e.g. in watershedding segmentation al-
gorithms [189], should allow bulk processing of histological data and reduce systematic crrors.
Future studies can be used to fit parameters of suitable spatial models to histological data and
to assess how these features of tissue architecture may vary during development, in disease and
between individuals.

Finally, we have estimated the effective hydraulic permeability (Fig. 5.14) and solute dif-
fusivity (Fig. 5.15) of tissue from a normal mature human placenta, using a unit cell with
the feto-maternal interface geometry extracted from histological data of a single sample. The
averaged permeability and diffusivity tensors ((5.5.1) and (5.5.3)) have been calculated by sim-
ulating microscopic flow and transport in the unit cell. We have assessed the anisotropy of the
unit cell and have found that while the medium (intervillous space) is close to isotropic for the
flow (anisotropy of less than 10%), it is relatively anisotropic for diffusion (anisotropy of about
50%). The latter however may not impact noticeably solute transport at high Péclet number
(e.g. for oxygen or glucose). Nevertheless, these estimates must be replicated for multiple sam-
ples to get statistically significant results. The obtained permeability tensor (5.5.1) agrees, to
the nearest order of magnitude, with the indirect estimates of placental flow resistance available
in the literature, and therefore justifies the applicability of Darcy’s law to the human placenta.

Having justified the Darcy flow (Sec. 5.5) and advection-dominated transport (Sec. 4.3) in
the uniform and isotropic intervillous space, as a leading-order approximation, we integrate our
results in the next chapter by considering a simple yet physiologically interesting model of flow

and transport in a single placental functional unit, a placentone.



A MATHEMATICAL MODEL OF BLooD FLow

V1

AND NUTRIENT TRANSPORT IN THE
HuMAN PLACENTONE

6.1 Introduction

}l;zre, we develop and study a mathematical model to characterise some of the primary
physiological features of maternal blood flow and solute transport in a placental circulatory
functional unit, a placentone (see Fig. 1.2), indicated in Chapter 1.

As has been briefly discussed in Section 1.2 of Chapter 1, the number and position of the
supplying spiral arteries and draining decidual veins are still uncertain [33]. There are three
main hypotheses for the distribution of venous openings: random; concentrated near placental
margins; and concentrated in the periphery of placentones and near the placental septa [49)].
The last hypothesis is the closest to current views [33]. Another important determinant of
the successful pregnancy outcome is the degree of dilatation of the spiral arterics through a
remodelling process (see Sec. 1.2). The functional impact of both structural placental properties
will be analysed in the present Chapter by means of a mathematical model.

We also highlight the necessity to take into account simultaneously spatial uteroplacental
blood flow distribution and solute uptake kinetics, which was overlooked in most of the previous
models (see Sec. 1.3 of Ch. 1).

To address these combined effects, based on the results of Chapters 4 and 5, we formulate
a simple theoretical model for maternal blood flow and solute transport in a mature human
placentone. Our aim is to examine the influence of the maternal blood flow rates as well as
decidual vessels’ position and calibre on the solute patterns and the cffectiveness of nutrient
uptake into the villous tree in a single mature placentone. We use the model to perform an

optimisation analysis in terms of key geometric and physical parameters.

6.2 The mathematical model

6.2.1 Model assumptions

We model the villous tree in a placentone as an undeformable porous medium of uniform and
isotropic permeability k& (in Sec. 5.3 we have shown that the intervillous space is approximately
homogeneous at the scale of the order of 1 mm, which is much less than the size of a single
placentone, and in Sec. 5.5 the permeability tensor is estimated to be close to isotropic). The
intervillous space is perfused by an incompressible Newtonian liquid of viscosity i, representing
maternal blood. The placentone is assumed to be enclosed in an impermeable hemisphere (.S;),

at the circular base of which (S;) arc a central source (a spiral artery), supplying blood with
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(a) (b)

Figure 6.1. A schematic placental circulatory unit confined between the plane S; and hemi-
spherical surface S; of radius L. Maternal blood enters from a source (artery) at z = 0 and
exits through sinks (veins) at z = %z, as indicated by arrows: (a) homogeneous intervillous
space; (b) including a central cavity. In the cylindrical coordinate system, z measures distance
along the axis in S on which the spiral artery and decidual veins lie; 7 measures distance per-
pendicular to this axis. The flow is assumed axisymmetric, i.e. independent of the azimuthal
angle 6 measured in a plane perpendicular to the z-axis from the plane S;.

steady flow rate g, and two identical sinks (decidual veins), aligned along a diameter of the basal
plate (see Fig. 6.1). The radius L of the hemisphere characterises the size of the fetal villous
tree; the sinks are placed symmetrically with respect to the source on Sy a distance £z, from
it, where 0 < z, < L. This three-dimensional geometry mimics the shape of the placentone (sce
Fig. 1.2). The placentone border is assumed impermeable, due to the presence of septa and
adjacent placentones. We consider steady flow that is axisymmetric about the line through the
source and sinks (Fig. 6.1a), ignoring pulsatile variations in flow from the spiral artery. Uterine
contractions are also neglected due to the shorter timescales required for the perfusion of a
placentone (< 1 min) compared to the period of relaxation (& 5 min) [207]. We also consider
the situation in which the porous medium contains a central cavity above the spiral artery
(Fig. 6.1b).

The advantage of assuming such a simple geometry for a placentone is that the transport
problem can be solved analytically to obtain flow and pressure fields in an explicit form (see
expressions (6.3.3) and (6.3.4) below). We can then investigate how nutrient distribution is
affected by typical flow and consumption rates as well as by geometrical parameters.

The model assumes that the flow of maternal blood in the intervillous space is described
by Darcy’s law [27, 29] (see equations (4.3.34a), with permeability shown to be approximately
isotropic in Sec. 5.5 of Ch. 5). The steady distribution of a passive solute is described by the
advective-reactive transport equation (analogous to (4.3.66) obtained at leading order for large
Péclet number in Sec. 4.3.7; see also Table 6.1), according to which the solute is convected along
streamlines and “absorbed” by the solid phase of the porous medium.

Typical quantitative data for a normal placenta at term are presented in Table 6.1.

6.2.2 Model limitations

The predictions of the model should be interpreted with some caution, being more qualitative

than quantitative. The limitations of the model are rooted in its assumptions, which can serve
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Parameter Value Reference
Placental diameter 15 -22 cm (33, 186]
Placental thickness 2-3cm [186]
Thickness of decidua 0.6 —0.7 cm (186]
Number of maternal lobules 10 — 40 [33, 186]
Number of villous trees per lobule 1-3 [33]
Total villous surface area 11.0 — 13.3 m? (33)
Diameter of terminal villi (d) ~ 50 pm [33]
Feto-maternal barrier thickness ~ 5 pm (33]
Diffusivity in blood plasma (D) for oxygen ~ 1073 cm?/min [24]
glucose ~ 107* cm?/min [217]
Arterial concentration (Cp) of dissolved oxygen ~ 0.1 mM (122]
glucose ~ 4 mM [203]
Saturation factor for oxygen (ko) ~ (.25 (132]
Radius of the decidual vessels (a) ~ 1 mm (87]
Number of basal arterial openings at term ~ 100 (33, 49]
Number of decidual vein outlets 50 — 200 [33]
Total flow rate of incoming blood 500 — 700 ml/min [186, 203]
Blood density (p) 10% kg/m? [61]
Blood viscosity (u) 4x1073 Pa-s [61]
Placental hydraulic permeability (k) ~ 10710 m?21 (92]

Flow rate per a single spiral artery (qo)

5 ml/min

Average diameter of a maternal lobule ~2—4cm?
Reference radius of a placentone (Lg) 2 cm
Characteristic pressure drop in placentone (FPp) 1 mmHg
Reference blood pressure in placentone (Prr) 5 mmHg
Reference solute consumption rate (ao) 1 min~!
Reynolds number (Re = pqo /pLo) ~1
Péclet number (Pe = go /LoD) ~ 10% - 10¢

Table 6.1. Literature-based and calculated parameters for a normal full-term human placenta
used in the model (all data for haemodynamics and metabolic exchange refer to the materno-
placental/systemic circulation).

only as a first approximation to placentone anatomy and physiology.

For example, the human placentone’s shape is not a perfect hemisphere; the central position
of the spiral artery and only two draining veins per placentone symmetric about the centre
are oversimplifications; the placentone is not completely isolated, and there is likely to be an
interaction between adjacent placentones, especially in the central part of the human placenta;

and the compliance, anisotropy and heterogeneity of the villous tissuc are neglected.

tEstimated in Sec. 5.5 of Chapter 5.
*Measurements by Flavia Sciota and ILC on a normal placenta delivered by elective cesarian section at the
Queen’s Medical Centre.
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The model does not account explicitly for the fetal placental circulation and neglects the
inertia and pulsatility of entering maternal blood, as well as uterine contractions. Newto-
nian rheology is assumed for maternal blood flow in the intervillous space, ignoring the com-
plexities involved in modelling the flow of a concentrated suspension of deformable cells in a
porous medium.

Finally, the contribution of diffusion due to molecular motion and dispersion inside the
intervillous space is not considered in the framework of the present model (which is shown
to be a reasonable approximation at leading order for high Péclet number; sce Scc. 4.3.7).
The representative nutrient transported across the placentone is assumed to have homogencous
solubility, and oxygen carriers, glucose transporters and other facilitated or active transport
factors are not explicitly accounted for (the role of oxygen carriers as slow modulators of the
effective Péclet number is discussed in Sec. 4.4.5). We focus therefore on uptake into placental
villous tissue, for example of glucose (Hill-type uptake), and the exchange of passive inert
substances (first-order uptake) at low concentration of solute in the fetal circulation relative to
its concentration in the intervillous space [25], neglecting possible reversibility of materno-fetal
solute exchange.

However, the advantage of assuming such a simple structure and physiology of a placentone
is that it allows for a mathematically transparent analysis of its function. This will, we hope,
bring some insight to the development of more advanced models for placental circulation and

metabolic exchange.

6.2.3 Problem statement

When the volume flux ¢ of maternal blood into the placentone is prescribed, the problem
is characterised by two dimensionless parameters: the uptake parameter (also known as the
Damkohler number) Da = aL3/q, which expresses the local nutrient consumption rate in fe-
tal terminal villi relative to the rate of convective mass transfer by maternal blood; and the
geometrical ratio h = z,/L (where 0 < h < 1), which reflects the position of the basal vesscls
relative to the placentone boundary.

The absolute net uptake rate of a solute from the maternal blood N, is defined as the
difference betwecen the concentration flux at the source ¢ Cy and the concentration flux at the
sinks. The relative net uptake rate (measured relative to the available flux of solute) is defined
as N; = N,/qCy (the computational details will be given in Sec. 6.3 below). These integral
measures enable us to investigate the influence of model parameters Da and h on the net
uptake efficiency of the placentone.

If, instead of ¢, the difference in blood pressure AP between the supplying spiral artery
and draining decidual veins is prescribed, we must evaluate ¢ in terms of the permeability k
of the porous medium, which depends on the volume fraction ¢ of space occupied by villous
branches. Variation of the geometric parameters k and ¢ in the model cnables us to explore
how the placentone’s structure influences its function in terms of solute uptake.

We use cylindrical coordinates (z,7,8) with a local maternal blood velocity u(r,z) =
(uz(r, 2), ur(r, 2), 0) to describe the axisymmetric flow, where z is the axis of symmetry (on which
the source and sinks lie), r is the radial distance normal to the axis and 8 is the azimuthal angle
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(so that the placentone occupies [z] < L, 0<r <L, 0<6 <7, r?+ 22 < L? sce Fig. 6.1a).
Neglecting fluid inertia due to the low Reynolds number (see Table 6.1) and averaging

mass and momentum conservation laws over lengthscales large compared to the scale of villous

microstructure, but small compared to the placentone radius L, we can describe the steady flow

of maternal blood by Darcy’s law at leading order (see (4.3.34a) )

V-u=0, (6.2.1)

u= _k VP, (6.2.2)
i

where u and P are the velocity and pressure of blood in the intervillous space; k is the per-
meability coefficient (inverse flow resistance), and p is blood viscosity, which are both assumed
constant. Because the Darcy flow (6.2.2) is by definition irrotational (V x u = 0), we introduce
a Stokes stream function and velocity potential with appropriate boundary conditions and ap-
ply the method of images to obtain the exact solution to the flow problem. In doing so we find

analytical expressions for the pressure and velocity fields in closed form.
Analogously to problem (4.3.45) obtained in Section (4.3.3) for solute transport past a pe-
riodic array at moderate-to-large local Péclet number, we describe steady advection-dominated

transport of a passive solute in a homogeneous isotropic porous medium, at leading order, by

(u-V)C = ~aCy f(C/Cy),
Clrz=0 = Co,

(6.2.3)

where C is the concentration of a solute (gas or nutrient) in the maternal blood, Cy is the solute
concentration at the source (the spiral artery entering the placentone), c is a solute consumption
rate averaged over the pore length scale (characterising uptake by the villous tissue), and f is
a dimensionless function of C, = C/Cy defining the uptake kinetics. According to (6.2.3), the
solute is convected along streamlines (due to relatively large Péclet number, sce Table 6.1).
We consider three types of reaction kinetics for uptake of a solute, dissolved gas or nutrient
into the villous tree: first- and second-order passive uptake (with rate function f(Cy) = C,,
f(C.) = C?), and Hill-type kinetics ( f(C,) = C?/(k3 + C?), where kg is a dimensionless sat-
uration factor). These types of uptake kinetics may be appropriate in the case of passive or
facilitated transport of certain metabolites such as glucose, for which advective transport dom-
inates over molecular diffusion (see Table 6.1); we do not seek to account for the more complex
reaction kinetics of oxygen, carbon dioxide or amino-acids in maternal and fetal blood [122, 238].
Equations (6.2.1)-(6.2.2) are solved subject to boundary conditions }i_rzz)rur = 1(4(z) -
310(z—2) +8(z+2)]) on §; = {r?+22<L? =0, 6=n} and u-n = 0on S =
{r?+22=1L% 0<6<n}; here the Dirac é-function is used to approximate the flow rate
distribution of a singular source and sinks, g is the flow rate at the source (which is split equally
between the sinks), and n is the outward unit normal vector to the hemispherical surface S,
(see Fig. 6.1b). We explain how the finite sizes of the source and sink vessels influence the flow

solution below.
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Equations (6.2.1)-(6.2.3) complemented by boundary conditions constitute the complete
system describing steady blood flow and transport processes in the intervillous space.
The incompressibility condition (6.2.1) is identically satisfied if we introduce the Stokes

stream function ¢(r, z) in a cylindrical coordinate system, defined as u, = —%%ff, U, = %?Tlr/'

where u, and u, are radial and axial velocity components. Equation (6.2.2) implics that the
flow field is irrotational, so we can introduce a velocity potential ® = ——%P, such that u = V.
Thus, from (6.2.1)-(6.2.2) we obtain

v%-%%’f:o, ViP=0. (6.2.4)

Since a single source emits in the half-space a flux g, the boundary condition for the Stokes
stream function on S, describing a system of one source and two sinks with zero net flux, is
=2 (§(2) — 3 [8(z — z) + 6(z + 2,)]). In order to satisfy u-n =0 on Sy,
we take ¢ = constant and n- VP = 0 on So. Without loss of generality, we set ¥ = 0 on S.

limru, = — 2%
=0 T bz

We rewrite (6.2.3) and (6.2.4), subject to boundary conditions, in dimensionless form. We
choose the following non-dimensional variables: 7 = Lv', 2 = L2/, u = Uu' and ¢ = qv¢/,
P = P+ PP, C = CyC', where U = q/L? is typical flow velocity scale of maternal
blood, Py = pug/kL is a pressure scale characteristic of the viscous pressure drop across a
porous medium, and P, is a reference pressure intermediate between the arterial and venous
pressures (see Table 6.1). Then the dimensionless problem for blood flow and solute transport

in the hemispherical domain reads:

! 1 /0y aC" oy o .
2"/)1 %g:ﬁ =0, VP = 0, o <a:[,)/ 9 a’fl 87") = -—Daf(C’) in V',
/
-9 L (s -L [5(z'—h)+6<z'+h>1) ,
F A IR 2 /
OP 1 1 on 51
— K / = — ! —_—— z/— ! y
Jll_xr'lor 57 - (5(z) 5 [6( h) + (= +h)])
/
Y =0, 8(,)]; =0 on S5,
C,IT’=z'=O =1.

(6.2.5)
where V' = {|2/| <1, 0< " <1,0<0<m " +22<1}, S; =0V Nn{#=0,0 =},
Sy = 0V' N {r? + 22 =1}. The Damkéhler number is denoted by Da = aL?®/q, and the
dimensionless source-sink distance is h = 2,/L. In the subsequent analysis, the primes over

dimensionless variables arc dropped.

6.3 Methods

6.3.1 The method of images for Darcy’s flow in a hemispherical domain

The fundamental solutions (Green’s functions) to the stream function and pressure equations

with a singular uniform source at z = 1 on the axis of symmetry in an unbounded domain (z € R,
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r >0, 0 <6< 2n) are as follows [182]:

1 z—1 1 1

Gy = —— D Gp= e
v dm \f(z —1)2 + r? d ar \f(z - 1)2 + 12

The flow and pressure solutions of problem (6.2.5) in the unbounded half-space (|z| > 0,

(6.3.1)

r >0, 0 < 6 < ) are given by superposition of the fundamental solutions (6.3.1) as

Yoo(rrz) = — b [ 2 1 R AL
P T Vi 2| o hrr i) (6.3.2)

Po(rz) = — [ e — 1 ! N 1
T T\ V22 2| Je-hR+r2 JerhE+r2|)

Thus along the z-axis, 1o takes the values 0, +§1;, _2an 0 as z increases from —1 to +1.

The method of images allows us to satisfy the boundary conditions on S» by adding a cor-
rection to the flow and pressure fields (6.3.2). In order to do so, we apply Butler’s and Weiss’s
Sphere theorems, which generalise Milne-Thomson’s Circle theorem for three-dimensional ax-

isymmetric fluid motions [182]:

Theorem 6.1 (Butler [58] ):

Let there be azisymmetrical irrotational flow of incompressible inviscid fluid with no rigid bound-
aries, characterised by the stream function (R, 0) in spherical coordinate system (R, 0,¢), all
of those singularities are at a distance greater than a from the origin, and let vy = O(R?) at

the origin. If the rigid sphere R = a be introduced into the flow, the stream function becomnes

R 2
GRO) = vo(R.0) - Tun(%.6)

Theorem 6.2 ( Weiss [267] ):

Let there be irrotational flow of incompressible inviscid fluid with no rigid boundaries, charac-
terised by the velocity potential ®y(R, 6, ), all of those singularities are at a distance greater
than a from the origin. If the rigid sphere R = a be introduced into the flow, the velocity

potential becomes

a?/R
1 ! a (I)O(Rla 03 <P) /
=& = — " dR.
®(R.6,9) = (R, 6,9) + - /R S d
0

Let the unperturbed flow and pressure fields be given by ¥eo(r, 2), Peo(r, 2) from (6.3.2).
Then, according to Theorcem 6.1, the stream function satisfying ¢ = 0 on Sy is

_ VK 2 1 z— Kh 2+ Kh 6.3
Vi) = veolnna) 5 (m_i[\/ﬁ+(z—m)2+ \/r2+(z+1\'h,)2D’ (03:9)

where K = r2 + 22, r 2z € V. The image system consists of two point sinks at inverse points
with respect to the sphere ((r,z) = (0, £1/h) for (0, +h)) and two line sinks, stretched from
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Figure 6.2. Illustration to the image system: absolute fluid velocity distribution near the axis
of symmetry r = 0 (plotted in dimensionless variables). Position of original source and sinks
is shown by green dots, the inverse points are depicted in red (h = 0.5, the radius of the
hemisphere (solid blue) is equal to 1).

the inverse points to infinity (r = 0, |z| > 1/h) (as shown in Fig. 6.2).

By setting K =1 in (6.3.3) we can readily see that ¥ =0 on S5 as required. One can also
check, by direct calculation using (6.3.3), that the normal component of fluid velocity at the
boundary vanishes: (u-n) = 2 6‘“ 3—"1 0 on S,.

Application of Theorem 6.2 glves the pressure perturbation in the presence of a hemisphere:

1 1 i Va2 +rl—z
P(T,Z)=Poo(r,z)+§;<1nr——,: ( ) +r2+1ﬂ( ( ))

2 z—2z%)? z—22)2 41— (z2— 2}

2* 214y
P +ln<( VT rrl4z )D

(e + 222 +1r? 2+ 2224+ r2+ (2423

(6.3.4)
where 25 =1/h and r,z € V.
In doing so we obtain exact solutions (6.3.3), (6.3.4) to the flow and pressure distributions
of boundary-value problem (6.2.5).
We can also find a relation between the (dimensional) source-sink pressure drop AP =
Pl;—4,2=0 — P|r=a, »—-, (evaluated in the vicinity of the vessel’s junctions on the basal plate) and

the flow rate ¢, based on (6.3.2) for an unbounded domain (in dimensional variables):

1
el 2 L ] } 4”"“AP(1+0(~3)). (6.3.5)

Iz 20 /a2 + 22 2./a® + 422 3

Here a < z, is the width of a small neighbourhood of a source or sink, of scale comparable

with the maternal vessels’ radius. We are here exploiting the singular pressure distributions
in (6.3.2) near z = 0, £h, and are matching the arterial pressure P, to Pt + pq/(2mka)
and venous pressure P, to P — jq/(4mka). Thus we define Pes = (Pa + 2P,)/3 (AP =
P, — P, = 3uq/(47ka), agreeing with (6.3.5) to the leading order; in dimensional variables,
for, eg. P, = 9 mmHg, P, = 3 mmHg, we have P = 5 mmHg and AP = 6 mmHg).
The relation (6.3.5) also gives a good approximation in the case of the bounded hemispherical
domain: one can show, via expansion in a power series in a, that for L = 10a, 2z, = 0.9L, the
relative difference between expression (6.3.5) and relation based on the precise formula (6.3.4)
is of the order of 10%. Therefore, the intervillous maternal blood pressure in Figs 6.3(c,d) is
defined within levels set by the respective radii a of the basal vessels and the fluxes they carry,

determining the overall pressure drop AP across the placentone.
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One can generalisc relation (6.3.5) to the case of the spiral artery (source) and decidual veins
(sinks) of different radii a, and a, respectively, providing that they are sufficiently small and far
apart (as, a, < 2,,). The leading order terms in (6.3.2) give AP = P|;—q, ;=0 — Plr=q, 222, &
{:—,qg (% + ﬁ) Comparing with (6.3.5), we find the effective vessel’s lengthscale a to be a
weighted harmonic mean of the source and sinks’ lengthscales:

-1
a=§(—1—+ ! > . (6.3.6)

2\as 2a,

A direct corollary of (6.3.6) is the dominant influence of the vessels of smaller calibre on the
placentone’s overall conductance. Indeed, a ~ 3a, for a5 > a,; a ~ 3as/2 for ay € ay, and
a = a, for a5 = a,.

Another important characteristic of the placentone is the volume fraction of villous tissue ¢.

A qualitative analysis can be performed using the Kozeny-Carman formula [29] for permeability

_ ‘ . . . . _ {wetted solid area) _
k= (1-¢)3/(co?) (with specific surface area of porous medium oy = onit coll vohume) = 0¢/d

and the “shape-factor” constant ¢ = 5), giving

@ (1-¢)°

v — ‘i'éa 7—" s (6.37)

where d is an average diameter of villi in the intraplacentone space. Expression (6.3.7) is most
precise for a medium formed by a periodic array of solid spheres of constant diameter d [29].
Using (6.3.5) and (6.3.7), we can cxpress the flow rate at the source ¢ in terms of volume
fraction, for a constant pressure drop AP = P|;—q ;=0 — Plr=a,2=z, in dinensional variables
(evaluated a distance a = 0.8 mm from the vessels, where a is comparable to the radius of each

vessel; see Table 6.1), as follows:

rad’AP (1 - ¢)3

55 e (6.3.8)

q(¢) =~

6.3.2 Numerical scheme to compute the solute distribution and net uptake rate

The concentration distribution of solute C(r, z) is computed by numerical integration of the
velocity field along streamlines, which are the trajectories of fluid “particles” in the intervillous
space. The absolute and relative net uptake rates are estimated as a weighted sum of uptakes
per unit time over individual streamlines.

The steady advective transport of a solute (6.2.3) is described in dimensionless form by

(u-V)C =-Daf(C), Clr.=0 =1, (6.3.9)

where f(C) is a rational function of C defining the type of passive uptake kinctics.
The concentration distribution of solute is computed by integration of the velocity field
along streamlines. We use a Lagrangian formulation to rewrite equation (6.3.9) as
dC

= = -Daf(C), C(O)=1, (6.3.10)
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where C = C(t), x = (r(t), 2(t)) belongs to a particular streamline, defined as dx/dt = u, and
t = 0 at the source (r = z = 0). Here t represents time evolution following a material particle
along a streamline.

For the considered three types of uptake kinetics, by direct integration of (6.3.10), we find
the explicit time dependencies to be as follows:

Ist-order :  f(C)=C, C(t) =e P2,

1
2 - : = 2 =
nd-order f(c)y=c+s C@) T+ Dat
. . Dat+ k% —1 (Dat + k2 ~1)2
. _ _C? _ 0 0
The relative net uptake rate of a solute is
N, —-1—/ Cu-ndS, (6.3.11)

slnk

where Sgink is a surface in a small vicinity of the sink and n is the outward unit normal vector
to this surface. The dimensional absolute net uptake rate is N, = ¢ Cy N,.

The absolute and relative net uptake rates (6.3.11) are estimated as a weighted sum of
uptakes per unit time over individual streamlines using a trapczium quadrature. The time ¢
elapsed since a fluid particle has travelled along a streamline is calculated numerically from

t= f s where s is a distance along the streamline:

2
.y Z A'f'; + (AZ,)

2(ry, 2i) + u2(ri, 2:)

where Ar; = rjpy — 15, Az = zi4) — 2, n; is the number of points at discretisation of a
streamline, velocities u, and u, are computed in accord with the definition of the stream function
and by use of the exact formula (6.3.3).

The relative computational inaccuracy is of order 1/N, where N is the number of points of
a uniform mesh taken at discretisation in both the z and r directions. Typically 200 streamlines
and N = 800 uniform grid points are used in the calculations. Linear interpolation between

streamlines is used to get a continuous concentration field.

6.4 Results

6.4.1 Flow and pressure distributions

Fig. 6.3 shows flow and pressure ficlds (described by formula (6.3.3)) in a hemispherical
placentone with two different relative decidual artery-vein distances. Streamlines (blue, in
Fig. 6.3(a,b)) display paths followed by maternal blood from the central spiral artery outwards to
the two decidual veins. Because of the axial symmetry of flow (Fig. 6.1), the streamlines do not

depend on the azimuthal angle . The orthogonal green isobars show how the pressure falls from
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Figure 6.3. (a,b) predicted streamlines (blue) and constant pressure lines (green) for steady
flow in a homogeneous placentone plotted in a cross-section perpendicular to the z-axis holding
the basal vessels, where r is a distance from the axis of symmetry. Arrows indicate the direction
of flow. (c,d) Intervillous blood pressure along the z-axis (r ~ 0.01 cm, Pef = 5 mmHg, ¢o =
5ml/min). The decidual veins are located either near the centre ((a,c), h = 0.45) or near the
periphery ((b,d), h = 0.9) of the placentone.

a high value near the flow source to a low value near each sink; the isobars meet the impermeable
placentone boundaries orthogonally. The pressure distribution along the z-axis (Fig. 6.3(c,d))
shows how the pressure rises (falls) very rapidly near the artery (veins), determining the overall
pressure drop AP across the placenta. The intervillous pressure on the hemispherical boundary,
far from these vessels, with a value intermediate between the arterial and venous pressures, is
set to P = 5 mmHg (see (6.3.5) for more details); the pressure drop AP across the placentone
shown in Fig. 6.3(c,d) for the reference values of Table 6.1 is moderate, exhibiting low resistance
to the maternal flow in the intervillous space [185]. The magnitudes of the pressures at the exit
of the spiral artery and inlets of the decidual veins are primarily determined in the model by
the width of the vessels and the volume fluxes passing through them.

When the distance between the source and sinks is small compared to the width of the pla-
centone (h = z,/L = 0.45, Fig. 6.3(a,c)), the flow pattern is localised due to the short-circuit
of blood from the basal arteries to the nearby veins, unlike the flow that penetrates deeper into
the dense intervillous space when the veins are situated near the periphery of the placentone
(Fig. 6.3(b,d)). While flow patterns depend strongly on h, the overall conductivity of the pla-
centone (the ratio of flow rate ¢ to the overall pressure drop AP) is relatively insensitive to
either the source-sink distance z, or the placentone radius L, being instead approximately pro-
portional to the ratio k a/u, where a is a length comparable to the width of the exit of the spiral
artery and the entrance of each decidual vein, or whichever is the smaller (see equations (6.3.5)
and (6.3.6) ).
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6.4.2 Tracer dynamics in the placentone

The early visualisation methods of the utero-placental blood circulation by radioangiogra-
phy were developed and applied to the primate and human uterus by Borell, Ramsey, Freese
and others [46, 96, 207]. The method consists of an injection of a bolus of radio-opaque con-
trast medium into the systemnic circulation and subsequent serial x-ray imaging of the uterus
(typically, 60 — 70 ml of contrast medium is administered in about 5 sec [46, 96]; assuming
the total blood supply of the placenta to be 500 ml/min (see Table 6.1), the filling timce of the
uterus with a bolus of radio-opaque material is of the order of 10 sec). Here we model the inten-
sity distribution on radiographic images of a bolus of material as it enters the placentone and
spreads outwards from the mouth of the spiral artery. We do this by tracking the axisymmetric
surfaces at the leading and trailing edge of the bolus, and computing the distance between
them in the direction perpendicular to the basal plate (the anterior-posterior direction of x-ray
imaging of the placenta). Assuming the radio-opaque material is distributed uniformly between
the two surfaces, this distance will be proportional to the relative intensity of the resulting
radioangiographic image.

Fig. 6.4@) shows the leading and trailing fronts of tracer (dots) and the distance between
them (thin solid) in a section perpendicular to the basal plate at a fixed moment of time following
the introduction of a passive tracer into the spiral artery; the time-dependence of cross-sectional
area occupied by a tracer bolus is plotted in Fig. 6.4(d). The growth rate of the bolus area slows
down as it approaches the veins at the periphery of the placentone.

Ring-like structures, colloquially (but inappropriately, given the absence of rotation of fluid
particles) known as “smoke rings” [33, 96], appear on x-ray images of the primate and human
uterus shortly after injection as shown in Fig. 6.4() by Freese [96]. We visualise the tracer
distribution as explained above using two tracer fronts separated by a 10 sec time interval,
projected to the basal plate (z,z), where ¢ = rcosé, in Fig. 6.4(b,c) (b =0.99). The non-
uniform intensity distribution arises because the thickness of the radially expanding bolus shell
is maximal near its margins (Fig. 6.4a). The bright ring remains approximately circular until

it gets close to the decidual veins (Fig. 6.4c).

6.4.3 Representative solute distributions

Representative solute concentration distributions for first-order uptake kinetics at varying
values of the non-dimensional uptake parameter Da = o L3/q and varying artery-vein distances
h = 2,/L are depicted in Fig. 6.5. Fig. 6.5(a,b) shows the effect of changing the artery-vein
distance, and Fig. 6.5(c,d) shows the effect of varying the local solute consumption rate «
relative to the inlet volume flux q¢. The consequence of reducing the source-sink distance is
similar to increasing the uptake parameter Da; in both Fig. 6.5() and Fig. 6.5(d) the nutrient
pattern is localised in the lower half of the domain, providing poor nutrient supply to the rest
of placentone. Comparing Figures 6.5(b) and 6.5(), we see that the solute concentration near
the veins is increased (in Fig. 6.5¢) by reducing Da, i.e. by reducing the local consumption rate
a, the size of the placentone L or by increasing the inlet flow rate g, effects which reduce the
overall relative net uptake rate N;.

The influence of changing independently the artery-vein distance h, solute consumption
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Figure 6.4. Tracer dynamics in the placentone: (a) leading and trailing tracer fronts (dots) and
the shell thickness profile (thin solid, representing x-ray intensity) 15 sec following the appear-
ance of the tracer from the spiral artery (shown in a sagittal section through the placentone,
with the outer boundary indicated by a thick solid line; the decidual veins lie at 2z >~ £2 cm);
(b,c) computed intensity of the tracer (greyscale) in the orthogonal projection on the basal plate
15 sec (b) and 25 sec (c¢) after the introduction of tracer to the model (white dots indicate the
location of the spiral artery and decidual veins); (d) dependence of cross-sectional area of tracer
bolus on time; (e) serial radioangiographic film of monkey uterus 18.5 sec following injection of

Renografin (arrows indicate ring-like structures), reproduced from [96].

rate «, inlet blood flow rate ¢ and the size of the placentone L on the relative net uptake rate
N, under different types of uptake kinetics is shown in Fig. 6.6. Results are presented relative
to reference values of the parameters Lg, ag, qo given in Table 6.1. N, reaches its maximum
when h approaches 1 (Fig. 6.6a), saturating at large consumption rate « or large placentone
radius L (Fig. 6.6(b,d)).

The dependence of net uptake rate on inlet flow rate is more subtle: measured relative to
a fixed inlet solute flux gyCy, the absolute net uptake rate N,/qoCp increases with g, as more

material is delivered to the placentone per unit time by the increased flux; measured relative to
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Figure 6.5. Streamlines (solid black) and normalised concentration field (C/Cp, colours) in the
placentone for different values of uptake parameter and relative position of the decidual veins
(arrows): (a) small source-sink distance (Da = 1, h = 0.45); (b) veins near the periphery (Da =
1, h =0.9); (c) low uptake rate (Da = 0.25, h = 0.9); (d) high uptake rate (Da = 4, h = 0.9).
The corresponding values of the relative net uptake rate N, are (a) 0.43, (b) 0.68, (¢) 0.33, (d)
0.94.

the increasing flux of available solute ¢ Cp, however, the relative net uptake rate N, = N,/qCy
falls with g, as there is less time available for absorption to take place at higher flow rates as
nutrient passes through the placentone more rapidly.

Figures 6.5() and 6.6(c) indicate that, when the veins are located near the periphery of
the placentone, there is saturation of the whole placentone with solute at high flow rates ¢ for
fixed solute consumption rate a and placentone size L (i.e. at Da < 1, Fig. 6.5¢). This can
be explained by the fact that at high blood flow speeds the concentration distribution in the
hemisphere is nearly equal to the initial solute concentration in the spiral artery, making the
solute consumption rate a a limiting factor for solute extraction.

Plotting both the relative net uptake rate N, and averaged over the whole domain solute
concentration (C') (relative to the inlet concentration Cp) as a function of Da in Figure 6.7, we
observe that there is a trade-off between the high uptake rates and a uniform solute distribution
in a placentone. Thus, although an increase either in a or in the maternal blood flow rate ¢
gives a higher absolute net uptake rate N,/qoCo, it is essential to keep their ratio (characterised
by the Damkdchler number) below about 1, in order to provide a more homogeneous spatial

solute distribution (¢f. Fig. 6.5(c,d) ).

6.4.4 Influence of volume fraction of villous tissue on net uptake rate

An important characteristic of the placentone is the volume fraction of villous tissue ¢ (the

ratio of the volume occupied by villi to the total volume of the placentone).
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Figure 6.6. Effect of basal vessels’ position and solute consumption rate on a net uptake rate
for different types of uptake kinetics. Dependence of the net uptake rate N, on: (a) decidual
artery-vein distance h = z,/L (Da = 1); (b) solute consumption rate « relative to the reference
consumption rate ag at fixed inlet flux of maternal blood (h = 0.9, ¢ = ¢g); (¢): inlet blood
flow rate ¢ relative to the reference flow rate qo (h = 0.9, @ = ayp); (d): size of the placentone
L relative to the reference placentone radius Lo (h = 0.9, @ = ap, ¢ = qo). See Table 6.1 for
parameter values.

Making simple assumptions about the geometric structure of the villous branches, the flow
resistance of the villous tissue can be expressed in terms of ¢. Changes in the volume flux ¢
through the placentone by varying ¢ under fixed pressure drop AP (relative to a reference value
go) can be estimated as g &~ 2qy (1—¢)/¢? (see Sec. 6.3, equation (6.3.8)). If we assume that the
solute consumption rate per unit volume a is proportional to the surface area of villous tissue
(and assuming the shape of numerous terminal villi, which dominate in the mature human
placenta [70, 126], to be close to spherical), then a ~ 1.6 $?/3, where the coefficients of
proportionality are chosen in such a way that & = ag, ¢ = qo at ¢ = 0.5 (see Table 6.1).

Therefore, we can investigate how the absolute net uptake rate N,/qoCop, scaled to a ref-
erence inlet concentration flux, depends on the villous volume fraction. Fig. 6.8 demonstrates
the existence of an optimal volume fraction for all considered types of passive uptake, although
what is optimal for one transported species may be sub-optimal for another having different
reaction kinetics. However, the difference between the three model uptake rate functions is
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Figure 6.7. Net uptake rate N, and volume-averaged solute concentration (C)/Cy ws.
the Damkohler number (assuming first-order uptake kinetics; h = 0.9, ¢ = qp). See also
Fig. 6.5(c,d).
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Figure 6.8. Absolute net uptake rate N, relative to the reference concentration flux of solute
goCo vs. volume fraction ¢ for different types of uptake kinetics (h = 0.9, ko = 0.25).

modest, as anticipated from the plots of relative net uptake rates in Fig. 6.6.

6.4.5 Influence of the central cavity on solute concentration distribution

In order to investigate the role of the central cavity of the placentone in the framework
of our simple mathematical model, we employ the following additional assumptions: first, the
solute consumption rate in the central cavity is negligible compared to the rest of placentone
tissue (a = 0); second, the border of the central cavity is delineated by a constant pressure line

of the flow in a homogeneous hemisphere (one of the isobars shown in green in Fig. 6.3b). The
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latter condition corresponds to the case when the flow velocity of maternal blood in the dense
intervillous space is slow relative to the blood motion in the central cavity, allowing the pressure
to equilibrate within the cavity. It also follows from this assumption that blood is driven by
the same pressure drop (between the central cavity and the decidual veins) toward the top and
the side of the placentone, and therefore the flow velocitics in the top region are smaller than
velocities in the lower part.

The effect of varying the size of the central cavity is shown in Fig. 6.9(a,b), where flow and
concentration distributions are presented for a small and large cavity. We define the effective
cavity radius R as the square root of its cross-sectional area A (R = \/m); the pressure drop
AP between the central cavity and the decidual veins is held constant in the two simulations.
We assume no uptake of solute takes place within the cavity.

The large cavity leads to a “boundary-layer”-like solute distribution pattern in the intervil-
lous space with higher concentrations in the upper half of the domain (Fig. 6.9b) compared to
the case of homogeneous uptake in the placentone (Fig. 6.5b), while the relative net uptake rate
N, decreases with increasing cavity size at constant pressure drop (Fig. 6.9¢). As in Fig. 6.6(c),
the smaller volume of villous tissue provides less flow resistance, so that ¢ increases with f7;
at the same time, the smaller volume has less capacity to absorb nutrient. Both effects cause
N, to fall with R. However, computations show that the dependence of the absolute net up-
take rate N, (relative to the reference concentration flux goCy) on the cavity radius exhibits
a peak for an intermediate cavity size, indicating an optimal relation hetween the resistance
to maternal blood perfusion and the amount of villous tissue participating in solute uptake
(Fig. 6.9¢c). While uptake is low for large R, the cavity may play an important role in shielding
villous tissue from harmful shear stresses associated with maternal blood emerging from the
spiral artery. In addition, the central cavity surrounded by a dense viscoclastic porous medium
(villous tissue) can effectively damp the pulsatile flow emerging from the spiral artery, as we

have briefly analysed in Appendix C.

6.5 Discussion

We have developed a simple mathematical model to describe steady maternal flow and solute
transport in the human placentone. The placenta is characterised by high degrees of geometric
complexity and substantial variability between individuals. We have sought to incorporate
only the most significant geometric and haemodynamical features in our model, treating the
placentone as a hemispherical structure (Fig. 6.1). This enabled us to derive an analytical
expression for the three-dimensional internal flow field (6.3.3), (6.3.4) (sce Sec. 6.3 for details),
from which simple estimates of nutrient uptake were obtained. Bearing all these limitations in
mind, we can now assess the model’s predictions.

First, in the absence of a cavity, the localised source and sinks that drive flow through the
villous tree (Figs 6.3 and 6.5) show large flow speeds (about 2 cm/s at a distance of order 1 mm
from the spiral artery for parameter values from Table 6.1, shown by crowding of streamlines,
which is broadly consistent with estimates of Burton et al. [57]) and large pressure gradients

in the immediate neighbourhood of the decidual artery and veins. This implies that shear
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Figure 6.9. Top: flow streamlines (solid) and concentration distribution (colours) in a hemi-
sphere in the presence of the central cavity (assuming first-order uptake kinetics, h = 0.9): (a) a
small cavity of effective radius R ~ 0.6 cm with Da ~ 0.43 outside the cavity and relative net
uptake rate N, ~ 0.45; (b) a large cavity of effective radius R ~ 1 cm with Da ~ 0.39 and
N, =~ 0.37; Bottom: (c) dependence of net uptake rates N,, N, on the cavity size R (with
h=10.9);

stresses on villous tissue will be largest in these locations. These flow patterns provide a strong
argument for the remodelling of the tree to form a cavity above the arterial opening (Fig. 6.9),
and possibly above the veins also, to protect tissues from high stresses [249] and to increase
the overall conductance of the placentone. Our model also shows that, in a homogeneous
placentone, the flow and solute concentration are more evenly distributed when the decidual
veins are located peripherally (Fig. 6.6a), supporting the hypothesis [49, 98] that decidual veins
are primarily located at the periphery of the placentone. It may be possible to generalise these
findings to explain potential benefits arising from elevated openings of decidual veins on the
placental septa [33, 117].

Our model indicates that the calibre of the spiral artery and decidual veins may be a
dominant determinant of the overall conductance of the placentone. In particular, Equation
(6.3.5) shows that the ratio of the maternal blood flow rate ¢ through the placentone to the
driving pressure difference AP between the spiral artery and decidual veins is 47ka/3p, where

k is the effective hydraulic conductivity of the villous tissue, p is the effective viscosity of
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maternal blood and « is a lengthscale representative of the calibre of the spiral artery and
decidual veins where they meet the basal plate of placenta. This may have implications for
placental insufficiency such as in pre-eclampsia, where inadequate trophoblast invasion of spiral
arteries may result in reduced lumenal diameter [57] and hence significantly reduced placentone
conductance to maternal blood flow. In case of an early onset of failed trophoblast invasion
leading to lower arterial calibre a over normal values, there may be sufficient time available
for compensatory remodelling of the villous tree (increasing the placentone conductivity k) to
maintain physiologically normal values of ¢ at constant pressure drop AP. However, if the
dilation of spiral arteries is impaired in the late stage of pregnancy, or an acute constriction of
the supplying vesscls takes place, there may not be sufficient time for compensatory remodelling
of the villous tree; here k£ would remain counstant, and maternal systemic arterial blood pressure
would have to be elevated in order to maintain the same flow rate level ¢ at the reduced value of
a. It would be of interest to verify experimentally the linear dependence (predicted in Equation
(6.3.5)) of maternal blood flow rate through an isolated fetal cotyledon on the calibre of the
cannula used to mimic the spiral artery in an ez vivo perfusion model.

The model predictions of tracer distribution in a placentone (Fig. 6.4) are in accord with
radioangiographic observations in vivo in primates and humans. The formation of a ring-like
structure growing with time is demonstrated even without explicitly accounting for a central
cavity in the placentone. We need to stress that the term “smoke ring” is misleading in this
context, as here we have a radially outward maternal flow without any localised rotation of
fluid particles. We hope that rapid development of new techniques in ultrasound imaging (2,
148], complementing traditional radioangiography and used in conjunction with mathematical
modelling, may offer new tools for monitoring placental function with a lower risk to mother
and fetus.

For a given geometry, the ratio of nutrient uptake rate to volume flux, expressed by the
dimensionless Damkohler number Da = aL3/q, determines the homogeneity of uptake: if Da is
sufficiently large, for example, uptake is confined to the immediate neighbourhood of the spiral
artery (Fig. 6.5d). Evidently materials with differing uptake rates and kinetics (and therefore
different Da) will be absorbed in different regions of the placentone. The relative net uptake rate
N, can be interpreted as a relative difference between solute concentrations in the spiral artery
and decidual vein, scaled with arterial concentration at constant blood flow rate in the spiral
artery. A range of values for oxygen partial pressure suggests that N, for oxygen varics between
0.3 and 0.7 [153], which is close to the predicted range in Fig. 6.6(@). One possible explanation of
a modest relative net uptake rate is that it helps to keep solute more homogencously distributed
in the placentone, as in Fig. 6.5(). While the dependence of the relative net uptake rate N,
on the consumption rate o (Fig. 6.6b) follows the predictions of the placental oxygen exchange
in Lardner’s compartmental model (see {153, Fig.2]), we predict that the oxygen pattern would
be highly localised at the very large values of the “nondimensional diffusion coefficient” (the
analogue of the uptake parameter Da ~ 10 — 10?), with much of the placental tissue being kept
in a hypoxic state.

The placentone exhibits a trade-off between flow resistance and uptake capacity. A higher

density of villous material offers a larger surface area for uptake, but also higher flow resistance
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and hence lower perfusion (for a given pressure drop between artery and veins). Likewise with a
low density of villous tissue, nutrients could flow rapidly through the placentone, too quickly for
substantial uptake to take place. We used our model to demonstrate the existence of an optimal
volume fraction of ¢ = 0.3 that maximises the absolute net uptake rate of our representative
solute (see Fig. 6.8). In relating uptake rates and likely fluxes to volume fractions, we used
standard expressions from the porous medium literature (e.g. the Kozeny—Carman formula),
which is derived assuming the porous medium is a uniform distribution of spheres. As a result
of these and our other modelling assumptions, the resulting prediction of optimal volume fraction
falls below values measured in previous studies (for example, estimates of the villous volume
fraction, based on stereological data of Mayhew [172] for normal, high altitude and diabetic
placentas, vary between approximately 0.3 and 0.6 with a tendency towards low values in the
high-altitude group, used as a model for pre-eclampsia; there was no significant difference in the
volume of intervillous space and villous volume between the control and diabetic groups [172]).
Numerous additional factors will influence the optimal value of ¢, which we did not explore
explicitly here.

While considering flow and solute transport in the placentone, we ignored the inertia and
pulsatility of a jet of maternal blood issuing from a spiral artery, as well as deformability of
the villous tissue. These factors will be attenuated both by mixing in the cavity above the
artery and by viscous effects in the intervillous space: while the Reynolds number based on
placentone diameter is of order unity (Table 6.1), the Reynolds number based on intervillous
pore diameter is substantially smaller, and so inertial effects can safely be neglected everywhere
except possibly in the immediate neighbourhood of the spiral artery [57]. The impact of the
blood flow pulsatility and villous deformability is partially addressed in Appendix C. We show
how the Darcy flow in the dense intervillous space, coupled with incompressible pulsatile flow
in the cavity and a viscoelastic constitutive law for the villous tissue, give a flow-driven dis-
sipative oscillator model for the cavity radius (see Equation (C.2.10)). Parameter estimation
(Fig. C.4) indicates that the system is heavily damped and the static description of the central
cavity appears to be a reasonably good approximation. Thus, the central cavity, apart from
optimising the overall intervillous flow resistance and solute uptake, may also act as a damper
that transforms a pulsatile flow from the spiral artery to a steady flow in the intervillous space,

where most of the solute exchange takes place.



CONCLUSIONS AND FURTHER DIRECTIONS

7.1 Summary of the results

,7:10w and transport in the human placenta is a fundamentally multiscale process, inte-
grating the solute exchange at the scale of individual terminal villi (£ 0.01 cm) with the flow
distribution around a single villous tree (~ 1 ¢m) and in the whole organ (2 10 ¢m). The aim of
this thesis is to examine the interplay between some of these scales and to develop a theoretical
and computational framework for systematic modelling of the placental transport function in
health and disease.

Building on the works of Auriault, Mei, Mikeli¢ and many others [11, 177, 180], we have
studied the theoretical implication of flow past a periodic microscopic array of sinks, represent-
ing the villous branches, in Chapter 2. We classify distinct asymptotic transport regimes, cach
characterised by the dominance of advective, diffusive or uptake effects, at the macroscale, and
provide a comprehensive estimate of the accuracy of the homogenized description summarised
as a map in (Pe, Da)-parameter space (Fig. 2.2a). In addition, we identify the most physiolog-
ically relevant placental transport regime in the (Pe, Da)-space, which is characterised by an
approximate balance of advective and uptake factors at high Péclet number. In this region, the
convergence of the exact solution to a homogenized solution is weak (applying in the L, but
not the H! norm), because corrections have large spatial gradients on lengthscales below the
inter-sink distance. Such fine-scale features, not captured by leading-order homogenization, are
likely to be of importance in models that resolve the detailed arrangement of fetal vessels within
villous branches.

Although the homogenized leading-order concentration profile for a periodic array is appli-
cable to a wide range of ergodic stationary random sink distributions, the next-to-leading-order
correction can exhibit very different behaviour, depending on statistical properties of the array.
This becomes particularly important for a moderate scale separation (characterised by a scale-
scparation parameter €), as is common in many applications, including the human placenta.
We address the impact of micro-structure stochasticity on the macroscopic solute transport
in Chapter 3, where we have used our simplified model to illustrate some generic features of
homogenization approximations for disordered media. While assessing the accuracy of the ho-
mogenized solution C(®(X) in random arrays, onc must compare it not only to an expected
value of the exact solution C but also to the fluctuations of C about the mean. Our results
for three illustrative stationary random sink distributions (uniformly random, hard-core and
normally-perturbed) agree with the upper bounds for the homogenization residue C — C©)
developed by Bal, Bourgeat, Piatnitski and others [22, 47], e.g. in the mean-squared norm:
E[|IC - C(O)ll%z ]'/2 < O(y/€). However, the underlying regularity of the normally-perturbed
sink distribution, at sufficiently small standard deviation, secures a much higher homogenization

accuracy (see Fig. 3.13(a,b)), particularly for small Pe. Furthermore, we find that for virtually
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all considered sink statistics - with sinks almost uncorrelated to each over - the homogenization
residue correlates strongly at the lengthscales of the whole domain. Therefore, we expect the
boundary conditions such as concentrations and concentration fluxes in the maternal decidual
vessels to determine the distribution not only of averaged leading-order concentration but also
of concentration fluctuations in the intervillous space.

In order to test experimentally the transport properties of the human placenta, we have
extended the homogenization results to two dimensions in Chapter 4. We demonstrate that
the map of transport regimes in the (Pe, Da)-space remains largely unchanged relative to the
one-dimensional case (Fig. 2.2a) and highlight that the volume fraction ¢ of a sink in a unit
cell emerges as another parameter influencing the accuracy of the homogenized description.
We have further generalised the linear transport model to take into account the carriers of a
solute, such as red blood cells carrying oxygen. Homogenization of the solute-carrier-facilitated
transport introduces an effective Péclet number that depends on the slowly varying leading-order
concentration C©, so that an asymptotic transport regime can be changed within the domain
of fixed Pe and Da (Fig. 4.13). At large Pe and Da numbers (typical for oxygen transport in
the human placenta), nonlinear advection due to solute-carriers leads to a more uniform solute
distribution than for a linear carrier-free transport (Fig. 4.14a), suggesting a “homogenizing”
effect of red blood cells on placental oxygen transport. Finally, following [177, 228], we have
derived and verified a homogenized description of flow and transport with cffective diffusivity
and permeability tensors dependent on the microscopic shapes.

In Chapter 5 we have characterised the pattern of villous centres of mass, comparing it
to the random point sink distributions of Chapter 3. The second-order statistical properties,
quantified by the K-function, give no evidence against the considered sample exhibiting a uni-
formly random distribution of villous centres at the lengthscales larger than about 0.1 mm and
a hard-core distribution at the distances below this scale (Fig. 5.11); in addition, estimates of
the villous area fraction indicate that the microscopic noise is significantly reduced at the aver-
aging scales larger than 1 mm (Fig. 5.7). For the mean inter-point distance of about 50 pm and
a reference placentone size of the order of 1 ¢cm, we have € ~ 0.005. The results of Chapter 3
for uniform or hard-core sink distributions then give the relative magnitude of homogenization
residue fluctuations of up to 10%, compared to the residue magnitude below 1% for a slightly
normally-perturbed or strictly periodic array. We have also evaluated effective permeability and
diffusivity for a placental sample, by solving the corresponding unit cell problems of Chapter 4.
The effective permeability estimate has modest anisotropy, suggesting a homogeneous isotropic
porous medium is a reasonable leading-order approximation of the intervillous space.

Having established the homogenized description of flow and transport and its potential
accuracy, in Chapter 6 we have formulated and analysed a leading-order mathematical model of
intervillous flow and solute transport in a simplified geometry of a single placentone. The model
supports the hypothesis that basal veins are located on the periphery of the placentone in order
to optimise distribution of nutrients and predicts the existence of an optimal volume fraction of
villous tissue and an optimal size of the central cavity. We have also used the model to explain
the ring-like structures (“smoke rings”) observed in experimental radioangiographic studies of

tracer dynamics in the primate and human placentas. Besides the villous volume fraction, the
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calibre of the spiral arteries and decidual veins is shown to be a dominant determinant of the
overall flow resistance of a placentone, clarifying the physical basis of the arterial remodelling
during the pregnancy. The central cavity is also shown to act as a damper of the pulsatile
flow from a spiral artery. The central cavity of the placentone is thus likely to play multiple
functions that include shielding the villous tissue from high blood pressure and shear stress,
and the regulation of the overall resistance to placentone perfusion.

To sum up, modelling flow and transport in the human placenta requires coupling of physical
and chemical processes across multiple scales in a complex micro-geometry. A direct predictive
simulation of these processes for the entire organ is not only prohibitively computationally ex-
pensive, but is very hard to achieve from a methodological standpoint, because the entire villous
microstructure (with the total interface surface arca of about 10 m? packed into the volume of

3 nearly the size of a Frisbee; see Table 6.1) and the corresponding heterogeneous

just ~ 1073 m
boundary conditions for flow and concentration cannot be measured simultancously. Morcover,
such level of detail is not of primarily clinical interest, where net trans-placental transport and
averaged placentone-wide flow and concentration fields arc of more significance for monitoring
fetal well-being. Homogenization approaches provide a powerful tool in multiscale modelling
and are likely to figure prominently in future integrative models of the human placenta (and for
other tissues with fine-grained periodic or random microstructure such as the liver {45] or the
lung {245]). This study shows the merits of stepping beyond the leading-order approximation in
order to resolve fine-scale structures at the microscale and, perhaps more importantly, to assess
carefully the magnitude and nature of cumulative (and parameter-dependent) errors that arise
from stochastic variation. These errors must be interpreted using the language of non-smooth
functions and distributions (where large deterministic local gradients and random fluctuations
both contribute to the error of a homogenized description). Such steps will be particularly im-
portant when building complex models that integratc numerous competing processes, in order

to avoid errors arising at each level of approximation from accumulating and disrupting the

overall predictive capacity of the model.

7.2 Future development

Future models of the human placenta will need to address the implications of assuming an
idealised geometry and our numerous other approximations (sce Sce. 6.2.2). For instance, while
the rheology of blood in narrow capillaries has been well characterised experimentally [199],
little is known at present about the rheology of maternal blood moving through tortuous inter-
villous spaces. We have also considered only very simple models of advective nutrient transport
and uptake, ignoring transport in the fetal microcirculation and assuming only simple uptake
kinetics that may be mediated by nonlinear active transport mechanisms in the syncytiotro-
phoblast [238].

Further potential developments span the following areas: (i) theoretical homogenization of
solute transport; (ii) automated microscopic image analysis and macroscopic parameter cstima-
tion of the human placenta; (iii) effective placental flow and transport modelling informed by

the microstructure. We briefly outline some open questions of these arcas below.
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A priority for a theoretical homogenized description of solute transport is to compile the
maps of “transport regimes” and “homogenization accuracy” in the (Pe, Da)-space (similar to
Figs 2.2(a) and 3.13(a,b) in the one-dimensional case) for different solutes and to investigate fur-
ther the structural stability (with respect to uptake kinetics, statistics of the micro-geometry and
other factors) of distinct asymptotic regions. In particular, one can consider the homogenization
errors and macro-correlations for different types of uptake kinetics and the global boundary con-
ditions; extend the statistical analysis of homogenization residue to random micro-geometries in
two-dimensions (e.g. a normally-perturbed on torus vs. a uniformly random sink distributions);
account for the sink’s volume fraction ¢, understanding the impact of interacting concentration
wakes on the statistical properties of homogenization residue at high Péclet number and ex-
tending the parameter space to three dimensions (Pe, Da, ¢); calculate higher-order corrections
to the averaged flow problem, include the advanced rheology for fluid (see, e.g. [44, 199, 239])
and allow for small elastic deformations in the sink’s position and shape (coupling the transport
with the Biot-type flow [54]).

Image analysis of morphological, flow and transport parameters of the human placenta could
be extended to compare K-functions of normal/diabetic/pre-eclamptic placentas (using the
protocols developed in Chapter 5, with further development of semi-automated image analysis
that would allow bulk processing of histological data and reduce systematic errors); to create a
representative unit cell of the normal placenta and of each pathological group and extract the
cell-averaged permeability and diffusivity tensors; to fit parameters of suitable spatial models
to histological data and to assess how these features of tissue architecture may vary during
development; to account explicitly for the micro-architecture of the villous tree, giving improved
estimates of hydraulic permeability, diffusivity and uptake as a function of volume fraction,
based on variability of placental samples from different regions of the same placenta as well
as between individuals. These can then be used to assess with more confidence the relation
between the structure and function of a placenta in health and disease.

Advances in effective placental flow and transport obviously lie beyond the uniform Darcy
flow and have to be coupled with the fetal circulation, studied in recent works (104, 115, 188,
277]. Some further potential investigations, at the maternal side, arc as follows: analyse How
about the opening of a spiral artery immersed in a pool of the central cavity, coupled with
the flow in a porous (and deformable) intervillous space outside the cavity; take account of a
possible modulation of the intervillous space volume due to the smooth-muscle contractions of
the myometrium in the uterine wall as well as of longitudinally arranged myofibroblasts in the
anchoring stem villi [33, p. 86]; develop a framework for paticut-specific modelling of placental
perfusion and uptake rates for the model paramecters estimated from Doppler ultrasound, MRI
or micro-CT scans, analogously to the histological sections.

It is hoped that the integrated approach undertaken in this thesis not only has led to a
better understanding of solute transport in the intervillous space of the human placenta and
fundamental properties of homogenization in disordered media, but will also open a door to

modelling-based diagnostics and treatment of placental disorders.



149

MECHANISMS OF PLACENTONE DEVELOPMENT

(Z-iliS appendix provides a supplementary overview and analysis of biochemical and me-
chanical regulatory factors contributing to the placentone genesis, discussed in Section 1.2 of
Chapter 1.

A.1 Early placentation stage

What determines the temporal development of the architecture of a single placentone? It
is known that the formation of distinct fetal villous trees is complete by the end of the second
trimester [33]; therefore, many mechanisms can contribute to the creation of placentone’s spatial
heterogeneity.

After implanting into the outer layer (endometrium) of the wall of the uterus, the future
embryo, a blastocyst!, develops an interconnected network of cavities (lacunae) in its outer
trophoblast layer, which are the proxies of the future villous trees.

The trabeculae of syncytial trophoblast?, which separate the lacunar spaces, are at first
arranged in a random pattern; however, with further growth of the blastocyst they become
radially orientated [252]. Moreover, at the initial stage of lacunar formation the human placenta
has labyrinthine features [252], suggesting the existence of a switch to the villous-type placental
architecture. These phenomena may indicate the guiding influence of the decidual vasculature
on villous development.

A typical spiral artery supplies approximately 4 — 9 mm? of the cndometrial surface (87].
Therefore, a characteristic distance between the centres of adjacent areas of supply is about
2—3 mm, which is much more than 0.2 mm, the initial diameter of the invading blastocyst [49].
This ensures sufficient spatial separation between the spiral arteries that are later invaded by
the extravillous trophoblast.

There is increasing recent interest in the process of trophoblast invasion in the decidua in
humans and the remodelling of the spiral arterics [67-69, 144, 154, 163, 164, 195, 197, 210].
Starting from the works of Pijnenborg et al. [194], attention has focused mainly on the dynam-
ics of extravillous trophoblasts from the second half of the first trimester and covers the period
of the 6th to 22nd weeks of gestation [144, 163]. Blastocyst delivery and the initial stage of
implantation in the uterine wall arc less investigated (8, 64, 65, 193}, although a number of the-
oretical models have been proposed [60, 278). The intermediate step of trophoblast behaviour,
connecting the beginning of implantation with the formation of tertiary villi, is less well studied,
partially because very little human data is available at this stage [214]. Observations in animal

models, mainly in Macaca mulatta, show that trophoblast invasion and migration towards spi-

'(from Greek “germinative vesicle”): an early stage of mammalian embryo development, consisting of the

inner cell mass and a thin trophoblast layer [251].
2(from Latin “small beam™): boundaries of a meshwork created in the fused multinucleated trophoblast cell

mass [251].
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Figure A.1. A scheme of growth factor (GF) diffusion through the endometrium towards a
growth factor receptor (GF-R) in the trophoblast layer (T) of the invading blastocyst. The
overall thickness of the endometrium H = 9 — 12 mm [93, 233] is greater than the diffusive
penetration distance of GF A £ 1 mm along the axis x perpendicular to the uterine wall (see
Table A.1).

ral arteries begins as early as 10 days post conception [84, 144]|. During this time the lacunar
system is formed, providing a frame for the future villous structure. These first 20 days seem
to be vitally important for successful placentation.

Recent advances in the biochemistry of the vascular endothelial growth factors® family
(VEGF-A — VEGF-E) and placental growth factor (PIGF) [5, 72, 80, 154, 231, 243] brought
evidence that VEGF-receptors (Flt-1 and others) are present in trophoblasts. Analysis of the
influence of angiogenic growth factors on trophoblast proliferation, motility, and invasion in the
decidua showed that a VEGF-A gradient can direct the migration of trophoblast cells in vitro
both from the first trimester and full-term placentas [155]; the extent of the physiological sig-
nificance of the observed effect, however, is still unclear [10, 154]. This suggests that a similar
paracrine mechanism? may allow cross-talk between a decidual source of VEGF (or another
growth factor) and trophoblast-cells in situ, and may lead to directed invasion (Fig. A.1). It
is also reported that knocking out Flt-1 production by the trophoblast does not affect placen-
tation in the mouse [123], but one can speculate that in this case there is no need for spatial
co-organisation of spiral arteries and the fetal circulation, since the mouse placenta has a semi-
closed maternal circulation [4] and is a poor model for trophoblast invasion in humans [66].

In vitro three-dimensional spheroidal cultures formed from first-trimester cytotrophoblast
cells demonstrate more intensive invasion in collagen gel than those from the third trimester, and
outgrowths are strongly accelerated by the addition of epidermal (EGF) and angiogenic growth
factors [149]. Nonetheless, further evidence of trophoblast chemotaxis® factors is certainly

required.

3Natural substances produced to promote growth and development by directing cell maturation and differen-
tiation. For example, angiogenic growth factors (e.g. VEGF) stimulate the formation of new blood vessels, and
epidermal growth factor (EGF) upregulates the development of cells covering free surfaces, such as skin [251].

(from Greek “closely separated”): related to the effects restricted to the local environment [251].

5(from Greek “chemically ordered”): movement of cells or organisms in response to chemical compounds,
whereby the cells are attracted or repelled [251].
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Because the trophoblast cells are capable of synthesising both growth factors and their
receptors (e.g. VEGF and VEGF-R) [72], another scenario is possible: since extravillous tro-
phoblasts derived from the cell columns® scatter very early in pregnancy and are localised near
the spiral arteries (presumably guided by the EPH/ephrin-family [209]), they too can begin to
send signals back to the villous trophoblast cells in the form of growth factors, so stinnilating
proliferation of villous trees around the arterial orifices (openings).

The transport of a growth factor towards the trophoblasts can be described by the diffusion-
reaction equation for its concentration C: dC/8t = DV2C - a C, where the D is the growth-
factor diffusion cocfficient, and « is its degradation rate (sce Fig. A.1). The diffusion and
reaction of VEGF-A was quantitatively investigated in vitro (73], using a rectangular diffusion
chamber filled with a fibrin gel. For VEGF, D = 7 x 1077 cm?/s and o ~ 107" 7! [73].
Therefore, in steady state, one can estimate the characteristic penetration depth h over which
the VEGF concentration falls approximately 3-fold as hyvggr =~ \/D—/a ~ 1 mm.

We can likewise estimate the effective distance of penetration for a variety of growth factors.
To estimate a, we assume a typical half-life of 1 hour in cach case, so that a = In(2)/t,/, ~
1.9x 1074 s~!. To estimate D, we use the empirical formula D = a M~ cin?/s with parameters
a, b fitted to cover a range of solute molecular weights M [127, 254]. Estimates of penetration
depth are summarised in Table A.1. Epidermal growth factor (EGF) has the highest diffusivity
among other growth factors present in the placenta duc to its low mnolecular weight, and thercfore
the greatest estimated penetration distance.

While pure protein solutes are usually characterised by short life-times, their compounds
with polysaccharides, heparin or stable mutant homologies can increase their life-time as much
as 10-fold [281]. The penetration depth will then be increased around 3-fold. On the other
hand, there are growth-factor-binding sites in the extracellular matrix (c.g. heparin) that can
significantly decrcase the diffusivity of signalling molecules [105]. The two combined cffects
may not lead to large changes in penetration distance, however. Finally, one also should take
account of the integrin and matrix metalloproteinase (MMP) interactions with the decidual
extracellular matrix, which can modulate its conductance for signalling molecules [8].

The effective penetration distances estimated in Table A.1 are much less than the thickness of
the endometrium (Fig. A.1), reported to be of about 9—12 mm [93, 233]. Therefore, it is unlikely
that growth-factor-mediated trophoblast proliferation and migration can be established at the
very beginning of implantation. However, with the rapid advance of a ball-shaped blastocyst,
with initial diameter of about 0.2 mm [49, 149], across the depth of the uterine wall, the required
distance may be achieved and the uterine-artery-derived growth factor can start to attract the
trophoblast cells. This mechanism may launch the spiral-artery-specific spatial development of

a future villous tree, giving a full term placentone.

6Cell columns are the massive trophoblastic connections, attaching the anchoring villi to the basal plate or
to the placental septa (see Fig. 1.1a), and providing a source of extravillous trophoblasts invading the decidual
vessels [33].
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Growth factor Molecular weight (kDa) Diffusion cocfficient (cm?/s)  Effective distance (mm)
HGF 83 [196] 2.8 x 107 0.04
Ang-1 75 [42] 3.7x 1079 0.04
PIGF 50 [138] 1.2 x 1078 0.08
VEGF 59 40 [196] 2.4 x 1078 0.1
TGFpS 25 [196] 0.89 x 1077 0.2
VEGF1¢4 23 [196] 0.95 x 1077 0.2
VEGF;2; 17 [42] 1.2x 1077 0.2
FGF-1, FGF-2 15 [196] 1.3 x 1077 0.3
IGF-2 7.5 [196] 2.2 x 1077 0.3
EGF 6 [196] 2.6 x 1077 0.4

Table A.1. Estimated diffusive properties of the most common placental growth factors: hep-
atocyte growth factor (HGF), angiopoietin (Ang), placental growth factor (PIGF), vascular
endothelial growth factor (VEGF), transforming growth factor (TGF), fibroblast growth fac-
tor (FGF), insulin-like growth factor (IGF) and epidermal growth factor (EGF). Diffusivity
D is estimated by the empirical formula D = a M~ cm?/s with a = 1.778 x 1071 cm? Dab/s,
b= 0.75 (obtained by Swabb, Wei and Gullino [254] for solute molecular weights Af in the range
3.2 x 10~1 — 69 kDa in biological tissues at 37°C in vitro), and a = 10 cin® Dab/s; b = 2.96
(fitted by Jain et al. [127] for dextran molecular weights A in the range 19.4 — 150 kDa in
rabbit granulation tissue in vivo). The Swabb et al. formula is used for M < 25 kDa and the
Jain et al. formula for M > 25 kDa. These dependences differ from the Stokes- Einstein rela-
tion for the free diffusion of a homogeneous spherical particle in Newtonian medium (b = 1/3)
due to the hindering effects of biological tissue. The effective diffusive distance is estimated as
h =~ /D/a, where a ~ 1.9 x 1074 s},

A.2 Role of haemodynamical forces and oxygen tension

At the beginning of placentation the villi demonstrate homogeneous development around
the chorionic sac’, but soon disproportionate growth of villi opposite to the implantation pole
occurs, and by the end of the first trimester the smooth chorion (devoid of villous trees) is formed
[33, 186]. The effect of oxygen tension in this non-uniform growth has been recognised by Burton
et al. [55, 56], where the decidual arteries and arterioles less plugged with trophoblast in the
region opposite to the implantation pole were shown to provide a highly oxidative environment
and thereby to suppress villous development.

The chorionic villi are exposed to viscous shear stresses and blood pressure as well as to
maternal oxygen tension from the end of the first trimester, when the maternal blood supply
is gradually increased [56, 195]. The spatial heterogeneity of antioxidant enzymes’ activity in a
mature fetal cotyledon matches the centre-to-periphery pattern of maternal blood flow [117].

The origin of the central cavity (see Fig. 1.2) in the placentone is reflected by static structural
differences, with less differentiated villi in the central portion and more terminal branches in
the periphery, [33, 237]; the dynamical effect of force exerted on non-anchored villi from flowing

blood from the supplying spiral artery has also been suggested as a mechanism for cavity

"(from Latin “bag”): an outer membrane around embryo [33].
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formation [215]. The latter reason is less likely to dominate, since the pressure in the ostium of
a spiral artery is of the order of 10 mmHg at term [108], which is about 5 mmHg higher than
the pressure in the amniotic fluid in macaque Rhesus [184]. Nevertheless, the possible effect of
viscous shear stress on villous development might be significant.

The remodelling of the spiral arteries that establishes normal circulation in the intervillous
space is not complete until about the 20th week of gestation [129, 195] and, according to the in
vivo ultrasound observations of Jauniaux et al. in pre-eclamptic and IUGR placentas, altered
intervillous blood flow opposite the non-remodelled arterial openings of small calibre is corre-
lated with the formation of villous-free “placental lakes” [128, 129]. Therecfore, hacmodynamic
forces are likely to play an important role in the shaping of the placentone between the 12th
and 20th weeks.

We shall remark that the remodelling of the spiral arteries (resulting in their dilatation
and destruction of the vascular smooth-muscle layer) likely involves not only the trophoblast
invasion but also the nitric oxide-induced dilatation due to an elevated shear stress, once the
intervillous circulation is established [250]. Morcover, the shear-stress regulatory mechanism is
known to have an instability leading to a collapse of daughter branches of a smaller calibre [204].
In the light of the absence of innervation in the spiral arteries and the diminished total neural
regulation of vascular tone in uterus [140], it is the shear stress that might contribute to reducing
the total number of arterial openings in favour of a few large functional oncs.

Proliferation and differentiation of the villi and feto-placental angiogenesis are thought to
be dependent on the oxygen level [5, 131] and, possibly, on shear stress via mechanosensitivity
of trophoblast cells [195, 249]. These effects could provide the basis for an carly switch from
branching to non-branching villous development in the central portion of the fetal cotyledon;
this region is associated with a spiral artery and experiences higher oxygen concentration and
flow velocities than the peripheral part.

Another important aspect to be clarified is whether the anchoring villi are initially uniformly
distributed over the placental bed and then start to lose and form their attachments, as suggested
in {216], under the influence of haemodynamical factors, or whether the formation of the fetal

cotyledons around the arterial openings is pre-programmed at the beginning of implantation.

A.3 Pathological implications of failed placentone formation

Although earlier studies addressed the topography of human uteroplacental vasculature
(108, 216], a few recent reviews describing simultaneously the growth of both the maternal
and fetal placental circulatory systems [125, 139] do not represent the spatial organisation of
feto-maternal circulation from the developmental point of view.

It is usually suggested that a failure in fetal placental angiogenesis or remodelling of maternal
spiral arteries are two main factors of placental insufficiency. Nevertheless, if one accepts the
placentone structure of the primate and human placenta, a failure in forming the optimal spatial
arrangement between maternal and fetal circulatory systems (as described in Section 1.2 of
Chapter 1; Fig. 1.2) provides a third potential source of placental pathology.

Therefore, the development of chorionic villi should not be considered in isolation from
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the decidual vessels and vice versa because the haemodynamics of the haemochorial placenta,
characterised by the presence of openly circulating maternal blood in a close contact with
chorionic villous trees, is strongly affected by the spatial organisation of the feto-maternal
functional units, placentones.

The available data tends to support the concept that a villous tree develops around a specific
supplying decidual artery, optimising its spatial arrangement for effective metabolic exchange.
The mechanism underlying the genesis of the placentone may be provided by the decidual
arterial cell or endovascular-trophoblast-derived VEGF and other growth factors, which are
sensed by villous trophoblast cells via corresponding receptors. Haemodynarnical forces may
then contribute further to villous development. We pose a preliminary hypothesis that the
process is likely to be separated into two stages: an initial finding of spiral arterics by villous
trophoblast assisted by the gradient of growth factor concentration during the early villous
state; and later artery-specific development of the villous tree, directed also by fluid shear stress
and oxygen partial pressure distributions in the intervillous space.

This idealised two-stepped structural evolution of placental circulatory units may be too
simplistic to reflect all details, but it highlights a gencral tendency to ordered rather than
chaotic organisation of the intervillous blood supply observed in full term placentas, confirming
the description of Freese [98]: “There is a nicely designed system of maternal blood flow in the

intervillous space”.
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ADDITIONAL RESULTS FOR ASYMPTOTIC
TRANSPORT REGIMES

‘Iiuis appendix contains additional asymptotic analysis for the transport regimes in a one-

dimensional array of sinks, developed in Chapters 2 and 3.

B.1 Limiting case of diffusive transport (Pe = 0)

Setting p = Pe/e = 0 in (2.3.9), we obtain a regular limit
CO=¢x>-(1+§X+1, g<2. (B.1.1)

In case of no sinks are present (¢ = 0), a linear diffusive profile is restored for the concentration,
since C(® =1 - X and V) =C®@ = ... = 0. A cell problem for the second correction C'(2)
is identical to (2.3.11) due to its independence on p. Analogously, one can show that the third
and successive corrections are all equal to zero.

The solution to (2.2.2) is therefore C(z) = CO(X) + ¢2C3)(z, X), where C© is given
by (B.1.1), C? is given by (2.3.12) and X = ex. Substituting the solution to the governing
equation Cy; = 0, we find that (C© + £2C?)),, = €? +€2(=1 +e2(C?) xx) = 0, and hence
(CP@)) xx = 0. An average (C?) of the second correction over the unit cell is therefore a linear
function of the slowly changing variable X, with the arbitrary constants determined by the
boundary conditions. In this problem, the Dirichlet conditions C®|,—p x=0 = C®|,—0 x=1 = 0
require (C?)) to be a constant, which is equal to (C®) = % as identified in Section 2.3 of
Chapter 2.

B.2 Array of sinks of a finite size: the role of volume fraction
(case Pe = O(¢))
To test the role of the finite size of villous branches, we now account for an array with each

sink of a size ¢ (in dimensionless variables) that occupies a portion of a unit cell (0 < ¢ < 1),
as shown in Fig. B.1.
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Figure B.1. A periodic array of finite-size sinks.
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Assuining free uniform flow over each sink and a fixed drop of uptake flux between its up-
streamn and downstream end, in addition to all the assumptions of Section 2.2, we rewrite (2.2.3)

as follows:

dCc  d*C
—=—. 0<r<el B.2.1:
“dr  dr? TSE (B.2.1a)
Clr=0 =1, (B.2.1b)
Clyee-1 =0 or Clr=g, = % =0 for 0<ag<e !, (B.2.1¢)
¢ Tr=rg
C|I:1‘7.—C>/2 :C|I=In+0/?‘ n=12...,N; N=e! s (BQld)
dc _d¢ _ Da. (B.2.1e)
dr r=r,+¢/2 dr r=r,—@/2

We also observe that letting ¢ = 0 reduces the problem to an array of point sinks.
Substituting the multiscale expansion (2.3.1) in (B.2.1) and collecting the terms at powers

of €, we find at O(¢?):

pC =@ 1. 0<X <1 ze(-1/2.-0/2)U(¢/2.1/2) (B.2.2a)
2 _ o @) _c® _

CPeopr = CPpmpa,  CL reo)2 Cy e =D (B.2.2b)

COlyzo=1. C®|xo1 =0 or CP\xex, = CP|x=x,= 0, (B.2.2c)

where Pe = ep, Da = ¢2q. p,g = O(1).
Averaging (B.2.2a) over the fluid phase of the unit cell («% <zr< %) U (—% <zr< %), we

obtain ~6/2 1/2
1o (pct o) = [ ey [ ctiar -
-1/2 ¢/2 (B.2.3)
2 — 0
= \CV.'E'Q)II:% - C.S‘O)!I-:—%l - \<C.‘£‘ )|.[=-$— CT |J':_%)4’
Ay =

which, by using (B.2.2b) and the periodicity assumption for C®@) in a unit cell, reduces to

Cx -pC{ =715, 0<e<l (B-2.4)

Macroscopic cquation (B.2.4), subject to the boundary conditions (2.3.8b,c), generalises

(2.3.8) to the casc of sinks of a finite size. The effect of the sink’s size (volume fraction) is

therefore in modulating the net uptake rate.
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B.3 Case Pe = O(1): second correction estimate

Collecting the terms in (2.2.10) at O(g?), we obtain

Pe (€ +CY)) = c@ + 200 + ), (B.3.1a)
[CP),p=0, [€P+C{),_,=0, (B.3.1b)
CHxo0=0, CP|x_; =0. (B.3.1¢)

We average equation (B.3.1a) over the unit cell —1/2 <z <1/2 to find a macroscopic
equation for C(®), which then be used to formulate a cell problem for C(2). The averaging of
(B.3.1a) with the assumption of periodicity of C?) and Ct? leads to

1/2
c - Pe/ cY) dz = [CP]],_, - Pe[C?]]__,, (B.3.2)
~1/2

(

assuming further continuity and z-periodicity of C/\!) in cach unit cell (justified by the analytical
solution (2.4.13) and numerical simulations) and using the jump boundary conditions (B.3.1h),
we can simplify (B.3.2) to get

(1+Pe2 (b)) CX =0, (B.3.3)

where we used C1) = —b(z) Pe C‘gg)—i-a(x) ¢ = q1(a(z) +b(z)), according to (2.4.6) and (2.4.8).
The coefficient of the second derivative is the effective diffusivity coefficient Dy = 1+ Pc? (b(x)),
with (b) = qll (Cy — (a) and (CM) given by (2.4.14). If we assume {(a) = 0, i.c. only b(r)
contributes to the average of the first correction C(), and use the asymptotics C(V) & ¢, /12 for
small Pe from (2.4.14), we can estimate the effective diffusivity as Deg = 1 + Pe? (0) =~ 1 + %
(Pe <« 1), which resembles the Taylor-Aris dispersion relation (1.4.2). This effective diffusivity
becomes important in the case of non-steady advection-diffusion, e.g. when concentration Cy at
the inlet varies with time.

Providing that D¢g is a non-zero constant and substituting (B.3.3) into (B.3.1), we observe

that all terms containing Cg(l) vanish and arrive to a unit cell problem for C?:

Cc? _peCc® =9,
[0(2)]1.—_0 =0, [C§~2)h=0 =0, (B34)
CPlx=0=0, C®|x) =0,

from where we have C®) identically equal to zero (due to homogeneous boundary conditions
both at the boundaries of a unit cell and at the global boundaries). Therefore, the second and

all the successive corrections in the asymptotic series (2.3.1) vanish in this case.
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B.4 Regime of large microscopic Péclet number (Pe = O(¢71))

We consider the case of Pe = O(¢™!) =¢7!p; and Da= O(1), where p; = O(1). The
original system of equations (2.2.10) takes the form:

P (C’I+EC'X)=SC’II+252C~ﬂr,\'+E3C",y,\', O<zr<e ! 0<X<1l, (B.4.1a)
Clx=0=1, Clx=1=0, (B.4.1b)
Cle=n- = Clz=ny+, n=12,...,N, (B.4.1¢)
[6 Ce +*Cx - pi é];,:n: eDa. (B.4.1d)

Note that we retain the advective flux component in (B.4.1d) since, as we show below, the

continuity condition [C],_, cannot be applied in this case due to the advective-dominated

transport at the lengthscale of a single unit cell.
Substituting (2.3.1) into (B.4.1) and collecting terms in powers of €, we find at O(1):

nC® =0, -1/2<x<1/2, 0<X<1,
CO),o=0, [mC?] =0, (B.4.2)
COlxo=1, COx =0,

which gives C(©) = CO(X) for the leading-order concentration
Collecting the terms in (B.4.1) at O(¢), we have

p(C+c{) =,
[C(l)]z=o =0, [Cio) | C(l)]a,:o = Da, (B.4.3)
C(1)|X=0 = 0, CU)|X:1 = 07

which reduces to

c) = -c, (B.4.4a)
Ds

CcV] _,=0, [CW],_,=~- - t (B.4.4h)
1

CWxz0=0, CWixo =0. (B.4.4c)

One can see that jump boundary conditions in (B.4.4b) are mutually incompatible. We
therefore assume that only total flux is continuous over the unit ccll, allowing local discontinuity
in the concentration profile: [C(V] _, = —Da/p;. Otherwise, it is possible to show that all
corrections (C1), C?, ete.) vanish, and the solution is given by C = 1.

Averaging equation (B.4.4a) over the unit cell (—1/2 < x < 1/2) and assuming z-periodicity
of C) in a unit cell, we get

C‘(\(’)) = [C(l)]mo ’ (B.4.5)

using the jump boundary conditions at the sink (B.4.4b) and macroscopic boundary conditions
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(B.4.2b), we find an averaged advection-diffusion problem

C,(»?) = —Da/p,,

(B.4.6)
C(0)|X=0 =1 s
with a solution D
cO=1-2x, (B.4.7)
D1
which is identical to (2.4.6) with g;/Pe = Da/p; = ¢~ 'Da/Pe.
(B.4.4a)(B.4.4b) provides a cell problem for the first correction:
) =D -1/2<z<1/2,
Cz a/pl s / / (B48)
[C(l)] =0 = -Da‘/pl 3
The solution to (B.4.8) is
Da(p4+d)+(c), -1/2<2<0
cV = (B.4.9)
Dag—h+(CcV), 0<z<l/2,

which coincides with cell solution (2.4.16) obtained in Section 2.4 (sce regions Uj and A* in

Fig. 2.2a). Solution (B.4.9) is plotted in Fig. 2.5.
We can see that C(!) has a discontinuous first derivative at the sinks of microstructure,

and the asymptotic expansion (2.3.1) breaks down (or, equivalently, C ©O(X) varies over O(e)
lengthscale of a few sinks) when Da/p; = £~ 'Da/Pe = O(¢7!), i.c. for Da 2 Pe in this casc, in

agreement with the results of Section 2.4.

B.5 Examples of non-periodic deterministic microstructure

Following the homogenization result (2.7.11) of Section 2.7 for the case of diffusion-dominated

transport, we now consider some deterministic non-periodic distributions of sink’s position x,,,

described by a source term

N
Z(S.E-—I‘n (B-S.l)
n=1
Example B.1 (square-growing inter-sink distance):
- ' 1/¢
The non-periodic source term of the form f(z Z §(z —n?) gives f= liul 2¢? [ | V3] ds
n=1 0
(the number of sinks between y = 1 and y = s is [/s]), and therefore f= lm(x) 2¢? —i;; = ().
Note, that the source term f(z) of this form does not exactly satisfy (2.7.2) for all @, but it
1/5 5
obeys the upper bound for x > 1, making an estimate f ds j fly)ydy S O(e~ 2) possible.
0

However, the convergence of f is rather slow, of the order of ()(\f ), so that we can expect only

a smaller net effect of an array of square-distance-located sinks relative to the periodic case for
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finite €. Figurc B.2(a) compares the numerical solution for the square-growing distance (solid)

with the solution for the periodic sink location (dashed).

Example B.2 (exponentially-growing inter-sink distance):

N
The non-periodic source term of the form f(z)= Y 6(z—-(c"~1)) gives

n=1
f= lim 2¢2 01/6 |In(s)| ds (the number of sinks between y = 1 and y = s is n = [In(s)]),
E—

and therefore f = lim —127 (rlnz —x) =0, = = ¢~!. Although the source term of this form
again does not sati;f;?2.7.2) uniformly in x, we can observe that the second term on the right-
hand side of (2.7.10) is of the order of O(zInz) and therefore can be approximately balanced
by the third term of the order of O(z) (z = ¢~!), making the estimate f ~ () correct for smaller
z (larger €) than for the square-growing distance between sinks in Example B.1. Thus, there
is the vanishing net effect of an infinite inhomogeneous array of sinks of strength O(€?) located

at exponentially-growing distance from the origin (see Fig. B.2b).

Example B.3 (clustered sink distribution):

We also see from Figure B.2(a,b) that the contribution to the perturbation of the concentration
profile over the linear drop C = 1 — X of uptake-free diffusion is greater with sinks in the
centre of the domain compared to sinks near the boundaries. This is explained by the fact
that the diffusion-dominated transport with a single (clustered) sink of strength Ng at X = X
(0 < Xo < 1), given by Cxx = Negd(X — Xo), C(X =0) =1, C(X =1) =0, has
the solution [C — (1 — X)]|x=x, = —Neg(1 — Xo)Xo, which shows that the deviation from
the sink-free diffusive linear concentration drop between the boundaries is the greatest when
Xo = 0.5 and tends to zero near the boundaries, as demonstrated in Figure B.2(c,d). On the
other hand, if we assume a zero-flux outlet boundary condition Cx (X = 1) = 0, the solution to
the diffusion-reaction equation at X = X becomes [C — 1]|x=x, = —Neq Xp, which reaches a
minimal value (over a constant sink-free concentration) for the sink-cluster placed at the outlet

(Xo =1).

Examples B.1-B.3 for the diffusion-dominated transport suggest that the “clustering” of
sinks has the weakest effect on the net uptake near the inlet (Fig. B.2(b,d)), and the contribution
of a cluster is maximal in the middle of the domain or at the outlet (depending on the outlet
boundary condition). For diffusion-limited transport in the intervillous space of the human
placenta, this might mean a greater importance of more dense villous branches close to the

venous exits than to the arterial inlets, indicating no detrimental effects of the central cavity

above a spiral artery (see, e.g. Fig. 1.2).

B.6 Estimate of the maximal packing density for a hard-core-

type distribution

In order to identify the critical upper bound for the minimal distance dc, that can be

achieved in a hard-core simple sequential inhibition random process of size N, we calculate an
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Figure B.2. The cffect of different sink distributions on the concentration profile (solid line,
computed for Pe = €2, Da = 2¢? on a 19-sink array (blue circles at the bottom of each
diagram); ¢ = 0.05): (a) square-growing-distance array (Example B.1); (b) exponentially-
growing-distance array (Example B.2); (c) a centrally positioned cluster and (d) a cluster of
sinks near the inlet (Example B.3). The black dashed line indicates the reference concentration
profile for a periodic array of the same size (shown as black circles on the top of each diagram).
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Figure B.3. Critical upper bound for the minimal distance (packing density) parameter d/e of a
hard-core point process vs. the number of sinks N (solid circles). Standard crrors are shown with
error bars, computed using an ensemble average over 500 samples for each N (e = 1/(N +1)).
The dashed line shows asymptotic fitting with 0.75 + 11.25/N .

ensemble average over hard-core array realisations. Each d¢, for a given N is computed by
gradually increasing d from d = 0.7¢, incremented in steps of d = 0.001¢ until no realisation of
N hard-core-distributed sinks is possible.

We extrapolate numerical dependence of di;/e on N by fitting to the truncated Laurent
series d =~ ag + a1 /N + ay/N? + ... at large N, according to the following algorithm: using the
last p values of de (N) (N = Np,...,N,) as the fitting values, and a = (ag, a1,...,a,-1) as

fitting parameters, we solve a linear system of p algebraic cquations

1 NP NP der(NY)

Ny NyPH der (N,
b 2 a=| Gl (B.6.1)
1 NUo N der(Ny)

to find a and therefore an asymptote of the critical distance do, = ag.

Computations give an approximated asymptote for the critical value d/e ~ 0.7430 using five
points on a logarithmic scale, which differs only in 1% from the value d/e ~ 0.7508 obtained
by fitting to the last two points as shown in Fig. B.3. The results therefore tend to support the
empirical upper bound 7/v/18 for the packing density [253]. This is the same density as for a
cubic (or hexagonal) close packing of spheres in 3D, which is conjectured by Kepler (and is a
part of the 18th Hilbert’s problem [119]) to be the densest possible packing of spheres.
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C | A DYNAMICAL MODEL OF THE CENTRAL
CAVITY IN THE HUMAN PLACENTONE

lIl"lis appendix extends the static central cavity model considered in Section 6.4.5 of Chap-
ter 6 to analyse the interaction between the deformable villous tissue and a pulsatile flow of

maternal blood.

C.1 Introduction

The human placentone is defined as a single fetal cotyledon (villous tree) and corresponding
maternal vessels: the supplying spiral artery in the central part and the draining decidual veins
near periphery [33, 98, 237] (see Figs 1.1 and 1.2(a)).

The placentone is characterised by a spatial heterogeneity in the form of so-called “central
cavity”, the central portion of the fetal cotyledon that is almost devoid of villi. There is a distinct
boundary formed between the less mature intermediate and the dense terminal villi branches
shaped by the anchoring stem villi, which are attached to the basal plate. The intermediate
and most dense portion of the fetal cotyledon, which surrounds the central cavity, is called a
“mantle” of the placentone [33] (see Fig. 1.2a). The spiral artery enters the central cavity and
the maternal blood is collected by the decidual veins after percolating through the mantle [98]
(see Fig. C.1).

The villous tissue is compliant and therefore undergoes a periodic elastic stress due to blood
flow and pressure modulation in the central cavity. The deformability of the villous tissue of

the human placenta has been indirectly accounted for by Erian et al. [86] by introducing a

Figure C.1. A diagram of the placentone structure of the human placenta. Reproduced from [96].
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Figure C.2. A schematic hemispherical central cavity of the placentone with a periodic source
of flux ¢(¢) and cavity radius R(t).

flow-dependent permeability. The work by Byrne et al. [59] offers a more systematic framework
for explicitly coupling the flow in the intervillous space with the pulsatile flow emerging from
the spiral artery, where a purely elastic villous tissue and an axisymmetric flow in the central
cavity are assumed.

The aim of this study is to address the impact of flow pulsatility in the spiral artery and
viscoelastic properties of the villous tissue on the dynamics of the central cavity, extending the

analysis of [59].

C.2 Model assumptions and problem statement

We assume the blood to be an incompressible and Newtonian fluid; flow in the central cavity
is considered radial and spherically symmetric; villous tissue (the placentone mantle) is assumed
viscoelastic and incompressible; and the perturbations of the cavity radius are assumed to be
in the radial direction and small relative to the reference radius. The shape of the cavity (white
area) is approximated as a hemisphere, as shown in Figure C.2, with a uniform blood pressure
at the inner and outer boundaries of the placentone mantle (shaded area).

We consider a radial fluid motion in the polar spherical coordinates {r,#, ¢} with velocity
u = u(r,t) e, in the central cavity and u, = u,(r,t) e, in the villous porous mantle.

The incompressibility condition gives

1 0(r’u)

g st = D, (C.2.1)

The blood flow through the porous mantle is described by Darcy’s law

3 F, I
e .2
57 5 s ( 2)

where P, and k are the blood pressure in the porous mantle and its permeability, and pu is the

viscosity of maternal blood.
To describe the small deviations of the central cavity radius R(t) from its reference value Ry,
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we introduce an approximate equation of motion for a thin viscoelastic spherical shell
2hg
P|r:R—Pert :pthRtt'FEU(R,Rz), IR—R()I/R(),S 1, (CQB)

where P(r,t) is the blood pressure in the central cavity, Pez is the pressure on the outer surface
of the placentone mantle, ¢ = o(R, R;) is a stress, described by a constitutive law for the
placentone tissue, and p,, hg are the density and reference thickness of the placentone mantle.

For a linear incompressible viscoelastic material the constitutive stress-strain law is

o(R,R,) = - R, + B (R — RO) , (C.2.4)

Ry = 3 Ry

where E is the Young's elastic modulus and « is the coefficient of viscosity.
We further introduce two matching relations at the interface between the maternal blood
and the placentone porous mantle, based on (C.2.2) and Starling’s law [242] (balancing the flow

velocity and the pressure drop across the placentone mantle)

P|1 - ut
h()

Iy
k

uvlr R~ ) (CQ\G)

and continuity of the flow field
UIr:R = UU‘T=R -+ Rt . (026)

A flux at the spiral artery g(¢) provides a boundary condition to complete the problem:

hm 2mriu = q(t). (C.2.7)

r—(

From (C.2.1) and (C.2.7) we get u(r,t) = g(t)/2x r2, (r > 0) and the kincmnatic matching
condition (C.2.6) takes the form

t
Uylr=R = 2171'(% -y (C.2.8)

A combination of expressions (C.2.3) and (C.2.5) gives the flow velocity at the inner bound-

ary of the porous mantle as

2
B otelrer = po Ry + — (R, Ry). (C.2.9)
k Ro

Thus, (C.2.8) and (C.2.9) together provide an cquation of motion for the radius of the central

cavity " )
Fro+l __# o) C.2.10
po Ry + kRL'+' Ro o(R,Ry) = onk R2 ( )
which, using (C.2.4), can be rewritten as follows:
b2y 8E (R— Ry poq(t) .
v R+ — = —— =, C.2.11
poftu+ (k * 122) ‘¥ 3R, ( Ro 27k R (C211)

Equations (C.2.10) and (C.2.11) represent a driven, damped and, in general, nonlincar
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oscillator. Note that both the viscosity of the villous tissue and the inverse permeability of the
placentone mantle contribute to the damping coefficient (p/k + 2v/R3) in (C.2.11).
We introduce the dimensionless deviation of the radius n(t) = (R — Rg)/Ro, and equation

(C.2.11) takes the form:

t
e +268m +win = fo_alt) (C.2.12)

Qo (1+n)?%
where w? = 8E/3p,R3 is the natural frequency, 8 = (u/k + 2v/R3)/2p, is the damping cocf-
ficient, fo = pqo/2mkp, Ry is the amplitude of the driven force, and gg is the amplitude of the
flow rate ¢(t) in the spiral artery.
The natural frequency of the oscillator (C.2.12)

8E

m, (C.2.13)

Wi =

together with the damping coefficient 3 and the characteristic frequency of the driving force w,

defines the dynamics of the central cavity.

C.3 Linear analysis of the cavity oscillations

We lincarise (C.2.12) in the case of small oscillations of the central cavity (1+7)~! ~ 1,
In] < 1 and approximate the source of flux (from a spiral artery) with a single mode of charac-

teristic frequency w: q(t) = go coswt. The governing equation (C.2.12) then becomes
e + 281 +win = fo coswt. (C.3.1)

The general solution to (C.3.1) is

- / . fo cos(wt — ayg)
n(t) =e¢ Bt (Cl cos (l‘ wg — ﬁZ) + (' sin (t\/wg - 52)) + \/(wg =0 4(:.)2/}2 , (C3.2)

where g = arctan[28w/ (wg — w?)] and arbitrary constants Cy, Cy arc determined by the initial

conditions.

Mechanical data for a mature normal human placenta, additional to the data of Table 6.1,
are presented in Table C.1. The viscoelastic parameters for an arterial wall [61] are used
to approximate the villous tissue to the nearest order of magnitude. Based on the data of

-1 —1
, wo~ 1s7h

Tables 6.1 and C.1, we estimate the parameters as follows: wg ~ 108 — 107 s
B ~ 10° — 108 s~ (where the contribution of the first term p/k is negligible over the second
term due to the villous viscosity), fo ~ 10% — 10 s72, and tanag ~ 1072 = 107!, Thus,
the natural oscillations are aperiodic and are promptly damped with the characteristic time

t ~ 871, The solution (C.3.2) then takes a simplified form: n(t) = ag cos(wt), with amplitude

ap = fo/ Vi +4w?232 ~ 1073 - 1072 << 1.
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Parameter Value Reference
Arterial flow frequency (w) ~ 80 min~! (151]
Cavity’s reference radius () ~5x 1073 m (98]
Villous density (p,) ~ 103 kg/m® (172]
Villous elasticity (E) ~ 10% — 10°% Pa

Villous viscosity (7) ~ 103 -10% Pa-s

Reynolds number (Re = f%%) ~1-10

Woniersley number (a =Ry p;Tw) ~3

Strouhal number (St = a? - Re) ~ 10 — 102

Table C.1. Literature-based and calculated parameters used in the model of the central cavity.
See also Table 6.1 of Chapter 6.
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Figure C.3. Comparison of numerical (solid line) and exact (C.4.3) (dashed line) solutions to
(C.4.2) for wy = 103, k =10, fo = 0 (plotted in dimensionless variables).

C.4 Cavity oscillations for a nonlinear-viscoelastic material

We come back to the general equation of motion (C.2.10) with a nonlinear constitutive law

4E |R-R R - Ry\?
0+n( “) ] : (C.4.1)

o(R,Ry) = —;—OR,+—3—

Ry Ry

where k is the coefficient of nonlinear elasticity.
Oscillations of the central cavity is described, according to (C.2.10) and (C.4.1), as

2 o _ foalt) ,
me+28m+wi (n+ k0% = o T+ 77 (C.4.2)

The equation (C.4.2) subject to initial radius and velocity values is solved by a second order
implicit finite-difference scheme implemented in the solver ode23t of MATLAB. An exact solution
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Figure C.4. (a) Typical oscillations of the central cavity described by (C.4.2) for 3 = 10° Hz,
wo = 108 Hz, w = 1 Hz, &k = 25, fo = 10" s72, n(0) = 0.05. The parameter dependence of
the flow-driven limit cycle is given in a phase planc (n,7,) for the nonlincar clasticity coefficient
k (b), natural frequency wg (¢) and dissipation coefficient 5 (d); all the rest of parameters in
(b-d) are the same as in (a). Arrows indicate the direction of increase in a parameter.

to (C.4.2) for B/wp = 5v6/12 and fo =0 is [152]

N(t)exact = —Z% [1 — 2tanh <—]¢—26 wo t) + tanh? (% wo f)] , (CA4.3)
which is used for verification of the numerical solution at initial values 7(0) = 17(0)exact, 1(0) =
N (0)exact (showing a very good agreement; see Fig. C.3).

A representative solution to (C.4.2) for q/qp = coswt, n(0) = 0.05, 7,(0) = 0, and the
parameter values 3 = 10° Hz, wg = 10° Hz, x = 25, w = 1 Hz, fy = 10" s72, is shown in
Figure C.4(a). The influence of model parameters on the oscillation dynamics is presented in
Figure C.4(b-d). Figure C.4(b) shows that even at a rclatively large value of the nonlinear
clasticity parameter x, the deviation of the cavity radius from its cquilibrium is still of the
order of 1%, as it is in the linearly elastic case (x = 0). We also conclude from Fig. C.4(c,d)
that the amplitude of the cavity radius oscillations 7 depends much more strongly on the
natural frequency wp (representing the elastic properties of the villous tissue) than on the
dissipation parameter 8 (representing a combined damping due to blood viscosity, hydranlic

resistance and viscoclasticity of the placental tissuc). This agrees with the prediction of the
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lincar model (C.3.2), giving the oscillation amplitude fo/v/wd + 4w?f? for w < wy.

C.5 Discussion

In this Appendix, we have derived a lumped-parameter model to describe the oscillations of
the central cavity of the human placentone exposed to the pulsatile maternal blood flow from
a spiral artery. We have extended the model of [59] to account for lincar and weakly-nonlinear
viscoelasticity of the placental tissue, and our analysis indicates the important role of villous
dissipative properties in the overall model dynamics.

The Darcy flow in the villous mantle coupled with incompressible flow in the cavity and
a viscoelastic constitutive law for the villous tissue give a forced non-linear oscillator for the
cavity radius.

The model analysis, based on the data of mechanical villous propertics and spiral artery
dynamics, suggests a rapid damping of any initial perturbations and synchronisation with os-
cillations of the driving blood flow rate. The amplitude of the resultant cavity oscillations is
small relative to the characteristic cavity radius. Therefore, the central cavity can be considered
a necarly static structure separating a pool of the maternal blood from the porous medium of
terminal villi, the primary site of solute exchange between the mother and the fetus.

We have shown high sensitivity of the model to the natural frequency of the villous tissue
(C.2.13). Thus, for example, in the case of an abnormally low Young’s modulus of the villous
tissue, we might expect the cavity oscillations to become more significant. The same effect can
be caused by a risc in the amplitude of systemic blood flow and pressure (c.g. in hypertensive
patients).

The conclusions deduced from this model are preliminary only, because some mechanical
properties of the villous tissue were extrapolated from other biological soft tissues, in view of
limited or absent placental experimental data. The permeability of the placentone mantle also,
in general, depends on the degree of its clastic deformation, modulating the intervillous pore
size [59]. Another limitation of the model is the use of a viscoelastic thin-shell theory, neglecting

the thickness of the placentone mantle which can be comparable to the cavity radius.
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