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ABSTRACT

Electromagnetic Compatibility (EMC) problems may occur in many environments.

This Thesis considers a particular sub-set of coupling within shielded enclosures.

The actual systems studied are the coupling between a dipole and either one or

two rods in a screened room and the effect of a cavity and apertures on a signal

travelling along a wire.
," . ~, .

Experiments are described for the screened room which investigate the

repeatability of the measurements and the effects of two closely spaced

conductors on the coupling results. The cavity experiments also consider the

repeatability of the measurements and the effects of the apertures.

Transmission-Line Modelling (TLM) is compared with some other popular

modelling methods and generally described. It is applied to the modelling of the

experimental systems already discussed. An inherent error associated with the

modelling of wires in TLM, manifesting itself as an apparent decrease in the

resonant frequency of a wire-like structure, is investigated. The source of the

error is deduced and a method of minimising it is proposed.

The experimental results are applied to the validation of TLM, and its error

correction. Very good comparisons between the experiments and simulations are

reported. Correlelograms are investigated as a method of comparing the modelled

and experimental results.
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CHAPTER ONE
INTRODUCTION

This chapter introduces the basic definition of electromagnetic compatibility

(EMC); why wires are important in EMC; the role of modelling in EMC, and the

importance of Transmission-Line Modelling (TLM); why experimental verification

tests are required, and an outline of the rest of the Thesis

1.1. ELECTROMAGNETIC COMPATmILITY

The theme of the Thesis is an experimental and modelling study of the coupling

of electromagnetic energy into wires. which is fundamental to electromagnetic

compatibility (EMC). This section briefly overviews EMC and discusses some

of the areas where wires can be found in EMC situations.
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1.1.1. The definition of EMC

EMC is defined by the International Electrotechnical Commission, lEe') as

"The ability of a device, unit of equipment or system to function

satisfactorily in its electromagnetic environment without

introducing intolerable electromagnetic disturbances to anything in

that environment".

There are many texts on EMC and its associated topics, however, a very good

introduction and practical overview can be found in the book "EMC for Product

Designers" by Williams(2) where he succinctly notes that the term EMC has two

complementary aspects, namely the ability of a system (either electrical or

electronic) to operate without causing any interference to other equipment, and

that such systems should operate as designed in a specified electromagnetic

environment. These aspects essentially imply that, although it is impossible to

totally eliminate all unwanted electromagnetic interference (EMI), any piece of

equipment should not cause any other piece of equipment to malfunction through

extraneous electromagnetic radiation, nor should a piece of equipment fail if it is

subject to EMI below a specified maximum.

Much of the impetus for EMC compliance in Europe has arisen because of the

EC directive'", to be adopted by all member states, requiring that all electrical

equipment placed on the market complies with the necessary European standards

(which are overviewed in reference 2). Implementation of the directive becomes

mandatory in 1996. There are several methods of demonstrating compliance'",

these are:

self certification, where the manufacturer declares conformance.

a technical construction file which can be presented to a competent body

who will review it and issue a certificate, should the equipment be

suitable.



A.P. Duffy. 1993. Chapter 1 3

equipment tested and certified by an independent test house.

It was noted in the Atkins report'! that demand for facilities, to test for

compliance, would exceed available capacity, both at stan-up and subsequently.

This would have a deleterious effect on product launches. and hence investment

would be required in both test facilities and personnel.

The reliance on prototype, and pre-prototype, testing can lead to revenue loss

through lost sales. This may come about because of an excessive time in the

design-test-redesign loop, or, if the non-compliance of some equipment can be

demonstrated (by a competitor, for example), the manufacturer will be required

to remove that equipment from the market

There are three components to an EMC problem, namely a source of interference,

a propagation channel (which may be either radiated or conducted) and a coupling

mechanism by which the extraneous signal affects the victim equipment Where

radiated emissions and susceptibility are considered, the source and victim

equipment will involve wires and wire-like structures.

It can be seen that it is important to understand the mechanisms by which the

EMI is generated and the mechanisms by which it interferes in order to minimise

both.

There are essentially four main methods of gaining such understanding:

analytical methods requiring the direct solution of Maxwell's, and

associated, equations for a given system.

extrapolation, which requires that the knowledge gained for one piece of

equipment is extended to a new piece of equipment
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measurement, which requires that the equipment is built and tested

according to the required standards.

numerical modelling requiring computer based numerical tools which

allow systems to be analyzed in a relatively straightforward manner.

Of these. the first provides highly reliable results for simple situations. As the

complexity of the problem increases. so the difficulties in implementing analytical

solutions increase - rapidly becoming insurmountable. The extrapolation method

is a key method of design such that the EMC designer's experience is heavily

drawn upon and his "feel" for the situation. and hence judgement, is the single

most important factor. There are many situations when this approach is of great

benefit. especially in circuit design. However. it should be noted that even small

changes to a design can completely change the electromagnetic behaviour of a

piece of equipment Measurements. although the most tangible of the methods.

can be costly and time consuming. particularly in II commercial environment, if

several modifications need to be made to a design. Numerical modelling offers

the benefits of the analytical methods without the drawbacks of either

extrapolation or measurements. To date. the applications of numerical modelling

have been limited. this is partially due to the computer memory and run time

requirements for large problems and partially the lack of integrated CAD

packages using modelling methods required for widespread use in Industry. The

natural resistance of potential users to something which. to them. is new and

unproved is also a factor limiting the industrial use of modelling. This will

probably change over a period of time as more experimental verifIcation is

provided. to which the practical EMC engineer can relate. computer resources are

improved and more efficient, easy to use. algorithms are developed.
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1.1.2. Wires in EMC

The occurrence of wires, or other conductors, whose main purpose is signal or

power transfer, is fundamental to EMC problems. Wires may occur singly or as

wire looms and bundles, such as control wires for various vehicles. Other

conductors may occur as tracks on circuit boards. An interesting review of

printed circuit board EMC, which is a separate subject area and not considered

specifically here, has been recently been undertaken's', Further, wires may exist

just as signal carriers such as in telecommunications applications.

Unintentional 'wires', such as support spars or electrical ducting, may also be

problematical when treated as EMC components. It is probable that the

methodologies used to study wires can also be applied to treat a number of other

structures, such as an aircraft fuselage whose diameter is smaller than its length.

It can be seen that the study of coupling to and from wires, or similar conducting

structures, is fundamental to EMC and is one of the major areas of interest for
general EMC applications.

1.2. NUMERICAL MODELLING

It was remarked that numerical modelling can be a valuable tool for the EMC

engineer. Transmission-Line Modelling (TLM)[7.8) was chosen as the modelling

tool for the studies described in this Thesis. Chapter 2 will describe the TLM

method, as it pertains to the simulations undertaken later in this Thesis, and note

some of the main features of several of the other major modelling methods.
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However, it is helpful at this stage to briefly describe the basis of numerical

modelling and the justification for using TLM in this work.

1.2.1. The basis of numerical modelling

Numerical modelling is used primarily as a means of determining the behaviour

of a physical system without the need to actually build it A physical study of

a system may either be impractical or impossible due to cost or size limitations,

or where measurements are required which can not be obtained experimentally

without 'loading' the system in some way due to the presence of the measuring

device.

In the case of electromagnetics, the behaviour of most systems can be described

by the relevant differential or integral equations. However, it is unusual to have

a system which can be described effectively by a set of equations which can be

solved directly: the systems are usually too complex for this to occur. It is more

usual to discretise the equations in time or frequency, and in space. Each element

of the problem is described by the governing equations, the parameters of which

may differ slightly from those of its neighbouring (in time, frequency and/or

space) elements. These equations can then be solved, usually using a computer,

and the result of the first solution of the equations is used to seed the second-pass

solution, and so on. Some methods require such an iterative solution so that the

answer converges to a steady state whereas others model the system dynamically.

In general, frequency domain methods converge to a steady state and time domain

methods give a dynamic model of the system behaviour.

Some of the more widely used methods in EMC studies are Finite Element, Finite

Difference, Finite Difference - Time Domain, Method of Moments and

Transmission-Line Modelling (TLM). These will be briefly described in §2.1.
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1.2.2. TLM in EMC modelling

As will be seen in §2.2. and §2.3. lLM possesses a number of features which suit

it to the modelling of EMC systems'?', Some of these are listed here without

discussion (they will be discussed further in Chapter 2):

all six field components can be determined at the same point in space.

it is inherently stable.

the controlling algorithm is straightforward and it is a conceptually simple

method.

it is a time domain method.

wires can be included using one of a numbe~ of methods depending on the

problem to be solved.

variable meshing techniques permit the use of small features in a large

work-space.

material properties are easy to alter from the free-space values.

For this project, a method of modelling wires in which they are incorporated

directly into the model using reflective boundaries to represent the metal surface

of the wire (the integrated solution method) was favoured due to its flexibility and

ease of visualisation. However, when restricting the cross-section to one node

(for reasons described in §3.2.), an error manifesting itself as a reduction in the

resonances was cbserved''?', this is referred to as 'resonance error'. The

resonance error affects the wire resonances, the resonances of any cavities present

are not subject to it. This error is investigated in Chapter 3, its cause is

determined and a solution is proposed for it.
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1.3. VERIFICATION EXPERIrttENTS

In general, out of the several hundred journal and conference papers on TLM

there are relatively few which relate to experimental verification. Thus, a main

motivation for this work was to verify lLM experimentally and, more

specifically, to verify lLM for the modelling of systems involving the coupling

of electromagnetic waves into wires.

There were two mutually supportive parts to the work undertaken and described

in this Thesis. The experimental part investigated the accuracy and repeatability

of measurements undertaken in a screened room and an enclosed cavity. The

modelling part simulated the same structures used in the measurements. The

common thread was that the experimental results were used as verification tests

for the lLM. The validation of lLM included not only its use as a means of

studying coupling into wires but also the validation of the multigrid method''!',

aperture.models and the modelling of complex cavities. The rest of this section

will describe the rationale for using experimental results for verification of

numerical modelling tools and will overview the systems used in the study.

1.3.1. The rationale for experimental verification

For any tool to achieve widespread use its fitness for purpose needs to be

demonstrated. In the case of tools required for the study of physically realisable

systems, verification against results from physical systems is of significance

because it imparts confidence in the numerical results. Analytical comparisons
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are only of limited use because of the restrictions which would be imposed by the

fact that analytical approaches become rapidly intractable as the complexity of the
system being studied increases.

Whereas analytical solutions, in the absence of simplifying assumptions, can

potentially provide results of a high certainty, the results of experiments,

especially those inside screened enclosures, have a high initial uncertainty. Thus,

a substantial amount of work has been directed to minimising those uncertainties.

1.3.2. Systems studied

Two structures form the basis of the experiments undertaken in this work; these

were a screened room and a smaller screened enclosure with apertures of various
sizes in one of the walls[121leading to free space.

More generally, the (reverberating) screened room is one of a number of EMC

test facilitiesl'", the others including anechoic chambers, open area test sites, TEM

cells and GTEM cells'"', The open area test site is often regarded as the better

facility for EMC-type measurernentsl'" due to the relative unlimited size of the

equipment under test and the absence of resonances, although there may be

problems of high ambient radiation levels. Often, other test facilities, such as the

TEM/GTEM cells try to emulate this performance.

The screened room has the benefit over the open area test site of cost (one to two

orders of magnitude less). However, when being used at frequencies up to

approximately 30 MHz the inherent uncertainty in the results is generally below

3 dB if care and appropriate correction is used, this figure rises to up to 40 dB

at radio frequenclesl'", Hence, verification tests involving radiation in a screened

enclosure at high frequencies must ensure that there is very little uncertainty about
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the results. Potential problematic areas need to be investigated and unknowns

eliminated.

The smaller enclosure. containing one or more apertures. can be used to represent

several practical configurations such as equipment cabinets with apertures for

input/output devices. and simplified scaled versions of aircraft and terrestrial

vehicles with windows.

A high correlation between simulation results and experimental results has been

obtained. indicating that uncertainties in the measurements have been largely

eliminated. Also. it indicates that the method used for the simulations is correct

1.4. OUTLINE OF THESIS

The remainder of this Thesis is organised as follows:

Chapter 2 describes numerical modelling in electromagnetics including an

overview of the Transmission-Line Modelling method.

Chapter 3 investigates the resonance error: its cause and a method for its

minimisation.

Chapter 4 describes the development of the experimental verification tests.

Chapter 5 describes the experimental configurations and the lLM models used

in the verification tests.

Chapter 6 presents the results of the verification tests.

Chapter 7 discusses the results and other points regarding the Thesis and the

conclusions drawn from this work.

Chapter 8 gives the publications referenced in this Thesis and those arising from

the work reported.
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CHAPTER TWO

NUMERICAL MODELLING AND TLM

This chapter discusses the reasons for TIM being chosen for modelling the

coupling of electromagnetic waves into wires. II presents a brief discussion of

some of the more common numerical methods before considering in detail the

features of TIM which suit it to EMC problems. Finally, a discussion of wire

modelling using TLM is presented.

2.1. NUMERICAL MODELLING IN ELECTROMAGNETICS

Chapter 1 stated that significant benefits could be enjoyed by using numerical

modelling tools for the study of EMC phenomena because only relatively simple

systems can be solved analytically'!" and experimental studies are not always

feasible. This section describes some of the more common numerical modelling

methods used in electromagnetic simulation. There are a number of methods

which are regularly applied to various problemsl18-22) and it would be unrealistic

to try to describe them all fully here, hence, a only a brief overview is given.

It is possible to categorise numerical modelling methods inmany ways, however,

it is usual to choose two particular classification schemes. Firstly, the model may
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be either a differential or integral method. Secondly, the method may be time

domain or frequency domain, depending on whether the results of the model are

at a single frequency or whether it produces output with incremental time.

2.1.1. Finite Element (FE)

This method was originated from the study of mechanical problemsf", such as

the mechanical resonances of bridges. However, more recently it has found uses

in electromagnetic applicationst'", The method works by assuming that a

complex problem can be approximated by reducing it to a set of smaller

structures, or finite elements. The complex function governing the behaviour of

the overall structure is simplified over each one of these elements. This is

normally a frequency domain, integral method, although time domain schemes

exisr2SJ. Inhomogeneities are easily included. It is also possible to account for

irregular and arbitrary shapes by choosing the most appropriate geometries for the

elements: it is usual to use triangular or square geometries, although other
geometries have been studied[26J.

A major drawback, and an active area of research, is the difficulty of data

preparation because of the flexibility of the element shapes[27). Also, open-

boundary problems, such as a dipole in free-space, require that the mesh is

truncated to approximate to a boundary at infinity due to computer memory and
run-time limits.
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2.1.2. Finite Difference (FD)

This method often, but not always, employs rectangular elements in a regular

mesh. The resulting system of equations is sparse in comparison with FE, and

is thus often regarded as being easier to programl18J• FD is a differential,

frequency domain, method. It discretises space and iteratively determines the

values of the fields at the mesh points which satisfies the governing differential

equations. However, it should be noted that once the matrix equations have been

set up, standard matrix methods can be used to determine the required eigenvalues

and eigenvectors. Although, it is a straight-forward method, curved boundaries

can not be handled as easily as with FE. Open boundaries need to be truncated
in a similar way to FE.

2.1.3. Method of Moments

This class of models was developed in the 196Os(29).The principle of the method

is the solution of linear partial differential equations of the form

Opera tor (unknown function) - known function (2.1)

where the operator and the function to the right of the equation are known. The

unknown function is to be determined. An example of such a form is Poisson's
equation:

(2.2)
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The solution is obtained by solving the matrix equation resulting from the

introduction of a finite set of basis functions to represent the unknown.

The method of moments may be used to solve both differential and integral
equation systems.

2.1.4. Finite Difference . Time Domain (FD.TD)

This scheme, first proposed in the mid 1960s(30),was not widely applied to

electromagnetic problems for about a decade'!'!

FD-ID discretises the time dependent Maxwell's curl equations in time and

space. Most applications employ rectangular grids, although other meshes can be
Used(32).

The standard method works by interleaving two grids, one giving the electric

fields and the other the magnetic fields. A central difference algorithm is applied

to the cells in the meshes, the electric field grid being used to determine the

magnetic field and vice versa.

The calculations are straightforward and computer implementation is relatively

simple. Being a time domain method, frequency domain data is easily determined

by Fourier transfOrming the output from an impulse excitation. The drawbacks

of this method are that open boundaries can not be modelled directly and require

that the mesh is truncated, and the electric and magnetic fields are distributed

throughout the cells and are not localised at one point, thus leading to potential

ambiguities in the precise location of boundaries and excitation.
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2.t.5. Transmission-Line Modelling (fLM)

There are many parallels between TLM and FD-TOm·3sl. However, whilst FD-TO

is a direct discretization of Maxwell's curl equations in time and space, TLM is

analogous with Huygens's principle of wave propagation, which is used to

determine the electric and magnetic fields. Both space and time are discretised,

blocks of space form nodes and time is discretised to allow the dynamic

propagation of pulses to be accomplished on a computer. TLM gives all six

fields at the centre of the node and also between the nodes, thus requiring a larger

storage than FD-TO during the simulations. The calculations are, however, very

straightforward.

TLM suffers, like FD-TO, FD and FE, from requiring the truncation of the mesh

to model infinite boundaries.

Since a TLM model is effectively a passive network, stability is unconditional on

the initial conditions and the structure of the modelled work-space.

TLM was chosen for the studies described in this thesis because of it being a time

domain method (thus giving the flexibility for obtaining results over a wide

frequency range using a Fourier Transform) and the ease with which simulations

can be visualised. A more detailed description is given is §2.2.

A further weighting given to the selection of TLM was the significant amount of

background knowledge available on TLM within the Numerical Modelling Group

of the Department of Electrical and Electronic Engineering at Nottingham
University.
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2.2. ELECTROMAGNETIC MODELLING USING TLM

In this section the Transmission-Line Modelling method is described in more

detail than in §2.1.5. It is impractical to consider all aspects of electromagnetic

modelling using TLM here, but many of the main aspects of the method will be

described. The fundamentals of the method will be described in §2.2.1. with

§2.2.2. describing the two main variable meshing techniques. The main strengths

of TLM over other numerical modelling methods will be outlined in §2.2.3.

2.2.1. TLM Fundamentals

Huygens(36)proposed that a wavefront was constructed from the superposition of

smaller secondary wavefronts, the envelope of which caused the construction of

further wave fronts. Due to the digital nature of modem computers, the

implementation of a model based on such a principle requires discretisation of

both time and space. The level of discretisation is such that the elemental units

aI, the elemental unit of length, and ~t, the elemental unit of time, be related by

the expression:

111 v
At - (2.3)

where v is the velocity of propagation for the wave system under investigation.

For example electromagnetic propagation would require thar37]

t~- kc (2.')
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where c is the speed of light in free space and k is a constant dependent on the

structure of the node and the material properties of the problem space (for the

symmetrical condensed node, described later, k = 2).

The computer based simulation of electromagnetic field problems using models

of electrical networks, which were first described in the 194Os138.39),was first

proposed in 1971(7). A two dimensional network of intersecting (ideal)

transmission lines was solved and the solution compared with a two dimensional

solution of Maxwell's curl equations. An equivalence was observed. This

equivalence was then used to enable the modelling of electromagnetic problems,

such as the solution of waveguide problems(4()...t4).

The extension from two to three space dimensions was made by the mid 1970s14S).

This expanded node structure comprised six 2D nodes (three series and three

shunt nodes). It was later simplified into the condensed nodel46), which overcame

some of the problems of spacial separation of different field types and

polarizations, and the placement of boundaries. The symmetrical condensed

node[47] overcame the disadvantages of. the condensed node (more properly

referred to as the condensed asymmetric node) which were that, depending on the

polarization of a pulse incident on a node, the type of 20 node first encountered

was different, either series or shunt nodes; also. the arithmetic involved was

lengthy. It has also been shown that the SCN exhibits a lower dispersion than the

asymmetric nodesl48-SO).
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The fundamental algorithm for the propagation of a pulse through the mesh is the

'scatter and connect' algorithm This can be represented as:

V=SViD D

(2.5)

D+IV = C.V

where V and V are the incident and reflected pulses in the entire mesh in the

time period nand n+ 1 indicates the subsequent time period. S is a supennatrix

of scattering matrices, each of which operates on a single node. In the case of a

regular mesh of symmetrical condensed nodes (SCNs) all the elements of S are

the same. Figure 2.1 shows a SCN, without stubs.

7~ 12

t)1
10~

y

S~l

z
Figure 2.1 The symmetrical condensed node without stubs. The arrows

correspond to the polarisation of the incident pulses and the numbers are the

conventional port numbers.
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The scattering matrix S representing its behaviour is given byl47J:

0 1 1 0 0 0 0 0 1 0 -1 0
1 0 0 0 0 1 0 0 0 -1 0 1
1 0 0 1 0 0 0 1 0 0 0 -1
0 0 1 0 1 0 -1 0 0 0 1 0
0 0 0 1 0 1 0 -1 0 1 0 0

s - 1. 0 1 0 0 1 0 1 0 -1 0 0 0 (l.6)2 0 0 0 -1 0 1 0 1 0 1 0 0
0 0 1 0 -1 0 1 0 0 0 1 0
1 0 0 0 0 -1 0 0 0 1 0 1
0 -1 0 0 1 0 1 0 1 0 0 0
-1 0 0 1 0 0 0 1 0 0 0 1
0 1 -1 0 0 0 0 0 1 0 1 0

2.2.2. Variable meshing techniques

Variable meshing techniques, such as hybrid variable ~esh[Sl.s2)and multigridl'"

which allow variable node sizes and regions of finer mesh size within a work-

space, have alleviated the restriction that the node size in the bulk of the problem

work-space is determined by the smallest feature in the whole of the model. The

application of these techniques reduce the required memory, and hence increase

the the size of the problem or the complexity of fine detail which can be

modelled by a particular computer.

The problem of small features, such as wires, in a large volume, such as an

aircraft fuselage, is frequently encountered within EMC problems. If the wire is

1 mm in diameter and the fuselage is 5 m in diameter the problems of having a

node size dependent on the smallest feature can be seen to be impractical to solve

on common computers. Methods to localise small nodes, for the modelling of

fine features, can increase efficiency where memory or run-time is at a premium.

The two methods, graded mesh and multi grid, and regular meshing are illustrated

schematically in Figure 2.2, which shows a slice through hypothetical work-
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spaces.
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Figure 2.2(a) shows a regular mesh, here Al is constant for every node throughout

the work-space: features need to be described relative to AI. Figure 2.2(b) shows

a graded mesh scheme, here the nodes are best visualised as slabs, each of a

constant height, but the height may vary from slab to slab. Figure 2.2(c) shows

the multigrid method. In this case, the smaller nodes are localised within a region

of the work-space.

Ca> (b)

3: 1 Reduction

(c)

Figure 2.2 Different meshing schemes: (a) regular mesh, (b) graded mesh

and (c) multigrid.

The basic method of operation for the graded mesh scheme is that extra

inductance and capacitance is added to the node either by stubs or by altering the

inductance of the link-lines and adding extra capacitive stubs to ensure

synchronism of the pulses (the latter is referred to as the hybrid method). The

important consideration for graded mesh schemes is that all pulses should reach

a node and scatter from it together.
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The multigrid method, being a regular mesh within a regular mesh, requires that

signals are passed to and from the fine mesh region at the correct rate (for both

meshes). Other considerations include the conservation of charge and flux at the

interface between the two meshes.

The graded mesh is also particularly useful for implementing non-rectangular

meshes, e.g. cylindrical, spherical or general curvilinear coordinates(S4·"J.

Cylindrical coordinates have been used in this Thesis for some of the

investigations into wire resonance error problems.

2.2.3. Strengths of TLM

The main strengths of TLM over other modelling methods for studying the

coupling of electromagnetic waves into wires are: .

it models all six electromagnetic field components directly and located at

the same point in space, unlike standard FD-ID which displaces the

electric and magnetic fields. This means that there are no problems with

the placement of the boundaries and the choice of the most appropriate

field components to excite the system and obtain the output, i.e. either at

nodes or between nodes.

it is inherently stable due to the analogy with the solution of passive RLC

circuits. This analogy also makes TLM more easily visualised by users

unfamiliar with the theoretical basis of the method.

it relies on a straightforward, simple, algorithm, with a high degree of

latent parallelism, suiting it to implementation on digital computers or

parallel processing engines. Although the governing procedure is the

Scatter and Connect algorithm, the matrices can be simplified to discrete
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operationslll.~..57J.

it is a time domain method and hence frequency domain data can be

obtained from a single time domain simulation. Also, being a time

domain method, a dynamic, or transient, analysis of a structure is readily
obtained.

it exhibits a lower dispersion than FO-TD'49Jwhich means that larger, and

hence fewer, nodes can be used for a given maximum frequency of
operation.

Some interesting and potentially very useful recent advances in TLM are:

a method of modelling free-space boundaries has been presented[S8Jwhich

used the angle of waves incident on a truncated free-space boundary to

improve its behaviour. The modelling of open boundaries has also been

enhanced by the 'Johns matrix' technique's9J.

the removal of the restriction on the work-space that it must be an exact

multiple (or half multiple) of the node dimensions has been proposed(60).

the operation of TLM with reverse time in order to determine the structure

of a device or system based on its required frequency response[6l,62J.
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2.3. THE MODELLING OF WIRES IN TLM

The importance of wires in EMC problems was discussed in §1.1.2. This section

is concerned with the methods of describing wires in TLM.

The modelling of wires is often implemented by using short circuit nodes. These

are symmetrical condensed nodes with the scattering matrix

(2.7)
B - -z

Alternatively, wires may be modelled by using shorted link-lines adjacent to the

conducting boundary such that all the energy transmitted along a link line is

returned with a 1800 phase shift in the following lime period. This method,

where the wires are explicitly included in the model, is referred to as the

integrated solution method. Integrated solution methods allow the modeller easy

visualisation of the structure being simulated using only a one-pass solution.

Computational resource limitations mean that it is usual to apply simplifications

to the TLM model: these being that the wire should be modelled by a single node

cross-section and a rectangular Cartesian mesh should be used for generality.

When TLM is used to obtain the resonances of a wire the result of these

simplifications to the model is a shift of the resonances. by approximately 5 -

10%, to lower frequencies''?', this will be referred to as 'resonance error'.

Another method used to model wires is the separated solution[63.64)method, where

the field simulation and the wire simulation (using knowledge of the fields in the

vicinity of the wire) are decoupled. The process of implementing a separated

solution method is to simulate the structure under study and extract information

about the fields local to the wire(s). This information is then used to generate

distributed current and voltage sources along the wires in a I-D model. Separated
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solutions can produce accurate results, free of resonance error effects, but they

allow no, or little, interaction with the environment and are thus limited to

problems where certain simplifying criteria are permissible, such as the wire must

not re-radiate significantly.

A further class of solutions exist which are referred to as wire nodes(6S-68).These

involve embedding a wire-like structure within, or between, nodes. Wire nodes

allow the modelling of wires with a smaller diameter than the node size in which

they are modelled. However, they add extra complexity to the model due to the

additional node types required.

In reference 65, Naylor and Christopoulos devised the scattering matrix of a

three-dimensional symmetrical condensed node which had a wire running through

it This involved the addition of 'pseudo-stubs' in order to allow propagation

along a wire with a diameter less than the node size. The model of Wlodarczyk

and Johns'66] adopts a slightly different approach 10 that the wire is placed

between adjacent symmetrical condensed nodes, rather than within a node. This

approach allows the SCNs to be unaltered, but requires additional features to be

included in the model. Finally the models of Porti et a!-67.68) can almost be

regarded as an hybridisation of the previous two, in that they adopt an approach

similar to reference 66 but place the wire inside a SeN, in the manner of

reference 65, with good results.
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2.4. SUMMARY

This chapter has described the basis of numerical modelling in electromagnetics

and some of the more commonly used methods. In particular electromagnetic

modelling using Transmission-Line Modelling (1LM) bas been described and

emphasis placed on the modelling of wires using TLM.

TLM was chosen as the modelling method used for the work described in this

Thesis because of the attractive features it possesses for EMC modelling. Within

TLM, the integrated solution method of modelling wires has been chosen for

further investigation because of its generality, self-consistency and ease of

visualisation. It has the advantage over the separated solution and wire node

methods of requiring only the symmetrical condensed node in a one-stage

solution. One limitation on its usage arises from the resonance error which

reduces the apparent resonances of a wire by 5-10%. In the next chapter, the

cause of this error will be determined and a method to minimise it will be

proposed.
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CHAPTER THREE

INVESTIGATION INTO THE CAUSE OF THE

WIRE RESONANCE ERROR

This chapter describes the resonance error encountered when modelling wires
using the integrated solution method in TLM. It outlines the manifestation of the
problem, identifies the cause of the error and proposes a solution to the problem.

3.1. MANIFESTATION OF RESONMCE ERROR

It was noted in Chapters 1 and 2 that a potential problem area, when using the

integrated solution method to model wires in TLM, was the introduction of an

error in the electromagnetic resonances of the wire when described by a single

node-cross section[lO] (wires, in this context, are regarded as conductors whose

length is much greater than their diameter). The error was manifested as a shift

of the resonance features, to lower frequencies, by 5-10%. In the time domain,

this was seen as a progressive drift in the results[69]. The reasons for using a

single node cross-section will be explained in §3.2. However, unless corrected,

the presence of this error potentially limits the accuracy of TLM simulations for

EMC applications.
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In general, the EMC community accepts magnitude uncertainties of several dBs.

However, they require the frequency position of features to be known accurately

and so the resonance error is unacceptable.

A similar problem to resonance error has been seen in 2D TLM models, where

other authors have referred to it as coarseness errof'Ol and attributed the error to

the fact that nodes diagonally adjacent to an external comer have no direct contact

with the wire. The solution proposed in this case was to introduce a stub to the

2D model such that direct interaction with the comer, by the adjacent comer

node, was possible.

Three-dimensional models of strip-line structures have also been the subject of

previous investigations'I", It was noted that the resonant frequency of the strip

was approximately 10% below the expected value, and it was suggested that the

cause of this error was poor interaction of the comer nodes diagonally adjacent

to the conductor. The solution proposed was to model the strip-line with two new

node types - allowing accurate modelling of the conductor itself and of the edges

- which embedded the conductor within the node, as opposed to the more usual

method of modelling it by shorted link-lines.

In both the above cases, the cause of the error was stated without proof. The

solution to the 2D and the strip-line problems was to introduce new node-types

to compensate. The purpose of this work is to develop a procedure which

eliminates the cause of the problem without recourse to a two stage solution nor

a new node type. The acceptance criterion placed on the model was that it was

preswned that the wire was modelled correctly if the resonance error was less

than 1% using a single node to model the wire.
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3.2. LIMITATIONS ON WIRE MODELLING IN TLM

Before discussing the nature and investigating the cause of the resonance error,

it is appropriate to note the requirements which are placed on wires modelled in

TLM.

The integrated solution method has been favoured for this work because it is a

one-step solution (unlike separated solution methods, which require two separate

simulations, one 3D and one ID) and because, unlike the wire node solutions, it

does not require a special node type, other than the symmetrical condensed node

(unlike the wire node solutions). It is also straightforward to use, in that the

technique of shorting link-lines to form the wire can also be used, without

modification, to form other conducting structures, such as the bench in the

screened room or an aircraft fuselage thus limiting the model to one type of

conducting structure.

In constructing wire models, the following requirements were kept in mind.

the model should simulate a wire accurately by using no more than one

node cross-section. This requirement is based on the fact that computing

resources are limited. Hence, requiring from the outset that a single wire

be modelled with several nodes cross-section risks requiring excessively

long run-times and large storage.

the rest of the model should be affected as little as possible by the wire

model, e.g. the resonant behaviour of any enclosure in which wires are

positioned, if used, and the behaviour of other features in the model,

should not be dependent on the particular wire model used.
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resonant effects on the wires should be modelled accurately for both

radiation from, and currents induced in, the wire.

terminations, such as those used for connection to coaxial-type equipment

should be modelled correctly. The wire may also have its ends adjacent

to metallic planes, such as when a wire passes through a bulkhead inside

a vehicle.

These requirements were also borne in mind when developing the basic test

systems described in §4.2.

3.3. IDENTIFICATION OF THE

CAUSE OF THE WIRE RESONANCE ERROR

This section summarises the simulations undertaken in order to identify the cause

of the resonance error. It describes the TLM 'test-structure' model used for

preliminary investigations, the modelling of wires using a finer mesh description

of the cross-section, it investigates the effect that changing the wire length has on

the error and the modelling of the wire using a lLM mesh based on cylindrical

coordinates.
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3.3.1. Model for preliminary investigations

In order to investigate the manifestation, cause and possible solutions, of the

resonance error, a simple test structure was used for simulations, as shown in

Figure 3.1. This shows a two metre long wire placed between two large parallel

plates such that the ends of the wire were coincident with the plates and normal

to them.

Matched boundaries around perimeter of model

Rod

,
,,
,,,,, , ,,............. ., ,

: : ,,', ". .,'
L_ ..........,

End plate

y

EndpIate z
Figure 3.1 Single node cross-section wire between parallel end-plates.

In this system the resonances on the wire were enhanced by the end-plates, which

also served to define the ends of the wire. The diameter of the wire was not

important for determining its resonances since the plates eliminated edge fringing

and any associated reduction in frequency with increasing wire diameter. This

enabled meaningful comparisons to be made in cases where the number of nodes

in the cross-section were changed.
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The system was excited by a surface current at one end of the wire and the output

was taken at a point approximately three quarters of the way along. This allowed

the first four resonant frequencies to be determined: the theoretical values being

75 MHz, 150 MHz, 225 MHz and 300 MHz. In general, the fourth resonance

(300 MHz) was used as the basis for error determination.

The 2m length of the wire was modelled by 20 nodes, each with a.11 = O.lm.

Based on the rule-of-thumb that the shortest wavelength of interest should not be

less than 10.11,this is expected to give rise to low dispersion over the frequency

range of interest

When the structure of Figure 3.1 was modelled with no form of correction and

with a single node describing the wire, a fourth resonance was obtained at 282

MHz, as opposed to the required 300 MHz, an error of 6%.

3.3.2. Finer descriptions of tbe wire cross-section

A first consideration given to the study of the resonance error problem was the

actual description of the wire. One of the requirements placed on the integrated

solution method in §3.2 was that no more than one node should be used to

describe the wire cross-section. However, for the purpose of numerical

investigation into the origin of the resonance error, the number of nodes

describing the cross-section was increased. Figure 3.2 shows the effect, on the

fourth resonance, of increasing the cross sectional area of the wire, from Al2 to

(8.11? Clearly, there is a significant improvement as the cross-section was

increased resulting in a negligible error at (8.11l. The modelling of wires to such

resolution is not acceptable, due to the memory and run-time implications, but it

does show that the error is reduced as the number of nodes describing the wire
cross-section is increased.
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Figure 3.2 Fourth resonances of a square cross-

section wire of varying nodes per side.

In order to approximate the geometry of the modelled wire cross-section to that

of a cylindrical wire, a stepped approximation to the curved surface was used.

Figure 3.3 shows the boundary descriptions used for two such approximations,

with diameters of four and eight nodes, and Figure 3.4 compares the resulting

fourth resonances with those obtained from a square wire. In this case, it can be

seen that the improvement is not significant as the detail of the stepped boundary

descriptions is increased. Further investigation indicated that the error depended

on either, or both, of the number of nodes on a continuously flat surface per side

(an increase giving a reduction in error) and the number of external comers in the

cross section of the wire (an increase giving an increase in the error). The

defmitions used for internal and external comers are illustrated in Figure 3.5,

where 'i' implies an internal comer and 'x' implies an external comer. Also,
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node '0' is the node diagonally adjacent to the external comer.

I

Node boundaries

(b)

Conductor surface

Figure 3.3 Stepped approximation to a cylindrical cross-section. (a) four

nodes diameter, (b) eight nodes diameter.

(a>
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Figure 3.4 Fourth resonance frequencies for stepped

and square boundary wires.
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Node boundaries

II
Figure 3.5 Wire comer convention.
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3.3.3. Cbanging tbe description of tbe lengtb of tbe wire

The above investigations concentrated on the cross-sectional description of the

wires. A set of simulations were undertaken which kept the simulated length of

the rod at 2m but changed the number of nodes, and hence the node size in this

direction. The number of nodes varied between five and 50. Figure 3.6 shows

the fourth resonance for various numbers of nodes.

Frequenor (MHz)~~~~--------------------~

n
211L-~~--~~--~~~--~~~o I ~ • • a ~ • ~ • R

Number of nodea deacrlblng rod length

Figure 3.6 Effect of number of nodes describing the conductor length.

For lengths greater than 20 nodes, the location of the resonance remains fairly

stable. Below this number, the resonant frequency increases, approaching the

theoretical value of 300 MHz! However, it can not be stated that the reduction
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in number of nodes improves the error, as the 'lOAI' dispersion rule is being

violated in this region. What is interesting is the fact that the error is stable

above the lOA! point (which occurs at 20 nodes for 300MHz) indicating that the

length of the rod, in nodes, is of little or no consequence when determining the
resonance error.

In a further test, the number of the nodes along the conductor length was

maintained at 20, but the node sizes in the direction of the wire were changed and

the resonances normalised to a 2m wire length for comparative purposes. The

purpose of this study was to determine the dependence of the resonance error on

the length of the nodes relative to their cross-section, i.e. on the aspect ratio of

the nodes. Normalization was performed using:

:l = f.fd
I20rIII ftl 3.1

where ~ = normalised frequency

f. = actual resonant frequency

fe = theoretical resonant frequency for the given length

fe2= theoretical resonant frequency for 2m rod

It can be seen from Figure 3.7 that the magnitude of the resonance error is not

significantly influenced by either the size or the number of nodes describing the

length of the wire. The results of Figure 3.7 do show some variations but these

are small and are not considered significant
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Figure 3.7 Normalised resonances for different sized nodes describing the

conductor length.

3.3.4. Wire described in cylindrical coordinates

It was established in the previous sections that the cross-sectional description of

the wire was of fundamental importance in determining the level of resonance

error. It was found that a rectangular cross section exhibited a lower error than

a corresponding stepped approximation to a curved boundary. It was also noted

that the length of the wire had little effect on the error. It can be stated that the

external corners, used in the description of the wires, are responsible for the error.

In order to eliminate the effects of the external comers, a cylindrical version of

the 2m long wire between two parallel plates model was used.
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Cylindrical coordinate systems have been adequately described in(SS] and will only

be briefly described here. Graded mesh nodes were used whose sizes were

allowed to vary in order to represent the changes in width of the cylindrical

segment, as shown in Figure 3.8. The length of the corresponding link-lines were

chosen to be the mean length or width of the node, as indicated. Essentially, this

allowed the rectangular (x,y,z) coordinate system to be 'wrapped' round to form

the (r,e,z) cylindrical system.

_jL
II

Nodes

Node boundaries

Figure 3.8 Cylindrical segment showing changes in node size.

The wire between plates system was modelled by a sector of the cylindrical

system (thus exploiting the rotational symmetry of the system). Figure 3.9 shows

the whole system.

Exciting the current on the rod and measuring the subsequent resonances gave

frequencies which agreed with the theoretical predictions and were free from the

resonance error.



A.P. Duffy. 1993. Chapter 3 39

...................
'. .. .'..
"..,
l...,,

".'
............. - ...------~-..-----.-

Rod between end plates

1m

variable

Figure 3.9 Cylindrical rod between parallel plates system.

3.3.5. Summary

The previous simulation studies have indicated that the cause of the resonance

error is the external corner nodes delaying signals propagating around the

circumference of the wire. The length of the conductor does not appear to have

any effect on the degree of error (providing that the ten nodes per wavelength rule

is observed). Changing the structure of the cross-section of the wire from a

square to a stepped approximation to a curved boundary makes the relative error

worse. The elimination of external corners by the transformation of the test

structure to a cylindrical coordinate system eliminates the error.

The next sections will analyze the behaviour of the corner nodes and the pulse

propagation around the corners and will propose a new method of modelling

wires which reduces the error substantially.
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3.4. THE ROOT OF THE RESONANCE ERROR AND A

PROCEDURE FOR ITS MINIMIZATION

The nodes diagonally adjacent to the wire were identified as the source of the
resonance error §3.3.

This section describes the cause of the error and a method by which it can be
minimized.

3.4.1. Tbe cause of tbe resonance error

In the TLM model of wires, pulses propagating around the circumference of the

wire are used to support the current flowing in the wire. Amore detailed analysis
can be considered from Figure 3.10. Figure 3.10(a) shows the actual path taken
by a TLM pulse as it travels around the corner. DistanceAB is the path from the

centre of the node to the adjacent node along the link line. Path BCD is the

passage of the pulse through the diagonally adjacent comer node and path DE is

the path to the centre of the next node. It will be noted that the distance from the

section BCD to the comer of the wire is not constant, it increases from B~C and
decreases from C~D.

The desired path is one where the distance of the propagating pulse to the wire

remains constant (Figure 3.10(b». This implies that the desired path at the comer
node is a quarter-circle as shown by path GH. Thus, electromagnetically, the
system being modelled is not equivalent to the physical system. In fact the path

length ABCDE is greater than the path length FOID and this will cause an

apparent delay in the propagation of the TLM pulses around the wire in the
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model. This delay is the origin of the resonance error.

WI,. WIre

H

<a) (b)

Figure 3.10 (a) actual path and (b) desired path around wire.

It is feasible to modify the structure of the comer node so as to correct for this

error by reducing the distance the pulse travels, i.e. reduce the path length from

that of path ABCDE to that of FOID. The alternative method of producing the

same result is to keep the propagation distance, i.e. the physical node size and

shape, unaltered, but to increase the speed of propagation through the comer node

so that it appears to have the desired path length. This method requires no new

node type and will be described in §3.4.2.
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3.4.2. Minimization of the resonance error

The method of increasing the velocity in the nodes around the conductor

mentioned in the previous section can be implemented by reducing the relative

background permittivity and permeability to less than one in the immediate

vicinity of the wire, hence, increasing the velocity of pulse propagation around

the wire. This can be realised in TLM by reducing the base time-step, ~t, and

adding stubs to compensate for this reduction everywhere else. This approach

eliminates the potential problems associated with introducing negative admittance

stubs in the region adjacent to the wire.

The modified permittivity and permeability values were determined as follows.

The actual path distance ABCDE in the TLM model is, from Figure 3.10:

(Actual length) A.8CZ¥ = 4 ~l (3.2)

The required path distance, FGHI, is

(Desired length) ....UT = Al + ..!!. Al + Al (........ 2 2 2 2 3.3)

Thus, the velocity of propagation in the circumferential direction must be

increased by a factor w, where
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w= 241 =_8_=1.1
41 + 1t41 4 + 1t

4
(3.4)

A further point which needs to be accounted for is that although the required

velocity is wc, c being the speed of light, an incoming electromagnetic wave

should experience no change of impedance as it approaches the wire. Thus, to

implement the change in velocity, the relative permittivity and permeability are

divided by w such that the following relationships hold:

(3.5)

(3.6)

where Z is the impedance of the medium and 11is the impedance of free space.

Thus, if Er = Pr = 1, as it will be in general for the problems discussed in this

Thesis, the requirements described above will be met

As the error is introduced by the comer nodes, it is also possible to apply a

correction to these nodes only. Consider the actual path BCD in Figure 3.10.

This is required to behave as desired path GH. Using a similar reasoning to

above, the actual path is

(Actual length) BCD = 2~1 (3.7)

whereas the desired path is

hence, in this case the required correction factor, wc' is



A.P. Duffy. 1993. Chapter 3 44

(Desired length) GIl = .! 1112 2 (3.8)

_ 111 _ 4
We - -- - - = 1.3

.!111 11
4

(3.9)

which is to be applied only to the external comer nodes (the subscript 'c'

indicating comer node correction).

The wire between plates simulations were re-run using the correction factors

described above. The method of implementing the solution was to embed the

wire in an isotropic region of reduced permittivity and permeability, which

extended one node around the wire. An isotropic reduction of these parameters,

such that the x, y and z directions were equally affected, was used because it

eased data preparation.

The one node cross-section wire was embedded in a region where the local

reduction of Er = J.lr = lIw ""0.9. This was found to give resonances as expected

theoretically. Comer correction, i.e. correction only applied to the offending

adjacent corner nodes, was applied with the local reduction Er = J.lr = l/wc "" 0.8,

again resulting in resonances of the wire in agreement with those predicted from

theory.

It was stated above that the corrections were implemented by isotropically

changing the local material properties. In order to determine whether the

improvement in resonance was due to the cross-sectional correction or whether

the correction was due to a simple increase in velocity along the wire (an

unacceptable 'fix'), the circumferential and longitudinal components were

decoupled such that modification of the material properties was only undertaken

longitudinally or in the plane of the cross-section without altering the properties

in the other direction. It was found that no change in the location of the
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resonances was observed for longitudinal correction only. However, the correct

resonances were observed for the circumferential correction only, thus indicating

the correctness of the identification of the source of the error, and its solution

described previously.

Procedurally, the method of reducing the relative material properties around the

wire is to determine the minimum time-step based on those values of permittivity

and permeability and then decrease the velocity of propagation through the nodes

everywhere else except around the wire by the addition of stubs. However, this

requires extra memory and increased run time but does allow standard

synunetrical condensed nodes to be used in the solution without additional node

types and without recourse to a two-stage solution.

3.5. SUMMARY

This chapter has investigated the resonance error problem and a solution for it

It has shown that the error is attributable to the corner nodes diagonally adjacent

to the wires. A method of minimising this error was developed and the

preliminary results for a simple test structure were very encouraging and point to

a workable solution. Results obtained using this method for more general EMC

configurations incorporating wires are given in Chapter 6 where the general

applicability of this approach is explored further.
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CHAPTER FOUR
MEASURING ELECTROMAGNETIC

COUPLING IN A SCREENED ROOM AND
IN A CAVITY

This chapter describes investigations made into those factors affecting the
accuracy and repeatability of couplingmeasurements in a screened room and an
enclosed cavity, these measurementsform the basis for subsequent experimental
validation of TLM simulations. The first section in this chapter discusses the
rationale behind the tests developed. The rest of the chapter is directed towards
the basic study of the basic configurations adopted. The actual configurations

used in the validation tests are reported in Chapter 5.

4.1. INTRODUCTION TO VERIFICATION TESTS

It is important that any new tool is tested to determine its fitness for purpose.

This enables the tool's designer to change or hone the design as required and it

also allows the end user to have a certain amount of confidence that the tool they

are using will perfonn in the way they expect In terms of numerical modelling

tools, it is important that the verification tests reflect 'typical' usage. EMC

modelling is an area in which there are a wide range of potential applications and

it would be naive to state that the results for a single set of tests give full
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confidence in the application of the model under all circumstances. However, it

is required that tests are developed which give a high confidence to the user for

a specific sub-set of applications. This Thesis addresses the coupling of

electromagnetic waves into wires in screened or partially screened enclosures,

hence the main elements of such systems need to be included in the verification

tests. An EMC problem can be considered as having three component parts, as

illustrated in a simple graphical form in Figure 4.1. These parts are a source of

interference signal, a propagation channel from source to victim and a means of

coupling into the victim equipment Here, the concern is only for radiated

coupling paths. The validation tests should, where possible, be self contained,

comprising:
a source of radiation, such as a half wavelength dipole or a travelling

wave type antenna.

a propagation path between the source and the victim.

a victim equipment, or other conducting structure into which

electromagnetic coupling can take place.

[ Interference Source

Propagation
Medium

Radiation

[: Victim Equipment

Figure 4.1 The EMC problem.
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Further points which have been incorporated in the test structures used. as they

increase the confidence in the subsequent comparisons, are:

near field interaction, which are notoriously difficult to predict because of

the r-2 and r-3 terms (r being the distance from the source). This has been

included for the purposes of validating models as it can occur in practical

problems. (It should be noted that far-field predictions using TLM would

depend on the ability to model free-space boundaries and the size of the

computer memory to allow the model to be undertaken.)

system connections, such as 500 coaxial connections, which are used for

exciting the system or for obtaining output values from the system have

been included to allow the representation of practical systems.

wires with a much smaller diameter than their length. These are generally

required to be modelled for EMC purposes ..

wires placed close and parallel to a conducting surface.

Two environments were chosen for further study, these are shown in Figures 4.2

and 4.3. The first is the coupling between conductors in a screened room and the

other is a small conducting enclosure with an internal wire. Both avoid

uncertainties introduced by 'free-space' measurements, namely the effect of

ambient radiation levels on the comparisons. Thus, both are ideal systems to be

used for validation tests. Also, both systems represent self-contained EMC

problems since both contain sources of interference, a coupling mechanism into

the victim and a propagation path. In the case of the screened room, the source

is the dipole, the victim is represented by the rod above the conducting bench and

the propagation path is within the screened room itself. The conducting enclosure

is slightly different. in that there is only a single conductor. The EMC problem

here is the determination of the effects of the enclosure on the signal flowing
along the wire.
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The actual configurations used and the practical considerations for performing

experiments on such systems are discussed in §4.2.

4.2. ENVIRONMENTS INVESTIGATED

This section describes the basic configurations of the two test structures and the

basic measurement procedures.

102.5

,''', 7U I
Figure 4.2 Screened room configuration. All dimensions are in cm.

In the screened room of Figure 4.2 the source dipole is centre fed and is

connected to port 1 of a Hewlett-Packard vector network analyzer, model 851OB.

Output was taken using a current probe (Eaton, model 94111-1) connected to port

2 of the network analyzer. The measurement taken was the S21 (system thru')
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parameter'P?", The positions at which the output were taken were the midpoint

of the receiving rod and 10 cm from the feed-point of the dipole along one or

both of the arms.

LJ /
I
i
I
I
I ai 10

I 0

I
! Rod with tenninadODS
:

/
~

...
",

k O.4m J

Figure 4.3 Enclosed cavity configuration.

The enclosed cavity of Figure 4.3 was excited at one end of the rod by connection

to the network analyzer through a 50n BNC connector and output was taken at

the other end of the conductor, via the corresponding connector, to the other port

of the network analyzer. Again, S21 was used as the measured parameter.

These are the basic configurations for the systems, some variations were used to

test particular features of the model, for example the single conductor in the

screened room was replaced by two conductors and apertures were placed in one

of the walls of the cavity for certain tests, these will be discussed further in
Chapter 5.



A.P. Duffy, 1993, Chapter 4 51

The frequency ranges used in the measurements were 50 MHz to 250 MHz for

the screened room studies and 400 MHz to 1.5 GHz for the cavity. The screened

room range was chosen so that it included the main dipole resonance (located at

approximately 140 MHz) and a number of room resonances. The lower frequency

for the cavity studies was chosen because only a low Q rod resonance was present

below this frequency. The upper frequency was chosen to allow adequate visual

resolution of the resonances on the graphs.

In §4.1. several features which are common to EMC problems of coupling to and

from wires were listed. These are addressed by the two test configurations thus:

near fields interactions take place in the screened room coupling studies

and also in the enclosed cavity. The latter also includes travelling wave

phenomena, since all signals propagate along the finite length of the wire,

with a half wavelength less than the length of the internal wire.

connections to external systems are introduced by the feed of the screened

room dipole and by the excitation points and output points of the enclosed

cavity.

in both configurations, the dipole and rods can be constructed such that

the diameter is much smaller than the length.

in both configurations, the resonant cavity formed by the enclosure or the

screened room and the natural resonances of the radiators fall in the same

frequency ranges, giving rise to a compound resonant structure.

both the screened room and the enclosed box have wires placed close to

conducting surfaces. In the case of the screened room, the ends of these

rods are not connected to any other structure. The enclosed box is similar

to the test structure used in Chapter 3 in that it has the ends of the

conductor close to the metal walls of the box.
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The accuracy and repeatability of measurements undertaken in screened rooms

have been questioned'!", It was found that similar measurements undertaken in

several screened rooms could show a variation of up to 4OdB! The inherent

similarities between the screened room and the box used in these studies,

indicates that the problems inherent to the screened room may also affect the box.

Hence, a principal aim in developing verification tests is to ensure that the tests

themselves are repeatable and accurate. The difficulty with such an aim is that

there is no 'standard' to compare with: the very act of introducing measurement

equipment leads to further uncertainties. As a consequence, many of the factors

which could give rise to uncertainties in the measurements were investigated as

independently as possible. The following sections investigate many of the

variables which may give rise to errors in the results.

4.3. SCREENED ROOM EXPERIMENTAL PROCEDURES
AND uNCERTAINTIES

There are a number of factors which can give rise to potential uncertainties in

results obtained from screened room measurements. Those considered to be of

fundamental importance are general metrology, the cables and errors in positions

of the source and receiver. These are discussed in this section.
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4.3.1. Metrology

This section discusses a number of aspects of taking measurements in the

screened room.

Network analyzer calibration. In order to eliminate the effects of the

cable attenuation and phase shift on the measurements, calibration was

undertaken according to standard practice'?", shifting the calibration planes

to the ends of the cables connected to the dipole and the current probe.

A simple thru' response calibration was generally undertaken as this was

found to produce results almost indistinguishable from the more accurate,

but also more lengthy, one path - two port measurements. A full

description of error paths and correction can be found in reference 74.

The network analyzer itself was calibrated by the manufacturers, giving

results potentially traceable to standards. .

Network analyzer timebase 'selection. There are three frequency sweep

options for the network analyzer. The first is cw (continuous wave _

operating at a single frequency) and was not used for the work undertaken

in this Thesis. The fundamental difference between the other two options,

'step' and 'ramp', is that 'step' phase locks at every measurement

frequency and 'ramp' only phase locks at the start frequency and then the

output follows the input without further phase lock until the start of the

next cycle, giving the potential for drift The 'step' mode is inherently

more accurate, due to the phase lock, and was used for the majority of the

experiments undertaken.

The 'step' mode takes longer to perform a single measurement than the

'ramp' mode - of the order of several seconds compared with several

tenths of a second for the 'ramp' mode. This increase in time Was of no

inconvenience for the experiments undertaken.
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In order to obtain a measure of the repeatability of the experiments.

several sets of experiments were undertaken with the variable in question

altered. Each measurement was recorded. The sets of results were

scanned to find the maximum and minimum value of the received signal

at a particular frequency. These will be referred to as the maximum and

minimum variation curves, and will be used to highlight the repeatability

of the measurements.

Current probe position. It was found that the current probe could be

misplaced on the dipole and rod by several cm from its nominal position

without resulting in any perceivable change in the measured response.

Figure 4.4 shows the maximum and minimum values of the rod response

as the current probe was displaced from the mid-point by ±5 em, the

maximum likely accidental displacement The two curves are virtually

superposed .

.2-I/)-'2
2-
N

(f)

.1

o L-~~ __ ~~~~~~~~~~~~~~~

O.5x108 1.0x108 1.5x10B 2.0x10B 2.5x108

Frequency (Hz)
Figure 4.4 Maximum and minimum values of S21 obtained as a

function of frequency with changes in the position of the current

probe.
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4.3.2. Cables

In the screened room measurements, cables were necessary to enable the network

analyzer to excite the dipole and for the signal picked up by the current probe to

be passed back into the network analyzer. Initial experiments were undertaken

using braided cable. This proved unsatisfactory due to the high level of coupling

through the braid. Clearly, standard braided coaxial cable is unsuitable for

experiments undertaken in screened rooms. As a result, triple-braided cable was

used (referred to as super-screened cable), this gave noise-floor-level coupling

through the braid.

Super-screened cables were not without their problems, however. When the

coupling experiments were undertaken as before but with super-screened cable

used in place of braided cable, the measurements of the current induced in the rod

were still not repeatable. Significant differences in the results were observed for

experiments performed at different times. To further investigate this phenomenon,

measurements were taken of the current in the two arms of the dipole using the

current probe, both the dipole feed and the current probe output cables were

super-screened. The dipole was placed symmetrically in the screened room, i.e.

the feed of the dipole was equidistant from the two side walls and the axis of the

dipole was perpendicular to those walls. The measurement taken was the current

proflle along the dipole over the frequency range 50 MHz to 250 MHz, this is

shown in Figure 4.5. The ideal response is one which has a plane of symmetry

located at the dipole feed, thus the current profile in the 'left' arm is the same as

in the 'right' one. Clearly, this is not the case. It was found that this response

would be significantly different if the experiment was re-assembled.

The dipole was a simple, linear, half wave resonator, with no balun arrangement

The lack of balun was investigated as the cause of the demonstrated current

imbalance. A torroidal balun was added at the feed of the dipole but no

improvement was observed, a significant current imbalance was still present.
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Figure 4.5 Dipole current profile with unloaded super-screened cables.

Further, it was noted that the positions of the cables had an effect on the actual

imbalance. Changing the position of the dipole feed cable, such that as it dropped

to the floor of the screened room it was either taken directly to the comer

between the wall and the floor (so that the maximum single run length was close

to this comer and the walls) or it was run along the centre of the room as far as

possible and then taken to the bulkhead connectors. caused changes to the current

imbalance. Inno case could cable positions be found which balanced the currents

in the dipole arms for all frequencies in the range studied.

Measurements were taken of the current flowing on the outside of the cables.

This current was found to be comparable in amplitude with the signals induced

in the rod. Thus, it was concluded that the cause of the imbalance was that

currents were being induced on the outer conductor of the cable by the dipole

illumination. In turn, these currents were causing re-radiation from the cables and

hence a modification to the field patterns in the screened room and thus the

currents flowing in the arms of the dipole.
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The addition of small ferrite clamps (Chomerics, part number B2025-OOO)was

found to be of great benefit They were placed round the cables with a separation

of about O.3m, the actual separation of the clamps was variable. The current

imbalance was found to be reduced to a small level, as can be seen in Figure 4.6.

The ferrite clamps acted as a 'distributed balun', reducing the current flowing on

the outer conductor of the cable.

Figure 4.6 Current profile with ferrite loading of the cables.

Figure 4.7 shows the positions of the cables used in the screened room
experiments to detennine the dependence of the cables on the results. Although

a great number of experiments would be needed to determine a true statistical

confidence on the measurements, the following results will indicate the levels of

repeatability expected. The cables were placed in all possible combinations

shown in Figure 4.7 and the SZl parameter was measured on the mid-point of the

receiving rod, with the positions of all other elements kept the same. The 'step'

function of the network analyzer was used with a 401 point frequency span over

teh frequency range of interest Once the measurements had been taken, the

results were scanned to find the highest value at a particular frequency and the
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lowest value at a particular frequency. Figure 4.8 shows these two curves plotted

on a linear amplitude scale. The two curves are almost indistinguishable.

DfpoIo RoceiviDa rod
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Figure 4.7 Locations of screened room cable runs .
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Figure 4.8 Maximum and minimum values of S21 obtained as a

function of frequency with cable movement
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4.3.3. Dipole and rod positioning errors

It is likely that in the normal course of experimentation using the screened room

configuration of Figure 4.2 there will exist small errors in the positioning of the

dipole and the rod. These errors should be very small if the experiments are

performed carefully. but they may still be present. Further. it was considered that

a study of the positional effects may help in the interpretation of the behaviour

of the screened room.

The errors will occur because of the dipole and/or the rod being slightly

misplaced, or the dipole may be rotated about the vertical or the horizontal axes.

These factors were quantitatively investigated.

It was envisaged that a normal error in the positions of the dipole and rod would

be no greater than ±2 cm. This figure was based on practical experience. The

amount of cross-polarisation was expected to be no more than approximately 3°

in either plane - a greater angle could be visually detected.

The following list summarises the experiments undertaken.

Dipole movement The variation experiments were undertaken for dipole

movement of ±2 cm (towards and away from the receiving rod). S21 was

measured and the maximum and minimum S21 values were obtained at

each frequency as described for the current probe and are given in Figure

4.9. It will be seen that very little dependence on the dipole position is

noted.
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Figure 4.9 Maximum and minimum values of S21 obtained as a

function of frequency with dipole movement

Rod movement When the rod was moved towards and away from the

dipole, by ±2 cm similar results were obtained. The maximum and

minimum values of S21 were recorded at each frequency and are shown in
Figure 4.10. Little effect is noted.
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Figure 4.10 Maximum and minimum values of S21 obtaiend as a

function of frequency with receiving rod movement

Dipole and rod movement When both the dipole and rod were moved by

±5 cm, the rod current showed very little perceivable change.

'Side-to-side'movement. The movement of either, or both, the dipole and

the rod by ±5 cm from side to side (Le. in the direction of their longest

axes) resulted in only small and relatively imperceptible changes to the
measured parameters.

Non-parallel elements (horizontal rotation). The dipole was rotated in the

horizontal plane so that it and the rod were no longer parallel. Only small

amplitude changes were noted in the measurements as noted in Figure

4.11 which shows the effects of approximately ± 3° horizontal rotation.
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Figure 4.11 Maximum and minimum values of S21 obtained as a

function of frequency with horizontal rotation of the dipole.

Cross-polarisation (vertical rotation). Although it was envisaged that the

dipole and receiving rod could only be misaligned by up to 3° in practice,

greater values being easily noticed 'by eye', a study of ±90° was

undertaken to study cross-polarisation effects. The rod was maintained in

its standard position and the dipole was rotated in the vertical plane. The

current induced in the rod was recorded against the angle of rotation of

the dipole from the horizontal. The measured rod current over the range

of frequencies from 50 MHz to 250 MHz, with a 10° rotation, is

compared with the parallel case shown in Figure 4.12. It will be noted

that there exists very little variation. Further, the maximum and minimum

value study, as described at the start of §4.3.3., was undertaken with BD

rotation and the results are displayed in Figure 4.13. It will be noted here

that no variation can be seen.
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Figure 4.U 10° cross polarization comparison. Solid line parallel

polarization of dipole and receiving rod, dashed line 10° rotation of

dipole .
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Figure 4.13 Maximum and minimum values of ~l obtained as a

function of frequency with vertical rotation of the dipole.
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It is interesting to note the effects of cross-polarisation (90° rotation)

inside the screened room Figure 4.14 compares measurements for the

perpendicular and the parallel polarized cases, using a logarithmic

amplitude scale to allow easy comparison of the curves. It will be seen

that there is still a noticeable level of current induced in the case of

perpendicular polarisation when compared with parallel polarisation.
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Figure 4.14 90° cross-polarization. Solid line parallel polarization of

dipole and receiving rod, dashed line 90° rotation of the dipole.

4.3.4. Summary of experimental errol'S

In general small variations in the positioning of the dipole and rod, are unlikely

to give rise to significant experimental errors.

After investigating the sources of probable error, it was decided that the

measurements exhibited a high level of repeatability. It should be noted that the

experiments have been performed on further occasions with fully repeatable

results.
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High frequency measurements. The frequency range chosen for the screened

room coupling measurements represents the lower range of EMC radiation

measurements. It is interesting to note some factors which would be important

should the range be required to be extended beyond the 1 GHz limit currently
specified in EMC standards:

cables and connectors would be required to operate up to the required

frequency. The potential problem with the cables would be the re-

radiation giving rise to imbalance on the dipole as in §4.3.2. and adversely

affecting the receiving rod current The solution may be to use a ferrite

loaded wifeI1S1 rather than add more ferrite clamps as this would render the

cables bulky and difficult to work with.

screened room integrity, i.e. the shielding effectiveness of the seams,

finger stock and windows, would need to be determined.

trunking and seams are internal structural features which, in the case of

the Nottingham screened room, have a feature size of between 5 cm and

15 cm. Cross-sectional lLM simulations have indicated that they have

little effect at lower frequencies, such as those being used in the

experiments reported in this thesis. However, it was noted that they begin

to cause variations in the positions of the room resonances from those of

a smooth cavity at frequencies above approximately 500 MHz. Hence, it

may be more appropriate to perform verification experiments in an

anechoic, or semi-anechoic chamber.

positional variation errors would need to be reassessed for the an increased

frequency range. This is due to the positional uncertainties being

relatively larger, in terms of wavelength, as the frequency increases.
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4.4. CAVITY EXPERIMENTAL PROCEDURES AND

UNCERTAINTIES

Some of the factors associated with the cavity measurements have already been

covered in the screened room discussion above, i.e. calibration of the cables and

selection of timebase mode on the network analyzer. The main cause of

uncertainty in these measurements is the manner in which the connections

between the cavity and the network analyzer are made, and the manner in which

terminating impedances can be connected. There is a great deal of commonality

between the methods of cable and termination connection, and consideration will

only be given to the cable, or 50n system, connections. Apertures in the cavity

were used, and consideration was given to the amount of 'clear-space' required

above the aperture so that any environmental effects, such as reflections from

other equipment would be avoided. The rest of this section will consider the

connection and clear-space problems.

4.4.1. son system connection

It was required to connect the conductor, which runs through the box, to the

outside world and especially to the network analyzer via the 50n cabling, see

Figure 4.3. Experimental uncertainties are generated in: the transition region

between the coaxial cables (connected to the network analyzer) and the internal

conductor. In making the connections, the following must be ensured:

the transition region between the system coaxial cable and the internal

conductor must have a low insertion and return loss.
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the results must be independent of the type and length of the system

cables used providing that standard calibration procedures are undertaken.

the results must be independent of the system cables' orientation and

flexion.

In general, the most convenient way of connecting the internal conductor to the

son system is to 'pig-tail' a coaxial cable and connect it so that the centre

conductor is connected to the internal conductor of the cavity and the braid is

connected directly to the outside of the cavity. Figure 4.15 shows such a means

of connection. Several researchers have investigated pig-tail methods of

connections'P?" and have concluded on their unsuitability. Potential problems in

the particular case of the cavity are:

there may be a relatively high insertion loss as the impedance changes

from the son of the coaxial connectors to that of the internal conductor

via the undefmed impedance of the transitional region.

the results may not be independent of the system cables, the results would

depend on the length and orientation of the pig-tails, which would change

the impedance profile of the transitional region. This will result in

unrepeatable results.

there is no clear calibration plane with such a method, thus the calibration

cannot be performed with any confidence.
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Inner conductor
Enclosure wall

Coaxial cable

Braided 'pig-tail'

Figure 4.15 'Pig-tail' connection to the enclosed cavity.

It is difficult to determine the effect of the above factors analytically. However,

some indicative tests were undertaken, which looked at the reflection of a signal

from a short or open circuit at one. end of the internal wire, with the other end

connected to the network analyzer using a pig-tail. The short circuit was made

by connecting the rod to the box by a small (but finite) length of wire. It was

found that by altering: the length of the pig-tail, the area between the braid and

the inner conductor, and the angle of the braid and inner to the enclosure wall,

the results obtained were highly unrepeatable.

The connection method developed which fulfilled the system connection

requirements is shown in Figure 4.16. The internal conductor spans all but a few

mm of the length of the box. Its ends are connected to the inner connector of a

BNC connector, the outer of which is connected to the box. This has the effect

of avoiding pig-tails and of providing defined calibration planes close to the box

and thus ensuring that the measurements are independent of the cables used.
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Enclosure waIl

Internal wire BNC connector

Figure 4.16 Enclosed cavity connection method used. The internal wire is

connected to the inner conductor of the coaxial connector, the outer of which

fonnsan electrical contact with the cavity wall.

4.4.2. Free-space for aperture measurements

A number of experiments were undertaken with an aperture incorporated into the

lid of the cavity, which recorded the signal flowing along the internal conductor

of the cavity. In order to determine the effects of the external environment, a

large metal plate was placed directly above the aperture and close to it As the

plate was removed to a greater distance, the changes in the response of the cavity

were noted. It was found that once the plate was removed to a height greater

than approximately 30cm above the aperture, little further changes could be

observed in the measurements. This indicated that measurements involving the

aperture could be undertaken in the laboratory and would be little influenced by

the laboratory environment
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4.5. SUMMARY

Results of measurements in the screened room and the enclosed box could

potentially be highly uncertain. leading to unrepeatability and inaccuracy. and

hence a poor level of confidence. However. with the application of certain

experimental procedures (the ferrite clamps in the screened room and the defmed

conductor and connectors for the cavity). the experiments are highly repeatable

and a high level of confidence can be placed in these results to allow comparison

with simulations for verification purposes.
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CHAPTER FIVE

VERIFICATION TESTS:

EXPERIMENTS AND MODELS

This chapter describes the experimental and modelling configurations used for
validating TLM in more detail. Further studies of the screened room behaviour
will also be discussed.

5.1. EXPERIMENTAL SCREENED ROOM

CONFIGURATIONS

There are two specific configurations used for the screened room comparisons:

the basic system described in Chapter 4, consisting of a dipole illuminating a rod

placed over a conducting bench, and a modification of this system in which a

second similar rod conductor was brought into proximity with the first Figure

5.1 shows the two conductor configuration. The single conductor configuration

is as in the figure, but with the rod farthest from the dipole (rod 2) removed.
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~

1"'1 "'I
Figure 5.1 Two conductor, screened room configuration. All dimensions

are in cm.

In general, the behaviour of the single conductor system was discussed in Chapter

4. The points noted are generally applicable for the two conductor system,

however, it is interesting to study the influence of the second conductor

qualitatively. If the two rods are considered as two similar half-wave dipoles it

can be shown(79) that the total impedance of the first element of the two dipole

array (and, by reciprocity, the second, although this will not be discussed

separately) is equal to

(5.1)

where ~1 is the self impedance of the first dipole, ~1 is the mutual impedance

of the two dipoles and II and 12 are the currents flowing in dipole 1 and dipole

2 respectively. The self impedance is determined by the length, diameter and

wavelength of operation of the dipole, the mutual impedance is determined by the

separation and the wavelength (given that the dipoles are approximately half wave

dipoles within the frequency range of interest). Thus, for the two similar rods
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described, the behaviour at a particular frequency will depend on the separation

of the elements.

The resonance of a dipole occurs when its reactance is zero, hence, Figure 5.2

illustrates the approximate behaviour of the reactance of the system at

approximately the natural resonance of a single element with a spacing of less

than d(A, = 0.3, above which, the slope of the mutual reactance curve, X12,

becomes positive with respect to frequency. Figure 5.2(a) shows the trend of the

self reactance as it varies with frequency. Figure 5.2(b) shows a family of curves

of mutual reactance which decreases with both frequency and an increase in the

separation. Figure 5.2(c) combines Figures 5.2(a) and 5.2(b) to give the resultant

{Xll + X12}. The family of these curves cut the axes at increasing frequencies

as the separation decreases. Hence, it would be expected that the resonances

obtained would increase as the separation decreases.

x

(a) (11)

x

(c)

Figure 5.2 Effect on reactance of two dipoles of varying separation. (a) self

reactance, (b) mutual reactance and (c) result of combining (a) and (b).

An experimental investigation of this is shown in Figure 5.3 which shows the

resonances on rod 1 of Figure 5.1. The natural resonance of a 1 cm diameter,
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1 m long linear dipole is approximately 140 MHz. The decreasing frequency of

the peak as the separation increases agrees with the qualitative analysis.

Although, it should be noted that the qualitative analysis does not account for any

further interaction caused by the images of the rods in the bench and walls etc .

.3

20 cm spacing
25 cm spacing
30 cm spacing

.2-~c:
::::>-(;jen

.1

o ~~--~~~~~~~~~--~~~~~~
1.30x108 1.45x108 1.50x1o'

Frequency (Hz)
Figure 5.3 Effect on S21 of changing the separation of two parallel

rods.

5.2. TLM SCREENED ROOM CONFIGURATIONS

In the TLM simulations of the screened room, the walls, floor and ceiling were

modelled by introducing an external boundary reflection coefficient of p = -1.

This is performed by shorting the link-lines forming the extremities of the

workspace. The bench was modelled by internal boundaries with a reflection

coefficient p = -1.



A.P. Duffy. 1993. Chapter 5 75

The work-space itself was modelled using a bulk node size of AI = 5cm (the term

'bulk' is being used here to denote that these nodes extend throughout the whole

of the problem space, smaller nodes are used to describe the wires and are

included as fine mesh multi-grid regions, as will be described later). The choice

of AI = 5 cm allowed a reasonably accurate description of the screened room to

be used, for a reasonably small usage in computer storage and run-time.

As stated previously, it is usual to operate lLM with a maximum node size

determined by the 'ten nodes per wavelength' rule-of-thumb. The maximum

frequency to which the comparisons are being made is 250 MHz, thus:

AmJa CAl =- =--
mu 10 lQfmu

= 1 300 lacs = 0.12m
102S0 1()6

(5.2)

Thus, it would be possible to operate the simulation with a bulk node size of AI

= 12 cm, however, this would result in a high reduction ratio for the multigrid

sections resulting in a large number of fine mesh nodes, which would tend to

negate the beneficial effects of having few bulk workspace nodes'"!

The errors in the modelled dimensions of the room were fairly small, a maximum

of approximately 2cm in each of the three ordinate directions. At 300 MHz, 2

cm is approximately 'Al50, and was considered to be an acceptably small error.

Although some slight variations may be observed in the location of some of the

room resonances these would be less than approximately 1%.

The multigrid fine-mesh regions were included within the bulk workspace nodes

as indicated in Figure 5.4. A reduction ratio of 5:1 was used giving a fine mesh

region allowing a modelled I cm diameter for the wires with a single node cross-

section. Figure 5.4 indicates how the fine mesh regions are related to the rest of
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the work -space.

Dipole and rod

Dipole Receiving rod
II Multigrid region

Bench

II II

Figure 5.4 Screened room showing location of fine mesh regions.

The dipole and the receiving rods were modelled within the fine-mesh regions

using the correction scheme introduced in Chapter 3. The region of reduced

material properties was a one node thick layer around the one node cross-section

conductors and extended one node beyond the ends of the rods. The dipole was

actually modelled as two halves of equal length with a single lossy node between

them for the feed. The correction region extended around the excitation as well

as the rest of the dipole. In all cases the ends of the rods were closed off by

internal boundaries. one node in extent, forming conductors with continuous

surfaces.

Excitation was performed by placing a single lossy node of impedance 50n

between the two halves of the dipole, as shown in Figure 5.5. Excitation was

applied as a single impulse of unit amplitude at time T =O. The ports excited on

the node were those orientated in the direction of the dipole axis.
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Region of reduced material properties

SOO lossy node

Figure 5.5 Feed point modelling of the screened room dipole. The region

of reduced material properties, the shaded area around the dipole and lossy

node, is a one node thick layer.

The output current was taken by recording the link-line pulse values on the

surface of the dipole and receiving rods, again directed along the axis of the

conductors, this being proportional to surface current

The cables were not modelled as their influence on the response of the system

had been effectively eliminated in the associated experimental work.
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5.3. EXPERIMENTAL CAVITY CONFIGURATION

As with the screened room, the basic configuration of the cavity was discussed

in Chapter 4. As well as the totally enclosed cavity, effects of apertures of

various sizes and shapes on the signal flowing along the wire were investigated.

The apertures used are shown in Figure 5.6 and were placed relative to the cavity

as shown in Figure 5.7. The purpose of this study being to determine the effects

expected if a broad-band signal was propagating along a wire inside cavities with

apertures, such as aircraft, cars and other vehicles, and in equipment cabinets and

rack systems.

Figure 5.6 Cavity lids.

•
AI1d1momcm

NatID.aID
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Locatim of aperture lids

Figure 5.7 Position of lids relative to cavity.

Rod with terminations

The fields in the aperture were probed, the probe being directed parallel to the

internal wire, and direct measurements and modelled results were compared. The

purpose of this was to determine whether the main radiating frequencies could be

predicted by 1LM and to what level of accuracy.

./

O.4m

The method of determining the field in the aperture was to use a short length of

exposed inner conductor of a coaxial cable as an uncalibrated electric field

'sniffer' probe (the requirement was to locate features, shapes and trends, rather

than to determine absolute field strengths).
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5.4. TLM CAVITY CONFIGURA nONS

The external boundaries of the work-space were modelled as matched boundaries,

thus absorbing the majority of the radiation incident upon them and approximating

to matched free-space boundaries. The only exception was the boundary which

formed the 'floor' of the box, that is the surface closest to the rod; this was

modelled by a p = -1 boundary. Figure 5.8 describes the placement of the

boundaries relative to the cavity.

The walls and 'lid' of the box were modelled by internal boundaries, placed half

way between nodes, with reflection coefficients of p = -1. The workspace was

constructed from a regular mesh of L1l= lcrn. The total work-space size was 60

x 64 x 100 nodes. 40 nodes were left between the top of the box and the parallel

external boundary.

"'_ .._ .._ .._ ..____
r-, '\.i ~ ~~, -,. -, ",

",:- .._ ..- .._ ..~
!

_ .._ .. .....s .........__ ..............

Figure 5.8 The cavity and the simulation external boundaries.



A.P. Duffy, 1993, Chapter 5 81

The 1 cm node size allows modelling, without noticeable dispersion, up to

approximately 3 GHz. twice the frequency range used in the experimental work.

The cavity dimensions could be modelled accurately due to the nature of the

cavity construction, with only a slight, but relatively insignificant, misplacement

of the internal conductor. The apertures were modelled as gaps in the internal

boundaries used to form the lid.

The rod was modelled by a single node cross-section formed from internal

boundaries. The 500 external system connections were modelled by single 500

lossy nodes, as shown in Figure 5.9. The wire and its terminations were

embedded in the correction region of Chapter 3, similar to the rods and dipole in

the screened room, which extended along the length of the rod from one side of

the box to the other.

Region of reduced material p~es

Internal wire SOC lossy node

Enclosure

Figure 5.9 500 termination model in cavity. The region of reduced material

properties, the shaded region around the wire and lossy node, is one node thick.

Excitation was performed by impressing a voltage across one of the lossy nodes,

in a similar way to that of the screened room. Output was taken as the voltage

in the terminating impedance, i.e. in the other lossy node.
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5.5. METHODS OF COMPARING RESULTS

In order to determine the accuracy of the models and the measurements a method

of comparison needs to be defined. The requirements, for the purpose of this

study, are to determine the general agreement of the location, and relative

variation, of features of the coupled signals. It was not necessary in this case to

compare absolute values. In consequence, it was decided to compare the results

of the models and measurements on the same graphs with the maximum

amplitude of each response normalized to a peak value of one. Although further

refinements could be made, such as to normalise to a mean energy level, the

comparison made was considered as being adequate for the purpose of this study.

Because of the complicated structure of the results, simple comparisons between

the experimental results and the simulations are difficult In general, 'by-eye'

comparisons have been undertaken. However, the use of correlelograms'Pl

appears to have some benefits - especially when wanting to place a numerical

figure of accuracy to the comparisons - and these will be discussed further in

Chapter 6.

5.6. SUMMARY

This chapter has briefly discussed some of the practical considerations of

experiments and the models used for the validation tests and has introduced the

range of comparisons used for the verification of the wire modelling method

described in this Thesis.
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CHAPTER SIX
RESULTS OF VERIFICATION TEST

COMPARISONS

Chapter 5 described the configurations usedfor both the experimental and TLM

tests. This chapter presents the resultsfrom those tests. Firstly, the resultsfor

the screened room dipole-to-rod couplingfor both the single receiver and the two

receivers cases will be given. Then, results from the cavity will be presented

which will concentrate on the enclosed cavity amplitude andphase response with

the various aperture lids and the results of the field probed in the small

rectangular aperture. Finally, a discussion will be presented on the use of

correlelograms for quantifying the comparison between experimental and

modelled results.

6.1 SCREENED ROOM RESULTS

This section will consider the cases of the coupling of the linear dipole into the

single receiving rod and the two receiving rods within the screened room Results

are presented which show how well TLM models the effect of coupling within

the complex electromagnetic environment formed by the screened room itself. the

bench and the dipole and rods. It will also be seen how well the effect of the

modifications to TLM described inChapter 3 are to overcome the resonance error

problem in more general EMC configurations.
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6.1.1. Single receiving rod

Experiments were undertaken involving a centre fed, linear dipole placed in the

screened room illuminating a wire-like rod placed over a conducting bench as

described in §5.1. The currents at the centre of the receiving rod and at 10 cm

from the feed of the dipole were obtained in the frequency range 50 MHz to 250

MHz. Both the dipole and the rod were 1 m long and 1 em in diameter.

The dipole and rod were both modelled inside multigrid regions with a bulk

work-space node size of AI = 5 cm and a grading ratio of 5:1, giving AI = 1 cm

in the fme mesh regions. Figures 6.1 - 6.4 compare experimental results with the

results of 1LM simulations.

Figure 6.1 is the normalized current in the receiving rod, the lLM model uses no

resonance error correction and, although the results are similar, there is a

noticeable difference between the two curves i.e. the 1LM prediction of the main

coupling peaks is at slightly lower frequencies than the experimental results.

Figure 6.1 shows room resonances as sharp features superimposed on an envelope

corresponding to the low Q response of a linear dipole. The peak of this

envelope of the uncorrected lLM results occurs at approximately 135 MHz where

the general shift of this envelope to lower frequencies can be clearly seen by

comparison with the experimental results and with the corrected TLM results of

Figure 6.2. However, both sets of dipole simulations (Figures 6.3 and 6.4) do

show a number of features which occur in the experimental results, namely the

peaks in the graphs show a smooth exponential-shaped rise and a sharp fall at

frequencies below the maximum of the envelope and the shape of the peaks are

effectively swapped round above the maximum of the peak of the envelope. This

indicates that, neglecting the wire resonance error problem, lLM can model the

fundamental behaviour of the radiator.
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Figure 6.2 shows the same comparison as Figure 6.1, except here the dipole and

rod are modelled using the resonance error correction scheme. The comparison

of Figure 6.2 is seen to be better than in Figure 6.1, i.e. the envelope of the

response has been corrected.

Figure 6.3 compares the measured dipole current with the TLM results obtained

without using the correction scheme and Figure 6.4 compares the measured dipole

current with the TLM results incorporating the correction scheme.

Figure 6.3 again displays the room resonances with the dipole envelope, but in

this case the envelope is more marked than for the rod current as this element is

being driven. The points discussed about Figures 6.1 and 6.2 can also be applied

here, i.e. the uncorrected TLM simulation shows both an envelope shift and a

slight shift in the precise location of features which were largely corrected by the

correction scheme. The results indicate that the correction scheme is correcting

the room resonances as well as the wire resonances.
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Figure 6.1 Rod current without correction. The solid line is the TLM

simulation and the dashed line is the experimental result
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Figure 6.2 Rod current with correction. The solid line is the TLM

simulation. the dashed line is the experimental result
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TLM simulation, the dashed line is the experimental result.
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The influence of the resonance error correction on the lLM results can be seen

more clearly from Figures 6.5 and 6.6, which show the corrected and uncorrected

modelled results for the rod and dipole currents respectively. Itwill be seen that

the majority of the change caused by the resonance error correction, for the rod

coupling results, is localised around the main coupling peaks whereas, for the rod

coupling results, lower amplitude features are relatively unaffected.
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Figure 6.5 Corrected and uncorrected rod currents. The solid line is

the TLM simulation obtained using resonance error correction, the

dashed line is the TLM simulation obtained without correction.
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Figure 6.6 Corrected and uncorrected dipole currents. The solid line

is the TLM simulation obtained using resonance error correction, the

dashed line is the 'ILM simulation obtained without correction.

There are a number of observations which can be made regarding the results of

this configuration. The coupling between a linear dipole and a rod of similar

dimensions in a screened room with a conducting bench is a relatively simple

problem. However, it does illustrate the dominance of the screened room on the

electromagnetic environment. and coupling within it This can be seen clearly

from the current on the arm of the dipole; a smooth, low Q. response peaking

between 140 MHz and ISO MHz (the prediction for a 1 m long 1 cm diameter

dipole being 142 MHz) would be expected, however, the room is dominating the

observed response with the peaks and troughs being caused by the room

resonances.

The coupling within a screened room is a genuinely complex test for the

validation of 1LM. this difficulty is supported by the experimental discussions of

Chapter 4. The high level of agreement indicates that 1LM models the

electromagnetic environment well. Further, the results indicate that although
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unlined screened rooms are not recommended for radiated EMC tests, 1LM could

be used to determine optimum RAM placement in a partially lined room and,

hence, some 'calibration' of the test facility. This has been the subject of

research in recent years[81-83J,which has concluded that although it is possible to

determine the behaviour of a specific system, such as that described here, a

generic calibration can not be performed in an unlined room and each new

configuration would need to be calibrated separately't",

It was noted above that this is a relatively 'simple coupling configuration, never-

the-less, it is not one whose response can be readily determined analytically.

Although it is important that simple configurations are considered, providing the

foundations of a fuller understanding, the addition of further complexity should

also be undertaken. The next section discusses a small change to the system

which produces a substantial increase in the complexity of the overall system.

6.1.2. Two receiving rods

Although the two rod system is only marginally different to the one rod system,

it adds further complication to the configuration by introducing mutual coupling

of the receivers. The receiving system has practical application as two closely

spaced wires or mechanical support spars. The addition of the second conductor

extends the scope of the electromagnetic modelling problem, to include mutual

coupling effects, without changing the experimental system excessively, and hence

little additional experimental work on determining repeatability and accuracy was

required.

Further, the two receivers configuration extends the generality of the resonance

error correction by examining the effect of two closely spaced regions of material

property change.
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The first sequence of results in this section (Figures 6.7 to 6.12) compares the

experimental and TLM results for the currents in each of the two rods and the

dipole in the experimental configuration of Figure 5.1. Figure 6.7 shows the

results for the rod closest to the dipole, without resonanceerror correction, Figure

6.8 shows the same comparison but with the resonance error correction used in

the TLM results. Figures 6.9 and 6.10 compare experimental and modelled

results for the conductor farthest from the dipole, again without and with

resonance error correction respectively. Figures 6.11 and 6.12 respectively

compare the experimental results for the dipole with the TLM results obtained

without and with correction.
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Figure 6.7 Normalized rod current closest to dipole. The solid line

is the TLM simulation without resonance error correction, the dashed

line is the experimental result

There is a significant disagreement between the uncorrectedTLM results and the

experimental results of Figure 6.7, particularly between approximately 130 MHz

and 150MHz. This is more significant than the corresponding error for the case

of the single receiving rod. The reason for the increase in the relative error is

probably due to the resonance error baving two effects. Firstly, it affects the self
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resonant behaviour of the rods as illustrated in the single receiving rod case, and

secondly, it will affect the relative coupling between the two receiving rods,

further compounding the effect This disagreement is minimised in Figure 6.8 .
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Figure 6.8 Normalized rod current closest to dipole. The solid line

is the TLM simulation with resonance error correction, the dashed line

is the experimental result.
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The differences between the TLM and experimental results for the rods farthest

from the dipole, shown in Figure 6.9, are also quite marked when modelled

without using the resonance error correction, although the general shapes and

trends do agree quite well. Specifically, the relative amplitudes of the peaks

agree quite well, but the main response at about 140 MHz. which is actually a

twin peak in the experimental results, has been shifted to lower frequencies in the

simulation. The use of the correction scheme improves the results quite

considerably and models the double peak.

The dipole current comparison shows a similar behaviour to that recorded in the

case of the single receiving rod, i.e. the broad dipole envelope and the sharper

room resonances. Again, the shape of the individual peaks can be seen to agree

quite well for both comparisons. However, it should be noted that the wire

resonance error correction scheme has little effect on the higher frequency

features. This is attributed to the small differences in the modelled size of the

screened room and the placement of the conducting bench compared with the

experimental configuration giving rise to different resonant frequencies, which

becomes more significant as the wavelength becomes smaller. Thus, it the

differences are not caused by the wire resonance error, but are due to the

resonances of the screened room.

The effect of the wire correction can be seen more clearly in Figures 6.13 - 6.15,

which compare the corrected and uncorrected TLM currents for the rod closest

to the dipole, the rod farthest from the dipole and the dipole respectively. One

of the more interesting features of these graphs is that they appear to show greater

shifts than Figures 6.5 and 6.6 which is attributed to the compound effect of the

self resonance and the mutual coupling of the closely spaced receivers as

described previously. Again, the TLM results agree much more closely with the

experimental ones when the resonance error correction scheme is applied.
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simulation dipole current

The influence of the second conductor on the response of the receiving rod closest

to the dipole can be seen in Figure 6.16 which compares the TLM simulations for

the currents in the receiver of the single rod system and in the rod closest to the

dipole of the two conductor system. Both results were obtained using the

resonance error correction scheme. The second rod is shifting the resonant

response of the first (in the two receivers case) to slightly higher frequencies, as

expected from Figure 5.2.
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Figure 6.16 Comparison of TLM simulation of corrected currents for

the single rod case (solid line) and the rod closest to the dipole in the

two rods case (dashed line).

In Figure 5.3. it was shown that the likely effect of changing the separation, based

on self and mutual reactance changes for two parallel, linear, dipoles of the same

size, was that as the separation between the elements increased, the resonant

frequency would decrease.

Figure 6.17 compares the change in location of the peak in the current of the rod

closest to the dipole, at approximately 140 MHz, as the separation of the two

receivers was changed. This Figure shows the TLM prediction and the equivalent

experimental results. The prediction and the measurements agree well with each

other and with the qualitative analysis presented in Chapter 5. The difference

between the TLM results and the experimental results is approximately 1%,

which is within the acceptable accuracy criteria set out in Chapter 3.
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One of the points which should be noted in all the comparisons (both using and

not using the resonance error correction) is that TLM simulates the general profile

of the responses and the relative amplitudes of the experimental responses well.

Further, the resonance error correction scheme works as well for two receivers as

it does for a single one. This result is important when considering the

organisation of wire looms or bundles and how individual conductors (or support

spars) should be placed to obtain a specified frequency response. Depending on

the particular circumstances, the prediction of the shifts in the frequency response

may be of particular importance. It also provides further validation that TLM can

provide a correct analysis of the effects of positional changes in such systems.
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6.2. CAVITY RESULTS

Experiments and lLM modelling were undertaken for the cavity as described in

§5.3 and §5.4. This section looks at the effects of the apertures on the amplitude

and phase response of a signal passing along the internal wire. It considers the

effect of the resonance error correction scheme of Chapter 3 on the magnitude

and phase ~response for the enclosed cavity, and the field probed in the

rectangular aperture.

6.2.1. Effect of wire model correction on TLM cavity model

Figures 6.18 and 6.19 compares the TLM simulation of amplitude and phase

(obtained from one end of the wire, with the other end excited) respectively,

without resonance error correction, with experimental results for the case of the

enclosed cavity. Although the high Q features (the box resonance dependent

features) are modelled quite accurately in both position and relative amplitude, the

broader low Q features (the rod resonance dependent features) are not modelled

with the same accuracy. Careful inspection of the graph will show that the

undulating envelope of the rod resonance has been shifted to lower frequencies;

the combination of which gives rise to the noticeably poor comparison, especially

at approximately 750 MHz where the shifted rod resonance has combined with

two box resonances to 'flatten' a portion of the graph which should have a

pronounced slope.
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With the resonance error correction method applied to the internal rod. the

amplitude and phase comparisons of Figures 6.20 and 6.21 were obtained. The

overall response is clearly better. It should be noted that the correction scheme

has no noticeable effect on the resonances of the box, but only of those of the

wire.
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6.2.2. The effect of apertures

The aperture lids were placed on the cavity in tum and the effect each had on the

signal passing along the internal wire was recorded. The resonance error

correction method was used to model the wire. The lids and box sides were

modelled using internal boundaries, i.e. shorted link-lines. Figures 6.22 and 6.23

give the amplitude and phase responses for the small rectangular aperture.

Figures 6.24 and 6.25 give the amplitude and phase responses for the small square

aperture. Figures 6.26 and 6.27 give the amplitude and phase responses for the

two aperture system. Figures 6.30 and 6.31 give the amplitude and phase

response for the cross aperture.
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Figure 6.22 Rectangular aperture amplitude response. TLM (solid
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In practical systems, such as vehicles, equipment cabinets etc., apertures of
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various sizes and shapes will be found. The selection of these aperture lids was

intended to reflect representative examples of those found in practice. In each

case, the agreement between TLM and the experimental results is high. Further,

comparison of the relative changes occurring in the response between two

different apertures (comparing the TLM results together and the experimental

results) is very good. The important thing to note is the relative changes in both

the TLM simulations and the experimental results from one aperture type to

another.

It will be seen in this set of results that the general shape of the graphs is similar

and, generally, the ones with a smaller surface area of aperture have a higher

density of box resonance features since the smaller aperture causes less damping.

This is clearly seen when comparing the two square apertures, some of the

resonances which are clearly present in the results of the small square aperture are

much reduced with the large square aperture case (for example at approximately

670 MHz). The cross aperture, having the largest area, shows the smoothest

curve and supports the fewest resonances. It is interesting to note the exception

to this rule, which is the two aperture system. This behaves more like the

enclosed system, in terms of numbers of supported box resonances and their

magnitude than many of the other apertures, including those with a much smaller

surface area. This is attributed to the metal separating the individual apertures

dominating the overall effect by acting to support the resonances. That is, the

two aperture system appears to represent a relatively insignificant loading.

For this particular cavity, there is little barrier to the size and shape of apertures

which can be modelled accurately using TLM, although to model highly intricate

shapes and small apertures would require a larger memory and longer run-time

due to the smaller local node size required.
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6.2.3. Field probed in tbe aperture

The field was probed in the aperture as explained in §5.3 . Figure 6.32 compares

the experimental results obtained with those predicted using lLM. The

agreement between the two curves in the general shape and location of features

is very good.
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Figure 6.32 Field probed in the aperture. A comparison of lLM

simulation (solid line) and experiment (dashed line). The compared
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This graph shows that there are a number of frequencies at which the cavity

potentially radiates well. The agreement between lLM and the experimental

results indicate that TI..M can be used to identify these key frequencies and those

locations in the spectrum which have a very sharp response, such as at

approximately 750 MHz and those which have a much broader response, such as

between 800 MHz and 1 GHz. Such information may be a factor in determining
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what sort of modulation could be used for an antenna, or conversely, from an

electronic warfare point of view, which frequencies could be potentially

problematic. Obtaining far-field data for the aperture, necessary for such

analyses, would then simply require the use of TLM to map the field components

at the desired frequencies in the aperture and then perform a near to far-field

transform[8S-87]in order to obtain the radiation pattern.

It is interesting to note the effective loss of energy from the system. Figure 6.33

shows theresult of delermining'the difference between the output energy from the

network analyzer, incident on one end of the internal wire, and that returned (both

reflected from, and transmitted along, the wire). This was performed on the

cavity with the small rectangular aperture, after calibrating out the cables, by

measuring the reflection and transmission parameters (Sll and SZl) and

determining the energy loss as:

(6.1)
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Figure 6.33 Energy loss from Cavity with small rectangular

aperture. calculated from equation 6.1.

There is a close correspondence between the location of the high Q peaks of

Figure 6.33 and those of Figure 6.32. This further indicates that energy is lost

from the system at frequencies even below the nominal fundamental resonance

of the aperture.

6.3. MODELLING CONSIDERATIONS

It is interesting to note the effect of the resonance error correction method on the

run times and memory requirements for the simulations. All simulations were

undertaken on a Hewlett-Packard 9000 series 710 work-station.

Without correction, the single rod screened room simulations took 7 hrs 42 mins
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3 secs (7:42:3 hours) for 5000 iterations (relative to the coarse mesh). With

resonance error correction they took 11:27:51 hours for the same number of

iterations. The memory requirements were that the uncorrected simulations

required 13 MBytes and the corrected method required 20 MBytes. 5000

iterations were found to be an adequate number for the TLM simulations in the

screened room

The two receiving element simulations, again running for 5000 iterations, took

11:20:28 hdurs Without the resonance error correction scheme and 16:55:34 hours

with the correction scheme. The memory requirements were that the uncorrected

simulations required 20 MBytes and the corrected method required 30 MBytes.

In these cases, multigridding was used with a coarse mesh of M = 5 cm. requiring

91 x 47 x 45 nodes, and the two fine mesh regions totalling 80 x 115 x 25 nodes

enveloping the dipole and rod individually, the single receiving rod simulation

required 50 x 115 x 25 fine mesh nodes.

The cavity simulations, running for 7000 iterations took 4:21:28 hours without

resonance error correction and 8:45:20 hours with the resonance error correction.

The memory requirements were that the uncorrected simulations required 18

MBytes and the corrected method required 27 MBytes. 7000 iterations was an

arbitrary choice which produced a result relatively free from Gibb's

phenomenon'f" and ran in an acceptable time.

Clearly, the resonance error correction adds to the run time and memory

requirements, with an increase in both of approximately 50%. However, these

were comfortably within the memory available on the computer used. and the run

times allowed the simulations to be competed overnight

For the purposes of illustration, consider the effects of using a regular mesh or

graded mesh scheme for the screened room simulations and compare these with

the above figures. A M = 5 cm mesh took 1:32:49 hours to perform 5000

iterations, using 9 Mbytes of memory. However, this only allowed the radiating
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elements to be modelled which had a much greater diameter than in the practical

case (Le. 5 cm rather than 1 cm). If this was extended to a L\J. = 1 cm mesh the

equivalent number of iterations for the same effective modelled time would be

25 000, giving rise to a memory requirement of 225 MBytes (assuming the

platform on which this simulation was being run had sufficient space to avoid the

need for memory paging) and a run time approaching 200 hours. A L\J. = 0.125

cm simulation (Le. eight nodes per side for the wires, which was previously

demonstrated to have a minimal resonance error) would require 200 000

iterations. upproximafely 1000 'hours of mil time, Le. nearly 1~ months, and 12

Gbytes of memory! Clearly these illustrative regular mesh simulations are

unfeasible on the Hewlett-Packard workstation used. These figures illustrate the

large saving in overhead for a low resonance error by using the resonance error

correction scheme proposed in Chapter 3.

A similar analysis using graded mesh is much more difficult due to the virtually

infinite permutations of node sizes. An interpretation of the possible requirements

can be made by first considering that the time step, and hence the number of

iterations required for a given simulated time, is determined by the smallest node

size[S2](assuming cubic nodes). Thus the number of iterations would follow

closely those quoted for the regular mesh case, the memory required would be

determined by the actual number of nodes used and the run-time by the time-step

and the number of nodes. For example, consider an hypothetical case where the

~ = 1 cm and ~ = 5 cm and the work-space required was 100 x 60 x 55

nodes. Assuming hybrid techniques were used in the implementation of the

program, a memory requirement would be 20 MBytes, allowing 60 bytes per node

(15 ports x 4 bytes). However, the number of iterations. required to model the

same time as the multi grid simulations. would be 25 000. requiring approximately

15 hours to run.

Multigrid provides a trade-off between the potential for precise placement of

objects within the work-space, provided by graded mesh and the memory and run-

time advantage of a large node regular mesh.
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6.4. CORRELELOGRAMS

6.4.1. The rationale for using correlelograms

An objective comparison between simulated and experimental data is difficult to

undertake because of the general complexity of the signals involved. As

described previously, a 'by-eye' comparison is difficult to quantify, although it

is the most convenient method of comparing signals. Correlation alone is not

sufficient for anything other than simple signals, Le. those with a single peak or

trough, because the resulting single value contains insufficient information to

convey a clear comparison of the overall response.

Correlelograms, implicitly related to correlation, have a greater potential because

there are a number of parameters which can be derived from them which adds to

the generality of the comparison. Further, they reduce a potentially complex

comparative graph to a much simpler curve or set of curves. This will be

illustrated in the following sections.
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6.4.2. Correlation and eorrelelograms

The correlation coefficient is widely used in signal processing to determine the

extent to which two functions are related(89,90J.The correlation coefficient has a

value ~ 111. For example, two unrelated, random, functions will be uncorrelated

and thus have a correlation coefficient of zero, whereas the auto-correlation of a

function (Le. a function correlated with itself) will have a correlation coefficient
of 1. ' ."-

A computationally efficient method of computing the correlation of two discrete

data sets having the same number of samples, employs the Wiener-Khinchine

theorem. The Wiener-Khinchine theorem states that the correlation between two

signals {~[p]} can be computed

from the signals x(n) and y(n) as:

(6.2)

Le. the Fourier transform of the correlation is the product of the complex

conjugate of the Fourier Transform of x(n) multiplied by the Fourier Transform

of y(n). Consequently, the correlation coefficient can be determined by

(6.3)

Speed is the advantage of performing the correlation this way, rather than using

the discrete method which is easier to program. The discrete and the Fourier

Transform methods will possibly not give exactly the same results because the

Fourier Transform method assumes an underlying periodicity of the signal which

may not be an accurate assumption. Also, the Fourier Transform method requires

that the number of data points used is a power of two.
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Correlelograms are obtained by cross-correlating one function with a shifted

version of the other function, shifted on a point by point basis. Thus giving rise

to a graph which will, in the case of an auto-correlelogram, have a maximum of

unity at zero shift and will be symmetrical about the mid-point

It is possible that the two functions to be compared, x(n) and y(n), may be highly

related, but one of them may have a linear off-set (in frequency) from the other,

or it may be 'stretched' relative to the other signal, e.g. the manifestation of the

wire resonance error in TLM in the time domain. These differences have been

investigated with respect to DNA finger-printing, although generally applicable,

and can be accounted for in the analysis(80).

6.4.3. Parameters derived ,from correlelograms

There are three parameters which have been derived from the correlelograms for

the purpose of comparing experimental and modelled data. These are:

the maximum value of the cross-correlelogram, whether it was it obtained

after a shifting or stretching process, and if so by how much.

the degree of asymmetry of the cross-correlelogram, this can be displayed

graphically or as an RMS value defmed by

(6.4)

the RMS difference betwee~ the auto-correlelogram of x {Ru[p]} and the



A.P. Duffy. 1993. Chapter 6 118

cross-correlelogram between x and y, {Rxy[p]}. which can also be

displayed graphically or as an RMS value defined by

(6.5)

It is proposed that, when taken together, the three measures would give a more

comprehensive, and quantitative, view of the comparison. If stretching or shifting

is required jo improve the comparison significantly, it indicates a fundamental

characteristic associated with the method or the implementation of it, e.g. the

resonance error described in Chapter 3. Also, the use of the correlelograms, and

the graphical representation of the parameters derived from it, help to remove the

'human element', a sub-conscious bias in the analysis of the results, from the

comparisons.

Examples of the application of correlelograins will be given in §6.4.4. which will

consider the screened room coupling problem of a single receiving wire and the

signal flow in an enclosed cavity.
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6.4.4. Examples of the application of Correlelograms

Figures 6.1 and 6.2 compared the TLM simulation of the current induced in the

rod in the case of the single receiving rod illuminated by a linear dipole in the

screened room. A 'by-eye' comparison of these two graphs indicates that Figure

6.2 shows a better fit between the experimental and TLM results than Figure 6.1.

The problem is to determine how much better. The same problem can be seen

when analyzing Figures 6.18 and 6.20 for the enclosed cavity. Both these pairs

of Figures compare the effects of the resonance error correction.

Figure 6.34 shows the auto-correlelogram of the experimental data and the cross-

correlelograms of the modelled data in Figures 6.1 and 6.2. The frequency range

adopted was 50 MHz to 177 MHz in order to allow 128 points with 1 MHz

separation between them. The maximumvalue of the cross-correlelogram of the

simulation obtained without using the resonance error correction was found to

occur with a shift of one point (1 MHz) to higher frequencies, it is this pre-shifted

correlelogram which has been displayed here. It will be noted that the resulting

correlelograms are generally simpler in structure than the original data, making

them easier to compare. The asymmetry curves and the difference curves for the

two comparisons are shown in Figures 6.35 and 6.36 respectively. The peak.

values of the correlelograms and the asymmetry measure and the difference

measure are summarised in table 6.1
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correlelograms of Figure 6.34. Solid line with resonance error

correction, dashed line without
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Figure 6.36 Difference curves of the cross-correlelograms of

Figure 6.34 with the auto-correlelogram of Figure 6.34. Solid line

with resonance error correction, dashed line without

Correlation Asymmetry Difference (nns)

Coefficient (nns)

Without 0.925 0.12 0.047

correction (1 point shift)

With Correction 0.964 0.087 0.030

Table 6.1 A comparison of the three parameters (correlation coefficient,

asymmetry value and difference from auto-correlelogram) obtained from the data

of Figures 6.1 and 6.2.

The results confmn the 'by-eye' conclusions that the simulations obtained by

using the resonance error correction method agree more closely with the

experimental data than that obtained without the correction. In both cases the
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correlation coefficient is high and the asymmetry and the difference measures are

low, but in the case of the simulation obtained with the correction scheme these

values are closer to the ideal values of unity, zero and zero respectively. Hence

an objective measure of the closeness of fit of the simulations has been produced.

Figures 6.37, 6.38 and 6.39 show the correlelograms, the asymmetry curves and

the difference curves for the enclosed cavity comparisons of Figures 6.18 and

6.19. Table 6.2 lists the rms values and the peak correlation coefficient.
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Figure 6.37 Correlelograms for the enclosed cavity comparisons of

Figures 6.18 and 6.19.
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As with Table 6.1, these values confirm the level of improvement In the

resonance error corrected results, the peak value of the cross-correlation is again

closer to unity and the asymmetry and difference values are again closer to zero.

However, it is interesting to note the shape of the cross-correlelograms, especially

the way in which neither required a shift to gain maximum correlation, but the

simulation without resonance error correction displayed a marked shift of the

central portion of the cross-correlelogram away from the middle of the graph.

This shift was reduced in the simulation obtained using resonance error

correction ." The probable explanation for this is that the high Q features of the

cavity resonances dominate the overall response of the structure, hence, although

the internal wire is subject to the resonance error, this is not sufficient to cause

a required shift for maximum correlation. The shift in the cross-correlelogram

appears to be illustrating the resonance error, this being highlighted specifically

by the asymmetry value.

Further work is required to determine the significance and inter-relatedness of

these values.

Correlation Asymmetry Difference (rms)

Coefficient (rms)

Without 0.962 0.037 0.028

correction (no shift)

With Correction 0.984 0.021 0.018

Table 6.2 A comparison of the three values (correlation coefficient, asymmetry

value and difference from auto-correlation) obtained from the correlelograms of

the enclosed cavity data.
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6.5. SUMMARY

This Chapter has presented the experimental and modelling results for the two

screened room configurations and the cavity configuration. with and without

apertures. A discussion of run-times and memory requirements was presented for

TLM simulations of the two test environments. Finally, a discussion of

correlelograrns was presented -; these show promise for use in the quantitative

evaluation of simulations.
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CHAPTER SEVEN

DISCUSSION AND CONCLUSIONS

Chapter 6presented results for the verification tests described in Chapter 5. This

Chapter discusses those results as well as the general approach to the solution
of the resonance error and measurements in screened rooms. Some general
conclusions and recommendations for further work complete this chapter.

7.1. SOLUTION TO THE "RESONANCE ERROR

This section considers both the solution to the resonance error proposed in this

Thesis, and compares it with the solution for coarseness error proposed

elsewheref'°,711•

7.1.1. Resonance error correction

A problem which affects the simulation of wires by lLM when using the

integrated solution method, with wires modelled by a single node cross-section,

has been identified. The problem manifests itself as a reduction in the resonances

of the wire by approximately 10%, it has therefore been termed 'resonance error'.

The cause of the error was determined to be due to the external comer nodes

delaying signals propagating around the wire. The reason for this delay is that

the path imposed on the signal by the shape of the nodes is longer than the path
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which the signal would take in a practice. The method of overcoming the error

was to speed up the propagation around the comers by reducing the relative

material properties from the background values in the vicinity of the wires and

thereby increasing the relative velocity. The correction was done in this way

rather than by physically reducing the path length around the corners as the latter

would rely on the development of new node type. or types (one of the

requirements of the solution to this error was that no new node types. other than

the standard symmetrical condensed node, would be used). Preliminary results

for a simple test structure were very encouraging. A more rigorous validation

was undertaken by comparison with experimental results.

The experimental verification tests required a high level of confidence to be

placed on the results obtained from them. As a result, a significant effort was put

into the determination of the accuracy and repeatability of the test environments.

The investigations undertaken into the test environments will be discussed in §7.2.

It would be possible to provide a 'fix' for this error in a simple linear response

system by re-scaling the frequency axis to account for the error. Unfortunately,

the wire resonances are usually combined with those of other structures, such as

the cavity or sereened room, which makes a simple frequency-sealing correction

impractical because of the wire resonances being subject to the error but the

enclosure resonances are not Thus, because realistic situations exhibit such a

compound behaviour. the error needs to be corrected at its source.
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7.1.2. A comparison of resonance and coarseness error correction.

The term 'resonance error' was used initially in this Thesis as it summarises the

manifestation of the problem. A similar problem has been reported in 2D

structures with external comers, i.e. the resonant frequencies of such structures

are modelled as being lower than the theoretical ones'"! This error was worse

as the model bacomes coarser, Le. the resolution of the model is decreased, and

was thus termed coarseness error. This coarseness error was recently discussed

and a compensation scheme was proposed(70).Also, the modelling of strip-line

structures in 3D was investigated'" and it was found that the strip-line resonances

were lower than the expected values. Both the 2D and 3D systems discussed are

subject to errors which have the same manifestation as the resonance error.

Both the 2D coarseness error and the stripline resonance error problems were

attributed by other researchers to poor direct communication of nodes adjacent to

the comer or edge with the appropriate corner or edge.

The specific explanation given of the cause of the coarseness error in these cases

was that the node diagonally adjacent to a comer had no direct electromagnetic

interaction with that comer. Two solutions were proposed by other workers for

the 2D coarseness error, these were direct compensation and non-direct

compensation methods. The first, the direct compensation method, relies on

adding a short circuit stub to the 2D node which effectively provides a direct

connection between the node and the corner. Figure 7.1 describes the method and

indicates the value of the link-line admittances. The stub admittance was

determined empirically.
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Y4

Y3External comer node Y2

Wire Yl

Admittances
Yl • Y2 - I-p

Y3· Y4 - 1

Y5 = 2p
Figure 7.1 Node used in reference70 to compensate for 2D coarseness

error, showing the admittances of the link-lines and stub.

The non-direct compensation relied simply adding a lll!2 stub and leaving the

link-line admittances unchanged. Again, the value of the stub admittance was

determined empirically.

The 3D stripline error correction involved the modification of the symmetrical

condensed node so that the metal boundaries would lie within the nodes, rather

than as shorted link-lines. Two types of nodes were introduced, these were a

'half node' which was a symmetrical condensed node bisected by the boundary

and the an 'edge node' which modelled the edge of the boundary within the node.

The results obtained from both the 2D and 3D correction showed a significant

improvement over the uncorrected methods. Both also attributed the cause of the

error to the poor communication of the nodes adjacent to the comers or edges,

although neither presented any evidence to support this. The work presented in

this Thesis indicates that the cause of error is the actual communications path

differing from the desired path, although this is partly caused by the poor

communication of the comer nodes with the comer it is subtly different It is
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highly likely that the analysis of the cause and solution to the resonance error is

also appropriate to the other problems discussed in this section such as the

modelling of striplines, although this needs further investigation.

7.2. EXPERIMENTAL CONFIGURATIONS

.....

Two configurations were investigated experimentally, these were a linear dipole

illuminating a rod (or rods) of the same dimensions as the dipole in a screened

room, and a rod passing along the length of an enclosed cavity. These two

configurations were used as the basis for the validation tests

Factors investigated for the screened room configurations included the cables and

the positioning of the dipole and rod. It was found that with ferrite beads placed

at intervals around the cables, the experiments were highly repeatable. Further,

the accuracy of the measurements were found to be high, based on the

comparisons with the TLM results obtained.

Factors specific to the cavity were mainly involved with determining the optimum

connection of the internal rod to the outside world. This was performed simply

by using BNC connectors which satisfied the list of requirements presented in

§4.4.1. Again, the results were highly repeatable and, as will be discussed in

§7.4., agreed closely with the predictions of the lLM model.
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7.3. SCREENED ROOM VERIFICATION TESTS

The test results presented were of the coupling from a feed dipole placed within

a screened room to both a single receiving rod and two closely spaced rods. The

current in one arm of the dipole was also measured. It was previously found that

the currents in both arms of the dipole were the same - provided the cables were

loaded with ferrite clamps.

The dipole signal contained a large number of features over the frequency range

chosen. These features were a combination of the high Q room resonances and

the broader, low Q, dipole resonance. In the case where the resonance error

correction was not used, the frequency shift in the 1LM results was such that, in

certain cases, nominally adjacent features were almost overlapping when

compared with experimental results. With correction, the 1LM results became

much closer to the measurements. In both cases, the distinct shapes of the

individual features were predicted well, showing the way 1LM predicts the latent

behaviour of such a source of radiation and its interaction with a complex

environment.

The results for the rod(s) appeared more sensitive to the resonance error

correction method than the dipole current This was because the rod results were

combinations of their natural resonances, the source effects of the dipole, and also

effects due to the proximity of the bench. The current on the single rod showed

how well the resonance error correction method worked, especially with regard

to the broadness of the main peak.

Two receiving rods replaced the single receiving rod in a further set of

experiments. This allowed the comparison experimental and TLM results for a

system with closely coupled (mutual) impedance. TLM predicted both the

behaviour of two closely spaced conductors in the screened room and also the

effect of changing the separation of two conductors. In both cases, simulations
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agreed well with experimental observation.

Both the corrected and the uncorrected TLM simulations showed that the general

behaviour of such systems could be determined well. The results obtained using

the correction scheme were in better agreement with the experimental results.

In general, the predictions made using TLM, incorporating the correction to the

resonance error, are sufficient for most EMC purposes in that the location of the

features in 'the frequency domain agreed well between the simulations and the

experimental observations.

7.4. CAVITY RESULTS

Studies were undertaken which compared the effect of a cavity and associated

apertures on the signal passing along a wire internal to the cavity. Initial

comparisons of the lLM and experimental amplitude and phase response,

obtained by exciting one end of the internal wire and taking output at the other

end, show how well 1LM predicts the behaviour of the cavity studied The

overall response of the signal is a combination of the high Q box resonances and

the low Q rod resonances. Without resonance error correction, the rod resonances

are subject to a shift in response to lower frequencies. This has the effect of

causing the overall response to appear dramatically different at certain frequencies

(for example 800 MHz in Figure 6.18). With the wire resonance error correction

scheme incorporated into the model, TLM has been shown to predict resonant

frequencies and the effect of apertures to a high degree of accuracy.

The number of high Q features can be seen to be higher in the cases where the

aperture area, and hence the amount of damping, is lower. Clearly, this is a

straightforward effect of energy loss for certain frequency components, although



A.P. Duffy. 1993. Chapter 7 133

the level of the effect of particular components may not be easy to determine

analytically. The overall agreement between TLM and the experimental results

is good vindicating the use of TLM for this type of study.

The field probed in the aperture gave good agreement between the TLM

prediction and the measurements for the location of features.

Although rarely used in the EMC community, phase was used as a means of

comparing results due' to its sensitivity to change. The phase comparison results

also showed a high level of agreement and provided further evidence of the

applicability of TLM to the propagation and coupling of electromagnetic radiation

in complex environments, typical of many EMC problems.

7.5. RESOURCE REQUIREMENTS

Values were presented in §6.3 which compared the effects of the correction

scheme on both the memory requirements and the run-time of the simulations.

It is clear that more memory and a longer run-time is required to undertake

simulations with such a correction scheme due to the addition of stubs to the

nodes in most of the work-space. However, the decision to be made is whether

the extra resource required is justified by the improvements in the results

obtained. That question is rather subjective and the answer would be dependent

on the person answering as well as on the limitations of the host equipment It

was considered that, for the simulations undertaken here, the trade-off between

the run time and accuracy of the simulation was acceptable. Also, the length of

time the simulations took to run allowed them to be run overnight on a standard

Industry platform, adding further credibility to the use of 1LM to model realistic

coupling problems in an acceptible time.
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7.6. THE APPLICATION OF CORRELELOGRAMS TO

VALIDATION

Correlelograms were introduced in §6.4 as a means of quantifying the closeness

of a simulation to the experimental results. The examples given showed their

potential use .
.-

It is envisaged that correlelograms will be particularly useful when comparing the

results of several different modelling methods, especially when the results are

quite complex - such as the screened room or cavity results - and a single number

such as that obtained from a straightforward correlation of the data therefore

conveys very little information. Three values were identified as being of

particular use. These were the peak values of the correlelograms, the RMS value

of the difference of the cross-correlelogram from the auto-correllelogram of the

experimental data, and the RMS value of the asymmetry of the cross-

correlelogram. Although these values are related, they are considered sufficiently

different so that, taken together, quantitative comparisons of several simulations

with experimental results can be undertaken relatively objectively.

Further work is required in order to determine the significance of the actual

numerical values of each of the three parameters.
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7.7. GENERAL CONCLUSIONS

This thesis has addressed the coupling of electromagnetic waves into wires on two

fronts: experimentally and by modelling using TLM. These two approaches were

unified in the use of TLM for electromagnetic coupling between wires in complex

environments which can be considered to be representative of typical EMC

problems. Further validation was providedof a modification of the TLM method

which was designed to overcome a problem with the modelling of wires.

The points which can be stated as the main conclusions of the work described in

this Thesis are that:

experiments in the screened room and the cavity can be made repeatable

and accurate provided that. certain 'good experimental practices' are

employed.

the good comparisons between the experimental results and the TLM

simulations indicate that TLM is a powerful numerical modelling tool to

be used for EMC studies.

the modelling of wires using the resonance error correction scheme allows

them to be modelled with a high degree of accuracy, thus overcoming one

of the fundamental problems associated with the modelling of wires in

TLM.

A perenial limitation on numerical modelling methods is that the complexity of

problems required to be solved will always be greater than the abilities of the

method or its implementation. TLM is no exception to this, the main limitation

being that of the computer resource available. The simulations described in this

Thesis are generally within the maximum size which can be run on a standard

platform. By way of example, consider a work-station whose available volatile
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memory is 32 MBytes (this is a typical figure and will undoubtedly appear small

in the relatively near future). Assume also that the real and imaginary parts of

material properties will be required to be changed and stub loaded symmetrical

condensed nodes will be used. Hence. each node would have 24 ports and. with

four bytes per real variable, would require 96 bytes of storage. Thus a workspace

of approximately 350 000 nodes would result. This is approximately equivalent

to 73 wavelengths. a system requiring no stub loading of symmetrical condensed

nodes would be able to model a work-space of approximately 93 wavelengths.

These figures are only illustrative. as the amount of available memory depends

on the actual machine used.

The other limitation is run-time. Generally. end-users do not want to have

simulations running for days. except very ocassionally. It is more common for

them to require an almost instantaneous answer or at worst to run simulations

overnight, giving a maximum permisible run-time of the order of 16 hours. In

this respect, the problems undertaken in this Thesis have been approaching the

acceptable limit

With these limits in mind, the simulations which can be undertaken at present are

relatively simple as the methods and the computers on which they run have not

developed sufficiently to allow a full pcb and cabinet electromagnetic analysis.

However. it is important that the simpler systems are understood first as they

form the basis of more detailed studies and allow the user an insight into the

fundamental mechanisms involved in interference propagation.

The complexity of models which can realistically be tackled will increase as the

speed and available memory of standard Industrial computing platforms improves.

Further increases in complexity will occur as the efficiency of the lLM method

increases. This will come about through optimisation of the algorithms. possibly

for particular applications and also further development of techniques such as

multigridding, accurate matched (free-space) boundary modelling and the

hybridization of several different methods to utilize the beneficial features of each
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without any of their shortcomings.

It was found that the use of TI...M simulations and experiments in tandem was

much more beneficial than doing either in isolation. The benefits of mutual

validation were found to be important in the identification of problems: for

example, TI...Mhelped to identify the problems originally caused by the cables in

the screened room and the experimental results helped to identify the resonance

error problem and the generality of its solution.
" ..

7.S. SUGGESTIONS FOR FURTHER WORK

The work reported in this Thesis has verified the TI...M method against

experimental results for a number of EMC configurations. Taken together, these

comparisons give a high level of confidence in the generality of this approach.

Several further investigations would be beneficial for a fuller understanding of the

coupling of electromagnetic waves into wires both experimentally and using

models. By the very nature of research, as one question is answered, further

questions arise. However, the following are some of the more fundamental areas

where further work is required:

to extend the frequency ranges of the experiments. Current EMC

regulations extend to 1 GHz and are likely to extend beyond this in the

forseeable future. Also specific interest may be given to certain spot

frequencies, such as 2.45 GHz, the frequency used for microwave heating,

if equipment may be operated in that sort of environment.

to investigate further wires being modelled with diameters less than the AI

of the node inwhich they are placed, but without any of the disadvantages

of wire nodes and separated solution methods described previously. This
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may be achieved by using the resonance error correction method with

material properties lowered further than those used to correct for the error.

This would have the effect of making the wire diameter appear smaller

than it is in the model. For example, it may be possible to get adequate

simulations of the screened room configurations using only .M = 5 cm

nodes, but model the transmitter and receiver with 1 cm diameters.

to study the coupling into the enclosure through the apertures from an

external source. This is the natural next step from the work which has

been presented in this Thesis, and is particularly important for the

consideration of susceptibility.

to implement the resonance error correcetion scheme in a hybrid TLM

code, currently it is used in the regular mesh or multigrid schemes. This

would involve automatic compensation for the path length differences

based on the nodal aspect ratios

to apply the principle of resonance error correction, namely the path

length correction, to other structures, such as strip-line and further verify

the generality of the solution. This has direct application for pcb

modelling.

to model multi-conductors. The work presented here has concentrated on

a single wire or two closely spaced wires. The extension of this to wire

looms is of practical importance for EMC and it is a complex task, and

possibly a major research projrct, to develop the required modelling

techniques.

to further investigate, using both experimental and modelling

investigations, the behaviour of wire terminations and in particular, the

effects of stray capacitance and inductance (for example caused by pig-

tails) and the behaviour of terminations whose impedance changes with
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frequency.

to investigate the hybridization of TLM with other modelling methods, or

even with experimental results. Some of the benefits of TLM were

discussed in Chapter 2. However, a limitation is that the maximum size

of work-space which can be used is generally less than 103 wavelengths.

Thus, the combination of TLM with other methods, which could extend

the maximum size of the model would be a great advantage.
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