
Developing Novel Meta-heuristic, Hyper-heuristic
and Cooperative Search for Course Timetabling

Problems

by

Joe Henry Obit, MSc

GEORGE GREEN uBRARY O~
SCIENCE AND ENGINEERING

A thesis submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Computer Science

University of Nottingham

November 2010

Abstract

The research presented in this PhD thesis focuses on the problem of university

course timetabling, and examines the various ways in which metaheuristics, hyper-

heuristics and cooperative heuristic search techniques might be applied to this sort of

problem. The university course timetabling problem is an NP-hard and also highly

constrained combinatorial problem. Various techniques have been developed in the

literature to tackle this problem. The research work presented in this thesis ap-

proaches this problem in two stages. For the first stage, the construction of initial

solutions or timetables, we propose four hybrid heuristics that combine graph colour-

ing techniques with a well-known local search method, tabu search, to generate initial

feasible solutions. Then, in the second stage of the solution process, we explore dif-

ferent methods to improve upon the initial solutions. We investigate techniques such

as single-solution metaheuristics, evolutionary algorithms, hyper-heuristics with rein-

forcement learning, cooperative low-level heuristics and cooperative hyper-heuristics.

In the experiments throughout this thesis, we mainly use a popular set of bench-

mark instances of the university course timetabling problem, proposed by Socha et

al. [152], to assess the performance of the methods proposed in this thesis. Then,

this research work proposes algorithms for each of the two stages, construction of ini-

tial solutions and solution improvement, and analyses the proposed methods in detail.

For the first stage, we examine the performance of the hybrid heuristics on con-

structing feasible solutions. In our analysis of these algorithms we discovered that

these hybrid approaches are capable of generating good quality feasible solutions in

reasonable computation time for the 11 benchmark instances of Socha et al. [152].

Just for this first stage, we conducted a second set of experiments, testing the pro-

posed hybrid heuristics on another set of benchmark instances corresponding to the

international timetabling competition 2002 [91J. Our hybrid construction heuristics

were also capable of producing feasible solutions for the 20 instances of the competi-

ii

tion in reasonable computation time. It should be noted however, that most of the

research presented here was focused on the 11 problem instances of Socha et al. [152].

For the second stage, we propose new metaheuristic algorithms and cooperative

hyper-heuristics, namely a non-linear great deluge algorithm, an evolutionary non-

linear great deluge algorithm (with a number of new specialised evolutionary oper-

ators), a hyper-heuristic with a learning mechanism approach, an asynchronous co-

operative low-level heuristic and an asynchronous cooperative hyper-heuristic. These

two last algorithms were inspired by the particle swarm optimisation technique. De-

tailed analyses of the proposed algorithms are presented and their relative benefits

discussed. Finally, we give our suggestions as to how our best performing algorithms

might be modified in order to deal with a wide range of problem domains including

more real-world constraints. We also discuss the drawbacks of our algorithms in the

final section of this thesis.

III

Acknowledgements

Thanks God for giving me the strength to start and finish this challenging journey.

When I was down and tired you were always there for me no matter it were difficult

or wonderful times, you always were holding me.

I would like to take this opportunity to express my sincere gratitude to my ex-

ceptional academic supervisor, Dr. Dario Landa-Silva for his trust, guidance, encour-

agement and constant support throughout this PhD journey. My thanks also go to

EPSRC for funding this research project (Next Generation Decision Support- Infor-

mation Sharing Mechanisms for Hyper-heuristics: Automating the Heuristic Design

Process (EP /0061571/1)) and UMS who were responsible for funding this project.

Many thanks to Dr. Djamila Ouelhadj and Dr. Rong Qu for their advice and

encouragement. To my mother, sisters and brothers, thanks to all of you for giving

me indirect support in finishing this challenging task. To my wife, Sue and my little

Dansih who always bring joy and laughter, thanks for being with me.

Last but not least, my thanks go to ASAP research group, especially Dr. Jason

Atkin, Dr. Tim Curtois, Dr Peer-Olaf Siebers, Dr Jan Feyereisl,Dr Yuri Bykov, Juan

Pedro, Sven, Khoi, Bob, Rupa Jagannathan, Abdullah and his wife Azura and many

others for your help.

iv

Declaration

I hereby declare that this thesis has not been submitted, either in the same or

different form, to this or any other university for a degree.

Signature:

v

Contents

Abstract ii

Acknowledgements iv

Declaration v

List of Tables xi

List of Figures xv

1 Introd uction

1.1 Background and Motivation

1.2 Summary of Contributions.

1.3 Scientific Publications Resulting

From This Thesis

1.4 Thesis Guide .

1

1

5

7

8

2 Literature Review

2.1 Introduction.

2.2 Tirnetabling.

2.3 Graph Colouring Model for University Course Tirnetabling

2.4 Overview of Approaches for University Course Timetabling .

2.4.1 Introduction.......................

11

11

11

14

17

17

vi

2.4.1.1 Review of Meta-heuristics

2.4.1.2 Review of Hyper-heuristic

2.4.1.3 Review of Distributed Hyper-heuristics.

2.5 Important Papers

2.6 Conclusions ...

3 University Course Timetabling Benchmark Problems

3.1 Introduction..................

3.2 The University Course Timetabling Problem

3.3 Constraints in University Course Timetabling

3.3.1 Hard Constraints

3.3.2 Soft Constraints.

3.4 Problem Formulation

3.5 Data Input

3.6 Conclusions

17

43

45

48

50

51
51

52

54

54

55

55

56

62

4 Constructing Feasible Solutions for UCTTP Using Hybrid Heuris-

tics

4.1 Introduction..................

4.2 Literature Review of Initialisation Methods.

4.3 Hybrid Initialisation Heuristics

4.3.1 Largest Degree, Local Search and Tabu Search (IHl)

4.3.2 Saturation Degree, Local Search and Tabu Search (IH2)

4.3.3 Largest Degree, Saturation Degree, Local Search and

Search (IH3) .

4.3.4 Constraint Relaxation Approach (IH4)

4.3.4.1 Improvement of the Dummy Soft Constraint .

4.4 Experimental Results and Analysis

4.5 Discussion and Summary .

vii

64

64

65

72

72

77

Tabu

80

82

82

85

93

5 An Investigation of the Great Deluge Algorithm

5.1 Introduction......................

5.2 Great Deluge With Non-Linear Decay Rate Approach.

5.2.1

5.2.2

Initial Feasible Timetables and Neighbourhood Structures

Non-linear and Floating Water Level Decay

95

95

99

100
100
105
116

121

5.3 Experiments and Results .

5.4 Effect of the Non-linear Decay Rate.

5.5 Conclusion .

6 An Evolutionary Non-Linear Great Deluge Algorithm

6.1 Introduction .

6.2 Overview of Evolutionary Algorithm

6.3 Evolutionary Non-Linear Great Deluge

6.3.1

6.3.2
6.3.3
6.3.4

Solution Representation

Initialisation of the Population.

The Evolutionary Operator: Mutation

Non-linear Great Deluge Search

123

123

124

126

128

129

129

130

132

138

147

6.4 Experiments and Results .

6.4.1 Statistical Analysis

6.5 Conclusions

7 Non-Linear Great Deluge with Modified Choice Function

7.1 Introduction .

7.2 The Non-linear Great Deluge Hyper-heuristic

7.2.1 Learning Mechanism

7.2.1.1 MCF with Static Memory Length .

148
148

149

151

152

7.2.1.2 MCF with Randomly Change Learning Rate. 153

7.2.2 Illustration of the Weights Adaptation

7.3 Experiments and Results .

155
159

viii

7.3.1 Static vs. Random Change in Learning Rate

7.3.2 Comparison to Previous Great Deluge

7.3.3 Comparison to Other Hyper-heuristics

7.3.4 Experiments With Different Memory Lengths

7.3.5 Further Statistical Analysis

7.3.6 Comparison with Best Known Results

7.4 Conclusions .

160

166

166

168

171
176

178

8 Developing Asynchronous Cooperative Multi-agent Search 179

8.1 Introduction 179

8.2 Hyper-heuristics and Parallel

Cooperative Search

8.3 Asynchronous Cooperative Search

8.4 Particle Swarm Optimisation. .

8.5 The Asynchronous Cooperative

180

181

182

Multi-agent Algorithms 184

8.5.1 Asynchronous Cooperative Multi-agent

Search Framework .

8.5.2 Low-Level heuristics

8.5.3 Acceptance Criteria.

8.5.4 Asynchronous Cooperative Multi-heuristic

Algorithm (ACMHA) .

8.5.5 Asynchronous Cooperative Multi-hyperheuristic

185

187

188

189

Algorithm (ACMHHA) 189

8.6 Experiments and Results. 190

8.6.1 Statistical Analysis 195

8.7 Conclusions 203

9 Conclusions and Future Work 205

IX

9.1 Research Work Summary.

9.1.1 Contributions...

9.2 Discussion and Future Work

References

205

208

209

212

x

List of Tables

3.1 The parameter values for the course timetabling problem categories in

the Socha et al. instances. .. 53

3.2 The 20 instances in the set of International Timetabling Competition

2002. The last three columns give some indication about the structure

of the instances. Details of the competition algorithms are available

at: http://www.idsia.ch/Files/ttcomp2002/results.htm. 53

3.3 Student Event matrix. . 57

3.4 EventsConflict matrix. 58

3.5 RoomFeatures matrix. . 59

3.6 EventsFeatures matrix. 60

3.7 SuitableRoom matrix. . 61

3.8 An Example of a vector of timeslots. 62

3.9 An Example of a vector of rooms. . . 62

4.1 Results Obtained by IH1 and IH2 on the 11 Socha et al. Instances. 88

4.2 Results Obtained by IH3 and IH4 on the 11 Socha et al. Instances. 88

4.3 Results Obtained by IH1 and IH2 on the ITC 2002 Instances. ... 89

4.4 Results Obtained by IH3, IH4 and Kostuch on the ITC 2002 Instances. 90

4.5 Results Obtained by the Sequential Heuristic on the Socha et al. In-

stances. 91

4.6 Results Obtained by the Sequential Heuristic on the ITC 2002 Instances. 92

Xl

http://www.idsia.ch/Files/ttcomp2002/results.htm.

5.1 Comparison of Results Obtained by the Non-Linear Great Deluge (NLGD)

Proposed in this Chapter Against the Best Known Results from the

Literature for the 11 Socha et al. Problem Instances. 107

5.2 Comparison of Results Obtained by the Non-linear Great Deluge (NLGD)

Proposed in this Paper Against the Best Known Results from the Lit-

erature for the 11 Socha et al. Problem Instances. 110

5.3 Comparison of results obtained by the non-linear Great Deluge (NLGD)with

other approaches for the International Timetabling Competition on the

20 instances. Details of the competition algorithms are available at:

http://www.idsia.ch/Files/ttcomp2002/results.htm. 112

6.1 Parameter Settings for the Three Variants of the Proposed Evolution-

ary Non-linear Great Deluge Algorithm. 131

6.2 Comparison of NLGD, ENLGD-M, ENLGD-1 and ENLGD-2 on the

Socha et al. UCTTP Instances. " 133

6.3 Comparison ofresults obtained by the Evolutionary Non-Linear Great

Deluge (ENLGD) proposed in this chapter against the best known

results from the literature for the 11 Socha et al. UCTTP instances.. 137

6.4 Average Penalty Cost of ENLGD-2 and ENLGD-1 Across the 11 Socha

et al. Instances. " 142

6.5 Average Penalty Cost of ENLGD-M and NLGD Across the 11 Socha

et al. Instances.

6.6 Post Hoc Tests - Small Instances

6.7 Post Hoc Tests - Medium Instances

6.8 Post Hoc Tests - Large Instance ..

143

144

144

144

7.1 Comparison of the Proposed Great Deluge Based Hyper-heuristic and

other Great Deluge Methods from the Literature. 167

xu

http://www.idsia.ch/Files/ttcomp2002/results.htm.

7.2 Comparison of NLGDHH-SM, NLGDHH-RCLR and all types of Hyper-

heuristic Algorithms Reported in the Literature , 168

7.3 Comparison of the NLGDHH-SM with Different Learning Period Length

lp. 169

7.4 Average Penalty Cost ofNLGDHH-SM(lp=2500), NLGDHH-SM(lp=5000)

and NLGDHH-RCLR Across the 11 Socha et al. Instances , 173

7.5 Average Penalty Cost of ENLGD-1 and NLGD Across the 11 Socha et

al. Instances. .

7.6 Post Hoc Tests - Small Instances.

7.7 Post Hoc Tests - Medium Instances ..

7.8 Post Hoc Tests - Large Instance

7.9 Comparison of the Proposed Great Deluge Based Hyper-heuristic to

the Best Results Reported in the Literature for the Socha et al. UCTTP

Instances. 177

174

174

174

174

8.1 Comparison of Results Obtained by the Asynchronous Cooperative

Multi-agent Algorithms Proposed in this Chapter Against the Best

Known Results from the Literature for the 11 Socha et al. Problem

Instances. 192

8.2 Comparison of ACMH(6), ACMHHA(2), ACMHHA(4) and ACMHHA(6).193

8.3 Comparison of the Results Obtained by the Asynchronous Cooperative

Multi-agent Algorithms Proposed in this Chapter Against the Best

Results Reported in the Literature. 194

8.4 Average Penalty Cost of ACMHA(6), ACMHHA(2) and ACMHHA(4)

Across the 11 Socha et al. Instances. 197

8.5 Average Penalty Cost of ACMHHA(6), NLGDHH-SM (LP=2500) and

NLGDHH-SM (LP=5000)) Across the 11 Socha et al. Instances. . .. 197

8.6 Average Penalty Cost of NLGDHH-RCLR , ENLGD-2 and NLGD

Across the 11 Socha et al. Instances. 198

xiii

8.7 Post Hoc Tests - Small Instances. . .

8.8 Post Hoc Tests - Medium Instances ..

8.9 Post Hoc Tests - Large Instance

199

199

200

xiv

List of Figures

2.1 Graph Colouring Model for a Simple Course Timetabling Problem. 16

5.1 Linear Great Deluge Behaviour . 97

5.2 Behaviour of Non-Linear Great Deluge With Non-linear and Floating

Water Level Decay Rate. .. 104

5.3 Comparison Between Linear (Eq. 5.1) and Non-linear (Eq. 5.2) Decay

Rates and Illustration of the Effect of Parameters {3, 8,min and max on

the Shape of the Non-linear Decay Rate in the Great Deluge Algorithm.105

5.4 Detailed comparison of non-linear great deluge against other algo-

rithms for small instances. 113

5.5 Detailed comparison of non-linear great deluge against other algo-

rithms for medium instances. · . · . · . · . · . 113

5.6 Detailed comparison of non-linear great deluge against other algo-

rithms for comOl-com05 instances. · . · . · . · . 114

5.7 Detailed comparison of non-linear great deluge against other algo-

rithms for com06-comlO instances. · . · .. · . 114

5.8 Detailed comparison of non-linear great deluge against other algo-

rithms for comll-com15 instances. . . . · . · . · . · . · . 115

5.9 Detailed comparison of non-linear great deluge against other algo-

rithms for com16-com20 instances. . . · . · . 115

5.10 Behaviour of Linear Great Deluge on Instance sma1l5. 118

5.11 Behaviour of Linear Great Deluge on Instance mediuml. 118

xv

5.12 Behaviour of Linear Great Deluge on Instance large. 119

5.13 Behaviour of Non-Linear Great Deluge on Instance small5. 119

5.14 Behaviour of Non-Linear Great Deluge on Instance mediuml. 120

5.15 Behaviour of Non-Linear Great Deluge on Instance large. . . . 120

6.1 Flow Chart Showing the General Procedure of an Evolutionary Algo-

rithm. . .

6.2 The Evolutionary Non-linear Great Deluge Algorithm.

6.3 Solution Representation (direct encoding) of a Timetable where Events

are Assigned to Pairs timeslot-room. . .

6.4 Best Results Obtained by the Proposed Algorithm Variants.

6.5 Average Results Obtained by the Proposed Algorithm Variants on

Small Instances. .. 135

125

127

129

134

6.6 Average Results Obtained by the Proposed Algorithm Variants on

Medium and Large Instances. 135

6.7 ANOVA Results. 144

6.8 Mean Plot and LSD Intervals (Small Instances). 145

6.9 Mean Plot and LSD Intervals (Medium Instances). 145

6.10 Mean Plot and LSD Intervals (Large Instance). .. 146

7.1 Non-Linear Great Deluge Hyper-heuristic Approach. 151

7.2 Adaptation of Weights (Wi) During a Run of NLGDHH-SM on smalll

Instance. .. 155

7.3 Adaptation of Weights (Wi) During a Run of NLGDHH-SM on small2

Instance. .. 156

7.4 Adaptation of Weights (Wi) During a Run of NLGDHH-SM on sma1l3

Instance. .. 156

7.5 Adaptation of Weights (Wi) During a Run of NLGDHH-SM on sma1l4

Instance. .. 156

XVI

7.6 Adaptation of Weights (Wi) During a Run of NLGDHH-SM on sma1l5

Instance. .. 157

7.7 Adaptation of Weights (wd During a Run ofNLGDHH-SM on medium I

Instance. .. 157

7.8 Adaptation of Weights (Wi) During a Run of NLGDHH-SM on medium2

Instance. .. 157

7.9 Adaptation of Weights (Wi) During a Run of NLGDHH-SM on medium3

Instance. .. 158

7.10 Adaptation of Weights (Wi) During a Run of NLGDHH-SM on medium4

Instance. .. 158

7.11 Adaptation of Weights (Wi) During a Run ofNLGDHH-SM on medium5

Instance. .. 158

7.12 Adaptation of Weights (Wi) During a Run of NLGDHH-SM on large

Instance. 159

7.13 Best Results Obtained by NLGDHH-SM and NLGDHH-RCLR. 161

7.14 Average Results Obtained by NLGDHH-SM and NLGDHH-RCLR on

Small Instances. .. 161

7.15 Average Results Obtained by NLGDHH-SM and NLGDHH-RCLR on

Medium and Large Instances. 162

7.16 All Results Obtained by NLGDHH-SM on Smalll Instance. . 163

7.17 All Results Obtained by NLGDHH-RCLR on smalll Instance. 163

7.18 All Results Obtained by NLGDHH-SM on medium1 Instance. 163

7.19 All Results Obtained by NLGDHH-RCLR on mediuml Instance. . 164

7.20 All Results Obtained by NLGDHH-SM on large Instance. . . 164

7.21 All Results Obtained by NLGDHH-RCLR on large Instance. 164

7.22 The Best Results Obtained from Different lp Values 170

7.23 Average Results from Different lp Values - Small instance. 170

7.24 Average Results from Different lp Values - medium and large instances. 170

XVll

7.25 ANOVA Results .

7.26 Means Plot and LSD Intervals (Small Instances).

7.27 Means Plot and LSD Intervals (Medium Instances).

7.28 Means plot LSD Intervals (Large Instance) .

173

175

175

176

8.1 Island Model Multi-agent System: Many-to-Many Communication Model.187

8.2 ANOVA Results 196

8.3 Min Plot and LSD Interval (Small Instances). 202

8.4 Min Plot and LSD Interval(Medium Instance) 202

8.5 Min Plot and LSD Interval(Large Instance) . . 203

xviii

Chapter 1

Introduction

1.1 Background and Motivation

Timetabling is a type of assignment problem, where each problem has its own unique

characteristics and variations which differ from one organisation to another. In the

modern world where it is crucial to avoid time and resources wastage, the timetabling

of activities requires that resources are in place at the right time and in the correct

quantity in order to operate effectively and efficiently.

An example of a timetabling problem which must be solved effectively is train

timetabling. The construction of a train timetable must take into account where and

when the train starts and ends its journey every day. The availability and drivers'

preferences (based on seniority) also need to be considered, including how many hours

the drivers are able to work per shift every week.

Bus timetables are also another example, a problem that shares many features

with train timetabling. However, there are other features which do not exist in train

timetabling but are important attributes of bus timetabling, such as dead mileage and

lay-overs. Dead mileage is the travelling distance from the last point of the service

1

to the depot whilst not in service. Lay-over is the break given to the bus at the end

of a trip before it starts operating its reverse route. Without proper bus and train

timetables, the entire transportation network system in any city or country would

be in turmoil. Hence, the construction of timetables is extremely important, for it

usually affects people daily lives.

Examination timetabling is another example of an important timetabling prob-

lem. In these problems, each examination activity must be assigned to the right

timeslot avoiding clashes between exams that have students in common. Once the

clashing problem has been solved, the quality of the timetable is often improved by

spreading the exams as much as possible in order to give adequate time for students to

revise before sitting the exam, or to have sufficient rest before starting the next exam.

This short overview of some of the different types of timetabling has shown the

importance of timetabling in many scenarios. Whilst the focus of this thesis is on

the university course timetabling problem, the same objectives are usually involved

in many other forms of timetabling problems, where the aim is to ensure that the

resources are allocated at the right time and in the right place, avoiding conflicts

that can provoke chaos. One objective commonly found in timetabling is to satisfy

all people who are directly affected by the timetable, such as examinees and invig-

ilators. Another objective in timetabling is usually to control costs. For example,

poor quality course timetabling can cause higher cost for educational institutions,

since students will not be able to attend all of their lessons when clashes exist and

may need to instead take the course next term, extending their study time. From a

lecturer's perspective, they might not be able to teach all their courses because all or

some of them have been assigned to the same timeslot. Alternatively, lecturers may

be unable to deliver their lectures if their courses have been assigned to rooms with

unsuitable teaching equipment. In addition, poor quality timetables can also result in

2

students having to attend more than two consecutive courses without a break. This

is known to have a detrimental effect upon student concentration.

The University Course Timetabling Problem (UCTTP) is known to be a very

difficult combinatorial problem and it has been extensively studied over the last few

decades. The general timetabling problem is known to be NP-hard [42, 75](see the

description in section 2.3). Therefore, in general there is no known efficient determin-

istic algorithm which will solve all instances in polynomial time. In addition most

timetabling problem by nature is highly constrained and complicated. For example,

feasible, good and acceptable timetable are very different from one university to the

others subject to their own interpretation. Moreover, different universities are likely

to have their own set of timetable constraints that need to be satisfied. In spite of

various techniques have been proposed by researchers in recent years to automatically

generate solutions to benchmark and real-world timetabling problems, unfortunately,

in some cases if not often that an algorithmic approach that is successful for one

particular problem may not perform well for other problems.

The construction of a course timetable is a very complex problem common to a

wide range of educational institutions. Many factors contribute to this complexity.

Among them we distinguish the requirements to satisfy various constraints. For ex-

ample: each course should be composed of the correct number of lectures, no student

can attend more than one lecture at the same time, and one lecture has to be sched-

uled in exactly one room, etc. [148, 152]. Furthermore, the introduction in many

universities of a modular course structure, where each student is allowed to choose a

set of subjects, has made the timetabling process (for both courses and exams) even

more complex [35]. Hence, the manual process of preparing the timetable is tedious,

time consuming, error prone and not even guaranteed to produce a timetable free of

constraint violations. The complex nature of the timetabling problem has attracted

3

the attention of many researchers and practitioners. It has been observed that local

search algorithms might be more efficient in solving timetabling problems if the prob-

lem is split into smaller sub-problems [33J. Carter proposed a decomposition method

to break large instances into smaller sub-problems which then can be successfully

handled by a local search algorithm [37]. Recently, some researchers have proposed

the use of multi-agent systems for timetabling problems. A Multi-agent system is a

network of agents that work together to solve problems that are beyond the agent's

individual capability [124]. Multi-agent systems are distributed and autonomous sys-

tems made up of autonomous agents that support reactivity, and are robust against

failures both locally and globally [133]. Multi-agent systems have been applied for

a long time to problems in other domains such as production scheduling, employee

timetabling, e-commerce, etc., and they have produced good results [46, 132, 162].

In contrast, not much research has been conducted on the application of multi-agent

systems to tackle educational timetabling problems. Kaplansky et al. claimed that

the distributed nature of the timetabling problem can be tackled by using the multi-

agent paradigm [93]. Each agent in their model has a different set of requirements

that lead them to finding high quality solutions. In order to coordinate their own

timetable, all agents in the distributed environment have to communicate and nego-

tiate to avoid conflicts in the process of allocating the shared resources. Kaplansky

et al. used mainly a nurse rostering problem to investigate their multi-agent model.

In the present thesis, we propose an asynchronous hyper-heuristic that also incor-

porates elements of particle swarm optimisation as one of the contributions of this

work. Hyper-heuristics are a relatively new type of search methodology with the

aim of developing general domain-independent search methods capable of performing

well enough, soon enough, and cheap enough across a wide range of optimisation

problems [25]. When given a particular problem instance and a number of low-level

heuristics, the hyper-heuristic process manages the selection and acceptance of the

low-level heuristics to apply at any given time, until a stopping condition is met. A

4

low-level heuristic is a simple local search operator or domain dependent heuristic.

The work presented by Burke et al. [33] has suggested that advanced algorithms

such as evolutionary algorithms will not fully solve the complex timetable problem

especially when dealing with large instances. The problem with these algorithms is

that to find near-optimal solutions for timetabling is extremely difficult because of

the large number of constraints which limit the feasibility of solutions. As a result,

Burke et al. [35]later proposed a decomposition method to break a large instance into

small sub-problems so that the algorithms were able to handle these smaller problems

and find near-optimal solutions. The process of decomposition has also been studied

by Carter [37]who used a heuristic method to split large instances into small prob-

lems until each sub-problem was small enough to be solved by local search algorithms.

1.2 Summary of Contributions

The focus of this thesis is to investigate meta-heuristic, hyper-heuristic and coop-

erative search approaches for tackling the university course timetabling problem

(UCTTP). In this work, we investigate the Great Deluge algorithm and how this

simple yet effective method can improve the quality of the timetable by extending

the algorithm with a non-linear decay and floating water level. In recent years, the

demand for more general frameworks for decision support systems to aid in the solu-

tion of timetabling and other problems has increased. This has driven our work into

the development of a general framework for hyper-heuristics. Therefore, it is worth

investigating hyper-heuristics and the use of machine learning technique in order to

select the low-level heuristics without involving too much parameter tuning. To har-

vest the benefit of cooperative search, we investigate how beneficial it is when more

than one hyper-heuristic cooperate to explore a large region in the search space. We

5

also propose here several approaches for generating feasible solutions to the UCTTP

as the first stage of a two-stage optimisation strategy. In this approach, we study ex-

isting methods such as local search, tabu search and graph colouring and investigate

how beneficial it is to hybridise those methods to compensate for the weaknesses of

each other. Therefore, in this research, we try to find simple algorithms (reducing the

complexity, increasing the robustness and effective) rather than very complex ones

for UCTTP. We outline next the scientific contributions of the present PhD thesis:

1. Development of four methods for the construction of feasible solutions for the

UCTTP.

2. An investigation of the Great Deluge algorithm originally proposed by Dueck

[68]

• Extension of the great deluge algorithm with a non-linear decay rate and

floating water level. Evaluation of the benefit of modifying the water

level decay rate from linear to non-linear and floating in the great deluge

algorithm. Therefore, the Non-Linear Great Deluge (NLGD) acceptance

criterion always accepts improving solutions and non-improving solutions

are only accepted if the objective function value is less than or equal to a

certain water level.

3. A hybridisation of the non-linear great deluge approach with elements of an

evolutionary strategy.

4. Development of a non-linear great deluge hyper-heuristic approach with several

variants:

• Non-Linear Great Deluge Hyper-heuristic (NLGDHH-SM) with static mem-

ory length.

• Non-Linear Great Deluge Hyper-heuristic (NLGDHH-DM) with dynamic

memory length.

6

• In this chapter we investigate the non-linear great deluge algorithm within

a hyper-heuristic framework. The Non-Linear Great Deluge Hyper-Heuristic

(NLGDHH) uses a learning mechanism for the selection of low-level heuris-

tics, and a NLGD acceptance criterion. The learning mechanism has

knowledge about the performance of each heuristic during the search.

This knowledge is used to guide the hyper-heuristic in selecting a low-

level heuristic at each decision point of the search.

5. Development of a cooperative hyper-heuristic algorithm .

• We investigate the effectiveness of asynchronous cooperative search within

a hyper-heuristic approach. In this work, particle swarm optimisation,

which is inspired by intelligent social and individual behaviour of swarms,

was used as inspiration. Based on the hyper-heuristic and particle swarm

optimisation perspective, we then proposed a novel search methodology in

which the interaction between cooperative low-level heuristics and cooper-

ative hyper-heuristics mimics the particle swarm behaviour.

1.3 Scientific Publications Resulting

From This Thesis

The research work described in this thesis has been disseminated in a number of sci-

entific papers already published or under submission. Almost every chapter discusses

in this thesis has been published or is in press. The list of papers published or in

press is provided bellow in reverse chronological order:

1. Joe Henry Obit, Dario Landa-Silva, Juan P Castro Gutierrez, Djamila Ouelhadj,

Rong Qu. A Particle Swarm Optimisation Inspired Asynchronous Cooperative

Distributed Hyper-heuristic. Submitted to Journal of Heuristics.

7

2. Joe Henry Obit, Dario Landa-Silva, Marc Sevaux, Djamila Ouelhadj. Non-

Linear Great Deluge with Reinforcement Learning for University Course Timeta-

bling. Post-conference Volume of the 2009 Metaheuristics International Confer-

ence (MIC 2009).

3. Joe Henry Obit, Dario Landa-Silva. Computational Study of Non-Linear Great

Deluge for University Course Timetabling. Intelligent Systems: From Theory

to Practice, Sgurev, Vassil and Hadjiski, Mincho and Kacprzyk, Janusz (eds),

Studies in Computational Intelligence, Vol. 299, pp. 309-328, Springer-Verlag,

2010.

4. Joe H. Obit, Dario Landa-Silva, Djamilah Ouelhadj, Marc Sevaux. Non-Linear

Great Deluge with Learning Mechanism for Solving the Course Timetabling

Problem. Proceedings of the 8th Metaheuristics International Conference (MIC

2009), Hamburg Germany, 2009.

5. Dario Landa-Silva, Joe Henry Obit. Evolutionary Non-Linear Great Deluge for

University Course Timetabling. Proceedings of the 2009 International Confer-

ence on Hybrid Artificial Intelligence Systems (HAIS 2009), Hybrid Artificial

Intelligent Systems, Lecture Notes in Artificial Intelligence, Vol. 5572, Springer,

pp. 269-276, 2009.

6. Dario Landa-Silva, Joe Henry Obit. Great Deluge with Nonlinear Decay Rate

for Solving Course Timetabling Problems. Proceedings of the 2008 IEEE Con-

ference on Intelligent Systems (IS 2008), IEEE Press, pp. 8.11-8.18, 2008.

1.4 Thesis Guide

This thesis consist of nine chapters. This first chapter explained the background,

motivation and main aim of this research. The rest of this thesis is organised in the

8

following way:

Chapter 2 gives a review of the state-of-the art and an analysis of the works which

have been published on the subject of university course timetabling.

Chapter 3 gives a detailed description of the problem domain. This chapter also in-

cludes the problem formulation and the description of standard benchmark instances

(University Course Timetabling Problem) that we used as the test bed for our pro-

posed algorithms.

Chapter 4 is dedicated to the initialisation of timetables. In solving the course

timetabling problem, most meta-heuristic approaches fall into one of the following

categories: one-stage, two-stage or algorithms that allow relaxations. Our overall

solution approach in this thesis falls into the second category, i.e. a two-stage op-

timisation strategy. Chapter 4 details how we construct a feasible solution for the

UCTTP. In order to examine the effectiveness of our proposed construction methods,

we conducted experiments by using standard benchmark problem instances and ob-

tained very good results.

Chapter 5 investigates the application of the great deluge algorithm invented by

Dueck [68Jto the UCTTP tackled here. The aims of the initial study were to conduct

a thorough investigation of this simple but effective algorithm, and study how it could

be further extended. We also discuss the proposed modification of the linear decay

rate in great deluge to a non-linear decay rate with floating water level. We then

tested this modified algorithm on the standard benchmark instances to examine how

beneficial it is to modify the decay rate. The experimental results on the UCTTP

show that the extended great deluge outperforms some of the best results reported

in the literature.

9

Chapter 6 continues the study of the great deluge algorithm proposed in chapter

5 (non-linear decay rate with floating water level). In that chapter we propose the

hybridisation of that algorithm with some evolutionary operators in order to further

improve the timetable quality.

Chapter 7 furthers our research of non-linear great deluge by implementing a

stochastic selection mechanism as a tool to select low-level heuristics. The result is

a proposed non-linear great deluge hyper-heuristic method. The difference between

this hyper-heuristic algorithm and the algorithm of chapter 5 is the stochastic se-

lection mechanism that takes into account the success rate history of the low-level

heuristics. Therefore, the focus of chapter 7 is more on the learning mechanism and

how this mechanism selects the low-level heuristic to apply at every decision point.

As in the previous chapters, we also use the standard benchmark problem to examine

the performance of the proposed learning mechanism.

Chapter 8 incorporates cooperation strategies in our non-linear great deluge hyper-

heuristic approach of chapter 7. Asynchronous cooperative search in complex combi-

natorial optimisation has been studied in many research papers and such strategies

have been demonstrated to produce promising results on other problems. We propose

the cooperation of low-level heuristics and cooperation of hyper-heuristics with differ-

ent strategies and acceptance criteria such as non-linear great deluge and simulated

annealing. The proposed algorithm is then a population-based algorithm and was

inspired by Particle Swarm Optimisation.

Last but not least, the overall conclusions of the work presented in this thesis and

research directions for future work in this area are presented and discussed in Chapter

9.

10

Chapter 2

Literature Review

2.1 Introduction

This chapter discusses some of the fundamental aspects of the automated timetabling

research area and some of the previous work in the literature covering different optimi-

sation techniques to tackle course timetabling problems. This chapter also describes

several timetabling problems in addition to the university course timetabling problem

which is the focus in this thesis.

The content of this chapter is divided into three sections. Section 2.2 defines

various educational timetabling problems. Section 2.3 discusses a course timetabling

model based on graph colouring. Section 2.4 provides an overview and discussion of

the different approaches used to tackle the university course timetabling problem.

2.2 Timetabling

Timetabling can be defined as the process of allocating, subject to constraints on

given resources, a number of events in space and time, in such a way as to satisfy

as nearly as possible a set of desirable objectives [163]. As noted by Wren [163],

11

constructing good quality timetables is a difficult task due to the combinatorial and

highly constrained nature of most timetabling problems, which are common prob-

lems for all institutions of higher education like universities. The construction of a

timetable to ensure all activities are in place accordingly is a very challenging task as

many factors contribute to its complexity, for example the need to satisfy a consider-

able number of hard and soft constraints.

A timetable is said to be feasible when it can allocate sufficient resources (room

space, time, people, etc.) for every event to take place. As in many other com-

binatorial problems, the constraints in timetabling can be distinguished into hard

constraints and soft constraints. Hard constraints need to be satisfied in all cir-

cumstances, whereas soft constraint violations should be minimised to increase the

timetable quality, increasing the satisfaction of the people who are affected by the

timetable.

Generally, educational timetabling problems can be classified into three main

classes according to Schaerf [148]. These classes are:

• School timetabling: a school timetable usually follows a cycle every week for

all classes and the objective is to avoid teachers having to attend two classes

at the same time. In school timetabling students are normally pre-assigned,

only teachers and rooms need to be assigned in the timetabling problem [95].

According to Santos et al. [146],the basic hard constraints that must be satisfied

in school timetabling are: (i) no teacher should be assigned to more than one

class in the same timeslot; (ii) take into account the teacher's availability for

each timeslot; and (iii) allocate the right number of timeslots for each teacher-

class pair.

• University course timetabling: university course timetabling is also the weekly

scheduling of all lectures of a set of university courses, avoiding lectures that

12

have students in common being assigned to the same timeslot. Therefore, uni-

versity course timetabling is the process of allocating, subject to constraints,

limited rooms and timeslots for a set of courses to take place. Usually, in ad-

dition to constructing a feasible timetable (all hard constraints satisfied), there

are desirable goals like minimising the number of undesirable allocations (e.g.

students attend more than two consecutive events on a day). Such desirable

goals are usually expressed as soft constraints.

• Examination timetabling: the set of university exams needs to be scheduled

into a limited number of timeslots (periods) avoiding cases where students take

more than one exam in the same timeslot (the clash free requirement). Each

room has a certain capacity which must not be violated when assigning an

exam or exams to it. These constraints are known as hard because they are

inflexible. Besides the hard constraints there are usually several soft constraints

that are considered to be desirable but not compulsory. Obviously, significant

differences exist across institutions in what constraints they consider compulsory

and which they do not [24J. Examples of commonly occurring soft constraints

are where students prefer to spread the exams as much as possible throughout

the examination week, or the institution wants to schedule large exams earlier

(to give more time for marking), some institution staff-members might also have

specific preferences, for example, with respect to invigilation duties.

In reality, these two types of problem (examination and course timetabling) are

fairly similar in some characteristics, however, there are some distinct underlying

differences between them. For example, in examination timetabling, several exami-

nations can be scheduled into one large room at the same time providing that the

seating capacity of the room is not exceeded, whilst, this is not possible for course

timetabling, where the assignment is generally only allowed one Course per room, per

timeslot.

13

As mentioned earlier, different universities have their own particular set of timetable

constraints. A common hard constraint is that no student is assigned to more than

one course at the same time. In ideal circumstances, a feasible timetable is only

considered feasible if and only if all the hard constraints are not violated. Soft COn-

straints, meanwhile, are those that are required to be satisfied as much as possible, in

other words, they are desirable but are not compulsory. The quality of the timetable

is usually determined by the violation of the soft constraints. In reality, it would

usually be impossible to satisfy all of the soft constraints in a given problem. For

example, when certain events should occur before certain others or common students

should not attend three or more events in successive timeslots occurring in the same

day.

In general, although the above timetabling problems share the same basic charac-

teristics, significant differences among them still exist. Extensive surveys on timetabling

can be found in [24, 95, 146, 148].

2.3 Graph Colouring Model for University Course

Timetabling

Many researchers in the Artificial Intelligent and the Operational Research communi-

ties have formulated real world timetabling problems in educational institutions using

graph colouring theory. The UCTTP can be modelled as follows. Nodes represent

events or courses and edges joining these nodes represent conflicts between the cor-

responding events (a conflict occurs when at least one student is registered for two

different courses) [55J. Therefore, in a graph coloring formulation, given an undirected

graph G = (V, E), V = {VI, V2, V3... , vn} is the set of nodes with size !VI = nand

E = {eij I 3 edge between Vi and Vj} is the set of edges. Therefore, if (Vi, Vj) is an edge

in a graph G = (V, E), then vertex Vi is adjacent to vertex Vj. The graph colouring

14

problem is to determine a k-colouring of V = {VI, V2, V3 ... , vn} in such a way that no

two adjacent vertices are given the same colour. That is, this means not assigning

the same times lot to conflicting events in the UCTTP.

To illustrate the connection between the graph colouring problem and the UCTTP,

Figure 2.1 shows this relationship between graph colouring and timetabling. Graph

(1) in Figure 2.1 shows the undirected graph where nodes represent events and arcs

connecting nodes represent conflicts between the events. This means that if two events

are in conflict (have students in common), they must not be assigned to the same

timeslot. This is similar to the well known problem of graph-colouring [20] in which

the vertices of a graph must be assigned a colour such that no two vertices sharing a

common edge have the same colour. The problem in Figure 2.1 contains ten courses,

labelled A to J together with a set of edges showing the conflicting courses. Graph

(2) can easily be seen that no solution can be found using fewer than five timeslots

(colours), it also shows a colouring that assigns different colours (timeslots) to the

adjacent nodes to avoid conflicts. For example, since courses A, B, C, D, F and G all

clash with each other and must therefore all be in different colours (timeslots). while

Table(3) in Figure 2.1 illustrates how the graph is translated into a real timetable.

In this example courses A and J assigned to green colour (timeslot one), courses B,

D and I assigned to purple colour (timeslot two), courses C and E assigned to red

colour (timeslot three), course F assigned to black colour (timeslot four) and finally

courses G and H assigned to blue colour (timeslot five).

15

(1) (2)

CoIours/Timesl~
I 2 3 ~ :\

A B C F G
J D E H

I

(3)

Events (courses):

A, B, C, 0, E, F, G, H, I, J

Edges (Constrains):

{(A,B), (A,C), (A,D), (A,F), (A,G),
(C,D), (C,F), (D,E), (D,G), (D,H),
(E,H), (E,G), (E,J), (F,G), (F,I),
(G,I), (H,J),(I,J)}

Colours (Timeslots)
A, J: Green

B, 0, I : Purple

C, E: Red
F: Black

G, H: Blue

Figure 2,1: Graph Colouring Model for a Simple Course Timetabling Problem,

In the related graph problem, the chromatic number is a term that used to in-

dicate minimum number of colours that are needed to colour a particular problem

instances. In simple timetabling problem this is equivalent to a course timetabling

problem in which the minimum number of timeslots that are needed to construct fea-

sible timetable which is a clash-free. It is said to be that determining the chromatic

number is also an NP-hard problem [111].

The identification of cliques is another important feature of graph problems. In

the real world timetabling problem instances usually far more complex, sometimes

containing up to 1000 courses and will often contain quite large cliques. A clique is a

collection of vertices that are mutually adjacent, such as vertices A, C, D, F and G

in Figure 2.1. Therefore, when given a graph colouring instance that has a maximum

clique size of x, therefore a minimum x colours will be needed to colour the graph.

Finding cliques of a given size within a graph is in itself an NP-hard problem. In the

example in Figure 2.1, courses/vertices A, C, D, F and G form a clique and hence

the minimum number of colours/timeslots required to solve the problem is five. The

task of finding cliques of a given size within a graph is also an NP-hard problem [111].

16

2.4 Overview of Approaches for University Course

Timetabling

2.4.1 Introduction

This section surveys some of the well-known state-of-the-art approaches that have

been applied and reported in the literature to solve the UCTTP with different success

levels. The aim of this chapter is to provide a brief discussion of some of the stan-

dard meta-heuristic, hyper-heuristic and distributed hyper-heuristic methods which

are commonly used in many optimisation problems, especially in timetabling optimi-

sation problems. Rather than being exhaustive, the main objective of this survey is

to give a consistent background on the state-of-the-art research in this area, which

underpins the work in this thesis.

This overview section is divided into three subsections as follows. Subsection 2.4.1.1

gives an overview of meta-heuristic approaches applied to the UCTTP including re-

sults reported in the literature. Subsection 2.4.1.2 focuses on more recent approaches

where algorithms called hyper-heuristics have been applied to solve the UCTTP. Fi-

nally, subsection 2.4.1.3 surveys distributed hyper-heuristics which comprise the more

recent research direction in this problem domain.

2.4.1.1 Review of Meta-heuristics

• Constraint-based Methods

Constraint programming is the study of computational systems based on con-

straints. A constraint can be defined as a restriction on a space of possibility, in

other words the restriction of possible values that a variable can take in a given

17

domain [88]. In this approach, a problem is formulated as a set of variables, each

with a finite domain. The objective of this method is to find a consistent set of

values which can be assigned to the variables so that the predefined constraints

are satisfied. Constraint Satisfaction Problems (CSP) can be formulated as

CSP = (X,D,C) where X is a finite set of variables X = XI,X2"",Xn (for

example timeslots or rooms for each course), D is a finite set of domain value,

D = d, X d2 x, ...,x dn, which the variables can take (for example, possible start-

ing times or possible rooms); and C is a finite set of constraints, C = Cl, ... , Cm,

where the constraints are the relations over subsets of variables (for example

classroom requirements or precedence relations between times). Therefore, the

final solution of a CSP is an assignment of values to each variable such that all

the constraints are satisfied [57, 158].

Constraint propagation is the process of eliminating all values from the domain

variables that do not satisfy predefined constraints. Let's say that there are two

variables Xl and X2 from the given finite domain D, where Xl = {I, 2, 3, 4, 5}

and X2 = {I, 2, 3, 4, 5, 6}, and there is a constraint Xl > X2 + 1. The constraint

propagation technique works as follows: by reducing the domains of Xl and X2

to Xl = {3, 4, 5} and X2 = {I, 2, 3}. The elimination of the values 1 and 2 from

Xl domain variable happens as they do not satisfy the predefined constraint

Xl > X2 + 1 and the values 4, 5 and 6 from X2 also conflict with the constraints.

However, when another constraint is added, let's say Xl + X2 = 6 we will find

that none of the values can be eliminated from the domain variables. There-

fore, in real-world applications, constraints are not always as simple as shown

in this example because constraints are often connected with each other. Thus,

it will not be practical for this technique to remove all conflict values from the

domain variables. In addition, the performance of the constraints propagation

technique can be evaluated by assessing the trade-off between the number of

18

eliminated values from the domain variables and the execution time [105].

esps are usually solved by using Constraint Logic Programming (eLP) [58].

This approach combines logic programming and a constraint solving method.

Thus, eLP is a logical axiom based programming method, which uses a con-

straint propagation approach in assigning values from the domain to variables.

To reduce the search space, a pruning technique is employed to avoid variable in-

stantiation that is not consistent with the predefined constraints upon the given

problem. A network arc-consistency algorithm is used to perform constraint

propagation in order to reduce the domain of the variables by eliminating those

values which are inconsistent with the constraints [112, 118, 160, 161]. Many

search techniques such as branch and bound and backtracking are integrated

into eLP to guide the search towards an optimal solution. Problem solving

using a CLP approach is also know as Constraint-based reasoning (CBR), a

reasoning method that utilises an arc-consistency algorithm for constraint prop-

agation purposes [58].

Constraint based-methods have been extensively studied and applied to course

timetabling problems. Zervoudakis and Stamatopolous [165] formulated the

course timetabling problem within a constraint programming object-oriented

framework and employed the ILOG Solver C++ library for the university course

timetabling problem faced by the Department of Informatics and Telecommu-

nications at the University of Athens. They implemented several popular and

efficient search methods such as Depth First Search (DFS), Iterative Broaden-

ing (IB), Limited Discrepancy Search (LDS) and Depth-Bounded Discrepancy

Search (DDS). Their problem instances consisted of 68 lectures with five teach-

ing days and nine timeslots per day. Based on their experimental results, they

found that DFS was capable of finding feasible solutions in a short time but it

19

was unable to improve the quality of the solutions even when executed for a very

long time. LDS was able to improve the solution quality in the long-run but

sometimes this search method struggles to find feasible solutions. DDS case, the

acceptance criterion is too rigid resulting poor quality of solution. And finally,

the authors found that IB did not improve DFS's performance significantly.

Deris et al. [58J, at first modelled the timetabling problem as a CSP and after

that, they formulated it using the CBR technique. The constraint-based rea-

soning algorithm was tested using real data from one of the colleges in Malaysia.

The instance problem consisted of an I8-weeks timetable for 1673 subject sec-

tions, 10 rooms and 21 lecturers. In addition, the authors represented their

timetabling problem using a graph tree representation of the state space in or-

der to assist the search for solutions. They also employed variable orderings

based on the size of the domain and the number of the constraints of the vari-

able to speed up the search process. Their results showed that their algorithm

was able to solve the timetabling problem in less than 33 minutes as compared

to several weeks when the problem was solved manually.

Deris et al. [59Jproposed a hybrid algorithm to solve timetabling planning, in

which they incorporated constraint propagation into a genetic algorithm to con-

struct feasible solutions as well as finding near optimal solutions. The authors

used the constraint-based reasoning method to validate individual solutions,

which were generated by the genetic operators. To evaluate the performance

of the proposed algorithm, real timetabling problems from the Faculty of Com-

puter Science and Information Systems, Universiti Teknologi Malaysia were

used as a test bed. The experimental results showed that the algorithm was

able to generate faster convergence and most importantly the constraint-based

reasoning was able to reduce the search spaces. In addition, the proposed hy-

20

brid algorithm is capable of finding near-optimal solutions .

• Population-based Meta-heuristic Approaches

Population-based approaches are also called multiple-point [18]approaches and

they consist of a collection of individual solutions which are maintained in a

population. At each iteration, an appropriate selection mechanism is used to

choose how to update solutions in the population and then new solutions are

created which may be included in then new current solution [56, 126]. There

are many ways in which we could implement the selection mechanism such as

the following [1471:

Delete all: Delete all individual solutions in the current population and

replace them with the same number of solutions that have been generated.

Steady-state: In this approach, n old individual solutions are deleted and

replaced with n new individual solutions. Another consideration which

needs to be taken into account is which individual solutions need to be re-

placed. One common approach is to delete the worst solutions and replace

them with solutions of highest fitness. A second approach is to replace

individual solutions in the current population at random.

- Steady-state-no-duplicates: This selection mechanism is similar to the

steady-state approach, however, this method does not allow duplication

of individual solutions in the current population. On the other hand, this

technique increases the computational cost, since more search space is ex-

plored.

Genetic Algorithms

Genetic Algorithms (GAs) were proposed by Holland [89]and these are search

21

methods, which were derived from Darwin's theory of evolution (survival of

the fittest). Bremmermann [21] was the first person who proposed and imple-

mented the idea of evolution and recombination of solutions for optimisation

problems. The important feature of GAs is the notion of population. This al-

gorithm generates a set of individual solutions and evolves them over a number

of generations (iterations), a process called self-adaptation and recombination.

The general GAs procedure is illustrated by Algorithm 1.

Algorithm 1: Genetic Algorithm (cited from [103])
Step 1. Generate initial population.

Step 2. Evaluate population.

Step 3. Select individuals that will act as parents.

Step 4. Apply Recombination to create offspring.

Step 5. Apply Mutation to offspring.

Step 6. Select parents and offspring to form the new population for the next generation.

Step 7. If stopping condition is met finish, otherwise go to Step 2.

Most metaheuristics employ both intensification and diversification strategies.

In order to perform intensification in GAs, a selection mechanism is used to

select the parents upon which to impose the Darwinian theory of survival of

the fittest. The best quality individuals will be more likely to survive for repro-

duction in the next generation. In contrast, the basic operators that perform

the self-adaptation and recombination are called mutation and crossover re-

spectively. These two operators perform the exploration strategy, where they

help to investigate new regions of the search space that could not be reached

by the intensification strategy alone. There are many variations of Mutation

and Crossover [142, 147]. One of the common ways of implementing mutation

is to select randomly one or more traits in the chromosome (individual) and

then change them at random with usually low probability. Recombination is

22

the process of combining two or more parents to create new solutions, poten-

tially of better quality than the parents (this new solution is called offspring).

There are many ways of achieving this, and the simplest and most frequently

used are single-point and two-point crossover. In both of these, one or two

points respectively are selected randomly to split the chromosome of the par-

ents into sections. The sections on one side of the split point from one parent

are then exchanged with the sections from the other parent. Once the offspring

have been created using crossover and mutation, it is essential to decide which

individual from the previous generation should be kept in the parental popula-

tion. The process of replacing the individual solutions with the new offspring

in the population is called the replacement scheme. This approach could be

implemented in many ways, and schemes include both non-elitist strategies and

elitist strategies. Non-elitist approaches replace all individual solutions in the

current population, while an elitist strategy maintains the best individuals in

the current population with the hope that the good-quality genetic material can

be inherited by the offspring in the next generation [113].

Erben and Kepler in [74]presented a prototype for the automated construction

of timetables, employing genetic algorithm techniques. The main aim of the

system was to generate feasible solutions while satisfying as many constraints

as possible. An initial random population of feasible solutions was generated at

the first step. The proposed algorithm must start with a feasible timetable and

always stay in the feasible region of the search space. The genetic operators

such as mutation and crossover were developed to use the knowledge specific to

the particular problem. In other words, these specialised genetic operators only

produce feasible solutions. The authors claim that the results generated from

the experiments were quite promising, however a number of improvements still

need to be done, for instance to find the optimal parameter settings.

23

Ueada et al. [159]presented a two-phase genetic algorithm and introduced two

types of populations, one for class scheduling and another for room allocation.

Both populations were evolved independently and each individual fitness was

then calculated. The individuals with the lowest cost were selected for crossover

and then the resulting cost was calculated. These steps were repeated until the

stopping criterion was satisfied. The algorithm was tested on a real-world prob-

lem instance, derived from the Faculty of Information Science at Hiroshima

City University. Based on the experiments conducted, the algorithm was able

to generate feasible solutions. However, the algorithm failed to find a feasible

solution when the average room utilisation ratio was high. The room utilisation

ratio is the proportion of time that a room is used within a given period of time.

Thus, the room utilisation ratio multiplied by the number of periods in a week

gives the average frequency of the use of a room per week.

Konstantinow and Coakley [96]presented an investigation of genetic algorithms

to course timetabling problems. In their procedure, once the initial solution is

generated, the genetic algorithms are applied to repair the schedule in reactive

scheduling. In this specific problem domain, two types of schedule perturba-

tions were employed. One perturbation called 'surges', consisted in changing

the student load that can affect the instructors that need to be assigned. The

second perturbation, called 'encroachment', referred to when students have to

repeat classes or change their class assignment based on previous year's assign-

ment. The results of the experiment clearly showed that the genetic algorithm

was a suitable approach under a variety of changes in the student load.

Lewis and Paechter [106]employed four types of crossover operators in their pro-

posed evolutionary algorithms. These operators were: sector-based crossover,

24

day-based crossover, student-based crossover and conflicts-based crossover. The

authors also employed a mutation operator which selects two genes x(a, b) and

x(c, d) in the chromosome at random such that x(a, b) =f x(c, d), and swaps

them. For all operators, whether crossover or mutation, a similar approach

of genetic repair function was then applied, to avoid unfeasible solutions and

make sure the crossover operators always produce legal offspring. The genetic

repair function is responsible for moving events in order to recover feasibility. A

steady state population was employed, where the offspring with the best quality

in terms of their fitness, will replace the lower quality parent in the population.

The replacement of a parent by a higher quality offspring is done once in each

generation so the population evolves in a steady-state fashion. To measure the

performance of the algorithm, experiments were conducted using the ITC 2002

dataset [91]as a test bed. The results showed that the conflict-based crossover

operator is the most effective crossover method and was capable of producing

the best results within the time limit and always outperform the others. Later,

Lewis and Paechter in (107]proposed a grouping genetic algorithm (GGAs) and

generated their own sixty test instances. GGAs are a class of algorithms that

are specialised for grouping problems. According to De Lit et al. (54Jthe group-

ing problem involves partitioning a set of U of items into a collection of mutual

disjoint subsets of U, of U such that UUi = U and Ui n U, = 0 for all i =I j.
Therefore, in the timetabling case, the items represent the list of events and the

groups represent the available timeslots. Hence, a valid timetable means each

event must be in the right timeslot, complying with predefined hard constraints.

The instances were separated into three classes: small, medium and large. The

algorithm only found 23 feasible solutions out of 60 instances.

Ant Colony Optimisation

Ant colony optimisation algorithms (ACO) are a class of population-based meta-

25

heuristics. They were initially proposed by Colorni, Dorigo and Maniezzo in

early 1990's [40, 65, 64]. This method was inspired by the observation of the

foraging behaviour of real ant colonies and in particular, how ants find the short-

est path from a food source to their nest [66]. Normally, real ants are able to find

their nest as long as the food source is not too far away from their nest. Initially,

ants explore the area surrounding their nest at random and drop a pheromone

trail on the ground while walking from their nest to food sources and vice versa.

When ants choose their paths, they will first examine the pheromone on the path

and turn towards the direction where there is a greater level of concentration

of pheromone. The pheromone on the path dropped by the ant dissipates as

time passes, therefore the highest concentration of pheromone normally occurs

in the shortest path and, obviously, it is more attractive to ants. Besides that,

the quantity of pheromone on the path is also determined by quality and the

quantity of the food the ants carry back to their nest.

Socha et al. [152Jpresented a MAX-MIN ant system for timetabling where they

transformed the assignment of each of the events to one of the possible timelots

into an optimal path problem which the ants are able to tackle. In order to

make the transformation possible, they first selected a suitable construction

graph that the ants can follow easily. Second, they designed the most appro-

priate pheromone matrix and heuristic information that was able to guide the

ants to choose the right paths in the graph. Therefore, the fundamental ele-

ments of the proposed system required the authors to map their problem into a

construction graph. The pheromone level within the predefined bound Tmin and

Tmax will influence the assignment of the courses to the timeslots. Then, rooms

are assigned to event-timeslot pairs using the matching algorithm to produce

a full timetable, which is then further improved by local search. Socha et al.

found that the artificial ants were indeed capable of learning to construct good

26

timetables. Later. Socha et al. [153] compared their MAX-MIN ant system to

an ant colony system but the former algorithm had a better overall performance.

The main difference between these two algorithms is on the strategy to update

the pheromone.

Mayer et al. [115] applied Ant Colony Optimisation to tackle the post en-

rolment course timetabling problem which has been specified in the Interna-

tional Timetabling Competition 2007. In that implementation, ants assigned

events to rooms and timeslots based on two types of pheromone I:j and T[k.

These pheromone types represent the probabilities of assigning an event i into

slot j and room k respectively. Based on the results obtained, their experi-

ments showed that the proposed algorithm seemed to be very well suited to

the timctabling problem. The authors argued that with longer running times

better results could be obtained.

Memetic Algorithms

Memetic Algorithms (MAs) include a broad class of metaheuristics that were

inspired by models of adaptation in natural systems that combine evolution-

ary adaptation of populations of individuals with individual's life-span time

scale. Hence, MAs are also known as Evolutionary Algorithms (EAs), Hybrid

Genetic Algorithms, Genetic Local Search, Baldwinian GAs, and Lamarckian

GAs [85. 98]. The central theme of MAs is the hybridisation of a local search

approach with crossover and mutation operators, enabling the algorithm to find

solutions with the best fitness value among neighbouring solutions. Therefore,

~IAs are specifically designed to exploit all available knowledge about the prob-

lem under study (Moscato [120, 121]). In addition, another mechanism called

problem and instance-dependent knowledge was introduced to speed-up the

search process [122]. With these new features, MAs have proved to be a type of

27

EAs that are fast and accurate [98, 150, 129], with the algorithm allowing chro-

mosomes (solutions) to improve throughout their life time [150]. The general

procedure of memetic algorithm can be shown in Algorithm 2.

Algorithm 2: Memetic Algorithm (cited from [98])
Initialize: Generate an initial population;

while (not some stopping condition do) do

l
Local Search (Parent. Pis);

mating Pool := Select Mating(Parents);

Offsprings := Cross(mating Pool);

Mutate(Offspring);

Parents := Select(Parents, Offsprings);

I3urke and Landa-Silva in [28]gave an account of memetic algorithms for schedul-

ing and timetabling problems and also gave some design guidelines. In a

mernetic algorithm, the genetic or evolutionary part of the memetic algorithm

simulates the genetic evolution of individuals through generations and the local

search simulates the individual learning [28]. Paechter et al. [136] used various

types of mutations in their memetic algorithm, such as blind mutation, selfish

mutation and co-operative mutation. Real-world problem instances from the

Computer Studies Department at Napier University were used to evaluate the

effectiveness of the various mutations. Later, Paechter et al. [137J came out

with another version of their memetic algorithm as an extension to their pre-

vious approach in [136]. This time they made some improvements on the user

interface as well as the timetable engine. In addition, the authors defined two

concepts: a feature (a property satisfied by some resources or events) and a

container (a resource that can hold other similar resources, including other con-

tainers). Their extended memetic algorithm was tested using Napier University

science faculty problem instances. From the experimental results Paechter et

al. found that their version of memetic algorithm worked well. In addition, the

28

system was able to produce a feasible solution quickly, and within short enough

time, the system was able to generate better solutions than those produced

manually. Rossi-Doria et al. [144]implemented a memetic algorithm and tested

it on the 20 instances of the ITC 2002. The approach was considered effec-

tive on that problem domain. Ozcan et al. [10] implemented different types of

mutation strategies and two type of crossovers operators: one-point crossover

and uniform crossover. Ozcan et al. tested their memetic algorithm on real

timetabling data from Yeditepe University in Thrkey. Experiments carried out

demonstrated that genetic search combined with hill climbing achieved the best

performance.

Hybrid Harmony Search

Al-Betar et al. [9] proposed a hybridisation strategy search called harmony

search algorithm (HHSA). This algorithm is composed of the main procedure

called Harmony Search Algorithm (HSA), which was first developed by Geem

et al. [78]. AI-Betar et al. introduced Hill Climbing Optimisation (HCO) as a

new operator for HSA in order to improve the quality of the new harmony in

each run. In HSA, few parameters play an important role to drive the success

of the algorithm and they are: harmony consideration rate, harmony memory

size, pitch adjustment rate and number of improvisations. The exploration

and exploitation will be determined by the memory consideration and random

consideration respectively. The pitch adjustment is responsible for local im-

provement, and the size of the local improvement is normally determined by

the number of decision variables for the specific problem. Therefore, the size of

the local improvement is formulated by the probability of harmony considera-

tion rate and pitch adjustment rate. The idea behind this hybrid approach is

to find the trade-off between local improvement and global improvement, which

are performed by HCO and HSA respectively. Their experimental results show

29

that the approach is able to produce high quality solutions. With the promising

results shown by the hybridisation strategy and with inspiration from particle

swarm optimisation concepts, the authors then introduced the modification of

the memory consideration operator. This operator mimics the current best har-

mony. From their experimental results, the operator was able to bring further

improvement and was also able to find the best results in four out of five medium

instances proposed by Socha et al. [152J.

• Single-solution Meta-heuristic Approaches

Single-solution meta-heuristics approaches are also called single-point [18J algo-

rithms and differ from population-based approaches in that they improve and

maintain a single solution from the beginning until the end of the search process.

These approaches employ different strategies to avoid getting stuck in local op-

tima and explore other areas of the solution space. Example of the strategies

such as applying different criteria to accept worst solution or hybridised different

techniques from several existing heuristics. A brief account of single-solution

metaheuristic approaches is given in the following:

Tabu Search

The tabu search methodology was first introduced by Glover [81J back in 1986,

although most of the elements in tabu search had already been introduced

earlier by Glover [80J. Since then, many papers have been published present-

ing tabu search algorithms applied to several problem domains, like course

timetabling [72], examination timetabling [79, 62], school timetabling [145, 60],

job shop scheduling [139, 90J, personnel timetabling [155J and many more. The

basic idea of tabu search is to prevent cyclic repetition of recent moves by using

30

memory structures called tabu lists, which enable the algorithm to memorise

some elements of the search history. The reason for using memory is to avoid

the algorithm visiting the same neighborhoods for at least a certain duration.

The tabu list size identifies the number of recently visited solutions or their

attributes which are classified as tabu. In addition, the tabu tenure defines the

duration (usually determined by the number of iterations) that solutions or at-

tributes remain tabu. The concept of the tabu search is quite powerful indeed,

and sometimes some attractive moves might be prohibited to take place because

of the tabu list. Therefore, in order to mitigate this problem, aspiration criteria

are introduced to override the tabu status and allow solutions which are better

than the currently-known best solution.

In the course timetabling problem domain, many researchers have proposed

tabu search. Costa [44J for example, implemented two tabu lists T, and T2 to

prevent cycling. The first tabu list consists of lecture l that has been selected

to move from timeslot tl to ta. Therefore, whilst the lecture still remains in the

tabu list Tl, any action performed to move the lecture I from its current timeslot

is prohibited. In the second tabu list, the author introduced the pair of lecture

I and the previous timeslot t, (I, it). It means that while the pair remains in the

tabu list, lecture l cannot be moved to times lot ti. As a diversification strategy,

the author designed the system in such a way that allowed drastic reduction in

weights of the relaxed constraints. That means that the algorithm forces the

search activity to discover solutions which are considered of "decent" quality

and try to explore a large area as possible of the search space. By reducing

the weights, the algorithm will be able to concentrate on less important relaxed

constraints, yet, the diversification is not utterly random. Experimental sur-

veys were conducted to access the effectiveness of the algorithm, where two real

world problem instances were used: high school of Porrentruy, a town close to

31

the French border in the north of Switzerland and a secondary school of Sierre,

a town in the region Valais in the south of Switzerland. Both experimental re-

sults indicated that the algorithm was able to generate good quality of timetable

solutions. The author noted that it was necessary to fine-tune the parameters

(weights and tabu lists) by preliminary experiments.

Nanobe and Ibaraki [127]developed a tabu search-based algorithm for the con-

straint satisfaction problem and employed an automatic control mechanism for

the tabu tenure with the objective of minimising the total weight of the unsatis-

fied constraints. The system developed by the authors was mainly proposed as

a general problem solver and tested on a wide range of problems, among them

the university course timetabling problem. Their experiments showed that the

system was able to generate competitive results compared to the results ob-

tained by existing algorithms for the respective problem domains. Colorni et

al. [41] investigated three well-known meta-heuristic algorithms namely simu-

lated annealing, tabu search and genetic algorithm and tested them on a high

school course timetabling problem. In the tabu search, the authors introduced a

variable-sized tabu list where there are minimum and maximum lengths for the

tabu list and the actual length is changed at random during the search. Their

results showed that the tabu search implementation consistently outperformed

the genetic algorithm and simulated annealing implementations used.

Schaerf [149]implemented a tabu search methodology tackling large high school

timetabling problems. In their tabu search procedure, each executed move was

added to the tabu list and the size of the tabu tenure was determined at ran-

dom within predefined lengths Imin and Imax. The size of the tabu tenure was

updated when a new move was added to the tabu list and the move was re-

leased from the tabu list when the size of its tabu tenure became zero. The

32

standard aspiration criterion function was employed to override the tabu status

when an improvement of the cost function was achieved. Results showed that

their proposed algorithm was capable of scheduling 90% to 95% of the lectures.

The experimental results also showed that the quality of the results outperform

manually generated timetables.

Alvarez-Valdes et al. [11]employed tabu search for assigning students to courses

sections in order to produce high quality timetables as well as to balance the stu-

dents enrolment across sections. This assignment process uses two phases. The

first phase generates a set of best solutions for every single student. The second

phase combines the sets of solutions and employs tabu search with strategic

oscillation to further improve the timetable quality without worsening the solu-

tion of every single student. The proposed algorithm was tested using real-world

problem instances from the Faculty of Mathematics at the University of Valen-

cia. From their experimental results, the authors suggested that the quality of

the schedule depends on the structure of the master schedule. Alvarez-Valdes

et al. [12] implemented tabu search to solve the course timetabling problem

in three phases. Phase one constructs an initial solution. Phase two uses the

solution obtained in phase one and employs an improvement procedure. The

final phase takes care of room assignment and improves it without changing the

original assignment of courses to timeslots. The important part of the algorithm

is phase two, where tabu search improves the quality of the initial timetable.

The authors employed several moves such as: simple move, swap, and multi

swap to build an effective algorithm. The tabu list with length 24 and variable

size of tabu list (dynamically changed between 6 to 48) were also implemented.

The standard aspiration criterion was applied, where a tabu move is allowed

whenever it produced a better solution. Experimental tests were conducted

using real-world problem instances from the Business School at the University

33

of Valencia. The results showed that the type of move used influences the per-

formance of the algorithm. The tabu list length also played an important role;

the dynamic tabu list length obtained better results compared to the static one.

Lu and Hao [110J proposed the integration of tabu search and iterated local

search and called their approach Adaptive Tabu Search. The proposed method

employed two neighbourhood structures namely Simple Swap and K ampeSwap,

and a standard tabu list to prevent the cycling of previously visited solutions

for both moves SimpleSwap and K ampeSwap. They also implemented the

standard aspiration criteria where the tabu status will be revoked if there is

no danger of cycling because a better solution is found. In order to guide the

search efficiently, they used a special operator called penalty-guided perturba-

tion. The main function of that operator was to disturb the local optimum

solution. The proposed algorithm was tested on the curriculum-based course

timetabling instances of the International Timetabling Competition 2007. That

algorithm was ranked second in the competition.

Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is basically a local search descent (from

a minimisation perspective) method and it was first introduced in [117]. The

VNS heuristic does not accept worse solutions and it has several variations. The

basic idea of this approach is that a number of neighbourhood structures are

used in a systematic order during the search. In particular, a different neigh-

bourhood is explored whenever the local search is stuck in some local optimum.

Abdullah et al. [5] implemented a basic VNS (VNS-basic) and also a mod-

ification in which they used an exponential monte carlo acceptance criterion

(VNS-EMC) at the VNS level. Monte carlo acceptance criterion is similar to

simulated annealing, the only difference is no temperature involve in this crite-

34

rion. The main purpose of applying the Monte Carlo acceptance criterion was

to improve the exploration by accepting worsening solutions at certain probabil-

ity hoping to find more promising neighbourhoods. They employed a number

of neighbourhood structures ordered in a certain sequence by increasing the

size based on their preliminary experiments. Therefore, in order to obtain the

right sequence, preliminary experiments needed to be conducted whenever a

new neighbourhood structure is added. This approach was tested on the uni-

versity course timetabling problem instances proposed by Socha et al. in [152].

A performance comparison ofVNS-basic and VNS-EMC variants with ordering

and without odering of neighbourhoods was made and the results showed that

withordering both variants, VNS-Basic and VNS-EMC, performed better than

or equal than without odering.

Randomised Iterative Improvement Algorithm with Composite Neigh-

borhood Structure

Later, Abudllah et al. [4] extended their investigation and introduced the hy-

bridisation of VNS and a tabu list. The tabu list was used to penalise the

neighbourhood structures that do not perform well or do not lead to promis-

ing solutions after a certain number of iterations. The results they obtained

were better than or equal to their previous technique in [5]on seven instances.

Their algorithm is shown in Algorithm 3 where each neighborhood i E 1 ... k is

applied to solution Sol to obtain a new set of temporary solutions Tempiioi].

Then, the best solution among all Temp'Soi, is selected to become the new

solution 80[*. If 80[* is better than the best solution so far SO[best then Sol»

also replaces 80lbest. Otherwise, the monte carlo acceptance criterion is applied

after calculating 8 = f(80[*) - f(801).

35

Algorithm 3: Randomised Iterative Improvement Algorithm with Composite

Neighborhood Structure (cited from [5])
Set the initial solution Sol by employing a constructive heuristic;

Calculate initial cost function f(Sol);
Set best solution Sohest <- Sol;
while (no termination criteria) do

for (i=l to i=k where k is the total number of neighborhood structures) do
Apply neighborhood structure on Sol;

TempSol;

Calculate cost function f(TempSol;);
Find the best solution among the (TempSoli) where i in 1, k call new solution Soi";
if f(Sol*) < f(Solbest) then

I
Sol <- sa-,
Solbest <- Sol»;

else

else

l8 = f(Sol*) - f(Sol);
Generate RandNum, a random number in [0.1]; if (RandNum < e-8) then
L Sol <- su-,

end else;
end while;

Simulated Annealing

Simulated annealing has been broadly studied and it is an extension of Hill-

Climbing, in which non-improving candidate solutions are accepted with a cer-

tain probability to attempt escaping from local optimum. The probability of ac-

cepting worse solutions in simulated annealing is usually expressed as P = e-8/T,

where 8 = 1(8*) - 1(8), 8* is the new solution, 8 is the current solution, 1

is the cost function and the parameter T denotes the temperature. It is also

usually suggested that the search should start with high temperature and to

reduce it gradually towards the end of the search process. One way of reducing

the temperature is 1i+1 = T, * f3 (geometric cooling schedule). The selection

of f3 for a particular problem is typically done empirically. The pseudocode of

simulated annealing is given in Algorithm 4.

36

Algorithm 4: Simulated Annealing Algorithm (cited from [103])
Step 1. Generate initial current solution x.

Step 2. Temperature = Initial Temperature.

Step 3. Generate candidate solution Xf from current solution x.

Step 4. If fitness(xf) i- fitness(x) then x = Xf.

Step 5. If fitnesstr") . fitness(x) then calculate Acceptance Probability.

Step 5.1 If Acceptance Probability> random[O,l) then x = Xf.

Step 6.Update Temperature according to Cooling Schedule.

Step 7. If stopping condition met finish, otherwise go to Step 3.

Thning simulated annealing is difficult as noted in an early application of this

algorithm to the timetabling problem [53]. Different improvements of the basic

simulated annealing algorithm have been suggested, such as adaptive cooling

where the temperature is reduced or increased depending on the success of the

local search move. Another variation of simulated annealing called multiple-

neighbourhoods-based simulated annealing algorithm was implemented by Van

et al. [164]. The authors tested their algorithm on course timetabling problems

and found that their approach was effective in finding the optimal solution from

an enormous search space thanks to the adaptive cooling method.

Elmohamde et al [73]proposed simulated annealing and employed several cool-

ing schedules: geometric, adaptive, and adaptive with reheating. The proposed

algorithm with different cooling schedules were tested on real data from Syra-

cuse University. Based on their experimental results they found that simulated

annealing with adaptive cooling with reheating outperforms other approaches.

Cambazard et al. [36] applied simulated annealing to minimise the violation

of soft constraints in timetabling. The authors employed one single type of

move, which changes the position of an event into a conflict free timeslot and

reassigns the events within a given timeslot in order to minimise the room con-

flicts. Therefore, only feasible moves are allowed. Improving and sideways (same

37

quality different solutions) moves are always accepted and the worse moves are

accepted depending on the simulated annealing acceptance probability given by

Pacceptance(6, T) = e-~. The initial temperature T was chosen dynamically and

decreased as the search progresses. A standard geometric cooling is employed

at each step Tn+l = 0.95 x Tn. The algorithm was tested on the post enrolment-

based course timetabling instances of the international timetabling competition

2007, and this algorithm was officially announced as a winner.

38

Great Deluge

The great deluge algorithm was first introduced by Dueck in [68]and the basic

idea of this algorithm is similar to simulated annealing. However, great deluge

is said to be less dependent upon parameter tuning compared to simulated an-

nealing. In fact, great deluge needs only two parameters. These parameters

are: 1) the amount of computational time that the user wishes to spend on

the search and 2) the expected quality of the final solution. During the search,

a new candidate solution is accepted if it is better or equal than the current

solution. A candidate solution worse than the current solution will only be ac-

cepted if the detriment in quality of the candidate solution is less than or equal

to a pre-defined upper limit (called water level). The pseudocode of the great

deluge is given in Algorithm 5.

Algorithm 5: Great Deluge Algorithm (cited from [22])
Set the initial solution s;

Calculate initial cost function f(s);
Initial level Ba = f(8);

Specify input parameter B =?;
while (not some stopping condition do) do

lDefine neighborhood N(s);
Randomly select the candidate solution S* E N(s);

if (f(s*) ~ f(8)) or (f(8*)(~ B)) then
L accept s*;

Lower the level B = B - tlB;

The great deluge algorithm was applied to course timetabling problems in [22].

The authors used the ITC 2002 datasets. In that paper, the authors claimed

that their algorithm showed similar behaviour on all problem instances. Based

on their experiments, they observed that the fluctuations of the penalty values

were very obvious at the beginning of the search, but, later, intermediate solu-

tions moved closer to the current cost line. Overall, their experimental results

39

showed superiority of the Great Deluge algorithm when compared to their im-

plementation of simulated annealing.

Petrovic and Burke reviewed approaches to university course timetabling in [138].

They argued that a major drawback of many metaheuristic approaches for this

problem and other scheduling problems was that these approaches are in gen-

eral very dependent upon a range of parameters. The effectiveness of a given

metaheuristic for a given problem is very much dependent on the success of

parameter settings. For example, in the cooling schedule in simulated anneal-

ing, choosing the wrong starting and ending temperature will not result in good

final solutions. On the other hand, choosing the right parameter settings is usu-

ally difficult especially for non-expert users of metaheuristics. Therefore, this

difficulty led Petrovic and Burke to suggest the investigation of metaheuristic

approaches that are not as dependent upon parameter settings. They developed

a timetabling method based on the great deluge algorithm. In their approach,

the acceptance of a local search move in great deluge is guided by two criteria.

A better solution is always accepted while a worse solution is accepted only if

the evaluation function value is less than or equal to the upper limit (level) as

it is usual in great deluge. The upper limit is lowered during the run by the

decay, and it is always fixed in every iteration. The decay is a function of two

parameters, the amount of computational time available and the desired quality

of the final solution. The decay can be computed as the difference in quality

between the initial solution and the estimated desired final solution and this

difference is divided by the desired number of local search moves.

Hybrid Meta-heuristics

Kostuch [97]combined a sequential heuristic and simulated annealing to solve

course timetabling problems and tested that approach on the ITC 2002 datasets.

40

In fact, Kostuch was announced as the overall competition winer. That hybrid

approach consisted of three phases. In the first phase, a sequential heuristic

is used to generate the initial feasible timetable. Then, the second phase em-

ploys simulated annealing to minimise the violation of the other soft constraints

(no students should have only one class on a day and no students should attend

more than two consecutive classes on a day). In this second stage, the algorithm

does not allow the move of events that lead to infeasible timetables neither does

the algorithm accept moves that could violate the soft constraint related to

placing events in the last slot of the day. In the third and final phase, simulated

annealing is used to further improve the quality of the timetable. According to

Kostuch, this third phase played a major part in the hybrid algorithm. In this

stage, only local search moves that do not violate hard constraints and moves of

events that can be assigned to a different room within the same timeslot were

accepted.

Another hybrid approach is the one proposed by Chiarandini et a1. in [39]. At

the top level, that algorithm first creates several assignments and only the best

assignments are selected to be improved by simulated annealing. This hybrid

approach consisted of two steps. First they applied bUildAssignment to con-

struct a group of initial solutions and then each of the initial solutions is made

feasible by HardConstraintsSolver. For further processing, FastLocalSearch

is selected to improve the quality of the timetable. In the assignment representa-

tion they used the work in [151]. Chiarandini et a1. used different neighborhood

schemes for the two sub-procedures to tackle hard and soft constraints. Two

neighbourhoods are used to generate an initial feasible solution. NI moves a

single event to a timeslot selected at random. N2 swaps the times lot and room

between two events. For the soft constraints solver, two more neighbourhoods

were used. N3 swaps events assigned to two different timeslots and N4 is defined

41

by Kempe chain interchanges [156]. The search strategy uses a list of events

randomly ordered and goes through the list trying the moves available in the

given neighbourhood until an improvement is found. The authors applied con-

structive heuristic to create the initial solutions. This approach constructs the

initial solutions by assigning the list of events into limited timeslot and rooms

one at a time.

Abdullah et al. [6] implemented great deluge and tabu search to tackle the

university course timetabling problem. The proposed algorithm consisted of

two parts: construction and improvement algorithms where four neighbour-

hood structures were employed. Move NI: choose a single course at random

and move it to a feasible timeslot that can generate the lowest penalty cost.

Move N2: selects two courses at random from the same room (the room is ran-

domly selected) and swaps their timeslots. Move N3: move the highest penalty

course from a random 10% selection of the courses to a new feasible timeslot,

which can generate the lowest penalty cost. Move N4: move the highest penalty

course to a random feasible timeslot (both courses are in the same room). In

part one, in order to construct feasible timetables they employed a saturation

degree strategy which starts with an empty timetable. In this approach the

events with fewer possible rooms available will be scheduled first and the pro-

cess of allocation stops when a feasible solution is found. In the case that

feasibility is not achieved, the execution of phase 2 will be carried out. In this

phase only neighbourhood moves NI and N2 are applied. Procedure phase two

runs as follows: apply NI for a certain number of iterations, stop if feasible

solution is found, otherwise apply N2 for a certain number of iterations. The

construction of feasible solutions based on this procedure gave no proof that

this constructive heuristic guarantees to find a feasible solution for a given in-

stance. Therefore, solutions were made feasible before the minimisation of soft

42

constraint violations takes place. The improvement part will be executed when

a feasible solution is available, and the search never goes back to the infeasible

region. Three steps are involved in the improvement part. Step one employs

great deluge followed by tabu search. Step two and step three compare the so-

lution obtained in step one and step two. The best solution between those two

algorithms is chosen. If the quality of the best solution between step one and

two is less than the quality of the current solution, then the current solution will

be updated. The proposed algorithm was tested on 11 standard benchmark in-

stances of the university course timetabling problem. Each instance was solved

five times and results were compared to those reported in the literature. Based

on their experimental results, their approach produced better results at the

time on all datasets except the large one. The pseudo-code for the algorithm

implemented by Abdullah et al. [6Jis shown in Figure 6.

Algorithm 6: Great Deluge and Tabu Search Algorithm (cited from [6])
Set the initial solution Sol by employing a constructive heuristic;

Calculate initial cost function I(Sol);

Set best solution Solbest +- Sol;

while (not some stopping condition do) do
Step 1: Great Deluge

Step 2: Tabu Search

Step 3: Accept Solution

Choose the best between SolbestGD- and Solbest'I'Sv:":
called Sol-

if (J(Sol-) < I(Solbest» then

l Sol +- Sol*;

Solbest +- Sol*;

2.4.1.2 Review of Hyper-heuristic

The course timetabling problem has been solved using a wide range of heuristics

and metaheuristics. However, the main drawback of metaheuristics is that they are

domain specific. In recent years, hyper-heuristics have emerged as a new search

43

methodology that is motivated by the goal of increasing the level of generality of

metaheuristics. The aim of hyper-heuristics is to develop general domain indepen-

dent search methodologies that are capable of performing well enough, soon enough,

and cheap enough across a wide range of optimisation problems [25]. Besides that,

another goal of hyper-heuristic is to produce a generic method, able to generate

acceptable quality of solutions based on a set of easy-to-implement low-level heuris-

tics [26].

The term hyper-heuristic has been defined to describe the process of using (meta)

heuristics to choose (meta) heuristics in [27]. It is a process which, when given a

particular problem instance and a number of low-level heuristics, manages the se-

lection and acceptance of the low-level heuristic to apply at any given time, until a

stopping condition is met. A low-level heuristic is a simple local search operator or

domain dependent heuristic. A hyper-heuristic operates at a higher level of abstrac-

tion without knowledge of the domain under which it operates. The hyper-heuristic

searches in the space of low-level heuristics instead of operating on the solution space

directly. One of the main challenges in designing hyper-heuristics is to be as general

as possible on how to manage the low-level heuristic with minimum parameter tuning.

Early research work on hyper-heuristics emphasised on the development of ad-

vanced selection strategies. Soubeiga [154] proposed random, greedy, and choice

function hyper-heuristics with two acceptance criteria namely AM (All Moves) and

10 (Improving Only). The random hyper-heuristic selects randomly the next low level

heuristic to apply at each decision point of the search. The greedy hyper-heuristic

selects always the best low level heuristic. The choice function hyper-heuristic uses

reinforcement learning to guide the choice of low level heuristics. Another learning

mechanism based on tabu search was proposed by Burke et al. [27] to solve the nurse

rostering problem. In the tabu search hyper-heuristic, a tabu list was incorporated

44

to prevent the acceptance of low level heuristics with poor performance for a cer-

tain number of iterations. Ross et al. [143Jused a learning classifier system to learn

which heuristics were more useful than others in a bin packing problem. Several Ge-

netic Algorithm (GA) based hyper-heuristics have also been developed. Cowling et

al. [45Jproposed a GA based hyper-heuristic to solve a trainer scheduling problem.

Other high level strategies have also been investigated within the framework of hyper-

heuristics. Burke et al. [31Jdeveloped a case-based hyper-heuristic for timetabling

problems which selects low-level heuristics based on their performance in previous

similar situations. Burke et al. [32Jproposed an ant-based hyper-heuristic for solving

a presentation scheduling problem.

Recently, hyper-heuristics have also been successfully used to solve the university

course timetabling problem. Burke et al. [27J proposed a choice function hyper-

heuristic which uses a tabu list to guide the iterative application of a set of simple

local search heuristics. They used the same six local search heuristics proposed by

Socha et al. [152J. The choice function assigns a fitness value to each heuristic accord-

ing to their success during the search. Also, Burke et al. [29Japplied a graph-based

hyper-heuristic in which a tabu search procedure is used to change the permutations

of six graph colouring heuristics before applying them to construct a timetable. The

key feature of this approach is to find good orderings of constructive heuristics to

schedule the events. Bai et al. [17Jdeveloped a simulated annealing hyper-heuristic

for solving the university course timetabling problem; their method selects low-level

heuristics based on a stochastic ranking mechanism.

2.4.1.3 Review of Distributed Hyper-heuristics

Recently, researchers have proposed the use of multi-agent systems for tackling timetabling

problems. A multi-agent system (MAS) is a network of agents that work together to

45

solve problems that are beyond the agents' individual capabilities [124]. Multi-agent

systems are distributed and autonomous systems made up of autonomous agents that

support reactivity, and are robust against failures locally and globally [131]. Multi-

agent systems have been applied for a long time to other problem domains such as

e-commerce, production scheduling, etc., and they have produced impressive results.

In contrast, little research work has been done in applying these systems to edu-

cational timetabling. Kaplansky et al. claimed that the distributed nature of the

timetabling problem can be tackled by using the multi-agent paradigm [93]. Each

agent in their model has a different set of requirements that lead them to the dif-

ferent quality of solutions. In order to coordinate their timetables, all agents in the

distributed environment have to communicate and negotiate to avoid conflicts in the

process of allocating the shared resources. In the real world, education institutions

are composed of departments that need to construct their timetables independently,

while trying to minimise the shared courses conflicts. For example, students from

the department of business and students from the department of economics might be

interested to attend courses offered by the department of computer science and vice

versa. In order to avoid shared courses conflicts (i.e. global conflicts) the timetables

from all departments must be constructed to yield a coherent compatible solution. Be-

sides that, hard and soft constraints need to be considered. According to Di Gaspero

et al. [61], a department is usually not willing to share their timetabling information

with other departments. Therefore, they assumed that all constraints are unknown

to each department. By formulating their model, they proposed an architecture for

a multi-agent system to tackle university course timetabling problem. In their ap-

proach, no global objectives need to be satisfied. Therefore, their designed agents

which represent every department, negotiate with selfish behaviour to fulfil their own

interest, but will tolerate other agents provided that it will bring benefit to them, in

other words not worsening their own objective. Oprea [130] adopted a multi-agent

approach for solving university course timetabling problems. In this approach, the

46

autonomous agents work together in a distributed environment to coordinate their

work in order to achieve the global objective. At the same time, every single agent

needs to fulfil their own objectives.

Rattadilok et al. [141] implemented a distributed choice function hyper-heuristic

and employed seven low-level heuristics. The low-level heuristics were divided into

two groups: intensification and diversification groups. Low-level heuristics one to

six were mainly for intensification, accepting new generated solutions only if their

quality is better than the current solution. Low-level heuristic seven was employed

mainly for diversification, accepting new generated solutions anyway if no better so-

lution can be found (if the search stuck in local optimum). To rank the low-level

heuristics, the authors developed the choice function-based hyper-heuristic proposed

by Soubeiga [154]. The choice function evaluates the performance of the low-level

heuristics at every decision point. The low-level heuristic with the highest score will

be selected in the next iteration to change the search space landscape. This system

employed two parallel architectures: hierarchical and hybrid-agent. The main idea of

the hierarchical architecture is branching the search sequence and the hybrid-agent

is as a communication mechanism, where it enables the agents to share their good

solution among them in the distributed environment. The agents in the distributed

environment are composed by a number of hierarchical groups. The distributed choice

function is placed in one of the processors called controller in every hierarchal group.

Only the controllers have the right to communicate to each other in the environ-

ment. Each low-level heuristic has given time and failure limits as stopping condition

mechanism. The authors used the 11 problems instances by Socha et al. [152] and

compared their results to MMAS and RRLS. The results showed that their distributed

choice function outperformed on all the small instances when compared to MMAS

and RRLS. For medium instances, the distributed choice function only managed to

improve two out of five problem instances when compared to MMAS. The authors

47

did not report their result for the large instance.

2.5 Important Papers

In our review of the literature, we found a survey paper and some early approaches to

solving the course timetabling problem to be important and to underpin the research

presented in this thesis. They are discussed below:

In [148]Schaerf presented an extensive survey on automated timetabling, and it is

a very suitable introduction for new researchers in the area of timetabling problems.

This paper provides excellent discussion by classifying the timetabling problems into

school, course or examination timetabling problems. This paper also gives a mathe-

matical description of the basic search and optimisation problems. In addition, this

paper made the important statement that university timetabling problems are NP-

complete in almost all variants of the problems. Finally, it gives a summary of the

solution techniques published in the literature.

One of the interesting aspects of the approach presented in [97]is that in the stage

of finding the feasible solution the author used only 40 out of the 45 available times-

lots. This means that, at this stage, the author tries to satisfy the soft constraint by

not allowing the assignment of events to the final slots of the day. Obviously, one

immediate advantage of this approach is that it always takes the soft constraint into

account to some extent, and therefore, when this algorithm finishes phase one and

the feasibility is found the quality of the solution can be considered good, since the

violation of the soft constraint by not encouraging students to attend the final slot

of the day is solved or nearly solved. Correspondingly, the method for reaching the

feasibility is based upon methods for solving graph colouring problems. However, in

48

different particular problems this strategy might be unwise, because there would, of

course, be no guarantee that feasibility could be achieved when tested on a different

set of problems instances. In addition, this paper also gives a detailed analysis of the

given problem, including statistical analysis that presents the degree of difficulty each

problem instance.

In [22JBurke et a1. presented the great deluge algorithm, and shows the effec-

tiveness of the algorithm. This approach is far less dependent upon tuning a range

of parameters than many metaheuristic approaches, such as simulated annealing. In-

deed, it only needs two parameters: The amount of computational time that the user

wishes to spend and an estimate of the quality of the solution that a user requires.

In addition, an implementation is provided in this paper to investigate the properties

of both the great deluge and simulated annealing techniques. The great deluge is

a simple yet effective method which is able to produce good quality timetables and

provides results that are consistently good across the all of the benchmark problems.

The good thing about this paper is, it shows that a simple algorithm is able to gen-

erate high quality of timetable solutions.

Different metaheuristics have different trade-offs between them. It is therefore

not surprising that efforts have been made to develop cooperative search methods

which draw on the advantages of different techniques and make them cooperate with

each other. Papers in [19, 134, 51, 49, 48, 104Jpresent an extensive discussion and

present the main fundamental objectives of cooperative search, for example to pro-

vide capabilities of integration, robustness, flexibility, and autonomy. The papers

also reveal different ways to exploit the strengths and weaknesses of different meta-

heuristics by combining them in a cooperative search framework, where the aim is

obviously to solve a given problem by using the same or different strategies. Therefore,

the uses of cooperative search or parallel search in scheduling provide new efficient

49

search techniques for integration and robustness in complex combinatorial problems.

The work presented in these papers has demonstrated that the distribution, local

autonomy, and cooperation capabilities of parallel search have lead to a remarkable

improvement in the design and performance of complex combinatorial problems, es-

pecially in scheduling. The use of cooperative search in timetabling, as discussed in

[19, 134, 51, 49, 48, 104] provides answers to how to efficiently integrate the meta-

heuristics in a sense of cooperative search and interactive systems in such a complex

problem with the use of multi-agent systems.

2.6 Conclusions

This chapter has described a range of educational timetabling problems. One of them

was the University Course Timetabling Problem (UCTTP) which is the main focus

on this thesis. The chapter provided a glance of the constraints usually associated

with this problem, but a more detailed discussion is given in chapter 3. This chapter

also reviewed the range of techniques that have been applied to tackle the UCTTP in

the literature. Very little research works have reported using cooperative search for

this problem. Most of the work published so far concentrates on sequential heuristics.

Then, in the rest of this thesis we contribute by investigating a range of metaheuristics,

hyper-heuristics and cooperative search approaches for the UCTTP.

50

Chapter 3

University Course Timetabling

Benchmark Problems

3.1 Introduction

This chapter focuses on the specific benchmark instances of the university course

timetabling problem that were used in this thesis. These benchmark problems pro-

posed by Meta-heuristics Network [1] have been artificially generated and was in-

tended to represent a simplification of "real-world" problems. The motivation behind

using these benchmark datasets was to overcome some of the common ambiguities

and inconsistencies that existed in previous course timetabling instances. This chap-

ter is organised as follows: Section 3.2 presents the description of the university course

timetabling problem (UCTTP) and its formulation. Section 3.3 introduces the hard

and soft constraints in these problem instances. Section 3.4 gives the problem formu-

lation and Section 3.5 describes the data structure used to represent this problem.

This is followed by some brief concluding comments in Section 3.6.

51

3.2 The University Course Timetabling Problem

Several formulations of the university course timetabling problem have been proposed

in the literature. We adopt the one by Socha et al. [152Jand the corresponding bench-

mark data sets in order to test the algorithms proposed in this thesis.

More formally defined, the university course timetabling problem tackled in this

paper consists of the following:

• k timeslots T = {tl' t2, ... , td

• m rooms R = {rl, r2, ... , rm} in which events can take place

• a set F of room features satisfied by rooms and required by events

• a set S of students

Each room has a limited capacity and each student attends a number of events

which is a subset of E. The problem is to assign the n events to the k timeslots and

m rooms in such a way that all hard constraints are satisfied and the violation of

soft constraints is minimised. These benchmark data sets are split according to their

size into five small, five medium and one large, i.e. 11 instances in total. The detail

of the parameter values of the 11 instances and its categories are given in Table 3.1.

The instances in each category are different with respect to the number of conflicts

or density matrix, even though they have the same number of events, rooms, features

and students. In the rest of this thesis, we refer to these 11 problems instances as the

Socha et al. instances.

52

Table 3.1: The parameter values for the course timetabling problem categories in the
Socha et al. instances.

Category Small Medium Large
Number of courses 100 400 400
Number of rooms 5 10 10
Number of features 5 5 10
Number of students 80 200 400
Maximum courses per student 20 20 20
Maximum students per course 20 50 100
Approximation features per room 3 3 5
Percent feature use 70 80 90

Table 3.2: The 20 instances in the set of International Timetabling Compe-
tition 2002. The last three columns give some indication about the struc-
ture of the instances. Details of the competition algorithms are available at:
http://www.idsia.ch/Files/ttcomp2002/results.htm.
Instance No. events No. students No. rooms Rooms/event Events/student Students/ event

n lSI m
com01 400 200 10 1.96 17.75 8.88
com02 400 200 10 1.92 17.23 8.62
com03 400 200 10 3.42 17.70 8.85
com04 400 300 10 2.45 17.43 13.07
com05 350 300 10 1.78 17.78 15.24
com06 350 300 10 3.59 17.77 15.23
com07 350 350 10 2.87 17.48 17.48
com08 400 250 10 2.93 17.58 10.99
com09 440 220 11 2.58 17.36 8.68
comW 400 200 10 3.49 17.78 8.89
com11 400 220 10 2.06 17.41 9.58
com12 400 200 10 1.96 17.57 8.79
com13 400 250 10 2.43 17.69 11.05
com14 350 350 10 3.08 17.42 17.42
com15 350 300 10 2.19 17.58 15.07
com16 440 220 11 3.17 17.75 8.88
com17 350 300 10 1.11 17.67 15.15
com18 400 200 10 1.75 17.56 8.78
com19 400 300 10 3.94 17.71 13.28
com20 350 300 10 3.43 17.49 14.99

The second set of instances used in this thesis were proposed for the International

Timetabling Competition 2002. These data sets also consist of a fixed number (45)

of timeslots and the number of events ranges between 350 to 440 while the number of

students lies between 200 to 300. Table 3.2 gives a summary of the characteristics of

53

http://www.idsia.ch/Files/ttcomp2002/results.htm.

the International Timetabling Competition 2002 problem instances. In addition, the

number of possible rooms for each event (room/event) is relatively very low, between

1.11 and 3.94. This relation room/event indicates that a deterministic algorithm

can be employed to identify a suitable room for the events. The last two columns

(event/student and student/event) are an indication of the difficulty to minimise the

violation of the predefined constraints.

For both set of the benchmark instances (11 instances by Socha et al. [152] and

International Timetabling Competition 2002 instances), it is known by construction

that for each instance optimal value of zero cost assignment exists.

3.3 Constraints in University Course Timetabling

In this problem, as discussed before, hard constraints must be satisfied in any circum-

stances. It means that if hard constraints are violated then the timetable is infeasible,

so useless and will be discarded. On the other hand, soft constraints may be violated,

however we try to minimise such violation in order to improve the solution quality.

3.3.1 Hard Constraints

There are four hard constraints in this problem:

• h l: A student cannot attend two events simultaneously, i.e. events with stu-

dents in common must be timetabled in different timeslots.

• h2: Only one event is allowed to be assigned per timeslot in each room.

• h3: The room capacity must be equal to or greater than the number of students

attending the event in each timeslot.

• h4: The room assigned to an event must satisfy the features required by the

event.

54

3.3.2 Soft Constraints

There are three soft constraints in this problem:

• s1: Students should not have only one event timetabled on a day.

• s2: Students should not attend more that two consecutive events on a day.

• s3: Students should not attend an event in the last timeslot of a day.

3.4 Problem Formulation

The objective in this problem is to find a feasible solution that minimises the violation

of soft constraints. Both of the problems data sets described above (11 Socha et al.

instances and 20 ITTC 2002 instances) can be formalised as follows. Let X be the

set of all possible solutions, where each event has been assigned a pair timeslot-room.

Let A = {hl,h2,h3,h4} be the set of all hard constraints. Let B = {sl,s2,s3} be

the set of all soft constraints for which violation should be minimised. Let X ~ X be

the set of all feasible solutions that satisfy the hard constraints in A. The cost func-

tion f(x) for both problem data sets can be represented by this formulation. Each

solution x E X is associated with a cost function measuring the total violation of

soft constraints in B. The main objective of this problem is to search for an optimal

solution x* E X, in this case an optimal solution is, if f(x*) ~ f(x), Vx E X. The

cost function f(x) measures the quality of the feasible solution x E X by measuring

the violation of the total soft constraints given by:

f(x) = 2)it (x, s) + h(x, s) + !3(x, s))
sES

• it (x, s): number of times a student s in timetable x is assigned to the last

times lot of the day.

55

• h(x, s): number of times a student s in timetable x is assigned more than two

consecutive classes. Every extra consecutive class will add 1 penalty point, for

example h(x, s) = 1 if a student s has three consecutive classes and f2(X, s) = 2

if the student s has four consecutive classes, and so on.

• h (x, s): number of times a student s in timetable x is assigned a single class

on a day. h(x, s) = 1 if student s has only 1 class in a day and if student s has

two days with only one class h(x, s) = 2.

3.5 Data Input

The data for each problem instance includes the size and features for each room, the

number of students attending each event and information about conflicting events

(those with students in common). The information from each problem instance is

stored into five matrices to be used by the heuristic algorithms described in this

thesis. These matrices are named: StudentEvent, EventFeatures, RoomFeatures, Suit-

ableRoom, EventConfiict and finally StudentAvailablity.

The StudentEvent matrix of size lSI x n has a value of 1 in cell (i,j) if student

'I, E S should attend event j E E, 0 otherwise. The EventFeatures matrix of size

n x IFI has a value of 1 in cell (i, j) if event i E E requires room feature j E F, 0

otherwise. The RoomFeatures matrix of size m x IFI has a value of 1 in cell (i,j) if

room i E R has feature j E F, 0 otherwise. The SuitableRoom matrix of size n x m

is used to quickly identify all rooms that are suitable (in terms of size and features)

for each event, a value of 1 in cell (i, j) indicates that room j E R has the capacity

and features required for event i E E. The EventConflict matrix of size n x n has a

value of 1 in cell (i, j) if events i, j E E have students in common, 0 otherwise. The

EventConfiict matrix helps to quickly identify events that can potentially be assigned

to the same timeslot.

56

Table 3.3: StudentEvent matrix.

ej,j E {el, ... ,eI2}/

Student 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 0 0 1 1 0 1 1 0 1

2 1 1 0 0 1 0 1 1 0 0 1 0

3 0 0 1 0 0 1 1 0 0 1 1 0

4 1 0 1 1 0 1 1 1 1 1 1 1

5 0 1 0 0 1 0 0 1 0 1 1 1

6 1 0 1 1 0 1 1 1 1 1 0 0

7 1 1 1 1 0 1 1 0 0 1 1 1

8 0 1 0 1 1 1 0 1 1 0 1 0

9 1 0 0 1 0 1 0 1 1 0 1 1

10 1 0 1 1 1 1 1 0 0 1 1 0

11 0 1 1 1 1 0 1 1 1 1 1 0

12 1 0 0 1 1 0 1 0 1 0 0 1

Table 3.3 shows an example of the StudentEvent matrix where:

• First column: indicates the number of students lSI = 12.

• Remaining columns: indicate which students take the event corresponding to

that column, here the number of events is E=12.

In the above StudentEvent matrix example, we see that the first student attends

events e2, e6, e7, eg, elO and e12' The second student attends events el, e2, e5, e7,

ea and ell and so on until the last column which indicates that student 12 attends

events el, e4, e5, e7, eg and e12.

57

Table 3.4: EventsConflict matrix.

i/j 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 0 1 0 1 1 0 1 1 0 1
2 1 0 1 0 1 0 1 1 0 0 1 0
3 0 1 0 1 0 1 1 0 0 1 1 0
4 1 0 1 0 0 1 1 1 1 1 1 1
5 0 1 0 0 0 0 0 1 0 1 1 1
6 1 0 1 1 0 0 1 1 1 1 0 0
7 1 1 1 1 0 1 0 0 0 1 1 1
8 0 1 0 1 1 1 0 0 1 0 1 0
9 1 0 0 1 0 1 0 1 0 0 1 1
10 1 0 1 1 1 1 1 0 0 0 1 0
11 0 1 1 1 1 0 1 1 1 1 0 0
12 1 0 0 1 1 0 1 0 1 0 0 0

An EventConflict matrix is generated using the input of StudentEvent matrix

that provides information of students attending specific events. Table 3.4 shows an

example of the corresponding Student Event matrix where:

• First column: indicates the number of events IEI=12 .

• Remaining columns: indicate the existing conflicts among events with a value

of 1 in the corresponding cell.

In the above EventConflict example, the first event (el) should not be assigned

in the same timeslot as any of events e2, e4, e6, e7, eg, eio and e12. The second event

(e2) should not be assigned in the same timeslot as any of events el, e3, e5, e7, eg and

ell and so on until the last column which indicates that event 12 e12 should no be

assigned in the same timeslot as any of events el, e4, e5, e7 and eg.

An example of the RoomFeatures matrix is shown in Table 3.5 where:

58

Table 3.5: RoomFeatures matrix.

Ij,j E {/l,···,/s}/
Room 1 2 3 4 5 6 7 8

1 0 1 0 0 0 1 1 0

2 1 1 0 0 1 0 1 1

3 0 0 1 0 0 1 1 0

4 1 0 1 1 0 1 1 1

5 0 1 0 0 1 0 0 1

6 1 0 1 1 0 1 1 1

7 1 1 1 1 0 1 1 0

8 0 1 0 1 1 1 0 1

9 1 0 0 1 0 1 0 1

10 1 0 0 1 1 0 1 0

• First column: indicates the number of rooms JRJ=lO.

• Columns two to eight: indicate whether room rj satisfies the features Fj, the

number of features is F = 8.

In the above RoomFeatures example, the first room rl satisfies features 11, 16

and h. The second room r2 satisfies features ft, 12, 15, h and Is and so on until

room rlO satisfies features 11, 14, 15 and h.

Table 3.6 shows an example of the EventFeatures matrix where:

• First column: indicates the number of events JEJ=12.

• Columns two to eight: indicate whether event ej requires feature Fj, the number

of features is F = 8.

59

Table 3.6: EventsFeatures matrix.

fj,j E {fl, ... ,1S}/

Event 1 2 3 4 5 6 7 8

1 0 1 0 0 0 1 1 0

2 1 1 0 0 1 0 1 1

3 0 0 1 0 0 1 1 0

4 1 0 1 1 0 1 1 1

5 0 1 0 0 1 0 0 1

6 1 0 1 1 0 1 1 1

7 1 1 1 1 0 1 1 0

8 0 1 0 1 1 1 0 1

9 1 0 0 1 0 1 0 1

10 1 0 1 1 1 1 1 0

11 0 1 1 1 1 0 1 1

12 1 0 0 1 1 0 1 0

In the above EventFeatures matrix example, event el requires features 12, f6 and

h, event e2 requires features ft, 12, f5, hand fs and so on until event el2 requires

features ft, /4, f5 and [t-

Table 3.7 shows an example of SuitableRooms matrix where:

• First column: indicates the number of events lEI = 12.

• Columns two to eight: indicate whether event ej can be assigned to room Rj,

there are R = 8 rooms.

In the above SuitableRooms matrix example, event el can be assigned to any

60

Table 3.7: SuitableRoom matrix.

rj,j E {fI, ... ,fs}/

Event 1 2 3 4 5 6 7 8

el 1 1 0 1 0 1 1 0

e2 1 1 1 0 1 0 1 1

e3 0 1 1 1 0 1 1 0

e4 1 0 1 1 0 1 1 1

e5 0 1 0 0 1 0 0 1

e6 1 0 1 1 0 1 1 1

e7 1 1 1 1 0 1 1 0

es 0 1 0 1 1 1 0 1

eg 1 0 0 1 0 1 0 1

elO 1 0 1 1 1 1 1 0

ell 0 1 1 1 1 0 1 1

eI2 1 0 0 1 1 0 1 0

of rooms rI, r2, r4, r6 and r7, event e2 can be assigned to any of rooms rI, r2, r3,

r5, rr and rg and so on until event eI2 can be assigned to any of rooms rI, r4, r5, and r7.

A feasible solution (timetable) for these problem instances can be presented by

two vectors as illustrated in Figure 3.8 and Figure 3.9. In this example we see that

event el is assigned to timeslot 37 (the first element in the vector of Figure 3.8) and

room 1 (the first element in the vector if Figure 3.9). Likewise, event e2 is assigned

to timeslot 41 and room 3. Finally, course elOO is assigned to timeslot 31 and room 1

(last element in both vectors).

61

Table 3.8: An Example of a vector of timeslots.

(37, 41, 13, 12, 16, 9, 24, 43, 20, 28, 39, 16,39, 9, 19, 2, 31, 23, 29,

43, 25, 31, 21, 12, 10, 43, 18, 23, 30, 1, 42, 27, 38, 42, 34, 34, 25, 15,

24, 21, 37, 0, 25, 4, 30, 9, 4, 3, 43, 41, 9, 40, 29, 21, 10, 32, 31, 5, 29,

22, 36, 24, 13, 13, 43, 21 42, 0, 34, 36, 3, 10, 27, 34, 27, 4, 41, 33, 14,

19, 19, 14, 0, 40, 4, 25, 30, 1, 6, 22, 28, 33, 1, 22, 40, 5, 11, 7, 5, 31)

Table 3.9: An Example of a vector of rooms.

1,4,0,3,0,4,3,3,3,4,3,3,4,2,3,1,4,1,4,4,

(1, 3, 1, 4, 3, 3, 3, 0, 1, 1, 1, 1, 3, 1, 1, 4, 0, 4, 1, 1,

0, 1, 3, 2, 4, 2, 3, 0, 3, 0, 0, 3, 3, 3, 4, 1, 3, 3, 4, 0,

3, 0, 0, 3, 2, 2, 0, 2, 0, 1, 4, 3, 0,4, 1, 1, 4, 1, 1, 3,

4, 3, 0, 4, 0,0,0, 1, 1, 1, 0, 3,3,4, 0, 4, 3, 3, 1, 1)

3.6 Conclusions

This chapter has provided the description and formulation of the standard bench-

mark problem instances used in this thesis and corresponding to the university course

timetabling problem. There are two objectives to be achieved in solving this problem.

The first objective is to avoid the violation of the hard constraints: 1) avoid students

attending two events at the same time, 2) avoid more than one event occupying a

room at one time, 3) avoid the room capacity to be exceeded, and 4) ensure that the

assigned room has the features required by the events timetabled in the room. The

62

second objective is to minimise the violation of soft constraints: 1) students not to

attend only one event on a day, 2) spread the events to avoid students attending more

than two consecutive events on a day, and 3) avoid the assignment of events into the

last timeslot of a day.

63

Chapter 4

Constructing Feasible Solutions for

UCTTP Using Hybrid Heuristics

4.1 Introduction

In this chapter we focus on initialisation approaches for the university course timetabling

problem as discussed in chapter three. In addition to describing the hybrid heuris-

tics that we use in this thesis to create initial feasible timetables, we also give an

overview of other approaches from the literature. Not many published articles have

been devoted solely to initialisation techniques for the UCTTP and therefore, the

contribution of this chapter can be outlined as follows:

1. Development of four hybrid heuristics for initialising feasible solutions. These

heuristics are then used as part of the two-stage overall solution approach in

this thesis.

2. Hybridisation of existing techniques (constructive heuristics) from the literature.

Previously, such heuristics were not able to generate feasible solutions on their

own. Here, by applying them in the right sequence, the hybrid methods are

now able to produce feasible timetables.

64

3. Evaluation of the proposed hybrid algorithms by presenting and discussing re-

sults from a series of experiments on standard benchmark problems (Socha et

al. instances and international competition 2002 instances).

Although the work in this thesis concentrates mainly on solving the 11 Socha et

al. [152] instances, we used the ITC 2002 datasets to evaluate our algorithms for

constructing initial solutions. This is because we want to assess how effective are

the proposed methods in generating feasible solutions for a range of instances with

different characteristics.

The content of this chapter is organized as follows. Section 4.2 discusses previous

works from the literature on initialisation approaches for the UCTTP. Sections 4.3.1,

4.3.2, 4.3.3 and 4.3.4 discuss each of the four methods that we proposed for con-

structing feasible solutions for the subject problem. Section 4.4 give the analysis and

results for each proposed approach and finally Section 4.5 presents the summary of

this chapter.

4.2 Literature Review of Initialisation Methods

Lewis [109]indicates that most of the metaheuristic algorithms for course timetabling

problems fall into one of three categories which are:

1. One-Stage Optimisation Algorithms: both hard and soft constraints are tackled

simultaneously with the aim to satisfy all of them.

2. Two-Stage Optimisation Algorithms: soft constraints are tackled only after a

feasible timetable has been constructed by satisfying all hard constraints first.

3. Algorithms that allow Relaxations: no hard constraints violations are allowed

from the outset by relaxing some other feature of the problem. Attempts are

then made to try and satisfy soft constraints, whilst also giving consideration

65

to the task of eliminating these relaxations. In other words, some aspect of the

problem has been relaxed to allow the algorithm to tackle the soft constraints.

To achieve this, events that cannot find the feasible assignment will be left unas-

signed. The algorithm will then try to minimise the soft constraints violations

expecting that the unassigned events will find a feasible assignment at a later

stage. Then, extra timeslots are introduced and in a later stage the algorithm

tries to reduce the number of timeslots down to the allowed number of timeslots.

It has been shown in the literature that a sequential heuristic method can be very

efficient for generating initial solutions [23, 29, 97J. Sequential heuristic is a technique

to assign events or course one by one, starting from the event which is measured as

the most difficult to assign. Therefore, the degree of difficulty is measured by dif-

ferent heuristic in a different way. (i.e Largest Degree and Saturation Degree, see

section 4.3.1 and 4.3.2). However, a sequential heuristic alone does not guarantee

that feasible solutions will be found even with combination of more than one heuris-

tic. Abdullah et al. [5, 4] proposed their method to construct initial solutions to

generate feasible timetables and in particular for the large instance of the Socha et

al. benchmark dataset. However, Abdullah et al. did not report the specifics of

their method to generate initial solutions and did not mention how long their ap-

proach takes to generate an initial solution in terms of computation time. Their

method failed to generate a feasible solution for the large instance of the Socha et al.

dataset [152].

Kostuch [97Jimplemented a two-stage algorithm for the UCTTP. The first stage

consists of five steps for constructing the initial feasible solution. These steps are: 1)

Initial attempt, 2) Improvement attempt, 3) Shuffling, 4) Blow-ups and 5) Open the

last timeslots. Each step of Kostuch's method works as follows:

• The first step is initial attempt: it uses the sequential colouring algorithm for

66

the graph colouring where each selected event is based on degeneracy order and

more importantly only 40 timeslots out of the 45 available timeslots are consid-

ered. The event with the least degeneracy order is that event with the minimum

degree (with minimum available resources such as timeslots and rooms). So, this

process identifies the event with the least degeneracy order and attempts to as-

sign it to a timeslot. This process continues with all events in the problem.

Events that fail to get a timeslot are placed in a pool of unassigned events. As

soon as the initial assignment is completed, the maximum matching algorithm

for bipartite graphs is applied to every single timeslot for the purpose of assign-

ing rooms. In this phase, events that cannot get a room are removed from their

assigned timeslot and placed into the pool of unassigned events .

• The second step is improvement attempt: selects every unassigned event and

checks the 40 available timeslots. First, the algorithm examines whether the

unassigned event fits into any of these 40 available timeslots. If an assignment is

possible with no conflicts between assigned events including room assignment,

the event leaves the pool of unassigned events and is timetabled .

• The third step is shuffling: for a number of iterations, select every event in

the pool of unassigned events and assign it into a random selected timeslot.

If the selected timeslot does not produce conflicts the room assignment then

takes place. After the room assignment takes place there are two possibilities.

First, all events in the selected timeslot have been assigned to feasible rooms,

therefore, the newly added event finally found the feasible assignment. Second,

one of the events in the timeslot might not have a feasible room. If this is the

case, the event without room is removed from the timeslot and placed into the

pool of unassigned events. If there was a change in the assignments in this

timeslot, the improvement attempt (second step) takes place again within this

shuffling step. This is because before placing the removed event in the pool of

67

unassigned events, the method tries to fit it into a different timeslot .

• The fourth step is blows-up: the algorithm tries to assign the unassigned events

into an available timeslot by force, hence the name of this stage. Before the

unassigned event can be forced into one of the 40 available timeslots, all events

from the timeslot are removed and placed the previously unassigned event is

placed into the now empty timeslot. Next, one by one try to assign the removed

events into the same timeslot provided that no conflicts are created with the

events already in the timeslot. The maximum matching algorithm is used to

assign a suitable room to each of the events in the timeslot. Any event that

cannot get room at this stage will be removed from the timeslot and put back

into the pool of unassigned events. It is known that this procedure may lead

to an increased number of unassigned events. After the change, the algorithm

once again applies the improvement attempt step to all unassigned events. In

this stage, a number of repetitions of the shuffling step are necessary. The

whole procedure will be re-started with the assignment that was the best so

far in terms of number of unassigned events, once a certain number of blow-up

combined with improvement attempt and shuffling steps is reached .

• Finally, step five is open the last timeslots: assign events into the last timeslots.

In this stage, events that failed to be assigned are now placed into the last

five timeslots distributing the events into these five timeslots using the method

described above. In case that this step cannot find a feasible assignment using

the new five timeslots, the shuffling and blow-up steps will take place but now

considering all 45 available timeslots.

Frausto-Solis et al. [77J implemented simulated annealing to find initial feasible

solutions for timetabling. In that approach, they introduced extra dummy timeslots

to satisfy the hard constraints violations. The search for a feasible solution is con-

68

ducted by decreasing the number of events allocated to the extra dummy timeslot

while increasing the number of events allocated to the valid timeslots. The whole pro-

cess stops when no events are left in the extra timeslot and then the number of extra

dummy timeslot becomes zero. Since the success of simulated annealing is quite de-

pendent on the cooling scheme, the authors employed three phases. In the first phase

the temperature grows slowly from To to Tb, where To is the initial temperature, set

to To = 470n + e (n is the number of students and e is the number of events), and

Tb = -8m/log(0.95) (m is maximum room capacity). In the second phase, the tem-

perature grows from n to Tt, where T; = 1000 and this parameter value is obtained

from experimental observation. In the third phase, the temperature remains constant

from T; to Tf, the value of Tf = 0.01 is also obtained from experimental observation.

The 20 ITC 2002 instances and some new harder instances were used to evaluate

the performance of the algorithm proposed by Frausto-Solis et al. From their exper-

imental results, simulated annealing was able to obtain feasible solutions for the 20

ITC 2002 instances. For the second set of harder instances, their results also showed

that simulated annealing was capable of generating feasible solutions for all small and

medium problems. Moreover, that algorithm was able to generate feasible solutions

for 7 out of the 20 ITC instances for which no previous algorithm had been successful

before in generating feasible timetables.

Mayer et al. [115]employed Ant Colony Optimisation to construct feasible solu-

tions for post-enrolment based Course Timetabling (ITC 2007 competition dataset).

The algorithm procedure can be described as follows. In constructing a feasible so-

lution, each event is selected uniformly at random and assigned into a feasible room

and timeslot in a greedy randomised way by considering the pheromone information.

The available timeslot and room with higher pheromone values are placed first in the

order and are more likely to be selected. Hence, the selected event will be assigned

to a pair timeslot-room based on the timeslot-room order. The assignment of the

69

event to a pair timeslot-room that does not violate the partial initial solution, will

be accepted. Ejaz and Younus [71] implemented a hybrid approach inspired by ants

behaviour. In their approach, they employed a heuristic selector function, where the

main role of the heuristic selector is to develop a set of solutions by employing one

heuristic per solution. All generated solutions are then compared among them and

the heuristic which gives the best solution is then selected. During the construction of

the initial solution, a quick but less powerful ant begins to assign courses into feasible

timeslots based on the available simple heuristics. When the ant finds itself stuck and

unable to go any further, it calls for help. A set of diverse helper ant functions are

invoked to help the ant to get out from the trap. Once the ant escapes from the trap

it then starts to construct the initial solution again until it manages to generate a

feasible solution. This method of Ejaz and Younus has been tested on the 11 Socha et

al. instances and produced impressive results managing to generate feasible solutions

for all instances.

Arntzen and Lokketangen [14]implemented a sequential assignment of events into

timeslots. Their procedure works as follows:

• First step: Create a list of unassigned events L.

• Second Step: Select event E from the list L with minimum feasible timeslots.

If there are ties between the events then perform the random selection to break

ties.

• Third step: The selected event E is then assigned into a timeslot which gives

the minimum weight. The weight of the possible timeslots can be calculated

as follows: let K be the feasible timeslot for event E. For each P E K let

q = (q1, q2, ... , Q5). The formulation can be defined as: q1 is the number of

available timeslot in P, qz is the number of unavailable rooms within the same

timeslot as P, Q3 is the violation of the last timeslot by placing event E to P, q4

70

change the violation of consecutive events on s day and q5 is the change of the

violation one event timetabled on a day. A vector W = (WI, w2, ... ,W5) is also

defined. Therefore, the timeslot that gives the minimum weight Wq = (WI qI

+ W2q2 +,..., w5Q5) will be selected for event E. In case of ties between the

weights, a random selection is performed .

• Fourth step: event E leaves the list of unassigned events when the algorithm

manages to find a feasible solution for the event. The information about avail-

able timeslots for the events left in the list of L is updated. The assignment

process ends when the list of events in L becomes empty, otherwise go back

to step two. This process stops only after all events have been assigned into

feasible timeslots.

Lewis and Paechter [108] generated an initial feasible population of timetables

using the Grouping Genetic Algorithm (GGA). The algorithm first selects an event

with the lowest saturation degree. In case of ties, random selection then takes place.

Then the algorithm selects a timeslot with the least number of unplaced events that

could be feasibly assigned. The ties are broken by choosing the timeslot with the

most events already assigned to it. If ties continue with this criterion, they are bro-

ken at random. The whole procedure works as follows: all events are selected one by

one from the set of U and added into the selected timeslot. Events that are unable

to find a feasible assignment are ignored. If all events managed to find the feasible

solution then U will become empty. However, when some of the events cannot find a

feasible assignment, a number of timeslots are added to assign the unplaced events.

The number of extra timeslots added is determined by !U!/r where !U! is the number

of unplaced events and r is the number of rooms. In order to reach feasibility of the

timetable, the algorithm then tries to reduce the number of timeslots down to the

allowed number of timeslots by placing all events from the extra timeslots into the

valid timeslots.

71

4.3 Hybrid Initialisation Heuristics

This section gives the description of several effective hybrid algorithms for produc-

ing feasible timetables; these algorithms fall into one of the categories listed above.

The algorithms presented below are usually considered the first stage within a two-

stage optimisation strategy. Usually, a first stage of optimisation is only concerned

with solving the hard constraints without paying attention to the soft constraints

violations. Therefore, satisfying the hard constraints are the main priority of the al-

gorithms proposed here in order to produce timetables that are at least usable without

regard to their quality in term of soft constraints violations.

In order to develop effective algorithms for tackling hard constraints, we con-

ducted an investigation of few techniques such as graph colouring, local search and

tabu search and proposed their hybridisation to supplement the weaknesses of each

of these search techniques. From the experimental observations, we found that each

search component in the hybrid methods are interdependent on their ability to pro-

duce a feasible timetable. In other words, when one of these components is disabled or

removed, the remaining components are not able to produce feasible solutions and in

particular for medium and large instances. Therefore, the hybridisation of the search

components is an effective mechanism to improve the performance of the whole search

process.

4.3.1 Largest Degree, Local Search and Tabu Search (IH1)

In this approach, we adopted the heuristic proposed by Chiarandini et al. [39] and

added the Largest Degree (LD) Heuristic to Step 1 as described next. Largest De-

72

gree (LD) refers to the event with the largest number of conflicting events. In course

timetabling problem, the conflicting events refer to events that have at least one stu-

dent registered in common. This modification of the proposed heuristic was necessary

because otherwise we were unable to generate feasible solutions for the large problem

instance. This hybrid initialisation heuristic works as follows.

Step one - Largest Degree Heuristic. In each iteration, the unassigned event

with the largest number of conflicts (other events with students in common) is as-

signed to a timeslot selected at random without respecting the conflict between the

events. Once all events have been assigned into a timeslot, we use the maximum

matching algorithm for bipartite graph (see Chiarandini et al. [39]) to assign each

event to a room. At the end of this step, there is no guarantee for the timetable to

be feasible. The description of maximum matching algorithm for bipartite graph is

as follows:

A list of events assigned to a given timeslot but without solved room availability,

capacity and features is called a bipartite matching problem (assign events to rooms).

As described in [36], room assignment of an event in a specific timeslot can be repre-

sented in a bipartite graph G = (Vi, \12, E), where Vi = {I, ... ,n}, is the set of events,

and \12 = {(tl' r.)., (ti' rj)} is the set of all pairs (timeslot ti, room rj). An edge E

(an, (ti' rj)) is present if event ak can be assigned to timeslot ti in room rj. Therefore,

a set of events is assigned to a specific timeslot and there is a set of possible rooms to

which these events can be assigned and that satisfy the room-related hard constraints

(capacity and features). Bipartite matching can be treated as a maximum flow prob-

lem, and maximum matching algorithm grants a maximum cardinality between these

two sets of events and rooms by using a deterministic network flow algorithm.

Step two - Local Search. We employ two neighbourhood moves in this step.

73

Move one (Ml) selects one event at random and assigns it to a feasible pair timeslot-

room also chosen at random. Move two (M2) selects two events at random and swaps

their timeslots and rooms while ensuring feasibility is maintained. Therefore we use

these neighbourhood moves Ml and M2 to improve the timetable generated in step

one. A move is only accepted if it improves the satisfaction of hard constraints (be-

cause the moves seek feasibility). This step terminates if after ten iterations no move

has produced a better (closer to feasibility) solution. We terminate this step after

ten iterations as we do not want to run it too long as it will extend the running time

in finding the feasible solution. Moreover, the local search is meant to disturb the

solution before we run the tabu search.

Step three - Tabu Search. We apply tabu search using only move M2b (select

one event at random and assigns it to a feasible pair timeslot-room also chosen at

random). However, the M2b is bit different than Ml in step two, where the algorithm

only selects an event that violates the hard constraints. In this step, it is necessary for

the algorithm to select an event that violates the hard constraints only. Otherwise, it

will find difficulty to construct feasible solutions for the medium5 and large instances

in the Socha et al. datasets. Moreover, as a result, it will take a longer time to con-

struct the feasible solution for all instances. The motivation for selecting only events

that violate hard constraints is that in this stage, usually, the violation of the hard

constraints is very low. Then, the algorithm only targets events that violate hard

constraints instead of randomly rescheduling all events with the hope of selecting the

appropriate timeslot for the right events. Therefore, we concentrate on events that

violate hard constraints and try to minimise the time taken to find feasibility. The

tabu list contains events that were assigned less than tl iterations before calculated as

tl = rand(lO) + 8 x ne, where ~O rand(lO) ~ 10, ne is the number of events involved

in hard constraint violations in the current timetable, and 8 = 0.6. The rationale

behind the selection of 8 = 0.6, is that this value was also used by Chiarandini et

74

al. [39Jin their experiments and also we found that this parameter value works very

well in our experiments. In order to mitigate the power of tabu search, aspiration

criterion is applied to accept when the best known assignment is found. This step

terminates if after 500 iterations no move has produced a better (closer to feasibility)

solution.

Steps two and three above are executed iteratively until a feasible solution is

found. This three-step heuristic is capable of finding feasible timetables for most of

the Socha et al [152J. problem instances in reasonable time as shown in Table 4.1.

The exception is the large instance for which it takes a minimum of 300 seconds to

find a feasible timetable. The large problem instance is the most difficult to tackle

and therefore, it takes a much longer time to find a feasible timetable. The reason

is that the density matrix for this instance indicates a large number of conflicting

events (students in common), in addition there are limited rooms per timeslot, and

some of the rooms have small capacity. Thus, these attributes make this instance

even harder to find feasible solution in short time. We also tested our approach on

the 20 ITC 2002 data sets. The results show that this approach produces feasible

solutions in reasonable time for all 20 instances. From the experimental results and

observations, we can say that this approach is efficient and effective also for these 20

instances and it demonstrates that the hybridisation of the proposed methods and

their cooperation supplements the weakness on each method. The pseudo-code for

this initialisation hybrid heuristic is shown in Algorithm 7.

75

Algorithm 7: Initialisation Heuristic 1 (IHi)
Input: set of events in the poolO f Unschedul ed events list E;
Sort the events in E by using Largest Degree (LD) heuristic;
while (poolO fUnscheduled events list E is not empty) do

lSelect any timeslot t at random;
Assign event e from E with largest degree (LD) first into t (tie break at random);

8 = current solution;
loop = 0;
while (5 is not feasible) do

if (loop < 10) then
if (coin/lipO) then
L 8* = Ml(S); / / apply Ml to S

else
L 5* = M2(S); / / apply M2 to S

if (f(8*) < /(s)} then
L 8 f- 8* / / accept new solution;

else
EHC = set of events that violate hard constraints;
e = randomly selected member of EHC;
S* = M2b(S, e); / /Perform one iteration tabu search with move M2b using e;
if (/(8*) < /(8) then
L Sf- 8*; / /accept new solution

if (loop == tsmax + 10) then
L loop = 0;

loop++;
Output: S feasible solution (timetable)

76

4.3.2 Saturation Degree, Local Search and Tabu Search (IH2)

In this method, we first, start by choosing a random event from the pool of unsched-

uled events and then we calculate its Saturation Degree (SD) which refers to the

number of available resources (timeslots and rooms) to timetable that event without

conflicts in the current partial solution. If there is still at least one available resource,

assign a timeslot at random to the event and then apply maximum matching algo-

rithm to assign a room. If there is no conflict, we have managed to schedule the

unassigned event.

In the case of no resources left for the selected event, the algorithm selects any

timeslot at random. Then, it moves all the events from that timeslot into the pool of

rescheduled events and assign the selected event into the now empty timeslot. Events

in the pool of rescheduled events need to be rescheduled in any available timeslot, as

long as there is available resource for the event. If there is no available resource, the

algorithm removes the event to the pool of unscheduled events.

After a maximum trial of 10000 iterations, all events left in the pool of unsched-

uled events which could not get a feasible assignment will be selected at random and

assigned into any timeslots without checking hard constraints violations. The pro-

cess ends when all events from the pool of unassigned events and rescheduled events

becomes empty meaning that we managed to assign them to timeslots.

From the experiments we observed that when the whole process ends, the viola-

tion of hard constraints is usually very low already. To ensure feasibility, we then

implement local search and tabu search in step two and three as explained in the

Initialisation Heuristic I above.

The difference between IHI and IH2 is that in IHI, the assignment of events is

77

done without checking conflicts. Whereas in IH2, we first check conflicts between the

unassigned events and then select a timeslot. If there are no conflicts the unassigned

event leaves the pool of unscheduled events. If there is a conflict to newly added event

into the selected timeslot, the added event will be removed and back to the pool of

unscheduled events. Therefore, IHI might find a feasible solution until the final step

is completed or for small instances, until step two is completed. Whereas, in IH2, we

managed to construct feasible solutions for small instances by using graph colouring

alone, without going through to the next step (local search and tabu search). For

medium and large instances, before the local search and tabu search run, the penalty

due to hard constrains violation is lower with IH2 than with IHI. The detail of the

IH2 is given in pseudo-code Algorithm 8.

78

Algorithm 8: Initialisation Heuristic 2 (IH2)
Input: set of events in the poolO/Unscheduled events list E;
while (paola /U nscheduled events list E is not empty) do

Choose event e from E at random;
Calculate event e saturation degree (SD);
if (e with 8D = 0) then

Select timeslot t at random;
Empty the timeslot t by moving all events into the paolO/Rescheduled
events;
Assign event e into the now empty timeslot t;
trial = 0;
while (paola/Rescheduled events is not empty) do

Select event e from the paola/Rescheduled events at random;
Assign event e into any feasible timeslot t which is selected at random;
if (trial> trial maximum) then

L assign event e into any timeslots without respecting the conflict
between the events;

else if (e with 8D = 0 and trial < trial maximum) then
L Eject event e into the poola[unscheduled events;
trial+-}:

else

L chose feasible timeslot t at random for event e;
Update the new solution;

if (paola/Unscheduled events list E is not empty and timeu has elapsed) then

LOne by one, place events from the unscheduled events list into any random
selected timeslot without respecting the conflict between the events;

8 = current solution;
loop = 0;
while (8 is not feasible) do

if (loop < 10) then
if (coin/lipO) then
L 8* = Ml(S); / / apply Ml to S

else
L 8* = M2(S); / / apply M2 to S

if (/(8*) < /(s)) then
L 8 ~ 8* / / accept new solution;

else
ERC = set of events that violate hard constraints;
e = randomly selected member of ERC;
8* = M2b(S, e); / /Perform one iteration tabu search with move M2b using e;
if (1(8*) < /(8) then
L S ~ S*; / / accept new solution
if (loop == tsmax + 10) then
L loop = 0;

loop++;
Output: S feasible solution (timetable)

79

4.3.3 Largest Degree, Saturation Degree, Local Search and

Tabu Search (IH3)
t

The pseudo-code for this third initialisation heuristic is shown in Algorithm 9. Two

well-known graph colouring heuristics are incorporated, Largest Degree (LD) and Sat-

uration Degree (SD). First, the events in the pool of unscheduled events are sorted

based on LD. After that, we choose the event with highest LD and calculate its SD.

In the first while loop, the initialisation heuristic attempts to place all events into

timeslots while avoiding conflicts. In order to do that, the heuristic uses the SD cri-

terion and a list of rescheduled events to temporarily place conflicting events. The

heuristic tries to do this for a given times, but once that time has elapsed, all remain-

ing unscheduled events are placed into random timeslots. That is, if by the end of

the first while loop the solution is not yet feasible, at least the penalty due to hard

constraint violations is already very low. In the second while loop, the heuristic uses

simple local search and tabu search to achieve feasibility. Two neighbourhood moves

Ml and M2 (as the same as moves described in step two - local search in section 4.3.1)

are used. The local search attempts to improve the solution but it also works as a

disturbing operator, hence the reason for the maximum of ten trials before switching

to tabu search. The tabu search uses move M2b only and is carried out for a fixed

number of iterations tsmax• In our experiments, this initialisation heuristic always

finds a feasible solution for all the problem instances considered.

80

Algorithm 9: Initialisation Heuristic 3 (IH3)
Input: set of events in the poolO fU nscheduled events list E;
Sort the events in E by using Largest Degree (LD) heuristic;
while (poolO funscheduled events list E is not empty) do

Choose event e from E with the LD (tie break at random);
Calculate SO for event e;
if (e with SD = 0) then

Select a timeslot t at random;
From those events already scheduled in timeslot t (if any), move those that
conflict with event e (if any) to the paolO f Rescheduled events list;
Place event e into timeslot t;
for (each event e in the paolO f Rescheduled events list with SD > 0) do

lSelect a feasible timeslot t for event e at random;
Recalculate SO for all events in the poolOfRescheduled events list;

Move all events that remain in the poolOfRescheduled events list (those with
SO = 0) to the poolOfUnscheduled events list E;

else
L Select a feasible times lot ti at random to place e;

if (poolOfUnscheduled events list E is not empty and timeu has elapsed) then

lOne by one, place events from the poolOfUnscheduled events list into any
random selected timeslot without respecting the conflict between the events;

S = current solution;
loop = 0;
while (S is not feasible) do

if (loop < 10) then
if (coinflipO) then
L S* = Ml(S); j j apply Ml to S
else
L S* = M2(S); j j apply M2 to S

if (f(S*) ::;f(s») then
L Sf- S* j jaccept new solution;

else
ERC = set of events that violate hard constraints;
e = randomly selected member of ER C;
S* = M2b(S, e); j jPerform one iteration tabu search with move M2b using e;
if (f(S*) < f(S) then
L Sf- S*; j jaccept new solution

if (loop == tsmax + 10) then
L loop = 0;

loop++;
Output: S feasible solution (timetable)

81

4.3.4 Constraint Relaxation Approach (IH4)

In this fourth approach, we introduce extra timeslots to place events with zero SD.

This initialisation method works as follows. First, we sort the events in the pool of

unscheduled events using LD. The event ej with the LD is chosen to be scheduled

first. In the case that, there is no available resource for the chosen event ej (event with

zero SD), the event ej will be distributed randomly into the extra dummy timeslots.

The number of extra dummy timeslots needed is determined by the instance size. In

our experiments, we added ten extra timeslots for instances that 100 > lEI ~ 200

and 100 > 151 ~ 200 respectively, whereas, 15 extra timeslots added when instances

having 200 < lEI ~ 400 and 200 < 151 ~ 400 respectively. By introducing extra

timeslots we managed to find free-conflict timetables in short computational time

and then the search can concentrate on satisfying the soft constraints by moving all

events in the extra timeslots into the 45 valid timeslots.

4.3.4.1 Improvement of the Dummy Soft Constraint

Once the algorithm managed to assign all events in the valid timeslots plus the ex-

tra timeslots without conflicts, we then perform great deluge to reduce the number

of timeslots down to 45 valid timeslots if necessary. However, the great deluge we

employed here is a bit different to the original great deluge proposed by Deuck [68].

In our approach, we allowed the water level to go up when the water level and the

penalty cost are about to converge. Therefore, the water level is increased to five

from the last value when it converges to the penalty cost. The rationale behind the

selection increasing the water level to five is that this parameter value work well

in our experiment (if too low the the algorithm will stuck in local optimum and if

the value is to high the algorithm tend to diversify the search). In this stage, we

employ two neighbourhood moves (Ml and M2). Move Ml moves an event selected

at random and assign it to a random feasible timeslot. In this move, only the 45

82

valid timeslots are considered, so no events are allowed to move into any of the extra

timeslots. MoveM2 selects two events at random and a swaps their assigned timeslots.

The above moves help to place all the events into feasible timeslots. This is be-

cause an event with zero saturation degree and that needed to be placed into an extra

timeslot, may now fit in some of the 45 valid timeslots because other events in the

valid timeslots move to another conflict-free timeslots. The timetable is said to be

feasible when all the events that were allocated to the extra timeslots are now sched-

uled into the 45 valid timeslots without conflict. However, to reduce the timeslot into

allowed number of timeslots take longer time and it was too slow to find conflict-free

timeslots. The pseudo-code for this initialisation heuristic is shown in Algorithm 10.

83

Algorithm 10: Initialisation Heuristic 4 (IH4)
Input: set of events in the poolOJUnscheduled events list E;
if (Large problem) then
L number of timeslots = 60;
else
L number of timeslots = 55;
Sort the events in E by using Largest Degree (LD) heuristic;
while (poolO [unscheduled events list E is not empty) do

Choose event e from E with the LO (tie break at random);
Calculate event e SO;
if (e with SD == 0) then

lSelect the extra feasible timeslot at random to place event e;
else

lChose valid feasible timeslot for event e at random;
Update the new solution;

S = current solution;
Calculate initial cost function J(S);
Initial level B = I(S);
b.B = 0.01;
while (extra timeslots are not empty) do

if (coinJlipO) then
L S* = M1(S); / / apply M1 to S
else
L S* = M2(S); / / apply M2 to S

if (J(s*) :=; J(s)) or (J(s*)(:=; B)) then
L S +-- S*; / /accept new solution
Lower the level B = B - tiB;
if (B - I(S) :S 1) then
L B = B + 5; / /increase the water level

Output: S feasible solution (timetable);

84

4.4 Experimental Results and Analysis

To evaluate the performance of the proposed hybrid heuristic initialisation methods,

we applied them to the Socha et al. instances and also to the ITC 2002 instances.

We coded our algorithm in visual C++ version 6.0 and carried out 10 runs per in-

stance on a Pentium duo with 1.86GHz processor. We did not impose time limit as

a stopping condition. Instead, each algorithm stops when it finds a feasible solution.

This is because we want to estimate the time that each algorithm takes to find an

initial feasible solution.

All methods successfully generate initial solution for small instances in just few

seconds using only the 45 timeslots available. The medium and large Socha et al.

instances are more difficult as well as all ITC 2002 instances. However, the proposed

methods generated feasible solutions for all instances demonstrating that the hybridi-

sation compensates weakness in one approach with strengths in another one in order

to produce feasible solutions in reasonable computation times.

Table 4.1 and Table 4.2 compare the performance of each method against each

other. From these tables we see that initialisation heuristic one (IHl), initialisation

heuristic two (IH2) and initialisation heuristic three (IH3) outperform the initialisa-

tion heuristic four (IH4). The results also show that the time taken by initialisation

methods IHl, IH2 and IH3 to construct feasible solutions is quite similar. It can also

be said that the performance of the first three methods is not very different from each

other.

We recorded and analyse the computational time taken to produce feasible solu-

tions based on the instance category. Thus, for every category, we check the minimum

and maximum time. For example, we identify what is the minimum and maximum

time taken no matter what number of instance they are as long as they are in the

85

same category. Based on their time, we then make our conclusion on the initialisa-

tion heuristics performance. For the Socha et al. [152Jinstances, all four initialisation

heuristics are capable to find feasible solutions in short computation time for all small

instances. Table 4.1 and Table 4.2 show that IH1, IH2, IH3 and IH4 able to generate

feasible solutions for all small instances in a short time. Therefore, the times taken

as shown in Table 4.1 and Table 4.2 to generate the feasible solutions indicate that

the proposed initialisation heuristics have the same capability to construct feasible

solutions for small instances. In the medium instances case, the algorithms now start

to show their different capabilities. Table 4.1 and Table 4.2 show that M5 is a more

difficult instance and it took bit longer for all heuristics to construct feasible solu-

tions for this dataset. Obviously, IH1 was the faster heuristic to construct feasible

solutions and IH4 was the slowest heuristic to generate feasible solutions. Finally, for

the large instance, IH4 shows better performance in computation time compared with

the other methods. Finally, it is also worth to mention that all methods are capable

to generate feasible solution, which show robustness of the methods.

For the second set of experiments, we tested the proposed hybrid initialisation

heuristics on the ITC 2002 instances. The results are shown in Table 4.3 and Table 4.4

and indicate that IHl, IH2 and IH3 generate feasible solutions in short computation

times of around 1.05-85.61, 1.085-85.345, 0.085-50.675 and 24.546-1007.288 seconds

respectively. Theses results also tell us that the initialisation heuristics have almost

the same capability and speed to generate feasible solutions in these data sets. When

we tested IH4 on the ITC 2002 datasets, we found that the performance is very simi-

lar to that on the Socha et al. instances, for which IH4 takes around 24.546-1355.859

seconds to generate feasible timetables.

In Table 4.4 we include Kostuch [97J initial feasible solution results. From the

table, it shows that Kostuch approach is capable to generate feasible solutions in a

86

short time and produce good quality of initial solutions compared to our initial solu-

tions quality (penalty cost). In comparison, Kostuch approach takes one of the soft

constraints into account (no students are encouraged to attend last slot of the day)

during the construction of initial solution, in our approach we did not take into ac-

count any soft constraints as the aim is finding feasible solutions without considering

the soft constraints violations.

The details of the abbreviations in Table 4.1, 4.2, 4.3 and 4.4 are as follows: IN

in column one is Instance Name, IHI is Initialisation heuristic 1, IH2 is initialisation

heuristic 2, IH3 is Initialisation heuristic 3, IH4 is initialisation heuristic 4. SC-P

is soft constraints violation penalty, T(sec) is time taken to generate initial feasible

solutions in seconds. SD is standard deviation calculated based on the time taken by

the algorithms to generate feasible solutions for ten runs. In addition, in Table 4.1

and Tables 4.2, SI-S5 represent small problem instances 1 to 5, MI-M5 represent

medium problem instances 1 to 5, L represents the large problem instance, all in the

Socha et al instances. In Table 4.1 and Table 4.2 CompOl-Comp20 represent problem

instances 1 to 20 in the ITC 2002 instances.

87

IN IR1 IR2

SC-Penalty T(sec) SC-P T(sec)

Min Max Min Max SD Min Max Min Max SD

SI 173 219 0.078 0.125 19.832 198 233 0.077 0.093 14.131

S2 211 268 0.790 0.109 24.296 217 239 0.078 0.109 12.401

S3 176 251 0.068 0.110 38.674 190 244 0.062 0.124 19.854

S4 250 198 0.047 0.110 11.304 174 221 0.078 0.093 19.071

S5 229 260 0.078 0.110 18.352 238 274 0.078 0.109 15.215

Ml 817 861 7.546 9.313 16.813 772 941 6.046 9.53 63.217

M2 793 917 9.656 10.937 46.328 782 882 6.342 14.952 40.431

M3 795 901 13.437 21.702 37.685 867 800 10.952 23.358 26.235

M4 735 825 6.891 7.766 41.601 785 858 5.828 6.468 30.435

M5 773 863 16.670 143.560 101.484 771 875 34.102 85.999 40.410

L 1340 1630 300 3000 76.541 1345 1647 1578.567 4500.345 153.317

Table 4.1: Results Obtained by IHI and IH2 on the 11 Socha et al. Instances.

IN IR3 IR4

SC Penalty T(sec) SC Penalty T(sec)

Min Max Min Max SD Min Max Min Max SD

SI 207 273 0.093 0.124 26.864 200 261 0.077 0.109 26.957

82 189 294 0.093 0.115 39.732 208 281 0.078 0.109 27.468

S3 188 264 0.078 0.108 29.154 209 239 0.062 0.124 10.991

S4 203 235 0.108 0.125 12.457 192 234 0.078 0.093 16.531

S5 226 271 0.093 0.124 18.460 217 263 0.078 0.109 20.169

M1 802 862 5.531 19.29 22.952 774 854 22.702 101.905 33.417

M2 784 871 7.468 9.264 36.789 802 887 60.015 285.265 31.635

M3 828 885 6.64 35.313 22.421 817 865 30.515 230.671 21.651

M4 811 888 5.874 11.564 30.898 795 857 32.624 150.608 24.361

M5 784 835 33.827 91.109 37.278 769 829 115.946 358.561 25.822

L 1686 1807 2050.983 6300.278 45.686 1670 1801 760.811 1914.655 68.461

Table 4.2: Results Obtained by IH3 and IH4 on the 11 Socha et al. Instances.

88

IN !HI !H2

SC Penalty T(sec) SC Penalty T(sec)

Min Max Min Max SD Min Max Min Max SD

ComOl 805 895 2.35 5.347 16.431 786 877 4.696 6.301 20.754

Com02 731 836 2.145 4.347 13.711 776 885 3.917 10.814 59.304

Com03 760 863 1.34 16.155 21.147 812 867 1.146 3.682 27.754

Com04 1201 1266 4.464 62.515 50.796 1178 1269 5.015 46.930 51.694

Com05 1246 1280 2.987 14.411 60.235 1243 1267 4.733 20.317 2.121

Com06 1206 1334 1.780 3.271 59.082 1219 1269 2.452 4.942 21.654

Com07 1391 1539 2.644 20.9 44.128 1388 1504 2.102 21.335 59.253

Com08 1001 1095 1.82 51.421 12.070 968 1079 1.810 13.749 57.726

Com09 841 893 1.464 11.086 36.909 859 968 14.594 8.452 54.671

ComlO 786 931 34.678 85.61 13.285 816 858 43.233 85.345 29.698

Com1l 852 920 1.05 9.84 37.199 877 896 2.880 7.967 10.016

Com12 814 874 3.016 34.687 38.720 831 873 2.218 36.155 23.180

Com13 1008 1174 2.26 6.976 48.769 1010 1026 2.46 11.567 8.020

Com14 1040 1350 6.816 50.675 44.916 1032 1497 3.716 51.952 328.804

Com15 1165 1259 2.564 8.956 50.423 1162 1364 2.064 9.046 104.887

Com16 887 929 2.592 6.415 24.213 911 967 1.651 4.675 28.213

Com17 1227 1294 3.536 13.048 52.252 1032 1336 1.136 14.952 159.904

Com18 793 871 1.892 3.035 32.144 724 860 1.892 4.249 51.381

Com19 1184 1336 3.928 20.753 71.234 1212 1264 4.228 17.421 26.312

Com20 1137 1254 1.072 1.804 78.014 1161 1243 1.085 1.952 38.837

Table 4.3: Results Obtained by IHI and IH2 on the ITC 2002 Instances.

89

IN 1H3 IH4 Kostuch 197T
SC Penalty T sec) se Penalty T(sec)
Min Max Min Max SD Min Max Min Max SD SC Time

ComOI 805 895 1.93 5.492 32.422 805 882 184.124 365.952 28.112 537 3.4
Com02 731 836 1.36 2.644 39.518 778 844 97.687 471.124 27.481 493 1.5
Com03 760 863 1.34 2.22 36.537 777 856 37.921 358.296 27.674 545 8.4
Com04 1201 1266 4.464 28.98 24.582 1236 1266 116.405 547.007 51.159 760 6.5

Com05 1246 1280 2.112 11.028 13.341 1135 1274 24.546 287.202 55.895 846 8.6

Com06 1206 1334 1.33 3.272 57.365 1133 1307 35.39 163.608 79.892 800 0.5

Com07 1391 1539 2.644 42.402 64.317 1265 1495 33.656 444.843 83.754 859 0.4

Com08 IDOl 1095 1.82 11.086 35.175 1006 1085 112.999 488.015 31.205 634 1.0

Com09 841 893 1.496 8.088 19.659 843 901 187.624 276.562 23.156 547 0.7
Com lO 786 931 4.644 29.045 51.910 799 859 509.827 1355.859 22.887 539 7.9

Com l l 852 917 4.768 15.632 32.645 839 908 121.968 536.796 27.613 557 5.3
Coml2 814 879 3.016 12.632 27.745 788 879 102.515 426.609 34.178 535 8.4
Com13 1008 1174 2.26 6.976 65.796 1009 1070 268.75 477.12 26.334 662 6.7
Com14 1040 1473 5.816 50.675 171.906 1355 1501 128.174 1007.288 60.087 889 2.7
Com15 1165 1259 1.564 8.956 43.339 1161 1270 135.14 227.89 45.079 761 1.6
Com16 887 929 1.092 3.884 15.630 888 970 116.75 354.34 30.867 582 0.3
Com17 1227 1294 2.136 13.048 28.151 1199 1433 160.78 812.405 88.204 820 12.3
Com18 793 871 1.292 2.948 32.337 763 799 119.75 218.52 15.449 516 1.5

Com19 1184 1336 3.228 20.753 58.668 1209 1294 136.296 405.904 35.525 786 3.8
Com20 1137 1254 0.085 02.104 44.283 1205 1273 36.499 95.03 25.667 761 0.2

Table 4.4: Results Obtained by IH3, IH4 and Kostuch on the ITC 2002 Instances.

As we mentioned above, the sequential heuristic method can be very efficient for

generating initial timetables [23, 29, 97]. However, the sequential heuristic alone does

not guarantee the construction of feasible solutions even with the combination of more

than one heuristics [5, 4]. Then, we conducted a third set of experiments. Table 4.5

and Table 4.6 show the results of the sequential heuristic when applied to the Socha

et al. and the ITC 2002 problem instances. Note however that we ran experiments

on the medium and large Socha et al. only and all the 20 problems in the ITC 2002

datasets. We did not run experiments with the sequential heuristic on the small Socha

et al. instances because it is known that the sequential heuristics generates feasible

solution easily for these problems.

In these experiments we also observed that extending the computation time limit

does not make any difference in terms of reducing the hard constraints violations. The

reason is that the pool of unscheduled events keeps shrinking and growing during the

90

assignment process. This experiments also showed that the sequential heuristic is

capable of reducing the hard constraints violations and usually the penalty cost is

very low. However it is unable to find feasible solutions.

The details of the abbreviations in Table 4.5 and 4.6 are as follows: IN in col-

umn one is Instance Name, HCV(Min) is the minimum hard constraints violation,

HCV(Max) is the maximum hard constraints violations, Avg is the average hard

constraints violations for ten runs and SD is the standard deviation in the hard con-

straints violations for ten runs.

IN HCV(Min) HCV(Max) Avg SD

M1 56 75 66.2 6.906

M2 31 47 40 6.59

M3 30 52 38.4 8.619

M4 48 69 58.2 8.043

M5 21 34 27.4 5.128

L 111 127 119.4 6.387

Table 4.5: Results Obtained by the Sequential Heuristic on the Socha et al. Instances.

91

IN HCV(Min) HCV(Max) Avg SD

CompOl 63 78 70.6 5.412

Comp02 48 73 56.8 9.523

Comp03 51 71 63.2 8.871

Comp04 81 100 90.2 8.348

Comp05 41 55 47.4 5.594

Comp06 22 40 33.8 7.429

Comp07 12 18 15.6 2.302

Comp08 26 53 40.4 11.392

Comp09 35 55 41 8.485

Comp10 90 112 100 8.573

Compll 28 52 41.2 8.927

Comp12 32 47 39.8 5.848

Comp13 24 66 48 16.355

Comp14 15 43 30.6 10.807

Comp15 28 44 35.8 5.761

Comp16 38 75 56.2 14.923

Comp17 26 48 39.8 9.1487

Comp18 48 58 53.2 4.207

Comp19 22 32 26.8 3.563

Comp20 40 64 50.8 11.031

Table 4.6: Results Obtained by the Sequential Heuristic on the ITC 2002 Instances.

The results obtained from these third set of experiments and reported in Table 4.5

and Table 4.6, show that the sequential heuristic alone is unable to generate feasi-

ble solutions, no matter how long we extend the computation time. The results in

92

this chapter support our claim that when we disable the local search elements in

our hybrid heuristics, the methods are not capable of generating feasible timetables.

These experiments also indicate that complex combinatorial problems need additional

strategies to help the search escape the local optima, and find a probably optimal

solution, in our case being to find feasible timetables. Furthermore, as shown in 4.4

our approaches are able to generate feasible solutions that are competitive with times

recorded in Kostuch [97].

4.5 Discussion and Summary

The methods proposed in this chapter are necessary to give different options for con-

structing timetable, as not many works have been devoted solely to initialisation

techniques for the UCTTP problem. In this chapter, we have designed and analysed

different initilisation approaches for course timetabling problem that combines the lo-

cal searches and well known sequential heuristics. The experimental results for each

method provides important evidence as a prove that by using the sequential heuristic

or the combination of more than one sequential heuristics alone are unable to find

feasible solution especially when the size of problem is very large. These methods

also give some options for new researchers in combinatorial optimisation area of what

techniques can be used to generate feasible solutions. Note that we do not considered

the issue of soft constraints with the proposed algorithms in this chapter. This was

never our aim, and indeed providing better starting solutions is not the main concern

of the first stage of the two-stage optimization algorithms strategy. Furthermore, we

want to encourage researchers to contribute on initialisation algorithms.

In this chapter, four hybrid initialisation heuristic approaches employing graph

colouring, local search, tabu search and great deluge were proposed as the first stage

to tackle the UCTTP. From our experiments, we found that each components on these

93

hybrid initialisation heuristic relies on each other to reach feasibility in the timetable.

The graph colouring alone only produces feasible solutions for small instances. The

graph colouring method alone is only able to produce close to feasibility for the rest of

the problem instances. Moreover, the proposed methodologies were able to generate

feasible solutions in reasonable time except for the Initialisation Heuristic 4 (IH4).

The methods presented in this chapter are more reliable to reach feasibility compared

to sequential heuristics in Abdullah et al. [5, 4]. These methods also able to generate

feasible solutions in short time with different quality of solutions.

94

Chapter 5

An Investigation of the Great

Deluge Algorithm

5.1 Introduction

In this chapter we present an investigation into the application of the Great Deluge

Algorithm to solve the UCTTP. The great deluge algorithm is a meta-heuristic ap-

proach proposed by Dueck [68Jin 1993 and is inspired by the behaviour that could

arise when someone seeks higher ground to avoid the rising water level during constant

rain. For a maximisation problem, the algorithm seeks to find the highest point on a

certain surface with hills, valleys and plateaus (search space). Then, it starts to rain

constantly and the algorithm walks around (explores the neighbourhood) but never

makes a step into the increasing water level. As it continues raining, the algorithm

can explore higher and lower ground (improving and non-improving positions) but is

continually pushed to a high point (hopefully close to the optimum) until eventually

it cannot escape the rising water level and it stops. The initial water level is set to

a value below the fitness of the initial solution and then is increased in a linear fash-

ion as the search progresses. Note that for a minimisation problem, the water level

starts on a value above the fitness of the initial solution and decreases constantly. In

95

this case, the algorithm seeks to find the lower point by exploring the surface and

maintaining its head below the decreasing water level. One can see that great deluge

is similar to simulated annealing (SA) [2] but while SA accepts non-improving solu-

tions based on probability, great deluge does this in a more deterministic manner by

controlling the water level. Moreover, great deluge is said to be less dependent upon

parameter tuning compared to simulated annealing. In fact, great deluge needs only

two parameters. These parameters are: 1) the amount of computational times that

user wishes to spend on the search and 2) the expected quality of the final solution [22].

In principle, the decay rate at which the water level decreases determines the speed

of the search. The higher the decay rate the faster the water level goes down. Burke

et al. [22],initialised the value of the water level equal to the initial cost function. The

decay rate at each iteration is decreased gradually at constant decay rate and they

interpreted the parameter as a function of expected search time they wish to spend for

the entire search process. Besides that they also interpreted the parameter function

as expected solution quality they might get at the end of the search process. In order

to set the decay rate DoB, they estimate the desired objective function value I(S')

and then calculate 6.B by applying the following formula 6.B = Bo - I(S')/Nmoves

(where Bo is initial level and Nmoves is the desired number of iterations). To estimate

the desired result I(S') they conducted preliminary runs of a simple Hill-Climbing

algorithm. The pseudocode of the so-called extended version of great deluge proposed

by Burke et al. [22] is given in Algorithm 11. Figure 5.5 illustrates the behaviour of

great deluge in the case of a minimising problem. As we can see in Figure 5.5, the

water level decreases linearly guiding the search until at certain point when the wa-

ter level and the penalty cost both converge and then the algorithm becomes greedy

accepting only improving solutions.

The great deluge algorithm was applied to course timetabling by Burke et a1. [22]

96

using the ITC 2002 datasets. Burke et al. observed good performance of great deluge

on all the 20 problem instances. Overall, their experimental results showed superiority

of great del uge.

Algorithm 11: Great Deluge Algorithm
Set the initial solution s;
Calculate initial cost function f (s);
Initial level Bi, = f(5);
Specify input parameter B = Ba;
while (stopping condition not satisfied do) do

l
Define neighbourhood N(s);
Randomly elect the candidate solution s* E N(s);
if (f(s*) ::; f(s)) or (f(s*)(::; B)) then
L accept s*;

Lower the level B = B - !:lB;

In this chapter we propose a modification of the decay rate in the great deluge

algorithm. In the original great deluge method, the water level is set to a value equal

300

250

200...
VI
0u
?: 150
iiie
(Ij
Q.

100

50

0
0

-Penalty Cost(BestSolution)

-Water Level

B= B-6B

The water level and the penalty
cost converge

200000 600000 800000 1000000 1200000 1400000400000

Iterations

Figure 5.l: Linear Great Deluge Behaviour

97

to the penalty of the best solution at the start of the search. Then, the water level is

decreased in a linear fashion until it reaches a value of zero. During the search, the

algorithm explores solutions in the neighbourhood of the best solution. A new solu-

tion with a lower penalty is accepted straight away replacing the best solution. A new

solution with a higher penalty is accepted only if this worse penalty is not higher than

the current water level. The modification to the conventional great deluge method

proposed in this chapter is on the decay rate of the water level. We propose a non-

linear great deluge algorithm in which the water level decay rate is controlled by

an exponential function and floating water level (increase the water level) when the

penalty cost and the water level is about to converge. While Burke et al. [22]run the

hill climbing algorithm in order to estimate the initial penalty cost, the only thing we

need is to control the water level speed and avoid it to converge with penalty cost too

frequently during the search. We do not want the water level and the penalty cost to

converge too soon because this turns the search into an only improving search mecha-

nism. However, when this cannot be avoided, a floating water level will take place as

a mechanism to bring the water level back above the penalty cost. The main reason

to increase the water level is to allow some flexibility in accepting worse solutions

by avoiding the algorithm to become greedy. The linear decay rate of great deluge

behaviour is illustrated in Figure 5.5. We can see that the water level is decreased lin-

early in every iteration and at the point of convergence, the algorithm becomes greedy.

In this chapter, the aim is to conduct a computational study of the non-linear great

deluge (NLGD) algorithm in order to investigate the key mechanisms that make this

algorithm very effective. The rest of this chapter is organised as follows. The non-

linear great deluge algorithm proposed in this chapter as well as its application to

the UCTTP is described in Section 5.2. Experiments and results are presented and

discussed in Sections 5.3 and 5.4. Section 5.3 focuses on the overall performance

of the proposed method and Section 5.4 studies in more detail the effect that the

98

non-linear decay rate has on the overall performance of the algorithm. The work pre-

sented in this chapter was published in the proceeding of the 2008 IEEE Conference

on Intelligent Systems (IS 2008). (see Landa-Silva and Obit [100]) and Intelligent

Systems - From Theory to Practice Obit and Landa-Silva [87J.

5.2 Great Deluge With Non-Linear Decay Rate

Approach

This section presents a modified great deluge algorithm using a non-linear decay rate.

The motivation behind this modification with a non-linear decay rate and floating wa-

ter level is to enhance the feedback between the search activity and the water level.

Early in the search the algorithm is able to reduce the penalty cost considerably and

the gap between the water level and the penalty cost is usually very large. There-

fore, the algorithm must prevent the cost function to go back near to the water level

and for this reason it is important to reduce the gap between the water level and

the penalty cost. Later in the search, it becomes more and more difficult to find the

improvement moves. To manage this situation, we float the water level to prevent the

algorithm becoming greedy. By floating the water level the algorithm tries to diversify

the search by extending its search to a different region of the search. Therefore, at

the early stage of the search this algorithm performs more on the intensification and

less diversification. However, when the search stuck in the local optima the algorithm

begins to diversify the search by floating the water level (increasing the water level).

The main weakness with the linear decay for the water level is that the water level

decreases too quicks in the later stages of the search. At the beginning, the algorithm

seems to produce several successful moves. However when the search is in the middle

or approaching the end of the search and the water level converges with the value of

99

the current best solution, most of the neighbourhood solutions are rejected and this

situation hinders the algorithm in diversifying the search. Therefore, the algorithm

suffers on its own greediness by trapping itself in local optimum. In the conventional

great deluge approach, there is no mechanism to help escaping local optima once the

water level and the best solution penalty cost converge.

5.2.1 Initial Feasible Timetables and Neighbourhood Struc-

tures

To construct feasible timetables, we took the hybrid initialisation heuristic 1 (IHl)

proposed in chapter 4 (Since the performance of the IHI, IH2 and IH3 are similar,

therefore we can select any of this hybrid heuristic to generate feasible solutions). In

addition, we employed neighbourhood moves MI, M2 and M3 in the improvement

search. Moves Ml and M2 were described above. M3 selects three events at random

and performs a permutation between their timeslots at random. Note that the three

neighbourhood moves are based on random search but always seeking the satisfaction

of hard constraints. The three neighbourhood moves used here might consider very

small but this is because we want to better assess the effectiveness of the non-linear

decay rate in the proposed algorithm for guiding the local search.

5.2.2 Non-linear and Floating Water Level Decay

Consider a problem in which the goal is to find the solution that minimises a given

objective function. The distinctive feature of the conventional great deluge algorithm

is that when the candidate solution S* is worse than the current solution S then,
S* replaces S depending on the current water level B. The water level is initially

set according to the quality of the initial solution, that is, B > f(SO) where f(SO)

100

denotes the objective function value of the initial solution So. The decay, i.e. the

speed at which B decreases, is determined by a linear function in the conventional

great deluge algorithm:

B = B -!lB where !lB E ~+ (5.1)

The non-linear great deluge algorithm uses a non-linear decay for decreasing the

water level. The decay is given by the following expression:

B = B x (exp-8(rnd[min,max])) + (3 (5.2)

The various parameters in Eq. (5.2) control the speed and the shape of the water

level decay rate. Parameter (3 represents the minimum expected value corresponding

to the optimal solution. In this paper, we set (3 = 0 because we want the water

level to reach that value by the end of the search. This is because we know that an

optimal value of zero is possible for the problem instances tackled in this thesis. If

for a given minimisation problem we knew that the minimum objective value that

can be achieved is let's say 100, then we would set (3 around that value. If there is

no previous knowledge on the minimum objective value expected, then we suggest

to tune (3 through preliminary experimentation for the problem in hand. The role of

the parameters 6, min and max (more specifically the expression exp-8(rnd[min,max]))

is to control the speed of the decay and hence the speed of the search process. A

random min and max are drawn from the uniform distribution interval [min,maxj

and the min and mix are integer numbers. By changing the value of these three

parameters, the water level goes down faster or slower. Therefore, The lower the

values of min and max, the faster the water level goes down, and in consequence,

the search quickly achieves improvement but it also gets stuck in local optima very

early. To escape from the local optima, the algorithm needs to increase the water level.

In this chapter, the value of the parameters III Eq. (5.2) were determined by

101

experimentation. We tested different combination of parameter values (-6 and

rnd[min, max]) and observe the effect of each combination in order to find suitable

parameters for given problem. Based on the preliminary experiments, we now then

assigned, 6 the values of 5 x 10-10, 5 X 10-8 and 5 x 10-9 for small, medium and

large instances respectively. As said before, the value of j3 for all problem instances

is j3 = O. The values of min and max in Eq. (5.2) are set according to the size of

the problem instance. For medium and large problems we used min = 100000 and

max = 300000. For small problems we used min = 10000 and max = 20000. The

parameter values for small instance is only apply when the penalty cost reach to 10

points. Therefore, it means that from the first iteration the NLGD uses the same

parameter used for medium instances and changes the parameter when it reaches the

penalty cost to 10 points. The use of the non-linear decay rate is shown in the last

else of Algorithm 12 below.

In addition to using a non-linear decay rate for the water level B, we also al-

low B to go up when its value is about to converge with the penalty cost of the

candidate solution S*. This occurs when range ::; 1 in Algorithm 12 (range is the

difference between the water level and the penalty cost). We increase the water level

B by a random number within the interval [Bmin, BmaxJ. All the parameter values

in [Bmin, BmaxJ were identified by experimentation. For small problem instances the

interval used was [2,5J. For the large problem instance the interval used was [1,3].

For medium problem instances, we first check if the penalty of the best solution so

far f(Sbest) is lower than a parameter /low. If this is the case, then we use [1,4J as

the interval [Bmin, Bmaxl. Otherwise, we assume that the best solution so far seems

to be stuck in local optima U(Sbest) > flow) so we make B = B + 2. The concept

of floating water level might be similar to reheating concept in simulated annealing,

however in simulated annealing to reheat the temperature, it uses the geometric re-

heating method. In our method we increase the water level at random. In addition,

102

Algorithm 12: Non-linear Great Deluge Algorithm
Construct initial feasible solution S

Set best solution so far Sbest +- S

Set time Limit according to problem size

Set initial water level B +- f(S)

while elapsedTime :'S time Limit do

Select move at random from Ml,M2,M3;

if (move == Ml) then

S' = Ml(S); {apply Ml to S};

end if

if (move == M2) then

S' = M2(S) {apply M2 to S};

end if

if (move == M3) then

S' = M3(S) {apply M3 to S};

end if

if (f(S') :'S f(S) or f(S') ~ B) then

S +- S' {accept new solution}

Sbest +- S {update best solution}

end if

II range is the difference between the water level (B) and the current best solution f(S')

range = B - f(S')

if (range < l) then

If (Large or Small Problem) then

B = B + rand[Bmin, Bmaxl

else

if (f(Sbest) < flow) then

B = B + rand[Bmin, Bmaxl

else

B=B+2

end if

end if

else

if f(Sbest<=20) and Small then

B = B x (exp-6(rndfmin,max]) + f3

(Apply small instances parameter)

else

B = B x (exp-6(rnd[min,max))) + f3

end if

end if

end while

103

acceptance in simulated annealing uses probability while great deluge does not em-

ploy probability. Full details of this strategy to control the water level decay rate in

the modified great deluge are shown in Algorithm 12.

300 1
-Penalty Cost(BestSolution)

-Water Level250

200
Allow B to go up when
range <= 1

t;; 150
o
u
e..
~ 100
c..

o 50000 100000
Iterations

150000 200000

Figure 5.2: Behaviour of Non-Linear Great Deluge With Non-linear and Floating

Water Level Decay Rate.

The behaviour of the proposed NLGD is illustrated in Figure 5.6. From the outset,

the water level is equal to the current penalty cost. When the search progresses the

current penalty cost improves as shown by the blue line. The water level decreases

quickly to prevent a huge gap between the water level and the current penalty cost.

But when the water level current penalty cost is about to converge the algorithm then

increa es the water level as shown by the red line.

Figure 5.3 illustrates the difference between the linear and non-linear decay rates.

The graph also illustrates the effect of parameters /3, 0, min and max on the non-

104

linear decay rate. The straight line in Figure 5.3 corresponds to the linear decay rate

(with 6B = 0.01) originally proposed by Dueck [68]. In this case, a non-improving

candidate solution S* is accepted only if its objective value 1(S*) is below the water

level B. v\ hen 1(S*) and B converge the algorithm becomes greedy and it is more

difficult for the search to escape from local optima. The two other lines in Figure 5.3

also illustrate the non-linear decay rate with different values for {J, decay rate with

b = 0 an I b = 10. The corresponding values for the parameters 6 min and max are

al 0 shown.

300

• With (3= 0 --With (3 = 10 -- Linear Decay Rate

Non-Linear Decay Rate (~= 0): {j = - 0.0000005, Min = 10000, Max = 30000
Non-Linear Decay Rate (~= 10): {j = - 0.0005, Min = 500, Max = 1000
Linear Decay rate = 0.01_ 250

cs
.~ 200
E·c
~ 150

........

'.
'.

OJ
>.,
_, 100
B
3 50

'.'"'. " .
21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

Iterations (x 0000)

Figur 5.3: Comparison Between Linear (Eq. 5.1) and Non-linear (Eq. 5.2) Decay

Rates and Illustration of the Effect of Parameters {J, 6,min and max on the Shape of

the Non-linear Decay Rate in the Great Deluge Algorithm.

5.3 Experiments and Results

To measure the impact of the modified non-linear water level decay rate, we conducted

everal experiments using the UCTTP benchmark instances by Socha et al. [152]. It

is known that for each instance there exists at least one solution (timetable) with an

105

penalty function value equal to zero. For each type of dataset (in terms of size), a

fixed computation time (timeLimit) in seconds was used as the stopping condition:

2500 for small problems, 4700 for medium problems and 6700 for the large problem.

This fixed computation time is only for the improvement phase, i.e. the non-linear

great deluge starting from a feasible solution. For each problem instance we executed

the non-linear great deluge algorithms for 20 times.

In the first set of the experiments, we compared the NLGD to other algorithms

reported in the literature. The algorithms considered include MAX-MIN Ant Sys-

tem [152]' choice function hyper-heuristic [27], fuzzy multiple heuristic ordering [15],

VNS with tabu search [5], Randomised Iterative Improvement with neighbourhoods [4],

Graph-based hyper-heuristic [29] and Hybrid Evolutionary Algorithm [3]. In these

experiments we want to evaluate how beneficial it is to modify the water level decay

rate from the linear to non-linear and floating water level in the great deluge algo-

rithm.

Table 5.1 shows the results obtained by the NLGD and by the original great del-

uge algorithms alongside other results reported in the literature. Table 5.2 shows the

penalty of the initial solution provided to the great deluge approaches.

Table 5.1 shows the comparison of non-linear great deluge with the existing state-

of-the-art approaches found in the literature. The best results are in bold whereas,

the term "x%Inf' in Table 5.1 indicates a percentage ofruns in which the approaches

failed to generate feasible solutions. From the table it is clear that our approach is able

to produce feasible solutions for all II instances. The results for the NLGD also show

that the proposed modified decay rate makes the algorithm competitive to other ap-

proaches that have been applied on these instances. When compared to a local search

method and ant algorithm by Socha et al [152], the Graph hyper-heuristic by Burke

106

Table 5.1: Comparison of Results Obtained by the Non-Linear Great Deluge (NLGD)

Proposed in this Chapter Against the Best Known Results from the Literature for

the 11 Socha et al. Problem Instances.

~ ~
Cl Cl
0 0
...:l ...:l
Z b en Z ::r: ::r: E-< 0~ en < en ::r: I ::r:..- bO ...:l :::8 ...:l U ::r: en <
CIl > ~ < co ~ Z I'Ll :::8c.l ~co < ~ :::8 0 0 o :> ::r: ~

SI 3 3.9 8 1 0 0 6 1 0 0 10

S2 4 5 11 3 0 0 7 2 0 0 9

S3 6 7 8 1 0 0 3 0 0 0 7

S4 6 7.3 7 1 0 0 3 1 0 0 17

S5 0 2 5 0 0 0 4 0 0 0 7

Ml 140 152 199 195 175 242 372 146 317 221 243

M2 130 147.2 202.5 184 197 161 419 173 313 147 325

M3 189 207.2 77.5%Inf 248 216 265 359 267 357 246 249

M4 112 129.8 177.5 164.5 149 181 348 169 247 165 285

M5 141 174.7 100%Inf 219.5 190 151 171 303 292 130 132

L 876 962.2 100%Inf 851.5 912 1068 80%Inf 529 1138

NLGD is Non-Linear Great Deluge [100].

RRLS is the Local Search and Ant System in [153]

MMAS is the MAX-MIN Ant System in [152]

GALS is Genetic algorithm and local search by Abdullah and Thrabieh [7].

RIICN is Randomised iterative improvement algorithm by Abdullah et al. [3].

GBHH is Graph-based Hyper-heuristic by Burke et al. [29].

CFHH is the Choice Function Hyper-heuristic in [27]

VSN- T is Variable neighbourhood search with tabu by Abdullah et al. [5].

HEA is Hybrid evolutionary approach by Abdullah et al. [4].

FMHO is fuzzy multiple heuristic ordering [15]

SI-S5 represent small problem instances 1 to 5

MI-M5 represent medium problem instances 1 to 5

L represents the large problem instance

107

et al. [29] and the fuzzy approach by Asmuni et al. [15], the Non-linear great del-

uge (NLGD) produced better solution or competitive results on the small instances.

Moreover, NLGD is able to find the global optimum for small5 unlike GBHH and

FMHO approaches. Compared with other algorithms like genetic algorithm and local

search by Abdullah and Turabieh [7], Randomised iterative improvement algorithm

by Abdullah et al. [4],Variable neighbourhood search with tabu by Abdullah et al. [5]

and Hybrid evolutionary approach by Abdullah et al. [3],we see that NLGD performs

less competitive for instances Sl, S2, S3 and S4. For medium instances, NLGD pro-

duced better solutions in four out of five compared to all approaches. Even though

NLGD could not beat the best result for instance M5, the best result it managed

to find is not too far from the best. Finally for the large instance, NLGD produces

comparable results when compared to other approaches.

Table 5.1 shows the comparison of NLGD and the other results reported in the

literature. Table 5.1 make an interesting evaluation of our proposed modification of

the decay rate of the great deluge algorithm. It can be seen that NLGD outper-

formed some of the best known results obtained by other algorithms. In addition

NLGD is able to solve one out of the five small instances to optimality within 20

runs. It also can be seen that the NLGD approach produces better or equivalent

results on the small instances when compared against RRLS, GBHH and FMHO.

In more detail NLGD produced better results for all small instances when compared

to RRLS and FMHO. For Sl and S2, and S5, NLGD produced better results when

compared to GBHH. However, there are alteration in the penalty cost for the set

of medium instances specifically M1, M2, M3 and M4, where NLGD has shown sig-

nificant improvement over other algorithms. The first two comparisons are results

against MMAS and CFHH. NLGD are better than the MMAS for all medium in-

stances. Comparisons are also made with results from other methods such as VNST,

GBHH and RIICN. NLGD results are better than VNST, GAHH and RIICN in all5

108

medium instances. For M5, even though NLGD unable to improve the solution when

compared to FMHO and HEA, however, the quality of the solution is still competitive.

Table 5.2 presents a comparison of the results obtained for all three categories

(small, medium and large) instances by the modified great deluge (NLGD) and the

reference algorithm, the conventional great deluge (GO), in addition to comparing

to best results obtained by other approaches. It is clear that the modified great del-

uge (NLGO) performs significantly better than any of the reference algorithms on

instances Ml, M2, M3 and M4. It is however interesting to observe that while NLGO

performs better than GO and is competitive for M5 with HEA, the HEA produced

solution better than those produced by NLGO in the large instance. Hence, the pro-

posed non-linear great deluge seems particularly effective on the medium problem

instances producing new best results four out of five medium instances. Based on the

results shown in Table 5.1 and Table 5.2 we can claim that our algorithm outperforms

some of the previous published results and it is also competitive on the rest of the

instances.

109

Table 5.2: Comparison of Results Obtained by the Non-linear Great Deluge (NLGD)
Proposed in this Paper Against the Best Known Results from the Literature for the

11 Socha et al. Problem Instances.

Init. Sol. GD NLGD Best Known

Sl 198 17 3 o (VNS-T)

S2 265 15 4 o (VNS-T)

S3 214 24 6 o (CFHH)

S4 196 21 6 o (VNS-T)

S5 233 5 0 o (MMAS)

Ml 858 201 140 146 (CFHH)

M2 891 190 130 147 (HEA)

M3 806 229 189 246 (HEA)

M4 846 154 112 164.5 (MMAS)

M5 765 222 141 130 (HEA)

L 1615 1066 876 529 (HEA)

MMAS is the MAX-MIN Ant System in [152]
CFHH is the Choice Function Hyper-heuristic in [27]
VNS- T is the Hybrid of VNS with Tabu Search in [5]
HEA is the Hybrid Evolutionary Algorithm in [4]
SI-S5 represent small problem instances 1 to 5
MI-M5 represent medium problem instances 1 to 5
L represents the large problem instance

110

In the second set of experiments we tested NLGD on the International Compe-

tition instances. Table 5.3 presents the best values obtained by different algorithms

including NLGD. The table gives us an idea about the variability of the performance

for different algorithm proposed in the competition. From the Table 5.3, shows that

even though our NLGD did not obtained the best results but it is still competitive

when compared to the results obtained by the fifth to ninth places in the competi-

tion. The proposed algorithm is mainly tuned for the 11 instances and no modification

have been done in order to tackle the international timetabling competition instances.

Therefore the results obtained are only moderate when competing with solvers de-

signed specifically for the competition.

In more detail, Figures 5.4-5.9 summarise the performance of NLGD compared

to other allgorithms. In these graphs, the x-axis represents the instance type while

the y-axis represents the penalty cost. Figure 5.5 shows the strong performance of

NLGD on the medium and large instances. Figures 5.6-5.9 show details of the results

achieved by NLGD when compared to the algorithms from the competition.

111

Table 5.3: Comparison of results obtained by the non-linear Great Deluge
(NLGD)with other approaches for the International Timetabling Competition
on the 20 instances. Details of the competition algorithms are available at:

http://www.idsia.ch/Files/ttcomp2002/results.htm.

Instances 1st 2nd 3rd 4th 5th 6th 7th 8th 9th NLGD

com02 118
comOl 45 61 85 63 132 148 178 211 257 153

com03 120
25 39 42 46 92 101 103 128 112

65 77 84 96 170 162 156 213 226

com05 398
corn04 115 160 119 166 265 350 399 408 441 358

corn06 129
102 161 77 203 257 412 336 312 299

13 42 92 133 246 246 169 209

com08 194 111
com07 44

6
52 118 177 228 225 281 99 99

29

12
54 32 66 134 125 210 214

cornlO 153
com09 17 50 184 51 139 126 154 164 175 119

com11 273 149
61 72 90 81 148 147 153 222 308

44 53 73 65 35 144 169 196

com13 364 240
com12 107 110 79 119 290 182 219 282 242 229

com14 156 282
78 109 160 251 192 248 315

52

91

93 36 197 230 316 267 345

com16 171 91
com15 24 62 27 114 140 209 235 185 95 172

com17 148 356
22 34 300 38 114 121 132 185

86 114 212 186 327
31 38 39 40 87 98 107 153 117

313 409

com19 228
com18

79
190

com20 72
44 128 86 185 256 325 309 334 414
7 26 0 17 94 185 185 149 113

1st SA-based Heuristic (Three-Phase Approach): Kostuch [97]
2nd Tabu Search: Brigitte Jaumard, Jean-Franois Cordeau and Rodrigo Morales [43]
3rd Great Deluge: Yuri Bykov [22]
4th Local Search Paradigm (Hill Climbing, Tabu Search and Multi-swap shake): Luca Di Gaspero

and Andrea Schaerf [63]
5th local search heuristic: Halvard Arntzen, Arne L0kketangen [13}
6th tabu search. : Alexandre Dubourg, Benoit Laurent, Emmanuel Long and Benoit Salotti [67}

7th tabu Search: Gustavo Toro, Victor Parada [157}
8th Guided Simulated Annealing and Local Searches: Roberto Montemanni [119}

9th Local Search: Tomas Muller [125}
NLGD Non-Linear Great Deluge

112

http://www.idsia.ch/Files/ttcomp2002/results.htm.

18

~- -
l---

I-- f- t-

v- -
I 'I
1] :I t r :Ii J~

16

14

12

51 52 53 54 55

Instances

.RRLS

.MMA$

.GALS

.RIICN

.G8HH

.CFHH

.VNS-T

Figure 5.4: Detailed comparison of non-linear great deluge against other algorithms

for small instances.

1600

1400

.NlGD
1200

• RRLS

1000 .MMAS
0v .GALS
l: 800~ .RlieN~
Q,

600 .GBHH

.CFHH
400

.VNS-T

200 HEA

.FMHO

Ml M2 M3 M4 M5

instances

Figure 5.5: Detailed comparison of non-linear great deluge against other algorithms

for medium instances.

113

450

400

350

300
10
0 250u
?
~ 200~

150

100

50

.lst

Com4 CornS

.4th

.5th

.8th

9th

aNLGD

Coml Com2 Com3

Instances

Figure 5.6: Detailed comparison of non-linear great deluge against other algorithms

for comOl-com05 instances.

Com9 ComlO

.lst

Com6 Com7 ComB

.5th

.6th

.7th

.8th

9th

.NlGD

Instances

Figure 5.7: Detailed comparison of non-linear great deluge against other algorithms

for com06-comlO instances.

114

400

350

300

1;; 250
0
u

~ 200

s
0. 150

100

SO

.1st

Com14 Com IS

.2nd

.5th

.9th

.NlGO

Comll (oml2 ComB

Figure 5.8: Detailed comparison of non-linear great deluge against other algorithms

for comll-com15 instances.

Instances

.lst

450

400

350

300
1;;
0 250u

1 200

150

100

SO

.2nd

83rd

.4th

.5th

.6th

.7th

.8th

9th

aNlGD

Com19 ComlO

Figure 5.9: Detailed comparison of non-linear great deluge against other algorithms

for com16-com20 instances.

Com16 Coml7 Com18

Instances

115

5.4 Effect of the Non-linear Decay Rate

In this section we present more results to illustrate the positive effect that the non-

linear decay rate has on the performance of the great deluge algorithm. Figures 5.10

to 5.12 show the performance oflinear great deluge across iterations for three problem

instances while Figures 5.13 to 5.15 do the same but for the non-linear version of

the algorithm. Each graph in these figures shows the search progress for one sample

run of the corresponding algorithm. The dotted line corresponds to the water level

and the solid line corresponds to the penalty of the best solution which should be

minimised. Figures 5.10 to figure 5.12 show that the water level in the original great

deluge decreases at the same rate in every iteration while in the modified great deluge

proposed in this paper the water level decreases exponentially according to Eq. (5.2).

The first interesting observation is that the relation between the water level and

the best solution varies for different instance sizes. The rigid and pre-determined

linear decay rate appears to suit better the medium problem instances while for the

small and large instances this decay rate seems to be less effective in driving the

search for the best solution. Figure 5.10 shows that in the small instance the water

level is too high with respect to the best solution and this provokes that the best

solution is not 'pushed down' for the first 60000 or so iterations, i.e. improvements to

the best solution are rather slow. However, for the medium (Figure 5.11) and large

(Figure 5.12) instances the water level and the best solution are very close from the

start of the search so the best solution is 'pushed down' as the water level decreases.

We can also see that in the medium and large instances there is a point after which the

water level continues decreasing but the best solution does not improve further, i.e.

the search stagnates. That is, when the water level and the best solution 'converge',

the search becomes greedy and improvements are more difficult to achieve while the

water level continues decreasing. This occurs around iteration 110000 in the medium

instance and around iteration 8000 in the large instance. We argue that the simple

116

linear water level decay rate in the original great deluge algorithm does not adapt

easily to the quality of the best solution. This is precisely the shortcoming that we

tackle in this chapter and hence our proposal for a non-linear great deluge algorithm.

Then, in the non-linear version of the algorithm, the decay rate is adjusted at ev-

ery iteration and the size of the problem instance being solved is taken into account

when setting the parameters {3, 8, min and max as explained in Section 5.2.2. We

can see in Figures 5.13 to 5.15 that this modification helps the algorithm to perform

a more effective search regardless of the instance size. We can see that in the three

sample runs of the non-linear great deluge algorithm, if drastic improvements are

found then the water level also decreases more drastically. But when the improve-

ment to the best solution becomes slower than the decay rate also slows in reaction

to this. Moreover, to avoid (as much as possible) the convergence of the water level

and the best solution, the water level is increased from time to time as explained in

Section 5.2.2. This 'floating' feature of the water level explains the small increases

on the best solution penalty observed in the graphs of Figures 5.13 to 5.15. As in

many heuristics based on local search, the rationale for increasing the water level is

to accept slightly worse solutions to explore different areas of the search space in the

hope of finding better solutions.

117

Linear Great Deluge (SmaIl5)

~ 200

f

300 --
_ Best Solution

__'-" - - - - __ Water Lewl ------------------~-~--
......

--------------------------~~--------------------------------------......

250

50 ---------------------------

150

100

o 200000 400000 600000 800000 1000000 1200000 1400000
Iterations

Figure 5.10: Behaviour of Linear Great Deluge on Instance small5.

Linear Great Deluge (Medium1)

900
800
700
600

~ 500
~! 400
If 300

--
...... _Best Solution

------.,;;.:----------- __ Water Lewl --------------------------------

-------- --,,~--

200 ---
--

100
o+------,-----,------.------.-----,------.-----~~--~

o 20000 40000 60000 80000
Iterations

100000 120000 140000 160000

Figure 5.11: Behaviour of Linear Great Deluge on Instance mediuml.

118

Linear Great Deluge (Large)

1800 ~~~~~~~~~-----~~-~~~~~--~~~~-~--~-~---~~~-~~~--~----~~-----~-~~~~~-~
- Best Solution _~_~~__~__~~ ~~~ _

- - Water Le-.el
1600
1400

Ui 1200 ,
8 1000 --------------------~--
~ "~ 800 -------------------------~,,---
i~ 600 ----------------------------------~-------------------------------~--~-......

400 --~---------------------------~--......
200 ---~-~----------------~-~~~-
o+-----,-----,-----.----,,----,-----,---'~,-----,-----,

o 5000 10000 15000 20000 25000 30000 35000 40000 45000
Iterations

Figure 5.12: Behaviour of Linear Great Deluge on Instance large.

Non-Linear Great Deluge (SmaIl5)

300 ~- -~~~~- -~~-.----~----,-

250
- Best Solution

~~ ~ - - Water Level ~_~_~~- ~~- - ~- ~ ~~ ~_~_~ _

2005
~ 150
j...100

-- ------------------

-- ---------_

50

o+---~~~~~----~--~--~~~~~~~~ ___
o 20000 40000 60000 80000 100000120000 140000 160000 180000 200000

Iterations

Figure 5.13: Behaviour of Non-Linear Great Deluge on Instance small5.

119

Non-Linear Great Deluge (Medium1)

900 ------- --
800
700

________________ _ Best Solution _

- - Water Lewl

o 600 - --
oo 500
~ii 400 ---- --
c
Q)

Q. 300

--_-_-----------

200
100 ---_-------
O+-------~-------r-------,--------,-------,-------~

o 50000 100000 150000 200000 250000 300000
Iterations

Figure 5.14: Behaviour of Non-Linear Great Deluge on Instance mediuml.

Non-Linear Great Deluge (Large)

--1800
1600~-..1400
1200

~ 1000
i!'
~ 800
cf 600

400
200

_ Best Solution _
__ Water Level

"._--~~~-~-~-~--~-~--~-~-:--~-~-~~~---------------------

---_-----
---_-----------

o+------,-------.------~-----,,------,------,-------
o 10000 20000 30000 40000 50000 60000 70000

iterations

Figure 5.15: Behaviour of Non-Linear Great Deluge on Instance large.

120

The above observations help us to summarise the key differences between the lin-

ear (original) and non-linear (modified) great deluge variants:

Linear Great Deluge

1. The decay rate is pre-determined and fixed.

2. Mainly, the search is driven by the water level.

3. When the best solution and water level converge the algorithm becomes greedy.

Non-Linear Great Deluge

1. The decay rate changes every iteration based on Eq (5.2).

2. Mainly, the water level is driven by the search.

3. This algorithm never becomes greedy.

5.5 Conclusion

This chapter focused on extending the conventional great deluge algorithm proposed

by Dueck [68] to a version with a non-linear and floating water level decay rate. We

applied this modified algorithm to the 11 Socha et al. [152] instances of UCTTP. Based

on the experimental results, we showed that the non-linear great deluge outperformed

previous results reported in the literature in four instances while still competitive in

the other seven instances. The proposed approach found new best solutions in four

of the five medium problem instances. Unfortunately, it seems that this method is

121

not very effective on the small instances. We speculate that this is because the size

of the neighbourhood in those instances is not that large to allow the non-linear and

floating water level to take its time to diversify and intensify the search repeatedly.

Another potential explanation is that the neighbourhood structures might not be ef-

fective anymore once the penalty cost reaches a very low value. In order to prove these

speculations, future work could run tests as follows: Firstly, when the penalty cost is

very low, increase the neighbourhood size by adding additional moves. If increasing

the water level could result in an improvement in the solutions or reaching the opti-

mality, then it proves that the neighbourhood size is not large enough to allow the

diversification and intensification. Secondly, we record the success rate for each move,

counting how many time each move changes or improves the solution. If each moves

stop showing any significant success rate, then, we can say that the moves are not

effective anymore when the penalty cost reaches a very low value. Another possible

test which could be done is we could apply single moves whenever the penalty cost

reaches the lowest point, and observe whether any of the moves improve or change

the solution.

122

Chapter 6

An Evolutionary Non-Linear Great

Deluge Algorithm

6.1 Introduction

The central aim of this chapter is to investigate an extension of the non-linear great

deluge algorithm presented in the previous chapter to an evolutionary version by

incorporating a population and a mutation operator, as an approach for the uni-

versity course timetabling problem. This technique might be seen as a variation of

memetic algorithms in particular as presented in [3, 34, 135, 136]. The popular-

ity of evolutionary computation approaches has increased and become an important

technique in solving complex combinatorial problems. They are powerful techniques

and have been applied to many complex problems e.g. the travelling salesman prob-

lem [123, 84, 83], university exam timetabling [30]and university course timetabling

problems [33, 136, 135].

The chapter starts with an overview of evolutionary algorithms in Section 6.2

and reviews the different variants of evolutionary approaches found in the literature.

Section 6.3 gives the description of the evolutionary non-linear great deluge proposed

123

here for solving the university course timetabling problem. Experiments and results

are presented in Section 6.4 and the chapter ends with a conclusion in Section 6.5.

6.2 Overview of Evolutionary Algorithm

Although different variants of evolutionary algorithms exist in the literature, there is

a common underlying idea that underpins the basic structure of these algorithms [70]:

many evolutionary algorithms are population-based meta-heuristics(here we consider

only this type of approaches). These algorithms maintain a population of solutions

and conduct the search process by simulating natural selection based on Darwin's

theory of survival of the fittest. This means that only strong individual solutions who

fulfil the given criteria will survive and participate in the selection for reproduction

before being subject to the process of recombination and mutation. Sastryet al. [147]

explained various types of recombination and mutation operators. Recombination is

an operator which combines two or more individuals from the mating pool in order

to create one or more new candidate solutions, whereas mutation is usually designed

to add more diverse solutions to increase the chances of exploring large areas of the

search space [147]. Different than recombination, mutation is only applied to one

candidate solution and produces one new solution. Even though numerous variations

of evolutionary algorithms have been proposed in the literature, according to Eiben

and Smith [70]they are all followed the same framework as shown in pseudo-code 13

and Figure 6.1 (both pseudo-code and Figure are cited from [70]). That is, evolu-

tionary algorithms consist of a population which evolves and produces a population

of individuals (hopefully diverse and with high fitness) in every generation.

124

Algorithm 13: General Procedure of an Evolutionary Algorithm.
Set the initial solution with random candidate solutions

Evaluate each candidate solution

while (Termination condition is not satisfied) do

l
Step 1: Select parents

Step 2: Recombine pairs of parents

Step 3: Mutate the resulting offspring

Step 4: Evaluate the new candidate

Step 5: Select individuals for the next generation;

Tam

Paent seleCtIOn .. Parents
100

~
--p

PopUatton

M

IF

00II0n
OffsprIng

Recomblnallon

utaHon

Figure 6.1: Flow Chart Showing the General Procedure of an Evolutionary Algorithm.

Even though crossover is one of the main components in Genetic Algorithms

and other Evolutionary Algorithms, Moscato and Norman [123] and Radcliff and

Surry [140] have argued whether crossover should the main operator in Genetic Al-

gorithms. It is not an unusual practice that some papers present different implemen-

tations of Evolutionary Algorithms in which local search are used as a replacement

for crossover. For example, Ackley [8] proposed a genetic hill-climbing approach in

which the crossover operator only plays a small role in the algorithm. In addition,

according to Baeck et al. [16] the Evolutionary Strategies community has emphasised

on mutation rather than crossover.

125

6.3 Evolutionary Non-Linear Great Deluge

As discussed in the introduction and suggested in the literature, crossover can be

replaced by other operators. For example Ackley [8] used hill-climbing as an oper-

ator in place of crossover after arguing that crossover was not effective and played

less dominant role. Gorges-Schleuter [82]also provides empirical evidence that local

search can be an operator that provides better improvement when added as one of the

operators in evolutionary algorithms. Therefore, in this work, we don't use crossover.

Instead, we only focus on population management, mutation and local search (non-

linear great deluge) as our operators. Using crossover would cause damage to the

solutions produced, in the sense that crossover may yield infeasible solutions thus

needing a repair operator to bring the solution back into the feasible region.

The motivation behind the introduction of evolutionary operators into our great

deluge algorithm come from the interest for striking a good balance between diver-

sification and intensification, which are the main strategic forces in metaheuristic

approaches. Therefore, a good search technique must balance these two forces in or-

der to achieve robustness and effectiveness in the search as well as to help the search

activity to find optimal or near optimal solutions. Diversification is the ability to

reach not yet visited regions in the search space and it can be achieved by disturbing

some of the solutions using special operators (in our case, we use mutation) when nec-

essary. Intensification is about exploiting the current search space regions by using

local search (non-linear great deluge in our case) to obtain better quality of solutions.

We now describe the overall hybrid strategy, an extension of our previous NLGD

algorithm which produced very good results on the UCTTP as was shown in the pre-

vious chapter. Our previous algorithm maintains a single-solution during the search.

Here, we extend it to a population-based evolutionary approach by incorporating

tournament selection, a mutation operator and a replacement strategy.

126

Generate
Population

1 II the term ination .1
condition ismet Terminate.. Pool of "l

Solutions

1 Replace the worst

individual solution in

Tournament the pool with the new

Selection f- solution

to

'Ip s o.s 1 If the new solution
is better than one of
the solutions in the

Mutation l/p>O.S pool

1
Non-Linear Great ~

Deluge

lIthe new
solution isworst

Discard the new
solution

Figure 6_2: The Evolutionary Non-linear Great Deluge Algorithm.

Figure 6.2 shows the components of the proposed hybrid algorithm. It begins

by generating an initial population of size P which becomes the pool of solutions.

Then, a number of generations take place and in each of them the algorithm works

as follows. First, tournament selection takes place where five individuals are chosen

127

at random from the pool of solutions and the one with the best fitness is selected

(Xi). With probability less or equal to 0.5, a mutation operator is applied to Xl while

maintaining feasibility and obtaining solution z'", The probability value was deter-

mined by experimentation (If we apply the mutation to often or too low, no much

improvement can be found). This is followedby applying the non-linear great deluge

algorithm to xm and obtaining an improved solution Xi. Then, the worst solution in

the pool of solutions, XW (ties broken at random) is identified and if Xi is better than

XW then xi replaces XW in the pool of solutions. This hybrid algorithm is then exe-

cuted for a pre-determined amount of computation time according to the size of the

problem instance. Note that this is a steady-state evolutionary approach that uses

non-linear great deluge for intensification and a mutation operator for diversification.

The following subsections describe each of the algorithm components is more detail.

6.3.1 Solution Representation

Each solution in the population uses a direct representation, consisting of a chromo-

some with information on what events or courses are assigned into a pair of timeslot-

room. In addition, the chromosome is also used to keep information on forbidden

assignments for a particular timeslot and room. Figure 6.3 illustrates the direct en-

coding of an individual solution used in the population. The given example shows

that, e, is an event number i, i E {I,n} where n is the number of events that need

to be scheduled in available timeslot t, t E {I, k} where k is the number of available

timeslots. For example event e4 is assigned to timeslot 1 in room 1.

128

·

Timeslotk

Rooml e34

Room2 el8

Room3 eS6

Room4 e90

RoomS el2

Timeslot 1 Timeslot 2

Room 1 e4 Room 1 el4

Room2 e45 Room2 eS2

Room3 e2S Room 3 e 23

Room4 es Room4 el9

RoomS el4 Room S elOo

Figure 6.3: Solution Representation (direct encoding) of a Timetable where Events

are Assigned to Pairs timeslot-room.

6.3.2 Initialisation of the Population

We use initialisation heuristic 3 (IH3) to create the initial timetables. That heuristic

was described in chapter 4. We would remember that the IH3 initialisation method

incorporates two well-known graph colouring heuristics in order to generate feasible

solutions, largest degree (LD) and saturation degree (SD). This algorithm attempts

to place all events into timeslots while avoiding conflicts. The detail of the initialisa-

tion algorithm can be found in Algorithm 9 of chapter four, subsection 4.3.3, in the

initialisation heuristic.

6.3.3 The Evolutionary Operator: Mutation

With a probability less or equal to 0.5 (p ::; 0.5), the mutation operator is applied

to the solution selected from the tournament (z"). The mutation operator selects

at random one out of three types of neighbourhood moves in order to change the

solution while maintaining feasibility. These moves are described below.

129

1. Move Ml. Selects one event at random and assigns it to a feasible timeslot and

room.

2. Move M2. Selects two events at random and swaps their timeslots and rooms

while ensuring feasibility is maintained.

3. Move M3. Selects three events at random, then it exchanges the position of the

events at random and ensuring feasibility is maintained.

6.3.4 Non-linear Great Deluge Search

In this chapter we propose two different stopping conditions for the algorithm. Since

non-linear great deluge plays the main role in the proposed evolutionary algorithm,

we want to investigate which are the adequate criteria for stopping the non-linear

great deluge search before it goes to the next process which is update of the pool of

solutions (see Figure 6.2). It should be clear that the non-linear great deluge search

promotes intensification in the overall evolutionary method. The detail of the non-

linear great deluge can be found in the previous chapter. The use of a population

of solutions and the mutation operator promote diversification. Then, by setting the

stopping condition for the non-linear great deluge search, we are effectively setting (in

a simple manner) the balance between intensification and diversification in the overall

evolutionary approach. The first strategy for this balance is to stop the non-linear

great deluge after 8000 idle iterations or 30 seconds of computational time, what-

ever happens first. The second strategy is to stop the non-linear great deluge after 3

seconds of computational time. The first strategy gives more time to intensification

while the second strategy attempts to promote diversification more by stopping in-

tensification sooner.

In general, the whole hybrid evolutionary process can be described as follows.

After generating the initial set of solutions, this population then becomes the pool of

130

individual solutions (refer to Figure 6.2). After the tournament selection of a solution

s, this solution is mutated or not as explained above according to the set probability.

Then, the non-linear great deluge search takes place over the solution s. The non-

linear great deluge search continues until the given stopping condition, one of the two

strategies explained above, is satisfied.

We implemented three variations of the proposed evolutionary algorithm in order

to examine the performance of the algorithm when each of the two stopping condi-

tions is used and also when the mutation operator is removed. The three algorithm

variants are: Evolutionary Non-linear Great Deluge Without Mutation (ENLGD-

M), Evolutionary Non-linear Great Deluge using stopping condition 1 (ENLGD-1)

and Evolutionary Non-linear Great Deluge using stopping condition 2 (ENLGD-2).

Both ENLGD-l and ENLGD-2 have the mutation operator incorporated. The aim

of examining these algorithm variants is to assess the robustness of the proposed evo-

lutionary algorithm with different settings. By robustness we mean the reliability of

the algorithm to produce high-quality of solutions under different settings. Table 6.1

shows the various parameter settings for the three algorithm variants examined here.

Table 6.1: Parameter Settings for the Three Variants of the Proposed Evolutionary

Non-linear Great Deluge Algorithm
Parameter ENLGD-M ENLGD-l ENLGD-2

Mutation no mutation applied 0.5 0.5

Stopping condition idle 8000 iterations idle 8000 iterations every 3 seconds

or 30 seconds or 30 seconds of computation time

Replacement Steady state Steady state Steady state

Stopping time for small (2600 seconds) small (2600 seconds) small (2600 seconds)

whole search medium (7200 seconds) medium(7200 seconds) medium (7200 seconds)

process large (10000 seconds) large (10000 seconds) large (10000 seconds)

131

6.4 Experiments and Results

We now evaluate the performance of the proposed evolutionary algorithm. For each

problem size, a fixed computation time (timemax) in seconds was used as the stop-

ping condition for the overall algorithm: 2600 for small problems, 7200 for medium

problems and 10000 for the large problem. This fixed computation time is for the

whole process including the construction of the initial population. We executed the

proposed evolutionary algorithm 20 times for each problem instance.

Table 6.2 shows the experimental results on the Socha et al. instances of the uni-

versity course timetabling problems of the three algorithm variants described above,

i.e ENLGD-M, ENLGD-1 and ENLGD-2. The Table shows the best and the aver-

age results obtained by each method. For each dataset, the best results are indi-

cated in bold. As shown in Table 6.2, the hybrid evolutionary algorithm described

here (ENLGD-1 and ENLGD-2) clearly outperforms our previous single-solution al-

gorithm (NLGD). The results also show that both ENLGD-2 and ENGLD-1 produce

better results when compared to ENLGD-M. This means that the tailored mutation

operator makes a significant impact to the good performance of ENLGD. Besides

that, the results also show that ENLGD-2 outperforms ENLGD-1 and ENLGD-M.

This means that balancing the intensification and diversification helps the Evolution-

ary Non-linear Great Deluge (ENLGD) approach to better explore the search space

rather than run the intensification for longer which makes the local search to converge

earlier (as in the ENLGD-1 case). The intensification phase is mainly carried out by

the non-linear great deluge procedure. In great deluge phase, it intensively looks for

quality solutions. Notice that the main task of non-linear great deluge is the search

intensification, however this approach also able to diversify the search procedure by

accepting the worst solution as long as the new found solution is less than or equal

to the water level and by allowing the water level to go up whenever the objective

132

function and the water level are about to converge. The evolutionary operator (mu-

tation, selection and replacement) objective, on the other hand is mainly associated

with diversification search. Similar to non-linear great deluge, evolutionary algo-

rithm is also able to perform the intensification by mean of replacing the individual

solution in the population pool in every generation. In results of balancing the in-

tensification and diversification, now the proposed ENLGD able to satisfying all the

soft constraints at least one solution, for all small instances that previously unable to

reach by NLGD. Obvious improvement can be seen also in the medium and large in-

stances, where ENLGD-2 managed to improve the penalty values obtained by NLGD.

Table 6.2: Comparison of NLGD, ENLGD-M, ENLGD-1 and ENLGD-2 on the Socha

et al. UCTTP Instances.

IN NLGD ENLGD-M ENLGD-l ENLGD-2

Best Avg Best Avg Best Avg Best Avg

SI 3 3.6 0 1.55 0 0.95 0 0.7

S2 4 4.85 0 2.2 0 1.45 0 0.3

S3 6 6.85 1 2.7 0 1.3 0 1.05

S4 6 6.85 0 1.7 0 1.35 0 1.25

S5 0 1.75 0 0 0 0 0 0

Ml 140 160.75 144 176.65 125 140 59 84.8

M2 130 156 140 162 123 149.1 51 93.8

M3 189 212.1 182 204.8 178 199.3 75 121.05

M4 112 138.3 135 164.6 116 130.2 48 72.8

M5 141 192.6 123 173.15 129 168.6 65 110.2

L 876 974.3 970 1026 821 946.1 703 819.2

Further investigation was also carried out to inspect the overall performance of the

proposed evolutionary algorithm. Figures 6.4, 6.5 and 6.6 summarise the performance

of the various versions of the algorithm together with our previous single-solution ap-

133

proach. The x-axis corresponds to the instance type while the y-axis corresponds

to the penalty cost. Figure 6.4 shows the strong performance of ENLGD-2 on the

medium and large instances, while also obtaining optimal solutions with the same

quality as the other algorithms for small instances. In addition, Figure 6.5 and Fig-

ure 6.6 show details of the results achieved by the proposed algorithms. Both figures

show that according to the average results, ENLGD-2 outperformed the other algo-

rithm .

1000

900
• ENlGD-2 • ENLGD-l

800

700

~ 6000u
> 500~
'"c:
Cl> 400
CL

300

200

100

0

51 52 53 54 55 Ml M2 M3 M4 MS

Instances

Figure 6.4: Best Results Obtained by the Proposed Algorithm Variants.

Overall, this experimental evidence shows that by combining some key evolution-

ary components with our previous single-solution non-linear great deluge approach,

we have been able to produce a hybrid evolutionary approach that is still quite simple

134

Figure 6.6: Average Results Obtained by the Proposed Algorithm Variants on

Medium and Large Instances.

7
• ENLGD-2 • ENLGD-l

6 ENLGD-M

1;; 50
us 4'"c:~a.
~ 3
DDe~
> 2c:{

1

0

51 52 53 54 55

Instances

Figure 6.5: Average Results Obtained by the Proposed Algorithm Variants on Small

Instances.

1200
• ENLGD-2 .ENLGD-l .ENLGD-M .NLGD

1000

....
III
0 800u
>....
IQ
c

600~a.
~
DD

'"... 400~
>
c:{

200

0

Ml M2 M3 M4 MS L

Instances

135

but much more effective (than the single-solution stochastic local search) in gener-

ating best known solutions for a well-known set of difficult UCTTP instances. It is

also evident that the mutation operator makes a significant contribution to the good

performance of ENLGD as the results obtained without this operator (ENLGD-M)

are considerably worse in medium and large instances. The proposed algorithm seems

particularly effective on small and medium problem instances.

136

Table 6.3: Comparison of results obtained by the Evolutionary Non-Linear Great
Deluge (ENLGD) proposed in this chapter against the best known results from the

literature for the 11 Socha et al. UCTTP instances.

c;l
I

Cl 5'0 tr: tr: Z ::I: ::I: E-< 0
....:l 0 sr: -<....:l:l 0 ::I: ::I:

I -< ::I: Cl
Z:l :::s

ir:
p:! -< ~ ~ z ~ :::s 0

~ 6 p:! :::s 0 ~ 0 0 :> ::I: ~ ~

SI 0 3 8 1 0 0 6 1 0 0 10 0

S2 0 4 11 3 0 0 7 2 0 0 9 0

S3 0 6 8 1 0 0 3 0 0 0 7 0

S4 0 6 7 1 0 0 3 1 0 0 17 0

S5 0 0 5 0 0 0 4 0 0 0 7 0

Ml 59 140 199 195 175 242 372 146 317 221 243 80

M2 51 130 202.5 184 197 161 419 173 313 147 325 105

M3 75 189 77.5%Inf 248 216 265 359 267 357 246 249 139

M4 48 112 177.5 164.5 149 181 348 169 247 165 285 88

M5 65 141 100%Inf 219.5 190 151 171 303 292 130 132 88

L 703 876 100%Inf 851.5 912 1068 80%Inf 529 1138 730

ENLGD-2 is Evolutionary Non-Linear Great Deluge with stopping strategy 2.
NLGD is Non-Linear Great Deluge [100]. NLGD is Non-Linear Great Deluge [100].

RRLS is the Local Search and Ant System in [153]

MMAS is the MAX-MIN Ant System in [152]
GALS is Genetic algorithm and local search by Abdullah and Thrabieh [7].

RIICN is Randomised iterative improvement algorithm by Abdullah et al. [3].

GBHH is Graph-based Hyper-heuristic by Burke et al. [29].

CFHH is the Choice Function Hyper-heuristic in [27]
VSN- T is Variable neighbourhood search with tabu by Abdullah et al. [5].

HEA is Hybrid evolutionary approach by Abdullah et al. [4].

FMHO is fuzzy multiple heuristic ordering [15]

EGD is Extended Great Deluge [116]
SI-S5 represent small problem instances 1 to 5
M1-M5 represent medium problem instances 1 to 5

L represents the large problem instance

137

Table 6.3 compares the results obtained by the approach proposed in this chapter

against the other available approaches in the literature. The term x%Inf in Table 5.1

illustrates a percentage of runs that were unable to achieve feasibility. The figures

in bold indicate the best results. Results in the Table indicate that some of the

algorithms were unable to produce feasible solutions. However, in contrast, our ap-

proach was able to achieve feasible solutions. It can be seen that the proposed hybrid

evolutionary approach (ENLGD-2) matches the best known solution quality for all

small problem instances. For medium instances, ENLGD-2 was able to achieve better

quality solutions when compared against all other methods listed in Table 5.1. More

interestingly ENLGD-2 is able to produce high quality solutions and outperformed

the best known results obtained by other algorithms as reported in the literature.

Only on the case of the large problem instance, we see that our algorithm does not

match the best known result reported by Abdullah at al. [4]. However, our result is

still comparable to other results reported in the literature.

6.4.1 Statistical Analysis

The main goal of this section is to examine using statistical analysis, the performance

of our four different methods, and to inspect whether extending the non-linear great

deluge to a hybrid evolutionary approach helps to produce better solutions. In this

section we want to inspect whether different strategies contribute to the improvement

on the solution quality. In order to make the comparison more clearly, three questions

have been set as follows:

1. Does mutation help to improve the solution quality?

2. Can Non-Linear Great Deluge become an effective operator in EA replacing the

typical crossover?

138

3. Since the NLGD is playing the main role in this search activity, it is worth

comparing the different strategies in order to measure the effect on each search?

Before we proceed to the analysis, it is essential to verify the compatibility of

the models with the sample data. There are important hypotheses that need to be

verified: normality, independency and homogeneity of the sample data. After run-

ning the descriptive analysis, we found that our sample data fulfils the hypothesis

requirements. For that reason variance analysis (ANOVA) is considered suitable for

the sample data hypothesis ensuring the validity of the experiment. ANOVA is one

of the existing statistical models used to test significant differences between means

and this tool is very useful to make comparison when dealing three or more means.

Even though conclusions can usually be made based on the best and average re-

sults obtained by each algorithms, those conclusions and analysis might be premature.

Therefore, ANOVA was used to determine whether there is a significant difference

in performance among ENLGD-2, ENLGD-l, ENLGD-M and NLGD. The analysis

showed that there are statistically significant differences among the proposed algo-

rithms with the p-value very close to zero as shown in Figure 6.7. The p-value stands

for probability ranging from zero to one. Therefore, the p-value is used to measure

the different in population means and used as an evidence to reject or accept the

null hypothesis. In our case the null hypothesis Ho is that there are no significant

differences in performance between the algorithms. Therefore, if we reject Ho then

we accept that there are significant differences in performance among the algorithms.

ANOVA analysis only reveals that at least one mean is significant difference among

the algorithms. However, we still do not know whether the performance of the al-

gorithm is totally different to each other or perhaps only one algorithm is different.

Thus, Post-Hoc Test was carried out to test the differences between pairs of algo-

139

rithms. Post-Hoc test is also known as post-hoc comparison tests. In practise this

tool is used in the second stage of ANOVA. The main aim of this analysis is to evalu-

ate whether there exists a significant difference among groups in respect to the mean

values. Tables 6.6, 6.7 and 6.8 clearly show that there are significant differences

between the algorithms as described below:

• For small instances, the p-value are less than the confidence level at 0.05

for every pair of algorithms (ENLGD-2, ENLGD-1), (ENLGD-2, ENLGD-M),

(ENLGD-2, NLGD), (ENLGD-1, ENLGD-M) and (ENLGD-M, NLGD).

• For medium instances there are significant differences in performance between

(ENLGD-2, ENLGD-1), (ENLGD-2, ENLGD-M), (ENLGD-2, NLGD), (ENLGD-

1, ENLGD-M) where the p-value are less than the confidence level at 0.05.

However, there is no significant difference in performance between NLGD and

ENLGD-M, where the Post-Hoc analysis shows that the p-value is 0.659 (greater

than 0.05).

• Finally for the large instance, there are significant differences in performance

between (ENLGD-2, ENLGD-1), (ENLGD-2, ENLGD-M) (ENLGD-2, NLGD)

and (ENLGD-1, ENLGD-M) where the p-value for the respective pairs are less

than 0.05 significance level. Interestingly, the Post-Hoc test shows that there

is no significant difference in performance between (ENLGD-1, NLGD) and

(NLGD-M, NLGD) where the p-value are 0.697 and 0.063 respectively, where

both p-value is greater than significant level at 0.05.

The Post-Hoc analysis clearly showed that all four algorithms perform differently.

However, at this stage we still do now know which algorithm is actually outperform-

ing the others across the eleven instances. Thus, to evaluate this, we plot the mean

of each algorithm with Least Significant Difference (LSD) intervals at 95% confidence

140

level for the different algorithms as shown in Figures 6.8 to 6.10. LSD is used to

measure the significant differences between group means in ANOVA. From the mean

plot, we see that ENLGD-2 outperforms the other algorithms followed by ENLGD-1,

NLGD and the worst algorithm is ENLGD-M.

Figure 6.8, Figure 6.9 and Figure 6.10 present the means plot of each algorithm,

for the specific instances. Figure 6.8 shows that there are three homogenous groups

for small instances (ENGLD-1, ENLGD-2), (ENLGD-M) and (NLGD). The best al-

gorithm is ENGLD-2 followed by ENLGD-1 and ENLGD-M, the worst algorithm is

NLGD. In medium instances we also found three homogenous groups as shown in

Figure 6.9 and they are (ENGLD-1), (ENLGD-2) and (ENLGD-M, NLGD). The al-

gorithm that performs well in medium instances is ENGLD-2 followed by ENLGD-1

and two algorithms which perform slightly worst are ENLGD-M and NLGD. Finally,

for the large instance, we found that there are three homogenous group (ENGLD-

1, NLGD), (ENLGD-2) and ENLGD-M. In the large instance case, we found that

ENLGD-2 outperforms the other algorithms and ENLGD-M is the worst. In conclu-

sion, considering the overall performance, ENLGD-2 is the best algorithm followed by

ENLG-1, NLGD and the worst algorithm is ENLGD-M (mutation operator removed).

141

ENLGD-2 ENLGD-l
Run Small medium Large Small medium Large
1 0.8 95.6 703 0.2 159 821
2 0.4 85.8 927 1.4 165.4 940
3 0.4 95.4 835 1 167.8 963
4 0.4 93.6 968 1.2 163.6 879
5 0.4 108.6 895 1 165.2 954
6 0.4 99.8 730 1.2 162 952
7 0.2 81.2 782 0.8 146.4 938
8 0.4 91.6 711 1.2 148.2 976
9 0.8 110.4 777 1 147.4 1018
10 1 96.4 838 0.6 144.4 1020
11 0.4 96.6 808 1 171.6 968
12 1 98.4 944 1.6 178 904
13 0.8 91.2 870 1.2 158.8 958
14 0.4 96.4 807 0.4 159.2 876
15 0.8 83.6 849 1.8 165 876
16 1.2 90.6 713 1.6 156 970
17 0.4 117.8 852 1.2 169.6 918
18 0.6 102.2 795 0.6 172.8 1003
19 1.6 106 779 0.6 148.2 1031
20 0.8 89.4 801 0.6 175.2 1072

Table 6.4: Average Penalty Cost of ENLGD-2 and ENLGD-1 Across the 11 Socha et
al. Instances.

142

Run ENLGD-M NLGD
Small medium Large Small medium Large

1 2 186.2 1023 3.8 142.4 966
2 2 176.6 1070 4.8 165 1070
3 1.4 191.6 998 6 165.6 876
4 2 177.6 1142 5.2 162.2 935
5 1.4 205.8 1114 5 165.2 971
6 1 189.8 984 4.6 166.8 942
7 1 184 923 5 165.4 895
8 1.8 179.6 970 5.2 156.8 976
9 2 166.4 1082 5.4 160.4 986
10 1.4 185 1023 5.4 172.8 1005
11 1.8 192.2 1023 3.8 185 966
12 2 159.2 1070 4 171.6 1070
13 2 178.8 998 4.2 177 935
14 2.2 156.4 1142 4.2 181 1024
15 1.6 167.6 984 4 172.4 942
16 2 166.6 923 5 188.4 958
17 1.6 168.6 970 4.2 179.6 978
18 0.8 168.8 1082 5.4 182.6 1005
19 1.4 156.6 1023 5.4 196 1078
20 1.2 166.8 982 5 183.8 907

Table 6.5: Average Penalty Cost of ENLGD-M and NLGD Across the 11 Socha et
al. Instances.

143

ANOVA

Sum of Squares df Mean Square F Sig.

Small Between Groups 212.788 3 70.929 322.792 .000

Within Groups 16.700 76 .220

Total 229.488 79

Medium Between Groups 82928.598 3 27642.866 212.846 .000

Within Groups 9870.338 76 129.873

Total 92798.936 79

Large Between Groups 466403.500 3 155467.833 36.805 .000

Within Groups 321033.700 76 4224.128

Total 787437.200 79

Figure 6.7: ANOVA Results.

0.041
0.000
0.000

0.000
0.000

0.000

0.000

0.000
0.000

ENLGD-2

ENLGD-1
NLGD-M
NLGD

Table 6.6: Post Hoc Tests - Small Instances

ENLGD-2

0.000
0.000
0.000

0.000
0.019

0.001

0.649

0.019
0.649

ENLGD-1
NLGD-M
NLGD

Table 6.7: Post Hoc Tests - Medium Instances

ENLGD-2

0.000
0.000
0.000

0.003
0.697

0.003

0.063

0.697
0.063

ENLGD-1
NLGD-M
NLGD

Table 6.8: Post Hoc Tests - Large Instance

144

I

I

~L_ ~ r-I--------'---------~------~
ENLGD-1

Algorithms
ENLGD-2 ENLGD-M NLGD

Figure 6.8: Mean Plot and LSD Intervals (Small Instances).

E 200-

:::J

~ 180- I:E I=e 160 IUcC(/)
1;;8Si 140

~~
IQ

120C
Q)
Do
Q)
g) 100 IIQ..
Q)

~ s0-
I I

ENLGD-2 ENLGD-l ENLGD-M NLGD

Algorithms

Figure 6.9: Mean Plot and LSD Intervals (Medium Instances).

145

1,100-

Cl)

ICl..
~..

1,000-0 I-
~8 IOc
~aI-'0

900-alCc_
Cl)a.
Cl) ICl
I!
Cl)

800->
CC

T I
ENLGD-2 ENLGD-1 ENLGD-M NLGD

Algorithms

Figure 6.10: Mean Plot and LSD Intervals (Large Instance).

The statistical analysis presented here suggests that each algorithm has different

behaviour and performs differently across all 11 Socha et al. instances. This anal-

ysis also showed that ENLGD-2 outperforms the three other algorithms across all

instances. It is also evident that the mutation operator makes a significant contri-

bution to the good performance of ENLGD-2 as the results obtained by ENLGD-M

are considerably worse. Moreover, the strategy applied in ENLGD-2 to balance in-

tensification and diversification proves to be a good strategy as it managed to further

improve the solution quality compared to ENLGD-l. As a conclusion, the proposed

hybrid evolutionary approach matches the best known solution quality for almost all

small problem instances and improves the best known results for most all medium

instances. Only on the case of the large problem instance, we see that our algorithm

does not match the best known result published in the literature, however the result

is still competitive when compared to the results obtained by other algorithms as

reported in the literature.

146

6.5 Conclusions

The overall endeavour of this chapter was to extend our previous approach, a non-

linear great deluge algorithm, towards an evolutionary variant by incorporating some

key operators like a population of solutions, tournament selection, a mutation opera-

tor and a steady-state replacement strategy. The performances of the various versions

of evolutionary non-linear great deluge were compared along with the single-solution

NLGD algorithm. Preliminary comparisons illustrate that ENLGD-2 outperforms the

results produced by other versions of ENLGD and NLGD algorithms. The results

from our experiments also provide evidence that our hybrid evolutionary algorithm

is capable of producing best known solutions for a number of the test instances used

here. Obtaining the best timetables (with penalty equal to zero) for the medium and

large instances is still a challenge. However, when compared to the results obtained

by ENLGD-2 to the best know results reported in the literature, obviously, ENLGD-2

outperform all the results of medium instances and produced comparable for large

instance.

147

Chapter 7

Non-Linear Great Deluge with

Modified Choice Function

7.1 Introduction

This chapter presents a non-linear great deluge hyper-heuristic incorporating a modi-

fied choice function mechanism for the selection of low-level heuristics and non-linear

great deluge acceptance criterion. The proposed hyper-heuristic only deals with com-

plete feasible solutions. The learning mechanism allows the hyper-heuristic to select

low-level heuristics based on their previous performance. The learning mechanism

provides a measure of performance for each low-level heuristic and ranks them from

the highest to the lowest. Therefore, the higher ranked the low-level heuristic is, the

highest the probability that the low-level heuristic will be selected next. The low-level

heuristics are local search operators which operate in the solution space. We propose

two learning mechanisms: learning with static memory length and learning with ran-

dom change in learning rate. In static memory length, the reward and punishment are

constant and the reward of the low-level heuristics is normalised at every predefined

learning period. In random change in learning rate, a low-level heuristic is rewarded

and penalised when it is selected to change the current solution and the learning

148

rate is changed automatically at random at every predefined learning period. The

performance of the proposed hyper-heuristics is assessed using the standard course

timetabling benchmark instances of Socha et al. [152] and our results are compared

to results published in the literature.

As discussed in the literature review of this thesis, the UCTTP has been tack-

led using a wide range of exact methods, heuristics and meta-heuristics. In recent

years, the term hyper-heuristic has emerged for referring to methods that use (meta-)

heuristics to choose (meta-) heuristics [25]. Then, a hyper-heuristic is a process which,

given a particular problem instance and a number of low-level heuristics, manages the

selection and acceptance of the low-level heuristic to apply at any given time, until

a stopping condition is met. Low-level heuristics are simple local search operators or

domain dependent heuristics. Typically, a hyper-heuristic is meant to search in the

space of heuristics instead of searching in the solution space directly. One of the main

challenges in designing a hyper-heuristic method is to manage the low-level heuristics

with minimum parameter tuning.

The rest of this chapter is organised as follows. Section 7.2 describes the Non-

Linear Great Deluge With Learning Mechanism Framework while Section 7.3 presents

and discusses the experimental results. Conclusions and future research are presented

in Section 7.4.

7.2 The Non-linear Great Deluge Hyper-heuristic

In this chapter, we use our non-linear great deluge algorithm (NLGD) [102] devel-

oped in chapter 5 as an acceptance criterion and incorporate learning mechanism

called modified choice function to select the low-level heuristics to apply at each step

149

of the search process. That is, while in a NLGD meta-heuristic candidate solutions

are accepted or not based on the great deluge criterion, in the proposed Non-Linear

Great Deluge Hyper-heuristic (NLGDHH) it is candidate low-level heuristics which

are accepted or not, i.e. the method operates in the heuristic search space.

Figure 7.1 illustrates the proposed hyper-heuristic approach in which the low-level

heuristics are local search operators that explore the solution space while the modi-

fied choice function and the NLGD acceptance criterion explore the heuristic space.

We use the non-linear great deluge criterion because of its simplicity and less depen-

dent nature upon parameter tuning compared to simulated annealing [22, 102]. The

low-level heuristics implemented in this work are the same neighbourhood moves uses

earlier in this thesis and are described again below. These heuristics are based on

random search but always ensuring the satisfaction of hard constraints.

H1: selects 1 event at random and assigns it to a feasible pair timeslot-room also

selected at random.

H2: selects 2 events at random and swaps their timeslot-room while ensuring feasi-

bility.

H3: selects 3 events at random and exchanges timeslot-room at random while ensur-

ing feasibility.

150

r-
:'>LG() Hyper-beuristic p Problem Domain

R
0

\
BI NlGD Acceptance l

Criterion E
M

0
0
M St'lof lO'A' L.,',llkuriSlic

R... anJ3JlJ
Evaluate tow- A

Pun~~nl
level heuristic It- I f--4

N Ht·H:-H,H.

y B
.\
R haltJ:llifll'l Funl'tionI Selection Criteria R

(Reinforcement I
learning) E

c_!_

Figure 7.1: Non-Linear Great Deluge Hyper-heuristic Approach.

7.2.1 Learning Mechanism

A choice function proposed by Soubeiga [154] is mainly used to rank low-level heuris-

tics. The main task of the choice function is to select low-level heuristic at each

decision point based on its previous performance and the area of the search space cur-

rently under search. Three main features of choice function are: The choice function

assigns each heuristic a sum of weight that indicate the recent improvement (change in

the objective function), new improvement generate by a consecutive pair of heuristics

and the last time a heuristic was called. Different than the standard choice function

proposed by Soubeiga [154], we employed a learning mechanism which adapted from

Bai et al. [17] and no consecutive pair of heuristic will take into account (only single

heuristic performance is counted). This learning mechanism is used to guide the se-

lection of low-level heuristics during the search. Thus, a low-level heuristic is more

likely to be selected at each iteration if it has the highest number of success in the

past. We adopt the stochastic ranking of the low-level heuristics and the stochastic

selection mechanism to select the low-level heuristics. Initially, the low-level heuris-

tics arc treated qually and have the same probability to be selected to change the

151

solution space. The stochastic selection mechanism dynamically tunes the priorities

of the low-level heuristics during the search. While the search is going further, the

algorithm begins to learn and starts to apply the preference by tuning the stochastic

selection mechanism according to the success rate of each low-level heuristic when

chosen to modify the solution landscape. When a low-level heuristic performs better

than the others, its probability to be chosen at the next iteration is higher than the

others.

In this chapter, we investigate two types of Modified Choice Function: MCF with

static memory length and MFC with random change in learning rate. In static mem-

ory length, the reward and punishment are constant and the reward obtained by the

low-level heuristics is normalised at every predefined learning period. Whereas in ran-

dom changer learning rate, a low-level heuristic is rewarded and penalised when it is

chosen to change the current solution and the learning rate is changed automatically

at random at every predefined learning period. We propose two Non-Linear Great

Deluge Hyper-heuristic algorithms using learning with static memory and learning

with random changer in learning rate namely NLGDHH-SM (with static memory

length) and NLGDHH-RCLR (with random changer in learning rate). The detail of

these two approaches is given below in subsections 7.2.1.1 and 7.2.1.2.

7.2.1.1 MeF with Static Memory Length

In each iteration, a low-level heuristic i is selected with probability Pi given by

Eq. (7.1) where n is the number of heuristics and ui; is the weight assigned to each

heuristic.

(7.1)

152

Initially, every weight is set to Wi = 0.01. At each iteration, the algorithm starts

to reward or punish the heuristics according to their performance. When the chosen

heuristic improves the current solution, a reward of 1 point is given to the heuristic.

If the heuristic does not improve the solution, the punishment is to award no points.

This amount of reward/punishment never changes. However, the algorithm updates

the set of weights Wi in every learning period (Lp) given by lp = max(K/500,n),

where K is the total number of feasible moves explored.

We use the following counters to track the performance of each low-level heuristic:

Ctoiali, is the number of times that low-level heuristic i is called; Cneui, is the

number of times that low-level heuristic i generates solutions with different fitness

value (objective function); and Caccepi, is the number of times that low-level heuristic

i meets the non-linear great deluge acceptance criterion. Each heuristic weight Wi is

updated at every learning period lp and normalised by the ratio Caccepuf Ctotal,

when range> 1 and by Cneuuf Ctotal, when range < 1. At every learning period Lp

if the range < 1 (range is the difference between water level and current penalty cost),

the water level then increases to B = B + rand[Bmin, Bmax]. We call this mechanism

surge B (we allow the water level to go up to explore different region of search). We

set Bmin equal to 1 and Bmax equal to 4 regardless to the size of the dataset. Note

that the water level can increase due to the floating B (continuous) mechanism or the

surge B (every lp feasible moves) mechanism.

7.2.1.2 MCF with Randomly Change Learning Rate

In each iteration, a low-level heuristic i is selected with probability Pi given by

Eq. (7.2) where n is the number of heuristics, ui, is the weight assigned to each

heuristic and Wmin = min {O,wd·

153

(7.2)Pi = "n
wi=1 ui, + Wmin

Initially, every weight is set to Wi = 0.01 as before, however, each ui, is updated every

time the algorithm performs a feasible move. When the selected heuristic improves

the current solution, the heuristic is rewarded, otherwise the heuristic is punished.

The value Rj of reward/punishment applied to heuristic i at iteration j is as given

below where r = 1, CJ = 0.1 and ~ is the difference between the best solution (lowest

penalty) so far and the current solution (current penalty).

r if ~ < 0

-r if ~ > 0

~ij = CJ if ~ = 0 and new solution

-~ if ~ = 0 and no new solution

0 if not selected

Then, at each iteration h, each weight Wi is calculated using Eq.(7.3) where (J is

learning rate that scales the weight of the reward that obtained at every iteration

during the search history.

h

Wih =L (Jj~ij

j=1

(7.3)

In every learning period lp, the algorithm updates (J with a random value in (0.5, 1.0].

Here, we also set Lp = max(K/500, n) as before. At every learning period lp and if

range < 1, the water level increases to B = B+rand[Bmin, Bmax]. We set Bmin equal

to 1 and Bmax equal to 4 regardless to the size of the dataset.

154

7.2.2 Illustration of the Weights Adaptation

Before presenting our experimental results in detail, we further illustrate the weight

adaptation mechanism. As explained above, the weight ui, for each of the low-level

heuristics is set to 0.01 at the start of the search. Then, these weights are updated

depending on the success or failure of the low-level heuristics to improve the current

solution. In order to appreciate how this works, Figures 7.2 to 7.12 show the weight

values for a particular run of the NLGDHH-SM algorithm on each of the test instances.

The initial weights have the same value for all the low-level heuristics but as the search

progress, we can see that these weights are adapted for each instance. For example,

Figures 7.2 to 7.6 show that for small instances, the probability of low-level heuristic

H3 being selected is reduced quickly down to zero. However, Figure 7.7 to 7.12 show

that in the case of three medium instances and the large one, this probability remains

above zero and fluctuating for most of the search. We can also see in these Figures

that the weights for heuristics HI and H2 are tuned for each test instance and there

is no clearly defined common pattern.

Smalll
0.45

0.4

u 0.35:; 0.3:;.,
0.25..<:

'0 0.2~s:co 0.15'iiis 0.1

0.05

0

-HI -H2 H3

o 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210220

Iterations (x 1000)

Figure 7.2: Adaptation of Weights (Wi) During a Run of NLGDHH-SM on small I

Instance.

155

Small2
0.4 HI H2 H3

0.35
v 0.3:;
:; 0.25
<II
s:

0.2'0
L 0.15
00

~ 0.1

0.05

0
o 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210 220

Iterations [x 1000)

Figure 7.3: Adaptation of Weights (Wi) During a Run of NLGDHH-SM on sma1l2

Instance.

Small3
1.2

-HI -H2 -H3

v.~
.;: 0.8
:>
<IIs:

0.6'0
L
00 0.4·iii
3

o 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210220

Iterations Ixlooo)

Figure 7.4: Adaptation of Weights (Wi) During a Run of NLGDHH-SM on sma1l3

Instance.

Small4
0.45 - -H2 H3-HI
0.4

v 0.35

:~ 0.3
:>
<II 0.25.s:
'0 0.2
L.. 0.15·iii
3 0.1

0.05

o 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210220

Iterations [x 1000)

Figure 7.5: Adaptation of Weights (Wi) During a Run of NLGDHH-SM on sma1l4
Instance.

156

SmallS
0.4

0.35
v 0.3~
'; 0.25.,
s:

0.2'0

"' 0.15...;;;
3: 0.1

0.05

0 so 60 7010 20 30 40

Iterations (x 1000)

80

Figure 7.6: Adaptation of 'Weights (Wi) During a Run of NLGDHH-SM on smallS
Instance.

Mediuml
0.9

v

:~0.6
"., 0.5s:
0 0.4

"'.. 0.3'OJ
3: 0.2

0.1

0 10 20 30 40 SO 60 70

Iterations (x 1000)

Figure 7.7: Adaptation of Weights (Wi) During a Run of NLGDHH-SM on medium1
Instance

Medium2
0.9
0.8

.11 0.7

~ 0.6
".. 0.5s:
'0 0.4

"'.'!F 0.3..
3: 0.2

0.1

0

l
0

-

40 so 6010 20 30

Iterations (x 1000)

70

Figure 7.8: Adaptation of Weights (Wi) During a Run of NLGDHH-SM on medium2
Instance.

157

Medium3
0.9
0.8

.~ 0.7

.§ 0.6
<II 0.5s:
0 0.4~
" 0.3.~
3 0.2

0.1

0

0 10 20 30 40 50 60

Iterations [x 1000)

70

Figure 7.9: Adaptation of 'Weights (Wi) During a Run of NLGDHH-SM on medium3
Instance.

Medium4
0.9

0.8

" 0.7
~ 0.6;;
<II 0.5s:
'0 0.4~
" 0.3.~
3 0.2

0.1

0 ~
0 40 50 6010 20 30

Iterations Ix 1000)

70

Figure 7.10: Adaptation of Weights (Wi) During a Run of NLGDHH-SM on medium4
Instance.

r
MediumS

0.9 -H1 -H2 H3
0.8

.\1 0.7

~ 0.6
<II 0.5s:
'0 0.4~ 0.3..
~ 0.2

0.1
0

10 20 30 40 so 60 70

Iterations Ix 1000)

Figure 7.11: Adaptation of Weights (w;) During a Run of NLGDHH-SM on medium5
Instance.

158

Large
1 HI H2 H3

0.9

v 0.8
~ 0.7
:; 0.6<IIs:

0.5'0
1: 0.4..

0.3
~

o 10 20 30 40 6050

Iterations [x 1000)

70

Figure 7.12: Adaptation of Weights (Wi) During a Run of NLGDHH-SM on large
Instance.

7.3 Experiments and Results

To evaluate the performance of the proposed algorithms, we conducted a range of ex-

periments using the Socha et al. [152] UCTTP instances. For each problem instance

we run the algorithm 20 times. The stopping condition is a maximum computation

time tmax or achieving a penalty value of zero, whatever was sooner. For small in-

stances, we set tmax > 1 as the algorithm takes less than 2500 seconds (42 minutes).

For medium instances, we set tmax = 2.5 hours. For the large instance, we set tmax = 5

hours. Our previous NLGD meta-heuristic [102] of chapter 4 was not able to improve

results even after extending the execution time. However, the approach proposed

here is now able to find better solutions thanks to the learning mechanism that se-

lects low-level heuristics accurately to further improve the solution quality. We remind

the reader that NLGDHH-SM and NLGDHH-RCLR refer to the algorithm proposed

here when using static memory length or random change in learning rate respectively.

'vVeconducted several experiments to evaluate the performance of the two algo-

rithm variants. The first set of experiments compared the performance of NLGDHH-

SM and NLGDHH-RCLR. A second set of experiments compared these methods to

159

various great deluge (CD) meta-heuristics. The third set of experiments compared

the performance of NLCDHH-SM and NLCDHH-RCLR to other hyper-heuristics re-

ported in the literature. The fourth set of experiments investigate the performance of

NLCDHH-SM when using different learning period length. Finally, the performance

of NLCDHH-SM and NLGDHH-RCLR are compared to the best known results re-

ported in the literature for the subject problem.

7.3.1 Static vs. Random Change in Learning Rate

We first compare NLGDHH-SM to NLGDHH-RCLR with the objective of examining

the effect of the modified choice function mechanism when using Static Memory (SM)

or Random Change in Learning Rate (RCLR). Figure 7.13 shows the best results ob-

tained by the algorithm with each type of memory. We can see that both learning

mechanisms are able to produce optimal solutions for all small instances for at least

one out of 20 runs. For medium instances, both mechanisms perform well and the

results obtained with the RCLR are competitive with those obtained with the static

memory, particularly for the M1 instance (for which NLGDHH-SM obtained a value

of 51 while NLCDHH-RCLR obtained a value of 54). The exact values are reported in

Table 7.1. For instances M2, M3, M4, M5 and L, the results show that NLCDHH-SM

obtained better solution quality compared to NLGDHH-RCLR.

160

1000

900

800

700

t; 600
0
u 500~-.c 400~

300

200

100

• NlGDHH-SM .NLGDHH-DM

l-

v- I-

j,.---- -

I> - l-

I-
l-

f-• ._. ._IL '::7
51 52 53 54 55 Ml M2 M3 M4 MS

Instances

Figure 7.13: Best Results Obtained by NLGDHH-SM and NLGDHH-RCLR.

2.5

t;
o
u

-..~
- 1.5~...l 1

0.5

5453 555251

Instances

Figure 7.14: Average Results Obtained by NLGDHH-SM and NLGDHH-RCLR on
Small Instances.

In addition to reporting the best results obtained from the 20 runs, we also re-

port in Figure 7.14 and Figure 7.15, the average results over the 20 runs for each of

the approaches. We can see that although both algorithms reach optimal solutions

for all small instances, NLGDHH-SM does this more often compared to NLGDHH-

RCLR. The overall results obtained by NLGDHH-SM are better than those achieved

by NLGDHH-RCLR. It was shown above that the best results obtained by both algo-

161

1200

1000

11
u 800
i':n;
c

600~
Q.~~~ 400
~

200

M1 M2 M3 M4 MS

Instances

Figure 7.15: Average Results Obtained by NLGDHH-SM and NLGDHH-RCLR on
Medium and Large Instances.

rithms on the M1 instance are pretty close. However, on average, the results obtained

by NLGDHH-RCLR seem less consistent than the results achieved by NLGDHH-SM.

We now have a closer look at the performance of each algorithm on instances SI,

Ml and L. Figures 7.16 - 7.21 show the results obtained by each algorithm on these

instances over all 20 runs. We can see in Figures 7.16 - 7.17 and Figures 7.18 - 7.21

that the algorithm with static memory shows a more consistent performance com-

pared to the algorithm with dynamic memory. For example, for the small instance SI,

NLGDHH-SM found a solution with penalty zero in 15 runs while NLGDHH-RCLR

did it only for 9 of the 20 runs. On the medium instance Ml, the algorithm with

static memory found better results in almost all the 20 runs and with less variability

compared to the results obtained by the algorithm with dynamic memory. However,

for the large instance, Figures 7.20 - 7.21 show that the algorithm with dynamic

memory shows a more consistent performance over the 20 runs although the results

obtained with the static memory are still better overall.

162

Figure 7.16: All Results Obtained by NLGDHH-SM on Smalll Instance.

Smalll

-+-NLGDHH-SMt;; 2.5
o

11.; 1
0.5

o

Figure 7.17: All Results Obtained by NLGDHH-RCLR on smalll Instance.

Figure 7.18: All Results Obtained by NLGDHH-SM on medium1 Instance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run

Smalll

6 - -+-NLGDHH-RCLR
1;; 5
o
u 4-<
1:
~ 3..
Il. 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run

Medium!

80 :70
60

1;;8 50
1: 40
n;s 30
e,

-+-NLGDHH-SM

20
10o L- __

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run

163

Mediuml
350

~NLGDHH-RCLR
300

~ 250
'"0u 200>~.. 150c.,
0.. 100

50

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run
___ _j

Figure 7.19: All Results Obtained by NLGDHH-RCLR on medium1 Instance.

large
1200 l ~NLGDHH-SM

1000

'" 8000u
~ 600..
c., 400
0..

200

0

3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20

J

Figure 7.20: All Results Obtained by NLGDHH-SM on large Instance.

large
1400 ~NLGDHH-RCLR

1200

~ 1000
'"0u 800~.. 600c.,
0.. 400

200

0

Run

2 345 6 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 7.21: All Results Obtained by NLGDHH-RCLR on large Instance.

Run

164

From the experiments it can be seen that the static memory length performs a lot

better than random change in learning rate for all instances. The explanation behind

this scenario is, the random change in learning rate is very sensitive to learning rate

changing and the instance reward, and it makes the heuristic becomes dominates

to each other. Therefore, when one of the heuristic become dominate the chances

of the other heuristics to select at each decision point is very low. In addition both

algorithms would need a longer period of historical information to distinguish between

the performance of low-level heuristics. However, in the random change in learning

rate the algorithm fails to give enough time to measure the performance of the low-

level heuristics.

165

7.3.2 Comparison to Previous Great Deluge

The second set of experiments compared the proposed NLGDHH (with static and with

random change in learning rate) to previous great deluge meta-heuristics in order to

assess the performance of the non-linear acceptance criterion and the modified choice

function mechanism. Table 7.1 shows the results obtained by NLGDHH-SM and

NLGDHH-RCLR, the extended great deluge (EGD) [116], the non-linear great deluge

(NLGD) [99] of chapter 4, the evolutionary non-linear great deluge (ENLGD) [101]

of chapter 5, and the conventional great deluge (GD). We can see in Table 7.1 that

NLGDHH-SM mostly outperforms NLGDHH-RCLR in terms of the number of best

solutions found across all instances. Both variants of the proposed method obtained

equal or better results than the other approaches, except for instance L where EGD

found better solutions. However, NLGDHH-SM produced better solutions for 10 out

of the 11 instances. In fact, NLGDHH-SM improved the solutions obtained by EGD

for all medium instances. The average results for all medium instances obtained by

NLGDHH-SM also outperform the average results obtained by EGD. However, for

the large instance, EGD outperform NLGDHH-SM. The overall performance of both

NLGDHH-SM and NLGDHH-RCLR is quite good according to these results.

7.3.3 Comparison to Other Hyper-heuristics

We now compare the proposed NLGDHH to other hyper-heuristics reported in the lit-

erature. Table 7.2 shows the results obtained by the following approaches: NLGDHH-

SM, NLGDHH-RCLR, choice function hyper-heuristic (CFHH) [27], case-based hyper-

heuristic (CBHH) [29], simulated annealing hyper-heuristic (SAHH) [17]and distributed-

choice function hyper-heuristic (DCFHH) [141]. The results show that the proposed

method finds equal or better solutions for 5 out of the 11 instances. For all small

instances, both NLGDHH-SM and NLGDHH-RCLR are able to find the optimal

solutions. For all medium instances, the NLGDHH variants achieve a significant im-

provement over the other hyper-heuristics. The NLGDHH approaches are also quite

166

Table 7.1: Comparison of the Proposed Great Deluge Based Hyper-heuristic and

other Great Deluge Methods from the Literature.

Instance NLGDHH-SM NLGDHH-RCLR EGD NLGD ENLGD-2 GD

Best Avg Best Avg Best Avg Best Best Best

81 0 0.5 0 2.5 0 0.8 3 0 17

S2 0 0.65 0 1.9 0 2 4 0 15

S3 0 0.20 0 2.05 0 1.3 6 0 24

S4 0 1.5 0 2.85 0 1 6 0 21

S5 0 0 0 0.85 0 0.2 0 0 5

Ml 51 60.1 54 139 80 101.4 140 59 201

M2 48 59.05 67 78.2 105 116.9 130 51 190

M3 60 83.9 84 115.45 139 162.1 189 75 229

M4 47 54.9 60 72.05 88 108.8 112 48 154

M5 61 84.15 93 112.8 88 119.7 141 65 222

L 731 888.65 917 1035.25 730 834.1 876 703 1066

NLGDHH-SM is Non-linear great deluge hyper-heuristic with static memory length

NLGDHH-RCLR is Non-linear great deluge hyper-heuristic with Dynamic memory length

EGD is Extended Great Deluge Algorithm

NLGD is Non-linear Great deluge algorithm

ENLGD is the Evolutionary Non-linear Great Deluge (the ENLGD-2 variant of chapter 6)

GD is Great Deluge Algorithm

Best is the best result found by the algorithm

Avg is the average over the 20 runs

STD is Standard Deviation

SI-S5 represent small problem instances 1 to 5

MI-M5 represent medium problem instances 1 to 5

L represents the large problem instance

167

competitive in the large instance when compared to the results obtained by SAHH.

Table 7.2: Comparison of NLGDHH-SM, NLGDHH-RCLR and all types of Hyper-
heuristic Algorithms Reported in the Literature.

NLGDHH-SM NLGDHH-RCLR CFHH GBHH SAHH DCFHH
SI 0 0 1 6 0 1
82 0 0 2 7 0 3
83 0 0 0 3 1 1
S4 0 0 1 3 1 1
S5 0 0 0 4 0 0
Ml 51 57 146 372 102 182
M2 48 69 173 419 114 164
M3 72 93 267 359 125 250
M4 47 66 169 348 106 168
M5 61 100 303 171 106 222
L 731 915 1166 1068 653

CFHH is the Choice Function Hyper-heuristic in [27]
GBHH is the Graph-based Hyper-heuristic in [29]
SAHH is Simulated Annealing Hyper-heuristic [17]
DCFHH is Distributed Choice Function Hyper-heuristic [141]
SI-S5 represent small problem instances 1 to 5
MI-M5 represent medium problem instances 1 to 5
L represents the large problem instance

7.3.4 Experiments With Different Memory Lengths

Since NLGDHH-SM produced better results, we conducted experiments with different

learning period length (Lp). We ran experiments with lp = 250, lp = 500, lp = 1000,

Lp = 2500, Lp = 5000 and lp = 10000. The best and average results are presented in

Table 7.3.

168

Instance lp=250 lp=500 lp=1000 lp=2500 lp=5000 lp=10000

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

SI 0 0.7 0 0.5 0 0.5 0 0.3 0 0.35 0 0.35

S2 0 0.95 0 0.9 0 0.65 0 0.4 0 0.2 0 0.35

S3 0 0.35 0 0.4 0 0.20 0 0.2 0 0.3 0 0.40

S4 0 1 0 0.85 0 1.5 0 0.8 0 0.5 0 0.55

S5 0 0 0 0 0 0 0 0 0 0 0 0

Ml 54 61.6 53 56.9 51 60.1 38 53 42 51.35 44 52.15

M2 51 61.6 52 63.35 48 59.05 37 50.3 44 51.4 44 52.75

M3 70 101.2 62 78.4 60 83.9 61 75.45 60 79.5 61 79.65

M4 40 56.45 53 61.25 47 54.9 41 49.35 39 47.2 43 49.1

M5 68 87.8 62 77.15 61 84.15 61 76.95 55 79.05 62 78.45

L 818 937.4 755 939.85 731 888.65 638 829.05 713 875.1 831 918.75

Table 7.3: Comparison of the NLGDHH-SM with Different Learning Period Length

lp.

We can see that for different values of lp, the proposed methods perform differ-

ently. All static memory (SM) variants are able to find the optimal solution for small

instances. For medium and large instances lp = 2500 and lp = 5000 give better

results. For the large instance lp = 2500 gives better results than all other values

of lp. NLGDHH-SM performed worst with lp = 250. The overall performance for

different lp values is shown in Figures 7.22 - 7.24. From these experiments, we can

conclude that longer length of learning period produces better quality solutions than

Lp with shorter values. However, we must not set the lp too long as it gets worst

if we over extend the lp. As shown in Table 7.3, when we set LP = 2500, it gives

better results, and when we extend it to LP = 5000 the algorithm still performs very

well by improving some of the solutions which are not able to achieve by LP = 2500.

However, when we set the LP = 10000, the quality of the solutions become worse.

169

900

800
.lP=500.LP:250 ------------------------~ll-700

600 I
500
400 ,

300

lOO

100

51 52 53 S4 SS Ml M2 M3 M4 MS

Instances

Figure 7.22: The Best Results Obtained from Different lp Values

Figure 7.23: Average Results from Different lp Values - Small instance.

1000 _ .lP=IOOO_A1P=SOO
900 .lP=SOOOlP=2S00
800

1;;

.9 700

f 600.. 500

~ 400

~ lOO..
200

100

MI M2 Ml M4 MS

tnatanres

Figure 7.24: Average Results from Different lp Values - medium and large instances.

170

7.3.5 Further Statistical Analysis

We now conduct further statistical analysis to examine the performance of the pro-

posed Learning Mechanism and the previous algorithms proposed earlier in this thesis

(see also [100] and [101]). As a normal procedure we run the descriptive analysis to

check the model's compatibility with the sample data and found that ANOVA is suit-

able statistical tool to measure the differences among the proposed algorithms.

Figure 7.25 shows that there is significant difference between the learning mech-

anisms and our previous proposed algorithms, with p-value very close to zero as

shown in Figure 7.25. However, this analysis does not shows the detail whether all

four algorithms are different or maybe only one of them are different. Therefore it

was necessary to make a further analysis to see the difference in pairs. A Post-Hoc

analysis was used to inspect the difference in pairs. The results of the analysis are

presented in Table 7.7 and Table 7.8. First of all we want to examine if the two learn-

ing mechanisms are different. Table 7.6, Table 7.7 and Table 7.8 clearly suggest that

the two learning mechanisms static memory and random change in learning rate have

difference performance across small, medium and large instances, where the p-value

is very close to zero (p=0.05) significant level.

We also compared the learning mechanisms with our previous algorithm and found

that no similarity of the performance of our previous algorithms. In detail, for all

size of instances our proposed algorithm performed differently where the p-value for

each pair (NLGDHH-SM, NLGDHH-RCLR), (NLGDHH-SM, ENGD), (NLGDHH-

SM, NLGD), (NLGDHH-RCLR, ENGLD)(NLGDHH-RCLR, NLGD) were close to

zero at p=0.05 significant level.

As the Post-Hoc test indicates, all four algorithms have different performance.

However at this point the analysis did not tell us which algorithm is actually out-

171

performing across all 11 instances. To examine which algorithm are more supe-

rior than the other, we refer to the mean plot of each algorithm at 95% confi-

dence level for the different algorithms as shown in Figure 7.26, Figure 7.27 and

Figure 7.28. Firstly, Figure 7.26 indicates that there are four homogenous groups and

they are (NLGDHH-SM (LP=2500), NLGDHH-SM(LP=5000)), (NLGDHH-RCLR),

(ENLGDS2) and (NLGD). And two algorithms perform better are (NLGDHH-SM

(lp=2500), NLGDHH-SM (lp=5000) followed by ENLGDS2 and in third by NLGDHH-

RCLR. Among the proposed algorithms, NLGD is the worst algorithm. Figure 7.27

shows that there are three homogenous groups, NLGDHH-SM (lp=2500), NLGDHH-

SM(lp=5000)), (NLGDHH-RCLR, NLGDS) and (NLGD). The two best algorithms

are NLGDHH-SM (lp=2500), NLGDHH-SM (lp=500) followed by ENLGDS and

NLGDHH-RCLR, and the worst algorithm is NLGD. Finally for large instance, we

found that there are three homogenous groups (NLGDHH-SM (lp=2500), NLGDHH-

SM (lp=5000), ENLGDS), (NLGDHH-RCLR) and NLGD. In the large instance

case, we found that three algorithms perform equally and they are NLGDHH-SM

(lp=2500), NLGDHH-SM (lp=5000) and NLGDHH-RCLR. These three algorithms

outperform the other algorithms, and the worst algorithm is NLGDHH-RCLR. In con-

clusion, overall, the mean plots show that both NLGDHH-SM (lp=2500 and Ip=5000)

outperform the other algorithms and the worst algorithm is NLGD.

The statistical analysis suggests that each algorithm has different behaviour and

performs differently across all 11 instances. These analysis also show that NLGDHH-

SM outperforms five other algorithms across all instances. It is also evident that the

learning mechanism with static memory is better than random change learning rate

and the rest of our proposed algorithms. Moreover, with learning mechanisms proven

to be a good strategy as it managed to further improve the solution quality compared

to our previous algorithms without learning mechanism. As a conclusion, the pro-

posed learning mechanisms incorporated with Non-Linear Great Deluge matches the

172

best known solution quality for all small problem instances and improves the best

known results for all five medium instances. Only in the case of the large problem

instance, we see that our algorithms do not match the best known result.

NLGDHH-SM(lp=2500) NLGDHH-SM(lp=5000) NLGDHH-RCLR

Run Small Medium Large Small Medium Large Small Medium Large

1 0 61 870 0 63.4 813 1.4 119.6 995

2 0 65.6 827 0.6 61.2 824 1.8 110.6 993

3 0 63.4 739 0 61.8 911 2 89.6 1017

4 0.6 61.8 905 0 58 786 0.4 110.6 1112

5 0 62.8 806 0 58.8 958 3 112.2 915

6 0.2 64.2 936 0 54.4 962 2.4 92 1062

7 1 56.8 918 0.6 63.8 813 2.2 88 1008

8 0.2 61.2 800 1.8 68 824 2.4 109.8 1014

9 0.6 56.8 813 0 64.8 853 2.8 101.8 1036

10 0 62.6 638 0 64.2 813 0.8 99 1011

11 0 61.2 843 0.6 64.6 824 2.6 87.2 1153

12 0.2 67 817 0.8 62.6 880 0.8 108.6 1130

13 1 60.8 845 0.2 64.2 914 2.6 92 1010

14 1 59.4 817 0.2 55.4 879 2.8 102 1146

15 0.6 59 912 0 64.4 713 3.8 118.6 1088

16 1 58.6 857 0.4 66 1030 2.8 92.4 917

17 0 57.2 855 0 60.4 1083 1.4 121 996

18 0.4 63.4 788 0.2 61.2 985 1.4 106.8 1012

19 0 56.6 725 0 61.2 813 1.4 134 1065

20 0 60.8 870 0 55.6 824 0.6 76.6 1025

Table 7.4: Average Penalty Cost ofNLGDHH-SM(lp=2500), NLGDHH-SM(lp=5000)
and NLGDHH-RCLR Across the 11 Socha et al. Instances.

N10VA
Sumo'

Squares df Mean Square F Sig.

ismall Between Groups 289.786 4 72.447 208.483 .000

Within Groups 33.012 95 .347

Total 322.798 99

Medium Between Groups 183819.430 4 40954.857 441.808 .000

Within Groups 8806.332 95 92.698

Total 172625.762 99

arge Between Groups 715447.060 4 178861.765 33.587 .000

Within Groups 505905.450 95 5325.321

Total 1221352.510 99

Figure 7.25: ANOVA Results

173

ENLGD-2 NLGD
Run Small Medium Large Small Medium Large
1 0.8 95.6 703 3.8 142.4 966
2 0.4 85.8 927 4.8 165 1070
3 0.4 95.4 835 6 165.6 876
4 0.4 93.6 968 5.2 162.2 935
5 0.4 108.6 895 5 165.2 971
6 0.4 99.8 730 4.6 166.8 942

7 0.2 81.2 782 5 165.4 895

8 0.4 91.6 711 5.2 156.8 976
9 0.8 110.4 777 5.4 160.4 986
10 1 96.4 838 5.4 172.8 1005
11 0.4 96.6 808 3.8 185 966
12 1 98.4 944 4 171.6 1070
13 0.8 91.2 870 4.2 177 935
14 0.4 96.4 807 4.2 181 1024
15 0.8 83.6 849 4 172.4 942
16 1.2 90.6 713 5 188.4 958
17 0.4 117.8 852 4.2 179.6 978
18 0.6 102.2 795 5.4 182.6 1005
19 1.6 106 779 5.4 196 1078

20 0.8 89.4 801 5 183.8 907

Table 7.5: Average Penalty Cost of ENLGD-1 and NLGD Across the 11 Socha et al.
Instances.

NLGDHH-SM NLGDHH-RCLR ENGD-2 NLGD
LP=5000

1.000 0.000 0.097 0.000
1.000 0.000 0.038 0.000
0.000 0.000 0.000 0.000
0.097 0.038 0.000 0.000
0.000 0.000 0.000 0.000

Table 7.6: Post Hoc Tests - Small Instances.

NLGDHH-SM NLGDHH-SM NLGDHH-RCLR ENLGD-2 NLGD
LP=2500 LP=5000

0.999 0.000 0.000 0.000
0.999 0.000 0.000 0.000 0.000
0.000 0.000 0.483 0.000
0.000 0.000 0.483 0.000
0.000 0.000 0.000 0.000

Table 7.7: Post Hoc Tests - Medium Instances.

NLGDHH-SM NLGDHH-SM NLGDHH-RCLR ENLGD-2 NLGD
LP=2500 LP=5000

NLGDHHsS~t~r -250~~ - 0.551 0.000 1.000 0.000
NLGDHHsSM LP=5000 0.551 - 0.000 0.332 0.002

NLGDHH- CLR 0.000 0.000 - 0.000 0.030
ENLGD-2 1.000 0.332 0.000 - 0.000
NLGD 0.000 0.002 0.030 0.000 -

Table 7.8: Post Hoc Tests - Large Instance.

174

I

I
I

~~---r------.-----'------'------~--~
NLGDHH-SM NLGDHH-SM NLGDHH-RCLR
(LP.2500) (LP.5000)

ENLGD-2 NLGD

Algorithms

Figure 7.26: Means Plot and LSD Intervals (Small Instances).

175

==

I

I

NLGDHH-SM NLGDHH-SM NLGDHH-RCLR ENLGD-2 NLGD
(LP-2500) (LP.5000)

Algorithms

Figure 7.27: Means Plot and LSD Intervals (Medium Instances).

175

1,100-

CD ICl..
~.. 1,000- Is
~8
(Jc::

90()" I~IVIV;;
~.E I IQ.

& 8O()"
as..
CD
>

"' 70()"

NLGDHH-SM NLGDHH-SM NLGDHH-RCLR ENLGD-2 NLGD
(LP.2500) (LP.5000)

Algorithms

Figure 7.28: Means plot LSD Intervals (Large Instance).

7.3.6 Comparison with Best Known Results

Finally, we compare the results obtained by the NLGDHH with the best results re-

ported in the literature for the subject problem. Columns 2 to 4 in Table 7.9 show

the results obtained by NLGDHH, while the fifth column shows the best known re-

sults and the corresponding approaches. It should be noted that although a timetable

with zero penalty exists for each problem instance (the data sets were generated start-

ing from such a timetable [152]), to the best of our knowledge no heuristic method

has found before the ideal timetable for the medium and large instances. Hence,

these data sets are still very challenging for heuristic search methods. For all small

instances, both approaches NLGDHH-SM and NLGDHH-RCLR produced optimal

solutions. For medium instances, NLGDHH-SM improved the best solutions of Ml,

M2, M3, M4 and MS while NLGDHH-RCLR improved the best solution of Ml, M2,

M3, and M4. For the large instance, neither NLGDHH-RCLR nor NLGDHH-RCLR

improved the best solution reported in the literature but they are very competitive.

176

Table 7.9: Comparison of the Proposed Great Deluge Based Hyper-heuristic to the

Best Results Reported in the Literature for the Socha et al. UCTTP Instances.

Instance NLGDHH-SM NLGDHH-SM NLGDHH-SM

LP=1000 LP=2500 LP=5000 NLGDHH-RCLR Best Known

SI 0 0 0 0 o (VNS-T)

S2 0 0 0 0 o (VNS-T)

S3 0 0 0 0 o (CFHH)

S4 0 0 0 0 o (VNS-T)

S5 0 0 0 0 o (MMAS)

Ml 51 38 42 54 80 (EGD)

M2 48 37 44 67 105 (EGD)

M3 60 61 60 84 139 (EGD)

M4 47 41 39 60 88 (EGD)

M5 61 61 55 93 88 (EGD)

L 731 638 713 915 529{HEA)

NLGDHH-SM is the Non-Linear Great Deluge Hyper-heuristic with fixed memory length

NLGDHH-RCLR is the Non-Linear Great Deluge Hyper-heuristic with dynamic memory length

MMAS is the MAX-MIN Ant System in [152]

CFHH is the Choice Function Hyper-heuristic in [27]

VNS- T is the Hybrid of VNS with Tabu Search in [5]

HEA is the Hybrid Evolutionary Algorithm in [3]

EGD is the Extended Great Deluge in [116]

177

7.4 Conclusions

In this chapter we have developed a hyper-heuristic approach that uses the modified

choice function mechanism and a non-linear great deluge (NLGD) acceptance crite-

rion to manage the selection of low-level heuristics during the search process. The

proposed hyper-heuristics deals only with complete feasible solutions. Two types of

modified choice function learning mechanism are investigated: learning with static

memory length and learning with random change learning rate. The method focuses

on trying to choose the most appropriate heuristic in each step of the search and

hence it follows the hyper-heuristic concept. We applied the proposed method to

well-known instances of the university course timetabling problem proposed by Socha

et al. [152J.We did not employ large neighbourhoods in our problem, as the purpose

of this research chapter is to test the effectiveness of the learning mechanisms ap-

proach when incorporated to our non-liner great deluge hyper-heuristic. In addition

we want to make the comparison between static memory length and random change

of learning rate. The employment of the large neighbourhoods will be investigate in

the future. The experimental results show that the non-linear great deluge hyper-

heuristic performs better using static memory length. Furthermore, the algorithm

with static memory produced five new best results out of eleven instances while the

algorithm with random change in learning rate produced four best results compared

to the best known results from the literature. However, for the large instance, both

algorithms produced only competitive results, rather than best.

178

Chapter 8

Developing Asynchronous

Cooperative Multi-agent Search

8.1 Introduction

This chapter presents novel asynchronous cooperative search approaches to tackle

the university course timetabling problem. The proposed algorithms are agent-based

systems inspired in the particle swarm optimisation metaheuristic and implemented

using CODEA [38], a programming framework for the development of multi-agent

systems. We propose two asynchronous cooperative algorithms: the first one is an

Asynchronous Cooperative Multi-heuristic (ACMH) and the second one is an Asyn-

chronous Cooperative Multi-hyper-heuristic (ACMHH). Both algorithms are multi-

agent based systems in which a number of autonomous agents cooperate within a

distributed environment in order to improve the global solution. Like our previous

search methods in this thesis, both approaches here start their search from complete

feasible solutions and try to improve the satisfaction of soft constraints whilst al-

ways remaining in the feasible region of the search space. The performance of the

proposed asynchronous cooperative algorithms are compared using the Socha et al.

in [152]problem instances of the university course timetabling problem.

179

The rest of this chapter is organised as follows. Section 8.2 gives an overview of

hyper-heuristics and parallel cooperative search. The literature review chapter in this

thesis already made an account of previous work on the application of hyper-heuristics

to the UCTTP, so here we concentrate in discussing the rationale of hyper-heuristics

and cooperative search. Section 8.3 discusses the important issues to consider when

developing asynchronous cooperative search algorithms and also outlines some of the

cooperative strategies proposed in the literature. Section 8.4 gives an outline of

Particle Swarm Optimisation, which inspired the multi-agent algorithms proposed

in this chapter. The asynchronous cooperative multi-agent algorithms proposed in

this chapter are described in Section 8.5, while Section 8.6 presents and discusses

experiments and results. Finally, conclusion for this chapter are given in Section 8.7.

8.2 Hyper-heuristics and Parallel

Cooperative Search

The emergence of parallel processing and cooperative search strategies as tools to

develop more effective and efficient search methodologies has attracted the attention

of researchers particularly in the last ten to fifteen years. Parallel cooperative search

is an important stream of metaheuristics development that has resulted in the publi-

cation of many articles in the literature tackling complex combinatorial optimisation

problems, e.g [19, 134, 51, 49, 48, 104, 99J. One of the motivations behind the in-

terest on cooperative search is that diversification is inherent in cooperative search

because various areas of the search space can be better explored with multiple ex-

plorers working in parallel than with sequential heuristics. In addition, cooperative

search is capable of performing more efficient search due to the possibility of combin-

ing different and independent strategies with different parameter settings into a more

robust system [48, 134J. Cooperative search is also capable of increasing the speed

180

of the search and reduces the computation time when solving a problem instance in

comparison to the execution of independent sequential heuristics. In this work, we

propose asynchronous cooperative search in which each agent is free to communicate

to each other as needed, this type of model is called island model according to [47].

8.3 Asynchronous Cooperative Search

Several cooperative search approaches have been proposed in the literature. Crainic

et al. [52]presented a taxonomy for parallel tabu search. They classified approaches

based on three features: the control strategy used to guide the search, the informa-

tion sharing mechanism to exchange information between the threads and the strat-

egy to partition the search space. Later, Crainic and Toulouse in [50, 51, 48] further

investigated parallel tabu search and presented three types of strategies: low-level

paralielisation, parallelisation by domain decomposition, and cooperative/independent

multi-thread. In the first type of strategy, parallelism is usually realised within an

iteration where moves are evaluated in parallel. In the second type of strategy, the

problem search space is partitioned into several parts and an individual parallel search

is conducted in each part accelerating the global search. The resulting partial explo-

rations are combined by a master process to obtain an overall feasible solution. In the

third type of strategy, several concurrent searches are conducted over the same solu-

tion space, this strategy is also called cooperative/independent multi-thread strategy.

The threads may communicate during the search or only at the end of it to iden-

tify the best overall solution. Communication among the threads may be performed

synchronously or asynchronously and may be even executed at predetermined or dy-

namically decided moments. Several studies in the literature have shown that multi-

thread strategies yield better solutions than the corresponding sequential approach,

even when the exploration time permitted to each thread is significantly lower than

that of the sequential computation [51, 48]. Studies have also shown that the com-

181

bination of several threads that implement different parameter settings increases the

robustness of the global search relative to variations in problem instance characteris-

tics.

Crainic and Toulouse [47]have emphasised the design of the information exchange

mechanism as the key element that determines the performance of cooperative search

methods. They also discussed that other design issues include: what information

to exchange, when to exchange it, the logical inter-processor structure, synchronous

or asynchronous communication and what each independent process does with the

received information. Therefore, the design issues must be tackled carefully in order

to come out with efficient and robust search method.

8.4 Particle Swarm Optimisation

Particle Swarm Optimization (PSO) was proposed by Russel Eberhart and James

Kennedy [69, 94] as a population-based stochastic approach for solving continuous

optimisation problems and was inspired by social-psychological individual behaviour

of swarms like bird flocking or fish schooling. A swarm is made of particles that move

in a multidimensional space. Each particle has a position Xi,j given by its current

solution and a velocity Vi,j used to update the particle's position in each iteration of

the algorithm. The particles in a PSO implementation fly through the hyperspace

Rn and have important capabilities. Each particle memorises its own best position

(solution) and also each particle makes this information available to its neighbouring

particles. Particles also have the knowledge of the global best-so-far or the best posi-

tion of its neighbourhood. With this information about their own solution and that

of the other particles in the swarm, each particle's position and velocity is updated

as shown in equations 8.1 and 8.2.

182

Equations 8.1 and 8.2 determine how a particle updates its velocity and position

respectively. Equation 8.1 shows that the velocity of a particle is highly influenced

by inertial and social coefficients. Inertial movement refers to the tendency of the

particle to follow its own direction while social movement refers to tendency of the

particle to follow other better positioned particles in its vicinity and also the whole

swarm. Each of the weights Co to C3 indicate the inertial and social influence when

the particle moves or updates its position (solution). That is, Co is the inertial weight

that corresponds to the particle's own explorative ability whilst Cl, C2 and C3 are

the social weights that correspond to the influence that other particles have on the

particle's movement. The social coefficients drive the particle to follow other better

positioned particles such as the global best in the whole swarm (xJb), the local best

or best position that the particle has achieved during the search (x;b) and the best

particle's neighbour (x'/). To avoid a predictable behaviour of the particle's move-

ment, the coefficients are multiplied by random number (TI' T2 and T3) drawn from a

uniform distribution [0,1]. Once the particle's velocity is updated with Equation 8.1,

the particle updates its position (changes its solution) by adding the new velocity to

its current position using Equation 8.2. In basic particle swarm algorithm it consists

of a number of iterations, where at each iteration every single particle in the swarm is

updating its position (current solution) and velocity. Since all particles in the swarm

have the knowledge of what is the best position in its neighbourhood (the best so-

lution achieved by other particles in the swarm), therefore whole swarm a likely to

move towards the better positions guided by the leading particle so far.

Xi,j = xi,) + Vi,j (8.2)

183

8.5 The Asynchronous Cooperative

Multi-agent Algorithms

The Distributed Multi-agent system is a network of agents that work together to

solve problems that a beyond their individual capabilities [124]. Whereas, in [133]

defines a multi-agent systems as are distributed and autonomous systems made up

of autonomous agents that support reactivity, and are robust against failures locally

and globally. There are two prominent multi-agent architectures have been addressed

in the literature: blackboard and autonomous architectures. Hayes-Roth [86J pro-

posed multi-agent system based on blackboard architecture. The model proposed by

Hayes-Roth is an inter-agent communication that share a common global database,

called the blackboard, which can be accessed by a number of knowledge sources. The

knowledge source is a set of problem solving modules. These knowledge sources com-

municate by manipulating the contents of the blackboard. The knowledge sources

respond to changes on the blackboard and directly modifying and withdrawing so-

lution elements within a common working area called blackboard. In blackboard

architecture, the data are placed in central and each agent is able to read the data

from the blackboard. If the agents in the system are capable to execute the task,

then the agents record the result on the blackboard. The main features of blackboard

architecture are: Relatively, this architecture is more on centralise controlled and

lack of local memory. Different than blackboard architecture, the proposed method

in this thesis is autonomous agent architecture, where the agents in the distributed

environment are not controlled or managed by any other agents. Each agent is free

to communicate and interact directly to each other to achieve the global objective as

illustrated in Figure 8.1. Therefore, each agent in our proposed system embodies its

own knowledge, meaning that each agent has the ability to knows its best position

(current solution) and the best position of its neighborhood. In addition, every single

agent is also have the knowledge of the global best-so-far solution. Furthermore, each

184

agent embodies its own control, for example make the information (solution) available

to all agents in the distributed environment and able to change their position (current

solution) when necessary.

In this paper we propose two types of cooperative search algorithms: Asyn-

chronous Cooperative Multi-heuristic (ACMH) and Asynchronous Cooperative Multi-

hyper-heuristic (ACMHH). Both approaches operate from an initial complete feasible

solution and maintain feasibility during the search. The initial solutions provided to

these algorithms are constructed with the Initialisation Heuristic 3 (IH3) presented

in chapter 4 of this thesis. Please refer to that chapter for details.

8.5.1 Asynchronous Cooperative Multi-agent

Search Frarnevvork

Inspired by the particle swarm optimisation algorithm, we propose a decentralised

agent-based system framework which consists of a population of agents. Since we are

dealing with a discrete search space instead of a continuous one, we require the agents

to 'jump' from position to position instead of moving continuously as in the original

PSO algorithm. Then, in our framework all agents in the distributed environment

cooperate among them and jump from one solution to another one searching for the

global optima. The proposed decentralised multi-agent framework is illustrated in

Figure 8.1. Each agent is able to perform four types of jump (changing the solution)

depending on which agent acts as the attractor in each iteration. This model shows

that each agent is able to communicate with each other, communication links are rep-

resented by arrows. Therefore, the system is designed in such a way that whenever

an agent gets stuck in local optima, i.e. is unable to change its solution or find a new

better solution, the agent can communicate freely with other agents in the distributed

environment.

185

Each agent starts from a different feasible solution. In each iteration all agents

update their positions based on work in [92, 114]. In order to select the new posi-

tion, a random number r is drawn from the uniform distribution interval [0,1]. The

interval is divided into four segments with length 'E;=l c, = 1. Therefore, the agent

will choose its type of movement (inertial or social influence) based on which segment

c, the value of r falls. That is, the formulation of how the agents in the distributed

environment change their position can be expressed by:

(8.3)

From the above formulation the resulting move can be as follows:

1. If r E Cl, no agent acts as an attractor, therefore, the agent changes its position

at random with respect to its current state Xi,j. This type of move called

intertial move, and the purpose of this move is to allow the agent to explore

and diversify the search.

2. If r E C2, the agent changes its position moving towards the best agent in its

current neighbourhood X'Jb.

3. If r E C3, the agent changes its position moving towards the best position

achieved by this agent so far x~b.

4. If r E C4, the agent changes its position moving towards the best global agent

in the system xt
The asynchronous cooperative multi-agent system proceeds as follows:

1. The agents start the search each from an initial feasible solution.

2. Once all agent determine their new position (new solution), the agents apply

their own heuristic to improve the quality of their own solution. That is, each

agent is able to diversify its own search by:

186

(a) Jumping from one solution to another solution.

(b) Using their own stochastic acceptance criterion for accepting or not their

new solution. We use two different acceptance criteria here: Non-linear

great deluge and simulated annealing.

Figure 8.1: Island Model Multi-agent System: Many-ta-Many Communication Model.

8.5.2 Low-Level heuristics

As previously in this thesis, we use the following three neighbourhood moves or low-

level heuristics:

• HI: selects one event at random and assigns it to a feasible pair timeslot-room

also chosen at random.

• H2: selects two events at random and swaps their timeslots and rooms while

ensuring feasibility is maintained.

187

• H3: selects three events at random and exchanges their timeslots and rooms at

random while ensuring feasibility is maintained.

8.5.3 Acceptance Criteria

Each agent moves by inertia or social influence as explained above. Also each agent

uses its own heuristic to search for a new candidate solution. But also each agent has

its own acceptance criterion to accept the new candidate solution. The criteria used

here are as follows:

• Non-linear great deluge: A new candidate solution is accepted if it is better

or equal than the current solution. A candidate solution worse than the current

solution will only be accepted if the penalty of the candidate solution is less than

or equal to a pre-defined limit called water level. The acceptance level decrease

over time at non-linear fashion decay rate, expressed by following formulation:

B = B x (exp-O(rnd[min,max])) + {3 (8.4)

When the penalty cost and the water level are about to converge the algorithm

tends to become greedy. Then, it is necessary for the algorithm to relax and

allow accepting worse solutions and this is achieved by increasing the water level

with certain probability. This acceptance criterion is of course the one used in

our non-linear great deluge algorithm from chapter 5.

• Simulated annealing: Worse solutions are accepted with certain probability

expressed as P : e-O/T, where 8 = 1(8*) - 1(8) and the parameter T denotes

the current temperature. The search starts with higher temperature and it is

reduced gradually towards the end of the search as 'Ii+! = 'Ii -'Ii * {3 (geometric

cooling schedule). Reheating the temperature is also activated when the tem-

perature is very low; the new generated solution is only accepted if it does not

188

worsen the overall value of the current solution. Therefore, the temperature is

increased to the last improvement temperature (the temperature where the last

best solution was found).

We used the asynchronous cooperative multi-agent framework described above to

implement two algorithms in this chapter. The difference between the two algorithms

is in the complexity of the agents. In the first algorithm, each agent is a simple

low-level heuristic. In the second algorithm, each agent is a hyper-heuristic type of

approach. The following subsections give details of these proposed methods.

8.5.4 Asynchronous Cooperative Multi-heuristic

Algorithm (ACMHA)

Each agent acts as a low-level heuristic to improve its own solution. The agents in the

system cooperate in order to improve the global best solution. Each agent conducts

its own search independently and asynchronously as explained above. Once an agent i

spends a number of idle iterations (no improvement and unable to change its solution),

the agent compares its current solution Xi,j with the best global solution so far xt and

if Xi,j is better than xJb, the global best is updated, otherwise, the agent discards its

own solution and moves to another position using the velocity and position equations

explained in section 8.5.1. All agents in the distributed environment repeat the same

procedure until the system terminates the whole search process. Each agent decides

whether to accept new solutions based on their own acceptance criterion.

8.5.5 Asynchronous Cooperative Multi-hyperheuristic

Algorithm (ACMHHA)

Each agent acts as a low-level heuristic to improve their own solution. As above, the

agents in the system cooperate in order to improve the global best solution. Each

agent conducts its own search independently and asynchronously. Once an agent i

189

spends a number of idle iterations (no improvement and unable to change its solution),

the agent compares its current solution Xi,j to the best global solution so far xr and

if Xi,j is better than xJb, the global best is updated, otherwise, the agent discards its

own solution and moves to another position using the velocity and position equations

explained in section 8.5.1. The difference here is that each agent is able to choose

between the three type of low-level heuristics HI, H2 and H3. As suggested in [154],

each agent in the distributed environment selects the low-level heuristic at random in

every iteration. Each agent decides whether to accept new solutions based on their

own acceptance criterion.

8.6 Experiments and Results

The main aim of these experiments is to evaluate the performance of the proposed

asynchronous cooperative multi-agent search algorithms ACMHA(6) and ACMHHA(2).

We used the Socha et al. problems instances and executed the proposed algorithms 20

times on each instance. The stopping condition for both algorithms was a maximum

of 100 cycles or 10 hours of computation time whatever was first. In this proposed

algorithms, a cycle occurs when all agents complete their tasks. Although 10 hours

of computation time might seem too long for medium and large instances, we should

note that our implementation is not truly parallel or multi-threaded, but a simula-

tion on a sequential computer. Thus, the time taken to complete one cycle of the

asynchronous cooperative search for the medium and large instances is somehow slow

in such a sequential machine. In addition, we should remember that computational

time is generally considered to be non-critical for the UCTTP and most algorithms re-

ported in the literature spent hours solving these problems (e.g. Abdullah et al. [4, 6]

ran their algorithms for ten and twelve hours per instance respectively). Another

reason for the provision of long execution times is that we are mainly interested in

investigating the performance of the proposed multi-agent systems and hence our de-

190

cision in allowing sufficient computation time for the agents to conduct their search

and collaboration. The agents in the ACMHA(6) (low-level heuristics) stop apply-

ing their low-level heuristic after a number of idle iterations, we set this maximum

according to the size of the problem instance, 100 for large, 1000 for medium and

20,000 for small respectively. In these experiments, we compare the performance of

our algorithms to the best results reported in the literature.

Results in Table 8.1 clearly show that the proposed algorithms find better re-

sults outperforming between them all other approaches in the literature including our

previous algorithms in these thesis (see also [128, 101, 100]). We see that for small

instances the proposed algorithms match the best results reported in the literature.

For all small instances, ACMHA(6) and ACMHHA(2) find the optimal solution in all

the 20 runs. For the medium instances, ACMHA(6) produced better solutions in four

instances. In term of percentage improvement, the proposed algorithms reduced the

penalty by 47.37%,48.65%,13.11%,73.17% and 63.93% for instances Ml, M2, M3,

M4 and M5 respectively and with respect to our previous best results in this thesis.

For the large instance, the cooperative algorithms also produced an improvement over

our previous best result, in this case the improvement was of 6.11%.

It is obvious that the asynchronous cooperative multi-agent algorithms are bene-

ficial since new best results are reported for all the medium and large instances. It is

very noticeable that ACMHHA(2) finds a considerably much better solution for the

most difficult instance (the large one) in which our previous algorithms in this thesis

have failed.

In second set of experiments we investigate the performance of ACMHHA using

different number of agents (2, 4 and 6). For each problem instance we executed the

algorithms variants 20 times. The results obtained are shown in Table 8.2. We can

191

Table 8.1: Comparison of Results Obtained by the Asynchronous Cooperative Multi-
agent Algorithms Proposed in this Chapter Against the Best Known Results from
the Literature for the 11 Socha et al. Problem Instances.

ACMHA(6) ACMHHA(2) Al A2 A3 A4 A5 A6 A7 A8 A9 AID
SI 0 0 0 0 3 0 0 6 0 0 0 0
S2 0 0 0 1 4 0 0 7 0 0 0 0
S3 0 0 0 0 6 0 0 3 0 0 0 0
S4 0 0 0 0 6 0 0 3 0 0 0 0
S5 0 0 0 0 0 0 0 4 0 0 0 0
M1 20 28 38 126 140 175 242 372 317 221 80 78
M2 19 27 37 123 130 197 161 419 313 147 105 92
M3 53 43 61 185 189 216 265 359 357 246 139 135
M4 11 28 41 116 112 149 181 348 247 165 88 75
M5 22 24 61 129 141 190 151 171 292 130 88 68
L 460 415 638 821 876 912 1068 529 730 556

ACMHA(6) is Asynchronous Cooperative Multi-heuristic with 6 agents.
ACMHHA(2) is Asynchronous Cooperative Multi-hyperHeuristic with 2 agents
Al is Non-Linear Great Deluge Hyper-heuristic with LP=2500 [128].
A2 is Evolutionary Non-Linear Great Deluge [101].
A3 is Non-Linear Great Deluge [100].
A4 is Genetic algorithm and local search by Abdullah and Turabieh [7].
A5 is Randomised iterative improvement algorithm by Abdullah et al. [3].
A6 is Graph hyper heuristic by Burke et al. [29].
A7 is Variable neighbourhood search with tabu by Abdullah et a1. [5J.
A8 is Hybrid evolutionary approach by Abdullah et al. [4J.
A9 is Extended great deluge by McMullan [116].
AlO is Great Deluge and Tabu Search by Abdullah et al. [6].
SI-S5 represent small problem instances 1 to 5.
MI-M5 represent medium problem instances 1 to 5.
L represents the large problem instance.

192

Table 8.2: Comparison of ACMH(6), ACMHHA(2), ACMHHA(4) and ACMHHA(6).

ACMHA(6) ACMHHA(2) ACMHHA(4) ACMHHA(6)
Best Avg Best Avg Best Avg Best Avg

SI 0 0.75 0 0.1 0 0 0 0
S2 0 1.9 0 0.1 0 0.05 0 1
S3 0 0.85 0 0 0 0 0 1
S4 0 1.4 0 0.7 0 0 0 1
S5 0 0 0 0 0 0 0 0
M1 20 37.65 28 48.85 28 47.65 30 61
M2 19 31.95 27 48.45 30 50.55 32 41
1\13 53 73.45 43 71.45 66 88.4 64 102
1\14 11 26.8 28 39.1 23 37.75 24 51
M5 22 38.45 24 50.1 34 58.35 32 45
L 460 675.5 415 510.1 450 527.4 468 560

ACMHA(6) is Asynchronous Cooperative Multi-heuristic with 6 agents.
ACMHHA(2) is Asynchronous Cooperative Multi-hyperheuristic with 2 agents.
ACMHHA(4) is Asynchronous Cooperative Multi-hyperheuristic with 4 agents.
ACMHHA(6) is Asynchronous Cooperative Multi-hyperheuristic with 6 agents.
Avg is Average over the 20 runs.
Sl-S5 represent small problem instances 1 to 5.
1\H-M5 represent medium problem instances 1 to 5.
L represents the large problem instance.

see that all ACMHHA variants managed to generate optimal solution at least in one

out of the 20 runs for all small instances. However, for medium instances ACMHA(6)

outperform the ACMHHA variants in 3 instances. For the large instance, the 2 agents

approach ACMHHA(2) outperforms the other algorithms.

In the third set of experiments, we compare the performance of ACMHA(6) and

ACMHHA with three variants to the best results reported in the literature instance by

instance. Columns 2 to 5 in Table 8.3 show the best results obtained by ACMHA(6)

and ACMHHA with three variants while column 6 shows the best known results and

the corresponding approaches for each problem instances. It should be noted that

although a timetable with zero penalty exists for each problem instance (the data

sets were generated starting from such a timetable [152]), to the best of our knowl-

edge no heuristic method has found the ideal timetable for the medium and large

193

Table 8.3: Comparison of the Results Obtained by the Asynchronous Cooperative
Multi-agent Algorithms Proposed in this Chapter Against the Best Results Reported
in the Literature.

ACMHA(6) ACMHHA(2) ACMHHA(4) ACMHHA(6) Best Known
SI 0 0 0 0 O(VNS-T)
S2 0 0 0 0 o (VNS-T)
S3 0 0 0 0 o (CFHH)
S4 0 0 0 0 o (VNS-T)
S5 0 0 0 0 o (MMAS)
M1 20 28 28 30 80 (ECD)
M2 19 27 30 32 105 (ECD)
M3 53 43 66 64 139 (ECD)
M4 11 28 23 24 88 (ECD)
M5 22 24 34 32 88 (ECD)
L 460 415 450 468 529 (HEA)

MMAS is the MAX-MIN Ant System in [152J.
CFHH is the Choice Function Hyper-heuristic in [27J.
VNS-T is the Hybrid of VNS with Tabu Search in [5J.
HEA is the Hybrid Evolutionary Algorithm in [3J.
EGD is the Extended Great Deluge in [116J.
SI-S5 represent small problem instances 1 to 5.
MI-M5 represent medium problem instances 1 to 5.
L represents the large problem instance.

instances. Hence, these data sets are still very challenging for heuristic search meth-

ods. For all small instances, both approaches ACMRA(6) and ACMHHA with three

variants produce optimal solutions. For medium instances, they produce better solu-

tions compared to the best results in the literature. For large instance ACMHRA(2)

does improve the previous best known result (by REA) by 21.55%. More interest-

ingly, ACMHA(6), ACMHHA(4)and ACMHHA(6) also produce better solutions for

medium and large instances compared to the best results found in the literature.

The reasons of using different number of agents in this experiments are :

• We employ six agents in ACMHA because there are only three heuristics and

two different criteria applied. For that reasons, we set three agents with different

heuristic for each acceptance criterion. Meaning that three agents with different

heuristic with acceptance criterion of great deluge and three more agents with

194

different heuristic with simulated annealing acceptance criterion.

• For ACMHHA, since each agent able to perform all three different types of

heuristics, therefore, we tested different number of agents (two, four and six).

By employing different number of agents, we found that each different number of

agents performed differently. Based on the experimental results, we found that,

the more agents we employed the lower the quality of the solutions become. We

only employed three different number of agents (two, four and six) as the more

agents we employed the longer the time was needed to accomplished the job as

the implementation of cooperative search was not truly parallel rather than a

simulation of the parallel processing.

8.6.1 Statistical Analysis

We also carried out a statistical analysis to statistically examine the performance of

ACMHA(6), ACMHHA with three variants and the previous algorithms proposed ear-

lier in this thesis (also published in [100], [101] and [128]). Table 8.6 and 8.4 presents

the average results for three categories of instances namely, small, medium and in-

stances. The values are obtained from the average results for each category. First,

we want to inspect whether all the proposed algorithms have different performance

towards the sizes of the instances. As a normal procedure we run the descriptive anal-

ysis to check the model's compatibility with the sample data and found that ANOVA

is suitable statistical tool to measure the differences among the proposed algorithms.

Figure 8.2 shows that there is a significant difference between the ACMHA(6),

ACMHHA with three variants and our previously proposed algorithms,the p-value is

very close to zero. This analysis does not show the detail whether all algorithms are

different between them. Therefore we used Post Hoc analysis to inspect the difference

between pairs of algorithms. The results are presented in Table 8.7, Table 8.8 and

195

Table 8.9.

Sum of Squares df Mean Square F Sig.

Small Between Groups 377.452 7 53.922 261.322 .000

Within Groups 31.364 152 .206

Total 408.816 159

Medium Between Groups 281270.564 7 40181.509 575.404 .000

Within Groups 10614.440 152 69.832

Total 291885.004 159

Large Between Groups 5982894.900 7 854699.271 223.636 .000

Wijhin Groups 580918.600 152 3821.833

Total 6563813.500 159

Figure 8.2: ANOVA Results

196

un me IUm ar~e rna me IUm arge ar~e
1 41 67 0 57 41 54
2 42.4 668 0 50.8 526 587
3 45.4 768 0 44.8 504 609
4 40.6 597 0.4 50.8 528 594
5 36.4 580 0 51.4 543 596
6 43.4 734 0 53.8 551 489
7 47.8 460 0 58 518 621
8 41.4 611 0 58 474 489
9 40.6 830 0.4 61 561 450
10 41.8 585 0 64.6 453 484
11 43.2 663 0.6 53.6 425 450
12 38.6 784 0.2 63.8 506 504
13 41.8 681 0 45.8 578 577
14 43.4 691 0.2 45 485 477
15 42.8 765 0.2 43.4 629 589
16 42.2 792 0.6 49.2 512 518
17 41.4 773 0.2 46 542 457
18 37.4 572 0.4 51 473 527
19 37.2 550 0.2 44.6 452 505
20 46.4 599 0.2 39.2 527 483

Table 8.4: Averagc Penalty Cost of ACMHA(6), ACMHHA(2) and ACMHHA(4)
Across the 11 Socha et al. Instances.

un rna me IUm arge rna me rum arge rna me IUm arge
1 0.2 54.4 562.0 0.0 61.0 870.0 0.0 63.4 813.0
2 0.2 55.4 484.0 0.0 65.6 827.0 0.6 61.2 824.0
3 0.2 54.4 497.0 0.0 63.4 739.0 0.0 61.8 911.0
4 0.2 51.0 484.0 0.6 61.8 905.0 0.0 58.0 786.0
5 0.2 61.4 540.0 0.0 62.8 806.0 0.0 58.8 958.0
6 0.4 59.2 493.0 0.2 64.2 936.0 0.0 54.4 962.0
7 0.2 55.4 530.0 1.0 56.8 918.0 0.6 63.8 813.0
8 0.0 55.8 526.0 0.2 61.2 800.0 1.8 68.0 824.0
9 0.0 57.8 527.0 0.6 56.8 813.0 0.0 64.8 853.0
10 0.0 55.0 523.0 0.0 62.6 638.0 0.0 64.2 813.0
11 0.0 51.8 531.0 0.0 61.2 843.0 0.6 64.6 824.0
12 0.2 58.0 611.0 0.2 67.0 817.0 0.8 62.6 880.0
13 0.2 57.2 547.0 1.0 60.8 845.0 0.2 64.2 914.0
14 0.8 49.8 515.0 1.0 59.4 817.0 0.2 55.4 879.0
15 0.0 56.4 539.0 0.6 59.0 912.0 0.0 64.4 713.0
16 0.0 53.6 540.0 1.0 58.6 857.0 0.4 66.0 1030.0
17 0.0 52.8 546.0 0.0 57.2 855.0 0.0 60.4 1083.0
18 0.6 60.0 560.0 0.4 63.4 788.0 0.2 61.2 985.0
19 0.2 60.6 530.0 0.0 56.6 725.0 0.0 61.2 813.0
20 0.0 50.2 468.0 0.0 60.8 870.0 0.0 55.6 824.0

Table 8.5: Average Penalty Cost of ACMHHA(6), NLGDHH-SM (LP=2500) and
NLGDHH-SM (LP=5000)) Across the 11 Socha et al. Instances.

First of all we want to examine if the proposed asynchronous cooperative searches

are significantly different than each other. Table 8.7, Table 8.8 and Table 8.9 show

that for small instances most of the cooperative searches have similar performance

197

NLGDHH-RCLR ENLGD-2 NLGD
Run Small meolUm Large Small meomm Large Small meomm Large
1 1.4 119.6 995.0 0.8 95.6 703.0 3.8 142.4 966.0
2 1.8 110.6 993.0 0.4 85.8 927.0 4.8 165.0 1070.0
3 2.0 89.6 1017.0 0.4 95.4 835.0 6.0 165.6 876.0
4 0.4 110.6 1112.0 0.4 93.6 968.0 5.2 162.2 935.0
5 3.0 112.2 915.0 0.4 108.6 895.0 5.0 165.2 971.0
6 2.4 92.0 1062.0 0.4 99.8 730.0 4.6 166.8 942.0
7 2.2 88.0 1008.0 0.2 81.2 782.0 5.0 165.4 895.0
8 2.4 109.8 1014.0 0.4 91.6 711.0 5.2 156.8 976.0
9 2.8 101.8 1036.0 0.8 110.4 777.0 5.4 160.4 986.0
10 0.8 99.0 1011.0 1.0 96.4 838.0 5.4 172.8 1005.0
11 2.6 87.2 1153.0 0.4 96.6 808.0 3.8 185.0 966.0
12 0.8 108.6 1130.0 1.0 98.4 944.0 4.0 171.6 1070.0
13 2.6 92.0 1010.0 0.8 91.2 870.0 4.2 177.0 935.0
14 2.8 102.0 1146.0 0.4 96.4 807.0 4.2 181.0 1024.0
15 3.8 118.6 1088.0 0.8 83.6 849.0 4.0 172.4 942.0
16 2.8 92.4 917.0 1.2 90.6 713.0 5.0 188.4 958.0
17 1.4 121.0 996.0 0.4 117.8 852.0 4.2 179.6 978.0
18 1.4 106.8 1012.0 0.6 102.2 795.0 5.4 182.6 1005.0
19 1.4 134.0 1065.0 1.6 106.0 779.0 5.4 196.0 1078.0
20 0.6 76.6 1025.0 0.8 89.4 801.0 5.0 183.8 907.0

Table 8.6: Average Penalty Cost of NLGDHH-RCLR , ENLGD-2 and NLGD Across
the 11 Socha et al. Instances.

except for ACMHHA(2) and ACMHHA(4) where the p-value is less than significant

level at 0.05. For medium instances ACMHHA(2), ACMHHA(4) and ACMHHA(6)

have similar performance across instances. However, the performance of ACMHHA

with different number of agents is very different to the performance of ACMHA(6),

with p-value close to zero. Finally, for the large instance, the Post Hoc tests show

that all three types ACMHHA have similar performance, but their performance are

really different compared to ACMHA(6) with p-value close to zero.

Now we compare the performance of all asynchronous cooperative searches to

our previous algorithms (NLGDHH-SM, NLGDHH-RCLR, ENLGD-2 and NLGD).

Based on the results shown in Table 8.7, Table 8.8 and Table 8.9, we found the pairs

(ACMHA(6), NLGDHH-SM), (ACMHHA{2),NLGDHH-8M),(ACMHHA(6),NLGDHH-

8M) and (NLGDHH-8M,ENLGD-2) having similar performance on small instances.

In medium instances, we found that only NLGDHH-RCLR and ENLGD-2 have sim-

ilar performance, whereas the rest of the algorithms have different performance with

p-value less than the significant level at 0.05. For the large instance case, results indi-

198

cate that pairs (ACMHA(6),ENLGD-2), (NLGDHH-SM,ENLGD-2) and (NLGDHH-

SM,NLGD-2) have similar performance.

ACMHA ACMHHA ACMHHA ACHHHA NLGDHH-SM NLGDHH-SM NLGDHH ENLGD NLGD
(6) (2) (4) (6) (LP=2500) (LP=5000) -RCLR -2

ACMHA(6) - 1.000 0.135 1.000 0.566 0.989 0.000 0.000 0.000
ACMHHA(2) 1.000 - 0.048 1.000 0.967 1.000 0.000 0.000 0.000
ACMHHA(4) 0.135 0.048 - 0.069 0.048 0.377 0.000 0.000 0.000
ACMHHA(6) 1.000 1.000 0.069 - 0.971 1.000 0.000 0.000 0.000
NLGDHH-SM 0.566 0.967 0.048 0.971 - 1.000 0.000 0.284 0.000
(LP=2500)
NLGDHH-SM 0.989 1.000 0.377 1.000 1.000 - 0.000 0.122 0.000
(LP=5000)

NLGDHH-RCLR 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000
ENLGD-2 0.000 0.000 0.000 0.000 0.000 0.284 0.122 - 0.000
NLGD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -

Table 8.7: Post Hoc Tests - Small Instances.

ACMHA ACMHHA ACMHHA ACMHHA NLGDHH-SM NLGDHH-SM NLGDHH ENLGD NLGD
(6) (2) (4) (6) (LP=2500) (LP=5000) -RCLR -2

ACMHA(6) - 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ACMHHA(2) 0.000 - 0.353 0.619 0.000 0.000 0.000 0.000 0.000
ACMHHA4) 0.000 0.353 - 1.000 0.040 0.018 0.000 0.000 0.000
ACMHHA(6) 0.000 0.619 1.000 - 0.000 0.000 0.000 0.000 0.000
NLGDHH-SM 0.000 0.000 0.040 0.000 - 1.000 0.000 0.000 0.000
(LP=2500)
NLGDHH-SM 0.000 0.000 0.018 0.000 1.000 - 0.000 0.000 0.000
(LP-5000)

NLGDHH-RCLR 0.000 0.000 0.000 0.000 0.000 0.000 - 0.861 0.000
ENLGD-2 0.000 0.000 0.000 0.000 0.000 0.000 0.861 - 0.000
NLGD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -

Table 8.8: Post Hoc Tests - Medium Instances.

199

ACMHA ACHHHA ACHHHA ACHHHA NLGDHH-SH NLGDHH-SH NLGDHH ENLGD NLGD
(6) (2) (4) (6) (LP=2500) (LP=5000) -RCLR -2

ACMHA(2) - 0.000 0.000 0.000 0.015 0.000 0.000 0.070 0.000
ACHHHA(2) 0.000 - 1.000 0.998 0.000 0.000 0.000 0.000 0.000
ACHHHA(4) 0.000 1.000 - 1.000 0.000 0.000 0.000 0.000 0.000
ACHHHA(6) 0.000 0.998 1.000 - 0.000 0.000 0.000 0.000 0.000
NLGDHH-SM 0.015 0.000 0.000 0.000 - 0.911 0.000 1.000 0.000
(LP=2500)
NLGDHH-SH 0.000 0.000 0.000 0.000 0.911 - 0.000 0.713 0.008
(Lps5000)

NLGDHH-RCLR 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 0.099
ENLGD-2 0.070 0.000 0.000 0.000 1.000 0.713 0.000 - 0.000
NLGD 0.000 0.000 0.000 0.000 0.000 0.008 0.099 0.000 -

Table 8.9: Post Hoc Tests - Large Instance.

As the Post Hoc tests indicate, some algorithms have similar and some have

different performance. However at this point the analysis does not tell us which al-

gorithm is actually outperforming best across all instances. We refer to the mean

plot of each algorithm at 95% confidence level shown in Figure 8.3, Figure 8.4 and

Figure 8.5. In Figure 8.3 shows that for small instances ACMHHA(4) outperformed

all the other algorithms. For medium instances, Figure 8.4 shows that ACMHA(6)

outperformed ACMHHA(2), ACMHHA(4), ACMHHA(6), NLGDHH-SM, NLGDHH-

RCLR, ENLGD-2 and NLGD. Figure 8.5 shows the means plot for the large and it

shows that even though ACMHHA(2) produced the best results this instance, on aver-

age ACMHHA(2), ACMHHA(4) and ACMHHA(6) actually have similar performance

(more than 50% of their solutions have similar quality). Overall, the mean plot shows

that ACMHHA(4) outperforms the other algorithms for small instances. ACMHA(6)

shows the best performance across the medium instances. In addition, we found that

the mean plot indicates that ACMHHA(2), ACMHHA(2) and ACMHHA(2) have

similar performance where it can be said that around 50% of their solutions are of

similar quality. Finally, for the large instance, three algorithms have similar per-

200

formance namely ACMHHA(2), ACMHHA(4) and ACMHHA(6) outperforming the

other algorithms.

The statistical analysis presented here suggests that some of the algorithms have

similar and some have different performance according to the size of the problem

instances. It is also evident that the asynchronous cooperative multi-agent search,

inspired in particle swarm optimisation, is a very good strategy as it managed to

further improve the solutions found with our previous algorithms and produce best

known results for the medium and large instances.

201

.
I

z
"i..
~~.,.~ I~E e-
et
&
j

I I
I. I I I

'''3D

Algortihmi

Figure 8.3: Min Plot and LSD Interval (Small Instances).

175

=

I I

=:m::

Algorithms

Figure 8.4: Min Plot and LSD Interval(Medium Instance)

202

I

1,000-
I

<II Io
C
to

It;
.E
<II I I~
~ soo-
t;
8

I~
~
<II
CL

&soo-
f!
~ I<! I

400"

ACMHAI6) ACMHHA(2) ACMHHAI4) ACMHHA(6) NLGDHH·SM NLGDHH·SM NLGDHH· ENLGD·2 NLGD
(LP=25001 (LP=5000) RCLR

Algorithms

Figure 8.5: Min Plot and LSD Interval(Large Instance)

8.7 Conclusions

In this work we have developed an Asynchronous Cooperative Multi-agent Frame-

work inspired in the particle swarm optimisation technique. The proposed method

focuses on heuristics (low-level or hyper-heuristics) working together in a distributed

environment to solve problems that are beyond their individual capabilities. We ap-

plied the proposed method to well-known difficult instances of the university course

timetabling problem proposed by Socha et al. [152]. The experimental results showed

that the proposed algorithms were able to find new best solutions for six out of the

11 problem instances compared to results reported in the literature. The propose

algorithm variants are able to improve upon the best known solution for the most

difficult problem, the large instance. Future work contemplates the decomposition

of large problems into smaller ones. We also want to incorporate a larger number

203

of low-level heuristics and perhaps some more specialised operators. Another issue

that requires further work is to implement the algorithms on truly parallel or multi-

threading architectures in order to improve the computation time.

204

Chapter 9

Conclusions and Future Work

In order to draw the conclusions of the study, this chapter sums up the major devel-

opments from the investigation presented in this thesis. As it was stated in chapter

one, the aim and scope of this thesis was to study several approaches in a two-stage

optimisation strategy, initialisation and minimisation of soft constraint violations, to

tackle the university course timetabling problem. The purpose was to develop novel

meta-heuristic, hyper-heuristic and cooperative search techniques capable of obtain-

ing high-quality solutions for this difficult problem. The organisation of this chapter

is as follows. Section 9.1 gives a summary of the research work carried out and high-

lights the overall contribution of this thesis. Section 9.2 outlines suggested further

research directions that may be undertaken.

9.1 Research Work Summary

We investigated several approaches from the initialisation of feasible solutions (satisfy

all hard constraints) to the improvement of solutions (minimise soft constraint vio-

lations) for the university course timetabling problem. This research also examined

how cooperative low-level heuristics and cooperative hyper-heuristics improve the ro-

205

bustness and effectiveness of solution methods for the university course timetabling

problems. Chapter 1 presented the outline and the aims of this investigation.

A comprehensive literature review of different optimisation techniques to tackle

course timetabling problems was presented in Chapter 2 to identify previous relevant

work in this area and gaps in the knowledge that could be investigated in this the-

sis. The review showed that the university course timetabling problem is extremely

complex and is an NP-complete problem as there is no known efficient deterministic

algorithm which will solve all instances in polynomial time. The review also revealed

that since different educational institutions have different hard and soft constraints

in their timetabling problems, this makes it more complex to model and tackle the

various timetabling problems that exist in reality. Besides that, the introduction of

a modular course structure has made the construction of timetables even more com-

plex since students have much flexibility to enrol in almost any combination of courses.

Chapter 3 gave a detailed description of the university course timetabling prob-

lem (UCTTP) and the standard benchmark instances used in this thesis. These

benchmark problem instances are inspired by real-world problems although they are

still simplified. To the best of our knowledge, these problem instances are still very

relevant as no heuristic method has found the optimal solutions for many of those

benchmark instances.

According to reports in the literature, the sequential heuristic method has proven

to be good at generating initial solutions for timetabling. However, that method

alone does not guarantee the generation of feasible solutions even when combining of

more than one heuristics. Abdullah and colleagues [5, 4] have employed the sequential

heuristic approach, however, they failed to generate feasible solutions especially for

large instances. Moreover, no details of the computation time taken by that sequential

206

heuristic were reported by Abdullah et al. Thus, the main goal of Chapter 4 was to

experiment with several hybrid approaches for the construction of initial and feasible

timetables. A detailed analysis of the proposed approaches was also presented in that

chapter.

Chapter 5 presented an investigation of the great deluge algorithm applied to the

UCTTP. The aim of this chapter was to inspect in detail the performance of this

simple yet effective method. We first extended that algorithm from using the tra-

ditional linear decay rate to using a non-linear decay rate with floating water level.

We studied and compared the performance of the original great deluge and our ex-

tended one. In the original great deluge the decay rate is pre-determined and fixed,

so the search is driven by the water level and when the best solution and water level

converge the algorithm becomes greedy. In our proposed extended great deluge, the

decay rate changes in every iteration according to the quality of the best solution so

far. That is, the water level is driven by the search and the extended great deluge

never becomes greedy. Our non-linear great deluge produced high quality solutions

at reasonable computational time for the UCTTP.

Chapter 6 presented a hybrid evolutionary non-linear great deluge algorithm. The

proposed approach is an extension of our non-linear great deluge algorithm. Several

evolutionary features such as a population and mutation operator were incorporated.

First, we generate a population of feasible solutions using our construction heuristics

from chapter 4. Then, the population of feasible timetables is subject to a steady-

state evolutionary process that combines mutation and stochastic local search. We

evaluate the performance of the proposed evolutionary hybrid algorithm and in par-

ticular, the contribution of the evolutionary operators. The results showed that the

hybrid between non-linear great deluge and evolutionary operators produces very

good results on the instances of the UCTTP.

207

Chapter 7 proposed a great deluge hyper-heuristic framework. The aim of this

research was to develop a hyper-heuristic that employed learning mechanism for the

selection of low-level heuristics and a non-linear great deluge acceptance criterion.

The hyper-heuristic deals with complete solutions i.e. feasible timetables are pro-

duced first using our initialisation methods. The low-level heuristics are local search

operators which operate in the solution space. We choose the non-linear great deluge

as a high level heuristic because of the simplicity of the algorithm itself, great deluge

is less dependent upon parameter tuning compared to simulated annealing.

Chapter 8 investigated the development of asynchronous cooperative multi-agent

methods inspired in the particle swarm optimisation algorithm. Two variants were

implemented here, one in which the agents are low-level heuristics and another one on

which the agents are hyper-heuristics. When the agents cooperate, they might follow

their own inertial movement or follow other better positioned agents. The proposed

asynchronous cooperative multi-agent algorithms produced the best results so far for

all the medium and large instances of the Socha et a1. datasets. To the best of our

knowledge, these are the best results reported so far for this set of difficult benchmark

problems.

9.1.1 Contributions

A number of contributions have been made as a result of the research work in this

thesis. They are identified and presented according to their merits:

• Proposed a modification of the great deluge algorithm (using a non-linear decay

rate and floating water level): the algorithm is able to produce good results for

all medium instances and competitive for small and large instances .

• Developed asynchronous cooperative multi-agent algorithms: showed that these

approaches are very effective for the university course timetabling problem,

208

findings new best solutions for the 5 medium and the 1 large instance of the

Socha et al [152Jdatasets. On average, the asynchronous cooperative multi-

agent search improved all 11 instances and proved to be the best approach so

far.

• Investigated a learning mechanism for the non-linear great deluge, resulting in a

hyper-heuristic method: the learning mechanism helped the low-level heuristics

to produce improve the best known solutions at the time.

• Proposed a hybridisation of non-linear great deluge with elements of evolu-

tionary algorithms: this algorithm managed to improve solutions for the five

medium size instances of the Socha et al. problems and matched best known

solutions for all the small instances.

• Constructed feasible course timetables by hybrid heuristics (graph colouring,

local search and tabu search): we developed a set of methods that produce

feasible solutions in reasonable computation time for all the Socha et al. and

also the ITTC 2002 problem instances.

9.2 Discussion and Future Work

In general scheduling problems include a wide range of combinatorial optimisation

problem and in fact, university course timetabling problems belong to the family

of scheduling problems. Scheduling problem can be defined as the process of ar-

ranging a set of entity such as people, task, vehicle, exam, course, etc to limited

resources in such a way that all predefined hard constraints are satisfied and soft

constraints are minimised to achieve desirable objectives [163]. According to Ferland

and Fleurent [76Jmany scheduling problems have common features with timetabling

problems, for example sport leagues games scheduling, nurse rostering, examination

timetabling, school timetabling, crew scheduling and Transport scheduling. Even

though, the focus of this thesis was to development algorithms for university course

209

timetabling problems, the algorithms developed in this thesis can be applied to a

different types of scheduling problems. As shown in this research work, the ideas

for solutions techniques for course timetabling problem that investigated in this the-

sis will be profitably exploited for other scheduling problems as they share common

features with course timetabling studied in this thesis. Overall, our proposed algo-

rithms produced good results for course timetabling problem. Therefore, it is always

worth considering other different scheduling problem which share common features

and structure with course timetabling problem.

This thesis used a two-stage approach, initial feasible solution construction fol-

lowed by soft constraint violations minimisation, to tackle the university course

timetabling methodology. We spent much of our time investigating the second stage

of the approach, the improvement of timetables. We developed several new algo-

rithms that produced best known solutions for most of the problem instances used.

However, there are still a few issues that can be addressed in future research work.

One worthwhile future endeavour would be to investigate if the various algorithms

described here are also able to tackle other range of problems. It would also be inter-

esting to consider proper real-world problem instances of the UCTTP. It might also

be a good idea to extend the proposed algorithms into multi-objective approaches.

We also proposed to test the non-linear great deluge approach on other instances of

course timetabling problems available in the literature and other related timetabling

problems, such as examination timetabling or school timetabling. We also suggest

to investigate mechanisms to automatically adapt the non-linear decay rate to the

size of the problem being tackled. Our algorithm is able to find good quality feasible

solutions, however, it takes long time to do that for the large instance. It is also

interesting to investigate a population-based version of the non-linear great deluge

210

algorithm taking into consideration the diversity among a set of timetables.

Since our evolutionary hybrid algorithm does not check similarity of solutions dur-

ing the replacement of individuals in the pool of solutions, some of the solutions in

the pool might be the same. Future work could investigate the similarity of solutions

in the pool of solutions. Therefore the algorithm could take into consideration the

diversity in the population to better conduct the search.

Learning mechanisms such as supervised learning and unsupervised learning have

been applied in machine learning and produced very promising results. Another

worthwhile future endeavour could be to investigate if different learning mechanisms

such as q-learning and inspect can help to select the right low-level heuristic at every

decision point. A good learning mechanism is said to be intelligent enough to select

good heuristics and discard bad heuristics. Therefore, it would be interesting to in-

corporate large number of low-level heuristics and develop a learning mechanism that

reacts and balances intensification and diversification while selecting the low-level

heuristics.

Finally, in chapter 8 we presented the asynchronous cooperative low-level heuris-

tics and hyper-heuristics. The main issue in that work is the amount of computation

time taken to complete the circle of communication in these algorithms. Although in

real-world timetabling problems computational time is generally considered not very

critical, still we propose to implement our algorithms on parallel or multi-threading

computers to reduce the computation time and investigate other mechanisms for ex-

changing information among the agents. In addition, it might be worth investigating

different models of cooperative search such as central memory model, diffusion com-

munication scheme, low level parallelisation and search space decomposition.

211

References

[1J Website of the metaheuristics network. In http://www. metaheuristics. org (Web-

site of the Metaheuristics Network).

[2J E. Aarts, J. E. Korts, and W.Michiels. Simulated Annealing. In E. Burke and

G. Kendall, editors, Search Methodology, pages 187-210. Springer, 2005.

[3J S. Abdullah, E. Burke, and B. McCollum. A Hybrid Evolutionary Approach to

the University Course Timetabling Problem. In proceedings of CEC: The IEEE

Congress on Evolutionary Computation, pages 1764-1768, 2007.

[4J S. Abdullah, E. Burke, and B. McCollum. Using a Randomised Iterative Im-

provement Algorithm with Composite Neighborhood Structures for University

Course Timetabling. Metaheuristics - Progress in Complex Systems Optimiza-

tion, pages 153-172, 2007.

[5J S. Abdullah, E. K. Burke, and B. McCollum. An Investigation of Variable

Neighbourhood Search for University Course Timetabling. In The 2nd Mul-

tidisciplinary Conference on Scheduling: Theory and Applications, NY, USA,

pages 413-427, 2005.

[6J S. Abdullah, K. Shaker, B. McCollum, and P. McMullan. Construction of

Course Timetables Based on Great Deluge and Tabu Search. In MIC 2009:

The VIII Metaheuristics International Conference, 2009.

212

[7J S. Abdullah and H. Turabieh. Generating University Course Timetable Using

Genetic Algorithms and Local Search. In The Third International Conference

on Convergence and Hybrid Information Technology ICCIT, volume I, page 25,

2008.

[8J D. H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer Aca-

demic Press, Boston, 1987.

[9J M. A. AI-Betar and A. T. Khader. A hybrid search for university course

timetabling. In Multidisiplinary International Conference on Scheduling: The-

ory and Application (MISTA 2009), pages 157-179,2009.

[lOJ A. Alkan and E. Ozcan. Memetic Algorithms for Timetabling. In proceed-

ing IEEE Congress on Evolutionary Computation, pages 1796-1802, December

2003.

[11J R. Alvarez-Valdes, E. Crespo, and J. Tamarit. Assigning Students Sections

Using Tabu Search. Annals of Operations Research, 96:1-16, 2000.

[12J R. Alvarez-Valdes, E. Crespo, and J. Tamarit. Design and Implementation of

a Course Scheduling Systems Using Tabu search. Production, Manufacturing

and Logistics. European Journal of Operational Research, 137:512-523, 2002.

[13J H. Arntzen and A. Lekketangen. A Local Search Heuristic for a University

Timetabling Problem. In http://www.idsia.ch/Files/ttcomp2002/arntzen.pdj..

2003=2.

[14J H. Arntzen and A. Lekketangen. A Tabu Search Heuristic for a University

Timetabling Problem. In Metaheuristics: Progress as Real Problem Solvers,

Computer Science Interfaces Series 32:65-86, 2005.

213

http://www.idsia.ch/Files/ttcomp2002/arntzen.pdj..

[15] H. Asmuni, E. Burke, and J. Garibaldi. Fuzzy Multiple Heuristic Ordering for

Course Timetabling. In proceedings of the 5th United Kingdom Workshop on

Computational Intelligence UKCI, 2005.

[16] T. Back, F. Hoffmeister, and H. Schwefel. A Survey of Evolution Strategies.

In proceedings of the Fourth International Conference on Genetic Algorithms,

pages 2-9, 1991.

[17] R. Bai, E. K. Burke, G. Kendall, and B. McCollum. Memory Length in Hyper-

heuristics: An Empirical Study. In proceedings of the IEEE Symposium on

Computational Intelligence in Scheduling CISched, Hilton Hawaiian Village,

Honolulu, Hawaii, USA, April 2007.

[18] C. Blum and A. Roli. Metaheuristics In Combinatorial Optimization:

Overview and Conceptual Comparison. Technical report, Technical Report

TR/IRIDIA/2001-13, IRIDIA, Belgium, 2001.

[19] P. Borovska. Efficiency of Parallel Metaheuristics for Solving Combinatorial

Problems. In proceeding International Conference on Computer Systems and

Technologies - CompSysTech07, 2007.

[20] D. Brelaz. New Methods to Color the Vertices of a Graph. Communications of

the ACM, 22(4):251-256, 1979.

[21] H. Bremmerrnann. Optimisation Through Evolution and Re-Combination.

Spartan Books, 1962.

[22] E. Burke, Y. Bykov, J. P. Newall, and S. Petrovic. A Time-predefined Approach

to Course Timetabling. Yugoslav Journal of Operations Research (YUJOR),

13 No. 2:139-151, 2003.

[23] E. Burke, A. Eckersleym, B. McCollum, S. Petrovic, and Q. Rong. A Hybrid

Variable Neighbourhood Approaches to University Exam Timetabling. Tech-

214

nical report, OTTCS-TR-2006-2, University of Nottingham, School of CSiT,

2006.

[24] E. Burke, D. Elliman, P. Ford, and R. Weare. Examination Timetabling in

British Universities: A Survey. In E. Burke and P. Ross, editors, The Practice

and Theory of Automated Timetabling: Selected Papers (ICPTAT '95). Lecture

Notes in Computer Science, volume 1153/1996, pages 76-90. Springer-Verlag,

Berlin, Heidelberg, New York, 1996.

[25] E. Burke, K. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg. Hyper-

Heuristic: An Emerging Direction in Modern Search Technology. Handbook of

Meta-heuristic F. Glover (ed), Kluwer, 2003.

[26] E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R. Qu. A survey

of hyper-heuristic. Technical report, School of Computer Science Univeristy of

Nottingham, 2009.

[27] E. Burke, G. Kendall, and E. Soubeiga. A Tabu-search Hyperheuristic for

Timetabling and Rostering. Journal of Heuristics, 9:451-470, 2003.

[28] E. Burke and J. Landa-Silva. The Design of Memetic Algorithms for Schedul-

ing and Timetabling Problems. In E. Willaim, N. Krasnogor, and J. Smith,

editors, Recent Advances in Memetic Algorithms, Studies in Fuzziness and Soft

Computing, volume 166, pages 289-312. Springer, 2004.

[29] E. Burke, B. McCollum, A. Meisels, S. Petrovic, and Q. Rang. A Graph Based

Hyper-heuristic for Educational Timetabling Problems. European Journal of

Operational Research, 176:177-192, 2007.

[30] E. Burke, J. Newall, and R. Weare. A Memetic Algorithm for University Exam

Timetabling. In Lecture Notes in Computer Science; Archive Selected papers

from the First International Conference on Practiceand Theory of Automated

Timetabling, volume 1153. Springer-Verlag London, UK, 1995.

215

[31J E. Burke, S. Petrovic, and R. Qu. Case Based Heuristic Selection for

Timetabling Problems. Journal of Scheduling, 9 (2):115-132, 2006.

[32J E. K. Burke, G. Kendall, J. D. Landa-Silva, R. O'Brien, and E. Soubeiga. An

Ant Algorithm Hyperheuristic for the Project Presentation Scheduling Prob-

lem. In proceedings of the 2005 IEEE Congress on Evolutionary Computation,

volume 3, pages 2263-2270, Edinburgh, Scotland, 2005.

[33J E. K. Burke and J. P. Newall. A Multi-Stage Evolutionary Algorithm for

the Timetable Problem. IEEE Transactions on Evolutionary Computation,

13(1):63-74, Apr 1999.

[34J J. P. Burke, E.K Newall and R. Weare. A Memetic Algorithm for University

Exam Timetabling. The Practice and Theory of Automated Timetabling I:

Selected Papers from 1st International Conference on the Practice and Theory of

Automated Timetabling (PATAT I). Springer-Verlag, Edinburgh, UK, Lecture

Notes in Computer Science 1153 edition, 1996.

[35J Y. Bykov. Time-Predefined and Trajectory-Based Search: Single and Multi Ob-

jective Approaches to Exam Timetabling. PhD Thesis Department of Computer

Science, University of Nottingham, UK, 2003.

[36J H. Cambazard, E. Hebrard, B. O'Sullivan, and A. Papadopoulos. Local search

and constraint programming for the post-enrolment-based course timetabling

problem. In proceedings of Practice And Theory of Automated Timetabling

(PATAT),2008.

[37] M. W. Carter. A Decompotion Algorithm for Practical Timetabling Problems.

Dept. Industrial Eng, University Toronto, Working Paper 83-06, 1983.

[38J J. P. Castro Gutierrez, B. Melian Batista, J. A. Moreno Perez, J. M. Moreno

Vega, and J. Ramos Bonilla. Codea: An architecture for designing nature-

216

inspired cooperative decentralized heuristics. In Proceedings of the 2007 Work-

shop on Nature Inspired Cooperative Strategies for Optimization (NICSO 2007),

Series Studies in Computational Intelligence, Vol. 129, pages 189-198. Springer,

2008.

[39] M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. An Effective

Hybrid Algorithm for University Course Timetabling. Journal of Scheduling,

9:403-432, 2006.

[40] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed Optimization by Ant

Colonies. In proceedings of ECAL'91, European Conference on Artificial Life.

Elsevier, Amsterdam, 1991.

[41] A. Colorni, M. Dorigo, and V. Maniezzo. Meta-heuristics for High School

Timetabling. Computational Optimisation and Applications, 9:275-298, 1998.

[42] T. Cooper and H. Kingston. The Complexity of Timetable Construction Prob-

lems. In Selected Papers from the 1st International Conference on the Practice

and Theory of Automated Tj__metabling(PATAT 1995), LNCS, volume 1153,

pages 283-295. Springer, 1996.

[43] J. B. M. R. Cordeau, J-F. Efficient Timetabling Solution with Tabu Search. In

http://www.idsia.ch/Files Ittcomp2002ljaumard. pdf, 2002.

[44] D. Costa. A Tabu Search Algorithm for Computing an Operational Timetable.

European Journal of Operational Research, 76:98-110, 1994.

[45] P. Cowling, G. Kendall, and L. Han. An Investigation of a Hyper-heuristic

Genetic Algorithm Applied to a Trainer Scheduling Problem. In proceeding of

the IEEE Congress on Evolutionary Computation, pages 1185-1190, Honolulu,

Hawaii, 2002.

217

http://www.idsia.ch/Files

[46] P. Cowling, D. Ouelhadj, and S. Petrovic. Multi-agent systems for dynamic

scheduling. In the proceedings of the Nineteenth Workshop of Planning and

Scheduling of the UK, PLANSIG 2000, pages 45-54, Ed. Garagnani, Max, UK,

2000.

[47] T. Crainic and M. Toulouse. Explicit and Emergent Cooperation Schemes for

Search Algorithms. LION II, LNCS 5313, Springer-Verlag Heidelberg, 2008.

[48] T. G. Crainic. Parallel Computation, Cooperation, Tabu Search. In Metaheuris-

tic Optimization Via Memory and Evolution: Tabu Search and Scatter Search,

C. Rego and B. Alidaee (eds.), Kluwer Academic, pages 283-302. Norwell, MA,

2005.

[49] T. G. Crainic, M. Gendreau, P. Hansen, and N. Mladenovic. Cooperative Par-

allel Variable Neighbourhood Search for the p-Median. Journal of Heuristics,

10:293--314, 2004.

[50] T. G. Crainic, M. Gendreau, and J. Potvin. Parallel Tabu Search: A New Class

of Algorithms. John Wiley and Son, 2005.

[51] T. G. Crainic and M. Toulouse. Parallel strategies for meta-heuristics. In Hand-

book in Meta-heuristics, F. Glover, G. Kochenberger (eds.),Kluwer Academic,

2003.

[52] T. G. Crainic, M. Toulouse, and M. Gendreau. Toward a Taxonomy of Parallel

Tabu Search Heurisitcs. INFORMS JOURNAL ON COMPUTING, 9(1):61-72,

1997.

[53] L. Davis and L. Ritter. Schedule Optimization with Probabilistic Search. In

proceedings of the 3rd IEEE Conference on Artificial Intelligence Applications

Orlando, Florida, USA, pages 231-236, 1987.

218

[54] P. De Lit, A. Falkenauer, and A. Delchambre. Grouping Genetic Algorithms:

An Efficient Method to Solve the Cell Formation Problem. Mathematics and

Computers in Simulation, 51:257-271, 2000.

[55] D. De Werra. An Introduction to Timetabling. European Journal of Operational

Research, 19:151-162, 1985.

[56] K. Deb. A Population-Based Algorithm-Generator for Real-Parameter Opti-

mization. Soft Computing, 9:236-243, 2005.

[57] R. Dechter. Constraint Processing. Morgan Kaufmann, San Mateo, CA, 2003.

[58] S. Deris, S. Omatu, and H. Ohta. Timetable Planning Using the Constraint-

based Reasoning. Computers f3 Operations Research, 27(9):819-840, 2002.

[59] S. Deris, S. Omatub, H. Ohtab, and P. Saada. Incorporating Constraint Prop-

agation in Genetic Algorithm for University Timetable Planning. Engineering

Applications of Artifcial Intelligence, 12:241-253, 1999.

[60] T. Desef, A. Bortfeldt, and H. Gehring. A Tabu Search Algorithm for Solving

the Timetabling Problem for German Primary Schools. In proceedings of the 5th

International Conference on the Practice and Theory of Automated Timetabling,

2004.

[61] L. Di Gaspero, S. Mizzaro, and A. Schaerf. A Multiagent Architecture for Dis-

tributed Course Timetabling. In proceedings of the 5th International Conference

on the Practice and Theory of Automated Timetabling, 2004.

[62] L. Di Gaspero and A. Schaerf. Tabu Search Techniques for Examination

Timetabling. In E. Burke and W. Erben (Eds.) PATAT 2000, 2001. Springer-

Verlag Berlin Heidelberg 2001, volume LNCS 2079, pages 104-117,2001.

[63] L. Di Gaspero and A. Schaerf. Timetabling Competition TTComp 2002: Solver

Description. In http://www.idsia.ch/Files/ttcomp2002/schaerf. pdf, 2002.

219

http://www.idsia.ch/Files/ttcomp2002/schaerf.

[64] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Po-

litecnico Di Milano, Milano, 1992.

[65] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: An Autocatalytic

Optimizing Process. Technical report, Technical Report TR91-016, Politecnico

di Milano, 1991.

[66] N. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-Heuristic, New

Ideas in Optimizatio. McGraw-Hill Ltd., UK, 1999.

[67] A. Dubourg, B. Laurent, E. Long, and B. Salotti. In

http://www.idsia.ch/Files/ttcomp2002/laurent. pdf., 2002.

[68] G. Dueck. New Optimization Heuristic: The Great Deluge Algorithm and the

Record-to-Record Travel. Journal of Computational Physics, 104:86-92, 1993.

[69J R. Eberhard and J. Kennedy. A new optimiser using particle swarm theroy.

In Proceedings of the Sixth International Symposium on Micro Machine and

Human Science, Nagoya, Japan, pages 39-43, 1995.

[70] A. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Natural

Computing Series. Springer, 2003.

[71] N. Ejaz and J. M. Younus. A Hybrid Approach for Course Scheduling Inspired

by Die-hard Co-operative Ant Behavior. In proceedings of the IEEE Interna-

tional Conference on Automation and Logistics. Jinan, China, 2007.

[72J K. H. Elloumi, Abdelkarim and J. Ferland. A Tabu Search Procedure for Course

Timetabling Problem at a Tunisian. In proceedings of the 7th International

Conference on the Practice and Theory of Automated Timetabling, 2008.

[73] M. Elmohamed, P. Coddington, and G. Fox. A Comparison of Annealing Tech-

niques for Academic Course Scheduling. In E. Burke and M. Carter, editors, The

220

http://www.idsia.ch/Files/ttcomp2002/laurent.

Practice and Theory of Automated Timetabling II: Selected Papers from 2nd In-

ternational Conference on the Practice and Theory of Automated Timetabling

(PATAT II), Lecture Notes in Computer Science 1408, pages 92-112, Toronto,

Canada, Springer-Verlag, 1998.

[74] W. Erben and J. Keppler. A Genetic Algorithm Solving a Weekly Course-

timetabling Problem. In E. Burke and P. Ross, editors, The Practice and Theory

of Automated Timetabling I: Selected Papers from 1st International Conference

on the Practice and Theory of Automated Timetabling (PATAT I), Edinburgh,

UK, Lecture Notes in Computer Science, volume 1153, pages 198-211. Springer-

Verlag, 1996.

[75] S. Even, A. Itai, and A. Shamir. On the Complexity of Timetabling and Mul-

ticommodity Flow Problems. SIAM Journal of Computation, 5:691-703, 1976.

[76] J. A. Ferland and C. Fleurent. Computer Aided Scheduling for a Sport League.

INFOR, 29:14-25, 1991.

[77] J. Frausto-Sols, F. Alonso-Pecina, and J. Mora-Vargas. An Efficient Simu-

lated Annealing Algorithm for Feasible Solutions of Course Timetabling, volume

5317/2008. Springer Berlin / Heidelberg, 2008.

[78] Z. W. Geem, J.-H. Kim, and G. Loganathan. A New Heuristic Optimization

Algorithm: Harmony Search. Simulation, 76(2):60-68, 2001.

[79] M. W. George and S. X. Bill. Examination Timetables and Tabu Search with

Longer-Term Memory. In E. Burke and W. E. (Eds.), editors, PATAT 2000,

LNCS 2079, pages 85-103. Springer-Verlag Berlin Heidelberg, 2001.

[80] F. Glover. Heuristic for Integer Programming Using Surrogate Constraints.

Decision Sci, 8:156-166, 1977.

221

[81] F. Glover. Future Path for Integer Programming and Links to Articial Intelli-

gence. Comput. fj Ops. Res, 13(5):533-549, 1986.

[82] M. Gorges-Schleuter. ASPARAGOS: an Asynchronous Parallel Genetic Op-

timization Strategy. In proceedings of the Third International Conference on

Genetic Algorithms, pages 422-427. Morgan Kaufmann(San Mateo), 1989.

[83] G. Gutin and D. Karapetyan. A memetic Algorithm for the Generalized Trav-

eling Salesman Problem. Natural Computing, 2009.

[84] D. Haibin and X. Yu. Hybrid Ant Colony Optimization Using Memetic Algo-

rithm for Traveling Salesman Problem. In proceedings of the IEEE Symposium

on Approximate Dynamic Programming and Reinforcement Learning (ADPRL),

2007.

[85] W. Hart, N. Krasnogor, and J. Smith, editors. Recent advances in memetic

algorithms, volume 166 of Studies in Fuzzyness and Soft Computing. Springer

Berlin Heidelberg New York, 2004. ISBN 3-540-22904-3.

[86] B. Hayes-Roth. A Blackboard Architecture for Control. Artificial Intelligence,

26(1-2):pages 251-321, 1985.

[87] J. Henry Obit and D. Landa-Silva. Computational Study of Non-Linear Great

Deluge for University Course Timetabling. In V. Sgurev and M. Hadjiski, edi-

tors, Intelligent Systems - From Theory to Practice. Springer Verlag, 2009.

[88J P. V. Hentenryck and V. Sarawat. Constraint Programming: Strategic Direc-

tions. Constraints: An International Journal, 2:7-33, 1997.

[89J J. H. Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Anna Arbor, 1975.

222

[90] J. Hurink and S. Knust. Tabu Search Algorithms for Job-Shop Problems with

a Single Transport Robot. European Journal of Operational Research, 162:99-

111, 2004.

[91] ITC2002. Website of the 2002 international timetabling competi-

tion. In http.//www.idsia.ch/Files/ttcomp2002/(Website of the International

Timetabling Competition), 2002.

[92] F. Javier Martinez Garcia and J. Moreno Perez. Jumping Frogs Optimization:

A New Swarm Method for Discrete Optimization. In Documentos de Trabajo

del DEIOC. N. 3/2008. Universidad de La Laguna, 2008.

[93J K. Kaplansky and A. Meisels. Negotiation Among Scheduling Agents for Dis-

tributed Timetabling. In proceeding of the 5th International Conference on the

Practice and Theory of Automated Timetabling, Springer, 2004.

[94] J. Kennedy and R. Eberhard. Particle swarm optimisation. In Proceedings of the

1995 IEEE International Conference on Neural Networks, pages IV, 1942-1948,

1995.

[95] J. H. Kingston. Resource Assignment in High School Timetabling. In PATAT

'08 proceedings of the 7th International Conference on the Practice and Theory

of Automated Timetabling, 2008.

[96] G. Konstantinow and C. Coakley. Use of Genetic Algorithms in Reactive

Scheduling for Course Timetable. In proceedings of the 5th International Con-

ference on the Practice and Theory of Automated Timetabling, 2004.

[97] P. Kostuch. The University Course Timetabling Problem with a Three-Phase

Approach. In Lecture Notes in Computer Science, pages 109-125. Springer

Berlin / Heidelberg, 2005.

223

[98] N. Krasnogor. A Memetic Algorithm with Self-adaptive Local Search; TSP as a

Case Study. In The 2000 International Genetic and Evolutionary Computation

Conference (CECCO), 2000.

[99] D. Landa-Silva and E. K. Burke. Asynchronous Cooperative Local Search for

the Office-Space-Allocation Problem. INFORMS Journal on Computing, 19,

No.4:575-587, 2007.

[100] D. Landa-Silva and J. Henry Obit. Great Deluge with Nonlinear Decay Rate for

Solving Course Timetabling problems. In proceedings of the IEEE Conference

on Intelligent Systems, IEEE Press, pages 8.11-8.18, 2008.

[101] D. Landa-Silva and J. Henry Obit. Evolutionary Non-linear Great Deluge for

University Course Timetabling. In proceedings of the International Conference

on Hybrid Artificial Intelligence Systems (HAIS), 2009.

[102] D. Landa-Silva and J. H. Obit. Great Deluge with Nonlinear Decay Rate for

Solving Course Timetabling Problems. In proceedings of the IEEE Conference

on Intelligent Systems, IEEE Press, pages 8.11-8.18, 2008.

[103] J. Landa-Silva. Metaheuristics and Multiobjective Approaches for the Space

Allocation Problem. PhD thesis, School of Computer Science and Information

Technology, University of Nottingham, November 2003.

[104] A. Le Bouthillier, T. G. Crainic, and P. Kropf. Towards a Guided Cooperative

Search. In MIC:The Sixth Metaheurisitcs International Conference, 2005.

[105] W. Legierski. Constraint-based Reasoning for Timetabling. In AI-METH 2002

Artificial Intelligence Methods, 2002.

[106] R. Lewis and B. Paechter. New Crossover Operators for Timetabling with Evo-

lutionary Algorithms. In The 5th International Conference on Recent Advances

in Soft Computing (RASC), Nottingham, UK, volume 5, pages 189-195, 2004.

224

[107] R. Lewis and B. Paechter. Application of the Grouping Genetic Algorithm

to University Course Timetabling. In The 5th European Conference in Evo-

lutionary Computation in Combinatorial Optimisation (EvoCop), Lausanne,

Swizerland, Lecture Notes in Computer Science, volume 3448, pages 144-153,

2005.

[108] R. Lewis and B. Paechter. Finding Feasible Timetable Using Group-Based

Operators. In IEEE Transactions on Evolutionary Computation, volume 11(3),

pages 397-413, 2007.

[109] R. M. R. Lewis. Meiaheuristics for University Course Timetabling. PhD thesis,

Napier University, 2006.

[110] Z. Lu and J. Hao. Adaptive Tabu Search for Course Timetabling. European

Journal of Operational Research, 200:235-244, 2010.

[111] M. M. R. Garey and D. Johnson. A Guide to NP Completeness, first ed.

san francisco: W. h. freeman and company. Computers and Intractability,

22(4):251-256, 1979.

[112] A. K.Mackworth. Consistency in Networks of Relations. Artificial Intelligence,

8:99-118, 1977.

[113] K. F. Man, K. Tang, and S. Kwong. Genetic Algorithms: Concepts and Design.

Springer, 1999.

[114] F. Martinez and J. A. Moreno. Discrete Particle Swarm Optimization for the p-

median Problem. In Metaheuristics International Conference Montreal, Canada,

2007.

[115] A. Mayer, C. Nothegger, A. Chwatal, and G. Raidl. Solving the Post Enrol-

ment Course Timetabling Problem by Ant Colony Optimization. In proceedings

225

of the 7th International Conference on the Practice and Theory of Automated

Timetabling, 2008.

[116] P. McMullan. An Extended Implementation of the Great Deluge Algorithm for

Course Timetabling. Springer- Verlag Berlin Heidelberg, Part I, LNCS 4487:538~

545,2007.

[117] N. Mladenovic and P. Hansen. Variable Neighbourhood Search. Computers and

Operations Research, 24(11):1097~1100, 1997.

[118] R. Mohr and T. C. Henderson. Arc and Path Consistency Revisited. Artificial

Intelligence, 28:225~33, 1986.

[119] R.Montemanni. Timetabling: Guided Simulated Annealing and Local Searches.

In http://www.idsia.ch/Files/ttcomp2002/montemanni. pdf, 2002.

[120] P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and

Martial Arts: Towards Memetic Algorithms. Report 826, Caltech Concurrent

Computation Program, California Institute of Technology, Pasadena CA, USA.,

1989.

[121] P. Moscato. Memetic Algorithms: A Short Introduction. McGraw Hill, 1999.

[122] P. Moscato and C. Cotta Carlo. Memetic Algorithms. Handbook of Approxi-

mation Algorithms and Metaheuristics, 2007.

[123] P. Moscato and M. G. Norman. A Memetic Approach for the Traveling Sales-

man Problem Implementation of a Computational Ecology for Combinatorial

Optimization on Message-Passing Systems. In proceedings of the International

Conference on Parallel Computing and Transputer Applications, 1992.

[124] B. Moulin and B. Chaib-draa. An Overview of Distributed Artificial Intel-

ligence. In G. M. P. 0 'Hare and N. R. Jennings, editors, Foundations of

Distributed Artificial Intelligence, pages 3 - 55. Wisely, New York, 1996.

226

http://www.idsia.ch/Files/ttcomp2002/montemanni.

[125] T. Muller. TTComp02:Algorithm Description

. In http://www.idsia.ch/Files/ttcomp2002/mulier.pdf. 2002.

[126] V. Nissen and J. Propach. On the Robustness of Population-Based Versus

Point-Based Optimization in the Presence of Noise. IEEE Transactions on

Evolutionary Computation, 2:107-119, 1998.

[127J K. Nonobe and T. Ibaraki. A Tabu Search Approach to the Constraint Satis-

faction Problem as a General Problem Solver. European Journal of Operational

Research, 106:599-623, 1998.

[128J J. Obit Henry, D. Landa-Silva, D. Ouelhadj, and M. Sevaux. Non-Linear Great

Deluge with Learning Mechanism for Solving the Course Timetabling Problem.

In proceedings of the 8th Metaheuristics International Conference (MIC), July

2009.

[129J Y. S. Ong and A. J. Keane. Meta-Lamarckian Learning in Memetic Algorithms,

IEEE Transactions on Evolutionary Computation. In IEEE Transactions on

Evolutionary Computation, volume 8, 2004.

[130] M. Oprea. MAS_UP-UCT: A Multi-Agent System for University Course

TimetableScheduling. International Journal of Computers, Communications

8 Control, II, No. 1:94-102, 2007.

[131] D. Ouelhadj. A Multi-agent System for the Integrated and Dynamic Scheduling

of Steel Production. PhD thesis, University of Nottingham, 2003.

[132] D. Ouelhadj, P. Cowling, and S. Petrovic. Utility and Stability Measures for

Agent-based Dynamic Scheduling of Steel Continuous Casting. In proceedings of

the IEEE International Conference on Robotics and Automation (ICRA '2003),

pages 175-180, Taipei, Taiwan, 2003.

227

http://www.idsia.ch/Files/ttcomp2002/mulier.pdf.

[133] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, and K. Krishnakumar.

A Multi-agent Infrastructure and a Service Level Agreement Negotiation Pro-

tocol for Robust Scheduling in Grid Computing. In Lecture Notes in Computer

Science, volume 3470/2005, pages 651-660. Springer Berlin / Heidelberg, 2005.

[134] D. Ouelhadj and S. Petrovic. A Cooperative Distributed Hyper-heuristic Frame-

work for Scheduling. In proceedings of the IEEE International Conference on

Systems, Man and Cybernetics (SMC), Singapore, pages 2560-2565, 2008.

[135] E. Ozcan and A. Alkan. A Memetic Algorithm for Solving a Timetabling Prob-

lem: An Incremental Strategy. In P. Baptiste, G. Kendall, A. Munier-Kordon,

and F. Sourd, editors, proceedings of the Srd Multidisciplinary International

Conference on Scheduling: Theory and Applications (MISTA), Paris, France,

pages 394-401, August 2007.

[136] B. Paechter, A. P Cumming, M. Norman, and H. Luchian. Extensions

to a memetic timetabling system. The Practice and Theory of Automated

Timetabling I: Selected Papers from 1st International Conference on the Prac-

tice and Theory of Automated Timetabling (PATAT I). Springer-Verlag, Edin-

burgh, UK, 1996.

[137] B. Paechter, R. C. Rankin, and A. Cumming. Improving a Lecture Timetabling

System for University-Wide Use. In E. Burke and M. Carter, editors, The

Practice and Theory of Automated Timetabling II: Selected Papers from 2nd

International Conference on the Practice and Theory of Automated Timetabling

(PATAT II), Lecture Notes in Computer Science, volume 1408, pages 156-165,

Toronto, Canada, 1998. Springer-Verlag.

[138] S. Petrovic and E. K. Burke. University Timetabling, pages 45-1 - 45-23.

Chapman & Hall/CRCRC Press, 2004.

228

[139] S. G. Ponnambalam, P. Aravindan, and S. V. Rajesh. A Tabu Search Algo-

rithm for Job Shop Scheduling. International Journal Advanced Manufacturing

Technology, Springer- Verlag London Limited, 16:765-771, 2000.

[140] N. J. Radcliffe and P. D. Surry. Formal Memetic Algorithms. In Appears

in Evolutionary Computing: AISB Workshop, Ed: T. C. Fogarty, volume 865,

pages 1-16. Springer-VerlagLNCS, 1994.

[141] P. Rattadilok, A. Gaw, and R. S. K. Kwan. Distributed Choice Function Hyper-

heuristics for Timetabling and Scheduling. In E. Burke and T. M. (eds.), editors,

PATAT, LNCS, volume 3616, pages 51-67. Springer-Verlag Berlin Heidelberg,

2005.

[142] C. Reeves. Genetic algorithms. In L. Chambers, editor, The Practical Handbook

of Genetic Algorithms Applications, pages 55-82. Chapman&Hall/CRC, 2001.

[143] P. Ross, Schulenburg, Marin-Blazquez, and H. Hart. Hyper-heuristic: Learning

to Combine Simple Heuristic in Bin-packing Problems. In proceeding of the

Genetic and Evolutionary Computation Conference, New York, USA, pages

942-948, 2002.

[144] O. Rossi-Doria and B. Paechter. A Memetic Algorithm for the Universiy Course

Timetabling. In Book oj Abstracts Lancaster: Lancaster University, page 56,

2004.

[145] H. Santos, L. Ochi, and M. J. F. Souza. A Tabu Search Heuristic with Effi-

cient Diversification Strategies for the Class/Teacher Timetabling Problem. In

proceedings oj the 5th International ConJerence on the Practice and Theory oj

Automated Timetabling, 2004.

[146] H. G. Santos, E. Uchoa, O. L. S, and N. Maculan. Strong Bounds with Cut and

Column Generation for Class-Teacher Timetabling. In PATAT '08 Proceedings

229

of the 7th International Conference on the Practice and Theory of Automated

Timetabling, 2008.

[147J K. Sastry, D. Goldberg, and G. Kendall. Genetic Algorithms. In E. Burke and

G. Kendall, editors, Search Methodology, pages 97-125. Springer, 2005.

[148J A. Schaerf. A Survey of Automated Timetabling. Artificial Intelligence Review,

13(2):87-127, 1999.

[149J S. Schaerf. Local Search Techniques for High-School Timetabling Problems.

IEEE Transactions on Systems, Man, and Cybernatic, 29(4):368-377, 1999.

[150J N. Shahidi, H. Esmaeilzadeh, M. Abdollahi, and L. C. Self-Adaptive Memetic

Algorithm: An Adaptive Conjugate Gradient Approach. In IEEE Conference

of Cybernetic and Intelligent Systems (CIS2004), 2004.

[151J K. Socha. The Influence of Run-Time Limits on Choosing Ant System Pa-

rameters. In proceedings of GECCO - Genetic and Evolutionary Computation

Conference, 2003.

[152J K. Socha, J. Knowles, and M. Samples. A Max-Min Ant System for the Univer-

sity Course Timetabling Problem. In Ant Algorithms: Proceedings of the Third

International Workshop (ANTS), volume 2463, pages 1-13. LNCS,Springer,

2002.

[153J K. Socha, M. Sampels, and M. Manfrin. Ant Algorithms for the University

Course Timetabling Problem with Regard to the State-of-the-Art. In Appli-

cations of Evolutionary Computing: Proceedings of the Evo Workshops, volume

2611, pages 334-345. Lecture Note in Computer Science, Springer, 2003.

[154J E. Soubeiga. Development and Application of Hyper-heuristic to Personnel

Scheduling. PhD thesis, School of Computer Science, University of Nottingham,

UK,2003.

230

[155] P. Tellier and G. M. White. Generating Personnel Schedules in an Industrial

Setting Using a Tabu Search Algorithm. In proceedings of the 6th International

Conference on the Practice and Theory of Automated Timetabling (PATAT),

2006.

[156] J. M. Thompson and K. A. Dowsland. Variants of Simulated Annealing for

the Examination Timetabling Problem. Annals of Operations Research, 63, No

1:105-128, 1996.

[157] G. Toro and V. Parada. The Algorithm to Solve the Competition Problem. In

http://www.idsia.ch/Files/ttcomp2002/parada. pdf, 2002.

[158] E. Tsang. Foundations of Constraint Satisfaction. Academic, London, 1993.

[159] H. Ueda, D. Ouchi, K. Takahashi, and T. Miyahara. A Co-evolving

Timeslot/Room Assignment Genetic Algorithm Technique for University

Timetabling. In The Practice and Theory of Automated Timetabling III: Se-

lected Papers from 3rd International Conference on the Practice and Theory

of Automated Timetabling (PATAT III), Konstanz, Germany, Lecture Notes in

Computer Science 2079, Springer- Verlag, pages 48-63, 2001.

[160] P. Van Hentenryck, Y. Deville, and C. Teng. A Generic Arc-Consistency Algo-

rithm and its Specializations. Artificial Intelligence, 57:291-321, 1992.

[161] P. van Hentenryck, H. Simonis, and M. Dincbas. Constraint Satisfaction Using

Constraint Logic Programming. Artificial Intelligence, 58:113-59, 1992.

[162] P. Vytelingum, D. Cliff, and N. R. Jennings. "Analysing Buyers' and Sellers'

Strategic Interactions in Marketplaces: An Evolutionary Game Theoretic Ap-

proach". In Proc. 9th Int. Workshop on Agent-Mediated Electronic Commerce,

Hawaii, USA, 141-154·,2007.

231

http://www.idsia.ch/Files/ttcomp2002/parada.

[163] V. Wren. Scheduling, Timetabling and Rostering A Special Relationship? In

E. Burke and P. Ross, editors, Selected Papers from 1st International Conference

on Practise and Theory of Automated Timetabling (PATAT I), Lecture Notes

in Computer Science, 1153, pages 46-75, Springer, Edinburgh, UK, 1996.

[164] H. Van and S. Vu. A Multiple-Neighborhoods-Based Simulated Annealing Al-

gorithm for Timetable Problem. volume 3033/2004, pages 474-48l. Springer

Berlin / Heidelberg, 2004.

[165] K. Zervoudakis and P. Stamatopolous. A Generic Object-Oriented Constraint-

Based Model for University Course Timetabling. In E. Burke and W. Erben,

editors, Lecture Notes in Computer Science, The Practice and Theory of Auto-

mated Timetabling: Selected Papers from the Third International Conference,

volume 2079/2001, pages 28-47. Springer Berlin / Heidelberg, 200l.

232

