

The University of Nottingham

School of Computer Science and Information Technology

Formative Computer Based Assessment

in Diagram Based Domains

by Brett Bligh, BSc(Hons).

Thesis submitted to the University of Nottingham for

the degree of Doctor of Philosophy, September 2006

To my parents…

 ii

Abstract

This research argues that the formative assessment of student coursework in free-

form, diagram-based domains can be automated using CBA techniques in a way

which is both feasible and useful. Formative assessment is that form of assessment in

which the objective is to assist the process of learning undertaken by the student. The

primary deliverable associated with formative assessment is feedback. CBA

courseware provides facilities to implement the full lifecycle of an exercise through

an integrated, online system. This research demonstrates that CBA offers unique

opportunities for student learning through formative assessment, including allowing

students to correct their solutions over a larger number of submissions than it would

be feasible to allow within the context of traditional assessment forms.

The approach to research involves two main phases. The first phase involves

designing and implementing an assessment course using the CourseMarker /

DATsys CBA system. This system, in common with may other examples of CBA

courseware, was intended primarily to conduct summative assessment. The benefits

and limitations of the system are identified. The second phase identifies three

extensions to the architecture which encapsulate the difference in requirements

between summative assessment and formative assessment, presents a design for the

extensions, documents their implementation as extensions to the CourseMarker /

DATsys architecture and evaluates their contribution.

The three extensions are novel extensions for free-form CBA which allow the

assessment of the aesthetic layout of student diagrams, the marking of student

solutions where multiple model solutions are acceptable and the prioritisation and

truncation of feedback prior to its presentation to the student.

Evaluation results indicate that the student learning process can be assisted through

formative assessment which is automated using CBA courseware. The students learn

through an iterative process in which feedback upon a submitted student

coursework solution is used by the student to improve their solution, after which

they may re-submit and receive further feedback.

 iii

Acknowledgements

To attempt to acknowledge every person who has contributed to my intellectual

development, research and life during the four long years of my PhD is a fool’s

errand. I will not even make the attempt. Instead, I will single out a few notable

people and apologise to the rest. You know who you all are.

First of all, I would like to thank Colin Higgins, the leader of the Learning

Technology Research group and my supervisor throughout the PhD process. His

encouragement and advice were essential to the completion of the research.

Athanasios Tsintsifas provided the starting point for this research through his design

of the DATsys framework. He also provided a kick-start to the research in the form

of an imposing breeze-block of essential reference materials.

Pavlos Symeonidis provided crucial practical advice and encouragement in his

inimitable way and did his best to keep me on the straight and narrow.

The other members of the LTR group provided food for thought and a welcoming

environment, especially Marjahan Begum, Swe Myo Htwe (Shannon), Geoff Gray

and Nasirah Omar, who were a constant presence in the office and source of banter

throughout.

I have relaxed and socialised with a large number of people in Nottingham over the

past four years. However, Said Macharkah deserves a special mention for boosting

my morale at particularly important moments. My long-term friends from back

home have had to put up with much neglect during my stay in Nottingham and

deserve my gratitude. The gang from “The Welly” have provided many light-hearted

moments during a potentially dull writing up process.

Very special thanks are due to my fiancée, Marioara Urda. With the PhD complete,

my priorities lie with her.

Last but absolutely not least, I wish to thank those members of my family — parents,

grandparents and all — who have supported me in so many ways throughout my

long years of studentship. It would not have been possible without you.

Thank you all, Brett Bligh

 iv

Table of Contents

ABSTRACT ...II
ACKNOWLEDGEMENTS .. III
TABLE OF CONTENTS .. IV
LIST OF FIGURES... IX
LIST OF TABLES...X
LIST OF EQUATIONS...X
CHAPTER 1 INTRODUCTION..1
INTRODUCTION ..2
1.1 BACKGROUND...3

1.1.1 MOTIVATION..3
1.1.2 SCOPE ..4

1.2 BRIEF OVERVIEW ..5
1.2.1 GENERAL OBJECTIVES ...5
1.2.2 PROBLEMS AND SPECIFIC OBJECTIVES ...7
1.2.3 APPROACH ...8
1.2.4 CONTRIBUTIONS...9

1.3 SYNOPSIS OF THE THESIS ...9
CHAPTER 2 CBA, FORMATIVE ASSESSMENT AND DIAGRAMMING................................12
INTRODUCTION ..13
2.1 COMPUTER BASED ASSESSMENT ...13

2.1.1 DEFINITION ..13
2.1.2 DEVELOPMENT OF AUTOMATED ASSESSMENT...16
2.1.3 MOTIVATION IN AUTOMATED ASSESSMENT...17
2.1.4 BENEFITS OF COMPUTER BASED ASSESSMENT...18
2.1.5 LIMITATIONS OF COMPUTER BASED ASSESSMENT ...22
2.1.6 A TAXONOMY FOR COMPUTER BASED ASSESSMENT ...26

2.1.6.1 Fixed-response Automated Assessment ...27
2.1.6.2 Free-response Automated Assessment ...28

2.1.7 ASSESSING HIGHER COGNITIVE LEVELS USING CBA...33
2.1.8 SUMMARY..34

2.2 FORMATIVE ASSESSMENT..35
2.2.1 DEFINITION ..35
2.2.2 BENEFITS OF FORMATIVE ASSESSMENT ...36
2.2.3 DRAWBACKS ASSOCIATED WITH FORMATIVE ASSESSMENT...38
2.2.4 MANAGING THE RESOURCE INTENSIVENESS OF FORMATIVE ASSESSMENT................................40
2.2.5 EFFECTIVE FEEDBACK FOR FORMATIVE ASSESSMENT ...42
2.2.6 SUMMARY..44

2.3 DIAGRAMS IN EDUCATION ...45
2.3.1 DEFINITION ..45
2.3.2 HISTORY AND SCOPE..45
2.3.3 DIAGRAMS IN AUTOMATED ASSESSMENT ..47
2.3.4 AESTHETICS OF EDUCATIONAL DIAGRAMS ..49

2.3.4.1 Aesthetic Criteria...49
2.3.4.2 Criteria from Graph Layout...50
2.3.4.3 Criteria from User Interface Design..51
2.3.4.4 Domain-specific Layout Criteria ...53

2.3.6 SUMMARY..53

 v

2.4 CHAPTER SUMMARY ..54
CHAPTER 3 CBA APPROACHES FOR FORMATIVE ASSESSMENT AND DIAGRAMS....56
INTRODUCTION ..57
3.1 USING CBA TECHNOLOGY TO PROVIDE FORMATIVE ASSESSMENT57

3.1.1 FIXED-RESPONSE FORMATIVE CBA: A REVIEW ..59
3.1.1.1 Using existing platforms ..59
3.1.1.2 In-house fixed-response CBA systems..61
3.1.1.3 Implications for formative assessment using CBA...65

3.1.2 FREE-RESPONSE FORMATIVE CBA: A REVIEW..66
3.1.2.1 Formative assessment capabilities of free-response CBA systems67
3.1.2.2 Implications for formative assessment using CBA...71

3.1.3 SUMMARY..72
3.2 CBA APPROACHES IN DIAGRAMMATIC DOMAINS ...72

3.2.1 TRAKLA2: A REVIEW ...73
3.2.2 PILOT: A REVIEW ..75
3.2.3 DIAGRAM COMPARISON SYSTEM: A REVIEW..77
3.2.4 AUTOMATIC MARKER FOR ENTITY RELATIONSHIP DIAGRAMS: A REVIEW.................................79
3.2.5 SUMMARY..82

3.3 CEILIDH, COURSEMARKER AND DATSYS..82
3.3.1 CEILIDH..83

3.3.1.1 Ceilidh’s Architecture..83
3.3.1.2 Ceilidh’s Course Structure ..84
3.3.1.3 Ceilidh’s User Views ...85
3.3.1.4 Ceilidh’s Marking Tools ..85
3.3.1.5 Review of Ceilidh ...86

3.3.2 COURSEMARKER ...88
3.3.2.1 CourseMarker’s Development Overview...89
3.3.2.2 CourseMarker’s Architecture ..89
3.3.2.3 CourseMarker’s Course Structure...90
3.3.2.4 CourseMarker’s User Views..90
3.3.2.5 CourseMarker’s Marking Tools and the Generic Marking System91
3.3.2.6 Experiences with CourseMarker..92

3.3.3 DATSYS...94
3.3.3.1 Daidalos...95
3.3.3.2 Ariadne ..96
3.3.3.3 Theseus ..97
3.3.3.4 Integration of DATsys with CBA courseware ..97
3.3.3.5 Experiences with DATsys...98

3.3.4 SUMMARY..98
3.4 SUMMARY...99
CHAPTER 4 PROBLEMS IN CBA APPLIED TO FREE-RESPONSE FORMATIVE
ASSESSMENT..101
INTRODUCTION ..102
4.1 ASSESSMENT BACKGROUND..102
4.2 ASSESSMENT CONSTRUCTION AND METHODOLOGY...104

4.2.1 ASSESSMENT CONSTRUCTION ..104
4.2.2 METHODOLOGY ...110

4.3 RESULTS AND ANALYSIS ...111
4.3.1 GENERAL IMPRESSIONS..111
4.3.2 PROBLEMS..111
4.3.3 MARKING DATA ...112
4.3.4 PERFORMANCE AS FORMATIVE ASSESSMENT...114

 vi

4.4 CONCLUSIONS...115
4.5 SUMMARY...116
CHAPTER 5 PROVIDING A SPECIFICATION FOR FORMATIVE CBA IN DIAGRAM-
BASED DOMAINS ..118
INTRODUCTION ..119
5.1 OBJECTIVES...119

5.1.1 DEFINITIONS ..120
5.1.2 IDENTIFYING THE NECESSARY EXTENSIONS...121

5.1.2.1 Fulfilling Computer Based Assessment criteria...122
5.1.2.2 Fulfilling Formative Assessment criteria...124
5.1.2.3 Fulfilling Computer Based Assessment criteria...126
5.1.2.4 Summary ..126

5.1.3 AIMS AND MOTIVATION...127
5.1.4 SUMMARY..130

5.2 DETAILED REQUIREMENTS..130
5.2.1 REQUIREMENTS FOR ASSESSING THE AESTHETICS OF STUDENT DIAGRAMS131
5.2.2 REQUIREMENTS FOR ASSESSING SOLUTIONS WITH MUTUALLY EXCLUSIVE ALTERNATE SOLUTION
CASES..132
5.2.3 REQUIREMENTS FOR PRIORITISING AND TRUNCATING FEEDBACK TO STUDENTS135
5.2.4 SCOPE OF GUIDANCE NEEDED FOR EDUCATORS AND DEVELOPERS ...136
5.2.5 SUMMARY..138

5.3 SUMMARY...138
CHAPTER 6 DESIGNING THE EXTENSIONS...140
INTRODUCTION ..141
6.1 HIGH LEVEL OVERVIEW ...142

6.1.1 REQUIREMENTS..143
6.1.2 HIGH LEVEL DESIGN..143

6.1.2.1 Assessing the aesthetics of student diagrams...143
6.1.2.2 Assessing solutions with mutually exclusive alternate solution cases..............................146
6.1.2.3 Prioritising and truncating feedback to students ...149

6.1.3 EXTENSION INTEGRATION..151
6.1.4 SUMMARY..154

6.2 ASSESSING THE AESTHETIC LAYOUT OF STUDENT DIAGRAMS: RESOLVING THE
DESIGN ISSUES..154

6.2.1 LINKING THE DESIGN TO THE REQUIREMENTS ..155
6.2.2 HIERARCHY..156
6.2.3 INTERFACE ...157
6.2.4 SCALING...158
6.2.5 AESTHETIC MEASURES ...159

6.2.5.1 The aesthetic measures for non-interception and non-intersection160
6.2.5.2 The aesthetic measure for equilibrium...161
6.2.5.3 The aesthetic measures for balance, unity, proportion, simplicity, density, economy,
homogeneity and cohesion...162
6.2.5.4 The need for students to adapt their solutions ...163

6.2.6 STRUCTURAL MEASURES..165
6.2.7 SUMMARY..166

6.3 ASSESSING SOLUTIONS WITH MUTUALLY EXCLUSIVE ALTERNATE SOLUTION
CASES: RESOLVING THE DESIGN ISSUES...166

6.3.1 LINKING THE DESIGN TO THE REQUIREMENTS ..167
6.3.2 A TOOL FOR GENERIC FEATURES TESTING OF DIAGRAMS..168
6.3.3 DESIGNING THE PROCESS OF ASSESSMENT FOR MUTUALLY EXCLUSIVE SOLUTION CASES170
6.3.4 HARBINGERS AND THE DISTINCTION TEST ..171

 vii

6.3.5 STRATEGIES FOR DISTINGUISHING BETWEEN MUTUALLY EXCLUSIVE SOLUTION CASES172
6.3.6 SUMMARY..173

6.4 PRIORITISING AND TRUNCATING STUDENT FEEDBACK: RESOLVING THE
DESIGN ISSUES..173

6.4.1 LINKING THE DESIGN TO THE REQUIREMENTS ..174
6.4.2 THE PRIORITISETRUNCATETOOL ...175
6.4.3 THE STRATEGY INTERFACES AND ABSTRACT CLASSES ...175
6.4.4 PROVIDING A BASIS ..177
6.4.5 SUMMARY..178

6.5 SUMMARY...178
CHAPTER 7 ISSUES IN IMPLEMENTATION AND ADVICE FOR EDUCATORS AND
DEVELOPERS...179
INTRODUCTION ..180
7.1 IMPLEMENTATION ISSUES ...180

7.1.1 OBJECTIVES ...181
7.1.2 INTEGRATION INTO COURSEMARKER ..182
7.1.3 ASSESSING THE AESTHETIC LAYOUT OF STUDENT DIAGRAMS: IMPLEMENTING THE DESIGN182
7.1.4 ASSESSING SOLUTIONS WITH MUTUALLY EXCLUSIVE SOLUTION CASES: IMPLEMENTING THE
DESIGN..184
7.1.5 PRIORITISING AND TRUNCATING STUDENT FEEDBACK: IMPLEMENTING THE DESIGN184
7.1.6 SUMMARY..186

7.2 ADVICE FOR DEVELOPERS AND EDUCATORS ...186
7.2.1 GUIDANCE FOR DEVELOPERS..187

7.2.1.1 Prerequisites ..187
7.2.1.2 Expressing features testing regimes to assess mutually exclusive solution cases............188
7.2.1.3 Layout tools ...189
7.2.1.4 Prioritisation and truncation strategies...190
7.2.1.5 The marking scheme ..191

7.2.2 GUIDANCE FOR DEVELOPERS..193
7.2.2.1 Prerequisites ..193
7.2.2.2 Identifying harbingers and specifying distinction tests..194
7.2.2.3 The weighting system ...195
7.2.2.4 Configuring and specifying aesthetic and structural measures196
7.2.2.5 Specifying and configuring prioritisation and truncation strategies197
7.2.2.6 Writing good feedback comments ..198

7.2.3 SUMMARY..199
7.3 SUMMARY...199
CHAPTER 8 USE AND EVALUATION ..200
INTRODUCTION ..201
8.1 OBJECTIVES...201
8.2 EXAMPLES OF FORMATIVE, COMPUTER-BASED ASSESSMENT EXERCISES IN
DIAGRAM-BASED DOMAINS ...202

8.2.1 THE PROCESS OF EXERCISE CREATION..202
8.2.2 EXERCISE DOMAINS AND METHODOLOGY ..205

8.2.2.1 UML Use Case Diagram exercises..205
8.2.2.2 UML Class Diagram exercises ..207
8.2.2.3 Methodology ..209

8.2.3 USE AND EVALUATION OF THE PROTOTYPICAL EXERCISES ...210
8.2.3.1 Constructing and running the exercises...210
8.2.3.2 Evaluation of the exercises ..212

8.3 ASSESSING THE AESTHETIC LAYOUT OF STUDENT DIAGRAMS: EVALUATING
PERFORMANCE...215

 viii

8.3.1 EVALUATING THE EXTENSION AS CBA ..215
8.3.2 EVALUATING THE EXTENSION AS FORMATIVE ASSESSMENT...216
8.3.3 EVALUATING THE EXTENSION AS EDUCATIONAL DIAGRAMMING ...216

8.4 ASSESSING SOLUTIONS WITH MUTUALLY EXCLUSIVE SOLUTION CASES:
EVALUATING PERFORMANCE...217

8.4.1 EVALUATING THE EXTENSION AS CBA ..217
8.4.2 EVALUATING THE EXTENSION AS FORMATIVE ASSESSMENT...218
8.4.3 EVALUATING THE EXTENSION AS EDUCATIONAL DIAGRAMMING ...219

8.5 PRIORITISING AND TRUNCATING THE FEEDBACK: EVALUATING
PERFORMANCE...219

8.5.1 EVALUATING THE EXTENSION AS CBA ..219
8.5.2 EVALUATING THE EXTENSION AS FORMATIVE ASSESSMENT...220

8.6 CONCLUSIONS...222
CHAPTER 9 CONCLUSIONS ..225
INTRODUCTION ..226
9.1 MEETING THE OBJECTIVES ...226

9.1.1 ASSESSING THE AESTHETIC LAYOUT OF STUDENT DIAGRAMS...226
9.1.2 ASSESSING SOLUTIONS WITH MUTUALLY EXCLUSIVE SOLUTION CASES228
9.1.3 PRIORITISING AND TRUNCATING STUDENT FEEDBACK..230

9.2 CONTRIBUTIONS ..231
9.2.1 CBA...231
9.2.2 FORMATIVE ASSESSMENT...232
9.2.3 EDUCATIONAL DIAGRAMMING ...232

9.3 FUTURE WORK..233
9.3.1 CBA...233
9.3.2 FORMATIVE ASSESSMENT...234
9.3.3 EDUCATIONAL DIAGRAMS..235

9.4 EPILOGUE...235
BIBLIOGRAPHY...238

 ix

List of Figures

Figure 1.1: The thesis scope at a high level ...4
Figure 2.1: Relationships between CAL, CBL, CAA and CBA ...14
Figure 3.1: TRAKLA2’s student applet and model solution window [MK04]74
Figure 3.2: Example exercise and student solution using PILOT [BGK+00]76
Figure 3.3: The student revision tool [TWS05] ..81
Figure 3.5: Ceilidh’s dumb terminal interface [Sp06]...88
Figure 3.6: The Java CourseMarker client [Sp06]...92
Figure 3.7: A range of diagram notations expressed within DATsys ...95
Figure 4.1: Uneditable nodes and distracters in Tsintsifas’ OO exercise .. 104
Figure 4.2: Generic nodes in the E-R exercises with editable text ... 104
Figure 4.3: An illustrative student ER diagram solution .. 106
Figure 4.4: First nine submissions of students who submitted 12 times or less 113
Figure 4.5: Submissions 15 to 30 for those students who submitted more than 12 times........... 113
Figure 5.1: Two mutually exclusive model solutions .. 133
Figure 6.1: A high-level view of the relationships between the extensions 152
Figure 6.2: The hierarchy of the aesthetic layout extension .. 156
Figure 6.3: Aesthetic and structural measures implement LayoutToolInterface............................ 157
Figure 6.4: The LayoutToolInterface interface.. 157
Figure 6.5: The relationship between the raw score and the scaled mark....................................... 158
Figure 6.6: The design of the non-interception tool... 160
Figure 6.7: The design of the non-intersection tool ... 161
Figure 6.8: The co-ordinate system in DATsys diagram editors .. 163
Figure 6.9: Original student solution and student solution with modification............................... 164
Figure 6.10: The DiagramFeaturesTool.. 169
Figure 6.11: Marking multiple features test cases.. 170
Figure 6.12: The PrioritiseTruncateTool .. 175
Figure 6.13: Strategy interfaces for the four sub-problems ... 176
Figure 7.1: Features tests organised into cases .. 188
Figure 7.2: A simple marking scheme for a formative exercise .. 192
Figure 8.1: The tool library for UML use case diagrams.. 206
Figure 8.2: A simple use case diagram using the tool library... 206
Figure 8.3: The tool library for UML class diagrams.. 208
Figure 8.4: A simple class diagram using the tool library... 208

 x

List of Tables

Table 2.1: CBA provides concrete pedagogical benefits ...21
Table 2.2: Bloom’s levels of cognitive learning ..24
Table 2.3: Fourteen aesthetic measures from Ngo et al [NTB00]...52
Table 4.1: Features expressions for the ER exercises... 108
Table 8.1: Average submission numbers for the prototype exercises.. 213
Table 8.2: Results of the student questionnaire... 214

List of Equations

Equation 6.1: The non-interception measure .. 160
Equation 6.2: The non-intersection measure... 161
Equation 6.3: Equilibrium... 162
Equation 6.4: x-axis equilibrium component... 162
Equation 6.5: y-axis equilibrium component ... 162
Equation 6.6: Calculating the priority of a MarkingLeafResult... 177

Chapter 1

Introduction

1. Introduction 2

Introduction

Higher education institutions are confronted with the challenge of providing

academic courses to a higher number of students without the benefit of a

proportionate increase in teaching staff. Student-to-staff ratios (SSRs) are less

favourable to academic staff than in the past [Dfes05, Ml97] and SSR increases of

150% since the 1970s have been reported [AUT05]. The delivery of course materials,

assessment of student work, detection of plagiarism and administration of course

data are but a few of the academic tasks affected by the situation.

Formative assessment is that form of assessment in which the primary aim is to assist

the process of learning [Kp01]. Formative assessment should occur throughout the

learning process and have the primary aim of providing useful feedback to students

[JMM+04]; it stands opposed to summative assessment, in which the primary aim is

to provide an indicator of progress at the end of a particular learning process.

Formative assessment has considerable pedagogic advantages over summative

assessment: it encourages active student learning, can assess a wider range of

learning outcomes, can help in the avoidance of mark aggregation and discourages

plagiarism [Kp01]. However, formative assessment is more resource-intensive than

summative assessment due to its frequency and the detail of the feedback to be

provided to the student. Furthermore, summative assessment may be prioritised

institutionally due to the need to indicate student achievement externally at the end

of an academic course. Therefore, as SSRs become less favourable, the amount of

formative assessment from which students can benefit has tended to be reduced.

Computer Based Assessment refers to the delivery of materials for teaching and

assessment, the input of solutions by the students, an automated assessment process

and the delivery of feedback, all achieved through an integrated, coherent online

system. The process of coursework delivery, development of solutions by students,

an automated process of assessment and the delivery of student feedback all occur

online at the computer terminal [CE98a, SM97]. A prime motivator in the

development of CBA technology was to reduce marking time in response to

changing SSRs and this is a key benefit of the technology. The reasons for the

development of CBA systems are therefore analogous to the reasons for the decline

in formative assessment usage.

1. Introduction 3

The CourseMarker CBA system [FHH+01, FHS+01] provides functionality for the

authoring, running, marking, and administering of CBA exercises. It is the successor

to the widely-used Ceilidh system [FHT+99] but has better performance, scalability,

extensibility and maintainability. CourseMarker can accommodate diagram-based

CBA through an integrated system known as DATsys [Ta02].

CourseMarker and DATsys represent a powerful mechanism for conducting

diagram-based CBA in a summative context. However, the system is not suitable for

purely formative assessment. Both the mechanism for the marking of diagrams and

the feedback facilities are, while powerful, insufficiently flexible to provide formative

assessment courses. Furthermore, there is no mechanism for the marking of diagram

layout, which is essential to formative, diagram-based CBA.

The work in this dissertation presents research, design, implementation and

evaluation of techniques that facilitate the construction of formative, diagram-based

CBA exercises which are unique in the literature.

This chapter presents the motivation for the work and the scope of the thesis and

highlights the key contributions novel to this work. The chapter ends with a chapter-

by-chapter synopsis of the thesis.

1.1 Background

1.1.1 Motivation

A key objective of this research was to “close the gap” between the pedagogical

practices of formative assessment and the field of CBA. Strategies in the literature

which attempt to bolster the position of formative assessment within contemporary

higher education range from a managed reduction to mechanisation; however, this

mechanisation rarely extends beyond ideas such as paper tick-sheets and pre-written

feedback statement banks [Rc01]. CBA systems, on the other hand, are often derived

from earlier ad-hoc marking scripts informally developed to aid individual lecturers

(usually in Computer Science departments); such a description fits Ceilidh precisely.

Even when a system is formally designed, as with CourseMarker, the effectiveness of

1. Introduction 4

material delivery and feedback is often measured in terms of student questionnaires

rather than by reference to formal teaching principles.

The motivation for this research was therefore to prove that the delivery of a CBA

course whose primary aim was for formative assessment could be feasibly achieved,

could adhere to principles of good formative assessment and would be useful in

practice. Diagram-based domains were used as a vehicle for the research due to the

prevalence of diagram-based coursework in many academic disciplines and the free-

response nature of the student submissions.

No earlier work describes the formative CBA of diagram-based domains. This is

because only recently, with the completion of DATsys, has an extensible, scalable

and maintainable framework for diagram-based CBA exercises been available.

1.1.2 Scope

Figure 1.1: The thesis scope at a high level

The formative CBA of exercises in diagram-based domains requires theory and

techniques from the disciplines of learning technology, education and diagramming.

Figure 1.1 illustrates the relationships between these disciplines in the context of this

work.

1. Introduction 5

From a Learning Technology perspective, this research investigates the area of free-

response CBA exercises. CBA involves the delivery of course materials, the input of

student solutions, the marking and the returning of feedback to the student

automatically within an integrated online system. Free-response CBA allows

students to construct a solution within an online environment rather than simply

selecting one or more options from among distracters.

From the field of education research, this work focuses on formative assessment.

Formative assessment involves the provision of feedback to the student in order to

enhance learning. Good feedback should motivate learning and opportunities for the

student to redeem a poor solution should be provided.

From the field of diagramming, this work investigates diagram layout. The function

of a diagram is to convey meaning to the observer. For this to occur successfully a

diagram must have an aesthetically acceptable layout as well as the correct diagram

elements, connected in the correct manner.

1.2 Brief Overview

1.2.1 General Objectives

This research aims to investigate, propose, design, implement and evaluate

techniques which allow formative assessment of diagram-based coursework

exercises to be conducted through a CBA system with a practical amount of effort

required by those responsible for setting and administering the course. These

techniques are illustrated through deliverables which demonstrate the practical

benefit of the work.

Two central questions formed the inspiration for this work:

• To what extent can CBA techniques be used to reduce the resources involved

in setting a formatively assessed coursework in a diagram-based domain,

marking student submissions and returning feedback, while still adhering to

good formative assessment principles?

1. Introduction 6

• To what extent would current, successful CBA practices need to be changed

to conform to formal formative assessment guidelines?

DATsys provides a simple interactive interface for the authoring of new diagram

domains. Marking, however, is achieved through the creation of marking tools. A

more detailed set of questions arises from the need for generality across diagram

domains:

• To what extent will it be possible for the educator to provide formative

feedback in many diagram-based domains by configuring the system and

writing feedback comments rather than through impractically complex

programming?

• To what extent can standardisation of CBA processes occur without the

assessment failing to meet the standards of formative assessment guidelines?

The next set of questions arises from the specific need to mark aesthetic diagram

layout:

• To what extent can an automated system for the marking of diagram

aesthetics generate useful results within a multitude of diagram domains?

• To what extent will domain-specific layout rules be required and can these

be specified by the educator with a practical level of effort?

• What trade-offs are required in a system to mark diagram aesthetics to

ensure generality across domains whilst at the same time allowing

specialisation when necessary?

Finally, it is necessary to ask questions regarding the performance of a CBA system

in conducting formative assessment within diagram-based domains:

• Can formative assessment be rendered less resource-intensive through the

use of CBA technology? Conversely, can CBA technology be used to deliver

good formative assessment?

• Can a formative assessment process automated using CBA technology

enhance student learning?

1. Introduction 7

1.2.2 Problems and Specific Objectives

The general objectives resulted in four major problem areas being examined.

The initial problem area concerns the concrete identification of the problems arising

from applying CBA techniques to a formative assessment course. An initial period of

research, documented in chapter 4, involved the running of a live formative

assessment course for entity-relationship diagrams within a Database Systems

module. This ensured that solutions proposed by the work were relevant to

formative assessment practice and suggested the three subsequent problem areas for

further research.

Further research concentrates on three main problem areas arising out of the

practical experience gained. The first subsequent problem area is concerned with the

aesthetic appearance of diagrams. Work in the field of graph layout is extensive

[BET+94, Sk02] and work on aesthetics has been conducted in the context of user

interface design [SP04, NTB00]. However, diagram-based CBA research to date

[Ta02, HL98] has not attempted to assess diagram appearance. The objective within

this problem area is to design and implement a flexible framework for the

assessment of diagram appearance which takes into account general aesthetic

principles and the layout rules of specific diagram domains. The approach must be

general since multiple diagram domains need to be assessed.

The second subsequent problem area is concerned with the marking process.

Diagram-based coursework may have one or more mutually exclusive solutions.

CBA software, including CourseMarker, sometimes penalises solutions which

deviate from the model solution [Fj01] and has no mechanism for accommodating

multiple model solutions to a problem. Good formative assessment should be able to

assist students attempting to solve the coursework in different ways. The objective

within this problem area is to design and implement techniques to allow variation

within model solutions to a problem in order that any one of several mutually

exclusive solution elements may be considered a correct solution.

The third subsequent problem area is concerned with the provision of good

formative feedback to the student. Feedback is the primary deliverable associated

with formative assessment [Kp01] and detailed advice is available on the principles

1. Introduction 8

of good formative assessment feedback [JMM+04]. CBA software can return detailed

feedback to the student [HST02], however this feedback is often indiscriminate since

it was developed within the context of summative assessment where the emphasis

lies in providing a detailed breakdown of the mark obtained. In formative

assessment it is more important that feedback is motivational, prioritised and limited

in scope to focus student attention on the most serious weaknesses. The objective

within this problem area is to design and implement techniques to provide targeted,

motivational feedback within a formative context where the student can

incrementally improve their solution using multiple submissions.

1.2.3 Approach

Initially, a live experiment was implemented using CourseMarker / DATsys.

Coursework involving the construction of entity-relationship diagrams was assessed

as part of an undergraduate module in Database Systems. A new marking tool for

assessing entity-relationship diagrams within CourseMarker was developed.

Problems arising from this live experiment were used to determine which aspects of

CBA practice would need to be augmented to conduct formative assessment

successfully, a general objective of the work as discussed in section 1.2.1. The results

failed to achieve good formative assessment practice and the system did not meet

CBA criteria in several key aspects, but the experiment was crucial in identifying the

shortcomings of current practices. The subsequent design stage of the thesis could

then confidently be targeted on real problems arising from CBA of formative

assessment. This work is documented further in Chapter 4.

Subsequent work in the marking of diagram layout, handling of mutually exclusive

solution cases and the delivery of truncated, prioritised feedback aimed for a high

level of generality. The number of diagram-based domains used in coursework

across multiple academic disciplines is large. The approach taken is to determine

those factors common across domains and to encapsulate them systemically. The

differences between domains are then specified on a per-domain basis through

parameterisation and extensions.

To facilitate the marking of diagram layout, a distinction is drawn between aesthetic

measures, which denote the commonality across domains, and structural measures,

which represent the differences between domains. Layout marking of a specific

1. Introduction 9

domain is achieved through configuration of the aesthetic measures to indicate the

relative importance of the factors, together with specification of the structural

measures on a per-domain basis, if required. In the handling of mutually exclusive

solution cases, a high level of generality is achieved through authoring an expressive

notation for the specification of solution cases and their relationships. To generate

prioritised feedback, a system of prioritisation of marking factors is developed based

upon the relative weight of the factor and the deficiency of the student solution

within the factor. Categorisation of factors helps the feedback to be balanced.

1.2.4 Contributions

The primary contribution of this research is in the area of CBA. The combination of

the handling of mutually exclusive solution cases and provision of truncated,

prioritised feedback is new to CBA and aids the construction of formatively assessed

courses in free-response domains using CBA software. CBA in diagram-based

domains is also enhanced through the marking of the layout of student solutions.

Coursework has been constructed in the domains of entity-relationship diagrams

and object oriented design diagrams. The initial work also contributes to the

understanding of the problems associated with the use of CBA software in

unfamiliar (and unanticipated) contexts.

A second contribution is in the area of diagramming. A flexible and powerful

platform for the generic assessment of diagram layout has been provided.

1.3 Synopsis of the Thesis

Chapter 1 outlines the background of the research by showing its motivation and its

scope. It gives a brief overview in terms of the general objectives and approach of the

work and explains the contributions made by the work. Theory and techniques from

the fields of Learning Technology, Education and Diagramming are combined. The

research aims to present techniques to achieve the formative CBA of student

coursework in diagram-based domains. To achieve this, initial research is presented

to demonstrate the problem areas: the marking of aesthetic diagram layout, the

accommodation of mutually exclusive solution cases and the delivery of truncated,

1. Introduction 10

prioritised feedback to the student. The work presents novel solutions within each of

these specific problem areas.

Chapter 2 introduces the key concepts from the areas of CBA, formative assessment

and diagramming. The focus of the work in CBA is in free-response exercises within

a formative assessment context. The focus of the work in formative assessment is in

providing feedback to the student to assist the process of further learning. The focus

within a diagramming context centres on the perception of diagrams from the fields

of graph layout and aesthetics. This chapter presents the background and main

problems within each area, in order that chapter 3 can concentrate on the most

relevant approaches found in the literature.

Chapter 3 presents a critical analysis of the work upon which this research is based,

together with other relevant work from the literature. Existing work in free response

CBA and diagram editing is documented and other approaches to cope with the

resource-intensiveness of formative assessment are examined.

Chapter 4 presents the initial practical research conducted. Coursework involving

the construction of entity-relationship diagrams was assessed using CourseMarker /

DATsys as part of an undergraduate module in Database Systems. A new marking

tool for assessing entity-relationship diagrams within CourseMarker was developed.

The experiment is described, key results are presented and conclusions are drawn

which feed into the subsequent design and implementation chapters.

Chapter 5 examines the provision of formative CBA within diagram-based domains

and outlines the problems which must be overcome in light of the conclusions drawn

by the preliminary work in chapter 4. The three identified problem areas are

concerned with the assessment of aesthetic diagram layout, the handling of mutually

exclusive sections of solutions and the provision of concise, motivational feedback to

the student in line with formative assessment principles. The problem of balance

between simplicity of configuration, so that the creation of formative assessment

coursework by the educator is rendered practical, with expressiveness, so that many

diagrammatic domains can be assessed, is examined.

Chapter 6 documents the design decisions made in creating subsystems to augment

CourseMarker and shows how these decisions satisfy the objectives identified in

1. Introduction 11

chapter 5. A generic framework for marking diagram layout is designed that can be

customised to mark individual diagrammatic domains. An expressive notation for

the specification of solution cases and their relationships is developed to facilitate the

marking of coursework where the solution has one or more mutually exclusive

elements. To generate prioritised feedback, a system of prioritisation of marking

factors is developed based upon the relative weight of the factor and the deficiency

of the student solution within the factor. Categorisation of factors helps the feedback

to be balanced.

Chapter 7 reports on a prototype system which was developed as an extension to

CourseMarker. It documents the three main subsystems developed in response to the

three identified problems and shows how they interact with the existing

CourseMarker CBA system and the integrated DATsys environment.

Chapter 8 evaluates the prototype system and documents the success of the approach

taken by the research. Formative assessment can be conducted in multiple diagram-

based domains using CBA techniques. The evaluation considers the success of the

design from the point of view of educators and documents results with students in

example domains.

Chapter 9 reviews the thesis’ key points and shows how the evaluation of the system

in chapter 8 relates to the general objectives for research stated in chapter 1. The

contributions of this research to the fields of CBA, formative assessment and

diagramming are discussed. Areas for future work are considered. The thesis shows

that formative assessment within diagram-based domains can be feasibly conducted

using CBA techniques and is useful in the practical context of higher education.

Chapter 2

CBA, Formative Assessment and Diagramming

2. CBA, formative assessment and diagramming 13

Introduction

This chapter provides the research background in the fields of Computer Based

Assessment, formative assessment and diagramming. A section is presented for each

field.

Section 2.1 introduces Computer Based Assessment (CBA). CBA is defined

specifically in terms of its relationships with other areas of learning technology. A

brief historical overview of automatic assessment is provided and the motivation for

the development of the technology is explained. The advantages and limitations of

CBA techniques are considered. Methods to minimise the limitations associated with

CBA usage are documented.

Section 2.2 provides an overview of formative assessment. Formative assessment is

defined and its differences to other forms of assessment emphasised. The merits of

formative assessment are considered and the decline in formative assessment usage

within education institutions explained. Strategies to overcome those drawbacks of

formative assessment which are responsible for this decline are considered. The

provision of feedback as the primary aim of formative assessment is explained and

criteria for good formative feedback are presented.

Section 2.3 examines the concept of diagrams. The role of diagrams in education is

examined and the presence of diagrams in a wide number of academic disciplines is

demonstrated. An overview of the academic study of diagrams is provided and the

concept of aesthetics in diagramming is introduced.

2.1 Computer Based Assessment

2.1.1 Definition

As institutions seek to maintain teaching and assessment standards with decreasing

unit-resource, attempts are being made to automate some or all of those processes

necessary for conducting teaching, learning and assessment — such as authoring of

course and assessment material and mark schemes, distribution of material and

questions to the learner, development and submission of student solutions, course

2. CBA, formative assessment and diagramming 14

administration and marking [CE98a]. The collection of processes necessary for

conducting a piece of assessment is known as the lifecycle of the assessment.

Computer Based Assessment (CBA) constitutes a section of learning technologies

distinguished from others by the number and types of processes that are automated

within the lifecycle. The relationships between CBA and Computer Assisted

Assessment (CAA), Computer Assisted Learning (CAL) and Computer Based

Learning (CBL) can be represented as shown in Figure 2.1 [HB06].

CAL CBL

CAA CBA

Automation of full
lifecycle

Focus on
delivery of

course material
to learners

Focus on assessment
but may also involve

delivery of course
materials

more specialised

Automation of
some stages within

lifecycle

m
ore specialised

Figure 2.1: Relationships between CAL, CBL, CAA and CBA

Computer Assisted Learning (CAL) is a generalised term which refers to the use of

technology to ease the learning process in virtually any way. Only tasks of teaching

and learning may be automated and even these in a superficial way with little co-

ordination between the automation of separate tasks. Thus, the delivery of lecture

materials using software packages such as Microsoft PowerPoint or allowing students

to print out lecture notes from a centrally available resource would constitute a basic

form of CAL.

Computer Based Learning (CBL) is defined as that subset of CAL in which the

learning materials must be presented to the student online via a computer terminal

in a coherent system; the implication is that the student is primarily responsible for

2. CBA, formative assessment and diagramming 15

navigating through the course materials available online and structuring their

learning at their own pace. Only tasks of teaching and learning need to be

automated, but the intention is to create a coherent system which can be utilised by

the student with little need for input from a teacher.

An example of CBL is MacCycle [Bj93], used at St. Andrews University to teach

second-year medical undergraduates about the menstrual cycle as a replacement for

lectures on the topic. The students are able to work through the material, which

includes text, images, video and interactive sections showing dynamic changes in

hormone levels, at their own pace and are then asked to write and electronically

submit an essay based upon what they have learned from the system. However, the

assessment, an essay, is then later printed out by the tutor and hand-marked. CBL

can therefore be seen as a specialisation of CAL in which an entire process of learning

is conducted online through a computer terminal.

Computer Assisted Assessment (CAA) refers to the use of technology to deliver

coursework to the students, mark student responses and conduct analysis of

submitted coursework. In CAA the automation of certain tasks of assessment,

teaching and learning are likely to be present, but some stage of the process (often

the development of solutions by candidates) is still accomplished using mechanisms

outside the system.

A common practice which constitutes CAA involves using Optical Mark Reader

(OMR) technology to read student responses to an assessment from paper into an

assessment system which compares the responses against a set of model answers.

The teaching and assessment material would likely have been created using

computerised means as well. In this way, CAA can be seen as be seen as that

specialisation of CAL which involves automated marking and analysis of student

submissions as well as the delivery of materials.

Computer Based Assessment (CBA) therefore refers to the delivery of materials for

teaching and assessment, the input of solutions by the students, an automated

assessment process and the delivery of feedback, all achieved through an integrated,

coherent online system. It can therefore be seen as that specialisation of CAA in

which the entire process (including the development of solutions by candidates)

occurs online at a computer terminal and also as that specialisation of CBL in which

2. CBA, formative assessment and diagramming 16

assessment must occur as part of the system, as well as the delivery of teaching and

learning materials. CBA is the most specialised form of learning technology to be

considered because it provides for the highest level of automation within a coherent

system; this, in turn, means that CBA has more potential in terms of time saving than

the other forms of learning technology. This model and definition are consistent with

those prevailing in the literature [CE98a, Ta02, SM97].

2.1.2 Development of Automated Assessment

Early automated assessment systems began to appear towards the beginning of the

1960s. The use of computers to automate simple, repetitive processes was already

appreciated and educators within fields such as computer science, physics and

mathematics were eager to take advantage of the time-saving potential offered by

automating the assessment process. The first automated assessment systems were

characterised by the use of simple marking mechanisms to assess simple question

types. Hollingsworth [Hj59, Hj60], describes a system used as early as 1959 to assess

a student machine language course which, despite problems of unreliability and lack

of security, was seen to be clearly justified on “economic grounds”.

The system described by Forsythe and Wirth [FW65] is similar to that of

Hollingsworth in that a simple matching mechanism was used to assess carefully

simplified exercises, in this case in the programming language Balgol, a variation on

Algol-58. Students submitted their work on punched cards and the marking was

done as a batch after the deadline for the exercise had passed. Subsequent systems

tended to improve the level of automation achieved and the number of exercise

domains which could be assessed.

Hext and Winings [HW69] describe a system which could assess three domains (two

variants of Algol and an assembly language) and whose batch processing was

entirely automated. Later papers by Taylor and Deever [TD76], Rottman and Hudson

[RH83] and Myers [Mr86] expanded automated assessment usage into domains

outside Computer Science, in physics, mathematics and chemistry respectively.

Despite a historical progression charting an increased level of automation in the

assessment process and a gradual widening of the domains covered by automated

assessment, all of the systems described above involve simple assessment

2. CBA, formative assessment and diagramming 17

mechanisms being used to assess exercises which were carefully constructed by the

educator to be “assessable”. Rather than to improve the pedagogic quality of

assessment, automated assessment was seen as a mechanism with the potential to

increase the speed with which assessment could be carried out and thus to allow the

assessment of increasing numbers of students to be rendered feasible. As student

numbers increase further, this factor is likely to continue to be a motivator in the

development of automated assessment systems.

2.1.3 Motivation in Automated Assessment

Higher education institutions are confronted with the challenge of providing

academic courses to a higher number of students without the benefit of a

proportionate increase in teaching staff. Student-to-staff ratios (SSRs) are less

favourable to academic staff than in the past [Dfes05, Ml97], and SSR increases of

150% since the 1970s have been reported [AUT05]. The delivery of course materials,

assessment of student work, detection of plagiarism and administration of course

data are but few of the academic tasks affected by the situation. Section 2.1.2 showed

that, historically, automated assessment research has been motivated by a desire to

assess more students with increased speed; this motivation would appear set to

increase given current conditions.

In the systems described in section 2.1.2 the automation often led to a change in the

presentation of the assessment process itself, which was constrained by the

limitations of the technology available. Students were obliged to submit their

solutions in a simplified form which could be assessed by the system; this introduced

notations for representing solutions which were far removed from the coursework

problems themselves. Only in more recent times have the pedagogic implications of

automated assessment come to be acknowledged. An evaluation of prominent

contemporary automated assessment systems is provided in Chapter 3. However, it

is clear that pedagogic principles cannot be ignored when the development of the

automated assessment field is considered.

Automated assessment is an inter-disciplinary topic and contributors to the field

often maintain the perspective of their original discipline when making

contributions. Section 2.1.1 defined CBA technology in terms of the number and

types of processes automated. Often, the extent to which the assessment process is

2. CBA, formative assessment and diagramming 18

automated is determined by educator preconception rather than the practical limits

of the technology available. Canup and Shackelford [CS98], for example, argue that

final marking must always be performed by human graders using automation as a

simple aid. Mason and Woit [MW98, MW99] propose approaches which involve an

online system for the presentation of examination materials and collection of student

submissions but only a limited role for automatic marking. Joy and Griffiths [JG04]

describe a system which facilitates online student submission and allows both

students and graders to run automatic tests on submissions, but which provides

neither learning materials nor an integrated, fully automated marking process by

design. None of these systems, therefore, constitute CBA technology as defined in

section 2.1.1. This work will utilise a CBA approach based upon the full automation

of the lifecycle of an exercise in order to maximise the resource-saving potential

offered by the research. Furthermore, an integrated CBA system which allows

student solutions to be developed in a naturalistic, intuitive way within an

interactive environment will be used to minimise abstract representations which are

removed from the student learning process.

2.1.4 Benefits of Computer Based Assessment

The benefits of CBA technology fit into two broad categories: the practical and the

pedagogical.

The practical reasons were the motivation for the development of CBA in the first

place and were the focus of section 2.1.2. Charman and Elmes [CE98a] acknowledge

that CBA develops out of the desire to automate an increasingly large workload of

assessment, within the context of providing higher education to a larger proportion

of the population without proportionately higher resources. They consider that such

a scenario often leads to the following assessment strategies being adopted:

• Reducing the assessment loading for students;

• Evaluation of the function of each piece of assessment;

• Diversification of the assessment portfolio.

Adoption of CBA techniques is often as a result of a decision to diversify the

assessment portfolio since CBA can be used to save time in the assessment process,

2. CBA, formative assessment and diagramming 19

rather than abandoning sections of assessment altogether. Rust [Rc01] suggests six

methods for confronting the same issues: front ending, doing the assessment in class,

use of self and peer assessment, group assessment techniques, assessment

mechanisation, and strategic reduction strategies. CBA would clearly constitute a

mechanisation strategy, although it is worth noting that Rust’s own suggested

mechanisation strategies are confined to the use of paper tick-sheets and statement

banks to aid in the traditional feedback process.

Charman and Elmes [CE98a] emphasise, however, that the resource-saving potential

of CBA technology is often manifest in the long term. CBA systems are non-trivial to

develop and maintain and commercial systems may be costly to purchase. A cost-

benefit analysis of CBA technology used in a limited context over a short timescale

can easily be negative; six strategies are, therefore, suggested to maximise the

practical benefits of CBA technology.

Firstly, the advantages of CBA technology will be maximised over a large timescale.

CBA technology is often difficult to develop or learn to use. Writing questions and

feedback can often be more time-consuming, early in the process, than the traditional

assessment methods being replaced would have been in their entirety. However,

once the technology is in place the resource-savings can be utilised repeatedly since

the process is automated and the total time costs compared with tutor based

assessment will often show considerable benefit.

Secondly, additional resources for development may be available. Many institutions

have funds available for technological development. Linking CBA deployment with

research may also allow further resources to be allocated.

Thirdly, introducing CBA technology may allow module delivery to be restructured,

allowing teaching assistants to assist in the administration of the CBA system.

Fourthly, wider departmental, or even institutional, benefits should be considered. If

a strategy for using the CBA technology across several modules or even departments

can be developed then the benefits of the technology are increased and the resource

burden shared.

2. CBA, formative assessment and diagramming 20

Fifthly, existing assessments in the subject area should be considered. Many projects

in educational technology have been developed in recent years. Making direct use of

the experiences and even technological infrastructure developed by those who have

already experimented with automated assessment in the subject area can save

considerable resources. To this end, Charman and Elmes [CE98b] provide a useful

handbook which documents several existing academic CBA systems.

Sixthly, existing question banks should be utilised if they exist. Some institutions

have existing question banks whose questions could be automatically assessed, and

the establishment of national and international question banks is now underway

[SP03]. Re-usable digital resources which can be used to support learning are

available in Learning Object Repositories (LORs), which are often web-based. A

prominent example is MERLOT [Mf04]. Neven and Duval [ND02] provide an

overview of pertinent issues associated with LOR use.

The pedagogical benefits of CBA technology are often overlooked. Experience [CE98a,

BBF+93] has shown that CBA software:

• Increases assistance to weaker students because problems in learning can be

immediately traced and teaching strategies adapted accordingly;

• Provides immediate feedback which ensures that the student can internalise

the submission and feedback as one entity while both are fresh in the mind;

• Increases student consciousness about the assessment process since students

are more willing to contest automatically generated results and, therefore,

become interested in determining what the assessor is looking for in a model

solution;

• Increases student confidence by allowing easy early exercises and by

demonstrating to students that they are performing well;

• Encourages students to effectively manage their own workload since students

can increase their mark through multiple submissions if they begin to submit

before the deadline;

2. CBA, formative assessment and diagramming 21

Criterion Meaning Application to CBA

Valid The assessment should measure
what you want to measure and
not depend on other qualities

Will measure specified coursework
aspects assuming good initial assessment
design

Reliable The assessment should be
consistent between assessors
and for the same assessor on
different occasions

The same assessment process will run for
each submission; consistency is absolute

Fair Assessment should provide
equal opportunity to succeed;
students should perceive the
assessment as fair

Design-dependent; CBA has no inherent
advantages

Equitable Assessment should not
discriminate between students
other than by ability. Particular
talents (e.g. exam technique)
should not be
disproportionately favoured.

The same assessment process will run for
each submission; discrimination is non-
existent

Formative See section 2.2 for a full
definition

CBA provides a good opportunity to run
assessment frequently throughout the
learning process, and to provide multiple
submissions with full feedback each time

Timely Assessment should occur
throughout the learning
programme

CBA provides a good opportunity to run
assessment frequently throughout the
learning process

Incremental Assessment should be a
gradual process allowing
achievement to be ‘built up’

Design-dependent; CBA has no inherent
advantages

Redeemable Initial failure should not be
absolute and students should
have a second chance

CBA is suited to allowing multiple
submissions should the designer wish
this

Demanding Assessments should be pitched
at the right level of achievement
and not be easy

Design-dependent; CBA has no inherent
advantages

Efficient Assessment should make
efficient use of available
resources; over-assessment
should be avoided

Considerable time and other resource
savings to be made; originally a
motivator for CBA’s inception

Table 2.1: CBA provides concrete pedagogical benefits

2. CBA, formative assessment and diagramming 22

• Provides an opportunity to put the information learned in a course

immediately into effect in the next piece of work.

Brown et al [BRS96] argue that good assessment should be valid, reliable, fair,

equitable, formative, timely, incremental, redeemable, demanding and efficient.

Table 2.1 provides an explanation of each of these terms and then considers whether

CBA meets the criterion in question. The definitions are consistent with those in

[CE98a]. It can be seen that in 7 of the 10 criteria CBA is likely to present a distinct

pedagogic advantage over traditional assessment, while in the remaining 3 criteria

CBA has no negative effect. Hence CBA can be said to have concrete pedagogic

benefits.

2.1.5 Limitations of Computer Based Assessment

Like the benefits of CBA which were the focus of section 2.1.4, the limitations of CBA

can be separated into two large categories: practical and pedagogical. Awareness of

these issues, together with careful design and prior planning, can help to minimise

the problems encountered during the assessment process.

A survey of teaching staff with technical backgrounds by Inoue [Iy01] concluded

that, given institutional support for the use of technology in education, the following

six practical factors have the greatest influence on the success or failure of

educational technology in general:

• Teachers’ knowledge and skills in technology. Training programs for

educators are useful to ensure their awareness of available technology, their

ability to choose appropriate technology and their ability to use the

technology correctly.

• Availability of hardware and software. Research into educational software

must be encouraged and appropriate hardware developed.

• Commitment by involved parties. Educators must have the determination to

persevere in solving problems associated with implementing educational

technology, rather than returning to traditional assessment forms.

2. CBA, formative assessment and diagramming 23

• Availability of time. Educators must be aware that implementing

educational technology can be an initially time-consuming process and allow

time for this in their schedule.

• Availability of technical support. Educational technology can be difficult to

implement. Developers must provide appropriate technical support to

educators to overcome technical obstacles.

• Cost of hardware. The hardware on which the education software runs must

not be prohibitively expensive for an institution to purchase and install.

Inoue emphasises that his findings are consistent with those of other studies, and

furthermore identifies the latter three limitations as oft-stated inhibitors for computer

use generally. Charman and Elmes [CE98a] focus on three central problems in this

area: the availability of equipment for writing CBA material, the availability of

equipment for the delivery of CBA material to students and the existence of an

infrastructure to implement CBA delivery on a suitably large scale.

In order to define the pedagogic limitations of CBA techniques it is necessary to define

precisely the type of learning which is to be assessed. Bloom’s Taxonomy of learning

objectives [BEF+56] is the learning model most cited by the automated assessment

community and classifies learning into three categories: cognitive, affective and

psychomotor. Most assessment is an attempt to evaluate cognitive learning. Bloom’s

Taxonomy further divides the cognitive learning domain into six levels of increasing

cognitive complexity as illustrated in table 2.2. Each cognitive level is assumed to

encompass those below it; for example, Comprehension cannot occur without

Knowledge. Bloom’s Taxonomy is both simple and easy to apply.

As a result of research conducted during the 1990s a revised version of Bloom’s

Taxonomy has been proposed by a group of researchers led by Anderson and

Krathwohl [AK01] in which the six cognitive levels are renamed Remembering,

Understanding, Applying, Analysing, Evaluating and Creating and form the

Cognitive Process Dimension of a two-dimensional taxonomy. The second

dimension is the Knowledge Dimension, comprising Factual Knowledge, Conceptual

Knowledge, Procedural Knowledge and Meta-Cognitive Knowledge. In the revised

Bloom’s taxonomy, curricular standards are aligned with both the Cognitive Process

2. CBA, formative assessment and diagramming 24

Dimension and the Knowledge Dimension according to their position in a two-

dimensional table.

Cognitive Level Meaning

1. Knowledge To recall information approximately as it was learned

2. Comprehension To interpret information based upon prior learning

3. Application To select data and principles to solve a problem with
minimum outside assistance

4. Analysis To distinguish and relate the assumptions, structure or
hypotheses of a statement

5. Synthesis To originate and integrate ideas into a proposal that is
new to the student

6. Evaluation To critique on the basis of explicit standards

Table 2.2: Bloom’s levels of cognitive learning

While many educationalists agree with Bloom’s general approach, some cognitive

psychologists, who doubt either the ordering or the distinction between the cognitive

levels, debate Bloom’s explicitly tiered architecture. For example, the alternative

RECAP taxonomy [Ib84, Ib95] advocates the view that the three highest cognitive

levels in Bloom’s taxonomy, Analysis, Synthesis and Evaluation, cannot be robustly

distinguished and hence presents a general category called “problem-solving” which

represents the three combined. Assessors who simply wish to ensure that surface-

learning is avoided have successfully used both taxonomies [DK01, BEH+05] and it is

clear that the implications for assessment design are less than for research into

cognitive psychology.

The radically different SOLO taxonomy [BC82] is notable because it deviates from

Bloom’s approach. SOLO is based upon the evaluation of student responses to

assessment rather than the design of the assessment itself. Stephens and Percik

[SP03], however, argue that SOLO sacrifices validity for increased reliability. Since

CBA has already been shown to be reliable in section 2.1.4, automated assessment is

overwhelmingly devised using either Bloom’s or Bloom-like taxonomies.

2. CBA, formative assessment and diagramming 25

The pedagogic limitations of CBA techniques are related to the type of student

response which can be assessed by the system. Fixed-response assessment is a term

used to refer to assessment modes in which students must choose their answer from

a pre-designated selection of alternatives including distracters. Fixed-response

assessment modes, such as multiple-choice questions, are often criticised for simply

assessing the Knowledge of a student (the lowest level in Bloom’s taxonomy) and

therefore encouraging surface-learning strategies [JA00]. Although this problem

occurs when traditional assessment methods are used, the problem is exacerbated

when CBA assessment is considered because of the prevalence of fixed-response

assessment in CBA systems. Johnstone and Ambusaidi [JA00] note that such

methods of assessment have the following disadvantages:

• Students can guess the correct solution from the alternatives offered;

• Awarding negative marks to incorrect answers to discourage guessing

discourages even “educated” guesses and, furthermore, can be shown to be

statistically futile [BM00];

• Students can usually eliminate many distracters from common sense, leading

to a situation sometimes called “multiple true-false”;

• It is often unclear to the educator why a student chose an answer — students

can get the correct answer for the wrong reason;

• Negative discrimination can occur in which more knowledgeable students are

disproportionately tempted by incorrect distracters;

• Students can be disproportionately affected by precise wording: the success

rate of a question can realistically be changed by 20% by the simple use of an

unfamiliar word.

In their overview of the automated assessment field, Bull and Danson [BD04] note

that “CAA is most commonly associated with multiple-choice questions” while Culwin

[Cf98] notes that that the majority of CBA systems to date consider only fixed

responses. Fixed-response assessment has the practical advantage to the CBA

designer that the assessment algorithm can be kept simple, since it is necessary only

to check whether the correct response has been provided. It is for this same reason

2. CBA, formative assessment and diagramming 26

that other mechanised learning systems, such as Optical Mark Recognition, are based

upon fixed-response questions. However, this has led to CBA suffering from many of

the perceived disadvantages of exclusively fixed-response assessment in the minds of

educators, since the two are seen to be synonymous; in a web survey conducted by

Carter et al [CDE+03], only 36% of academics agreed or strongly agreed with the

statement “It is possible to test high-order learning using CAA”.

It is, however, possible to take action to minimise the pedagogic limitations of CBA.

Charman and Elmes [CE98a] suggest the careful construction of assertion-reason

multiple-choice questions as a technique for assessing deeper student understanding

of material, while Duke-Williams and King [DK01] present research into question

design techniques for use with multiple-choice and graphical hotspot questions to

ensure assessment of higher learning outcomes. Furthermore, it is possible to

conduct free-response CBA where the pedagogic limitations are reduced, though this

is less common in the literature due to the complexity of the marking algorithms

required. Section 2.1.6 presents a taxonomy for CBA in which the types of fixed-

response and free-response questions are considered. Their advantages and

limitations are then examined.

Bull and Danson [BD04] argue that the prevalence of CBA which tests only basic

knowledge is a result of misconception, lack of pedagogic understanding and poor

question design rather than inherent limitations of the technology. They counter the

problem in “cultural acceptance” by drawing attention to the existence of automated

assessment systems which “draw on an extensive range of sophisticated question types by

using computers to create questions which would not be possible using the medium of paper.”

They continue that: “CAA offers the opportunity to creatively extend the range and type of

assessment methods used [to] support and enhance student learning in ways which are not

possible with paper-based assessments.”

2.1.6 A Taxonomy for Computer Based Assessment

Section 2.1.5 introduced the concepts of fixed-response and free-response automated

assessment. The key difference between the two is the process by which the learner

constructs their solution to the problem.

2. CBA, formative assessment and diagramming 27

In fixed-response systems the learner chooses a solution from a fixed number of

clearly defined alternatives. One or more of the alternatives is the correct solution;

the other alternatives are incorrect and serve as distracters. The automated

assessment system is required to record whether the solution submitted was correct

or a distracter; no unanticipated solutions are permitted. Fixed-response assessment

may also be referred to as objective assessment.

In free-response systems the student is presented with an environment within which

a solution can be constructed in a freeform way. Free-response assessment requires a

more complex marking algorithm since the student solution cannot be precisely

anticipated. Free-response automated assessment constitutes only a small minority of

the platforms in existence because the complexity of the development process acts as

a deterrent. Culwin [Cf98] notes that the development of free-response automated

assessment is, in comparison with its fixed-response counterpart, “much harder or even

impossible.”

2.1.6.1 Fixed-response Automated Assessment

Fixed-response automated assessment includes the assessment of multiple-choice

questions (MCQs), short response exercises or graphical hotspot exercises.

Multiple Choice Questions (MCQs) present the user with a statement or stem,

followed by a series of choices from which a selection must be made [JA00].

Traditionally, one choice was the correct answer, often referred to as “the key”. The

remaining choices, “the distracters”, were incorrect. A variation in which the student

must identify more than one key is often referred to as a “multiple response

question”. Frosini et al [FLM98] provide a list of MCQ variants: simple true/false,

item order, multiple choice, multiple response, combination, gap filling and best

answer. Modern automated assessment systems which provide a platform for MCQs

do not limit either the stem or the choices to be text; images, sounds or video footage

are all examples of credible MCQ components.

Many commercial systems offer platforms for conducting large scale automated

assessment of MCQs. QuestionMark [BSP+03], which claims to be the world-leader,

allows for the creation of multiple-choice questions within an interactive authoring

environment and includes facilities for the presentation of questions involving a

2. CBA, formative assessment and diagramming 28

wide variety of colours, fonts and pictures, as well as the option to automatically

open other applications (for example, a spreadsheet package or calculator) during the

assessment. The associated program Perception [BFK+04] allows for assessment to be

distributed over the Web. Commercial competitors with comparable facilities include

EQL Interactive Assessor [Mp95], LXR*TEST [GW01] and QuizIt [TBF97]. A

comparison of the features of these tools is provided by Baklavas et al [BER+99].

Short response exercises require the student to provide an answer in the form of a

word, short phrase or number. Students typically present their answer in response to

a stem question, as for MCQs, or may be asked to complete a sentence or phrase. The

assessment system compares the answer provided against one or more correct

answers, or “keys”. The system may expect an exact response, or a degree of

flexibility may be introduced through the use of regular expression-like notations

such as Oracles [ZF92] or allowance of rounding errors for numerical answers.

Academic systems which support short response exercises include TRIADS [Md99]

and Ceilidh [BBF+93].

Graphical Hotspot Exercises require the student to select an area on a graphic, to

connect two or more graphics together using a connection line or to arrange graphics

on a canvas containing pre-defined positions. The correct response is defined in

advance, usually as a sequence of “target areas” within which an answer is deemed

to be correct. Later versions of the commercial QuestionMark software [BSP+03] allow

this type of exercise while, previously, many domain-specific systems were created

using multimedia authoring packages such as Asymetrix Toolbook [Asy94] and

Macromedia Authorware [Mac95].

2.1.6.2 Free-response Automated Assessment

Free-response automated assessment includes the assessment of programming

assignments, essay exercises and diagrammatic exercises.

Programming assignments occur frequently within Computer Science education.

Efforts to automate them result from the historically increasing popularity of

technology courses, in terms of student numbers, and the background of many

educational technology pioneers within the Computer Science field itself.

2. CBA, formative assessment and diagramming 29

The Ceilidh system [BBF+93] was an important pioneer in demonstrating the

feasibility and usefulness of automatically assessing programming assignments.

Ceilidh was also one of the first systems to cater for the full lifecycle of a CBA

exercise. Ceilidh checked for the presence of designated tokens in a student’s

program text and simulated output using an extended regular expression notation

called “oracles” [ZF92]. Ceilidh was rendered able to mark assignments in many

domains, including several programming languages, through its multi-layered

architecture and its introduction of several key CBA concepts such as marking tools,

multiple user views and a logical course structure. Ceilidh was an important

influence on subsequent CBA development and is considered in more detail in

section 3.3.1.

The direct successor to the Ceilidh system is CourseMarker [FHH+01, FHS+01].

CourseMarker takes its inspiration from the most successful aspects of Ceilidh but

benefits from an improved, object-oriented design and a platform-independent

implementation in Java. The result was a system which built upon the success of

Ceilidh, but which had increased usability, maintainability and extensibility. The

CourseMarker system was used as a platform for the work described in this thesis

and is considered in more detail in section 3.3.2.

Another system influenced by the example of Ceilidh is ASSYST [Jd00, JU97]. Like

Ceilidh, ASSYST caters for the full lifecycle of a CBA exercise and is aimed to be a

complete “grading support system” rather than a simple assessment tool. ASSYST is

used to analyse programming assignments in the C language according to

correctness, style, complexity and run-time efficiency; like Ceilidh, it is possible to

allocate proportional weightings to the tests. Unlike Ceilidh, ASSYST takes a

“hybrid” approach between CBA and manual marking. Jackson and User claim that

this enables the system to benefit from the marking consistency and speed associated

with CBA while still maintaining fine control over student results. This approach

does, however, negate some of the benefits of CBA, such as the ability to allow great

numbers of submissions and the immediate return of full feedback, since teacher

intervention in the assessment process is required for each submission.

Another hybrid approach is taken by the BOSS system [JG04, JL98], which facilitates

online student submission and allows both students and teachers to run automatic

2. CBA, formative assessment and diagramming 30

tests on submissions, but which provides neither learning materials nor an

integrated, fully automated marking process by design. The student can run

automated tests as an aid to constructing and evaluating their solution and is then

able to submit their solution online. The educators can then run automated tests on

the solution, invoke plagiarism detection mechanisms, mark the solution and return

feedback online. BOSS does not operate as a fully automated, coherent CBA system

as a design decision. Joy and Griffiths [JG04] acknowledge that an integrated CBA

approach can act as a formative process; however, they state that the aim of BOSS is

to concentrate “on the process, and measuring the correctness of students’ code” and argue

that CourseMarker and Ceilidh “prescribe” a style of programming through their

frequent, automated checking.

The Kassandra system described by von Matt [Mu94] conducts automatic testing of

programs written in the Matlab, Maple and Oberon languages. These languages are

mathematically based and correctness is determined by matching output data with

defined test data. Little infrastructure is provided for automatic testing and test

software is developed by the exercise developer. Kassandra does, however, support

more than one type of user: the “student” and the “assistant”.

The RoboProf system described by Daly [Dc99] also uses output checking. RoboProf

concentrates on assessing the syntax and structure of programming languages rather

than program correctness. RoboProf is influenced by the architecture of Ceilidh and

is used for formative assessment purposes. RoboProf is considered in more detail in

section 3.1.2.1 on CBA systems in a formative assessment context.

The TRAKLA system described by Korhonen and Malmi [KM00] is primarily a

Computer Based Learning system which presents a visual environment to teach

students the concepts of algorithms and data structures through the use of diagrams

and animations. However, a formative assessment component used to test student

understanding has been introduced based upon the Ceilidh model. The latest

version, TRAKLA2, is considered in more detail in section 3.2.1.

The ASAP system described by Douce et al [DLO+05] utilises “test classes” which

can be seen as analogous to Ceilidh’s marking tools. Each test class must provide

objective criteria for evaluation, feedback for the test and a single mark to evaluate

the submission. Standardisation of test classes is accomplished through a template

2. CBA, formative assessment and diagramming 31

superclass which all test classes must extend, as in CourseMarker. ASAP was

developed to be integrated into institution-wide e-learning frameworks such as

Blackboard or WebCT using VLE standards. This allows ASAP to take advantage of

institutional infrastructure and represents an advance on the typical CBA approach

of developing standalone systems.

The JEWL system described by English [Ej02] assesses student programs which

involve a Graphical User Interface (GUI). English believes that this increases student

motivation since programs with GUIs are seen by students as “real programs” rather

than toys. The JEWL system is an object-oriented toolkit; the student solution is

replaced by a “test harness” which interprets those instructions which the student

program executes. Further research into the assessment of student GUIs is also being

carried out using CourseMarker as a platform [GH06].

Essay exercises are popular as an assessment tool since they are seen as a proven

way to test higher-order cognitive skills such as synthesis and analysis.

Landauer [LD97, LHL98] described an approach based upon Latent Semantic

Analysis (LSA). LSA emphasises essay content by analysing word co-occurrences

while ignoring the linguistic and structural features of an essay. LSA scores typically

correlate as well with human graders as different graders do with each other [CO97].

A variant of LSA was used as the basis of a prototype system for assessing essays

using Ceilidh as a platform [FL94].

Page [Pe94] describes the Project Essay Grade (PEG) system, which uses a model

with the essay’s surface features, including document length, word length and

punctuation features, as independent variables and the essay score as the dependent

variable. PEG scores have been found to correlate better with human graders than

the graders correlate with each other [PPK97].

Rudner and Liang [RL02] describe a statistical approach based upon Bayesian

networks which is simple to implement and can be used on short essays. A student

response is classified into one of three grades (complete, partially complete or

incomplete) according to probabilities which have been associated with features of

the essay as likely to be appropriate, partial or inappropriate. Rudner and Liang

argue that their approach can incorporate the best features of earlier methodologies.

2. CBA, formative assessment and diagramming 32

Diagrammatic exercises are the least common of the free-response CBA exercise

types examined here. Hirmanpour [Hi88] describes an automated diagramming tool

which allows students to develop Data Flow Diagrams, Entity-Relationship diagrams

and Structure charts without using licensed software. The assessment however, is

traditional; automated assessment of diagrammatic exercises is regarded as difficult.

Power [Pc99] presents a development environment called Designer which allows the

student to interactively design structure diagrams. Designer can analyse the

diagrams and present programs and control structures. Designer allows the student

to interactively “walk-through” the program represented by the structure diagram

they have designed. The commercial object-oriented design package IBM Rational

Rose [Qt99] allows code templates to be generated from object-oriented class

diagrams in the C++ and Java programming languages, although this functionality is

primarily aimed at software developers.

Hoggarth and Lockyer [HL98] developed a system in response to problems in

teaching systems analysis and design. Computer Aided Software Engineering

(CASE) tools are often used in teaching this subject to allow students to apply the

basic theory and concepts, but most CASE tools are intended for commercial use and

do not cater for students who require assistance in underlying concepts. Hoggarth

and Lockyer describe an interactive CBA learning system which embeds a Computer

Assisted Learning (CAL) system within an existing CASE system to assist student

understanding. A verification mechanism for student diagrams relies on the student

manually matching the meanings of ‘tokens’ (the names of diagram components) in

their solution with the corresponding tokens in the model solution. The verification

mechanism then compares the diagrams as two directional “flows” of modes and

connections and notes the differences in ordering between the two. Specific feedback

is then provided to the student, which can be used to improve the solution in an

iterative, formative process. Hoggarth and Lockyer’s diagram comparison system

and the feedback provided are reviewed in more detail in section 3.2.3.

DATsys [Ta02] is a framework for conducting diagram-based CBA. DATsys caters

for the full lifecycle of automated assessment exercises through integration with the

CourseMarker CBA system. Diagrammatic domains can be defined by exercise

developers without programming, using the diagram editor component Daidalos.

2. CBA, formative assessment and diagramming 33

Marking tools for diagrams are defined on a per-domain basis as CourseMarker

marking tools. Tsintsifas reports on the use of DATsys to assess student coursework

in logic design, flowchart and object-oriented design as part of a first-year

undergraduate course in Software Tools. Logic design exercises involved the student

drawing an analogue circuit diagram, which was assessed by a marking tool which

simulated a circuit based upon the student diagram, provided test data and checked

output properties. Flowcharts were translated into programs and marked as such

using tools developed in CourseMarker for the assessment of programming

exercises. Object-oriented design diagrams were marked using a tool which tested

the features of the tool, such as the presence of nodes and the connections between

them. DATsys was used as a platform for this work and its architecture and

infrastructure is detailed further in section 3.3.3.

Thomas [Tp04] reports on the use of a simple drawing tool to allow students to draw

diagrams as part of an online examination. The drawing tool used a diagram

representation consisting of simple nodes and links and allowed students to arrange

the diagram elements and to define the text labels which were associated with them.

Most students were able to use the drawing tool even though they were under exam

conditions and unfamiliar with the tool itself. Later research [TWS05] investigated

the assessment of student entity-relationship diagrams using a system which

compared the features of a student solution with those of a model in a similar way to

DATsys’ assessment of object-oriented design diagrams. This system, together with

the feedback provided to students, is further reviewed in section 3.2.4.

2.1.7 Assessing Higher Cognitive Levels using CBA

Automated assessment has traditionally been associated with testing only the lower

levels of Bloom’s cognitive taxonomy due to the most common, fixed-response

question types being dismissed as “mere” objective testing. It is still common for

automated assessment to be regarded as having an “inability” to test higher skills due

to its reliance on “simple techniques such as pattern-matching of input” [RJE02].

Research into assessing higher levels of Bloom’s cognitive taxonomy fits into two

broad categories. The first approach is to carefully design objective test questions

according to criteria designed to force students to demonstrate higher order

cognitive abilities such as analysis, synthesis and evaluation. The second approach is

2. CBA, formative assessment and diagramming 34

to utilise more complex automated assessment mechanisms to enable CBA to assess

question types which would traditionally be used to assess higher order cognitive

abilities.

McKenna and Bull [MB99] present an overview of the techniques often used to

design effective objective test questions. The techniques focus primarily upon the

construction of multiple choice questions and a series of weak questions with

improved counterparts are presented. Techniques discussed include: constructing

the question stem as a definite statement, avoiding irrelevant material, constructing

the stem to test a student understanding of the domain rather than reading

comprehension, concentrating material in the stem and avoiding option duplication.

Techniques for extending MCQs to the preferred variants, such as multiple true /

false questions, assertion-reason items, multiple response questions, matching test

items and text match response problems are then considered.

Duke-Williams and King [DK01] set out an explicit approach to question design

using a revised version of Bloom’s taxonomy. The authors note the limitations of

traditional approaches, such as constructing questions using verbs known to be

associated with higher-order learning outcomes, and demonstrate a system of

question design which makes use of both MCQs and graphical hotspot questions.

Stephens and Percik [SP03] document the procedure of creating questions based

upon Bloom’s taxonomy through a process of concept mapping.

This research forms part of the second strand: that of automating the assessment of

more complex question types through the use of more complex assessment

mechanisms. Essays [RL02], programming assignments and diagrammatic questions

[Ta02] are suitable for assessing the higher cognitive levels of Bloom’s taxonomy and

can therefore be used to reduce the pedagogical drawbacks associated with CBA

usage.

2.1.8 Summary

Section 2.1 defined Computer Based Assessment in relation to other areas of learning

technology in terms of the number and types of processes that are automated. The

motivations for the development of CBA technology were considered, and a brief

history of CBA development was provided. CBA has practical advantages, such as

2. CBA, formative assessment and diagramming 35

the saving of resources (time), and pedagogical advantages in terms of reliability and

other assessment criteria. CBA’s practical limitations are primarily infrastructural,

since introducing CBA into an academic environment is a resource-intensive process.

CBA’s pedagogical limitations relate to its perceived inability to assess the higher

cognitive levels as defined in taxonomies such as Bloom’s. Attempts to minimise

these pedagogical limitations may include the careful construction of objective

questions or the automation of question types traditionally used to assess higher

cognitive levels. An overview of the fixed-response and free-response CBA question

types was provided. This research forms part of the free-response strand of CBA into

the automated assessment of diagrammatic exercises. Section 2.2 will introduce the

key concepts associated with formative assessment.

2.2 Formative Assessment

2.2.1 Definition

Formative assessment is typically defined thus: “Formative assessment involves methods

designed to establish what progress a student is making during learning and to enable giving

feedback on it” [Bj93].

Such a definition carries two implications: firstly, that formative assessment must

occur during the process of learning and, secondly, that the most important

deliverable associated with formative assessment is feedback. These two implications

are complementary; the aim of the feedback is to improve the learning of the student

whilst that learning is still ongoing. Thus, formative assessment stands opposed to

summative assessment, whose central function is to provide an indicator of

achievement (e.g. in the form of a grade) at the conclusion of a unit of learning, rather

than feedback. Knight [Kp01] goes further in arguing that only formative assessment

truly provides feedback and that the results of summative assessment merely

constitute “feedout” since they may have little impact on the subsequent learning

process.

Assessment may sometimes be drawn into the four categories of formative

assessment, summative assessment, diagnostic assessment and self-assessment. In

this model, summative assessment remains opposed to the other three types in both

2. CBA, formative assessment and diagramming 36

form and function. Self and diagnostic assessments constitute further specialisations

of formative assessment with specific forms and purposes [Mm02].

The working definition of formative assessment adopted here is as follows:

“Formative assessment is assessment conducted throughout the learning process, as an

integral part of that process, where the central aim is to provide feedback to enable the

enhancement of learning.”

It is inferred, firstly, that feedback includes that given to both student and educator

to enhance the process of learning and, secondly, that the provision of feedback takes

priority over the generation of “feedout” such as summary grades or marks.

2.2.2 Benefits of Formative Assessment

There are many pedagogic advantages associated with formative assessment [Kp01].

Formative assessment:

• Encourages openness among students;

• Can be used to assess a great scope of learning outcomes;

• Can help in avoiding mark aggregation;

• Discourages plagiarism.

Rowntree [Rd87] considers the relationship between an education system’s learning

objectives and its assessment mechanisms thus: “If we wish to discover the truth about

an education system, we must look into its assessment procedures. What student qualities

and achievements are actively valued and rewarded by the system. How are its purposes and

intentions realised? To what extent are the ideals, aims and objectives professed by the system

ever truly perceived, valued and striven for by those who make their way within it? The

answers to such questions are to be found in what the system requires the students to do in

order to survive and prosper. The spirit and style of student assessment defines the de facto

curriculum.”

Assessment, therefore, defines what students learn. Few students will expend effort

in trying to acquire those skills and knowledge which are not rewarded by the

system, irrespective of the stated aims and objectives of the course on paper. Brown

2. CBA, formative assessment and diagramming 37

[Bg01] notes that, “assessment shapes learning, so if you want to change learning change

the assessment method.” Students increasingly learn how “to play the exam game”,

engaging in surface learning strategies at the expense of genuinely broad and deep

learning.

By its nature, summative assessment invites deceit since the informed student is

aware that it is their work that is being assessed, not themselves. The student has an

interest in emphasising their knowledge and hiding their ignorance in any work

which is summatively assessed in the hope of attaining the greatest possible final

grade. Similarly, the student has an interest in focusing only on those sections of a

syllabus which are likely to be directly assessed and ignoring all others.

Knight [Kp01] notes that good formative assessment encourages disclosure rather

than deceit. The student is much more likely to admit an area of ignorance if the

consequence is further assistance, rather than a lower mark. Given Rowntree’s

assertion above, this implies that formative assessment encourages a more general

programme of learning, reduces the impetus for students to “play the exam game”

and allows insight by the teacher into the effectiveness of the syllabus and the

teaching methods employed.

Similarly, formative assessment discourages plagiarism. Stefani and Carroll [SC01]

argue that plagiarism is difficult to define precisely and that much plagiarism may be

unintentional and could be solved by better education of students on academic

standards. However, plagiarism is still an increasingly high-priority concern within

higher education. Since formative assessment encourages disclosure, and students

feel it is in their best interests to admit to weakness, then plagiarists harm only

themselves [Kp01]. In a formative assessment environment, therefore, plagiarism is

less likely.

Section 2.1.4 introduced the concept of reliability in relation to assessment. Modern

higher education learning outcomes are complex and demand assessment of what

are often referred to as “soft skills”. Knight presents extracts from a course handbook

in order to argue that many learning outcomes cannot be assessed reliably as part of

a summative assessment; Knight argues that formative assessment is the only

authentic method of providing feedback on these outcomes. The feedback is as fuzzy

as the learning outcomes, but the impact of this disadvantage can be minimised so

2. CBA, formative assessment and diagramming 38

long as students are warned in advance and the assessment is formative. Thus, it is

often impossible to assess many fuzzy outcomes reliably and affordably other than

with formative assessment since it is less constrained by reliability concerns.

Furthermore, Knight argues that an increase in the proportion of formative

assessment can be utilised (as part of a strategy which also incorporates a

proportionally smaller summative assessment element) as a solution to the noted

problem of mark aggregation within increasingly modular higher education courses.

Black and William [BW98] conducted a survey of 681 research publications on

formative assessment. They concluded that formative assessment acts to improve the

student learning process to an extent that, “if best practices were achieved in mathematics

on a nationwide scale that would raise ‘average’ countries such as England and the USA into

the top five”.

Despite the pedagogical advantages associated with formative assessment, recent

times have seen a marked decline in its use on higher education courses. The next

section examines this phenomenon and explains why it has occurred.

2.2.3 Drawbacks associated with Formative Assessment

The drawbacks associated with formative assessment can be grouped into two broad

categories: the pedagogic and the practical. Many of the pedagogic drawbacks can be

ameliorated using known techniques. The practical drawbacks are traditionally seen

as more implacable.

Yorke [Ym01] identifies four main academic problems associated with high

formative assessment use:

• A student who wished to terminate a module which traversed multiple

semesters before the end of the final semester would have difficulty obtaining

credit if the assessment conducted up until that point was formative;

• Again, in a multi-semester module, it is difficult to ensure equity between

semesters if formative and summative assessment is unevenly distributed

across the semesters;

2. CBA, formative assessment and diagramming 39

• Students may under-prioritise formative assessment when under pressure to

complete summative assessments (and, possibly, to engage in paid

employment);

• Problems occur in ensuring that formative assessment is maximally effective

— the student must be provided with good feedback and make good use of

the feedback to improve their future learning.

The first two issues cannot be decisively addressed within the scope of assessment

design. They are systemic and can only be dealt with at the programme or even

institutional level.

A common suggestion which attempts to address the third problem is the use of a

two-part assessment strategy [Kp01]. Here, formative assessment is used initially, with

a summative element introduced later as a motivator. So long as the summative

component is in some way based upon the formative — for example, an assignment

could be marked formatively, to be followed by a question based upon the

assignment which is assessed summatively — then the assessment as a whole is

viewed with higher priority by the student. Hence the pedagogic advantages of

formative assessment can still be retained. Depending upon the timing of the

summatively assessed components, this could, additionally, go some way towards

addressing the first two problems. Unfortunately, adopting a two-part assessment

strategy exacerbates the practical problems associated with conducting formative

assessment still further.

The problem of designing useful, effective formative feedback is examined in section

2.2.5.

The practical problems associated with formative assessment are simpler yet more

consequential than the pedagogic problems. Effectively, formative assessment is

viewed as being costly to undertake, especially in terms of time to mark assessments.

The creation of rich and meaningful feedback to the student is more involved than

simply assigning a grade or mark. In the past this was tolerated, but as Chapter 1

pointed out, recent years have seen a marked decline in staff-to-student ratios and

educators are expected to teach students with ever-decreasing unit-resource. Given

this deterioration, many staff simply believe that they do not have the time or other

2. CBA, formative assessment and diagramming 40

resources which would be necessary to undertake formative assessment to the levels

used in the past.

Furthermore, the two-part assessment strategy proposed as a solution to some of the

pedagogic problems associated with formative assessment would seem to indicate

that one should implement formative assessment and then do the summative assessment

as well anyway. Comprehensive formative assessment thus becomes viewed as a pipe-

dream.

Several strategies have been proposed to overcome this practical difficulty. The next

section will briefly outline these strategies and place this work in context among

them.

2.2.4 Managing the Resource Intensiveness of Formative Assessment

Rust [Rc01] presents an overview of the assessment issues associated with teaching

large groups. Rust argues that there are six main methods which can be used to

maintain the quality of assessment within these difficult conditions:

• “Front-ending” the assessment;

• Conducting assessment in class;

• Conducting self and peer assessments;

• Conducting group assessments;

• “Mechanising” the assessment;

• Strategically reducing the amount of assessment conducted.

“Front-ending” the assessment refers to a strategy concentrating educator and

student effort at the beginning of the course. The purpose is to “set up” the students

for the work they are going to have to complete. An example is the creation and

dissemination of very detailed instructions or checklists, including examples, of what

is expected from the course’s assessment. Rust argues that this reduces the marking

time associated with misinterpretation of work and results in fewer student requests

for guidance.

2. CBA, formative assessment and diagramming 41

Conducting assessment in class refers to a strategy of performing assessment

alongside the presentation of teaching materials, within allocated class time.

Examples include setting assignments which can be undertaken and / or marked in

class or alternatively giving general feedback in class rather than individual feedback

to students after marking is complete.

Self and peer-assessment can be used as a technique for generating feedback for

students which would have been too time-consuming for staff to write. Group

assessment can also be used as a useful device for solving common student

problems. Self, peer and group assessment constitute active areas of research in their

own right; a general introduction is provided by Race [Rp01].

In its most general form, the strategy of mechanising the assessment refers to

standardising the assessment process in order to save time. Rust, in common with

many outside the CBA field, restricts ambition in this area to speeding up feedback

using statement banks and feedback tick-sheets. Statement banks are pre-written

archives of feedback statements from which the teacher chooses the most

appropriate; this saves time because the teacher does not have to consider the

wording of the feedback provided to the student. Feedback tick-sheets contain grids

of tick-boxes aligned with both scores and feedback statements. Feedback is returned

to the student by ticking the appropriate boxes and handing back the sheet itself as a

statement of feedback. Rust also promotes the use of objective tests such as MCQs to

ease the marking workload. Section 2.1 outlined the approach taken by Computer

Based Assessment technology to further mechanise the assessment and feedback

process.

A strategic reduction strategy can be split into two distinct approaches: reducing the

amount of assessment conducted, or reducing the amount of time spent providing

feedback. This is the least preferred option available, although it is often viewed as

practical. Rust argues that if assessment reduction is carefully considered then the

effect on students need not be hugely detrimental in all cases.

This work falls within boundaries of the fifth strategy for teaching large groups, that

of mechanising the assessment. The benefits and drawbacks of mechanising

assessment using CBA software have been examined in sections 2.1.4 and 2.1.5

respectively.

2. CBA, formative assessment and diagramming 42

Front-ending has been criticised for resulting in student work of high conformity and

little originality. Performing the assessment in class involves allocating time

previously used for teaching to assessment, hence simply “moving” the problem and

restricting teaching opportunities. A strategic reduction strategy in assessment

would view formative assessment as more “expendable” than the summative

components; formative assessment would, therefore, be disproportionately reduced.

Self, peer and group assessment are assessment forms which offer considerable

opportunities for future research. However, the validity and reliability of these forms

is as yet unproven. Furthermore, the use of these assessment forms as part of a two-

part assessment strategy would require considerable problems to be overcome; these

forms may, therefore, be susceptible to low student take-up or effort.

The next section focuses on criteria for designing effective feedback for formative

assessment.

2.2.5 Effective Feedback for Formative Assessment

The central aim of formative assessment has been defined previously in section 2.1.1

as “to provide feedback to enable the enhancement of learning”. In order to claim

that good formative assessment has occurred, therefore, it is necessary to show that

good formative feedback has been produced. Nicol and Macfarlane-Dick have

proposed seven principles of formative feedback practice as a result of their

conceptual model based upon student-centred learning methodologies [JMM+04].

These criteria will be used to judge the effectiveness of formative assessment

conducted using CBA techniques and are briefly explained here.

A good feedback framework for formative assessment should:

1. Facilitate the development of self-assessment (reflection) in learning

An assessment programme which is overly educator-led will produce students

dependent on others for instruction. A student should be expected to monitor the

divergence between their internal perception of the task and the outcomes being

produced. Critical self-assessment is a good technique for allowing students to

evaluate the weaknesses of their own work and thus to incrementally improve their

standards and develop their evaluative skills.

2. CBA, formative assessment and diagramming 43

2. Encourage teacher and peer dialogue around learning

Educator feedback serves as a valuable objective yardstick against which students

can evaluate their work, but there is considerable evidence that students find this

difficult to internalise and respond to productively. Feedback from peers may be

useful because another novice experiencing the same learning curve may have

experienced similar problems and is likely to be able to communicate compatibly.

Furthermore, the educator should be willing to respond to queries relating to

feedback. In this way, feedback should be viewed as a continuous dialogue rather

than as simple information transmission.

3. Clarify what constitutes good performance

A student is attempting to close the gap between their own internal perception of a

task and their current outcomes. Thus, the degree of overlap between the student’s

internal perception of the task and the actual goals of the educator in setting the

exercise is important and should be maximised. Poor performance by students may

be related to a misinterpretation of what is required. Hence feedback should include

mechanisms to clarify task requirements if students are to improve their performance

in future.

4. Provide opportunities to improve performance

Feedback should change subsequent student behaviour. The impact of feedback is

reduced if students receive feedback which points out the errors in the specific

solution, only to move on to a different assignment. In such a situation, a student

may regard the feedback as irrelevant. Students should therefore make a response to

feedback soon after it is delivered; ideally an opportunity should be provided to

repeat the task-performance-feedback cycle. A good method for achieving this is by

allowing resubmission. Furthermore, feedback should support students in producing

a piece of work by offering constructive advice rather than mechanically listing

errors.

5. Deliver information focused on student learning

Feedback should focus on the objectives of the task being attempted rather than

providing a list of unrelated strengths and weaknesses on a per-solution basis.

2. CBA, formative assessment and diagramming 44

Feedback should be delivered in good time and not be overwhelming in quantity,

utilising a manageable number of prioritised comments in order to maximize the

likelihood of corrective action. Feedback sheets with lengthy criteria lists and marks

discourage a view of the exercise as a holistic entirety. Hence the number of criteria

about which feedback is given should be controlled. Feedback should be available for

the student to consult in the future.

6. Encourage positive motivational beliefs and self-esteem

Student motivation is related to the type of external feedback the student receives.

Frequent high stakes assessment involving marks or grades lowers motivation and

leads to students concentrating on passing the test rather than learning. A mixture of

grades and feedback comments leads to students concentrating on the former at the

expense of the latter. Therefore frequent assessment in which only feedback

comments are provided is recommended. Feedback should also concentrate on

achieving future learning goals rather than current failure in order to lead to a

motivational ‘incremental view’ of learning.

7. Provide information to educators that can be used to help shape the teaching

If feedback to the students is to be of a high standard then the assessment process

should include a mechanism for feeding back good information to teachers.

2.2.6 Summary

Section 2.2 introduced the concepts of formative assessment. Formative assessment is

assessment conducted throughout the learning process, as an integral part of that

process, where the central aim is to provide feedback to enable the enhancement of

learning. Formative assessment has concrete pedagogic benefits and has been shown

to improve student learning. The pedagogic drawbacks associated with formative

assessment are not the main reason for its decline in usage in higher education

courses and can be minimised through institutional planning and the adoption of a

two-part assessment strategy. Formative assessment has declined in use because it is

seen as a resource-intensive assessment mode. Strategies for reducing resource-

intensive assessment include front ending, doing the assessment in class, use of self

and peer assessment, group assessment techniques, use of a mechanisation strategy,

and strategic reduction strategies; this work constitutes an example of the use of a

2. CBA, formative assessment and diagramming 45

mechanisation strategy. Criteria were presented by which the effectiveness of

formative assessment feedback can be analysed. Section 2.3 introduces the concepts

associated with diagrams, examines their role in learning and assessment and

provides an overview of criteria used to assess good diagram layout.

2.3 Diagrams in Education

2.3.1 Definition

In 1911 James Maxwell [eb11] defined a diagram as “a figure drawn in such a manner

that the geometrical relations between the parts of the figure illustrate relations between other

objects”. This definition of diagrams as an abstract representation is general enough

to encompass the many forms that diagrams have assumed throughout history but it

is insufficiently concrete to be used as the basis for research.

This section will concentrate on the role of diagrams in education. Although

educational diagrams take many forms across multiple educational domains, it is still

possible to present a general definition which is specific enough to serve as the

starting point for research.

Dodson [Dd99] noted that a diagram is typically comprised of two types of

components: nodes and lines. Many common types of educational diagrams consist of

nodes linked by lines, but diagrams can alternatively consist of combinations of lines,

nodes overlapping, nodes ‘labelled’ by other nodes and nodes whose meaning is

determined by colour or other distinguishing feature. For a diagram to be

comprehensible, its notation must conform to a convention of meaning which describes

how the elements of the notation are combined to indicate a relationship or function.

2.3.2 History and Scope

Tsintsifas [Ta02] provides an overview of the historical role of diagrams. The word

“diagram” is Greek in origin and means literally to express using lines. The earliest

diagrams were land maps, which demonstrate a low level of abstraction because of

the direct relationship between the diagram and the terrain it represents. Later

diagrams demonstrate an increased level of abstraction: examples include ancient

Greek illustrations of geometric concepts, philosophical representations found in

2. CBA, formative assessment and diagramming 46

European texts from the Middle Ages and family trees of genetic lineage. The level of

abstraction apparent in diagram representations began to increase markedly in the

17th century with the development of the Cartesian co-ordinate system. Later stages

of progress include the development of Calculus and set diagrams.

This work will concentrate on modern diagrams used in education. Diagrams are

used in a wide variety of disciplines spanning science, the humanities and art.

In computer science, diagrams are used as an aid to visualisation, for solving

computational problems and for design purposes. Von Neumann [GV47] created the

“flowchart” notation to aid in the visualisation of algorithms. Statecharts [Hd88],

Petri nets [Pc65] and state transition diagrams [BGK+96] assist in the solving of

computational problems. Diagrams to assist in the object-oriented design of software

projects include UML diagrams [JBR98] and the earlier competitors such as Booch

diagrams [Bg93]. Lohse et al [LBW+94] present illustrations of sixty graphical

representations, including frequently used notations such as entity-relationship

diagrams, data-flow diagrams, Nassi-Schneiderman diagrams and pert charts.

Diagrams are used extensively across engineering disciplines. For example, circuit

diagrams for analogue and digital components are used in electrical engineering,

while manufacturing blueprints are used in mechanical engineering. Standards

databases exist to document the conventions of meaning of these notations [ISO05,

ANSI05].

In sports science, articulated body schematics are used to illustrate ideal athletic

body positions, examine body stresses, determine ranges of motion and calculate

acceleration [MLC03]. A wide variety of diagrams are used across biology to describe

biological processes and structures; famously, Watson and Crick [WC53]

accompanied their discovery of the DNA double-helix structure with a “purely

diagrammatic” representation. Interdisciplinary diagram notations with less formal

conventions include concept maps [GS95] and mindmaps [Tb93]. More generally,

Blackwell and Engelhardt [BE98] have proposed a “taxonomy of taxonomies” for

diagrams. Blackwell and Engelhardt present six taxonomic dimensions for diagrams,

each of which represents a category of interest in research: representation, message,

relation between representation and message, task and process, context and

convention and mental representation.

2. CBA, formative assessment and diagramming 47

2.3.3 Diagrams in Automated Assessment

Tsintsifas [Ta02] conducted research into diagrams within the context of automated

assessment. He noted that approaches to developing diagram editors could be

grouped into three broad categories: multi-domain diagram editors, frameworks and

diagram editor generators. A multi-domain diagram editor aims to address the

editing of a group of related diagram domain notations and is usually specialised to

provide editing of a group of related notations in a subject area, for example software

engineering. A framework allows developers to create new editors by extending the

framework, taking advantage of existing design and implementation; this approach

allows great freedom in editor customisation but requires more effort from the

developer. A diagram editor generator requires the developer to provide a

specification for a diagram notation in a customised grammar. The program then

generates a software implementation of a new diagram editor from the specification

provided.

Multi-domain diagram editors include Thinglab [Ba79], which allows a description

to be followed by the runtime execution of constraints by using the interpreted

language Smalltalk. The visual and non-visual attributes of the diagram editors can

be related based upon formulas described in Smalltalk. The Templa/Graphica

system [Hs90] uses a “design template” to customise a graphical editor, while

MetaBuilder [FWW00] allows specifications for a new editor to be provided in the

form of a “meta-diagram” which describes the elements, relationships and

constraints of the diagram domain. The commercial software package Microsoft Visio

[En01] also conforms to the multi-domain diagram editor pattern.

Framework approaches include MacApp [App89], ET++ [GMW88], Unidraw [VL89],

HotDraw [Tek87] and JHotDraw [BG97]. In each case, to create an editor for a new

diagram domain the developer must create specialised classes for each abstraction,

building on top of the existing implemented architecture.

Diagram Editor Generators include Minas [Vg95], which relies on the construction of

a hypergraph grammar to define a new editor based upon an archive library of

graphical components. GenEd [HW96] allows editors for “visual languages” (of

which educational diagrams are a subset) to be defined using algebraic

specifications. The Penguins system [CM03] allows the realtime creation of editors

2. CBA, formative assessment and diagramming 48

for a wide variety of diagram domains using a constraint multiset grammar as the

specification for the language. Penguins also allows editors to be created from

malformed or incomplete grammars through a system of incremental parsing.

Tsintsifas concluded that existing multi-domain diagram editors, frameworks and

diagram editor generators were generally unsuited for use in an assessment context.

Multi-domain graphical editors are constrained in scope and lack the features

required for automated assessment. Existing frameworks were aimed at

programmers and developers, had many extraneous features and were considered

overwhelming in an assessment context due to their complex architectures. Similarly,

diagram generators were unsuitable because a deep understanding of the mechanics

of the generator was required to specify a new domain; non-programming users such

as assessment developers could not be expected to attain such specialist domain

knowledge simply to set a new exercise domain.

Tsintsifas developed DATsys, an object-oriented framework whose classes make up

a reusable design for CBA-oriented diagram editors. Daidalos, Ariadne and Theseus

are presented as concrete subclasses for such diagram editors, intended for use by

domain developers, exercise developers and students respectively. Representations

for diagram domains are specified using Daidalos. Daidalos defines tools for the

creation of figures, diagram elements, tools and commands, as well as a selection

editor which allows domain libraries of diagram notations to be managed.

Developers using Daidalos to author diagram domain notations can define diagram

elements in terms of their graphical view, underlying data model and connectivity

constraints.

DATsys is fully integrated into the CourseMarker CBA system and makes use of

CourseMarker’s system of marking tools to provide a generic marking mechanism

which will allow any diagram notation to be marked. A drawback of this generality

is that the development of marking tools, which are necessary to assess diagram

domains, is left to the developer, who must have knowledge of both the domain to be

marked and the system of marking tools. DATsys was used as a platform for this

research, and a more detailed overview is provided in section 3.3.3.

Thomas et al [TWS05, STW04] concentrated their attention on the “network-like

domains” which are common in computer-science education, such as entity-

2. CBA, formative assessment and diagramming 49

relationship diagrams and pipelines. The smallest meaningful unit, an “association”,

is defined as two nodes connected by a line. Student diagrams are assumed to be

“imprecise” compared with a model solution, since required features may be missing

or incorrectly presented and extraneous features may also be included. Thomas et al

concentrate on a tool which conducts a comparison of the associations found in both

the model solution and the student solution. The research of Thomas et al is

reviewed in more detail in section 3.2.4.

2.3.4 Aesthetics of Educational Diagrams

2.3.4.1 Aesthetic Criteria

Section 2.3.1 noted that most educational diagrams consist of a collection of nodes

with lines linking the nodes. A convention of meaning applies to define how the

nodes and lines logically interact to relate meaning to the reader. The reader’s

interpretation of the diagram is also influenced by the aesthetic layout of the diagram,

such as the physical relationships between the diagram elements. By implementing

consistent diagramming practices including clear layouts, reader confusion can be

minimised [Dfa04].

Aesthetic principles have been proposed in fields as disparate as fine art and

architecture. For the purposes of considering the physical relationships between

nodes and lines in educational diagrams, generalised approaches can be found in the

fields of graph layout and user interface design. The field of graph layout suggests

precise attributes for graphs which can be assessed mathematically, but doubts

remain over the merits of the resulting automatic layout algorithms [EG03]. User

interface design principles consider the layout of user interface primitives, which can

be considered as nodes, on a computer display, but in this context the nodes are not

connected by lines. Both of these approaches are examined in more detail below. It is

also necessary to consider the domain-dependant layout rules which exist for many

common educational diagram types.

When considering aesthetic criteria it is important to bear in mind the point made by

Purchase et al [PAC02] that not all criteria are of equal importance. Purchase et al

conducted a study into how the aesthetics of UML class and collaboration diagrams,

common educational domains, are perceived by readers. “Preference tests”, based

2. CBA, formative assessment and diagramming 50

upon a user’s instinctive preferences between a set of diagrams placed before them,

were conducted using sets of technically literate (though not necessarily UML-

conversant) volunteers. Volunteers were provided with pairs of diagrams in which

one of the pair emphasized a given feature while another did not and were asked to

indicate their preferred diagram with reasons. Quantitative data were collated using

a points system for volunteer responses while qualitative data, in the form of the

stated reasons, were used to search for confounding factors. In this way, the relative

importance of six aesthetic measures commonly suggested in the literature, as well as

two additional domain-specific layout rules for each of the two types of diagram,

were ascertained.

For UML class diagrams the most popular measure, concerned with the

minimisation of edge crossings, had a 93% preference level while the least popular

measure, concerned with directional indicators on diagram arcs, rated 60%. The most

and least popular measures for UML collaboration diagrams were spaced even

further apart. Although all measures scored more than 50% preference and hence

would appear to be valid, all the measures are not of equal value. Therefore, any

educational system which aims to take into account the aesthetic merit of a diagram

layout must not only determine the specific criteria to be measured but also the

relative importance, or weighting, of the criteria.

2.3.4.2 Criteria from Graph Layout

The field of graph layout classifies graphs into two broad groups: syntactic graphs,

which are abstract and have no real-world meaning, and semantic graphs, which have

a real-world meaning and are usually used to convey information within a domain.

Petre [Pm95] notes that semantic graphs are subject to “additional secondary notations”

which tend not to be defined within the formal syntax. Layout features associated

with syntactic graphs cannot be transferred ad hoc to semantic graphs, including most

educational diagrams; to be relevant, a syntactic layout measure must have a real-

world application.

 The two most commonly cited criteria in graph layout, and two of the easiest to

calculate, are the number of “bends” in connection lines and the number of

connection lines that cross or overlap other connection lines. Tamassia [Tr87]

proposes that an optimal graph has nodes exclusively connected by straight

2. CBA, formative assessment and diagramming 51

connection lines and states that curved and segmented connection lines should be

minimised. Tamassia et al [TTV00] later presented an algorithm to this end within an

automated layout context. Diagramming guidelines support the minimisation of

bends in such real-world domains as entity-relationship diagrams [Dfa04].

Reingold and Tilford [RT81] state that trees should avoid the “overlapping” of

connection lines, while Stedile [Sa01] acknowledges this as a principle for drawing all

graphs. Sugiyama [Sk02] concentrates on minimising the overlapping of both

connection lines and nodes. The study by Purchase et al [PAC02] concluded that this

was the single most important aesthetic consideration in the presentation of UML

diagrams.

Papakostas and Tollis [PT00] outline the concept of graph orthogonality. An optimal

orthogonal graph has the nodes and connection lines aligned to a regular grid

pattern. Nodes should be aligned with grid intersections, while connection lines

should lie along the gridlines. Tamassia [Tr87] proposes a similar aesthetic measure,

while studies in the real-world domain of user interface design have produced

similar measures [NTB00].

Coleman and Stott Parker [CS96] propose a measure which seeks to minimise the

physical width of a drawing. Other measures concentrate on the text labels which

accompany a graph: text direction should be uniform and the font typeface should be

consistent throughout [Pm95, Dfa04].

2.3.4.3 Criteria from User Interface Design

Ngo et al [NTB00, NB01] provide an overview of aesthetic measures from the field of

user interface design, presenting fourteen measures which constitute a “theoretical

approach to capture the essence of artists’ insights”. The authors acknowledge the criteria

as being applicable outside the field of user interface design; their aim is to provide a

mathematical model in which the insight of artists is represented by a series of

mathematical formulae which assume values between 0 and 1.

The fourteen aesthetic measures proposed by Ngo et al are briefly summarised in

Table 2.3. It can be seen that a subset of the aesthetic criteria overlap with the criteria

from the graph layout literature outlined in section 2.3.4.2.

2. CBA, formative assessment and diagramming 52

Measure Description

Balance The distribution of “optical weight”. Optical weight is calculated from
its area, colour and shape. Balance is considered both vertically and
horizontally.

Equilibrium The difference between the centre of mass of the elements and the
physical centre of the screen / canvas.

Symmetry The level of axial duplication. Symmetry is measured horizontally
(about the horizontal axis), vertically (about the vertical axis) and
radially (about two or more axes which intersect at a central point).

Sequence The arrangement of objects in a way that facilitates the movement of
the eye through the information displayed. In Western culture the eye
is trained to move in horizontal lines from top-left to bottom right. The
eye moves most easily from big to small, bright to subdued, colour to
black-and-white and irregular to regular objects.

Cohesion The degree of use of similar aspect ratios (the ratio of width to height)
in multiple-window systems.

Unity The appearance of the elements as a visual totality. Elements should be
similar in terms of size, shape and colour. The distance between
elements and the distance at the margins of the figure should be
similar.

Proportion The comparative relationship between the dimensions of elements and
those of 5 aesthetically pleasing proportional shapes: the square,
square root of two, golden rectangle, square root of three and double
square.

Simplicity Directness and singleness of form, achieved by optimising the number
of elements and minimising visual alignment points.

Density The proportion of the screen / canvas covered by objects. Screen
density levels should be reasonably minimised.

Regularity The uniformity of elements. Horizontal and vertical alignment points
should be standard and consistently spaced. The number of alignment
points should be minimised.

Economy The careful use of elements to get the message across as simply as
possible. As few styles, displays, techniques and colours should be
used as possible.

Homogeneity The evenness of distribution of elements across the four quadrants of
the screen / canvas. Evenness means that each quadrant should
contain nearly equal numbers of elements.

Rhythm Regular variation, the extent to which elements are systematically
ordered. Determined by variations in arrangement, dimension,
number and form of the elements.

Order / Complexity The sum of the previous 13 measures for layout. Complexity refers to a
lack of order; extreme complexity and total order may thus be
considered opposite ends of the same scale.

Table 2.3: Fourteen aesthetic measures from Ngo et al [NTB00]

2. CBA, formative assessment and diagramming 53

2.3.4.4 Domain-specific Layout Criteria

Section 2.3.2 noted the high number of diagram types across a variety of domains.

Furthermore, it is a well-known problem that multiple, competing notations may

exist for the same purpose, within the same domain. Ambler [As04] argues that well-

known notation should always be preferred over esoteric notation. Ambler notes that

even within a specific diagramming standard, a “kernel notation” of the most well-

known features, often consisting of no more than 20% of the available specification,

can be used to accomplish a majority of communication. Ambler argues that this

kernel notation should be used whenever possible and less-known features avoided.

It is not feasible to provide an overview of all diagrammatic guidelines. Overviews of

databases of diagram standards are provided in [ANSI05] and [ISO05]. The research

of Purchase et al [PAC02] into the layout of UML diagrams was summarised in

section 2.3.4.1; Eichelberger and von Gudenberg [EG03] provide further insight into

this domain.

The U.S. government Defense Finance and Accounting Service document provides a

set of typical Diagramming Guidelines [Dfa04] which specify standard practices and

aim to accomplish increased consistency, improved readability and improved

pattern recognition through consistency. Introductory comments concentrate on

deletion and consolidation of diagrams and standard formats for diagram legends.

Subsequent sections provide domain-specific guidelines for Business Process Model

(BPM) diagrams, Function Hierarchy Diagrams (FHD), Entity Relationship Diagrams

(ERD) and Server Model Diagrams (SMD). Entity Relationship Diagrams are the

most frequently encountered of these diagram types within an academic context.

2.3.6 Summary

Section 2.3 introduced the concepts associated with educational diagrams. A diagram

can be viewed as a collection of nodes connected by lines. Diagrams have been used

as abstractions to represent information for several thousand years and are currently

used to illustrate concepts and assist design processes in a large number of academic

disciplines. Categories of interest in diagramming research are representation,

message, relation between representation and message, task and process, context and

convention and mental representation. Systems for creating diagramming editors can

2. CBA, formative assessment and diagramming 54

be categorised into the three approaches of multi-domain diagram editors,

frameworks and diagram editor generators. In assessment, approaches to

diagramming have included a CBA-integrated framework for diagram-based CBA

and research into the assessment of “imprecise” student diagrams. Diagrams with an

aesthetically good physical layout can help to reduce reader confusion. Criteria

approaches applicable to diagramming layouts can be drawn from the fields of graph

layout and user interface design aesthetics.

2.4 Chapter Summary

This chapter introduced the areas of CBA, formative assessment and diagramming.

Section 2.1 defined CBA in relation to other areas of learning technology in terms of

the number and types of processes that are automated. CBA was defined, the

motivations for the development of CBA technology were considered, and a brief

history of CBA development was provided. CBA has both practical and pedagogical

advantages, while its practical limitations are primarily infrastructural. CBA’s

pedagogical limitations relate to its perceived inability to assess the higher cognitive

levels as defined in taxonomies such as Bloom’s. Attempts to minimise these

pedagogical limitations may include the careful construction of objective questions or

the automation of question types traditionally used to assess higher cognitive levels.

An overview of the fixed-response and free-response CBA question types was

provided.

Section 2.2 introduced formative assessment. Formative assessment has concrete

pedagogic benefits and has been shown to improve student learning but it is seen as

a resource-intensive assessment mode. Strategies for reducing resource-intensive

assessment, including mechanisation strategies, were considered. Criteria were

presented by which the effectiveness of formative assessment feedback can be

analysed.

Section 2.3 introduced diagrams in education. Diagrams are currently used to

illustrate concepts and assist design processes in a large number of academic

disciplines. Systems for creating diagramming editors can be categorised into the

three approaches of multi-domain diagram editors, frameworks and diagram editor

generators. In assessment, approaches to diagramming have included a CBA-

integrated framework for diagram-based CBA and research into the assessment of

2. CBA, formative assessment and diagramming 55

“imprecise” student diagrams. Diagrams with an aesthetically good physical layout

can help to reduce reader confusion. Criteria approaches applicable to diagramming

layouts were drawn from the fields of graph layout and user interface design

aesthetics.

Chapter 3

CBA approaches for formative assessment and diagrams

3. CBA approaches for formative assessment and diagrams 57

Introduction

Previous work on formative assessment using free-response CBA across multiple

diagrammatic domains in a generic, extendable way is undocumented in the

literature. Formative assessment using CBA techniques has hitherto been largely

conducted within fixed-response domains such as multiple-choice questions.

Formative assessment in free-response domains is less common in the literature but

some work has been documented in domains such as technical essays. Diagrammatic

CBA is relatively uncommon in the literature but several systems have been

documented. A commonly cited CBA system is CourseMarker, which incorporates

the DATsys framework for diagrammatic exercises. CourseMarker is the successor to

the successful system Ceilidh and is used as a platform for this work.

Section 3.1 outlines the approaches used in the literature to provide formative

assessment using CBA. Most examples in the literature use multiple-choice questions

as the domain and can be categorised into those systems which are based around

pre-existing software, usually commercial systems, and those systems which were

developed entirely by the educators themselves. The approaches are reviewed and

the feedback mechanisms are examined in light of the formative feedback guidelines

provided in section 2.2.5.

Section 3.2 outlines documented approaches to conducting CBA in diagrammatic

domains. Approaches are compared in terms of their flexibility (which is sometimes

carefully restricted in terms of student interaction) and their marking mechanisms.

Section 3.3 provides an in-depth examination of the CourseMarker and DATsys

systems which were used as a platform for this work. The Ceilidh system is

described since it provides important historical and theoretical background.

CourseMarker and DATsys are reviewed within the context of providing formative

CBA in diagrammatic domains and their current advantages and limitations are

discussed.

3.1 Using CBA technology to provide formative assessment

It is neither possible nor necessary to provide an exhaustive catalogue of all examples

in which automated assessment has been used for formative purposes. Stephens and

3. CBA approaches for formative assessment and diagrams 58

Mascia [SM97] noted the high usage of automated assessment technologies in 1997

and the trend has been for increased use of such technologies in a process which has

been described as “inexorable” [Br02]. Instead it is useful to compare examples of

various approaches taken to try to automate the process of formative assessment and

to contrast their relative merits. Some advantages, such as time-saving, are common

to nearly all automated assessment systems and so it is not useful to concentrate on

them here. Denton [Dp03], for example, reports considerable time-savings simply by

automating the process of returning feedback to students using an email system

based upon Microsoft Word.

A naïve comparison of CBA assessments might categorise examples based merely

upon whether the assessments used a commercially available package or had been

developed ‘from scratch’ by the academic staff. Considerations such as affordability

are important in the implementation of a CBA system and authors of in-house

systems routinely bemoan the level of resources required in the development of their

systems. However, as section 2.2.1 has previously argued, the primary deliverable of

formative assessment is feedback, and the examples considered here demonstrate

widely varying levels of feedback using the same system as a base for different

assessments. Therefore it is clear that any useful review of a formative CBA example

must consider both the practical system and the pedagogical approach: that is to say,

the technical abilities of the system and the level of feedback which is actually

provided to students to assist learning. In order to accomplish this, the framework

for effective formative feedback outlined in section 2.2.5 will be used as a benchmark

when assessing the CBA examples.

Overviews of prominent automated assessment systems already exist. Charman and

Elmes [CE98b] provide examples intended to be used by educators wishing to

develop their own systems. Rawles et al [RJE02] provide a review of systems in terms

of technical capability and ease of incorporation into teaching structures. Symeonidis

[Sp06] provides an overview of prominent CBA systems in terms of developmental

history, system requirements and automatic marking capability. The aim is not to

repeat this material here, but to review the systems in terms of their formative

assessment potential.

3. CBA approaches for formative assessment and diagrams 59

Section 2.1.6 defined and contrasted fixed-response and free-response CBA. Fixed-

response CBA is the easier to develop and therefore examples are more common.

Sections 3.1.1 and 3.1.2 consider, respectively, fixed-response and free-response CBA

used for formative assessment purposes.

3.1.1 Fixed-response formative CBA: a review

Due to the relative ease of implementation associated with fixed-response CBA,

together with the potential for standardised requirements across multiple

assessments, fixed-response formative CBA is often accomplished using

commercially available software. A brief overview of several such systems was

provided in section 2.1; the most commonly documented platform for CBAs is

QuestionMark [BSP+03], which has been referred to as “something of an industry

standard” [RJE02] in overviews of the field. Several CBAs based upon commercial

platforms such as QuestionMark are considered, with emphasis upon the difference in

formative feedback delivery. The section then concludes with a review of several

systems developed by educational institutions themselves; the advantages and

drawbacks of this approach are also briefly considered.

3.1.1.1 Using existing platforms

Charman and Elmes [CE98c] describe the use of QuestionMark to conduct formative

assessment on a first-year undergraduate module on data analysis in a Geography

degree. Short tests are conducted using questions selected randomly from a stratified

data bank. The tests typically take 10-15 minutes to complete, but no strict time limit

needs to be imposed since the assessment is formative. To motivate students the tests

are integrated into the teaching of the course and a two-part assessment strategy is

used: several questions typically relate to the results of earlier practical experiments

and an end-of-module summative examination is conducted which is similar to the

earlier formative tests.

Charman and Elmes note that development costs included employing a research

assistant for 2 months to write the questions and feedback for the data bank. Since a

commercial package was used there was also an initial outlay to purchase the

software. Feedback from the system has allowed teachers to monitor student

progress. Charman and Elmes note that there has been little improvement in the very

3. CBA approaches for formative assessment and diagrams 60

poorest and the most able students, but that a central group of students labelled

“struggling” could be seen to be helped by the system considerably. Student

response to the CBA was generally positive: 64% agreed that the system constituted a

good way of learning while 56% agreed that the CBA was an improvement over the

previous assessment forms.

Opportunities to improve performance are constrained by this system since the tests

cannot be retaken, although Charman and Elmes do address this problem partially

by allowing students to review their results as a revision resource. Student feedback

is returned on a per-question basis and is specific to the student response; this system

is not optimal in focusing on student learning and encouraging motivational beliefs,

however it provides a concise method for clarifying good performance within the

context of the MCQ test. Reflection in learning would seem to benefit strongly from

this approach, however, since Charman and Elmes report the “unexpected” benefit

students now found “stimulating and interesting” a module centred around data

analysis material which was traditionally regarded as dry.

Greenhow [Gm00] provides an overview of the Mathletics system, again built using

QuestionMark as a platform. Mathletics is used for both formative and summative

assessment. Mathletics employs both MCQ and hotspot graphical questions. The

approach outlined by Greenhow does constitute a two-part assessment strategy since

a summative assessment is conducted using the software after the formative

assessments have taken place. Furthermore, Greenhow emphasises that student

problems are a focal point for discussion in subsequent student tutorials, facilitating

teacher and peer dialogue around learning. However, the key difference between the

“formative” assessments conducted using Mathletics and their summative

counterpart seems to be the suppression of feedback in the summative tests. The

formative assessments are still conducted in formal examination sessions to avoid

“cheating” for example, and Greenhow admits that extensive use of Mathletics

within a module may result in students having little experience in problem solving;

paper-based tests and worksheets are used in conjunction with Mathletics to achieve

these aims.

Wybrew [Wl98] describes the use of Question Mark to conduct CBA in Health Science

modules. The CBA replaces existing MCQ tests which were previously marked using

3. CBA approaches for formative assessment and diagrams 61

OMR technology and conducted throughout the module. A two-part assessment

strategy is used in which strictly voluntary formative assessments precede a

compulsory summative assessment at the end of the module. A comparison of marks

between the CBA assessments and the previous OMR assessments shows no

difference. Take-up of the formative assessments is low, but this is likely to be as a

result of limited access to the Faculty computing facilities on which the courseware is

available. A further drawback of the current approach is the fact that the feedback

mainly tells the student which answers were correct and wrong. A positive major

feature of this example of CBA is that academic staff are simply required to write the

assessment itself; technical issues such as converting the questions into the

proprietary Question Mark format are the responsibility of a separate Unit for

Learning, Technology, Research and Assessment within the university.

Other examples of formative Computer Based Assessments based around

commercial systems such as QuestionMark occur frequently in the literature. Hawkes

[Ht98] describes a course of automated assessment in an undergraduate Number

Theory course in which the assessment is linked with a sequence of workbooks

written specifically for the course; questions are variations of exemplars in the

workbooks and only feedback on the exemplar questions is provided.

3.1.1.2 In-house fixed-response CBA systems

Buchanan [Bt00] reports on the use of the web-based formative assessment package

PsyCAL to assess undergraduates in the first year of a degree in psychology.

PsyCAL’s infrastructure is composed of CGI scripts written in Perl; students access

the system through a web browser. Students are allocated three specific weeks

within a 15-week course to assess themselves using the system, although students are

free to use the system outside these weeks and many take advantage of this. PsyCAL

assesses MCQs exclusively, which are presented to students in short, informal tests

typically numbering 20 questions. At the end of the test the student is presented with

a list of those questions they answered incorrectly, together with formal references to

documents which would help the student to answer those questions. The student is

not presented with the correct answers to the questions since this may act as a

disincentive to further student research.

3. CBA approaches for formative assessment and diagrams 62

Buchanan conducted two studies using PsyCAL in which the level of integration

with the module was varied. Both studies demonstrated that the formative

assessment tool was useful to student learning. Buchanan notes that the package

operates with a test-study-retest cycle and emphasises the importance of “repeated”

automated assessment for formative purposes. Buchanan notes that the system was

difficult to develop and cautions against starting to develop a system from the

beginning if an existing system can be used.

The feedback mechanism described by Buchanan is effective. Feedback is short and

student independence is encouraged by the fact that further research is encouraged.

Opportunities to improve performance are provided since the student can repeat the

test any number of times. It is unclear if the system is inherently motivational but

Buchanan reports that 97% of respondents to a questionnaire would be willing to use

the package in other modules.

Amelung et al [APR06] describe the LlsMultipleChoice extension module for the open-

source Plone content management system used to assess MCQs in Computer Science

modules. LlsMultipleChoice allows the grouping of questions into ‘units’ and

provides for the provision of instant feedback while allowing multiple submissions

by students; perhaps the greatest novelty of the system lies in its “localization

facility” which allows feedback to be provided in multiple languages (English,

German and French).

Hall et al [HRT+98] describe The Human Brain CD-ROM, a multimedia tutorial on the

human nervous system for use by undergraduates. Much of the project focuses on

the delivery of learning materials to students, which can be navigated in non-linear

pathways of the student’s choosing. Two assessment components are provided: a

“quick-test” option, which provides MCQs with typical feedback for incorrect

responses and an accumulated score, and the “concept test” component. Learning

objectives for each section of the teaching material is defined in terms of “concepts”,

and each test in the concept test is designed to assess understanding of a particular

concept. At the end of a concept test, students are advised of which concepts they are

perceived to have poor understanding and are referred to the appropriate teaching

materials. The Human Brain CD-ROM links assessment and learning in a similar

way to PsyCAL with similar advantages: feedback is short and student

3. CBA approaches for formative assessment and diagrams 63

independence is encouraged by the fact that further research is encouraged. Unlike

PsyCAL, The Human Brain CD-ROM takes on the responsibilities of providing all

teaching materials within the system with a consequent increase in development

resources. The Human Brain CD-ROM is based upon the Scholar’s Desktop CBL

platform [BS95], but due to the modified assessment component and the need to

generate the teaching materials the authors note that constructing the CD-ROM

involved “a huge amount of resources (both money and academic time)”.

Culverhouse and Burton [CB98] report on the use of Mastertutor to assess

undergraduates studying Electronics and Electrical Engineering. Mastertutor is based

upon the format of a “music master-class”: the system sets a problem, provides

information resources and accepts the student’s solution in the form of a

questionnaire. The student is then presented with a mark and shown a valid solution

in order to define what constituted good performance for the assessment.

The system is used as part of a “feedback cycle” where the solutions are discussed

while the problem is still fresh in the student’s mind. However, the student is not

typically allowed the opportunity to improve their performance through

resubmission; the impact of this would be limited in any case since the student has

already seen the optimal solution. It is doubtful how much reflection in learning

occurs, although dialogue around the assessment is clearly prioritised. The provision

of marks to the students raises questions about the extent to which the system is

motivational, but it is clear that feedback is delivered in good time and the objectives

of the task are exposed.

Paul and Boyle [PB98] describe a CBA system used to assess second year

palaeontology undergraduates. The assessment is designed to be simultaneously

formative and summative. Frequent assessments are conducted throughout the

module, feedback is given and students can be assessed by the system several times.

However, marks awarded by the system count summatively within the module; this

means that care must be taken to generate different tests each time the student

repeats the assessment to avoid students simply repeating the assessment to gain

higher marks. This is achieved by selecting questions from a large question bank. To

prevent students repeating assessments to re-attain a previous (high) mark, the

3. CBA approaches for formative assessment and diagrams 64

highest mark across all submissions for the assessment is counted for summative

purposes.

Paul and Boyle note that time is saved by both teaching staff and students and

acknowledge the importance of providing feedback in CBAs so that “students can

learn from them”. However, the mix of summative elements with the formative

assessment results in some rather awkward compromises. Feedback cannot be acted

upon because the next submission involves a different test; furthermore, students

know this in advance, so it is unclear how much attention they are likely to pay to

the feedback provided to them. Experience with conducting frequent assessments in

other domains with a dual formative-summative purpose has shown that students

are likely to sit repeated assessments merely as part of a “gambling” strategy to

chance on higher marks [BBF+93, Or98]. Paul and Boyle note that marks are not

consistently better than before CBA was introduced.

Vendlinski and Stevens [VS02] outline an approach which uses CBA technology to

provide information about student learning to educators, relating to the seventh

criteria for good formative assessment feedback outlined in section 2.2.5. The Hazmat

system is based upon courseware called IMMEX, a web-based CBA tool which

allows teachers to present domain-specific “simulations” to students. Hazmat is used

to assess high-school chemistry students, using a simulation in which students are

expected to guess the identity of a succession of chemicals by accessing information

presented by the system. Feedback to the student informs them of the correctness of

their choices. Feedback to educators is more complex. The system keeps a record of

the information accessed by each student before they attempted to guess a chemical

identity. Vendlinski and Stevens use an artificial neural network to identify groups of

similar performances from the data and then further analyse the features of the

performances in each group to identify the strategy represented by each cluster. The

distribution of students across clusters can be calculated and mathematical Markov

models used to determine the distribution of students after each student attempts to

solve a given number of successive cases within the problem set. The effectiveness of

student strategies was determined the probability of producing a correct answer, and

Vendlinski and Stevens developed a model to allow the probability of a student

changing strategy to be determined based upon the information accessed by the

student.

3. CBA approaches for formative assessment and diagrams 65

Vendlinski and Stevens’ research provides a credible strategy for allowing student

understanding of individual concepts within a course to be analysed using data

generated by fixed-response CBA. This information can then be fed back to educators

in order to improve course teaching; Vendlinski and Stevens’ research serves as a

reminder that teachers should benefit from good formative feedback in addition to

students (the 7th criterion of the framework for good formative assessment feedback

provided in section 2.2.5). The properties of the Hazmat system, however, would

appear to be difficult to generalise across many assessment and teaching domains

and the construction of a multiple-choice testing environment to use the same

techniques would probably appear contrived to students. Furthermore, the amount

of effort expended in creating the assessment is very large since not only the

assessment but also the teaching materials must be authored specifically for the

individual assessment.

Many more attempts to automate formative assessment using bespoke CBA systems

have been documented in the literature. Bull [Bj93] provides several useful case

studies including the CALM Project, which is used to teach mathematics, primarily

calculus, to engineering undergraduates. Students can progress through tutorials at

their own pace and access formative MCQs throughout. A summative assessment at

the conclusion of the module is conducted in a conventional manner.

3.1.1.3 Implications for formative assessment using CBA

The examples reviewed here provide several key lessons when attempting to

automate the formative assessment process using CBA software:

• The pedagogic approach to assessment, especially the design of feedback, can

be at least as important as the technical capabilities of the CBA system in

determining the success of the formative assessment in assisting student

learning;

• A two-part assessment strategy, involving using a summative assessment

component to act as a motivator for the formative assessment exercises, may

increase student participation in the formative assessment process;

3. CBA approaches for formative assessment and diagrams 66

• Restricting student access to the CBA system will result in poor student

attendance, limiting the formative impact of the assessment;

• Mixing the formative assessment with a simultaneous summative element,

rather than using a two-part assessment approach, can confuse the pedagogic

approach of the assessment and limit student learning opportunities;

Axelsson et al [AMW06] discuss the difficulties of mixing formative and

summative assessment aims even in seminar sessions benefiting from high

educator participation;

• Constructing CBA systems “from scratch” is time-consuming and expensive

and should only be undertaken if commercial systems or existing academic

CBA platforms cannot demonstrate required functionality; for fixed-response

assessment designs this is now unlikely;

• Formative assessment using CBA often benefits certain student profile groups

more than others;

• Feedback should be linked to learning materials;

• Constructing in-house learning materials may be prohibitively resource-

intensive; linking feedback to papers, textbooks and website references is an

acceptable substitute which can encourage student research;

• Students should be allowed to repeat assessment questions in order to correct

mistakes;

• Linking sections of the assessment to specific concepts can assist students in

identifying and correcting shortcomings in their understanding;

• Formative assessment should provide feedback to educators as well as

students in order that subsequent teaching processes can be improved.

3.1.2 Free-response formative CBA: a review

Section 2.1.6 outlined the reasons for the relative difficulty in developing free-

response CBA. This difficulty has resulted in free-response CBA systems being much

fewer in number than their fixed-response counterparts and also explains why those

3. CBA approaches for formative assessment and diagrams 67

free-response systems which do exist have been created by educational institutions

themselves since no major commercial software is available. Section 3.1.2.1 provides

an overview of the available systems, while section 3.1.2.2 provides a brief look at the

conclusions which can be drawn from the examples. Diagrammatic CBA systems are

not featured here since they will be examined in more detail in section 3.2.

CourseMarker and DATsys are not featured here since they will be examined in

detail in section 3.3.

3.1.2.1 Formative assessment capabilities of free-response CBA systems

Joy et al describe the BOSS system [JG04, JL98], a system to allow online submission

and automated testing of programming assignments which utilises a hybrid CBA

approach in which student submission is automated and student programs can be

compared against test data but the assessment and feedback process are carried out

manually by the lecturer. Checking the program against test data can be

accomplished either by the student to assist in the development of the program or by

the educator to assist the assessment process. However, Joy et al argue that a full

CBA approach is unable to award fair credit to novel solutions and thus teaches

students in a “prescriptive” way. Originally developed, like Ceilidh, as a command

line environment, BOSS has been updated several times and now has a client-server

architecture with a relational database to store data and a choice of either Java or

web-based client for student interaction. BOSS has been used to assess courses in

Pascal, UNIX shell programming and C++. Joy et al report considerable practical

advantages, especially in administrative matters, a positive student response and a

reduced marking time.

BOSS has certain pedagogical advantages. The system of allowing students to run

automated tests on their programs before submission allows improvements to be

made to the solution and promotes introspective self-assessment. Certain other

factors, such as the level of motivation encouraged by the feedback, the clarification

of good performance and the concentration on student learning, are unchanged from

traditional assessment precisely because they are conducted using traditional means.

Furthermore, BOSS has proved useful in information collation and is able to provide

accurate information to educators. Problems associated with BOSS from a formative

assessment standpoint centre around the intervention by the educator at the point of

3. CBA approaches for formative assessment and diagrams 68

assessment. Timeliness of feedback to the student is entirely dependent upon the

individual educator, rather than guaranteed, and in any case will never successfully

rival the near-instant feedback times associated with full CBA systems. Furthermore,

given that each submission must be assessed manually, it is unlikely that multiple

student submissions on a large scale could ever be feasibly allowed. The implications

of this are that feedback might be returned to the student at a time when their

solution is no longer fresh in the mind, and that few or no opportunities to repeat the

assessment, for the purposes of acting upon feedback, are likely to be allowed.

Fundamentally, conducting formative assessment as an iterative cycle in which the

student can improve their solution over the course of multiple submissions while

receiving several sets of motivational feedback, is not feasible with the BOSS

approach. This is a disadvantage recognised by Joy et al [JG04] where they note the

formative potential of a fully automated approach such as that taken by

CourseMarker.

Jackson and Usher [JU97, Jd00] describe the ASSYST system. Like BOSS, the UNIX-

based ASSYST uses an approach which is a hybrid of CBA and traditional

assessment. The pedagogical advantages and drawbacks in terms of formative

assessment potential are therefore similar to those of BOSS.

Daly [Dc99] describes RoboProf, an online teaching system structured as a formative,

coursebook which presents students with information on programming topics and

then automatically assesses student exercises that cover those topics. RoboProf runs

under UNIX and interacts with students via a Java applet, is designed to be modular

and scalable, allows any number of submissions and does not penalise failure. Daly

reports on the use of RoboProf to assess a C++ programming course. RoboProf’s

assessment mechanism is based upon running student solutions against test data and

examining the results in a similar way to that of Ceilidh. Student feedback is based

around revealing the model solution to the student.

RoboProf clarifies good performance through providing students with the model

solution, provides ample opportunities to improve performance through allowing

unlimited submissions and provides positive, motivational beliefs through its policy

of not penalising failure. On the other hand, reflection and dialogue around learning

are likely to be minimised since the student is presented with the model solution.

3. CBA approaches for formative assessment and diagrams 69

Furthermore, feedback information is not focused on the student learning process

since it is overly problem-specific and provides no motivation to conduct further

research. Spacco et al [SHP+06] describe the Marmoset system’s attempt to overcome

these limitations. Sections of the instructor’s private test cases are released to the

student using a system of time-based tokens. In standard configuration, only three

tokens may be redeemed per day. Spacco et al argue that this motivates students to

begin work early since more help will be available.

Von Matt [Mu94] describes the Kassandra system which is used to assess student

programming assignments in Maple and Matlab. Kassandra’s primary focus is on

summative assessment but the assessment is conducted throughout the course and

feedback is provided. Due to the summative impact of the assessment, security is a

key feature of Kassandra. Kassandra requires students to modify their code prior to

submission, although Winters [Wt04] argues that this is an acceptable requirement in

a domain such as computing. Kassandra requires very precise output from student

programs.

Kassandra promotes dialogue around learning since students must be aware of the

Kassandra system while developing their solutions if they are to modify their code to

conform to Kassandra specifications. However, Kassandra fails to provide

opportunities to improve performance, to adequately clarify good performance, to

encourage positive motivational beliefs or to keep feedback information focused on

student learning, all because of the constraints imposed by the summative nature of

the assessment process.

A similar approach to Kassandra is documented by Oliver [Or98] and by Douce et al

[DLO+05] although not all of the approaches require students to tailor their solutions

to the same extent; these approaches are heavily influenced by the Ceilidh system

which is examined in detail in section 3.3.1.

Another system heavily influenced by Ceilidh and CourseMarker is the

EduComponents system described by Amelung et al [APR06]. Amelung et al

acknowledge their experience with systems such as CourseMarker. The

EduComponents ECAutoAssessmentBox system is written as an extension of the open-

source content management system Plone; a central priority in the development of

the system was achieving integration with the departmental system already used for

3. CBA approaches for formative assessment and diagrams 70

the delivery of materials to students. The EduComponents assessment technique was

based upon work by Saikkonen et al [SMK01], which demonstrated that automated

assessment of functional programming languages can be undertaken by directly

comparing the values of functions in the student and model solutions.

ECAutoAssessmentBox assesses student programming exercises in Python, Haskell,

Scheme, CommonLisp and Prolog. Amelung et al discuss the vital role of formative

assessment and report that use of the EduComponents ECAutoAssessmentBox has

increased student motivation in programming exercises. However, the system of

feedback rests upon awarding the student one of two states, Accepted and Rejected.

Such a system of classification is not motivational to struggling students and,

furthermore, the system does not provide the opportunity to resubmit after one of

the states has been awarded. Grading and brief feedback is also provided, but since

the student cannot resubmit then opportunities to improve, promotion of student

dialogue and the encouragement for self-assessment are not provided.

English [Ej04] describes the process of automated assessment of student GUI-based

programs in Java using JEWL, a set of Java packages created with the aim of allowing

novice programmers to construct GUI programs “from the ‘Hello world’ stage onwards”.

A “test harness” is used to generate sequences of events which the JEWL event loop

allows to be processed as a stream of characters. English reports that the assessment

process is as yet in the early stages of development, but that students seem to be

motivated by their ability to create Java programs as opposed to command line based

programs (which are seen as unrelated to real-world Java programming and

therefore dismissed as toys). English reports that only interface functionality can be

assessed and considers the drawbacks of being unable to assess the layout of the user

interface. The feedback regime is not explicitly described in the literature, although it

is implied that students are provided with a report of those features in regard of

which their program failed to conform to the program specification. This has obvious

drawbacks in terms of motivation; English also reports frequently infuriated student

complaints to the system administration but dismisses most concerns as being to do

with misread questions. Dialogue around learning is obviously generated, however,

and opportunities to improve are provided. Gray and Higgins [GH06] describe a

system for the assessment of GUI-based student Java programs using CourseMarker

which makes use of the standard CourseMarker feedback mechanism.

3. CBA approaches for formative assessment and diagrams 71

3.1.2.2 Implications for formative assessment using CBA

Section 2.1.7 noted the advantages of free-response CBA in terms of the opportunities

provided for assessing higher cognitive learning levels. The review of the formative

potential of existing free-response CBA systems raises several key implications with

relevance to this work:

• Fully automated CBA systems may not account for particularly novel

solutions and can be criticised for pedagogic “prescriptiveness”;

• A trade-off exists between fully automated CBA approaches and human-

assisted approaches which, while more able to cope with student novelty,

may result in less timely feedback and fewer chances for the student to

improve;

• Requiring precise input from students encourages awareness of the

assessment process and has fewer disadvantages in scientific disciplines

where questions can be worded as ‘specifications’;

• Free-response CBA systems can allow the student to construct solutions

which they feel are relevant to the real world—this acts as a motivator;

• CBA can be helpful to educators in collating often complex feedback results

derived from free-response exercise submissions;

• CBA can provide timely feedback;

• CBA can assist formative assessment through an iterative cycle: test–

feedback–retest;

• A system which does not penalise failure can successfully motivate learning;

• Providing model solutions to students may fail to encourage student research

— a more effective method is to construct feedback;

• CBA can be used to construct feedback which is not failure specific;

• Allocating simple states or grades focuses on failure and may de-motivate

students;

3. CBA approaches for formative assessment and diagrams 72

• Questions should be carefully phrased to avoid confusion, since misread

questions often infuriate students.

3.1.3 Summary

Section 3.1 reviewed existing approaches to automating the process of automatic

assessment. Section 3.1.1 reviewed examples of providing formative assessment

using fixed-response CBA systems. The design of the assessment itself is more

important to the success of the formative assessment than the technical capability of

the system. Some systems are built from scratch by the educator, allowing a flexible

and highly targeted approach but at the expense of high development costs. Systems

built on top of commercial platforms such as QuestionMark require less resources and

can provide successful formative assessment so long as the assessment itself, and

especially the feedback, is carefully designed by the educator. Section 3.1.2 reviewed

free-response CBA systems. Free-response CBA can be used to provide timely

feedback and encourage discussion around the learning and assessment processes,

but sometimes at the expense of tolerance in marking. Human-assisted approaches

are more flexible but do not allow the same potential for timely feedback or multiple

student submissions.

3.2 CBA approaches in diagrammatic domains

Tsintsifas’ [Ta02] approach to conducting CBA within diagram-based domains

aspired to be generic, as opposed to domain-dependent. The DATsys object-oriented

framework was developed with the intention that the extensions could be diagram

editors in any conceivable domain within a CBA context. CourseMarker’s Generic

Marking Mechanism was, similarly, designed to be flexible enough to allow any

domain to be assessed for which specific marking tools could be constructed.

CourseMarker and DATsys are described in detail in section 3.3. Since section 2.3

illustrated that one of the key advantages in assessing diagram domains is their

interdisciplinary potential, this work will continue Tsintsifas’ generic approach: the

aim will be to provide a framework for the formative CBA of diagram-based

domains, within which assessment for individual domains can be conducted through

extension and parameterisation.

3. CBA approaches for formative assessment and diagrams 73

This section considers other approaches to the automated assessment of diagrams

which are described in the literature, of which there are four: the TRAKLA2 system

described by Malmi and Korhonen [MK04], the PILOT system described by

Bridgeman et al [BGK+00], the diagram comparison system described by Hoggarth

and Lockyer [HL98] and a more recent body of work developed by Thomas, Waugh

and Smith at the Open University, UK [TWS05], which was published as this work

was being undertaken. Each review considers the level to which the work is domain-

specific, the user-interactivity of the student interface and the ability of the approach

to provide feedback to students. The reviews are in order of generality, with the most

domain-specific system first.

3.2.1 TRAKLA2: a review

Malmi and Korhonen [MK04] describe the TRAKLA2 system, the successor to the

earlier TRAKLA [HM93]. TRAKLA2 is a domain-specific CBA system used to

distribute visual algorithm simulation exercises to Computer Science undergraduates

on a Data Structures and Algorithms course. Distribution of the exercises is

accomplished over the web as a Java applet; the interactive environment (Figure 3.1)

is used by the students to solve the exercise by manipulating the available tools.

Exercises cover such topics as binary search tree insertion and deletion, and insertion

into AVL-trees, red-black trees, digital search trees and radix search trees. Typically,

a student drags and drops graphical entities (keys, nodes and references) onto the

drawing canvas in an attempt to simulate the operations performed by the algorithm

defined in the question. Therefore, the user interface can be viewed as a more

complex variation on standard graphical hotspot interaction techniques as described

in section 2.1.6.1. Malmi and Korhonen are keen to emphasise that the student

exercise is individually tailored after each submission — what this means is that

certain exercise parameters are randomised in order to alter the student solution.

This strategy has been adopted for use with TRAKLA2 to prevent plagiarism.

Student feedback is returned as a mark: the number of correct steps is given as the

mark, while the total number of correct steps is given as the highest possible mark. A

standardisation system is used for inter-exercise consistency. The student can also

request to see the model solution. If this occurs then the model solution is displayed,

but grading suspended until the exercise has been re-initialised with different data.

3. CBA approaches for formative assessment and diagrams 74

The design of TRAKLA2 emphasises the collection of data regarding student

performance. Data is logged every time a student initialises the exercise, asks to be

graded, requests the model solution or submits an exercise. The number of

submissions allowed is unlimited.

Figure 3.1: TRAKLA2’s student applet and model solution window [MK04]

TRAKLA2 provides in-depth information to educators; Malmi and Korhonen’s paper

[MK04] concentrates substantially on student mark analysis. TRAKLA2 also provides

ample opportunities to improve since submissions are unlimited, and clarifies good

performance through allowing the student to request the model solution. Malmi and

Korhonen emphasise their belief that the randomised exercise elements result in

3. CBA approaches for formative assessment and diagrams 75

sustained student interest and increased learning. Unfortunately, this randomisation

relies upon the domain and user interaction restrictions of the system to be feasible.

The motivational potential of the feedback, in concentrating upon the proportion of

the model solution correctly identified by the student, is ambiguous at best. For

similar reasons, the feedback fails to provide information focused upon student

learning, instead focusing on student mistakes. Malmi and Korhonen fail to

document the potential for dialogue around learning in terms of student feedback to

educators, although their insistence on guarding against plagiarism seems

superfluous for formative assessment. A final examination seems to act as a

successful motivator for student participation. Finally, although TRAKLA2 was

popular with students and encouraged learning, its context is entirely domain-

specific.

3.2.2 PILOT: a review

The PILOT system described by Bridgeman et al [BGK+00] was designed to

accomplish three goals: use in class by educators as a demonstration tool to aid

exposition, use by students in entering online solutions to randomly generated

instances of questions and as a grading tool for formative purposes. PILOT has a

degree of commonality with the TRAKLA2 system described in section 3.2.1:

PILOT’s user client is distributed as a Java applet and the system is used to conduct

formative assessment of graph problems such as the minimum spanning of a tree,

shortest path algorithms and breadth- and depth-first searches. Furthermore, PILOT

aims to reduce plagiarism by only allowing students to solve problems generated

“on the spot”; this is an attempt to prevent students from using the system to help

them solve their “homework” problems, which are summatively assessed.

Bridgeman et al note the proven usefulness of graph and algorithm visualisation

systems in learning; a recent such system is described by Brusilovsky and Loboda

[BL06]. To begin an assessment, a student chooses a problem type and a random

instance of the problem type is generated. The graph of the problem is then drawn on

the screen: this necessitates the use of a Graph Generator system to conduct

automatic layout of the graph using algorithms derived from Di Battista et al

[BGL+97]. To indicate their solution to the system, the student clicks on the edges, in

3. CBA approaches for formative assessment and diagrams 76

order. This generates a list of edges which constitutes the solution. An illustration of

an exercise and the student solution is shown in figure 3.2.

Figure 3.2: Example exercise and student solution using PILOT [BGK+00]

Bridgeman et al emphasise the need to provide partial credit to a student for an

“almost” correct solution. The solution checker operates slightly differently

depending upon the exercise type: solutions may vary from simply checking the list

of edges in the solution tree, to checking the order of the list of edges. In the case of

non-unique solutions, the checker must evaluate if a student solution which differs

from the generated model solution is equally valid — this is accomplished by

running a simulation of the graph and comparing the weights of the edges denoted

by the two. Feedback is provided in the form of brief comments denoting precise

student errors, for example “Edge (a,c) should be replaced by the lower-weight edge (a,b)”.

3. CBA approaches for formative assessment and diagrams 77

The system uses a system of penalty marking in which one mark is deducted from

the total for each incorrect edge.

Like TRAKLA2, some of PILOT’s most central features are based around domain-

specific properties of the exercises, together with limitations to the user interaction.

Bridgeman et al’s reference to graph layout within a CBA context is interesting, but it

is important to note that the context is in the construction by the program of

aesthetically acceptable graphs which are then manipulated, in a limited way, by the

user. PILOT does not assess the aesthetics of student diagrams.

PILOT clarifies good performance to the students by suggesting specific changes to

their solutions in terms of edges. While this information concentrates on improving

the specific student solution, there is no attempt to motivate students to research on

their own by referencing external material or by explaining the reasons why the

modification to their solution is necessary. By concentrating on student errors, and

by adopting a penalty marking scheme, positive motivational beliefs in students are

not encouraged. Dialogue around learning and self-assessment is promoted by the

tool since students are allowed to discuss their solutions with each other and since

PILOT is used as a demonstration tool — again, however, it is unclear how much

student improvement is gained through increased understanding as opposed to

blindly adopting the system’s corrections. Bridgeman et al’s insistence that the

system not be used to provide help with homework assignments implies worry on

their part that students may not learn through PILOT’s feedback process.

Opportunities to improve are provided through allowing multiple submissions.

3.2.3 Diagram Comparison System: a review

Hoggarth and Lockyer [HL98] developed their diagram comparison system, for use

with systems analysis and design diagramming methods, due to their perception that

existing CASE tools did not cater for academic users, who would require assistance

with the underlying methodology of developing their solutions and well as with the

specific usage of the CASE tool. Hoggarth and Lockyer documented a tool which

embedded Computer Aided Learning features within a CASE tool; they argued that,

“as a CASE tool fully recognises the content of a software diagram it can provide feedback

based on its actual diagrams”. By the definitions outlined in section 2.1.1, the features

which are described are actually CBA rather than CAL. The system documented by

3. CBA approaches for formative assessment and diagrams 78

Hoggarth and Lockyer is domain-specific: it is used to assess student systems

analysis and design diagrams. However, the fact that it is embedded within a CASE

tool suggests at least the potential for implementation in further domains, and the

comparison mechanism itself is not domain-specific.

As noted in section 2.1.6.2, the verification mechanism involves the student manually

tailoring their diagram to match the requirements of the system. This notion of the

student labelling their solution to assist the automated assessment process is

reminiscent of the Kassandra system described in section 3.1.2.1. The student must

specify ‘tokens’ (the names of diagram components) in their solution, which are

matched with tokens in the model solution in order that the system can identify the

equivalent diagram components in the two diagrams. The verification mechanism

then compares the diagrams as two directional “flows” of modes and connections

and notes the differences in ordering between the two. Formative feedback is

generated according to three specification criteria: outlining specific student errors,

for example the absence of necessary flows in the student diagram; outlining student

inconsistencies, such as different symbol order or connections with incorrect

directionality and listing the symbol selections between the two diagrams.

The feedback system described by Hoggarth and Lockyer promotes dialogue around

learning since students must be aware of the assessment process in order to tailor

their solutions to the system, provides opportunities to improve through multiple

submissions and provides timely feedback. It could also be argued that comparing

the student solution to the model solution helps to clarify good performance.

However, the danger inherent in such a feedback mechanism for formative purposes

is that the information provided to students is exclusively based around differences

between the student’s solution and the model solution at the expense of focus on the

student learning process itself. Furthermore, the feedback is not inherently

motivational since it concentrates mainly on the level of student failure. Such a

feedback framework may encourage students to blindly minimise the differences

highlighted by the system, at the expense of promoting dialogue around learning.

Listing the symbol selection between diagrams is, however, a useful tool in

providing a psychological link between the student’s submission and the feedback,

especially if the student chooses to view their feedback at a later date.

3. CBA approaches for formative assessment and diagrams 79

3.2.4 Automatic Marker for Entity Relationship Diagrams: a review

This section examines a body of work undertaken by Thomas, Waugh and Smith at

the Open University, UK. Much of the work reviewed in this section was undertaken

concurrently with the research outlined by this thesis and it must be emphasised

that, for this reason, the strategies and results achieved impacted little on the work

outlined in the remainder of this thesis. Significant differences between the two

approaches exist: the work described in this thesis provides a theoretical framework

for the formative assessment of many diagram domains. Marking of individual

domains is achieved through extension and parameterisation. The work described in

this section is primarily domain-specific and aims for a deeper understanding of the

structure of entity-relationship diagrams for use in a simple marking tool. This

section will examine the work undertaken and review its potential for providing

formative assessment.

Thomas [Tp04] describes the process of creating a tool to allow students to draw

diagrams in an online examination. The drawing tool could be launched simply by

the students from within the online examination and the interface was simple

(consisting of only “boxes” and “links”). Some students were dissatisfied by the

interface (particularly the level of screen scrolling routinely necessitated by the tool)

and there was also a reluctance by students to use the system, with which they were

not previously familiar, under examination conditions. Thomas concluded that the

situation would have been improved had the students been more familiar with the

system before the exam. An interesting feature of the results was that students

tended to use spatial correlation between boxes, rather than direct links, to indicate

intent. For this reason alone it was fortunate that no automated assessment process

was used in this trial: it is likely that many students would have received very low

marks indeed.

Smith et al [STW04] describe an initial approach to the assessment of imprecise

diagrams. Student diagrams are said to be imprecise because required features are

incorrectly defined or missing, or because extraneous features have been introduced

by the student. Smith et al outline a general approach to “interpreting” imprecise

diagrams which does not attempt to identify semantic structures, but instead

searches for associations between nodes in the student diagram and conducts a

3. CBA approaches for formative assessment and diagrams 80

comparison with equivalent associations in a model solution. A mock exam was

conducted in which students were asked a simple question whose answer was a

pipeline diagram. Similarity measures, generating a value between 0 and 1 for each

association, were used along with a system of weighting to generate a final mark.

Student solutions were also hand marked and the marks compared. Smith et al noted

that the results were encouraging but that it could not be proved that the automatic

marker was not significantly different from human markers. This approach is similar

to that used by Tsintsifas [Ta02] in the marking of UML diagrams. Thomas et al

[TWS05] describe a similar approach to the assessment of entity-relationship

diagrams. A tool was used to identify “minimum meaningful units” (MMUs) in a

diagram: in entity-relationship diagrams an MMU is a connection between two

nodes. Once all MMUs are identified an aggregation stage combines MMUs into

higher level features which are then compared with a model solution. Two exercises

were presented to participating students, who drew their solution online. Official

marking was undertaken manually by tutors. The tool was used afterwards to

generate an alternative set of marks which were then compared with the manual

marks. In both exercises the correlation between marks was good. Furthermore,

correlation for the second, more complex, exercise was later improved by the

introduction of a feature to consider synonymous entity names.

Later work [TWS06] attempted to identify higher-order semantic structures through

the use of a cliché library. The work was domain-specific, again concentrating on

entity-relationship diagrams. A pattern was defined as a sub-diagram with some of

its details omitted (i.e. made generic). Some patterns are considered equivalent, such

as a many-to-many relationship and two one-to-many relationships, and it would be

useful to be able to substitute these patterns as part of the assessment process. Re-

usable patterns were stored for reference and referred to as clichés.

Thomas et al [TWS05, TWS06] describe the construction of a student revision tool.

Students are presented with a collection of typical assessment questions in the

domain of entity-relationship diagrams. Students draw their answers online; the user

interface is shown in figure 3.3. Feedback is provided in terms of a mark and a series

of entity-relationship diagrams that form the MMUs of the model solution. The

student is also able to display an “interactive” version of the specimen solution. The

3. CBA approaches for formative assessment and diagrams 81

tool was later modified to allow the addition of patterns from the student diagram to

the cliché library [TWS06] and to suggest pattern substitutions.

Figure 3.3: The student revision tool [TWS05]

The identification of MMUs and the creation of a cliché library have clear advantages

for the automated marking process. Clichés may be equivalent but they are not

always equally preferable; therefore, it is possible to award differential marks across

equivalent clichés and to suggest substitutions to the student. Good student

performance is thus clarified. The identification of MMUs makes understanding the

structure of a student diagram possible and allows feedback to be presented as a

direct comparison of student and model solutions MMUs, with individual sub-

diagrams presented to the student as tailored feedback. Information is, therefore,

focused on student learning. Good information is also provided to educators and

further clichés added to the library.

The promotion of self-assessment and dialogue around learning may be difficult to

achieve since the information provided to students centres directly upon the model

solution, allowing them to tailor their solution directly. Little information is provided

to motivate student research. Opportunities to improve may therefore not be

3. CBA approaches for formative assessment and diagrams 82

maximally effective. The system also concentrates on student differences to the

model solution, which is not motivational.

These minor criticisms aside, the work that this section has described provides a rare

example of truly free-form diagram-based CBA which provides a deep

understanding of the diagram domain under consideration and allows tailored

feedback to be provided to the student. The authors concede that their approach has

been domain-specific, as opposed to this work which aims to provide a generic

framework for formative CBA in diagram-based domains. The authors do express

the hope [TWS06] that a similar approach can be focused upon object-oriented design

diagrams at a later date.

3.2.5 Summary

Section 3.2 provided an overview of four diagram-based CBA systems. The

TRAKLA2 and PILOT systems limit the free-form nature of the CBA by providing a

limited number of interactions between the student and the onscreen diagrams.

Conversely, the diagram comparison system described in section 3.2.3 and the entity-

relationship diagram tool described in section 3.2.4 allow true, free-form CBA to

occur. All four described systems are largely domain-specific and all four provide

specific comments on student errors as feedback. As the framework for good

formative feedback, presented in section 2.2.5, suggests, this may not provide

optimal student motivation and discourages student research. The work into

patterns and clichés described in section 3.2.4 represents an attempt at deep

understanding of a limited diagram domain. Conversely, the DATsys framework,

and the CourseMarker CBA system into which it is integrated, provide a framework

for generic marking and allow marking tools to be configured by domain experts at a

later date. The influential Ceilidh system, its successor CourseMarker and the

DATsys framework for diagram editors in a CBA context are reviewed in depth in

section 3.3.

3.3 Ceilidh, CourseMarker and DATsys

Section 2.2 emphasised the key differences between formative and summative

assessment. From a CBA perspective there are, however, elements which must

necessarily be present in both formative and summative assessment, for example

3. CBA approaches for formative assessment and diagrams 83

course management facilities. This section will give an overview of automatic

assessment systems already developed at the University of Nottingham, primarily

for the automated assessment of coursework in programming. The aim is to

demonstrate that formative CBA can best be achieved through the extension of an

existing CBA platform and that development from scratch would constitute a

metaphorical reinvention of the wheel.

Section 3.3.1 begins with an examination of Ceilidh. Ceilidh is a system largely of

interest to CBA researchers now for historical reasons; however, many key concepts

in the later CourseMarker system were originally implemented in Ceilidh and their

development can best be understood within context. Section 3.3.2 then provides an

overview of the CourseMarker system, while section 3.3.3 looks at DATsys, the object

oriented framework for CBA-based diagram editors.

3.3.1 Ceilidh

Ceilidh was a general purpose courseware system whose main use in practice was in

the supporting of courses in student programming [BBF+95]. It was originally

developed not as an academic research project but as an ad hoc practical aid for the

teaching of programming to large groups of undergraduates; Ceilidh was developed

and added to while in actual use and this ensured that its features were designed

with practical teaching needs in mind [BBF+93]. Ceilidh supported features to

address several problem areas: presentation of course materials, course

administration and assessment of submitted student coursework. Ceilidh therefore

constitutes a true CBA system according to the definition system outlined in section

2.1.1.

3.3.1.1 Ceilidh’s Architecture

In CBA, Ceilidh pioneered the concept of separating the system itself from the

courses it administered. The user interface was also separated, the result being that

Ceilidh’s architecture was a three layer-model as shown in fig 3.4. Foxley et al

[FHT+99] emphasise that the interfaces between layers were well-defined, meaning

that developers could modify one layer without any of the others being affected. The

database layer was responsible for storing course information, both for running and

administration and including exercise data and student submissions and marks. The

3. CBA approaches for formative assessment and diagrams 84

tools layer, which operates on the database layer, was comprised of a wide variety of

external marking tools. The client layer provided the user interface to the system.

Multiple user interfaces were implemented, including a dumb terminal user

interface, a command line interface, an X-window interface and a web interface.

Ceilidh’s concept of User Views meant that each interface was capable of providing

different views depending upon the registered type of the user.

The separation of system and data was central to the development of Ceilidh as a

general purpose courseware system. Ceilidh was originally developed to assist in the

administration of a C programming course; if the C exercises and assessment code

had been hard-coded into the system itself, the task of adding new courses later

would have been rendered difficult. Instead, the separated architecture allowed

courses to be later developed for the assessment of SML, FORTRAN, Pascal,

Modula2, SQL, Prolog, Z and UNIX-based software tools. It should be noted that

Ceilidh’s architecture allowed external developers to feasibly produce their own

courses; the result was that a substantial number of courses were developed outside

the University of Nottingham.

Dumb Terminal Menu Interface

Client layer

Tools layer

Database layer

Command Line Interface

X-Window Interface

World Wide Web Interface

Fig 3.4: architectural overview of the Ceilidh system

3.3.1.2 Ceilidh’s Course Structure

Ceilidh was capable of hosting multiple courses simultaneously. Each course had a

hierarchical directory structure: within each course directory was a series of

subdirectories representing exercises and units (collections of exercises). Ceilidh

specified the files which must be present at each level in the directory hierarchy

3. CBA approaches for formative assessment and diagrams 85

[BBF96], including files for publishing information (such as unit notes or questions),

and skeleton files for student solutions. The flexibility of structure allowed the type

of a course to be specified within the course directory and for each exercise to specify

the information it will collect upon student submission and the marking tools called

upon to assess the submission.

3.3.1.3 Ceilidh’s User Views

Users of Ceilidh were split into five groups: students, tutors, teachers, developers

and system administrators. Each of these users had different main duties and were

consequently presented, upon login, with a different User View of the system.

System administrators, for example, had access to every aspect of the system with

permissions to modify any file within it while a student would be presented only

with those options relevant to the viewing of exercise questions and skeleton files

and the submission of solutions, whereupon they would be provided with feedback.

In general, for every user interface provided by the system, a course, unit and

exercise level functionality specific to the User type were presented through the

client layer. This approach has obvious advantages to those using the system. For

convenient use, it is necessary that teachers, for example, be provided with the

facilities to develop and modify exercises. However, students should not be

presented with these facilities upon logging in to the system.

3.3.1.4 Ceilidh’s Marking Tools

Marking of student submissions is a complex task comprising many sub-sections

related to marking criteria of different types; furthermore, marking coursework

within different domains will necessarily involve different operations being

performed. Ceilidh’s solution to this problem was to encapsulate separate

components of the marking process in what were known as marking tools. To mark an

exercise Ceilidh called all necessary marking tools for the exercise and assigned

weights to the numeric values returned. The overall mark assigned by Ceilidh was a

composite of the weighted marks. Invocation of marking tools occurred through a

marking action, a configuration file in which the marking tools to be called, together

with the corresponding weight for each, was defined [Ta02]. Marking actions were

created for each exercise depending upon which marking tools were required. This

innovation was crucial in the development of Ceilidh as an environment in which

3. CBA approaches for formative assessment and diagrams 86

multiple exercise types could be assessed. New exercise domains could be assessed

providing that marking tools could be written to achieve the task. Marking tools

were free to make use of pre-existing software, including UNIX tools; this proved to

be of major practical benefit since common operations did not have to be coded from

scratch.

Another key abstraction within Ceilidh was the distinction made between dynamic

and static marking tools [FHT+99]. Static metrics were responsible for analysing

student source code and examining, for example, typography, complexity and

program structure. Dynamic metrics executed the student program and used pre-

defined test data, examining program output and allocating marks based on such

criteria as dynamic correctness and dynamic efficiency. Both kinds of marking tools

made use of an expression recogniser known as Oracles [ZF92], which used an

expanded Regular Expression notation to check for the presence (or absence) of

defined tokens.

Although these ideas were originally put to the use of assessing coursework in

imperative languages, similar ideas were successfully applied in other areas, such as

assessing Prolog [MGH98], Z [FSZ97] and UNIX software tools [FHG96]. Apart from

these courses and the central ones for imperative programming (C, C++), other

courses created for Ceilidh assessed exercises in Pascal, SML and SQL [FHT+99].

Work was also undertaken on the assessment of Object Oriented Analysis and

Design in the guise of the TOAD subsystem [FHT+99]; however, Ceilidh was

superseded soon afterwards.

3.3.1.5 Review of Ceilidh

Benford et al [BBF+93] provide an overview of their experiences using the Ceilidh

system, whilst Tsintsifas [Ta02] documents the necessity of Ceilidh’s super-cession

by CourseMarker. The Ceilidh system was built as a necessary response to practical

circumstances and not as a research project; the authors argue that the result of this is

that Ceilidh evolved to meet the actual needs of teachers and students rather than

being a hollow prototype. In terms of its effect on students, Ceilidh was seen to have

advantages in: confidence building, since early simple exercises result in positive

feedback which boosts the confidence of students, especially the less able; providing

assistance to weaker students, since Ceilidh’s statistics packages can be used to spot

3. CBA approaches for formative assessment and diagrams 87

struggling students earlier than would otherwise be the case and consciousness

raising, since immediate automated feedback brought about an increased willingness

in students to question the marks they were given and the criteria being applied to

mark their work, hence improving both the quantity and quality of discussion with

students. Ceilidh was also seen to encourage students to manage their workload.

Ceilidh’s disadvantages for students were in encouraging the phenomena of

perfectionists (those who would continue to submit even after a satisfactory mark had

been achieved in an attempt to gain a mark even closer to 100%, hardly an optimum

use of time) and gamblers (those who would submit many times with varying

modifications in an attempt to ‘stumble’ upon a good mark rather than considering

the problem logically). A feature was introduced making it possible to define a

minimum delay between submissions per student at the discretion of the teacher in

an attempt to combat these trends.

Positive effects on teaching were the most predictable: Ceilidh resulted in a reduction

in marking time and proved to be an efficient course administration system.

Negative effects on teaching were the very high raw marks which resulted from the

combination of continuous assessment and multiple submissions; this posed

problems in differentiating between candidates since the assessment served a

summative purpose. Marks were also found to be tightly grouped. The authors

argued that this means that Ceilidh’s use presents fewer problems where criterion

assessment [Kp01] is to be used, i.e. in the first, qualifying year of an undergraduate

degree. Where normative assessment is to be used then Ceilidh usage might present

additional problems. It is worth noting that in the case of formative assessment, high

raw marks indicate success rather than a problem.

Typical usage at other institutions was to use the system but to modify the structure

of the courses provided to meet institution-based practices. Marking with Ceilidh is

seen to be equitable, incremental and redeemable, while Ceilidh offers facilities to

detect plagiarism.

Ceilidh was, however, eventually deemed to have considerable limitations. Foxley et

al [FHH+01] point to the fact that Ceilidh was difficult to install and maintain as

considerable knowledge of the UNIX operating system was required. The fact that

Ceilidh was based in UNIX limited the number of possible installation bases. Also,

3. CBA approaches for formative assessment and diagrams 88

while Ceilidh’s assessment mechanisms were seen as powerful, its level of feedback

to students was limited. Popularity of the system among students was also

hampered by the fact that, for many years, Ceilidh’s interface was based upon ASCII

character terminals (fig 3.5).

Figure 3.5: Ceilidh’s dumb terminal interface [Sp06]

Furthermore, Tsintsifas [Ta02] saw Ceilidh as unsuited to the integration of diagram-

based assessment into CBA. Ceilidh system dependencies were seen as too

constricting to accommodate the range of exercise types which could be constructed

within the domain of diagrams. The Ceilidh system had performance, scalability,

extensibility and maintainability problems due to its lack of initial design; its

architectural limitations in particular were considered serious enough to decrease the

feasibility of diagram-based assessment.

As a result of these identified weaknesses, a complete redesign of the Ceilidh system

was undertaken. The result was the CourseMarker system, which is examined in

detail in section 3.3.2.

3.3.2 CourseMarker

The shortcomings of Ceilidh, as outlined in section 3.3.1.5, eventually led to the

creation of a new system to support the full lifecycle of CBA. This system was

originally entitled the Ceilidh CourseMaster System [FHH+01], often shortened to

CourseMaster, and was later renamed simply CourseMarker. This section will briefly

3. CBA approaches for formative assessment and diagrams 89

describe CourseMarker and explain why it provides a suitable platform for the

implementation of diagram-based CBA, including for formative assessment. Many of

the ideas in the system were based upon the most successful aspects of Ceilidh and

so this section will concentrate on those aspects of CourseMarker which are different

from, or expanded upon, ideas from Ceilidh rather than re-stating those ideas

already considered in section 3.3.1. Furthermore, this section will not concentrate on

the DATsys diagramming system which is integrated into CourseMarker; this will be

covered in section 3.3.3.

3.3.2.1 CourseMarker’s Development Overview

Ceilidh’s creation as a direct response to the needs of programming had some

advantages, but ultimately the lack of design and coherent planning were major

factors in the need to replace the system. It was therefore decided from the outset

that CourseMarker would be conceived using object oriented (OO) methods and

theory from OO frameworks and design patterns to maximize usability,

maintainability and extensibility [FHH+01]. Furthermore, it was decided to develop

CourseMarker in the Java object-oriented programming language as this rendered

the system platform-neutral, hence increasing the range of potential installation bases

over Ceilidh. Certain aspects of CourseMarker rely on UNIX-like “tools”, however

these can be simulated in Windows systems through the use of the freely-distributed

Cygwin packages [Cyg98]. The vast majority of Ceilidh functionality was duplicated

within CourseMarker. A more extensive comparison of Ceilidh functionality with

CourseMarker functionality is provided within [FHH+01].

3.3.2.2 CourseMarker’s Architecture

CourseMarker’s architecture was expanded from that of Ceilidh in an attempt to

reorganise functionality in a more extensible way. Commonalities and variations

between the tools and data layer were identified [Ta02], with the commonalities

abstracted into class hierarchies and the variation represented by extension points

and parameterisation. Seven logical parts were identified and are represented within

CourseMarker as servers. The client layer now communicates with Login, Ceilidh,

Course, and Submission servers whilst auditing, marking and archiving servers are

also included with specific functionality.

3. CBA approaches for formative assessment and diagrams 90

The Login Server is responsible for registering users, validating sessions and student

login and registering when a student has logged out; the Ceilidh Server returns the

structure of a course, manages the servers and can be used to reload servers at

runtime; the Course Server returns the list of modules available to the user together

with the module information and setup exercises; the Submission Server is responsible

for submission attempts and receipts, together with the submission of exercises; it

communicates with the Marking Server for the marking of exercises and the Archiving

Server, which maintains audit trails, after exercises have been marked.

In common with the CourseMarker design, considerable effort has been expended to

ensure that the system, and communications within it, is secure; this is considered

especially necessary because CourseMarker is used for summative as well as

formative assessment. RMI is used for convenient distribution. CourseMarker

supports a range of auditing facilities, generates unique session keys for clients

which are validated on every transaction and can use DES password encryption for

the transmission of passwords between clients and servers. In their overview of the

CAA field, Rawles et al [RJE02] single out CourseMarker as an example of a CAA

system which addresses security “unusually” well. CourseMarker security is

considered in more detail in [HGS+06].

3.3.2.3 CourseMarker’s Course Structure

The logical abstraction of a Course as being subdivided into Units, each of which is,

in turn, subdivided into Exercises remains unaltered in CourseMarker. Data is

organized according to a hierarchical directory structure analogous to this logical

abstraction. Course directories contain a subdirectory for each Unit as well as

information files such as course notes. Unit directories contain subdirectories for

Exercises and other information files. Exercise directories contain exercise files.

Symeonidis [Sp02] provides a complete specification of this structure, including the

files which must be present at Course, Unit and Exercise level.

3.3.2.4 CourseMarker’s User Views

The CourseMarker system has five types of users: students, tutors, teachers,

developers and system administrators. Whilst direct access to CourseMarker server

commands can still occur through a command-line interface, most users will never

3. CBA approaches for formative assessment and diagrams 91

see this in their use of the system. CourseMarker clients have a GUI interface for use

by students [FHH+01] and a web interface has also been developed. A CourseMarker

web interface has also been developed for the use of system administrators [FHS+01].

3.3.2.5 CourseMarker’s Marking Tools and the Generic Marking System

CourseMarker was created concurrently with the diagramming subsystem DATsys,

described in section 3.3.3, and so the marking system was developed with the full

knowledge that a potentially very large number of domains would need to be

marked. Tsintsifas states of the system [Ta02] that: “Devising a prototype mechanism

that allows experimentation and creation of novel automatically assessable and across

domains diagram CBA is an important deliverable. By using this, metric research for the

evaluation of diagram-based coursework could be realistically tested in the context of the

classroom.” With CourseMarker many more domains would have to be marked than

with Ceilidh and the potential for the marking of new domains to become a semi-

regular occurrence exists if diagram-based CBA becomes widely used. Therefore a

marking mechanism had to be designed which would be both extensible and

expressive. Furthermore, the marking mechanism had to enable the creation of

detailed feedback since this was a perceived weakness of Ceilidh. It was therefore

necessary that marking must be more flexible and generic than Ceilidh and able to be

configured to mark a large number of domains [Ta02]. Integration of external tools

was key to the marking success of Ceilidh and had to be supported here too.

The design of the marking mechanism was based upon Ceilidh’s system of marking

tools. A Marking Scheme is used to describe the marking of an exercise, calling upon

Marking Commands, which in turn use Marking Tools to mark aspects of the

solution, return marks and generate a Marking Result which contains feedback to the

user which is richer than that returned by Ceilidh. Marking Tool Configurations,

which are exercise-specific, exist to specialise the marking tool to the requirements of

the exercise. A full conceptual overview of each of these components is provides by

[Ta02]. The appearance of rich feedback, based upon the Marking Result, was

completed by the use of a GUI representation within the student CourseMarker

client [FHS+01], as illustrated in figure 3.6.

3. CBA approaches for formative assessment and diagrams 92

Figure 3.6: The Java CourseMarker client [Sp06]

3.3.2.6 Experiences with CourseMarker

CourseMarker, which is commercially distributed, has been purchased by more than

15 institutions and used in classes of up to 1500 students [Ta02]. This section will

consider experiences with CourseMarker at the University of Nottingham, its

development base, before considering comments made by those from other

institutions.

CourseMarker was first used at Nottingham as a replacement for Ceilidh during the

academic year 1998-99. Tsintsifas [Ta02] provides a general evaluation of

CourseMarker in March 2002 including an examination of technical improvements

over Ceilidh. CourseMarker’s primary use at the University of Nottingham is with

the assessment of first year courses in Java programming; to this end two courses

have been created with exercises regularly updated year-on-year. Courses assessed

by CourseMarker involved 150 students at the University in 1998-99; this had risen to

310 students in 2001-02. During 1998-99 (the transition year) some students had used

both CourseMarker and Ceilidh depending upon their year of entry and their

selected courses. These students were asked to compare their experiences of the two

systems, and resoundingly preferred CourseMarker to Ceilidh, mainly due to its

3. CBA approaches for formative assessment and diagrams 93

Graphical User Interface and its expanded range of feedback [FHH+01]. Tsintsifas

reports on students who were asked simply to evaluate CourseMarker (rather than to

compare it with Ceilidh), and states that returned questionnaires indicate that

students were largely in favour of the system, especially due to the immediate

feedback, availability of multiple submissions and the ability to submit the

coursework at their own pace within allotted deadlines.

Teachers and administrators view the system favourably. Teachers “appreciate the fact

that they no longer have to mark hundreds of exercise solutions. Because course

administration and monitoring are very effective, even less time is spent on these activities”

[Ta02], whilst administrators find that the system is easier to set up and run than

Ceilidh, especially when use is made of the administrator’s web interface.

Outside Nottingham, the majority of sites are old Ceilidh users who made the

transition to CourseMarker. Tsintsifas [Ta02] quotes positive reports from academic

users in Singapore and Glamorgan, UK, illustrating that CourseMarker is viewed as

a success outside Nottingham. An evaluation of the usefulness of CourseMarker

when compared to other automatic assessment methods is also made by Foster

[Fj01]. Foster argues that the benefits of the system are strong; especially praised,

once again, is the fully automated, fast marking which makes multiple students

submissions feasible. Foster further states that the price of CourseMarker is cheap

given the amount of marking time saved. Foster’s reservations about the system

include: that novel solutions may be penalised by the system; that extra functionality

above the question specification will not be rewarded by the system; that the system

documentation is regarded as “patchy” and that, as a commercial product, the

system is distributed as an executable only, meaning that inspection of the system

source or further modifications cannot be undertaken by those purchasing the

system. Foster argues that most of the problems he outlines are unsurprising given

CourseMarker’s nature as a research project which was later simply distributed

commercially, and concludes that “[t]he fact that we are still using CourseMaster, and

will continue to do so, is a tribute to the considerable benefit that it does have.”

To summarise, therefore, CourseMarker has been successfully introduced at the

University of Nottingham and at a number of external institutions. The amount of

workload it carries has increased year-on-year at Nottingham, and reports on the

3. CBA approaches for formative assessment and diagrams 94

system by students (both those who had previously used Ceilidh and those who had

not) are generally of a positive nature. Teachers and administrators find the system

easier to use than Ceilidh, and the system has considerable advantages in terms of

marking time saved.

3.3.3 DATsys

DATsys was developed as the main deliverable of Tsintsifas’ PhD [Ta02]. Tsintsifas

identified the need for diagram-based CBA. CBA applications developed thus far did

not address the assessment of diagram-based domains, while existing diagramming

packages had not been designed with CBA in mind. This section will first consider

the requirements for diagram-based CBA which Tsintsifas identified and which

formed the basis for his approach before looking at the main deliverables produced.

These deliverables include the DATsys framework for diagram-based CBA, the

Daidalos environment for authoring diagram notations, the Ariadne environment for

exercise authoring and the Theseus customisable student diagram editor [Bb03]. The

final deliverables, the Generic Marking Mechanism, has already been examined in

section 3.3.2.5. This is an indication of a key point in the development of DATsys,

namely that DATsys was not conceived as an addition to CourseMarker to be simply

“bolted-on” afterwards; instead, CourseMarker and DATsys were developed in co-

ordination with each other. As a result, the need for a Generic Marking Mechanism

for the successful CBA of diagrams was identified and implemented in

CourseMarker from the beginning and is now used in the assessment of

CourseMarker’s other CBA domains (primarily programming exercises) as well as

for diagram-based CBA. CourseMarker and DATsys are indelibly interlinked, and no

true understanding of the one can be achieved without an appreciation of the context

of the other.

Tsintsifas identified three major requirements to solve the problem of developing

useful diagram-based CBA. These were: the ability to author the editor used by the

student to develop solutions in an exercise-specific way during the authoring of the

exercise; development of a Generic Marking Mechanism which can be suitably

customised to enable the marking of a wide range of diagram types and the

integration of a system which meets the previous two requirements into a system

which can support the full-lifecycle of Computer Based Assessment. The Generic

3. CBA approaches for formative assessment and diagrams 95

Marking System and CourseMarker CBA system, both described in section 3.3.2,

were developed to fulfil the second and third requirements respectively.

DATsys was created as an object oriented framework, defined by Gamma et al as “a

set of cooperating classes that make up a reusable design for a specific class of software”

[GHJ+94]. Daidalos, Ariadne and Theseus, examined in the next three subsections

respectively, are implemented as concrete subclasses which enable the functionality

of the DATsys framework to be used in a CBA context.

3.3.3.1 Daidalos

Daidalos allows the authoring of specifications for diagram notations. It is therefore

used by developers to author diagram domains before they can be assessed. Daidalos

defines tools for the creation of figures, diagram elements, tools and commands, as

well as a selection editor which allows domain libraries of diagram notations to be

managed. Tsintsifas argues that Daidalos “could be considered a meta-diagrammer, as it

provides a graphical process for making parts of new diagram editors” [Ta02].

Figure 3.7: A range of diagram notations expressed within DATsys

3. CBA approaches for formative assessment and diagrams 96

Developers using Daidalos to author diagram domain notations can define diagram

elements (in terms of their graphical view, underlying data model and connectivity

constraints), tools and their interaction with the diagram elements, and menu options

and the commands they execute. Developers create libraries of tools which are stored

in diagram library files (with a .dlib extension). Library management functions

allow library files to be arranged into groups, with each group representing a

diagram domain. A tools graphical view is created by the grouping of graphical

primitives on the drawing canvas. The data model for the tool is specified by the

addition of typed data fields. The associated connectivity constraints are specified by

choosing either perimeter-based connections or pin-based connections (which can

themselves be further specialised through specification of connection lines). In this

way the representation of a diagram domain is constructed interactively and in an

intuitive, graphically-based environment. Exercises within the domain can then be

developed within the Ariadne exercise authoring environment. Daidalos is

effectively a standalone application with no integration with CourseMarker; it can be

used to author a wide variety of diagram notations as evidenced by figure 3.7.

3.3.3.2 Ariadne

Ariadne allows the authoring of specifications for CBA exercises within a diagram

domain previously specified within Daidalos. Within Ariadne the student diagram

editor, exercise properties and marking scheme can all be specified. Ariadne loads a

default group of tool libraries and the existing exercises. If these exercises have

already been deployed within CourseMarker then they will be loaded from the

course area.

Teachers use Ariadne for the specification of exercises. The student diagram editor is

specified in terms of its available tools (taken from tool library files) and available

options. Authors select the correct tools from the tool libraries. The marking scheme

and marking tool configuration can be edited within text-based windows and

configuration for the exercise can be specified. It is possible to draw a model solution

upon Ariadne’s drawing canvas. Again, therefore, exercises can be developed within

an interactive, intuitive graphical environment. Student solutions are then entered

online using the configured version of Theseus and then marked according by

CourseMarker according to the specification defined by the teacher within Ariadne.

3. CBA approaches for formative assessment and diagrams 97

3.3.3.3 Theseus

Theseus is the configurable student diagram editor within which students develop

their solution before submission. All of Theseus’ features, including the tools

available and available options, are defined through configuration. Theseus relies for

its configuration upon three configuration files: the first provides the exercise-

specific tool library, the second provides the tools to be placed on the toolbar and the

third provides configuration for Theseus’ execution parameters and working paths.

The tool library, as developed within Daidalos, contains all the tools available to

solve the exercise. The students thus place tools on the canvas and attempt to connect

them, interacting with the tools, diagram elements, menu options and canvas in the

process. Upon completion, the students save the solution as a diagram file (with a

.draw extension). The students then submit their solution through CourseMarker,

which is responsible for marking the solution and returning appropriate feedback.

3.3.3.4 Integration of DATsys with CBA courseware

The level of integration of DATsys with CourseMarker differs across the different

sections of DATsys. The Generic Marking Mechanism is fully a part of CourseMarker

and is used for the marking of all exercise types, even those with no diagrammatic

content. Conversely, Daidalos has been designed to operate completely

independently of CourseMarker. Ariadne should have access to CourseMarker’s

‘CourseArea’ directories, where exercise configuration files are stored. Ariadne has

knowledge of the files that describe this exercise configuration for exercises in

diagram-based domains.

CourseMarker’s exercises have a designated ‘type’ within their configuration, each

type being associated, within CourseMarker, with an editor suitable to the exercise

domain. Diagramming exercise types have Theseus as their registered editor within

CourseMarker; consequently, when students elect to develop their solutions from

within CourseMarker the configured Theseus student diagram editor for the exercise

is loaded, using the configuration files generated by Ariadne.

When a student solution is saved within Theseus details of all diagram details are

saved. These details can be processed by the diagrammatic marking tools which are

accessible to the Generic Marking Mechanism. Traversing, translating, converting

3. CBA approaches for formative assessment and diagrams 98

and understanding the diagram can all be achieved by these tools. Translating the

structure of the diagram involves associating identifiers with each of the nodes

within the diagram and the relationships between them. Thus the contents of the full

diagram objects are available to the marking tools.

3.3.3.5 Experiences with DATsys

Diagram-based CBA exercises were developed in three domains: logic design,

flowchart design and object-oriented design. These exercises were deployed in 1999

to a group of 167 first year computer science undergraduates as part of a module on

“Software Tools”. Experience has shown that the process of developing exercises is

relatively lengthy but straightforward. Tsintsifas describes the complete process of

developing the exercises in each of these domains in his thesis [Ta02]. These exercises

proved popular with students since the development environment was intuitive and

they had been given a brief demonstration of Theseus in a lecture prior to attempting

the exercises. The most complex of the exercises within the object oriented design

diagram-domain had the unexpected side-effect of causing some students to draw

pen-and-paper solutions before transferring this solution online, but in most cases

students worked out their solutions and entered them directly into Theseus.

Performance at both the client and server level was good; the server was seen to

mark up to 15 submissions simultaneously. As a result of this live experience

Tsintsifas was able to conclude that diagram-based CBA was both feasible and

useful.

Unfortunately, this is the only documented example of diagram-based CBA being

used in a live environment prior to this work. Despite the number of institutions

which have taken CourseMarker (and previously Ceilidh), none outside Nottingham

have yet used diagram-based CBA. It is therefore hoped that the implementation of

formative diagram-based CBA as a result of this work will stimulate a wider usage.

A key deliverable of this work, indeed, will be to produce examples of working

formative diagram-based CBA and test their use in a live environment.

3.3.4 Summary

Ceilidh was an influential CBA system which was responsible for several key

innovations. The first was its multi-layer architecture, separating the client layer and

3. CBA approaches for formative assessment and diagrams 99

database of course information and submissions away from the architecture of the

system and hence allowing multiple courses in disparate domains to be housed

simultaneously in a hierarchical structure. The second was its use of marking tools to

allow marking of different domains to be specified on a per-domain basis. Ceilidh

was widely used and liked, but became difficult to maintain and was eventually

superseded by CourseMarker. CourseMarker offers a stable, reliable and secure

platform on which to provide CBA courses across multiple domains. Its user

interface is attractive and intuitive to students and the system is secure.

CourseMarker’s feedback mechanism allows feedback comments to be specified for

each test conducted in the automated assessment. The DATsys framework for

diagram editors in a CBA context provides a flexible platform for the authoring of

new diagram notations, the authoring of exercises across multiple domains and the

presentation of a configurable development environment for students. Prior to this

work, exercises had been developed in three domains but usage had not been

extensively reviewed or tested.

3.4 Summary

This chapter provided an overview of CBA systems used for formative assessment

and CBA systems used to assess diagram-based domains. Most CBA systems are

fixed-response. Section 3.1 first examined a cross-section of fixed response CBA

examples, both those built upon established platforms and those built “in-house”

from scratch and concluded that the design of the feedback provided to the student is

at least as important as the platform upon which the assessment is based. Systems

built upon the same platform (e.g. QuestionMark) were found to exhibit variation in

the quality of formative feedback they provided. Linking to reference materials in

feedback was found to motivate subsequent student research. Student motivation

could be encouraged further by the use of a two-part assessment strategy, allowing

re-submissions and ensuring easy student access to the CBA system. A cross-section

of free-response CBA was then examined. A trade-off was noted between fully

automating the assessment process or allowing human marker input into stages of

the process. Fully automated assessment allows multiple submissions, the fast

provision of student feedback and formative assessment opportunities at the expense

of academic “prescriptiveness”, whereas systems involving human intervention are

able to cope better with novel solutions at the expense of speed and formative

3. CBA approaches for formative assessment and diagrams 100

assessment opportunity in a test-feedback-retest situation. Section 3.2 examined CBA

systems based around diagrammatic domains. All of the systems considered focused

on a specialist domain or set of domains. Two of the systems restricted student

interaction to the point where their status as free-response CBA systems was

debateable. Two of the systems allowed free-responses by students. Section 3.3 began

by providing an overview of the historically important CBA system Ceilidh,

documenting the continuing advantages and influence of its multi-tier architecture

and devolved marking tools. Chapter 3 then provided an in-depth summary of the

CourseMarker CBA system and DATsys framework for diagram editors in a CBA

context, which will be used as the basis of this work. Chapter 4 documents an

attempt to conduct formative assessment using CourseMarker / DATsys, specifically

with the intention of identifying the limitations of existing CBA techniques in

relation to formative assessment.

Chapter 4

Problems in CBA applied to free-response formative assessment

4. Problems in CBA applied to free-response formative assessment 102

Introduction

This chapter presents the initial practical research experiment conducted in order to

identify those aspects of existing CBA techniques which would need to be extended

or adapted in order to meet the criteria of good formative assessment. Section 3.3

described the CourseMarker and DATsys systems. DATsys is a flexible, object-

oriented framework for CBA-related diagram editors. CourseMarker is a reliable

platform for conducting CBA across a variety of domains. Previous courses assessed

using CourseMarker were generally for summative assessment purposes, or else had

a dual purpose. This research aimed to conduct formative assessment using

CourseMarker / DATsys as a model CBA system. Conclusions could be drawn in

terms of positive and negative experiences. The drawbacks would be used to identify

those aspects of existing CBA techniques which need to be extended or adapted in

order to meet the criteria of good formative assessment, as outlined in Chapter 2.

Coursework involving the construction of entity-relationship diagrams was assessed

using CourseMarker / DATsys as part of an undergraduate module in Database

Systems and a new marking tool for assessing entity-relationship diagrams within

CourseMarker was developed [HB06]. This work aims to develop a framework of

best practice for formative assessment across a variety of diagram-based domains

rather than be restricted to domain-specific instances. Therefore, an attempt was

made to keep the tools constructed as generic as possible to maximise inter-domain

potential. Entity-relationship diagrams were assumed to be part of that large section

of educational diagrams which are constructed from nodes and the links between

them, as per the definition in section 2.3.1. These are the domains which Thomas et al

[TWS05] have labelled the “network-like domains”. Marking, therefore, consisted of

features testing in which the nodes and links of the student diagram were assessed

according to features criteria defined by a domain expert. Results were collected and

conclusions drawn.

4.1 Assessment Background

Since the experiment aimed to implement a positive formative assessment experience

using CBA techniques, it is evident that the assessment should constitute a Computer

Based Assessment strategy and adhere to formative assessment practice.

4. Problems in CBA applied to free-response formative assessment 103

When defining CBA in relation to other areas of learning technology in section 2.1.1,

it was emphasised that CBA is the most specialised of the areas considered. The full

lifecycle of a CBA exercise includes stages such as authoring the exercise, presenting

it to the student, accepting submissions, returning marks and managing the data

generated by the system [Ta02]. Since a true CBA system should be committed to

automating the entirety of this lifecycle, it is clear that a CBA system is, by definition,

non-trivial. CourseMarker and DATsys, described in section 3.3, were developed to

manage the full lifecycle of Computer Based Assessment and to allow the CBA of

diagram-based domains. Section 2.2.5 outlined a strategy for good formative

feedback. It is against these criteria that the CBA assessment experiment feedback

and student experience will be measured.

The assessment was conducted as part of a compulsory course in Database Systems

taken by second year Computer Science undergraduates at the University of

Nottingham. The system attempted to formatively assess student Entity-Relationship

diagrams as part of coursework in which students developed their diagrams at an

early stage, before moving on to successive tasks involving the construction of SQL

query statements (which were further assessed by CourseMarker using methods

unrelated to this work).

The coursework constituted a two-part assessment. As defined in section 2.2.3, this

means formative assessment with a linked summative element added at the final

stage to act as a motivator. An initial problem was presented under purely formative

conditions. The students were allowed an unlimited number of submissions and

were provided with unlimited help from lab assistants in weekly lab sessions. A

second problem was then presented to the students with a summative element:

although unlimited submissions to CourseMarker were still allowed, help from lab

assistants was limited and students were expected to copy the final diagram into a

pre-designated submission form for final, summative marking. This structure was

agreed with, and influenced by, the module lecturer. The question texts were also

developed by the module lecturer. This ensured, firstly, that the exercises were

useful since they had been set by a subject specialist and, secondly, that they did not

unconsciously play to the strengths of the system whilst hiding weaknesses.

4. Problems in CBA applied to free-response formative assessment 104

For this experiment, informal student questionnaires were distributed and tutor

observations noted.

4.2 Assessment Construction and Methodology

4.2.1 Assessment Construction

As described in section 3.3.2.5, in CourseMarker a Marking Scheme is used to

describe the marking of an exercise. This calls upon Marking Commands, which in

turn use Marking Tools to mark aspects of the solution, return marks and generate a

Marking Result. For the marking of student submissions a new Marking Command,

the EntityRelationshipCMD, was created together with a new Marking Tool, the

EntityRelationshipTool. The approach to marking was based upon an assessment of

diagram features, in which the types of nodes and their connections were assessed

against criteria provided by the exercise developer. Tsintsifas [Ta02] had developed a

similar system for the marking of his trial OO diagramming course; however the

approach here was considerably extended to allow the student increased flexibility.

Figure 4.1: Uneditable nodes and distracters in Tsintsifas’ OO exercise

Figure 4.2: Generic nodes in the E-R exercises with editable text

In Tsintsifas’ course all possible diagram elements were provided as complete,

uneditable entities with incorrect entities also included as distracters, as shown in

Figure 4.1. It was felt that in the context of the Entity Relationship diagrams such a

method, even with distracters, would serve to provide the students with too much

help, especially in light of the fact that an initial problem for the students in the set

4. Problems in CBA applied to free-response formative assessment 105

coursework was to correctly identify Entities, Attributes and Relationships from the

problem description.

Instead, the students were provided with generic diagram elements for Entities,

Relationships and Attributes, together with a tool to edit the text within each element

on the canvas to the string of their choice. The tool library for these exercises was

constructed in Daidalos, and is illustrated in figure 4.2.

Within DATsys, a figure can be composed of any number of primitives (such as lines)

together with any number of figures, recursively. Each figure has an attribute Name

which can be used to distinguish it from other figures. In figure 4.2, from the left, are

the standard pointer used to highlight elements on the drawing canvas, followed by

figures representing the text tool, Entity figures, Relationship figures, Attribute

figures, one-to-one connection lines, one-to-many connection lines and many-to-

many connection lines. This tool library was constructed within Daidalos and each

type of figure was given a different Name. The latter three figures were each defined

as connection lines.

The EntityRelationshipTool worked from the assumption that each diagram node

was a composite figure whose members included a text field called TextElement;

indeed, this would always be true since the original elements were authored this way

in Daidalos. Each node could, therefore be identified in terms of two attributes:

• Name: the name of the node, for example Relation, Entity or Attribute;

• Text Content: the contents of the editable TextElement.

Hence an Entity containing the text “Artist” could be distinguished from both an

Entity containing “Album” and an Attribute containing “Artist”.

Connection lines, by contrast, were identifiable in terms of three attributes:

• Name: the name of the connection, for example Onetoone;

• Start node: the node connected to the start of the connection line;

• End node: the node connected to the end of the connection line.

4. Problems in CBA applied to free-response formative assessment 106

The procedure for connecting two nodes on the canvas is simple. First, a node is

selected from the library and positioned on the canvas with a single click. The text

can be edited using the Text tool and the node can be further repositioned by

highlighting and dragging. This procedure is repeated for the second node. A

connection line is drawn by selecting the line type in the library, and then “dragging”

the line between the two nodes by depressing the mouse button on the first node,

moving the cursor to the second node and releasing the button. It is important to

note in this context that the start and end nodes for each connection line are clearly

defined and each connection line is effectively directional for marking purposes.

Figure 4.3: An illustrative student ER diagram solution

Potentially, multiple strings could constitute an acceptable Text Content in a student

node: an entity may be deemed to be acceptable, for instance, if it contained any of

the strings “Artist”, “artist”, “Artiste” or “artiste”. Therefore, the

EntityRelationshipTool allowed the mark scheme to specify desired text in terms of

Oracles [ZF92], an extended notation based upon regular expressions which had

already been used successfully in the assessment of programming coursework. A

4. Problems in CBA applied to free-response formative assessment 107

further keyword, “owt”, was introduced to indicate that any text would be accepted

in a given instance.

A key aim of the design of the tool library was for the drawing of the solution to be

intuitive to the student. For this reason the unadorned, straight line connector which

officially represented one-to-one connections was also allowed to represent the

connection from an Entity to an Attribute, since the two connections are both

represented by a simple, straight line. An illustrative example of a student solution is

shown in figure 4.3.

The marking tool was invoked by a customised marking scheme (expressed in Java

as described by Symeonidis [Sp02]). Both the submitted student diagram and the

features specification file, mark.er, were passed to the command by the marking

scheme. Within the specification file each line represented an individual features test.

Each individual features test is represented as follows:

• Mark weight : Feature expression : Description : Positive feedback :

Negative feedback

The mark weight is an integer denoting the relative significance of the test. The

description is a string containing a description of the test which is available to the

student at the point of feedback. The student receives either the positive feedback or

the negative feedback depending on the outcome of the test. Feature expressions are

the most complex component of the features test and may take one of the formats

described in Table 4.1.

With the exception of compositeRelationship, these feature expressions are generic. To

author other compatible domain notations in Daidalos one would simply ensure that

each diagram element type has a unique name, and that all text which is to be

editable by the student is contained within an embedded TextElement. The

compositeRelationship expression is domain specific because it has knowledge, firstly,

of which connection lines across a Relationship element constitute a complete

relationship and, secondly, the types of the relationships. Further parameterisation of

feature expressions is possible to indicate the number of matches within the diagram

as illustrated in the examples. If no such parameter is provided then the default is to

declare success if one or more matches are found.

4. Problems in CBA applied to free-response formative assessment 108

Expression Format

exist exist [Name] Checks that an element with a given Name exists.

Examples

exist Relationship Checks that at least one relationship exists.

exist onetoone Checks that at least one onetoone connection exists.

exact exact [Name] [Text] Checks for an element with given Name and Text Content.

Example

exact Entity CD Checks for at least one Entity with Text Content “CD”.

connection connection [ConnectionLine] [ElementType1] [ElementType2]

Checks that a direction-specific Connection Line exists from a node with Name Name1 to a
node with Name Name2.

Example

connection onetoone Entity Relationship

Checks that at least one onetoone connection line exists from an Entity element to a
Relationship element.

exactConnection exactConnection [u|d] [ConnectionLineName] [Name1]
[TextContent1] [Name2] [TextContent2]

Checks for a Connection Line from one element with specified text to another. Direction-
specific from element1 to element2 if the parameter is “d”; “u” indicates that the connection
may be in either direction.

Example

exactConnection u onetoone Entity CD Relationship Produces

Checks that at least one onetoone connection line joins an Entity displaying the text “CD” to
a Relationship displaying the text “Produces”.

composite
Relationship

compositeRelationship [u|d] [RelationshipType] [Name1]
[TextContent1] [Relationship] [RelationshipTextContent]
[Name2] [TextContent2]

Checks for a full E-R relationship, with a connection across a relationship between two
entities. It does not need the individual ConnectionLines to be specified, just the entire
relationship type. If the first parameter is “d” the connection must go from element1 to
element2; if “u” it may go either way.

Example

compositeRelationship d onetomany Entity CD Relationship Have
Entity Track

Checks for a directional onetomany relationship from an Entity CD, across a Relationship
Have, to an Entity Track.

Table 4.1: Features expressions for the ER exercises

4. Problems in CBA applied to free-response formative assessment 109

Accepted operators are ==, >, <, <= and >=.

The following are sample features tests from the exercises, of gradually increasing

complexity.

Example 1

• 1 : exist Entity : Check for entities in your diagram : Found :

You have no entities at all in your diagram! :

This test checks that a student solution contains at least 1 figure with the Name

“Entity”. If this is found then 1 mark is awarded and “Found” is given as feedback; if

this is not found then 0 marks are awarded and “You have no entities at all in your

diagram!” is given as feedback.

Example 2

• 1: exact Entity [Aa]rtist==1 : Check for an Artist entity : Found :

NOT found! :

This test checks that exactly one Entity figure exists whose text is either “Artist” or

“artist”.

Example 3

• 3: exactConnection u onetoone Entity (CD|cd) Attribute [Pp]rice :

Checking an attribute of CD : Found correctly :

CD does not possess an essential attribute :

This test checks if an undirectional one-to-one connection line joins an Entity figure

whose text is either “CD” or “cd” with an Attribute figure whose text content is

either “Price” or “price”. 3 marks are awarded if the desired connection is found.

Example 4

• 5: compositeRelationship d onetomany Entity [Aa]rtist Relationship owt

Entity (CD|cd) : Check relationship between Artist and CD : Correct :

The type of relationship between Artist and CD is incorrect! :

This test checks if a directional one-to-many relationship exists which links an Entity

figure whose text content is either “Artist” or “artist” with another Entity figure

4. Problems in CBA applied to free-response formative assessment 110

whose text content is either “CD” or “cd” via a Relationship figure whose text is not

examined.

4.2.2 Methodology

In this experiment, a student cohort of 141 undergraduate Computer Science

students in their second year was invited to attempt the formative exercises prior to

undertaking associated summatively assessed exercises, which were compulsory.

The formative exercises were, therefore, the initial stage in a two-part assessment

strategy whose purpose was to motivate students. A smaller initial problem set

comprised 3 exercises. The first exercise was trivial and designed to allow students to

learn to use the system while the other two exercises were progressively more

complex. Subsequently, a more substantial problem required students to draw a

diagram which would be used as the basis for further questions in the summative

assessment.

Data was collected in several ways. Quantitative data was collected using

CourseMarker’s Archiving Server and by using Likert scale questions in student

surveys. The student solution at every submission was captured using CourseMarker’s

Archiving Server, together with the associated marks, which were hidden from the

student, and the feedback, which was returned to the student. Thus, for each student,

it was possible to track changes made between submissions. It was also possible to

access information based upon the number of submissions made by each student and

how the marks changed as the number of submissions increased.

Likert scale questions within student questionnaires were designed to assess how

useful the exercises had been to the student learning process and how enjoyable the

experience of using the CBA system had been to the users. Student questionnaires

were distributed to students by lab tutors in the final lab session; unfortunately,

attendance at this particular weekly session was low.

Qualitative data was collected through the use of open-ended questions at the end of

the student surveys and through conducting brief, informal interviews with the lab

tutors. The qualitative data was used to explain trends which could be observed in

the quantitative data in context. Much of the quantitative data was taken from the

marking audits which, by definition, can take into account only those factors which

4. Problems in CBA applied to free-response formative assessment 111

have been marked. Since a fundamental requirement of the experiment was to

determine the success of the automated assessment, it was necessary to consider the

observations and experience of the tutors who had led the laboratory sessions.

4.3 Results and Analysis

4.3.1 General Impressions

The two-part assessment strategy successfully ensured a high student motivation: of

141 active students registered on the Database Systems course, 130 (92%) attempted

the formative diagramming exercises [HB06]. Although the students themselves

were presented with text feedback rather than their percentage scores, the following

results provide a good indication of the level of assistance provided by the system.

For the smaller initial problem set students made an average of 5 submissions, with

first submissions being awarded an average of 49.2% and final submissions an

average of 75.1%. For the larger second problem linked to the summative

assignment, students made an average of 9 submissions (with 8 students making

more than 25 submissions and one student a total of 72!), with initial submissions

being awarded an average of 50.7% and final submissions an average of 70.1%.

Completed questionnaires showed that students were pleased by the parameterised

Theseus development environment in which they were asked to develop their

solutions. Although it was effectively optional, most students chose to directly

develop their solutions online — the main exceptions were those most conscientious

students who had started to develop their solutions on paper at home as soon as the

coursework was announced, and even many of those were persuaded to copy their

solutions from paper into Theseus in order to gain feedback. The lab assistants

largely corrected most common student misunderstandings quickly; these can be

reduced in future by taking care with the wording of questions. Generally, however,

students found the instructions clear and the exercises straightforward.

4.3.2 Problems

A major problem from a marking point of view occurred because of the way in

which features tests are specified in CourseMarker. Each features test is assessed

exactly once and a mark assigned for each submission. Although this had previously

seemed adequate for features testing of both programming coursework and the

4. Problems in CBA applied to free-response formative assessment 112

summative CBA of diagrams by Tsintsifas [Ta02], in the coursework being assessed

here there were several equally valid model solutions with slightly differing,

mutually exclusive, features. As a result, features tests could only be constructed to

search for that subset of features which were common to all model solutions. This

scenario is clearly unacceptable. In earlier programming exercises, such cases were

rare and were often solved by careful wording of the question specification (or,

sometimes, explicit instructions to students).

A second problem was in the lack of marking for diagram appearance. Since the

features marking system utilised considered only the diagram elements and the

connections between them, it was possible to attain good feedback with a diagram of

very poor layout. Indeed, many students took full advantage of this fact, meaning

that when unexpected feedback was received it was sometimes difficult for a lab

assistant to determine what was wrong with a student diagram due to its poor

layout. In fact, the importance of marking diagram appearance had been identified

before deployment of the course and was not implemented simply because of time

constraints. In the event, experience has confirmed that this is a major issue to be

addressed.

The third major problem was in the expressiveness of the feedback. Although

considerable effort was undertaken to provide useful feedback for each features test

— especially the feedback for the ‘negative’ case where the student had failed the

feature test and assistance was required — it is clear that the feedback did not fully

constitute effective formative feedback as defined in section 2.2.5. Specifically, the

feedback tended to be too lengthy, since feedback was returned for every features

test, and too focused on particular student weaknesses due to its link to a specific

features test failure. The feedback will be scrutinised more closely in section 4.3.4.

4.3.3 Marking data

An analysis of results from the course shows that, for the largest exercise, the

difference in marks between the earlier submissions is substantially larger than that

between later submissions. Figure 4.4 shows how the underlying average student

mark improved over the first 9 submissions for those whose total submissions were

12 (the average) or fewer. On average, over the first 9 submissions a gradually

improving underlying student average mark converges around the 70% mark.

4. Problems in CBA applied to free-response formative assessment 113

At this stage the improvement in student marks becomes negligible; this may

account for the average number of submissions being 12 since the feedback to the

student would have changed little for 2 or 3 consecutive submissions. Since 70% is

considered a first-class mark, the feedback to the student was generally positive at

the 70% level and so the student would consider their solution adequate.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9

Submission number

U
nd

er
ly

in
g

m
ar

k

Figure 4.4: First nine submissions of students who submitted 12 times or less

60

62

64

66

68

70

72

0 5 10 15 20 25 30 35

Submission number

U
nd

er
ly

in
g

m
ar

k

Figure 4.5: Submissions 15 to 30 for those students
who submitted more than 12 times

4. Problems in CBA applied to free-response formative assessment 114

Those students who submitted a great number of times failed to acquire

proportionally higher marks. Indeed, those students who submitted greatly more

than the average produced a widely fluctuating average mark as shown in figure 4.5.

It is likely that these students are the “gamblers and perfectionists” constituency

identified by Benford et al [BBF92]. Gamblers randomly submit altered solutions in

the hope of chancing on a higher mark and include those students who are interested

in the mechanism behind the automated assessment (who were here provided with

ample opportunity to experiment). Perfectionists tend to never be satisfied with their

feedback and submit more times in the hope of achieving a slightly higher result. It

should be noted, however, that the proportion of students falling into these

categories in this course was lower than that reported by Benford, and that the

nature of this course as a formative assessment rendered such practices academically

harmless, if a waste of the student’s own time.

4.3.4 Performance as Formative Assessment

The effectiveness of formative assessment can be measured in terms of its primary

deliverable: feedback. Section 2.2.5 proposed a good feedback framework for

formative assessment and here the system is judged by those criteria.

The interactive CBA system encourages independent learning; although 2 hours of

tutor assistance was provided in laboratory sessions weekly, attendance was on a

voluntary basis and most students chose to attempt the exercises at times convenient

to them as the laboratory was open during daytime hours. The students were free to

work independently or could discuss their work with peers, and the feedback

provided by the system allowed gradual improvements in the quality of

submissions. Tutors were allowed to help the students for the early exercises but

such help was discouraged later. Students also found the system itself easy to use

and tutor advice was required rarely. As a result, the system fulfilled the objectives

of criterion 1 successfully.

Peer dialogue was encouraged in all the formative assessment exercises. A lot of

peer-to-peer discussion occurred during lab sessions and likely at other times as well.

This has already been documented before in relation to CBA systems in a process

which Benford et al [BBF92] labelled consciousness raising. CBA encourages debate on

the assessment process and students will contest perceived injustice in their feedback

4. Problems in CBA applied to free-response formative assessment 115

more vociferously than when a human marker was involved. The system therefore

fulfilled the objectives of criterion 2 successfully.

The decision to display only feedback to students and to withhold marks caused

some initial confusion as to what constituted good performance as some students

were used to the convention of grades or percentages. Tutor reassurance overcame

this problem, however, and eventually most students came to recognise from the

phrasing of the feedback alone that they had submitted a good solution. It is clear,

however, that improvement could be achieved in relation to criterion 3 by providing

a structured set of feedback examples in the online exercise text alongside a

corresponding set of illustrative examples.

Marking is conducted and feedback returned on a timescale which is, in practical

terms, instantaneous. Therefore the feedback can be viewed by the student and

related to a submission which is still fresh in the mind. Students are allowed

unlimited submissions and are therefore provided ample opportunity to act upon

their feedback. A student can later choose to consult their feedback for any exercise

for which they have a submitted solution. Criteria 4 and 5 are therefore adhered to

but the problem of considerable feedback unwieldiness still needs to be addressed, as

discussed in section 5.2.

Students were assessed frequently but since this was on a formative basis students

were not under pressure to attain high marks immediately. Thus criterion 6 was

adhered to. Finally, since CourseMarker has good statistics facilities already in place

[FHH+01], student progress was monitored with ease, allowing conclusions to be

drawn about future teaching of the material and fulfilling criterion 7.

4.4 Conclusions

The process of conducting formative assessment within diagram-based domains

using CBA courseware in this experiment was encouraging, but the adherence to

good formative feedback practice and Computer Based Assessment principles was

incomplete.

Computer Based Assessment principles were breached because the marking system

of CourseMarker was not sufficiently flexible to assess the mutually exclusive

4. Problems in CBA applied to free-response formative assessment 116

solution cases which arose in the more complex later exercises. This necessitated

tutor involvement at the marking stage, since CourseMarker only marked (and

therefore could only provide feedback upon) the common subset features.

Formative assessment best practice was not achieved for two distinct reasons. Firstly,

the feedback, distributed through a feedback mechanism designed with summative

assessment in mind, was lengthy. Many comments provided as feedback related to

aspects of the exercise which the student had already successfully completed, while

those relating to areas of improvement tended to simply state the student failure in a

way which was both too specific and overly negative. It is clear that more targeted

and motivational feedback is required for the formative assessment process.

Secondly, the features marking system assessed only the semantics of the diagram.

The aesthetic appearance of the diagram was effectively ignored by the system.

Section 2.3 outlined the purpose of diagrams: to convey information. Even tutors

familiar with the entity-relationship diagram domain often found difficulty in

comprehending student diagrams due to poor layout. This fact alone confirms that

student diagrams often failed to achieve good practice in this area. The purpose of

formative assessment is to aid in the learning process; it is clear that, here, a part of

that learning process had been excluded.

4.5 Summary

This chapter described a practical experiment in the automated assessment of entity-

relationship diagrams, conducted with the intention of determining the suitability of

the CourseMarker / DATsys platform, which section 3.3 had presented as a model

CBA architecture, to conduct formative assessment within free-form, diagram-based

domains. Overall results were encouraging. The system was popular with students

since they appreciated the interactive and intuitive user interface and immediate

feedback. Students were provided only with feedback, but the underlying marks

increased steadily over multiple submissions, demonstrating student learning.

However, the system demonstrated problems in several key areas. Firstly, the

marking scheme was insufficiently expressive to allow for the mutually exclusive

solution cases which arose in more complex questions: this resulted in the CBA

system being able to mark only common subset features. Secondly, the feedback was

4. Problems in CBA applied to free-response formative assessment 117

lengthy, insufficiently targeted on the learning process and was not motivational.

Thirdly, a key component of learning to draw educational diagrams, i.e. aesthetic

considerations, was not addressed by the system with negative consequences in the

resultant student diagrams.

Chapter 5 examines the provision of formative CBA within diagram-based domains

and outlines the problems which must be overcome in light of the conclusions drawn

by the preliminary work in chapter 4.

Chapter 5

Providing a specification for formative CBA
in diagram-based domains

5. Providing a specification for formative CBA in diagram-based domains 119

Introduction

The process of automating the formative assessment process in free-response

diagram-based domains using Computer Based Assessment technology is both

feasible and useful. Chapter 4 described an initial research experiment conducted to

identify the shortcomings in current CBA techniques, exemplified by the

CourseMarker / DATsys system, when related to formative assessment. Proceeding

from this point, this chapter identifies those features which must be present for

formative, diagram-based CBA to be successful, considers the extensions needed to

facilitate that success and outlines a series of specific requirements in each of the

identified problem areas. The objective is to argue that CourseMarker / DATsys are a

suitable platform for conducting CBA formatively in diagram-based domains and

that the system can cater for the full lifecycle of formative CBA if the identified

extensions are implemented.

Section 5.1 states the requirements of formative, diagram-based CBA arising from its

definition, states the motivation and aims of the work and argues that the

requirements can be feasibly achieved by extending the CourseMarker / DATsys

CBA system. Current capabilities of the CourseMarker / DATsys system allow it to

fulfil some requirements, primarily those shared with summative CBA, while the

extensibility of the system makes it a suitable platform for the necessary extensions.

The extension requirements are discussed: an extensible system of marking tools to

allow the marking of the aesthetic appearance of diagrams; a more flexible features

marking system able to consider mutually exclusive alternative solution cases; a

system to provide truncated, prioritised feedback and a system of guidance for the

construction of formative, free-response exercises, particularly in terms of the

creation of feedback.

Section 5.2 outlines measurable requirements which must be fulfilled in order to

render successful the extensions in each of the problem areas.

5.1 Objectives

Section 5.1.1 outlines those criteria which must be fulfilled in order to satisfy the

definitions of Computer Based Assessment and formative assessment. Section 5.1.2

5. Providing a specification for formative CBA in diagram-based domains 120

assesses which of these criteria are already fulfilled by the existing CourseMarker /

DATsys system and which criteria necessitate the extension or change of the existing

architecture. Section 5.1.3 explains the overall motivation in terms of the resultant

questions which must be answered in the context of applying a CBA approach to

conducting formative assessment in free-response diagrammatic domains.

5.1.1 Definitions

Figure 1.1 illustrated the scope of this project as the intersection between free-

response CBA, formative assessment and diagramming. Section 2.1.1 defined CBA as

“the delivery of materials for teaching and assessment, the input of solutions by the students,

an automated assessment process and the delivery of feedback, all achieved through an

integrated, coherent online system”. Section 2.2.1 defined formative assessment as

“assessment conducted throughout the learning process, as an integral part of that process,

where the central aim is to provide feedback to enable the enhancement of learning” while

section 2.3.1 notes that an educational diagram is a collection of nodes and lines

constrained by a convention of meaning whose purpose is to convey information.

Section 3.1 noted that a fully automated CBA approach, when compared with other

approaches, provides the best potential for time-saving in conducting formative

assessment and also allows a realistic test-feedback-retest cycle of iterative learning.

Almond et al [ASM02] summarise the four basic processes present in an assessment

cycle. The Activity Selection Process selects and sequences tasks with an assessment or

instructional focus, including administrative duties. The Presentation Process presents

the task to the student and captures their response. Response Processing identifies and

evaluates essential features in the response and records a series of “Observations”.

Finally, the Summary Scoring Process uses the Observations to update the “Scoring

Record”. Since a CBA approach attempts to automate the entire assessment process it

is clear that these processes constitute a minimum programme of automation objectives

for any CBA system.

As the primary deliverable of the formative assessment process, feedback provides a

key to measuring the success of a formative assessment system. Section 2.2.5 outlined

a framework for effective feedback within a formative assessment context. Formative

assessment should: facilitate the development of self-assessment (reflection) in

learning; encourage teacher and peer dialogue around learning; clarify what

5. Providing a specification for formative CBA in diagram-based domains 121

constitutes good performance; provide opportunities to improve performance;

deliver information focused on student learning; encourage positive motivational

beliefs and self-esteem and provide information to educators to shape future

teaching.

Based upon the definition of diagrams as a collection of nodes and connection lines,

Tsintsifas [Ta02] concluded that a key element of diagram-based CBA was the ability

to provide domain coverage while allowing users to manipulate a standard set of

tools. Requirements for diagram editors were the level of Human Computer

Interaction and the simplicity, intuitiveness and usability of the diagram editors. If a

diagram has as its purpose the aim of communicating information, then it is

necessary to assess a diagram in terms of two criteria:

• The information provided by the diagram to the recipient must be correct;

• The diagram must be displayed in a way that is aesthetically pleasing, to

avoid recipient confusion.

Section 5.1.2 assesses which of these criteria are already fulfilled by the existing

CourseMarker / DATsys system and which criteria necessitate the extension or

change of the existing architecture.

5.1.2 Identifying the Necessary Extensions

To conduct formative computer-based assessment in diagram-based domains, it is

necessary to adhere to requirements and best practice in three areas: CBA, which

must fully automate the assessment process in a coherent online system; formative

assessment, whose primary purpose is to assist learning and educational diagrams,

which constitute a wide variety of node-and-link based domains. This section

considers each set of criteria and outlines systematically the shortcomings of

CourseMarker / DATsys in fulfilling the requirements.

In chapter 4, the shortcomings of CourseMarker / DATsys were summarised, as the

result of a practical experiment, in terms of the ability to encompass mutually

exclusive solution cases in marking, the ability to assess the aesthetics of a student

diagram, and the provision of concise, prioritised feedback. This section argues that

these shortcomings form the core extensions needed to accommodate formative

5. Providing a specification for formative CBA in diagram-based domains 122

assessment within diagrammatic domains using CourseMarker / DATsys and are

not specific to a specific experiment case. The section also demonstrates why further

shortcomings of a generic nature would not be identified by further, domain-specific

experiments. The approach taken is to consider how CourseMarker / DATsys can

fulfil each of the criteria arising from the basic definitions, as outlined in section 5.1.1.

Formative and summative assessment stand opposed in many respects, as outlined

in section 2.2. However, the underlying architecture required for the assessment

process is similar in many respects; it is this similarity that enhances the feasibility of

this project by enabling a system for formative assessment to be built by extending

the CourseMarker / DATsys system which was intended for summative assessment

purposes. Such similarities were not emphasised by Tsintsifas [Ta02]. Tsintsifas

emphasised the practical benefits gained by replacing summative assessment with

CBA, without considering that formative assessment was the assessment form most

in need of replacement. Tsintsifas believed that security, performance and

administration were important only in summative assessment. While student

plagiarism is not an issue in formative assessment, it is plain that unauthorised

tampering with the system would affect the learning process of others. Furthermore,

effective performance and administration are required to provide timely feedback to

the students and useful feedback to educators to improve future learning. Tsintsifas

further argued that formative assessment could be implemented by discarding the

summative marks — disregarding the differences in feedback required, as

demonstrated by the experiment outlined in Chapter 4.

5.1.2.1 Fulfilling Computer Based Assessment criteria

To successfully apply CBA technology, it is necessary that the entire assessment

process be automated within an integrated system. It is necessary, therefore, to

examine the success of CourseMarker in automating the basic assessment process as

described in section 5.1.1.

The CourseMarker architecture was described in section 3.3.2. Sequencing of

assessment tasks can be specified exactly using a Marking Scheme. Presentation of

teaching materials can be achieved through the user clients, for example the Java

CourseMarker client illustrated in figure 3.6. The Administrator has a defined role as

a User within CourseMarker and administrative tasks are split between the Login

5. Providing a specification for formative CBA in diagram-based domains 123

Server, which registers users and validates sessions, the Course Server, which

controls module information and sets up exercises, the Submission Server, which

receives submissions and issues receipts, the Archiving Server, which maintains

audit trails and the Ceilidh server, which manages the other servers and can reload

them at runtime. The DATsys architecture, described in section 3.3.3, describes how

new domains can be authored with Daidalos and new exercises with Ariadne. The

student launches the configured Theseus editor from within the CourseMarker client

to draw their solution and then submits through CourseMarker. Hence, the Activity

Selection Process, involving the sequencing of tasks and the administrative duties, is

well defined in CourseMarker / DATsys.

The Presentation Process in assessment systems presents the problem to the student

and then captures the student’s response. The student is presented with a problem

specification in the CourseMarker client. Upon setting up the exercise, the student

can develop their solution within a parameterised Theseus client. Theseus allows the

student to interactively “draw” their diagram upon a development canvas. The

student can save their drawing by selecting the save function within Theseus. Their

drawing is stored in a .draw file as a collection of objects, each representing a node or

connection, which can later be traversed as an enumeration by the marking tools.

Hence the problem is concisely presented to the student and the solution captured in

a usable way.

Response Processing examines the features of the solution and catalogues them.

Features testing for an exercise is specified on a feature by feature basis. The relative

weight of the feature, the definition of the feature being sought and feedback for

positive and negative results, are specified line by line. The manner of features

specification has survived since Ceilidh with little change. In programming exercises,

feature definitions are regular expressions which match the feature being sought. In

diagrammatic exercises the feature being sought is defined as in section 4.2. One

major problem, identified as a result of the experiment summarised in Chapter 4, is

that the features are assumed to be mutually supportive. Marking is therefore

accumulated across all features. Previously, in programming exercises using Ceilidh

and CourseMarker, students have been “shepherded” into using one particular

feature over an alternative option through careful question wording or the threat of

being awarded 0 marks overall if a given token is identified. Within formative,

5. Providing a specification for formative CBA in diagram-based domains 124

diagram-based exercises, this situation is unsatisfactory. Therefore, it is necessary to

enable the marking system to consider mutually exclusive solution cases before

cataloguing for the purposes of response.

The Summary Scoring Process uses the Observations recorded by Response

Processing to update the score of the exercise. CourseMarker assigns marks based

upon a weighted summary of the tests it has carried out, and stores these marks in a

structured Marking Result. For the purposes of general assessment, the

CourseMarker marking system is logical and efficient. Therefore, the Summary

Scoring Process is successfully automated within CourseMarker.

5.1.2.2 Fulfilling Formative Assessment criteria

To successfully facilitate formative assessment, it is necessary to examine how the

feedback system of CourseMarker conforms to the framework for formative feedback

originally summarised in section 2.2.5.

The feedback mechanism of CourseMarker facilitates student reflection in learning

because the feedback process is automated. Students can learn at their own pace and

submit at their own convenience since the CourseMarker client is widely accessible

to students. Previous courses in programming and diagram-based domains,

including the entity-relationship course described in Chapter 4, adopted an approach

whereby students were free to choose to attend weekly laboratory sessions, where

help from tutors was available, or to attempt the exercises on their own. Experience

has shown that tutor advice is required rarely and on peripheral issues; there is no

evidence to demonstrate that a course involving the student working through a set of

exercises at their own pace without tutor input would be impractical, provided help

could be provided (perhaps in the form of a technical support email address) for

unforeseen technical issues or comments. Thus, the first criterion outlined in section

2.2.5 can be fulfilled using CourseMarker’s present capabilities.

CourseMarker encourages teacher and peer dialogue around learning. Section 2.1.4

outlined student willingness to question CBA marking results. Students are likely to

collaborate if working in unsupervised laboratory sessions; if the assessment being

conducted is formative, then this can be viewed as a helpful part of the learning

process. Section 3.3.1.5 outlined the observation that Ceilidh, the forerunner to

5. Providing a specification for formative CBA in diagram-based domains 125

CourseMarker, markedly increased student consciousness of the learning and

assessment process. Therefore, the second criterion outlined in section 2.2.5 can be

fulfilled using CourseMarker’s present capabilities.

The practical experiment in Chapter 4 highlighted problems in clarifying to the

student what constitutes good performance. In previous summative assessment,

CourseMarker provided feedback as an expandable tree of grades. For formative

assessment purposes the grades were removed, but this caused confusion among

students as to how much improvement their solution required. To improve this

situation will require presenting the questions, solutions and feedback in a clear way

to the student. Section 3.1 highlighted that the design of the assessment problem and

feedback is as important to the success of the formative assessment as the technical

capability of the system used. Therefore, it will be necessary to produce a set of

guidelines for exercise developers and teachers to promote good practice in this area.

CourseMarker provides opportunities to improve performance through allowing

multiple submissions and providing feedback quickly to students. The fact that the

assessment process is entirely automated is key to CourseMarker’s innate ability in

this area. Therefore, the fourth criterion outlined in section 2.2.5 can be fulfilled using

CourseMarker’s present capabilities.

CourseMarker fails to deliver information which is sufficiently focused on student

learning. CourseMarker’s feedback is an exhaustive summary of the feedback

comments from each test undertaken during the assessment process, which is often

overwhelming in quantity and discourages the student from viewing the exercise as

a holistic entity. It is clear that the feedback mechanism of CourseMarker must be

modified to provide a smaller number of prioritised comments focused on the

student learning process in a motivational way.

Formative assessment using CourseMarker can encourage positive motivational

beliefs and self-esteem through providing frequent low-stakes assessment. For this to

be successful the feedback itself must be phrased by the exercise developer in a

motivational way; this is a focus of the guidelines discussed above. Furthermore, the

feedback must be short and prioritised, as discussed within the context of providing

feedback focused on student learning.

5. Providing a specification for formative CBA in diagram-based domains 126

Lastly, feedback should provide information to educators. This requirement is met

fully by the existing CourseMarker system, which allows all submissions by all

students, together with associated marks and feedback, to be examined by educators.

5.1.2.3 Fulfilling Computer Based Assessment criteria

Representations for new diagram domains can be authored, for use in DATsys

diagram editors, using the Daidalos authoring environment. Section 2.3 explained

that educational diagrams are commonly a collection of nodes and links. Nodes and

links, and the connectivity between them, can be specified in Daidalos on a domain

specific basis. Furthermore, the Generic Marking Mechanism is extendable and

designed to accommodate the features marking of new exercise domains, which

includes new diagram-based domains.

However, the effectiveness of a diagram in conveying meaning is affected by its

aesthetic appearance. A diagram whose physical layout is confusing to the reader is

poorer at conveying information than a diagram with identical nodes and

connections but a less confusing layout. The assessment of diagram aesthetics in a

CBA context is not catered for by CourseMarker / DATsys; indeed, it is

undocumented in the literature. This is, therefore, a requirement for formative

assessment in this field.

5.1.2.4 Summary

Section 5.1.2 outlined the requirements for CBA, formative assessment and

educational diagrams based upon the definitions provided in section 5.1.1.

CourseMarker / DATsys constitute a platform which is already able to cater for

many of the outlined requirements; it was argued that this was because of the

overlap between formative and summative assessment requirements in CBA terms.

Outstanding requirements which must be met in order to demonstrate that formative

CBA within diagram-based domains can be useful and feasible include the three

requirements identified as a result of practical experiments:

• The ability to distinguish between student diagrams of differing aesthetic

appearance;

5. Providing a specification for formative CBA in diagram-based domains 127

• The ability to consider solutions in which multiple, mutually exclusive cases

may be acceptable;

• The ability to truncate the feedback provided to students to reduce confusion

— students must be provided with the most relevant comments to their

solution.

Furthermore, to accommodate formative assessment criteria it is necessary to provide

a set of brief guidelines to educators to assist in presenting materials within a free-

response CBA context. These guidelines should outline methods for creating

positive, motivational feedback and for clearly specifying good practice to students

in the specification text.

5.1.3 Aims and Motivation

The aim of this work is to demonstrate that the automation of the formative

assessment of diagram-based coursework using CBA courseware is both feasible and

useful.

Section 2.2 outlined the numerous pedagogical benefits of formative assessment.

Formative assessment encourages openness among students, can be used to assess a

great scope of learning outcomes, can help in avoiding mark aggregation and

discourages plagiarism. Despite this, formative assessment is in a usage decline

because it is seen as resource intensive. Section 2.1 pointed out that CBA approaches

routinely demonstrate great resource-savings whilst free-response domains, such as

diagrams, offer the great scope for assessing a wide range of cognitive learning

levels. The most basic motivation of this work, therefore, is to answer the question:

• To what extent can CBA techniques be used to reduce the resource required

in setting a formatively assessed coursework in a diagram-based domain,

marking student submissions and returning feedback, while still adhering to

good formative assessment principles?

This question could be alternately phrased thus:

• To what extent would current, successful CBA practices need to be changed

to conform to formal formative assessment guidelines?

5. Providing a specification for formative CBA in diagram-based domains 128

To answer these questions this work used an initial phase of research to identify

shortcomings in the existing courseware. A practical experiment and a consideration

of the requirements implied by definition highlighted that three extensions to the

courseware must be developed. Since the approach taken is to develop a generic

approach to the problem in order to maximise potential usefulness over multiple

domains, a guide to educators in presenting domain-specific questions to students

using the courseware is also required. A plan is feasible if it can be implemented

such that the requirements are fulfilled. Usefulness is achieved when a system

provides results which are of benefit to practitioners.

To prove that the automation of the formative assessment of diagram-based

coursework using CBA courseware is both feasible and useful, it is necessary to

design and implement the extensions, deploy a course of exercises and analyse the

results.

The three identified areas of extension are as follows:

• Extending the marking system to assess the aesthetics of student diagrams;

• Extending the marking system to allow mutually exclusive solution cases;

• Changing the system of feedback to provide only the highest priority

comments to students.

The marking system should allow the aesthetic appearance of student diagrams to be

assessed. The assessment of aesthetic appearance should accommodate a wide range

of diagram domains but be able to provide useful insight into the diagram on a

domain-specific basis. The aesthetic assessment should provide an analysis of the

diagram appearance as a coherent whole. Feedback should be provided to students

to indicate aesthetic improvements which would benefit the diagram.

The marking system should be able to accommodate solutions where several,

mutually exclusive alternatives are available to the student. A student solution may

provide an incomplete attempt to fulfil the solution using one of the solution cases.

The marking system should identify which solution case the student is attempting to

attain and provide useful feedback which would benefit the diagram. Mutually

5. Providing a specification for formative CBA in diagram-based domains 129

exclusive alternatives may constitute multiple nodes and connections which differ

between alternate versions of the model solution.

Feedback provided to students should be a truncated version of the feedback

generated by the marking system. Feedback comments should be prioritised and the

highest priority feedback comments should be returned to students. The idea is to

induce an iterative process whereby students are encouraged to successively

improve their solution and then re-submit to receive further feedback.

The idea of assessing the aesthetic appearance of student diagrams is novel. It has

not previously been documented in the literature, presumably because diagram-

based CBA is a research area in infancy. Research interest lies in developing a

mechanism flexible enough to encompass multiple diagram domains whilst

providing meaningful feedback to students. The feedback provided should be

acceptable to human markers as a measure of validity. It should be noted that,

although the assessment of diagram aesthetics has been identified as a requirement

of formative assessment in this context, aesthetic assessment is likely to be of interest

more widely, including in summative assessment using CBA.

The idea of a system of mutually exclusive solution cases is also novel to CBA.

Previous CBA research with CourseMarker has relied upon checking for the presence

or absence of defined tokens. If multiple model solutions are feasible then the

wording of the question has been changed to “force” the student to adhere to one

version. This has included explicitly “banning” the use of certain constructions in

the question specification. Question marking involving simulation may provide a

solution to this problem, but the approach is necessarily domain-specific. Fixed-

response CBA does not encounter this problem by the restrictive nature of its design.

The idea of presenting truncated feedback to students within the context of free-

response CBA is also novel. Fixed-response CBA such as MCQs often involves only

one piece of feedback provided to the student. In free-response exercises such as

diagram-based coursework a range of feedback can be generated based upon tests

conducted upon the student answer. However, feedback is presented as a concise list

of all tests conducted upon the solution. The solution here differs because only high-

priority feedback is provided to the student, which can change upon each

submission as the student improves the solution; hybrid systems involving human

5. Providing a specification for formative CBA in diagram-based domains 130

marking can be used to accomplish the former objective, but it is unlikely that

multiple submissions could be assessed due to resource constraints.

5.1.4 Summary

Section 5.1.1 defined the requirements for CBA, formative assessment and

educational diagrams, based upon research previously summarised in chapters 2, 3

and 4 of the thesis. Section 5.1.2 assessed whether these requirements were met

within the existing CourseMarker / DATsys system and placed the outstanding

requirements — the assessment of diagram aesthetics, the assessment of solutions

containing mutually exclusive solution cases and the presentation of prioritised,

truncated feedback — within context in the general requirements for the areas of

CBA, formative assessment and educational diagrams. Section 5.1.3 demonstrated

how the proposed extensions relate to the aim and motivation of the thesis as

outlined in Chapter 1 and outlined their novelty to the CBA field. Section 5.2 will

consider each of the proposed extensions in turn and outline the detailed

requirements which each extension must achieve. The scope of guidance required for

educators and developers is also examined.

5.2 Detailed Requirements

This work proposes three extensions to the existing CourseMarker / DATsys system,

as well as the creation of guidance to developers and educators to ensure successful

development of domains and exercises, and solutions to the problem of enabling the

formative assessment of diagram-based student coursework to be successfully

automated using CBA courseware. Section 5.2.1 outlines detailed requirements

necessary to allow student diagrams to be assessed in terms of their aesthetic

properties. Section 5.2.2 outlines detailed requirements necessary to extend the

system to flexibly mark coursework where mutually exclusive alternate solution

cases are allowed. Section 5.2.3 details requirements to allow prioritised, truncated

feedback to be delivered to students. Section 5.2.4 outlines the scope of advice

needed if the resulting CBA courseware is to be used successfully by developers and

educators.

5. Providing a specification for formative CBA in diagram-based domains 131

5.2.1 Requirements for assessing the aesthetics of student diagrams

This research aims to enhance the formative assessment of diagrams in a domain

independent way. Therefore, it is clear that the layout of diagrams in many domains

will need to be assessed in a flexible manner.

Any approach to the assessment of diagram layout which aims to provide one

concrete mechanism for the assessment of all diagram domains in a general way will

result in assessment of only the most superficial aspects of diagram layout due to the

conflicting requirements of different domains. Conversely, a ‘blank slate’ approach

based upon applying an entirely different set of rules on a per-domain or even per-

exercise basis will result in an unacceptable level of difficulty to the developer

whenever the assessment of a new diagram domain is required.

Within a CBA context it is necessary to enable the marking of aesthetics in new

diagram domains with an acceptable amount of development effort, while still

providing capability to apply different conventions across disparate domains as

required. Concretely, it is necessary to:

• Minimise the effort required to assess the aesthetics of a new diagram domain

(to provide a basis for aesthetic assessment across common domains) ;

• Allow domain disparities to be accommodated through conducting a

different aesthetic assessment (to make the system extensible);

• Allow educator preferences and priorities to be reflected (through

parameterisation);

Since the extensions will be made to the existing CourseMarker / DATsys

architecture, it is necessary to ensure compatibility and transparency to users.

Specifically, the extensions should be:

• Integrated into the marking system;

• Integrated into the feedback system;

• Able to recognise existing conventions for specifying diagram formats;

• Transparent to students.

5. Providing a specification for formative CBA in diagram-based domains 132

Within a formative assessment context the central requirement is feedback. Students

should be provided with motivational feedback which is relevant to the shortcoming

identified by the assessment procedure. Feedback comments should be short and

prioritised; this requirement is further elaborated in section 5.2.3. The central

requirement for assessing the aesthetics of student diagrams within the context of

formative assessment is, therefore, that feedback is provided which is integrated with

the extensions proposed for delivering truncated, prioritised feedback to students.

Within the context of educational diagrams, several requirements are essential to the

approach. It is necessary to:

• Provide a basis for assessing educational diagrams generically;

• Provide a platform for extension to accommodate new domains;

• Assess diagrams based upon justified criteria;

• Allow the relative importance of criteria to be specified to take into account

the fact that not all criteria contribute equally to the general aesthetic of the

diagram, as outlined in section 2.3.4.1.

5.2.2 Requirements for assessing solutions with mutually exclusive
alternate solution cases

Once again, the requirements must allow mutually exclusive alternate solution cases

to be assessed by the system in a general, domain-independent way while

minimising the effort required on the part of the exercise developer. Mutually

exclusive alternate solution cases constitute alternate subsets of the model solution. It

is necessary to distinguish between those parts of the solution which are common to

all versions of the model solution and those parts which differ. Consider the simple

example in figure 5.1, which shows two versions of a model solution.

Let M be the set of all model solutions. In the simple problem in figure 5.1 there are

two model solutions, and . Let 1M M 2 I be the set of features common to all model

solutions in M while IMD xx −= , all features in the model solution which are not

common.

5. Providing a specification for formative CBA in diagram-based domains 133

Figure 5.1: Two mutually exclusive model solutions

In figure 5.1, therefore:

() (){ }cbbaCBAM ,,,,,,1 =

() () () (){ }gffbebbaGFEBAM ,,,,,,,,,,,,2 =

(){ }baBAI ,,,=

(){ }cbCD ,,1 =

() () (){ }gffbebGFED ,,,,,,,,2 =

If both the commonality and difference across model solutions is to be assessed

successfully, a central requirement within the context of CBA is that the exercise

developer be allowed to specify which features are common to all model solutions

and then to specify the mutually exclusive features. Within this, the former

requirement can be satisfied with relative ease since this effectively duplicates

current features testing within CourseMarker. Within a real world context, however,

the specification of the mutually exclusive solution cases requires flexibility.

A B C

E

A B

F G

5. Providing a specification for formative CBA in diagram-based domains 134

In figure 5.1, . That is to say that the mutually exclusive solution cases

contain no common elements. In practice, it cannot be guaranteed that a feature

appears in either one and only one mutually exclusive solution case or else be

common. Furthermore, the marking system of CourseMarker acknowledges, through

its system of weighting, that not all features are of equal importance. Similarly,

features within a mutually exclusive solution case may vary in importance.

{ }=∩ 21 DD

In an educational context, a mutually exclusive solution cases occurs because more

than one solution is plausible to the educator. This, in turn, occurs because more than

one line of reasoning may be employed to develop a solution. Therefore, it is helpful

to determine which features within each mutually exclusive solution cases denote the

reasoning responsible for the solution case, and which features are dependent upon

the original reasoning by virtue of being a logical continuation.

From this, the requirements for assessing solutions with mutually exclusive alternate

solution cases flow. From a CBA perspective it is necessary to allow the specification

by the exercise developer of the different solution cases. The exercise developer

should be able to specify the common cases and each of the mutually exclusive

solution cases, including which features within the solution case denote the

difference in reasoning, in a way which can be used by the marking mechanism to

assess the student solution appropriately. This is necessary to accommodate the

generic approach which forms the foundation for this work. An exercise developer

should be able to specify assessment criteria across domains with the minimum of

development effort and maximum consistency, but the assessment of domain-

specific diagrams must still allow sufficient scope to be meaningful.

Furthermore, from a CBA perspective, the proposed modifications must:

• Be integrated into the marking and feedback system system;

• Be seen to maximise transparency to students.

In fact, the first of these objectives leads to the second, since facilitating conventional

operation of the marking system and allowing feedback to be delivered consistently

with conventional CourseMarker CBA exercises will ensure that the student

experience is consistent across CBA domains.

5. Providing a specification for formative CBA in diagram-based domains 135

From the perspective of educational diagrams, the extensions must:

• Provide a basis for assessment of a wide variety of educational diagram

domains;

• Allow educators to specify criteria for assessment and minimise constraints;

• Allow criterion weighting to account for features of unequal importance.

Specification of common and mutually exclusive features should be consistent across

domains. The system should not constrain educators from applying any criteria set of

their choice to the exercise; the approach is to supply the exercise developer, who is

assumed to be a domain expert, with the facility for CBA rather than to act in a

prescriptive manner.

Within a formative assessment context the central requirement is feedback. Students

should be provided with motivational feedback which is relevant to the shortcoming

identified by the assessment procedure. It is necessary for the assessment process to

be able to determine which version of the model solution the student is attempting to

attain and to give tailored, motivational feedback based upon the correct, mutually

exclusive solution case which will improve the solution. Again, this extension must

be integrated into the existing feedback mechanism and be compatible with the

mechanism for providing truncated, prioritised feedback outlined in section 5.2.3.

5.2.3 Requirements for prioritising and truncating feedback to
students

In order to fulfil formative assessment criteria, the feedback generated by the

CourseMarker marking system must be truncated so as not to overwhelm the

student. The most relevant information at each submission should be presented to

the student while less relevant comments are omitted (possibly to be presented to the

student after a later submission). Section 2.2.5 outlined criteria by which formative

assessment feedback can be assessed. The primary requirement is to modify the

feedback so that these criteria are met.

For this to occur, it is necessary to define a mechanism whereby feedback comments

can be prioritised. If the relative priority of feedback comments after each submission

5. Providing a specification for formative CBA in diagram-based domains 136

can be successfully defined then the task to delivering only the highest priority

comments can be managed. Once the comments are prioritised, the extension must

allow the comments to be delivered in a way which meets truncation criteria suited

to the individual exercise.

Consequently, from a formative assessment perspective, the central requirements are

to allow the prioritisation of comments and the definable truncation of the feedback.

Flexibility for the exercise developer is key: it should be possible to define the

truncation preferences to be applied by the marking and feedback delivery systems

when developing the exercise. It is, furthermore, necessary to ensure that the

feedback itself is motivational to students. This last issue will be addressed in the

exercise developer guidelines, the scope of which is outlined in section 5.2.4.

Since this last extension is concerned with prioritising and truncating feedback which

has already been generated, no direct requirements exist for this extension within the

context of educational diagramming.

Within the context of CBA, the central requirements are the integration of the

mechanism for prioritising and truncating feedback into the existing CourseMarker

marking and feedback systems. To allow the process of assessment and feedback

delivery to be automated and online, the mechanism for determining comment

priority must operate without human intervention. This implies that comment

priority must be able to be determined by information provided by the exercise

developer and the results generated by the assessment process from the student

submission. Truncation must be also be performed using criteria which are specified

during the process of developing the exercise.

5.2.4 Scope of guidance needed for educators and developers

Section 3.1 provided a review of attempts to provide formative assessment

capabilities using automated assessment courseware. Although the capabilities of the

CBA courseware to provide formative assessment to students is crucial to success by

definition, a central conclusion was that the process of development of the exercises

themselves, most especially feedback, was also essential if the process of formative

assessment was to contribute maximally to the learning process.

5. Providing a specification for formative CBA in diagram-based domains 137

It would be neither necessary nor possible to provide a complete guide to educators

and developers to the development of exercises in all domains. The pedagogical

development of exercises is a research field in its own right and the subject of active

debate. Chapter 2 briefly cited examples of research which aimed to develop

assessment directly from cognitive taxonomies such as Bloom’s taxonomy, but such

methods are unproven even at the domain-specific level.

Conversely, a minimal guide to educators and developers whose function is to define

the capabilities of the system and the necessary file formats would fail to provide

educators with sufficient information to maximise the formative assessment potential

of the system. It is necessary to find a “middle-ground”, whereby practical advice

can be provided to educators and developers within the context of developing

formative assessment using the courseware while leaving domain-specific decision-

making to be implemented by a specialist.

Chapter 3 noted several good examples of the delivery of good, motivational

formative feedback to students using CBA courseware. Phrasing feedback

motivationally and referring to learning material or providing research references

can encourage further student research and motivate further, useful re-submission.

From an educational point of view, it is important to illustrate how good formative

feedback can be developed within the context of CBA. It is, furthermore, important to

emphasise that CBA feedback comments are linked with assessment criteria, with the

result that prioritisation of the underlying assessment criteria must be defined in

such a way that the feedback comments are encountered by the student in a useful

order which reflects the learning curve of the domain materials.

For developers it is necessary to make explicit the relationships between the

pedagogic priorities of the formative assessment and the functions of the courseware

responsible for their implementation. Specifically, guidance must be given to allow

the developer to successfully:

• Indicate the relative priorities of assessment criteria within the exercise;

• Specify and integrate new aesthetic measures or configure existing measures;

5. Providing a specification for formative CBA in diagram-based domains 138

• Facilitate the assessment of multiple model solutions by defining their

commonality and variation points;

• Specify the method of feedback truncation to be used for the exercise.

5.2.5 Summary

Section 5.2 provided detailed specifications of the requirements which each of the

proposed extensions must attain if the existing drawbacks outlined in section 5.1 are

to be overcome. Section 5.2.1 outlined detailed requirements for diagram aesthetics

to be assessed by courseware, including the need for a flexible and extensible system

which, nevertheless, provides a basis for assessing the aesthetic properties of a wide

range of education diagram types. Section 5.2.2 considered the requirements in

marking exercises with multiple model solutions through considering the

commonality across and variation between solutions. Requirements for educators to

define those key features which denote the different reasoning between model

solutions were outlined. Section 5.2.3 considered the provision of useful formative

feedback in terms of the necessity to allow the prioritisation of comments and a

system of defining the level of truncation applied to the features-linked feedback

comments. Section 5.2.4 considered the scope of advice needed for educators and

developers to develop formative exercises using the courseware: practical advice on

the development of motivational feedback, plus an explanation of the relationships

between the pedagogic priorities of the formative assessment and the functions of the

courseware responsible for their implementation, are required.

5.3 Summary

Chapter 5 built upon the shortcomings of the CourseMarker / DATsys CBA system

which were identified in Chapter 4. Section 5.1 discussed the requirements inherent

in conducting formative, diagram-based CBA, demonstrated that the courseware can

accommodate some of the requirements, especially those shared with conducting

summative CBA, and placed the proposed extensions to the CBA courseware within

context. The topics of fulfilling the criteria linked with CBA, formative assessment

and educational diagrams were each considered in turn.

Section 5.2 developed detailed requirements for each of the extensions, considered

within the context of CBA, formative assessment and educational diagrams. The

5. Providing a specification for formative CBA in diagram-based domains 139

requirements for assessing aesthetic diagram criteria, accommodating mutually

exclusive solution cases and prioritising and truncating the feedback of the system

were each considered in turn. The scope of guidance to be provided to educators and

developers was also discussed. Based upon these guidelines, the extensions can be

designed. Based upon the requirements outlined within this chapter, Chapter 5

documents the design decisions made in the context of each of the extensions and the

integration into the existing courseware.

Chapter 6

Designing the extensions

6. Designing the extensions 141

Introduction

This chapter describes a solution to the problem of automating the formative

assessment of diagram-based coursework using CBA courseware. It describes the

process of designing the extensions to the courseware which were identified as

necessary in Chapter 5: assessing the aesthetics of student diagrams, considering

solutions with mutually exclusive alternate solution cases and prioritising and

truncating the student feedback. The design meets the detailed requirements

identified in section 5.2.

Section 6.1 presents a high-level overview of the design. The issues of ensuring that

the design meets the identified requirements and that the components are

successfully integrated are discussed and a brief overview of the approach in each

area is provided. Section 6.2 describes the design of the extension which enables the

assessment of the aesthetics of student diagrams. A series of aesthetic measures are

chosen to represent commonality across educational diagram domains, while

domain-specific structural measures can be implemented through extension. The

hierarchy and weighting system is described, together with the individual aesthetic

measures. Section 6.3 outlines the extension which deals with solutions which

possess mutually exclusive alternate solution cases. The approach is based upon the

notion that some uncommon features, designated harbingers, define the difference in

reasoning between the mutually exclusive cases. Other features, which are present in

all model solutions, are designated common. Responsibility for defining the solution

is defined and the integration into the features testing system is discussed. Section 6.4

presents the extension responsible for prioritising and truncating the feedback

provided to students. The system of prioritisation is described and responsibilities

for users defined. A configurable system for truncating the prioritised results is

presented.

6. Designing the extensions 142

6.1 High Level Overview

The central purpose which motivates the design of the extensions described in this

chapter is to allow research to be conducted with the aim of proving that formative

CBA in diagram-based domains is feasible and useful. This assessment is feasible if

the extensions can be successfully designed and implemented and if exercises in

educational diagram domains can be developed with realistic levels of time and

effort. The assessment is useful if the exercises assist the process of student learning.

The design assumes that the eventual courseware will be used by three distinct

categories of users:

• Developers, who are responsible for developing new diagram domains and

carry responsibility for configuring the marking tools and specifying the tests

to be conducted;

• Teachers, who are domain experts who can design exercises, including

exercise specifications to be presented to students, possible model solutions

and useful feedback;

• Students, whose learning process is the focus of the formative assessment.

The approach is intended to facilitate a domain-independent environment where

new domains can be assessed through specification and extension, carried out by

developers. Chapter 4 outlined the reasons for using the CourseMarker / DATsys

system as a development base. The design is, therefore, able to take advantage of

considerable existing design infrastructure. It is incumbent upon the extensions,

however, to integrate with the existing architecture in order to provide a smooth,

coherent experience for the student users.

The design must consider the trade-off between, on the one hand, providing a

realistic basis for formative assessment without overwhelming developmental

requirements and, on the other hand, restricting the cross-domain potential for

assessment through allowing insufficient flexibility in extension. At each stage, the

intention is to provide a concrete basis useful for common, node-link type,

educational diagram domains whilst specifying flexibility through extension points

and parameterisation.

6. Designing the extensions 143

6.1.1 Requirements

Section 5.2 outlined set of detailed requirements which must be fulfilled by each of

the extensions if success in formative assessment is to be achieved. The design must

be shown to explicitly meet each of these requirements in turn. Generally, the

requirements aim to ensure that the resultant courseware achieves an optimal trade-

off between flexibility and developmental effort, integrates seamlessly into the

existing architecture and provides a clearly defined role for each of the system’s

users.

6.1.2 High Level Design

This section aims to provide a brief overview of the design strategy for each of the

extensions. The aim is to provide an introduction of the strategy used to ensure that

the extensions are effective and meet the requirements set out in section 5.2. A high-

level overview of the integration between the extensions is then considered in section

6.1.3 before the detailed design decisions are discussed in section 6.2 to 6.4.

6.1.2.1 Assessing the aesthetics of student diagrams

The design of the extension to allow the assessment of the aesthetic properties of

student diagrams is based around the aggregation of input from a series of measures

which each examine distinct aesthetic properties of the student diagram. Each

measure is applied to the diagram, returning a scaled numeric mark and a piece of

motivational feedback. Some diagram domains are subject to domain-specific

aesthetic rules. For this reason, a key distinction is made between aesthetic measures

and structural measures. These are defined as follows:

• Aesthetic measures are domain-independent and based upon the relationships

between the nodes and links within the diagram and the drawing canvas on

which the diagram has been created;

• Structural measures are domain-specific and based upon knowledge of the

rules governing the relationships between types of links and nodes, as

defined by the convention of meaning associated with the educational

diagram domain.

6. Designing the extensions 144

These two distinct types of measures encapsulate the commonalities across and

differences between domains of educational diagrams.

Aesthetic measures provide a basis for the marking of general diagram layout across

a range of educational diagram domains. Existing aesthetic measures are based upon

mathematical graph layout criteria and studies of aesthetics in graphical user

interface design. New aesthetic measures may be added by developers upon

discovery, but this process is likely to be irregular. The task of the educator with

regard to aesthetic measures is to specify the relative importance of the aesthetic

criteria through the allocation of weights to the aesthetic measures. This process

reflects the fact that, although certain measures of aesthetics are applicable across

educational diagram domains, their importance varies across domains.

Structural measures provide the means by which the marking of the layout of

student diagrams can be extended to accommodate domain-specific requirements

specified within the convention of meaning of an educational diagram domain.

Structural measures are identified by the educator when a new domain is to be

assessed. The educator is also responsible for defining the relative importance of the

new structural measure through the allocation of a numeric weight. Developers

create new structural measures as required, each time a new educational diagram

domain is to be assessed.

Aesthetic and structural measures both constitute marking tools with similar aims.

The distinction between the two is pedagogical. The way in which the measures are

implemented in each case is similar, although a hierarchy is used to make the

distinction between the two clear for the purposes of avoiding confusion.

The marking scheme is responsible for calling marking tools and providing

parameters. Both aesthetic and structural measures must accept three parameters:

• The student diagram to be assessed;

• The relative weight of the measure;

• A leniency value.

6. Designing the extensions 145

The student diagram to be assessed is represented within DATsys as a Diagram

object. The relative weight of the measure is provided as a real number. The leniency

value is used for linear scaling purposes, based upon the maximum value for the

measure which the educator can reasonably expect the student to obtain.

The criteria against which student diagrams are judged may be derived from

theoretical formulae which assume an ideal diagram scenario. Due to circumstances

beyond the control of the student, therefore, it may be impossible to obtain a score of

100% from one or more measures due to the nature of the nodes and links (which are

defined by the developer) or the circumstances of the model solution (which is

defined by the educator). If the assessment is to be valid (as defined in table 2.1) then

these external assessment qualities, which are not based upon a reflection of the

ability of the student, should be maximally excluded. Therefore, it is incumbent upon

the developer to determine, by considering the model solutions, the base level in

each criterion which it is reasonable to expect the student to attain. This value can be

used, in a process of linear scaling, to ensure that this value is “scaled up” to 100%,

with other values being proportionately scaled through a linear process.

Since developers may develop new measures, both aesthetic and structural, to extend

the functionality of the CBA courseware further, it is necessary to define a standard

to which all measures must conform. An interface is used, therefore, which all

aesthetic and structural measures must implement. The interface enforces the

acceptance of the three parameters and the return of a MarkingResult object to

enable integration with the CourseMarker marking system.

Therefore, the architecture of the extension consists of a package layout, which is

located in the CourseMarker marking system and which contains the interface

LayoutToolInterface. The package layout.aesthetic contains classes which

implement the aesthetic measures, while the package layout.structural is

provided to developers to add domain-specific structural measures.

The exercise marking scheme is used to call the aesthetic measures. If structural

measures are present then they too are invoked by the marking scheme. The student

drawing, the relative weight of the measure and the leniency value are passed as

6. Designing the extensions 146

parameters to the measures, which each return a MarkingResult containing the

weighted mark and motivational feedback.

Section 6.2 describes in more detail the concrete design of this extension. The linear

scaling system is described and the LayoutToolInterface interface is fully

defined. Suitable aesthetic measures are chosen from criteria in the fields of graph

layout and GUI design, and their transformation into marking tools in the

layout.aesthetic package is outlined. The commonality in design and

implementation between aesthetic and structural measures is discussed and their

different usage explained. Finally, the integration into the existing CourseMarker

architecture is described and the intersection points made clear. The design is shown

to arise from the detailed requirements listed in section 5.2.1.

6.1.2.2 Assessing solutions with mutually exclusive alternate solution cases

The design of the extension to allow the assessment of solutions with mutually

exclusive alternate solution cases arising from the acceptability of multiple model

solutions is based upon the notion of allowing the definition of features set cases. The

features set cases are derived from the acceptable model solutions. The educator

defines the acceptable model solutions for the exercise as part of the process of

creating the exercise and outlines, to the extent possible, those features which denote

the difference in reasoning which resulted in the model solution case. The developer

takes the model solutions and identifies those elements (nodes and links) which are

common to all model solutions, defined in section 5.2.2 as I . Features tests which

search for the elements in I and the relationships between them are constructed by

the developer. These tests constitute the first features set case, . 0FT

D

FTFT

Subsequent features set cases, , contain features tests whose success

depends on the presence of the elements and links present within a mutually

exclusive solution case, defined in section 5.2.2 as . These features tests are, by

definition, uncommon features which are not present in all model solutions. The first

features test within each features set case ideally denotes a feature test

whose search criteria checks for an element or combination of elements which is

unique to the specific mutually exclusive alternate solution case. This feature test is

known as the distinction test since it is used to distinguish between alternate mutually

xFTFT ...1

x

x...1

6. Designing the extensions 147

exclusive solution cases. The element or combination of elements in the model

solution case which is used to distinguish the case from all others is called the

harbinger.

In the ideal situation an element or combination of elements which represent the line

of reasoning that resulted in the student arriving at that particular version of the

model solution is identified by the educator and used by the developer for the

distinction test; in this case a perfect harbinger has been found. This situation is ideal

since the feedback can be focused on the specific line of reasoning associated with the

specific model solution.

It is possible that the educator is unable to describe a precise line of distinct

reasoning which leads to each version of the model solution. The design can still be

used to assess student solutions where multiple model solutions are plausible

without it. The minimum requirement for the distinction test is that it searches for an

element or combination of elements which is unique to the specific model solution;

such an element or combination of elements must exist or, by definition, the features

set case is not assessing a mutually exclusive alternate solution case. Such an element

or combination of elements is an imperfect harbinger.

After creating the teaching materials, exercises and one or more model solutions, the

educator is responsible for highlighting those unique elements within each model

solution which will be used to determine the distinction test. The educator also

prioritises the features and is responsible for generating positive, motivational

feedback. This responsibility lies with the educator across a wide variety of

automated assessment cases; the task is onerous, but since the exercises may be

repeatedly re-used in a formative assessment context the time can be justified.

Guidance for generating positive, motivational feedback is outlined in chapter 7.

Features tests associated with common elements, , are placed into the first

features tests file, [exercisename].ft0. Features test cases are placed

into features test files [exercisename].ft[x] with the features tests representing

the distinction test defined as the first features test in each file. The structure of

individual features tests remains, as previously defined in chapter 4, as follows:

0FT

FTFT ... x1

6. Designing the extensions 148

• Mark weight : Feature expression : Description : Positive feedback :

Negative feedback

The DiagramFeaturesTool marking tool is based upon the same principles as the

EntityRelationshipTool tool described in section 4.2. Nodes are identifiable by

their Name and Text Content while links are identifiable by their Name, Start Node

and End Node. The features expression types exist, exact, connection and

exactConnection have usage and meaning consistent with EntityRelationshipTool. The

feature expression type compositeRelationship is included for backward compatibility

purposes but its usage is discouraged due to its domain-specific nature.

The exercise marking scheme is used to call the DiagramFeaturesTool once for

each features test file. The student drawing file and the correct features test file are

passed to the DiagramFeaturesTool as parameters as each call is made. The

DiagramFeaturesTool returns a MarkingCompositeResult at each call. The

remaining task is to parse the MarkingCompositeResult tree to determine which

of the mutually exclusive solution cases the student solution attempts to emulate.

The remaining MarkingCompositeResult objects can be pruned from the tree

accordingly.

The process of parsing the marking tree to determine the best solution case to

consider and then truncating the tree to remove the other cases is accomplished as

part of the responsibility of the PrioritiseTruncateTool described in section

6.1.2.3. Since much of the functionality of truncating and prioritising the tree

duplicates the functionality required to prioritise and truncate the student feedback

in general, the construction of a separate tool was not justified. The allocation of

responsibility for prioritising the alternate mutually exclusive solution cases to the

PrioritiseTruncateTool constitutes the primary relationship and

interdependency between the extension to enable the assessment of mutually

exclusive solution cases and the extension to prioritise and truncate student

feedback. The integration of the extensions is summarised more generally in section

6.1.3.

Section 6.3 describes in more detail the concrete design of this extension. The

responsibility of users, the defining of features and the use of the marking scheme to

search for features are described. Finally, the integration into the existing

6. Designing the extensions 149

CourseMarker architecture is described and the intersection points made clear. The

design is shown to arise from the detailed requirements listed in section 5.2.2.

6.1.2.3 Prioritising and truncating feedback to students

The design of the extension to allow the delivery of prioritised and truncated

feedback to students is based around providing an extensible, flexible and

configurable mechanism for the developer to encapsulate different methods of

prioritisation and truncation, based upon the wishes of the educator.

The problem of prioritising and truncating the feedback to students can be divided

into four smaller tasks, each of which may be accomplished in a number of different

ways. The four smaller tasks are:

1. Establishing which of the competing mutually exclusive solution cases has

the highest priority and deciding what course of action to take with regard to

the feedback generated by the other mutually exclusive solution cases;

2. Prioritising the feedback provided by all features tests;

3. Prioritising the feedback generated by the aesthetic and structural measures;

4. Truncating the feedback.

To the solving of each of these smaller tasks, multiple strategies could be applied

depending upon context-dependent factors such as the nature of the domain, the

details of the assessment, the type of the students and the preferences of the

educator.

A strategy for solving the first problem could be examining the distinction test for

each mutually exclusive solution case, determining the distinction test with the

highest score and pruning all other mutually exclusive solution cases from the

feedback tree. An alternative strategy could examine other features tests within the

mutually exclusive solution case to determine if features from multiple cases were

being confused by the student.

A strategy to solve the second problem could sort the feedback from the common

elements features tests together with the remaining mutually exclusive solution 0FT

6. Designing the extensions 150

cases to determine the most important feedback overall. Alternately, a strategy could

prioritise comments from in the event of a low overall mark and introduce

feedback from mutually exclusive solution cases only when the student solution

passes a given threshold.

0FT

A strategy to solve the third problem could inter-mingle aesthetic and structural

measures and determine the highest priority comments overall, or try to prioritise

structural measures in the early stages to ensure domain correctness before

emphasising feedback comments from aesthetic measures later once a threshold is

reached.

Truncating the feedback could involve retaining a specific number of features

comments and a specific number of layout comments, both specified by the educator.

Alternately, the topmost percentage of comments above a threshold could be

provided to the student.

The design makes use of the object-oriented Design Pattern known as Strategy

[GHJ+94]. The intent of the Strategy pattern is to define a family of interchangeable

algorithms, allowing the algorithm to vary independently from the clients which

make use of it.

The Strategy pattern has three participants: the Strategy, the Concrete Strategy and the

Context. The Strategy defines an interface common to all supported algorithms, while

a Concrete Strategy implements a specific algorithm whilst conforming to the Strategy

interface. The Context is configured with a Concrete Strategy object, maintains a

reference to a Strategy object and may define an interface which lets Strategy access its

data.

In this case the four tasks to be completed in the prioritisation and truncation of

student feedback are translated into four Strategy interfaces. These are, in order of the

problems listed above, the SolutionCaseStrategy, FeaturesSortStrategy,

AestheticsSortStrategy and TruncationStrategy interfaces.

The PrioritiseTruncateTool acts as the Context to all four strategies. The tool is

configured with four objects representing the configured algorithm to be employed

at each of the four stages of the prioritisation and truncation process.

6. Designing the extensions 151

The educator specifies the methodology to be used at each stage of the prioritisation

and truncation process. The developer then develops a Concrete Strategy for each

stage containing an algorithm which encapsulates the methodology defined by the

educator, and which conforms to the Strategy interface responsible for the specific

stage of the process. The educator can then specify parameterisation on a course-

specific (or, if desired, exercise-specific) basis.

For example, an educator could decide on a truncation strategy for stage 4 of the

process which involves retaining a specified number of feature-related feedback

comments and another specified number of layout-related feedback comments. This

methodology could be used by the developer to develop a Concrete Strategy called

OrdinateTruncationConcreteStrategy which conforms to the

TruncationStrategy interface. For a given exercise, the educator could decide to

retain precisely the 2 most relevant feature-related feedback comments and the 2

most relevant layout-related feedback comments. This information is used, in the

form of parameters, in the construction of a new

OrdinateTruncationConcreteStrategy object which, in turn, is used as one of

the four Concrete Strategies necessary to configure the PrioritiseTruncateTool.

Section 6.4 describes in more detail the concrete design of this extension. The

PrioritiseTruncateTool is defined, along with the four Strategies used for

configuration. The responsibility of users is made explicit, the integration into the

existing CourseMarker architecture is described and the intersection points are made

clear. The design is shown to arise from the detailed requirements listed in section

5.2.3.

6.1.3 Extension Integration

Figure 6.1 illustrates a high-level view of the relationships between the extensions

discussed in this section. The student solution is marked through a Marking Scheme

which invokes configured instances of each extension in turn.

6. Designing the extensions 152

Mu

Fi

Ae

Pri

Student solution
Exercise Specific Configuration

tually exclusive features marking

Common features

tests

gure 6.1: A high-level view of the relationships between the extensions

Mutually
exclusive features

tests

Aesthetic
measures

configuration

Structural
measures

configuration

sthetic layout marking

1. Solution case
priority and

pruning

3. Aesthetics
prioritisation

oritisation and truncation

2. Features
prioritisation

4. Truncation

Full
feedback

Prioritised, truncated
student feedback

6. Designing the extensions 153

A Composite Marking Result is created by the Marking Scheme to hold the feedback

returned by each extension. A Composite Marking Result operates using a tree-like

structure designed to be intuitive to the student when feedback is presented. Each

node on the Composite Marking Result may be either a Marking Leaf Result, which

contains a mark value, weight value, description and feedback comment or,

recursively, another Composite Marking Result.

The first two extensions may be invoked in either order. The extension which solves

the problem of assessing multiple, mutually exclusive solution cases within the

student solution, runs features tests for the common features and each case of the

mutually exclusive features identified by the marking scheme. A Composite Marking

Result is generated upon each run-through of the features test tool

DiagramFeaturesTool. Each of the Composite Marking Results contains a

Marking Leaf Result for each features test specified in the test case. If there are no

mutually exclusive solution cases then only one Composite Marking Result is

generated, that for the common features.

The extension for aesthetic layout marking runs the aesthetic measures and the

structural measures specified in the configuration. Two Composite Marking Results

are added to the feedback: the first contains the Marking Leaf Result feedback

generated by the aesthetic measures, whilst the second contains that generated by the

structural measures. If no structural measures are invoked then this Composite

Marking Result is empty.

The extension for the prioritisation and truncation of student feedback is invoked

last. The PrioritiseTruncateTool is configured using four legal Concrete

Strategies, each of which is applied in order. The first strategy prioritises the mutually

exclusive solution cases to decide which mutually exclusive solution case is most

relevant to the student solution. Depending upon the strategy, all other mutually

exclusive solution cases may be subsequently ignored by pruning the appropriate

Composite Marking Result branches. The second and third strategies prioritise the

feedback branches provided by the features tests and the aesthetic layout tests

respectively. The final strategy truncates the feedback.

The resultant Composite Marking Result, modified at each stage, is presented to the

student using CourseMarker’s existing feedback mechanism.

6. Designing the extensions 154

6.1.4 Summary

This section provided an overview in words of the design strategy for each of the

three courseware extensions proposed within this work. The assessment of the

aesthetic layout of student diagrams is accomplished through distinguishing

between aesthetic measures, which are domain-independent and structural

measures, which are domain-specific. An interface is defined to ensure compatibility

between the measures. The assessment of student solutions where multiple model

solutions are viable, containing mutually exclusive solution cases, is accomplished by

identifying the commonality and variation between model solutions. Common

features are assessed using a first solution case, while subsequent solution cases

assess the remaining features within each model solution. The fundamental

difference between solution cases is identified by a harbinger. Prioritisation and

truncation of feedback is accomplished through specifying four sub-tasks. The

algorithm for each sub-task can be specified differently within context but must

implement an interface for compatibility. The design for this third extension was

based upon the Strategy design pattern.

Finally, the section provided an overview of the relationships between the three

extensions.

This section aimed to provide an overview and a sense of context to each of the

extensions. The subsequent sections within this chapter offer further detail, as

required, on the specific design decisions taken within the context of each extension,

for the purposes of ensuring that the specific requirements identified in chapter 5 are

fulfilled.

6.2 Assessing the aesthetic layout of student diagrams: resolving
the design issues

Section 6.1.2.1 outlined the approach to assessing the layout of student diagrams. The

approach is based upon implementing marking tools to assess a wide variety of

marking criteria. Broadly, these criteria can be divided into aesthetic measures,

which are domain-independent, and structural measures, which are domain-specific.

A hierarchy was described which separates the aesthetic and structural measures

into separate packages. The marking tools for each marking criteria must implement

6. Designing the extensions 155

an interface and are invoked by the exercise marking scheme. This section

demonstrates the link between the design decisions and the detailed criteria for the

extension provided in section 5.2.1. Concrete design decisions for the class hierarchy,

top-level interface, scaling mechanism, aesthetic measures and structural measures

are made explicit, such that implementation may be achieved.

6.2.1 Linking the design to the requirements

Section 5.2.1 identified the key requirement in assessing the aesthetics of student

diagrams as the task of ensuring that diagrams in many domains can be assessed in a

flexible manner. The system of aesthetic and structural measures achieves this

through considering the domain context of each marking criterion. Aesthetic

measures are domain-independent and can be called upon to assess diagrams from

many educational domains, while the educator is able to specify further, domain-

specific, criteria to be implemented as structural measures.

The design also minimises the effort required to assess the aesthetics of a new

diagram domain. Only the unique features of a diagram domain need be adapted into

structural measures. Most common attributes can be assessed by the existing

aesthetic measures, which provide a basis for all domains. It is plausible that, in

many cases, no unique layout rules exist for a new educational domain, in which

case the sole task is to specify the relative weights of the existing aesthetic measures.

Structural measures should not be regarded as indispensable for every diagram

domain — they simply act as an extension point to allow unique domain disparities

to be accommodated. Educator priorities may be expressed through changing the

relative weights of the aesthetic and structural measures. There is also the further

option of defining prioritisation strategies between aesthetic and structural measures,

as discussed in section 6.1.2.3.

The extension is integrated into the existing marking and feedback system. Aesthetic

and structural measures are CourseMarker marking tools which can be called from

within the exercise marking scheme. The measures return their results as a

CourseMarker standard marking result which can be returned to the student using

the existing feedback mechanism. In practice, the marking result will be subject to

modification by the extension to enable the delivery of prioritised, truncated

feedback before it is presented to the student, but the process is still transparent from

6. Designing the extensions 156

the student’s point of view. The aesthetic and structural measures recognise the

existing conventions for specifying diagram formats (in Daidalos) through the

mechanism of enumerating the diagram components, in the same way as existing

diagram features marking tools.

The extension provides a basis for assessing educational diagrams generically

through the implementation of aesthetic measures, while structural measures

constitute the platform for extension. Aesthetic measures for diagrams are based

upon justified criteria. Aesthetic measures are drawn from documented aesthetic

criteria in the fields of graph layout and user interface design with demonstrated

real-world application. Structural measures can be specified on a domain-specific

basis by a domain expert. The relative importance of the criteria, based upon either

research, anecdotal evidence or simply the “gut feeling” of the educator, can be

specified through the system of weighting.

6.2.2 Hierarchy

Figure 6.2 illustrates the hierarchy of the extension. The layout package is

positioned at the top-level of the hierarchy, while both the aesthetic and

structural package occupy one level beneath the layout package. The

LayoutToolInterface interface is located within the layout package.

Figure 6.2: The hierarchy of the aesthetic layout extension

Figure 6.3 illustrates the locations of Marking Tools representing both aesthetic and

structural measures. Marking tools for aesthetic measures are located within the

aesthetic package whilst marking tools for structural measures are located within

<<interface>>
LayoutToolInterface

layout

structural

contains

aesthetic

6. Designing the extensions 157

the structural package. Both aesthetic and structural measures must implement

the LayoutToolInterface interface.

Figure 6.3: Aesthetic and structural measures implement LayoutToolInterface

6.2.3 Interface

The LayoutToolInterface interface is shown in figure 6.4. The interface contains

one method which must be implemented: mark.

CohesionTool

BalanceTool

EquilibriumTool

StructuralToolA

StructuralToolB

StructuralToolX

<<interface>>
LayoutToolInterface

…

…

aesthetic structural

+mark(Drawing, int, double) : MarkingLeafResult

<<interface>> LayoutToolInterface

Figure 6.4: The LayoutToolInterface interface

The mark method requires three parameters: the student diagram to be assessed, the

relative weight and the leniency value for scaling purposes. The method returns a

MarkingLeafResult. The MarkingLeafResult is defined within the

6. Designing the extensions 158

CourseMarker marking system as an extension of TMarkingResult which

encapsulates the following data:

• markvalue, an integer representing the final, scaled mark returned by the test;

• weight, an integer representing the relative weight of the feedback result;

• description, a String holding the description of the test;

• feedback, a String holding the feedback returned by the test.

6.2.4 Scaling

Aesthetic and structural measures use scaling to translate the raw score into a

suitable mark to return embedded in the MarkingLeafResult. The linear scaling

mechanism, which has been in use since the time of Ceilidh [ZF94], requires but a

trivial modification to take into account the fact that aesthetic and structural

measures return scores between 0 and 1. Figure 6.5 illustrates the simple relationship

between the raw score and the scaled mark.

a

sca
led

 m
ar

k

raw score

100%

Figure 6.5: The relationship between the raw score and the scaled mark

The value a represents the leniency factor, the maximum raw score which the

educator feels it is reasonable to expect the student to achieve for this measure. All

raw scores above the leniency factor are scaled to 100%, while scores below the

leniency factor are scaled to a percentage of a.

6. Designing the extensions 159

6.2.5 Aesthetic measures

Section 2.3.4 introduced the concept of educational diagram aesthetics and examined

aesthetic criteria from the fields of graph layout and user interface design.

Furthermore, section 2.3.4 explained that graph layout criteria from syntactic graphs

must be shown to be justified in a real-world context before being used to assess

educational diagrams. The process of choosing aesthetic criteria, from which to

develop aesthetic measures, was based upon the notion that several requirements

must be considered:

• The criterion must not be domain-specific and must have the potential for

relevance across a wide variety of educational diagram domains;

• The criterion must be able to be expressed algorithmically such that a

numeric value in the range 0 to 1 can be assigned to a student diagram to

indicate student compliance;

• The criterion must not require the student to conduct complex modification to

their solution for the purposes of “assisting” the algorithm to be successfully

applied.

On the basis of these requirements, eleven criteria were chosen to be implemented as

aesthetic measures. Two of these, the principles of non-intersection and non-

interception, were taken from the field of graph layout. The remaining nine —

balance, equilibrium, unity, proportion, simplicity, density, economy, homogeneity

and cohesion — were taken from the field of user interface design. The criteria fulfil

the first two requirements completely. The third requirement is not fulfilled by

several of the criteria taken from the field of user interface design, which requires the

student to modify their solution slightly, prior to submission.

Subsequent sub-sections document the process of transforming these criteria into

aesthetic measures. Section 6.2.5.1 documents the process of designing the aesthetic

measures to assess non-intersection and non-interception, including the need to

identify a suitable formula, provide a clear design for the class, scale the raw score

and conform to the LayoutToolInterface interface. Existing formulae exist for

calculating compliance to the criteria taken from graphical user interface design.

Section 6.2.5.2 documents the process of creating an aesthetic measure to assess the

6. Designing the extensions 160

property of equilibrium, while section 6.2.5.3 provides an overview of creating the

other, similar aesthetic measures. Finally, section 6.2.5.4 describes and justifies the

student modifications which must be made if several of the measures inspired by

graphical user interface design are to be effectively measured and demonstrates that

the required modification is insufficiently major to disrupt student learning.

6.2.5.1 The aesthetic measures for non-interception and non-intersection

The first necessary step in the process of designing an aesthetic measure is the

identification of an appropriate method to determine compliance with the criterion

numerically. Non-interception, as discussed in section 2.3.4.2, refers to minimising

the number of lines in the diagram which cross over other lines. Non-intersection

refers to minimising the number of nodes which intersect other nodes. In this case

equation 6.1 is sufficient to determine non-interception, where c is the number of

valid lines that intercept another and l is the number of valid lines on the canvas.

l
cM erceptionnon −=− 1int

Equation 6.1: The non-interception measure

<<interface>>
LayoutToolInterface

+mark(Drawing, int, double) : MarkingLeafResult
- noninterception(Drawing) : double
- lineCrossed(Figure, Drawing) : boolean
- linesCross(Figure, Figure) : boolean

NonInterceptionTool

Figure 6.6: The design of the non-interception tool

The design for the NonInterceptionTool is simple. The linesCross method

returns true if two line figures cross each other. The lineCrossed method returns

true if a line is crossed by any other line in the drawing by repeatedly invoking

linesCross. The noninterception method counts the number of lines and the

number of lines which are crossed before applying equation 6.5 to obtain the raw

score. The mark method, which must be defined in order to implement the

LayoutToolInterface interface, invokes noninterception to obtain the raw

score, applies scaling to obtain the mark and calls the MarkingLeafResult

6. Designing the extensions 161

constructor, supplying the scaled mark and weight, the internal description and the

associated feedback before returning the MarkingLeafResult. Figure 6.6 presents

an overview of the NonInterceptionTool using this design.

Similarly, the design of the non-intersection tool is based upon equation 6.2, in which

 is the number of nodes that intersect at least one other node, while t is the total

number of valid nodes on the canvas. Non-intersection refers to minimising the

number of valid nodes in the diagram which overlap. The NonIntersectionTool

operates similarly to the NonInterceptionTool, and is summarised in figure 6.7.

o

t
oM tionernon −=− 1secint

Equation 6.2: The non-intersection measure

<<interface>>
LayoutToolInterface

+mark(Drawing, int, double) : MarkingLeafResult
- nonintersection(Drawing) : double
- figOverlaps(Figure, Drawing) : boolean
- figsOverlap(Figure, Figure) : boolean

NonIntersectionTool

Figure 6.7: The design of the non-intersection tool

6.2.5.2 The aesthetic measure for equilibrium

This section outlines the process of designing the aesthetic measure for equilibrium.

The process of designing the aesthetic measures for balance, unity, proportion,

simplicity, density, economy, homogeneity and cohesion was very similar to the

process of designing the aesthetic measure for equilibrium; section 6.2.5.3 discusses

the design process of these aesthetic measures, based upon the process described

here.

Table 2.3 has previously given a brief description of the equilibrium criterion as “The

difference between the centre of mass of the elements and the physical centre of the screen /

canvas”. Ngo et al [NTB00] provide an extended definition of equilibrium, together

with formulae to enable equilibrium to be calculated. These formulae are reproduced

here as equations 6.3, 6.4 and 6.5.

6. Designing the extensions 162

2
1 yx EMEM

EM
+

−=

()

∑

∑ −
= n

i
iframe

n

i
cii

x

anb

xxa
EM

2

()

∑

∑ −
= n

i
iframe

n

i
cii

y

anh

yya
EM

2

Equation 6.3:
Equilibrium

Equation 6.4: x-axis
equilibrium component

Equation 6.5: y-axis
equilibrium component

In equations 6.3, 6.4 and 6.5, EM is the equilibrium measure, is the x-axis

equilibrium component, is the y-axis equilibrium component, (and

 are the co-ordinates of the centres of object i and the frame, is the area of

object i , and are the width and height of the frame and n is the number

of objects on the frame.

xEM

yEM)yx ,

()yx , a

b h

ii

cc i

frame frame

The design process for the aesthetic measure for equilibrium is similar to that for the

non-interception and non-intersection measures discussed in section 6.2.5.1, but the

need to develop mathematical formulae to enable the calculation of the measure

numerically is obviated by the existence of such formulae in the existing literature. A

mark method calls a method equilibrium which invokes methods to calculate the

x- and y-axis equilibrium components, and so on. The design of the aesthetic

measures for criteria based upon user interface design principles is thus rendered a

straightforward, if laborious, process.

The Figure objects embedded in each Drawing object can be accessed by means of

a FigureEnumeration. Each Figure contains ‘getter’ methods for attributes

including its centre and size. Consequently, the only modification required to

complete the required calculation is the specification of the diagram’s border. This

procedure, and the pedagogical issues surrounding it, is outlined in section 6.2.5.4.

6.2.5.3 The aesthetic measures for balance, unity, proportion, simplicity,
density, economy, homogeneity and cohesion

The aesthetic measures for balance, unity, proportion, simplicity, density, economy,

homogeneity and cohesion were developed in the same way as the aesthetic measure

for equilibrium. Mathematical formulae allowing these measures to be determined

and compliance expressed numerically are already available in the literature. Ngo et

6. Designing the extensions 163

al [NTB00] provide an overview of interface aesthetics. The aesthetic measures for

balance, unity, proportion, simplicity, homogeneity and cohesion were based around

the equations presented in [NTB00]. The aesthetic measures for density and economy

were based upon the equations published in [NB00]. Section 6.2.5.4 justifies the

diagram modifications which must be made by the student if several of the measures

inspired by graphical user interface design are to be effectively measured.

6.2.5.4 The need for students to adapt their solutions

Section 3.3 emphasised that a key benefit of the DATsys framework and the Theseus

student diagram editor was the ability to allow the student to draw their solution

onto a canvas in an interactive and intuitive way. It would have been possible for

students to specify their diagram solution using other means, for example a

proprietary text-based notation entered through a text editor, but this would have

created an extra layer of abstraction between the student and the solution, hence

unnecessarily hindering the learning process. Section 3.1.2.1 described the Kassandra

system, where students were indeed expected to adapt their solutions to the

requirements of the marking system.

It is clear that the level of disruption to the student learning process is related to the

amount of modification which the student is required to perform. The student

learning process will also be impacted less if the modification can be understood

easily by the student, rather than involving requirements which are not understood

by the student and are viewed as “abstract”.

y

x

Figure 6.8: The co-ordinate system in DATsys diagram editors

In order for the aesthetic measures based upon graphical user interface design

principles to be successfully calculated, it is necessary to define the boundaries of the

student diagram. This is necessary if certain properties of the diagram, such as its

6. Designing the extensions 164

centre, are to be calculated. Within the DATsys framework, drawings are allowed an

unbounded size, based upon a grid system of co-ordinates, as illustrated in figure

6.8. Students can use both scroll and zoom facilities to traverse large diagrams. One

possible solution was to impose a canvas size upon the student for each exercise —

this solution, however, is prescriptive to the student and fails to take into account

that different diagram sizes may be required for different model solutions. The

solution adopted, therefore, was to allow the student to specify the boundaries of

their own diagrams by drawing a BorderRectangle around their solution, prior to

submission. The extent of the student modifications is illustrated in figure 6.9.

Figure 6.9: Original student solution and student solution with modification

In figure 6.9 an illustrative student solution is shown both before and after

modification. For the student to make the modification, they must select the

BorderRectangle tool from the library and use it to draw the rectangular

boundaries of their solution. Only figures within the boundaries of the

BorderRectangle will be considered by the marking process. This feature also

allows students to leave reminder notes for their own purposes (for example, to

remind them of why they chose features in their solution should they choose to view

6. Designing the extensions 165

their solution again at a later date), by simply placing the comments or other objects

outside the boundaries of the BorderRectangle, where they will be ignored for

marking purposes. Since this modification is simple, easy to understand theoretically

and can be carried out within the student environment Theseus, it is clear that it is

unlikely to impact upon the student learning process.

6.2.6 Structural measures

The design process for structural measures is precisely the same as for aesthetic

measures. Structural measures must implement the LayoutToolInterface

interface, must be based upon a criterion that can be expressed algorithmically such

that a numeric value in the range 0 to 1 can be assigned to a student diagram to

indicate student compliance and must not require the student to conduct complex

modification to their solution for the purposes of “assisting” the algorithm to be

successfully applied. Structural measures are invoked by the exercise marking

scheme is the same way as aesthetic measures.

The primary difference between structural and aesthetic measures is pedagogic.

Structural measures should measure some criterion that is domain-specific. Only

exercises within the domain associated with the structural measure would invoke the

measure in their marking scheme. The MarkingLeafResult returned by a

structural measure is assigned to a different MarkingCompositeResult to those

returned by aesthetic measures to allow the PrioritiseTruncateTool to

distinguish between the two when prioritising and truncating student feedback.

Many domains will not require structural measures to be designed and implemented

since there may be no domain-specific layout rules, allowing the layout of student

diagrams within the educational domain to be assessed adequately by the aesthetic

measures alone. Facility for structural measures is provided as an extension point to

allow the layout of student diagrams in non-typical educational diagram domains to

be addressed by educators and developers at a later date. If a new educational

diagram domain does not require structural measures to be assessed, then

development effort has been successfully minimised. If an educational domain

requires structural measures, then the task of the educator is to specify one or more

structural measures which can be implemented by the developer. The developer

creates one class for each structural measure, which must be located in the

6. Designing the extensions 166

layout.structural package and which must implement the

LayoutToolInterface interface. The mark method of the class is then invoked

within the marking scheme of exercises within the educational diagram domain.

6.2.7 Summary

This section outlined the specific design decisions made to allow the implementation

of the design outlined in section 6.1.2.1 to occur. The design decisions were linked to

the detailed requirements and a hierarchy of packages and classes was defined. The

interface which all aesthetic and structural measures must implement was defined

and the design of the aesthetic measures was illustrated at length. Finally, the design

similarity of structural and aesthetic measures was explained and the difference in

usage emphasised. Section 6.3 outlines the specific design decisions made to allow

the assessment of solutions with mutually exclusive alternate solution cases to occur.

6.3 Assessing solutions with mutually exclusive alternate solution
cases: resolving the design issues

Section 6.1.2.2 outlined the approach to assessing solutions with mutually exclusive

alternate solution cases. The approach is based upon identifying the common and

uncommon elements within the acceptable model solutions. Features tests based

around these elements are then constructed in features test cases. The 0th features test

case contains all features test cases based around the common elements, while

subsequent features test cases are based around those uncommon elements present

in a model solution. Therefore, if model solutions have been designated acceptable

by the educator, then features test cases will be required.

x

1+x

Although the functionality introduced by this extension is key to allowing the

formative assessment of student coursework in free-form, diagram-based domains,

the design and implementation process for this extension was the least demanding of

the three extensions discussed in this work. The design is able to build upon existing

functionality within the CourseMarker marking system. This section demonstrates

the link between the design decisions and the detailed requirements for the extension

presented in section 5.2.2. The process of implementing the features test cases using

the generic DiagramFeaturesTool and invoking the test cases from within the

marking scheme is described. The key process of identifying suitable harbingers

6. Designing the extensions 167

within each alternate model solution, and defining a distinction test based upon each

harbinger, is outlined. Finally, possible methods of distinguishing between solution

cases in order to prioritise feedback, after the marking process has been undertaken,

are proposed and the decision to incorporate this stage of the marking process as a

strategy within the PrioritiseTruncateTool is justified.

6.3.1 Linking the design to the requirements

Section 5.2.2 outlined the requirements for assessing solutions with mutually

exclusive alternate solution cases. The way in which the alternate solution cases arise

from the acceptability of multiple model solutions was outlined and the need to

specify the common and uncommon features across the model solutions was

explained and the requirements in the areas of CBA, educational diagrams and

formative assessment were shown to arise from this situation.

The requirement for the exercise developer to specify the different solution cases is

accomplished by allowing the specification of the common features, and the

uncommon features tests associated with each model solution, to be achieved

through the use of separate features test files. The specification of features tests has

been common to CBA since the days of Ceilidh. Section 4.2 provided a description of

features testing within the context of diagram-based CBA using CourseMarker. The

features tests can be specified using the four generic features expressions exist, exact,

connection and exactConnection which are implemented within the generic

DiagramFeaturesTool. It is possible to extend the tool to introduce new features

expressions as required, but this does not constitute part of the extension since the

ability to create new marking tools is a historic ability of Ceilidh and CourseMarker

[Sp06]. The novelty of the extension, and the focus here, lies in the ability to allow

alternate cases of feature tests to be assessed, rather than in the specification of the

features tests themselves. The DiagramFeaturesTool allows generic features tests,

such as checking for the existence of nodes and the links between them, to be

conducted in order to fulfil the requirement that the exercise developer should be

able to specify assessment criteria across domains with a minimum of development

effort and maximum consistency.

The extension is integrated into the marking and feedback system. Marking tools can

be invoked by the exercise marking scheme. They return feedback by returning

6. Designing the extensions 168

marking results. Transparency from the student perspective is achieved by returning

the marking result using the existing feedback delivery system. Integration with the

PrioritiseTruncateTool allows raw feedback to be modified and truncated

through the parameterisation of one tool, minimising development effort for the

exercise developer and reducing the need for parallel tools and development

hierarchies.

The extensions provide a basis for the assessment of a wide variety of educational

diagram domains through the use of a generic mechanism to allow marking tools,

such as the domain-independent DiagramFeaturesTool, to be executed on

multiple occasions. This allows the features tests to be assessed independently of

context and MarkingLeafResult objects to be composed for later examination

within the context of the PrioritiseTruncateTool. The DiagramFeaturesTool

allows educators to specify criteria for assessment as features tests. The system for

specifying weighting to account for measures of unequal importance survives intact

from previous CourseMarker features testing standards, but the usage is changed to

reflect formative, rather than summative, assessment priorities.

The task of determining which model solution the student is attempting to attain is

solved by the first strategy of the PrioritiseTruncateTool. This strategy is

examined in section 6.4. Again, the design decision to integrate this functionality into

the PrioritiseTruncateTool minimises development effort on the part of the

exercise developer. It also facilitates the requirement to achieve compatibility

between the feedback provided by this extension and the mechanism to allow the

prioritisation and truncation of student feedback outlined in section 6.4.

6.3.2 A tool for generic features testing of diagrams

Section 6.3.1 explained that the DiagramFeaturesTool is not a key component of

the extension and, furthermore, pointed out that any other CourseMarker marking

tool which supported features-based testing in a manner compliant with the domain

to be assessed could be substituted in place of the DiagramFeaturesTool. It is still

necessary to provide a brief overview of the DiagramFeaturesTool, however, for

several key reasons. Firstly, the DiagramFeaturesTool is generic. Therefore, it

provides a basis for features testing to be conducted across a wide variety of

educational diagram domains. It is in keeping with the design decisions taken

6. Designing the extensions 169

throughout this work that the commonality across domains be used to provide a basis

for formative assessment across domains, while still allowing future flexibility by

allowing extensions to be made by developers. Secondly, providing a platform for

features testing is an essential prerequisite if the assessment of alternate features

testing cases is to occur.

The DiagramFeaturesTool is based closely upon the

EntityRelationshipTool used in the initial experiment described in Chapter 4.

However, where the EntityRelationshipTool was constructed on an ad hoc

basis, within a strict time frame, the DiagramFeaturesTool benefits from a clear

design perspective which is intended to guide developers in the process of creating

their own features testing tools, should this be required in the future.

<<abstract class>>
TMarkingTool

+mark(String, String) : TMarkingResult
- exist(Drawing, String, String) : int
- exact(Drawing, String, String) : int
- connection(Drawing, String, String) : int
- exactConnection(Drawing, String, String) : int
- getFigure(Drawing, String) : Figure
- getExactFigure(Drawing, String, String) : Figure
- findFigure(Drawing, String) : int
- findExactFigure(Drawing, String, String) : int
- findConnection(Drawing, String, String, String) : int
- findExactConnection(Drawing, String, String, String,

String, String) : int

DiagramFeaturesTool

Figure 6.10: The DiagramFeaturesTool

The DiagramFeaturesTool extends the abstract class TMarkingTool. Several

utility methods are present: findFigure returns the number of figures within a

drawing which match the given figure name, getFigure returns the first figure

which matches the given figure name, whilst findExactFigure and

getExactFigure perform analogous functions based upon both a figure name and

displayed text. findConnection and findExactConnection return the

connection lines specified by name, and name and display text, respectively.

Methods exist, exact, connection and exactConnection generate an

enumeration of figures based upon the student diagram and return the number of

6. Designing the extensions 170

times the specified condition was matched. Finally, the public method mark acts to

draw the functionality together. The String of the features test is parsed, with

relevant information stored in variables. A case statement is used to call exist,

exact, connection and exactConnection, dependent upon context and then to

check if the feature test has been met, based upon the five accepted operators

described in section 4.2. Based upon this, a new TMarkingResult is created and

returned. Figure 6.10 shows the design of the DiagramFeaturesTool.

The DiagramFeaturesTool is invoked by the exercise marking scheme. The

features tests are as described in section 6.1.2.2.

6.3.3 Designing the process of assessment for mutually exclusive
solution cases

The assessment of student solutions in which multiple model solutions are deemed

acceptable by the educator is a two stage process. The first stage involves assessing

each of the features tests cases using a suitable marking tool such as the

DiagramFeaturesTool. The second stage involves using a strategy to decide

which of the model solutions the student is attempting to achieve and modifying the

feedback accordingly. This section examines the first stage of this process. The

second stage of the process is discussed in section 6.3.4, with the resultant design

decisions being used as a SolutionCaseStrategy in section 6.4.

0FT

1FT

…

MarkingCompositeResult
FeaturesFeedback0

MarkingCompositeResult
FeaturesFeedback1

Marking
Tool

(e.g. Diagram
Features
Tool)

MarkingCompositeResult
FeaturesFeedbackx

…

xFT

Figure 6.11: Marking multiple features test cases

Figure 6.11 illustrates the process of assessing multiple feature test cases. The

marking tool, for example the DiagramFeaturesTool, is invoked repeatedly by

the exercise marking scheme. A new MarkingCompositeResult is generated for each

6. Designing the extensions 171

features test case. Within each MarkingCompositeResult, a

MarkingLeafResult node is used to store the mark, weight, description and

feedback returned by the marking tool for each individual features test within the

test case. The description of each MarkingCompositeResult is set to allow the

common features test set, and each of the mutually exclusive solution cases, to be

identified when the process of comparing the results generated by each of the

solution cases is undertaken by the PrioritiseTruncateTool.

6.3.4 Harbingers and the distinction test

Section 6.1.2.2 has already discussed the role of harbingers, solution elements or

combinations of elements which exist in only one model solution. Harbingers are used

to construct the distinction test for each mutually exclusive solution case. The

distinction test is a features test which should only succeed if the harbinger elements

are found. This technique provides valuable assistance in the process of ascertaining

which of the model solutions the student is attempting to attain. Indeed, some

strategies to distinguish between solution cases may rely entirely upon the detection

of harbingers through the distinction test.

The relative importance of features tests is generally indicated through the system of

weighting. The distinction test, however, may or may not be educationally important

to the student learning process. It is, instead, useful because it is useful to the features

marking process within the context of assessing mutually exclusive solution cases.

For this reason, the identification of the distinction test is carried out using a

mechanism unconnected with the weighting system. In each mutually exclusive

solution case, the distinction test is always the first features tests within the test set.

This convention is carried through the marking tool; the feedback generated by the

distinction test will always be held by the first MarkingLeafResult held within

the MarkingComposite result for the mutually exclusive test case. Components of

the DiagramFeaturesTool which implement the SolutionCaseStrategy may

choose to use this information when deciding between solution cases. The common

features tests, , do not have associated harbinger elements and so a distinction test

is inappropriate.

0FT

6. Designing the extensions 172

6.3.5 Strategies for distinguishing between mutually exclusive
solution cases

Given the disparity between educational diagram domains, it is unrealistic to expect

that any one strategy can be successful in a generic way with regard to the

assessment of mutually exclusive solution cases. This work has assumed that the fact

that multiple model solutions may be feasible as a response to a given problem

specification indicates that multiple conventions within the domain may be applied

to solve the problem in varying ways, or that conventions may be inconsistently

understood or applied within the domain in general. Indeed, since educational

diagram domains attempt to teach principles to design problems to which there

exists no single, deterministic solution, then this problem is likely to be permanent. If

the occurrence of multiple model solutions is due to disparity within a domain, then,

similarly, it is unrealistic to expect that similarity in the learning process across

domains can be achieved.

Expert educators rely on domain knowledge to ascertain which model solution a

student was attempting to construct. Within a CBA context, therefore, it is necessary

to allow the strategy to distinguish between mutually exclusive solution cases to be

determined by an expert.

However, the approach of this work has been to provide a basis for assessment, while

allowing extension by subsequent developers. In this case, therefore, the following,

simple, algorithm will be used as the basis for distinction:

• IF one distinction test succeeds (returns a mark > 0) AND all others fail

(return 0) then identify the solution case associated with the successful

distinction test;

• ELSE identify the distinction test with the highest average mark for features

tests overall;

The concrete design of this strategy will be expanded in section 6.4, within the

context of designing the PrioritiseTruncateTool.

6. Designing the extensions 173

6.3.6 Summary

This section outlined the specific design decisions made to allow the implementation

of the design outlined in section 6.1.2.2 to occur. The design decisions were linked to

the detailed requirements. The design is able to build upon existing functionality

within the CourseMarker courseware. The design of DiagramFeaturesTool tool,

for the features testing of diagram in a domain-independent way, was demonstrated

and the process of repeatedly invoking the tool through the exercise marking

scheme, subsequently storing the feedback results in a separate

MarkingCompositeResult for each features test case, was outlined. The decision

to incorporate the process of distinguishing between mutually exclusive solution

cases into the PrioritiseTruncateTool was justified and the importance of

harbingers and the distinction test to the approach was emphasised. It is unrealistic to

expect any one strategy for distinguishing between mutually exclusive solution cases

to be successful across educational diagram domains, so a basic strategy was

proposed to provide a default basis on which to operate, while the potential for later

expansion was emphasised. The process of implementing such a strategy is outlined

in section 6.4, which documents the design of the PrioritiseTruncateTool for

the prioritisation and truncation of student feedback.

6.4 Prioritising and truncating student feedback: resolving the
design issues

Section 6.1.2.3 outlined the approach to the prioritisation and truncation of student

feedback. This process was divided into four sub-tasks: examining the features

feedback and deciding what course of action to take with regard to that provided by

the mutually exclusive solution cases, prioritising all features test feedback,

prioritising all layout feedback generated by the aesthetic and structural measures

and, finally, truncating the feedback prior to its delivery to the student.

The design of the PrioritiseTruncateTool is based upon the Strategy design

pattern. The tool acts as a context to four strategies, one for each of the sub-problems.

Each strategy acts as an interface; concrete strategies to solving each of the four sub-

problems must implement the interface associated with the sub-problem. The

interfaces are used to define the rules associated with concrete strategies so that the

6. Designing the extensions 174

PrioritiseTruncateTool can operate smoothly using a variety of implemented

strategies.

This section begins by linking the design decision to the detailed requirements for

the extension set out in section 5.2.3. The section then establishes the design of the

PrioritiseTruncateTool, followed by the design for each of the interfaces

responsible for regulating the strategies for each sub-problem: respectively, those

interfaces representing SolutionCaseStrategy, FeaturesSortStrategy,

AestheticsSortStrategy and TruncationStrategy requirements.

6.4.1 Linking the design to the requirements

Section 5.2.3 outlined the requirements for prioritising and truncating feedback to

students. The central criteria were to define a mechanism whereby the prioritisation

followed by the truncation of the feedback could be achieved. Furthermore,

flexibility for the educator and developer was required such that prioritisation and

truncation could be configured to preference. The design achieves these

requirements by outlining four sub-problems and allowing the strategy used to solve

the sub-problems to be defined by the educator and implemented by the developer.

The first three of the sub-problems are associated with the prioritisation of feedback

comments, whilst the fourth sub-problem is associated with the truncation of the

comments based upon prioritisation.

Requirements from the field of CBA were identified in terms of ensuring

compatibility with the existing CourseMarker marking and feedback systems. In fact,

the tool does not affect the functioning of the CourseMarker marking system in any

way since it is designed to operate upon the feedback generated by the marking tools

after their operation has been completed. The PrioritiseTruncateTool which

acts as the context for the design acts transparently within the context of providing

feedback. Within CourseMarker, the generation of feedback is associated with

marking tools which are invoked through the exercise marking scheme. The delivery

of the generated feedback to the student also occurs through the marking scheme.

The PrioritiseTruncateTool is invoked between these two actions. The new

course of events sees the feedback being generated, modified by the

PrioritiseTruncateTool and then returned to the student by CourseMarker in

the conventional manner.

6. Designing the extensions 175

6.4.2 The PrioritiseTruncateTool

The PrioritiseTruncateTool acts as the context for each of the strategies which

represent the four sub-problems. The PrioritiseTruncateTool contains one

method, streamline, which accesses the student feedback object together with

objects representing concrete implementations of each of the four strategies, through

parameterisation. The design uses the approach of having the context (the

PrioritiseTruncateTool) pass the data as parameters to each of the strategy

operation since this keeps the context decoupled from each of the strategies. Concrete

strategies extend the SolutionCaseTool, FeaturesSortTool,

AestheticsSortTool and TruncationTool respectively. The relationships

between these tools and the SolutionCaseStrategy, FeaturesSortStrategy,

AestheticsSortStrategy and TruncationStrategy interfaces is outlined in

section 6.4.3. The streamline method passes the feedback object to each concrete

strategy in turn before finally returning the student feedback. The design for the

PrioritiseTruncateTool is summarised in figure 6.12.

+streamline(MarkingCompositeResult, SolutionCaseTool,
FeaturesSortTool, AestheticsSortTool,
TruncationTool) : MarkingCompositeResult

PrioritiseTruncateTool

Figure 6.12: The PrioritiseTruncateTool

6.4.3 The strategy interfaces and abstract classes

The design of the strategy interfaces remains simple to allow maximum flexibility to

the educator and developer. One design plan might have been to have the interfaces

define specific methods for each of the operations which the strategy might

reasonably expect to overcome (for example, the SolutionCaseTool might be

expected to define methods to operate on marking results with only one solution

case). However, this design would necessitate an inflexible design for the

PrioritiseTruncateTool, which would be responsible for distinguishing

between each plausible scenario based upon an examination of the marking result,

and unnecessary dependency between the PrioritiseTruncateTool, which acts

6. Designing the extensions 176

as a context for the strategies, and the individual strategies themselves. The result

would be an inflexible system with limited development flexibility.

To maximise flexibility, each interface requires that only one method be

implemented: modify. The modify method is parameterised by the current feedback

result, the MarkingCompositeResult, and returns a new

MarkingCompositeResult representing the feedback after the concrete strategy

has been applied. Each interface has an associated abstract class. These abstract

classes must be extended by the concrete marking results in order that

parameterisation of the PrioritiseTruncateTool may occur, thus enforcing

implementation of the interfaces. The strategy interfaces, together with the associated

abstract classes, are illustrated in figure 6.13.

<<interface>>
SolutionCaseStrategy

+modify(
MarkingCompositeResult) :
MarkingCompositeResult

<<abstract class>>
SolutionCaseTool

<<interface>>
AestheticsSortStrategy

+modify(
MarkingCompositeResult) :
MarkingCompositeResult

<<abstract class>>
AestheticsSortTool

<<interface>>
FeaturesSortStrategy

+modify(
MarkingCompositeResult) :
MarkingCompositeResult

<<abstract class>>
FeaturesSortTool

<<interface>>
TruncationStrategy

<<abstract class>>
TruncationTool

+modify(
MarkingCompositeResult) :
MarkingCompositeResult

Figure 6.13: Strategy interfaces for the four sub-problems

6. Designing the extensions 177

6.4.4 Providing a basis

This work has consistently argued that, while flexibility in extension for educators

and developers must be a high priority in the design of the extensions proposed by

this work, it is also necessary to provide a basis for assessment to occur through the

implementation of default assessment behaviour. Section 6.3.5 outlined a concrete

strategy which could be used as the basis for solving the first sub-problem in the

prioritisation and truncation of student feedback. It is, however, necessary to propose

approaches to solving each of the three remaining sub-problems which can be used

in implementation.

A concrete features sort strategy will be implemented which ignores the distinction

between the common features test feedback and the feedback from the remaining

mutually exclusive solution case. The two MarkingCompositeResult branches

will be merged into one and sorted according to the prioritisation equation presented

as equation 6.6.

A concrete aesthetics sort strategy will be implemented similarly. Feedback from

aesthetic measures and structural measures will be combined and sorted by priority

according to equation 6.6.

A concrete truncation strategy will be implemented where the highest priority

features feedback comments will be retained along with the highest priority

aesthetic layout feedback comments. The values and m can be specified

through parameterisation within the exercise marking scheme. All other feedback

results will be pruned from the feedback tree.

n

n

m

m

Equation 6.6 relates the priority , of a MarkingLeafResult to its weight

and percentage mark . Priority increases in proportion to both the weight of the

comment and the level of error of the student.

P x w

()xxx mwP −= 100

Equation 6.6: Calculating the priority of a MarkingLeafResult

6. Designing the extensions 178

6.4.5 Summary

This section outlined the specific design decisions made to allow the implementation

of the design outlined in section 6.1.2.3 to occur. The design decisions were linked to

the detailed requirements. The design of the PrioritiseTruncateTool was

defined, and a simple definition was provided and justified for each of the four sub-

problems associated with the process of prioritising and truncating the feedback

provided to students. A basis for implementing examples of concrete strategies to

solve each of the four sub-problems was described.

6.5 Summary

This chapter outlined the design for the three extensions to the CBA courseware

proposed by this work. Section 6.1 provided a high-level overview of the design for

each of the extensions in words, and illustrated the high-level integration between

the extensions. Section 6.2 outlined the design for the extension to allow the aesthetic

layout of student diagrams to be assessed. A package structure was introduced for

aesthetic and structural measures and the design of the measures themselves

explained. A number of criteria from the fields of user interface design and graph

layout were chosen to be implemented as aesthetic measures. Section 6.3 outlined the

design for the extension to allow mutually exclusive solution cases to be assessed. A

generic diagram features tool was described and the process of repeatedly invoking

the features tool for each features test cases was described. The features test cases

themselves were discussed and the importance of defining a distinction test for

mutually exclusive solution cases based upon harbingers in the different model

solution versions was emphasised. Section 6.4 outlined the design for the extension

to undertake the prioritisation and truncation of student feedback. The process was

divided into four sub-problems and a strategy interface was presented for each sub-

problem. Concrete strategies for each of the four sub-problems were presented.

Chapter 7 provides an overview of implementation issues based upon the design

decisions presented in this chapter, together with a summary of guidance for the use

of teachers and educators, whose scope was identified in section 5.2.4.

Chapter 7

Issues in implementation and
advice for educators and developers

7. Issues in implementation and advice for educators and developers 180

Introduction

This chapter provides an overview of the issues arising from the implementation of

the extensions and their integration into the CourseMarker architecture. The chapter

also presents advice useful for developers and educators in the formative assessment

of new domains and the setting of exercises, which builds upon existing theory and

the documentation available for CourseMarker / DATsys.

Section 7.1 considers the implementation issues. The objectives of the

implementation are outlined, software quality is considered and issues arising from

integrating the extensions into the existing CourseMarker architecture are explained.

A brief overview of the implementation of each of the extensions is provided. For

each extension, the point of integration into CourseMarker is defined and reference is

made to the design described in chapter 6.

Section 7.2 presents advice for developers and educators in developing CBA for

formative assessment in new diagram-based domains and the setting of exercises.

References to existing development materials, such as CourseMarker documentation,

are provided and the differences between developing traditional materials for

CourseMarker for summative assessment purposes and developing formative

assessment materials for CourseMarker / DATsys which use the extensions provided

as a result of this work are explained.

7.1 Implementation Issues

Chapter 6 documented the design process for each of the extensions and linked the

design to the detailed requirements specification. This section outlines the key

elements in the implementation of the design. Section 7.1.1 outlines the objectives in

terms of the requirements which the implementation must fulfil. Section 7.1.2

discusses the issues arising from implementing the system as a set of extensions

integrated into the CourseMarker architecture. Finally, sections 7.1.3 to 7.1.5 describe

how the designs for each of the three extensions were implemented and the points of

integration into CourseMarker.

7. Issues in implementation and advice for educators and developers 181

7.1.1 Objectives

The main objective of this research is to investigate the feasibility and usefulness of

automating the process of providing formative assessment in free-form, diagram-

based domains using CBA courseware. Implementing the design is fundamental if

the feasibility and usefulness is to be evaluated. The purpose of the implementation

is to meet the following goals:

• To implement the extension to allow student diagrams to be assessed in terms

of their aesthetic layout;

• To implement the extension to allow features testing to accommodate

mutually exclusive solution features;

• To implement the extension to allow the prioritisation and truncation of

student feedback;

• To address software quality issues;

• To integrate the extensions into CourseMarker, which provides a realistic,

extensible framework for the full lifecyle of CBA.

The first three goals will be addressed in section 7.1.3 to 7.1.5 respectively.

The existing CourseMarker infrastructure has proven reliability, maintainability,

portability and extensibility. The marking mechanism for CourseMarker is stable and

integrated with course management, assessment material delivery, feedback and

other facilities. Section 7.1.2 argues that integration into the CourseMarker

architecture ensures that key software quality issues such as reliability, robustness,

maintainability and portability are addressed automatically, as long as the

integration is successful and the design of the extensions themselves is sound. For

each of the extensions, therefore, it is necessary to demonstrate that the required

functionality has been implemented, that the extension can be maintained and

extended in accordance with software quality principles.

7. Issues in implementation and advice for educators and developers 182

7.1.2 Integration into CourseMarker

CourseMarker provides an existing architecture, with a design emphasising explicit

extension points, interfaces and standards to which components integrated into the

architecture must conform. CourseMarker was implemented in Java 2, a language

which is simple, object-oriented, distributed, interpreted, robust, secure,

architectural-neutral, portable, high performance, multi-threaded and dynamic

[GJS97]. Tsintsifas [Ta02] argued that choosing Java 2 as the implementation

language would allow the development of a “better deliverable”.

The design for the extensions outlined in chapter 6 made explicit its intention to

integrate the extensions into the existing courseware architecture. Therefore, the

design process was influenced by the need for integration from the outset.

Integrating the extensions into CourseMarker has several major advantages. Key

CBA concepts such as the storage of administration data, security of access and the

delivery of materials and feedback, are already implemented as part of a proven

design. Since these components have been successfully tested and repeatedly used in

a live situation already, the design of the extensions was able to be simplified to the

extensions themselves and their integration with the surrounding courseware. The

other requirements of a CBA system, which were already implemented, could be

removed from consideration. This is an advantage that carries through to the

implementation stage.

Designing extensions to existing systems can be restrictive to the design process. In

this case, however, the effect was minimised due to the fact that CourseMarker was

designed with extensibility as a primary requirement.

For these reasons, the implementation of the extensions from their design was

straightforward. Where implementation problems did occur, they were usually

trivial.

7.1.3 Assessing the aesthetic layout of student diagrams:
implementing the design

The hierarchy of packages described in section 6.2.2 is implemented within the

package of marking tools, com.ltr.cm.marking.tool. The

LayoutToolInterface therefore assumes the position at:

7. Issues in implementation and advice for educators and developers 183

• com.ltr.cm.marking.tool.layout.LayoutToolInterface

The aesthetic and structural packages reside within the layout package. The

11 aesthetic measures, such as NonInterceptionTool and EquilibriumTool,

are placed within the aesthetic package. The structural package is initially

empty. The Figure interface, in com.ltr.daidalos.framework, imposes

methods for all Figure objects which return the “size”, “center” and other attributes

of the object. These method calls are the basis behind the algorithms within the

aesthetic measures, which are therefore implemented simply. Implementation closely

follows design. Only two noteworthy issues arise.

Firstly, for the marking tools to be integrated successfully into CourseMarker, an

associated marking command must be created for each. The marking command is

responsible for retrieving the user’s solution based upon the filename specified in the

marking scheme and the project code of the user. The marking command is also

responsible for dealing with errors, for example if the user’s file cannot be found. The

marking command calls the marking tool and returns the result to the feedback

system. It is necessary to create a marking command for each marking tool.

Implementation thus requires that 11 marking commands are created and housed in

the com.ltr.cm.marking.cmd package. By convention, a marking command has

a similar name to the associated marking tool. For example, the EquilibriumTool

has the associated marking command EquilibriumCMD. The creation of marking

commands is a standard process requiring no further design exertion; it can be

accomplished most simply by making a copy of an existing marking command and

editing both the name of the command and the name of the marking tool referenced

within.

Secondly, the BorderRectangle necessary for the operation of many of the

aesthetic measures, as illustrated in figure 6.9, is assumed to have been defined

within Daidalos for each educational diagram domain to be assessed.

BorderRectangle is treated as a reserved keyword. A simple utility method

isValidFigure is introduced to the LayoutToolInterface which returns true if

a figure is entirely contained within the BorderRectangle and false otherwise.

7. Issues in implementation and advice for educators and developers 184

The process of invoking and parameterising the aesthetic and structural measures

and storing the results within a MarkingCompositeResult object is illustrated in

section 7.2.

7.1.4 Assessing solutions with mutually exclusive solution cases:
implementing the design

The DiagramFeaturesTool for the generic features testing of diagrams is

implemented within the package com.ltr.cm.marking.tool. An associated

marking command, DiagramFeaturesCMD, is implemented within the package

com.ltr.cm.marking.cmd. Implementation of the DiagramFeaturesTool is

straightforward because the functionality was based upon the earlier

EntityRelationshipTool, which had already been implemented. A clearer

method structure was, however, imposed by the design of the tool.

Methods to facilitate a traversable enumeration of all figures within a drawing are

imposed by the Drawing interface within the com.ltr.daidalos.framework

package.

The process of repeatedly assessing the mutually exclusive solution cases is based

upon repeatedly invoking the DiagramFeaturesTool, through the

DiagramFeaturesCMD, within the exercise marking scheme. Therefore, since the

distinction between solution cases is achieved by the PrioritiseTruncateTool,

this stage of the implementation is the least demanding.

The process of repeatedly invoking and parameterising the DiagramFeaturesTool

and storing the results within MarkingCompositeResult objects is illustrated in

section 7.2.

7.1.5 Prioritising and truncating student feedback: implementing the
design

The PrioritiseTruncateTool marking tool is implemented within a package

prioritisetruncate located with the other marking tools at

com.ltr.cm.marking.tool. The four simple interfaces

SolutionCaseStrategy, FeaturesSortStrategy,

AestheticsSortStrategy and TruncationStrategy, together with their

associated abstract classes, are also implemented within

7. Issues in implementation and advice for educators and developers 185

com.ltr.cm.marking.tool.prioritisetruncate; four further sub-packages

solutioncasestrategies, featuressortstrategies,

aestheticssortstrategies and truncationstrategies are introduced for

the purpose of grouping together the implemented concrete strategies in a consistent

way which is convenient for the domain developer.

Four concrete strategies are implemented. The reasons for this are three-fold. Firstly,

the implementation is consistent with the approach of the work, which attempts to

provide a basis for formative assessment through implementing appropriate default

behaviour as well as providing a foundation for future extension. Secondly, the

implementation of concrete strategies facilitates an analysis of the usefulness of the

extension, a key requirement of the implementation. Thirdly, within a CBA context

the most suitable way for a developer to create new components is by modifying

existing ones. Therefore, the implemented concrete strategies provide a useful

template for future expansion by developers.

The DistinctionFirstSolutionCaseTool extends SolutionCaseTool and is

located within the solutioncasestrategies package. It is based upon the

algorithm outlined in section 6.3.5.

The MergeEqualFeaturesSortTool extends FeaturesSortTool and is located

within the featuressortstrategies package. The

MergeEqualAestheticsSortTool extends AestheticsSortTool and is

located within the aestheticssortstrategies package. The

PriorityBothTruncationTool extends TruncationTool and is located within

the truncationstrategies package. These three concrete strategies are based

upon the algorithms described in section 6.4.4.

Associated marking commands were implemented for each of the concrete marking

tools in the same way as in sections 7.1.2 and 7.1.3.

The process of invoking and parameterising the PrioritiseTruncateTool

delivering the resulting feedback, which has been prioritised and truncated, to the

student, is described in section 7.2.

7. Issues in implementation and advice for educators and developers 186

7.1.6 Summary

Section 7.1 outlined the key elements in the implementation of the design. The

objectives of the implementation were explained. The integration into the existing

CourseMarker architecture was discussed and its implications for the

implementation outlined. The design of the three extensions was influenced from the

very beginning by the need to be integrated into the CourseMarker architecture. This

facilitated a smooth implementation process, an overview of which was provided for

each of the three extensions. Section 7.2 presents advice for developers and educators

in developing CBA for formative assessment in new diagram-based domains and the

setting of exercises.

7.2 Advice for developers and educators

Section 5.2.4 argued that guidance for developers and educators was an essential

requirement if the implementation of the extensions was to result in successful

formative assessment being carried out. Designing the assessment format to take full

advantage of the capabilities of an automated assessment system is a prerequisite for

successful assessment, a fact illustrated in section 3.1, where formative assessment

examples utilising the same courseware were shown to vary in their level of success.

This section presents essential guidance for educators and developers. In doing so,

the section achieves several objectives. Firstly, it demonstrates the mechanisms which

allow educators and developers to use the extensions to deploy formative assessment

exercises in a feasible and useful way. Secondly, it provides a documentation

overview which illustrates the practical implementation of exercises using the

extensions. In doing so, the practical integration between the extensions themselves,

and between the extensions and the existing courseware infrastructure, is made

explicit. Thirdly, it provides a useful overview to allow existing CourseMarker users

to appreciate the new functionality available for formative assessment purposes for

the purposes of migrating their exercises to make use of the extensions, where

appropriate.

Section 7.1 provides guidance for developers. Documentation for the development of

CourseMarker / DATsys exercises is already available and reference to this is made.

The guidance to developers concentrates on those aspects of domain and exercise

7. Issues in implementation and advice for educators and developers 187

development which are either changed or completely new when setting formative

exercises using the extensions outlined within this work. Section 7.2 provides

guidance for educators. The literature on formative assessment is plentiful and

references to relevant introductory texts are provided. The section concentrates on

the development of assessment materials which utilise the CourseMarker extensions

to facilitate the achievement of formative assessment best practice. The section also

notes the differences in conceptual assessment design between the formative

assessment exercises and the previous, summative, CourseMarker exercise

assessment schemes.

The roles of educators and developers have been previously defined. Conceptually,

the educator develops assessment materials while the developer facilitates the

necessary extensions to the courseware and may be responsible for translating the

assessment materials into correct CourseMarker exercises. However, it is certainly

useful for those in both roles to be aware of the material in its entirety, since co-

ordination and mutual understanding across roles will best facilitate exercises which

make the most effective use of the courseware environment.

7.2.1 Guidance for developers

7.2.1.1 Prerequisites

The process of setting up an exercise using CourseMarker is outlined in [Sp02]. The

document provides an overview of the directory structure for CourseMarker

exercises and summarises the files required at the course, unit and exercise levels of

the structure. The structure of the necessary administration files is specified, such as

save.txt, which is responsible for defining the student files retrieved by the server

prior to the marking process, setup.txt, which is responsible for defining the files

placed in the student directory when the exercise is set up, and so on. The definition

of features for features testing is covered, including the Oracles notation for the

features expressions used to define the search. The use of marking schemes

expressed in Java is explained and a sample mark.java file is listed in full. The

function of the various marking commands is explained. Finally the batch file

mrun.bat, used to compile the marking scheme, is explained.

7. Issues in implementation and advice for educators and developers 188

The use of Daidalos to author new diagram notations is a simple, intuitive process

described in [Ta02]. It would be helpful for the developer to familiarise themselves

with CourseMarker conventions before attempting to set exercises. This section

explains the differences and extensions to the exercise format necessary to implement

formative assessment exercises in diagram-based domains.

7.2.1.2 Expressing features testing regimes to assess mutually exclusive
solution cases

Features marking continues to use the same format as in [Sp02]. Feature expressions

vary depending upon the marking tool called; the simple, generic

DiagramFeaturesTool supports four types of features expression (exist, exact,

connection and exactConnection) with the same parameterisation as for common

features tests. Features test cases are expressed in separate features marking files. The

first stage of the process is to express the common features tests in the file

[ExerciseName].ft0. The second stage is to express the mutually exclusive

alternate cases in subsequently numbered features files. The first features test within

each file should examine the distinction test. The third stage is to assess all cases in

turn by invoking the marking tool within the exercise mark scheme.

mark.ft0:

5 : exact CircleNode A : Feedback1 : Feedback2

4 : exact CircleNode B : Feedback1 : Feedback2

4: exactConnection Link CircleNode A CircleNode B : Feedback1 : Feedback2

mark.ft1:

5 : exact CircleNode C : Feedback1 : Feedback2

7 : exist SquareNode==0 : Feedback1 : Feedback2

mark.ft2:

5 : exact SquareNode E : Feedback1 : Feedback2

5 : exactConnection Link CircleNode B SquareNode E : Feedback1 : Feedback2

4 : exact SquareNode F : Feedback1 : Feedback2

3 : exact SquareNode G : Feedback1 : Feedback2

Figure 7.1: Features tests organised into cases

Figure 7.1 outlines a very simple example of three features files which might be used

to assess the exemplar problem in figure 5.1. The domain has three types of figure:

CircleNode, SquareNode and Link.

7. Issues in implementation and advice for educators and developers 189

The mark.ft0 features file contains features tests examining those elements

common to all model solutions, while the mark.ft1 and mark.ft2 files represent

mutually exclusive solution cases. The first features tests within mark.ft1 and

mark.ft2 — exact CircleNode C and exact SquareNode E respectively —

denote the distinction test for each case.

The weight and feedback should be determined by the educator according to the

guidance presented in section 7.2.2. Feedback assists the student learning process

within a domain and therefore, by definition, relies upon domain knowledge to be

useful to the student. As an example, the unsuccessful feedback (Feedback2) from

mark.ft1 could explain to the student why the type of solution represented by that

case precludes the existence of any SquareNode nodes.

The way the features test cases are assessed through invocation of the marking tool

by the marking scheme is examined in section 7.2.1.5.

7.2.1.3 Layout tools

All layout tools must implement the LayoutToolInterface interface and are

placed in either the package aesthetic or structural depending upon the

nature of the tool. Layout tools must implement the method mark, which takes the

student drawing, relative weight and leniency value as arguments and returns a

MarkingLeafResult. The majority of methods related to the calculations of layout

tools are located in the Drawing and Figure interfaces of DATsys. Method calls can

return the co-ordinates of the location of the centre, width, height etc. of a figure.

Enumerating the figures within a drawing object for the purposes of traversal is a

repetitive task which varies little between diagram marking tools. As with all

CourseMarker exercise components, the best way to implement a new layout tool is

to copy an existing tool and make necessary modifications, rather than attempting to

implement “from scratch”. In most cases, the mathematical formulae for layout

measures can be translated directly into algorithms for implementation into layout

marking tools.

Once the raw score from the algorithm is returned, scaling should be undertaken

using the leniency value. The new mark value is used to parameterise the constructor

7. Issues in implementation and advice for educators and developers 190

of MarkingLeafResult, along with the description and feedback returned by the

tool, and the weight, which is unchanged during the marking process.

The process of invocating and parameterising the layout tools is examined further in

section 7.2.1.5.

7.2.1.4 Prioritisation and truncation strategies

Like layout tools, prioritisation and truncation strategy tools implement specific

interface methods, deduce their input data in a standard way from the provided

parameters and return an object, in this case a MarkingCompositeResult, to

conform to the interface. Similarly, the most straightforward way to implement a

new prioritisation or truncation strategy tool is to copy an existing tool of the correct

type and modify the central algorithm to conform to the strategy outlined by the

educator.

There are four types of prioritisation and truncation strategy tools which may be

implemented.

Solution Case Strategy marking tools extend the SolutionCaseTool class and

must decide how to distinguish between mutually exclusive alternate solution case

feedback and prune the feedback tree accordingly. MarkingCompositeResult

objects containing feedback from the common feature case will contain the substring

“common” in their description, whilst those representing mutually exclusive

alternate solution cases will have the substring “exclusivex”, where x was the

solution case number.

Features Sort Strategy marking tools extend the FeaturesSortTool class and must

implement an algorithm to apply criteria for sorting to features test feedback for the

purposes of prioritising feedback leaf nodes, and deciding how to prioritise features

results from the common and mutually exclusive cases relative to each other.

Aesthetics Sort Strategy marking tools must apply an algorithm for sorting and

criteria for prioritisation, this time between the feedback from aesthetic and

structural marking tools. Aesthetics Sort Strategy marking tools extend the

AestheticsSortTool class.

7. Issues in implementation and advice for educators and developers 191

Truncation Strategy marking tools must implement an algorithm to truncate the

overall MarkingCompositeResult in order that feedback can be returned to the

user. Truncation Strategy marking tools extend the TruncationTool class.

Prioritisation and truncation strategy tools must be placed in the appropriate

package within com.ltr.cm.marking.tool.prioritisetruncate. Solution

Case Strategy marking tools are located within the solutioncasestrategies

package, Features Sort Strategy marking tools within the

featuressortstrategies package, Aesthetics Sort Strategy marking tools within

the aestheticssortstrategies package and Truncation Strategy marking tools

within the truncationstrategies package.

The process of invocating and parameterising the PrioritiseTruncateTool with

marking tools from each strategy area is examined further in section 7.2.1.5.

7.2.1.5 The marking scheme

Figure 7.2 shows an example of an exercise marking scheme. Twelve points of

interest are noted on the figure for reference.

The CourseMarker course structure hierarchically stores exercises in directories

which conceptually represent courses, units and exercises. The package structure

reflects the directory structure of the course. Marking commands and tools must be

imported to make them available to the marking scheme class (point 1). The

markExercise() method (point 2) returns a TMarkingResult object; this is the

point of integration to CourseMarker’s feedback delivery facilities, since it is the

TMarkingResult object which is used to populate the graphical feedback tree

representation. String and integer range boundaries can be specified to configure the

look of the feedback tree to the student.

package MyCourse.MyUnitOfExercises.SimpleExercise;

import com.ltr.cm.marking.*;
import com.ltr.cm.marking.cmd.*;

7. Issues in implementation and advice for educators and developers 192

import
com.ltr.cm.marking.tool.prioritisetruncate.solutioncasestrategies.*;

import
com.ltr.cm.marking.tool.prioritisetruncate.featuressortstrategies.*; 1

import
com.ltr.cm.marking.tool.prioritisetruncate.aestheticssortstrategies.*;

import com.ltr.cm.marking.tool.prioritisetruncate.truncationstrategies.*;
import com.ltr.cm.marking.tool.layout.aesthetics.*;

public class mark extends TBaseMarkScheme {

2 public TMarkingResult markExercise() {

String[] strRange = {"Rotten", "Poor", "Good", "Excellent"};
int[] intRange = { 40 , 50 , 80 , 100 };

TMarkingResult am1 = execute(new NonIntersectionCMD(“Simple.draw”, 4,

0.5); 3
am1.setWeight(4);
am1.setFeedbackRange(strRange, intRange);

TMarkingResult am2 = execute(new EquilibriumCMD(“Simple.draw”, 3, 0.21

); 4
am2.setWeight(6);
am2.setFeedbackRange(strRange, intRange);

MarkingCompositeResult amcr = new MarkingCompositeResult("Aesthetics

Measures"); 5
amcr.addChild(am1);
amcr.addChild(am2);

TMarkingResult feat0 = execute(new DiagramFeaturesCMD(“Simple.draw”,

“SimpleExercise.ft0”); 6
feat0.setFeedbackRange(strRange, intRange);

MarkingCompositeResult f0mcr = new MarkingCompositeResult("Common

Features"); 7
f0mcr.addChild(feat0);

8 TMarkingResult feat1 = execute(new DiagramFeaturesCMD(“Simple.draw”,
“SimpleExercise.ft1”);

feat1.setFeedbackRange(strRange, intRange);

MarkingCompositeResult f1mcr = new MarkingCompositeResult("Exclusive1");

9 f1mcr.addChild(feat1);

MarkingCompositeResult rawtree = new MarkingCompositeResult("Main");

10
rawtree.addChild(amcr);
rawtree.addChild(f0mcr);
rawtree.addChild(f1mcr);

MarkingCompositeResult feedback = new PrioritiseTruncateTool(new

DistinctionFirstSolutionCaseTool(), new MergeEqualFeaturesSortTool(),
new MergeEqualAestheticsSortTool(), new PriorityBothTruncateTool());

11

12 return feedback;

}}

Figure 7.2: A simple marking scheme for a formative exercise

The NonIntersectionCMD is called (point 3) and the feedback generated by the

associated NonIntersectionTool is given the variable name am1. The

7. Issues in implementation and advice for educators and developers 193

NonIntersectionTool returns a MarkingCompositeResult, which is an

implementation of the TMarkingResult interface. Various properties of the

TMarkingResult, such as the weight, can still be manually set, if required.

The EquilibriumCMD is invoked using the same mechanism (point 4); in a

complete marking scheme all eleven aesthetic measures, plus any required structural

measures, would be invoked in this way. Here they are omitted for the sake of

brevity. Next, a new MarkingCompositeResult is generated to store the feedback

generated by all aesthetic measures (point 5). Structural measures are dealt with in

the same way as the aesthetic measures. Each structural measure is invoked and its

marking result is stored as a TMarkingResult. Once all structural measures have

returned their results, they are all added as child nodes to a

MarkingCompositeResult for later prioritisation and truncation.

The next stages demonstrate the marking of features test cases. The

DiagramFeaturesTool is invoked (point 6) to carry out the features assessment

upon the common features tests expressed in the file SimpleExercise.ft0. A

composite marking result for common features is created with common features

feedback as its child nodes (point 7). The process is repeated for the first mutually

exclusive features case (points 8 and 9). Generally, a marking scheme would invoke

at least 2 mutually exclusive features cases; if only one model solution is acceptable,

then the use of mutually exclusive features testing is superfluous.

A composite marking result to encompass all feedback is generated (point 10), with

the composite marking results for the aesthetic and structural measures (in this case,

there are no structural measures) and the features test cases being added as children.

The PrioritiseTruncateTool is then invoked, parameterised by four concrete

strategies (point 11). The PrioritiseTruncateTool utilises each of the strategies

in turn to generate a new MarkingCompositeResult. Finally (point 12), the new

MarkingCompositeResult is returned as feedback.

7.2.2 Guidance for developers

7.2.2.1 Prerequisites

Conceiving and constructing assessment materials is a non-trivial task. Assessment

materials for formative assessment benefit from a great potential for re-use across

7. Issues in implementation and advice for educators and developers 194

many academic sessions since plagiarism between students is not an issue.

Unfortunately, due to the care which must be taken in defining the feedback and the

amount of time necessary to consider alternative model solutions, formative

assessment materials require considerable development time. Resource-savings are

therefore optimised by creating exercises which can be re-used.

Formative assessment is intended to assist student learning. Therefore, exercises

based upon logical application of domain principles are to be preferred over

deliberately misleading questions, especially in the early stage of a course of

exercises. A briefing on formative assessment principles is provided in [Kp01]. The

primary deliverable associated with formative assessment is feedback, rather than

assessment marks or grades. For this reason, great care must be taken in constructing

the feedback for the exercises. The nature of feedback for formative assessment is

discussed in [JMM+04]. Good formative assessment using CBA courseware depends

upon a successful interaction between the assessment materials and the courseware

itself. Thus, an examination of CBA exercises using CourseMarker and the guidance

for developers provided in section 7.2.1 is likely to prove useful. Knowledge of the

way in which features testing operates in existing CBA exercises is a pre-requisite to

specifying features testing using the mutually exclusive features test cases allowed

by the extensions.

This section outlines the issues in constructing assessment materials to utilise the

formative assessment potential offered by the new extensions described in this work.

7.2.2.2 Identifying harbingers and specifying distinction tests

Given an assessment specification to which there is more than one possible model

solution, the first task is to identify those elements which are common to all model

solutions and to construct features tests which assess the solution based upon those

elements, or combinations of those elements, alone.

For each model solution, it is next necessary to consider those elements which are

uncommon. It is necessary to emphasise that, although features tests search for

features expressions which, in turn, are developed around the idea of searching for

desired elements, the precise nature of the relationship between features tests and

elements varies across both domains and the preferences of educators.

7. Issues in implementation and advice for educators and developers 195

Features tests within the mutually exclusive solution cases will, therefore, be based

upon testing for the presence (or absence) of combinations of both common and

uncommon elements in the model solutions which allows the pedagogic

understanding of the student to be assessed and meaningful advice, in the form of

feedback, to be given.

An important features test, which must be defined for each mutually exclusive

alternate solution case, is the distinction test, which may be used to determine which

of the model solutions is most related to the attempt of the student.

The initial effort of the educator should be directed towards identifying a perfect

harbinger within each of the model solutions. A perfect harbinger is an element (or,

likely, a combination of elements) which defines the key difference which

distinguishes the model solution. Although other elements within the model solution

may be uncommon, it is likely that they could have occurred as a consequence of the

choice of elements in the perfect harbinger. The task of the educator is, then, to create a

distinction test based upon the perfect harbinger which returns helpful, domain-

specific feedback based upon the reasons why the model solution is distinguished.

All mutually exclusive solution cases must, by definition, contain an uncommon

element (or combination of elements). If a model solution contains no perfect

harbinger, then an element or combination of elements must be used as the basis for

the distinction test which fulfils the minimum criterion of being unique to the model

solution. This still allows the system to make a definite distinction between

alternative model solutions. It is, however, less ideal from pedagogic standpoint and

is thus referred to as an imperfect harbinger. The construction of useful feedback may

prove a more difficult task for the educator when using imperfect harbingers.

7.2.2.3 The weighting system

Unlike most of the advice which is summarised in this section, the system of

weighting might be most easily understood by those with the least experience in

setting CourseMarker exercises. Weights are attached to features tests using the same

mechanism as for standard CourseMarker exercises. However, their meaning within

formative assessment exercises changes.

7. Issues in implementation and advice for educators and developers 196

In summative assessment exercises, weight was assigned to features tests to

represent the relative weight of the features test in assigning grades. Therefore, the

highest weights were awarded to the most difficult features tests in order to

designate credit fairly to the more able students. In formative assessment exercises,

however, the weights refer to the priority of the feedback. Therefore, the highest

weights are awarded to the most fundamental (usually the easiest) features tests,

since the most fundamental aspects of a student solution must be corrected first,

before moving on to the more advanced features of the student solution at

subsequent stages, when the student has successfully attained the basics.

7.2.2.4 Configuring and specifying aesthetic and structural measures

The key difference between aesthetic and structural measures is that the former are

domain-independent, while the latter are domain-specific. New aesthetic measures

will be implemented rarely where a measurable criterion can be demonstrated to

have domain-independent assessment validity. The need for structural measures

must, however, be examined when each new domain is to be assessed for the first

time. Many domains will require the specification of no structural measures. In this

case only the prioritisation of the aesthetic measures will need to be considered. If

structural measures are required then these, together with their priority relative to

the aesthetic measures, will need to be specified.

A measure is based upon any algorithm which, when applied to a student drawing,

produces a numeric value to indicate success (or compliance with the criterion). A

variety of aesthetic measures have already been designed and implemented. Suitable

structural measures depend upon the properties of the domain to be assessed, and

their representation as an algorithm. For example, given a domain in which all nodes

of type b must be located exactly vertically underneath a corresponding node of type

a, a structural measure could be defined as the proportion of nodes of type b which

do, in fact, reside vertically underneath an a node. Suitable properties to be examined

include the positions of nodes, since their centres and dimensions can be determined

by the marking tools.

Configuring the marking tools involves first specifying the leniency of the tool. The

leniency lowers the threshold at which good feedback is returned to the student by a

measure. It is represented as a percentage. A good method of determining suitable

7. Issues in implementation and advice for educators and developers 197

leniency for an exercise is to use the measures, configured to have no leniency, to

assess the model solutions, in order to develop an idea of what is realistically

possible within context.

Prioritising the marking tools is a straightforward concept, but great care must be

taken to achieve a useful balance. Priority is determined by using an integer.

Priorities are relative; the numbers could represent percentages in the mind of the

educator, but any system may be used so long as consistency is maintained

throughout. It is especially important not to weight measures too disproportionately.

If disproportionate weighting is applied, then certain measures may never qualify to

return feedback to the student since their priority would be constantly overridden.

7.2.2.5 Specifying and configuring prioritisation and truncation strategies

Once the assessment of aesthetic and structural measures, together with that of the

features cases, has been achieved, a raw tree of all feedback comments is generated

by the system. At this point it is necessary to prioritise the feedback and truncate the

tree to leave only that feedback which is most important for the purposes of the

student. This process is accomplished through a four-stage process. In the first stage,

the most relevant mutually exclusive solution case is determined. The feedback

associated with all other cases may be discarded at this stage. In the second stage, the

priority of the feedback generated by the features testing is determined and sorting

carried out. The feedback nodes from the common features test case may be either

merged with those from the most relevant mutually exclusive solution case, or kept

separate, dependent upon context. In the third stage, priority of aesthetic and

structural measure feedback is determined and the feedback nodes sorted. In the

fourth and final stage, the resultant feedback tree is pruned according to a method of

truncation.

At each stage, it is necessary to visualise the process of prioritising and truncating the

tool as if completing the task by hand. Careful examination of the processes used,

within the context of the domain, to choose feedback to return to the student in a

manual process may result in the visualisation of a suitable algorithm. Examination

of previously implemented algorithms may be a further source of inspiration (or

even reveal suitability for simple re-use).

7. Issues in implementation and advice for educators and developers 198

When specifying an algorithm it will reduce future development effort if algorithms

are specified generally and allowed to be parameterised for the purposes of

configuration. For example, consider a simple algorithm to remove all feedback

except the 2 highest priority features feedback nodes. It would be better to specify an

algorithm which removes all feedback except the n highest priority features feedback

nodes, and specify n = 2 through parameterisation. This increases the scope for re-

use in future contexts and maximises the resource-savings associated with the

courseware.

7.2.2.6 Writing good feedback comments

Specifying good feedback comments is a non-trivial undertaking and likely to

consume a large proportion of an educator’s development time. [JMM+04] provides

a useful overview of feedback comments and their relationship to conceptual

frameworks of student-centred learning. In general, good CBA practice encourages

student research after each submission. Such student research can be encouraged

through the linking of feedback comments to assessment materials. One solution to

this problem is to develop extensive teaching materials which can be directly

referenced by the feedback. The student can then refer to the materials directly. This

approach has the disadvantage that very large amounts of time and resources are

required to develop the materials. A successful mechanism for the encouragement of

student research which is more common is to provide references to appropriate texts

which are available to the student online or using institutional infrastructure such as

library facilities.

The feedback comment itself should be of a positive, motivational nature. The

feedback comment should emphasise good practice related to the shortcoming

within the student solution which caused the comment to be returned, rather than

stating the failing of the student solution directly. An example of a scenario would be

a student diagram in which a required connection line between two existing nodes is

absent from the student solution. Suitable feedback would explain the options for

connecting nodes of the type in question and provide a suitable reference to further,

relevant, information. Less suitable feedback would state the missing link to the

student.

7. Issues in implementation and advice for educators and developers 199

7.2.3 Summary

Section 7.2 provided essential guidance for both educators and developers. Section

7.2.1 provided an overview of the issues arising in the development of CBA

assessment materials for formative assessment using the courseware and

demonstrated the way in which implementation of the exercises would occur in

practice. Useful references were provided to existing documentation. The

implementation and configuration of features testing regimes, layout tools and

prioritisation and truncation strategies was examined. Finally, a simple marking

scheme was presented with a step-by-step explanation attached.

Section 7.2.2 provided an overview from the point of view of the educator.

Knowledge prerequisites were indicated, and the topics of identifying harbingers and

distinction tests, configuring and specifying aesthetic and structural measures and

prioritisation and truncation strategies and the writing of good feedback comments

were discussed.

7.3 Summary

This chapter provided an overview of the issues arising from the implementation of

the extensions and their integration into the CourseMarker architecture, together

with useful advice for developers and educators in the formative assessment of new

domains and the setting of exercises. The aim of the implementation, to facilitate

research into the feasibility and usefulness of automating the formative assessment

process, within diagram-based domains, using CBA courseware was discussed. To

this end, the implementation itself was described, and the way in which the

implementation can be used by a combination of educators and developers to

produce assessable course exercises was discussed in detail.

Chapter 8

Use and evaluation

8. Use and evaluation 201

Introduction

This chapter argues that the development of the extensions and their integration into

the existing CourseMarker courseware has resulted in a system which allows the

formative assessment of diagram-based domains to be automated in a manner which

is both feasible and useful.

Following the implementation overview presented in chapter 7, the purpose of this

chapter is to illustrate the use of the system, discuss initial results in the development

of formative, diagram-based CBA, evaluate the courseware from the perspectives of

CBA, formative assessment and educational diagramming, evaluate the integration

between the extensions and the existing architecture and discuss general conclusions

with regard to the three research areas related to the work.

Formative exercises, utilising the implemented extensions, have been implemented

in two domains. These exercises were evaluated by being provided to students.

Results from the exercises were available for scrutiny and great attention was paid to

comments from students and to the responses to questionnaires.

Section 8.1 outlines the objectives of the chapter. Section 8.2 provides an overview of

the exercises in terms of their development process, use by students and evaluation.

Sections 8.3 to 8.5 evaluate each of the extensions in turn with respect to CBA,

formative assessment and educational diagramming considerations. Section 8.6

draws together general conclusions in order to argue that the central objective of the

work has been met.

8.1 Objectives

This chapter has two main objectives:

• To evaluate the implemented extensions in terms of criteria defined by the

three research areas of CBA, formative assessment and educational

diagramming and to determine the effectiveness of their integration into

existing courseware;

• To test formative, diagram-based CBA in practice and draw initial

conclusions about the benefits such an approach brings.

8. Use and evaluation 202

A further objective is to reflect upon the feasibility and usefulness of conducting

formative computer-based assessment in diagram-based domains.

The objective of the three extensions is to enhance the functionality of the

CourseMarker / DATsys courseware to take into account the shortcomings of the

existing system with regard to conducting formative exercises, which were identified

during the initial phase of research, summarised in chapter 4, and by applying

detailed consideration of the requirements, as demonstrated in chapter 5. By

integrating the extensions into the existing CourseMarker / DATsys courseware it is

possible to take advantages of existing features, such as the ability to define

representations for new diagram domains without programming, the ability to

specify customised student diagram editors and a stable, reliable platform for

delivering CBA across a departmental network and collecting administrative data.

8.2 Examples of formative, computer-based assessment exercises in
diagram-based domains

8.2.1 The process of exercise creation

The authoring of a formative, diagram-based CBA exercise, based upon a problem

specification, involves a series of stages.

Firstly, the Daidalos editor must be used to build a tool library which represents the

domain notation, including the nodes and connection lines associated with the

domain and the Border Tool. This stage must be undertaken once for each new

domain.

Secondly, the marking tools must be developed and configured on a domain-specific

basis. The DiagramFeaturesTool can be used to assess diagram features using

several generic operators, but if more specific functionality is required then this tool

must be extended or a new, suitable tool developed. Evaluation of the domain

requirements must be used to indicate whether domain-specific structural measures

need to be developed. In all cases, the relative weighting of the aesthetic layout

measures must be considered. Finally, the prioritisation and truncation strategies

must be decided. If existing prioritisation and truncation strategies are suitable

within context, then simple parameterisation occurs. Otherwise, new prioritisation

and truncation strategies must be developed.

8. Use and evaluation 203

Thirdly, the Ariadne editor must be used to build the individual exercises. A subset

of the tools from the tool library is defined, application features are selected and

configuration of exercise options is undertaken. Model solutions for the exercise are

drawn on Ariadne’s drawing canvas for later reference. Configuration of the

marking tools on a per-exercise basis can be achieved through the text editors

associated with Ariadne (or with a simple editor such as Notepad).

Once a domain has been defined and exercises developed, CourseMarker can be

used to manage the full lifecycle of the CBA exercises. This involves the same stages

for formative exercises developed using the extensions described in this work as for

previous CourseMarker exercises, namely:

• The testing and deployment of the exercise using CourseMarker;

• The running of the exercise and the marking of student solutions;

• Exercise administration.

The administering of the exercise involves the collecting of student solutions,

marking results and feedback for the purposes of evaluation of the results.

Formative assessment exercises in two domains were assessed using the courseware.

The exercises were offered to students on a voluntary basis only for reasons of

institutional administration. The authored exercise domains were in UML Class

Diagrams and in UML Use Case Diagrams.

The task of authoring new exercise domains is very lengthy, but straightforward. The

outcome benefits both students and educators and, furthermore, each domain need

only be developed once and added to the repertoire of the system. Both implemented

domains are features marked by the DiagramFeaturesTool and had no special

layout requirements, meaning that only configuration of the existing aesthetic

measures was required.

The use of Daidalos to create tool libraries involves drawing the diagram elements on

the canvas, selecting the elements and defining the connectivity properties (if

required). The data model of the elements is specified, including whether the

8. Use and evaluation 204

elements are editable and their Names. The new, composite, element is then placed

into the tool library to be used repeatedly, at will.

The use of Ariadne to author exercises in those domains which have already been

developed involves several operations. Parameters for Theseus must be specified to

configure the menus, toolbar and other options which are available to student in the

course of developing the exercise. Ariadne can be used to develop the marking

scheme, including specifying the features test cases. In order to accomplish this,

Ariadne invokes its own text editor. The exercise specification can also be input in

this way, along with the editing of the properties files which are required for all

exercises within CourseMarker.

Deployment and testing of the exercise through CourseMarker is then undertaken.

Theseus is invoked as the student diagram editor from within CourseMarker by

clicking the ‘Develop’ button after exercise set up. The exercise model solutions can

be pasted into Theseus from Ariadne in turn, and used for the purposes of testing the

marking and feedback results of the exercise and tweaking any problems.

Specifically, a recommended way to determine the leniency value for the aesthetic

and structural measures is to submit the model solutions, with no leniency applied,

and examine the raw scores awarded to get an idea of what it is reasonable for the

student to achieve within the constraints of the exercise. To access all the marking

data a temporary concrete truncation strategy can be used which performs no

truncation and changes the feedback from the measures to a string containing the

raw score. Care should be taken to remove this strategy and replace it prior to

making the exercise available to students.

Evaluation of the exercises was accomplished through two means. Firstly, the results

of the exercises were stored by CourseMarker and made available for analysis.

Secondly, questionnaires were distributed to students containing two types of

questions. The majority of the questions asked the student to agree with a series of

statements which were then scored on a five point Likert scale [Lr32], from 1-

disagree to 5-agree. Finally, the questionnaire contained some open ended questions

where student could make further, free-form comments. The questionnaires will be

examined in further detail, along with the results obtained from students, in section

8.2.3.

8. Use and evaluation 205

8.2.2 Exercise domains and methodology

Prototype exercises were developed in two domains: UML Class Diagrams and UML

Use Case Diagrams. UML Class Diagrams are used in the design process of object-

oriented systems to describe the classes within the system and their relationships to

each other. UML Use Case Diagrams are used to describe sets of scenarios which

describe interactions between external actors and the system.

Section 8.2.2.1 provides a brief outline of the UML Use Case Diagram exercises,

whilst section 8.2.2.2 provides an outline of the UML Class Diagram exercises.

Section 8.2.2.3 outlines the methodology.

8.2.2.1 UML Use Case Diagram exercises

UML Use Case Diagrams are used to describe interactions between users and the

system. They are conceptually easy for many students to understand and so were a

suitable choice for the first domain to be implemented.

The authoring of prototypical exercises in the UML Use Case Diagram domain

involves first specifying the nodes and connections to be used by students to

construct their solutions. Two types of domain nodes are available to the student,

namely actors and use cases, while one type of domain connection, interaction, is

available. The final tool which is made available is the Border Tool object, which is

used by the students to describe the physical borders of their diagrams.

Figure 8.1 demonstrates the tool library which is developed for UML Use Case

Diagram exercises, while figure 8.2 shows a simple diagram constructed using the

tool library.

The task of using Daidalos to create the tool library did not require much effort. The

tool bar components are composed of groups of standard shapes, graphical

primitives and text elements. Each tool has a data model which defines the name of

the tool (for example, Actor), while each of the sub-components has also been named

for reference purposes. The naming of these tools facilitates the basic mechanism for

features marking of the resulting diagrams in the same way as in the earlier entity-

relationship diagram coursework.

8. Use and evaluation 206

Figure 8.1: The tool library for UML use case diagrams

Figure 8.2: A simple use case diagram using the tool library

With the tool library complete, Ariadne is used to configure the features available to

the student with the Theseus student diagram editor. Ariadne is then used to

develop the marking scheme, configure the marking tools and the CBA exercise.

The DiagramFeaturesTool was used for features testing of the UML use case

diagram solutions. The exist, exact, connection and exactConnection operators can be

applied by stating the Name and, if required, the Text Content of the nodes (Actor

and UseCase) and the Name, Start Node and End Node of the connection (Interaction)

in the same way as for entity-relationship diagrams.

8. Use and evaluation 207

The process of developing the marking tools, exercises and feedback has been

described in section 8.2.1. The application of this process to the UML Use Case

Diagram Exercises is evaluated in section 8.2.3.

8.2.2.2 UML Class Diagram exercises

UML Class Diagrams are used in the design process of object-oriented systems to

describe the classes within the system and their relationships to each other. The

authoring of prototypical exercises in the UML Class diagram domain involves,

again, first specifying the nodes and connections to be used by students to construct

their solutions.

Two types of domain nodes are available to the student, both of which represent

classes. The first simply allows the class name to be defined, while the second has

editable text components for the class name, attributes and operations. Four types of

domain connections are available: one-way associations, two-way associations,

generalisation and implementation. Furthermore, generalisation must be configured

as an “elbow-type” connection line. The final tool which is made available is the

Border Tool object, which is used by the students, again, to define the physical

borders of their diagrams.

Figure 8.3 demonstrates the tool library which is developed for UML Use Case

Diagram exercises, while figure 8.4 shows a simple diagram constructed using the

tool library.

Once again, the task of using Daidalos to create the tool library is straightforward.

The tool bar components are composed of groups of standard shapes, graphical

primitives and text elements. Each tool’s data model is defined by naming the object

after inserting it into the tool library, while each of the sub-components is named for

reference purposes. Ariadne is again used to configure the features available to the

student with the Theseus student diagram editor. Ariadne is then used to develop

the marking scheme, configure the marking tools and the CBA exercise.

8. Use and evaluation 208

Figure 8.3: The tool library for UML class diagrams

Figure 8.4: A simple class diagram using the tool library

The DiagramFeaturesTool was used for features testing of the UML Class

Diagram solutions. The operators can be applied by stating the Name and, if

required, the Text Content of the nodes and the Name, Start Node and End Node of

the connection in the same way as for the use case diagrams.

The general process of developing the marking tools, exercises and feedback has

been outlined in section 8.2.1. The application of this process to the UML Class

Diagram Exercises is evaluated in section 8.2.3.

8. Use and evaluation 209

8.2.2.3 Methodology

30 undergraduate Computer Science students in their second year undertook the Use

Case Diagram exercises, whilst 28 students (a subset of the 30) undertook the Class

Diagram exercises. The students were volunteers; unlike the previous experiment

described in chapter 4, there was no attached summative element to the exercises.

Three exercises were set within each diagram domain, of gradually increasing

complexity.

Quantitative data was collected, as before, by using CourseMarker’s Archiving

Server and by using Likert scale questions in student surveys. The student solution at

each submission was captured using CourseMarker’s Archiving Server, together

with the hidden marks and the feedback.

In the previous experiment the questionnaires were poorly responded because their

dissemination had been inadequately planned. For the Use Case and Class Diagram

exercises the students were provided with the questionnaire soon after they were

registered to take the exercises and were asked to complete and return the

questionnaire once they had finished the course. The response rate was improved in

comparison with the previous experiment.

In the questionnaires, the students were asked to indicate their agreement with a

series of statements by choosing their level of agreement with the statement on a 5-

point Likert scale. The statements were designed to assess whether the students had

found the exercises easy to comprehend, whether the feedback provided by the

system was considered useful, whether the students thought the system had assisted

their learning process and whether the exercises were motivational, provoked the

students to conduct further research to improve their answers and were considered a

good use of time. The questionnaires were kept brief (11 statements) to try to

minimise the extent to which the students found them tiresome. The 11 statements

are presented in table 8.2.

Again, qualitative data was collected through the use of open-ended questions at the

end of the student surveys. For these exercises there were no formal laboratory

sessions and no paid lab tutors. Instead, students engaged with the course at their

own pace and at their own time and asked for assistance by contacting a course email

8. Use and evaluation 210

address. Further qualitative data was obtained by keeping records of the emails sent

by the students as a result of the course. This substituted for the tutor interviews.

8.2.3 Use and evaluation of the prototypical exercises

8.2.3.1 Constructing and running the exercises

Three use case diagram exercises and three class diagram exercises were set as

coursework at the University of Nottingham. For logistical reasons, the students

were essentially ‘volunteers’ with no system of compulsion possible to induce the

students to register for the formative exercises. Students were sent information about

the formative exercises and asked to register by email to receive access to the courses.

Once a student had been added to the course list then viewing the course material

involved loading the CourseMarker client and entering the standard username and

password. No problems were encountered with this initial stage of the process for

two reasons:

• Access to the CourseMarker client is available in all terminal rooms within

the Computer Science building;

• The students had already used CourseMarker for previous exercises,

especially the Java programming exercises which are compulsory for all

Computer Science first year undergraduates, and were therefore familiar with

the principles of logging on to the system, choosing the course to view and

setting up their exercises.

The use case diagram exercises are attempted by students first, since they are the

easiest to understand conceptually and, moreover, since the exercise model solutions

constitute simpler diagrams than those for the class diagram exercises. The unit

specification gives reference to a small example exercise specification and model

solution. This is for the purposes of demonstrating good practice to the students.

Furthermore, the first exercise varies only slightly from the example and has only

one, simple model solution. The idea is to allow the student to concentrate on

becoming comfortable with the Theseus student diagram editor and to provide an

initial “confidence boost” before the second and third exercises present the student

with more substantial domain problems.

8. Use and evaluation 211

Since the first exercise does not require mutually exclusive solution cases, then the

DiagramFeaturesTool is invoked only once by the exercise marking scheme. For

the subsequent exercises, mutually exclusive solution cases are identified and the

marking tool is invoked repeatedly using the method demonstrated in figure 7.2. The

identification of mutually exclusive solution cases is straightforward and the

repeated invocation of the marking tool is rendered a trivial task. The creation of

suitable feedback content is a non-trivial and very time-consuming process.

Traditional CBA feedback comments such as “connection x absent” are scrupulously

avoided but at extreme cost in exercise development time.

Model solutions are initially submitted to reveal the raw scores allocated by the

aesthetic measures. The aesthetic measures’ leniency is subsequently set to equal the

initial raw scores so that unrealistic layout expectations were avoided. This process is

straightforward, but the relative weighting of the aesthetic measures is set equal for

each measure.

The prioritisation and truncation of student feedback is achieved through the use of

four concrete strategies. The strategy for distinguishing between mutually exclusive

alternate solution cases was as discussed in section 6.3.5. Sorting the feedback for all

features tests was achieved as described in section 6.4.4. Since no structural measures

were deployed, then comments were prioritised according to equation 6.6.

The truncation strategy utilised the concrete strategy outlined in section 6.4.4,

parameterised such that the 2 highest priority features comments were retained

along with the 1 highest priority aesthetic layout comment.

The UML class diagram exercises were attempted by students after the UML use case

exercises had been completed. Again, the unit specification gives reference to a small

example exercise specification and model solution for the purposes of clarifying good

practice. The first exercise varies only slightly from the example and has only one,

simple model solution, for motivational purposes.

 The DiagramFeaturesTool is again used for features marking. Many of the

features of developing UML Class Diagram exercises are similar to those for the

development of the earlier, UML Use Case diagram exercises. The features tool is

8. Use and evaluation 212

repeatedly invoked in marking exercises 2 and 3, with the effort required to develop

feedback being the most arduous stage of the exercise development.

For the UML Class Diagram exercises, the relative weighting of the non-interception

aesthetic measure is reduced relative to the other aesthetic measures because the

Generalisation connection routinely intercepts other generalisation connections in a

manner which is not detrimental to the aesthetic layout of the diagram. Such an

interception is present, for example, in figure 8.4. The other aesthetic measures are

set to be equal for the purposes of the exercise, with leniency values which differ

from those of the UML Use Case diagram exercise but which are initially defined in

the same, standard manner.

Again, the prioritisation and truncation of student feedback is achieved through the

use of four concrete strategies. The concrete strategies utilised are the same as for the

Use Case Diagram exercises.

8.2.3.2 Evaluation of the exercises

A total of 36 students, all Computer Science undergraduates, volunteered and had

their usernames added to the course list. Of these students, 6 subsequently failed to

set up any exercises while 30 attempted the UML Use Case Diagram exercises. Of

these 30 students, 28 continued on to attempt the UML Class Diagram exercises.

Student marks for all exercises were consistently high. In all exercises, nearly all

students achieved “effective” full marks by the time of their final submission. The

term “effective” full marks is used here to indicate that the student submissions were

of a very high standard but did not achieve exactly 100% in features and aesthetics

marking. This situation resulted because:

• Students were presented only with feedback, and not marks. Consequently,

so long as the feedback was good then the student would not even realise that

a mark of 100% had not been achieved and would move on to the next

exercise.

• Aesthetics measures did not always return 100% due to the nature of the

exercises.

8. Use and evaluation 213

The fact that students were presented with only feedback, with the underlying marks

withheld, combined with the fact that the assessment was purely formative, seemed

to reduce the temptation for gambling and perfectionism. The maximum number of

submissions made for any exercise in either domain was 17. The average number of

submissions for each of the exercises is shown in table 8.1.

Exercise UC1 UC2 UC3 Class1 Class2 Class3

Average

submissions

3 4 5 1 5 3

Table 8.1: Average submission numbers for the prototype exercises

Students were asked to complete a brief questionnaire, in order to summarise their

experience of using the exercises and learning from the feedback. The majority of the

questions asked the student to agree with a series of statements which were then

scored on a five point Likert scale [Lr32], from 1-disagree to 5-agree. Table 8.2 shows

the statements and the mean score. 22 completed questionnaires were returned.

Students found the courseware easy to use. The questions were regarded as easy to

comprehend in both domains. Generally, students felt that the feedback was useful

in improving their diagram and re-submitting a better version and many students

were motivated to further research between submissions to find information which

elaborated on the feedback comments. This was helped, no doubt, by the references

included in the feedback comments themselves. Also, in general, students thought

the exercises helped their learning process and were a good use of their time.

A notable trend in the questionnaire results, however, is that the UML Use Case

Diagram exercises were more popular with students than the UML Class Diagram

exercises. Several students noted, in response to the request for free-form comments

at the end of the questionnaire, that the Class elements were difficult to edit so that

the result was aesthetically pleasing due to the poor flexibility of the text elements

8. Use and evaluation 214

holding the attributes and operations. It is clear that the authoring of a new domain

notation for class diagrams might improve student response in future.

Statement Mean score (N = 22)

The system was easy to use 4.2

The Use Case Diagram questions were easy to comprehend 4.4

The feedback provided to my submitted Use Case Diagram
coursework helped me to improve my diagram

4.0

The Use Case Diagram questions helped my learning process 4.0

The Class Diagram questions were easy to comprehend 4.1

The feedback given when I submitted the Class Diagram
coursework helped me to improve my diagram

3.5

The Class Diagram questions helped my learning process 3.5

The feedback comments on appearance helped me to lay out my
diagrams more clearly

3.8

The feedback I received for my submissions motivated me to
research further

3.5

I made improvements to my solution as a result of the feedback I
received and re-submitted the improved version

4.0

The exercises were a good use of my time 3.8

Table 8.2: Results of the student questionnaire

A notable trend across questionnaires was that those who responded more

favourably to the statement questions tended to leave no further comments, while

those who had responded less favourably were more likely to leave (critical)

comments. The most common critical comment was that there were not enough

exercises. It seemed that many students had hoped for a comprehensive series of

courses to assist them up to modular examination level. Unfortunately, the

development of such courses was not feasible due to time constraints and the

difficulty encountered in constructing good formative feedback comments for the

features tests. Howsoever critical, these comments do imply that the students wanted

8. Use and evaluation 215

more formative assessment using these methods. This is a desire which only the

continued development of the exercises would help to fulfil.

This section has described the process of constructing and running the prototypical

exercises. Subsequent sections will apply more rigorous examination of the

performance of each of the extensions in turn, according to the criteria laid down by

the three research areas of CBA, formative assessment and educational

diagramming.

8.3 Assessing the aesthetic layout of student diagrams: evaluating
performance

To assess the performance of the extension to allow the assessment of the aesthetic

layout of student diagrams to occur, it is necessary to link the experience of

designing exercise domains, authoring exercises, running the exercises and

generating feedback to students to the requirements from each of the disciplines of

CBA, formative assessment and educational diagramming identified in section 5.2.1.

Section 6.2.1 linked the design of the extension to its requirements. Here, we relate

the experience in use to those requirements.

8.3.1 Evaluating the extension as CBA

The prototypical exercises constitute good examples of formative assessment. The

domain notations are designed online, the exercises are developed online and the

management of the full lifecycle of a CBA exercise is achieved through an integrated,

online system.

The three main requirements of the extension in relation to CBA are met. The

aesthetic measures successfully provide a basis for the assessment of diagram

aesthetics in both assessed domains. The system of aesthetic measures is

comprehensive, such that the implementation of structural measures has not been

required. However, given that structural measures operate in precisely the same way

as aesthetic measures, there is no reason to believe that their use would have been

any less successful than for aesthetic measures should additional layout criteria have

proved necessary for the domains.

8. Use and evaluation 216

It proves possible to take into account educator preferences and differences between

domains when assessing the aesthetic layout of different domains. The system of

weighting allows the non-interception aesthetic measure to be “downgraded” in

relative importance for the UML Class Diagrams with a trivial amount of effort.

It has become obvious, however, that the system of weighting would be more

effective if the relative weights were defined based upon research outcomes rather

than what amounts to carefully considered guesswork. It must be noted, however,

that increased usage of the system would be a good platform for the research itself to

be carried out, with weights improved in accuracy, year upon year.

The other requirements are met in entirety. The extension is successfully integrated

into the marking and feedback systems and is transparent to students, who showed

no awareness that any of the “behind the scenes” processes had changed. Indeed, the

students seemed to regard the prototype exercises in much the same way as they had

the compulsory Java programming exercises they had completed previously, since

the exercise specifications were delivered and feedback was returned using a

consistent format for both.

8.3.2 Evaluating the extension as formative assessment

Most students agreed that the feedback comments relating to the aesthetic layout of

their solutions had helped to improve the appearance of their diagrams. The

feedback was motivational since many students were inspired to improve their

diagrams and re-submit with better versions because of it. Section 8.3.1 has discussed

the integration of the extensions into the feedback system, and the evaluation of the

extension for prioritising and truncating feedback will consider this issue further.

8.3.3 Evaluating the extension as educational diagramming

Within the context of educational diagramming, the key requirements have been

met. The system provides a basis for assessing diagrams generically through the

application of aesthetic criteria, which have successfully assessed diagrams in two

domains based upon different weighting and leniency configurations. A platform for

extension to accommodate new domains has been provided by allowing future

developers to develop further layout criteria, on a domain specific basis, which

operate according to the same design principles. Currently, the aesthetic measures

8. Use and evaluation 217

operate on a domain-independent basis apart from exercise-specific configuration,

and are based upon established aesthetic principles from research fields. The relative

importance of criteria can be taken into account through the system of weighting,

although section 8.3.1 has noted already that further research into precise weighting

values on a per-domain basis would be useful. The system of leniency values, on the

other hand, benefits from being able to be configured using a defined mechanism.

Fundamentally, the system has succeeded in improving the appearance of student

diagrams and in assessing the clarity of the diagram as well as its features-based

correctness. This, therefore, represents a positive achievement in educational

diagramming.

8.4 Assessing solutions with mutually exclusive solution cases:
evaluating performance

This section considers how the extension to allow the assessment of solutions with

more than one acceptable model solution through defining mutually exclusive

alternate solution cases has performed, relative to the requirements in CBA,

formative assessment and educational diagramming which were established in

section 5.2.2. Section 6.2.2 previously linked the design of the extension to its

requirements. Here, we consider the experience in running prototypical exercises.

8.4.1 Evaluating the extension as CBA

The requirements for the extension from a CBA perspective have been met. Defining

mutually exclusive solution cases is a straightforward, repetitive process once the

multiple model solutions have been developed. It is necessary to consider all possible

model solutions — barring the minor variations in labelling which can be taken into

account by defining flexible regular expressions as Oracles — which raises the

possibility that a student with a particularly novel solution might not receive a

suitable response. However, given that exercises constructed using the extension are

intended for formative assessment purposes, there is no possibility of a student

losing credit through originality, and, furthermore, this issue did not arise during the

running of the prototypical coursework.

The exercise developer is able to specify the common case and each of the mutually

exclusive solution cases using a consistent notation, with little more effort than for

8. Use and evaluation 218

conventional CBA exercises using CourseMarker. Furthermore, the extension is

integrated into the marking and feedback system in such a way that complete

transparency is achieved from the point-of-view of the student.

8.4.2 Evaluating the extension as formative assessment

From the perspective of formative assessment, the central requirement is feedback.

The difficulty of developing good formative feedback comments for CBA exercises

must not be underestimated when the process of exercise development begins.

Developing good feedback is a time-consuming process requiring the construction of

carefully phrased, motivational comments relating to the principles tested by the

associated features expressions within the features test. Furthermore, it is necessary

to link the comments to learning materials. This could be achieved, firstly, by

locating good reference material for the various feedback comments — trying not to

reference the same text repeatedly if student research is to be nurtured — or,

secondly, by developing a wide selection of bespoke research material for integration

into the CBA course. The first option is feasible, if sufficient priority is attached to the

exercise feedback by the educator. The second option may only be feasible in

extraordinary cases. A third solution which could be considered in the future is the

integration of courseware into content management systems, with active linking

between assessment feedback and teaching materials within the CMS.

The assessment process was able to determine which version of the model solution

the student was able to attain and to tailor the feedback accordingly. This process

occurred smoothly across both prototypical domains. Again, with reference to the

creation of feedback by the educator, most identifiable distinction tests were based

upon imperfect harbingers, since it proved difficult to identify precise pedagogical

reasons which encapsulated the difference between different model solutions in

many cases. However, with effort, it proved possible to construct useful,

motivational feedback.

The success of the feedback when the formative assessment framework criteria,

summarised in section 2.2.5, are applied is considered in section 8.5.2.

8. Use and evaluation 219

8.4.3 Evaluating the extension as educational diagramming

The requirements within the context of educational diagramming are similar to those

considered in section 8.3.3. The system of aesthetic and structural measures, further

parameterised by relative weighting and leniency values, allowed a basis for

assessment in a wide variety of educational diagram domains to be provided.

The specification of common and mutually exclusive features is a standard process

involving the determination of common and uncommon solution elements in the

various model solutions. So long as the DiagramFeaturesTool is used to assess

diagram features in a generic way then consistency across domains is also achieved,

even down to the level of the features expressions which are evaluated by the

marking tools. Any operator available within the DiagramFeaturesTool may be

applied freely to any aspect of the student diagram, and this, indeed, occurred

successfully within the prototypical exercises. Further potential in allowing

educators to develop their own criteria is presented by the decoupling of the

extension from the features tool used. Although the DiagramFeaturesTool was

developed to provide generic functionality, new marking tools may be developed

and substituted for the DiagramFeaturesTool by merely changing the invocation

in the exercise marking scheme.

8.5 Prioritising and truncating the feedback: evaluating
performance

The extension responsible for the prioritisation and truncation of feedback has

requirements from the perspective of CBA and formative assessment. This section

provides an overview of how the experience gained from the prototypical exercises

demonstrates that the requirements from these areas, defined in section 5.2.3, have

been fulfilled.

8.5.1 Evaluating the extension as CBA

The central requirements from the perspective of CBA were the integration of the

mechanism for prioritising and truncating feedback into the architecture, which was

achieved. The prioritisation and extension successfully occurs for each submission

without human marker intervention. Comment priority can be specified by the

exercise developer in terms of the system of weights; although some care must be

8. Use and evaluation 220

taken when defining the weights, the system was shown to operate successfully for

the prototypical exercises and the students were motivated by the resulting feedback.

8.5.2 Evaluating the extension as formative assessment

From a formative assessment perspective, the central requirement was to provide

only the most relevant feedback comments in order to allow the student to

concentrate on key improvements to their solutions which are required, without

being “overloaded” by irrelevant comments. Flexibility for the exercise developer has

been achieved through the implementation of the system of Strategies, in which each

Strategy represents a sub-problem within the prioritisation and truncation of

feedback.

The purpose of the prioritisation and truncation strategy was to adapt the feedback

provided by automated assessment into a form which would, if combined with a

flexible marking system, motivational feedback and a CBA platform, provide a

framework for effective feedback for formative assessment to be delivered.

Section 2.2.5 outlined the properties to which a framework for effective formative

feedback should conform. Firstly, formative assessment should facilitate the

development of self assessment, or reflection, in learning. The assessment programme

was not educator-led in any sense. The students were free to work through the

exercises at their own pace and relied for feedback upon the courseware assessment.

Feedback comments had been engineered to be motivational, to encourage further

research and to provide good references as a starting point for that research. The

students were therefore compelled to reflect upon how the information they had

been directed to would help to improve their coursework solution, a task involving

both critical self-assessment and the gradual improvement of a student’s internal

perception of what is required from the coursework.

Secondly, formative assessment should encourage teacher and peer dialogue around

learning. Students were aware that they could confer and collaborate on exercises to

the extent that they wished. Indeed, it would have been impossible to prevent

students from acting in this way due to the lack of restrictions on the availability of

the exercises through CourseMarker. Students could collaborate and assists each

8. Use and evaluation 221

other during exercises. Furthermore, several students sent emails containing queries

about coursework issues.

Thirdly, formative assessment should clarify what constitutes good performance.

The unit specification within each exercise domain was authored to include a simple

specification of an example exercise, together with links to diagram solutions which

would satisfy the requirements of the specification. Including the example in the unit

specification allowed students to grasp the goals of the unit at an early stage, so that

the correlation between the internal perception of the student and the actual goals of

the educator was maximised. Questionnaire results demonstrate both that students

found the exercises easy to comprehend and that students felt their coursework

solutions had been improved as a result of the feedback to earlier submissions.

Fourthly, formative assessment should provide opportunities to improve

performance. Table 8.1 demonstrates that students made multiple submissions for

exercises in the majority of cases. Students agreed that they utilised the feedback

provided to early submissions in order to improve their performance and re-submit.

The fact that the assessment process is fully automated allows students to submit

solutions several times with no increased workload for the educator.

Fifthly, formative assessment should deliver information focused on student

learning. The feedback was always delivered in good time due to the nature of the

automated assessment process. In practical terms, feedback is delivered

instantaneously in all cases. The prioritisation and truncation extension is a key

component in the process of delivering feedback which is not overwhelming in

quantity. A large number of features and aesthetic layout comments are sorted by

priority, with truncation allowed according to the specification of the educator, who

can control the number of criteria about which feedback is given. The student

perceives the feedback as targeted and hence does not lose the view of the exercise as

a holistic entity.

Sixthly, formative assessment should encourage positive motivational beliefs and

self-esteem. Students were aware that the prototypical exercises carried no

summative assessment weight or course credit. Therefore, students were able to relax

and enjoy the process of learning rather than concentrating upon the achievement of

good marks. Feedback concentrated on learning goals by specifying good practice

8. Use and evaluation 222

and referring to the educational literature. Questionnaire results demonstrate that,

overall, students thought that the exercises were a good use of their time, even

though no course credit was gained from them.

Seventhly, formative feedback should provide information to educators that can be

used to help shape the teaching. CourseMarker archives all submissions across a

course. Administrators can retrieve submissions, precise marks and the feedback

provided for each submission. Even details such as the time of the submissions are

stored. Substantial material for further research can be generated by the

implementation of exercises within such a CBA context.

8.6 Conclusions

Chapter 9 will review the key points of the thesis to show how the evaluation of the

system relates to the general objectives for research stated at the beginning. The

general objectives of this work asked several specific questions, which can now be

answered. The purpose of this section is to discuss each of these questions in turn

and to argue that the formative CBA of diagram-based domains is both feasible and

useful.

This work has demonstrated that the formative CBA of diagram-based domains is

certainly possible. Feasibility is assessed by determining whether the level of

difficulty encountered in developing and deploying the exercises would render the

process too difficult to be developed by educators. Usefulness, on the other hand, is

primarily assessed by determining whether the exercises were useful to students and

enhanced their learning process.

The automated system for the marking of the aesthetic layout of student diagrams

was thought by students to have provided useful feedback which improved the

layout of their diagrams. Prototypical exercises have demonstrated that domain-

specific layout rules are not required for each domain. The trade-offs required to

ensure generality across domains while at the same time allowing specialisation

involve the need to specify general functionality while also allowing that

functionality to be extended by future developers in a carefully defined way. The

system of aesthetic and structural measures accomplishes this through defining a

basic range of domain-independent functionality which can be invoked in many

8. Use and evaluation 223

domains, while allowing similar marking tools to be developed around domain-

specific criteria in the form of structural domains. Furthermore, the distinction

between aesthetic and structural domains allows clarity when considering those

measures necessary to assess each new domain. Aesthetic measures should be used

by default and only sidelined with justification. Conversely, structural measures are

intended to be domain-specific, and therefore do not need to be considered for

inclusion when new domains are developed, without specific reason on the behalf of

the educator.

The extent to which it is possible for the educator to provide formative feedback in

many diagram-based domains by configuring the system and writing feedback

comments is constrained by the similarity of the domains. In the worst case, the

development of a marking tool, structural measures and new concrete prioritisation

and truncation strategies would have to be carried out once for each domain.

Configuring of exercises within the domain is possible through configuration and the

writing of feedback content. However, such a worst case scenario is not inevitable or

even common. The development of those components required for a new domain

can often take advantage of the similarity between many educational diagram

domains. Adaptation or even complete re-use of components designed for use with a

previous domain is plausible in many cases and the probability of existing

components being useful increases as new domains are developed for assessment

and more components are created. Furthermore, the extensions were created to

provide a generic basis for formative assessment, including a domain-independent

tool for features marking, a general suite of aesthetic measures and example concrete

strategies to solve the problem of prioritising and truncating student feedback.

The main area where standardisation of CBA processes has failed to occur is in the

creation of the formative feedback. This chapter has shown, through the

documentation of prototypical exercises, that CBA can be used to deliver good

formative assessment. It must be emphasised, however, that the effort involved in

creating the exercises was great due to the feedback requirements. With this in mind,

it must be understood that formative assessment can be rendered less resource-

intensive through the use of CBA technology, so long as the potential for long-term

re-use of the exercises is considered. In fact, re-use of formative assessment diagrams

does not pose problems of question security in the same way that re-using

8. Use and evaluation 224

summative questions does. Furthermore, courses can be incrementally improved,

year-on-year, both by adding new exercises each year to increase the coverage of the

domain, and by taking into account student comments to improve existing exercises.

A formative assessment process which is automated using CBA technology has been

shown to enhance student learning. The exercises were popular with those students

who enrolled and can be shown, as in section 8.5.2, to conform to the framework for

good formative assessment practice.

Chapter 9 builds upon the experience documented within this chapter, and the

evaluation which followed, to initiate a discussion surrounding the two fundamental

questions which formed the basis of this work. Furthermore, the contributions of the

work are examined and future work is proposed.

Chapter 9

Conclusions

9. Conclusions 226

Introduction

This chapter reviews the key points of the thesis to show how the evaluation of the

system relates to the general objectives for research stated at the outset. The

contributions of the research are discussed and areas for further research to be

carried out in the future are considered.

Section 9.1 discusses the way in which the research has approached the problem of

conducting formative, computer-based assessment in diagram-based domains. A

summary is provided of how the work has met its general and specific objectives

according to the requirements set out in chapter 5. Section 9.2 provides a summary of

the contributions of this work while section 9.3 outlines areas for future research in

the key topic areas of the thesis. Finally, section 9.4 concludes with an epilogue on

CBA, formative assessment and educational diagramming.

9.1 Meeting the objectives

Chapter 5 demonstrated that, in order to prove that the automation of the formative

assessment of diagram-based coursework using CBA courseware is both feasible and

useful, the design, implementation and integration into the existing courseware of

three key extensions was necessary. The three identified areas of extension are:

• Extending the marking system to assess the aesthetics of student diagrams;

• Extending the marking system to allow the assessment of mutually exclusive

solution cases;

• Changing the system of feedback to provide only the highest priority

comments to students.

This section revisits these objectives and demonstrates that the key objectives have

been accomplished.

9.1.1 Assessing the aesthetic layout of student diagrams

Allowing the assessment of the aesthetic layout of student diagrams is necessary if

the formative assessment is to assist student learning within a diagram domain.

Educational diagrams convey domain-specific information through their convention

9. Conclusions 227

of meaning, but if the aesthetic layout of the diagram is poor then the meaning of the

diagram may be poorly understood. Initial experimentation, described in chapter 4,

showed that students often produced diagrams of poor aesthetic appearance which

conveyed information in an unclear way. If the aesthetic appearance of student

diagrams is not assessed, and no feedback to the student provided, then the student

will not be given the incentive to improve their diagram-based solution in this key

aspect.

The design and implementation of the extensible mechanism to allow the aesthetic

layout of student diagrams to be assessed has been successful. The extension was

realised and integrated successfully into the existing CourseMarker architecture. The

potential for domain coverage is large. Representations for new domains can be

authored easily using the Theseus diagram editor. The only constraint, if the

aesthetic layout of the domain is to be assessed, is necessity of inclusion within the

domain notation of a Border Tool which can be used by the student to indicate the

boundaries of their diagram; this is a trivial task. The system of aesthetic and

structural measures allows the aesthetic layout of any diagram domain to be

assessed. Aesthetic measures are built around domain-independent, general purpose

aesthetic layout criteria which can be used to assess the diagram appearance of a

large number of educational diagram domains. Structural measures can be used to

extend the layout marking to incorporate any domain-specific criterion necessary to

assess aesthetics within a new domain that may arise.

The construction of new structural measures requires programming from the

developer and, as such, is non-trivial. However, layout tools do not require extensive

coding and, furthermore, are not required at all for many educational diagram

domains which may be assessed successfully using the provided aesthetic measures

alone. Once a structural measure has been created, it can be used for all exercises of

the same type.

The extension to allow the assessment of the aesthetic layout of student diagrams

was designed with the requirements to provide a basis for assessment of aesthetic

layout, to allow extension to support future aesthetic layout requirements and to

integrate into existing courseware architecture as prime concerns. The first two

requirements were met by considering the commonality and variation across layout

9. Conclusions 228

criteria for diagram domains. Commonality was represented by aesthetic measures,

whilst variation was represented through allowing extension as structural measures.

The distinction between aesthetic and structural measures was essential in clarifying

cross-domain requirements to the educator. A design in which layout measures were

applied generally to each domain would result in greater effort on the part of

educators to consider suitability on a domain-specific basis. Inevitably, this would

result in the number of applied measures for each domain being reduced due to the

amount of time required to determine suitability. With the design described by this

work, the educator need only consider the special requirements of the domain in

order to determine the necessary layout tools.

The extension has been successfully integrated into the CourseMarker marking

system. It is implemented as a series of marking tools and interfaces and provides

feedback in a form which can be utilised by the CourseMarker feedback system. This

final requirement allows the extension to be deployed as part of CourseMarker’s

high-performing, platform neutral architecture. This allows the creation and delivery

of aesthetic-based feedback comments to be delivered to the student.

9.1.2 Assessing solutions with mutually exclusive solution cases

The system of features marking within CourseMarker had been developed as part of

the Generic Marking Mechanism as a general tool to allow marking to be

accomplished across domains with widely varying notions of quality [Ta02]. In the

process of summative assessment to which CourseMarker was applied, students

were often to be tested using very specific problem specifications which designated

one technique of solving a problem to be used and often forbade all others. This was

especially true in programming exercises where students were expected to

concentrate on a new programming construct, or a new set of programming

constructs, in each week’s assessment.

Within the context of the formative assessment of diagrams this method was

demonstrated to be insufficiently flexible. Chapter 4 outlined the problems

associated with the approach. Initial, simple exercises could be appropriately marked

in many cases, but as the exercise specifications grew more complex the possibility of

multiple model solutions being acceptable meant that features testing was markedly

less comprehensive.

9. Conclusions 229

It became clear that, if mutually exclusive solution cases could not be assessed, then

features marking would be reduced either to marking the common subset of features,

or to restricting learning through precise problem specifications. Both of these

possibilities would have a negative effect on student learning in diagram-based

domains and, hence, on the formative assessment process.

The design and implementation of the mechanism to allow the assessment of

solutions with mutually exclusive solution cases has been successful, with the

extension integrated successfully into the existing CourseMarker architecture. The

mechanism is generic, allowing any marking tool which has been defined to be used.

A DiagramFeaturesTool is implemented to allow generic features testing in

common educational diagram domains, but the functionality can be extended to

cover domain-specific features tests by designing and implementing a new marking

tool and invoking it within the marking scheme in place of the

DiagramFeaturesTool. This approach is consistent with the notion, applied

throughout this work, that a basis of existing functionality should be supplemented

by the possibility of expansion by developers to accommodate new domains, which

may raise previous unforeseen requirements, in the future.

Defining the feedback comments which will be delivered to students according to the

evaluation of each individual features expression is a non-trivial task which takes

much time. Despite this, the fact that the nature of formative assessment allows great

potential for exercise re-use means that resource-savings can be made over the

medium and long-term, resulting in a set of consistently marked exercises which can

be incrementally improved or added to over time.

The extension has been successfully integrated into the CourseMarker marking

system. The DiagramFeaturesTool is implemented as a CourseMarker marking

tool with generic functionality while the design takes into account the flexibility of

the exercise marking schemes to repeatedly invoke the marking tool to assess each

mutually exclusive solution case in turn. Feedback is returned in the

MarkingLeafResult and MarkingCompositeResult structure which can be

utilised by the CourseMarker feedback system, thus allowing the extension to be

deployed as an integrated part of CourseMarker’s high-performing, platform neutral

infrastructure.

9. Conclusions 230

9.1.3 Prioritising and truncating student feedback

CourseMarker’s feedback system was developed for the purposes of providing a

concise, expandable representation of the feedback generated for each stage in the

marking process. For summative assessment purposes, this representation provided

a useful breakdown of the grades awarded for the exercise, maximised for ease of

referral. For the purposes of formative assessment, however, the feedback was

unwieldy, unfocused, un-motivational and contained many feedback comments

which were unhelpful and irrelevant. The extension allows the feedback to be

prioritised according to defined criteria and strategies before being truncated

according to educator preferences.

The design of the mechanism for prioritisation and truncation of feedback divides

the task into four sub-problems: distinguishing between mutually exclusive solution

cases, prioritising features feedback, prioritising aesthetic layout feedback and

truncating the feedback tree. The implementation and integration into the existing

CourseMarker infrastructure have been successful. The potential for domain

coverage is large: any feedback can be prioritised and truncated so long as the raw

feedback tree can be generated using marking tools and appropriate concrete

strategies to solve each of the four sub-problems are defined. A basis for

prioritisation and truncation has been provided through the implementation of

example concrete strategies, while the interfaces and abstract classes defined offer a

precise extension point for developers in future.

Implementing and integrating new truncation strategies in the future, based upon

educator preferences, is a straightforward task. So long as the new concrete strategy

extends the correct abstract class according to the sub-problem it is developed to

solve, only the construction of a simple algorithm to encapsulate the strategy is left to

the developer.

Invocation in the exercise marking scheme represents the point of direct integration

into CourseMarker. The process of invoking the PrioritiseTruncateTool and

parameterising it using the correct concrete strategy objects is logical and

straightforward. The PrioritiseTruncateTool returns the truncated feedback as

a new composite marking tree, which is returned transparently to the student.

9. Conclusions 231

9.2 Contributions

The main contributions of this work are in the area of CBA, but advances can also be

demonstrated in the fields of formative assessment and educational diagramming.

Novel experience in these fields has been gained through the design,

implementation, integration into courseware and evaluation of the extensions to

allow aesthetic layout marking, assessment of multiple model solutions through

mutually exclusive solution cases and the prioritisation and truncation of student

feedback. The following sections summarise the key contributions in each of the

three areas of research.

9.2.1 CBA

The most obvious contribution to CBA is in the development and deployment of a

new type of CBA. Formative assessment of a free-response domain such as

educational diagrams has not been attempted prior to this work in such a manner as

to take into account such factors as mutually exclusive features correctness, aesthetic

layout and configuration of feedback. Free-response CBA still constitutes a minority

of systems in the field because of its perceived “difficulty”; this work demonstrates

that useful, formative assessment can be deployed within a free-response domain

such as educational diagrams and provides a platform for deployment across many

domains and an example of the incorporation of such features into an existing CBA

architecture. Another contribution to CBA lies in advancing understanding within

the CBA community as to what constitutes good formative assessment; previous

CBA work, including that of Tsintsifas [Ta02] has argued that formative assessment

is merely summative assessment with the marks discarded. This work has developed

the understanding, within a CBA context, that this is not the case.

A deeper contribution to CBA is that the software deliverable can be used as the

basis for further research. Although prototypical exercises have been deployed for

the purposes of assessing the feasibility and usefulness of the concepts, it is clear that

each of the extensions provides clear potential for further work by CBA developers

and researchers into areas such as the automated marking of diagram layout, the

automated marking of coursework with multiple valid model solutions and the

truncation and prioritisation of student feedback. Section 9.3 considers the potential

for future research based upon the research described here.

9. Conclusions 232

9.2.2 Formative assessment

The contribution to formative assessment is in the application of CBA to the problem

of formative assessment decline. Chapter 2 highlighted the solutions suggested in the

literature to adapt formative assessment to a changing educational climate

characterised by less favourable staff to student ratios. The literature highlights that

“mechanisation” may be an option but the scope of ambition is fairly modest. CBA

courseware offers potential for considerable resource-savings through a total

automation of the formative processes for assessment and the return of feedback,

provided that the infrastructure is sufficiently flexible and has been adapted to

formative assessment requirements. This work has demonstrated that such an

approach is feasible and useful, provided advice for educators related to the issues

involved and provided useful experience for developers.

Moreover, the integration of the extensions into CourseMarker provides a basis for

impact upon formative assessment automation within higher education institutions.

CourseMarker has been successfully deployed at at least 15 other higher academic

institutions and is prominently cited within the literature. The contributions made by

this work therefore have the potential to impact upon future research in formative

assessment with a view to changing the common perception that the assessment

form is necessarily resource-intensive.

9.2.3 Educational diagramming

The contribution to the field of educational diagramming lies in the creation of an

extensible theoretical framework for the assessment of educational diagram

aesthetics, the implementation of the framework and its deployment as part of a CBA

courseware system. Research into educational diagrams has previously taken into

account automated layout algorithms, whereby an algorithm is used to place nodes

and edges in such a way that the result is pleasing to a human eye. This work

provides a basis for the inverse process — that of assessing the aesthetics of a

diagram which has been drawn by a student. Again, the contribution further lies in

the use of the deliverables for the purposes of further research. Research into the

relative importance of aesthetic layout criteria can be facilitated through the system.

Section 9.3 considers the potential for future research based upon the research

described here.

9. Conclusions 233

9.3 Future Work

A central contribution of this work is the development of a solid basis for future

extension by researchers. The work described here can be used to facilitate future

research in numerous ways which span various research areas. This section considers

the potential for future research in the areas of CBA, formative assessment and

educational diagramming.

9.3.1 CBA

As well as being deployed within several educational institutions as a live CBA

system, CourseMarker has been, and continues to be, an active research platform for

academic researchers and students. Interesting student projects would include the

development of courses, including exercises and concrete designs for further

structural measures, diagram marking tools to be incorporated into the mutually

exclusive features case extension, and concrete strategies.

An interesting piece of future research would be to investigate the extent to which

the extension described here for mutually exclusive solution cases could be usefully

deployed in other domains, such as programming exercises. It has been noted that,

currently, programming exercise specifications are used to “shepherd” students into

making use of an exact programming construct, which is subsequently the subject of

features testing. Research could be conducted to determine the extent to which

mutually exclusive solution cases could be used to “relax” specifications in existing

programming courses with a view to providing increased flexibility to students in

problem-solving and a less rigid problem specification.

Further research could be conducted which uses the aesthetic layout marking tools as

a starting point. To what extent could the layout marking mechanism be adapted to a

summative assessment scenario in which the raison d’être is the exact summative

mark returned by the system, rather than the feedback. This requirement would

place greater emphasis on the need for accurate grading, both between the various

aesthetic and structural measures and between the layout measures and other grade-

contributing factors from other marking tools. A special emphasis would need to be

placed upon finding a mechanism to adequately aggregate marks to produce a fair

overall summative result.

9. Conclusions 234

Further research could also aim to further augment the usefulness of the feedback.

Currently, the feedback is modified based upon only the current submission. Further

research could aim to take previous submissions’ feedback into account, developing

for the student a “satisfying” sense that their individual progress is being aided. The

idea of using AI agents to monitor student progress and tailor feedback through

gathering data from both submissions and administrative data has been proposed

previously [Ta02], but has yet to be realised.

Furthermore, there is a need to address the interoperability of CBA exercises. At the

time of writing, research is already underway within the LTR research group into

defining free-response CBA questions in an interoperable way. It would be useful if

formative assessment exercises within diagram-based domains were to be

approached using such a methodology so that, when further courseware

incorporates functionality similar to that described by this work, exercises could be

created and used on a cross-platform basis.

9.3.2 Formative assessment

Several future research projects within the area of formative assessment could use

this work as a departure point. This work examines the formative assessment using

CBA courseware of diagram-based domains. Diagram-based domains were chosen

because of their free-response nature, which allows higher-order cognitive levels to

be more easily assessed, and their wide potential for cross-disciplinary application.

This research, however, raises questions as to whether CBA automation could be

applied to formative assessment in other domains such as programming using the

approach described by this work.

Further research could seek to investigate whether different methodologies in

feedback construction for the formative exercises resulted in better assistance for the

learning process of the student. This research provided a set of brief guidance to

educators which touched upon the subject of feedback construction. However, this

area could be the subject of considerable further research. As well as the direct

methods of constructing and phrasing feedback comments, projects could also

investigate strategies for providing extensive teaching material content through the

courseware and providing direct links to this content from the feedback area.

9. Conclusions 235

9.3.3 Educational diagrams

The extensions described by this work, and their integration into courseware,

facilitates research into several areas of educational diagramming.

This research provides a platform to determine whether theoretical criteria for the

assessment of educational diagram aesthetics will accurately provide an indicator of

the appearance of a student diagram. Research can now be conducted to determine

the perception of diagram layout among domain novices rather than experts, as is

usually the case. Methods could also be investigated to optimise the priority

accorded to the various layout measures through interactive modification of the

weight values assigned to the measures in the marking scheme.

Furthermore, in the general area of diagramming, this research offers the potential to

carry out research which reverses the traditional methodologies of those such as

Purchase et al [PAC02]. Perception of aesthetic layout criteria could be tested by

asking volunteers to interactively construct diagrams with priority placed upon a

defined aesthetic layout criterion. The drawing could then be assessed objectively by

the marking system to see the actual level, as opposed to the level perceived by the

volunteer, that the drawing had achieved according to the criteria. Similarly,

interactions between criteria when combined could be investigated. This reverses the

traditional methodology in which diagrams are prepared as part of the research

materials, with volunteers assessing the layout of the pre-drawn diagrams.

9.4 Epilogue

This research investigated the feasibility and usefulness of the idea of automating

formative assessment coursework using CBA courseware, in free-response diagram-

based domains. Work on free-response, diagram-based CBA is sparse. It is for this

reason that formative assessment using CBA in such domains has not been reported

prior to this work.

An initial research phase involved the construction of CBA exercises using existing

courseware with only minor, obvious, modification. The initial phase of the research

pointed to the fact that CBA courseware certainly had the potential to deliver

formative assessment courses in free-response domains, but that the current

techniques and methodology associated with the assessment required augmentation.

9. Conclusions 236

Nevertheless, the initial research did indicate that several key concepts, such as the

use of two-part assessment as a motivator, held true in real world courses.

The design of extensions to available CBA courseware capability and the integration

of the extensions into an existing CBA courseware architecture subsequently formed

the core of this work. The deliverables of the work have been used to demonstrate

that the assessment could be achieved feasibly and could be useful for students, in a

formative assessment context, by aiding their learning process.

The first extension, to allow the aesthetic layout of student diagram solutions to be

assessed, resulted from the principle that formative assessment, in being responsible

for the learning process, must take great care to teach good practice. The second

extension, to allow assessment to occur in situations where multiple model solutions

are plausible, took into account the idea that formative assessment must attempt to

allow scope for learning and student variation. The third extension, to prioritise and

truncate student feedback, resulted from the notion that large lists of marks and

feedback, incorporating many irrelevant feedback items, may result in student

‘overload’ and a subsequent failure to apply the feedback to further learning. In all

cases, the extensions were designed to be extensible to adapt to subsequent

developments, and were successfully integrated into the CourseMarker courseware

architecture.

Two central questions formed the inspiration for this work. Firstly, to what extent

can CBA techniques be used to reduce the resource required in setting a formatively

assessed coursework in a diagram-based domain, marking student submissions and

returning feedback, while still adhering to good formative assessment principles?

Secondly, to what extent would current, successful CBA practices need to be changed

to conform to formal formative assessment guidelines?

This research has provided answers to both of these questions. CBA techniques can

be used extensively to reduce the resource-intensiveness of formative assessment

while conforming to good formative assessment principles, but the processes of

determining requirements for new domains and authoring exercises can be lengthy

and involved. The resource saving of CBA exercises is derived from the fact that,

once designed and deployed, they can be used repeatedly over many academic

years. Indeed, assessment materials can be gathered over the course of several

9. Conclusions 237

academic years, with the amount of formative assessment conducted through

traditional methods gradually reduced in parallel as both educator and student

confidence with the new technology increases. Furthermore, the marking of

submissions and returning of feedback opens up new avenues of formative

assessment, such as the potential for repeated re-submission, which would never

have been plausible using traditional marking methods.

Conversely, CBA techniques can benefit greatly through being subject to the scrutiny

of assessment guidelines like those available for formative assessment. Technology-

led solutions such as CBA courseware are often motivated by the desire to automate

those types of assessment, and feedback, which are the easiest to achieve in practice.

Studying the CourseMarker CBA system through “the lens” of formative assessment

criteria has opened up new lines of research enquiry and resulted in considerable

functionality being added to the system of assessment and feedback. It is only when

rigorous scrutiny is applied across the board that CBA techniques will attain a true

level of acceptance within higher education and finally convince their many

detractors of their merit.

Bibliography

Bibliography 239

All URLs were last accessed on 31 March 2007.

AK01 Anderson L.W. and Krathwohl D.R. (eds.), A taxonomy for learning,
teaching, and assessing: A revision of Bloom's taxonomy of educational
objectives, Longman, 2001, ISBN 0321084055.

AMW06 Axelsson K., Melin U. and Wedland T., Student Activity in Seminars —
Designing Multi-functional Assessment Events, Proceedings of the 11th
Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education (ITiCSE 06), Bologna, Italy, p93-97, June 26-28, 2006.

ANSI05 American National Standards Institute, Overview of the U.S.
Standardization System: Understanding the U.S. Voluntary Consensus
Standardization and Conformity Assessment Infrastructure, ANSI, July,
2005. Available from: http://www.ansi.org/

App89 Apple Computer Inc., MacAppII Programmer’s Guide, Apple Computer
Inc., 1989.

APR06 Amelung M., Piotrowski M. and Rösner D., EduComponents: Experiences in
E-Assessment in Computer Science Education, Proceedings of the 11th
Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education (ITiCSE 06), Bologna, Italy, p88-92, June 26-28, 2006.

As04 Ambler S.W., General Diagramming Guidelines, The Official Agile Modeling
(AM) Site, 2004. Available from
http://www.agilemodeling.com/style/general.htm

ASM02 Almond R.G., Steinberg L.S. and Mislevy R.J., Enhancing the Design and
Delivery of Assessment Systems: A Four Process Architecture, Journal of
Technology, Learning and Assessment 1(5), 2002. Available from
http://www.jtla.org/

Asy94 Asymetrix Inc, Toolbook 3.0 User's Manual, Asymetrix Incorporated, 1994.

AUT05 AUT Research, Packing them in: The student-to-staff ratio in UK Higher
Education, Association of University Teachers Research, October 2005.
Available from
http://www.aut.org.uk/media/pdf/c/j/ssr_packingthemin.pdf

Ba79 Borning A., Thinglab — A Constraint-Oriented Simulation Laboratory,
Technical Report STAN-CS-79-746, Stanford University, USA, March, 1979.

Bb03 Bligh B., CourseMarker and DATsys: next generation automated assessment
systems, talk delivered to Use of CAA in ICS Education, LTSN conference,
University of Brighton, UK, July 16, 2003.

BBF+93 Benford S., Burke E., Foxley E., Gutteridge N. and Zin A.M., Experiences
with the Ceilidh System, Proceedings of the 1st International Conference on
Computer Based Learning in Science (CBLIS’93), Vienna, Austria, 1993.

http://www.ansi.org/
http://www.agilemodeling.com/style/general.htm
http://www.jtla.org/
http://www.aut.org.uk/media/pdf/c/j/ssr_packingthemin.pdf

Bibliography 240

BBF+95 Benford S., Burke E., Foxley E. and Higgins C., The Ceilidh System for the
Automatic Grading of Students on Programming Courses, ACM Press,
Proceedings of the 33rd Annual ACM Southeast Conference, Clemson, South
Carolina, March 1995.

BBF96 Benford S., Burke E. and Foxley E., Developer’s Guide to Ceilidh, LTR
Report, Computer Science Department, The University of Nottingham, UK,
1996.

BC82 Biggs J.B. and Collis K.F., Evaluating the Quality of Learning: the SOLO
Taxonomy, Academic Press, 1982.

BD04 Bull J. and Danson M., Computer-assisted Assessment (CAA), LTSN Generic
Centre: Assessment Series No. 14, January 2004.

BE98 Blackwell A. and Engelhardt Y., A taxonomy of diagram taxonomies,
Proceedings of Thinking With Diagrams 98: Is there a Science of Diagrams?,
p60-70, 1998. Available from:
http://www.cl.cam.ac.uk/~afb21/publications/TwD98.html

BEF+56 Bloom B.S., Englehart M.D., Furst E.J., Hill W.H. and Krathwohl, D.R.,
Taxonomy of educational objectives: the classification of educational goals,
Handbook 1: Cognitive Domain, Longmans, Green, Co., 1956.

BEH+05 Burrow M., Evdorides H., Hallam B. and Freer-Hewish R., Developing
formative assessments for postgraduate students in engineering, European
Journal of Engineering Education 30(2), p255-263, May 2005.

BER+99 Baklavas G., Economides A.A. and Roumeliotis M., Evaluation and
Comparison of Web-based testing tools, Proceedings of the World
Conference on the WWW and Internet (WebNet-99), Association for the
Advancement of Computing in Education, Honolulu HI, USA, October 25-
28, 1999.

BET+94 Battista D., Eades P., Tamassia R., and Tollis I., Annotated bibliography on
graph drawing algorithms, Computational Geometry: Theory and
Applications, Vol 4, p235-282, 1994.

BFK+04 Belton M., Fair K., Kleeman J., Phaup J. and Shepherd E., Perception to Go:
Empowering Disconnected Delivery of Assessments, Questionmark White
Paper, 2004. Available from: http://www.questionmark.com/

Bg01 Brown G., Assessment: A Guide for Lecturers, LTSN Generic Centre:
Assessment Series, November 2001.

Bg93 Booch G., Object-oriented Analysis and Design with Applications, 2nd
Edition, Benjamin Cummings, 1993. ISBN 0-8053-5340-2.

BG97 Beck K. and Gamma E., Advanced Design with Patterns in Java, Object-
Oriented Programming Systems, Languages and Applications (OOPSLA’97),
Tutorial 30.

http://www.cl.cam.ac.uk/~afb21/publications/TwD98.html
http://www.ingentaconnect.com/content/tandf/teee;jsessionid=24old40iuk25d.victoria
http://www.ingentaconnect.com/content/tandf/teee;jsessionid=24old40iuk25d.victoria
http://www.questionmark.com/
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0805353402

Bibliography 241

BGK+00 Bridgeman S., Goodrich M.T., Kobourov S.G. and Tamassia R., PILOT: An
Interactive Tool for Learning and Grading, Proceedings of SIGCSE 2000,
Austin, TX, USA, p139-143, March 8-12, 2000.

BGK+96 Broy M., Grosu R., Klein C. and Rumpe B., State Transition Diagrams,
Technical Report TUM-I-9630, Technical University of Munchen, 1996.

BGL+97 Di Battista G., Garg A., Liotta G, Tamassia R., Tassinari E. and Vargiu F., An
experimental comparison of four graph drawing algorithms, Computational
Geometry 7(5-6), p303-325, April, 1997.

Bj93 Bull J., Using Technology to Assess Student Learning, TLTP Project Alter,
December 1993, ISBN 1 85889 091 8.

BL06 Brusilovsky P. and Loboda T.D., WADEIn II: A Case for Adaptive
Explanatory Visualization, Proceedings of the 11th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education
(ITiCSE 06), Bologna, Italy, p48-52, June 26-28, 2006.

Br02 Bennett R.E., Inexorable and inevitable: The continuing story of technology
and assessment, Journal of Technology, Learning and Assessment 1(1), 2002.
Available from http://www.jtla.org/

BRS96 Brown S., Race P. and Smith B., 500 Tips on Assessment, Kogan Page, 1996,
ISBN 0749419415.

BSP+03 Belton M., Shephard E., Phaup J., Fair K. and Kleeman J., Questionmark’s
Holistic Approach: Assessments systems for the enterprise, Questionmark
White Paper, 2003. Available from: http://www.questionmark.com/

Bt00 Buchanan T., The efficacy of a World-Wide Web mediated formative
assessment, Journal of Computer Assisted Learning 16(3), p193-200, 2000.

BW98 Black P. and William D., Assessment and classroom learning, Assessment in
Education 5(1), p7-74, 1998.

CB98 Culverhouse P.F. and Burton C.J., Mastertutor: a tutorial shell for the
support of problem solving skill acquisition, Bringing Information
Technology to Education (BITE): Integrating Information & Communication
Technology in Higher Education, Maastricht, p433-443, March 25-27, 1998.
Available from: http://www.cis.plym.ac.uk/cis/publications/BITE1998.pdf

CDE+03 Carter J., Dick M., English J., Ala-Mukta K., Fone W., Fuller U., Sheard J.,
How Shall We Assess This?, Proceedings of the 8th Annual Joint Conference
Integrating Technology into Computer Science Education, Thessaloniki,
Greece, p107-123, June 30 to July 2, 2003. ISSN 0097-8418.

CE98a Charman D. and Elmes A., Computer Based Assessment (Volume 1): A
guide to good practice, SEED Publications, University of Plymouth, 1998,
ISBN 1-84102-024-9.

http://www.jtla.org/
http://www.questionmark.com/
http://www.cis.plym.ac.uk/cis/publications/BITE1998.pdf

Bibliography 242

CE98b Charman D. and Elmes A., Computer Based Assessment (Volume 2): Case
studies in Science and Computing, SEED Publications, University of
Plymouth, 1998, ISBN 1-84102-02-7.

CE98c Charman D. and Elmes A., A Computer-based Formative Assessment
Strategy for a Basic Statistics Module in Geography, Journal of Geography in
Higher Education 22(3), p381-385, November, 1998.

Cf98 Culwin F., Web hosted assessment: possibilities and policy, Proceedings of
the 6th Annual Conference on the Teaching of Computing/3rd Annual ITiCSE
Conference on Changing the Delivery of Computer Science Education, p55–
58, 1998.

CM03 Chok S.S. and Marriott K., Automatic generation of intelligent diagram
editors, ACM Transactions on Computer-Human Interaction (TOCHI) 10(3),
p244-276, September, 2003.

CO97 Chung G.K.W.K. and O’Neil H.F. Jnr, Methodological approaches to online
scoring of essays, Document Reproduction Service, Educational Resources
Information Center (ERIC), U.S. Department of Education Office of
Educational Research and Improvement, ED-418-101, 1997.

CS96 Coleman M. and Stott Parker D., Aesthetics-based graph layout for human
consumption, Software — Practice and Experience 26(12), p1415-1438,
December, 1996. Available from: http://www.cs.ucla.edu/~stott/aglo/

CS98 Canup M. and Shackelford R., Using software to solve problems in large
computing courses, Proceedings of the 29th SIGCSE, Technical Symposium
on Computer Science Education, Atlanta GA, USA, February 26 to March 1,
1998, p135-139.

Cyg98 Cygwin.com, Cygwin User’s Guide. Available from
http://cygwin.com/cygwin-ug-net/

Dc99 Daly C., RoboProf and an Introductory Computer Programming Course,
Proceedings of the 4th Annual SIGCSE / SIGCUE on Innovation and
Technology in Computer Science Education, Krakow, Poland, p155-158, June
27-30, 1999.

Dd99 Dodson D., Diagrammatic Interaction, Tutorial, Computer Science
Department, City University, London, 12 February, 1999.

Dfa04 Defense Finance and Accounting Service, Diagramming Guidelines,
DFAS/DCII Development Standards and Guidelines, 2004.

Dfes05 Department for Education and Skills, Trends in Education and Skills,
Learning & Skills Gateway, DfES website. Updated frequently, accessed on 3
January 2006. Available from http://www.dfes.gov.uk/trends/

http://www.cs.ucla.edu/~stott/aglo/
http://cygwin.com/cygwin-ug-net/
http://www.dfes.gov.uk/trends/

Bibliography 243

DK01 Duke-Williams E. and King T., Testing Higher Learning Outcomes with
CBA, Handbook of ILTAC 2001, The Institute for Learning and Teaching in
Higher Education Conference: Professionalism in Practice, University of
York, Session 42, 4-6 July, 2001. Available from:
http://www.tech.port.ac.uk/%7Ekingt/research/ILT01/ILTAC01caa.html

DLO+05 Douce C., Livingstone D., Orwell J., Grindle S. and Cobb J., A Technical
Perspective on ASAP — Automated System for Assessment of
Programming, Proceedings of the 9th International Conference on Computer
Aided Assessment, Loughborough, July, 2005. Available from:
http://dircweb.king.ac.uk/Ris/Queries/Pages/home_page.asp?authorID=4

Dp03 Denton P., Returning Feedback to Students via Email Using Electronic
Feedback 9, Learning and Teaching in Action 2(1), Manchester Metropolitan
University: Learning and Teaching Unit, February 2003, ISSN 1477-1241.
Available from http://www.ltu.mmu.ac.uk/ltia/

eb11 Encyclopaedia Britannica 11th Edition, Cambridge University Press, 1911.

EG03 Eichelberger H. and von Gudenberg J.W., UML Class Diagrams — State of
the Art in Layout Techniques, Proceedings of the 2nd Annual “Designfest” on
Visualizing Software for Understanding and Analysis (VISSOFT 2003),
Amsterdam, Netherlands, September 22, 2003. Available from:
http://www.cs.uvic.ca/~mstorey/vissoft2003/

Ej02 English J., Experience with a computer-assisted formal programming
examination, ACM SIGCSE Bulletin, Proceedings of the 7th Annual
Conference on Innovation and Technology in Computer Science Education,
p51-54, Aarhus, Denmark, June 24-26, 2002.

Ej04 English J., Automated Assessment of GUI Programs using JEWL,
Proceedings of the 9th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (ITiCSE 04), Leeds, UK, p137-
141, June 25-27, 2001.

En01 Eaton N., Microsoft Visio Version 2002 Inside Out, Microsoft Press, June,
2001. ISBN 0735612854.

FHG96 Foxley E., Higgins C. and Gibbon C., The Ceilidh System: A general
overview, LTR Report, Department of Computer Science, University of
Nottingham, UK, 1996.

FHH+01 Foxley E., Higgins C., Hegazy T., Symeonidis P. and Tsintsifas A., The
CourseMaster CBA System: Improvements over Ceilidh, Proceedings of the
5th Annual Computer Assisted Assessment Conference, Loughborough, UK,
2-4 July 2001, p189-201, ISBN 0-9539572-0-9.

FHS+01 Foxley E., Higgins C., Symeonidis P. and Tsintsifas A., The CourseMaster
Automated Assessment System — a next generation Ceilidh, Computer
Assisted Assessment Workshop, Warwick, UK, 5-6 April 2001.

http://www.tech.port.ac.uk/~kingt/research/ILT01/ILTAC01caa.html
http://dircweb.king.ac.uk/Ris/Queries/Pages/home_page.asp?authorID=4
http://www.ltu.mmu.ac.uk/ltia/
http://www.cs.uvic.ca/~mstorey/vissoft2003/

Bibliography 244

FHT+99 Foxley E., Higgins C., Tsintsifas A. and Symeonidis P., Ceilidh: A System for
the Automatic Evaluation of Student Programming Work, Proceedings of
the 4th International Conference on Computer Based Learning in Science
(CBLIS’99), University of Twente, Netherlands, July 2-6 1999.

Fj01 Foster J., Improved coursework assessment for undergraduate and
postgraduate courses, Teaching and Learning Innovation Fund: Final
Report, Department of Electronic Systems Engineering, University of Essex,
UK, April 2001. Available from:
http://www.essex.ac.uk/innovations/Foster.htm

FL94 Foxley E. and Lou B., A Simple Text Automatic Marking System, Artificial
Intelligence and Simulation of Behaviour 94 Conference for Computational
Linguistics for Speech and Handwriting Recognition Workshop, Leeds, UK,
April 12, 1994.

FLM98 Frosini G., Lazzerini B., Marcelloni F., Performing automatic exams,
Computers & Education 31, 1998.

FSZ97 Foxley E., Salman O. and Shukur Z., The automatic assessment of Z
specifications, Working group reports and supplemental proceedings,
Uppsala, Sweden, p129-131 June 1-5, 1997.

FW65 Forsythe G. and Wirth N., Automatic grading programs, Communications of
ACM 8(5), May 1965, p275-278.

FWW00 Ferguson R., Hunter A. and Hardy C., MetaBuilder: The diagrammer’s
diagrammer, First International Conference on Theory and Applications of
Diagrams, Lecture Notes in Artificial Intelligence, Springer Verlag,
Edinburgh, p407-421, September, 2000.

Gc97 Gibbon C.A., Heuristics for Object-Oriented Design, Ph.D. thesis, University
of Nottingham, October 1997.

GH06 Gray G.R. and Higgins C.A., An Introspective Approach to Marking
Graphical User Interfaces, Proceedings of the 11th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education
(ITiCSE 06), Bologna, Italy, p43-47, June 26-28, 2006.

GHJ+94 Gamma E., Helm R., Johnson R. and Vlissides J., Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1994.

GJS97 Gosling J., Joy B. and Steele G., The Java Language Specification, Addison
Wesley, 1997.

Gm00 Greenhow M., Setting objective tests in mathematics with QM Designer,
MSOR Connections 0(1), p21-26, Learning Technology Support Network,
February, 2000.

http://www.essex.ac.uk/innovations/Foster.htm

Bibliography 245

GMW88 Gamma E., Marty R. and Weinand A., ET++ — an object oriented application
framework for C++, Proceedings of Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’88), San Diego CA, USA, p46-57,
September 25-30, 1988.

GS95 Gaines B. and Shaw M., Concept maps as hypermedia components,
Knowledge Science Institute, University of Calgary, 1995.

GV47 Goldstine H. and von Neuman J., Planning and Coding Problems for an
Electronic Computing Instrument, Volume 1, Van Nostrand, 1947.

GW01 Lee G. and Weerakoon P., The role of computer aided assessment in health
professional education: A comparison of student performance in computer
based and paper and pen multiple choice tests, The Vice-Chancellor's
Showcase of Scholarly Inquiry in Teaching and Learning, Institute for
Teaching and Learning, The University of Sydney, Australia, 2001. Available
from: http://www.itl.usyd.edu.au/itl/Showcase2001/

HB06 Higgins C.A. and Bligh B., Formative Computer Based Assessment in
Diagram Based Domains, Proceedings of the 11th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education
(ITiCSE 06), Bologna, Italy, p98-102, June 26-28, 2006.

Hd88 Harel D., On visual formalisms, Communications of the ACM 31(5), p514-
530, May, 1988.

HGS+06 Higgins C.A., Gray G., Symeonidis P. and Tsintsifas A., Automated
Assessment and Experiences of Teaching Programming, ACM Journal on
Educational Resources in Computing (JERIC) 5, Special Issue on Automated
Assessment of Programming Assignments, ISSN 1531-4278. To appear.

Hi88 Hirmanpour I., A student system development diagrammer, Proceedings of
the 19th SIGCSE Technical Symposium on Computer Science Education,
Atlanta GA, USA, p104-108, 25-26 February, 1988.

Hj59 Hollingsworth J., An educational program in computing, Communications
of the ACM 2(8), August 1959, p6.

Hj60 Hollingsworth J., Automatic graders for programming classes,
Communications of ACM 3(10), October 1960, p528-529.

HL98 Hoggarth G. and Lockyer M., An automated student diagram assessment
system, Proceedings of the 6th Annual Conference on the Teaching of
Computing / 3rd Annual Conference on Integrating Technology into
Computer Science Education: Changing the Delivery of Computer Science
Education, Dublin, Ireland, 18-21 August 1998, p122-124, ISSN 0097-8418.

HM93 Hyvönen J. and Malmi L., TRAKLA — A system fro teaching algorithms
using email and a graphical editor, Proceedings of HYPERMEDIA in
Vaasa’93, Vaasa, Finland, p141-147, 1993.

http://www.itl.usyd.edu.au/itl/Showcase2001/

Bibliography 246

HRT+98 Hall M.J., Robinson D.J., Tucknott G. and Carlton T., A multimedia tutorial
shell with qualitative assessment in biology, in Charman D. and Elmes A.
(eds), Computer Based Assessment (Volume 2): Case studies in Science and
Computing, p33-38, SEED Publications, University of Plymouth, 1998, ISBN
1-84102-02-7.

Hs90 Hekmatpour S., Templa and Graphica: A Generic Graphical Editor for the
Macintosh, Prentice Hall, 1990.

HST02 Higgins C., Symeonidis P. and Tsintsifas T., The Marking System for
CourseMaster, Proceedings of the 7th Annual Conference on Innovation and
Technology in Computer Science, University of Aarhus, Denmark, June 24-
26, 2002, p46-50. ISSN 1-58113-499-1.

Ht98 Hawkes T., An Experiment in Computer-Assisted Assessment, Interactions
2(3), Educational Technology Service, University of Warwick, 1998.
Available from:
http://www.warwick.ac.uk/ETS/interactions/vol2no3/index.htm

HW69 Hext J. and Winings J., An automatic grading scheme for simple
programming exercises, Communications of ACM 12(5), May 1969, p272-
275.

HW96 Harrslev V. and Wessel M., GenEd: an editor with generic semantics for
formal reasoning about visual notations, IEEE Symposium on Visual
Languages 1996, Boulder CO, USA, September 3-6, 1996. Available from:
http://citeseer.ist.psu.edu/haarslev96gened.html

Ib84 Imrie B.W., In search of academic excellence: samples of experience,
Proceedings of the Tenth International Conference on Improving University
Experience, University of Maryland, University College, p160-183, 1984.

Ib95 Imrie B.W., Assessment for Learning: quality and taxonomies, Assessment &
Evaluation in Higher Education, 20(2), p175-189, 1995.

ISO05 International Standards Organisation, ISO in brief: International Standards
for a sustainable world, ISO, March, 2005. ISBN: 92-67-10401-2. Available
from: http://www.iso.org/

Iy01 Inoue Y., Questionnaire Surveys: Four Survey Instruments in Educational
Research, Educational Resources Information Center (ERIC), U.S.
Department of Education Office of Educational Research and Improvement,
2001. Available from: http://eric.ed.gov/

JA00 Johnstone A.H. and Ambusaidi A., Fixed Response: What are we testing?,
Chemistry Education: Research and Practice in Europe 1(3), p323-328, 2000.

JBR98 Jacobson I., Booch G. and Rumbaugh J., The Unified Software Development
Process, Addison Wesley Longman, 1998. ISBN 0-201-57169-2.

http://www.warwick.ac.uk/ETS/interactions/vol2no3/index.htm
http://citeseer.ist.psu.edu/haarslev96gened.html
http://www.iso.org/
http://eric.ed.gov/
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0201571692

Bibliography 247

Jd00 Jackson D., A semi-automated approach to online assessment, Proceedings
of the 5th Annual SIGCSE / SIGCUE Conference on Innovation and
Technology in Computer Science Education, Helsinki, Finland, p164-167, 11-
13 July, 2000.

JG04 Joy M. and Griffiths N., Online Submission of Coursework — a
Technological Perspective, Proceedings of the 4th IEEE International
Conference on Advanced Learning Technologies (ICALT2004), Joensuu,
Finland, 2004, p430-434. Available from:
http://www.dcs.warwick.ac.uk/research/edtech/

JL98 Joy M. and Luck M., Effective electronic marking for on-line assessment,
Proceedings of the 6th Annual Conference on the Teaching of Computing /
3rd Annual Conference on Integrating Technology into Computer Science
Education: Changing the Delivery of Computer Science Education, Dublin,
Ireland, 18-21 August 1998, p134-138, ISSN 0097-8418.

JMM+04 Juwah C., Macfarlane-Dick D., Matthew B., Nicol D., Ross D. and Smith B.,
Enhancing student learning through effective formative feedback, The
Higher Education Academy (Generic Centre), June, 2004. ISBN 1-904190-58-
8.

JU97 Jackson D. and Usher M., Grading student programs using ASSYST,
Proceedings of the 28th SIGCSE technical symposium on Computer Science
Education, San Jose CA, USA, p335-339, February 27 to March 1, 1997.

KM00 Korhonen A. and Malmi L., Algorithm simulation with automatic
assessment, Proceedings of the 5th Annual SIGCSE / SIGCUE Conference on
Innovation and Technology in Computer Science Education, Helsinki,
Finland, p160-163, 11-13 July, 2000.

Kp01 Knight P., A Briefing on Key Concepts: Formative and summative, criterion
and norm-referenced assessment, LTSN Generic Centre: Assessment Series,
November 2001.

LBW+94 Lohse G., Biolski K., Walker N. and Rueter H., A classification of visual
representations, Communications of the ACM 37(12), p36-49, 1994.

LD97 Landauer T.K. and Dumais S.T., A solution to Plato’s problem: The Latent
Semantic Analysis theory of the acquisition, induction, and representation of
knowledge, Psychological Review 104, p211-240, 1997.

LHL98 Landauer T.K., Holtz P.W. and Laham D., Introduction to Latent Semantic
Analysis, Discourse Processes 25, p259-284, 1998.

Lr32 Likert R., A Technique for the Measurement of Attitudes, Archives of
Psychology 140, p55, 1932.

Mac95 Macromedia Inc, Macromedia Authorware 7.0. Available from:
http://www.macromedia.com/software/authorware/

http://www.dcs.warwick.ac.uk/research/edtech/
http://www.macromedia.com/software/authorware/

Bibliography 248

MB99 McKenna C. and Bull J., Designing effective objective test questions: an
introductory workshop, CAA Centre, June 17, 1999. Available from:
http://www.caacentre.ac.uk/dldocs/otghdout.pdf

Md99 Mackenzie D., Recent developments in the Tripartite Interactive Assessment
Delivery System (TRIADS), Proceedings of the 3rd Annual Computer
Assessment Conference, Loughborough, UK, June 16-17, 1999.

Mf04 McMartin F., MERLOT: A Model for User Involvement in Digital Library
Design and Implementation, Journal of Digital Information 5(3), September
2004.
Available from: http://jodi.ecs.soton.ac.uk/Articles/v05/i03/McMartin/

MGH98 Mansouri F.Z., Gibbon C.A. and Higgins C.A., PRAM: PRolog Automatic
Marker, Proceedings of the 6th Annual Conference on the Teaching of
Computing / 3rd Annual Conference on Integrating Technology Into
Computer Science Education: Changing the delivery of computer science
education (ITiCSE 98), Dublin City University, Ireland, p166-170, 1998.

MK04 Malmi L. and Korhonen A., Automatic Feedback and Resubmissions as
Learning Aid, Proceedings of the IEEE International Conference on
Advanced Learning Technologies (ICALT 04), Joensuu, Finland, p186-190,
August 30 to September 1, 2004.

Ml97 Markham L., Staff-Student Ratios in Commonwealth Countries,
Commonwealth Higher Education Management Service (CHEMS) Paper 16,
Commonwealth Higher Education Support Scheme, 1997. Available from
http://www.acu.ac.uk/chems/

MLC03 Murphy A.J., Lockie R.G. and Coutts A. J., Kinematic determinants of early
acceleration in field sport athletes, Journal of Sports Science and Medicine
2(4), p144-150, 2003.

Mm02 McAlpine M., Principles of Assessment, Bluepaper Number 1, CAA Centre,
University of Luton, February, 2002. ISBN 1-904020-01-1. Available from:
http://www.caacentre.ac.uk/dldocs/Bluepaper1.pdf

Mp95 Martin P., EQL International's Interactive Assessor for Windows reviewed,
Monitor 6, CTI Computing, University of Ulster, 1995.

Mr86 Myers R., Computerized Grading of Freshman Chemistry Laboratory
Experiments, Journal of Chemical Education 63, 1986, p507-509.

Mu94 von Matt U., Kassandra: The automatic grading system, Technical Report
UMIACS-TR-94-59, Institute for Advanced Computer Studies, Department
of Computer Science, University of Maryland, USA, 1994.

MW98 Mason D. and Woit D., Integrating technology into computer science
examinations, Proceedings of the 29th SIGCSE, Technical Symposium on
Computer Science Education, Atlanta GA, USA, February 26 to March 1,
1998, p140-144.

http://www.caacentre.ac.uk/dldocs/otghdout.pdf
http://jodi.ecs.soton.ac.uk/Articles/v05/i03/McMartin/
http://www.acu.ac.uk/chems/
http://www.caacentre.ac.uk/dldocs/Bluepaper1.pdf

Bibliography 249

MW99 Mason D. and Woit D., Providing mark-up and feedback to students with
online marking, Proceedings of the 30th SIGCSE, Technical Symposium on
Computer Science Education, Atlanta GA, USA, March 24 to 28, 1998, p140-
144.

NB01 Ngo D.C.L. and Byrne J.G., Another Look at a Model for Evaluating Interface
Aesthetics, International Journal of Applied Mathematical Computer Science
11(2), p515-535, 2001.

ND02 Neven F. and Duval E., Reusable Learning Objects: a survey of LOM-based
repositories, Proceedings of the 10th ACM international conference on
Multimedia, Juan-les-Pins, France, p291-294, December 1-6, 2002.

NTB00 Ngo D.C.L., Teo L.S. and Byrne J.G., A Mathematical Theory of Interface
Aesthetics, Visual Mathematics 2(4), Serbian Academy of Sciences and Arts:
Mathematical Institute, 2000. Available from:
http://www.mi.sanu.ac.yu/vismath/

Or98 Oliver R., Experiences of assessing programming assignments by computer,
in Charman D. and Elmes A. (eds), Computer Based Assessment (Volume 2):
Case studies in Science and Computing, p47-49, SEED Publications,
University of Plymouth, 1998, ISBN 1-84102-02-7.

PAC02 Purchase H.C., Allder J. and Carrington D., Graph Layout Aesthetics in
UML Diagrams: User Preferences, Journal of Graph Algorithms and
Applications 6(3), p255-279, World Scientific Publishing, 2002. ISSN 1526-
1719. Available from: http://www.cs.brown.edu/publications/jgaa/

PB98 Paul C.R.C. and Boyle A.P., Computer-based assessment in palaeontology,
in Charman D. and Elmes A. (eds), Computer Based Assessment (Volume 2):
Case studies in Science and Computing, p51-56, SEED Publications,
University of Plymouth, 1998, ISBN 1-84102-02-7.

Pc65 Petri C., Kommunikation mit Automaten, Ph.D. thesis, Translation by
Greene C.F., Supplement to Technical Report RADC-TR-65-337, Volume 1,
Rome Labs, Griffiss Air Force Base, New York, USA, 1965.

Pc99 Power C., Designer — a logic diagram design tool, Proceedings of the 4th
Annual SIGCSE / SIGCUE on Innovation and Technology in Computer
Science Education, Krakow, Poland, p211, June 27-30, 1999.

Pe94 Page E.B., Computer grading of student prose: Using modern concepts and
software, Journal of Experimental Education 62(2), p127-142, 1994.

Pm95 Petre M., Why looking isn’t always seeing: readership skills and graphical
programming, Communications of the ACM 38(6), p33-44, June, 1995.

PPK97 Page E.B., Poggio J.P. and Keith T.Z., Computer analysis of student essays:
Finding trait differences in the student profile, Proceedings of the AERA /
NCME Symposium on Grading Essays by Computer, 1997.

http://www.mi.sanu.ac.yu/vismath/
http://www.cs.brown.edu/publications/jgaa/

Bibliography 250

PT00 Papakostas A. and Tollis I., Efficient orthogonal drawings of high degree
graphs, Algorithmica 26(1), p100-125, Springer-Verlag, January, 2000.

Qt99 Quatrani T., Visual Modeling with Rational Rose 2000 and UML, Addison-
Wesley Professional, 1999. ISBN 0201699613.

Rc01 Rust C., A Briefing on Assessment of Large Groups, LTSN Generic Centre:
Assessment Series, November 2001.

Rd87 Rowntree D., Assessing Students: How shall we know them?, London:
Kogan Page, 1987.

RH83 Rottmann R.M. and Hudson H.T., Computer Grading as an Instructional
Tool, Journal of College Science Teaching 12, 1983, p152-156.

RJE02 Rawles S., Joy M. and Evans M., Computer Assisted Assessment Review
Exercise, LTSN Centre for Information and Computer Sciences, February 4,
2002.

RL02 Rudner L.M. and Liang T., Automated essay scoring using Bayes’ theorem,
Journal of Technology, Learning and Assessment 1(2), 2002. Available from
http://www.jtla.org/

Rp01 Race P., A Briefing on Self, Peer and Group Assessment, LTSN Generic
Centre: Assessment Series, November 2001.

RT81 Reingold E. and Tilford J., Tidier Drawings of Trees, IEEE Transactions on
Software Engineering 7(2), p223-228, IEEE Computer Society Press, March,
1981.

Sa01 Stedile A., JMFGraph — A Modular Framework for Drawing Graphs in Java,
M.Sc. Thesis, Institute for Information Processing and Computer Supported
New Media (IICM), Graz University of Technology, Austria, November 18th,
2001. Available from: http://www.iicm.edu/thesis/

SC01 Stefani L. and Carroll J., A Briefing on Plagiarism, LTSN Generic Centre:
Assessment Series, November 2001.

SHP+06 Spacco J., Hovemeyer D., Pugh W., Emad F., Hollingsworth J.K. and Padua-
Perez N., Experiences with Marmoset: Designing and Using an Advanced
Submission and Testing System for Programming Courses, Proceedings of
the 11th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (ITiCSE 06), Bologna, Italy, p13-17, June 26-28,
2006.

Sk02 Sugiyama K., Graph Drawing and Applications for Software and Knowledge
Engineers, Series on Software Engineering and Knowledge Engineering
Volume 11, World Scientific, March 2002, ISBN 981-02-4879-2.

http://www.jtla.org/
http://www.iicm.edu/thesis/

Bibliography 251

SM97 Stephens D. and Mascia J., Results of a Survey into the use of Computer-
Assisted Assessment in Institutions of Higher Education in the UK, DILS,
Loughborough University, January 1997.

SMK01 Saikkonen R., Malmi L. and Korhonen A., Fully automatic assessment of
programming exercises, Proceedings of the 6th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education (ITiCSE 01),
Canterbury, UK, p133-136, June 25-27, 2001.

Sp02 Symeonidis P., Setting Up Exercises Within CourseMaster, LTR Report,
School of Computer Science and IT, University of Nottingham, UK, 2002.

SP03 Stephens D. and Percik D., Constructing a Test Bank for Information Science
based upon Bloom’s Principles, Innovations in Teaching and Learning in
Information and Computer Sciences (ITALICS) 2(1), July 2003.

SP04 Shneiderman B. and Plaisant C., Designing the User Interface (fourth
edition), Addison Wesley, 2004. ISBN 0-321-19786-0.

Sp06 Symeonidis P., Automated Assessment of Java Programming Coursework
for Computer Science Education, Ph.D. thesis (unpublished manuscript),
University of Nottingham, February 2006.

STW04 Smith N., Thomas P.G. and Waugh K., Interpreting Imprecise Diagrams,
Proceedings of the Third International Conference in the Theory and
Application of Diagrams, Cambridge, UK, p239-241, March 22-24, 2004.
Available from: http://mcs.open.ac.uk/ns938/publications/diagrams-04-
poster.pdf

Ta02 Tsintsifas A., A Framework for the Computer Based Assessment of Diagram
Based Coursework, Ph.D. thesis, University of Nottingham, March 2002.
Available from http://www.cs.nott.ac.uk/~azt/research.htm

Tb93 Buzan T., The Maind Map Book: Radiant Thinking — the major evolution in
human thought, BBC Publications, 1993.

TBF97 Tinoco L., Barnette D. and Fox E., Online evaluation in WWW-based
courseware, Proceedings of the 28th SIGCSE technical symposium on
Computer Science Education, San Jose CA, USA, p194-198, February 27 to
March 1, 1997.

TD76 Taylor J. and Deever D., Constructed-response, computer-graded
homework, American Journal of Physics 44(6), June 1976, p598-599.

Tek87 Tektronix Computer Research Laboratory, Semantic Drawing with
HotDraw, Technical Report CR-87-34, April, 1987.

Tp04 Thomas P.G., Drawing Diagrams in an Online Examination, Technical
Report 2004/14, Department of Computing, The Open University, Milton
Keynes, UK, April 23, 2004. Available from: http://computing-
reports.open.ac.uk/index.php/2004/200414

http://mcs.open.ac.uk/ns938/publications/diagrams-04-poster.pdf
http://mcs.open.ac.uk/ns938/publications/diagrams-04-poster.pdf
http://www.cs.nott.ac.uk/~azt/research.htm
http://computing-reports.open.ac.uk/index.php/2004/200414
http://computing-reports.open.ac.uk/index.php/2004/200414

Bibliography 252

Tr87 Tamassia R., On embedding a graph in the grid with the minimum number
of bends, SIAM Journal on Computing 16(3), p421-444, Society for Industrial
and Applied Mathematics, June, 1987.

TTV00 Tamassia R., Tollis I.G. and Vitter J.S., A Parallel Algorithm for Planar
Orthogonal Grid Drawings, Parallel Processing Letters, March 2000.
Available from:
http://www.cs.duke.edu/~jsv/Papers/catalog/node140.html

TWS05 Thomas P.G., Waugh K. and Smith N., Experiments in the Automatic
Marking of ER-Diagrams, Proceedings of the 10th annual SIGCSE conference
on Innovation and Technology in Computer Science Education (ITiCSE 05),
Monte de Caparica, Portugal, p158-162, June 27-29, 2005.

TWS06 Thomas P., Waugh K. and Smith N., Using Patterns in the Automatic
Marking of ER-Diagrams, Proceedings of the 11th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education
(ITiCSE 06), Bologna, Italy, p83-87, June 26-28, 2006.

Vg95 Viehstaedt G., A Generator for Diagram Editors, Ph.D. thesis, University of
Erlangen-Nürnberg, 1995.

VL89 Vlissides J. and Linton M., Unidraw: A Framework for Building Domain-
Specific Graphical Editors, Technical Report CSL-TR-89-380, Stanford
University, July, 1989.

VS02 Vendlinski T. and Stevens R., Assessing Student Problem-Solving Skills With
Complex Computer-Based Tasks, Journal of Technology, Learning and
Assessment 1(3), 2002. Available from http://www.jtla.org/

WC53 Watson J.D. and Crick F.H.C., A Structure for Deoxyribose Nucleic Acid,
Nature 171, p737-738, April 25, 1953. Available from:
http://www.nature.com/nature/dna50/watsoncrick.pdf

Wl98 Wybrew L., The use of computerised assessment in Health Science modules,
in Charman D. and Elmes A. (eds), Computer Based Assessment (Volume 2):
Case studies in Science and Computing, p61-65, SEED Publications,
University of Plymouth, 1998, ISBN 1-84102-02-7.

Wt04 Winters T.D., Analysis, Design, Development, and Deployment of a
Generalized Framework for Computer-Aided Assessment, M.Sc. thesis,
University of California Riverside, June 2004.

Ym01 Yorke M., Assessment: A Guide for Senior Managers, LTSN Generic Centre:
Assessment Series, November 2001.

ZF92 Zin A. M. and Foxley E., The “oracle” program, LTR Report, Dept. of
Computer Science, University of Nottingham, UK, 1992. Available from:
http://www.cs.nott.ac.uk/~ceilidh/papers.html

http://www.cs.duke.edu/~jsv/Papers/catalog/node140.html
http://www.jtla.org/
http://www.nature.com/nature/dna50/watsoncrick.pdf
http://www.cs.nott.ac.uk/~ceilidh/papers.html

Bibliography 253

ZF94 Zin A.M. and Foxley E., Analyse: An Automatic Program Assessment
System, Malaysian Journal of Computer Science 7, 1994. Available from:
http://www.cs.nott.ac.uk/CourseMarker/more_info/html/ASQA.HTM

http://www.cs.nott.ac.uk/CourseMarker/more_info/html/ASQA.HTM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

