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Abstract

This thesis deals with a two component reaction-diffusion system (RDS) for competing

and cooperating species. We have analyse in detail the stability and bifurcation struc-

ture of equilibrium solutions of this system, a natural extension of the Lotka-Volterra

system. We find seven topologically different regions separated by bifurcation boundar-

ies depending on the number and stability of equilibrium solutions, with four regions in

which the solutions are similar to those in the Lotka-Volterra system. We study RDS in

the small parameter of the range 0 < λ � 1 (fast diffusion and slow reaction), and in a

few cases we assume λ = O(1). We consider three types of initial conditions, and we find

three types of travelling wave solutions using numerical and asymptotic methods. How-

ever, neither numerical nor asymptotic methods were able to find a particular travelling

wave solution which connects a coexistence state say, (u0, w0) to an extinction state (0, 0)

when 0 < λ � 1. This type can be found when the reaction-diffusion system satisfy the

symmetry property and λ = 1.

From asymptotic methods, we find that RDS is a singular perturbation problem (one

inner and two outer regions) when one of the equilibrium solutions associated with the

travelling wave has u = 0, whereas, when u 6= 0 we get a regular perturbation problem.

We find the numerical and asymptotic solutions for RDS. We have published the above
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results [RB13].

We study the stability of travelling wave solutions for RDS in two dimensions using

numerical and asymptotic methods. We also used the Evans function as a tool for com-

puting the stability of the three types of wave. We find that all the types of travelling

wave solutions are stable for all values of the parameters.
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CHAPTER 1

Introduction

1.1 Reaction-diffusion equations

The theory of reaction-diffusion equations has been studied since 1930, by Fisher, Pet-

rovskii, Kolmogorov and others [VP09]. Fisher and others have defined a travelling wave

solution for the reaction-diffusion equations, and they have found the existence, stabil-

ity and speed of the wave for some types of reaction-diffusion equations, for example

the Fisher equation. There are many applications of reaction-diffusion equations in bio-

logy, physics, chemistry, epidemiology and ecology; (for more details see [Pas08, Mur02,

Kot01, Bri05]).

In population dynamics, reaction describes the rate of some populations reproduc-

tion, cooperation or competition (see for example [Owe01, HJW11]), whereas, diffusion

models the random motion of individuals. Predator-prey models and two species com-

petition models are examples from population ecology. For population models the ana-

lysis of travelling wave solutions is relevant for describing the spread of growth. A trav-

elling wave is a wave that travels with time and with a shape that is the same for all

time. Examples of travelling waves, are a chemical wave which arises when reaction and
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CHAPTER 1: INTRODUCTION

diffusion occur simultaneously, and wavefront which describes the invasion in ecology

(see [BK06, VP09, VG03]).

A system of reaction-diffusion equations for m species can be written in the form,

∂ū(x, t)
∂t

= D∇2ū + f̄ , (1.1.1)

where ∇2 is the Laplacian operator, ū = (ū1, ū2, ...., ūm) and the entries are the concen-

trations or the densities of the species. We denote the space by x and the time by t. A

diffusion coefficient D can be written as a diagonal matrix, with entries Di, i = 1, 2, ...., m,

in the diagonal column. The interaction among species is defined by the vector source

term f̄ . A scalar reaction-diffusion equation in one dimension has the form:

∂u
∂t

= D
∂2u
∂x2 + f (u), (1.1.2)

where D is a positive diffusion coefficient and u is the population density. From the re-

action function f (u) we can deduce that the feature of a travelling wave, for example in

a pulse wave, f (u) has one state corresponding to homogeneous equilibrium solutions

of (1.1.2). Another example on waves is a wavefront which needs two equilibrium solu-

tions as x → ±∞. The equilibrium solution behind the wave must be stable whilst the

second state could be stable or unstable [SM96a]. A travelling wave solution has the form

u(x, t) = U(x − ct), where c is the wave speed. If we substitute it in (1.1.2), we get an

ordinary differential equation,

d2U
dz2 + c

dU
dz

+ f (U) = 0, (1.1.3)

where z = x− ct.

2



CHAPTER 1: INTRODUCTION

1.1.1 Fisher equation

In 1937, Fisher and Kolmogorov [Fis37, Mur02] studied the reaction-diffusion equation

(1.1.2) when f (u) = ku(1−u), which is called the Fisher equation or the Fisher-Kolomogrov

equation. There are two equilibrium solutions for this equation, a stable state (u = 1) and

an unstable state (u = 0) (see for example [Mur02, Wit94, SM96b, LN01]). In order to

study the travelling wave solutions of the Fisher equation, first we rescale the Fisher

equation [Mur02] with

t̄ = kt x̄ = x(
k
D
)

1
2 ,

and omitting the bar for notational simplicity, we get

∂u
∂t

=
∂2u
∂x2 + u(1− u). (1.1.4)

Now if we substitute u(x, t) = U(x− ct) in (1.1.4), we get an ordinary differential equa-

tion

d2U
dz2 + c

dU
dz

+ U(1−U) = 0. (1.1.5)

Travelling wave solutions of (1.1.5) satisfy the boundary conditions

lim
z→+∞

U(z) = 0, lim
z→−∞

U(z) = 1.

For the phase plane analysis, we rewrite (1.1.5) as a system of first order differential equa-

tions

dU
dz

= V, (1.1.6)

dV
dz

= −cV −U(1−U).

3



CHAPTER 1: INTRODUCTION

A sketch of a particular solution in the phase plane is called the trajectory of the solution.

The trajectory can be found from the solution of (1.1.6) or

dV
dU

=
−cV −U(1−U)

V
. (1.1.7)

It is clear that (1.1.7) has two singular points for (U, V), namely (0, 0) and (1, 0) which

are the equilibrium solutions. A linear stability analysis (for more details about stability

analysis see Chapter 2) for the two equilibrium solutions show that the eigenvalues k±

satisfy

(0, 0) : k± =
1
2
[−c± (c2 − 4)

1
2 ],

(1, 0) : k± =
1
2
[−c± (c2 + 4)

1
2 ].

From the eigenvalues we can see that the origin is a stable node when c2 > 4 and a stable

spiral when c2 < 4. Furthermore, (1, 0) is a saddle point for all values of c. The sketch of

a travelling wave solution is shown in Figure 1.1. Figure 1.2 shows a trapping region for

all values of c ≥ cmin = 2 in the region U ≥ 0, V ≤ 0 with 0 ≤ U ≤ 1. The travelling wave

solution for c < 2 has no physical meaning since U < 0, since it lies outside 0 ≤ U ≤ 1,

where the travelling wave is defined.

Analytical solutions of the Fisher equation were found for values of c ≥ 2 in [AZ79,

GC91]. Asymptotic and numerical methods are widely used to solve the Fisher equation

and (1.1.2) for different f (u), [LN04, Gou00, GC74, PB94].

1.1.2 Reaction-diffusion equation for generalized Fisher equation

In this section we study a reaction-diffusion equation for a single species with three equi-

librium solutions. A general Fisher’s genetic population model was studied by Hardler

4



CHAPTER 1: INTRODUCTION

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

U

Figure 1.1: Travelling wavefront solution for the Fisher equation. The wave velocity c ≥

2.
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Figure 1.2: Phase plane trajectories for (1.1.5) for the travelling wavefront solution with

c2 > 4.
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and Rothe in 1975 [HR75]. The travelling wave solution of (1.1.2) was studied analytic-

ally for some nonlinear reaction rates, f (u). We show two of these types which we will

use later in our work. The two types of f (u) are,

• Case one:

f (u) = u(1− u)(1 + vu),−1 ≤ v ≤ ∞. (1.1.8)

In this case, it was shown that in [HR75], there exists a family of travelling waves that

connect the two equilibrium solutions, u = 1 and u = 0 with a minimum wave speed

(the least wave speed to have a solution satisfies 0 ≤ u ≤ 1) that satisfies the relation

cmin =


2, for −1 ≤ v ≤ 2,

v+2√
2v

, for v ≥ 2.

• Case two:

f (u) = u(1− u)(u− µ), 0 < µ < 1. (1.1.9)

In order to describe what types of travelling wave solutions exist in case two, we need

the following definitions

c∗ = 2
√

µ(1− µ). (1.1.10)

c0 =


1+µ√

2
, for 0 < µ ≤ 1

3 ,

c∗, for 1
3 ≤ µ ≤ 1

2 ,

c1 =
1√
2
− µ
√

2.

There exists a monotone travelling wave for the following cases [HR75];

6
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1. There exists a monotone decreasing wave when c ≥ c0, with boundary conditions

u(−∞) = 1, u(∞) = µ.

2. There exists a monotone increasing wave when c ≥ c∗, with

u(−∞) = 0, u(∞) = µ.

3. There exists a unique monotone wave when c = c1, with

u(−∞) = 1, u(∞) = 0.

4. There exists an oscillating wave when 0 < c < c∗, with

u(−∞) = 0, u(∞) = µ.

5. There exists an oscillating wave when c1 < c < c∗, with

u(−∞) = 1, u(∞) = µ.

6. There exists a monotone decreasing wave when max(c1, c∗) < c < c0, with

u(−∞) = 1, u(∞) = µ.

7. There are a unique non vanishing wave front when c = 0, with

u(−∞) = u(∞) = 0.

1.2 Lotka-Volterra system for interacting populations

When species interact, the population dynamics of each species is affected. There are

three types of interactions that may occur between two species. An interaction is called

7
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a predator-prey when the growth rate of one of the population species is increased and

the other is decreased. If the growth rates of both populations are decreased, then the

interaction is called a competition. If each population’s growth rates are enhanced, then

the interaction is called mutualism or symbiosis [VP09, Gop82, Hos03, Wan78].

A simple model defined for two species is the Lotka-Voltera system

du1

dt
= r1u1(1−

u1

k1
− β12u2

k1
),

du2

dt
= r2u2(1−

u2

k2
− β21u1

k2
), (1.2.1)

where ri, ki, (i, j = 1, 2) are positive which describe the intrinsic rates of growth and the

carrying capacities of species ui respectively [Neu98, Mur02, Gop82]. The interaction

between the two species is given by the non-negative parameters βij, which describe the

effect of species j on species i. The minus sign in front of βij corresponds to competi-

tion between the species which means that both species get negative effects when they

compete for resources. In a predator-prey system for example, if the prey is u1 and the

predator is u2, the sign of β21 in this case should be a plus. If we set β12 = β21 = 0,

then (1.2.1) decouples to two simple logistic growth equations. This system says nothing

about the mechanism of competition or what the species are competing for. An interest-

ing property of (1.2.1) is symmetry, i.e, if we replace the subscript for each term in the

equation with the subscript for the other species, it will not change the model.

The analysis of (1.2.1) is shown in Figure 1.3 [Neu98]. There is a possibility of coex-

istence if β12 < K1/K2 and β21 < K2/K1. Species u1 excludes u2, when β12 < K1/K2

and β21 > K2/K1 and vice versa when β12 > K1/K2, β21 < K2/K1. Furthermore, when

β12 > K1/K2 and β21 > K2/K1 one species will exclude the other, but the winner depends

on the initial densities of the two species, this is called founder control. Figure 1.4 shows

8



CHAPTER 1: INTRODUCTION

 

                     

 

                         

 

                            Species 1 wins                Founder control 

 

            K2/K1 

 

                                Coexistence                     Species 2 wins 

 

     

                                     K1/K2 

Figure 1.3: Phase diagram for the coexistence, the winning species and founder control

depending on βij. [Neu98]

the phase portrait of (1.2.1). It was shown that there are four topologically different re-

gions.

We will refer to the four topologically different regions as follows:

• RL1: β12 < K1/K2 and β21 < K2/K1.

• RL2: β12 < K1/K2 and β21 > K2/K1.

• RL3: β12 > K1/K2 and β21 < K2/K1.

• RL4: β12 > K1/K2 and β21 > K2/K1.

The equilibrium solutions for (1.2.1) were studied (for example in [Kot01]), and it was

shown that for non dimensional Lotka-Volterra system there are two single species equi-

librium solutions (1, 0) and (0, 1) and an extinction for both species (0, 0). There is also a

positive state (ū1, ū2) which is either a stable node or a saddle point. Both (1, 0) and (0, 1)

9
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Figure 1.4: The description of competition between two populations in the Lotka-

Volterra system. The population sizes of the two species are denoted by u1

in the x-axis and u2 in the y-axis. The lines are isoclines where population

growth of one of the species is zero. There are four interspecific competition

cases. Cases (a) and (b) show competitive dominance, where one species can

exclude the other. In case (c), depending upon the starting size of the two

populations, competitive dominance again occurs. In case (d), the two spe-

cies reach a stable equilibrium. The arrows show changes in population size

with time.
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are stable when (ū1, ū2) is a saddle point (RL4), while when (ū1, ū2) is a stable node, both

single equilibrium solutions are unstable (RL1). Furthermore, when (ū1, ū2) does not ex-

ist, one of the equilibrium solutions is stable and the other is unstable (RL2 and RL3). The

equilibrium solution (0, 0) is always unstable.

1.3 Travelling wave solutions of diffusion Lotka-Volterra sys-

tem

The Lotka-Volterra system in a reaction-diffusion form needs the diffusion term. A diffu-

sion Lotka-Voltera system for competing species is [VP09, Ked01]

∂u1

∂t
= D1

∂2u1

∂x2 + r1u1(1−
u1

k1
− β12u2

k1
),

∂u2

∂t
= D2

∂2u2

∂x2 + r2u2(1−
u2

k2
− β21u1

k2
),

(1.3.1)

where Di are diffusion coefficients. The type of travelling wave solution generated in

(1.3.1) depends on the initial conditions. In [VP09], some types of travelling waves are

shown where the initial conditions describe some biologically interesting cases. We show

next two of these types of initial conditions which we will also use in our study. The first

interesting biological case is when one of the species is invaded by the other. The initial

conditions are shown to be,

u1(x, 0) = 1 and u2(x, 0) = ψ(x) ∀x,

11
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where ψ(x) is a function with compact support for example a step function which can be

written as

ψ(x) =


u10 for x ≤ L0,

0 for x > L0,

where L0 is a width of the step function. This is the case where species u1 is native,

and species u2 is introduced. There is a monotone travelling wavefront that connects

the state (1, 0) to the stable state (ū1, ū2) in RL1, and this is an invasion case. In RL2

and RL3, (ū1,ū2) does not exist, but (1, 0) is stable and (0, 1) is unstable in RL2 while

(1, 0) is unstable, and (0, 1) is stable in RL2. A travelling front develops in RL3, which

connects (0, 1) to (1, 0) and this means that the invasion of the second species succeeds.

However, the invasion will fail in RL2. The equilibrium solution (ū1, ū2) exists but is

unstable in RL4 and the invasion of the first species will fail, while the invasion of the

second species will succeed. The second interesting biological case is introducing a strong

competition between species. For example let species u1 be a virus whose spread needs

to be controlled. The initial conditions corresponding to this case are

u1(x, 0) =


u10 for x ≤ L0,

0 for x > L0,

u2(x, 0) =


u20 for x ≤ L0,

0 for x > L0,

where u20 � u10 (see [VP09]). The physical meaning for these conditions is that, both

species are introduced. In RL3, where the second species excludes the first species and

with the above initial conditions, the resulting travelling waves are, two wavefronts and

represent an invasion of one of the species namely u1. In this case the speed of the wave-

fronts determine the different dynamics of the system. Lets c0 be the speed of the trav-

12
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elling wavefront of species u1, and c1 be the speed of travelling wavefront of species u2.

If c1> c0, the travelling wave of species u2 passes the one of species u1, and species u1

dies out. If c1< c0, the two travelling waves exist. The wave speed for both fronts are

computed in [VP09], and it was shown that the travelling front of species u1 is the same

as the Fisher equation and arised from an initial condition, therefore c0 = 2
√

D1r1. The

linearization of the second equation in (1.3.1) at the leading edge of the front and where

the carrying capacity u1 = 1, leads to

∂u2

∂t
= D2

∂2u2

∂x2 + r2u2(1−
β21

k2
).

(1.3.2)

Therefore the speed of the travelling front of species u2 (which can be deduce from (1.3.2))

is,

c1 = 2

√
D2r2(1−

β21

k2
).

From the speed of both fronts, it was shown that when

D2r2 >
D1r1

(1− β21
k2
)

, (1.3.3)

the species u2 blocks the spread of species u1, but it can not be considered as a general

condition. Example on that, when β21 is not small compare to k2, condition (1.3.3) can

only hold if the diffusion coefficient and the growth rate of species u2 exceed those of

species u1 considerably.

The travelling wave solutions for the diffusion Lotka-Voltera system are widely stud-

ied, examples of this, the exact travelling wave solutions using appropriate ansatz have

been studied in [RM00, MT09]. The existence of at least one travelling wave at minimal

13



CHAPTER 1: INTRODUCTION

wave speed is proven in [FC03]. Perturbation methods are used in [Hos03] to study the

travelling wave solutions for this model asymptotically, when there is only one stable

equilibrium solution and the diffusion coefficient is small. In our present work we will

study a reaction-diffusion system for competing and cooperating species. We will use

similar initial conditions to those we showed above for the Lotka-Volterra system, in or-

der to study the travelling wave solutions. We will consider a fast diffusion and slow

reaction problem and we will use numerical and asymptotic methods to find the possible

travelling waves.

1.4 Stability of travelling waves

The stability of travelling waves has applications in biology, ecology and others, and was

studied by many authors (see for example [San98, Jon84, GJ91, SS01, Guo12]). There are

several ways to investigate the stability of travelling waves depending on the type of

partial differential equations, for more details see the reviews by [Xin00, San02, VV94].

In the two dimensional problem, the wavefront is examined for stability by putting a

small perturbation at the head of the wavefront. If the wavefont returns to its original

position then it is stable, otherwise it is unstable. Another method of studying the stabil-

ity of travelling waves is by linearizing the partial differential equations about the wave.

The resulting linear system of ordinary differential equations is useful to understand the

stability of waves. The growth and decay of the solutions of the linearized system corres-

ponds to the stable and unstable travelling waves.

Evans [Eva75] was the first to define a shooting and matching method to locate the spec-

trum of the linear differential operator for nerve axon equations. The Evans function was

14
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used later to compute the stability of travelling waves of reaction-diffusion equations

[AGJ90].

We use the shooting method to compute the Evans function by starting with a specific

value of the spectral parameter and the correct boundary conditions. Shoot integrate

towards the far end. Examine how close this solution is to satisfying the boundary

conditions at the far end. Note that in practise we can match at either boundary or

shoot from either end and match some where in-between to optimize accuracy. We can

get accurate results when we use Evans function and it can be considered as a cheap

costly tool with computations and saving time (see [Jon84, GJ91]). The idea of the stabil-

ity of travelling wave in one dimension can be explained as follows (see for example

[GMSW03, HZ06, DG05, PSW93, LLM11, SEs11]). Let us consider a single reaction-

diffusion equation

∂u
∂t

= D
∂2u
∂x2 + F(u). (1.4.1)

Substituting a new variable z = x− ct in (1.4.1) we get

∂u
∂t

= D
∂2u
∂z2 + c

∂u
∂z

+ F(u). (1.4.2)

Let Q(z) be a travelling wave solution of (1.4.2). We linearize (1.4.2) about Q(z) by

setting, u(x, t) = Q(z)− û(x− ct, t), and the linear perturbation equation is,

∂û
∂t

= D
∂2û
∂z2 + c

∂û
∂z

+
∂

∂u
F(Q)û. (1.4.3)

If we substitute û(z, t) = exp(σt)ū(z) in (1.4.3), we get an eigenvalue problem

σū(z) = D
d2ū
dz2 + c

dū
dz

+
∂

∂u
F(Q)ū = Lū, (1.4.4)

where L is a linear differential operator. We rewrite (1.4.4) as a system of first order,

U′ = A(z, σ)U, (1.4.5)
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where

A(z, σ) =

 0 1

σ− ∂
∂u F(Q)
D

−c
D

 ,

subject to the boundary conditions

ū(z)→ ū(0) as z→ ±∞.

To construct the Evans function, we need to find solutions of (1.4.5) that decay to zero as

z→ ±∞. The limit matrices A±(σ) can be found from the boundary conditions,

lim
z→±∞

A(z, σ) = A±(σ). (1.4.6)

Let µ±1,2 and v±1,2 be the eigenvalues and eigenvectors of the matrices A±(σ). From the

eigenvalues and eigenvectors of the limit matrices A±, we can construct eigensolutions

of (1.4.6), say ū+
1 , ....., ū+

i and ū−i+1, ....., ū−n as z→ +∞ and −∞ respectively. For example,

if we have 2× 2 matrices A±, and let µ±1,2 be the eigenvalues and v±1,2 the eigenvectors,

then there exists an eigensolution ū−1 (z, σ) of (1.4.5) with respect to the limit matrices

corresponding to the unstable subspace of A− satisfying the conditions

lim
z→−∞

exp(−µ−1 z)ū−1 (z, σ) = v−1 , Re(µ−1 ) > 0,

and an eigensolution ū+
2 (z, σ) of (1.4.5) with respect to the limit matrices and correspond-

ing to the stable subspace of A+ satisfying the conditions

lim
z→+∞

exp(−µ+
2 z)ū+

2 (z, σ) = v+2 Re(µ+
2 ) < 0.

Then, σ is an eigenvalue of (1.4.5) if and only if the solutions ū−1 and ū+
2 are linearly

dependent or, equivalently the Wronskian equals to zero which has the expression

W(ū1, ū2) =

∣∣∣∣∣∣∣∣
ū1 ū2

ū′1 ū′2

∣∣∣∣∣∣∣∣ = 0.
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The Evans function is defined by,

E(σ) = det[ū−1 (0, σ), ū+
2 (0, σ)].

E(σ) is analytic in σ with zeroes corresponding in both location and multiplicity to the

eigenvalues of the linear operator L. The instability of travelling wave solutions can be

deduced from E(σ). If E(σ) has zeroes in the region Re(σ) > 0, then we can say that the

travelling wave is unstable. The Evans function can be evaluated numerically by defining

the solutions of (1.4.6) at−∞ and +∞, and shooting backward or forward towards z = 0.

However, the numerical integration of a system of differential equations whose solutions

grow exponentially should be treated carefully. In [PSW93], they deal with this problem

by introducing the variable,

ū(z, σ) = exp(−µz)u(z, σ),

where

µ =


µ−1 , for z ≤ 0

µ+
2 , for z > 0.

If we substitute u(z, σ) in (1.4.6) we get

du
dz

= [A(z, σ)− µI]u, (1.4.7)

where I is the identity matrix. We will solve (1.4.7) in order to investigate the stability

of travelling wave solutions. The Evans function has been computed analytically (see for

example [FaP03, PW92, SE90, Ter90, HZ06]) and for complicated problems it has been

computed numerically (see [MN08, AB01, BDG02, Bri01, HZ06]).

For two dimensional reaction-diffusion equations, we first make the substitutions

u(x, y, t) = u(x, t) exp(iky), (1.4.8)
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where k is a wave number. The rest of the processes are the same as shown above for the

one dimensional problem. The Evans function for the two dimensional stability problem

has the form,

E(σ, k) = Det[u−1 (0, σ, k)u+
2 (0, σ, k)].

An interesting reaction-diffusion system with an unstable wavefront in two dimensions

is the Gray-Scott system

∂u
∂t

= D∇2u− uv2 − κuw,

∂w
∂t

= ∇2w + uv2 + κuw, (1.4.9)

where κ is a parameter. In [ZF94, HPSS93, BCM99], it was shown that this system has an

unstable wavefront when κ = 0 and for suitable values of D. We will apply our numerical

methods which we will get in Chapter 5 to the Gray-Scott system and for the same values

of the parameters shown above to test our methods.

1.5 Reaction-diffusion system

Consider the reaction-diffusion system

∂u
∂t

= Du
∂2u
∂x2 + kuu(1 + luu−muu2 − nuw), (1.5.1)

∂w
∂t

= Dw
∂2w
∂x2 + kww(1 + lww−mww2 − nwu),

where Du and Dw are diffusion coefficients, and kuu(1−muu2) and kww(1−mww2) are

generalised logistic growth rates for the species u and w. In this model, the intra specific

cooperation has the cooperative parameters lu and lw, whilst the inter specific compet-

ition has competitive coefficients nu and nw. When nw = nu = 0, (1.5.1) decouple and
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each part is equivalent to the system studied in [Bri90]. Before we start to analyse this sys-

tem, it is essential to write it in non dimensional terms. This make the units for variables

unimportant and reduces the number of parameters. We define dimensionless variables

u = Uū, w = Ww̄, x =

(
Du

ku

)1/2

x̄, t =
t̄

ku
,

in terms of which (1.5.1) becomes

∂ū
∂t̄

=
∂2ū
∂x̄2 + ū(1 + α1ū− (1 + α1)ū2 − γ1w̄), (1.5.2)

∂w̄
∂t̄

=
D
λ

∂2w̄
∂x̄2 + λw̄(1 + α2w̄− (1 + α2)w̄2 − γ2ū).

Here U and W are the unique single species equilibrium solutions given by the positive

solutions of

1 + luU −muU2 = 0, 1 + lwW −mwW2 = 0.

The dimensionless parameters are

α1 = luU, γ1 = nuW,
D
λ

=
Dw

Du
, λ =

kw

ku
, α2 = lwW, γ2 = nwU.

The two single species equilibrium solutions are the clear solutions for (1.5.1), therefore

we non-dimensionalize it as explained above. All parameters are positive. For notational

convenience we now omit the over bar, so that (1.5.2) becomes

∂u
∂t

=
∂2u
∂x2 + u(1 + α1u− (1 + α1)u2 − γ1w), (1.5.3)

∂w
∂t

=
D
λ

∂2w
∂x2 + λw(1 + α2w− (1 + α2)w2 − γ2u).

For 0 < λ � 1, (1.5.3) is in the same range as in [Bil04], and we will discuss the reason

later. Also, with small λ, w diffuses rapidly and grows slowly. The minus signs in front

of γ1w and γ2u mean that both species are negatively affected when they compete with
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each other for resources, whilst the plus signs in front of α1u and α2w reflect cooperation

within species.

We will study three ecologically important initial conditions and also the bifurcations of

the spatially uniform solutions of (1.5.3). We will assume that the initial conditions are

symmetric about the origin, so we consider the problem for x ≥ 0 and t ≥ 0,

u(x, 0) = u0(x), w(x, 0) = w0(x),

and boundary conditions

∂u
∂x (0, t) = 0, ∂w

∂x (0, t) = 0.

We will consider initial conditions of three types, which describe the most common cases

in population ecology:

• I.C. A:

u0(x) =


1 for x ≤ L0,

0 for x > L0,

w0(x) = 1,

where L0 is a width of step function. The far field boundary conditions are therefore

u → 0 and w → w∞ as x → ∞. The physical meaning for this case is that species w

is native and species u is introduced.

• I.C. B:

u0(x) = 1,
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w0(x) =


1 for x ≤ L0,

0 for x > L0.

The far field boundary conditions are therefore, u→ u∞ and w→ 0 as x → ∞. The

physical meaning for this case is that species u is native and species w is introduced.

• I.C. C:

u0(x) =


1 for x ≤ L0,

0 for x > L0,

w0(x) =


1 for x ≤ L0,

0 for x > L0,

We have chosen in the initial condition to have a value (u0 = 1 or w0 = 1) consistent

with the value of the equilibrium solutions as we will see later. This will help of get-

ting a stable numerical solutions as we will see in Chapter 3. The far field boundary

conditions are therefore, u → 0 and w → 0 as x → ∞. The physical meaning for

this case is that species u and w are both introduced.

The initial conditions of types A and B correspond to the invasion of one species into

a region already inhabited by the other. The case with two invasions is reflected in the

initial condition C. In Chapter 2, we will study (1.5.3), the reaction-diffusion system

for competing and cooperating species and compare it to the Lotka-Volterra system. We

will compare the number and stability of equilibrium solutions and the type of travelling

wave solutions in both systems. In Chapter 3, we will compute the numerical solutions

for the travelling waves of (1.5.3) using the three types of initial conditions, A, B and C.

We will study the dynamics of the process of change from one dominant travelling wave

to another in the case of initial condition C using numerical and asymptotic methods.
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In Chapter 4, we will use asymptotic methods to find the three types of travelling wave

solutions. Furthermore, we will investigate the existence of unsteady travelling wave

solutions similar to what was found in [Bil04] for t = O(λ−1), λ � 1. We will study the

stability of travelling waves of the reaction-diffusion model for competing and cooper-

ating species in two dimensions numerically in Chapter 5, and we will use asymptotic

methods and Evans function to analyse the stability of travelling waves.
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Equilibrium solutions

In this chapter we study the dynamics of a reaction-diffusion system that represents com-

petition between two species and cooperation within species. We begin by studying the

types and stability of equilibrium solutions. We study the types of bifurcations, and we

use the phase portrait to show the possible connections between equilibrium solutions.

2.1 Equilibrium solutions and bifurcation

We study the equilibrium solutions of (1.5.3)

du
dt

= u(1 + α1u− (1 + α1)u2 − γ1w) ≡ u( f (u)− γ1w),

dw
dt

= λw(1 + α2w− (1 + α2)w2 − γ2u) ≡ λw(g(w)− γ2u), (2.1.1)

where

f (u) = 1 + α1u− (1 + α1)u2, g(w) = 1 + α2w− (1 + α2)w2.

The convenient way to analyse these solutions and get a qualitative picture of the dy-

namics of the ordinary differential equations (2.1.1) is using nullclines. The nullclines
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are

u( f (u)− γ1w) = 0,

w(g(w)− γ2u) = 0. (2.1.2)

The intersection of γ1w = f (u) and γ2u = g(w) or the values of u and w for which

the time derivatives in (2.1.1) are equal to zero are the spatially uniform solutions or the

equilibrium solutions. Thus, the obvious equilibrium solutions are,

• (u, w) = (0, 1) and (u, w) = (1, 0), which are single species equilibrium points.

• (u, w) = (0, 0), which is an extinction of both species.

In addition, there may be up to three other equilibrium solutions given by the intersec-

tions of the quadratic curves

w = f (u)/γ1, u = g(w)/γ2. (2.1.3)

There are seven topologically different arrangements of the curves, shown in Figure 2.1

and denoted by R1-R7. In cases R3 and R7 there are no additional equilibria, in R1 and R6

there is one, in R2 and R4 there are two, and in R5 there are three additional equilibrium

solutions.
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Figure 2.1: The intersection of the two curves w = f (u)/γ1 and u = g(w)/γ2 in each

of the topologically distinct cases R1 to R7. The stable and unstable interior

equilibrium points are labelled SE and UE.

In order to study the stability of the equilibrium points, we need to consider the Jac-

obian matrix

J =


∂ f1(u,w)

∂u
∂ f1(u,w)

∂w

∂ f2(u,w)
∂u

∂ f2(u,w)
∂w

 ,

f1(u, w) = u( f (u)− γ1w),

f2(u, w) = λw(g(w)− γ2u),
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where f1(u, w) = 0 and f2(u, w) = 0 are the nullclines. From the determinant of the

Jacobian we can find the characteristic equation

K2 − trJK + detJ = 0, (2.1.4)

where trJ and detJ are the trace and determinant of J respectively, and in general

trJ =
∂ f1(u, w)

∂u
+

∂ f2(u, w)

∂w
, detJ =

∂ f1(u, w)

∂u
∂ f2(u, w)

∂w
− ∂ f1(u, w)

∂w
∂ f2(u, w)

∂u
.

The eigenvalues of the Jacobian are the solutions of the quadratic equation (2.1.4)

K1,2 =
trJ ±

√
(trJ)2 − 4detJ

2
. (2.1.5)

The stability of the equilibrium points depends on the sign of the eigenvalues at (2.1.5).

Figure 2.2 (see for example [Kot01]) shows the type of an equilibrium point depending

on the trace and the determinant. The line detJ = 0 separates saddles from nodes, and

the curve (trJ)2 = 4detJ separates nodes from foci.
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Figure 2.2: The type of equilibrium point found from the eigenvalues of the Jacobian.

The Jacobian of (2.1.1) is

J =

 f ′(u)− γ1w −γ1u

−λγ2w λ(g′(w)− γ2u)


where

f ′ =
d f
du

, g′ =
dg
dw

.

Also

trJ = f ′(u)− γ1w + λ(g′(w)− γ2u),
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detJ = ( f ′(u)− γ1w)λ(g′(w)− γ2u)− (γ1uλγ2w),

where

f ′(u) = 1 + 2α1u− 3(1 + α1)u2,

g′(w) = 1 + 2α2w− 3(1 + α2)w2.

The stability analysis for the equilibrium solutions show that,

• (0, 0) :

Eigenvalues Eigenvectors

1 (1, 0)T

λ (0, 1)T

This is an unstable node for all positive values of λ.

• (1, 0) :

Eigenvalues Eigenvectors

−(2 + α1) (1, 0)T

λ(1− γ2) (1, −2−α1−λ(1−γ2)
γ1

)T

This is a stable node if γ2 > 1 and a saddle point if γ2 < 1. Note that this is the unique

stable equilibrium state with u > 0 and w = 0 if γ2 > 1.

• (0, 1) :

Eigenvalues Eigenvectors

−λ(2 + α2) (0, 1)T

(1− γ1) (1, λ(2+α2)−(1−γ1)
λγ2

)T

This is a stable node if γ1 > 1 and a saddle point if γ1 < 1. Note that this is the unique

stable equilibrium solution with w > 0 and u = 0 if γ1 > 1. From the stability of the

previous equilibrium points we deduce that there are transcritical bifurcations at γ1,2 = 1
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(for more details see the next section). If (û, ŵ) is an intersection point of the two curves

u = g(w)/γ2 and w = f (u)/γ1, then

J(û, ŵ) =

 û f ′(û) −γ1û

−λγ2ŵ λŵg′(ŵ)

 ,

and the eigenvalues satisfy

K1,2 =
(û f ′ + λŵg′)±

√
(û f ′ + λŵg′)2 − 4ûŵλ(g′ f ′ − γ1γ2)

2
. (2.1.6)

The equilibrium solution (û, ŵ) is a stable node if f ′(û)g′(û) − γ1γ2 > 0 and (û f ′ +

λŵg′) < 0, and a saddle point if f ′(û)g′(û) − γ1γ2 < 0 and (û f ′ + λŵg′) > 0. Note

that the slopes of the curves shown in Figure 2.1 are f ′/γ1 and γ2/g′, so the stability

of each equilibrium point can be determined from these slopes at each point of intersec-

tion. There are seven regions formulated depending on the number of intersection points.

Some of the boundaries of these regions are given by the transcritical bifurcations γ1 = 1

and γ2 = 1 which we noted above. The remaining boundaries are given when the two

quadratics, u = g(w)/γ2 and w = f (u)/γ1, are tangent. At this tangency:

f ′(u)
γ1

=
γ2

g′(w)
, (2.1.7)

which is consistent with the fact that the nature of the equilibrium point changes at this

value of the parameters. By substituting (2.1.7) into (2.1.3), we can eliminate w and obtain

the two cubic equations

a3u3 + a2u2 + a1u + a0 = 0, (2.1.8)

b3u3 + b2u2 + b1u + b0 = 0,

where
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a3 =
−2

(1 + α2)
(4α1 + α2 + α2

2 + 4α2α1 + α2α2
1 + 1),

a2 =
3

(1 + α2)
(α1 + α2

1 + α2α1 + α2α2
1),

a1 =
−1

(1 + α2)
(−2α1 − 2α2 + α2

1 − 2 + γ1α2α1 − 2α2α1 + α2α2
1 + γ1α2),

a0 =
−1

2(1 + α2)
(γ2γ2

1 + 2α2α1 + 2α1 − γ1α2α1),

b3 = (4γ2 + 8γ2α2α1 + 4γ2α2α2
1 + 4γ2α2

1 + 4γ2α2 + 8γ2α1),

b2 = (−8α1 − 4α2
1 − 4α2 − α2

2 − 4γ2α2α1 − 4γ2α2α2
1 − 8α2α1 −

4α2α2
1 − 4γ2α1 − 4γ2α2

1 − 2α2
2α1 − 2α2

2α2
1 − 4),

b1 = (4α1 + 4α2
1 + γ2α2α2

1 + 4α2 − α1 + 4α2 − α2
1 + γ2α2

1 + α2
2α1 + α2

2 + α2
1),

b0 = (−α2
1 +

γ2
2γ2

1
4
− α2α2

1 −
−α2

2α2
1

4
).

A solution of (2.1.8) is possible when the determinant of the Sylvester matrix (see, for

example, [Afo95]) vanishes, so that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a3 a2 a1 a0 0 0

0 a3 a2 a1 a0 0

0 0 a3 a2 a1 a0

b3 b2 b1 b0 0 0

0 b3 b2 b1 b0 0

0 0 b3 b2 b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (2.1.9)

Even with the help of a computer algebra package, it is difficult to make analytical pro-

gress with this equation. However, by plotting the solution for various values of the para-

meters, we find that the general picture is as shown in Figure 2.3, where are the blue line is
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the solution of 6.2.5 and represent saddle-node bifurcation boundary. There are two dis-

tinct saddle node bifurcation boundaries, which meet at a cusp where there is a codimen-

sion two point (a pitchfork). In the Figures 2.4(a), 2.4(b), 2.4(c), 2.4(d), 2.5(a), 2.5(b), 2.5(c),

2.5(d) and 2.5(e), we show the nullclines w = f (u)/γ1 and u = g(w)/γ2 are at the

boundary of the seven regions. We plot the negative intersection points of the two curves

in order to explain how the coexistence equilibrium points are moving around the ori-

gin. Figure 2.4(a), shows that the coexistence equilibrium point changes from negative to

positive when it moves from R1 to R2, in other words, it moves from the left of the origin

to the right. Thus, there is a transcritical bifurcation between R1 and R2. Similar beha-

viour can be found in Figures 2.4(a), 2.4(b), 2.4(c), 2.4(d), 2.5(a) and 2.5(b) which show

the behaviour of coexistence equilibrium points around the origin on either side of the

boundaries R1− R4, R4− R5, R2− R5, R3− R6 and R6− R7 respectively. It is clear that,

in Figures 2.5(c) and 2.5(e), the number of coexistence equilibrium points changes from

zero to two between the regions R2− R3 and R4− R7, and this is a saddle-node bifurc-

ation. The final Figure (2.5(d)), shows that there is a saddle-node bifurcation between

regions R5− R6.
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Figure 2.3: The bifurcation boundaries when α1,2 = 1. The number of interior equilib-

rium points in each region is also shown.

2.1.1 Stability of the equilibrium points and the phase portrait in the regions

R1− R7

From the stability of the equilibrium points (1, 0) and (0, 1), we can deduce the stability

of the coexistence equilibrium points in each region. We have shown that (1, 0) is a stable

node if γ2 > 1 and a saddle point if γ2 < 1, while (0, 1) is a stable node if γ1 > 1 and a

saddle point if γ1 < 1. Also (0, 0) is always an unstable node, therefore, the phase portrait

and stability in the regions R1−R7 are shown in Figures 2.6(a),2.6(b),2.6(c),2.6(d),2.6(e),

2.6( f ) and 2.6(g). The equilibrium solution (0, 1) at the boundary γ1 = 1 (this occurs

when we move between R1 − R4 or R2 − R5 or R3 − R6) collides with one of the unstable

coexistence equilibrium solution at γ1 = 1 and then the unstable coexistence equilibrium
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(d) The nullclines of (2.1.2) in R2 and R5.

Figure 2.4: Description of the types of bifurcation, when the number of the intersection

points of u = g(w)/γ2 and w = f (u)/γ1 are changed corresponding to the

parameter values.
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(d) The nullclines of (2.1.2) in R5 and R6.
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Figure 2.5: Description of the types of bifurcation, when the number of the intersection

points of the two curves u = g(w)/γ2 and w = f (u)/γ1 are changed corres-

ponding to the parameter values.
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solution annihilate at (0, 1) when we cross the boundary (see 2.6(a) and 2.6(d) or 2.6(b)

and 2.6(e) or 2.6(c) and 2.6( f )). Similar thing happen when we move cross γ2 = 1 (this

occurs when we move between R1− R2 or R4− R5 or R6− R7) but this time the unstable

coexistence equilibrium solution annihilate at (1, 0) (see 2.6(a) and 2.6(b) or 2.6(d) and

2.6(e) or 2.6( f ) and 2.6(g)). Both (1, 0) and (0, 1) are changing their stability and the

above analysis show that γ1 = 1 and γ2 = 1 are transcritical bifurcation. The blue lines

in figure 2.3 is the saddle-node bifurcation boundaries as we mentioned above separate

the regions R2− R3, R5− R6 and R4− R7. At the blue boundaries, two of the coexistence

equilibrium points (one stable and the other unstable) collide and annihilate each other

(see 2.6(b) and 2.6(c) or 2.6(e) and 2.6( f ) or 2.6(d) and 2.6(g)).

As discussed in chapter one, in the Lotka-Volterra system there are four topologically

different regions as shown in Figure 1.3, whilst there are seven topologically different

regions for (1.5.3) as shown in Figure 2.3. The regions R1, R3, R6 and R7 are similar

to the four regions in the Lotka-Volterra system. In R1, there exists a stable coexistence

state, and both single equilibrium solutions (1, 0) and (0, 1) are unstable. The single

species (1, 0) excludes (0, 1) in R3, whilst (0, 1) excludes (1, 0) in R7. In R6 both single

species are stable, and the winner depends on the initial densities of the two species. The

major difference between the two systems is the three regions R2, R4 and R5 which can

be found in (1.5.3) but do not exist in the Lotka-Volterra system. The key feature of the

three regions is the existence of only one stable coexistence equilibrium state. Beside the

stable coexistence state, one of the single species wins, (1, 0) wins in R2, whilst (0, 1) wins

in R4. The other coexistence equilibrium point in both R2 and R4 is unstable. In R5, there

is a strong competition between (1, 0) and (0, 1) and the winner depends on the initial

condition. There are also two unstable and one stable coexistence equilibrium points of
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(d) Phase portrait in R4.
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 (g) Phase portrait in R7.

Figure 2.6: Phase portrait in the seven regions, R1 − R7.

2.2 The effect of the parameters α1,2 on the bifurcation boundar-

ies

In this section we examine how the cooperative coefficients α1,2 affect the boundaries of

regions R1 − R7. If we assume that the reaction-diffusion system in (1.5.3) is only for

competing species, in other words, there is no cooperation within species and α1,2 = 0,

then (2.1.1) becomes,
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du
dt

= u(1− u2 − γ1w) ≡ u( f (u)− γ1w),

dw
dt

= λw(1− w2 − γ2u) ≡ λw(g(w)− γ2u). (2.2.1)

The spatially uniform solutions for (2.2.1) are, (0, 0), (1, 0) and (0, 1), the same as in

(2.1.1), besides the number of the intersection points of the two curves in (2.1.3). The

stability analysis of the equilibrium points (1, 0) and (0, 1) shows again there are tran-

scritical bifurcations at γ1,2 = 1. A similar analysis of the tangency of the two curve

shown in (2.1.7) with help of Sylvester matrix produces a quartic equation,

27γ4
1γ4

2 − 288γ2
1γ2

2 + 256γ2
1 + 256γ2

2 − 256 = 0. (2.2.2)

This plot of (2.2.2) is shown in Figure 2.7. We can find that the bifurcation boundaries are

qualitatively the same as in the case α1,2 = 1 in Figure 2.3. The seven regions R1− R7 still

exist for this special case with a narrowing of the regions R2 and R4.

Similar analysis in the case α1 → ∞ and α2 = 1, shows an extension in the regions R4

and R5, whilst, R2 shrinks when α1 increases, as shown in Figure 2.8. The case is opposite

when α1 = 1 and α2 → ∞, R2 is extending and both R4 and R5 are shrinking as we can

see in Figure 2.9. The final case is when α1,2 → ∞, there is an extension in R2, R4 and

R5. This case is shown in Figure 2.10. In summary, the parameters α1,2 have no effect

on the qualitative bifurcation boundaries. There are seven topologically different regions

of (1.5.3) for all the values of α1,2, including α1,2 = 0. However, when α1 increases both

regions R4 and R5 are increased and the region R2 is reduced. The opposite occurs when

α2 increases.

38



CHAPTER 2: EQUILIBRIUM SOLUTIONS

γ1

γ 2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

R3

R5

R1

R7

R2

R4

R6

Figure 2.7: The bifurcation boundaries produced from the tangency of the two curves in

(2.2.1) and the lines γ1,2 = 1. The parameter values, α1,2 = 0.
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Travelling wave solutions for the

initial value problem (1.5.3)

In this chapter, we study the types of travelling wave solution for the initial value prob-

lem (1.5.3) with the help of MATLAB. Also we investigate the dynamics of the growth of

and the development of a travelling wave after a long time in the case of initial condition

C, and we compare between numerical and asymptotic solutions for this case.

3.1 Travelling wave solutions

Typical solutions of reaction-diffusion system are travelling waves that connect equilib-

rium solutions. We concentrate on the case when the travelling wave move to the right.

The three types of travelling wave that we study are

• Type (Ia), the travelling wave connects the positive coexistence equilibrium solu-

tion (u0, w0) to (0, 1).

• Type (Ib), the travelling wave connects the positive coexistence equilibrium solu-
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tion (u0, w0) to (1, 0).

• Type (I Ia), u the travelling wave connects (1, 0) to (0, 0).

• Type (I Ib), the travelling wave connects (0, 1) to (0, 0).

• Type (I I I), the travelling wave connects (1, 0) to (0, 1), which we also split into type

(I I Ir) when (1, 0) is a stable and behind the wave, and type (I I Il) when (0, 1) is a

stable and behind the wave.

These travelling wave solutions connect a stable equilibrium solution behind the wave

to get a steady wave to another equilibrium solution. Waves of type (I) can only exist

if the coexistence state (u0, w0) is stable (regions R1, R2, R4 and R5). Waves of type (I Ia)

and (I I Ir) require (1, 0) to be stable (regions R3 and R6), whilst waves of type (I Ib) and

(I I Il) require that (0, 1) is stable (regions R6 and R7). Waves of type (I I I) do not exist

in regions where (u0, w0) is stable, although these satisfy the condition (1, 0) is stable for

type (I I Ir) and (0, 1) is stable for (I I Il). These results are illustrated in Figure 3.1.

Another type of travelling wave that we might expect to exist is one that connects

(u0, w0) to (0, 0), and this may emerge as a solution of the initial value problem with

initial conditions of type C. However, we have found that, not only does such a travelling

wave not develop in any numerical simulation we have made, we have been unable to

construct such a solution in the asymptotic limit λ � 1. The reasons for this are unclear.

This type of travelling wave solutions can be found in (1.5.3) only when λ = 1 and

D = 1, which we will discuss later. Note also that travelling wave solutions that connect

to unstable coexistence equilibrium solution also exist, but will not be realised in any

physically meaningful initial value problem.
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Figure 3.1: An overview of the types of travelling wave that may exist in regions, R1 −

R7. The figure is related to the diagram shown in Fig.2.3.

3.2 Numerical solutions

In this section we solve (1.5.3) numerically and try to find the different types of travelling

wave solutions that are generated by the different initial conditions. A semi-implicit

finite difference method provides a sufficiently accurate numerical solution since it is

unconditionally stable. An implicit method is used to discretise the diffusion operator.

For the non linear reaction part we use an explicit method. Finite difference method can

be derived using a Taylor series expansion for u(x0 + ∆x) and u(x0 − ∆x), where ∆x is
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the step size of x. The discretization equation of (1.5.3) is:

ut+∆t
n − ut

n
∆t

=
ut+∆t

n+∆x − 2ut+∆t
n + ut+∆t

n−∆x

(∆x)2 +

ut
n(1 + α1ut

n − (1 + α1)(ut
n)

2 − γ1wt
n),

wt+∆t
n − wt

n
∆t

=
D
λ
(

wt+∆t
n+∆x − 2wt+∆t

n + wt+∆t
n−∆x

(∆x)2 )+

λwt
n(1 + α2wt

n − (1 + α2)(wt
n)

2 − γ2ut
n).

These equations simplify to give us

rut+∆t
n+∆x − (1 + 2r)ut+∆t

n + rut+∆t
n−∆x = −ut

n

−(∆t)ut
n(1 + α1ut

n − (1 + α1)(ut
n)

2 − γ1wt
n),

(
Dr
λ

)wt+∆t
n+∆x − (1 +

2Dr
λ

)wt+∆t
n + (

Dr
λ

)wt+∆t
n−∆x = −wt

n

−(∆t)λwt
n(1 + α2wt

n − (1 + α2)(wt
n)

2 − γ2ut
n),

where r = ∆t
(∆x)2 . The domain of solution 0 < x < l is divided into N discrete equally

spaced points x = xi = (i− 1)∆x, where i = 1, 2, ....., N and ∆x = l/(N − 1). The length

of domain l should be much larger than O( 1
λ ), when λ� 1 to capture the travelling wave

solutions. The initial conditions are u(x, 0) = u0(x) and w(x, 0) = w0(x). The boundary

conditions are no flux Neumann boundary conditions, ux = wx = 0 at x = 0, l, which are

imposed using a three point formula (this is a second order accuracy stable)
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u
′
(x) =

−3ut+∆t
n + 4ut+∆t

n+∆x − ut+∆t
n+2∆x

2∆x
= 0,

w
′
(Y) =

−3wt+∆t
n + 4wt+∆t

n+∆x − wt+∆t
n+2∆x

2∆x
= 0. (3.2.1)

From discretization we get a system of algebraic equations which can be written in the

form

AUt+1 = bUt, (3.2.2)

BWt+1 = cWt,



3 −4 1

−r (1 + 2r) −r

. . . . . . . . .

−r (1 + 2r) −r

1 −4 3





ut+1
1

ut+1
2

...

ut+1
N−1

ut+1
N



=



0

ut
2 + (∆t)ut

2(1 + α1ut
2

−(1 + α1)(ut
2)

2 − γ1wt
2)

...

ut
N−1 + (∆t)ut

N−1(1 + α1ut
N−1

−(1 + α1)(ut
N−1)

2 − γ1wt
N−1)

0



,

where

A =



3 −4 1

−r (1 + 2r) −r

. . . . . . . . .

−r (1 + 2r) −r

1 −4 3


,
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bUt =


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In the case of w
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N−1)

2 − γ2ut
N−1)

0



,Wt+1 =



wt+1
1

wt+1
2

...

wt+1
N−1

wt+1
N



.

We solve the linear system (3.2.2) at each timestep using the backslash operator in MAT-

LAB. To obtain the wave speed numerically, we consider one of the values of u in the

position of the head of the wave front namely u = 0.5. Also, when time t0 = 0, then
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t1 = t0 + ∆t, where ∆t is the time step. At the time t = t1, the head of the wave front will

be in the position x = x1 and then it moves to x = x2 at time t = t2, where x2 = x1 + ∆x.

So we can estimate the total distance ∆x = x2 − x1 travelled by the wave in the time

interval ∆t = t2 − t1. Thus

Wave speed = total distance
total time = ∆x

∆t .

3.3 Numerical solutions of the initial value problem

The aim of this section is to solve the system of algebraic equations(1.5.3) numerically

and to find the types of travelling wave solution working in a frame of reference that

moves with any travelling waves that develop. In each case we find that at least one and

sometimes three travelling waves are generated depending upon the initial conditions

and choice of parameters (R1 − R7).

3.3.1 Initial Condition A : u0(x) is a step function and w0(x) = 1

We find that there are three qualitatively different types of behaviour. If the paramet-

ers lie in R3 or R7, where there are no coexistence equilibria, or in R6, where the single

coexistence equilibrium state is unstable, a simple travelling wave is generated, which

connects (1, 0) to (0, 1), as shown in Figure 3.2.
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Figure 3.2: From initial condition A and (1.5.3), a travelling wave solution of type (I I I)

is generated when α1 = 0.7, α2 = 0.6,γ1 = 0.9, γ2 = 1.5, λ = 0.05 and

D = 2.5. (R3 in figure 2.3)

If the parameters lie in R1, in which case there is a single, stable coexistence equi-

librium, again, a simple travelling wave is generated, but now this connects (u0, w0) to

(0, 1), as shown in Figure 3.3.
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Figure 3.3: From initial condition A and (1.5.3), a travelling wave solution of type (Ia)

is generated when α1,2 = 0.6404, γ1,2 = 0.6404, λ = 0.05 and D = 1. (R1 in

figure 2.3)

Finally, if the parameters lie in R2, R4 or R5, more than one coexistence equilibrium

state exists, of which exactly one is stable, which we label (u0, w0). This leads to the gen-

eration of either one or two travelling waves, depending on the initial values of u and

w and also the value of parameters γ1,2 in these regions. If these are such that, in the

spatially-uniform system the initial conditions lie in the basin of attraction of the coex-

istence state, solutions are similar to those discussed above when the parameters lie in

R1. If the initial conditions are attracted to (1, 0), two travelling waves are generated, one

connecting (1, 0) to (u0, w0), and one connecting (u0, w0) to (0, 1), as shown in Figure 3.4.

It is clear that with initial condition A we have an invasion case, and the invader is the

species u. It can be seen that the initial conditions plays an important role of determining

the final state at t → ∞. After a long time there will be only the equilibrium solution
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behind the wave which left from travelling wave solution.
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Figure 3.4: From initial condition A and (1.5.3), two travelling wave solutions are gener-

ated when λ = 0.05, α1 = 4, α2 = 4, γ1 = 0.8, γ2 = 1.8, λ = 0.05 and D = 1.

(R2 in figure 2.3)

3.3.2 Initial Condition B : u0(x) = 1 and w0(x) is a step function

With initial condition B, the situation is similar to that for initial condition A. The same

three qualitatively different cases are possible, which we illustrate in Figures 3.5 to 3.7.
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Figure 3.5: From initial condition B and (1.5.3), a travelling wave solution of type (I I I)

is generated when α1 = 2.8, α2 = 0.1,γ1 = 6 , γ2 = 0.8 λ = 0.05 and

D = 2.8.(R7 in figure 2.3)
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Figure 3.6: From initial condition B and (1.5.3), a travelling wave solution of type (Ib) is

generated when α1,2 = 0.6404,, γ1,2 = 0.6404, λ = 0.05 and D = 1. (R1 in

figure 2.3)
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Figure 3.7: From initial condition B and (1.5.3), two travelling wave solutions are gener-

ated when λ = 0.05, α1 = 1, α2 = 1, γ1 = 1.2, γ2 = 0.7 and D = 2.8. (R4 in

figure 2.3)

The invasion of one of the species occurs again with initial condition B, and the in-

vader is the species w. Notice that in all of these typical solutions we have taken λ = 0.05.

As we shall see in chapter 4, when λ � 1, travelling wave solutions develop on an

O(λ−1) lengthscale, with the exception of those that involve an equilibrium state with

u = 0, in which case there is an inner region at the wavefront where u changes on an

O(1) lengthscale.
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3.3.3 Initial Condition C: u0(x) and w0(x) are step functions

In all cases, the state left behind the wave is determined by the initial conditions and the

spatially-uniform system. The main difference from initial conditions A and B is that a

travelling wave of type (I I) is always generated, and propagates into the region where

u = w = 0. Whether this is of type (I Ia) or (I Ib) it depends upon their wavespeed.

The faster wave from (I Ia) or (I Ib) is the one that is generated. For example, Figures 3.8

and 3.9 show the solution when the parameters lie in R1, and differ only in the choice

of D. In Figure 3.8, the wave of type (I Ia) is faster than type (I Ib), and vice versa for

Figure 3.9. We compare the wave speed of the travelling wave of types (I Ia) and (I Ib) in

Figure 3.10 for the same value of parameters and different values of D. It can be seen that

D plays the crucial role of determining the speed of travelling wave of type (I I). Also,

Figures 3.11 and 3.12 show two travelling waves are generated of type (I I I) in addition

to (I I). The parameters for both figures lie in R6. Furthermore, in Figures 3.13 and 3.14

three travelling waves are generated. In addition to type (I I) there are two travelling

waves that connect (1, 0) to (u0, w0) and (u0, w0) to (0, 1) in Figure 3.13, and (0, 1) to

(u0, w0) and (u0, w0) to (1, 0) in Figure 3.14. The parameters for Figures 3.13 and 3.14 lie

in (R2) and (R4) respectively. There are always two invaders species u and w with this

type of initial condition.
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Figure 3.8: From initial condition C and (1.5.3), two travelling waves are generated

when λ = 0.05, α1,2 = 0.6404, γ1,2 = 0.6404 and D = 0.5. The coexistence

equilibrium state value is (u0, w0) = (0.78, 0.78). (R1 in figure 2.3)
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Figure 3.9: From initial condition C and (1.5.3), two travelling waves are generated

when α1,2 = 0.6404, γ1,2 = 0.6404 and D = 3. The coexistence equilibrium

state value is (u0, w0) = (0.78, 0.78). (R1 in figure 2.3)
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Figure 3.10: The speed of the travelling wave of type (I I) that generated from initial

condition C and (1.5.3), plotted as a function of D, with λ = 0.05, α1,2 =

0.6404, γ1 = 0.6404 and γ2 = 0.6404. (R1 in figure 2.3)
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Figure 3.11: From initial condition C and (1.5.3), two travelling waves are generated

when λ = 0.05, α1 = 1, α2 = 1, γ1 = 1.5, γ2 = 0.5 and D = 1.2. (R6 in figure

2.3)
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Figure 3.12: From initial condition C and (1.5.3), two travelling waves are generated

when λ = 0.05, α1 = 1, α2 = 1, γ1 = 1.5, γ2 = 0.5 and D = 0.5. ((R6) in

figure 2.3)
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Figure 3.13: Three travelling waves are generated from initial condition C when λ =

0.05, α1 = 1.2817, α2 = 6.1501, γ1 = 0.3548, γ2 = 2.4567 and D = 2. ((R2)

in figure 2.3).
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Figure 3.14: From initial condition C and (1.5.3), three travelling waves are generated

when λ = 0.05, α1 = 1, α2 = 1, γ1 = 1.24, γ2 = 0.9 and D = 0.4. ((R4) in

figure 2.3).
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3.4 Symmetry properties of (1.5.3) when λ = 1

The Reaction-diffusion system in (1.5.3) reduces to a single equation when D = 1, λ = 1,

α1 = α2, γ1 = γ2 and u = w, and can be written as,

∂u
∂t

=
∂2u
∂x2 + u(1 + (α1 − γ1)u− (1 + α1)u2). (3.4.1)

This is similar to the equation studied in [HR75] as we showed in Chapter 1 and has

travelling wave solution connecting the coexistence equilibrium solution u = u0 to the

equilibrium solution u = 0. Thus we can deduce from the symmetry that there exists a

travelling wave solution in (1.5.3) when λ = 1 connecting the coexistence equilibrium

solution (u, w) = (u0, w0) to the (u, w) = (0, 0). We were unable to find this type of

travelling wave when λ� 1. Also, it can be seen numerically for (1.5.3) that this type of

travelling wave solution exists as shown in figure 3.15.
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Figure 3.15: From initial condition C and (1.5.3), two travelling waves are generated

when λ = 1, α1 = 1, α2 = 1, γ1 = 0.5, γ2 = 0.5 and D = 1.
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3.5 The impact of the cooperative and competitive coefficients

on the wave speed

In this subsection, we show how the parameters α1,2 and γ1,2 affect the speed of the trav-

elling waves. We consider travelling waves of type (I I I), where the invader is species u.

We have computed the wave speed for different values of α1 in figure 3.16, and we found

that as α1 increases the wave speed increases. This ecologically means when α1 increases

the cooperation in species u increases and therefore the invader spreads out faster. The

opposite happens when α2 increases and it negatively affects the spread of the invader.

We see in Figure 3.17 that the wave speed decreases as α2 increases. The competition

coefficient γ1 measures the effect of w on the growth rate of u, whilst γ2 measures the

effect of u on the growth rate of w. As we increase γ1 the wave speed decreases as shown

in Figure 3.18. This is because when γ1 increases the effect of species w on the invader

species u increases. When γ2 increases the effect will be negative on the growth rate of

species w, whilst it increases the effect of the invasion of species u which increases the

wave speed as shown in Figure 3.19.
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Figure 3.16: The affect of α1 in the speed of the travelling wave of type (I I Ir) when α2 =

1, γ1 = 0.5, γ2 = 1.5, D = 1 and λ = 0.05.
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Figure 3.17: The effect of α2 on the speed of the travelling wave of type (I I Ir) when

α1 = 1, γ1 = 0.5, γ2 = 1.5, D = 1 and λ = 0.05.
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Figure 3.18: The effect of γ1 on the speed of the travelling wave of type (I I Ir) when

α1 = 1, α2 = 1, γ2 = 1.5, D = 1 and λ = 0.05.
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Figure 3.19: The effect of γ2 on the speed of the travelling wave of type (I I Ir) when

α1 = 1, α2 = 1, γ1 = 0.5, D = 1 and λ = 0.05.
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3.6 Founder control case

In Chapter 1 we showed that in the Lotka-Volterra system, when the single species equi-

librium solutions (1, 0) and (0, 1) are stable, the initial condition may decide the winner.

This case is called the founder control case. We study whether founder control occurs in

(1.5.3). In R6, where both single species equilibrium solutions are stable, there is strong

competition between both species and the winner depends on the initial conditions of

type A and B. We found that with initial condition A, (1, 0) wins and the travelling wave

of type (I I Ir) develops, whilst (0, 1) wins in the case of initial condition B and we get the

travelling wave of type (I I Il). However, this is not always true, because the parameters

γ1,2 plays a significant role in growth or extinctions of the populations of species and then

affect on the existence of the travelling wave solutions. In Figure 3.23, we show that the

travelling wave of type (I I Ir) develops with initial conditions A when γ2 = 9 and failed

for γ2 = 1.5 and 6. A travelling wave of type (I I Il) develop with initial conditions of type

B in Figure 3.27 when γ1 = 3, and failed when γ1 = 1.5. We conclude that a founder

control occurs in (1.5.3), and depends on both initial conditions and the parameters γ1,2.
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Figure 3.20: The founder control case, the development of the travelling wave of type

(I I Ir) for u with initial condition A, when α1 = 1, α2 = 1, γ1 = 2, γ2 = 9,

D = 1, λ = 0.05.
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Figure 3.21: The founder control case, the development of the travelling wave of type

(I I Ir) for u with initial condition A, when α1 = 1, α2 = 1, γ1 = 2, γ2 = 1.5,

D = 1, λ = 0.05.
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Figure 3.22: The founder control case, the development of the travelling wave of type

(I I Ir) for w with initial condition A, when α1 = 1, α2 = 1, γ1 = 2, γ2 = 9,

D = 1, λ = 0.05.
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Figure 3.23: The founder control case, the development of the travelling wave of type

(I I Ir) for w with initial condition A, when α1 = 1, α2 = 1, γ1 = 2, γ2 = 1.5,

D = 1, λ = 0.05.
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Figure 3.24: The founder control case, the development of the travelling wave of type

(I I Il) for u with initial condition B, when α1 = 1, α2 = 1, γ1 = 3, γ2 = 4,

D = 1 and λ = 0.05.
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Figure 3.25: The founder control case, the development of the travelling wave of type

(I I Il) for u with initial condition B, when α1 = 1, α2 = 1, γ1 = 1.5, γ2 = 4,

D = 1 and λ = 0.05.
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Figure 3.26: The founder control case, the development of the travelling wave of type

(I I Il) for w with initial condition B, when α1 = 1, α2 = 1, γ1 = 3, γ2 = 4,

D = 1 and λ = 0.05.
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Figure 3.27: The founder control case, the development of the travelling wave of type

(I I Il) for w with initial condition B, when α1 = 1, α2 = 1, γ1 = 1.5, γ2 = 4,

D = 1 and λ = 0.05.
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3.7 The effect of the diffusion coefficient D on the travelling

wave solutions

In this section we show the effect of the diffusion coefficient on the travelling wave solu-

tions with initial conditions of type C. In this case we get two travelling wavefront solu-

tions for specific values of parameters. The ecological explanation for this case is there

is an invading species introduced and represented by two wavefronts in both species, u

and w. In Figure 3.28, there are two wavefronts and the faster is the wavefront of species

u, when D = 1. Now if we make D = 2, then the wavefront of u can be caught by the

front of the invader w and species u starts to decrease and dies out (the new travelling

wave is of type I I ). This case is shown in Figures 3.29 and 3.30, where the parameters

are the same but we only changed D. This increases the speed of the front of species w.

In Figures 3.31 and 3.32, the invader species w moves faster than the front of species u,

and then disappears when D decreases (the new travelling wave is of type I I ). Thus,

the wavefront in w spreads faster than the front of species u when D increases and vice

versa, for some values of parameters and initial conditions of type C. It can be seen that

the diffusion coefficient affects the existence of the type of travelling wave solutions with

initial condition C.
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Figure 3.28: The effect of D in the development of travelling waves with initial condition

C, when α1 = 2, α2 = 1, γ1 = 5, γ2 = 0.5, D = 1 and λ = 0.05.
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Figure 3.29: The effect of D in the development of travelling waves with initial condition

C, when α1 = 2, α2 = 1, γ1 = 5, γ2 = 0.5, D = 2 and λ = 0.05.
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Figure 3.30: The effect of D in the development of travelling waves with initial condition

C, when α1 = 2, α2 = 1, γ1 = 5, γ2 = 0.5, D = 2 and λ = 0.05.
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Figure 3.31: The effect of D in the development of travelling waves with initial condition

C, when α1 = 1, α2 = 2, γ1 = 0.5, γ2 = 3, D = 2 and λ = 0.05.
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Figure 3.32: The effect of D in the development of travelling waves with initial condition

C, when α1 = 1, α2 = 2, γ1 = 0.5, γ2 = 3, D = 0.5, λ = 0.05.

3.8 Dynamics of the growth and development of travelling wave

solutions with initial condition C

In this section, we study the dynamics of the initial growth and development of trav-

elling wave solutions for (1.5.3) with initial condition C. Figure 3.33 and 3.34 show the

dynamics of the growth of a travelling wave solution for typical parameter values. In

Figure 3.33, initially, w is small and u propagates into the domain as a travelling wave.

However, after a long induction period, w begins to grow at the wavefront. Then w ex-

pands and finally forms a new wavefront that allows w to propagate into x > 0, followed

by a slower wavefront. Figure 3.34 shows the same process but u grows as a spike and

develops after long induction as a wave front, whilst w propagates into the domain as a

travelling wave slower than the wave front u.
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Figure 3.33: Detail of the development of a travelling wave in w from one in u, when

λ = 0.05, α1,2 = 1, D = 2, γ1 = 0.5 and γ2 = 1.64 .
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Figure 3.34: Details of the development of a travelling wave in u from one in w, when

λ = 0.05, α1,2 = 1, γ1 = 1.5, γ2 = 1.6 and D = 0.5.

3.8.1 Asymptotic solutions

In order to gain some insight into this process in the case of Figure 3.33, we consider a

system problem in which we treat the initial travelling wave in u as simply a Heaviside

function H(−x), and consider the dynamics of this system when w is initially small and

also a Heaviside function H(−x). We use an asymptotic method to find the solution for

w in the limit of 0 < λ� 1. Specifically, we rescale using
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w = λw̄ x =
x̄
λ

, t =
t̄
λ

, u = H(ct− x)

where

H(−x) =


0, if x ≥ L0

1, if x < L0,

c is the initial travelling wave speed, and where L0 is a constant. At leading order as

λ→ 0,

∂w̄
∂t̄

= D
∂2w̄
∂x̄2 + w̄(1− γ2H(ct− x)), (3.8.1)

subject to

w̄(x, 0) = w0H(−x). (3.8.2)

For convenience we omit the over bar from (3.8.1) and then we solve it analytically. We

assume that the position of the wavefront of species u is L0 + ct, where L0 is the position

of a head of the wavefront in u at time t. Thus when x > L0 + ct, (3.8.1) becomes

∂w
∂t

= D
∂2w
∂x2 + w. (3.8.3)

While if x < L0 + ct,

∂w
∂t

= D
∂2w
∂x2 − Kw, (3.8.4)

where K = γ2 − 1 > 0 and γ2 > 1.

We solve (3.8.3) and (3.8.4) analytically using the Laplace transform method. We begin

by defining Z = x− L0 − ct, so that (3.8.3) becomes

∂w(Z, t)
∂t

− c
∂w(Z, t)

∂Z
= D

∂2w(Z, t)
∂Z2 + w(Z, t), Z > 0, (3.8.5)
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with initial conditions w(Z, 0) = 0.

Similarly (3.8.4) becomes

∂w(Z, t)
∂t

− c
∂w(Z, t)

∂Z
= D

∂2w(Z, t)
∂Z2 − Kw(Z, t), Z < 0, (3.8.6)

with initial conditions w(Z, 0) = 1, and

w(0, t) and
∂w(0, t)

∂Z
are continuous at Z = 0. (3.8.7)

3.8.2 Laplace transform method

In order to solve (3.8.5) and (3.8.6), we use the Laplace transform for w(Z, s),

L{w(Z, t)} = w(Z, s) =
∫ ∞

0
e−stw(Z, t)dt.

Thus we get

D
d2w(Z, s)

dZ2 + c
dw(Z, s)

dZ
+ (1− s)w(Z, s) = 0. (3.8.8)

This is a homogeneous differential equation and the general solution is

w(Z, s) = A1(s)ez(−c+
√

c2−4D(1−s)
2D ) + A2(s)ez(−c−

√
c2−4D(1−s)

2D ),

where s = 1− c2

4D is a branch point in the complex s- plane. Moreover, A1(s) and A2(s)

are functions of s, and we need the condition w(Z, 0) = 0, as Z → ∞, so that A1(s) = 0.

Thus we get

w(Z, s) = A2(s)eZ(−c−
√

c2−4D(1−s)
2D ). (3.8.9)

To solve (3.8.6) for Z < 0, again using the Laplace transform method we get

D
d2w(Z, s)

dZ2 + c
dw(Z, s)

dZ
− (K + s)w(Z, s) = −1. (3.8.10)
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The general solution is

w(Z, s) = B1(s)ez(−c+
√

c2+4D(K+s)
2D ) + B2(s)ez(−c−

√
c2+4D(K+s)

2D ) +
1

s + K
. (3.8.11)

The branch point s = c2

4D − k lies in the complex-s plane. This holds for Z < 0, so that

B2(s)ez(
−c−
√

c2+4D(K+s)
2D )→ 0 as Z → −∞.

Thus B2 = 0 and

w(Z, s) = B1(s)ez(−c+
√

c2+4D(K+s)
2D ) +

1
s + K

. (3.8.12)

The branch points are shown on the negative real axis or the branch cut in Figure 3.35.

Now we have (3.8.11) and (3.8.12) with two unknown functions which we can determine

using (3.8.7) to be

A1(s) =
(c +

√
c2 − 4D(1− s))

(−
√

c2 − 4D(1− s)−
√

c2 + 4D(K + s))(K + s)

B1(s) =
(c +

√
c2 − 4D(1− s))

(−
√

c2 − 4D(1− s)−
√

c2 + 4D(K + s))(K + s)
+

1
s + K

.

After simplification, we get

w(Z, s) =
(c +

√
c2 − 4D(1− s))(

√
c2 − 4D(1− s)−

√
c2 + 4D(K + s))

4D(1 + K)(s + K)
ez(−c−

√
c2−4D(1−s)

2D )

+
1

s + K
ez(−c−

√
c2−4D(1−s)

2D ),

which holds for Z > 0 and

w(Z, s) = (
(c +

√
c2 − 4D(1− s))(

√
c2 − 4D(1− s)−

√
c2 + 4D(K + s))

4D(1 + K)(s + K)
)ez(−c+

√
c2+4D(K+s)

2D )

+
1

s + K
,
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Figure 3.35: Branch points at the negative real axis in the complex s-plane.

for Z < 0. We use the inverse Laplace transform, to obtain

w(Z, t) = L−1{w(Z, s)} = 1
2πi

∫ α+i∞

α−i∞
estw(Z, s)ds.

This is the Bromwich inversion integral and the contour of integration is a vertical line

in the complex s-plane, from α− i∞ to α + i∞ as shown in Figure 3.35, where α should

be larger than the real part of all the branch points. It is also possible to simplify the

problem by closing the contour of integration using a large semicircle in the left half

plane enclosing the branch points. We can then determine an integral expression for the

solution (note that there is no pole at s = −K). The inversion integral of w(Z, s) is

w(Z, t) =
∫

CR

estw(Z, s)ds.
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Thus

w(Z, t) =
1

2πi

∫ γ+i∞

γ−i∞
estw(Z, s)ds (3.8.13)

= − 1
2πi

(
∫

BC
+
∫

CD
+
∫

DE
)estw(Z, s)ds.

The integral around CD can be calculated by parametrising with s = εeiΘ that goes from

π to−π. The integration around CD as ε→ 0 is equal to zero, therefore we need to know

the integral around BC and DE. To simplify our problem we will solve the integral in the

form ∫
BC

+
∫

DE
=

1
2πi

(
∫ −c2

4D −K

−∞
+
∫ −∞

−c2
4D −K

) + (
∫ −c2

4D −K

1− c2
4D

+
∫ 1− c2

4D

−c2
4D −K

).

∫
BC

=
1

2πi

∫ −c2
4D −K

−∞
estwp1(Z, s)eZ( −c

2D−i
√

4D(1−s)−c2
2D ) ds

+
1

2πi

∫ −∞

−c2
4D −K

estwp2(Z, s)eZ( −c
2D +i

√
4D(1−s)−c2

2D ) ds,

where

wp1(Z, s) =
(c + i

√
4D(1− s)− c2)(i

√
4D(1− s)− c2 − i

√
4D(−k− s)− c2)

4D(1 + K)(s + K)
,

wp2(Z, s) =
(c− i

√
4D(1− s)− c2)(−i

√
4D(1− s)− c2 + i

√
4D(−k− s)− c2)

4D(1 + K)(s + K)
.

After some calculations and simplification we get

∫
BC

=
e
−cZ
2D

8πD(1 + K)(s + K)

∫ −c2
4D −K

−∞
estwp3(Z, s)ds,
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where

wp3(Z, s) = c(
√

4D(1− s− c2 −
√

4D(−K− s)− c2)) cos(
Z
√

4D(1− s)− c2

2D
) +

(4D(1− s)− c2 −
√

4D(1− s)− c2
√

4D(−k− s)− c2) sin(
Z
√

4D(1− s)− c2

2D
)−

4D(1 + K) sin(
Z
√

4D(1− s)− c2

2D
).

In the same way we can find the integral along DE in the form where

wp4(Z, s) = (c
√

c2 + 4D(K + s) + 4D(1− s)− c2) cos(
Z
√

4D(1− s)− c2

2D
)

+ (c
√

4D(1− s)− c2 −
√

4D(1− s)− c2
√

c2 + 4D(K + s))

sin

(
Z
√

4D(1− s)− c2

2D

)
+ 4D(1 + K) sin(

Z
√

4D(1− s)− c2

2D
).

Although this is a complicated expression, the presence of a term est in the integrand

means that the solution will decay exponentially if the ranges of integration do not ex-

tend into s > 0, which will occur if 1− c2/4D < 0, and hence c > 2
√

D. Since 2
√

D

is the linearized wave speed of the wavefront in w, this suggests that if the wavefront

in u moves faster than that in w, w will decay to zero, otherwise, w will grow and (once

nonlinear terms become important) form a wavefront.

We can evaluate the solution of (3.8.13) numerically using MATLAB. In Figure 3.36 we

show the spike of w which we get from numerical integration. The solid line represents

w when Z > 0, while dashed lines represent w when Z < 0. Figure 3.36 shows the solu-

tion once w starts to grow, evaluated numerically, and clearly shows that the growth is

localised at the wavefront. Figure 3.37 shows a comparison between the numerical solu-

tion of the full initial value problem and the asymptotic solution, which is in reasonable

agreement considering that the wavefront is not precisely a Heaviside function.
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Figure 3.36: The solution (3.8.13) with c = 0.5, K = 5.98, t = 0.8 and D = 7. The dashed

line represents the solution for Z < 0, and the solution for Z > 0 denoted

by the solid line.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 250.2

x

 

 

u
w from numerical method
w from asymptotic method

Figure 3.37: Comparison between the numerical solutions of the initial value problem

and (3.8.13) when λ = 0.02, α1,2 = 0.1, 0.2, D = 8, c = 1, t = 0.8 and K = 8.
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CHAPTER 4

Travelling wave solutions for λ� 1

and λ = O(1)

In this chapter, we will study the asymptotic solutions for the three types of travelling

waves in the limit of small λ. We will show that there are two types of problem to solve

asymptotically; a regular perturbation problem and a singular perturbation problem. In

the singular perturbation problem, there is one inner and two outer regions.

4.1 Asymptotic solutions for λ� 1

We have seen that a variety of travelling waves develops as solutions of the initial value

problem, so we will study their structure, focusing on the analytically tractable case, λ�

1. We define z = x − ct, and seek permanent form travelling wave solutions u = û(z)

and w = ŵ(z) with wave speed c > 0, so that (1.5.3) becomes

d2û
dz2 + c

dû
dz

+ û(1 + α1û− (1 + α1)û2 − γ1ŵ) = 0, (4.1.1)

D
λ

d2ŵ
dz2 + c

dŵ
dz

+ λŵ(1 + α2ŵ− (1 + α2)ŵ2 − γ2û) = 0.
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The appropriate boundary conditions depend upon which equilibrium solution are con-

nected by the travelling wave solution, and we shall return to this question later.

This is a fourth order system of ordinary differential equations, which is difficult to

study analytically. A limit where we can make some progress is λ � 1. The system is

similar to that studied in [Bil04], where it was shown that the asymptotic structure of the

solution consists of an inner region with lengthscale of O(1) at the wavefront, which we

can place without loss of generality in the neighbourhood of z = 0, with outer solutions

ahead of and behind the wavefront with lengthscale of O(λ−1). The inner region is only

needed when one of the equilibrium solutions associated with the travelling wave has

u = 0, so, in contrast to the system studied in [Bil04], some travelling wave solutions can

be described without the need to resort to the method of matched asymptotic expansions.

We therefore begin by defining scaled outer variables as Z = λz, û = U(Z), ŵ = W(Z)

with U, W, Z of O(1) as λ→ 0. In terms of these new variables, (4.1.1) become

λ2 d2U
dZ2 + λc

dU
dZ

+ U(1 + α1U − (1 + α1)U2 − γ1W) = 0, (4.1.2)

D
d2W
dZ2 + c

dW
dZ

+ W(1 + α2W − (1 + α2)W2 − γ2U) = 0.

Although we can take any wavespeed above the minimum wavespeed when we com-

pare between the wavespeed of numerical and asymptotic solutions, we have chosen

the minimum wavespeed in what follows and we found a good agreement between the

wavespeed for both solutions.
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4.2 Regular perturbation solutions

At leading order, provided that U 6→ 0 as Z → ±∞, this is a regular perturbation prob-

lem, with the leading order equations

D
d2W
dZ2 + c

dW
dZ

+ W(1 + α2W − (1 + α2)W2 − γ2U) = 0, (4.2.1)

W =
1 + α1U − (1 + α1)U2

γ1
, (4.2.2)

or equivalently

dW
dZ

= V,

dV
dZ

= − 1
D

cV − W
D
(g(W)− γ2U), (4.2.3)

γ1W = f (U).

(4.2.4)

In the (W, V) phase plane, this system has equilibrium points at (0, 0), which corres-

ponds to the equilibrium solutions U = 1, W = 0, and (w0, 0), where w0 is such that

(u0, w0) is a coexistence equilibrium state (an intersection of the curves γ1w = f (u) and

γ2u = g(w), as discussed previously). Possible travelling wave solutions with this struc-

ture therefore connect these two equilibria.

4.2.1 Asymptotic solutions for type (Ib)

We will focus on travelling wave solutions that satisfy (W, V)→ (w0, 0) as Z → −∞ and

(W, V)→ (0, 0) as Z → ∞, since these emerge as solutions from initial conditions A and

B in regions R1, R2, R4 and R5.

By linearizing about (w0, 0), we find that this is a saddle point if γ1/ f ′ > g′/γ2, and

a stable node if γ1/ f ′ < g′/γ2. This is a condition on the relative slopes of the quadratics
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shown in Figure 2.1, and in each case we find that the stable coexistence equilibrium point

corresponds to a saddle point in (4.2.3). If a travelling wave solution exists it is therefore

represented by the unstable separatrix of (w0, 0) that points into V < 0.

We solve (4.2.3) using ODE45 in Matlab by integrating forward near (w0, 0) and as

z → −∞. We get a family of travelling wave solutions by solving (4.2.3), we will choose

the travelling wave solution which has a minimum wave speed c satisfying W > 0. The

asymptotic solution for travelling wave of type (Ib) as a result of integrating (4.2.3) is

shown in Figure 4.1. In Figure 4.2, we compare the asymptotic and numerical solutions

for the travelling waves of type (Ib) in a typical case and find that there is excellent agree-

ment. Figure 4.3, shows the numerical and asymptotic solutions for type Ib with typical

parameters and two stable equilibrium points, (1, 0) and (0.9182, 0.5716).
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Figure 4.1: Travelling waves from asymptotic solutions of (4.2.3) for type (Ib), α1,2 =

0.6404, γ1,2 = 0.6404, D = 1, c = 1.3 and λ = 0.05.
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Figure 4.2: Comparison between the asymptotic solution of (4.2.3) and a numerical solu-

tion of the initial value problem with α1 = 0.6404, α2 = 0.6404, γ1,2 = 0.6404,

D = 1, λ = 0.05 and (u0, w0) = (0.78, 0.78).
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Figure 4.3: Asymptotic and numerical solutions for type Ib, the parameters are, α1,2 = 4,

γ1 = 0.8, γ2 = 1.8, D = 1 and (u0, w0) = (0.9182, 0.5716).
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When γ2 < 1, (W, V)=(0, 0) is a stable node provided that c2 > 4D (1− γ2), and a

stable focus for c2 < 4D (1− γ2). Since we require W > 0, this provides a lower bound,

c ≥ clb ≡ 2
√

D (1− γ2), on the wavespeed. In this case we would expect a spectrum of

wave speeds to exist, bounded below by some cmin ≥ clb. When γ2 > 1 we find that (0, 0)

is a saddle point, and hence if a travelling wave solution exists, it will be a saddle-saddle

connection between (w0, 0) and (0, 0), which we would expect to exist for a single value

of c.

4.2.2 γ2 < 1, R1 and R4: saddle-node connection

In this case, we can try to construct a trapping region for the unstable separatrix of (w0, 0),

and use the Poincare-Bendixson theorem to show that it must enter the stable node at

(0, 0). If such a trapping region exists for all c ≥ clb we will have shown that

cmin = clb ≡ 2
√

D (1− γ2). (4.2.5)

Consider the triangular region OAB shown in Figure 4.4, which is bounded by OA,

the W-axis, AB, the line W = w0, and OB, the line V = −KW, where K > 0 is a constant

that we shall choose below to maximize the range of values of c for which OAB is a

trapping region. On OA, trajectories enter OAB if dV
dZ < 0, or equivalently, when g(W) >

γ2U. We can see graphically in Figure 2.1 that this condition holds in regions R1 and R4.

On AB, dW/dZ = V < 0, so all trajectories enter OAB there.
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Figure 4.4: Trapping region for the equilibrium points (W, V) = (w0, 0) and (W, V) =

(0, 0).

On OB, a trajectory enters OAB if dV
dW −

V
W < 0, or equivalently

F(K) = K2 − c
D

K +
(g(W)− γ2U)

D
< 0.

Since F(0) > 0, we can choose some K such that F(K) < 0 provided that c2 ≥ 4D(g(W)−

γ2U) at each point on AB. We can therefore guarantee that OAB is a trapping region

provided that

c > cub ≡ 2
√

D max
γ1W= f (U)

(g(W)− γ2U). (4.2.6)

A simple graphical argument shows that a unique maximiser exists, and is easy to com-

pute numerically as shown in Figure 4.5. Note that cub ≥ cmin ≥ clb. Figure 4.6 shows

the numerically determined wave speed, the upper and lower bounds on the minimum

wavespeed given by cub and clb, along with the minimum wavespeed (minimum wavespeed
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satisfying W > 0) determined numerically from (4.2.3) and the speed of the wave gen-

erated in the initial value problem with initial conditions B. Note that the numerically

calculated wavespeed is consistent with the asymptotic estimate of the wavespeed, and

is correctly bounded between the asymptotic estimates of the upper and lower bounds,

although these bounds are not tight.
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Figure 4.5: A plot of maxγ1W= f (U)(g(W) − γ2U), when α1 = 1, α2 = 4, γ1 = 0.5 and

γ2 = 0.9.
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Figure 4.6: The wavespeed determined from the solution of the initial value problem for

λ = 0.005 and 0.01, the small λ asymptotic minimum wave speed (solid line),

and the upper and lower bounds cub and clb, when α1 = 1, α2 = 4, γ1 = 0.5

and γ2 = 0.9.

4.2.3 γ2 > 1, R2 and R5: saddle-saddle connection

In order to investigate whether there exists a value of c for which there exists a travelling

wave solution, we adapt the method presented in [BN91] to the differential-algebraic

system (4.2.3). Let S1 be the stable separatrix of (0, 0) that lies in W > 0 and let be S2

the unstable separatrix of (w0, 0) that lies in V < 0. A travelling wave solution exists for

values of c for which S1 = S2.

We begin by defining the line L to be

L = {(W, V), : V = 0, 0 ≤W ≤ w0}
⋃
{(W, V) : V ≤ 0, W = w0}.

Since dW
dZ < 0 when V < 0 and dV

dW is bounded for 0 ≤ W ≤ w0, S1 must intersect the line

L at a unique point. We can therefore construct the well-defined, continuous function
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f (c) as

• Case (a), S1 intersects with L on the W-axis at W = W1: G(c) = W1 < w0.

• Case (b), S1 = S2: G(c) = w0.

• Case (c), S1 intersects with L on the line W = w0 at V = −V0: G(c) = w0 + V0.

This definition is illustrated in Figure 4.7. 
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Figure 4.7: The definition of the function G(c).

The behaviour of S1 and S2 in each case is illustrated in Figure 4.8.
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Figure 4.8: The behaviour of S1 and S2 in cases (a), (b) and (c).

We will now show that there is a unique value of c for which G(c) = w0, and hence

a unique travelling wave solution. We begin by showing that G(c) is strictly monotone

increasing. Consider the region D(c0) defined by

D(c0) = {(W, V) : 0 ≥ V ≥ VS1(W)|c=c0
, 0 ≤W ≤ w0},

where V = VS1(W) is the equation of S1. Since

∂

∂c

(
dV
dW

)
= − 1

D
< 0,
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the slope of the integral paths that meet the boundary of D(c0) rotate in a clockwise

direction as c increases. When c = c1 > c0, S1 cannot pass through the boundary of

D(c0), and therefore must meet L outside D(c0). The function G(c) is therefore strictly

monotonically increasing.

When c � 1, it is straightforward to show that the equation of S1 is given by V =

−cW/D at the leading order, and hence that G(c) ∼ w0 + cw0/D > w0 as c → ∞. We

therefore conclude that no more than one travelling wave solution can exist, and that

it exists if and only if G(0) < w0. When c = 0, we can solve (4.2.3), and find that the

equation of S1 is

V = −

√
2
D

∫ W

0
w (γ2U − g(w)) dw, γ1w = f (U). (4.2.7)

We conclude that S1 meets the W-axis in 0 < W < w0, and hence that a travelling wave

solution exists if and only if

∫ w0

0
W (γ2U − g(W)) dW < 0, γ1W = f (U). (4.2.8)

Although it is possible to evaluate this integral and obtain a polynomial in u0 and w0, we

have been unable to demonstrate that the condition (4.2.8) is satisfied for all values of the

parameters. However, numerical evaluation suggests that it is always satisfied.

4.3 Singular perturbation solutions

When one of the equilibrium solutions connected by the travelling wave solution has

U = 0, we must solve a singular perturbation problem similar to that described in [Bil04].

This is because the leading order problem in the outer region has, from (4.1.2):

U(1 + α1U − (1 + α1)U2 − γ1W) = 0.
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The solution must smoothly connect a state with U = 0 to one with 1 + α1U − (1 +

α1)U2 − γ1W = 0, so an inner asymptotic region is required.

4.4 Asymptotic solutions for type (Ia)

For this type of travelling wave, U → U0 as Z → −∞ and U → 0 as Z → ∞, so for Z < 0,

the solution must satisfy (4.2.1) and (4.2.2), whilst for Z > 0, U ≡ 0 (strictly speaking

U = o(1)) and W satisfies

D
d2W
dZ2 + c

dW
dZ

+ Wg(W) = 0, (4.4.1)

or equivalently

dW
dZ

= V,

dV
dZ

= − 1
D

cV − W
D

g(W).

(4.4.2)

In the (W, V) phase plane, this system has equilibrium points at (1, 0), which corres-

ponds to the equilibrium solution U = 0, W = 1, and (0, 0), which correspond to the

equilibrium solution U = 0, W = 0. The equilibrium points, eigenvalues and eigen-

vectors of (4.4.2) are

Equilibrium point Eigenvalues Eigenvectors

(0, 0) −c
2D ±

√
c2

D2−
4g′ (0)

D

2 (1, c
2D ±

√
c2

D2−
4g′ (0)

D

2 )T

(1, 0) −c
2D ±

√
c2

D2−
4g′ (1)

D

2 (1, c
2D ±

√
c2

D2−
4g′ (1)

D

2 )T
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where

g
′
(0) = 1 and g

′
(1) = −2− α2.

The origin is a stable node for c > 2
√

g′(0)D, and a stable focus for c < 2
√

g′(0)D, while

(1, 0) is a saddle point. We need to solve either (4.4.2) for Z > 0 and (4.2.3) for Z < 0 or

(4.2.3) for Z > 0 and (4.4.2) for Z < 0, subject to the boundary conditions as Z → ±∞

and satisfy the connection conditions that W and dW/dZ should be continuous at Z = 0.

We can solve each system of differential or differential-algebraic equations in MATLAB,

shooting from close to the equilibrium points at infinity towards Z = 0 by using New-

ton’s method to adjust the initial conditions to satisfy the connection conditions at Z = 0.

The asymptotic solutions for type (Ia) satisfy the solutions of (4.4.2) for Z > 0 and

(4.2.3) for Z < 0, subject to the boundary conditions,

W → 1, V → 0, as Z → ∞,

W →W0, V → 0, as Z → −∞.

If we assume the solution (4.4.2) for Z > 0 is W1(Z) and the solution of (4.2.3) for Z < 0

is W2(Z), then we need to solve the connection conditions

W1(0)−W2(0) = 0,
dW1

dZ
− dW2

dZ
,

at Z = 0 by the help of Newton method. The resulting solutions are shown in the fol-

lowing figures, Figure 4.9 shows the outer solution in both Z < 0 and Z > 0 in a typical

case, whilst Figure 4.10 shows good agreement between the asymptotic and numerical

solutions.
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Figure 4.9: Outer solutions of type (Ia), α1,2 = 0.6404, γ1,2 = 0.6404 and D = 3.
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Figure 4.10: Comparison between the asymptotic travelling wave solution (also shown

in Figure 4.9), and a numerical solution of (??) with α1 = 0.6404, α2 = 0.6404,

γ1 = 0.6404, γ2 = 0.6404 and D = 4.
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4.4.1 Inner solution for (Ia)

In the inner region, z = O(1) and ŵ is constant at leading order, with value ŵ0 determined

by matching with the outer solution. At leading order, (4.1.2) is reduced to an ordinary

differential equation for û,

d2û
dz2 + c

dû
dz

+ û(L + α1û− (1 + α1)û2) = 0, (4.4.3)

where L = 1− γ1ŵ0, subject to the boundary conditions

û→ 0 as z→ ∞, (4.4.4)

û→
α1 +

√
α2

1 + 4(1 + α1)L

2(1 + α1)
as z→ −∞.

Since the wavefront in type Ia moves to the right, we need L > 0. In chapter one, we

showed that in [HR75] a similar equation to (4.4.3) was studied with reaction term,

F(u) = u(1− u)(1 + vu),−1 ≤ v ≤ ∞. (4.4.5)

It was shown in [HR75], that the minimum wave speed for this case satisfies,

c0 =


2 −1 ≤ v ≤ 1,

v+2√
2v

v ≥ 2.
(4.4.6)

If we rescale (4.4.5) and match the parameters with (4.4.3), we can deduce two possibil-

ities (In [Bil04], the same equation (4.4.3) was studied and the results are derived from

[HR75]),

1. When L > 0 there is a travelling wave solution for each c ≥ cm(L),

2. When L ≤ 0 there is a unique travelling wave solution for c = cm(L),
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where the function cm(L, α1) is defined by

cm(L, α1) =


2
√

L 2α2
1

(1+α1)
≤ L < 1,

3
√

α2
1+4(1+α1)L−α1√

8(1+α1)
L ≤ 2α2

1
(1+α1)

.

For a given value of c, we can solve the outer problem and determine ŵ0, and then L and

cm. A typical result is shown in Figure 4.11. The point of intersection of the two curves

gives the speed of the wave that we expect to be generated in an initial value problem,

either the travelling wave of minimum speed or the unique travelling wave solution.
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Figure 4.11: Travelling wave speeds determined from the inner and outer solutions

when α1,2 = 0.6404, γ1,2 = 0.6404, and D = 3.

Figures 4.12 shows a comparison of the travelling wave speeds predicted by the

asymptotic solution and the numerical solution of the initial value problem, and demon-

strates that there is good agreement between the two.
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Figure 4.12: Comparison between the wave speeds of the asymptotic and numerical

solutions for different values of D. α1,2 = 1, γ1 = 0.5, and γ2 = 0.9.
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Figure 4.13: Asymptotic solutions for travelling wave of type (Ia), the parameters are,

α1,2 = 1, γ1 = 1.2, γ2 = 0.7 and D = 2.8.
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Figure 4.14: Comparison between numerical and asymptotic solutions for travelling

wave of type (Ia), the parameters are, α1,2 = 1, γ1 = 1.2, γ2 = 0.7 and

D = 2.8.

4.5 Solutions for type (I I)

The travelling wave solutions for type (I I) can be derived from the results shown in

[HR75]. For type (I Ia), the asymptotic solutions can be found from (4.4.3) with L = 1

(L = 1− γ1w0, and w0 = 0 in this case). In type (I Ib), the asymptotic solutions can be

derived from (4.4.1), if we rescale Z = D
1
2 z then it becomes

d2W
dz2 + ĉ

dW
dz

+ W(1 + α2W − β2W2) = 0,

(4.5.1)

where ĉ = c

D
1
2

. This equation again is similar to (4.4.3) with L = 1. Thus the travelling
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wave solutions exist for ĉ ≥ cm(1), where cm(1) satisfies

cm(1) =


2 1 ≥ 2α2

1
(1+α1)

,

3
√

α2
1+4(1+α1)−α1√

8(1+α1)
1 ≤ 2α2

1
(1+α1)

.

4.6 Asymptotic solutions for type (I I I)

In this subsection, we discuss the asymptotic solutions for type (I I I). It is equivalent to

a singular perturbation problem with two outer regions and one inner region.

4.6.1 Asymptotic solutions for type (I I Ir)

In type (I I Ir), the outer solutions can be derived from (4.4.1) for Z > 0 and (4.2.3) for

Z < 0 subject to the boundary conditions,

U → 0, W → 1, as Z → ∞,

U → 1, W → 0, as Z → −∞.

We integrate forward from the unstable separatrix of the saddle point (W, V) = (0, 0)

at Z < 0 using ODE45 in MATLAB. Also, we integrate backward from the unstable

separatrix of (W, V) = (1, 0). Figure 4.15, shows the asymptotic solutions in both outer

regions.
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Figure 4.15: Asymptotic solutions in the outer regions in type (I I Ir), the parameters are,

α1 = 0.7, α2 = 0.6,γ1 = 0.9 , γ2 = 1.5, D = 2.5.

4.6.2 Inner solutions for type (I I Ir)

The inner solutions can be found in the same way as in the inner solutions of type (Ia),

and because L > 0 in both types. The boundary conditions are,

û→ 0 as z→ ∞, (4.6.1)

û→
α1 +

√
α2

1 + 4(1 + α1)L

2(1 + α1)
as z→ −∞.

We matched between the wave speed from inner and outer regions and we com-

pare between wave speed from asymptotic and numerical solutions in Figure 4.16, which

shows a good agreement between both methods.
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Figure 4.16: Comparison between both asymptotic and numerical solutions in type

(I I Ir), the parameters are, α2 = 0.6,γ1 = 0.9 , γ2 = 1.5 and D = 2.5.

4.6.3 Asymptotic solutions for type (I I Il)

In type (I I Il), the outer solutions can be derived from (4.4.1) for Z < 0 and (4.2.3) for

Z > 0 subject to the boundary conditions

U → 1, W → 0, as Z → ∞,

U → 0, W → 1, as Z → −∞.

We choose the saddle point (W, V) = (1, 0) at Z < 0, so that we integrate forward

from the unstable separatrix of this point using ODE45 in MATLAB. Also, we integrate

backward from the unstable separatrix of (W, V) = (0, 0). In Figure 4.17, we show the

outer solutions for type (I I Il).
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Figure 4.17: Asymptotic solutions in the outer regions in type (I I Il), the parameters are,

α1 = 2.8, α2 = 0.1,γ1 = 6 , γ2 = 0.8 and D = 2.8.

4.6.4 Inner solutions for type (I I Il)

The inner solution for type (I I Il) is not similar to the inner solutions in types (Ia) and

(I I Ir), since L < 0 in (4.4.3) for type (I I Il), whilst L > 0 in both (Ia) and (I I Ir). The

reason why in this case L < 0 is because we need γ1 > 1 in order to have a stable state,

(u, w) = (0, 1). The boundary conditions are

û→ 0 as z→ ∞, (4.6.2)

û→
α1 +

√
α2

1 + 4(1 + α1)L

2(1 + α1)
as z→ −∞.
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From [HR75] and in section (1.1.2) (case 2 number 3), we showed that the travelling wave

solutions of,

d2U
dz2 + c

dU
dz

+ U(−µ + (1 + µ)U −U2) = 0, (4.6.3)

exist for all wave speeds such that

c ≥ 2
√

µ(1− µ),

where 0 < µ < 1. If we rescale (4.6.3) using

U = ku, z = As and
dU
dz

=
k
A

du
ds

,

and then compare the parameters in this equation with (4.4.3), we deduce that the trav-

elling wave solution for (4.4.3) satisfies

c ≥ 2
√

µ(1− µ)

A
,

where

µ =
−(−α1 ±

√
α2

1 + 4(1 + α1L))2

4(1 + α1L)
, A = ±

√
−L
µ

.

The wave speeds from outer and inner solutions are matched asymptotically, and com-

pared with numerical solutions as shown in Figure 4.18 which are of type (I I I).
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Figure 4.18: Wave speeds of asymptotic and numerical travelling wave solutions in type

(I I Il), the parameters are, α1 = 2, γ1 = 3.5, γ2 = 0.8 and D = 0.3.

4.7 Computing the wave speed in the range of 0 < λ = O(1)

In this subsection, we compute the wave speeds of travelling wave for types (I) and (I I I)

for different values of λ. In Figure 4.19, the wave speed are computed for type (Ia) for

values of λ. We see that the maximum value of the wave speed is when λ� 1. Also, the

wave speed from numerical and asymptotic solutions are getting close when λ � 1. In

type (I I Ir) the idea is similar to type (Ia) as shown in Figure 4.20. This analysis shows

that the asymptotic solutions agree with numerical solutions when λ� 1.
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Figure 4.19: The wave speeds for type (Ia), the parameters are, α1,2 = 4, γ1,2 = 0.6 and

D = 1.
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Figure 4.20: The wave speeds for type (I I Ir), α1,2 = 4, γ1 = 0.6, γ2 = 2 and D = 1.

4.8 The reaction-diffusion system (1.5.3) for λ� 1

In this subsection we study (1.5.3) with λ � 1 and try to find if there is any connection

with the results of the case λ� 1. Now for λ� 1 we rescale

x =
D

1
2 x̄

λ
, t =

t̄
λ

,
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to get

∂u
∂t̄

=
λ

D
∂2u
∂x̄2 +

1
λ

u(1 + α1u− (1 + α1)u2 − γ1w),

∂w
∂t̄

=
∂2w
∂x̄2 + w(1 + α2w− (1 + α2)w2 − γ2u). (4.8.1)

If we replace

α1 ↔ α2, γ1 ↔ γ2, D → 1
D

, λ→ 1
λ

,

we get the same system as (1.5.3) with fast diffusion and slow reaction and the same

parameters. Thus, (4.8.1) with λ � 1 has the same results which we get for (1.5.3) with

λ� 1.
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Stability of travelling wave solutions

in two dimensions

In this chapter we study the reaction-diffusion system (1.5.3) but this time in two di-

mensions and for 0 < λ � 1. We use finite difference methods to study the types of

travelling wave solutions in two dimensions which we have classified in one dimension.

We investigate the stability of the travelling waves for different values of parameters. We

also study the stability of travelling waves in two dimensions analytically using asymp-

totic methods.

5.1 Numerical solutions

Consider the two dimensional reaction-diffusion equations

∂u
∂t

= ∇2u + u(1 + α1u− (1 + α1)u2 − γ1w), (5.1.1)

∂w
∂t

=
D
λ
∇2w + λw(1 + α2w− (1 + α2)w2 − γ2u),
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where

∇2 =
∂2

∂x2 +
∂2

∂y2 ,

subject to the initial conditions

u(x, y, 0) = u0(x, y), (x, y) ∈ R,

w(x, y, 0) = w0(x, y), (x, y) ∈ R,

and boundary conditions

∂u(0, y, t)
∂x

= 0,
∂u(x, 0, t)

∂y
= 0, t > 0

∂w(0, y, t)
∂x

= 0,
∂w(x, 0, t)

∂y
= 0, t > 0,

where

R = {(x, y)|0 ≤ x < ∞, 0 ≤ y < ∞}.

We solve (5.1.1) at the range of small parameter 0 < λ � 1.We truncate the domain to a

finite domain where it is possible to study the properties of a travelling wave. We rescale

the variables in (5.1.1) such that, X = λx, Y = λy and t̄ = λt, i.e. the inner region of

O(λ) and the outer regions of O(1), so that we save time and reduce the domain. Thus,

(5.1.1) becomes

∂u
∂t̄

= λ∇2u + u(1 + α1u− (1 + α1)u2 − γ1w)/λ

∂w
∂t̄

= D∇2w + w(1 + α2w− (1 + α2)w2 − γ2u).

(5.1.2)

We work in a moving frame of reference to capture the whole travelling wave as it

propagates. In order to do that we use the coordinate X̄ = X − S(t) with S(0) = LN/2,
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u = u(X̄, Y, t) and w = w(X̄, Y, t), where LN is constant. So that (5.1.2) becomes

∂u
∂t

= λ∇2u + Ṡ
∂u
∂X̄

+ u(1 + α1u− (1 + α1)u2 − γ1w)/λ

∂w
∂t

= D∇2w + Ṡ
∂w
∂X̄

+ w(1 + α2w− (1 + α2)w2 − γ2u). (5.1.3)

We will study the same two types of travelling wave, (I) and (I I I) that we studied in

one dimension. The initial conditions are of type A, B and C but in two dimensions

(see below). The asymptotic analysis of travelling wave solutions in one dimension has

shown that we could use a non uniform grid in the x-direction (for example, type (Ia)

has inner region with scale O(1), whilst the outer regions are of O( 1
λ )). We use a uniform

grid in the Y-direction with grid size ∆Y. We solve (5.1.3) in the domain Ω,

Ω = {(X̄, Y)|0 ≤ X̄ ≤ N, 0 ≤ Y ≤ M},

where M and N are positive constants. In order to make the travelling wave stay in the

domain Ω, we find the wave speed for (5.1.3) in one dimension and choose Ṡ = c in

(5.1.3). We solve subject to the initial conditions

u(X̄, Y, 0) = f (X̄, Y), (X̄, Y) ∈ Ω,

w(X̄, Y, 0) = g(X̄, Y), (X̄, Y) ∈ Ω.

The new boundary conditions, are

∂u(0, Y, t)
∂X̄

= 0,
∂u(X̄, 0, t)

∂Y
= 0, t > 0,

∂w(0, Y, t)
∂X̄

= 0,
∂w(X̄, 0, t)

∂Y
= 0, t > 0,

∂u(0, M, t)
∂X̄

= 0,
∂u(N, 0, t)

∂Y
= 0, t > 0
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∂w(0, M, t)
∂X̄

= 0,
∂w(N, 0, t)

∂Y
= 0, t > 0.

We use the initial conditions of type (A),

f (X̄, Y) =


1, for 0≤ X̄ ≤ LN , 0 ≤ Y ≤M,

0, for X̄ > LN , 0 ≤ Y ≤M,

g(X̄, Y) = 1, for 0 ≤ X̄ ≤ N, 0 ≤ Y ≤M,

the initial conditions of type (B),

f (X̄, Y) = 1, for 0 ≤ X̄ ≤ N, 0 ≤ Y ≤ M.

g(X̄, Y) =


1, for 0≤ X̄ ≤ LN , 0 ≤ Y ≤ M,

0, for X̄ > LN , 0 ≤ Y ≤M,

and for type (C),

f (X̄, Y) =


1, for 0≤ X̄ ≤ LN , 0 ≤ Y ≤M,

0, for X̄ > LN , 0 ≤ Y ≤M,

g(X̄, Y) =


1, for 0≤ X̄ ≤ LN , 0 ≤ Y ≤M,

0, for X̄ > LN , 0 ≤ Y ≤M.

Now let

hi = xi+1 − xi, i = 0, 1, 2...n,

xi = h0 + h1 + ....hi−1, i = 0, 1, 2...n.
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Figure 5.1: Grid points in the domain R2.

We choose small step sizes (hi = O(λ)) at the position of the head of the wavefront

where the inner region lies, and step sizes increases gradually behind and in front the

head of the wavefront and becomes of O(1). We discretise the first and second derivative

for u and w with respect to x and y using the Taylor expansion. For Neumann boundary

conditions, we discretize ∂u
∂x and ∂u

∂y taking into account the uniform and non uniform grid

for y and x respectively. Thus

∂u
∂x

= − 2hi + hi+1

hi(hi + hi+1)
ut+1

i,j +
hi + hi+1

hihi+1
ut+1

i+1,j −
hi

hi+1(hi + hi+1)
ut+1

i+2,j = 0.

∂u
∂y

=
−3ut+1

i,j + 4ut+1
i,j+1 − ut+1

i,j+2

2k
= 0.

111



CHAPTER 5: STABILITY OF TRAVELLING WAVE SOLUTIONS IN TWO DIMENSIONS

We use an implicit method to discretise the diffusion operator. For the non linear reaction

part we use an explicit method, with a forward difference formula for the derivative with

respect to t

∂u
∂t

=
ut+∆t

i,j − ut
i,j

∆t
.

∂2u
∂x2 =

2
hi(hi + hi−1)

ut+∆t
i+1,j −

2
(hihi−1)

ut+∆t
i,j +

2∆t
hi−1(hi + hi−1)

ut+∆t
i−1,j.

∂2u
∂y2 =

(ut+∆t
i,j+1 − 2ut+∆t

i,j + ut+∆t
i,j−1)

k2 .

Substituting these relations in (5.1.3) we get,

−(λk1 + k4)ut+∆t
i+1,j + (1 + λk2 + 2λr)ut

i,j − (λk3 − k4)ut+∆t
i−1,j + λrut+∆t

i,j+1 +

λrut+∆t
i,j−1 = ut

i,j +
∆t
λ

ut
i,j(1 + α1ut

i,j − (1 + α1)(ut
i,j)

2 − γ1wt
i,j),

−(Dk1 + k4)wt+∆t
i+1,j + (1 + Dk2 + 2Dr)wt

i,j − (Dk3 − k4)wt+∆t
i−1,j + Drwt+∆t

i,j+1 +

Drwt+∆t
i,j−1 = wt

i,j + ∆tλwt
i,j(1 + α2wt

i,j − (1 + α2)(wt
i,j)

2 − γ2ut
i,j),

where

k1 =
2∆t

hi(hi + hi−1)
, k2 =

2∆t
(hihi−1)

, k3 =
2∆t

hi−1(hi + hi−1)
,

k4 =
Ẋ∆t

(hi + hi−1)
, r =

∆t
k2 .

This is a system of algebraic equations which can be written in the form

AUt+1 = bUt, BWt+1 = cWt.
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The matrices A and B contain entries from the Laplacian and the boundary equations and

need to be formulated carefully. In Figure 5.2, we show how to formulate these matrices

from the coefficients of the algebraic equations.

 ●   

  
   ●    ●    ● 

 ●  

  
      ●    ●    ●  

  
   

 ●     ●    ●    ● 

  ●    

  
   ●    ●    ● 

Laplacian 

Figure 5.2: The entries of matrices A and B.

5.2 Perturbation of the planar wavefront

We discuss in this section the stability of the wavefront for travelling waves of types

(I) and (I I I). The stability of travelling waves can be investigated by making a small

perturbation to the position of the wavefront. If the wavefront returns to its original

position then it is stable, otherwise, it is unstable. In type (I I Ir), we use the perturbed
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initial condition (A),

u(x, y, 0) =
1− tanh(X̄− a cos(kY))

2
,

w(x, y, 0) =
1 + tanh(X̄− a cos(kY))

2
,

which has wavelength 2π
k in the Y− direction and a is the amplitude. This perturba-

tion has compact support and will not therefore generate travelling wave solutions that

propagate above the minimum wave speed. We are interested only in the lateral stability

of the underlying wave.

5.2.1 Example test: Gray-Scott

We applied our numerical method to the Gray-Scott system which has unstable travel-

ling wave solutions that are subject to a two-dimensions (see for example [HPSS93] and

[ZF94]). The Gray-Scott system in two dimensions, is

∂u
∂t

= D∇2u− uv2 − κuw

∂w
∂t

= ∇2w + uv2 + κuw,

(5.2.1)

where D is a diffusion coefficient and κ is a constant. The travelling wave solution

connects the equilibrium solution (0, 1) behind the wavefront to (1, 0) (same as in type

(I I Il)). We have found the same results as [HPSS93] with D = 5 and κ = 0. The results

are shown in Figures 5.3 and 5.4 which are for wave number k = 0.1. With k = 0.05 in

Figures 5.5 and 5.6. These figures show an unstable wavefront for D = 5. This suggests

that we may see something similar in our solutions of 5.1.3.
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Figure 5.3: Unstable travelling wave solution for species u in (5.2.1), with k = 0.1, κ = 0

and D = 5
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Figure 5.4: Unstable travelling wave solution for species w in (5.2.1), with k = 0.1, κ = 0

and D = 5
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Figure 5.5: Unstable travelling wave solution for species u in (5.2.1), with k = 0.05, κ = 0

and D = 5
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Figure 5.6: Unstable travelling wave solution for species w in (5.2.1), with k = 0.05,

κ = 0 and D = 5

5.2.2 Numerical results

We solve (5.1.2) and look for instability of the travelling wave solutions for the types

(I) and (I I). Although, we have computed the instability of wavefronts for many para-
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meter values, we were unable to see any evidence of unstable wavefronts. We found for

all parameter values we have chosen, and for all the types of travelling waves, that the

wavefront is stable for the two dimensional initial value problem (5.1.3). The following

figures show that the travelling wave solutions are stable for specific values of paramet-

ers. Figure 5.7 and 5.8 are of type Ia with k = 0.2 and a = 2. Figure 5.9 and 5.10 show

stable travelling waves of type (Ib) with k = 0.1 and a = 2. Figure 5.11 and 5.12 are of

type I I Ir with k = 0.1 and a = 2. Figure 5.13 and 5.14 are of type I I Il with k = 0.1 and

a = 2.
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Figure 5.7: Stable travelling wave of type Ia for u in (5.1.3), when k = 0.2 for specific

values of parameters, α1 = 1, α2 = 1, γ1 = 0.7, γ2 = 0.5, D = 1 and λ = 0.05.
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Figure 5.8: Stable travelling wave of type Ia for w in (5.1.3), when k = 0.2 for specific

values of parameters, α1 = 1, α2 = 1, γ1 = 0.7, γ2 = 0.5, D = 1 and λ = 0.05.
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Figure 5.9: Stable travelling wave of type (Ib) for u in (5.1.3), when α1 = 1, α2 = 1, γ1 =

0.7, γ2 = 0.5, D = 1 and λ = 0.05.
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Figure 5.10: Stable travelling wave of type (Ib) for w in (5.1.3), when α1 = 1, α2 = 1, γ1 =

0.7, γ2 = 0.5, D = 1 and λ = 0.05.
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Figure 5.11: Stable travelling wave of type (I I Ir) for u in (5.1.3), when α1 = 1, α2 =

1, γ1 = 0.5, γ2 = 2, D = 1 and λ = 0.05.
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Figure 5.12: Stable travelling wave of type (I I Ir) for w in (5.1.3), when α1 = 1, α2 =

1, γ1 = 0.5, γ2 = 2, D = 1 and λ = 0.05.
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Figure 5.13: Stable travelling wave of type (I I Il) for u in (5.1.3), when α1 = 1, α2 =

1, γ1 = 2, γ2 = 0.5, D = 1 and λ = 0.05.
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Figure 5.14: Stable travelling wave of type (I I Il) for w in (5.1.3), when α1 = 1, α2 =

1, γ1 = 2, γ2 = 0.5, D = 1 and λ = 0.05.

5.3 Stability analysis of travelling waves of (5.1.1)

In this section, we study the stability of travelling waves in two dimensions analytically

using asymptotic methods. We linearise (5.1.1) around a travelling wave, and determine

whether the solutions of the new linear system grow or decay. We study the linear system

which is produced from (5.1.1) in the limit of 0 < λ� 1 using asymptotic methods.

5.4 Linearisation of (5.1.3)

The first step in studying the stability of a travelling wave is to linearise (5.1.1) around

the travelling wave solution. We linearise (5.1.1) using,

u(x, y, t) = U(z) + ψ1(z, y, t), w(x, y, t) = W(z) + ψ2(z, y, t),
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where U and W are travelling wave, ψ1 and ψ2 are small perturbation terms, and z =

x− ct. Two coupled evolution equations for the linear perturbations, ψ1 and ψ2 are

∂ψ1

∂t
=

∂2ψ1

∂z2 +
∂2ψ1

∂y2 + c
∂ψ1

∂z
+ M1ψ1 + M2ψ2

∂ψ2

∂t
=

D
λ
(

∂2ψ2

∂z2 +
∂2ψ2

∂y2 ) + c
∂ψ2

∂z
+ λN1ψ1 + λN2ψ2,

(5.4.1)

where

M1 = 1 + 2α1U − 3(1 + α1)U2 − γ1W, M2 = −γ1U,

N1 = −γ2W, N2 = 1 + 2α2W − 3(1 + α2)W2 − γ2U.

Next, we look for a solution with wave number k in the y-direction,

ψ(z, y, t) = ψ̄(z, t) exp(iky). (5.4.2)

This leads to

∂ψ̄1

∂t
=

∂2ψ̄1

∂z2 + c
∂ψ̄1

∂z
+ (M1 − k2)ψ̄1 + M2ψ̄2

∂ψ̄2

∂t
=

D
λ
(

∂2ψ̄2

∂z2 − k2ψ̄2) + c
∂ψ̄2

∂z
+ λN1ψ̄1 + λN2ψ̄2.

(5.4.3)

This is a system of linear second order parabolic partial differential equations which is

difficult to solve analytically. We will work in the limit λ � 1 and try to find the asymp-

totic solution.
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5.5 Asymptotic solutions for (5.4.3)

We use the same scale as we applied to the asymptotic analysis for types of travelling

solutions in one dimension when λ� 1 (see Chapter 5). When z = O(1), we rewrite

ψ̄1 = ψ̄10 + λψ̄11,

ψ̄2 = ψ̄20 + λψ̄21.

At leading order,

∂ψ̄10

∂t
=

∂2ψ̄10

∂z2 + c
∂ψ̄10

∂z
+ (M1 − k2)ψ̄10 + M2ψ̄20,

∂2ψ̄20

∂z2 − k2ψ̄20 = 0.

(5.5.1)

From the second equation in (5.5.1),

ψ̄20 = f1(t) exp(−kz) + f2(t) exp(kz). (5.5.2)

This means f1,2(t) = 0 when z → ±∞, and it suggests t = O(λ) and that we need to use

multiple scales method.

Next we scale (5.4.3), such that

Z = λz,
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then (5.4.3) becomes,

∂ψ̄1

∂t
= λ2 ∂2ψ̄1

∂Z2 + cλ
∂ψ̄1

∂Z
+ (M1 − k2)ψ̄1 + M2ψ̄2,

∂ψ̄2

∂t
= λ{D ∂2ψ̄2

∂Z2 + c
∂ψ̄2

∂Z
+ N1ψ̄1 + N2ψ̄2} −

D
λ

k2ψ̄2.

(5.5.3)

From the equation of ψ̄2 in (5.5.3), we see that only one term is of order O( 1
λ ), and all the

other terms are of O(λ). In order to make a balance between terms we scale k to be,

k = λk̄, k̄ = O(λ) asλ→ 0,

then we get,

∂ψ̄1

∂t
= λ2 ∂2ψ̄1

∂Z2 + cλ
∂ψ̄1

∂Z
+ (M1 − λ2k̄2)ψ̄1 + M2ψ̄2,

∂ψ̄2

∂t
= λ{D ∂2ψ̄2

∂Z2 − k̄2ψ̄2 + c
∂ψ̄2

∂Z
+ N1ψ̄1 + N2ψ̄2}.

(5.5.4)

At leading order,

∂ψ̄10

∂t
= M1ψ̄10 + M2ψ̄20, (5.5.5)

∂ψ̄20

∂t
= λ{D ∂2ψ̄20

∂Z2 − k̄2ψ̄20 + c
∂ψ̄20

∂Z
+ N1ψ̄10 + N2ψ̄10} = 0,

(5.5.6)
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or

∂ψ̄10

∂t
= O(1),

∂ψ̄20

∂t
= O(λ),

this means that the solution of ψ̄10 has a faster scale with respect to t than to the solution

of ψ̄20. The multiple scale method is a suitable method for solving this problem.

5.5.1 Multiple scale method

In this section we use the method of multiple scales to solve (5.5.4). In this method we

need to scale

T = λt, ψ̄1(Z, t) = q1(Z, T, t), ψ̄2(Z, t) = q2(Z, T, t), (5.5.7)

q1(Z, T, t) = q10(Z, T, t) + λq11(Z, T, t) + o(λ2),

q2(Z, T, t) = q20(Z, T, t) + λq21(Z, T, t) + o(λ2),

and from the relations,

∂ψ̄1

∂t
=

∂q1

∂t
+ λ

∂q1

∂T
, (5.5.8)

∂ψ̄2

∂t
=

∂q2

∂t
+ λ

∂q2

∂T
,

by substituting (5.5.7) and (5.5.8) in (5.5.4), we get at leading order,

∂q20

∂t
= 0,

∂q10

∂t
= M1 q10 + M2 q20,

∂q21

∂t
+

∂q20

∂T
= D

∂2q20

∂Z2 − Dk̄2q20 + c
∂q20

∂Z
+ N1 q10 + N2 q20.

(5.5.9)
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The analytical solution of q10 in (5.5.9) is

q10 =
−M2

M1
q20 + F(T, Z) exp(M1t), M1(Z) 6= 0,

where

F(0, Z) = Q1(Z) +
M2

M1
Q2(Z),

Q1(Z) and Q1(Z) are continuous functions of Z, comes from integration at T = 0. By

substituting q10 in (5.5.9) we get,

q21 = (−∂q20

∂T
+ D

∂2q20

∂Z2 − Dk̄2q20 + c
∂q20

∂Z
+ N1

−M2

M1
q20 + N2 q20)t +

N1

M1
F(T, Z) exp(M1t).

(5.5.10)

The term proportional to t in (5.5.10) is known as the secular term, and to keep the

asymptotic expansion uniform, we must eliminate it, therefore we get,

∂q20

∂T
= D

∂2q20

∂Z2 − Dk̄2q20 + c
∂q20

∂Z
+

(N2M1 − N1M2)

M1
q20.

(5.5.11)

In conclusion, from (5.5.10), the solution of (5.4.3) grows exponentially when M1(Z) > 0.

In other words, a sufficient condition for instability is M1(Z) > 0. In the next subsection,

we will investigate if the condition M1(Z) > 0 can be satisfied for any of the types of

travelling waves solutions. Also we need to solve (5.5.11) and find the stability of the

travelling wave using Evans function (see for example [GMSW03], [HZ06]). We will use

Evans function to study the instability of travelling wave for the wavefront in the inner

region, whilst we study the instability at the outer region for (5.5.11).
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5.5.2 Calculating M1

The aim of this subsection is to compute whether M1 > 0 for any of the types of travelling

wave solutions. As we have shown in Chapter 4, in the singular perturbation problem,

there is always an equilibrium state has u = 0 connected by a travelling wave. Thus, in

one of the outer regions (in the singular perturbation problem we have two outer regions

split by inner region) where u = 0, it can be easily perturbed when we disturb u. This

is because a small perturbation in u where u = 0 leads to an exponentially growth of

solutions but this can not be considered as an instability case. Also, when u = 0

M1 = 1− γ1w,

and when γ1 < 1, we should get M1 > 0. The numerical computations show M1 > 0

when u = 0, and this can be seen in Figure 5.15 for type (Ia), and Figure 5.16 for type

(I I Ir). We will avoid this case and will focus on the case where u 6= 0 and investigate

whether M1 > 0 for any values of the parameters. The numerical calculations show no

evidence of M1 > 0 in the range of parameters we have calculated, which agrees with

the numerical solutions in the two dimensional problem in the previous sections. The

following figures show that M1 < 0 always in the region u 6= 0, in Figure 5.17, with

values of α1 and this is type (Ia). Figure 5.18 is for type (I I Ir) and similar thing happen

in type (I I Il). In type (Ib), we have a similar case as shown in Figure 5.19.
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Figure 5.15: The maximum values of M1 for type Ia when u = 0, specific values of para-

meters, α2 = 4, γ1 = 0.5, γ2 = 0.5 and D = 5.
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Figure 5.16: The maximum values of M1 for type I I Ir when u = 0, values of parameters,

α2 = 1, γ1 = 0.6, γ2 = 1.3 and D = 1.2.
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Figure 5.17: The values of M1 for type Ia when u 6= 0, specific values of parameters,

α2 = 4, γ1 = 0.5, γ2 = 0.5 and D = 5.
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Figure 5.18: The maximum values of M1 for type I I Ir when u 6= 0, value of parameters,

α1 = 1, α2 = 1, γ1 = 0.6 and D = 1.2.
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Figure 5.19: The maximum values of M1 for type (Ib), specific values of parameters,

α1 = 1, γ1 = 0.5, γ2 = 0.7 and D = 1.

5.5.3 Calculating the Evans function for (5.5.11) and the travelling wave of

type (Ia)

We discussed in Chapter 1 the role of the Evans function in finding the stability of trav-

elling wave solutions. In this section, we compute the Evans function for (5.5.11) when

the travelling wave solutions are of type (Ia). First, we rewrite (5.5.11) as a first order

system,

dq
dz

= A(σ, k̄, Z)q, (5.5.12)

where,

A =

 0 1

σ
D + k̄2 − (N2 M1−N1 M2)

M1D
−c
D

 .
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The limit matrices A±(σ, k̄2) can be found from the boundary conditions,

U → u0, W → w0, as Z → −∞

U → 0, W → 1, as Z → ∞.

The limit matrix A−∞ is,

A−∞ =

 0 1

σ
D + k̄2 − f (−∞) −c

D

 ,

where f (−∞) depends on the values of u0 and w0, and the eigenvalues are,

µ−1 = − c
2D

+

√
c2

D2 +
4(σ+k̄2D− f (−∞))

D

2
,

µ−2 = − c
2D
−

√
c2

D2 +
4(σ+k̄2D− f (−∞))

D

2
,

and the eigenvectors are,

v−1,2 =

 1

µ−1,2

 .

The limit matrix A∞ is

A∞ =

 0 1

σ
D + k̄2 − (1−γ2)

D
−c
D

 ,

the eigenvalues are

µ+
1 = − c

2D
+

√
c2

D2 +
4(σ+k̄2D−(1−γ2))

D

2
,

µ+
2 = − c

2D
−

√
c2

D2 +
4(σ+k̄2D−(1−γ2))

D

2
,

and the eigenvectors are

v−1,2 =

 1

µ+
1,2

 .
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We integrate the system,

dq
dZ

= [A(σ, k̄, Z)− µ−1 I]q, (5.5.13)

forward from Z → −∞ to Z → 0, and we integrate the system,

dq
dz

= [A(σ, k̄, Z)− µ+
2 I]q, (5.5.14)

backward from Z → ∞ to Z → 0. Our numerical results show there are no zeros for

E(σ + k̄2) in the region σ + k2 > 0 which means there is no indication of instability of

travelling waves in the outer region for type (Ia). We found in Figure (5.20), that E(σ +

k̄2) has a zero for σ + k2 > 0, specifically for the parameter values α1 = 1, α2 = 10, γ1 =

0.5, γ2 = 0.9, D = 3, but this occurs in the outer region where u = 0, which we have

excluded as we explained in section (6.2.2). Figure 5.21, shows the Evans function for

0 < α1 < 10.
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Figure 5.20: Evans function values for type (Ia), specific values of parameters, α2 =

1, γ1 = 0.5, γ2 = 0.9 and D = 3.

132



CHAPTER 5: STABILITY OF TRAVELLING WAVE SOLUTIONS IN TWO DIMENSIONS

0

5

10

0

2

4

6

8
−15

−10

−5

0

5

x 10
−5

 

α
1

σ+ k2
 

E
(σ

+
 k

2 )

−12

−10

−8

−6

−4

−2

0
x 10

−5

Figure 5.21: Evans function values for type (Ia), specific values of parameters, α2 =

1, γ1 = 0.5, γ2 = 0.9 and D = 3.

5.5.4 Computing the Evans function for (5.5.11) with type (I I Ir)

In this case, the boundary conditions are,

U → 1, W → 0, as Z → −∞

U → 0, W → 1, as Z → ∞,

and the limit matrix A+∞ is similar to the one in the previous section, whilst,

A−∞ =

 0 1

σ
D + k̄2 − (2+α2)

D
−c
D

 .

The eigenvalues of A−∞ are

µ−1 = − c
2D

+

√
c2

D2 +
4(2+α2)

D

2
,

µ−2 = − c
2D
−

√
c2

D2 +
4(2+α2)

D

2
,
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and the eigenvectors are

v−1,2 =

 1

µ−1,2

 .

In the same way as in the previous section we integrate (5.5.14) and we compute the

Evans function for different values of parameters. Figure (5.22) shows no zero for E(σ +

k̄2) for σ + k̄2 > 0.

0

5

10

0

2

4

6

8
−1

−0.8

−0.6

−0.4

−0.2

0

x 10
−4

 

γ2
σ+ k2

 

E
(σ

+
 k

2 )

−9

−8

−7

−6

−5

−4

−3

−2

−1

x 10
−5

Figure 5.22: Evans function values for type I I Ir, specific values of parameters, α1 =

0.7, α2 = 0.6, γ1 = 0.9 and D = 2.5.

5.5.5 Computing the Evans function for (5.5.11) for type (Ib)

In this case, the boundary conditions are,

U → u0, W → w0, as Z → −∞

U → 1, W → 0, as Z → ∞,
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and the limit matrices are

A−∞ =

 0 1

σ
D + k̄2 − g(−∞) −c

D

 ,

where g(−∞) depends on the values of u0 and w0, the eigenvalues are

µ−1 = − c
2D

+

√
c2

D2 +
4(σ+k̄2D−g(−∞))

D

2
,

µ−2 = − c
2D
−

√
c2

D2 +
4(σ+k̄2D−g(−∞))

D

2
.

The limit matrix A∞ is,

A∞ =

 0 1

σ
D + k̄2 − (1−γ2)

D
−c
D

 ,

and the eigenvalues are

µ+
1 = − c

2D
+

√
c2

D2 +
4(σ+k̄2D−(1−γ2))

D

2
,

µ+
2 = − c

2D
−

√
c2

D2 +
4(σ+k̄2D−(1−γ2))

D

2
.

The Evans function has been computed for type (Ib) for the whole profile. However,

numerical results for this cases show again no evidence of unstable travelling wave solu-

tions. Figure 5.23, shows no zeroes for E(σ + k̄2) at σ + k̄2 > 0 in type (Ib).
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Figure 5.23: Evans function values for type (Ib), specific values of parameters,α1 =

4, α2 = 1, γ1 = 0.5 and γ2 = 0.5.

In conclusion, computing the Evans function for all types of travelling waves in the

outer regions for the singular perturbation problem and for the parameter ranges we

considered, consistent with all numerical solutions of the full system, suggests that all

the types of travelling waves are stable.

5.6 Calculating the Evans function for inner problem

In this subsection we compute the Evans function for the inner problem where the wave-

front lies, and find if there is instability in travelling waves. The equation in the inner

region as shown in Chapter 4 but in two dimensions is

∂U
∂t

=
∂2U
∂Z2 +

∂2U
∂y2 + U(L + α1U − (1 + α1)U2).

(5.6.1)
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By linearising (5.6.1) around the wave front and substituting the Fourier transform for-

mula, we get the one dimensional linear problem

∂ψ

∂t
=

∂2ψ

∂Z2 + c
∂ψ

∂Z
− k2ψ + (L + 2α1u− 3(1 + α1)u2)ψ,

(5.6.2)

where ψ is the perturbation term and u is the travelling wave solution. Now substitute,

ψ(Z, t) = exp(σt)q(Z),

into (5.6.2) and rewrite it in the first order form,

dq
dz

= B(σ, k, Z)q, (5.6.3)

where,

B =

 0 1

σ + k2 − (L + 2α1u− 3(1 + α1)u2) −c

 .

We study the travelling waves of type (Ia) and (I I Ir). The boundary conditions for type

(Ia) are,

u→
α1 +

√
α2

1 + 4(1 + α1)L

2(1 + α1)
, as Z → −∞

u→ 0, as Z → ∞.

The limit matrices are

B−∞ =

 0 1

σ + k2 −M −c

 ,

where,

M = 2L +
α2

1
2(1 + α1)

+
α1

√
α2

1 + 4(1 + α1)L

2(1 + α1)
,

the eigenvalues are

µ−1 = − c
2
+

√
c2 + 4(σ + k2 + M)

2
,
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µ−2 = − c
2
−
√

c2 + 4(σ + k2 + M)

2
,

and the eigenvectors are

v−1,2 =

 1

µ+
1,2

 .

The limit matrix B∞ is

B∞ =

 0 1

σ + k2 − L −c

 ,

the eigenvalues are

µ+
1 = − c

2
+

√
c2 + 4(σ + k2 − L)

2
,

µ+
2 = − c

2
−
√

c2 + 4(σ + k2 − L)
2

,

and the eigenvectors are

v−1,2 =

 1

µ+
1,2

 .

The computation of the Evans function show that the wavefront in the inner region is

stable and agrees with the result of the numerical solution of the two dimensions prob-

lem. Figure 5.24 is an example of the stability of wavefront in type (Ia). The stability of

the wavefront in type (I I Ir) was not different from that of type (Ia) and the computation

are showing that the inner problem (5.6.1) has stable travelling waves . Figure 5.25 is an

example on type (I I Ir).
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Figure 5.24: Evans function values for type (Ia), specific values of parameters, α1 =

1, α2 = 4, γ1 = 0.5 and D = 3.

Figure 5.25: Evans function values for type (I I Ir), specific values of parameters, α1 =

1, α2 = 1, γ1 = 0.6 and D = 1.2.
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Conclusions and future work

6.1 Conclusions

In this thesis, we have studied (1.5.3) a reaction-diffusion system for inter-species com-

petition and intra-species cooperation. The system consist of two non linear reaction-

diffusion equations, and can be considered as a natural extension of the Lotka-Volterra

competition diffusion system. The Lotka-Volterra system in (1.3.1) has four topologic-

ally different regions, RL1, RL2, RL3 and RL4 which are shown in Chapter 1 (see Figure

1.4 ). In Chapter 2, we studied the spatial uniform solution for (1.5.3), and showed that

our system is richer than the Lotka-Volterra diffusion competition system in terms of the

equilibrium solutions. There are always two single species equilibrium solutions and an

extinction equilibrium solution. The extra equilibrium solutions are either one or three

in maximum, which are the coexistence equilibrium solutions. When there is just one co-

existence state, we get the same cases as in the Lotka-Volterra system. The key fact about

the coexistence equilibrium solutions in (1.5.3) is that only one state is stable. The two

systems have four common topologically different regions namely R1, R3, R6 and R7 (see

Figure 2.3 ). In two of the four regions, there are two stable single species equilibrium
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solution and no coexistence equilibrium solution. The other two regions have either one

stable coexistence equilibrium and two unstable single species equilibrium solution, or

an unstable coexistence equilibrium state and two stable single species equilibrium solu-

tion. What makes (1.5.3) an extension to the Lotka-Voltera system is, besides the similar

four topologically different regions in both systems, the three extra regions that contain

either two or three coexistence equilibrium solutions. Some of these regions are separated

by the transcritical bifurcation boundaries γ1,2 = 1, which are the same in both systems.

The rest of the regions are separated by a saddle-node bifurcation boundary. We have

examined (1.5.3) as a competition system only, by making the cooperative coefficients

α1,2 = 0, and we tried to find whether that will affect the existence of the seven regions.

We have found that it does not change the number of topologically different regions, but

it affects the size of R2, R4 and R5.

We have also considered the case of fast diffusion and slow reaction in one of the spe-

cies, by considering the dynamics when λ� 1 in (1.5.3). We have examined the types of

travelling wave solutions that connect any two of the equilibrium solutions in the regions

R1 − R7, when the equilibrium state behind the wavefront is stable. We have classified

the possible travelling waves into three types, type (I), (I I) and (I I I). In type (Ia), the

travelling wave connects a coexistence equilibrium state say (û, ŵ) to (1, 0). In type (Ib),

the equilibrium points are (û, ŵ) and (0, 1). The two equilibrium points in type (I Ia) are

(1, 0) and(0, 0), whilst, they are (0, 1) and (0, 0) in type (I Ib). Type (I I I) connects (1, 0) to

(0, 1), and we denote it by (I I Ir) when the travelling wave moves to the right and (I I Il)

when it moves to the left. This shows that (1.5.3) is rich in the number of types of trav-

elling waves when compared to the Lotka-Volterra system. Although, a travelling wave

connects (û, ŵ) to (0, 0) is possible in principle, we were not able to find a travelling wave

141



CHAPTER 6: CONCLUSIONS AND FUTURE WORK

of this type in the limit of λ � 1. We found that when there is a symmetry in (1.5.3), the

above type of travelling waves can be exists but then we need λ = 1 which is out of the

range of what we assumed it to be so far.

In Chapter 3, for the initial value problem (1.5.3), we computed the travelling wave solu-

tions of the three types using numerical methods. We used a semi-implicit method (an

implicit method for diffusion and an explicit method for reaction ) to discretise (1.5.3),

with three types of initial conditions. The initial condition are of types, A ( u is a step

function and w = 1), type B ( u = 1 and w is a step function), type C ( u and w are step

functions), which are ecologically interesting cases. We showed that travelling waves of

type (I) exists in regions R1, R2, R4 and R5, whilst, types (I I) and (I I I) can be found in

regions R3, R6 and R7.

For initial conditions C, we found that two or three travelling waves developed with dif-

ferent wave speeds, one of these waves is always of type (I I). The diffusion coefficient

D has a significant role in determining the types of the travelling wave solutions. Also,

with initial conditions C ( with small initial value of w), we studied the dynamics of pro-

cess shown in Figure 3.33, Initially, w becomes small and u propagates into the domain

as a travelling wave. However, after a long induction period, w begins to grow at the

wavefront. The spike in w expands and finally forms a new wavefront that allows w to

propagate into x > 0, followed by a slower wavefront. The asymptotic solution is found

for this typical case with the help of Laplace transforms. Although, the resulting equa-

tion is complicated, the presence of the term est, in the integrand means that the solution

will decay exponentially if the ranges of integration do not extend into s > 0, which will

occur if 1− c2/4D < 0, and hence c > 2
√

D. Since 2
√

D is the linearized wave speed of

the wavefront in w, this suggests that if the wavefront in u moves faster than that in w, w
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will decay to zero, otherwise, w will grow and (once nonlinear terms become important)

will form a wavefront.

We used asymptotic methods in Chapter 4 to find the travelling wave solutions for the

three types of travelling waves in the limit of (λ � 1). We solved a regular perturbation

problem in the case of type (Ib), The phase plane analysis and the existence of traject-

ories for the cases, saddle-node connection and saddle-saddle connection were studied.

We found a good agreement between the wave speed for both numerical and asymptotic

solutions. For type (Ia), (I I) and (I I I), we had a singular perturbation problem to solve,

with one inner solution of O(1) and two outer solutions of O( 1
λ ). The equation of the

inner region is,

d2û
dz2 + c

dû
dz

+ û(L + α1û− (1 + α1)û2) = 0, (6.1.1)

where L = 1− γ1ŵ0. In [HR75], the travelling wave solution for (6.1.1) is studied and the

minimum wave speed is found. We studied the outer and inner solutions of types, (Ia),

(I I) and (I I I) and we matched the wave speed for both solutions, and then compared it

to the numerical solutions. Good agreement between the wave speeds in both methods

for small λ is shown.

In [Bil04], it was shown for a similar system that, if the local wavespeed, determined by

an asymptotic analysis, is smaller than a lower bound on the wavespeed determined by

the solution far ahead of the wavefront, then several different types of unsteady beha-

viour can emerge on an O(λ−1) timescale in the initial value problem. In our system, far

ahead of the wavefront, when u� 1 and w ∼ w∞, (??) becomes

∂u
∂t
∼ ∂2u

∂x2 + u(1− γ1w∞),
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which shows that the wavespeed must be greater than 2
√

1− γ1w∞. If w∞ is greater

than the value of w at the wavefront, this lower bound is less restrictive than that which

exists at the wavefront. It is only if w decreases ahead of the wavefront, which is the

case for the system studied in [Bil04], that the local wavespeed can be below the global

lower bound. Although, as we discussed above, there is no obvious a priori reason why

a travelling wave that connects (u0, w0) to (0, 0) cannot exist, we have been unable to

find one, either numerically or asymptotically. This type of wave is the only candidate to

display unsteady behaviour. We conclude that unsteady behaviour is unlikely to exist in

our system. Finally, we have shown that a similar reaction-diffusion system to 1.5.3 can

be derived for λ� 1 and has a same results as we discussed above.

The second part of our thesis is about the stability of travelling wave solutions in two

dimensions. We used the same system as in one dimension and we extend it to two di-

mensions. We solved the initial value problem numerically in two dimensions for the

three types of travelling wave solutions and initial conditions. We scaled the domain

with different grid sizes (for example, type Ia has inner region with scale O(1), whilst

the outer regions are of O( 1
λ )). We used a non uniform grid size in the x-direction and a

uniform grid in the y-direction. We are interested in travelling waves that move to the

right in the x-direction. Our aim is to make a small perturbation in the wavefront and

find whether the travelling waves are stable or not.

One system shown to have an unstable wavefront is the Gray-Scott system (see for ex-

ample [HPSS93] and [ZF94]). We have shown similar results as in [HPSS93] for specific

value of parameters using numerical methods. We examined the three type of travelling

waves for the stability of travelling waves. We did not find any evidence of unstable

wavefront for the parameter values we tested in the limit of λ � 1. We performed

144



CHAPTER 6: CONCLUSIONS AND FUTURE WORK

an asymptotic analysis for the stability of the travelling wave in two dimensions. We

have linearised (5.1.1) around the wavefront solutions with the decomposition Fourier

formula. We obtained a one dimension system of linear partial differential equations

(5.4.3). The method of multiple scales is used to make an analysis of (5.4.3) when λ� 1.

The Evans function is used to study the stability of travelling wave solutions. We found

a stable solution for all the parameter values we examined, which agrees with the result

we obtained from numerical methods. The Evans function method was more efficient

than the numerical method we used, and we tested a large range of parameter values for

instability.

Although, we did not check all the parameter values which are possible with the numer-

ical and asymptotic analysis, all the evidence shows that our system has stable travelling

waves. We can conclude that it is hard to study the stability of travelling waves for the

non-linear competition reaction-diffusion system with many parameters. If we compare

our system to the Gray-Scott system, we find that there are only two parameters in the

Gray-Scott system, whilst there are six parameters in our system. Finally, we can con-

clude that the single species state (1, 0) excludes (0, 1) and wins in R3, whilst (0, 1) wins

in R7. The winner in R6 depends on the initial conditions. Coexistence happens in R1,

R2, R4 and R5. There is always an invasion of one of the species, and sometimes two

invasions especially with initial conditions type C.

6.2 Future work

In the future, we aim to study similar system of reaction-diffusion equations in any of the

three cases, fast reaction and slow diffusion, fast reaction and diffusion, and slow reaction
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and diffusion. We want to find the numerical and asymptotic solutions for the travelling

waves in any of the three cases. We will study the existence of unsteady travelling waves

in systems similar to that in [Bil04]. For the two dimensional reaction-diffusion equations,

we will study the stability of travelling wave solutions and find unstable wavefronts.

A similar system to Gray-Scott which produces unstable wavefront is most likely to be

studied in the future, since it does not contains many parameters which make the search

of stability of travelling waves more complicated. In 1952, A. Turing studied pattern

formation in reaction-diffusion equations for ecological and chemical models [Tur52].

He showed that in the chemical problems, a stable uniform state in a kinetic system can

become unstable when you add diffusion. This phenomena is called pattern formation

or Turing instability. We will study the pattern formation for reaction-diffusion equation

in (1.5.3) in a finite domain, and find the condition of diffusion driven instability.

146



Appendix

Sylvester’s Method of Elimination

An eliminant, sometimes called a resultant, is the result obtained by eliminating a vari-

able x from two equations in the form,

p(x) = amxm + am−1xm−1 + ... + a1x + a0, (6.2.1)

q(x) = bnxn + bn−1xn−1 + ... + b1x + b0. (6.2.2)

Sylvester algorithm (see for example [Afo95]) is useful to compute the eliminant of

the two equations (6.2.1) and (6.2.2). The resultant is a determinant has the form,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

am am−1 am−2 ... a0 0 ... 0

0 am am−1 am−2 ... a0
. . . 0

0
. . . . . . . . . . . . ...

. . .

0 ... 0 am am−1 am−2 ... a0

bn bn−1 bn−2 ... b0 0 ... 0

0 bn bn−1 bn−2 ... b0
. . . 0

0
. . . . . . . . . . . . ...

. . .

0 ... 0 bn bn−1 bn−2 ... b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (6.2.3)
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The entries of the determinant are distributed as follows: first row is the coefficients of

p, padded with zeros at the end. Then in the following rows we construct subsequent

rows shifting one column to the right each time, and we stop when no zeros are left at the

end. We apply the same procedure to q. The resultant can be useful to solve a system of

equations by eliminating a variable from the equations and solve it for the other variable.

In Chapter 2 we solve the system of equations

a3u3 + a2u2 + a1u + a0 = 0, (6.2.4)

b3u3 + b2u2 + b1u + b0 = 0,

where

a3 =
−2

(1 + α2)
(4α1 + α2 + α2

2 + 4α2α1 + α2α2
1 + 1),

a2 =
3

(1 + α2)
(α1 + α2

1 + α2α1 + α2α2
1),

a1 =
−1

(1 + α2)
(−2α1 − 2α2 + α2

1 − 2 + γ1α2α1 − 2α2α1 + α2α2
1 + γ1α2),

a0 =
−1

2(1 + α2)
(γ2γ2

1 + 2α2α1 + 2α1 − γ1α2α1),

b3 = (4γ2 + 8γ2α2α1 + 4γ2α2α2
1 + 4γ2α2

1 + 4γ2α2 + 8γ2α1),

b2 = (−8α1 − 4α2
1 − 4α2 − α2

2 − 4γ2α2α1 − 4γ2α2α2
1 − 8α2α1−

4α2α2
1 − 4γ2α1 − 4γ2α2

1 − 2α2
2α1 − 2α2

2α2
1 − 4),

b1 = (4α1 + 4α2
1 + γ2α2α2

1 + 4α2 − α1 + 4α2 − α2
1 + γ2α2

1 + α2
2α1 + α2

2 + α2
1),

b0 = (−α2
1 +

γ2
2γ2

1
4
− α2α2

1 −
−α2

2α2
1

4
).

148



CHAPTER 6: CONCLUSIONS AND FUTURE WORK

We solve (6.2.4) using the Sylvester matrix, and note that a solution of (6.2.4) exists when

its determinant is equal to zero, so that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a3 a2 a1 a0 0 0

0 a3 a2 a1 a0 0

0 0 a3 a2 a1 a0

b3 b2 b1 b0 0 0

0 b3 b2 b1 b0 0

0 0 b3 b2 b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (6.2.5)

which gives,

1
8

1
1+α2

γ2
2γ2

1 (256 + 6144α2α1 + 7296α2
1 + 21888α2α2

1 + 25536α2
2α2

1 +

288γ2
2γ2

1 − 256γ2
1 − 1792γ2α2

1 − 256γ2α1 + 7168α2
2α1 − 256γ1α2 + 15232α3

1

+ 512α3
2 + 45696α2α3

1 + 53312α2
2α3

1 − 5504γ2α3
1 + 4096α3

2α1 + 14592α3
2α2

1 +

30464α3
2α3

1 − 7232γ1α2α2
1 + 384γ2γ2

1α1 − 16512γ2α2α3
1 − 5824γ2α2

2α2
1 −

17888γ2α2
2α3

1 + 576γ2
2γ2

1α2 + 2016γ2
2γ2

1α1 − 832γ2α2
2α1 − 5376γ2α2α2

1 −

768γ2α2α1 − 2048γ1α2α1 + 768α2 + 2048α1 + 16560α4
1γ2

2α2γ2
1 + 19840α5

1γ2α2
2γ1 +

9920α5
1γ2γ1α2 − 1008γ3

1α2
2α1γ2

2 + 1176γ2
2γ2

1α2
2α1 + 3150α2

2α4
1γ2

2γ2
1 +

12400α3
2α5

1γ2γ1 + 768α2α1γ2γ2
1 + 10752α2

2α3
1γ2γ2

1 + 16128α2α3
1γ2γ2

1

+ 2688α3
2α3

1γ2γ2
1 + 18720γ2

2α3
1α2γ2

1 + 18688γ2α4
1α2

2γ1 − 5040γ2
2α3

1γ3
1α2

+ 9344γ2α4
1γ1α2 + 17920γ2α4

1γ2
1α2

2 + 5376α2α2
1γ2γ2

1 + 128α3
2α1γ2γ2

1

+ 512α2
2γ2γ2

1α1 + 3584α2
2α2

1γ2γ2
1 + 4788γ2

2α2
2α3

1γ2
1 + 11680γ2α3

2α4
1γ1

− 5040γ2
2α2

2α3
1γ3

1 + 4480γ2α3
2α4

1γ2
1 + 3346γ2

2α2
2α2

1γ2
1 + 6800γ2α3

2

α3
1γ1 + 11856γ2

2α2α2
1γ2

1 − 3024γ2
2α2

2α2
1γ3

1 + 10880γ2α2
2α3

1γ1

− 3024γ2
2α2

1γ3
1α2 + 5440γ2α3

1γ1α2 + 896α3
2α2

1γ2γ2
1 − 1008γ3

1α2α1γ2
2
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+ 26880α4
1α2γ2γ2

1 + 4032γ2
2γ2

1α2α1 + 256α2γ2γ1α1 − 256γ2
2 + 896α2

2 − 3872

γ2
2α6

1 − 1184γ2
2α7

1 − 1184γ2α8
1 − 10896γ2

2α4
1 − 27γ4

2γ4
1 − 8016γ2

2α5
1 + 952

α5
2α3

1 + 87α5
2α8

1 − 8016α6
1γ2 + 10112α7

1α3
2 + 17696α7

1α2
2 + 15168α7

1α2 + 2844α4
2

α7
1 − 3872α7

1γ2 + 2784α8
1α3

2 + 4872α8
1α2

2 + 4176α8
1α2 + 783α8

1α4
2 + 1289α5

2α4
1 +

1182α5
2α5

1 + 743α5
2α6

1 + 316α5
2α7

1 + 41248α3
2α4

1 + 72184α2
2α4

1 + 61872α2α4
1 +

11601α4
2α4

1 − 9728γ2α4
1 + 4104α4

2α2
1 + 8568α4

2α3
1 + 37824α3

2α5
1 + 66192α2

2α5
1 +

56736α2α5
1 − 10896α5

1γ2 + 23776α6
1α3

2 + 41608α6
1α2

2 + 35664α6
1α2 + 10638α4

2α5
1 +

6687α4
2α6

1 − 128α1α4
2γ2

1 − 384γ2α3
2α1 + 320γ2α3

2α1γ1 − 1024α4
2γ1α1 + 1152

α4
2α1 − 1024γ2

1α3
2α1 − 28672α2α3

1γ2
1 − 35840α4

1α2γ2
1 − 14336α2α6

1γ2
1 + 128

α5
2α1 − 128α5

2α1γ1 − 452α5
2α2

1γ1 + 456α5
2α2

1 − 28672α5
1α2γ2

1 + 64γ2α4
2

γ1α1 − 64γ2α4
2α1 − 448γ2α4

2α2
1 + 448γ2α4

2α2
1γ1 + 8192α2

1α3
2γ1γ2

2 −

16512α2
1α2γ2

2 − 29184α3
1α2

2γ2
2 + 14208α3

1α2γ1γ2
2 − 5504α2

1α3
2γ2

2 + 16384

α2
1α2

2γ1γ2
2 − 29184α3

1α2γ2
2 − 16512α2

1α2
2γ2

2 + 8192α2
1α2γ1γ2

2 + 14208

α3
1α3

2γ1γ2
2 − 9728α3

1α3
2γ2

2 + 28416α3
1α2

2γ1γ2
2 + 2688α1α2γ1γ2

2 −

5376α1α2γ2
2 + 2688α1α3

2γ1γ2
2 − 1792α1α3

2γ2
2 + 5376α1α2

2γ1γ2
2 − 5376

α1α2
2γ2

2 − 14336α2α2
1γ2

1 − 4096α2α1γ2
1 − 4096α7

1α2γ2
1 − 512α8

1α2γ2
1

− 3072α7
1α2

2γ2
1 − 128α7

1α4
2γ2

1 − 384α8
1α2

2γ2
1 − 1024α7

1α3
2γ2

1 − 16α8
1

α4
2γ2

1 − 128α8
1α3

2γ2
1 + 8α4

2γ2γ2
1α1 − 2048α7

1γ2
1 − 256α8

1γ2
1 + 384

α3
2γ1γ2

2 − 256α3
2γ2

2 + 768α2
2γ1γ2

2 − 768α2
2γ2

2 + 384α2γ1γ2
2 − 1792α1γ2

2

− 768α2γ2
2 − 5504α2

1γ2
2 − 16α5

2γ1 − 16α4
2γ2

1 − 9728α3
1γ2

2 + 16α5
2 − 7168α1

6γ2
1 − 14336α5

1γ2
1 + 144α4

2 − 128α4
2γ1 − 128γ2

1α3
2 − 14336α3

1γ2
1 − 17920α4

1γ2
1

− 384γ1α3
2 − 512γ1α2

2 − 2048α1γ2
1 − 384α2

2γ2
1 − 7168α2

1γ2
1 − 512α2γ2

1 + 512γ2

α2
2γ1α1 + 768α2α8

1γ2γ2
1 + 5376α7

1α2γ2γ2
1 − 328γ3

2α7
1α2γ2

1 + 336

γ2
2α8

1α2
2γ1 + 168γ2

2α8
1γ1α2 − 164γ3

2α7
1α2

2γ2
1 + 168γ2

2α8
1α3

2
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γ1 − 864γ2
2α7

1α2γ2
1 − 8γ3

2α8
1α2γ2

1 + 16γ2
2α9

1α2
2γ1 + 8γ2

2α9
1

γ1α2 − 4γ3
2α8

1α2
2γ2

1 + 8γ2
2α9

1α3
2γ1 + 72γ3

2α7
1γ3

1α2 − 182γ2
2

α8
1γ2

1α2
2 − 27γ4

2α6
1α2γ4

1 + 72γ3
2α7

1α2
2γ3

1 − 62γ2
2α8

1α3
2γ2

1 − 240γ2
2α8

1α2γ2
1 + 432γ3

2α6
1γ3

1α2

− 162γ4
2α5

1α2γ4
1 + 432γ3

2α6
1α2

2γ3
1 − 4γ2

2α7
1γ3

1α3
2 − 924γ2

2α7
1γ1

2α2
2 − 492γ2

2α7
1α3

2γ2
1 − 28γ2

2α6
1γ3

1α3
2 + 128γ2α9

1α2
2γ1 + 64γ2

α9
1γ1α2 + 80γ2α9

1α3
2γ1 + 16γ2α9

1γ1α4
2 + 128γ2α8

1γ2
1α3

2 + 512γ2

α8
1γ2

1α2
2 + 8γ2α8

1γ2
1α4

2 + 56γ2α7
1γ2

1α4
2 + 896γ2α7

1γ2
1α3

2 +

3584γ2α7
1γ2

1α2
2 + 1280γ2α8

1α2
2γ1 + 640γ2α8

1γ1α2 + 800γ2α8
1α3

2

γ1 + 160γ2α8
1γ1α4

2 − 1008γ2
2α6

1γ3
1α2

2 − 144γ2
2α7

1γ3
1α2

2 − 144γ2
2

α7
1γ3

1α2 − 1008γ2
2α6

1γ3
1α2 − 96α3

2α9
1γ1 − 128α2

2α9
1γ1 − 32α4

2α9
1

γ1 − 4α5
2α9

1γ1 + 384α8
1γ2γ2

1 − 64α9
1γ1α2 − 1408α8

1α2
2γ1 + 2688α7

1γ2

γ2
1 − 704α8

1γ1α2 − 1056α8
1α3

2γ1 − 352α8
1γ1α4

2 − 44γ1α5
2α8

1 − 312γ2α9
1

α3
2 − 676γ2α9

1α2
2 − 624γ2α9

1α2 − 52γ2α9
1α4

2 − 24γ2α1
10α3

2 − 52γ2α1
10

α2
2 − 48γ2α1

10α2 − 4γ2α1
10α4

2 − 16γ2
2α9

1α3
2 − 48γ2

2α9
1α2 − 48γ2

2

α9
1α2

2 − 4γ3
2α8

1γ2
1 − 120γ2

2α8
1γ2

1 − 27γ4
2α6

1γ4
1 − 162γ4

2α5
1γ4

1

− 208γ2
2α8

1α3
2 − 624γ2

2α8
1α2 − 624γ2

2α8
1α2

2 − 164γ3
2α7

1γ2
1 − 432γ2

2

α7
1γ2

1 − 2688γ2α3
2α2

1 + 14α5
2α9

1 + 448α9
1α3

2 + 784α9
1α2

2 + 672α9
1α2 + 126

α9
1α4

2 + 9α4
2α1

10 + 32α3
2α1

10 + 56α2
2α1

10 + α5
2α1

10 + 48α2α1
10− 208γ2

2

α8
1 − 16γ2

2α9
1 − 16γ2α1

10− 208γ2α9
1 + 2240γ2α3

2α2
1γ1 + 15368γ2

2α4
1γ1

α2 + 72γ3
2α1γ3

1α2 − 288γ3
2α2α1γ2

1 − 144γ3
2α2

2α1γ2
1 + 15368γ2

2α3
2

α4
1γ1 + 30736γ2

2α2
2α4

1γ1 + 72γ3
2α2

2α1γ3
1 − 1808γ3

2α6
1α2γ2

1 + 2464γ2

2α7
1α2

2γ1 + 1232γ2
2α7

1γ1α2 − 904γ3
2α6

1α2
2γ2

1 + 1232γ2
2α7

1α3
2

γ1 − 4400γ3
2α5

1α2γ2
1 + 9376γ2

2α6
1α2

2γ1 + 1080γ3
2α5

1γ3
1α2 + 4688γ2

2α6
1

γ1α2 − 2200γ3
2α5

1α2
2γ2

1 + 4688γ2
2α6

1α3
2γ1 − 405γ4

2α4
1α2γ4

1 + 1080
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γ3
2α5

1α2
2γ3

1 − 540γ4
2α3

1α2γ4
1 + 1440γ3

2α4
1α2

2γ3
1 + 1440γ3

2α4
1

γ3
1α2 − 162γ4

2γ4
1α2α1 − 864γ3

2α2
2α2

1γ2
1 − 2900γ3

2α2
2α4

1γ2
1 + 10664

γ2
2α3

2α5
1γ1 + 1080γ3

2α2
2α3

1γ3
1 − 2164γ3

2α2
2α3

1γ2
1 + 432γ3

2α2
2

α2
1γ3

1 + 3584γ2α2
2α2

1γ1 + 1792γ2α2
1γ1α2 − 405γ4

2α2α2
1γ4

1 − 1728γ3
2

α2
1γ2

1α2 − 5800γ3
2α4

1α2γ2
1 + 21328γ2

2α5
1α2

2γ1 + 10664γ2
2α5

1γ1α2 + 1080

γ3
2α3

1γ3
1α2 − 4328γ3

2α3
1γ2

1α2 + 432γ3
2α2

1γ3
1α2 + 56α4

2α2
1γ2

γ2
1 − 1770α3

2α6
1γ2

2γ2
1 + 688α4

2α7
1γ2γ1 − 3760α3

2α5
1γ2

2γ2
1 − 84γ3

1

α3
2α5

1γ2
2 + 168γ2

1α4
2α6

1γ2 + 1664γ1α4
2α6

1γ2 + 2336γ2α4
2α4

1γ1 + 280

γ2α4
2α4

1γ2
1 − 5130γ2

2α3
2α4

1γ2
1 − 140γ2

2α3
2α4

1γ3
1 + 2480γ2α4

2

α5
1γ1 + 280γ2α4

2α5
1γ2

1 + 7296α5
1γ2

2α2γ2
1 + 13312α6

1γ2α2
2γ1 + 6656α1

6γ2γ1α2 − 112α2
2α5

1γ2
2γ2

1 + 8320α3
2α6

1γ2γ1 + 26880α5
1α2γ2γ2

1 + 432

α6
1γ2

2α2γ2
1 + 5504α7

1γ2α2
2γ1 + 2752α7

1γ2γ1α2 − 1554α6
1α2

2γ2
2

γ2
1 + 3440α7

1α3
2γ2γ1 − 3024α5

1γ2
2γ3

1α2 + 10752α6
1γ2γ2

1α2
2 − 3024α5

1

γ2
2α2

2γ3
1 + 2688α6

1γ2α3
2γ2

1 + 16128α6
1α2γ2γ2

1 − 28γ3
1α3

2α1γ2
2 −

840γ2
2γ2

1α3
2α1 − 2582γ2

2α3
2α2

1γ2
1 − 84γ2

2α3
2α2

1γ3
1 + 1360γ2α4

2

α3
1γ1 + 168γ2α4

2α3
1γ2

1 − 5040γ2
2α4

1γ3
1α2 − 5040γ2

2α4
1α2

2γ3
1 + 17920

γ2α5
1γ2

1α2
2 + 4480γ2α5

1α3
2γ2

1 − 4572γ2
2α3

2α3
1γ2

1 − 140γ2
2α3

2

α3
1γ3

1 − 32688γ2
2α2α4

1 − 32688γ2
2α2

2α4
1 − 10896γ2

2α3
2α4

1 − 144γ3
2α1γ2

1

− 1776γ2α8
1α3

2 − 3848γ2α8
1α2

2 − 3552γ2α8
1α2 − 296γ2α8

1α4
2 − 1184γ2

2α7
1

α3
2 − 3872γ2

2α6
1α3

2 − 540γ4
2α3

1γ4
1 − 3552γ2

2α7
1α2 − 3552γ2

2α7
1α2

2 −

904γ3
2α6

1γ2
1 − 11616γ2

2α6
1α2

2 − 11616γ2
2α6

1α2 − 405γ4
2α4

1γ4
1 − 2200γ3

2

α5
1γ2

1 − 162γ4
2γ4

1α1 − 405γ4
2α2

1γ4
1 − 27α2γ4

2γ4
1 − 24048γ2

2α5
1α2 −

24048γ2
2α5

1α2
2 − 2164γ3

2α3
1γ2

1 − 2900γ3
2α4

1γ2
1 − 924α5

2α3
1γ1 − 8016γ2

2

α3
2α5

1 − 3072α3
2γ1α1 − 4096γ1α2

2α1 − 3072γ2
1α2

2α1 − 864γ3
2α2

1γ2
1 − 968
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α4
2α7

1γ2 − 5808α7
1α3

2γ2 − 11616α7
1γ2α2 − 12584α7

1γ2α2
2 + 216α6

1γ2
2γ2

1

− 6784α7
1α2

2γ1 + 8064α6
1γ2γ2

1 − 3392α7
1γ1α2 − 5088α7

1α3
2γ1 − 1696α7

1γ1

α4
2 − 120γ2

2γ2
1α3

2 − 4γ3
1α3

2γ2
2 − 1036γ1α5

2α5
1 − 1204α5

2α4
1γ1 − 588γ1

α5
2α6

1 − 212γ1α5
2α7

1 − 3584γ2
1α3

2α6
1 − 10752γ2

1α2
2α6

1 − 448γ2
1α4

2

α6
1 − 896γ2

1α4
2α5

1 − 7168γ2
1α3

2α5
1 − 21504γ2

1α2
2α5

1 − 2004α4
2α6

1γ2 − 16344

α3
2α5

1γ2 − 1376γ2α4
2α3

1 − 2432γ2α4
2α4

1 − 2724γ2α4
2α5

1 − 12024α3
2α6

1

γ2 − 24048α6
1γ2α2 − 26052α6

1γ2α2
2 + 3648α5

1γ2
2γ2

1 − 18816α6
1α2

2γ1 + 13440α5
1

γ2γ2
1 − 9408α6

1γ1α2 − 14112α6
1α3

2γ1 − 4704γ1α4
2α6

1 − 14592γ2α3
2α4

1

− 8256γ2α3
2α3

1 + 5928γ2
2α2

1γ2
1 − 7392α4

2α3
1γ1 − 896α4

2α3
1γ2

1 −

144γ3
1α2γ2

2 − 32688α5
1γ2α2 − 35412α5

1γ2α2
2 + 8280α4

1γ2
2γ2

1

− 33152α5
1α2

2γ1 + 13440α4
1γ2γ2

1 − 16576α5
1γ1α2 − 24864α5

1α3
2γ1 + 168γ2

2γ2
1

α2
2 − 144γ3

1α2
2γ2

2 − 8288γ1α4
2α5

1 − 14464α2
2α2

1γ1 − 10752γ2
1α2

2α2
1 − 28896

α3
2α4

1γ1 − 38528α2
2α4

1γ1 − 8960α3
2α4

1γ2
1 − 9632α4

2α4
1γ1 − 1120α4

2α4
1

γ2
1 − 31616γ2α4

1α2
2 − 29184γ2α4

1α2 + 9360γ2
2α3

1γ2
1 − 29568α2

2α3
1γ1 + 2688γ2

γ2
1α2

1 − 14784γ1α2α3
1 − 21504γ2

1α2
2α3

1 − 3616α4
2α2

1γ1 − 10848α3
2γ1α2

1

− 448α4
2γ2

1α2
1 + 8064α3

1γ2γ2
1 − 19264α4

1γ1α2 − 26880α4
1γ2

1α2
2 − 3584γ2

1

α3
2α2

1 − 22176α3
2α3

1γ1 − 7168α3
2α3

1γ2
1 + 224α9

1 + 16α1
10 + 1392α8

1 + 20624α4
1 +

18912α5
1 + 11888α6

1 + 5056α7
1) = 0.
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