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ABSTRACT 

Silica is an essential trace element in human nutrition and dietary deficiency leads to 
abnormal bone formation in experimental animal studies (Carlisle, 1972, Schwartz, 
1972). Silica-containing glasses and glass ceramics, within a certain range, are 
bioactive, forming a strong bond with bone and soft tissue when they are used as bone 
replacement materials. The aim of this work was to investigate the effect of silica on the 
osteoblast in vitro with a view to its eventual incorporation into biomaterials to improve 
bone-bonding properties. 

Two distinct approaches were used. The first involved the analysis of silica as a 
nutrient, by supplementing osteoblast growth medium with sodium metasilicate, and 
evaluating the osteoblast response in terms of cell growth, mineralisation and 
cytotoxicity. The second approach examined the response of osteoblasts to silica as a 
biomaterial. A silica gel was used to isolate the effects of silica on the osteoblast in vitro 
without the effects of the other ions present in bioactive glass. The biocompatibility of 
patterned silicon wafers was investigated to evaluate the potential use of these materials 
in the field of biomaterials. Finally, the bioactivity and osteoblast response to a novel 
silicon/polymer composite was assessed as a potential biomaterial. 

The results of nutrition studies showed that in some cases low levels (1-100ppm) of 
silicate appeared to have a beneficial effect on bone formation in terms of nodule 
formation and mineralisation. Higher levels of silicate supplementation (>300ppm) 
caused rapid apoptosis in osteoblasts, fibroblasts and macrophages and affected cell 
spreading. 

The biomaterial studies showed that the silica gel surface was bioactive and osteoblasts 
responded favourably demonstrating enhanced, earlier nodule formation. Bioactive 
surfaces formed a calcium phosphate (CaPi) layer and released silicic acid when 
incubated in a simulated body fluid (SBF). Bulk silicon wafers (Si) supported osteoblast 
growth however, the removal of the oxide layer by wet etching (ESi) imparted bioactive 
properties to the wafer. Patterned Si/Esi surfaces supported the formation of a CaPi 
layer over the entire surface and demonstrated osteoblast preferences for bioactive 
surfaces. The incorporation of silica particles into a bioabsorbable polymer matrix 
rendered the composite bioactive and supported osteoblast growth. 

The results of this work demonstrate the importance of silica in bone mineralisation, 
osteoblast apoptosis and particularly the potential benefits of the use of silica and silicon 
to improve bone bonding in non-bioactive biomaterials and biosensors. 
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General Introduction. 



Chapter 1 

The aim of this project is to examine the effect of silica on osteoblasts in vitro, with a 

view to the eventual incorporation of silica into materials, such as polymers and 

ceramics, to enhance bioactivity and bone bonding. The following sections outline the 

normal structure of bone, the mineralization process, the incidence and effect of silica 

in the body and the current research concerning silica-containing biomaterials. 

1.1 Bone Structure and Formation. 

Bone is a living, dynamic tissue that provides the skeletal support for the body. Bone 

may be categorised as spongy (cancellous, trabecular) or compact (dense, cortical) 

(Figure 1.1). Spongy bone (20%) contains many spaces and is found in short, flat 

bones and in the epiphyses of long bones. It provides elasticity and storage space for 

bone marrow. Compact bone (80%) is densely packed with a structure of Haversian 

systems or osteons (Figure 1.2). It overlies spongy bone and gives bone its load bearing 

properties (Tortora and Anagnostakos, 1987). It is a dense connective tissue and as 

such consists of cells embedded in a mineralised extracellular matrix (Figure 1.3). 

Figure 1.1 The structure of bone (from: Kerr, 1999) 
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Figure 1.2 Schematic representation of the structure of bone (From: Marks and 
Hermey, 1996) showing the flattened osteoprogenitor and bone lining cells and the 
cuboidal osteoblasts at the bone surface. Osteoblasts initially lay down an 
unmineralised ECM (osteoid) which later becomes mineralised enveloping some of the 
osteoblasts which become osteocytes. Osteoclasts resorb bone and come from a 
haemopoietic cell lineage. 

1.1.1 Bone Cells. 

(a) Osteoprogenitor cells. Osteoprogenitor cells are small spindle shaped mesenchymal 

cells. They are found in sheets on non resorbing bone surfaces such as the endosteum 

and the inner part of the periosteum. When stimulated to proliferate these cells 

differentiate into osteoblasts or chondroblasts depending on the vascularisation of the 

region (Cormack, 1984). 

Figure 1.3 The histological structure of bone. Discrete units or osteons are seen in 
(a). A higher magnification view (b) shows osteocytes (o) in lacunae with numerous 
cytoplasmic processes. The haversian canal is labelled (d). 
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The transition from osteoprogenitor cell to osteoblast is unclear and information is 

difficult to obtain due to the relatively undifferentiated state making 
immunocharacterisation difficult (Aubin and Liu, 1996). Recent studies have suggested 

that osteoprogenitor cells attach selectively to lamimin-1 but inhibit the attachment of 

other cells in rat calvarial cultures (Roche et al, 1999). Results are sometimes 

contradictory but the transition seems to involve a number of stages during which the 

cell is referred to as a preosteoblast. Preosteoblasts retain the capacity for cell division 

but this is gradually decreased as the preosteoblast matures. There is a concommitant 
increase in differentiation in terms of expression of bone markers such as bone 

sialoprotein and osteocalcin. The current research on the various stages of progression 
from osteogenic cell to committed osteoblast is reviewed in Aubin and Liu (1996). 

Figure 1.4 Transmission electron micrographs of an osteoblast (a), Osteocyte (b), 
osteoclast (c) and the extracellular matrix of bone (d) containing collagen-1 and bone 
mineral. 

(b) Osteoblasts. Osteoblasts are non-dividing cells that synthesise and secrete the 

organic components of bone matrix (osteoid) and regulate mineralisation. They are 
large cuboidal cells with an eccentrically placed nucleus and numerous fine processes 
(Figure1.4a). Their cytoplasm is that of an actively secreting cell and contains 
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abundant rough endoplasmic reticulum and a prominent golgi apparatus (Cormack, 

1984). They are found in layers at the growing surfaces of bone and are attached to 

each other by gap junctions (Cross, 1993). They deposit around 0.5mm of matrix per 
day in a bone forming cycle that lasts about 100 days (Billah, 1996). Osteoblasts are 

rich in alkaline phosphatase (ALP), an enzyme involved in calcification. They also 

secrete a number of proteins (i-vii below) linked to the mineralisation and maturation of 
bone matrix including: 

(i) Osteocalcin (OC), a 5800Da protein, is the most abundant noncollagenous 

protein in bone. It binds calcium and is dependant on vitamin K. Its expression and 

secretion are increased by PTH and vitamin D3. The level of expression increases with 
increasing cell differentiation and it is highly expressed by the mature osteoblast and 

preosteocye. Little is known about its function however, but suggested roles include an 
involvement in bone resorption as it acts as a chemotactic agent for osteoclasts (Bodine 

and Komm, 1999) and in crystal maturation (Boskey et al., 1994) as is binds to mineral 

crystals (Cross, 1993). Recently ablation of OC genes in mice resulted in increased 

bone formation (Ducy et al., 1996) suggesting an inhibitory effect on osteoblast activity 

and a receptor has been identified in immortalised human osteoblasts (Bodine and 

Komm, 1999). 

(ii) Bone matrix protein, a 59kDa protein which enables osteoblasts and osteoclasts 

to bind to bone matrix via their 03 integrin. 

(iii) Bone sialoprotein II (BSP-II), a 46-75kDa protein, which is maximally 

expressed during late stages of osteoblast development and early matrix mineralisation. 
It can nucleate HA and has calcium ion binding properties. It can bind to cells and can 

also mediate cell attachment via the vitronectin receptor. Its suggested role is in the 
initiation of mineralisation (Gehron Robey, 1996). 

(iv) Osteopontin, a 4lkDa protein involved in mineralisation and resorption. It is 

maximally expressed just prior to mineralisation and is intensely stained at the 

mineralising front using immunolocalisation techniques (Butler et al., 1996). High 

levels of osteopontin inhibit hydroxyapatite but low levels promote hydroxyapatite 
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formation. Osteopontin can bind equally to hydroxyapatite and collagen, suggesting it 

may help to initially orientate hydroxyapatite crystals on collagen fibres (Billah, 1996). 

It cannot nucleate HA. Osteopontin promotes cell attachment and spreading for 

osteoblasts, osteoclasts and fibroblasts and may facilitate the attachment of these cells 

to the ECM (Butler et al., 1996). It can mediate osteoclast attachment and may help 

osteoclasts anchor to the bone surface via the avß3 integrin (Billah, 1996). 

(v) Osteonectin, a 32kDa protein binds to collagen, calcium ions and hydroxyapatite 

and may be involved in extracellular matrix proteolysis and in coupling osteoblast and 

osteoclast action (Billah, 1996). It can nucleate hydroxyapatite and has been reported to 

influence the cell cycle (Gehron Robey, 1996). 

(vi) Collagenase is synthesised by osteoblasts in response to resorption stimulators such 

as (Parathyrid hormone) PTH and vitamin D3. 

(vii) Osteoblasts secrete the third component of complement (C3) and may aid 

osteoclast differentiation suggesting that osteoblasts may play a role in the regulation of 

osteoclasts (Billah, 1996). 

It is possible to isolate and culture osteoblasts in vitro and the characteristics and uses 

of these will be elaborated in Chapter 2. 

(c) Osteocytes. These are mature osteoblasts and do not divide. They are the most 

abundant cells in bone numbering more than ten times the number of osteoblasts 
(Nijewerde et al, 1996). They are smaller and less active than osteoblasts (Cross, 1993). 

Their cytoplasm is less rich than the osteoblast which is consistent with their function in 

the maintenance and turnover of bone matrix (Cormack, 1984). Osteocytes are located 

in lacunae and have extensive processes which pass through bony channels, or 

canaliculi. The processes interact via gap junctions which provide a network for 

communication between osteocytes and also to osteoblasts (Figure 1.4b). Nutrients 

diffuse from blood vessels to osteocytes through canaliculi and through the cells 

themselves but diffusion distance is limited and the cells need to be within 0.2mm of a 

blood vessel to survive. This defines the size of spongy bone and the structural unit of 
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compact bone, the Haversian system (Cross, 1993). They are sensitive to parathyroid 
hormone and calcitonin and this suggests they may have a role in the exchange of 

mineral between bone and the extracellular fluid compartment (Billah, 1996). 

(d) Osteoclasts. Osteoclasts are found at the resorbing surfaces of bone and can be 

visualised histologically by staining with acid phosphatase (Evans et al., 1980). They 

are present as only a small fraction of the number of osteoclasts (Nijwerde et al, 1996). 

They can be distinguished by their large size which is typically around 100µm. The 

cells are multinucleate and have an extensive ruffled border which has an underlying 

clear zone containing abundant actin microfilaments. Their cytoplasm contains 

abundant mitochondria and golgi apparatus(Figure 1.4c). Osteoclasts arise from the 

monocyte-macrophage cell lineage (Cormack, 1984). Their role is to resorb bone by 

attacking the inorganic amorphous content of bone and producing focal 

demineralisation. Osteopontin and bone matrix protein are thought to play a role in the 

attachment of osteoclasts to the bone surface (Billah, 1996). 

The site of resorption is an extracellular pit between the osteoclast and the bone surface 
(Cross, 1993). Lysosomal enzymes such as cysteine proteases, cathepsin, plasminogen 

and collagenase are exocytosed into the pit, these degrade organic components such as 

collagen and proteoglycans. A proton pump in the ruffled border pumps H+ (derived 

from the cells' rich supply of carbonic anhydrase) ions out of the cell and the resulting 
low pH dissolves hydroxyapatite. Osteoclasts are unique in that lysosomal enzymes 

operate outside the cell however, the amount of calcium released during osteoclast 
digestive activity would be incompatible with normal cellular function (Cross, 1993). 
In fact, increased calcium levels inside the osteoclast may signal the cells to stop bone 

resorption (Billah, 1996). 

Although the mechanism of osteoclast activity is not fully understood it appears to be 

regulated by a variety of stimulators and inhibitors including parathyroid hormone 

(PTH), calcitrol (1,25(OH)2D), interleukin-1 (IL-1), and prostaglandin-E2 (PGE2) 

(Billah 1996). Osteoclasts and osteoblasts work together to continually remodel bone 

and allow it to grow e. g. osteoclasts on the interior of the skull co-operate with 

osteoblasts on the outside to increase skull size so the developing brain is 
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accommodated (Cross, 1993). There is some evidence to suggest that osteoblasts are 

essential for both bone formation and resorption because, in culture, osteoclasts will not 

resorb without osteoblasts. In addition the PTH receptor, which increases bone 

resorption and osteoclast activity, is found only on osteoblasts (Cross, 1993). Many 

bone diseases result from a dysfunction of the balance between formation and 

remodelling. These include osteoporosis (Reviewed in Rodan et al., 1996) and 

osteopetrosis (reviewed in Lyndon Key and Reis, 1996). 

Tnple helix of 
three polypephde 

chains 

Collagen molecule 
300 nm long 
1.5 nm wide 

Stagpaed collagen 
molecules assemble 

into a fibril 

'""'Fº 

-11 4* ýý 

ittº 1 F--f- 
1- 

11 It II II 

Fibril banding 
pattern 

--; I iý- 67 nm 

Figure 1.5 The structure of type 1 collagen (From: Kerr, 1999) 

1.1.2 Bone Matrix. 

The extracellular matrix (ECM) of bone is composed of an inorganic mineral 

component deposited on a complex organic matrix (Figure 1.4d). The unmineralized 

matrix is called osteoid and is clearly differentiated from the mineralised matrix. Type- 

1 collagen is the main fibrous protein in the organic ECM (Figure 1.5), with 

mucopolysaccharides, glycoproteins and proteoglycans also present. The inorganic 
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component of bone is a poorly crystalline, carbonate-containing analogue of 
hydroxyapatite (HA) with the chemical formula Ca1o(PO4)6(OH)2 (Boskey, 1981). 

Small amounts of other compounds containing calcium, phosphorous, magnesium, 

sodium and fluorine are also found (Billah, 1996). The ECM accounts for 90% of the 

weight of compact bone. Sixty percent of total bone weight is made up of the inorganic 

component while the organic component accounts for 30% (Cormack, 1984). 

Type-1 collagen has a triple stranded helical structure which consists of three chains of 

polypeptides, called a chains. These are around 1000 amino acids long and are wound 

around each other to form a superhelix. Collagen is secreted by many connective tissue 

cells. Pro a chains are synthesised on ribosomes within the cell. These form triple 

helices called procollagen in the lumen of the rough endoplasmic reticulum. Collagens 

are rich in proline, hydroxyproline and glycine. These stabilise the helical structure by 

hydrogen bonds and hydroxyproline allows the 3a chains to pack tightly to form the 

superhelix. Procollagen is secreted from the cell and the propeptides are cleaved from 

the ends of the molecules to form tropocollagen which is 300nm long and 1.5nm in 

diameter. The tropocollagen molecules are packed into polymers, called collagen 
fibrils (10-300nm in diameter), in a staggered fashion so that each molecule is displaced 

longitudinally by one quarter of its length (Alberts et al., 1989). This arrangement 

gives the fibrils a striated appearance with a regular periodicity of 67nm (Figure 1.4d). 

Gaps of 35nm are left between the amino and carboxy terminals of adjacent units and 
these are thought to be the nucleation sites for HA crystals (Cross, 1993). Collagen 

fibrils aggregate to form collagen fibres visible in the light microscope. 

Proteoglycans are macromolecules of regularly repeating disaccharide units consisting 

of an amino sugar and an acidic sugar. Gyycoproteins are similar but have a small 

number of monosaccharide residues in each chain. Proteoglycans and glycoproteins 

enhance the strength of collagen fibres by attracting water and cations to form a 
hydrated network due to their overall negative charge (Billah, 1996). 
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1.1.3 Bone Development. 

Bone development is known as osteogenesis or ossification. Bones are derived from 

mesenchyme but in one of two different ways depending on the type of bones they are. 
Some are derived from neural crest mesenchyme i. e. the mandible, maxilla and 
temporal bones while others are derived from the neural crest tissue itself i. e. parts of 
the hyoid bone are from neural crest and the rest is from neural crest cartilage, also 

styloid processes of temporal bone and stapes (Gilbert, 1994) Flat bones (and other 

non-long bones) develop in vascularised areas by a process called intramembranous 

ossification. Long bones develop in a more indirect way in poorly vascularised areas 

using a cartilage model. This process is known as endochondral ossification. Both 

processes give rise to the same bone tissue. 

(a) Intramembranous Ossification. 

Mesenchymal cells differentiate into osteogenic cells in areas supplied by capillaries. 
This is known as a centre of ossification. The osteogenic cells differentiate into 

osteoblasts which lay down, and become surrounded by, matrix which becomes 

calcified. The small, irregularly shaped spicules of bone lengthen to become trabeculae 

which incorporate capillaries as they widen. The bone is now characteristic of spongy 
bone. Bone growth only occurs by apposition i. e. it takes place on a pre-existing 

surface and is laid down in layers. This is because osteoblasts do not divide and also 
because the matrix calcifies soon after being laid down preventing internal expansion of 
the tissue. Spongy bone is converted to compact bone by continued deposition of layers 

of bone matrix being laid down on trabeculae, each successive layer making the bone 

more compact (Cormack, 1994). 

(b) Endochondral Ossification. 

Mesenchymal cells differentiate into chondroblasts which secrete cartilage matrix in the 

shape of a long bone. In the fourth week of foetal development the cartilage model 
begins to be replaced by bone in the following manner. Calcium salts are deposited in 

the cartilage matrix in the mid region of the model (diaphysis) causing chondrocytes to 
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die. Capillaries then grow into the perichondrium causing it to produce osteoblasts 

which initiate the primary centre of ossification. Secondary centres of ossification 
develop in the epiphyses in the same way and the model is eventually totally replaced 
by bone with the exception of the epiphyseal plates. These facilitate long bone growth 
by a highly ordered sequence of events involving the proliferation, maturation and 
degeneration of the chondrocytes. The chondrocytes are resorbed by osteoclasts 
forming space for the ingrowth of capillaries and the accompanying osteoprogenitor 

cells (Cormack, 1994). 

1.1.4 Mineralization of Bone. 

Mineralisation is defined as the deposition of inorganic chemical compounds under 

normal or pathologic conditions (Boskey, 1981). In addition, calcification is defined as 

the deposition of insoluble calcium salts in any tissue (Cormack, 1984). These terms are 

typically used interchangeably when referring to bone as the major inorganic minerals 
deposited are calcium compounds. Alternatively, ossification is the process by which 
bone tissue is secreted and calcified. 

The inorganic component of mature bone is a poorly crystalline form of hydroxyapatite 

which has a Ca/P molar ratio of -1.5. Crystalline HA has a Ca: Pi ratio of 1.67 (Landis 

and Glimcher, 1978). The nature of the initial phase of the mineral in immature bone 

and the sequence of events in the mineralisation process itself are difficult to study 
because of the heterogeneity of the inorganic particles which is due to the stage of 

maturation, source of tissue, age and location. The presence of water during processing 
for many techniques used to identify mineral, including electron microscopy, X-ray 

microanalysis, electron diffraction and electron microprobe microanalysis, causes 

artefacts which result from problems of mineral retention, crystal size, location and 

orientation and mineral phase transformations (Dickson, 1984; Landis and Glimcher, 

1978; Landis et al., 1977). For example amorphous calcium phosphate (ACP) and 

octacalcium phosphate (OCP) are labile and are easily transformed to poorly crystalline 
HA when exposed to water, dehydration methods or heat. Many theories exist 

regarding the process of mineralisation including physiochemical mechanisms, local ion 
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concentrating mechanisms and removal of calcification inhibitors. A review of these is 

given in Anderson (1980). 

Many phases of calcium phosphate have been implicated as the initial mineral formed 

during bone mineralisation such as OCP, ACP brushite and HA itself. It has been 

shown in vitro that HA can grow on brushite crystals and that brushite is identified in 

the earliest stages of mineralisation in the embryos of chicks and calves by X-ray 

diffraction (Boskey, 1981). Small clusters of mineral particles in the osteoid did not 
have an X-ray diffraction pattern but larger osteoid crystals and more heavily calcified 

regions showed poorly crystalline HA patterns, indicating either an increase in 

crystallinity or size or both (Landis and Glimcher, 1978). Recent studies using infra red 

spectroscopy coupled with light microscopy indicate that the only mineral present in 

bone is a poorly crystalline apatite (Boskey, 1994). The mineral increases in size, 

perfection and amount, progressing from the cartilaginous growth plate to the dense 

cortical bone. As the mineral matures the carbonate and acid phosphate content is 

decreased (Boskey, 1994). 

The majority of mineral in bone is associated with type-1 collagen and only 10% of 

ECM space is not taken up with collagen (Glimcher, 1990). Collagen has long been 

considered as the initial site for mineral deposition. It was thought that CaPi crystals 

were deposited in the hole zone of collagen in the early stages of mineralisation and that 

later they are also deposited in the collagen pores (Glimcher, 1990). This view is not 

universally accepted because collagen alone, without matrix proteins, cannot nucleate 

apatite. Type-1 collagen is present in relatively small amounts in calcified cartilage 
(Boskey, 1994). It is more likely that collagen acts as a template along which the 

crystals align themselves. The c axis of the mineral crystals are aligned parallel to each 

other and to the collagen fibre (Boskey, 1981). A scanning electron microscope (SEM) 

study on immature and adult bone revealed that, in adult bone, collagen mineralises 
first, followed by the ground substance, whereas in immature bone, both areas 

mineralise together (Boyde, 1980). 

Matrix vesicles (MVs) have been suggested as the initial site of HA deposition. Matrix 

vesicles were discovered independently by Anderson and Bonnuchi in growth plate 
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cartilage in 1967. They were observed in bone by Bernard and Pease in 1969 who 

called them osteoblastic buds. (Anderson, 1980; Bernard, 1969). It is still unclear 

whether MVs are associated with mineral deposition in bone (Boskey, 1981). Matrix 

vesicles are small (-2,000 angstroms), membrane bound bodies which are thought to be 

of cellular origin but may be products of cellular degeneration (Boskey, 1981). They 

are found in osteoid and vesicle distribution is closely linked with areas of calcification. 
They contain acidic phospholipids which attract calcium ions. MVs are rich in alkaline 

phosphatase, which can concentrate phosphate ions by hydrolysis of phosphate esters 
(Anderson, 1980). It is thought that the role of MVs is to promote calcification by 

transporting calcium and phosphate ions and removing inhibitors of calcification such 

as pyrophosphate and ATP (Boskey, 1981). Mineral crystals are thought to rupture the 

MVs and spread into the matrix where they orientate themselves along the collagen 
(Billah, 1996; Boskey, 1994). 

Other research suggests that the precursors to calcification may already be present in 

the osteogenic cell even before the ECM is laid down (Landis and Glimcher, 1978). 

Brighton and Hunt, (1976) have shown by histochemical staining that calcium is 

accumulated in the mitochondrial and cell membranes in the growth plate and that this 

is gradually depleted in the degenerating zone. This is linked to a concomitant increase 

in the calcium concentration in the matrix vesicles. Landis and Glimcher (1978) used a 

combination of techniques on anhydrously processed chick bone to examine these 

mitochondrial granules. Electron microprobe analysis revealed that they contained a 
large amount of calcium and phosphorous which probably exists as calcium phosphate. 
This was probably non crystalline as there was no identifiable X-ray diffraction pattern. 
The Ca: Pi ratio of the granules was significantly lower than the extracellular calcium 

phosphate phases. No phosphorous or calcium was detected in the extramitochondrial 

cytoplasm. Inhibitors may be present in the mitochondria which prevent maturation of 

the particles inside the cell. It is likely that mitochondria serve to concentrate calcium 

and phosphorous and then release it for use by the matrix vesicles (Anderson, 1980). 

The individual crystals are very small (-5nm) and they form needle or plate-like 

aggregates frequently contain impurities (Simkiss, 1975). Calcification will only take 

place if the local concentrations of calcium and phosphate ions reaches the level 
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required for calcium phosphate deposition (Cormack, 1984) In order for a crystal to be 

formed, groups of ions must come together with sufficient collision energy and the 

right orientation to form a critical nucleus (the smallest stable combination of ions with 

the structure of the crystalline material that can persist in solution). As more ions are 

added to the critical nucleus the crystal grows. New nuclei form on the surface of 

growing crystals (secondary nucleation) and this provides more sites for crystal 

proliferation. Mineral is probably deposited in bone by heterogeneous nucleation 
(Boskey, 1981; 1994; Glimcher, 1990). 

The osteoblasts has a role in regulating the mineralisation process by secreting collagen, 

along which the crystals orientate themselves and by the matrix components and 

enzymes that regulate mineralisation. The matrix proteins probably control initial 

crystal deposition and may regulate the shape size and orientation of crystals for 

example, osteopontin may retard crystal growth and osteocalcin may regulate crystal 

size and turnover. It is a combination of matrix proteins, enzymes, collagen and cells 

which determine the nature of the matrix and its ability to become calcified (Boskey, 

1994). 

1.1.5 Bone Replacement and Biomaterials. 

Implantation of materials into bone is the most frequently performed surgical implant 

procedure (Strnad, 1992). More than 40 different parts of the body are now being 

repaired or replaced with more than forty different types of biomaterial (Hench, 2000). 

However there is much room for improvement as the long term (>10yr) survival rates 

of these implants is variable (Lobel et al., 2000). New materials are constantly being 

sought for different applications (Turnya et al., 1996). A biomaterial is defined as `a 

material intended to interface with biological systems to evaluate, treat, augment or 

replace any tissue organ or function of the body' (de Bruijn, 1993). The failure of an 
implant is often caused by osteolysis, the destruction of bone tissue surrounding an 
implant. This is commonly caused by wear debris from implant surfaces which cause an 

adverse foreign body response leading to the production of proteolytic enzymes and 
inflammatory mediators (De Giglio et al., 2001). Aseptic loosening is the 

destabilisation of an implant as a result of macrophage activation, which causes a 
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cascade of events leading to bone resorption. The onset of this condition, which is 

irreversible, after total joint replacement is the most common reason for long term 

implant failure (Santerre et al., 2000) 

There are four main types of biomaterial: metals, ceramics, polymers and composites 
(de Bruijn, 1993). More than forty different types are currently used clinically in over 
forty anatomic sites (Lobel et al., 2000). Most biomaterials currently in use are 
described as bioinert, generating a minimal tissue response (Lobel et al., 2000). These 

materials are clinically successful in the short term but achieving long term (>10yrs) 

stability has proved more elusive. Attempts to improve implant fixation using porous 

materials and porous coatings on implants (termed biological fixation) have proved less 

successful than standard cement fixation methods (Lobel et al., 2000). 

Some materials are described as bioactive allowing physicochemical bonding between 

the implant and bone tissue. The concept of bioactivity was introduced by Hench et al. 

in 1971 using a silicate glass in the system S102-CaO-P2O5-Na2O. All known 

bioactive glasses and glass-ceramics are silica based, however the presence of silica is 

not a requirement for bioactivity as both hydroxyapatite and titannia gels exhibit bone 

bonding (Oliveira et al., 1995). It has been proposed that a prerequisite to bone bonding 

is the formation of a biologically active carbonate containing hydroxyapatite layer on 

the material surface under physiological conditions (Kokubo, 1992; Hench, 1991. ) and 

this is discussed further in section 1.2.4. Bone bonding mechanisms may be different 

for different biomaterials such as surface active glass ceramics, surface active ceramics 

and resorbable ceramics (Neo et al., 1993). 

The next generation of biomaterials are intended to enhance tissue regeneration rather 

than to replace it (Lobel et al., 2000). Biodegradable scaffolds for tissue ingrowth and 

eventual replacement are currently being developed for use in bony sites and for organs 

and tissues around the body. The research into the development of these materials and 

their use to control and manipulate the tissue response has been termed tissue 

engineering. Recent research from the Shakesheff group has focussed on the 

immobilisation of peptide sequences on polymer scaffolds to control cell adhesion 
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(Quirk et al., 2001) and the patterning of biomolecules onto tissue engineering scaffolds 

and biosensors (Patel et al., 2000). 

1.2 The Chemistry and Uses of Silicon 

Silicon is situated in the fourth group of the periodic table, below carbon and between 

aluminium and phosphorous with which it shares similar atomic size, ionisation energy 

and electron negativities. These elements can be substituted for each other in many 

compounds (Da Silva and Williams, 1991). Silicon forms the largest number of 

compounds with other elements after carbon, but not for the same reasons. Carbons 

bond energies for C-C, C-O and C-H are about equal whereas silicon forms a much 

stronger bond with oxygen that either silicon or carbon resulting in much of silicon 

chemistry being based on the Si-O-Si chain (Leibau, 1985). The strength of the Si-O 

bond is such that it is considered not vulnerable to metabolic influence (Lobel et al., 
2000). 

Silica and silicates are used extensively as raw materials and have been since the dawn 

of time. The flint industry dates to prehistoric times (Iler, 1955), granite and sandstone 

are used for building, clay and limestone mixtures are used to make Portland cement. 
Production of silicate glass and silicate based ceramics are long standing, world-wide 
industries (Leibau, 1985, Her, 1955). 

Amorphous silicas are polymers of silicic acids which are made up of interlinked Si04 

tetrahedra. The structure at the surface is highly disordered and terminates in either a 

siloxane (Si-O-Si) or a form of silanol group (Si-OH) of which there are many types 
(Vansant et al., 1995a). Table 1.1 lists the chemical formulae and structures of the main 
forms of silica used in this thesis. 
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Type of Silica Formula Structure 

Silicon Si - 
Silica (silicon dioxide) Si02 O=Si=O 

OH 

Silicic acid Si(OH)4 OH - Si - OH 

OH 

Sodium silicate Na2SiO3 

C2H5 

Tetraethyl orthosilicate (TEOS) Si(CH3CH2O)4 C2H5 -0- Si -O- C2H5 

C2H5 

Y1 

Tetrachlorosilane (TCS) SiC14 Cl - Si-Cl 

Cl 

Silanol SiOH Si-OH 

Table 1.1 Chemical formula and structure of the main types of silica used in this 
thesis. 

Silicon in biology is an amorphous product with the general formula: 

[SiOn/2(OH)4-n]m where n=0 to 4 and m is a large number. 

and it exists in a variety of structural forms (Mann and Perry, 1986). 

Much of the silica used in chemistry has a synthetic origin. Amorphous synthetic silica 

occurs in various forms including sols, gels, sheets and powders and is used in a variety 

of applications according to its properties (Table 1.2) (Vansant et al., 1995b). 
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Property Application 

Porosity Phase in liquid chromatography 
Active surface adsorption Flatten colour in paints and dyes 

Catalyst base in liquid chromatography 
Desiccant 

Hardness Reinforcing agent 

Particle size Flow aids 

Viscosity and thixotropy Thickens paints and pharmaceuticals. 

Table 1.2 Properties and uses of synthetic silica. 

1.2.1 The Occurrence of Silicon. 

Silicon is one of the most widely occurring elements in the universe. Silicon is a 

component in interstellar material, cosmic dust and meteorites and measurements of the 

prevalence of elements in the solar system have placed silicon below only hydrogen, 

helium, carbon, nitrogen and oxygen in terms of relative abundance (Leibau, 1985). 

Silicon is the second most abundant element on earth (25.7%), after oxygen (49.5%) in 

terms of number of atoms and weight (Leibau, 1985; Dobbie, 1982; Carlisle, 1982; 

Carlisle, 1974). Sixty percent of the earth's crust is composed of silica (SiO2) and 

silicates (including quartz and other rock forming silicates) occupy more than 95% of 
the volume (Leibau, 1985, Her, 1955). Crystalline silica occurs naturally in minerals 

such as quartz and flint (Da Silva and Williams, 1991). Diatomaceous earth on the 

ocean bed is rich in amorphous silica (Lobel et al., 2000) and volcanic ash is a rich 

source of soluble silica (I1er, 1955). 

It is perhaps surprising that silicon is not commonly associated with life processes 

considering its abundance and proximity to carbon, the element on which all life 

depends, in the periodic table. Silica is more often associated with primitive organisms 

such as diatoms and plants of the horsetail family and may point to a possible role of 

more importance in the origin of life (Iler, 1955, Hench, 1989). 
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Silica is slightly soluble in water but the mechanisms by which it is dissolved and 

redeposited remain unclear (I1er, 1955). Silicon exists in seawater mainly as dissolved 

silica. (2-14,000µg/L; I1er, 1955) Even though the concentration of silica in water is 

only a few parts per million (ppm) it is utilised by unicellular marine organisms such as 
diatoms and assembled in an array of wonderfully intricate skeletal cell walls 
(frustules). The manner in which these skeletons are assembled provides clues as to 

how silica reacts with water. Siliceous sponges also remove silica from seawater to 

form skeletons. Hot springs contain more silica (around 700ppm; Iler, 1955) and silicon 

compounds are vital to certain bacteria that live in them, to the extent that some of them 

substitute silicon for phosphorous in phospholipids (Liebau, 1955). 

Silica is found in large amounts in certain plants and grasses including horsetail, rice, 
feather grass, bamboo and reed where it has a structural role and contributes to the 

strength of leaves and stems. The silica content is so high that horsetail has been used 
for centuries as a `scouring rush' due to its abrasive properties and bamboo secretes 

silica into its hollow stems so that a hydrated pure silica gel, tabashir, is formed. This 

was once believed to be beneficial in treating asthma and tuberculosis. Sodium silicate 

was prepared from tabashir as long ago as 1791 (Iler, 1955). 

The mechanism by which silica is carried into plants and animals is not clear. In view 

of its low solubility it must be first dissolved from mineral silica and absorbed as 

monosilicic acid. Plant cell membranes can be penetrated by soluble silicic acid but not 
by colloidal silica, the same may be true for animal cells (Iler, 1955). Some soluble 

silica may be present in the soil due to the weathering of rocks. There is some evidence 
to suggest that acidic compounds such as tannins may be released from plant roots in 

the soil and that the acidic environment liberates silicic acid form mineral silica (Iler, 

1955). It is difficult to prove a nutritional role for silica in plants, as silica free culture 

media is difficult to prepare. It appears to have an essential role in the growth of beets 

and is necessary in the normal opening and growth of ears in rice. Silica appears to have 

importance in the growth of barley and sunflowers. Apart from a few cases there is no 

evidence to suggest that silica is essential to the growth of most plants. It may have a 
function in stimulating plants to greater growth by liberating phosphate ions and in 

maintaining the equilibrium of soil nutrients (Iler, 1955). The importance of silicon in 
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plant life is due to the fact that the fertility of soil relies on the ability of clay minerals 

to absorb and release water and this is fundamental to plant life and consequently to 

animals who feed on them (Leibau, 1985). 

Silicon is a major structural element in plants and unicellular organisms and forms a 

major building unit of many amorphous hard structures (da Silva and Williams, 1991). 

Despite the abundance of the element and the longstanding and widespread use of silica 

and silicates, many questions still exist in relation to silica in nature. The almost 

perfectly formed fossils are those petrified with silica but the means whereby silica 

replaces cellulose and lignin in petrified wood to form an exact replica of the organic 

matter is not understood (Iler, 1955). It is thought that the silica is initially formed from 

the decomposition of silicate materials and is both soluble and amorphous in nature 

allowing diffusion through the specimen (Iler, 1955). 

1.2.2 Silica in Higher Animals and Man. 

There is considerable variance in the reported tissue concentrations of silica and early 

measurements reporting higher levels may be unreliable due to the leaching of silica 
from glassware (Dobbie and Smith, 1982b; Carlisle, 1982). The normal blood level of 

silica in humans is reported as less than 5ppm and the daily output is around 9mg 

(Carlisle 1974). Schwartz and Milne (1972) measured the silicon levels in blood and 

other organs and found the blood level to be -. lppm. The levels of silicon in 

parenchymal organs such as brain and muscle varied between 2 and 1Oppm. The 

silicon content of bone and other connective tissues was found to be much higher 

ranging between 12 andl00ppm (Carlisle, 1986; Schwartz and Milne, 1972). In animals 

silicon is found in the mucopolysaccharides of skin, muscle, tendon, hair and feathers 

where it has a structural role (Dobbie, 1982). Silicon has been localised in the intima of 
blood vessels and the content is decreased in atherosclerosis (Schwartz, 1977). Other 

body fluids including cerebrospinal, pleural, peritoneal and synovial fluids, measured 
by atomic absorption spectroscopy, have a silica concentration in the same range as 
human serum (Dobbie and Smith, 1982b). 
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Silica enters the human body by ingestion or inhalation. Silica is ingested in food, as 

cereals, (60%) and beverages, as water and beer (20%) and the average British person 

consumes 20-50mg of silica per day (Bellia et al., 1994, Birchall, 1995). Ingested silica 

crosses the small intestinal mucosa where it enters the bloodstream and is cleared from 

the kidneys (Dobbie and Smith, 1982b; Carlisle, 1982). The nature of the silica 

absorbed in the gut and the transport mechanisms involved have not been clarified 
(Rucker et al., 1994) but it is thought that silica is absorbed in the small intestine as 

silicic acid (Birchall, 1995). Considering that silica is easily excreted in urine (Iler, 

1955), it is unclear why it is accumulated in the body in a selective manner. 

Inhalation of siliceous dusts have been shown to cause silicosis, a progressive, 
fibrogenic lung disease (Bagchi, 1992). Renal damage has been associated with the 

intake of silica in water (Dobbie and Smith, 1992a) and as antacids (Newbeme and 
Wilson, 1970; Dobbie, 1986). A more detailed review of toxic effects of silica is given 
in Chapter 4. 

Silica may have a relationship with molybdenum as plasma and tissue levels of silica 

are reduced by intake of molybdenum (Carlisle, 1979). A relationship between silica 

and aluminium in the body has also been suggested (Fahal et al., 1994; Edwardson et 

al., 1993). Silicic acid seems to react with aluminium to form hydroxyaluminosilicates, 

thus limiting the availability of aluminium to the body (Fahal et al., 1994; Edwardson et 

al., 1993). Silica and aluminium are found in the cores of senile plaques and in the 

neurofibrilary tangles of patients with Alzheimer's disease (Edwardson et al., 1993). 

The solubility of silica in body fluids is reduced in the presence of certain metal salts 
including iron and aluminium (Iler, 1955). 

1.2.3 Silica as an Essential Trace Element. 

The essentiality of silicon in the chick was proposed by Carlisle (1972). Silica was 

administered in the form of sodium metasilicate (Na2SiO3.9H20) at 100ppm and 

resulted in enhanced bone growth. In the same year a study by Schwartz and Milne 

(1972) evaluated the effect of sodium metasilicate supplementation in rats and found 

similar results. A series of experiments followed which led to silica being accepted as 
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an essential trace element in animal nutrition (Carlisle, 1972; 1974; 1976a, b; 1980a; 

1980b; 1982; 1986; Carlisle and Alpenfels, 1980; Carlisle and Alpenfels, 1986). These 

centred on the two criteria for establishing essentiality which are 1) repeated and 

significant responses in growth or health to dietary supplements of the element and that 

element alone, and 2) development of a deficiency state on a diet which is otherwise 

adequate (Carlisle, 1974). 

Dietary silica supplementation caused increased growth rate, increased amounts of 

articular cartilage, increased bone water content and biochemical changes in the 

mineral, hexosamine and collagen content of bone (Carlisle, 1974; 1980a). A silicon 
deficient diet resulted in stunted bone growth, thinner cortex, altered epiphyseal 

cartilage morphology and reduced collagen content in chicks (Carlisle, 1980b). A fuller 

description of the effect of dietary silica supplementaton is given in Chapter 3. 

1.2.4 Silica-Containing Biomaterials. 

A range of glasses in the system Si02-CaO-P205-Na20 are defined as having class A 

bioactivity and bind to bone and soft connective tissues (Lobel and Hench, 1996; 

Kokubo, 1992; Hench, 1991). They have been used clinically as middle ear implants 

and endosseous alveolar ridge maintenance implants and show good long term 

survivability (Hench and Wilson, 1996). The strength of the bond in hard tissues is as 

strong as bone within 3-6 months and in soft tissues is as strong as the cohesive bond 

between collagen fibres (Hench, 1998a, b). These materials are reported to cause 
increased proliferation of osteoblasts and are termed osteoproductive (Wilson and Low, 

1992). They are also osteoconductive, in common with class B bioactive materials 
(such as hydroxyapatite ceramics), meaning that bone grows in direct contact with the 

implant surface in the body (Hench, 1998a, b). 

Silica glass ceramics exhibit bone bonding e. g.. Ceravital, Cerabone and Bioverit 

(Oliveira et al., 1995; Neo et al., 1993). Bioactive glasses and glass ceramics are used 
in a range of situations. Apatite- and wollastonite (A/W) containing glass ceramic 
[Ca10(P04)6(O, F2)] is widely used because of its mechanical strength. This material 

appears to initiate mineralisation in bone cell cultures (Sautier et al., 1994). It is has 
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proved successful after short and long-term implantation in rat tibiae and human bone 

and its surface is eventually partially replaced by bone (Neo et al., 1993; 1994). 

Kokubo (1991) has reviewed the mechanical and biological properties of an A-W glass 

ceramic. A/W glass ceramic has been used clinically to repair iliac crest donor site 
defects and to replace vertebrae successfully. Other bioactive, silica containing 

materials include ß wollastonite (CaO. S'02) (Cho et al., 1996b). Silica is the main 

component of these materials and their bioactivity is dependent to a large extent on the 

silica content of the material. They lose bone bonding ability when the silica content 

exceeds 60 mol% (Kokubo, 1992; Hench and Wilson, 1986, Hench, 1991). 

A prerequisite to bone bonding is the formation of a biologically active carbonate 

containing hydroxyapatite layer on a material surface under physiological conditions 
(Hench, 1991; Kokubo, 1993). Hydrated silica, which is formed on bioactive silica 

surfaces in the body, nucleates the apatite layer on the implant surface (Hench and 
Wilson, 1986; Kokubo, 1991). This intermediate apatite layer has compositional and 

structural characteristics common to those of bone apatite allowing continuity between 

the implant and bone (Kitsugi et al., 1995). X-ray microanalysis of the surface of some 

glass ceramics shows that the structure is indistinguishable from the biological apatite 

of bone (Boyde et al., 1990). 

The process by which an apatite layer is formed on a silica surface has been described 

by Hench (1991) and is summarised in figure 1.6. Initially, alkaline ions are exchanged 

with hydrogen ions from solution and soluble silica, Si(OH)4, is lost to the solution. A 

hydrated silica layer is formed at the surface of the material. Subsequently, calcium 
ions migrate to the surface through the Si02 rich layer and an amorphous CaO-P205 

film is precipitated from the supersaturated solution (Hench, 1991). Finally, the film is 

crystallised by incorporation of hydroxyl or carbonate anions from the solution (Fresa et 

al., 1996). 

It is thought that leaching of the material exposes silanol groups which induce apatite 
formation at a certain level by taking calcium and phosphate from the body fluid 

(Oliveira et al., 1995) and liberating some calcium from the implant (Li et al., 1994a, 

b). A study by Gatti et al. (1994) investigated the reactions of a bioactive glass 
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implanted in soft and hard tissue and concluded that the release of calcium from the 

glass is enough to form the Ca-P layer but that the release of phosphate is not sufficient 
indicating that there may be a requirement for phosphate from the tissue fluid. 

Andersson and Karlsson (1992) noted that the phosphate concentration in the solution 
increases until the apatite starts to form and then decreases. 
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Figure 1.6 The stages involved in the reaction of a bioactive glass in a biological 

environment (From: Lobel and Hench, 1996). 

It is difficult to study the involvement of silica in bone bonding because apatite inducers 

(such as CaO, Na20 and P205) dissolve from the materials. This problem has been 

overcome by the use of a pure silica gel prepared by hydrolysis and polycondensation 

of tetraethoxysilane (TEOS) in aqueous solution containing poly(ethylene glycol) to 

study the mechanism of apatite formation (Li et al., 1992; 1995). 

Sol-gel prepared silica forms an apatite layer on its surface when immersed in 

physiological fluid whereas silica glass and quartz do not (Li et al., 1992). The surface 

structure of the gel is altered by dissolution, ion leaching and precipitation until the 

surface is stabilised and bone bonding occurs (Andersson and Karlsson, 1992). 

Dissolution involves the breakdown of the silica network and the release of its 

constituent elements. Leaching is a rapid process involving the release of other 
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elements, leaving a silica gel at the surface of the glass. A hydroxycarbonate apatite 
layer is precipitated onto the surface of the gel and it is this surface to which bone 

firmly adheres. The thickness of the gel layer is inversely proportional to the failure 

strength of an implant but only a thin layer (1-2µm) is required for bioactivity 

(Andersson and Karlsson, 1992). The recent literature concerning the biocompatibility 

of silica gel in vivo and in vitro is outlined in Chapter 5. 

Recently silica has been incorporated into other biomaterials. A system combining 

silica glass and poly(methyl methacrylate) PMMA polymer was successfully used as a 
bioactive, controlled drug delivery system (Arcos et al., 2001). The addition of bioglass 

to HA ceramics has been reported to increase the bioactivity and fracture toughness of 

the material, but the overall mechanical strength of the implant was not improved. In 

contrast, the addition of some phosphate based glasses to HA ceramics caused the 

mechanical strength to be significantly increased (Tancred et al., 2001). 

1.3 Aims. 

The overall aim of this work is to gain a fuller understanding of the role of silica in the 

osteoblast. The eventual goal is to incorporate silica into biomaterials to increase 

biocompatibility should it prove useful in imparting bioactivity to the material. The 

specific aims are: 

1. To establish an in vitro cell culture system suitable for investigation of the 

potential role of silica on osteoblast development. 

2. To attempt to validate the work of Carlisle (1972) and Schwartz (1972) in vitro 

using sodium metasilicate supplementation of bone cell cultures to identify any effect 

on osteoblast differentiation and matrix mineralisation. 

3. To assess potential toxic effects of silica resulting from its' use in biomaterials 

and in the drug industry. 
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4. To isolate the effect of silica on the osteoblast, in terms of cellular responses to 
biomaterial surfaces, by producing a silica gel and examining the response of the 

osteoblast to its surface. 

5. To examine the possibilities of including bioactive silica into other biomaterials 

with the specific aim of improving biocompatibility. 

In these ways it is hoped to come to a fuller understanding of the effect of silica on the 

osteoblast from both the nutritional, toxicity and tissue engineering perspectives to 

allow future exploitation. 
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Isolation, Culture and Mineralisation of Human 

Osteoblasts (HOBs) 



Chapter 2 

2.1 Introduction. 

Osteoblast-like cell cultures are a useful way to study isolated cell responses to different 

substances (eg growth factors and hormones), cell-matrix interactions and the 

mineralisation process in a controlled environment (Gehron-Robey, 1995). The potential 

of novel biomaterials can also be evaluated by assessing osteoblast responses to their 

surfaces in vitro (Bosetti et al., 2001). More recently attention has been focussed on 

tissue engineering applications, where 3-D scaffolds are seeded with autologous cultured 
bone cells prior to implantation (Anselme et al., 1999) and potential applications in gene 
therapy (Oreffo and Triffitt, 1999). 

The first bone culture system was established by Peck et al. (1964). Since then a wide 

range of culture systems have been developed. The main approaches have been isolation 

and short term culture after removal from the tissue (primary culture) or establishment of 

permanent cell lines. Primary cultures are often used as they are thought to retain similar 

cellular properties to those from the tissue of origin. The sources of the cells are diverse, 

using cells obtained from donors of different species (mouse, rat, rabbit, chick and 
human), ages (foetal, neonatal, adult), anatomic locations (marrow stroma, long bone, 

calvaria, trabecular bone) and cell populations (osteoprogenitor cells (Bellows et al., 
1990) preosteoblasts, committed osteoblasts and possibly, osteocytes (Gehron-Robey, 

1995). The main limitations of primary cell cultures are that they may consist of mixed 

cell populations and have the potential to dedifferentiate in terms of phenotypic 

expression and osteogenic capacity with serial subculture (Majeska, 1996). 

Permanent cell lines exist which have been derived from osteosarcomas from rat (ROS, 

UMR) and human (MG-63 and HOS TE-85) sources. These are large, stable cell 

populations which exhibit a consistent phenotype, but may have adapted to an in vitro 

environment in terms of growth and phenotypic expression (Majeska, 1996). In 

addition, cell lines from normal bone have been established. The MC3T3 El cell line 

was established by cloning an alkaline phosphatase rich subpopulation from a mouse 

calvarial osteoblast culture (Sudo et al., 1983). 
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As the primary function of osteoblasts is to deposit a mineralised type-I collagen 

extracellular matrix, the ability of culture systems to mineralise is of critical importance. 

Mineralisation in vitro occurs in three stages: proliferation of osteoprogenitor cells, 

matrix deposition and matrix mineralisation. Cell culture methods have allowed the 

sequence of expression of osteoblast proteins during mineralisation to be elucidated 

(Boskey, 1994) and helps to clarify their function. When initially plated in culture 

osteoblast-like cells proliferate rapidly then synthesise collagen and non-collagenous 

proteins, nodule formation follows and it is these areas, where the microenvironment is 

controlled, which eventually mineralise. Differentiation of osteoblast cultures in vitro 

follows a distinct set of events as summarised in figure 2.1.1. Components involved in 

matrix production eg type-1 collagen, fibronectin and osteopontin are expressed early 

followed by osteonectin and alkaline phosphatase and eventually by osteocalcin (Figure 

2.1.1). 
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Figure 2.1.1 Representation of the expression of markers of osteoblast differentiation 
during mineralisation in vitro (From: Stein er ul., 1996). 

A wider understanding of osteoblast differentiation in vitro is seen in the recent 
literature. Some of the genes and transcription factors controlling bone cells have been 

recognised (Lechner ei al., 2000; Matsuo et al., 1999; Karsenty et al., 1999). Recently 

new techniques using gene arrays have identified hundreds of genes associated with 

osteoblast differentiation in vitro (Xynos et al., 2001). Substances enhancing osteoblast 
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proliferation and differentiation include growth factors (such as IGF-1 and 2, TGF(3 1,2 

and 3, FGF-1 and 2, PDGF), BMPs, cytokines, fluoride and PTH (Canalis, 1996). 

Epinephrine stimulated DNA synthesis and ALP activity in MC3T3-E1 cells but had 

little effect on collagen synthesis and osteocalcin (Suzuki et al., 1998). Chevalley et al. 
(1998) reported that supplementation of MC3T3-E 1 cells with arginine caused increased 

IGF-1 production, collagen-1 synthesis, ALP activity and reduced osteocalcin 

production. Recently, the induction of a mineralised collagenous matrix has been 

described in the absence of cells using a mixture of collagen-I and a nucleating protein 

composed of collagen binding proteins and BSP (Hunter et al., 2000). 

Osteoblast-like cultures do not mineralise without the addition of certain supplements. 
Ascorbic acid is necessary for collagen cross-linking and is used almost universally in 

bone culture systems (Majeska, 1996). It has also been implicated in the stimulation of 

cell proliferation and alkaline phosphatase activity and in modifying the effect of vitamin 

D on osteoblast differentiation (Gronowicz and Raisz, 1996). Other supplements are 

used whose method of action remains unclear. Calcium and sodium ß glycerophosphate 

(BGP) are known to promote mineral formation in cultured cells (Ralphs and Ali, 1986). 

This is achieved because BGP is a substrate for alkaline phosphatase and increases the 

amount of available phosphate to the cells (Gronowicz and Raisz, 1996). 

Dexamethasone (DEX) is a synthetic fluorinated glucocorticoid which is reported to 

induce the differentiation of osteoblasts from marrow stromal populations (Rickard et 

al., 1994). The osteoblast phenotype is not expressed in marrow stromal cultures 

without its addition (Ohgushi et al., 1996). The addition of DEX to foetal rat calvarial 

cultures causes an increase in the size and number of nodules (Bellows et al., 1987). 

Both DEX and BGP are used in many marrow (Ohgushi et al., 1996; Morais et al. 1998) 

and calvarial cultures (Bellows et al., 1987; Bellows et al., 1990). 

Many cell lines do not appear to have osteogenic potential, that is, the ability to form a 

mineralised extracellular matrix, in vitro. Most cell lines established from osteosarcomas 
do not mineralise including SaOS-2, ROS, UMR and MG-63 (Ikeda et al., 1992). The 

notable exception here is the cell line HOS TE-85 which develops a mineralised 

extracellular matrix with a Ca: P ratio of 1.34 when cultured with the addition of BGP 

(but not without). The electron diffraction patterns of the mineralised areas were 
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identical to those of synthetic non-oriented HA crystals. In these cultures mineral 
deposits were initially identified in matrix vesicles (Ikeda et al., 1992). Permanent cell 
lines from normal bone have a mixed ability to form bone in vitro. The ROB-C26 

multipotential cell line from rat calvaria has the ability to synthesise osteocalcin when 

supplemented with BMP-2, retinoic acid and vitamin D but its' osteogenic capacity 

remains unclear (Kirk and Kahn, 1995). The MC3T3 El cell line has the capacity to 
form mineralised nodules, via matrix vesicles, in the absence of BGP, DEX or ascorbate 

supplementation after extended periods of culture. The mineral formed had a Ca: Pi ratio 

close to that of HA and was identified as non oriented HA by electron diffraction (Sudo 

et al., 1983). The cells express osteoblastic markers such as alkaline phosphatase and 

osteocalcin and the parathyroid hormone receptor (Fratzl-Zelman et al., 1997). 

Many primary cultures derived from animal sources have shown osteogenic potential in 

vitro. Foetal rat calvarial cells have the capacity to form a mineralised matrix when BGP 

is added to the growth medium (Bellows et al., 1990). Newborn mouse calvarial cells 

produced mineral only in the presence of BGP (Ecarot-Charrier, 1983). Chick calvarial 

cells produced non matrix vessicle associated mineralised deposits with a Ca: Pi ratio of 

1.1-1.4 when BGP was included in the growth medium. The deposits were identified as 

poorly crystalline HA (Gerstenfeld, 1988). Primary cultures from bone marrow stromal 

cells have the ability to mineralise also. The system developed by Maniatopoulos et al. 
(1988) forms mineralised nodules in the presence of ascorbate, BGP and DEX. The 

mineral produced can be identified as poorly crystalline carbonated HA by FT-IR and 
XRD techniques and is similar to that of rat bone (Ohgushi et al., 1996) 

Human primary osteoblast culture models have been developed and these also 
demonstrate a mixed capacity for mineralised matrix production. One of the first primary 
human cultures was established by Wergedal and Baylink in 1984 using isolations from 

human iliac crest and femoral head which which had an alkaline phosphatase rich 

subpopulation but osteogenic potential was not demonstrated. Subsequently, Marie et al. 
(1990,1995) isolated human endosteal osteoblastic cells from the trabecular bone 

surface of iliac crest. The characteristics of these cells included high alkaline 

phosphatase activity, cAMP production in response to parathyroid hormone, 
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resposiveness to vitamin D3, production of type-1 collagen, osteocalcin, osteopontin, 
bone sialoprotein and thrombospondin but did not produce mineral. 

Mineralisation has occurred in human primary cultures however. Physiological 

concentrations of glucocorticoid were required for induction of osteogenic potential in 

adult human trabecular bone cultures (HBDC) which produced type-1 collagen, alkaline 

phosphatase and osteocalcin without its addition (Gundle and Beresford, 1995). 

Osteoblastic cells have been isolated from adult human trabecular bone fragments. 

These cultures form collagen rich nodules that start to mineralise using matrix vesicles 
but never become heavily mineralised (Gehron-Robey 1995). Primary human osteoblasts 
isolated from femoral heads removed during surgery have been characterised by Di 

Silvio (1995). These cells exhibit a typical osteoblast morphology, form multilayers and 
become mineralised over a period of -4weeks without supplementation with inducers of 

mineralisation. Markers of osteoblast differentiation were also expressed including 

alkaline phosphatase activity, osteocalcin and type-l collagen production as well as 

cyclic AMP production in response to parathyroid hormone. 

The overall aim of this thesis is to investigate the role of silica in the osteoblast both 

from nutritional and biomaterial points of view. It is desirable to first identify the 

characteristics and limitations of the chosen osteoblast model. The system used by Di 

Silvio (1995) purports to form mineral without the addition of DEX and BGP and will be 

used in these studies. Little is known about the cell ultrastructure during extended culture 
(4 weeks) and the formation of mineral. The aim of this Chapter is to describe the 

isolation and characterisation of a primary human osteoblast culture from femoral head 

trabecular bone and to characterise the system over extended periods of culture in terms 

of expression of osteoblastic markers and osteogenic potential. The ultrastrucutre of the 

cells as they undergo mineralisation and the effect of DEX and BGP on the process will 

also be investigated. 
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2.2 Materials and Methods. 

2.2.1 Isolation of Primary Human Osteoblasts. 

Human Osteoblasts (HOBs) were isolated from the trabecular bone of patients 

undergoing total hip arthroplasty according to the method of Di Silvio (1995). The 

femoral head was obtained from surgery and fragments of trabecular bone (1-2mm) were 

excised from the cut surface of the neck under sterile conditions. These were rinsed 

several times in sterile phosphate buffered saline (PBS) to remove blood cells and fat. 

The bone chips were then placed in petri dishes containing Dulbeccos modified eagles 

medium (DMEM) supplemented with 10% foetal bovine serum (batch 06F7267B; 

Gibco), 0.02M L glutamine, 0.01M Hepes, 1% non essential amino acids, 150gg/ml 1 

ascorbic acid and 100 units/ml penicillin streptomycin solution. These were maintained 

at 370C in a humidified atmosphere of 5% CO2; 95% air. The medium was changed 
daily. After 4-5 days crescents of long spindle shaped cells were seen on the surface of 

the bone chips (Figure 2.1a). After 2 weeks in culture the chips were digested to allow 
for the release of bone cells. The bone fragments were incubated in a mixture of trypsin 

(0.02%) and collagenase (100 units/ml), buffered with Hepes (0.01M), for 20 min at 

370C on a rotary mixer. The bone chips were then removed from the solution which was 

centrifuged at 1000rpm for 10 min to obtain a cell pellet. The cells were resuspended in 

fresh medium, seeded into a 25cm2 sterile tissue culture flask (Falcon) and maintained in 

culture for several weeks. The spindle-shaped cells were eventually replaced with squat 

polygonal cells which assumed a cuboidal morphology once confluency was reached 
(Figure 2. lb-d). The osteoblast-like nature of the cells was characterised by the cuboidal 

morphology (Figure 2.3.1c) and activity of the alkaline phosphatase enzyme. Cells were 

passaged using a trypsin / Hepes (0.02% trypsin; 1% Hepes) solution in PBS and cells at 

various passages were frozen in 10% DMSO in FBS and stored in liquid nitrogen for 

future use. Cells from two separate primary cultures were used in this work. The first 

were cells from the primary isolation carried out by Di Silvio (1995) and had been 

characterised by the production of ALP, collagen-1, osteocalcin and cAMP production in 

response to parathyroid hormone. The second isolation was prepared during the course of 
this thesis and were characterised by the production of ALP, collagen-1 and nodule 
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formation. Cells were passaged up to 40 times without noticeable loss of phenotype in 

terms of ALP and nodule formation. 

2 2.2 Long Term Cell Culture. 

2.2.2.1 Cell morphology. 

For long term cell culture experiments (up to 28 days) cells were trypsinised and seeded 

at a density of 8x104 cells/ml on Thermanox"coverslips (Nunc) in 24 well Falcon tissue 

culture plates. The cultures were re-fed every 2-3 days. At various stages during long 

term experiments cultures were photographed using a Nikon EM camera mounted on a 
Nikon Diaphot inverted phase contrast microscope. 

2.2.2.2 Cell activity and cell number. 

The alamar Blue assay (Serotec) was used to measure cell activity in osteoblast cultures 

up to 28 days. This assay quantifies metabolic activity by utilising a REDOX indicator 

that is changed to a fluorescent product in response to the chemical reduction of the 

medium by growing cells. Recent research suggests the active indicator to be resazurin, 

which is converted to the fluorescent resorufin by reduction and that the test is a measure 

of the redox status of the cells (Rasmussen, 1999). The medium was removed from the 

cultures and they were gently rinsed in Earles' balanced salt solution (EBSS). A1 in 20 

dilution of alamar Blue dye in Hanks' balanced salt solution (HESS) was prepared and 
I ml of this solution was added to each well. The plate was incubated under normal 

conditions for 20 mins. Aliquots (100µl) from each well were placed in a 96 well plate 

and the fluorescence was measured at 560nm excitation wavelength and 590nm emission 

wavelength on a cytofluor plate reader. 

The cultures were then rinsed in sterile PBS and lml of sterile double distilled water 

was added to each well. The cells were lysed by repeated freeze thaw and stored at -20°C 
for analysis of cell number and alkaline phosphatase activity. 
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Cell number was determined using the fluorochrome bisbenzimidazole (Hoechst 33258, 

Sigma) as described by Rago et al. (1990). This fluorochrome binds cellular DNA 

which causes enhanced fluorescence and a specific shift in emission wavelength which 

results in a linear relationship between fluorescence and DNA content. DNA standards 

were prepared from 20µg/ml stock solutions of purified calf thymus DNA (Sigma) to 

give a DNA content of 10,6,5,4,3,2,1,0.5 and 0.25 µg/ml per well. Aliquots from 

cell lysates were placed in 96 well tissue culture plates. AI in 50 dilution of the dye in 

THE buffer (10mM Tris, 2M NaCI and 1 mM EDTA; pH 7.4) was prepared from a 

lmg/ml stock solution and an equal volume of this (100µl) was added to the test 

solutions and standards in the plate. Fluorescence was measured immediately at 350nm 

excitation wavelength and 460nm emission wavelength on a cytofluor. A standard curve 

was prepared and DNA values were calculated. 

2.2.3 Characterisation of the Osteoblast Phenotype. 

2.2.3.1 Alkaline phosphatase activity. 

Alkaline phosphatase activity of cell lysates was measured. The alkaline phosphatase 

assay was performed at room temperature (pH 9.8) using the Granutest kit for detection 

of alkaline phosphatase (ALP) activity (Merck). The assay works on the principle that 4- 

nitrophenylphosphate is converted to 4-nitrophenol and phosphate in the presence of 

alkaline phosphatase. The rate of increase in 4-nitrophenol is directly proportional to the 

AP activity in the sample and can be determined colorimetrically. Equal volumes (50µl) 

of 4-nitrophenol phosphate and test sample were added to a 96 well plate. The 

absorbance was read after 5 min on an Anthos plate reader using 405nm as the test 

wavelengh and 620nm as the reference wavelength. 

2.2.3.2 Immunofluorescence labelling of osteoblast markers 

Osteoblast cultures were labelled at 7 days with monoclonal antibodies to osteopontin 
(MPIIIB 10), osteonectin (AON- 1) and alkaline phosphatase (B4-50) The antibodies were 

obtained from the Developmental Studies Hybridoma Bank developed under the 

auspices of the NICHD and maintained by The University of Iowa, Department of 
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Biological Sciences, Iowa City, IA 52242. Cultures were stained at 7 and 21 days with a 

collagen-1 antibody (Sigma). The staining protocol was similar for all antibodies. 
Cultures in which the primary antibody was substituted with either PBS or normal mouse 

serum were used as controls. Cells were fixed in 4% paraformaldehyde for 30min. They 

were permeabilised in a triton X-100 mixture (0.5% Triton X-100 in 20mM Hepes, 

300mM sucrose, 50mM NaCl, and 3mM MgCl2) for 5min at -20°C and incubated in 

several changes of 1% PBS/BSA before being incubated in the primary antibody for lhr 

at 37°C. Osteopontin, osteonectin and alkaline phosphatase antibodies were used 

undiluted and collagen-1 was diluted 1: 1000 in PBS/BSA. The cells were thoroughly 

rinsed in 1% PBS/BSA and incubated in an FITC (fluorescein isothiocyanate) 

conjugated secondary antibody (1: 20 rat anti-mouse antibody, DAKO) for Ihr at 37°C. 

After rinsing the cells were counter-stained using 0.01mg/ml propidium iodide (PI) for 

30 seconds, mounted in glycerol DABCO (2mg/ml DABCO 

(Diazabicyclo[2.2.2]octane)in PBS, combined with glycerol/ PBS mix, 9: 1) and viewed 

using a Leica TCS 4D confocal laser scanning microscope (CLSM). The green 
fluorescence of the antibody staining was viewed using the 488nm laser line. The red 

fluorescence of PI was viewed simultaneously using the 568nm laser line. 

2.2.4 Cell Ultrastructure. 

2.2.4.1 Scanning electron microscopy (SEM). 

Cells on Thermanox discs (2 and 28 days) were fixed in 1.5% glutaraldehyde in 0.2M 

hepes buffer for 30 min and post fixed in 1% osmium tetroxide in Millonigs buffer 

(Os04) for 30 min. Discs were then dehydrated through a graded ethanol series, 

immersed in hexamethyldisilazane (HMDS) for 10 min and air-dried. Samples were 

mounted on aluminium stubs using sticky carbon tabs. The samples were coated with 

gold using an Emscope sputter coater for 2 min at 25mA. The discs were viewed using a 

Philips 501B SEM operated at 10kV. For some 28 day cultures the upper layer of cells 

were removed using sticky tape and the resulting sample was recoated and examined in a 

Philips XL30 Field emission environmental scanning electron microscope (FEG-ESEM). 

Likely areas of mineralisation were analysed using EDX microanalysis. 

34 



Chapter 2 

2.2.4.2 Transmission electron microscopy (TEM). 

At 7,14,21 and 28 days, cells were fixed and dehydrated as described above. Discs 

were placed in a glass petri dish containing dried acetone for 5 min and then transferred 

into Transmit resin (TAAB) for 3hrs. The discs were then inverted onto plastic capsules 

containing fresh resin and polymerised overnight at 700C. The following day the discs 

were fractured off the resin using liquid nitrogen, leaving the cells embedded in the resin 
block. The block was then re-embedded in fresh resin and polymerised as before. The 

resulting block was trimmed and remounted on a pre-formed block for sectioning. This 

allowed the cell layer to be sectioned in situ, without disturbing the ultrastructure of the 

nodules. Sections (70-90nm) were cut using a Reichert Ultracut E microtome. These 

were contrasted with uranyl acetate and Reynolds lead citrate and viewed in a Philips 

410 TEM operated at 80kV. 

2 2.5 Mineralisation. 

Mature cultures (28 days) were stained with Alizarin red S according to a method 

adapted from Fernandes et al. (1997) to identify calcium deposits. Bone chips were used 

as positive controls and were stained using the same method. The medium was removed 

from the cultures and they were rinsed in tris buffered saline (TBS, 0.45% NaCl, 0.6% 

tris base, 2.5% 1M HCI, pH 7.4). Cultures were fixed in 4% paraformaldehyde for 5 min 

and stained with a 1% Alizarin red S solution in 0.028% NH4OH for 2 min after which 

the samples were rinsed in TBS, mounted in glycerol DABCO and photographed 
immediately. 

Von Kossa's staining method was used to visualise calcium deposits in HOB cell 

cultures at 28 days. This technique substitutes silver for calcium ions in calcium 

phosphate. The silver salt produced is reduced to black metallic silver under UV light. 

The method used was modified from Fernandes et al., (1997). Cultures were fixed in 

1.5% glutaraldehyde in O. 1M sodium cacodylate buffer for 30 minutes. The fix was 

removed, cells rinsed in TBS and covered with a 5% silver nitrate (Sigma) solution for 

30 min under UV light. Cells were rinsed in water and covered with 5% sodium 
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thiosulphate solution for 2 min. Calcium deposits stained black. Cultures were mounted 
in glycerol and photographed. 

2.2.6 Effect of Mineral Supplements. 

In some cultures the tissue culture medium was supplemented with Dexamethasone (10 
8M; Sigma) and/or sodium 0 glycerophosphate (10mM; Sigma) to test their efficacy as 

promoters of calcification. Cultures were stained with alizarin red S to identify 

mineralised areas at 14,21 and 28 days. 

A semi-quantitative method for the detection of calcium in bone cultures (Hale and 
Santerre, 2000) was carried out at 21 and 28 days. The HOB cultures were incubated 

with medium containing lµg/ml calcein (Sigma) for 4hrs. The medium was then 

removed and the cultures overlaid with lml of PBS and read on a cytofluor at 485nm 

exitation, 530nm emission. 

Immunofluorescence labelling of calcium with calcein was carried out at 21 days (Hale 

and Santerre, 2000). Cells were treated with culture medium containing 5µg/ml calcein 

overnight, rinsed with PBS and viewed using a Leica TCS 4D CLSM. The 488nm laser 

line was used to view the green fluorescence of the calcein labelling. The samples were 

counter-stained with PI so the cell nuclei could be visualised using the 568nm laser line. 

TEM was carried out, to visualise any mineral formed by HOBs in the presence of DEX 

and BGP. Cultures were fixed and processed at 21 days as previously described. Cells 

grown for 21 days in control medium were used as controls. 

Statistical analysis of all assays in this section was carried out using a one way analysis 

of variance (ANOVA) with a Tukey-Kramer post test for multiple comparisons. 
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2.3 Results. 

2.3.1 Isolation and Culture of HOBs 

Figure 2.1 shows the isolation process and morphology of cultured human osteoblasts. 
Cells grew on the surfaces of bone chips in culture and these were released with trypsin 

and plated in tissue culture flasks. The cells were spindle shaped at first, but after a 

period of weeks became squat and polygonal in shape. Confluent cell monolayers had a 

cobblestone appearance. 
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Figure 2.1 Phase contrast images of the isolation and culture of primary human 
osteoblasts (HOBs). (A) A bone chip in growth medium for 5 days showing crescents of 
cells attached to the bone surface (*). (B) Morphology of primary osteoblasts in culture 
after collagenase digestion showing spindle shaped cells. (C) Morphology of HOBs after 
2-3 weeks in culture showing the changing morphology of the cells to a squat, 
polyhedral shape. (D) A confluent layer of HOB cells with a typical cuboidal 
morphology. 
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2.3.2 Long Term Culture of Primary Osteoblasts. 

2.3.2.1 Cell morphology. 

Human osteoblasts were successfully cultured on Thermanox discs in 24 well Falcon 

tissue culture plates for up to 35 days. Figure 2.2 shows phase contrast images of the 

time course of HOB differentiation in culture. The cells were confluent by 48 hours and 

had started to form layers by 4 days. At 7 days multiple layers of cells were present. At 

some time between 10 and 20 days in culture the cells began to form clusters in some 

areas. These later developed into nodular structures which eventually became distinct, 

mature nodules. Nodules started to form at any time between 20 and 30 days cell 

culture. Numerous large (up to 0.5mm across) nodules formed in each well and they 

were visible to the naked eye. 
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Figure 2.2 Phase contrast images of HOBs showing the different stages of 
development during long term cell culture. (A) HOB cells cultured for 7 days showing a 
confluent multilayer. (B) HOBs cultured for 14 days showing localised cell clusters (*). 
(C) At 21 days nodular structures are present (*). (D) By 28 days nodules are large and 
well defined. 
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2.3.2.2 Cell activity and cell number 

Figure 2.3.3 shows the mitochondrial activity, measured by alamar blue reduction (a) and 

number of HOBs (b) during long term culture (up to 28 days) studies. A standard 

calibration for the DNA assay is shown in (c). 

B 
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Figure 2.3.3 Cell activity measured by alamar blue reduction (a) and DNA content (b) 
of HOBs cultured for 4 weeks. Bar represents standard error of the mean, n=4. (c) shows 
the calibration for the DNA assay. 
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Generally both these increased with increasing lengths of time in culture. Occasionally 

cell activity and number were reduced between days 25 and 28. 

2.3.3 Expression of Phenotypic Markers. 

2.3.3.1 Alkaline phosphatase activity. 

Human osteoblasts produced alkaline phosphatase as demonstrated by the assay for ALP 

activity (Figure 2.4) 

... 

... U 
Cd 

Time (days) 

Figure 2.4 Activity of the alkaline phosphatase enzyme in HOB cultures over a 28 
day time period. Error bars represent standard error of the mean, n=4. 

2.2.3.2 Immunolocalisation of osteoblast markers. 

HOBs stained positively for ALP, OP and ON at 7 days cell culture as seen by CLSM 

(Figure 2.6). OP and ON staining was cytoplasmic while ALP staining was localised to 

the cell periphery. Collagen-1 staining was seen in the intercellular spaces at 7 and 21 

days cell culture by CLSM (Figure 2.7). Where nodules were present, staining was 

40 



Chapter 2 

confined to the upper few cell layers of the nodule and the surrounding cell multi-layers, 
but was absent from the centre of the nodule. Cell nuclei in this region appeared small 

and were stained densely and homogeneously with PI in contrast to the other areas where 

the nuclear membrane and nucleoli were discernible. 

Figure 2.5 CLSM images of 7 day HOB cultures stained with antibodies to 
osteonectin (A), osteopontin (B) and ALP (C, D). Osteonectin and osteopontin are 
localised to the cell cytoplasm. ALP is located at the cell membranes. 
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Figure 2.6 CLSM image showing a gallery of optical slices through a nodule in a day 
21 HOB culture. Collagen-I (green) is localised to the upper cell layers of the nodule and 
the cell layers around the nodule, but is absent from the interior. Cell nuclei (red) are 
smaller and tightly packed in the centre of the nodule compared to those of the 
surrounding cell layers. 

2.3.4 Ultrastructure. 

2.3.4.1 SEM. 

Scanning electron microscopy (SEM) was used to demonstrate the topography of the 

HOB cells in culture (Figure 2.7). Initially cells were polyhedral in shape and were 

anchored to the surface of the Thermanox disc by numerous cytoplasmic processes. As a 

multilayer formed, the cells assumed a flattened shape with short processes on their 

dorsal surface and formed sheets that covered the surface of the disc. Only some cells on 

the surface of the multilayer or dividing cells retained a rounded / polyhedral profile. The 

morphology of the cells remained the same when nodules formed. These could be 

identified clearly at low magnifications. SEM of 28 day samples where the top had been 

removed from the cultures showed the interior of the nodule. Collagen was not seen. 

EDX analysis of the nodule interior did not show evidence of calcium phosphate 

deposits. 

2.3.4.2 TEM. 

Transmission electron microscopy was used to investigate the cell ultrastructure as 

shown in figure 2.8. The cells were large with an oval nucleus and several nucleoli. The 

nuclear morphology suggested the cells were active as little heterochromatin was seen. 
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The cell membrane extended as long fine processes which passed between, and 

occasionally formed junctional complexes with, neighbouring cells. The secretory 

nature of the cell was demonstrated by the organelle content. A typical osteoblast 

exhibited a large, perinuclear golgi complex, rough endoplasmic reticulum, mitochondria 

and deposits of glycogen. Bundles of type-I collagen were interspersed between cells 

from 5 days cell culture. 

Sections of cultures at later time-points revealed the structural organisation of the 

nodules. Figure 2.9a shows a semi-thin (0.5µm) resin section stained with toluidine blue. 

This demonstrates that the outer layers of the nodule contained cells whose ultrastructure 

resembled that described above while the inner portion contained many intercellular 

spaces and dying cells. TEM of the different parts of the nodule are shown in the 

remainder of the figure. The nuclei of the cells in the interior of the nodule contained 

clumps of heterochromatin and the cytoplasm was composed of vesicles and 

unidentified, extensive electron dense deposits. Although collagen bundles were present, 

evidence of a mineralised matrix was not observed, either in the extracellular spaces or 

among the collagen fibres and bundles. 
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Figure 2.7 Scanning electron micrographs of HOB cells. (a) A 7day culture showing 
a cell multilayer (right = top, left = bottom). The cells are flattened and have short dorsal 
processes. The bottom cell layer is anchored to the surface by long cytoplasmic 
processes. (b) A low magnification image of a 28 day culture showing a nodule. (c) A 28 
day culture with the upper cell layers of the nodule removed 
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a 

Figure 2.8 Ultrastructure of HOBs. (a)A 7day HOB culture showing the typical 
morphology of the cell layers. Cells contain mitochondria and rough ER consistent with 
their secretory nature. A cell-cell contact is seen (arrow). The base of the culture is 
marked with (*). (b) Cell ultruastructure at 14days showing golgi apparatus. (c) 
Collagenous matrix between cell layers at day14 (*). (d) and (e) Collagen fibres in a 20 
day culture. 
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A SOµm 

Figure 2.9 Ultrastructure of nodules. (a) A resin section through a nodule of a 20 day 
culture stained with toluidine blue. The outer layers of the nodule appear to consist of 
healthy cells while the interior appears less homogeneous. (b) TEM image of a section 
through a similar nodule. (c) Ultrastructure of cells in the outer layers of the nodule. (d) 
Ultrastructure of cells in the nodule interior. 
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2.3.5 Mineralisation 

Mineralisation of long term cultures is shown in figure 2.10. Alizarin red S 

histochemical staining showed red staining in the bone chip (2.10a) but only weak 
background staining in osteoblast cultures at 28 days (Figure 2.1Ob). Positive staining 

was restricted to nodules. Similar results were observed for von kossa staining of bone 

chips (2.1Oc) and 28 day HOB cultures (2.1Od). For an image of an unstained bone chip 

refer to figure 2.1 a. 

Figure 2.10 Mineralisation of HOB cultures. (A) Bone chip stained with alizarin red S 
for calcium deposits (red). (B) Day 28 nodules stained with alizarin red S. The nodule 
has stained faint red. (C) Bone chip stained with von Kossa for calcium deposits (black). 
(D) Day 28 nodules stained for calcium deposits. Small areas of positive staining are 
seen (arrows). 
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2.3.6 The Effect of Mineral Supplements. 

The addition of DEX and/or BGP to the growth medium had no apparent effect on 

osteoblast nodule formation. Alizarin red S was used to identify calcium deposits in 14, 

21 and 28 day cultures. Staining was minimal in day 14 cultures and no differences 

between the supplemented and unsupplemented cultures were noted however, positive 

staining of supplemented cultures was clearly seen at 21 days (Figure 2.11). Staining was 

minimal in control cultures. 

B 

Figure 2.11 Alizarin red staining of 21 day HOB cultures with (a) and without (b) the 
addition of DEX and BGP showing the red staining of calcium deposits in the 
supplemented cultures. 

CLSM of calcein labelled cultures (Figure 2.12) showed large areas of green 

fluorescence indicating that mineral was present. The distribution of staining appeared 

similar to that seen for alizarin red samples. 

T 

Figure 2.12 \1in,: i li ha11 01 HUB cultures supplemented with DEX and BGP. 
Calcein labelling of calcium in 21 day cultures with (a) and without (b) the addition of 
DEX and BGP. 
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Quantitative calcein labelling at 21 days showed that mineral was present in the cultures 

supplemented with DEX and BGP (figure 2.13) and that this was significantly higher 

(p<0.001) than controls. The control cultures had a slightly higher than background level 

of calcium so it is possible that these cultures have a limited capacity to form mineral. 
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Figure 2.13 Calcein labelling of HOB cultures at 2ldays and 28days. Significantly 
more mineral (p<0.001) was present in the cultures supplemented with DEX and BGP. 

TEM of 28 day samples treated with DEX and BGP are shown in figure 2.14. Dense 

aggregates of needle-like crystals were located above, below and between cell layers. 

These were often associated with collagen bundles although unmineralised areas of 

collagen were also seen. Mineralised deposits were not observed in control cultures 

which appeared similar to the cultures shown in figure 2.9. 
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Figure 2.14 TEM of 28 day samples supplemented with DEX and BGP. Mineralised 
areas are seen between cell layers (a). Note the areas of un-mineralised collagen (*). 
These are composed of needle-like crystals (b). (c) Collagen fibrils can be seen 
interspersed within the dense mineralised aggregates (arrow). 
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2.4 Discussion. 

Primary human osteoblasts (HOBs) were successfully isolated and cultured and could be 

maintained for numerous passages (at least 50) without loss of expression of the 

osteoblast phenotype. This system has the advantage over primary bone marrow cell 

cultures in that the cells isolated are less heterogeneous than marrow cultures and are 

committed to the osteoblast lineage. HOB isolation yields a large number of cells which 

can be subcultured and stored in liquid nitrogen. This allows wide ranging 

experimentation on cells from the same primary culture at similar passages, reducing 

variation in results and allowing direct comparisons between experiments to be made. 

A question arises as to the exact nature of the cells obtained using this method of 

isolation. The cells are of the osteoblastic lineage and the method employed here leads to 

the assumption that the cells isolated are osteocytes. Gehron-Robey (1995) isolated cells 

from human trabecular bone fragments and hypothesised that these originated from 

osteocytes which became preosteoblasts in culture as they started to proliferate. It is 

unknown whether these cells will mature in the same way as preosteoblasts isolated 

directly from bone. Similarly Ecarot-Charrier (1983) suggested that the ability of the 

isolated cells to divide implied dedifferentiation into precursors. Conversely, Gundle and 

Beresford (1995) suggested that marrow clonogenic cells (or a population of) may be the 

source of osteoblastic cells in both trabecular bone and marrow cultures. Turksen and 

Aubin (1991) have identified 2 kinds of osteoprogenitor (OPC) cells in bone tissue, an 

early OPC cell which exists mainly in bone marrow and is ALP negative and DEX 

dependant. The second in a mature OP which exists in the periosteum and is ALP 

positive. This type forms bone nodules in the presence and absence of DEX. In light of 

the results obtained in this work the cells could fall into the mature OPC category. 

HOB cells have been previously characterised (Di Silvio, 1995) and were shown to 

produce ALP, osteocalcin and cAMP in response to parathyroid hormone. This work has 

further characterised the osteoblastic nature of the cells by using longer periods of cell 

culture to examine the mineralisation process. HOBs were shown to form large, 

numerous nodules in culture. Such heterogeneity has previously been reported in 

osteoblast cultures due to various stages of differentiation in the cultures (Marie, 1995). 

The reason for nodule formation in culture has been attributed to a requirement for high 
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levels of organic phosphate for mineralisaton to occur and that this only occurs in the 

microenvironment created by multilayered nodular areas (Ecarot-Charrier, 1983). 

Analysis of HOB ultrastructure was carried out using TEM. HOBs contained abundant 

rER and mitochondria. Cells were linked by junctional complexes. These were probably 

gap junctions as they have been demonstrated in bone tissue and osteoblasts in vitro 

where they are related to cell differentiation (Donahue, 2000) and mediate PTH 

stimulation of mineralisation (Schiller, 2001). 

HOBs exhibited a typical secretory cell ultrastrucutre and were surrounded by a 

collagenous matrix which is consistent with the appearance of osteoblasts in vivo. 
Collagen-1 staining was present from 5 days cell culture. At later stages (from 21days) 

collagen-1 was absent from the centres of the nodule. This was alluded to in TEM 

observations but was clearly proven using confocal. 

Another feature of the nodular structures seen in the osteoblast cultures was the cell 

viability within the nodules. Cell layers at the nodule surface appeared similar to cells 

from the internodular regions, however, cells from the nodule interior had dense, 

shrunken nuclei seen using confocal microscopy. TEM revealed chromatin clumping in 

the cell nuclei and the cytoplasm contained numerous vacuoles and vesicles. Some 

papers have reported the occurrence of apoptosis in nodules prior to mineralisation 

(Boyce, 1996) It is not clear whether this process was a natural part of osteoblast 

mineralisation or a state induced by prolonged cell culture. It is possible that these 

structures do not get adequate diffusion of nutrients due to their large size. Considering 

that each nodule only covered a small area and that other culture systems (eg. Skin) are 

successfully grown as multilayers (Gray oral communication) would seem to support the 

hypotheses that the cell death seen is either the result of the natural mineralisation 

process or the death of cells resulting from a missing component from the medium which 
is required for mineralisation in vitro. 

Although osteoclast and osteocyte cultures have been established (Roodman, 1995; van 
der Plas and Nijwerde, 1992), it is the osteoblast, or bone forming cell, which has 

received most attention from in vitro studies. Many types of culture system exist and 
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extensive studies have shown that most of these produce many proteins common to the 

ostoblast phenotype. One feature of osteoblast cells has proved more elusive in vitro 
however and that is the production of a mineralised ECM. 

Convincing evidence for mineralisation was not observed in HOB cultures in normal 

medium over 4 weeks, despite the extensive methods employed to identify mineralised 

areas (SEM, TEM, Von Kossa, Alizarin red S and calcein labelling). Weak staining of 

nodules with alizarin red S was seen after 4 weeks in culture and mineralised areas were 

not observed using TEM. This is not an unusual finding for osteoblast cultures however 

as many cell lines do not form collagen or mineral in vitro and even in primary cultures 

where mineralisation sometimes occurs this is only a fraction of the cells (Marks and 
Hermey, 1996). Gehron-Robey (1995) reported that cultures from trabecular bone form 

nodules that start to mineralise, using collagen-1 and matrix vesicles but never become 

heavily mineralised in the same way that cells from heterogeneous cultures suggesting 

that the last stages may require other cell types or cells at a different maturation stage. 

There is some evidence to suggest that `fine tuning' of the growth conditions may 

increase the osteogenic potential of the cells. The level of ALP activity increased over 

time in culture which is in agreement with the Di Silvio osteoblast model (1995). Di 

Silvio (1995) reported increasing collagen-1 and osteocalcin synthesis over a4 week 

culture period. Recently the same HOB cells grown on HA surfaces showed small areas 

of mineral deposits related to collagen fibrils (Scotchford et al, in preparation). A 

prerequisite for mineralisation in any bone culture system is the formation of an 

extracellular matrix to support it (Gerstenfeld et al., 1988). It is possible that stimulation 

of increased collagen production in HOBs may lead to a more substantially mineralised 

matrix and this area warrants further study. 

Mineralisation was inducible using the supplements DEX and BGP and mineral was first 

detectable after 2 weeks supplementation. Mineralised deposits covered the entire culture 

well and were not restricted to nodules. Significantly, mineral was seen in association 

with the collagenous ECM. Bellows et al. (1990) found that DEX caused increased 

proliferation in a certain population of osteoprogenitor cells with a low proliferative 

capacity. DEX is associated with bone marrow cell culture (Bellows et al. 1990; Rickard 
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et al., 1994) and calvaria derived cultures (Abe et al., 2000). BGP is almost universally 

added to all osteoblast-like cultures and is a requirement for mineralisation with 2 

exceptions: KS 4, a calvarial osteoblastic cell line, and Pro IRPC cells obtained from 

foetal rat mandible with neutral protease (Abe et al., 2000). The question arises as to the 

specificity of these supplements to osteoblasts. Ecarot-Charrier (1983) treated fibroblasts 

and osteoblasts with BGP but the collagenous matrix of the fibroblast cultures did not 

mineralise. 

Many systems rely on the addition of supplements to the medium whose methods of 

action are not well understood. The addition of DEX and BGP has become routine in in 

vitro bone biology (Boyan et al., 2000) and in the field of biomaterials where the 

majority of papers cited use supplemented cells to evaluate biocomatibility. It is unlikely 

that these substances are involved in the development of bone in vivo. It is preferable to 

either use cultures which do not require their addition for the formation of mineral, or to 

find alternative, better understood mechanisms to induce the formation of mineral rather 

than relying on additives whose underlying mechanisms remains unclear. 

The main disadvantage of the system is that the source of bone is restricted to older 

patients undergoing total hip replacement and this may have an effect on the metabolism 

of the isolated cells in comparison to those isolated from younger patients. Craniofacial 

osteoblasts (CFCs) have been successfully isolated using similar methods and these are 

from much younger patients. They have much lower ALP activity but increased 

collagen-1 production (unpublished observations). Whether these differences are a result 

of donor age or anatomic site or other has not been investigated. Donor age and site of 

HOBs have shown differences in the response of many osteoblastic markers, including 

collagen-1, in response to vitamin 1,25(OH)2D3 (Martinez et al., 1999). Katzburg et al. 

(1999) also demonstrated differences in expression of osteoblastic markers in pre and 

post menopausal women and the responsiveness of these to vitamin D3. Such differences 

were not noted in men of the same age groups. HOBS used in the present work were 

from donors corresponding to the older groups in both studies. 

In summary, the culture system investigated here exhibited many osteoblastic makers 

such as ALP, OC and collagen-1 and shows a progression towards mineralisation (Di 
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Silvio, 1995). This work has further added to the knowledge surrounding this model. 
The localisation of other osteoblastic markers such as OP and ON and collagen-1 have 
been demonstrated. The ultrastructure of osteoblasts and the formation of nodules during 

extended periods of culture have been examined. 

Finally the osteogenic potential, of the system has been investigated. Mineralisation was 
minimal in the normal culture system and localised to nodules using alizarin red S 

staining. TEM studies did not show mineral in unsupplemented cultures grown on tissue 

culture plastic. Further work may develop the osteogenic potential of HOBs. A 

mineralised matrix was inducible using DEX and BGP supplementation of the growth 
medium as seen using TEM. 

Currently a host of substances are being investigated for their ability to promote or 
inhibit osteoblast growth, differentiation and mineralisation in vitro. Further studies 

would allow the components of growth medium to be tailored so as to control the growth 

and differentiation characteristics of osteoblasts at a molecular level. Clarification of the 

control of the mineralisation process in vitro is an important future goal. This would be 

invaluable in the design of biomaterials and tissue engineered constructs and would aid 
identification of subtle differences between cell responses to surfaces. 
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3.1 Introduction. 

Silicon is the second most abundant element on the biosphere after oxygen and it is 

found in many different forms in food, drink and the environment as summarised in the 

general introduction. It is perhaps not surprising that silicon has been accepted as an 

essential trace element in animal nutrition. The essentiality of silicon in the chick was 

proposed by Carlisle (1972) who administered silica in the form of sodium metasilicate 
(Na2SiO3.9H20) at 100 parts per million (ppm) and found enhanced bone growth. In the 

same year a study by Schwartz and Milne (1972) evaluated the effect of sodium 

metasilicate supplementation in rats and found similar results. A series of experiments 
followed which led to silica being accepted as an essential trace element in animal 

nutrition (Carlisle, 1972; 1974; 1976a, b; 1980a; 1980b; 1982; 1986; Carlisle and 
Alpenfels, 1980; Carlisle and Alpenfels, 1986). These centred on the two criteria for 

establishing essentiality which are 1) repeated and significant responses in growth or 

health to dietary supplements of the element and that element alone, and 2) development 

of a deficiency state on a diet which is otherwise adequate (Carlisle, 1974). A silicon 
deficient diet caused abnormal bone and cartilage formation resulting in stunted bone 

growth, thinner cortex, altered epiphyseal cartilage morphology and reduced collagen 

content in chicks (Carlisle, 1980b). 

The main action of silica has been on bone and cartilage in experimental animal studies. 
Increased dietary silica in chicks resulted in increased growth, increased rate of 

mineralisation and amount of bone formed and increased matrix production in bone and 

cartilage (Carlisle, 1986). Dietary silica supplementation causes increased growth rate, 

increased amounts of articular cartilage, increased bone water content and biochemical 

changes in the mineral, hexosamine and collagen content of bone (Carlisle, 1974; 

1980a). Other studies suggest silica supplementation has no effect on growth rate or 

skeletal development in chickens (Elliot and Edwards, 1991). 

There has been some suggestion in the literature that silica increases the proliferation 

and differentiation of osteoblasts. A study by Keeting et al (1992) showed that HOBs 

cultured in the presence of Zeolite A, a compound containing silica and alumina, 
demonstrated increased proliferation and differentiation as shown by increased AP, 
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osteocalcin, and TGF-ß release. Collagen-1 was not affected. Increased proliferation 

appeared to be accounted for by the silica content of the compound. 

The proliferative response seen was dependent on cell number indicating that an 

autocrine mechanism may be involved in the interaction between ZA and bone cells. 
The supposition is that ZA may mediate the synthesis and release of factors including 

TGF-ß. This probably occurs at a post-transcriptional level as the mRNA values 

increased much later than the secretion of TGF-ß. The implication is that silica- 

containing compounds may affect cells at the molecular level but whether this is due to 

the silica component has not been investigated. 

Silica has been localised in the active growth areas of bone by electron microprobe 

analysis. Its concentration increases at the same rate as calcium in the early stages of 

calcification and then falls off as the CaPi ratio approaches that of hydroxyapatite 

(Carlisle, 1969; 1970a; 1980a). 

Silica is a major anion in osteoblasts and is present in similar amounts to magnesium 

and phosphorous. It has been localised to the mitochondria of osteoblasts (Carlisle, 

1976a) and rat liver, kidney and spleen cells (Johnson and Volcani, 1978). Some 

organelles contain silicon and calcium before ossification begins (Carlisle, 1975). 

It would seem that the relationship of silica and calcium is important in mineralisation 
(Carlisle, 1970b). Silica supplemented organ cultures showed an increase in weight, 

collagen production, calcium content and faster matrix polysaccharide synthesis in bone 

(Carlisle and Alpenfels, 1978) and cartilage (Carlisle and Alpenfels, 1986). The 

increased growth has been attributed to increased collagen production (Carlisle and 
Alpenfels, 1980). 

Silica is required for collagen and glycosaminoglycan (GAG) formation and it appears 

to be located in the GAG-protein complexes of the ground substance (Carlisle, 1976b). 

Schwartz (1973) examined the structure of silicon in GAGs and polyuronides and 

concluded that silicon is present as a derivative of silicic acid and that it probably acts as 

a cross-linking agent imparting resilience to connective tissue. Silica appears to be 
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important for collagen synthesis by cartilage (Carlisle and Alpenfels, 1984; Carlisle and 
Garvey, 1982) and bone (Carlisle, Berger and Alpenfels, 1981) and increases the action 

of prolyl hydroxylase, an enzyme necessary for hyroxylating proline in collagen 

synthesis (Carlisle, Berger and Alpenfels, 1981; Carlisle and Alpenfels, 1984). 

Cartilage growth has been increased in organ cultures when silica and ascorbate are 

added and this is demonstrated by increased hexosamine and proline synthesis (Carlisle 

and Suchil, 1983). 

In summary, the main effect of silica appears to be on the matrix of cartilage and bone 

with a possible secondary role in the early stages of mineralisation (Carlisle, 1986). 

The ability of silica to promote mineral precipitation is not confined to bone and 

cartilage. Urinary stone formation has been observed in dogs and humans treated with 

magnesium trisilicate, an antacid, over long periods (Newberne and Wilson, 1970; 

Dobbie, 1986). Silicic acid affects the action of inhibitors of urinary stone formation 

(Dobbie, 1986). High doses of sodium saccharin lead to the formation of silicate- 

containing precipitate in urine of rats and these appear to be cytotoxic to the superficial 
bladder epithelium (Cohen et al., 1991). The same group found similar results a year 
later using tetraethyl orthosilicate (Okamura et al., 1992). 

Silica is present in trace amounts in human saliva and it may cause the mineralisation of 
dental plaque to form calculus especially in areas of hard water or where the diet 

contains large quantities of silica-containing foods such as wheat and rice (Damen and 
Cate, 1989). In vitro studies have shown that the presence of silica stimulated mineral 
formation in simulated plaque fluid even in the presence of inhibitors of CaP 

precipitation such as phosphoproteins from saliva and products of bacterial metabolism. 
It is possible that silica, used in thickening agents in dentrifrices, could cause calculus 
formation (Damen and Cate, 1992). 

The aims of the work presented here were to investigate the effect of silica on the 

osteoblast in vitro. Specifically, the effect of silica on the rate of osteoblast 

mineralisation and the amount of mineral formed. Osteoblasts were grown in medium 

supplemented with a range of silica concentrations and the growth, differentiation and 

mineralisation examined. The HOB cells were used for the majority of the studies. 
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Primary human craniofacial osteoblasts (CFC) were used in parallel with osteoblasts for 

some of the mineralisation studies. The bone chips were obtained from craniofacial 

surgery and the cells are released and cultured in the same way as HOBs. The main 
differences between these cells and HOBs are the fibroblastic cell shape, low ALP 

production, abundant collagen-1 production and capacity for rapid mineralisation when 
DEX and BGP are added to the growth medium. The range of silica concentrations were 
be 1-450ppm, corresponding, at the lower end, to the amount found in the circulating 
fluids of the body. The higher concentrations used, although unlikely to be found in the 
body naturally, were still trace amounts and therefore could theoretically be leached 

from a biomaterial in the body. Any direct effect of silica, adverse or beneficial, on the 

osteoblast would add significantly to the knowledge available which is scant owing to 

the difficulty of measuring silica accurately in the past. 
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3.2 Materials and Methods. 

3.2.1 Preparation of Silica Containing Medium. 

Double strength complete Dulbeccos Modified Eagles Medium (DMEM) was prepared 
from a lOx concentrate (Gibco) to which was added 20% Foetal calf serum (FCS, 

Gibco), 0.04M L-glutamine, 5% sodium bicarbonate, 0.02M Hepes, 200 units/ml 

penicillin/streptomycin, 4% sodium pyruvate ( all Gibco) and 300gg/ml ascorbic acid 

(BDH). Silica solutions were prepared at double the concentration required from a 
1000ppm stock solution of sodium metasilicate (BDH). Hepes (1 M) was added to silica 

solutions to ensure physiological pH (up to 15% for the higher concentrations). The 

stock solutions were stored at 4°C. Equal volumes of medium and silica solution were 

added together to make the working solution. In this way the correct concentration and 

pH of the media was preserved. Cell activity (alamar Blue) and cell number (DNA 

assay) were measured for cells with a range of pH values (7.0-7.6) and Hepes 

concentrations (5-10%) to ensure that the ranges used in the experiments (pH 7.2-7.4) 

did not have any measurable effect on cell metabolism. 

3.2.2 Effect of Silicate Supplementation on Initial Cell Attachment and Growth. 

3.2.2.1 Protein adsorption. 

The amount of protein adsorbed to tissue culture plastic from medium containing a 

range of silica concentrations (0-450ppm) was measured at 90 min and 24 hr using the 

Lowry assay (Lowry et al., 1951). Serum free medium containing silica was used as 

controls. Medium (lmi) was added to 24 well tissue culture plates for 90 min or 24 hr. 

The medium was removed at the appropriate time and the wells were rinsed in normal 

saline (0.9% NaCl in sterile water). 250µl of 1M NaOH was added to each well and the 

samples were stored in the fridge until further analysis. A standard curve (0- 500mg/mi) 

was prepared from bovine serum albumin (BSA, Sigma) in reagent A (2% NaCO3 in 

0.1 M NaOH). 1 ml of solution D (0.5% CuSO4 in 1% Na tartarate diluted I in 50 in 2% 

NaCO3) was added to the standards and test solutions for 10 min. 100µl of Folin phenol 
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reagent (50% in distilled water, Sigma) was then added. The solution was mixed and 
left for Ihr and the absorbance read at 750nm on a UNICAM UV/VIS spectrometer. 

3.2.2.2 Cytoskeletal organisation and vinculin receptor staining. 

For cell attachment studies cells were seeded onto 13mm diameter Thermanox 

coverslips in a 24 well tissue culture plate at a density of 8x104 cells/ml. They were 

cultured in medium containing a range of silica concentrations (0-350ppm) for 90 min 

and 24 hr. Immunofluorescence labelling of the filamentous actin cytoskeleton with 

phalloidin was carried out at 90 min and 24 hr. The vinculin receptor was labelled with 

with a human monoclonal antibody to vinculin at 24 hr. 

At the appropriate time the samples were rinsed in PBS and fixed in 4% 

paraformaldehyde for 5 min. They were rinsed in 1% PBS/BSA and permeabilised 

using a Triton X-100 (0.5% Triton X-100 (pH 7.6) in 20mM Hepes, 300mM sucrose, 

40mM NaCI and 3mM MgC12) solution for 5min at 0°C. A further 2 rinses in 1% 

PBS/BSA at 37°C were carried out as a blocking step. 

FITC-conjugated phalloidin (Sigma, 250µg/ml in 1% BSA in PBS) was added to the 

samples for 20 min at 4°C. For vinculin receptor labelling samples were incubated in 

human monoclonal antibodies to vinculin (Sigma, I in 400 dilution in 1% BSA in PBS) 

for 1 hr at 37°C. The samples were washed in 1% BSA in PBS and rabbit anti-mouse 
FITC-conjugated secondary antibodies (DAKO, I in 20 dilution in 1% BSA in PBS) 

were added to the samples for a further hour at 37°C. 

After removal of the phalloidin/vinculin the samples were rinsed 3 times in 1% BSA in 

PBS before adding propidium iodide (Sigma, 0.01mg/ml) for 30 seconds. The samples 

were rinsed again, mounted in glycerol/PBS containing 1-4 diazabicyclo-2-2-2-octane 

(DABCO, Sigma) and viewed using a Leica TCS 4D confocal microscope with an ArKr 

laser. The 488nm laser line was used to excite the green fluorescence of FITC- 

conjugated phalliodin or FITC-labelled vinculin. The red fluorescence of propidium 
iodide was scanned simultaneously using the 568nm laser line. Optical sections (19m 

thick) were collected as az series. A maximum intensity projection was created (a 
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composite image from the brightest pixels per scan) using the associated Scanware 

software. 

3.2.2.3 Cell activity and cell number. 

Cells were trypsinised from confluent flasks and seeded in 24 well plates at a density of 

8x10 cells/ml and incubated with medium containing various concentrations of silica 4 

ranging from 0- 150ppm at 370C, 5%CO2 for 90min and 24hr. Cell activity (alamar 

Blue assay) and cell number (DNA assay) were measured as described below. 

The alamar Blue assay (Serotec) was used to measure cell activity. The medium was 

removed from the cultures and they were gently rinsed in Earles' balanced salt solution 

(EBSS, Gibco). A1 in 20 dilution of alamar Blue dye in Hanks' balanced salt solution 

(HBSS, Gibco) was prepared and lml of this solution was added to each well. The 

plate was incubated under normal conditions for 20 min. Aliquots (100µl) from each 

well were placed in a 96 well plate and the fluorescence measured at 560nm excitation 

wavelength and 590nm emission wavelength on a cytofluor. The cultures were rinsed 

in sterile PBS and iml of sterile double distilled water was added to each well. Cultures 

were then freeze thawed for subsequent assays. 

Cell number was determined using the fluorochrome bisbenzimidazole (Hoechst 33258, 

Sigma) as described by Rago et al. (1990). DNA standards were prepared from 20µg/ml 

stock solutions of purified calf thymus DNA (Sigma) to give a DNA content of 10,6,5, 

4,3,2,1,0.5 and 0.25 pg/ml per well. Aliquots from cell lysates were placed in 96 

well tissue culture plates. AI in 50 dilution of the dye in THE buffer (10mM Tris, 2M 

NaCI and 1 mM EDTA; pH 7.4) was prepared from a1 mg/ml stock solution and an 

equal volume of this was added the test solutions and standards in the plate. 

Fluorescence was measured immediately at 350nm excitation wavelength and 460nm 

emission wavelength on a cytofluor. A standard curve was prepared and DNA values 

were calculated. 
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3.2.3 The Effect of Silicate Supplementation on Osteoblast Growth and 
Differentiation in Long Term Cell Culture. 

The assays listed above were also carried out on cultures supplemented with 0- 450ppm 

sodium silicate for 2 and 4 days. 

The effect of silicate supplementation (0-100ppm) was measured in the same way for 

cells cultured for longer (7-28 days) periods of time. Alkaline phosphatase activity was 

measured for cultures at 4,7,14,21,25 and 28 days as a measure of cell differentiation. 

The method is described fully in the previous chapter. Briefly, the Granutest kit for 

detection of alkaline phosphatase (ALP) activity (Merck) was used. Equal amounts of 
4-nitrophenylphosphate and cell lysate were added to a 96 well tissue culture plate and 

the amount of 4-nitrophenol was measured at 485nm using an Anthos plate reader using 
620nm as the reference wavelength. 

3.2.4 The Effect of Silicate Supplementation on Osteoblast Mineralisation in 

vitro. 

Long term mineralisation studies were carried out using low concentrations (1,5,10 

and 50ppm) of sodium metasilicate for 4 weeks. HOBs were seeded at 8x104 cells/ml 

and cultured in control medium and medium containing DEX (10"8M) and BGP 

(10mM). Primary human craniofacial cells (CFC) were seeded in parallel experiments 
in growth medium containing DEX and BGP. The cells were seeded at the same density 

as HOBs and were cultured in medium supplemented the range of silicate for 4 weeks. 

Alizarin red S histochemical staining for calcium was carried out on HOB and CFC at 
14,21 and 28 days. The cells were rinsed in TBS, stained with 1% Alizarin red S in 

0.028% NH4OH for 2 min, rinsed and mounted in glycerol/DABCO. They were 

photographed using a Nikon EM camera mounted on a Nikon Diaphot inverted phase 

contrast microscope. 

At 28 days the HOB and CFC cultures were incubated with medium containing lµg/m1 

calcein (Sigma) for 4 hrs and read on a cytofluor at 485nm excitation, 530nm emission. 
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This is a semi-quantitative method for the detection of calcium in bone cultures (Hale 

and Santerre, 2000). Immunofluorescence labelling of calcium with calcein was carried 

out at 28 days (Hale and Santerre, 2000). Cells were treated with culture medium 

containing 5gg/ml calcein overnight, rinsed with PBS and viewed using a Leica TCS 

4D CLSM. The 488nm laser line was used to view the green fluorescence of the calcein 

labelling. The samples were counterstained with PI so the cell nuclei could be visualised 

using the 568nm laser line. 

Statistical analysis of all assays in this section was carried out using a one way analysis 

of variance (ANOVA) with a Tukey-Kramer post test for multiple comparisons. 
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3.3 Results. 

3.3.1 Effect of Silicate Supplementation on Initial Cell Attachment and Growth. 

3.3.1.1 Protein adsorption. 

Protein adsorption to tissue culture plastic was measured using the Lowry assay after 90 

min and 24 hr incubations of silica containing medium. Protein adsorption was higher 

on the surface of wells treated with higher concentrations of silica. The trend was the 

same at 24 hr incubations. Although protein adsorption appeared to be enhanced in 

wells containing silica containing medium the data was not statistically significant. 
Measurement of protein adsorption to control wells showed that silica did not interfere 

with the assay. Figure 3.1 shows protein adsorption to tissue culture plastic from control 

medium and medium containing up to 450ppm silicate. There was no statistically 

significant difference between samples at 90 min or 24 hr. 

Figure 3.1 Protein adsorption to tissue culture plastic from serum containing 
medium (serum free controls have been subtracted) supplemented with a range of silica 
concentrations. Error bars represent standard error of the mean, n=4. 
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Figure 3.2 CLSM images showing the filamentous actin cytoskeleton (green) and 
cell nuclei (red) of HOBs at 90 min (a-d) and 24 hr (e-h) in medium containing 0 (a, e), 
150 (b, f), 250 (c, g) and 350ppm silica (d, h). Cultures supplemented with up to 
150ppm are similar to controls at 90min and 24hr. 250ppm supplemented cultures show 

rings of actin between the cells and the substrate at 90 min. Cells are similar to controls 
at 24 hr. Cells supplemented with 350ppm silica show little actin organisation at 90 min 

or 24 hr. 
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3.3.1.2 Cytoskeletal organisation and vinculin receptor staining. 

Figure 3.2 shows the actin cytoskeleton of the cells at 90 min and 24 hr for a range of 

supplemented cultures. At 90 min unsupplemented osteoblast cultures showed the cells 

starting to spread and were arranged in clusters. Actin fibres arranged cortically in 

rounded cells and stress fibres were seen in the spread cells. Rounded cells did not show 

actin staining. In the supplemented cultures (150 and 250ppm silicate) actin staining 

was similar to that of control cells. Some cells were attached to the thermanox via a 

narrow circular plate of actin arranged cortically at the base of the cell (Figure 3.2c). 

Actin staining was not observed on the 350ppm supplemented cultures at 90 min. By 24 

hr control cultures showed well spread cells with an established cytoskeleton and 

organised stress fibre formation. Thick actin filaments were seen arranged parallel to the 

long axis of the cells. Similar staining was seen in supplemented cultures up to (and 

including) 250ppm silicate. No actin staining was seen in the 350ppm cultures. 

Figure 3.3 CLSM images of HOBs labelled with antibodies to vinculin after 24hr 
cell culture in a range of silica concentrations. Control cells (a) show punctate receptor 
labelling (green) at the edges of cells. Cells treated with 150 (b) and 250ppm (c) were 
similar to controls. Cells treated with 350ppm silicate show no vinculin receptor 
staining (d). Cell nuclei are labelled with propidium iodide (red). 
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Figure 3.3 shows labelling of the vinculin receptor. Punctate receptors were visualised 

on the bottom surface of the control cells at 24 hr. Similar staining was seen for cells 

supplemented with 150 and 250ppm silicate. Receptor staining was absent for 350ppm 

supplemented cultures. 

3.3.1.3 Cell activity and cell number. 

Figure 3.4 shows the cell activity and DNA content of cells supplemented with up to 

150ppm silica. Silicate supplementation did not significantly affect cell activity or cell 

number at 90 min or 24 hr. 
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Figure 3.4 DNA content (a) and cell activity (b) of HOBs grown in medium 
containing 25-150ppm silicate for 90 min and 24 hr. There was no significant difference 
between silicate-containing and control cultures. Error bars represent standard error of 
the mean, n=4. 
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3.3.2 Effect of Silicate Supplementation on Osteoblast Growth and 

Differentiation in Long Term Culture. 

Figure 3.5 shows the effect of sodium silicate supplementation (0-450ppm) on HOB 

cells for 2 and 4 days cell culture. At 48hr cell activity remained at similar levels to 

controls for silicate concentrations of up to 100ppm and then began to fall off at 

amounts greater than 150ppm. Cell activity fell sharply and remained at background 

levels for concentrations of 300 - 450ppm of sodium silicate indicating cell death. DNA 

content analysis showed the same trends as cell activity. HOB cell activity and DNA 

content had increased by 4 days in comparison to 2 day cultures for silicate 

concentrations up to 150ppm. Concentrations above this showed less cell growth than 

at 48hr. 

Figure 3.6 shows the long term effects of silicate supplementation (0-50ppm) for 

timepoints ranging from 4 to 28 days. Alkaline phosphatase activity was significantly 

greater in control cultures than for cultures supplemented with 1-100ppm silicate at 7, 

14,21 and 25 days in some experiments although this was not always the case. When 

ALP activity per cell was calculated for these experiments the data appeared non 

significant. At 28 days differences in ALP activity for supplemented cultures were not 

significantly different to controls. DNA content of control cultures was not significantly 

different to supplemented cultures (1-100ppm silicate) for 7,14,21,25 and 28 days. 
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Figure 3.5 Cell activity (a) and DNA content (b) of HOB cultures supplemented 
with 0-350ppm for 2 and 4 days. Cell death is seen in cultures supplemented with more 
than 300ppm silica. There is no significant reduction in activity or DNA content 
between controls and cells supplemented with less than 100ppm. Cell growth is reduced 
in cultures over 150ppm. (* = p<0.05, ** = p<0.01, *** = p<0.001 with respect to 
control cultures) At 4 days cells supplemented with less than 150ppm show an increase 
in cell growth and activity in comparison with data for 2 days. Silica supplementation 
with amounts above 150ppm show less growth at 4 days than at 2 days. Error bars 
represent standard error of the mean, n=4. 
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Figure 3.6 ALP activity (a) and DNA content (b) of HOBs grown in 0-50ppm 
silicate-supplemented medium for up to 28days. Error bars represent standard error of 
the mean, n=4. (* = p<O. 05, **= p<O. 01, ***= p<O. 001) 

3.3.3 The Effect of Silicate Supplementation on Osteoblast Mineralisation in 

vitro. 

The effect of silica supplementation on HOB mineralisation is shown in figure 3.7. 

Alizarin red staining was not observed in any of the cells where DEX and BGP were not 

included in the growth media. This was true for controls and samples supplemented 

with silica. 
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Figure 3.7 Alizarin red S staining of calcium deposits in 28 day HOB cultures in 
medium (without DEX and BGP) supplemented with 0 (a), I (b), 5(c), 10(d) and 50 (e) 
ppm silicate. 

The percentage of wells containing nodules was increased when the growth medium 

was supplemented with silica in some experiments. At 17 days cell culture 8% of 

control wells contained nodules compared with 12.5% for cultures supplemented with 

lppm silica. By 21 days control cultures contained the same number of nodules as at 17 

days and 47.6% of wells supplemented with lppm silica contained nodules (Table 3.1). 

Control 1 ppm Si 5 ppm Si 50 ppm Si 100ppm Si 

17 days 8% 12.5% 16.6% 12.5% 16.6% 

21 days 8% 47.6% 28.6% 19% 19% 

23 days 58% 75% 71.4% 35.7% 64.3% 

Table 3.1. Percentage of silicate treated wells containing nodules. 

Alizarin red staining of CFCs (with DEX and BGP) is shown in figure 3.8. By 21 days 

the control cultures were stained with alizarin red and the staining in the silica 

containing cultures was more intense than in the controls. Staining intensity was 
increased in all cultures at 28 days and the supplemented cultures were more densely 

stained than controls. Quantitative measurement of the calcium content of the CFC 

cultures using the calcein assay showed that there was no statistically significant 
difference between the calcium content of controls and silica supplemented cultures at 4 

weeks. 
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Figure 3.8 Alizarin red S staining of craniofacial osteoblasts (CFC) supplemented 
with 1-50ppm silica. CFCs grown in control medium for 21 (a) and 28 days (b). (b-e) 
CFCs supplemented with I (b), 5 (c), 10 (d), and 50ppm silica (e) at 21 days. Minimal 

staining is seen in controls and 1 ppm. 5,10 and 50ppm show some staining. Figures 3.8 
(f-j) show the same results after 28 days cell culture. Overall staining is more intense 
than at day 21. Increased staining intensity is seen from controls to 50ppm silica. 
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Figure 3.9 (a) Gallery of CLSM images of calcein labelled mineral in a 28 day CFC 
culture, showing cell nuclei (red) and mineral (green). The mineral is located in the 
same plane as the cells in the extracellular spaces between them. (b) Calcein labelling of 
mineral content of cultures supplemented with 0-50ppm silica for 28 days. Error bars 
represent standard error of the mean, n=4. 
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3.4 Discussion. 

The aim of this work was to investigate the role of silica on osteoblast growth and 

mineralisation in vitro. Previous work has shown that silica is present in the 

mitochondria of the osteoblast and is localised in areas of active calcification in vivo. It 

has also been revealed as a structural component in glycosaminoglycans (GAG) and 
increases the amount of GAG and collagen formed in bone (Carlisle 1986). HOB 

cultures were supplemented with up to 450ppm sodium metasilicate (Na2Si03) in order 

to determine any beneficial/adverse affects of silica on the osteoblast. This compound 

was the same as that used in the initial experiments that established the essentiality of 

silicon for normal mineralisation of rat and chick bones (Schwartz and Milne, 1972; 

Carlisle, 1972). 

Protein adsorption to tissue culture plastic from silica-containing medium showed that 

silica had no significant effect on the amount of protein adsorbed. There was a trend for 

increased adsorption with higher silica concentrations but this was not significant. 

Similarly, there was no obvious effect of silica supplementation on cell spreading on 

tissue culture plastic in osteoblast cultures supplemented with less than 300ppm silicate 

for 90min and 24hr. DNA synthesis and cell activity were also similar with no 

statistically significant difference between cells supplemented with up to 150ppm 

compared to control cultures at 90min and 4hr. 

In contrast, cells supplemented with more than 300ppm silica showed a lack of 

cytoskeleton formation at 90min which was not improved after 24hr in culture. The 

vinculin receptor was absent at 24hr in these cultures also. This posed a question as to 

the viability of the cells in this concentration. Viability was assessed using the DNA and 

alamar blue assays for cultures supplemented with up to 350ppm silicate for 48hr and 4 

days. DNA and AB assays confirmed cell death within 48hr for cells supplemented with 

300ppm silicate. A cytotoxic effect of silicate solutions on bone cells has not been 

reported previously. The response of the dying HOBs to the silicate solution followed a 

distinct pattern of events and this will be further investigated in the next chapter. 

It is interesting to note that while silica was seen to cause a statistically significant 

reduction in cell activity and number, the cytoskeletal profile of the cells and receptor 
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staining was similar for amounts up to 300ppm. Similarly cell morphology in culture 

was not noticeably affected by amounts smaller than 300ppm. Supplementation with 

concentrations above 150ppm caused cell activity to be markedly reduced at 2 days. 

Cell activity and number was reduced by 4 days in comparison to 2 days. This result 

suggests that prolonged contact with these concentrations in the long-term may be 

harmful without necessarily causing cell death. Silicate supplementation had little effect 

on HOBs at lower concentrations over short-term culture periods and concentrations up 

to 150ppm had no discernible adverse or beneficial effect on cell activity or DNA 

synthesis in the first 4 days. The fact that silica forms polysilicic acid oligomers at 

neutral pH in concentrations above-100ppm may contribute to the cell death seen 
(Birchall, 1995). 

Attention was then switched to lower concentrations over longer time periods to 

ascertain whether these had any beneficial effects on HOBs. Some long-term 

experiments showed that silicate, although not cytotoxic, caused a significantly reduced 

level of ALP in osteoblast cultures in the range 1-100ppm silicate over a4 week culture 

period. DNA synthesis was not affected. This finding seems to suggest that even 

minuscule amounts of silica may affect osteoblast differentiation. The reason for this, or 

the mechanism by which it occurred is unclear. The DNA and ALP assays may not be 

sensitive enough to reliably detect subtle influences of silica on osteoblast 
differentiation and mineralisation. It is difficult to get reproducible results over long 

time periods as cell multilayers and nodules are difficult to disperse evenly. A potential 

area for further study would be to isolate the effect of silica on the osteoblast at a 

molecular level. 

In some experiments very low amounts of silicate (1-5ppm) appeared to increase the 

rate and number of nodules formed in osteoblast cultures without the addition of DEX 

and BGP. The amount of mineral formed by HOB cultures was not affected by silicate 

supplementation however. Alizarin red S staining was negative up to 28 days cell 

culture. Semi-quantitative analysis of calcein labelling demonstrated background levels 

of mineral in the cultures. Considering that increased ALP was not the cause of the 

increased numbers of nodules, and that silica has been shown to increase the collagen 

content if bones in vitro, a possible explanation for this result could be a stimulatory 

effect of silica on collagen formation. Carlisle and Suchill (1993) demonstrated a 
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relationship between silica and ascorbate in cartilage. Silica supplementation caused an 

increase in the amount of hexosamine, proline and total protein only in the presence of 

ascorbate. Ascorbate is essential for collagen formation in vitro and this further supports 

the hypothesis that silica affects collagen formation. Collagen was not measured in this 

work and this was in part due to the fact that the assay employed was not successful due 

to interference from the constituents of the medium. The assay was not sensitive enough 

to detect the small amount of collagen produced by HOBs. A highly sensitive means of 

detecting changes in collagen production by bone cells in response to silica would be 

invaluable in elucidating the effect of silica on the osteoblast. 

When DEX and BGP were added to the growth medium as promoters of mineralisation 

silica appeared to have a positive effect on mineralisation. Alizarin red S staining of 21 

day craniofacial osteoblast (CFC) cultures supplemented with DEX and BGP showed 

that staining was more intense in cultures supplemented with 1-50ppm silicate than in 

controls. A similar picture was seen at 28 days. The findings from these experiments 

suggest that silica caused an increase in the amount of mineral formed in osteoblast 

cultures when the mineral promoters DEX and BGP are used. The fact that silica 

appeared to increase the amount of mineral in CFCs may be significant as they produce 

abundant collagen (unpublished observations) so more sites for the nucleation of 

mineral may be present. Quantification of the mineral using the calcein assay showed no 

significant difference in the quantity of mineral however. This may be attributable to the 

lack of sensitivity of the assay or the fact that the differences were not as striking at 28 

days when control cultures had caught up. 

The present study isolates the effect of silica on the osteoblast. The main findings were 

a potential increase in nodule formation with a concomitant decrease in AP activity. 
Osteocalcin was not measured. This was in agreement with the findings of Hench 

(Hench, 2001; Hench et al, 2001; Xynos et al. 2000; Hench et al, 2000) using Bioglass- 

a material comprising Si, Na and P. The findings presented in this chapter suggest that 

silica alone may be the main factor responsible for this response. The findings reported 
by Keeting et al. (1992) suggesting the potential of silica-containing compounds to 

mediate autocrine activity in HOBs secretion of TGF-ß demonstrates that investigations 

into the molecular mechanisms potentially affected by silica are warranted. 
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Additionally, the findings by Keeting et al, (1992) that the increased proliferation in the 

presence of Zeolite A could mainly be accounted for by the silicic acid content of the 

material, together with the results of this chapter, demonstrate that silicic acid has the 

potential to affect osteoblast cell behaviour. 

In summary, the findings presented here show that silica is not capable of inducing 

mineral formation in cultures without DEX and BGP but may affect the formation of 

nodules. Craniofacial osteoblast cultures supplemented with DEX and BGP appeared to 

form more mineral with increasing amounts of silica supplementation. There is some 

evidence that silica may enhance osteoblast mineralisation in vitro, but the results were 

variable. This was disappointing but the fact that such trace amounts of silica appeared 

to have demonstrable effects on ALP, rate and number of nodules formed and osteoblast 

mineralisation is encouraging and should provoke further research. The use of 

specialised techniques to assess the interaction of silica with collagen and non- 

collagenous proteins would aid this research significantly. These should include 

fluorescence techniques to determine the interaction of silicates with osteoblasts and 

proteins (Cladera et al, 2000) and molecular and genetic techniques capable of 

identifying subtle effects of trace amounts of silica on the osteoblast (Xynos et al, 

2001). 
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Silicate Toxicity. 



Chapter 4 

4.1 Introduction. 

One of the principle goals of the project is to incorporate silica into biomaterials. It is 

necessary to address potential problems of toxicity. Cell death in relation to 
biomaterials is underrepresented in the literature (Gough, 1999). Surfaces which are 

seen as cytotoxic are not generally used as biomaterials for obvious reasons, however 

products of materials may contribute to the failure of an implant, such as degradation 

products including wear particles (Stea et al., 2000a) and ions leached into the tissue 

surrounding an implant (Shettlemore and Bundy, 1999). For these reasons it is 

important to follow up any sign of toxicity to osteoblasts from the potential products of 

materials which are implanted in the body in addition to any beneficial effects. In the 

previous chapter cell death was seen in cultures supplemented with more than 300ppm 

silica as sodium metasilicate 

Silica toxicity is not a new phenomenon and industrial exposure to dust containing 

respirable (0.5-5µm) silica particles is known to cause silicosis. This is a type of 

progressive, irreversible pneumoconiosis which has cytotoxic and fibrogenic effects. 
Inhaled silica particles are engulfed by alveolar macrophages and subsequently 

adsorbed onto cell membrane systems causing their rupture and cell death (Allison et 

al., 1977). Macrophages damaged by this process release factors (such as collagenase) 

which stimulate fibroblasts to produce collagen (Burrel and Anderson, 1973), and 
fibronectin (Driscoll et al., 1991; Driscoll, 1990). The amount of fibrogenesis is dose 

dependent, with more collagen formation resulting from lower doses of silica. Higher 

doses of silica cause macrophage death and consequently, less fibrogenesis (Allison, 

1977). The toxicity of the silica particles has been related to their positive charge 
(Bagchi, 1992). Oxidative stress has been implicated as the mediator of silica induced 

toxicity to alveolar macrophages (Zhang et al., 2000). 

Silicic acid reacts with biological membranes and can alter permeability (Dobbie, 

1982). Inhalation of silica particles causes silicic acid release in lung tissue, as a result 
of the partial solubilisation of the particles, causing denaturation of protein (Dobbie, 
1982). The fact that adherence of the particulate silica to biological membranes in 

Allisons studies was effected by a layer of solubilised silica lends some weight to the 
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theory that silicic acid may be cytotoxic. Silicic acid has been shown to be the main 

pathogenic factor in the toxicity of silicate dusts (Singh et al., 1985). 

Industrial exposure to silica appears to affect other systems in the body. Intravenous 

administration of particulate silica exacerbates herpetic hepatitis in mice (Irie et al., 

1998). Patients with silicosis were noted to have renal problems implicating silica in 

renal nephropathy (Bolton et al., 1981; Saldhana et al., 1975). A survey of workers 

exposed to silica for less than 2 years showed subclinical signs of kidney dysfunction in 

the absence of silicosis (Hotz et al., 1995). A recent study of the medical records of 

ceramic workers showed a threefold increase in end stage renal disease compared to the 

expected amount and that this was increased over in subjects who worked in the 

industry in the long term (Rapiti et al., 1999). 

Renal damage has also been seen after ingestion of certain silica containing compounds 

in experimental animals. Renal damage and urinary stone formation has been observed 

in dogs and humans treated with magnesium trisilicate, an antacid, over long periods 

(Newberne and Wilson, 1970; Dobbie, 1986). Kidney damage may also result from 

treatment with sodium silicate (Newbeme et al., 1970) which is used to treat 

tuberculosis and atherosclerosis (Dobbie et al., 1982a). In a study by Newberne and 

Wilson (1970) a variety of silica containing compounds were fed to dogs and rats over a 

period of 4 weeks. Renal lesions were observed in the dogs which had been fed sodium 

silicate or magnesium trisilicate but not in those fed silicon dioxide or aluminum 

silicate. No lesions were observed in the rats. The study concluded that, in view of the 

large number of pharmaceutical and food products containing these silica compounds, 

their toxicity warranted further investigation. Dobbie and Smith (1982a) found renal 

lesions in guinea pigs treated with magnesium trisilicate for 4 months. This study also 

investigated the link between the silica content of drinking water and a condition known 

as Balkan nephropathy where the diffusion of silicates from the granite in the area into 

drinking water is associated with a distinct nephrotoxic effect. 

Crystalline silica has been accepted as a carcinogen (Lim et ad., 1999; Bonn and 

Driscoll, 1996) but this is drawn into question by Hessel et al. (2000) who state that 

current research does not demonstrate a causal effect between lung cancer and exposure 
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to crystalline silica in humans. Although silicosis and other diseases relating to 

exposure to particulate silica is well documented, there is scant information in the 

literature concerning toxicity of cells to silica in solution. The eye irritation potential of 

a range of soluble sodium silicates has been assessed using an in vitro rabbit enucleated 

eye test (York et al., 1994). The nature of the route and form in which silica is absorbed 

in the intestine is also unclear. The effect of silica, in any form, on the osteoblast has 

not been reported. 

Dietary silica supplementation in experimental animals has always been considered 
beneficial to bone in terms of the amount and rate of bone formed (Carlisle, 1972; 

Schwartz and Milne, 1972). These studies used the same silica compound, sodium 

metasilicate, as was used in the previous chapter. The fact that supplementation of bone 

cell cultures with concentrations of more than 300ppm silica caused cell death is the 

first evidence that silica may be toxic to bone cells and warrants further investigation. 

The aim of this chapter is to establish the method of cell death that occurs in osteoblasts 

supplemented with toxic levels of silica. The extent of cell death will be investigated, 

along with the ability of osteoblasts to recover from toxic levels of supplementation. 

This chapter also aims to ascertain whether silica toxicity is a phenomenon exclusive to 

osteoblasts or whether other cell types are affected in vitro. Finally, an attempt will be 

made to elucidate the cellular mechanism underlying silica toxicity. 
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4.2 Materials and Methods. 

4.2.1 Preparation of Silica Containing Medium. 

Silica medium was prepared as in the previous chapter. Briefly, double strength 

complete Dulbeccos Modified Eagles Medium (DMEM) was prepared from a lOx 

concentrate (Gibco). A 900ppm, buffered, silica solution was prepared from a 1000ppm 

stock solution of sodium metasilicate (BDH). The final 450ppm solution was made by 

combining equal volumes of media and silica solution. 

4.2.2 Morphology of Cell Death. 

Human osteoblasts (HOBs) were seeded onto Thermanox discs (Nunc) at a density of 

8x105 cells/ml in complete medium or medium supplemented with 450ppm sodium 

metasilicate. The process of cell death was recorded over 48hr using a Nikon Diaphot 

inverted phase contrast microscope with a Nikon EM camera. The presence of 

apoptotic cells was determined at 90min, 3,6,12,24 and 48hr. Cells were rinsed in 

sterile PBS and fixed using a 50% ethanol solution with 1% acetic acid and stained with 

either propidium iodide (0.01mg/ml, Sigma) or Hoechst 33258 (0.2 mg/ml, Sigma). 

Propidium iodide stained samples were viewed with a Leica TCS CLSM using the 

568nm laser line. Hoechst 33258 stained samples were viewed under UV light using a 

Nikon UFX-DXII fluorescence microscope. 

4.2.3 Cell death of Attached Cells in Monolayer Culture. 

The effect of treating cells in monolayer culture with silicate was investigated to 

ascertain whether established cells, which have attached and spread are susceptible to 

silicate toxicity in the same way as cells, which have been seeded directly into silicate 

containing medium. HOBs were seeded at a density of 8x104 cells/ml in 24 well tissue 

culture plates in control medium for 48 hr. The medium was then replaced with medium 

supplemented with a range of silica concentrations (0-450ppm) for a further 48 hr. Cell 

activity was measured at 48 hr (before addition of the silicate-containing medium) and 

at 4 days using the alamar blue assay. Cell number was assessed at 4 days using the 
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DNA assay as previously described. Cells were photographed during these experiments 

using a Nikon EM camera mounted on a Nikon TMS phase contrast microscope. 

Propidium iodide staining was used to visualise the nuclear morphology of the cells. 
For these experiments, HOBs were seeded on thermanox discs at a density of 8x104 

cells/ml in control medium. for 24 hr after which time the medium was replaced with 

silicate containing (450ppm) medium. Cells were fixed and stained as described 

previously at 24 hr (control), 30hr (6 hr post supplementation), 38hr (8 hr post 

supplementation)c and 48 hr (24 hr post supplementation). 

4.2.4 Analysis of Membrane Integrity. 

Cells treated with 450ppm sodium metasilicate for 90 min and 4 hrs were stained with 
the trypan blue exclusion dye (Gibco) which is only taken up by dead cells with 
damaged membranes. Duplicate wells were fixed in 3% glutaraldehyde and stained with 

the dye as a positive control. 

4.2.5 Recovery of HOBS from Toxic Levels of Slicate Supplementation. 

The ability of osteoblasts to recover from toxic levels of silicate was measured at 48 hr. 

HOBs were incubated in 450ppm silicate for various times (90 min, 3 hr, and 6 hr) after 

which they were re-fed with control medium for the remainder of the 48 hr period. 
HOBs seeded in non-supplemented medium for 48 hr were used as a control. Cell 

activity was measured at 48 hr using the alamar Blue assay. Total DNA was measured 

using the Hoechst 33258 dye. All cultures were examined by phase contrast microscopy 

and photographed at 48 hr total culture time. 

4.2.6 Effect of Silicate Supplementation on Different Cell Types. 

The succeptibility of other cell types to silicate toxicity was tested using a murine 
fibroblast cell line (3T3-L1, Journal of Immunology, (1975) 114,898) and a munne 

macrophage cell line (J774, Cell, (1974)1,113). The cells were maintained in culture in 

DMEM supplemented with 0.02M L glutamine, 1% non essential amino acids and 100 
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units/ml Penicillin/streptomycin. The serum used was 10% FBS for 3T3 cells and 10% 

new born calf serum for J774 cells. These were seeded at a density of 8x104 cells/ml in 

24 well tissue culture plates and incubated in control medium or medium supplemented 

with 450ppm sodium metasilicate for 48 hours. The cell morpology was recorded after 

48 hr using phase contrast microscopy. 

Cell activity was measured over a range of silica concentrations (0-450ppm) using the 

alamar Blue assay for 3T3s. Macrophage J774 cells were not assayed as macrophages 

may interfere with the alamar Blue assay by producing oxidising agents. The 

proliferation of J774 and 3T3 cells was determined by DNA content analysis using the 

Hoechst 33258 assay. 

Statistical analysis of all assays in this section was carried out using a one way analysis 

of variance (ANOVA) with a Tukey-Kramer post test for multiple comparisons. 
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4.3 Results. 

4.3.1 Morphology of Cell Death. 

Figure 4.1 records the process of cell death of HOBS supplemented with 450ppm 

silicate using phase contrast microscopy. Osteoblasts in control medium had attached 
to tissue culture plastic by 90 min after seeding and had started to spread. In contrast, 

supplemented HOBs attached but remained rounded. This effect was more marked at 4 

hr. By 24 hr after seeding supplemented cells had begun to detach from the surface, 

were smaller than control cells and were disc shaped. Over the next 24hr most of the 

cells fragmented into small particles with only few adherent, spread cells remaining. 

HOBs supplemented with 450ppm silicate solution were stained with PI or Hoechst to 

ascertain the mechanism of cell death. This was confirmed as apoptosis using 
fluorescence microscopy and confocal laser scanning microscopy. The morphological 
features used to identify apoptotic cells were condensed nuclear chromatin forming 

characteristic caps around the nuclear membrane, nucear blebbing and the formation of 

apoptotic bodies (fragmented packets of nuclear material). Apoptotic cells were seen 

using fluorescence microscopy of Hoechst stained cells after just 90 min in culture and 
by 4 hr the majority of supplemented cells were shown to be apoptotic (Figure 4.2). 

CLSM of PI stained cells showed similar, more convincing results (figure 4.3). CLSM 

was identified as a useful technique for confirming apoptosis as the ability to optically 

section the cells resulted in at least one definitive apoptotic image of each cell where 

conventional microscopy yielded a less certain result (figure 4.4). 
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Figure 4.1 Phase contrast micrographs of cell death of HOBs supplemented with 
450ppm sodium silicate for 90 min (b) 4 hr (d), 24 hr (f) and 48 hr (h) with 
corresponding control cultures (a, c, e, g). Control cultures have attached and started to 
spread by 90 min and form a confluent layer by 48 hr. Silicate supplemented HOBS 
have attached but not spread at 90 min (b). They remain rounded at 4 hr (d). The cells 
appear disc shaped and detach by 24 hr (f) Only cell fragments remain by 48 hr (h). 
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A" 

Figure 4.2 Fluorescence images of HOBs stained with Hoechst 33258 (a) Control 
24 hr culture showing normal nuclei and a mitotic spindle (arrow). (b) Cells seeded in 
450ppm HOBs after 90 min in culture. Some apoptotic cells are seen (arrows). (c) After 
4 hrs some cells are apoptotic (arrows). (d) At 24 hr most cells are apoptotic. 
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Figure 4.3 CLSM images of HOBS seeded in control medium (a-c) and medium 
supplemented with 450ppm silicate (d-f). Nuclei of control and treated cells appear 
similar at 90 min (a, b). At 4 hr many treated cells are apoptotic (d). By 24 hr almost all 
cells are in the later stages of apoptosis (f). 
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Figure 4.4 CLSM images of cells treated with 450ppm for 24hr and stained with Pl. 
(a) Maximum intensity projection of all optical slices through the cells comparable to 
images obtained using conventional epifluorescence microscopy. Some cells cannot be 
definitively identified as apoptotic. (b) Gallery of optical slices through apoptotic cells 
(1 µm apart). Each cell can be identified as apoptotic in at least 1 slice (arrows). 
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4.3.2 Cells in Monolayer Culture. 

The profile for cell activity as measured by alamar blue reduction was similar whether 

cells were seeded in silicate or established in monolayer culture first. Cell activity for 

cultures at 48hrs (before the addition of silicate) and at 4 days (48hr post silicate 

treatment) show that the profile of cell activity is similar to cells seeded directly in 

silicate for 48hr. (Figure 4.5a). DNA content analysis was also similar for samples 48hr 

after the addition of silicate whether the cells were seeded directly in medium 

containing silicate or allowed to become confluent first (figure 4.5b). 
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Figure 4.5 (a) Cell activity of HOBS seeded in silicate for 48 hr or seeded in control 
medium for 48 hr and silicate-containing medium for a further 48 hr. (b) DNA content 
of cultures at 4 days. The cells were grown in standard medium for 48 hrs followed by 

silicate supplemented medium for 48 hrs. Error bars represent standard error of the 
mean, n=4. 
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The appearance of the cells during the period after silica supplementation is shown in 

figure 4.6. Phase contrast microscopy shows that the cells were confluent at 34hr. Six 

hours after the addition of silicate containing medium the cells remained attached and 

spread but the medium contained particulate matter. The cells appeared to have 

fragmented after a total of 48hrs in silicate containing medium. 

Figure 4.7 shows the nuclear morphology of cells seeded in control medium for 24 hr 

prior to silicate supplementation for a further 6,8 and 24 hr. A confluent layer of HOBs 

had formed by 24 hr culture in normal medium (figure 4.7a). At this point the medium 

was replaced with silicate containing medium. Figures 4b-d show the propidium iodide 

staining of the resulting cell death 6,8 and 24 hr later. Some apoptotic cells were seen 
in the 6 and 8hr supplemented cultures. By 24hr post silicate supplementation most of 

the cells were apoptotic and the majority were in the advanced stages of apoptosis with 

apoptotic bodies clearly identified. 

AB 

50µm 

Figure 4.6 (a) HOBs seeded in control medium for 34hr. (b) HOBs seeded in 
control medium for 24hr followed by 450ppm silicate for 6hr. Note the particulate 
matter in the background. 
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Figure 4.7 CLSM of HOBs stained with propidium iodide. Cells were grown in 
control medium for 24 hr (a) after which the medium was replaced with medium 
containing 450ppm silicate for a further 6 (b), 8 (c) and 24 hr (d). Apoptotic nuclei were 
seen in all supplemented cultures (arrows). Almost all of the cells grown in 
supplemented medium for 24 hr were apoptotic and many had fragmented into 
apoptotic bodies (*). 

4.3.3 Analysis of Membrane Damage. 

Figure 4.8 shows phase contrast images of HOBs seeded in control and silicate- 

containing medium for 90min and 4hr. No membrane damage was seen in cells which 

remained attached to the tissue culture plastic according to the trypan blue method. 
Cells which were floating in the medium were stained blue. 
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Figure 4.8 Phase contrast micrographs of HOBs stained with trypan blue with and 
without silicate treatment for 90 min (a-d) and 4 hr (e-h). Figure (a) shows HOBs at 
90min culture stained with trypan blue. The dye is not taken up by the cells. (b) HOBs 
stained with trypan blue after 90 min treatment with 450ppm silicate. Cells are 
unstained. Figures (c) and (d) show the blue cell staining of the corresponding positive 
controls which have been fixed prior to trypan blue staining. Figures (e) to (h) show the 
same set of cells at 4 hr. 
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4.3.4 Cell Recovery. 

In order to test whether the toxic effect of silicate was reversible, a series of cultures 

were set up in which all cells, except controls, were seeded in medium containing 
450ppm of silicate. HOBs were then re-fed with control medium either at 90 min, 3 hr 

or 6hr and cell tests were performed at 48 hr. Although many cells were washed off the 

thermanox discs during re-feeding, the morphology at 48hr of those that had remained 

was similar to those of control 48 hr cultures for 90min, 3hr and 6hr (figure 4.9). Re-fed 

cultures exhibited higher cell activity than those incubated for 48 hr in 450ppm silicate 

(figure 4.10a), indicating that these cells have some capacity to recover. However, 

activity was significantly lower (p<0.001) than control cultures as measured by alamar 

Blue reduction. DNA content was much lower than controls for re-fed cultures also 
(figure 4.10b p<0.001). When the amount of activity per cell was calculated (by 

dividing alamar blue reduction by total DNA) it was observed that for 90 min and 3hr 

re-feeds activity per cell was similar to control values even though fewer cells were 

present (figure 4.10c). Cells re-fed at 6 hr had a reduced capacity for recovery but this 

was not statistically significant. 
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Figure 4.9 Phase contrast images of HOB cells at 48 hr cell culture. (a) HOBs 
grown in control medium for 48 hr. (b) HOBs seeded in medium supplemented with 
450ppm sodium silicate for 90min which was then replaced with control medium for 
the remainder of the 48 hr culture period. (c) HOBs seeded in 450ppm silicate for 4 hr 
and re-fed with control medium. (d) HOBs seeded in 450ppm silicate and re-fed with 
control medium after 24 hr. (e) HOBs seeded in 450ppm silicate for 48 hr. 
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Figure 4.10 Cell activity (a) and DNA content (b) of HOBs seeded in 450ppm silica 
which was replaced with control medium at 90 min, 3 hr and 6 hr. Cell activity and cell 
number are markedly reduced for 90 min, 3 hr and 6 hr (p< 0.001). (c) Cell activity 
expressed per cell (AB/DNA) of HOBs. Although fewer cells are present the activity 
per cell is similar and there was no statistically significant difference between samples 
for all the treated samples. Cells treated with 450ppm silicate for 48 hr were 
significantly lower that controls (p<0.001). Error bars represent standard error of the 
mean, n=4. 

96 



Chapter 4 

4.3.7 Effect of Silicate Supplementation Different Cell Types. 

Other cell types were grown in medium supplemented with a range of sodium silicate 
concentrations ranging from 0 -450ppm to ascertain whether the toxic effect of high 

concentrations of silica were specific to osteoblasts. These were murine fibroblasts 
(3T3) and murine macrophages (J774). Both cell types cells exhibited the same pattern 

of reduced cell growth and eventual cell death with increasing silicate concentrations. 
This could be seen by observation of the cultures using phase contrast microscopy 
(figure 4.11). Alamar Blue reduction was minimal in cultures supplemented with 
450ppm silicate for 3T3 cells (figure 4.12c). The alamar blue assay was not carried out 
on J774 cultures because macrophages produce oxidising agents which interfere with 
the assay. Total DNA for both cell lines was similar after 48 hr (figure 4.12a, b). 

Figure 4.11 Phase contrast micrographs of 3T3 fibroblasts (a, b) and J774 
macrophage cell lines in control medium (a, c) and medium supplemented with 450ppm 
silicate (b, d) after 24 hr. 
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Figure 4.12 Total DNA content for J774 (a) and 3T3-L1 (b) cell lines 
supplemented with up to 450ppm silicate for 48 hr. (c) Activity of 3T3-L1 cells 
measured by Alamar Blue reduction after 48 hr supplementation with up to 
450ppm silicate. Error bars represent standard error of the mean, n=4. 
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4.4 Discussion. 

HOB cultures were supplemented with up to 450ppm in order to investigate the nature 

of the cell death seen in the previous chapter when osteoblast cultures were exposed to 

concentrations >300ppm. Sodium metasilicate was used in the initial experiments 

which established the essentiality of silicon for normal mineralisation of rat and chick 
bones (Schwartz and Milne, 1972; Carlisle, 1972). 

The response of HOBs to the silicate solution followed a distinct pattern of events. 
Cells attached to the tissue culture plastic but remained rounded, then detached and 
fragmented. The use of fluorescent dyes to stain nuclei confirmed that the mechanism 

of cell death was apoptosis. A cytotoxic effect of silicates inducing apoptosis in 

cultured cells has never previously been demonstrated. 

Apoptosis can be defined as a series of biochemical processes which achieve the non- 

inflammatory destruction of the cell (Gottleib, 2000). It is a tightly controlled process 

which happens in response to both cell insult and as a normal part of tissue 

development where cells decide whether to undergo division or cell death (Wang and 
Wang 1999a; Hetts, 1998). In this way organisms control developmental plasticity and 
homeostasis (Wang and Wang, 1999a). Dysregulation of apoptosis is associated with 

the development of disease states such as cancer, autoimmunity, neurodegenerationn 

and heart disease (Hefts, 1998). Understanding the apoptotic process is important as 

manipulation of apoptosis, whether by enhancing or supression may allow treatment in 

disease (Wang and Wang, 1999b). The entire energy dependent process happens within 

the confines of the cell membrane so that the cell contents are not released into the 

environment (Hefts, 1998). The other common form of cell death is necrosis which 

generally occurs after tissue injury. In this case cell organelles and energy levels are 

compromised (Nicotera et al., 1999). Apoptotic cells are characterised morphologically 
by clumping of cellular DNA into cap-like aggregates and membrane blebbing leading 

to the formation of apoptotic bodies. These are cleared by phagocytic cells. The body of 

literature that exists on apoptosis is vast, and beyond the scope of this thesis but there 

are many recent reviews in the literature (Gottleib, 2000; Nicotera et al., 1999; Wang 

and Wang, 1999a, b; Hefts 1998). 
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Although the level of silicate ingested may be high, the level of silica absorbed in the 

small intestine is likely to be small as the amount of silica in serum is consistently the 

range 1-5ppm (Dobbie and Smith, 1982b; Carlisle, 1974). It is unlikely therefore, that 

the levels of silicate used in these studies would be found in the body under normal 

circumstances. The use of silicate based antacids and artificial silica based implants 

may however be cause for concern. 

Because cell attachment and spreading are clearly affected by toxic levels of silica 

supplementation there may be implications for the recruitment of osteoblasts to an 
implanted, silica containing, biomaterial surface. Considering the concentration of silica 

required to induce apoptosis is small, it is not unreasonable to suppose that silica- 

containing biomaterials could conceivably release these amounts into the tissues 

immediately surrounding an implant. The silicic acid release characteristics of existing 

silica-containing biomaterials in vitro or in vivo have not been reported but the 

possibility of medical implants and devices leaching small quantities cannot be 

overlooked. Silicic acid release is associated with the formation of a calcium phosphate 

layer on implant surfaces in a simulated body fluid in vitro which encourages the 

formation of a strong attachment between silica-containing implants and bone in vivo 

(Hench et al., 1971). A relationship between silicic acid and the osteoblast, beneficial or 

otherwise, has never been previously been demonstrated. 

The mechanism of apoptosis induced by silica seems to involve direct interaction 

between the silica particles and cell and lysosomal membranes (Kane et al., 1985, Kane 

et al., 1980). The trypan blue exclusion dye was used in our studies to assess whether 

the cell membrane integrity was compromised during apoptosis. There was no evidence 

to suggest that membrane damage was involved in apoptotic process. 

Few studies have examined the induction of apoptosis by silica. Those that have, used 

particulate silica and none to date have used bone cells. Particulate silica can induce 

apoptosis and this has been shown in vitro (using A459 bronchial epithelial cancer cell 
line) and in vivo using leucocytes from bronchiolar lavage (Lim et al. 1999). Murine 

resident peritoneal macrophages have been studied by Sarih et al., (1993). In this study 

silica particles caused apoptosis in adherent peritoneal murine macrophages at doses of 
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>50µg/ml using gel electrophoresis and fluorescence labelling with DAPI. Apoptotic 

cells were seen at 4hr and apoptotic bodies were seen at 20hr indicating that the process 

was rapid. The apoptosis seen in the present study followed a similar timescale to the 

A459 cells. A connection between the toxicity of siliceous dust and silicic acid has been 

theorised (Dobbie, 1982). Whether the apoptosis by cells exposed to silicic acid and 

particulate silica is not known but if so, it may provide an insight into the relevance of 

silicic acid in the development of silicosis. 

While it is useful to use the cell culture model to investigate the effects of single ions 

and molecules on cells, this is not always directly relevant to the in vivo situation. For 

this reason the response of established osteoblasts in monolayer culture may be more in 

keeping with events at an established interface between host bone tissue and an 
implanted device containing silica. In this case attached, spread cells underwent 

apoptosis and what appeared to be cell fragmentation shortly after coming into contact 

with toxic levels of silica. Alterations to established cellular cytoskeletal integrity and 

cell permeability were not investigated here but would be useful in determining the 

mechanisms underlying cell death. When considering the potential cytotoxic effects of 

silica containing biomaterials, it must be remembered that these systems are continually 
bathed in body fluids and that the levels of silica in the region may be in fact very low. 

Silica containing biomaterials have been used successfully as implants for many years 

with few reported cytotoxic effects. A study by Nagase et al. (1992) implicated silica- 

containing CaP glasses as highly cytotoxic by injecting pulverised samples into the 

peritoneal cavity in mice. It was suggested that the effects seen were a result of 
dissolved silica ions. This study was subsequently highly criticised by Andersson 

(1993) who argued that increased phosphate release from the silica containing materials 

was responsible. 

Sarih et al. (1993) showed that although. apoptosis can generally be reversed by LPS 

this was not the case for silica induced apoptosis. The toxic effects were reversible 

when the silicate medium was replaced with control medium within a certain time. 

Around half of the cells recovered when the medium was replaced with control medium 

within 6hr. These cells were as active as the control cells. Whether silica induced 
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apoptosis could be protected against was not investigated but this would be of interest 

in future studies. 

It is interesting to note that osteoblasts are susceptible to apoptosis after exposure to 

relatively low concentrations of silica and that the effect is not confined to primary 

cultures but also osteoblast cell lines. Indeed the same characteristics of cell death were 

seen in other connective tissue cell types including murine fibroblast (3T3) and 

macrophage (J774) cells. This implies that silicate induced toxicity is wide ranging for 

human and animal cell cultures. In the event of an inflammatory response following 

implantation of a biomedical device it is likely that macrophages would be recruited to 

the area so it would be interesting to investigate whether silica release at an implant site 

was cytotoxic or beneficial. Certainly cell death which confined the degradation 

products to within the cell membrane may be more desirable. 

Particulate silica as an inducer of apoptosis is now being used to further investigate the 

molecular biology of apoptosis. For example Hamilton et al. (2000) used silica induced 

apoptosis of macrophages to show that macrophage apoptosis is mediated by a 

scavenger receptor SR-A II. The same group showed that amorphous silica had no 

significant apoptotic potential. (lyer et al., 1996). Other work uses particulate silica to 

deplete macrophages so that the underlying conditions of disease can be simulated and 

the effect of drugs on these can be compared with activated macrophages (Henry et al., 

1999; Irie et al., 1998). Other work has shown that for macrophages in vitro, particle 
(ceramic and polyethylene) induced apoptosis is size and concentration dependent 

rather than the composition (Catelas et al., 1999). There is certainly potential to use 

sodium metasilicate as an apoptosis inducer for similar experiments. Use of a silica 

solution instead of particulates would be a cleaner system to use and would further the 

understanding of the apoptotic process in macrophages and other cell types. 

There is little in the literature on osteoblasts and apoptosis in general. Meleti et al. 
2000, showed that inorganic phosphate activates osteoblast apoptosis which may be 

important in bone turnover and in understanding disease of bone turnover. Osteoblast 

apoptosis can be prevented by treatment with PTH (Jilka et al., 1999). Glucocorticoid 
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has been reported to increase (Weinstein et al., 1998; 1997) and inhibit (Nakashima et 

al., 1998) osteoblast apoptosis. 

Information about osteoblast apoptosis is scant specifically in relation to biomaterials 

(Gough, 1999). Recent studies examining osteoblast apoptosis in relation to 

biomaterials include the study of metal alloy particles (Massari et at, 2000) and HA 

wear particles (Liu et al., 1999), Stea et al. (2000b) studied retrieved implants and 

found increased apoptosis in areas near wear debris from metal. Phagocytosis of 

titanium particles by osteoblasts in vitro led to apoptosis (Pioletti et al., 1999). Gough 

and Downes have investigated osteoblast apoptosis on a range of polymeric 
biomaterials (in press). As the field of biomaterials moves toward tissue engineering of 

devices control of cell function becomes increasingly important (van Kooten et al., 
2000). 

Recent studies have shown an increase in the number of osteoblasts undergoing 

apoptosis when cultured on Bioglass 45S5 (Hench, 2001; Hench et at, 2000; Xynos et 

al, 2000). This was related to increased numbers of cells undergoing mitosis from other 

osteoblasts in the same cultures. Osteoblast grown on tissue culture plastic had a low 

incidence of apoptosis and the cells rapidly divided to form a monolayer. The 

implication was that class-A bioactive materials stimulate the reproduction of cells that 

have a more mature osteoblast phenotype and that more immature precursor cells are 

lost via apoptosis. This is further supported by the finding that genes and transcription 

factors relating to both the regulation of the cell cycle and apoptosis were up-regulated 

when osteoblasts were cultured in medium containing ionic dissolution products of 

bioglass (Xynos et al, 2001). The findings presented in this chapter show that silica, in 

isolation, can cause apoptosis in osteoblasts and further supports the theory that the 

silica component of bioactive materials directly affects cell behaviour. 
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The Osteoblast Response to a Silica gel in vitro. 



Chapter 5 

5.1 Introduction. 

A range of silica containing glasses and glass ceramics in the system SiO2-Na2O-CaO- 

P2O5 are bioactive and are used as biomaterials (Hench, 1991; Kokubo, 1992). Silica is 

the main component of these materials. Bone bonding ability is lost when the silica 

content exceeds 60 mol% (Kokubo, 1991). It has been proposed that a prerequisite to 
bone bonding is the formation of a biologically active carbonate containing 
hydroxyapatite (HCA) layer on a material surface under physiological conditions 
(Hench, 1991; Kokubo, 1992). This intermediate apatite layer has compositional and 

structural characteristics common to those of bone apatite and facilitates the binding of 

the implant to bone (Pereira and Hench, 1996). The strength of this bond is as strong as 
bone itself within 3-6months (Hench, 1998). Hydrated silica, which is formed on the 
implant surface in the body, causes the nucleation of the apatite layer (Kitsugi et al., 
1995). The thickness of the hydrated silica gel layer is reported to be in the range 0.2- 

0.5µm when apatite deposition begins (Andersson and Karlsson, 1992). It is difficult to 

study the role of silica in this process because apatite inducers (such as CaO, Na2O and 

P2O5) dissolve from bioactive glasses and glass ceramics. To isolate the role of silica in 

bone bonding, a pure silica gel prepared by hydrolysis and polycondensation of 

tetraethoxysilane (TEOS) in aqueous solution containing poly(ethylene glycol) has been 

used (Li et al., 1992; 1994a). 

Silica gels have the ability to produce a layer of apatite on their surfaces when they are 
immersed in a simulated body fluid (SBF) for an extended period of time (usually 

weeks). The thickness of this layer is reported to be 0.5µm (Neo et al., 1994). SBF is a 

calcium phosphate solution whose ionic concentration is almost identical to that of 
blood plasma (Cho et al., 1996a). HCA cannot form de novo from the ions in solution 
because biological fluid is metastable i. e. with respect to apatite. This means that there 

are insufficient calcium and phosphate ions in body fluids to allow a spontaneous 

precipitation of CaPi but enough to contribute to the process once it has begun 

(Anderson, 1980). Much of the work on gels to date has used an in vitro approach, 

using SBF to ascertain the conditions under which a silica gel will form a surface 

apatite layer (Cho et al., 1996a, b; Pereira and Hench, 1996; Li et al., 1994b). 
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It has been suggested that the silanol (SiOH) groups on the surface of the gel act as 

nucleation sites for the apatite (Cho et al, 1996a) although this view is not universally 

accepted (Pereira and Hench, 1996). Titania gels have the ability to form apatite on 

their surfaces as they have many hydroxyl groups. Aluminium surfaces, which are 
described as bioinert, are encapsulated with fibrous tissue and do not form an apatite 
layer on their surfaces when implanted even though they have many hydroxyl groups. 
The surface of titania and silica gels is negatively charged, whereas alumina gels have a 

positively charged surface. It is proposed that materials that have a negative charge and 

numerous hydroxyl groups will induce apatite formation in physiological fluid (Li et 

al., 1994b). 

A study by Cho et al. (1996a) suggests that a certain structural unit of the silanol group 
is responsible for apatite nucleation. Porous silica gels prepared in different media had 

the same number of silanol groups but apatite formation was only seen on the gel 

prepared in polyethylene glycol (PEG). There were structural differences between the 

gels however, as only gels prepared in PEG had nanopores smaller than 1.7nm. In two 

more recent studies by the same group all the gels prepared in different media were 

shown to be capable of producing apatite. This was achieved by either a) using SBF 

with 1.5 times the concentration of calcium ion (Cho et al., 1996b), or b) using a 

biomimetic process whereby ions were leached from the gels in SBF and adsorbed on a 

second substrate (polyether sulfone - PESF). Apatite was then formed on the PESF 

when it was immersed in a solution with ion concentrations 1.5 times that of SBF. This 

was not observed using silica glass. It was concluded that silicate ions in aqueous 

solution could induce apatite nucleation (Cho et al., 1996c). 

Other factors determine the ability of silica gels to form apatite on their surfaces in a 

simulated body fluid. The texture of the gel is important as the apatite nucleation rate 

increases with increasing pore size and volume (Pereira and Hench, 1996; Pereira, et 

al., 1995). The temperature at which the gels are sintered has an effect on apatite 

formation when they are rehydrated in SBF. Gels sintered at 900-1100 C formed apatite 

on their surfaces in SBF. This ability was lost as sintering temperature increased to 

1200 C (Li et al., 1994a). This was explained by the structural relaxation of the gels as 

they became rehydrated so that they became more like silica glass and the rate of 
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hydrolysis (i. e. the number of silanol groups) on the surface was reduced. Silica gels 

sintered at 12000C were almost insoluble and comparable to silica glass. 

Some studies have used animal models to further elucidate the interaction of silica gels 

with bone (Kitsugi et al., 1995; Li et al., 1995). The apatite forming ability of 

implanted silica gels is also affected by sintering temperature. It has been shown that 

the gels that perform well in vitro do not necessarily exhibit bone bonding in vivo. In a 

study by Klein et al. (1995), gels which were sintered at low temperatures (400-6000C) 

were easily degraded and evoked an inflammatory response when implanted in the 

femora of goats for 12 weeks. Sintering (900-10000C) increased the stability of the gel 

so that it became more crystalline, less porous and similar to silica glass. This caused a 

decrease in the amount of dissolution of the gel with a concomitant increase in bone 

bonding after implantation and a decrease in inflammatory cell response. This is in 

agreement with the findings of Li et al. (1995) who demonstrated bone bonding via a 

calcium phosphate rich layer in an implanted silica gel sintered at 900"C. Kitsugi et al. 

(1995) found that bone bonding, via an intermediate apatite layer, was rarely observed 

when silica gels were implanted in rabbit tibiae for 4-8 weeks. An inflammatory 

reaction at the implantation site was not observed. The limited apatite formation (on 

400-8000C sintered materials) was reduced as sintering temperature increased which 

may result from a reduction in the number of silanol groups available at the gel surface. 

A calcium phosphate rich layer was never observed on the surface of gels heat treated 

above 1000°C (Kitsugi et al., 1995). 

Few studies have been carried out on the osteoblast response to silica containing 

materials in vitro. (Ozawa and Kasugai, 1996; El Gannham et al., 1997; Vrouenvelder 

et al., 1993). Much of the work has concentrated on the capacity of these materials to 

form a surface apatite layer when immersed in physiological fluid. Other studies have 

examined the interface between implanted materials and bone. It has been shown that 

foetal rat calvarial osteoblasts grown on 45S5 bioactive glass produced significantly 

more alkaline phosphatase than those cultured on stainless steel, titanium or 

hydroxyapatite (Vrouwenvelder et al., 1993). Alkaline phosphatase activity is reduced 

if the bioactive glass surface is altered by either an apatite layer or serum protein 

adsorption. If both layers are present alkaline phosphatase activity was elevated and a 
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mineralised matrix was formed (E1-Ghannam et al., 1997). Glass ceramics containing 
43.6wt% silica have been shown to increase alkaline phosphatase activity and calcium 

production in primary cultured human osteoblasts as compared to tissue culture plastic 

controls but levels were not as high as those on hydroxyapatite. Silica containing glass 

ceramics had no effect on osteoblast expression of differentiation markers such as 

osteopontin and bone sialoprotein (Ozawa and Kasugai, 1996). 

The aim of this work was to assess the osteoblast response to a silica surface without 

the interference of the other ions present in glasses and glass ceramics. The properties 

of a silica gel deposited onto Thermanox coverslips were investigated in terms of silica 

release and bioactivity. The behaviour of human osteoblasts on the surface was 

evaluated using markers of osteoblast differentiation and mineralisation. 
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5.2 Materials and Methods. 

5.2.1 Preparation of Biomaterials. 

A silica sol - gel was prepared using 10ml tetraethyl orthosilicate (TEOS, Sigma) mixed 

for 1 hr with 1 o. 23m1 dried ethanol and 3.165m1 0.2M HCl giving a final molar ratio of 
4: 4: 1 TEOS: ethanol: water. This was spin cast onto 12mm diameter Thermanox discs 

(Nunc) and allowed to dry so that a thin, even film was formed. The surface topography 

of the discs was viewed using a Philips XL30 FEG field emission environmental SEM 

(ESEM) in auxiliary mode at 10kV using nitrogen as the chamber gas. Energy 

dispersive x-ray (EDX) microanalysis was carried out and the thickness of the coating 

was measured. Uncoated Thermanox discs were used as the controls for the cell culture 

experiments. 

5.2.2 Characterisation of Silica Gel. 

5.2.2.1 Bioactivity. 

The bioactivity of the silica discs was assessed using a simulated body fluid (SBF). 

SBF was prepared as described previously (Cho et al., 1996 a, b) using the reagents 

NaCl, NaHCO3, KCI, K2HPO4, MgC12.6H2O, CaC12 and Na2SO4 added in that order to 

give an ionic concentration almost equal to that of human plasma (see table 5.2.1). The 

pH of the solution was brought to 7.4 using iM HCl and Tris buffer. Silica coated discs 

were incubated in SBF or tissue culture medium at 37°C for 11 days. The surfaces were 

air-dried and viewed using a Philips XL30 FEG ESEM with EDX microanalysis. 
Thermanox discs incubated under the same conditions were used as a control. 

Na+ K+ Ca 2+ Mg 2+ Cl- HCO " HP04 - SO4 - 

Plasma 142.0 5.0 2.5 1.5 103.0 27.0 1.0 0.5 

SBF 142.0 5.0 2.5 1.5 148.8 4.2 1.0 0.5 

Table 5.2.1 Ion concentration (mM) of SBF and human blood plasma (Oliveira, et 
al., 1995). 
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5.2.2.2 Release of silicic acid from biomaterials. 

Silica coated discs and Thermanox discs were immersed in SBF for 2,4 and 11 days. 

The amount of silicic acid released from the gels was determined using a molybdenum 

blue assay. This method is used for detection of monomeric and dimeric silicic acid in 

solution however interference of phosphate ions has been reported (I1er, 1955). For this 

reason SBF and tissue culture medium samples were used as controls. The method was 

based on that of Mullen and OReilly (1955) and modified according to Perry and 

Keeling-Tucker (2000). Briefly, silica standards were prepared from 1000ppm solution 

of SiO2 (as sodium metasilicate; BDH) in a solution containing 6% acidified 

ammonium molybdate solution. Test samples were prepared in the same way. After 10 

min, 30% of a reducing solution containing 4(methylamino) phenol sulfate (metol) was 

added and the absorbance at 810nm was read on a UNICAM UV/VIS spectrometer 

after 2-48hr. 

5.2.3 Osteoblast Response to the Silica Gel. 

5.2.3.1 Cell morphology and ultrastructure. 

Silica gels were placed in 24 well tissue culture plates (Falcon) with the silica surface 

uppermost. Primary human osteoblasts (HOBs) were seeded on the silica surfaces at a 

density of 8x104cells/ml and maintained in culture 370C; 5% CO2 for up to 31 days. 

Uncoated Thermanox discs were used as controls. The culture medium was changed 

every 2-3 days. Some silica discs were placed in an inverted position to rule out 

topographical effects. At various timepoints discs were removed for analysis by SEM (2 

days) and TEM (7,14,21 and 28 days). The samples were processed according to the 

methods described in Chapter 2. 

5.2.3.2 Cell activity and differentiation. 

Cell activity up to 31 days was recorded using the alamar Blue assay as previously 

described. Briefly, the medium was removed from the cultures and a 5% solution of 

alamar Blue in Hanks' balanced salt solution (HBSS) was added to each well. These 
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were incubated at 37°C; 5% CO2 for 20 min. The fluorescence was measured at an 

excitation wavelength of 560nm and an emission wavelength of 590nm on a cytofluor. 

The cultures were then rinsed in sterile PBS and lml of sterile double distilled water 

was added to each well. Cultures were then repeatedly freeze thawed for subsequent 

assays. 

Cell number was quantified from cell lysates at 2,4 and 7 days using the DNA assay 

described in Chapter 2. Alkaline phosphatase (ALP) activity was measured using the 

Granutest kit (Merck) as described in Chapter 2. 

5.2.3.3 Uptake of silicic acid by osteoblasts. 

The molybdenum blue assay was used to determine the release of silicic acid from the 

silica discs in the presence and absence of cells. Silica and Thermanox discs were 

incubated in DMEM for 4 days with and without cells, For the cell studies, primary 

human osteoblasts were seeded at a density of 8x104 cells/ml on silica and Thermanox 

discs. Blank silica and Thermanox discs, without cells, were incubated as controls. The 

medium was changed at 2 days. The silica content of the medium (0-2 day and 2-4 day) 

was determined using the molybdenum blue assay as previously described. 

5.2.3.4 Mineralisation. 

The ability of the cultures to mineralise was determined by alizarin red S staining and 

tetracycline labelling. 

Alizarin red S staining was carried out according to the method of Ohgushi et al. (1996) 

to identify calcium containing deposits. The medium was removed from 14 day 

cultures and they were rinsed in Tris buffered saline. Alizarin red S (1% Alizarin red S 

(Sigma) in 0.028 NH4OH was added to the wells for 4 min after which the discs were 

rinsed in buffer, mounted and photographed using an Olympus SC-35 camera mounted 

on an Olympus SZ-PT dissecting microscope. 
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Mature cultures (14 days) were labelled with tetracycline and counterstained with 

propidium iodide (PI). Tetracycline is incorporated into calcium containing deposits as 

they form and can therefore be used as a marker of mineralisation (Ott, 1996). 

Tetracycline (9µg/ml) supplemented growth medium was added to each well and 
incubated for 24hr (JE Davies, oral communication). Discs were then fixed in a 50% 

ethanol solution containing 1% acetic acid and stained with 0.01 mg/ml propidium 
iodide for 30 seconds. They were then rinsed in phosphate buffered saline, mounted 

and viewed using a Leica TCS 4D confocal laser scanning microscope (CLSM). 
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5.3 Results. 

5.3.1 Characterisation of Silica Gel. 

5.3.1.1 Surface analysis. 

SEM of the silica disc surface revealed that it was flat and featureless even at high 

magnifications. However upon immersion in aqueous media, the gel surface of the disc 

became hydrated and swollen. ESEM showed the presence of silicon and oxygen peaks 
in the surface with a ratio of 1: 2. The Thermanox disc alone showed carbon and oxygen 

peaks (Figure 5.1). The thickness of the SiO2 layer was measured as 0.5-2µm. 

5.3.1.2 Bioactivity. 

Bioactivity was determined using ESEM with EDX to detect the presence of an apatite 

layer on the surface of the silica gel after a2 week immersion in SBF at 370C. Figure 

5.2 shows characteristic calcium phosphate deposition over much of the surface of the 

silica gel. In some areas calcium phosphate was deposited as discrete units, whereas in 

other areas the appearance was of clusters of crystals resembling apatite. The silicon 

peaks in the EDX spectra were reduced or absent suggesting that the layer was quite 

thick. The calcium: phosphorous (Ca: Pi) ratio varied from 1.2 to 1.9 showing that 

apatite (1.67) had formed over at least some of the gel surface. The presence of a carbon 

peak suggested the apatite was carbonated. 

5.3.1.3 Silicic acid release. 

The amount of silicic acid (in the monomeric and dimeric forms, see table 1.1) released 
into SBF and tissue culture medium from the silica gels was measured using the 

molybdenum blue assay. Figure 5.3 shows the release of silicic acid from the gels into 

the SBF. Figure 5.3a shows the standard calibration obtained. The gels had leached 

-3ppm/ml silicic acid into SBF in 3 days. The amount of silicic acid released into the 

medium over the same period was less but the control value was high indicating 

interference by proteins in the medium with the assay (Figure 5.3b). The release of 
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silicic acid from the gels over time was measured in SBF. The rate of silicic acid release 

was equivalent to -1 ppm/ml per day (Figure 5.3c). 
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Figure 5.1 ESEM secondary electron image of the surface of the silica gel (a) 
showing a featureless layer around 0.5Em thick. (b) EDX analysis of the silica disc 
showing silicon and oxygen peaks. (c) EDX analysis of Thermanox discs. Only carbon 
and oxygen are present. (axes: x=keV, y=counts/sec). 
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Figure 5.2 (a-c) ESEM secondary electron images of silica discs after 14 days in 
SBF. Calcium phosphate deposits are seen as discrete clumps or over the entire surface. 
A CaPi layer was not seen on the thermanox control (d). EDX analysis of 2 areas (e, f) 
shows the calcium and phosphorous peaks. The CaPi ratio was 1.90 (e) and 1.41 (f) 
atomic percent. (axes: x=keV, y=counts/sec). 
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Figure 5.3 (a) Standard curve for known quantities of sodium silicate using the 
molybdenum blue assay. (b) Release of silicic acid into SBF and complete medium 
from silica gels over 3 days. (c) Release of silicic acid into SBF over time. 
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5.3.2 Osteoblast Response to Silica Gel Coatings. 

5.3.2.1 Morphology and ultrastructure. 

Cell growth on the silica gels was observed by phase contrast microscopy, TEM and 
SEM. HOB cells were confluent by 48 hr. In some areas the cells were clearly oriented 

along discontinuities in the silica coating. Cells continued to grow and proliferate on 
those parts of the gel that had lifted off the Thermanox disc and were floating in the 

medium. Cultures had formed multilayers on silica gels and Thermanox controls by 7 

days. Nodules were formed earlier on the silica-coated discs than on the controls (Fig. 

5.4). This was independent of the timescale of nodule formation on the controls. Cell 
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Figure 5.4 Nodule formation by HOBs on silica discs. Phase contrast images of 
(a) HOBs cultured on Thermanox discs for 10 days. Cells have formed multilayers. 
(b) HOBs cultured on silica discs for 10 days show a large, mature nodule. (c) 
Distribution of nodules on silica coated discs after 10 days in culture. (d) HOBS 
cultured on a silica disc for 4 days. Cells were aligned along defects in the silica gel 
and had started to form nodules. 
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clustering was seen in control cultures at 14 days and nodules began to form between 

18 and 24 days. Osteoblasts grown on silica coated surfaces produced mature nodules 
between 4 and 10 days when control samples were at the multilayer stage. Nodules 

were larger and more numerous on the silica coated surfaces at later timepoints up to 31 
days. The shape of the nodules formed on the silica-coated surface was sometimes 

elongated in comparison to the controls. This was attributed to the earlier alignment of 

cells along defects in the gel caused by contact with aqueous medium. 

HOBs were also grown on inverted silica coated discs. These cells had access to the 

silica released from the gels but were not influenced by the surface topography or 

surface chemistry. Nodule formation was earlier than control cultures on these discs (8- 

14 days) but was not as advanced as on the upright discs (Figure 5.5) 

Figure 5.5 HOBS cultured on upright (a) and inverted (b) silica discs for 10 days. 
Nodule formation is less advanced on the inverted disc, but is more advanced than the 
cells on Thermanox (c). 

The morphology of the cells as seen by SEM was comparable for silica gel and control 
surfaces (Figure 5.6). TEM showed that the ultrastructural features of the cells grown 

on silica surfaces were indistinguishable from those of the controls (Figure 5.7). 
Collagen was seen between the cell layers but evidence of mineralisation was not seen. 
An electron dense line was often seen between the cell layers. This was unlikely to have 
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Figure 5.6 Scanning electron micrographs of HOBs on a silica gel after 48hr cell 
culture. (a) Low magnification image showing cell coverage and topography of the 
silica gel surface. Higher magnifications revealed that cell morphology was similar on 
Thermanox (b) and silica surfaces (c). 
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been the gel itself but may have been indicative of the formation of a CaPi layer in 
vitro. 

Figure 5.7 TEM of cells on silica discs. The morphology of the cells and nodules is 
similar to control cultures. Note the electron dense line between cell layers in the 
nodule. 

5.3.2.2 Cell activity and differentiation. 

The response of HOBs to growth on a silica gel surface was determined biochemically 

using parameters such as cell activity (alamar Blue assay), cell number (DNA content) 

and differentiation (ALP activity). Cell activity was comparable on both surfaces with 

no significant difference between Thermanox and silica coated discs over a period of 31 

days. DNA content and ALP activity were also similar for experimental and control 

samples for 2,4 and 7 days (Figure 5.8). 

5.3.2.3 Silicic acid uptake by HOBs. 

The release of silicic acid from silica gels into the medium was measured in the 

presence or absence of HOB cells after 2 and 4 days. For both timepoints (0-2 and 2-4 

days) the silica released from the gels was significantly reduced (p<0.01) when 

osteoblasts were grown on the gel surface and approximated the control (Thermanox) 

levels (Fig 5.9). 
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Figure 5.8 Cell activity of HOB cultures grown on Thermanox discs or silica gels 
for 31 days (a). DNA content (b) and ALP activity (c) of HOBs grown on Thermanox 
discs and silica gels for up to 7 days. There was no statistically significant difference 
between the silica discs and controls. Error bar represents standard error of the mean, 
n=4. 
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Figure 5.9 (a) Silicic acid content of medium from wells containing Thermanox 
coverslips and silica coated discs (SCD) with and without cells for 0-2 and 2-4 days, as 
determined by the molybdenum blue assay. The amount of silicic acid released from 
the silica coated discs is significantly reduced (P<0.01) when cells are cultured on the 
surface. (b) Representation of (a) with control (Thermanox) values subtracted. Error bar 
represents standard error of the mean, n=4. 
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5.3.2.4 Mineralisation. 

Nodules on silica surfaces stained positively with alizarin red S at 14 days (Fig 5.10). 

Cultures were labelled with tetracycline at 14 days when cells on silica gels had formed 

mature nodules and control cultures were beginning to form cell clusters. Figure 5.11 

shows minimal tetracycline incorporation by control cultures compared with striking 

positively labelled nodules formed on silica surfaces. Closer examination of the pattern 

of tetracycline incorporation revealed that mineralisation most likely began at the centre 

of the nodule and proceeded towards the periphery. 

1 OOµm 

Figure 5.10 Mineralisation of nodules on Thermanox (a) and silica (b) discs at 21 
days. The nodule in (b) is stained red. 

I 

Figure 5.11 Mineralisation of nodules on silica gel surface at 14 days. (a) HOB cells 
on Thermanox disc showing PI stained nuclei of a cell multilayer of cells (red) with 
minimal tetracycline labelling (green). (b) HOB cells on silica discs showing a nodule 
(red) with tetracycline incorporation in calcium-containing deposits representing 
mineralised areas (green). (c) Mineralisation of the nodules appears to proceed from the 
centre of the nodule towards the edges indicating that the nodule shown in (c) may be 
more mature than the nodule in (b). (Bar = 100µm). 
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5.4 Discussion. 

In this Chapter HOBs were grown on a thin film of silica gel in order to establish the 

effect of silica on osteoblast growth and differentiation. Silica gels have been used in 

the past to eliminate the effects of the other ions present in glasses and glass ceramics 

but these have concentrated on the ability of the gels to form an apatite layer on their 

surface when soaked in SBF for an extended period of time. Few studies have 

investigated the cell response to growth on a silica surface. 

The gel used in this work was prepared using TEOS and spin cast onto Thermanox 

coverslips. The surface was composed of silicon and oxygen only as seen by EDX 

analysis. The gel was shown to produce a CaPi layer when immersed in SBF for 11 

days. EDX analysis of this layer showed the Ca: Pi ratio to be in the range 1.2-1.6 

which approaches that of hydroxyapatite. Carbon was present in the EDX spectra in 

addition to calcium and phosphorous so it is likely that the calcium phosphate was 

carbonated. The Ca: Pi ratio of the mineral portion of bone is -1.5. It was concluded 

that the gel was bioactive. 

In addition to the formation of a CaPi layer, gels leached a measurable amount of silicic 

acid into the SBF. This is in keeping with the established process of apatite layer 

formation in vitro (Li et a!. 1994a, Hench, 1991). 

The response of osteoblasts to the silica gel surface was striking. HOBs formed nodules 

on silica surfaces as early as 4 days. Nodule formation was always earlier on silica 

coated surfaces than on controls and nodules were larger and more numerous. In some 

cases osteoblasts aligned along defects in the silica gel and nodules later formed in 

these areas. It is clear that in these cases early nodule formation may have been due to 

the physical topography of the surface rather than the silica present on the surface. 

However this was not always the case and cells grown on discs which remained more 

stable in solution also produced nodules reproducibly earlier than on controls. Alizarin 

red S staining and tetracycline labelling of the nodules formed showed positive 

labelling in relation to control cultures and suggested that the nodules had mineralised. 
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HOBs were also grown on inverted silica discs to address the problem of topography. 

In this way cells had access to silica that was released from the discs but the surface 

available to the cells was the same as that exposed to the controls (Thermanox). In 

these cultures nodules formed earlier than on controls but not as early as the upright 

silica discs. This demonstrates that topography alone was not responsible for the early 

mineralisation of HOBs on silica surfaces. It is still unclear whether the surface 

chemistry of the gel affects the osteoblast response but it is thought that the surface of 

the gel is composed of silanol (OH) groups (Perry, oral communication) which are 

reported to be favourable sites for apatite nucleation (Carlisle, 1986). 

The gel used in the present work was shown to release silicic acid into SBF and tissue 

culture medium in the monomeric and dimeric forms. Silica is thought to be 

metabolised in the body as monomeric silicic acid (Carlisle, 1986). When cells were 

cultured on the silica gel coated surfaces, the amount of silicic acid in the medium was 

comparable to the control level. This implies that osteoblasts either prevent the release 

of silicic acid from the gels or that they absorb the silicic acid released. Such a 

relationship between osteoblasts and silicic acid has never been previously 

demonstrated. The apparent ability of osteoblasts to absorb silicic acid coupled with the 

early nodule formation on both upright and inverted silica discs shows that osteoblast 

mineralization is enhanced on a silica surface in vitro. 

It is interesting to note that despite reliable early nodule formation on silica coated 
discs, cell activity, number and ALP activity were not affected. In vitro studies of the 

osteoblast response to bioactive glasses and glass ceramics have shown increased ALP 

activity on the silica containing surfaces (Ozawa and Kasugai, 1996; Vrouenvelder et 

al., 1993). To our knowledge the osteoblast response to silica gels has not been 

documented. Silica has been linked with collagen formation (Carlisle et al., 1981) and 

may affect the expression of osteocalcin and it is possible that silica affects these and/or 

other proteins involved in the mineralization process. 

In summary, a simple silica sol-gel can be used to investigate the osteoblast response to 

a silica surface in vitro. Surface analysis of the silica gel coated disc after immersion in 

SBF showed that a CaPi layer was formed on the disc and that this was accompanied by 

silicic acid release from the disc. From these observations it was concluded that the gel 
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was bioactive. These findings support the theory that silica release from the implant 

surface is required for class A bioactivity and that this provides nucleation sites for 

apatite deposition. Furthermore, silicic acid was not detected in the medium collected 

from discs on which osteoblasts were grown suggesting that osteoblasts stabilise the 

surface or utilise the silica in some way. Nodule formation was reproducibly enhanced 

on the silica surface and it would appear that silica surfaces enhance the mineralisation 

of osteoblasts in vitro. Nodule formation was less markedly enhanced on inverted discs 

where the cells were exposed to the silicic acid released from the discs, but not the 

surface chemistry. It is likely that both the surface characteristics of the silica gel and 

silicic acid released from the disc affect osteoblast behaviour. 
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6.1 Introduction. 

In the previous Chapter human osteoblasts were seen to respond favourably in vitro to a 

silica sol-gel. The reasons for this were hypothesised as a combination of the effects of 

surface chemistry and silicic acid release from the sample with subsequent uptake by 

osteoblasts. The surface used was unstable in aqueous solution however, leading to 

difficulties in analysing the hydrated surface and in ruling out the effect of surface 

topography. Silica has long been known to be bioactive but, although the mechanism of 

CaPi layer formation has been explained (Lobel and Hench, 1996), the specific reasons 

for the favourable osteoblast response warrant further investigation. 

In this section the effect of silicon surface chemistry are investigated using stable, 

model silicon wafer surfaces prepared as a result of a collaboration with Dr Martin 

Winkelmann at the Laboratory for Surface Science and Technology, ETH, Zurich and 

Department of Applied Physics, Chalmers University of Technology, Gothenburg, 

Sweden. The wafers were used as received (Si) or with the oxide layer removed by wet 

etching (ESi). The response of osteoblasts to the two surfaces was compared. Patterned 

surfaces were also prepared using nano-etching techniques and these were subjected to 

broadly the same analyses. 

Silicon surfaces have been used in previous studies where the effects of topography on 

cells and cellular responses to topographical guidance cues were investigated (Meyle et 

al., 1995; Meyle et al., 1991). Fromherz and co-corkers have cultured neuronal cells on 

silicon surfaces to record the flow of ionic currents in the region of cell adhesion 

(Schatzthauer and Fromherz, 1998). The cells seeded on to the silicon chips which were 

rendered hydrophobic and coated with concanavalin A. These were not related to 

research into the mechanism of the bioactivity of silica. Healy et al (1996) have used 

quartz surfaces with different terminal surface molecules, arranged as a pattern by 

photolithographic techniques, to examine osteoblast attachment and mineralisation but 

these required the pre-adsorption of serum proteins for the attachment of cells. 

Patterning of surfaces with different growth factors, cell adhesion factors, 

physicochemical properties and surface topographies have been used to manipulate cell 

function and these are reviewed by Ito (1999). 
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Silicon, the semiconductor, has recently shown bioactive properties when it is 

porosified by anodisation (Canham, 1995). These surfaces support the formation of a 
CaPi layer in SBF, whereas bulk silicon wafers did not even after extended (6wk) 

incubations in SBF (Canham and Reeves, 1996). Subsequent work by the same group 

showed that the porosity of the silicon produced affected both the bioactive and 
biodegradation properties of the material. Highly porous mesoporous Si was rapidly 

dissolved, whereas non porous and macroporous Si was bioinert. Low porosity Si which 

was meso or microporous exhibited bioactive properties (Canham and Reeves, 1996; 

Canham et al., 1999). Extensive CaPi layer formation could be achieved within hours if 

a cathodic bias was introduced to the surface. This was retarded by anodisation 
(Canham et al., 1997a). 

The biocompatibility of these surfaces has been evaluated in vitro (Bayliss et al., 1999) 

and in vivo (Bowditch et al., 1999). Bayliss et al. (1999) cultured hinese hamster ovary 

(CHO) and (B50) cells on porous Si surfaces for up to 4 days and showed no signs of 

cytotoxicity. Porous Si implanted subcutaneously in guinea pigs showed good tissue 

compatibility and in vivo calcification at the surface of the implant which was not seen 

with either bulk Si or titanium (Bowditch et al., 1999). 

The potential applications of the different types of porous Si are reviewed in Canham et 

al. (1997b). Bayliss et al. (1999) have suggested potential applications as biological 

interfaces, neural networks and biosensors. They have reported that the optoelectronic 

properties of the semiconductor (preventing the risk of the influence of electromagnetic 
fields (EMFs) on cellular responses) combined with its low cytotoxicity (relative to 

other semiconducting materials) make it suitable for use in devices for replacing tissues 

in the ear, eye skin and nasal cavity. Despite the increasing body of evidence supporting 

the potential use of silicon as a biomaterial, no research concerning silicon and bone 

exists in the literature. 

The aims of the work were threefold. Firstly the bioactivity of the Si and ESi surfaces 

was compared in terms of calcium phosphate layer formation in SBF and silicic acid 

release from the samples (reliable indicators of future bone formation from the last 

Chapter). The silica sol-gel from the previous Chapter was used as a positive control for 

CaPi layer formation in SBF. Thermanox cover-slips were used as negative controls as 
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they do not form a CaPi layer in SBF. Secondly, the osteoblast response to Si and ESi 

surfaces in the short and longer term was measured by studying initial cell attachment to 

the surfaces and nodule formation in long term cultures. Initial cell attachment is a good 

indicator of future differentiation of bone cells in vitro (Scotchford et al., 1998). 

Thirdly, patterned Si/ESi surfaces were made with regions of different geometry (spots 

and stripes) and different dimensions (one set 50-150µm- spots and stripes; one set 5- 

15µm stripes). These were used to allow direct comparison between the two surfaces. 

128 



Chapter 6 

6.2 Materials and Methods. 

6.2.1 Preparation of Si and ESi surfaces. 

Si and ESi samples were prepared by Martin Winkelmann at the Swedish Nanometer 

Laboratory in a class-100 clean room. Silitronix (100)-surface polished silicon 2" 

wafers with 8000 A thermo-oxide layer were used as the Si surfaces. The oxide layer 

was removed by wet etching to form the ESi surfaces. (for a more detailed description 

of the procedure refer to section 6.2.6 `Use of patterned surfaces'). Before use the 

samples were cleaned in an ultrasonic bath (18 mOhm) in acetone, isopropanol and 

deionized water and dried in nitrogen. 

6.2.2 Surface Analysis 

Cleaned samples were examined using a Phillips FEG-ESEM with EDX microanalysis 

to assess the elemental content of the surfaces. The microscope was operated at 10kV in 

auxiliary mode using nitrogen as the chamber gas so that the samples could be viewed 

without coating. XPS was carried out on Si and ESi surfaces. 

6.2.2.1 Calcium phosphate layer formation in SBF and silicic acid release. 

Si and ESi (n=3) surfaces were placed individually in the wells of a6 well tissue culture 

plate (Falcon). Samples were sterilised using UV light and immersed in 10ml of SBF 

for 14 days at 37°C to investigate the formation of a CaPi layer on the surface. Silica 

sol-gel samples (as used in Chapter 5) and Thermanox discs (Nunc) were used as 

positive and negative controls respectively. After 14 days the samples were removed 
from the SBF, rinsed gently in sterile distilled water and air-dried. They were mounted 

on aluminium stubs with adhesive carbon tabs (Agar) and viewed in a Phillips FEG- 

ESEM operated in auxiliary mode using nitrogen as the chamber gas. This was done to 

alleviate the need to coat the samples with gold before viewing which would interfere 

with the analysis of phosphorous in the samples. Secondary imaging and EDX 

microanalysis was carried out on each sample at 10kV. 
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The SBF was collected from the plates and the samples were analysed using the 

molybdenum blue assay, as previously described, to quantify the amount of silica 

released over 14 days as mono- and dimeric silicic acid. 

6.2.3 Cell Response to Si and ESi Surfaces. 

6.2.3.1 Cell attachment and spreading. 

Cell attachment and spreading was assessed on the Si and ESi surfaces. Thermanox 

discs and silica sol-gels were used as controls. Samples were placed individually in the 

wells of a 24 well tissue culture plate (Falcon) and sterilised using UV light. HOBs 

were added to the wells at a concentration of 8x104 cells p er ml of DMEM 

supplemented in the usual manner. The plates were incubated at 37°C in a humidified 

atmosphere (5% C02) for 90 min, 2.5 hr and 24 hr. The medium was then removed 
from the wells and the samples were rinsed in PBS and fixed in 4% paraformaldehyde 

for 5 min. The samples were rinsed in 1% PBS/BSA and permeabilised using a Triton 

X-100 (0.5% Triton X-100 (pH 7.6) in 20mM Hepes, 300mM sucrose, 40mM NaCl and 
3mM MgC12. ) solution for 5min at 0°C. After a further 2 rinses in 1% PBS/BSA at 37°C 

FITC-conjugated phalloidin (Sigma, 250µg/ml) was added for 20min at 4°C. This was 

removed and the samples rinsed 3 times in PBS/BSA before adding propidium iodide 

(Sigma, 0.02mg/ml) for 30 seconds. The samples were rinsed again, mounted in 

glycerol/DABCO, cover-slipped and viewed using a Leica TCS 4D confocal 

microscope with an ArKr laser. The 488nm laser line was used to excite the green 
fluorescence of FITC-conjugated phalliodin. The red fluorescence of propidium iodide 

was scanned simultaneously using the 568nm laser line. Optical sections (1µm thick) 

were collected as az series. A maximum intensity projection was created (a composite 
image from the brightest pixels per scan) using the associated Scanware software. 

6.2.3.2 Nodule formation. 

Nodule formation was assessed by confocal microscopy at 21,29 and 35 days cell 

culture. Cells grown on each of the surfaces (Si, ESi, Thermanox and silicon sol-gel) 

were maintained in long-term culture and re-fed every 2-3 days with fresh tissue culture 
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medium The samples were fixed in 4% paraformaldehyde for 5min and stained with 
0.02mg/ml propidium iodide for 30sec to visualise the nuclei. Propidium iodide also 

stains the RNA in ribosomes so the cell outline could also be partially distinguished. 

The samples were mounted in glycerol/DABCO and viewed using the Leica TCS-4D 

confocal microscope using the 568nm laser line. 

6.2.4 Use of Patterned Surfaces. 

6.2.4.1 Chemical patterning of surfaces. 

The patterned samples were prepared by Martin Winkelmann in the Swedish Nanometer 

Laboratory in a class-100 clean room. Silitronix (100)-surface polished silicon 2" 

wafers with 8000 A thermo-oxide layer were spin-coated with 1.5µm thick (3500 rpm, 
90 s) Shipley S-1813 Microposit positive photoresist. They were then baked on a hot- 

plate for I min. at 90C. Then the samples were exposed for 4 seconds to UV light (360 

nm mercury; standard UV; 20 mWatt/cm2) with a Karl Sass MJB-II Contact Printer 

through a chromium mask. Exposed portions of the photoresist were removed from the 

wafer surface by developing it 65 seconds in a 1: 5 diluted Shipley MF-351 or in an 

undiluted Shipley MF322 Microposit developer for 30sec. Both developers were equal. 
The development was stopped by dipping the wafer in deionised water and the samples 

were dried in N2. 

The oxide layer from photoresist uncovered areas was etched by wet etching. A 

buffered oxide etch (BOE) was used rather than plain diluted HF because the buffer 

keeps the strength and thus the etch rate closer to constant. After rinsing in distilled 

water, a 1: 6 mixture of 49% HF and 40% NH4F at RT was used. In this way the etching 

of the oxide layer was uniform on the whole wafer. The control of the etching was also 

easier. From time to time the wafer was removed from the BOE solution and the back of 

the wafer was examined. If the silicon dioxide had not been completely etched away, 

there was still a film of the solution adhering to the whole surface of the wafer and it 

appeared wet. If all of the SiO2 had been removed the wafer appeared dry and dull grey. 
Normally it took about 5-7 min to etch through the oxide layer. The quality and 

completion of the etching was inspected under a microscope. 
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The lift-off of the remaining resist was in acetone. The samples were then cleaned in an 

ultrasonic bath in acetone, isopropanol and deionized water (18 mOhm) and dried with 

nitrogen. The pattern from the chromium mask had now been transferred onto the 

surface. 

As a protection against Si dust, the wafers were coated again with 1.5µm thick Shipley 

5-1813 Microposit positive photoresist and cut with a Loadpoint Microace 3+ diamond 

saw into samples of 9x11 mm. The resist on the samples was removed by 2 minutes of 

sonication in acetone, isopropanol, and deionized water and the samples were dried with 

nitrogen. Before using the surfaces for cell culture tests, they were given in a 

radiofrequent glow discharge (RFGD) treatment for 5 minutes at 0.42 mbar, 2.7sccm 

and a RF power of 100 W to improve the surface wettability of the substrates. 

The geometry of the pattern consisted of 6 spatially patterned regions (9x11 mm) of 

dots and stripes. The dimensions of the patterns ranged between 50,100 and 150 µm 

(Figure 6.2.1). 

Figure 6.2.1 Diagram showing the detail of the patterned surface 
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Patterned surfaces were also used to examine the response of cells to patterns of 
different dimensions. These were prepared as previously described but in this case the 

pattern consisted of 5,10 and 15µm stripes of ESi separated by 15µm thick gaps of Si. 

These are described as 15/5,15/10 and 15/15 patterns, where the first number represents 

the Si areas and the second refer to the ESi areas. 

6.2.4.2 Characterisation of the patterned surface. 

The geometry of the pattern was checked and the thickness of the oxide layer measured 

using a Jeol JSM-6301F field emission scanning electron microscope. Calcium 

phosphate layer formation in SBF was analysed after 14 days as described previously. 

6.2.4.3 Cell attachment and Nodule formation. 

Cell attachment and spreading was viewed using the confocal microscope using FITC- 

conjugated phalliodin and propidium iodide as previously described. Patterned samples 

were fixed and stained at 2.5 hr, 24 hr, 7 days and 21 days. Si and ESi surfaces were 

used as controls. Patterned striped surfaces were viewed at 2.5 hr, 24 hr and 7 days. 

Reflectance confocal microscopy was used to visualise the areas of the pattern. 

133 



Chapter 6 

6.3 Results. 

6.3.1 Surface Analysis of Si and ESi Surfaces. 

Si and ESi surfaces were examined using ESEM with EDX microanalysis. The surfaces 

were flat and featureless (data not shown). Figure 6.2 shows that the Si surface was 

composed of silicon and oxygen. The ESi surface was composed only of silicon. 

In contrast, XPS data showed that oxygen was present on the ESi surface (Table 6.1). 

For the Si samples (n=3) the atomic percent of silicon was 34.5 and for oxygen was 

63.9% (carbon contamination made up the rest). For the ESi samples (n=3) the 

percentage silicon was 60% with 37.7% oxygen present. This may be due to the 

formation of an oxide layer on the surface of the metal, which is too thin to be picked up 

by EDX or contamination at the surface. As the samples were plasma cleaned the latter 

explanation seems unlikely. 

ESi Surface Si Surface 

Silicon (At %) 60% 35% 

Oxygen (At%) 40% 65% 

Table 6.1 XPS analysis of ESi (a) and Si surfaces (b) taken at a 15° angle showing 
the atomic percentage of silicon and oxygen present. 

6.3.1.1 CaPi layer formation in SBF and silicic acid release. 

The samples were viewed using ESEM with EDX microanalysis (Figure 6.2). At lower 

magnifications (x1000) large (4µm) and smaller (0.5µm) spherical deposits could be 

seen on the ESi surface. At higher magnifications (x8000) the entire surface of the 

sample was covered with a carpet of needle-like crystals, EDX microanalysis revealed 

the nature of these crystals to be calcium phosphate deposits with an average (n = 7) 

Ca: Pi ratio of 1.36. The calcium phosphate layer also contained a substantial amount of 
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Figure 6.1 EDX microanalysis of ESi (a) and Si surfaces (b). The silicon surface (a) 
shows only a silicon peak. The silica surface (b) shows silicon and oxygen peaks. The 
atomic percentage for silicon was 54% and for oxygen was 46% for this sample. (axes: 
x=keV, y=counts/sec). (c) Table showing mean Si and 0 content (At%) for Si and ESi 
samples (n=3) 
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Figure 6.2 ESEM micrographs of Si and ESi surfaces after 14 days in SBF. The ESi 
surface (a) is covered with a carpet of needle-like crystals interspersed with a variety of 
larger deposits (e, f). This is confirmed as a calcium phosphate layer by EDX analysis 
(b). The ratio of Ca: P was 1.34.. In contrast, no deposits are seen on the Si surface (c). 
EDX analysis confirms the presence of silicon, oxygen and carbon on the surface (d). 
(axes: x=keV, y=counts/sec). (e, f) Low and high magnification views of the ESi 
surface. Large, spherical deposits are seen on a carpet of crystals (shown at higher mag 
in (a). 
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oxygen (average atomic percent 50.5%; n=6). Numerous cuboidal salt (NaCI) crystals 

were also seen on the surface and some magnesium was also detected. The silicon peak 

was small which could indicate that the CaPi layer was quite thick, as at 10kV there is 

some penetration into the surface. The Si surface showed no CaPi deposition. The 

positive (silica sol-gel) controls were covered with a CaPi layer. The average (n=6) 

Ca: Pi ratio of the layer was 1.43. A large quantity of oxygen was also seen in the CaPi 

layer (average atomic percent 63.6%; n=4). The negative (Thermanox) controls had no 
CaPi deposits on the surface. A few salt (NaCl) crystals were seen (Figure 6.3). 
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Figure 6.3 EDX spectra for positive and negative controls for the above 
experiments. Thermanox was used as the negative control (a). A silica so]-gel was as a 
positive control (b). The presence of a calcium phosphate layer was confirmed with a 
Ca: P ratio of 1.47. (axes: x=keV, y=counts/sec). 

Figure 6.4 shows a graph of silicic acid released in the monomeric and dimeric forms 

during 14 days in SBF. Silicic acid release was seen from the silicon and silica so]-gel 

samples (positive control). No silicic acid was released into SBF from the silica and 
Thermanox samples (negative control). 

CIK 
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Figure 6.4 Silicic acid release into SBF from silicon (ESi), silica (Si) and patterned 
surfaces, measured at l4days using the molybdenum blue assay. Silicic acid is released 
from the ESi surface only. Bar represents standard error of the mean, n=3 

6.3.2 Cell Responses to Si and ESi Surfaces. 

6.3.2.1 Cell attachment and spreading. 

Cell attachment and spreading was assessed at 90 min and 24 hr cell culture. The 

filamentous actin cytoskeleton was visualised using confocal microscopy of ESi, Si, 

Thermanox and silica so]-gel samples. These were stained with phalloidin for 

filamentous actin and the nuclei were counter-stained with propidium iodide. After 90 

min cell culture, slight differences in cell shape were noted. The cells grown on 
Thermanox were typically stellate and exhibited actin staining along the long axis of the 

cell. In contrast, cells grown on the silica sol-gel were more rounded in shape with thick 

bands of actin running around the periphery of the base of the cell where it was attached 

to the substrate. The cells on the ESi surface were similar in appearance to the sol gel 

samples. Cells grown on the Si surface were rounded and often displayed no actin 

staining. Any actin staining seen was cortical in nature (Figure 6.5). The morphology 

and actin profile of cells grown on all four surfaces were indistinguishable after 24 hr. 

All cells appeared typically spread and formed a confluent layer over the surfaces 

(Figure 6.6). 
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Figure 6.5 Confocal image (maximum intensity) of HOB attachment on Si and ESi 
surfaces at 90min. The cells are stained with FITC conjugated phalloidin for 
filamentous actin (green). The nuclei are stained with propidium iodide (red). Cells on 
the ESi surface (a) are rounded with small amounts of actin around the base of the cell. 
Cells on the Si surface (b) are rounded with little actin staining. Cells on the silica sol- 
gel (c) are rounded with thick bands of actin at the base of the cells. Cells on 
Thermanox (d) are starting to spread. 
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Figure 6.6 Confocal image (maximum intensity) of cells after 24 his on ESi (a), Si 
(b), Thermanox (c), and silica sol-gel (d) surfaces. The cells are stained with FITC 
conjugated phalloidin for filamentous actin (green). The nuclei are stained with 
propidium iodide (red). Cells on all surfaces are spread. 
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6.3.2.2 Nodule formation. 

Nodule formation in the cultures was examined for all four surfaces. HOBs were stained 

with propidium iodide. By 29 days in culture HOBs grown on all 4 surfaces had formed 

nodules (Figure 6.7). 
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Figure 6.7 Confocal image (maximum intensity) of HOB cells grown on ESi (a), Si 
(b), Thermanox (c) and silica sol-gel (d) surfaces for 29 days stained with propidium 
iodide. Nodular structures are seen on all surfaces. 
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6.3.3 Use of Patterned Surfaces. 

6.3.3.1 Characterisation of the surface. 

Figure 6.8 shows a selection of SEM micrographs from the patterned surface. These 

show that the pattern dimensions and measurements are accurate. The thickness of the 

layer was measured as 0.33µm (Figure 6.9). A calcium phosphate layer was present 

over the entire patterned surface and could be seen both within and without the pattern 

as a continuous layer (Figure 6.10). The average Ca: Pi ratio was measured as 1.34 

(n=3). Silicic acid release from the patterned surfaces was measured and shown in 

figure 6.4. 
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Figure 6.8 SEM of the six distinct regions on the patterned surface (a-f) showing the 
detail and dimensions of the pattern. The pattern consisted of spots and stripes at 
intervals of 50µm (a, b), 100µm (c, d) and 150µm (e, f). Bar = 100µm. 
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Figure 6.9 SEM showing the detail of the small scale, striped pattern (a = 15/10, 
b=15/15). (c) shows the topography of patterned regions which are 0.33µm thick. 
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Figure 6.10 ESEM images of the CaPi layer deposited on regions of the patterned 
surface (a) and (b). The EDX spectrum (c) shows a Ca: Pi ratio of 1.81. (axes: x=keV, 
y=counts/sec). 
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6.3.3.2 Cell response 

Initial cell attachment (90 min and 4 hr) studies showed that there was little discernible 

difference between cells on the different regions of the pattern. The typical morphology 

was of rounded cells with cortical actin fibres (Figure 6.11). By 24 hr many more cells 

had adhered to the ESi regions of the pattern and the different regions were clearly 

distinguished (Figure 6.12). The edges of cells bordering along the edge of each pattern 

were aligned along the features with actin fibres running along the cell membranes. This 

was more markedly observed on the striped areas and the circular features were less 

clearly delineated. Few cells remained on the Si regions. It is unclear whether cells had 

migrated to the ESi areas of the pattern or had died on the Si areas but there were no 

signs of cell death and cells on the Si regions were similar in morphology to those on 

the pattern. 

rämm 

Figure 6.11 CLSM images of HOBs grown on patterned Si/ESi surfaces. At 90 min 
no obvious alignment is seen and cells are randomly distributed on the surface (a), 

which can be confirmed by reflectance imaging of the underlying patterned surface (b). 
At 24 hr the cells follow the pattern (c) and (d). 
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Figure 6.12 CLSM images of HOBS grown on patterned Si/ESi surfaces for 24hr. 
The pattern consisted of stripes and spots at intervals of 150µm (a, b), 100µm (c, d) and 
50µm. Cells are predominantly growing on the ESi regions. 
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At 7 days cell growth still followed the geometry of the pattern, especially on the 

150µm regions (spots and stripes) where very few cells were seen to bridge the gap 

between one pattern feature and another. Some cells were seen growing on the silica 

regions on the 100µm features and these were often arranged perpendicularly to the 

pattern on the striped areas and bridging the gap between spots (Figure 6.13). The 

pattern was less clear on the 50µm areas but was still discernible with the cells forming 

multi-layers on the patterned regions and only partially covering the silica regions 
(Figure 6.13). At 21 days the cells covered most of the surface but the nodules were 

aligned along the patterns (Figure 6.14). 

The results for the surfaces with smaller patterns (5-15µm stripes) were similar to those 

for the patterned surfaces. At 90 min cell morphology was similar on all regions of the 

pattern (Figure 6.15). Use of reflectance confocal microscopy showed that cell contacts 

were aligned over the ESi regions of the pattern. By 24hr cells were aligned on the ESi 

areas and the pattern appeared very defined (Figure 6.16). Only cells on the 15/5µm 

stripes were regularly seen bridging the 15µm gap. Actin fibres were aligned along the 

long axis of the cell. After 7 days cell alignment could still be seen on these surfaces 

using confocal microscopy. This was used to separate the upper and lower cell layers in 

the multi-layer by optical sectioning. The upper cells did not appear to be aligned but 

the lower levels remained aligned along the pattern (Figure 6.17). 
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Figure 6.13 CLSM images of HOBS grown on patterned Si/ESi surfaces for 7days. 
Cells are predominantly growing on the ESi regions. The pattern consisted of stripes 
and spots at intervals of 150µm (a, b), 100µm (c, d) and 50µm. 

Figure 6.14 CLSM images (maximum intensity) of HOBs grown on patterned Si/Esi 

surfaces for 21 days. (a) 150µm stripe. (b) 150µm spot. 
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Figure 6.15 CLSM images of HOBs grown on patterned surfaces for 90min. (a) 15/5 
striped pattern, (b) 15/10 striped pattern, (c) 15/15 striped pattern. Some alignment of 
the cells is confirmed by overlaying reflectance images with images of HOBs as seen in 
(d) 15/15 surface and (e) 15/5 surface. 

149 



Chapter 6 

Figure 6.16 CLSM images of HOBs grown on patterned surfaces for 24 hr. (a) 15/5 

striped pattern, (b) 15/10 striped pattern, (c) 15/15 striped pattern. 
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Figure 6.17 CLSM images of HOBs grown on patterned surfaces for 7 days. Optical 
sections through the basal layer of cells (a, c, e) are shown with maximum intensity 
projections of the entire multilayer (b, d, f) for 15/5 (a, b), 15/10 (c, d) and 15/15 (e, f) 
striped surfaces. 
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6.4 Discussion 

In this Chapter the effect of silicon surfaces on osteoblast growth was investigated. 

Silicon wafers (Si) were used along with wafers that had the oxide layer removed (ESi). 

It was thought that the silicon dioxide wafer could act as a more stable substrate for the 

evaluation of the osteoblast response as the gels used in the previous Chapter were 

unstable in aqueous medium. The initial hypothesis was that silicon dioxide would be a 

better surface than elemental silicon alone in terms of bioactivity and cell response 

because its elemental composition was more similar to the gel from the previous 

Chapter. A patterned surface of the two surfaces used was prepared by photolithography 

and used to make a direct comparison between the surfaces. 

The surface analysis using EDX confirmed that the Si surface contained silicon and 

oxygen and that silicon only was present on the ESi surface. Analysis of the XPS data 

showed that oxygen was present in the ESi surface. This may be explained by the 

differences between the techniques used. EDX analysis, carried out at 10kV, would 

penetrate the sample surface to a certain degree whereas XPS, carried out at an angle of 

75 degrees, would take measurements from the surface layers. Considering the 

travelling time involved between sample manufacture in Sweden and testing in the UK, 

it seems likely that oxygen was present, in different amounts, on both surfaces. 

The use of silicon wafers as biomaterials has never been considered previously except 
by the Canham group (1995,1996,1997a, b, 1999). They have demonstrated the 

bioactive potential of silicon by a novel means of porosification leading to 

biodegradable properties as well as enhanced bone bonding properties. This work has 

shown for the first time that a bulk silicon surface can be rendered bioactive by the 

etching of the native oxide layer. This allowed silicic acid release from the surface and 

subsequent CaPi layer formation in SBF. Neither of these occurred on the non-etched Si 

surface. This was an unexpected result, as bulk silicon has never before been shown to 

have bioactive potential. It is not clear why the differences in bioactivity were present in 

such similar surfaces. The nature of the surface chemistry and the surface wettability are 

likely to be important. 
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All the surfaces used in this work were immersed in either SBF or tissue culture 

medium in order to perform the experiments. It is probable that surfaces changed upon 
hydration. Hydration in SBF could allow silicic acid release and the formation of OH 

groups on the material surface. In tissue culture medium, surface changes due to 
hydration could cause differences in the adsorption or conformation of proteins. These 

are important considerations in clarifying the exact cause of the enhanced bioactivity 

seen in the etched surfaces. 

This work lends weight to the assumption that bulk silicon, in its unaltered form, is not 

bioactive. The present work also strengthens the observation from the previous Chapter 

that silicic acid release and CaPi layer formation are correlated, a theory which is 

widely accepted in the mechanism of CaPi layer formation on bioglass (Lobel and 
Hench, 1996). 

The cell response to the surfaces was then evaluated using cell attachment and 

spreading observations and nodule formation. There was no apparent difference 

between the cell response to the surfaces using these parameters. No attempt was made 

to look in detail at the effect of the surfaces on protein adsorption or expression of 

markers such as ALP and Collagen-1 although these would be advantageous in the 

future. 

When the patterned surfaces were viewed, surface analysis allowed the different regions 

of the pattern to be distinguished, using EDX analysis for SBF work and reflectance 

microscopy for cell response work. Silicic acid was released from patterned surfaces 

and a CaPi layer formed over the entire surface of the material. The Ca: Pi ratio on the 

patterned surface was similar to that seen on the ESi surface, although the amount of 

silicic acid released, the amount of carbon present and the thickness of the layer formed 

appeared to be reduced. The formation of a CaPi layer on the patterned surface was not 

surprising as the silicic acid released from the ESi part of the pattern would stimulate 

the formation of the calcium phosphate layer which would then be deposited at random. 
Other studies have shown how CaPi layer formation can be induced on a non-bioactive 

surface in a biomimetic way (Cho et al., 1996c). 
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The way in which the cells behaved was interesting. Although the cells appeared to be 

randomly distributed at 90 min, by 24 hr it was clear that the cells were aligning on the 

areas of the pattern where the oxide layer had been removed. Cells responded to 

patterned surface from a number of sizes and dimensions. Stripes were used varying in 

width from 5-150µm. There was an obvious response on all surfaces by 24 hr. This was 

maintained for 7 days and even at 21 days the geometry of the pattern was still apparent, 

showing that the head start gained by the cells on the ESi regions was never lost. 

Although patterned surfaces have been used to analyse cellular responses to terminal 

chemistry (Scotchford et al., 1998), these methods have never been previously applied 

to bioactive versus non-bioactive surfaces. The results presented here demonstrate a 

clear preference of cells for the bioactive surface over the non bioactive one. This was 

not apparent when either surface was used alone. 

The question arises as to whether the cells respond to topographical guidance cues 

rather than the nature of the surface and it is true that the cells adhere preferentially to 

the etched, and therefore lower, regions of the pattern. Grooved surfaces are known to 

enhance bone formation in vitro (Gray et al., 1996). Surface geometry has been shown 
to elicit a significant cellular response in vivo and in vitro (Cheroudi et al., 1992). The 

thickness of the step between the different regions of the pattern was 0.33µm. Work 

done by others in our group using different metal surfaces prepared in the same way has 

shown that cells do not respond to the pattern alone. This was demonstrated by the use 

of patterned titanium surfaces where cells were exposed to the topographical effects of 

the pattern while the surfaces used were the same in each region. The cells did not 

respond to the pattern in this case (unpublished observations). 

In summary, the work presented in this Chapter has shown that a silicon surface can be 

rendered bioactive (in terms of CaPi layer formation) by removal of the surface oxide 
layer. Comparison of cell response to Si and ESi surfaces showed minor differences in 

cell attachment and similar patterns of nodule formation. HOBs displayed a clear 

preference for the bioactive regions when presented with a patterned surface. This 

presents opportunities to manipulate cell responses to surfaces in a controlled manner 

and has potential implications in the fields of tissue engineering and biosensing. 
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7.1 Introduction. 

The results demonstrated in Chapters 5 and 6 shows that osteoblasts respond favourably 

to bioactive silicon and silica surfaces. The surfaces used in the 2 preceding Chapters 

were purely experimental in nature. The original aims of the project stated the desire to 

incorporate silica into a suitable biomaterial vehicle, should it promote bioactivity, as a 
long-term goal. In this Chapter the incorporation of silica into a potential working 

implant is explored. 

Aseptic loosening is the most common cause of implant failure. This is due to factors 

such as stress shielding of an implant, leading to bone resorption, movement of the 

implant, causing the development of a soft tissue interface and the presence of wear 

particles causing osteolysis (Vander Sloten et al., 2001). Stress shielding and 

micromotion could both be reduced if stability of fixation of implants such as hip stems, 

could be achieved (Vander Sloten et al., 2001). For these reasons cemented hip stems 

have been used and the cemented Charnley prosthesis introduced in 1967 remains the 

gold standard for total hip replacement (Vander Sloten et al., 2001). Polymers are 

currently used in many biomaterial applications such as wound dressings (Corden et al., 
1998), sutures, capsules for controlled drug delivery, tissue adhesives and bone cements 
(Donkerwolcke et al., 1998) and as the smooth covering of joint surfaces on metal 
implants (eg. acetabular components), among many others. The current state of research 

on polymeric scaffolds for tissue engineered constructs is reviewed in a recent paper by 

Hutmacher (2000). Despite the many uses and types of polymer available, they do not 

possess bioactive properties like their glass and glass-ceramic counterparts such as 

bioglass and hydroxyapatite (Donkerwolcke et al., 1998). 

Poly-E-caprolactone (PCL) is a bioabsorbable polymer. It is currently used in 

biomaterial applications such as wound dressings and the encapsulation of drugs for 

controlled release and shows good biocompatibility with osteoblasts (Corden et al., 
1998). In this work the potential benefits of incorporating silica particles into a PCL 

system were tested in terms of bioactivity and initial cell response. PCL (formula, 6C 

per 20) was chosen as the vehicle for the silica particles because of its low melting (60- 

62°C) temperature and because it hardens at room temperature, reducing the chance of 
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the alteration of the properties of the silica particles due to heating effects. The viscosity 

of the molten polymer (443 Pascal seconds at 150°C) would enable the particles to be 

easily dispersed throughout the polymer matrix (Corden et al., 1998). 

There is some work in the literature about the use of bone cements and silica. Calcium 

metasilicate particles have been implanted into polymethyl methacrylate (PMMA) 

substrates (Tsuru et al., 1998) and this has imparted bioactive properties to the polymer 

as measured by the formation of a CaPi layer in SBF. Fujita et al. (2000) have cemented 

a hip implant with a bioactive bone cement, composed of apatite and wollastonite- 

containing (AW) glass ceramic powder, silica glass powder and bisphenol-A-glycidyl 

dimethacrylate (bis-GMA) based resin in dogs. They found the material to have better 

mechanical and bone bonding properties than PMMA fixed implants, however implant 

failure occurred after 24 months at the acetabluar component. A previous study by the 

same group showed that the bioactive cement penetrated deeper into acetabular anchor 

holes than PMMA (Fujita et al., 1999). 

In contrast to PMMA, there is little in the literature concerning the formation of 

PCL/silica composites. One study examined the drug release characteristics from 

poly(epsilon-caprolactone/DL-lactide) copolymer/silica gel composite and found that 

the release rate of the drug was enhanced when it was incorporated in the silica xerogel 

(Rich et al., 2001). Lowry et al. (1997) used a PCL/glass fibre composite as fracture 

fixators in a rabbit humeral model and found that the tissue inflammatory response was 

minimal, active bone formation around the implant and no evidence of osteolysis. The 

implant was not strong enough for load bearing applications however, and potential uses 

for carpel fixation, patellar fixation and paediatric applications were suggested. A 

PCL/biodegradable glass fibre composite is being developed for potential use in 

maxillofacial reconstruction due to trauma, tumour removal and congenital 

malformations (Corden et al., 1998). It is unclear whether the glass fibres used in the 

latter two papers are silica based. 

The aims of this Chapter were to prepare a polymer containing silica and to analyse 

whether bloactive properties were conferred on the polymer as a result of the addition of 

silica. The silica particles used were made from 2 sources. The first method employed 

TEOS, which was used to prepare the silica gels used in Chapter 5. The second used 
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tetrachlorosilane (TCS) which involved a less complex chemical reaction. The resultant 

particles were analysed and then incorporated into PCL. The PCL/silica composite was 

evaluated to assess whether the addition of silica increased the bioactivity of the 

polymer. Preliminary experiments were undertaken to evaluate the early response of the 

osteoblast to the silica containing polymers. 
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7.2 Materials and Methods. 

7.2.1 Formation of Silica -Particles from TEOS. 

One part concentrated HCl was added to 2 parts tetraethoxy silane (TEOS, Sigma). The 

solution was stirred slowly and 3 parts 1OM NaOH was added. The mixture was again 

stirred slowly and filtered. The resulting particles were thoroughly washed to remove 

the NaCl, which occurred as a result of the reaction. The powder was filtered and dried 

in a 37°C oven. 

The reaction for the production of silica particles using TEOS was: 

(1) Si(CH3CH2O)4 + HC1(8q -+ Si(CH3CH2O)4 + Cl, + CH3CH2OH. 

(2) Si(CH3CH2O)4-X + Cl,, + CH3CH2OH + NaOH + H2O -+ Si02 + NaCl + 
CH3CH2OH. 

7.2.2 Formation of Silica Particles from TCS. 

Tetrachlorosilane (TCS, 2m1) was slowly added to 612µl DH2O (2: 1 moles TCS: H20, 

Sigma) in an air tight vessel and stirred. The resulting silica powder was washed 

thoroughly to remove the HCl and the powder was filtered and dried in a 37°C oven. 

The reaction for the production of silica particles using TCS was: 
SiC14 + H2O -+ Si02 + 4HCI 

7.2.3 Incorporation of Silica into PCL. 

The PCL (CAPA 650, Solvay Interox, Warrington, UK) was supplied in sheet form and 

was melted down at 80°C (melting point of PCL is 60°C) so that the particles could be 

added. 56mg silica was added to 7g polymer and mixed in a 10ml syringe (Becton 

Dickinson) and allowed to harden at room temperature. The PCL-silica composite was 

then removed from the mould and 2mm thick discs were cut from the cylinder using a 
Reichert Jung 2050 supercut microtome (Leica Microsystems Ltd, Milton Keynes, UK) 

with a metal blade. PCL discs without silica, prepared in the same were used as controls 
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throughout the experiments. As the even distribution of particles in the PCL could not 
be guaranteed, a method was also used in which the entire surface of the polymer was 
encrusted with silica particles. This was formed by putting a layer of silica particles, 

prepared from either TEOS or TCS, in the base of a teflon mould, placing a sheet of 
PCL on top and heating to 80°C. When cooled 13mm samples were punched from the 

sheet with a cork borer. 

7.2.4 EDX Analysis and Elemental Mapping. 

Polymer samples containing silica were examined using a Phillips FEG-ESEM with 
EDX microanalysis to assess the elemental content. Elemental mapping was carried out 
to identify the occurrence of silica in the discs. The microscope was operated in 

auxiliary mode using nitrogen as the chamber gas so that the samples could be viewed 

without coating. 

7.2.5 CaPi Layer Formation and Silicic Acid Release. 

Samples of PCL and silica containing PCL, prepared using TEOS or TCS, were placed 
individually in the wells of a6 well tissue culture plate (Falcon). Samples were 

sterilised using UV light and incubated in 10m1 of SBF for 14 days at 37°C. After 14 

days the samples were removed from the SBF, rinsed gently in sterile distilled water 

and air-dried. They were then mounted on aluminium stubs with adhesive carbon tabs 
(Agar) and viewed in a Phillips FEG-ESEM in auxiliary mode using nitrogen as the 

chamber gas. This was done to alleviate the need to coat the samples with gold before 

viewing which would interfere with the analysis of phosphorous in the samples. 
Secondary imaging and EDX microanalysis was carried out on each sample at 10kV. 

Silicic acid release from PCL samples encrusted with silica prepared from TEOS was 

measured, after 2 weeks in SBF, using the molybdenum blue assay described in Chapter 

5. This was compared with silicic acid release from PCL discs. 
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7.2.6 Cell Response to Silica Containing Polymers. 

The biocompatibility of the silica containing polymer samples was evaluated using 

SEM and an assay for cell activity (alamar blue). Samples were placed in triplicate in a 

24 well tissue culture plate and sterilised using UV light for 30 min. HOBs were added 

to the wells at a concentration of 8x104 cells per ml in complete DMEM as described in 

Chapter 2 and incubated at 37°C 5% CO2. Plain PCL discs and Thermanox covErslips 

were used as controls. The alamar blue assay was carried out, at 24 hr cell culture, using 

the method described in Chapter 2. To ensure that the activity of cells growing on the 

tissue culture plastic was not measured, samples were removed to a fresh plate before 

the assay was carried out. Blank polymers, without cells, were used as controls to 

ensure polymer samples did not interfere with the assay. For SEM studies, the medium 

was removed from the wells after 90 min or 24 hr cell culture. The discs were rinsed in 

PBS and the samples were fixed in 1.5% glutaraldehyde in 0. IM phosphate buffer for 

30 min. After rinsing in 0.1M phosphate buffer the cells were post-fixed in 1% osmium 

tetroxide in Millonigs buffer for 30 min. The samples were then rinsed in DH2O and 

dehydrated in a graded ethanol series (2x5min in each of 50,70,90% and 3x10min in 

100%). The samples were then immersed in hexamethyldisilazane (HMDS) for 2 

periods of 5 min, the HMDS was removed and the samples were allowed to air-dry in a 

fume hood. Once dry, the samples were mounted on aluminium stubs with sticky carbon 

tabs, coated with gold using an Emscope sputter coater (5mA for 3min) and viewed 

using a Philips XL30 SEM with LaB6 filament operated at 10kV. 
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7.3 Results. 

7.3.1 Analysis of Silica Particle Formation. 

The use of both TEOS and TCS resulted in the successful preparation of silica particles. 

The yield was high (94-99%) for both methods. Generally the particles produced by the 

TEOS method were larger than those produced by TCS, which produced a fine powder, 

but this was not quantified. ESEM evaluation of the TEOS particles revealed cuboidal 

pores over the surface of the polymer and this was probably due to the crystals of NaCl, 

a by product of the reaction, which were removed from the sample by washing (Figure 

7.1 a). EDX microanalysis revealed the presence of silicon and oxygen in the samples in 

addition to carbon, sodium and chlorine (Figure 7.1b). The average atomic ratio of O: Si 

was 1.55. 

Figure 7.1 Preparation of silica particles. (a) ESEM image of a silica particles 
prepared using the TEOS method. The surface of the polymer is porous. (b) EDX 
spectra of the silica particles in (a). (axes: x=keV, y=counts/sec). 

7.3.2 Surface Analysis of Silica Containing Polymers. 

Elemental mapping was carried out on polymer discs containing silica prepared from 

TEOS. Figure 7.2 shows images of polymer discs containing silica and polymer discs 

encrusted with silica. 
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Figure 7.2 ESEM images of PCL containing silica by impregnation (a) or 
encrustation (b). The areas of the images containing silica are shown in the 
corresponding elemental maps (c, d). 
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Figure 7.3 EDX spectra for the areas shown in figure 7.2 (a) and (b) and for PCL 
without silica (c). (axes: x=keV, y=counts/sec). (d) ESEM image of PCL without silica, 
corresponding to the EDX spectrum in (c). 
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EDX analysis allowed the amount of silica in the samples to be calculated (Figure 7.3). 

Polymer discs containing silica showed the atomic percentage of silicon to be 2.83 At% 

(SEM = 1.71). Polymer samples prepared by encrusting the surface with silica particles 

showed a higher silica percentage of 4.46 At% (SEM = 0.50). The distribution of 

particles was more even in the encrusted samples and this was reflected in the standard 

errors. 

7.3.3 CaPi Layer Formation and Silicic Acid Release in SBF. 

The formation of a CaPi layer after 2 weeks in SBF was detected using ESEM. An 

almost continuous CaPi layer was present on encrusted PCL samples prepared with both 

TEOS and TCS and is shown in figure 7.4a, b. No deposition was observed on the PCL 

controls. EDX analysis of 25x15pm areas (n=3) showed the silica content of the 

polymers. The content for polymers prepared with TEOS was 3.30 At% (SEM=1.26) 

and for TCS was 2.74 At% (SEMO. 20). EDX analysis of the same regions showed the 

presence of calcium phosphate (Figure 7.4c, d) and allowed the Ca: Pi ratio to be 

calculated using the elements atomic percent. The average CaPi ratio for TEOS samples 

was 1.96 and for TCS samples was 1.50. 

Silicic acid release into SBF from PCL containing silica prepared from TEOS, was 

measured after 2 weeks. Small amounts of silicic acid (0.10-0.15ppm) were released 
from the silica containing polymers. Silicic acid was not released from PCL controls. 
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Figure 7.4 ESEM images of polymers encrusted with silica particles prepared using 

TEOS (a, c, e) or TCS (b, d, f) after 2 weeks in SBF, CaPi deposition was seen on both 

surfaces. EDX spectra confirm the presence of Ca and Pi in the samples. (axes: x=keV, 

y=counts/sec). 
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7.3.4 Initial Cell Response. 

None of the materials used were toxic to HOBs as measured by the alamar blue assay 
(Figure 7.5) which showed no statistically significant difference between Thermanox, 

PCL and silica containing PCL prepared by either impregnation or encrustation. The 

results of the SEM studies are shown in figures 7.6 and 7.7. The cells appeared viable at 
both timepoints and were well spread on all samples by 24 hr. Cells were aligned along 

the knife marks resulting from slicing the PCL and silica containing PCL discs. Samples 

prepared by encrusting the silica particles into the PCL surface were randomly oriented 

in a similar fashion to the Thermanox controls. It was not possible to determine whether 

cell processes were attached to silica particles. 

Fluorescence 

Thermanox PCL SiPCL-I SiPCL-E 

Figure 7.5 Cell activity at 24 hrs (measured by alamar blue) on PCL and PCL 
containing silica by impregnation (SiPCL-I) or encrustation (SiPCL-E). Thermanox 
coverslips were used as controls. Bar represents standard error of the mean, n=6. 
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iiJi wa 

Figure 7.6 SEM images of HOBs after 90min culture on Thermanox (a), PCL 
(b), PCL impregnated with silica (c) and PCL encrusted with silica (d). 
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Figure 7.7 SEM images of HOBs after 24hr culture on Thermanox (a), PCL (b), 
PCL impregnated with silica (c) and PCL encrusted with silica (d). 
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7.4 Discussion. 

The aim of the work presented in this Chapter was to incorporate silica into a polymer 

system that is currently used in the field of biomaterials and to make preliminary 
investigations into the properties of the silica-polymer composite. This was achieved 

using methods for assessing bioactivity and by testing the ability of the composite to 

support cell growth. 

Silica particles were successfully prepared using TEOS and the composition of the 

particles was checked using ESEM with EDX microanalysis. The porous nature of the 

particles was confirmed and porosity is reported to be favourable for osteoblast 
ingrowth in vitro and in vivo (Lu et al., 1999). This resulted from the formation of NaCl 

crystals as a by product of the reaction which were subsequently washed from the 

system. This led to the formation of cuboidal pores that were probably not 
interconnected. It is possible that NaCl could be leached from an implant containing 

these particles and the potential effect of this on cells has not been investigated. 

Particles were also prepared using TCS. This system had the advantage of involving 

less chemical reactions and particles were easier to prepare. The resulting particles were 

not porous in nature. It may be possible to prepare porous silica particles by either 

using saline in place of water or, by incorporation PMMA spheres with the silica during 

the reaction. These could then be dissolved from the particles using chloroform. Both 

systems used gave a high yield of particles. 

PCL was chosen as a vehicle to test the properties of the silica particles because it is 

currently used in the field of biomaterials, but has no bioactive properties. Other 

properties of the polymer made it a practical choice for the testing of the bioactive 

potential of the particles. The melting point of PCL is low, making the incorporation of 

silica particles simple to perform. Also, the effect of heat on the bioactivity of the 

particles is unknown. It was thought that the viscosity of the molten polymer would 

prevent the uneven dispersion of the particles in the polymer matrix. 

The addition of silica to the PCL polymer was via 2 routes. Initially molten PCL was 
impregnated with particles in a cylindrical mould and discs were cut from this for use in 

experiments. The problems with this system were twofold. Firstly, the even dispersion 
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of the particles was difficult using this method and many discs cut from the cylinder 

would have contained no particles. The amount of silica that could be incorporated into 

the polymer in this was small, as otherwise the polymer became brittle and difficult to 

cut. Secondly, the cutting process resulted in knife marks on the PCL discs. This could 

clearly be seen using SEM and caused the cells to align along the grooves. This would 

result in the difficulty of isolating the effect of the inclusion of silica from the effects of 

the topography of the surface. 

The second method of incorporating the silica particles into the polymer matrix 

involved encrusting the surface layer of the molten polymer with silica particles. While 

this made the amount of silica difficult to measure, it allowed the surface of the polymer 

to be roughened only by the silica itself, thus negating the differential effects of surface 

topography. It is clear however, that a suitable method of ensuring the particles even 

distribution would be desirable. 

The addition of silica to the polymer system caused silicic acid release and CaPi layer 

formation on PCL surface encrusted with silica prepared from TEOS and TCS. CaPi 

deposition was seen on silica particles and on areas of polymer where silica was not 

seen. The formation of a CaPi layer on non-bioactive surfaces by biomimesis has been 

shown previously (Cho et at., 1996c) but these studies are based on techniques using 

1.5x SBF. Recent studies have shown that the induction time for apatite nucleation and 

the adhesive strength of the layer for a range of substances was improved if the surfaces 

were pretreated with UV irradiation (Liu et al., 1998) or HCl (Tanahashi et al., 1995). 

Induction of apatite formation on a non bioactive surface was demonstrated using 

patterned Si/Esi surfaces in Chapter 6. The amount of silica required to impart bioctivity 

to the polymer surface is unknown and would benefit from further study. 

Initial studies of cell responses to the silica-PCL composite are encouraging. Cell 

activity was not significantly different on any of the surfaces examined. SEM studies 

showed the cells were well spread on all surfaces by 24 hrs. 

The fact that PCL can be moulded opens up exciting possibilities for designing 

biodegradable, bioactive implants for craniofacial applications and other areas where 

intricately moulded, non load bearing implants are required (Corden et al., 1998). 
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Despite the choice of PCL for this work, there is no reason why the particles prepared 
here could not be incorporated into a number of other systems. Calcium metasilicate 

glass particles have been implanted into PMMA and these composites have formed a 
CaPi layer in SBF (Tsuru et al., 1998). Two recent papers have incorporated silica into 

hydroxyapatite (Tancred et al., 2001) and PMMA (Arcos et al., 2001). In the first paper, 
bioglass was added to HA in order to test the effect of silica inclusion on the mechanical 

strength of an implant. Fracture toughness was increased in the HA with bioglass 

addition but other mechanical properties were not improved. The effect of silica 

addition on the bioactive properties was not investigated but has been previously 

reported to reduce the amount of time required to form a CaPi layer in vitro (Santos et 

al., 1996). The cell response to HA-bioglass composites is unclear. The second paper 
describes a glass (Si02-CaO-P2O5)/PMMA composite with bioactive properties which 

was used successfully as a drug delivery system in vitro. The cell responses to the 

composite in vitro and in vivo have yet to be studied. 

The results presented in this Chapter demonstrate that the inclusion of suitable silica 

particles in a non-bioactive polymer matrix can confer bioactive properties on the 

polymer. These initial findings are encouraging but further work to identify the amount 

of silica required for bioactivity would be beneficial. Important considerations for future 

research include the effect of the inclusion of particles on the mechanical strength of an 
implant and other handling properties such as pliability for bone cements. As PCL is a 
degradable polymer system, the fate of released particles from the matrix must be 

addressed as well as any potential toxic effects. For these reasons future work should 
test the potential toxicity of the particles by growing macrophages in culture with the 

particles or with growth medium that had been conditioned with the particles. 
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General Discussion. 



Chapter 8 

The original aims of this thesis were to further understand the effect of silica on the 

osteoblast in vitro. Two distinct approaches were employed to investigate the role of 

silica in bone biology. Firstly, the interaction of soluble silicates with osteoblasts by 

supplementation of the growth medium was used to determine beneficial or adverse 

effects of the treatments over a range of concentrations (Chapters 3 and 4). Secondly, 

the interaction of osteoblasts with silica surfaces in vitro was examined using silica gels 
(Chapter 5), silicon surfaces (Chapter 6) and a bioabsorbable polymer impregnated with 

silica particles (Chapter 7). 

The emphasis at the beginning of the work was to examine an osteoblast cell culture 

system (Chapter 2). The HOB cell culture system had previously been used to 

investigate novel polymeric biomaterials for controlled drug delivery (Di Silvio, 1995). 

The cells were shown to produce markers of the osteoblast phenotype such as ALP, 

collagen-1, osteocalcin and cAMP production in response to parathyroid hormone. Few 

mineralisation studies had been performed. These suggested that the cells isolated were 

capable of producing a mineralised ECM without the addition of mineral supplements 

such as DEX and BGP whose function remains unclear (Di Silvio, 1995). In this work 

several established methods were used to determine the presence of mineral, including 

ultrastrucutral and elemental techniques such as TEM, anhydrous TEM and SEM with 

EDX microanalysis, and histochemical methods such as alizarin red S, von kossa, 

tetracycline and calcein staining (see figures 2.7-2.10). Mineral was not seen at any 

stage. The reasons for the inability of unsupplemented cells to produce large amounts of 

mineral are unclear but the same is true for many other culture systems (Gehron Robey, 

1995, Marks and Hermey, 1996). 

Cultures were supplemented with dexamethasone (DEX) and sodium ß- 

glycerophosphate (BGP) to investigate the capability of the cells to produce mineral. 

These revealed the presence of mineral using several techniques (TEM, calcein and 

Alizarin red S staining, Figures 2.11-2.14) and the mineral produced was associated 

with collagen-1 as shown by TEM. Although the inclusion of these supplements is 

essential for bone marrow derived osteoblast cultures (Ohgushi et al., 1996) and is 

routine in the culture of calvaria-derived osteoblast cultures (Bellows et al., 1987), the 

exact nature of their function remains unclear. It is generally accepted that DEX is 
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required for the expression of the osteoblast phenotype in bone marrow cultures 

(Ohgushi et al., 1996) and that BGP increases the available phosphate in the system 

(Gronowicz and Raisz, 1996). Recently concern has been expressed regarding the use of 

mineral supplements in bone cultures suggesting that the levels used may lead to 

dystrophic (non-biological mineral that is not associated with collagen-1 or any 

biological process) mineralisation (Boyan, 2000). The use of such supplements may 

obscure the true nature of the interaction of osteoblasts with materials and for this 

reason DEX and BGP were not used in the experiments evaluating the osteoblast 

response to biomaterial surfaces. The early onset of nodule formation in osteoblasts 

cultured on silica gel surfaces occurred without the addition of DEX and BGP to the 

growth medium and this may be a more reliable indicator of a favourable osteoblast 

response than the visualisation of mineral for this culture system. The osteogenic 

potential of the HOB culture system warrants further study, however there is some 

evidence to suggest that mineralisation could be induced in this osteoblast model. Faint 

staining was seen in alizarin red S labelled 35 day cultures (Figure 2.10) and the results 

presented in Chapter 5 suggest that mineralisation of osteoblast cultures occurred on the 

silica gel (Figures 5.10 and 5.11). An investigation into the cellular responses to a range 

of calcium phosphate ceramics, using the same cell culture system, revealed deposits of 

apatite-like crystals in osteoblast cultures by TEM (Scotchford et al., in preparation). 

The use of immunofluorescence techniques demonstrated the osteoblast phenotype by 

the ability of the cells to produce ALP, OP, ON and collagen-1 (Figures 2.4-2.6). TEM 

and confocal studies showed that while collagen-1 was noted after day 5 in culture this 

was never in abundant amounts. It is possible that the lack of mineral produced by 

HOBs was in part due to the fact that an adequate extracellular matrix was not laid 

down to support the nucleation of apatite. This is a potential area for further study and 

the formation of col lagen-1 could be stimulated using growth factors such as IGF- l 

(Chevalley et al., 1998). Another cell system was used in this work, the craniofacial 

osteoblast (CFC). These cells are isolated from a different anatomical site and the age of 

the donors is lower than HOBs (McDougall, in preparation). These cells produce 

abundant collagen I but produces less ALP than HOBs (McDougall, in preparation). It 

is unclear whether the differences between HOBs and CFCs are due to the donor age 

and site but irrespective of this there is potential to use both systems together to give 

additional information about the osteoblast response to systems under investigation. 
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Ultrastructural investigations demonstrated the presence of junctions between the cells 
(Figure 2.8a) and these were likely to be gap junctions, as these are the usual means of 
intercellular communication in bone (Donahue, 2000). Confirmation of this could be 

obtained by immunolocalisation with connexin 43. Cell death was noted in the centre of 

the nodules in long-term cultures. (Figure 2.9a, d) This may have been due to necrosis 

related to the difficulty in diffusion of nutrients due to the large size of the structures or 

apoptosis which has been reported as the fate of the 80% of osteoblasts that do not 
become osteocytes (Boyce, 1996). 

The effect of silicate supplementation of HOB growth medium was investigated in 

Chapter 3. Sodium silicate was used and this was the same compound as that used by 

Carlisle in the series of experiments leading to the establishment of silicon as an 

essential trace element (Carlisle, 1986). Parameters such as ALP production, nodule 
formation and mineralisation were investigated. While a reduction in ALP activity with 

a concomitant increase in the number of nodules formed was seen in some experiments 

supplemented with 1-5Oppm silicate, a clear, reproducible effect of silica on the 

osteoblast or the mineralisation process was not demonstrated. Quantitative analysis of 

collagen-1 formation was not undertaken in this work due to financial and practical 

considerations, but it is clear from the work undertaken, as well as the reported 
inclusion of silica in collagen as a structural component (Carlisle, 1986), that analysis of 

this important protein may yield information on the role of silica in the osteoblast 

mineralisation process in the future. For example, use of CFCs instead of HOBs, with 

their abundant formation of collagen may have revealed an association of silica 

supplementation and increased collagen formation. 

The biologically active range of silica was within the range of concentrations used in 

this work and any beneficial effects are likely to be seen in the range 1-50ppm. 

Increased rates of nodule formation, with decreased ALP activity and increased mineral 

staining was noted in some of the long term studies using low levels of silicate 

supplementation in Chapter 3 (Figures 3.6-3.9). The amount of silicic acid released 

from the silica gels used in Chapter 5 was in the lower end of the range seen to have an 

effect on the osteoblast (Figure 5.9). The apparent effects of concentrations as low as 

lppm silica are supported by the fact that the amount of silica measured in the 
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circulating body fluids has been measured as 1-5ppm (Dobbie and Smith, 1982a). 

Although not conclusive, the findings in this work suggest that concentrations as low as 
1-Sppm affect the osteoblast in vitro and highlights the need for further research in this 

area It is likely that the techniques used in this work were not sensitive enough to detect 

potential subtle effects of low levels of silica. The results presented here show that silica 
is unlikely to be an essential supplement for osteoblast mineralisation in vitro and that 

the beneficial effects seen may be specific to certain differentiation states or the 

expression of specific proteins or growth factors, making the role of silica difficult to 

isolate. The interaction of molecules with the cell membrane and proteins has been 

investigated extensively using fluorescence techniques (Cladera et al., 2000) and the 

application of these to the problem as well as the use of genetic techniques such as gene 

arrays (Xynos et al., 2001) may give important information concerning the precise 
interaction of silica with osteoblasts in vitro. These techniques may reveal a requirement 

of silica for mineralisation in bone. 

Recent work has shown increased proliferation of osteoblasts, as shown by an increase 

in the number of cells in stages S and G2/M phases of the cell cycle, on bioactive glass 

surfaces (Xynos ei al, 2000; Hench et al, 2000). Their findings also show that 

osteoblasts in vitro exhibit lower AP levels and increased nodule formation when 

cultured on Bioglass 45S5 for 12 days and that this is linked to an increase in 

osteocalcin production (Hench, 2001; Hench et al, 2001; Xynos et al. 2000; Hench et 

al, 2000). Osteocalcin production was not measured in the current studies. The results 

presented in chapter 3 show that silica, in isolation, can affect nodule formation and AP 

activity in a similar manner to that of bioglass suggesting that the silica component of 

these glasses may be responsible for the enhanced cell response reported. 

Additionally, the same group have used genetic array studies and shown that cell cycle 

related genes and transcription factors are up-regulated when osteoblasts are cultured in 

the presence of dissolution products of bioglass (Xynos et al, 2001). Cell cycle studies 

were not carried out in this thesis but future studies should attempt to isolate the role of 

silica alone on osteoblast proliferation, differentiation and mineralisation. 

Keeting er a/. (1992) showed that increased proliferation seen in HOBs cultured in the 

presence of Zeolite A (a compound containing silica and alumina) could mainly be 
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accounted for by the silicic acid content of the material. This demonstrates that silicic 

acid has the potential to affect osteoblast cell behaviour. The results presented in chapter 

3 showed that silicic acid affected osteoblast performance during long term 

administration in terms of AP activity, nodule formation and mineralisation. The 

proliferative response seen by Keeting et al (1992) was dependent on cell number, 

indicating that an autocrine mechanism may be involved in the interaction between ZA 

and bone cells. Furthermore, ZA appeared to increase the secretion of TGF-ß at a post 

transcriptioal level. In light of these findings it is perhaps surprising that there is scant 

reference in the literature since to the role of silica containing compounds in stimulating 

osteoblasts. The present work was carried using the same cell concentration throughout 

and no attempt was made to examine the molecular interaction of silica with osteoblasts 

at the but these finding show that the potential interactions of silica-containing 

compounds with osteoblasts may be quite specific at a molecular level. Further research 

examining the potentially complex role of silica, in isolation, on cell signalling at the 

molecular and genetic levels in bone cells is warranted. 

Supplementation of cultures with more than 300ppm silicate caused cell death within 48 

hr (Figure 3.5). There was a marked decrease in cell activity between 24 and 48 hr for 

cultures supplemented with 150ppm silicate (Figure 3.5). These levels of silica are 

unlikely to be found in the body under normal circumstances, but could conceivably 

leach from implanted biomaterials, or arise locally from drug treatments. The local 

levels of silicic acid surrounding silica-containing implants in vivo has not been 

measured but would be important in ensuring that material toxicity did not override 

beneficial effects of low levels of silicic acid release. 

The cell death seen in cultures supplemented with more than 300ppm silicate was 

further investigated in Chapter 4. The process by which cell death occurred was 

identified as apoptosis (Figures 4.2-4.4). Apoptosis was demonstrable in cultures after 

3hr and appeared to result form the failure of cells to spread normally in culture (Figure 

4.1). Nuclear profiles of cells appeared similar at 90 min but cell morphology as shown 

by phase contrast microscopy was different. Typical actin cytoskeleton and focal 

adhesion contact formation was absent. It is interesting to note that cell attachment and 
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spreading was indistinguishable in cultures supplemented with up to 250ppm silicate 
(Figures 3.2 and 3.3). 

Cell death occurred whether the cells were allowed to attach and become established in 

culture or seeded directly into the silicate supplemented medium (Figures 4.5 and 4.6). 

The phenomenon was not restricted to bone cells but was seen in fibroblasts and 

macrophages (Figures 4.11 and 4.12). The HOBs recovered from the toxic insult if the 

medium was replaced with complete medium within a few hours (Figures 4.9 and 4.10). 

It is not clear what caused the cell death. Silica particles are known to cause membrane 

rupture and cell death in macrophages (Allison et al., 1977, Dobbie, 1982), but 

membranes were shown to remain intact in these studies (Figure 4.8). Oligomers form 

at neutral pH in silicate solutions above 100ppm (Birchall, 1995) and it is more likely 

that these may contribute to the toxic effect by interaction with serum proteins. The 

results of the protein adsorption assay in Chapter 3 showed that the trend for adsorption 

of BSA increased with increasing silica concentration although the data were not 

statistically significant (Figure 3.1). It is known that osteoblasts do not attach in the 

usual way to surfaces coated with albumin (Curtis and Forrester, 1984). The fact that 

the induction of the apoptotic pathway appeared to be initiated by the failure of cells to 

attach and spread in a normal fashion lends weight to the hypothesis that silica interacts 

with proteins. Silica particles bind to serum proteins (Barrett et al., 1999) and proteins 
have been investigated as a potential control molecules in biosilification (Perry and 
Keeling-Tucker, 2000). The adsorption of proteins to silica surfaces has been 

demonstrated and these retain their function so there is potential to affect osteoblast 

function (Lobel and Hench, 1996). 

The finding that silicate causes osteoblast apoptosis is a new one and has implications in 

the field of biomaterials as the amount of silica required to induce apoptosis was small 

and therefore theoretically possible to leach from an implant although these figures have 

not been studied. Osteoblast apoptosis, especially in relation to biomaterials is the 

subject of much current research (Massari et al., 2000, Liu et al., 1999, Stea et al., 
2000b, Pioletti et al., 1999) and the work presented in Chapter 4 represents a reliable 

means of inducing rapid apoptosis in large numbers of osteoblast cells. 
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Recent findings (Hench, 200; Hench et al, 2001; Xynos et al. 2000; Hench et al, 2000), 

demonstrate that bioglass surfaces can exert control over the osteoblast cell cycle and 

apoptosis. The results presented in chapter 4 demonstrate that silica alone can cause 

apoptosis in osteoblasts and show that the silica component of bioactive materials may 
directly affect cell behavior. Further work is necessary to elucidate the full extent of the 

involvement of silica, in isolation, in bone cell turnover, interactions and metabolism. 

A model silica gel surface was prepared as outlined in Chapter 5 and the osteoblast 

response to it was evaluated. The gel served as a model surface to reflect the 

osteoblast/biomaterial surface in vivo. The biomaterials aspect of the work was split into 

two distinct categories, (a) surface bioactivity and silicic acid release in vitro and (b) 

cell response. In this way, the formation of a CaPi layer, sustained silicic acid release 

and a favourable osteoblast response could be correlated. The silica gel maintained a 

sustained release of silicic acid into SBF for II days (Figure 5.3) and formed a CaPi 

layer in SBF (Figure 5.2). The osteoblast response was enhanced reproducibly on the 

silica surface in comparison to controls in terms of onset of nodule formation ((Figure 

5.4). In addition, the release of silicic acid was absent when osteoblasts were grown on 

the surface (Figure 5.9). Although not conclusive evidence, this gives rise to the 

possibility that small quantities of silicic acid may be utilised by osteoblasts to enhance 

the mineralisation process. Further circumstantial evidence in this work further supports 

this hypothesis such as the finding that nodule formation was increased in some cultures 

supplemented with I and 5ppm silicate (see section 3.3.3) and that increased mineral 

staining was seen in cultures supplemented with 1-50ppm silicate (Figure 3.8). The 

nature of the silica gel coated disc surface allowed use of both upright and inverted 

surfaces to hypothesise that both the nature of the surface and the release of silicic acid 

contributed to the bioactivity and the subsequent cell response. 

The results presented in chapter 5 lend weight to the role of the silica component of 

materials in the bioactive phenomenon of class A bioactive materials. Recent work 

suggests that both bioactive material surfaces and ionic dissolution products of materials 

containing silica select for more mature osteoblasts, demonstrated by cell shape, 

enhanced nodule formation, increased decreased AP and increased osteocalcin (Xynos 

et al, 2001; Xynos et a!, 2000; Hench et a!, 2000).. The results of the silica gel studies 

presented in chapter 5 show that a surface composed of silica alone can mimic the 
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results found with bioglass surfaces in terms of cell shape and enhanced nodule 

formation. This supports the theory that the silica component of bioactive materials can 
directly affect osteoblast behaviour. 

The response of human osteoblasts to different silicon surfaces was compared in 

Chapter 6. This work gave the first indication of the bioactivity of bulk silicon in the 

semiconductor form as a result of the removal of the surface oxide layer. This has far 

reaching consequences in the design of implanted biosensors, etc. Both silicic acid 

release and the ability to form a CaPi layer were central to the concept of bioactivity in 

terms of enhanced cell response and also were related to each other. Surfaces that did 

not release silicic acid did not form a CaPi layer and vice versa (Figures 6.3-6.5). This 

was also observed in the silica gel studies from Chapter 5 (Figure 5.2), and in the 

polymer studies reported in Chapter 7 (Figure 7.3). The interesting finding here came 

with the use of patterned surfaces. The cells clearly expressed a preference for the 

bioactive surface over the non-bioactive surface and this effect was long lasting. This 

was surprising as on their own neither surface appeared better than the other in terms of 

osteoblast growth. Patterned surfaces have proved useful in determining cellular 

preferences to specific surface chemistries (Scotchford et al., 1998) and cellular 

responses to topography (Meyle et al., 1991,1995). Patterned surfaces have not 

previously been used to evaluate the cellular responses to bioactive surfaces. 

The findings presented in this thesis have implications for the in vitro screening of new 
biomaterials. In some cases cell proliferation and viability assays (such as alamar blue, 

MTT and DNA content assays) are used, along with other cell tests, to screen a range of 

surfaces for biocompatibility (Green et al, 2000, Rizzi et al, 2001). While these assays 

were used to good effect in this thesis to indicate cytotoxicity in Chapter 3 (Figure 3.5), 

they did not predict the bone enhancing effects of the silica gel used in Chapter 5 

(Figure 5.8) and would probably have shown similar results with the Si and ESi surfaces 

used in Chapter 6. This suggests that they are useful to screen a broad range of materials 
for cytotoxic effects but may not easily facilitate differentiation between good surfaces. 
The use of patterned surfaces in this work allowed the cellular preferences for bioactive 

surfaces to be visualised (Figures 6.12-6.18). Cell spreading is also used as a marker of 

the potential of a material to do well in the body. This is not supported by the work 

presented here. While the bioactive surfaces used in this thesis showed good cell 
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attachment and spreading they were not as advanced as thermanox at 90 min and were 
indistinguishable at 24 hrs (Figure 6.6). This criterion alone would not have singled out 

the better surfaces. The analysis of cellular responses to biomaterials poses practical 

problems if the surface used is autofluorescent or opaque. The use of confocal 

microscopy techniques and fluorescent staining of mineral using calcein proved 
beneficial in measuring the osteoblast response (Figures 2.12,2.13 and 3.9). Calcein 

also provides semi-quantitative. data allowing the relative amounts of mineral formed on 

different surfaces to be evaluated simultaneaously (Hale et al., 2000). 

As soon as a material is placed in solution solutes are adsorbed onto the surface in an 

ordered way and these in turn will effect the subsequent adsorption of molecules. When 

a cell comes into contact with a surface the sequence of events (eg conformation of cell 

binding proteins) will determine the success of an implant. Cell recruitment, attachment, 

proliferation and differentiation are all affected by the nature of the surface (Boyan et 

al., 1995). Surface characteristics such as topography, physical characteristics, surface 

roughness, surface chemistry, energy and crystallinity have all been shown to have an 

effect on the cellular response to materials. The manipulation of these properties of a 

material to promote new tissue growth is known as tissue engineering. Biomaterials 

design to date has mainly been based on trial and error (Lobel et u1., 2000). Tissue 

engineering however, introduces an element of rational design in the biomaterials field. 

Current work using molecular biological and genetic approaches aimed specifically at 

assessing the bone response to materials will encourage the design of materials which 

effectively manipulate the cellular behaviour to promote a desirable response. 

Encouraging results were obtained in terms of in vitro bioactivity and cell responses 

using the silica gel in Chapter 5 and the bioactive potential and biocompatibility of 

silicon wafers was observed in Chapter 6. The next logical step was to investigate the 

potential of silica to improve the biocompatibility of existing biomaterials which would 
benefit from improved bone bonding properties. The incorporation of silica into a PCL 

polymer was investigated in Chapter 7. Silica powders were prepared from TEOS and 
TCS and these were incorporated into a PCL matrix. Preliminary cell compatibility 

results indicate that the surface supported cell growth and no adverse effects on bone 

cells were noted (Figures 7.5-7.7). Investigations into the bioactive properties of the 

composite showed that a CaPi layer was formed on the surface in SBF and that this 
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occurred on silica particles and adjacent areas of PCL (Figure 7.4). The deposition of a 
HCA layer on a non-bioactive surface was also observed in Chapter 6 (Figure 6.11). 

These findings clearly demonstrate that the preparation of biomaterials composed of 

bioactive and non-bioactive components lead to bioactivity and may lead to enhanced 

bone bonding in vivo and this warrants further investigation. The use of PCL in this 

work was primarily based on practical considerations but there is no reason why other 

substances, with suitable properties for biomaterial applications, such as bone cement or 

HA, could not benefit from this treatment. Recent studies suggest that the incorporation 

of silica into other materials to enhance performance is an area of active interest (Arcos 

et al., 2001, Tancred et al., 2001, Tsuru et al., 1998, Yang et al., 1997, Kobayashi et a!., 

1997). This also opens up exciting possibilities for improved bone bonding biomaterials 

with superior mechanical and handling properties. 

In summary, the work presented here has further explored the use of in vitro models of 

osteoblast mineralisation to evaluate the role of silica in the mineralisation process and 

in cytotoxicity. Sodium silicate has been found to be a reliable indicator of osteoblast 

apoptosis by an as yet unidentified mechanism. The demonstration of the bioactivity of 

etched silicon wafers leads to their potential use in silicon based biomaterials and 

biosensors. The incorporation of silica into materials, which have otherwise desirable 

properties, to enhance bone bonding was shown to be successful in preliminary studies. 

This work also furthers the tissue engineering goal to manipulate the osteoblast 

response to biomaterials by means of patterning and also by the incorporation of silica 
into biomaterials. 
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