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Abstract

Until very recently Systems Biology has, despite its stated goals, been too reduc-

tive in terms of the models being constructed and the methods used have been, on

the one hand, unsuited for large scale adoption or integration of knowledge across

scales, and on the other hand, too fragmented. The thesis of this dissertation is

that better computational languages and seamlessly integrated tools are required by

systems and synthetic biologists to enable them to meet the significant challenges

involved in understanding life as it is, and by designing, modelling and manufac-

turing novel organisms, to understand life as it could be. We call this goal, where

everything necessary to conduct model-driven investigations of cellular circuitry

and emergent effects in populations of cells is available without significant context-

switching, “one-pot” in silico synthetic systems biology in analogy to “one-pot”

chemistry and “one-pot” biology. Our strategy is to increase the understandability

and reusability of models and experiments, thereby avoiding unnecessary duplica-

tion of effort, with practical gains in the efficiency of delivering usable prototype

models and systems. Key to this endeavour are graphical interfaces that assists

novice users by hiding complexity of the underlying tools and limiting choices to

only what is appropriate and useful, thus ensuring that the results of in silico exper-

iments are consistent, comparable and reproducible.

This dissertation describes the conception, software engineering and use of two

novel software platforms for systems and synthetic biology: the Infobiotics Work-

bench for modelling, in silico experimentation and analysis of multi-cellular biolog-

ical systems; and DNA Library Designer with the DNALD language for the com-

pact programmatic specification of combinatorial DNA libraries, as the first stage

of a DNA synthesis pipeline, enabling methodical exploration biological problem

spaces. Infobiotics models are formalised as Lattice Population P systems, a novel

framework for the specification of spatially-discrete and multi-compartmental rule-

based models, imbued with a stochastic execution semantics. This framework was

developed to meet the needs of real systems biology problems: hormone trans-

port and signalling in the root of Arabidopsis thaliana, and quorum sensing in the

pathogenic bacterium Pseudomonas aeruginosa. Our tools have also been used to
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prototype a novel synthetic biological system for pattern formation, that has been

successfully implemented in vitro.

Taken together these novel software platforms provide a complete toolchain, from

design to wet-lab implementation, of synthetic biological circuits, enabling a step

change in the scale of biological investigations that is orders of magnitude greater

than could previously be performed in one in silico “pot”.
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Chapter 1

Introduction

Chapter abstract
This chapter sets the scene for the dissertation, describes the goals of the research undertaken, the methodology used
and the projects this work underpins. It will delineate the scope of the thesis and discuss how the contributions made
compare to and depart from previous approaches. Finally, the results of the research will be summarised and the
structure of the text explained.

1.1 Background and motivation

Systems Biology [1, 2] seeks to understand life as it is through the in silico reconstruction of

molecular interactions that combine to produce emergent cellular behaviours. This approach

has lead to the discovery of design principles of biological systems such as recurrent motifs

of gene networks [3, 4], which perform information processing tasks such as filtering specious

fluctuations in environmental molecules and produce controlled responses.

Synthetic Biology, a new ten-year-old discipline [5], seeks to understand life as it could be

through the construction of modularised genetic circuits (known generally as bioparts) and pro-

gramming of minimal cellular chassis (from the top-down [6] and from the bottom-up [7]). This

engineering approach assumes that the encoded molecular networks can be made similarly mod-

ular (due to chemical specificity or spatial localisation [8]) and can be maintained and exploited

for the hierarchical integration of biological parts into devices, and devices into systems, where

intracellular subsystems are orthogonal to each other. Whether this assumption holds true is

unclear, but emulating orthogonality is one of the grand challenges of synthetic life [9]. It may

be that cells, rather than circuits, are the most appropriate embodiment of modules, in which

case the understanding and principal application of cellular interactions will be crucial for the

successful programming of synthetic biological devices.

Although these fields may seem to have quite different aims, there is considerable overlap be-

tween Systems and Synthetic Biology. In terms of complementary gains, knowledge from one

field is often directly applicable in the other, for instance the elucidation of evolved control

mechanisms suggests patterns that can be implemented in novel gene regulation circuits. In

1



2 CHAPTER 1. INTRODUCTION

terms of how their investigations are conducted, both require and are driving the improvement

of methods and tools for in silico modelling, simulation and analysis of molecular and cellular

populations in space and time. Dynamic models, each a design or hypothesis, are the primary

means of establishing our level of understanding and validating it by making experimentally

testable predictions.

The majority of biomodels consider just one scale of biological organisation, molecular net-

works of single cells in particular, whereas ultimately it is desirable to integrate models at many

scales and of multiple subsystems. The key motivation is to move away from prescriptive im-

plementation of behaviours at one level and instead enable those to emerge as the consequence

of behaviours at a lower level. This concept was elegantly summarised by a colleague in the

context of vesicle computing [10]:

“there are few simulation and modelling approaches that take into account the fact

that biological systems work over different length and time scales. Understanding

a system as being composed of units which in turn are composed of other smaller

units is the essence of hierarchical reductionism. It is import to realise however that

abstractions of scale are constructs designed to aid understanding, all processes

in a biological entity are emergent from interactions at the lowest possible level.

Therefore, the creation of realistic high level design technique for vesicle comput-

ing systems will only succeed if the assumptions and abstractions made at the high

level are correct in terms of low level interactions.”

A virtual human against which we could trail future synthetic cellular medicines is still remote,

but an achievable step forward is to scale up from the current generation of models by bringing

molecular and multicellular systems together into one suitably generic modelling framework.

The first goal of the research presented here is the development of a such a framework. We

elucidate its requirements from a selection of example systems relevant to our collaborators.

1.1.1 Exemplar molecular-multicellular systems

Two natural multicellular systems whose behaviour is determined both by molecular interactions

and spatial organisation are quorum sensing in the pathogenic bacteria Pseudomonas aeruginosa

and the root node development of the model plant Arabidopsis thaliana. Investigations into the

structure and function of these systems were conducted in collaboration with colleagues at the

University of Nottingham’s Centre for Biomolecular Sciences and Centre for Plant Integrative

Biology. A third system of in silico designed and synthetically reprogrammed bacteria leverages

that knowledge to implement Turing pattern formation in colonies of Pseudomonas aeruginosa.
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A B C

Figure 1.1: Schematic of a cross-section of the A. thaliana root cells showing position and directionality of PIN
transporter proteins responsible for efflux of the plant hormone auxin (represented by red arrows). The nuclei of
each cell coloured according to tissue type. The three panels below show the direction of efflux across the cell
membrane at different points of the tip, located by A, B and C above.

The root node of Arabidopsis thaliana

The cells of the root node are organised as concentric layers of tissue, with the cells of each layer

arranged in single cell width “files” extending from the root tip. The cubic nature of plant cells,

as defined by the cell wall, and the elongation of root cells which occurs only in the developing

tip of the root node leads to a somewhat regular structure where the faces of cells in adjacent

layers are aligned. Figure 1.1 shows a schematic of the roots organisation, with the nuclei of

each cell coloured according to tissue type.

The software developed as part of this PhD has been successfully used to model auxin flow [11]

and abscisic acid related signal transduction networks [12] in the root tip of A. thaliana. Obser-

vations of intracellular components by staining/fluorescent tagging and microscopy producing

cross-sectional slices were used to abstract a two dimensional grid of cells. Figure 1.1 shows
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the directions of auxin transport by PIN proteins to neighbouring cells. In order to faithfully

reproduce the observed behaviour, the modelling framework needed to capture the organisation

of the one-way transporters embedded in some, but not all, intercellular interfaces.

Quorum sensing systems in Pseudomonas aeruginosa

Different species of bacteria colonise almost every accessible environment on the planet, in-

cluding humans. That they are able to persist in challenging and changing environments is due

to adaptations that have created diverse, differential social behaviours. One such adaption is

quorum sensing, which in Pseudomonas aeruginosa is a clinically-relevant target for systems-

biological investigation.

Quorum sensing (QS) is the phenomenon of coordinated group behaviour correlated to the lo-

cal density of a bacterial population. Bacteria that perform QS constantly produce and secrete

small diffusible signal molecules that bind to and activate constitutively expressed receptor (R)

proteins, which either regulate or are transcription factors that activate certain genes, including

(I) proteins which synthesise the signal molecule, a process known as autoinduction. The con-

centration of signalling molecules required to fully bind the R protein receptors is such that only

when the bacterial population is sufficiently dense will there be a enough signal diffusing in the

environment to activate the receptor and effect gene activation. The subsequently (auto)induced

production of additional signal molecules creates a positive feedback loop that reinforces the

activation of individuals and the population, causing all of the cells to begin transcribing QS-

associated genes within a short time of each other.

This ability to switch phenotypes in a synchronised manner means the bacteria can grow within

a host without alerting the immune system, until such a time as there are sufficient numbers

(sensed by the concentration of signal molecules in the environment) to weather an immune

response, at which point they can be more aggressive, invade tissues and establish treatment

resistant biofilms. Figure 1.2 shows some more of the phenotypes regulated by quorum sensing.

The overall effect is to limit in a small population (i.e. individual cells) behaviours that would

only be of benefit in a large population, allowing sparse populations to gain a foothold in their

surroundings.

Pseudomonas aeruginosa is a free-living Gram-negative bacteria, commonly found in soil and

water. It is also an opportunistic pathogen of humans that infects compromised tissues, in par-

ticular the respiratory tract of patients with cystic fibrosis and the urinary tracts of patients fitted

with catheters. The quorum sensing system of P. aeruginosa controls expression of 10% of the

genome including genes responsible for the production of virulence factors - elastase, lectins,
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Figure 1.2: Phenotypes regulated by quorum sensing in bacteria (taken from [13]). The signalling molecule 3-oxo-
C12-HSL (centre) is responsible for coordinating biofilm clumping and maturation, swarming motility, exopolysac-
charide and virulence factor production in Pseudomonas aeruginosa.

exopolysaccharides and pyocyanine - which enable the bacteria to inhibit lymphocyte prolifer-

ation, disrupt tight junctions between tissue cells, and form biofilms.

To date the P. aeruginosa QS system is one of the most complex studied, with three subsystems

mediated by two N-acyl homoserine lactone signalling molecules (3-oxo-C12-homoserine lac-

tone and N-butanoylhomoserine lactone, AHLs similar to those first discovered as the biolumi-

nescence determinant in Vibrio fischeri) and two quinolones (2-heptyl-3-hydroxy-4-quinolone,

referred to as the Pseudomonas quinolone signal or PQS, and 4-hydroxy-2-heptyl-quinoline,

also known as HHQ).

The Las subsystem controls both the Rhl and HHQ/PQS subsystems, as shown in figure 1.3.

The gene pairs lasI/lasR and rhlI/rhlR encode the synthase and receptor proteins for the 3-oxo-

C12-HSL (3OC12) and C4-HSL signals of the Las and Rhl subsystems respectively. When

bound to 3OC12, LasR activates transcription of lasI and lasR (as it is an autoinducer), as well

as rhlI and rhlR. Similarly, when bound to C4-HSL, RhlR autoinducer activates transcription of

rhlI and rhlR. The promoter of lasI is bi-directional so that while increasing LasI expression,

and therefore 3OC12 levels, LasR also increasing rsaL expression. RsaL is an inhibitor of lasI

which therefore contributes to a decreasing 3OC12 levels.

As figure 1.3 shows, LasR also activates transcription of pqsR and pqsH, the former encoding
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Figure 1.3: The quorum sensing hierarchy in P. aeruginosa. Image from http://www.nottingham.ac.uk/
quorum/pseudomonas2.htm.

http://www.nottingham.ac.uk/quorum/pseudomonas2.htm
http://www.nottingham.ac.uk/quorum/pseudomonas2.htm
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the receptor protein PqsR and the latter encoding an enzyme which catalyses the conversion

of HHQ into PQS. Both HHQ and PQS bind to and activate PqsR which in turn upregulates

(differentially depending on the signal bound) expression of the pqsABCDE operon that encodes

four enzymes required for HHQ synthesis, and PqsE, required for the production of pyocyanin

and swarming behaviours [14]. Activated PqsR also upregulates of rhlR and rhlI, while C4-HSL

activated RslR downregulates pqsR and pqsABCDE; a mechanism of self-regulation similar to

LasR and RsaL.

Alongside these three quorum sensing subsystems are others that respond to additional extra-

cellular signals. RetS, GacS and LadS mediate the phosphorylation of GacA, which when phos-

phorylated promotes expression of rsmZ and rsmY small RNAs that form hand-like structures

with 5-loops, each of which sequesters an RsmA protein. RsmA is known to bind to the mRNAs

of the virulence genes lecA, hcnA, increasing or decreasing their stability and rates of transla-

tion. PQS is thought to interact with a mystery protein that upregulates the transcription of

the rsm genes, as does RhlR. Through these mechanisms the quorum sensing circuits achieve

fine control of translation (enabling swifter changes in phenotypes than at the genetic level) in

response to population density and other environmental factors.

The complexity of the P. aeruginosa quorum sensing system, together with its relevance to

clinical medicine, makes it a suitable target for the systems biological approach, where new

understanding of the interaction networks involved could be used to rationally design novel

“quorum quenching” antimicrobials. The biomodel components required include gene regula-

tion (decomposable into transcriptional motifs), stochastic signal production and extra-cellular

diffusion.

Pattern formation in synthetic bacterial colonies

Components with inducible promoters from the Pseudomonas quorum sensing systems are

suited to the design of synthetic microbiological systems exhibiting population-level control of

gene expression. Uses in synthetic biology include synchronisation [15] of the famous synthetic

oscillator the Repressilator [16], and program pattern formation in bacterial colonies [17].

From these components members of our laboratory have built modularised models of bacterial

colonies that exhibit pattern formation arising from the activation and repression of reporter

genes mediated by exchange of signal molecules. The goal was to design and experimentally

validate the role of double negative feedback loops in the emergence of patterns in developmen-

tal processes by implementing a synthetic circuit in Escherichia coli colonies that resembles

natural circuits found in organisms like the sea urchin [18].

A sketch of the design of this synthetic circuit is presented in the figure 1.4a. It consists of six

individually well-characterised modules arranged in two branches, one formed by modules 1,
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2 and 3 and the other by modules 4, 5 and 6. Together these compose a device with a double

negative feedback loops resembling a latch electronic circuit that ensures exclusive activation of

the two different branches.

Stochastic simulation (described in sections 2.2 and 5.2) of a model colony of the transformed

cells resulted in the emergence of spatio-temporal patterns similar to that shown in figure 1.4b.

Exhaustive analysis of the dynamics of the circuit using simulations and model checking aided

the identification of potential flaws in the circuit design and proposed solutions for them.

1.1.2 Multicellular modelling

Each of three examplar systems discussed in section 1.1.1 has a strong spatial component where

molecule exchange between adjacent cells, coupled with stochastic noise from low levels of

certain molecules, determines the eventual phenotype. In order to investigate biological phe-

nomena such as quorum sensing and development in higher eukaryotes, or characterise the

emergent behaviours of many synthetic cellular devices operating in concert, it is vital that we

have a suitable means of formally describing and simulating these systems. Quantitative pre-

dictions from models are required for designing wet-lab experiments to validate or refute the

hypotheses they represent. When system dynamics are subject to stochastic noise at molecular

and population levels this must be properly accounted for in our models as discrete, depletable

quantities and not simply abstracted away. The mechanisms cells have evolved to manage and

exploit stochasticity will be an important guide to ensuring the correct functioning of embedded

synthetic circuits.

There are many barriers to effectively modelling colonies or tissues of cells at the discrete-

stochastic level, which have not become apparent or manifested sooner due to the necessary

focus on developing foundational models of molecular networks in single cells. Building large-

scale or reusable models is hindered by on the one hand by the inappropriateness of existing

largely mathematically oriented standards (in particular SBML) and on the other by the prolif-

eration of overly complicated alternatives drawn from computer science such as process calculi

or novel formalisms which focus only on certain aspects (e.g. κ with protein complexes), and

the relatively immaturity of their software implementations compared to conventional modelling

approaches (reviewed in chapter 3). This is especially true with regard to stochastic models at

the colony and tissue levels which have so far received scant attention and therefore no concerted

efforts have been made to investigate the difficulties of either formally describing multicellular

models or consistently interrogating and plotting the high-dimensional datasets simulations of

these can generate (i.e. quantities of molecular species in many cells and potentially subcellular

compartments, sampled over many timepoints and independent runs). Addressing these issues
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(a) Synthetic gene network for pattern formation.

(b) A simulated pattern formed by a 100×100 grid of cells each
containing a model of the circuit in (a).

Figure 1.4: Programmed Turing pattern formation in synthetic bacterial colonies.



10 CHAPTER 1. INTRODUCTION

is vital as the ability to compare alternative models and contrast their dynamics with reality in

a reproducible manner is a fundamental requirement for the model-driven investigation and de-

sign of biological systems. The software frameworks that do so must scale with the complexity

and size of the models. Furthermore, transitioning from models to the DNA sequences that

are needed to create knockout strains and implement synthetic bioparts for purposes of model

validation has only just begun [19].

1.1.3 Biomatter compilation

Much experimental biology depends on the manipulation of DNA sequences, as genomic DNA

provides a mechanism by which we can effect lasting change in cells. Researchers modify and

recombine natural DNA to uncover its function and to modify or to create new functions and

reporters. Whereas the editing of computer programs is as easy as word processing, the editing

of DNA is still performed in a slow and expensive labour-intensive fashion. Improvements in

DNA synthesis technologies are unburdening skilled molecular biologists of the target DNA

creation process, so that they are free to focus on more interesting problems such as designing

more extensive versions of their experiments with which to gather more conclusive evidence

and explore alternative hypotheses.

Emerging second-generation DNA synthesis technologies [20, 21, 22], that exploit subsequences

commonalities aim to maximise DNA reuse through robotic molecular biological manipulation,

offer a scalable alternative to chemical synthesis and assembly, and a realistic means by which

to conduct combinatorial investigations of synthetic biological systems by manufacturing li-

braries of variants. These could include the exhaustive exploration of biopart interactions [23],

necessary to characterise the orthogonality of modules on which the engineering approach to

synthetic biology is predicated.

Designing the DNA sequences combinations required for such a study is not a trivial task. Doing

so manually using copy-and-paste takes time for complex combinations, is error prone and

increasing likely to lead to accidental deletions or missing combinations. Scripting languages

like Python are ideal for coding simple programs that can avoid these kind of errors when the

task is a straightforward pairwise cross-product. However, as the complexity of the task assumes

a more combinatorial aspect, with the exclusion or manual patching of certain combinations,

the chance of introducing errors also increases. Spotting “off by 1” errors in long contiguous

blocks of four letters is just one example of subtle error that can have severe consequences for

a large DNA library, which a proliferation of ad hoc solutions only increases the likelihood of

replicating. Also, communicating sets of plain sequences to manufacturers fails to effectively

convey the intentions behind them and their interrelationships, that might otherwise be useful

for troubleshooting and prioritisation.
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As with the specification of large mesoscopic multicellular models, the difficulty is precise man-

agement of an unwieldy artifact that has defied suitable abstraction because the dimensionality

of the problems investigated thus far (primarily due to the difficulty of obtaining arbitrary DNA

sequences cheaply) was small enough that manual manipulation was not sufficiently onerous

as to necessitate an alternative. The correct and intelligible specification and communication

of combinatorial DNA libraries would be made significantly easier by the availability of a high

quality tool for the succinct manipulation of DNA sequences shared by both consumers and

producers.

The thesis of this dissertation is that sequence-aware, model-driven hypothesis generation and in

silico prototyping, complemented by scalable DNA library manufacturing (in short, biomatter

compilation), will facilitate exploration of biological problem spaces at much grander scales

than are possible today. We call this computer-aided synthetic systems approach to biology

Infobiotics1.

1.2 Aims and scope

The goal of this dissertation is to develop suitable abstractions and software tools for computer-

aided design in synthetic systems biology. The specific aims are improving the means by which

specifications of (1) models of molecular reaction networks in multicellular systems, and (2)

combinatorial libraries of DNA, are produced, interpreted and verified. The outputs of this

research will be the tools and methods produced, and the attention paid to their usability.

With regard to aim (1) we are primarily concerned with reaction networks involving genes,

their products and regulatory behaviours. Other than the compartmentalisation of reactions by

membranes we do not consider the basal functioning of host cells, or the chassis in synthetic

biology parlance, which is assumed not to interfere with our genes of interest. This dissertation

is not about modelling metabolism, a better studied and understood aspect of biology [24] when

compared to biomodelling of information processes in cellular populations. However, the mod-

ular stochastic-discrete modelling formalism we will present for transcriptional and signalling

networks could equally be used to formalise the reaction networks underlying metabolism (al-

though the large molecular populations of metabolites would, for simulation and comparability

purposes, be more usefully represented as real-valued concentrations). Indeed, a number of

chassis-specific metabolic models would be a helpful adjunct both as a base on which to build

models of synthetic circuits that influence or are influenced by metabolic processes and as a

sizable test case for our modelling approach and simulation algorithms.

1EPSRC grant EP/E017215/1: (Semi)Formal Artificial Life Through P-systems & Learning Classifier Systems:
An Investigation into InfoBiotics http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/
E017215/1

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/E017215/1
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/E017215/1
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This research aims to build on the recent work of [25] (instigated by [26] and developed further

in [27, 28, 29]) which advocates the extension of P systems with a stochastic semantics to

create stochastic P systems, as a suitable modelling framework for intracellular processes in

multicompartmental models of genetic [30] and signalling networks [31, 32].

Briefly, as they will be described at length in section 3.6.2, P systems are a formal language

inspired by the compartmentalised structure of Eukaryotic cells, which consist of three types

of component: membranes defining regions of space and typically arranged in a nested hierar-

chy, formally a tree (intracellular compartments), multisets of objects representing compartment

states (discrete molecular populations), and sets of multiset rewriting rules associated with each

membrane (reactions).

Stochastic P systems (SP systems) assign a rate constant to each rule, that together with the

multiset of objects on the left hand side of the rule provides enough information to simulate

realistic trajectories of the temporal dynamics of the P system. Stochastic simulation of SP

systems can be performed either with a multi-compartmental stochastic simulation algorithm

(SSA) [32], or with a standard SSA such as the Direct Method [33] (other state-of-the-art meth-

ods are reviewed in section 2.2), but only after flattening the P system to a single compartment

and renaming the objects appropriately (e.g. subscripting with the compartment index) so as to

preserve the topology of the interaction network defined by the rules.

In addition to simulation with SSAs, SP systems are amenable to probabilistic model checking

[34, 25], meaning that properties of a P system model, for example the expected number of

LasR molecules not bound to 3OC12 with respect to time (in a hypothetical model of our QS

example in section 1.1.1), can be expressed using an appropriate temporal logic formula and

automatically checked with a probabilistic model checker such as PRISM (Probabilistic and

Symbolic Model Checker) [35].

We extend this formalism, to create Lattice Population P systems, which enable the specification

of cells as stochastic P systems distributed on a two-dimensional lattice, with rulesets that are

optionally composed of modules of rules. None, some or all of the objects, stochastic rate

constants and compartment labels used by the rules in the module may be exposed as module

parameters, capturing, at one extreme, purely abstract network motifs [3], and at the other,

fully-specified, immutable reaction networks such as synthetic biological devices. Modules

may be instantiated multiple times in the same compartment with different parameter values, or

in multiple compartments with the same or different values.

We have further modularised our implementation of LPP systems by separating out individual

and population P system specifications from lattice definitions and libraries of module defini-

tions, to facilitate the reuse of cohesive collections of components between models. Together
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these approaches make enable the incremental specification of large multi-cellular models in a

highly parsimonious manner.

With regard to aim (2) genetic manipulation is one of the key skills of any molecular biologist,

although more by necessity than choice. Once the hypothesis for a sequence-based experiment is

developed, that for instance a particular set of genes is responsible for a certain phenotype, then

the molecular biologist can proceed to create knockout strains where each gene (or combination

of genes) is deactivated. The necessary steps of extraction, mutation, ligation and cloning are

time consuming and error prone. Often a junior but highly trained scientist will spend months

assembling the sequences required to test their hypothesis. The time delay from inception to

evaluation prevents a thorough search of the space of possibilities and the investigation must

proceed in an iterative manner, following promising avenues (determined from limited data) at

the expense of other, potentially successful but seemingly less promising, ones due to unknow-

ably incorrect observations and unforeseen implementation challenges.

As well as disabling genes biologists may also wish to modify sequences for improved protein

yields, create fusions with fluorescent reporters or investigate entirely novel sequences. The

issues around construct assembly are amplified when, as part of a synthetic biology project, one

needs to implement operons of new or preexisting devices made of bioparts, but the optimal,

or at least viable, distribution of parts between operons or the order of parts within an operon

is unknown. In this instance, a library of variant operons representing each permutation of the

chosen parts would enable an exhaustive search of the combination space, where each variant

could be relatively quickly cloned into the chassis of choice and functionally screened. That data

would facilitate not just a principled selection of most efficacious combinations but may also

bring to light incompatible combinations revealing unknown cis/trans-regulatory interactions.

The BioBricks strategy initiated at MIT [36, 37] can help in the construction of combinatorial

libraries because BioBricks are designed to be composed together, reused and repurposed. Bio-

Bricks enable researchers to combine parts and devices in a sequential manner using one of the

specific flanking restriction sites universal to all BioBricks. The process of chaining together a

pair of BioBricks removes the restriction sites between the two (creating a scar), allowing the

same restriction enzyme to be used again for chaining subsequent bricks.

Rearranging the order of bricks to construct a combinatorial library means either restarting the

process from the scratch for each combination, or forking the process after each additional

BioBrick to create all combinations in parallel with the less but still considerable effort and

planning. Moreover the BioBrick approach is restricted to only the parts available in the reg-

istry2 which may or not suit a particular synthetic biology project. The parts registry is growing

rapidly due to contributions from iGEM3 teams but a perception that this are diluting the quality
2http://partsregistry.org/Catalog
3http://www.igem.org

http://partsregistry.org/Catalog
http://www.igem.org
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of the parts registry has spurred the emergence of new efforts, notably BioFab4, aiming to serve

industrial quality parts. Thus we aim at taking a first step towards enabling through suitable

“tooling” the rapid design of combinatorial libraries of DNA.

1.3 Main contributions

This work involved contributions to two systems and synthetic biology related projects: “(Semi)Formal

Artificial Life Through P-systems & Learning Classifier Systems: An Investigation into Info-

Biotics” for which we developed the Infobiotics Workbench; and “CADMAD: Paving the Way

for Future Emerging DNA-based Technologies: Computer-Aided Design and Manufacturing of

DNA libraries” for which we are developing DNALD and DNA Library Designer.

1.3.1 The Infobiotics Workbench

The major deliverable of this research is the Infobiotics Workbench software suite, incorpo-

rating simulation, model checking and optimisation experiments for our novel spatial discrete-

stochastic generic modelling framework based on P systems and tailored towards systems and

synthetic biology research. This work is the result of a critical investigation of the current state

of modelling tools for biological systems and a direct response to the lack of frameworks for

building large spatially discrete and stochastic models of multicellular systems.

In addition to designing the framework and coordinating the integration of the experimental

components, the authors principal contribution has been the development of a graphical user

interface, the Infobiotics Dashboard, for conducting in silico experiments and analysing the re-

sults. Figure 1.5 gives an overview of the Infobiotics Workbench capabilities, showing how

model inputs in a range of formats are fed to the model checking, simulation and optimisa-

tion executables, processed and those outputs collected and interrogated using functions of the

Infobiotics Dashboard.

The Infobiotics Workbench is open-source software available for Windows, Mac and Linux from

the Infobiotics website at http://www.infobiotics.org/ and released under the GNU

General Public License (GPL) version 3. A hosted repository for the Infobiotics Dashboard

source code is reachable at https://bitbucket.org/jvb/infobiotics-dashboard/

overview. The latest revision (807) of the Infobiotics Dashboard source distribution consists

of 22,622 lines of Python code (213 Python modules, 240 classes, 1171 functions/methods) plus

a small amount of shell scripts required for building.

4http://biofab.org

http://www.infobiotics.org/
https://bitbucket.org/jvb/infobiotics-dashboard/overview
https://bitbucket.org/jvb/infobiotics-dashboard/overview
http://biofab.org
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1.3.2 The DNALD language and DNA Library Designer

DNALD is our language for the specification of combinatorial DNA libraries. DNA Library

Designer is an implementation of DNALD and an integrated development environment (IDE)

for working with it. DNA Library Designer uses the state-of-the-art domain-specific language

framework Xtext5 to implement its DNALD parser and customisable user interface within

Eclipse, on top of which we have added the interpreter and advanced validation. The combina-

tion of the Infobiotics Workbench in silico experimentation platform for a biologically-tailored

modelling language that associates DNA sequences with the genetic components of reusable

modules of reaction rules, and a language, interpreter and IDE for the precise specification of

non-random combinatorial DNA libraries, forms a complete in silico toolchain for the rational

prototyping, testing, tuning and production of a manufacturable requirements list for a synthetic

biological system.

Downloads of DNA Library Designer for 32/64-bit Windows, Mac and Linux are available at

http://gandalf.cs.nott.ac.uk/dnald/.
5http://www.eclipse.org/Xtext/

http://gandalf.cs.nott.ac.uk/dnald/
http://www.eclipse.org/Xtext/
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1.5 Structure of the dissertation

This dissertation will provide the reader with a background on existing approaches in computer-

aided design in systems and synthetic biology, and experimental methods for simulation, model

checking and optimisation. It will then present new software methods which increase the scope

of in silico and in vivo/vitro biological investigations. Therefore, the dissertation is organised

into the following chapters (paths through which are suggested in figure 1.6):

Chapter 2 outlines the rationale for applying computer-aided design methods to biology. It

emphasises the model-driven systems approach to understanding biological systems, de-

scribing what goes into a formal model and the types of inquiries that can be made in

silico. A distinction is made between macroscropic continuous mathematical models and

mesoscopic discrete computational models on which the dissertation mainly focuses.

Chapter 3 reviews the literature on computational formalisms applied in biomodel specifica-

tion, that motivated and informed our choice of modelling framework.

Chapter 4 introduces our novel discrete spatial and stochastic formalism: Lattice Population

P systems. It contains formal mathematical definitions for each component of an LPP

system, and goes on to describe the conversion of those into the three machine-readable

data formats that evolved with and are supported by the components of the Infobiotics

Workbench.

Chapter 5 is a visual tour of the functionality of the Infobiotics Workbench from the users

perspective of performing in silico experiments and working with the results. Particular

attention is paid to the simulation results interface of the Infobiotics Dashboard which

accounts for a large proportion of the creative and software development effort of the

author.

Chapter 6 moves on from dynamic models to address the issue of obtaining the genetic ma-

terial necessary for experimental validation and implementation of models or designs in

modified organisms. We take a view which recognises the potential for reuse between

alternative candidate models and modular synthetic gene networks, and exploits this in

the DNALD language yielding concise specifications of combinatorial DNA libraries.

Chapter 7 presents DNA Library Designer, our integrated development environment for edit-

ing and interpretation of DNA library designs with DNALD; the second major software

contribution of the PhD.

Chapter 8 addresses individually the software engineering aspects of the Infobiotics Dash-

board and DNA Library Designer.
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Figure 1.6: Suggested paths through the dissertation. The next chapter offers a rationale for systemic model-
driven biological research in which CAD of both biomodels and DNA libraries has a role to play. Thereafter the
dissertation can be considered to run in two parallel tracks addressing these topics separately, before converging on
the engineering of the described tools and drawing some conclusions about the research.

Chapter 9 concludes the dissertation with a reflection on the topic and an appraisal of the

current state of the Infobiotics Workbench and DNA Library Designer with a view to

their future integration.



Chapter 2

Computer-aided design for synthetic
systems biology

Chapter abstract
In this chapter, the key methods of modelling and in silico experimentation for Systems and Synthetic Biology are
introduced.

2.1 Biomodels

Systems are comprised of components and their interactions, features that act in concert to im-

plement the processes or functions that determine the systems behaviour. Within the system,

subsets of features can be identified as subsystems, as could the system itself in the context of a

subsuming larger one.

Systems can be separated from their surroundings by a conceptual or physical boundary that

distinguishes what is part of the system from what is not [38, 39].

The cell is the fundamental unit of biological organisation, for which the cellular membrane

provides a suitable boundary by which we can define the cell as a system of molecular com-

ponents. Through mitosis or fission, cells ensure that they do not exist in isolation, forming

tissues or bacterial colonies at the next level of biological organisation. These systems are com-

prised of cellular subsystems, the spaces they inhabit and the molecules they exchange with the

environment and each other.

As components of both cellular and multi-cellular systems, molecules are therefore key observ-

ables through which the functioning of multi-cellular systems can be elucidated. Gene expres-

sion, diffusion, transport, non-covalent interactions and chemical reactions are all modellable

processes which change the quantities of populations of distinct molecular species, as the sys-

tem realises itself in time and space.

Modelling is intrinsic to any scientific activity. Simplified models are necessary for us to under-

stand, reason about, communicate and compute with, systems that are too complex to be dealt

20
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with whole, as is often the case with biological systems. The objectives of modelling are to cap-

ture the essential features of a phenomenon, to disambiguate the evidence behind those features

and their interactions, and ultimately move from a qualitative understanding to a quantitative

one.

Model development is an iterative process which begins in the mind of the individual researcher

[1]. Published data, personal findings, assumptions and questions go into an initial model which

is used to make falsifiable predictions. Inconsistencies between the model and experimental

results lead to refinement of the model and the process of prediction-validation is repeated until

a consistent picture emerges that explains all known observations and achieves good enough

predictive accuracy. In this way the model drives its own development by bootstrapping the

acquisition of data needed to improve it.

The attempt to formalise results and open problems in a model often uncovers a lack of knowl-

edge, disagreements between sources and ambiguities arising from language that require clari-

fication [40]. How you select features, disambiguate and quantify depends on the goals behind

your modelling enterprise.

For systems biology the basic goal of modelling is to clarify current understanding by formalis-

ing what the constitutive elements of a system are and how they interact. This requires knowl-

edge coming from the literature, databases and expert opinion. The intermediate goal is to test

current understanding against experimental data: does the model, our statement of what we

think is happening, agree with what we observe in experiments. Here there must be a common

form in which both results can be compared directly, often a series of measurements over time.

The advanced goal of systems biology is to predict beyond current understanding and available

data and techniques, moving to in silico experimentation, conducting infeasible or out-of-reach

experiments using validated models. The grand challenge for systems biology will be the in-

tegration of many models, in multiple formalisms and at multiple scales into comprehensive,

dynamic models of model organisms such as Saccharomyces cerevisiae [41], C. elegans [42],

and eventually a virtual human [43].

For synthetic biology the dream goal of modelling is to be able to program and optimise new

biological systems on a computer, before implementing those designs in the laboratory and

having them functioning as expected. From the top-down assembly of minimal genomes [44]

to bottom-up protocells with lipid vesicles [7, 45, 46] (touching on artificial life), synthetic

biology aims to design, construct and develop artificial biological systems; offering new routes

to genetically modified organisms for bioremediation and the production of biofuels, biosensors

[47, 48], smart drugs [49], hybrid computational-biological devices and synthetic living entities.

A formalism (sometimes known as a metamodel) defines a organising system for model compo-

nents which limits what is expressible and therefore what can be modelled using that formalism.



22 CHAPTER 2. COMPUTER-AIDED DESIGN FOR SYNTHETIC SYSTEMS BIOLOGY

The level of detail at which the system can be modelled depends greatly on the choice of for-

malism in which to encode the model. The well-defined syntax and semantics of the formalism

ensures that interpretation of the model can be done by machines in a regular and consistent

manner.

In what follows we first describe the two main classes of models used in systems biology,

namely phenomenological mathematical continuous models and mechanistic computational dis-

crete models, and how these can be simulated, optimised and checked.

Mathematical continuous models

The vast majority of reaction network models used in systems biology have up until recently

been mathematical, based on systems of coupled ordinary differential equations (ODEs). An

early and famous example of an ODE model is the 1952 Hodgkin-Huxley model of neuronal

action potentials [50] for which the authors received the 1963 Nobel Prize in Physiology or

Medicine. The same model has since been applied to action potentials in cardiac myocytes [51].

A differential equation model is the set of coupled differential equations that describe the dy-

namics of the system. A linear ODE is an equation that describes the change in concentration of

a molecular species (the derivative) with respect to a single experimental variable, usually time.

A non-linear ODE describes the change in concentration of a molecular species in terms of the

concentration of other species with respect to time. Differential equations containing deriva-

tives with respect to multiple experimental variables such as time and space are called partial

differential equations (PDEs) [52].

In an ODE model each molecular species in the model is defined as continuous variable Xi(t)

which represents the concentration of species i at time t. An ODE is written for each species

that describes the change in Xi over time as a function of other variables in the system. The rate

of each reaction is represented using a function (called a kinetic law) which depends on one or

more rate constants. Equation 2.1 gives the general form.

dXn

dt
= Fn(X1, . . . ,Xn) (2.1)

Kinetic laws

Kinetic laws approximate various reaction schemes. The choice of which to use is at the discre-

tion of the modeller.First order reactions (a single species reacting) such as a complex dissoci-

ation, transformation and degradation are modelled using the exponential decay law where the

rate of the reaction k is proportional to the concentration of the reactant: k ·X(t).

Second order reactions are typically modelled in one of two ways:
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1. Reactions where two molecules react or form a complex use the mass action law where

the rate is proportional to the product of the concentrations of the reactants: k ·X1(t) ·X2(t).

2. Enzyme-catalysed reactions are modelled using Michaelis-Menten dynamics:
kpEX

Km +X
where E represents the concentration of the enzyme and Km (the Michaelis-Menten con-

stant) =
kd + kp

kb
, a composite of the kinetic constants associated with the binding, disso-

ciation and production reactions.

Often constitutive transcription and translation are modelled as first order reactions but when

a gene is under negative control the production of mRNA is modelled using Hill dynamics
kp

1+
(

X
Kh

) where where Kh =
kr

k f
the forward and reverse constants for repressor binding.

Solutions

Small systems of ODEs can be solved mathematically by setting the concentrations of each

species at time zero and calculating the derivatives using the rate constants and kinetic laws.

Each set of initial concentrations deterministically produces a unique trajectory or time-course

that can be compared with observations made in the laboratory. The combination of differential

equations with initial conditions is called the well-posed initial value problem for which a unique

solution is guaranteed under weak conditions. Large or highly non-linear systems of coupled

ODEs cannot be solved in feasible time and are instead approximated by numerical analysis

such as the Euler or classical 4th-order Runge-Kutta (RK4) methods available off-the-shelf in

many software packages.

Assumptions and violations

The correctness of an ODE model relies on two assumptions holding:

1. The system is well-stirred so that concentrations are the same in all places.

2. Concentrations vary continuously and deterministically. This assumption is only valid

when the number of molecules is sufficiently high (an approximate lower bound is 103

molecules) and reactions are fast.

These assumptions are often violated by cellular systems due to intracellular crowding and pro-

longed reactions such as transcription and translation. Bacteria are perhaps small enough to

be considered well-mixed but eukaryotic cells which are large and compartmentalised are def-

initely not. Crucially, some molecular species, particularly genetic elements, are often present

in very small numbers.



24 CHAPTER 2. COMPUTER-AIDED DESIGN FOR SYNTHETIC SYSTEMS BIOLOGY

Stochasticity

It is well understood that chemical reactions involve discrete, random collisions between indi-

vidual molecules. Theoretical statistical physics states that randomness or fluctuation level in

a system are inversely proportional to the square root of the number of particles: noise ∼ 1√
n

[33]. This random element determines the next state of the system and therefore the system is

not deterministic but stochastic. Stochastic ordinary differential equations exist but these do not

avoid the problems of continuous concentrations. Cellular systems, where genes typically exist

in a single copy and are either available or unavailable (1 or 0) to participate in reactions, are

stochastic in the extreme. It is known that some biological systems actually exploit stochastic

noise to perform a particular function. This phenomena is called stochastic resonance [53].

Despite these facts, ODEs still dominate as a modelling technique due to compactness (some-

times combining several species into one abstract species as in the Oregonator [54] series of

models) and because they produce time course data. Another explanation for their dominance

is that it is a product of cultural inertia since differential calculus has been used for more than

300 years.

Computational discrete models

The formalisation of biological systems using alternatives to mathematical equations has re-

cently received much interest as a deeper mechanistic understanding of molecular networks is

fed into, and obtained from, models of biological systems. The distinguishing feature of dis-

crete computational models as opposed to continuous mathematical models is that, unsurpris-

ingly, some aspects of these models - space, time, quantity, states - belong to discrete domains.

Formalisms where interactions are modelled as discrete events have come to be known collec-

tively as Executable Biology. The dynamics of such discrete-event systems is highly dependent

on how events are selected to occur. A somewhat unifying event selection is stochastic simu-

lation discussed below. The representational and computability aspects of a wide selection of

executable biology formalisms is discussed in detail in chapter 3.

A discrete quantities model of a chemical reacting system defines the state of the system as

the number of molecules of each species at any given time. The Chemical Master Equation

(CME) completely determines the probabilities of each reaction in a well-mixed chemical sys-

tem, at constant temperature and volume, given the current state. Unfortunately the CME is

actually a system of as many coupled ordinary differential equations as there are combinations

of molecules that can exist in the system, and can only be solved analytically for a very few sim-

ple systems [55]. Fortunately a more tractable approach exists. Instead of solving the CME we

can construct numerical realisations of the systems state over time, that is, generate trajectories
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of system using a Monte Carlo algorithm: Gillespie’s stochastic simulation algorithm (SSA)

[33, 56], elaborated below.

2.2 Stochastic simulation algorithms

Stochastic computational models of biochemical systems have several advantages over deter-

ministic mathematical models. When the populations of chemical species present are low these

ODEs are inaccurate due to noise within the system. The Chemical Master Equation (CME)

models the chemical kinetics of the system as a Markov process that captures this noise (stochas-

ticity) and Stochastic Simulation Algorithms (SSAs) are procedures to generate trajectories in

compliance with the CME. Simulating trajectories of the CME computationally has the advan-

tage of being similar to the nature of biological experiments as it is a discrete, mechanistic

approach.

Stochastic Simulation Algorithms SSAs were first described by Gillespie in the form of an exact

method to numerically calculate the time evolution of a well-stirred spatially homogeneous sys-

tem of reacting molecules with specified reaction channels [33]. Gillespie showed how possible

trajectories of the CME can be obtained by applying a kinetic Monte Carlo approach. He ini-

tially produced two exact techniques: the First Reaction Method (FRM) [56] and the simpler but

equivalent Direct Method (DM) [33] and subsequently showed these to be a rigorous derivation

of the CME [57]. DM is easier than FRM to explain and understand. It is also faster: the main

drawback of the FRM over DM being that it requires a random number to be drawn for each

reaction at each iteration, whereas DM requires only 2 random numbers per iteration.

Stochastic rate constants and propensities

To each reaction a stochastic rate constant is assigned. Usually this is the rate constant of the

equivalent differential equation’s mass action kinetics divided by Avogadro’s number to get the

number of molecules per unit time from the concentration. The propensity of a reaction is its

stochastic rate constant multiplied by the ’hazard function’, the number of unique combinations

of reactants. According to Gillespie reactions can have zero, one or two reactants but no more

than two as the probability of three molecules colliding with the correct orientation and energy

is infinitesimal. Ternary or higher order reaction must be decomposed into a series of second

order reactions; the SSA however makes no guarantee that subsequent reactions will occur

immediately after.
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Direct Method

Each iteration of DM selects a reaction to occur and time to have elapsed before it occured. The

steps of the algorithm are:

1. Calculate the propensity of each reaction and store them in an array

2. Sample the index of the reaction to fire from a probability distribution according to its

relative propensity by:

(a) Summing the propensities to obtain the total propensity a0

(b) Multiplying a0 by a uniform random number between 0 and 1 to get a random num-

ber a f in the range of the sum

(c) Set an index variable i to 0

(d) Set a cumulative sum variable ac to 0

(e) Add the propensity of reaction at index i to ac

(f) If ac now exceeds a f the index of the reaction to fire is i, otherwise increment i and

loop to (e)

3. Update the state vector to reflect the changes in the number of molecules bought about by

the occurence of the reaction: decrement each of the reactants and increment each of the

products

4. The time interval in which the reaction τ0 occurs is sampled from a negative exponential

distribution with a0 as the parameter using the formula: τ0 =
−log(rand())

a0
.

5. Add τ0 to the simulation time

This procedure is repeated until the simulated time exceeds the predetermined maximum simu-

lation time.

Computational expense

Exact SSAs must consider every single reaction that occurs in a system in time order, resultantly

these are very computationally expensive because a large number of reactions may happen at

over a very small time-step. The phenomena of stiffness, present in systems where there are

large differences in the scale of some reaction rates, can affect worsen this situation. Stiffness is

exacerbated when there are many reactants of the faster reactions, in which case the propensities

of these reactions dominate meaning they are selected highly frequently, and the time increment
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becomes very small, so that these come to dominate processing time and slow the speed of the

simulation relative to reality.

The output of the SSA for a model represents a single stochastic realisation of a system’s be-

haviour, and often many runs of the simulation are required to generate an average output that

falls within a suitable error range. Ensembles of 1000s of trajectories are often necessary to

achieve statistical significance. Unless run in parallel, on a multi-core processor or cluster, the

running time will increase linearly with the number of simulations required.

Performance improvements

Since the advantages of mechanistic stochastic models, in terms of realism and intuitivity, makes

them highly desirable, but the considerable simulation cost involved makes their application

prohibitive, a considerable amount of research has grown up around improving the performance

of SSAs [58]. In order to address computational expense, many different variants of exact SSAs

have been subsequently introduced (reviewed in [55]), including:

– Next Reaction Method (NRM) [59] which uses one rather than two random numbers, in-

troduced the reaction dependency graph to reduce the number of propensity calculations

made at each step to the only those that are directly affected (have reactants whose quan-

tities are changed) by the fired reaction, and an indexed priority queue (a min-heap) for

O(1) access to the next reaction. Both of these measures work well for systems that are

loosely coupled (few reactions depend on any other) but the cost of maintaining order in

the heap can be detrimental for tightly coupled systems. Nevertheless it has come to be

seen as the fastest exact SSA, as evidenced by its inclusion in many simulation packages

[60].

– Optimized Direct Method (ODM) [61] runs a pre-simulation (typically 10% of the actual

time) and uses information about the most frequent reactions to speed up the linear search

by reindexing the reaction channels in descending likelihood of application. ODM also

uses a reaction dependency graph.

– Sorting Direct Method (SDM) [62] too uses a reaction dependency graph but unlike the

ODM reorders reactions dynamically by bubbling up applied reactions. The authors

demonstrate its efficacy using a model of quorum sensing [63] where autoinducer pro-

ducing genes are switched on late into the simulation and whose associated reactions

quickly come to dominate, a situation which would totally undermine the efficiency of

the ODM simulation.
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– Logarithmic Direct Method [64] calculates an array of cumulative propensities when sum-

ming the total propensity and performs a binary search on these to achieve O(logM) per-

formance when finding the next reaction. LDM may not necessarily be as fast as SDM or

ODM but it avoids a potential inaccuracy that these methods introduce where the wrong

reaction fires due to numerical truncation [55]

– the Composition-Rejection [65] achieves constant time performance for selecting the next

reaction but due to the cost of the rejection sampling technique this only pays off when

there at > 10,000 reactions.

– Partial-Propensity Direct Method (PDM) [66, 67] and variants [68, 69] use a data struc-

ture for partially calculated propensities and species dependency graph which offers better

scalability better than optimisations based on the reaction dependency graph. When reim-

plementing the PDM we discovered a mistake in the published algorithm and informed

the authors who then published a correction on their website: http://www.mosaic.

ethz.ch/research/docs/PDM_NotesAndCorrections.pdf

Reusable implementations of most of the above SSAs can be found in StochKit [70], although

in practice most simulator developers choose to reimplement a few exact SSAs, mainly DM

and NRM, to better match their internal data structures for storing and recording species and

reactions.

Approximate methods Distinct from exact methods, an approximate class of SSAs have been

introduced which potentially deliver significant increases in computational efficiency for models

with larger species populations. By appropriately sampling a probability distribution, multiple

applications of some reactions can be made in a single algorithmic step. Therefore, a trade

off between computational efficiency and an acceptable drop in accuracy is made. Notable

approximate SSA methods include τ-leaping [71] and subsequent refinements [72, 73, 74, 75],

and hybrid formulations such as the slow-scale method [76, 77, 78], an approach specifically

created for modelling stiff systems (also reviewed in [55]).

Work has also been done on solving the CME without using Monte Carlo techniques. STOCKS

implements the maximal time step method [79]. The Finite State Projection (FSP) method [80]

claims to be more efficient than SSA techniques whilst providing a guaranteed higher accuracy

as it can either consider the entire solution space or iteratively increase a truncated solution

space to meet a specified level of accuracy. FSP has been extended to reaction diffusion systems

[81].

As well as developing more efficient serial algorithms, another method of alleviating the simula-

tion execution times of expensive algorithms is to formulate new parallel algorithms, or parallel

http://www.mosaic.ethz.ch/research/docs/PDM_NotesAndCorrections.pdf
http://www.mosaic.ethz.ch/research/docs/PDM_NotesAndCorrections.pdf
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versions of the existing algorithms, which leverage the processing power offered by modern

GPGPU and HPC systems. However, SSAs are inherently sequential algorithms and therefore

difficult to parallelise [82]. This makes potential routes for significant optimisation of SSAs

non-trivial. Li & Petzold created a GPGPU implementation of Logarithmic Direct Method by

distributing multiple runs over GPU cores, which achieved an impressive∼ 200× speedup [83].

To cut down data access times they implemented a Mersenne-Twister (high periodicity PRNG)

on the card. This was for multiple runs of a very small system as opposed to a single run of a

larger system. In this ensemble approach to parallelisation the SSA is not itself being decom-

posed to run in parallel so the size of simulation is limited by the amount of shared memory that

is considered essential for efficient computation on the GPGPU. Recent work by Klingbeil et al.

[84] showed that, contrary to perceived wisdom, by ignoring shared memory (“thin-threading”

as opposed to “fat-threading”) ensembles simulations can be performed faster and without size

limitations. A GPGPU implementation which distributed the reactions of the FRM method over

multiple threads to achieve a certain level of parallelism within the algorithm, yielded only a dis-

appointing 2× speedup [85]. Another avenue for hardware-acceleration of SSAs is to use Field

Programmable Gate Arrays (FPGAs) [86, 87], chips that can be reconfigured during use to pro-

vide the optimal circuit for each application. For stochastic simulation this can be extrapolated

to providing the optimal algorithm for every system [88].

Multiple volumes and subvolumes

As previously mentioned the Gillespie algorithm assumes molecules are homogenously dis-

tributed in the liquid phase (well-mixed). This assumption can be violated in two ways that

lead to models that do not match observed data. Firstly when the system is sub-divided by

membranes and these membranes bound regions of different sizes or dynamically change over

the course of the observation. Secondly when local concentrations of reactants determine the

behaviour of the system.

The simplest exact implementation of a Gillespie algorithm over multiple membranes is to run

a Gillespie algorithm in each compartment and the schedule the update of the system by the

compartment containing the selected reaction with the lowest τ (in series [89, 31, 25] or parallel

[90]). Normally the rate constants are implicitly bound to the volume of that compartment and

therefore the same reaction in two compartments with different volumes must have different

constants. These constants are inflexible and cannot change over time as a compartment grows,

in the build up to cell division, or shrinks under hypotonic stress. At worst each reaction in each

compartment would require a unique rate constant, when accurate rate information is already

scarce. Also, a compartment containing other compartments, such as mitochondria in the cyto-

plasm, must enclose a volume larger than the sum of the volumes of its child compartments, but
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for that same region the volume in which reactants mix will be less than the enclosed volume

due to the space occupied by the enclosed compartment(s). Therefore rate constants would need

to be peturbed as compartments are created, move and merge.

Deterministic approaches for modelling cell growth in the SSA where propensity is a function

of time were previously considered [91, 92]. Before every iteration of the Gillespie algorithm

the volume is calculated using the following formula: V = (1+ t/T ) where t is the time of the

simulation and T generation time. Then, the stochastic rate constants of both types of second

order reactions are divided by V (the rates of first order reactions remain unchanged). These lin-

ear volume change approaches do not account for dynamically changing compartment volumes

that occur due to the simulated reactions. A plausible solution is to assigned each compartment

a volume variable incorporating this and the volumes of its immediate sub-compartments ex-

plicitly into the propensity calculation at an additional computational cost, as in our early work

[93]. An alternative was proposed [94, 95, 96] whereby each molecular species is assigned a

volume and that the sum of volumes of the molecules within each compartment determines the

volume in which reactants mix. This is even more computationally expensive but remains in

perfect agreement with the intention of the original SSA.

For systems with volumes too large to be considered well-mixed, or reactants that are known

to diffuse slowly, volumes can be voxelised into subvolumes small enough that they can be

considered well-mixed. The position of molecules within a volume can be modelled by these

finer-grained simulations, as can the shape of those volumes, which are exemplified by the Next

Subvolume Method [97] (NSM) implemented in MesoRD [98] and SmartCell [99].

Other factors affecting reaction rates

Other factors aside from volume that directly affect the rate of reactions are not modelled ex-

plicitly and remain implicit in the rate constant. Temperature and pressure are mostly assumed

constant and uniform, and for most biological systems this is an acceptable assumption. Atomic

interactions such as hydrogen-bonding, electrostatic effects and Van der Waals forces are disre-

garded, nor is bulkiness of some macromolecular species versus others considered.

In summary, despite the computational costs, SSAs should always be applied when populations

of some molecular species are low, otherwise stochastic effects that determine the systems actual

behaviour will not be captured [100, 101, 102].

Comparability to deterministic simulations

For systems that evolve into a single steady-state the time to reach that state will vary between

simulation runs but the average of an ensemble of many stochastic simulations will reproduce

the deterministic approximation provide the number of runs is large enough. However, for
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systems that do not reach a single steady-state such as those that exhibit oscillatory behaviour

[103] or where different regions of the model (several subpopulations of cells for instance) can

exist in one of several steady-states, it is not appropriate to average over a number simulation

runs or cells as this will give a false representation of the actual behaviour of the system. In such

cases it can be desirable to ascertain what percentage of the runs or cells fall into one or other

of the end-states, for which we apply model checking.

2.3 Model checking

By encoding a natural system into a formal system we can make inferences about the natural

system and discover novel knowledge about the systems properties over and above simulating

many trajectories of that system in the stochastic case, or stability and bifurcation analyses in

the deterministic. A central mission of executable biology is to apply model checking to bio-

logical systems. Model checking goes beyond repeated simulation and observation to provide a

formally verification that the model of real-life system is correct in all circumstances. It is most

usually applied to mission-critical hardware, a nuclear power plant for example, and accompa-

nying software controllers where the inputs (and outputs) are known and finite.

Some examples of questions that can be asked of a biological model with a model checker are:

– Does the number of molecules of transcription factor exceed 100 within 60 seconds in

90% cases?

– Until the concentration of the activated transcription factor promoter complex is greater

than 0.01nM, is the probability of expressing the gene less than 0.5?

– Will the concentration of signal molecule ever drop below the threshold 0.1nM?

– In the steady state, what is the probability that the number of signal molecules is between

20 and 40?

– After the concentration of signal molecules exceeds 0.2nM, what is the probability of the

concentration of activated transcription factor being greater than 0.1nM?

To check a model it must be converted into an appropriate specification formalism, which can

be done automatically in some cases. Verifying a model means exhaustively enumerating all

of its possible states over the range of possible inputs and transitions to produce every possible

sequence of events (the chain of causality which can be summarised as a Markov chain). There

is a combinatorial explosion of the number of states for any reasonably complex system and so

the size of the models that can be checked is often very small. Constraining the ranges of inputs
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with strict lower and upper bounds, and discretising continuous values can help ameliorate but

not eliminate the problem.

Probabilistic model checking is a probabilistic variant of classical model checking augmented

with quantitative information regarding the likelihood that certain transitions occur and the

times which they do so. Probabilistic model checking works with discrete and continuous

time Markov chains (CTMCs) or Markov decision processes. A continuous time Markov chain

(CTMC) is defined by a set of states, a set of initial states and a transition rate matrix from

which the rate at which a transition occurs between each pair of states is taken as a parameter

of an exponential distribution. Queries which check model properties are defined in as logi-

cal statements, often temporal logics: CSL for CTMCs, PCTL for DTMCs and MDPs. PRISM1

(Probabilistic and Symbolic Model checker) [35] is a probabilistic model checker that uses CSL,

a stochastic quantified Continuous Temporal Logic for reasoning about propositions qualified

in terms of time. PRISM was initially applied in the checking of models of signalling pathways

[104] and subsequently to many other biological systems reviewed in [105, 106].

2.4 Model optimisation

Both stochastic and deterministic models are dependent on rate constants to accurately repro-

duce cellular behaviour. Unfortunately well-characterised rate constants are in very short supply,

and those that are known for some models are used as ersatz values in models of similar systems.

Finding good quality rate constants in the literature can be onerous and text mining approaches

[107] endeavour to automate this task. In the scenario where the components and interactions

are known but other parameters are not it is acceptable to try to estimate the rate constants using

parameter optimisation to fit model dynamics to laboratory observations.

Parameter optimisation

Given a time series of quantities for one or more molecular species and a model of that sys-

tem with incomplete rate information it is possible to explore the rate parameter space of the

system using different combinations of rate values to simulate a set of timeseries that closely

match the observed behaviour of the model entities in the real system. By this method models

can bootstrap their own development. Additionally, there may be several distinct combinations

of parameters that yield essentially the same time series, presenting several hypotheses to be

explored, or additional knowledge about the system such as a particular dependence on one rate

or a wide range for another. Some reaction networks tolerate wide ranges of rates for some

1PRISM: http://www.prismmodelchecker.org/

http://www.prismmodelchecker.org/
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reactions because their actual function is to control the production of a protein and keep its

concentration within certain bounds.

The basic methodology of parameter optimisation is to execute a system with a set of parameters

and compare the resultant output time series with the target time series using a measure of the

distance such as root mean square deviation (RMSD). For deterministic models this entails

solving the system with that set of parameters once and for all. For stochastic models it is

necessary to run a statistically significant ensemble of simulations and compute the average

of these before comparison (systems with oscillatory or switching behaviour will have exhibit

large standard deviations). Based on the distance measure the parameters are tweaked and the

execute-compare cycle iterated until the distance measure is minimised, at which point the rates

are optimal.

Because the number of unknown parameters (degrees of freedom) may be large and the possi-

ble range of values also large or unknown, the parameter-space can be very large indeed and

impervious to a brute-force method that would test every possible combination to find the best.

In such circumstances we can use heuristic optimisation methods that make an adaptive explo-

ration of the search-space: genetic [108] and memetic algorithms [109], differential evolution

[110] and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [111], simulated an-

nealing [112], ant-colony [113] and particle swarm optimisations [114] to name a few. Other

non-heuristic numerical optimisation techniques as applied to computational systems biology

have been extensively reviewed elsewhere [115].

Model structure optimisation

Parameter estimation is dependent on the model having the correct structure: components and

interactions. If it proves impossible to find a set of parameters that reproduces the observed

behaviour then it is reasonable to suspect that the model structure is incorrect. Work on the

estimation of structure and parameters for systems biology models has shown promise. A par-

ticularly interesting example [116] is the reverse engineering of metabolic pathways using Ge-

netic Programming (GP). Using only the time series of diacyl-glycerol, the final product of the

phospholipid cycle, Koza’s GP algorithm created the complete pathway including a feedback

loop, bifurcation and accumulation points, estimated 3 out of 4 parameters to 3 significant digits

(the other within 2%), and even postulated the existence of two intermediate substances. For the

synthesis and degradation of ketone bodies GP produced a perfect fitness of 0.000 (zero RMSD)

with all rates to 3 s.d. and the correct topology of the pathway.

In the optimisation component of the Infobiotics Workbench we use a genetic algorithm to

recombine modules of reaction rules that constitute the model structure of single compartments.

Genetic algorithms evolve a population of candidate genotypes, an encoding of a set of values
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for each model object or parameter, preferentially selecting those with the fittest phenotype

according to a fitness function. The genotypes of the fittest are recombined and/or mutated to

yield new, potentially improved individuals that make up the next generation and the population

gradually evolves towards an optimal solution. Techniques such as elitism, niching and tabu

search can be used improve the performance of the EA and ensure the discovery of the global

optima (or minima depending on the fitness function) over suboptimal local attractors.

2.5 Outlook

Practitioners of synthetic biology assume that modelling, simulation, optimisation and verifica-

tion methods from engineering, mathematics and computer science, commonly employed in the

creation of non-biological systems, can also be used to specify, design, construct, validate and

deploy novel biological systems. This has resulted in a proliferation of formal languages for

modelling synthetic biological systems with an emphasis on compositionality [117, 118] that

reflects synthetic biology’s central dogma of parts, devices, systems. These efforts are aiming to

create integrated platforms where novel biological functions are designed in silico by composing

validated models of parts (obtained from libraries) into new models of devices, behaviourally

characterised by simulation and automatic verification, optimised for a particular model chassis,

and compiled into DNA sequences ready for manufacturing. The computerisation of synthetic

biology practice combined with emerging technologies for DNA synthesis and robotic manipu-

lation of cells leads to a future where design, construction and screening of novel systems can

be largely automated and thus scaled up to high-throughput and parallel production of engi-

neered organisms. We can envisage a day when the pipelines for creating synthetic biological

systems are controlled by programs which given a high-level description of some desired func-

tioning perform the necessary rounds of design, production, testing and refinement required to

meet that criteria without human intervention; with the associated benefits of improved repro-

ducibility and debuggability. It might even be possible to conduct an exhaustive exploration and

characterisation of the design space of living organisms through the combinatorial assembly of

biological components, complementing the search algorithm of evolution by natural selection.

In this chapter we introduced the roles and importance of models in the research cycles of sys-

tems and synthetic biology, and how, when formalised as computational artifacts, they can be

queried by in silico experimentation. We identified mathematical models, specifically ordinary

differential equations, as the predominant means of phenomenologically representing and cal-

culating the dynamics of cellular components in a continuous-deterministic manner. We then

showed how the properties of cellular systems (small numbers of certain molecular species) vi-

olate the assumptions of this framework, and introduced the stochastic simulation algorithm as
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a mechanistic means of computing realistic trajectories of molecule fluxes that correctly cap-

tures the stochasticity of molecular reactions, but which is also capable - for systems of limited

stochasticity - of producing results that are consistent with the mathematical formulation. We

discussed how formal analysis methods such as model checking can be used to verify (with

a certain probability in the case of non-deterministic systems) the expected behaviour of bio-

logical models, and how optimisation methods, in conjunction with simulation, can be used to

estimate parameters when rate constants data is unavailable.

In the next chapter we examine a number of discrete computational formalisms that have been

applied to biomodel specification and evaluate these with regard to modelling multicellular sys-

tems from a stochastic perspective.



Chapter 3

Biomodel specification

Chapter abstract
This chapter presents a literature review of established and emerging mathematical and computational formalisms
used to model biological systems. The formalisms reviewed are loosely grouped according to similarities in meta-
models and historical relationships, as many are variants and continuations of others. Our aim to assess the applica-
bility of these to multicellular systems.

3.1 Introduction

Executable biology [119, 120] and algorithmic systems biology [121] propose the application

of novel discrete and state-based formalisms such as: P systems, statecharts [119, 120], process

algebras/calculi [122], Petri nets [123], boolean networks, BlenX [124] (formerly Beta-binders)

and κ [125]; for the specification and implementation of biological models. These formalisms

have operational semantics where the meaning of a model is realised through the sequence of

steps of their execution. This is in contrast to mathematical models which have a denotational

semantics where the meaning in the input-output mapping of each variable to some others,

described by the set of equations, is realised by approximation or solution using other methods.

The motivation for developing and using these computational approaches is to benefit from the

tremendous success computer science had in developing and understanding the only synthetic

systems that come close in complexity to biological ones: software systems. Thus computer

science has formulated and embraced useful ideas such as hierarchical abstraction for managing

the complexity, and retaining understandability, of large concurrent systems, characteristically

similar to the biological systems we hope to model. It is felt that they have a more appropriate

structure for the problem domain than differential equations.

For example, modelling biological systems with P systems means specifying sets of rules de-

scribing the conversion of some reactant species into other product species for each type of com-

partment and constructing the model from those compartment types. In κ rules are made up of

graph-like expressions that generalise to all molecular species which contain those sub-graphs,

36
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thus avoiding the problem of having to specify many rules in systems where combinatorial com-

plexity often arises such as signalling pathways. For π-calculus biomodelling means defining

the state-space of a process (that could at different times be several distinct molecular species)

and the communication-channels through which that process changes itself and other processes.

A particular advantage of having this wealth of alternative codifications of biological systems is

that each is amenable to different sorts of analysis. Boolean networks for instance, can be used

to find attractors in the state space that correlate to steady-states. For probabilistic approaches

the continuous time Markov chain (CTMC) representing the entire state-space of the model can

be extracted, although it is probably unfeasibly large. Petri nets and P systems can be checked

using model checking software, meaning that queries of properties of those models formulated

in a suitable temporal logic can be automatically validated by building the CTMC or simulating

the model over ranges of input variables.

However, executable programs are essentially creative processes that can have implausible, even

impossible, behaviours compared to the biological systems they can be used to represent. Obser-

vations of real biological systems place limits on the possible sequences of events, fast reactions

like diffusion occur more frequently than slow reactions like gene expression, and therefore the

dynamics or trajectories of the system’s state are constrained. To faithfully model biological

reality these formalisms must be executed in such a way as to correctly reflect these limits. In

same way that biological systems are executed by the application of universal physical laws to

their chemical constituents, or binary and byte-compiled programs are executed by the physical

or virtual machine they are compiled on, models of biological systems can be executed using

simulation algorithms. Therefore the operational semantics of an executable biology model (the

derivation of meaning from the series of steps) is realised not only by the chosen formalism but

also by the choice of simulation algorithm.

3.2 SBML

The Systems Biology Markup Language (SBML) [126, 127] is a XML dialect for exchanging

systems biology models. Today SBML is the de facto standard for interchange of models be-

tween biological modelling and simulation software, supported by over 230 software packages1.

For some packages SBML is the primary format for representing biological models, for others

it is an export format allowing models developed with that package to be read by other packages

with complementary modelling/simulation/analysis capabilities, and/or an input format allow-

ing models developed in other packages to be read and manipulated. Due to its popularity a

1http://sbml.org/Community (2012-01-04)
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large number of models are encoded in SBML and available in databases such as the BioModels

database [128], “a repository of peer-reviewed, published, computational models”2.

SBML is designed to be agnostic in terms of the how biological interactions (i.e. chemical reac-

tions) are encoded, enabling discrete-stochastic models that operate on populations of molecules

as integers to be represented, as well as deterministic-continuous models (typified by ODEs) that

use real-valued concentrations. However, due to the dominance of mathematical models and the

ability of SBML to support kinetic laws in the definition of reaction rates, the majority of pub-

licly available models using SBML belong to the deterministic-continuous modelling domain.

Unless a deterministic model uses only (up to 2nd-order) mass-action kinetics the conversion

to a discrete-stochastic is not possible to automate. This is because the entities implied by the

kinetic laws may not correlate to molecular species, may be equilibrium constants, or in the case

of Hill kinetics have a single parameter modelling the number of monomers in a complex, which

must be extrapolated to the various intermediate species making up those complexes, plus many

missing constants for the complexation reactions. Such conversions must be made manually,

with whomever is performing the conversion guessing the original modellers assumptions and

likely introducing some of their own.

3.3 Boolean networks

Introduced by Kauffman in the late 1960s as random models of genetic networks [129], boolean

networks are the oldest example of an executable biological modelling formalism. A boolean

network is a directed graph where each node represents a gene that is either 1 (active) or 0 (inac-

tive). Edges between nodes contribute either positively (activation) or negatively (inactivation)

to the node at which they are directed, providing the node from which the edge extends is active.

Edges can be weighted to model the relative influence of contributing factors, just as in neural

networks. The next state of a node is the network is determined by summing its positive and

negative inputs in current state, becoming 1 if the total is greater than zero and 0 if the total

is less than or equal to zero. (Elementary cellular automata are a particular case of a boolean

network, where the state of a node is determined by the nodes in its spatial neighbourhood.)

Boolean networks are deterministic given their starting configuration for which there are 2n

possible system-wide states where n is the number of nodes. A complete assessment of the state

space is therefore exponentially complex. However computing the behaviour of the network is

computationally inexpensive and sooner or later the network will reach a previously visited state

and due to determinism, converge onto one of a small number of attractors [130], curtailing the

need for further execution.
2http://www.ebi.ac.uk/biomodels-main/
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Boolean networks are qualitative in terms of quantities and time, can usually be constructed

when data is scarce, and are therefore often chosen as a modelling formalism for their amenabil-

ity to analysis rather than realism [131].

When two levels of activity becomes an insufficient granularity at which to model the systems

components, Petri nets (3.4, next) are a natural alternative that offer finer improved specificity

while preserving most of the analytical abilities of boolean networks.

3.4 Petri nets

Introduced in 1962 by Carl Adam Petri, Petri nets (place-transition nets, PT-nets, or simply PNs)

have a “concise and unambiguous representation” [132] that model systems with concurrent

behaviour and are particularly suited to modelling discrete asynchronous distributed systems.

Thoroughly validated in the analysis of engineering and computational systems, business pro-

cesses, communication networks and manufacturing, Petri nets were first applied to biological

pathways in the early nineties [133, 134] for a qualitative analysis on the combined glycolytic

and pentose phosphate pathway of the erythrocyte cell. This confirmed their suitability for the

representation of biological pathways and with the introduction of various extensions - stochas-

tic, coloured and hybrid-functional - Petri nets have been used to produce high quality systems

biology models [135].

A bibliography [136] of Petri nets applications in biochemistry for modelling, analysis and

simulation summarises developments up to 2002; more recent contributions include the ubiqui-

tously studied ERK signal transduction pathway [137], receptor signalling and kinase cascades,

cell-cycle regulation and wound healing [138], and synthetic biology [139].

Petri nets visualise the topology of an interaction network formally as a bipartite graph com-

posed of places and transitions (nodes), connected by directed arcs (edges) annotated with

weights (1 is usually omitted). A place node typically holds a discrete non-negative quantity

of ’tokens’. The distribution of tokens in places at any one time is said to be the ’marking’ of

the net and represents the state of the system being modelled. A transition is ’enabled’ if the

places connected to it contain enough tokens to satisfy the weights on the edges. The basic exe-

cution model of Petri nets is non-deterministic and sequential. At each step multiple transitions

may be enabled but only one randomly selected transition fires. When an enabled transition is

’fired’ tokens are consumed from the input places and produced at the output places according

to the weights on the arcs connecting them. The net can be initialised with any configuration of

tokens and transitions fired to determine various properties such as whether another configura-

tion is reachable from that point. In biological models molecular species are typically mapped
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to places, molecules to tokens, transitions to reactions and the arc weights to the stoichiometric

coefficients of the reactions.

One of the strengths of the basic Petri net formalism is to observe qualitatively, without the need

for hard to obtain kinetic rates, whether experimentally observed states can be reached in the

model. This ’first pass’ validation is clearly illustrated by a PN model of the sucrose breakdown

pathway in potato tuber metabolism [140], where an expected property of a metabolic system is

that the net will never reach a dead end (no transitions can fire) while substrate is provided. A

Petri net is said to be reversible if the initial state can be reached again from each reachable state.

A reachability graph can be constructed where each marking reached is a node and directed

arcs annotated with the label of a transition are edges showing the sequence of events between

states. This shows the initial marking to be a parameter of the model as it potentially restricts

the possibility of reaching any other particular marking. The reachability of marking M is

whether or not it is in the reachability graph R(N,M0) of net N. It is possible that not all

possible markings will not necessarily be reached in one or many runs due to non-determinism.

The topology of the full reachability graph is equivalent to the underlying Markov chain of the

system.

There are a number of other properties that can be discovered for a Petri net. P-invariants are the

set of places for which the number of tokens is constant regardless of the sequence of transition

firing (conservation relations ). T-invariants are the set of transitions that return the net to a

particular marking and indicate cyclical patterns in the firing of the net. In a model of apoptosis

[132] it was shown that every T-invariant corresponds to an apoptosis pathway.

Liveness is whether all transitions are potentially firable for all reachable markings of the net

and can be used to determine the presence/absence of metabolic blocks on the progress of the

system. Boundedness dictates that the number of reachable states is finite, an upper limit on the

number of tokens in each place. For biological systems unbounded places might be suggestive

of a disease state or simply that the model does not account for all phenomena.

Several additions to the basic formalism have been introduced that augment the functionality of

the net:

– Transitions without input places are permanently enabled; places without input transitions

have a constant number of tokens.

– Bounded places place a limit on the number of tokens and disable connected transitions

when full.

– Bidirectional ’test’ arcs enable places to influence whether a transition is enabled chang-

ing the number of tokens that residing there.



3.5. PROCESS CALCULI 41

– Inhibitor arcs, ending in an open circle, enable a transition only when there are no tokens

in the connecting place.

– Certain network motifs are formally interchangeable and allow the network to be simpli-

fied, improving readability. A motif may be abstracted into a single transition, a process of

structural reduction (black-boxing). Such motifs are composable only if they do not dupli-

cate places in other motifs (orthogonality). Similarly reversible reactions can be modelled

using one hierarchical transition, where 2 concentric squares replace 2 transitions.

3.4.1 Petri net variants

A number of “higher-level” Petri nets have been introduced for systems modelling including

hierarchical (Petri nets as tokens) and prioritised (an enabled transition cannot fire if another

enabled transition has higher priority).

Time in standard Petri nets is represented only by the order of transitions firing, permitting only

a qualitative analysis of the system it represents. A quantitative, notion of time is introduced by

stochastic Petri nets (SPNs), where each transition has an associated rate from which a period

of time is calculated upon firing and added to the global clock.

The firing delays in a SPN can follow one the Gillespie family of stochastic simulation algo-

rithms [141], but other time elapse semantics are also found in the literature. General stochastic

Petri nets allow for immediate and delayed firing. One execution of an SPN results in time series

of the number of tokens in each place which can be compared to laboratory observations.

Standard PN and SPN places hold a discrete number of tokens but places can hold real-valued

number of tokens, for instance representing concentration of molecular species (exemplified by

ODEs). These are termed continuous Petri nets.

Coloured Petri nets (CPNs) provide a novel way of dealing with the combinatorial explosion of

states addressed in rule-based modelling. Places in CPNs contain differently coloured tokens

which can represent molecules of the place’s species but in different states.While nets with

coloured tokens can be represented in the basic formalism using a greater number of places this

reduces the understandability for all but very small models.

3.5 Process calculi

Process algebra (or process calculi) are a diverse family of related formalisms that describe

distributed concurrent processes, such as the objects inside a computer program or a collec-

tion of programs, interacting. They are languages with a compact syntax and clear semantics

providing a tractable algebraic theory that allows processes to be manipulated and reasoned
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about. π-calculus [142], for concurrent mobile processes, is now a widely accepted model for

interacting systems with a dynamically evolving communication topology. Other foundational

process algebras are the Calculus of Communicating Systems (CCS) [143] and Communicating

Sequential Processes (CSP) [144].

3.5.1 π-calculus

In π-calculus processes interact through communication channels with a shared name and com-

plementary ! and ? symbols (send and receive action/co-action pairs). The result of each com-

munication for that process follows the period (.). For the parallel composition P|Q, both P and

Q result. For non-deterministic choice P+Q, either P or Q result. For example, in the system:

P := a?.(P|R)

Q := a!.0

P communicates with process Q along a and is replaced by P and R while Q is replaced by the

null process 0.

Channels can also send other channels as data and so transform the receiving process with new

capabilities. In the system:

P := x!〈y〉

Q := x?(y)

P sends and Q receives channel y along channel x. In this way complex processes are constructed

from simpler processes and atomic actions. Processes with private channels (νx)P resulting

from a communication are only able to communicate on that channel with the process that

communicated it.

Researchers postulate [145, 146] that what is true of processes inside a computer - binary in-

teraction through selected channels in a particularly scope - is also true for processes inside a

cell. Cellular components are acting independently or interacting, dispersed in solution, pro-

ducing localised changes that subtly alter the global state of the system. For biological models,

process algebras consider molecules with binding sites as processes with communciation chan-

nels. Interactions occur between two molecules, or complexes, at any one time through private

channels, such as ligand binding sites, when molecules come into contact. The analogy was first

made by Regev and Shapiro [147] and is elegantly demonstrated by their illustration in figure

3.1.

Whilst the application of process algebras to biological modelling has been throughly reviewed

elsewhere [148, 149, 150, 151], we introduce here the most recent variants and discuss their

development.
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Figure 3.1: Processes (P,Q and R) sharing (w, x, y and z) communication channels, along which they can send (!) or
receive (?); adapted from [146]. A P process can interact with an R process or another P process through a y channel.

Initially classes of processes are defined with their collection of channels and associated out-

comes. At execution each molecule in the system is a process of one of these classes. An

execution step is a non-deterministically chosen communication along a channel between two

processes. In the system:

geneI := prodI?.(geneI|mrnaI)

mrnaI := degI?.0

proteinA := prodI!.(proteinA)

a geneI process interacts with the transcription factor proteinA along prodI. geneI and proteinA

are consumed, producing geneI, mrnaI and proteinA. Unimolecular processes such as natural

degradation are modelled using an auxiliary process such as aux := degI!.aux which is never

degraded (because it produces another aux). Thus mrnaI communicates with aux along degI

and is degraded (replaced by the null process). Complexes and compartments are represented

by the scope of private communication channels, movement by the extrusion of a channels scope

3.5.2 Stochastic π-calculus

In standard π-calculus the system evolves in uniform timesteps with each communication being

equally likely irrespective of the number of channels. Such a simulation is semi-quantitative in

the same way as a standard Petri net. Stochastic π-calculus (initially proposed as Sπ [152]) en-

ables fully quantitative simulations by associating a rate constant τ with each channel. Complex

formation and dissociation provides a clear example of the syntax:
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a := bindk1?.c

b := bindk1!.0

c := τk2.(a|b)

In the second order complexation reaction b communicates with a through the channel bind

producing c while b is degraded (0). This occurs on average with the rate k1 and the propensity

of this happening is calculated in the SSA by prop(τk1) = k1 · |a| · |b|.

First order reactions like dissociation use a special channel type, a stochastic delay (τ) with an

associated rate. Here c is replaced by a and b with rate k2 and propensity prop(τk) = k · |a|.

The model is thus opened to exact stochastic simulation by the Gillespie algorithm [33] and the

resultant trajectories directly comparable to that of the equivalent stochastic Petri net/P system.

BioSPI [122], the first stochastic π-calculus simulator, was written in PiFCP [153] a surface

syntax which compiles to Flat Concurrent Prolog (FCP) procedures and executed on a FCP

Logix platform. BioSpi can simulate systems with 100s of processes to deadlock in the order

of seconds [148]. The current leading implementation of a stochastic π-calculus simulator is

SPiM [154] developed at Microsoft Research, which maps a model and stochastic simulation

algorithm to code in the functional programming language F].

Whereas Petri nets and P systems model the reactions that occur in a system and record the

changes in the populations of each reactant, process calculi model traces each individual reac-

tant. This proves to be computationally expensive when the number of molecules is greater than

the number of species, a threshold that is quickly reached. SPiM was recently adapted to a new

algorithm [155] that scales with the number of species rather than the number of molecules.

The syntax of π-calculus models and to some extent the compositional nature of the formalism

can (for anyone unfamiliar with process algebras) be difficult to understand. A more intu-

itive understanding is made possible by a graphical representation [156, 157] that visualises the

state-space of each process as a graph and has been incorporated into SPiM. In [157] a graph-

ical execution model was defined and proved equivalent to Sπ . An example of the graphical

representation for π-calculus is shown in figure 3.2.

The Sπ@ language

The Sπ@ language [94, 95, 96] makes some provision for the stochastic simulation of multiple

compartments in π-calculus. Sπ@ allows (but does not require) the modeller to specify which

compartment a process can accept communications from, and associate volumes with processes

that are used to correct the propensity calculations in dynamic volumes. The approach is il-

lustrated with examples of a membrane receptor binding an extracellular signal and inducing a

cytoplasmic second messenger, the Na+/K+ ATPase and finally osmotic pressure.
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Sπ@ extends the core calculus of SPiM and therefore SPiM programs map directly to Sπ@.

Sπ@ can also represent the atonality of BioAmbients and bitonality of Brane calculi (see sec-

tions 3.5.3 and 3.5.4 below) through its core calculus [158].

3.5.3 BioAmbients

It has been acknowledged [146] that using private channels to model compartmentalisation has

a number of drawbacks and so BioAmbients [159] were proposed, following on from ambient

calculus [160].

An ambient is a bounded collection of processes and sub-ambients. An ambient n with p pro-

cesses and q sub-ambients (m) is denoted n[P1| . . .Pp|m1[. . .]| . . . |mq[. . .]]. The processes within

an ambient instruct it to move through some capabilities associated with them. An ambient

moves as a whole with its processes and sub-ambients. Ambient capabilities are 3 synchronised

pairs: enter/exit, exit/expel and merge+/merge−, which facilitate the movement of an ambient

into a sibling ambient, out of a parent ambient, or the merging of two ambients respectively,

using named channels similar to process communication.

3.5.4 Brane calculi

Brane calculi [161] extends the reasoning of BioAmbients to model some of the more sophis-

ticated operations occurring at cell membranes using the idea of bitonality [162]. Bitonality

requires any two enclosing and enclosed membrane-bound compartments to be of opposite

tones, therefore each (paired) Brane calculi operation - endo/exo, f roth/ f izz, pino/phago and

mito/mate - must preserve bitonality. Figure 3.3 shows some of the operations in practice.

3.5.5 Beta-binders and BlenX

Whilst research into π-calculus as a formalism for modelling biological systems is still a very

active area of research with many variants being proposed to model specific aspects of the gen-

eral problem, some parts of the community are seeking to improve on its limitations by initiating

a shift in the semantics of the calculus in order to bring it closer the biological reality it hopes to

model. They espouse that the fundamental problem of π-calculus in this field is that it was not

designed to model biological systems and so the metaphorical relationship between processes

and molecules is simply not an appropriate one. For example, copies of processes representing

complexes (several processes sharing a private channel) each require a unique private channel

on which to communicate, which grows with the number of complexes and is largely irrele-

vant to what is being modelled. Essentially, complexation and decomplexation are not native in

π-calculus, and as a result emergent behaviour has to be programmed which is an error-prone

activity. Beta-binders [163, 151] sought to resolve this situation by bundling each process into a
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Figure 3.3: Bitonal operations in a Brane calculi model of viral infection by Semliki Forest virus; taken from [161].

binder and introducing new primitives into the calculus: hide, unhide and expose, which update

the interfaces between boxes and thus the possible interactions in the system.

BlenX [124, 164] is a language explicitly designed to model biological entities and their inter-

actions which takes up where Beta-binders left off. BlenX introduces several features not found

up until now in stochastic process algebras. It uses a type file which specifies stochastic rates be-

tween interacting types rather than embedded those rates into the model as stochastic constants.

The type file first declares the processes by name and then proceeds to associate a rate con-

stant to each pair of interacting processes. More than one rate constant can be associated with

each pair which, in a very straightforward manner, allows the complexation of more than two

molecules to be modelled, such as the cooperative mechanism of oxygen binding haemoglobin

[165]. The decoupling of rates from process definitions simplifies the syntax of process def-

initions and allows the model to be executed with different rates without changing the model

definition, a useful feature when constants might need to be estimated using a genetic algorithms

(GAs) for example, where the fitness function of the GA compares simulation traces with labo-

ratory time courses. BlenX also has events which are global conditions or perturbations such as

a biologist might perform and therefore enable the experimentalists actions to modelled and in

silico experiments to be performed.

BlenX is supported by a set of tools collectively known as The Beta Workbench (BetaWB

or simply BWB) including a stochastic simulator (based on an optimised variant of the Next

Reaction Method [59]), bidirectional graphical and textual editors of the model that each reflect
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changes made in the other, and a plotter for displaying model execution time courses. A new

feature of the plotter is the ability to plot causality, where each simulation event (molecular

interaction) is drawn as a box inside the box of the event that led to it. Version 2.0 of BetaWB

introduces more primitives: parametric processes, rate functions with variables and constants,

continuous time Markov chain generation and SBML export.

Other prototype tools being developed by Microsoft Research Trento with BlenX support in

mind are Snazer, a toolbox for visualising the processes interaction network (similar to graph-

ical π-calculus) and plotting statistics on ensembles of simulation traces (such as the vari-

ance in the number of a certain molecular species over time), and KInfer, which performs

model and kinetics inference by estimating reactions and rate constants from real concentra-

tion data measured at discrete time points. All of the aforementioned tools can be downloaded

at http://www.cosbi.eu/index.php/research/prototypes.

3.5.6 PEPA and Bio-PEPA

Performance Evaluation Process Algebra (PEPA) is an alternative stochastic process algebra

(with roots in CCS) that has recently been applied to modelling signalling pathways [166, 167,

168] and synthetic biology designs [169]. PEPA can be used for reagent-centric and pathway-

centric modelling [170]. Bio-PEPA [171] is a biologically-oriented modification of PEPA in-

corporating stoichiometry and the use of kinetic laws in rate functions. Unique rates for each

action are kept seperate from the process definitions and recorded as functions (as in BlenX).

Compartments are currently just a holder for a volume amount that is used in rate calculations.

Box 3.5.6 demonstrates the Bio-PEPA syntax for an enzyme catalysed dimerisation reaction.

Syntax for a Bio-PEPA model
In the enzyme catalysed dimerisation reaction:
2S+E −→ P+E
The substrate S communicates through channel α with a stoichiometry of 2 and both S are
consumed by the reaction (vertical arrows below reflect the processes roles):

S
def

= (α,2) ↓ S
A P process is produced by the α channel:

P
def

= (α,1) ↑ S
An enzyme E is required on the channel but is not (⊕) consumed:

E
def

= (α,1)⊕E
From these components we can compose (./) the model:
Model : (S(150) ./ E(10),α . . .)

Analysis of Bio-PEPA models is performed using other simulation tools: Bio-PEPA utilizes

ODEs solvers in Matlab (and CVODES from SUNDIALS), StochKit and Dizzy to perform

http://www.cosbi.eu/index.php/research/prototypes
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stochastic simulations3 and PRISM as its model checker [172]. PRISM has a nominal upper

bound of 10,000,000 states when computing the CTMC. Bio-PEPA works around this limita-

tion by discretizing the range of each continuous variable (molecular concentrations) [173] to

reduce the numbers of states to a just a few, depending on the chosen granularity (estimated

from stochastic simulations, which must be the same for all interacting processes). This semi-

quantitative approach to modelling reflects the number of observations that can realistically be

made by biologists and enables granular coverage of larger systems than would normally be

amenable to model checking.

3.6 Rule-based approaches

A set of rules is another formal object that can be analysed mathematically (statically) to dis-

cover the relationships between rules, between their participants, potential sequences of events

and the reachability of certain states. Rule-based formalisms are generally considered to be an

appropriate level of abstraction and syntactic complexity to enable effective communication be-

tween biologists and computer scientists. The following are some of the rule-based formalisms

that have been applied to the modelling of biological systems, at the level of molecular interac-

tions.

3.6.1 κ

κ-calculus, or simply κ , was originally developed with the purpose of representing protein

interactions [174]. It is a rule-based modelling approach similar to BioNetGen (BNG) [175].

κ aims to overcome what has been described as “the barrier of objects” [176]; where it is the

properties of the entities comprising the systems that creates the dynamics. In practice κ treats

macromolecules as individual agents, so that any two molecules of a certain protein can be

considered the same, but in different states. Each molecular agent has labelled sites with states

that represent its interaction capabilities or interface. An agent of 007 with three sites (x, y and z

in states 1, 1 and 3 respectively) can be expressed in κ as: 007(x∼ 1,y∼ 1,z∼ 3). Complexes

are modelled as agents with linked sites: A(x ∼ 1,y ∼ 1,z ∼ 3!0),B(u ∼ 2!0,v ∼ 1); in this

complex agent A is linked to agent B through sites z and u, the link is called 0.

The elementary actions in κ comprise the modification of the state of a site, binding and un-

binding of two agents sites, and the introduction or deletion of agents. These are effected by

context-free rules that rewrite the system locally according to patterns of partially specified

agents or complexes, with the intention of “don’t care, don’t write”. For example the pattern

3There is some overlap in the functionality of these package; the main differences being that Dizzy offers a GUI
for parameter adjustment and model visualisation while StochKit offers a wider range of algorithms including the
slow-scale SSA. Overlapping analyses are used to identify bugs in the pipeline.
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A(x,y∼ 1,z∼ 3) applies to any A agents with sites y and z in states 1 and 3, irrespective of the

state and boundness of site x. The generalisation of rules over many possible instances of agent

states in κ allows models with very large state spaces to be expressed in remarkably small sets

of rules.

A “fully scalable” [177, 178], with respect to the number of different molecular species,

stochastic simulator for κ has been developed using a generalisation of Gillespie’s Continu-

ous Time Markov Chain (CTMC) scheme. Scalability is achieved because at no point is the set

of possible complexes generated (no flattening of the rules), similar to the concept of species

generated on-the-fly in Moleculizer [179]. The dominant time complexity is O(logM) where

M is number of rules. This simulation methodology is intimately tied to the formalism, which

unfortunately does not account for other biological phenomena influencing reaction networks,

notably compartmentation. Another, non-κ , rule based language and simulator that can ac-

count for compartments is the Stochastic Simulation Compiler (SSC) [180]. In SSC’s input

format space is modelled using solid constructive geometry, and species with properties are in-

terconverted by pattern-based rules. Stochastic simulations of these models are performed by

expanding (flattening) rules into a stochastic model, generating SSA code that is model-specific

in C, compiling and running the model/simulation as a native executable.

3.6.2 P systems

P systems [181] are a natural computing paradigm that take inspiration from the structure and in-

formation processing capabilities of living cells to solve computationally hard problems (“trad-

ing time with space” [182]). P systems originated in formal languages and computability theory

and majority of research, known as membrane computing, has focused on investigating the

computational power and proving the Turing equivalence of P systems variants. P systems have

subsequently been applied to the modelling of biological systems [25, 183, 184], with the ra-

tionale that as an abstraction of cellular organisation they should be suitable for modelling the

compartmentation of biological pathways .

A canonical P system [185] is defined by a hierarchical membrane structure delimiting regions

containing multisets of objects and multiset rewriting rules (figure 3.4). The outer membrane of

a P system is often referred to as the skin membrane. Objects transported out of the skin enter

the environment.

The P system evolves by the repeated application of rules on the multisets, mimicking chemical

reactions and transportation across membranes, and halts when no more rules can be applied.

The original execution model of P systems is maximally-parallel and non-deterministic [181],

meaning at each step all objects which can evolve do so, with randomized tie-breaking. In

practice all the rules that can be applied (for which there are sufficient objects in that region)
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Figure 3.4: The initial configuration of a P system, from [186].

are pooled, one rule is selected from these at random and applied exhaustively in its respective

membrane. The affected objects are removed from this step of the computation and retained for

the next step. The pool of applicable rules is recalculated and another rule is chosen randomly

and applied. This process repeats until no more rules can be applied. Any remaining objects are

carried over to the next step. The system clock then advances one step and the execution starts

afresh. By this method an object may be used only once in each step.

Maximal parallelism is well suited to discrete systems with synchronous components and is of

major importance to proving the computational power of P systems through acceptance check-

ing. However it is less well-suited to biological systems where asynchronous events occur in

continuous time [187]. The result of a P system computation is often taken to be the multiset

found in the environment when execution has halted.

Many formal definitions for a P system can be found in the literature. At its simplest a P system

of (degree m) may be formally defined as

Π = (Σ,µ,w1,w2, . . . ,wm,R1,R2 . . . ,Rm), where:

– Σis a finite and non-empty alphabet of objects;

– L = {l1, . . . , lk} is a finite alphabet of symbols representing labels for the compartments

and identifying compartment types;

– µ is a membrane structure containing m membranes indexed 1,2, ...,m. The membrane

structure can be represented formally as a rooted tree but can also be depicted as a non-

intersecting Venn diagram or nested pairs of indexed square brackets, e.g. [1 [2 ]2 [3 ]3 ]1;

– w1,w2, . . . ,wm are the initial multisets of objects present in regions 1,2, . . . ,m of the mem-

brane structure, written in the form a3b2c;
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– R1,R2, . . . ,Rm are finite sets of rewriting rules associated with regions 1,2, . . . ,m.

A common difference to the definition given above is to define a set of labels for membranes

and to associate sets of rules with labels, so that the rules a membrane contains are defined by its

label. Rewriting can be said to be regulated because rules are localised. Rules that rewrite the

multiset of the compartment in which they reside are termed evolution rules, rules that rewrite

the multisets in enclosed or the enclosing compartment are termed communication rules. Both

can be represented by the syntax:

u−→ (v, tar) (3.1)

where u,v∈ Σ are multisets of objects from the alphabet Σ and tar ∈ {here, in,out} is the locally

evaluated target membrane. Where two or more enclosed membranes exist the target of in would

be chosen non-deterministically. By associating different targets to different objects symport

and antiport membrane transporters can easily be modelled [188].

The membrane structure of a P system is not intended be static. The basic formulation in-

cludes a special δ operator that effects the dissolution of membranes, with movement of the

contents into the containing membrane, analogous to the disappearance of the nuclear mem-

brane in prometaphase of mitosis.

As the field of P systems has grown researchers have sought to augment these devices with new

properties and capabilities such as:

– permeability, where δ does not dissolve the membrane but decreases its “thickness” by

one unit. For membranes with a thickness of 1, δ functions normally. τ is used to increase

the thickness of membranes by 1 unit. A thickness of 2 is considered the maximum and

is impermeable. δ and τ applied together cancel out;

– active membranes, with rules for operations on membranes such as division, fusion, en-

docytosis and exocytosis affecting the internal structure of the P system (figure 3.5) [189];

– gemmation of mobile membranes [190] (inspired by mobile ambients [160]), where new

membranes are created and translocated between membranes, analogous to the budding

of vesicles from the Golgi complex;

– multisets of strings and rewriting rules on strings which rewrite substrings and produce

new strings, analogous to transcription and translation;

– promoters and inhibitors, written u −→ v | z and u −→ v | ¬z respectively, where all

promoter objects in the multiset z must be present and conversely none of the inhibitor

objects in ¬z can be present for the rule u −→ v to be applied. Promotion can equally
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Figure 3.5: Operations of P systems with activate membranes, from [186].

be achieved with catalyst rules (ac−→ bc) but the syntax is not so explicit of the objects

roles;

– boundary rules [191], which can ’see’ externally, written xa [ j by −→ xc[ j d y meaning

that when multisets x and y are outside and inside the membrane the multisets a and b can

be rewritten to c and d respectively. Boundary rules allow the fetching of objects from the

environment. Alternatively, evolution-communication rules can use the target come as in

a−→ (a,come) to bring objects from the environment into the skin;

– teleportation, where for in j, j can be any label. in∗ signifies the deepest membrane and

out∗ the skin;

P system variants

Other variants seek to evaluate the computational power of compartmentation using alternative

membrane structures to a single tree while retaining only the basic P system rules types. Some

of the most well-studied are:

– Tissue P systems which abstract the arrangement of cells in tissues with objects being

exchanged between membranes of the same tree depth along channels (formally a graph)

[192];

– Population P systems which extend tissue P systems by introducing rules that reorder the

connectivity of membranes by making and breaking channels, to emulate cell division

and differentiation [193, 194, 195];
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– P colonies, a combination of P systems and eco-grammar systems with unconnected

membranes interacting through the environment [196];

– Spiking Neural P systems which abstract the organisation and behaviour of neurons to

investigate the role of structure in the output (timing and sequence) of spikes [197].

Quorum Sensing P systems are perhaps the clearest example of the computation versus mod-

elling dichotomy of P systems. In quorum sensing (QS), discussed more fully in section 1.1.1,

bacteria constantly export diffusible chemical signals at a low level. Uptake of those signals

leads to upregulation of signal production resulting in a mechanism that allows bacteria to sense

the population density in which they find themselves. Once a sufficiently high density of bacte-

ria, or quorum, is achieved other sets of genes are switched on initiating a change in behaviour

at the population level [26]. Through the abstracted mechanisms of bacterial quorum sensing

QS P systems are shown to be equivalent in power to Turing machines by simulating a counter

machine [29]. At the same time P systems have been used to model quorum sensing in the

bacteria Vibrio fischeri [32] and Pseudomonas aeruginosa [198, 28, 29].

For biological modelling with P systems maximally parallel execution creates two inaccuracies:

(1) reactions do not occur at the correct rates and (2) all time steps are equal. A number of at-

tempts to constrain the maximal parallelism have been developed, including bounded [199, 200]

and minimal parallelism [201], priority relations for rules with strong and weak interpretations,

even energetic constraints. But the simulation of biological systems “demands biologically

meaningful evolution strategies” [202] with rules that reflect the reality of chemical interactions.

The modelling of biological systems using P systems has divided into several parallel tracks

based on the method of execution, and these tracks can be categorised as stochastic-discrete,

deterministic-discrete and deterministic-continuous in their treatment of rule application and

object quantities operating in continuous time.

Stochastic P systems Stochastic simulation algorithms offers the ability to produce realistic

trajectories of discrete molecular populations that can be directly compared to laboratory data.

Stochastic P systems become executable specifications of biological systems by assigning a

stochastic rate constant c to each rule (e.g. 3.6.2), and applying rules according to a stochastic

simulation algorithm.

rn : EGF [EGFR ]l
cn−→ [EGFR+EGF ]l (3.2)
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The rule syntax, inspired by boundary rules [191], emphasises the presence of membranes across

which objects can translocate. Depending on the label of the membrane where the rule is ap-

plied, this compact rule form can specify the movement of molecules from outside into that

membrane, or, if l corresponds to an enclosed membrane, the movement of objects in and out

of that.

To select the next rule to apply across all compartments using SSA the hierarchical membrane

structure of the P system can be translated to a flattened representation where the objects of

the same type that are in different compartments are treated as separate species. Alternatively,

the SSA can be extended to multiple compartments by using the normal method in each com-

partment but the scheduling rule application appropriately. The Multi-Compartmental Gillespie

(MCG) algorithm [25], implemented in SciLab and C [203] by Infobiotics developer Francisco

Romero Campero takes the second approach. As for any SSA the propensities of each reac-

tion are computed (from the stochastic rate constant and number of possible combinations of

reactants) and used to bias the random selection of the next rule to apply and a waiting time,

but independently for each compartment. The waiting times of all compartments are then

sorted and the selected rule in the compartment with the shortest waiting time is applied.

That time is added to the system clock and subtracted from the other waiting times. Any com-

partments that are affected by the application of the selected rule because the multiplicities of

the reactants have changed have their rule selection and waiting times recalculated. The waiting

times are sorted, the next rule is applied and so on.

The Infobiotics Workbench simulator MCSS implements an optimised Multicompartment Gille-

spie Algorithm with Queue [204], pseudocode for which is shown below. The algorithm uses

an indexed priority queue (binary heap) to schedule the compartments according to the wait-

ing time of the next rule to be applied. The queue ensures that the compartments are always

sorted by ascending waiting time, substantially improving performance for models with many

thousands of the compartments by reducing the computational complexity of the scheduling

operation. The optimised algorithm is equivalent to the standard SSA and both implementa-

tions pass the Discrete Stochastic Models Test Suite [205]. We note that these exact stochastic

simulation algorithm are necessarily sequential and therefore cannot make use of the potential

parallelism of compartmentation that was considered key to the power of P systems.

Membrane Systems with Peripheral and Integral Proteins Membrane Systems with Pe-

ripheral and Integral Proteins [206, 207] are P systems which model proteins attached to or

embedded in the membrane by associating multisets with membranes as well as the regions

they define, and extending the rule syntax to handle the extra multisets. They are implemented

in the software Cyto-Sim [208, 209] and simulated with a proprietary extension of Gillespie.
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Algorithm 1: Multicompartment Gillespie Algorithm with Queue
begin

// preprocess
// calculate waiting time for each compartment
for i← 1 to number of compartments do

// perform Gillespie Direct Method
(τ,ρ)← GillespieDirectMethod(i) // add waiting time to queue
QueueInsert(τ, i,ρ)

// main loop
while (τ, i,ρ)← QueuePeek() do

if τ > tmax then
halt

// advance simulation time
t← τ // apply rule ρ in compartment i
ExecuteRule(ρ ,i) // calculate waiting time for compartment i
(τ,ρ)← GillespieDirectMethod(i) // add waiting time to queue
if τ = 0 then

// no rule applicable
QueueDeleteHead()

else
// replace waiting time
QueueReplaceHead(t + τ, i,ρ)

// update target compartment of rule
if rule ρ in compartment i is a translocation rule then

set j to index of target compartment of rule ρ // calculate waiting time for compartment j
(τ,ρ)← GillespieDirectMethod( j) // add waiting time to queue
if τ = 0 then

// no rule applicable
QueueDeleteEntry( j)

else
// replace waiting time
QueueReplaceEntry(t + τ, j,ρ)

Cyto-Sim can also accept as input Petri net matrices and is said to cover a large part of the

SBML specification [210].

Dynamical Probabilistic P systems Dynamical Probabilistic P systems (DPP) [211] were

originally motivated by the investigation of maximal parallelism in nature, using standard P

systems with a novel rule application method to model biological phenomena in a discrete and

stochastic way. In procedure analogous to the Gillespie algorithm propensity calculation DPP

rules are dynamically assigned a probability that is the product of the possible combinations of

reactant objects and an associated rate. Probabilities are normalised to their sum, a random num-

ber ’tossed’ and rules selected from the roulette wheel are assigned objects from the multiset

until all objects have been assigned, such that “the rules with the highest normalized probability

value will be more frequently tossed” [212]. Parallelism can be bounded in DPP by the intro-

duction of ’mute rules’ such as a−→ (a,here) which do not change the multiset but participate

in the tossing process.

The approximate τ-leaping SSA has recently been applied to the parallel implementation of

DPP [90] in which the computational complexity of the algorithm increases linearly with the
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number of reactant species. τ-leaping DPP traces the simulated time of the compartments as

well as the time line of the system as a whole. In each membrane a leap time τ is generated,

based on its current state. The smallest τ is used to generate probability distributions for each

membrane and the system leaps to the next state by applying several rules in each membrane

(the order of execution does not matter). Thus the system’s evolvution is synchronised by the

smallest leap and time advances in increments of τ .

τ-DPPs have been used to model Ras protein cycle, activation of adenylate cyclase, production

of cyclic AMP, regulatory elements in the activation of cAMP-dependent protein kinase in yeast

[213], and predator-prey metapopulations [212] with a weighted undirected graph represention

of spatial patches corresponding to membranes.

Metabolic P systems

Metabolic P (MP) systems have diverged considerably from the discrete and non-deterministic,

compartmentation-based philosophy of P systems, and would warrant a separate section if not

for their limited adoption.

The primary innovation of MP systems is metabolic algorithm (MA) [214], a continuous and

deterministic modelling approach with reaction rules that transform moles of substances as

opposed to molecules over a series of equal timesteps. Time in MP systems is mapped to real

time by multiplication of a constant value, τ , representing the sampling intervals from real-world

observations. The set of reactions is described by a stoichiometric matrix [215]. The degree of

transformation (number of times a rule is applied at each step) is controlled by a set of flux

regulation maps which determine the number of times to apply each rule. Fluxes are calculated

as a function of the substance amounts, global constants and parameters such as temperature,

pressure and pH, which can also change as a function of time. The overall effect is to produce

the same results as an ordinary differential equations model by repeatedly applying a set of

stoichiometric equations on a pool of substances according to a set of functions.

In contrast to other P systems, MP systems have just a single membrane. P systems models

with membranes can be flattened to a single membrane where “localization is now encoded into

symbols” [216] and rules are altered accordingly. Essentially, pools of substance are renamed

with subscripts denoting the membrane they reside in. With a deterministic execution model

and without of hierarchy of membranes MP systems have been proved equivalent to hybrid

functional Petri nets [217].

However the visual respresentation, an MP graph, is not a Petri net. MP graphs have five node

types: substances, reactions, fluxes, parameters and IO gates. Edges representing the transfor-

mation of substances have solid lines annotated with stoichiometries. Edges representing the
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Figure 3.6: Editing an MP graph with MetaPlab.

influence of one node on another have dashed lines. Direct manipulation of MP graphs is sup-

ported by the MetaPlab [218] software, previously Psim [202]. Figure 3.6shows the interface of

MetaPlab with an example model.

MetaPlab uses plugins to interact with the underlying model run simulations and optimise pa-

rameters. By exposing the model to developers it is hoped that new plugins will be developed

that extend the functionality and relevance of the software to more complex problems. A simple

HTML plugin - that outputs a webpage containing a table of model parameters - acts as an ex-

ample for developers. The simulation plugin creates ’vistas’ (plots) of substance quantities over

time, that are mapped back on to the model. This is made possible because the simulations are

deterministic and therefore produce a single solution to the model dynamics.

3.6.3 MGS

MGS4 is a programming language that embodies several spatial computing concepts applied to

the specification and simulation of dynamical systems with a dynamical structure [219]. MGS

extends the notion of rewriting rules by considering the more general structure of topological

collections. A topological collection is a set of elements structured by a neighborhood rela-

tionships that represent a spacial data structure, with optional constraints, manipulatable by

4http://mgs.spatial-computing.org/

http://mgs.spatial-computing.org/
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computation, including Delaunay triangulations and multisets [220]. Rules in MGS replace

some subcollection of a topological collection with another topological collection. This process

is said to offer a unifing view on some computational mechanisms initially inspired by biolog-

ical processes: L-systems, P-systems and cellular automata. Indeed, MGS has been used as a

host language for stochastic P systems [221] in which the authors also implemented a multi-

compartmental stochastic simulation algorithm orthogonal to our own (outlined above). This

implementation of stochastic P systems were used to model the Lotka–Volterra auto-catalytic

system, and the life cycle of the Semliki Forest virus. MGS has also been applied to the mod-

elling of the λ phage genetic switch [222].

The ideas behind MGS will undoubtedly be useful as our ability to map biological systems

to computational structures grows. Unfortunately, such generality comes at the cost of much

greater complexity in the definition of systems and transformational rules. The functional legacy

of the language (the interpreter is written in OCaml) means that we do not feel confident in

implementing a moderately complex model in MGS.

3.7 Conclusions

The primary purpose of this review was to examine existing computational modelling for-

malisms that have been applied to biological systems and decide which, if any, are appropri-

ate specification languages for multicellular biomodels. A secondary consideration, which we

address first, is whether a particular specification language restricts or permits certain types of

in silico experiment. Qualitative approaches, boolean networks for instance, cannot produce

timeseries of species quantities comparable to experimental data. On the other hand, boolean

networks and some Petri nets can reveal whether a particular state is reachable from another,

thereby providing one of the central benefits of model checking.

Of the various computational modelling approaches reviewed, several including stochastic P

systems, MGS, κ , Bio-PEPA, stochastic π-calculus (i.e. formalisms that are not systems of

mathematical equations), contain sufficient information to permit, with some mapping, each the

in silico experiments discussed in chapter 2. Stochastic simulation is a commonplace execution

strategy for computing their dynamics because the mapping from interactions to bimolecular

reactions is often quite direct. Automated verification techniques can be applied to most by re-

formulating the model or adapting its simulated output to the input format of a particular model

checker: a Reactive Modules [223] description in the case of PRISM, sets of timeseries for

MC2 [224]. Continuous variables, e.g. concentrations, can be discretized at a chosen granular-

ity [173] facilitating model checking with approximate results. Parameter optimisation requires

some formalism-dependent wrapping for model parameterisation, simulation and feedback into

a search strategy, but the search and optimisation methods may be taken off-the-shelf. Model
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structure optimisation is more challenging because it involves model generation under biological

and formalism dependent constraints.

Regarding software support, most formalisms have simulators, some use model checking (P

systems and Bio-PEPA can use PRISM, Petri nets MC2), others can optimise parameters (Kinfer

for BlenX, MetaPLab log-gain plugin) and a few have experimented with model optimisation.

None are covered by simulation, model checking, parameter and model structure optimisation.

Despite varying degrees of software support we see these approaches as being are largely equiv-

alent in how they could be processed and tuned. What they offer in terms of model building and

interrogation is much more important. To evaluate this we consider the usability of the language

and the tools for working with it: by whom will it be used and for what? Ideally biologists

would be both producers and consumers of models (although we realise that in the near term

it is more likely that computer scientists will be responsible for formalising biological knowl-

edge and running simulations). For models to be of any value they must be understandable

(usable as communication devices), capture the required features and generate answers that are

interpretable.

We found that with some of these formalisms the resulting models were less understandable than

the systems they were trying to model and therefore too difficult to debug or adapt by biologists.

In particular, we consider process algebras to be too abstruse to reach a wide audience.

Others were limited to certain domains, capturing a selection of features in detail. For exam-

ple, κ effectively models signalling cascades with many possible protein-protein complexes

using graph rewriting, but currently has no notion of compartments. BioAmbients and Brane

calculi explicitly model compartments but need other process calculi to model biochemical re-

actions. SBML and CellML are predominantly aimed at continuous mathematical models and

consequently an awkward fit for stochastic models that avoid the limitations of macroscopic

techniques.

SBML allows many compartments to be specified, it requires that the species and the reactions

in each compartment are unique with respect to the entire model, so that each instance of a

compartment with identical sets of species and reactions (e.g. individual bacteria of the same

strain) must be specified repeatedly. This approach to specification cannot scale for models with

increased numbers of the similar compartments such as bacterial colonies. The modular nature

of CellML avoids this problem by allowing compartments to be defined once and duplicated

many times.

We conclude that none of the reviewed formalisms are perfectly suited to our modelling goals.

The main deficiency is, with the notable exception of MGS (which we discount on the issue of

usability), the inability to specify a spatial arrangement of compartments, such that neighbour-

hood relationship would be automatically established. That this was not the case may account
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for why multiscale molecular and multicellular models are underrepresented in comparison to

single cell models: they are fewer because to build such models implies creating a new mod-

elling framework, incompatible with existing tools.

We see stochastic P systems as the most suitable for formalism-agnostic biologists, as rules

incorporating reactions and transport across membranes provide a clear and localised means of

expressing intercellular communication. Therefore, to support the modelling of the multicellular

systems introduced in the chapter 1 and the modelling principles developed in chapter 2, we have

chosen to create our own biomodel specification formalism that extends stochastic P systems

with discrete-space using lattices to capture the geometric arrangement of cells population, and

develop scalable simulation algorithms, interfaces to model checkers that transparently convert

models and timeseries into the appropriate formats. This novel executable biology formalism is

presented in next chapter.



Chapter 4

Lattice Population P systems

Chapter abstract
This chapter introduces Lattice Population P systems, the core abstraction of a biological system used by the Infobi-
otics Workbench to model spatially discrete multicellular systems. We formally define these objects and show how
they translate into several machine-readable data formats. Lastly, we look at how they facilitate rapid model building
through different kinds of reusability.

4.1 Introduction

We derived the requirements for our modelling approach and software by focusing on two mul-

ticellular biological systems of particular interest to our group at the University of Nottingham:

the quorum sensing system in pathogenic bacteria Pseudomonas aeruginosa and the root node

of the plant Arabidopsis thaliana (discussed in section 1.1.1). Both systems have a strong spa-

tial component where molecule exchange between adjacent cells and the arrangement (in ad-

dition to the state) of cells determines the overall phenotypes. However, this structure cannot

be captured by our chosen formalism of stochastic P systems, which have only a hierarchical

membrane structure of compartments within other compartments. Therefore it was crucial to

augment stochastic P systems with an additional level of organisation, a 2-dimensional geomet-

ric lattice on which a population of P systems (model cells) could be placed and over which

molecules could be translocated. Rules that move objects from one P system (applicable only

in the outmost compartment) to another on the lattice are associated a vector that describes how

many positions in the x and y dimensions to put that molecule. We call this extension of stochas-

tic P systems Lattice Population P systems [225] (LPP systems for short) and, in the tradition

of P systems, proceed with their formal definition (published in [102]).

Each cell type with its compartmentalised structure, characteristic molecular species and molec-

ular processes is represented using a SP system according to definition 4.1. The rules of each SP

system are possibly specified in a modular way according to definition 4.4. The spatial distribu-

tion of cells in the population is represented using a finite point lattice, definition 4.2, and finally

62
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different copies of the corresponding SP system representing each cell type are distributed over

the points of the lattice according to the spatial distribution of an LPP systems in definition 4.3.

4.2 Formal definitions

Definition 4.1. Stochastic P system

A stochastic P system, SP system for short, is a formal rule-based specification of a multicom-

partmental and discrete dynamical system with stochastic semantics given by a tuple:

SP = (M,µ,L, Il1 , ..., Iln ,Rl1 , ...,Rln) (4.1)

where:

– M is a finite set (alphabet) of objects specifying the entities involved in the system (genes,

RNAs, proteins, etc.).

– µ is membrane structure composed of n≥ 1 membranes defining the regions or compart-

ments of the system. Membranes are arranged in a hierarchical manner, i.e. membranes

can be inside other membranes. There exists an outermost membrane termed the skin, not

contained in any other membrane, which defines the system itself acting as the boundary.

The membrane structure can be represented graphically using a Venn diagram, a list of

matching square brackets or formally as a rooted tree where each node represents a mem-

brane, the root stands for the skin membrane and the relationship of a membrane being

inside another one is described by the node representing the first membrane being the

descendant of the node for the second membrane (shown in figure 4.1).

– L = {l1, . . . , ln} is finite set of labels naming compartments in a one-to-one manner (nu-

cleus, cytoplasm, etc.).

– Ilk for each 1 ≤ k ≤ n is the initial condition of the compartment or region defined by

membrane k consisting of a multiset of objects over M describing the initial numbers of

the various molecular species present in the corresponding compartment.

– Rlk = {r
lk
1 , . . . ,r

lk
mlk
} for each 1 ≤ k ≤ n is a set of multiset rewriting rules describing

the interactions between the molecules, such as complex formation and gene regulation.

Each set of rewriting rules Rlk is specifically associated to the compartment identified by

the label lk. These multiset rewriting rules are of the following form:
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rlk
i : o1 [ o2 ]l

c
lk
i→ o′1 [ o′2 ]l (4.2)

where o1,o2 and o′1,o
′
2 are multisets of objects (possibly empty) over M representing the molec-

ular species consumed and produced in the corresponding molecular interaction. The square

brackets and the label l describe the compartment involved in the interaction. An application of

a rule of this form changes the content of the membrane with label l by replacing the multiset o2

with o′2 and the content of the membrane outside by replacing the objects o1 with o′1. A stochas-

tic constant clk
i is specifically associated with each rule in order to determine the probability

of applying the rule and the time elapsed between rule applications according to the stochastic

semantics of Gillespie’s theory of chemical kinetics [226]. This also places a limit on the size

of the multisets, that the sum total of members in the multisets o1 and o2 be 2 at most.

Figure 4.1: A graphical representation using CellDesigner of a SP system modelling a simple transduction sys-
tem where the signal S induces the synthesis or more receptors R. This SP system consists of a set of 12 objects
representing molecular species; 3 compartments identified with the labels cellSurface, cytoplasm and nucleus; and
25 rewriting rules represented with arrows describing the molecular interactions like active nuclear translocation
and gene transcription. The three different possible representations of the membrane structure, namely, as a Venn
diagram, list of matching square brackets and rooted tree, are also presented.

Definition 4.1 provides the formalism needed for the specification of an individual cell as shown

in figure 4.1. To specify the possible spatial distribution of cells assembled into colonies and

tissues we define an array of regularly distributed points according to a finite point lattice or grid

[227].

Definition 4.2. Finite Point Lattice

Given B = {v1, . . . ,vn} a list of linearly independent basis vectors, o ∈ Rn a point referred to as

origin and a list of integer bounds (αmin
1 ,αmax

1 , . . . ,αmin
n ,αmax

n ) a finite point lattice, lattice for

short, Lat in Rn denoted as:

Lat = (B,o,(αmin
1 ,αmax

1 , . . . ,αmin
n ,αmax

n )) (4.3)
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is the collection of regularly distributed points, P(Lat), defined as:

P(Lat) = {o+
n

∑
i=1

αivi : ∀i = 1, . . . ,n (αi ∈ Z∧α
min
i ≤ αi ≤ α

max
i )} (4.4)

Given a finite point lattice, Lat, each point x = o+∑
n
i=1 αivi ∈ Lat is uniquely identified by the

coefficients {αi : i = 1, . . . ,n} and consequently it will be denoted as x = (α1, . . . ,αn).

(a) (b)

Figure 4.2: SP systems containing reactions of a gene regulatory network, single (a) and distributed over the LPP
system lattice (b).

SP systems are distributed on the lattice according to an LPP system, as shown in figure 4.2.

Definition 4.3. Lattice Population P system

A lattice population P system, LPP system for short, is a formal specification of an ensemble of

cells distributed according to a specific geometric disposition given by the following tuple:

LPP = (Lat,(SP1, ...,SPp),Pos,(T1, ...,Tp)) (4.5)

where

– Lat is a finite point lattice in Rn (typically n = 2) as in definition 4.2 that describes the

geometry of cellular population.

– SP1, . . . ,SPp are SP systems as in definition 4.1 specifying the different cell types in the

population.

– Pos : P(Lat)→{SP1, . . . ,SPp} is a function distributing different copies of the SP systems

SP1, . . . ,SPp over the points of the lattice.
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– Tk = {rk
1, . . . ,r

k
nk
} for each 1≤ k≤ p is a finite set of rewriting rules termed translocation

rules that are added to the skin membrane of the respective SP system S Pk in order

to allow the interchange of objects between SP systems located in different points in the

lattice. These rules are of the following form:

rk
i : [ ob j ]l

v
on [ ]l′

ck
i→ [ ]l

v
on [ ob j ]l′ (4.6)

where ob j is a multiset of objects, v is a vector in Rn and ck
i is the stochastic constant used in our

algorithm to determine the dynamics of rule applications. The application of a rule of this form

in the skin membrane with the label l of the SP system SPk located in the point p, Pos(p) = SPk,

removes the objects ob j from this membrane and places them in the skin membrane of the

SP system SPk′ located in the point p+ v, Pos(p+ v) = SPk′ . Note that vectors allow for any

topology to be encoded in the lattice geometry.

Molecular reaction networks can, to a certain degree, be decomposed into modules acting as

discrete entities carrying out particular tasks [8]. It has been shown that there exist specific

modules termed motifs that appear recurrently in transcriptional networks performing specific

functions like response acceleration and noise filtering [4]. Modularisation is also a central tech-

nique used in the engineering of synthetic cellular systems by combining well-characterised and

standardised cellular models [228] as exemplified in the MIT BioBricks project [37]. In order

to represent this conceptual and reified modularity in LPP systems we introduce the concept of

a P system module.

Definition 4.4. P system Module

A P system module defined as a name, Mod, parameterised with three finite ordered sets of

variables O = {O1, . . . ,Ox}, C = {C1, . . . ,Cy} and Lab = {L1, . . . ,Lz} (objects, stochastic rate

constants and compartment labels respectively), and consists of a finite set of rewriting rules of

the form in equation 4.2:

Mod(O,C,Lab) = {r1, . . . ,rn} (4.7)

The objects, stochastic constants and labels of the rules in module Mod can contain variables

from O, C or Lab which are instantiated with specific values o = {o1, . . . ,ox}, c = {c1, . . . ,cy}
and lab = {l1, . . . , lz} for O, C and Lab respectively as in:

Mod({o1, . . . ,ox},{c1, . . . ,cy},{l1, . . . , lz}) (4.8)

the rules are obtained by applying the corresponding substitutions O1 = o1, . . . ,Ox = ox, C1 =

c1, . . . ,Cy = cy and L1 = l1, . . . ,Lz = lz.
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Our definition of P system module allows the hierarchical description of a complex module,

M(O,C,Lab), by obtaining its rules as the set union of simpler modules, M(O,C,Lab)= M1(O1,C1,Lab1)∪
·· ·∪Mn(On,Cn,Labn) with O = O1∪·· ·∪On, C =C1∪·· ·∪Cn and Lab = Lab1∪·· ·∪Labn.

Finally, the set of rules, Rlk , in SP systems can be specified in a modular way as the set union of

several instantiated P system modules, Rlk = M1(o1,c1, lab1)∪·· ·∪Mnk(onk ,cnk , labnk).

The use of modularity allows us to define libraries or collections of modules:

Lib = {Mod1(O1,C1,Lab1), . . . ,Modm(Om,Cm,Labm)} (4.9)

An SP system model may contain instantiations of modules from multiple libraries, and the

same module can be instantiated multiple times with different parameters.

An example module library is presented in Table 4.1. This library contains modules modelling

the basic regulatory mechanisms in gene transcription and translation. The use of these mod-

ules allow us to develop multiple models of typical regulatory mechanisms in transcriptional

regulation without having to specify every single interaction in the system.

Table 4.2 presents SP system models of three recurring patterns in gene regulation networks,

namely, constitutive expression, positive autoregulation and negative autoregulation of a gene,

in which the rewriting rules are specified in a modular manner using modules from the library

in Table 4.1 with different instantiations.

4.3 Machine-readable data formats

For LPP system models to be specified and manipulated by computers is necessary that they

have a machine-readable equivalent. It is not uncommon for the machine-readable form(s) of a

modelling formalism to be somewhat different from the mathematical definition, such as those

given in the previous section. This section presents the encodings of LPP systems that are used

by the Infobiotics Workbench.

4.3.1 MCSS-SBML

The Systems Biology Markup Language (SBML) [229] is an XML dialect used to store and

exchange models of biological systems between different tools (MCSS refers to our simulator for

LPP system models for which this format was initially designed). SBML files store information

about model compartments, species and reactions, as well as events, units, etc. that are relevant

to some models and approaches but not others. Tools for the visual specification of models in
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SBML, in particular CellDesigner [230], enable the visual creation of models from a collection

of symbols for various types of molecular and interactions called Process Diagrams1.

Despite its ubiquity and demonstrable utility, SBML has a number of issues that have caused

people to look for means of generating SBML models through less verbose textual formats

such as SBML shorthand2 and the modular scripting language Antimony [118], or alternative

exchanges formats, of which the major alternative is CellML [233].

The biggest drawback of SBML from the perspective of LPP systems are that it has no means of

encoding modular rule sets with undefined parameters, i.e. each potential reactant, including the

same species in different compartments, has a unique ID, resulting in |species|×|compartment|
number of IDs in the model. SBML reactions reference species by ID and therefore the same

reaction in two different compartments requires two different definitions of the same reaction

in the SBML file. Very complex models might have hundreds or even thousands of reactions in

each compartment, or fewer reactions but many thousands of compartments. For those models,

towards which LPP systems are targeted, SBML is therefore insufficient when used directly

or generated as the file sizes of models would simply be too large due to the aforementioned

duplication of reactions. Also, editing even medium-sized systems visually with CellDesigner

would be impractical as the reaction network within a compartment must be reproduced in its

entirety for every single cell. Lastly, SBML does not allow for “next-to” spatial relationships that

are useful when the size of the model is subject to change, only containment as per conventional

P systems.

Since we wished to incorporate CellDesigner in our modelling pipeline we were driven to find a

way to be able to encode spatial-distributed and modularly-defined P system models in SBML.

We achieve this by encoding the spatial location of top-level compartments and modules of

rules using MCSS-specific naming schema for compartments and reactions. We use the word

“template” in lieu of “module” in what follows because templates implement only some of the

functionality of P system modules as defined previously.

Compartments must be named as follows: name : t : a,b, ... : x,y where,

– name is a string, not necessarily unique, describing the compartment (and is what is pre-

sented in the Infobiotics Workbench simulation results GUI).

– t is empty or a non-negative integer identifying the template the compartment defines

1Recently, Process Diagrams have been incorporated into the Systems Biology Graphical Notation (SBGN) [231,
232], which aims to standardise the graphical representation of biological systems and their semantic interpretation,
to benefit the communication and teaching of biological models and modelling. Despite their surface similarities
their is no formally defined mapping between SBML and SBGN.

2http://www.staff.ncl.ac.uk/d.j.wilkinson/software/sbml-sh/
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Figure 4.3: MCSS-SBML compartment naming conventions for four adjacent cells

– a,b, ... is empty or a comma-separated list of non-negative integers giving the identifiers

of the templates the compartment uses

– x,y are nothing or two non-negative integers giving the position of the compartment in 2D

space

For example, figure 4.3 shows a colony of four bacteria. The bacteria named bacteria : 1 :: 0,0

defines template 1 for the uptake of the antibiotic tetracycline and its subsequent efflux by the

tetracycline resistance protein TetA. It uses no other templates and is located at position 0,0.

Its neighbours do not define any other templates but each uses template 1. MCSS interprets the

names according to the convention, to ensure that each compartment is endowed with all of the

reactions it defines and uses.

With this system, replicating a compartment and its reactions becomes a matter of simply adding

a compartment entry with the correctly specified name and position to the SBML file, either

manually, with a script or by drawing it in CellDesigner. Compartments that define templates

can be in one kept to the side of the canvas and instantiated compartments with positions ar-

ranged as those positions suggest.

Transport reactions/translocation rules follow a similar naming convention: name : x,y where

– name is any string including the empty string.

– x,y are either ∗ meaning any neighbour, or a comma-separated pair of integers specifying

a vector, usually one of (0,1),(1,0),(0,−1),(−1,0). The x,y integers are added to the

those of the compartment to determine the correct compartment to send molecules to.
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4.3.2 LPP systems XML

Templates (as defined in section 4.3.1) are useful because they facilitate semi-modular model

specification in SBML. However the syntax of the SBML files is essentially at odds with the dis-

crete and stochastic nature of P systems because it was primarily designed to store mathematical

models based on differential equations. While SBML is capable of storing species amounts as

integer numbers of molecules, specifying stochastic rate constants (which are essentially one

number because the propensity calculation to be used can be determined from the number and

identities of the species) is overly complex.

It was felt that we needed to develop a custom format that would contain only features necessary

for the specification of P system models and the experiments we wish to be able to perform on

them, e.g. ranges and precisions for rate constants to be used by optimisation algorithms. We

therefore developed an XML schema based on a collaboratively designed BNF grammar for

LPP systems.

LPP system XML is a set of machine-readable data formats which closely mirrors our formal

definitions. It allows us to define, in a single file or multiple files, modules of stochastic P system

rules, P systems with initial multisets and instantiations of modules of rules, a geometric lattice

and distribution of P systems over the lattice, which together constitute an LPP system model.

P system module XML

Modules are essentially syntactical sugar for the specification of P system models, they can be

reused and composed providing the modeller with a form of hierarchical abstraction that can

capture recurrent motifs in biological systems. Reuse is facilitated by the ability to externalise

modules from models in libraries, from which they can be included into multiple models. Figure

4.4 shows a schematic of the Const module from table 4.1, drawn using CellDesigner, which

encodes the transcription of a gene into an mRNA and the translation of that mRNA into a

protein (the central dogma of molecular biology); the gene products are also degraded. Listing

4.1 shows the XML definition of the Const module. The object names gene, mRNA and Protein

are substituted when the module is instantiated, as are the constants and compartment labels,

to allow the module to be reused within models. Each rule is a boundary rule which refers the

style of P systems notation in definition 4.2, not an actual boundary (there are no translocation

rules in the Const module).

Figure 4.5 shows a schematic of a Neg module which augments the Const module with the

complexation and dissociation of a gene with its product protein. This complexation prevents

the transcription of the gene, by the first rule in Const module, and so the gene is negatively

autoregulated. Listing 4.2 shows the definition of the Neg module later in the same XML file.
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Figure 4.4: Schematic of the Const module with 3 species and 4 rules.

1 <moduleDefinition name="Const"> <!-- Constitutive expression of a gene into
protein via mRNA assuming RNA polymerase and nucleotides, ribosomes and
amino acids are in excess.

r_1: [ gene ]_l -> [ gene + mRNA ]_l ; c_1
r_2: [ mRNA ]_l -> [ mRNA + Protein ]_l ; c_2
r_3: [ mRNA ]_l -> [ ]_l ; c_3

5 r_4: [ Protein ]_l -> [ ]_l ; c_4 -->

<setOfObjects> <!-- substitutive objects -->
<object name="gene" />
<object name="mRNA" />

10 <object name="Protein" />
</setOfObjects>

<setOfConstants> <!-- substitutive constants -->
<constant name="c_1" />

15 <constant name="c_2" />
...

</setOfConstants>

<setOfLabels> <!-- substitutive labels -->
20 <label name="l" />

</setOfLabels>

<setOfRules>
<!-- r1: [ geneX ]_b -c_1> [ geneX + rnaX ]_b -->

25 <rule name="r_1" module_rule="1" type ="boundary" constant="c_1">
<lhs> <!-- reactants -->
<listOfInsideObjects label="l">
<object name="geneX"/>

</listOfInsideObjects>
30 </lhs>

<rhs> <!-- products -->
<listOfInsideObjects label="l">
<object name="geneX"/>
<object name="rnaX"/>

35 </listOfInsideObjects>
</rhs>

</rule>
... (r_1, r_2, r_3)

</setOfRules>
40 </moduleDefinition>

Listing 4.1: Const module XML (rules r_2, r_3 and r_4 not shown).
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Figure 4.5: Schematic of the Neg module composed of a Const module and 2 additional rules. Only the identities
of the species in the Const module are shown.

The file attribute (file="this" in the example) is important because it allows modules to

be defined outside models and therefore be reused by multiple models. SBML does not have

that facility.

Module library XML

Listing 4.3 shows a (compressed) module library containing three modules. Stochastic rate

constants in library modules can be declared with additional parameters that define a range of

possible values, as shown in listing 4.4. This enables the modeller to introduce a known amount

of uncertainty to a rule’s rate constant, which can be exploited by optimisation algorithms (see

section 5.4).

Individual P system XML

Figure 4.6 shows a schematic of a compartment labelled bacteria that contains the Neg module

from figure 4.5 and listing 4.2. It also contains a single rule for the translocation of the protein

T f outside of the compartment. Because the compartment is not contained within another

compartment we called it a top-level compartment, which is analogous to a cell. Listing 4.5

shows the XML definition of the P system in figure 4.6 where the Neg module is imported

from a module library and instantiated with the correct object names, constants and the label

bacteria. The alphabet of objects, compartment labels, membrane structure and initial multisets

are specified in the manner as in the formal definition of a stochastic P system (4.1). Note

how the translocation rule r_1 has a vector value denoting the direction of translocation on a

2-dimensional lattice.

Figure 4.7 demonstrates that modules are purely intended for the specification of models and

play no rule in the actual execution by showing the bacteria compartment as it would look from
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1 <moduleDefinition name="Neg"> <!-- Negative autoregulation of a gene by its
protein through complexation.

Reuses Const module for constitutive expression. -->

<setOfRules>
5 <module name="Const"

objects="gene,mRNA,protein"
constants="c_1,c_2,c_3,c_4"
labels="l"
file="this" />

10

<!-- r_1: [ gene + Protein ]_l -> [ gene.Protein ]_l ; c_5 -->
<rule name="r_1" module_rule="1" type="boundary" constant="c_5">
<lhs>
<listOfInsideObjects label="l">

15 <object name="gene"/>
<object name="Protein"/>

</listOfInsideObjects>
</lhs>
<rhs>

20 <listOfInsideObjects label="l">
<object name="gene.Protein"/>

</listOfInsideObjects>
</rhs>

</rule>
25

... (dissociation rule)

</setOfRules>
</moduleDefinition>

Listing 4.2: Neg module XML.

1 <libraryOfModules name="example module library">

<moduleDefinition name="Const">
<!-- Const module definition from above -->

5 ...
</moduleDefinition>
<moduleDefinition name="Neg"> ... </moduleDefinition>
<moduleDefinition name="Pos"> ... </moduleDefinition>

</libraryOfModules>

Listing 4.3: Module library XML

1 <constant name="c_1" lowerBound="0.001" upperBound="0.1" precision="1"
scale="logarithmic" />

Listing 4.4: Rule constant with additional parameters used by POPTIMIZER.
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1 <PSystem name="NAR">

<alphabetOfObjects>
<object name="geneTf" />

5 <object name="mRNATf" />
<object name="Tf" />
<object name="geneTf.Tf" />

<!-- geneTf.Tf is created by string substitution in complexation
rule of the
Neg module, mcss will not prompt to add it the alphabet

10 if not declared here -->
</alphabetOfObjects>

<compartmentLabels>
<compartmentLabel label="bacteria" />

15 </compartmentLabels>

<membraneStructure>
<compartment name="bacteria" label="bacteria" />

</membraneStructure>
20

<initialMultisets>
<initialMultiset label="bacteria">

<object name="geneTf" multiplicity="1" />
</initialMultiset>

25 </initialMultisets>

<ruleSets>
<ruleSet label="bacteria">

30 <!-- instantiating a Neg module from the library file
module_library.xml -->
<module name="Neg"

objects="geneTf,rnaTf,Tf"
constants="1,0.6022,2,3,0.07,0.01"
labels="bacteria"

35 file="module_library.xml" />

<!-- adding a translocation rule outside of a module -->
<rule name="r_1" constant="c_1" type="translocation" value="1"

vector="0,1">
<!-- [ Tf ]_bacteria =(0,1)=[]_bacteria -> [ ]_bacteria =(0,1)=[

Tf ]_bacteria -->
40 <lhs>

<listOfTranslocatedObjects label="bacteria">
<object name="Tf"/>

</listOfTranslocatedObjects>
</lhs>

45 <rhs>
<listOfTranslocatedObjects label="bacteria">

<object name="Tf"/>
</listOfTranslocatedObjects>

</rhs>
50 </rule>

</ruleSet>
</ruleSets>

</PSystem>

Listing 4.5: Individual P system XML
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Figure 4.6: Schematic of the bacteria P system composed of a Neg module and a translocation rule.

Figure 4.7: Schematic of a bacteria P system from the simulator’s perspective with all modules flattened into one
set of rules.

the point of view of the simulator, with all modules flattened to leave a simple set of rules.

Lattice Population P system XML

Our XML for LPP systems compactly describes the arrangement of individual P systems on a

2D lattice. Listing 4.6 demonstrates the distribution of 10,000 individual P systems in a 100x100

lattice. The lattice is specified using a pair of basis vectors and the substitutive parameter a, with

maximum x, y sizes of 100. An individual P system definition is imported from a separate file

(listing 4.5) and assigned the name NAR. Instantiations of that definition are distributed over

the grid by creating SP systems with X and Y coordinates in the ranges 1 to 100. Ranges allow

the compact instantiation of many P systems over rectangular areas on the lattice. Instances of

other SP systems, modelling cells with different molecular interaction networks, can be added

in the same manner.
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1 <LPPSystemModel name="NARModel">
<lattice name="rectangular" dimension="2" units="microns"

scale="1" xmax="100" ymax="100">
<parameter name="a" value="1" />

5 <basis>
<vector x="a" y="0" />
<vector x="0" y="a" />

</basis>
</lattice>

10 <listOfPSystems>
<PSystem name="NAR" file="NAR.xml"/>

</listOfPSystems>
<SPsystems name="distribution" distribution="fixed">
<SPsystem pSystem="NAR">

15 <Xcoordinate lowerBound="1" upperBound="100" />
<Ycoordinate lowerBound="1" upperBound="100" />

</SPsystem>
</SPsystems>

</LPPSystemModel>

Listing 4.6: Example LPP system model XML file

4.3.3 LPP systems DSLs

The LPP XML formats were well suited to software development with LPP systems, but it

became increasingly clear that without a graphical tool like CellDesigner to specify reactions,

writing models in XML by hand and reading them back was an arduous process with syntax

obscuring information. In response Infobiotics team member Francisco Romero Campero de-

veloped a parser for an LPP system DSL (domain-specific language) that is essentially the XML

formats without the angle-brackets, quotes and some closing tags. The parser is used to read

DSL files directly but it also silently converts them into XML. The following listings demon-

strate this format being used to specify a model of a synthetic pulse propagation circuit3. This

model is built on a library of reusable promoters with DNA sequences.

3www.infobiotics.org/models/pulseGenerator/pulseGenerator.html

www.infobiotics.org/models/pulseGenerator/pulseGenerator.html
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1 # Author: Francisco J. Romero-Campero #
# Date: April 2010 #
# Description: This library collects modules describing the regulation of

well known promoters #

5 libraryOfModules promoterLibrary

PLtetO1({X},{c_1,c_2,c_3,c_4,c_5,c_6},{l}) = # This module represents the
regulation of the P(LtetO-1) promoter #

{
type: promoter # This is a promoter #

10

sequence: TCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCAC # This
sequence was obtained from the MIT registry of parts, part BBa_R0040
#

rules: # These rules describe the regulation of the promoter. #

15 # In the absence of the repressor TetR transcription initiation takes
place at a rate of c_1 PoPs #

r1: [ PLtetO1_X ]_l -c_1-> [ PLtetO1_X + RNAP_X ]_l

# The repressor TetR binds cooperatively to the promoter with an
affinity determined by the forward constants c_2 and c_4 and the
reverse constants c_3 and c_5 #

r2: [ PLtetO1_X + TetR ]_l -c_2-> [ PLtetO1_TetR_X ]_l
20 r3: [ PLtetO1_TetR_X ]_l -c_3-> [ PLtetO1_X + TetR ]_l

r4: [ PLtetO1_TetR_X + TetR ]_l -c_4-> [ PLtetO1_TetR2_X ]_l
r5: [ PLtetO1_TetR2_X ]_l -c_5-> [ PLtetO1_TetR_X + TetR ]_l

# Anhydrotetracycline (ATc), a tetracycline analog, binds the TetR
repressor with an affinity determined by the constant c_6. This
makes the repressor to drop from the promoter #

25 r6: [ PLtetO1_TetR_X + ATc ]_l -c_6-> [ PLtetO1_X + TetR_ATc ]_l
r7: [ PLtetO1_TetR2_X + ATc ]_l -c_6-> [ PLtetO1_TetR_X + TetR_ATc ]_l

}

Listing 4.7: Library of promoter modules used in synthetic biology models.
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1 SPsystem signalCell

alphabet # Molecular species involved in the regulation and expression of
the synthetic gene circuit #

5

PtetO1O2_RBSI_luxR_LVA # The construct regulating the transcription,
translation and degradation of the luxR gene and its corresponding
protein LuxR is represented in the following string-object. It
represents the recombinant DNA fusing the promoter PtetO1O2 with the
RBSI developed by Ron Weiss, with the luxR gene from Vibrio fischeri
and the degradation tag LVA #

PluxR_ToppRibo_gfp_LVA_luxI_LVA # The construct regulating the
transcription, translation and degradation of the gfp and luxI genes
and their corresponding proteins is represented in the following
string-object. It represents the recombinant DNA fusing the promoter
PluxR from Vibrio fischeri with the riboswitch ToppRibo developed by
Topp et al, with the gpf gene and the degradation tag LVA and with
the gene luxI with the degradation tag LVA #

10 # The rest of the molecular species involved in the system #
3OC6
ATc
GFP
LuxI

15 LuxR
LuxR2
LuxR_3OC6

Listing 4.8: Pulse propagation SP system DSL alphabet.

1 compartments
DH5alpha # E. coli DH5alpha is used as the chassis. This cell consists

of a single compartment. #
endCompartments

Listing 4.9: Individual SP system with a single top-level compartment (single cell).

1 initialMultisets
initialMultiset DH5alpha # Initial conditions stating the initial

number of molecules in the compartment representing the bacterium #

# The only objects initially present in the cell compartment are the
ones representing the three different constructs regulating the
genes luxR, cI and gfp #

5 PtetO1O2_RBSI_luxR_LVA 1
PluxR_ToppRibo_gfp_LVA_luxI_LVA 1
theop 300
3OC6 300

10 endInitialMultiset
endInitialMultisets

Listing 4.10: Initial multiset of objects in the DH5alpha compartment.

1 # The following rules represent the dimerisation of LuxR in the
presence of 3OC6 #

r1: [ LuxR + 3OC6 ]_DH5alpha -c1-> [ LuxR_3OC6 ]_DH5alpha c1 = 1
r2: [ LuxR_3OC6 + LuxR_3OC6 ]_DH5alpha -c2-> [ LuxR2 ]_DH5alpha c2 = 1

Listing 4.11: Boundary rules modelling complexation of quorum sensing effectors.
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1 #PtetO1O2 RBSI luxR LVA#

PtetO1O2({RBSI_luxR_LVA},{5,1,0.1,1,0.1,1},{DH5alpha}) from
promoter_library_June.plb

RBSI({luxR_LVA},{2.98,0.14,1},{DH5alpha}) from RBS_library.plb
5 luxR({LVA},{2.74},{DH5alpha}) from gene_library.plb

LVA({LuxR},{0.14},{DH5alpha}) from degradation_library.plb
LVA({LuxR2},{0.14},{DH5alpha}) from degradation_library.plb

Listing 4.12: Promoter module instantiation in DH5alpha cell rule set.

1 # The following four rules represent the diffusion of the signal 3OC6 #
r1: [ 3OC6 ]_DH5alpha =(1, 0)=[ ] -c1-> [ ]_DH5alpha =(1, 0)=[

3OC6 ] c1 = 0.1
r2: [ 3OC6 ]_DH5alpha =(-1,0)=[ ] -c2-> [ ]_DH5alpha =(-1,0)=[

3OC6 ] c2 = 0.1
r3: [ 3OC6 ]_DH5alpha =(0, 1)=[ ] -c3-> [ ]_DH5alpha =(0, 1)=[

3OC6 ] c3 = 0.1
5 r4: [ 3OC6 ]_DH5alpha =(0,-1)=[ ] -c4-> [ ]_DH5alpha =(0,-1)=[

3OC6 ] c4 = 0.1

# Alternatively, sending a molecule outside the top-compartment
uses the lattice neighbours to determine which directions to
send it #

#r5: [ 3OC6 ]_DH5alpha -c5-> 3OC6 [ ]_DH5alpha c5 =
0.1#

10 endRuleSet

Listing 4.13: Transport rules relocating a quorum sensing signal.

4.4 Reusability of LPP systems

This LPP formalism enables three types of modelling component reuse:

– Inter-model reuse: Modules (in libraries), SP systems and lattices (encoding neighbour-

hood relationships between SP systems in 2D space) reside in different files which can be

referred to by multiple LPP system models.

– Intra-model reuse: multiple copies of different SP system can be placed within each LPP

system, facilitating the building of models of homogeneous or heterogeneous bacterial

colonies or tissues.

– Intra-submodel reuse: parameterisable modules of rules can be instantiated multiple times

within each compartment of an SP system, using the same or different parameters.

Modules of rules are a means of grouping sets of reactions that repeatedly occur together within

a model, and by moving modules into libraries they can be shared between set of models. We

use modules as a means of constraining model structure optimisation to biological plausible

reaction interaction networks and maintaining a consistent level of detail across models.

Libraries of modules will typically share a level of abstraction at which cellular processes are

modelled. For example gene translation can be modelled stochastically with or without the
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1 # Author: Francisco J. Romero-Campero #
# Date: April 2010 #
# Description: This is the specification of a 2D finite point square lattice

#

5 lattice square

dimension 2 # This is a 2D lattice #
xmin 0
xmax 10

10 ymin 0
ymax 30
# The size of the lattice 11x31 = 341 SP systems #

parameters # List of parameters used in the lattice definition #
15 parameter a value = 1 # A single parameter is used #

endParameters

basis # The basis vectors determine the points in the lattice #
(a,0)

20 (0,a)
endBasis

vertices # The vertices vectors determine the shape of each SP-system
skin membrane #

(a/2,a/2)
25 (-a/2,a/2)

(-a/2,-a/2)
(a/2,-a/2)

endVertices

30 neighbours # The neighbour vectors determine the neighbourhood in the
lattice #

(1,0)
(-1,0)
(0,1)
(0,-1)

35 endNeighbours
endLattice

Listing 4.14: Reusable square lattice definition.
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1 # Author: Francisco J. Romero-Campero #
# Date: April 2010 #
# Description: #
# This model represents a synthetic bacterial colony constituted by two

different bacterial strains. The colony produces a wave of GFP
expression as a response to the production of signal 3OC6 by one of the
bacterial strains #

5

LPPsystem propagationModel

SPsystems # representing the different synthetic bacterial strains in the
colony #

SPsystem signalCell from signalCell.sps # modelling the bacterial
strain that produces the signal 3OC6 constitutively #

10 SPsystem relayingCell from relayingCell.sps # modelling the bacterial
strain that produces a pulse of GFP expression as a response to the
signal 3OC6 #

SPsystem boundaryCell from boundaryCell.sps # An empty cell used to
represent the boundary of the system where the signal 3OC6
dissapears #

endSPsystems

lattice rectangular from square_lattice.lat # A simple rectangular
lattice is used to represent the geometric distribution of cells in
the colony #

15

spatialDistribution # of clones of the different bacterial strains over
the colony is represented by distributing copies of the corresponding
SP-systems over the points of the above introduced lattice. #

positions for boundaryCell # in the upper and lower boundaries of the
system #

parameters
20 parameter i = 0:1:51

parameter j = 0:51:51
endParameters
coordinates
x = i

25 y = j
endCoordinates

endPositions
positions for signalCell # in the center of the system #
parameters

30 parameter i = 25:1:26
parameter j = 25:1:26

endParameters
coordinates
x=i

35 y=j
endCoordinates

endPositions

positions for relayingCell # in the rest of the lattice #
40 parameters

parameter i = 1:1:50
parameter j = 1:1:24

endParameters
coordinates

45 x=i
y=j

endCoordinates
endPositions

endSpatialDistribution
50 endLPPsystem

Listing 4.15: Composed LPP system of colony designed for pulse propagation.
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presence of ribosomes. If the number of ribosomes is important to the functioning of the system

then a module encoding the production of proteins from a gene with incorporate rules such as

mRNA+ ribosome → protein+mRNA+ ribosome, and it would be expected that modules of

positively or negatively regulated gene expression would also include these rules so that compe-

tition for ribosomes is relevant to translation throughout the model. This can be easily achieved

in our framework by factoring out translation from transcription (as in table 4.1) and having

all gene expression modules instantiate the translation model with the necessary parameters. If

ribosomes were not considered a limiting factor but tRNAs were then a more detailed transcrip-

tion module would be required. The principles of defining the generic case and then instantiating

the specific case appropriately remain.

P systems modules can be made more or less abstract by changing the number of components

exposed as parameters (species identities and stochastic rate constants). Motifs of biological

networks, corresponding to the topology of the underlying reaction network modelled at a par-

ticular level of detail, can be captured by fully abstract modules where all components are pa-

rameters. In this usage the names of parameters should indicate the role that their values will

play in the module, such as gene, or transcription_factor.

Well-characterised synthetic biological parts and devices can be captured by fully concrete mod-

ules (i.e. without parameters because the identity of every species and the stochastic rate con-

stants of each reaction are validated. Our implementation also allows for modules representing

bioparts to be annotated with the DNA sequences encoding the genetic components (e.g. the

promoter module in listing 4.7), and for those modules to be grouped and ordered sequentially

in higher-order modules representing operons. A type is associated with the sequence and the

order of these types is validated by a grammar similar to that of GENOCAD [234]. Valid order-

ings of modules with DNA sequences are outputted in a FASTA format by the LPP DSL parser,

ready for the next stage in the biomatter compilation pipeline.

Stochastic simulation of LPP models will produce huge datasets containing many simulation

runs of models with many compartments and many species over many timepoints. Purpose-

built tools for extracting slices of this data, performing regimented statistical analysis, plotting

and visualising the result are prerequisites for their successful utilisation. To this end the next

chapter introduces our software suite for in silico experimentation with LPP system models: the

Infobiotics Workbench.



Chapter 5

The Infobiotics Workbench

Chapter abstract
In this chapter we integrate in “one-pot” the in silico experiments components of the CAD pipeline for systems
and synthetic biology to deliver the Infobiotics Workbench. We conduct a guided tour of it’s experimental and
analytical capabilities, illustrated by its graphical user interface: the Infobiotics Dashboard. The development of the
Infobiotics Dashboard is one of the major software contributions of this thesis, the design and implementation of
which are presented in chapter 8.

5.1 Getting started

The Infobiotics Workbench is an integrated software suite of in silico experiments for LPP

models in Systems and Synthetic Biology [235]. Models are simulated either using stochastic

simulation or deterministic numerical integration using MCSS, and visualised in time and space

with the Infobiotics Dashboard. Model structure and parameters can be optimised with evolu-

tionary algorithms using POPTIMIZER, and properties of a model’s temporospatial behaviour

calculated using probabilistic or simulative model checking with PMODELCHECKER.

The Infobiotics Workbench can be started from the installed Infobiotics Workbench application

shortcut or from the shell with the command aliases infobiotics-workbench or ibw. In-

voking the program without arguments opens the main window (figure 5.1) which houses the

experiment parameterisation and results interfaces.

Figure 5.1: Infobiotics Dashboard main window showing the available experiments.

Editing model files

Figure 5.2 shows how the main Infobiotics Dashboard window uses an adjustable tabbed in-

terface to display multiple views on to files, in this case text editors, side-by-side. Textual

85
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Figure 5.2: The Infobiotics Dashboard with multiple text editors displaying LPP system DSL files for a pulse
generating synthetic biology model.

LPP DSL specifications of Infobiotics models can be edited with the simple editor provided the

Dashboard or an external editor of the users choosing. Presently there is no widget-based (e.g.

CoPaSi [236, 237]) or diagramming interface (e.g. CellDesigner [230]) with which to construct

LPP DSL models. This deficiency is addressed in section 9.3.

Performing experiments

The Infobiotics Workbench implements the Polyvalent-Program Pattern [238]: providing sev-

eral ways to interact with the application logic including a command line interface (CLI), a

graphical user interface (GUI) and a scripting interface1. It’s multiple interfaces allow for non-

interactive use via shell scripting (CLI) or interactive usage through GUIs designed to assist

users in making appropriate parameter choices. In interactive mode the experiments can be

accessed through the integrated Infobiotics Workbench interface or with individual experiment

GUIs outside the Workbench. The GUI components are essentially wrappers over fluent appli-

cation programming interfaces (APIs) to the various classes implementing experiment setup and

results extraction, facilitating automation of experiments and analysis with Python scripts.

Infobiotics experiments are parameterised with XML parameter files (file extension: .params)

an example of which is shown in figure 5.3. GUIs for parameterising and performing simula-

1Chapter 11 of Applying Unix Interface-Design Patterns: http://homepage.cs.uri.edu/~thenry/
resources/unix_art/ch11s07.html

http://homepage.cs.uri.edu/~thenry/resources/unix_art/ch11s07.html
http://homepage.cs.uri.edu/~thenry/resources/unix_art/ch11s07.html
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Figure 5.3: Example simulation parameters file.

tion, model checking and optimisation experiments without editing XML are shown in sections

5.2,5.3,5.4 respectively. To perform an experiment on the command line the name of the exe-

cutable must be followed by the name of a parameters file. This may be followed by a series of

parameter_name=value arguments overriding the values in the parameters file, for exam-

ple:

$ mcss simulation.params max_time=60 log_interval=0.1 runs=100

Computationally expensive stochastic simulations can be performed on headless servers using

the command line interface (CLI) prior to retrieving and analysing the results in the Dashboard.

When compiled from source with the --mpi flag, MCSS can load balance simulation runs over

HPC clusters to speed up models requiring many runs for statistical significance. Statically-

compiled binaries are available for use on Linux servers that do not have the required libraries

installed or where the user does not have permissions for installing libraries.

Running Infobiotics Workbench from the command line with any of the subcommands listed

in figure 5.4, opens the individual GUIs for any of the experiment parameterisation or results

interfaces. For instance:

$ ibw mcss

opens the dialog shown in figure 5.5 (a), while

$ ibw mcss-results simulation.h5

opens the dialog in figure 5.5 (b).
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Figure 5.4: Infobiotics Dashboard command line interface. Access to individual Infobiotics Dashboard GUIs is
achieved through arguments to the main executable.

(a) Standalone simulation parameters (b) Standalone simulation results

Figure 5.5: Standalone interfaces for Infobiotics Workbench components

Once the parameters of an Infobiotics experiment have been set up, clicking Perform will seri-

alize those to a file and call the experimental executable with the file. Experiments output files to

a working directory which can be set by saving the parameter file in another place. Experiment

progress is interpreted and reported with an estimate of the elapsed time and time to completion.

The general aesthetic can be seen in figure 5.6, which shows the input parameters of a simulation

experiment and the progress of a running simulation, conducted within the Workbench.
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Figure 5.6: The Infobiotics Dashboard with multiple experiment parameterisation interface tabs open. The current
tab shows the simulation experiment interface with the progress of a running simulation experiment displayed in the
foreground dialog. Cancelling a simulation yields a truncated but usable dataset.

Persisting parameters

Parameter sets for all Infobiotics experiments can be saved to disk and loaded at a later date en-

abling experiments to be shared between users and reproduced. Attempting to load parameters

without previously saving prompts the user to save. To ensure that experiments remain repro-

ducible as the software evolves, older versions of the experiment executables can be specified

in the preferences dialogs (Tools > Preferences menu) of each experiment or the main Work-

bench window. The GUI automatically remembers the last used value for each parameter (and

selected model components in the simulation results interface) between sessions, a feature that

is especially convenient when fine tuning a model file, rerunning the simulation and inspecting

the changed results file.

We now proceed to demonstrate the capabilities of the each Infobiotics experiment individually,

using the respective Dashboard parameterisation GUI as a guide to the essential inputs and

supported options, and the respective Dashboard results interfaces to understand the nature of

the experimental results. Figure 5.7 summarises the overall flow of information through the

components of the Infobiotics Workbench.
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Figure 5.7: Flow of information through the components of the Infobiotics Workbench. Data is passed between
components as files. Parameter files (.params), referencing model files (.sbml, .lpp or .xml), are produced
by the Infobiotics Dashboard and supplied to the experiment executables for simulation (MCSS), model checking
(PMODELCHECKER) and optimisation (POPTIMIZER) . Executables communicate progress to stdout which is
read and interpreted by the Dashboard to report the percentage completed and estimate time remaining. Files pro-
duced by the experiments (.h5 simulation data, .psm model checking property probabilities) are presented by the
Dashboard for analysis, and can be exported as tabulated data, images and video files.
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5.2 Simulation with MCSS

Simulation recreates the dynamics of a system as described by a model. Quantitative simulations

enables measurement of model features changing in time which can be compared with obser-

vations of the real system for validation and predictive purposes. The Infobiotics Workbench

simulator, MCSS developed by Dr. Jamie Twycross, offers a choice of two types of quantita-

tive simulation: deterministic numerical approximation with standard solvers, and execution of

the model with stochastic simulation algorithms (section 2.2). In addition to providing a base-

line implementation of the canonical Gillespie Direct Method, MCSS implements an optimised

multi-compartmental SSA with queue [239] that takes advantage of the compartmentalised na-

ture of LPP system models by storing the next reaction to fire for each compartment in the heap

and only recalculating the propensities of the reactions in the compartments where a reaction

occurs, the both compartments involved in a species translocation. This greatly improves per-

formance, decreasing the simulation time of models with tens of thousands of compartments

and hundreds of reactions and species per compartment (please see 3.6.2 for a more detailed

explanation). Deterministic simulations are performed using algorithms provided by the GNU

Scientific Library (GSL) [240], including explicit 4th order Runge-Kutta and implicit ODE

solvers.

Figure 5.8 shows the possible parameters for a simulation experiment (parameter names as re-

ceived by the experiments executables are lowercase and underscore separated but for aesthetic

reasons the Dashboard displays them as space separated in sentence case). Of those that are not

self-explanatory:

duplicate_initial_amounts duplicates the initial species amounts from the first MCSS-

SBML template used by a compartment when checked (see 4.3.1; visible only when

model_file extension is .sbml)

logging_type species whether to log species quantities (levels) or reactions in the order

they are applied (stochastic simulation only).

log_steady_state terminates simulation early when a steady-state has been reached, fill-

ing remaining datapoints with the steady-state values.

neighbourhood specifies whether to duplicate translocation rules sending molecules out of

top-level compartments for just the 4 horizontal and vertical neighbours (Moore neigh-

bour) or to include the 4 diagonals also (von Neumann neighbourhood).
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(a)

(b)

(c) (d)

Figure 5.8: Simulation parameters: stochastic input (a), deterministic input (b), output (c) and spatial (d).
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periodic_x_dimension species whether the transport rules from on the boundaries should

wrap around on the X dimension.

direction_of_cell_division MCSS has in the past supported cell division along one

axis only (a restriction of the logging data structures). This feature is currently not

supported by the exposed simulation algorithms and therefore is not used. Similarly

keep_dividing_cells and volume_growth_type are also ignored.

During simulation MCSS performs buffered writes of species levels to the specified data_file

in the Hierarchical Data Format (HDF5) (extension .H5) [241], transparently compressed (us-

ing the LZO real-time compression library [242]) to the level set in the simulation parameters

(highest compression by default) for faster write times. HDF5 is a flexible file format that is

well-tested in scientific environments (e.g. CERN) and purposely designed to efficiently man-

age very large sets of heterogeneous data, organised hierarchically and annotated with metadata.

The resultant simulation data file contains a datapoint for every species in every compartment

at each logging interval of every run (except those species whose names are prefixed with

“_degraded”, if log_degraded is set to false which is the default). Often only a few species

will be of interest, such as those that are observable in the real system or others that implement a

biological mechanism that cannot be observed directly. Similarly, depending on the model, only

some cells may be of interest (e.g. those at the interface of two populations or those far from

the interface), timepoints observable in the laboratory may have a wider interval than can be

logged in the simulation, or runs are to be examined independently instead of as an ensemble.

In each of these cases, and due to memory constraints, it is necessary to provide a means of

selecting only those datapoints that are important and to extract them from the simulated data

file on demand.

Simulation results

When a model is simulated via the GUI, the output data file of a completed simulation is auto-

loaded into the simulation results interface under a new tab, as shown in figure 5.9. The purpose

of this interface is to enable the user to select a subset of the datapoints logged during a simula-

tion, which can then be visualised using the provided timeseries, histogram or surface plotting

functions (explained in detail below), or exported in various data formats for manipulation by

third party software.

The path to the opened simulation data file is displayed in a read-only line edit widget at the top

of the interface, allowing the user to copy the file path to the clipboard. An alternative simulation
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Figure 5.9: Main stochastic simulation results interface.
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file can be loaded using the Browse... button to its right, which creates a native open file dialog

for .H5 files.

Simulation datapoints selection

On loading a simulation the interface is populated with the available simulation data, from which

the user can select some or all of the runs, species, compartments, and logged timepoints.

The lists of run, species and compartment entries are each connected to an All checkbox and a

label showing the number of selected entries and the total number of entries. When checking

All the previously selection is remembered and can be restored by unchecking, helpful when

making complex selections.

Multiple runs, species and compartments can be selected by the usual methods of the operating

system, i.e. clicking and dragging up or down the list. Under Linux, Ctrl-click selects additional

individual entries and Shift-click selects the range starting from the previously selected entry

to the clicked entry. Deselection works similarly. Selection can be inverted by right-clicking

(Linux/Windows, Cmd-click on Mac) the list and selecting that option. An unbiased subset of

runs can be made by changing the value of the random runs spinner.

Sorting and filtering species and compartment lists The list of species names can be sorted

in either ascending or descending alphabetical order, and filtered by typing a partial name into

the line edit below the list. The list of compartments can similarly be sorted or filtered by name,

and compartments can additionally be sorted by their X and Y positions on the lattice. Filtering

and the All checkbox work in conjunction so that selecting all entries in the list while it is filtered

will only select the visible entries.
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Sampling timepoints selectively The number of timepoints to use can be reduced by chang-

ing the values of the from, to and every spinboxes. The values of from and to are constrained

by their natural relationship so that from may not be larger than to or to smaller than from. Ev-

ery ranges from 1 to the total number of timepoints between from to to. The logging interval

(log_interval parameter) of the simulation is shown as a multiple of every.

Setting and changing units

The simulation data file does not store the units of the model components at present; units are

absent from the LPP DSLs and optional in SBML. Comboboxes for selecting the data units of

model components as they were simulated, and the display units in which simulation results

are to be handled and presented in plots, are provided for timepoints, species quantities and

compartment volumes.

All stochastic rate constants in the model should have the same units, e.g. molecules ·seconds−1

(it is the modellers responsibility to ensure that this is the case). The data units of the timepoints

should be in the same time units as the rate constants; both are set by changing the value in the

combo box immediately following the logging interval value and the default is seconds. The

display units of time can be set to pico-, nano-, micro-, milliseconds, seconds, minutes, hours,

and days.

The assumed data units of species amounts are molecules, but this may be changed to any SI

prefix of moles such as nanomoles. Species amounts may be interpreted as either molecules,
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moles or concentrations, the choice determines which display units are available. If molecules

of species are to be interpreted as concentrations and displayed in nanomolar (nM) for instance,

then the volume of each compartment must be known in order to perform the conversion. Vol-

umes are also missing from the LPP DSLs, so to handle this case a universal compartment

volume may be set in units of the users choosing. The volume spinner is hidden for data sets

with volumes.

From version 1.0.2 compartment volume defaults to 0.01 picolitres, an estimate of the volume

of a bacterial cell volume [243]. This is explained in the widget’s tooltip, which also suggests 1

picolitre is a reasonable estimation of plant cell volume [244].

Handling growth and division
MCSS was capable of simulating cell growth and division along one axis, where the compart-
ments new volume is calculated as a function of time given in the name attribute of its element
in MCSS-SBML, but this capability has been withdrawn. The simulation results part of the
Infobiotics Dashboard retains the capacity to work with dividing compartments and changing
compartment volumes. If a volumes dataset is found to be present in the simulation data file
then species concentrations are calculated using the volume of the compartment at each time-
point and the number of the molecules. Timeseries of changing compartment volumes can be
plotted by selecting an additional Volumes item which appears in the species list. If species are
also selected then volumes are plotted on a secondary axis of the timeseries plot, for example:
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At some point in the future when simulation of cell growth and division is reinstated in MCSS

the Dashboard is ready to utilise this additional information, provided the data structures do not
change.
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Additional options

Lastly, the user can choose whether or not to average the amounts of each species in each

compartment over the set of selected runs (default for stochastic simulations, hidden along with

the list of runs for deterministic simulations). Averaging over many runs can approximate the

average behaviour of a stochastic system. The greater the number of runs used to calculate the

average the more likely it is the converge on the solution of the equivalent deterministic model,

providing stochasticity does not lead to a wide variety of different outcomes. The variability of

species amounts across runs is summarised by the standard deviation and a derived estimated

confidence interval statistics which in timeseries plots are overlaid on timeseries of the mean as

shown in figure 5.13.

Estimated memory usage

Before proceeding to export or plot the selected data it is useful to have an estimate of the to-

tal amount of data that has been selected, as this will determine how quickly the action can be

performed and whether the results will be comprehensible. Extracting more data than the avail-

able memory of the computer will cause virtual memory requiring disk access to be invoked and

leave no memory free for other programs, slowing the computer down considerably. Attempting

to plot hundreds of timeseries will take some time to render and the resulting jumble of graphs

will likely be unusable.

Rather than place an arbitrary limit on how many datapoints, timeseries or how many megabytes

the user can extract and plot, the Dashboard estimates and displays the number of timeseries

and surfaces, and the approximate memory requirements of each action, allowing the user to

decide what is too much. Averaging over runs reduces the number of timeseries to handle from

runs × species × compartments × timepoints to 3 × species × compartments × timepoints

as the mean, standard deviation and estimate confidence interval for each timepoint is calculated

over the runs.

Exporting data

The selected and rescaled datapoints can be exported from the Infobiotics Dashboard by clicking

the Export data as... button to open a save file dialog limited to files with the extensions .csv
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Figure 5.10: CSV options

(comma-separated value), .xls (Microsoft Excel) and .npz (NumPy). All formats contain the

same information: timeseries of the species amounts (and compartment volumes if available) at

the selected datapoints, converted into the chosen units.

Columns of the tabular formats (CSV and XLS) are ordered lexicographically, first by run (if not

averaging), then compartment and then species, with time always as the first column. This per-

mits calculated traversal of columns by software reading the files. If a volumes dataset is avail-

able and/or species amounts are being displayed as concentrations either a <filename>_volumes.csv

file is also saved or a volumes sheet added to the Excel file. Columns of the volumes data are

also ordered lexicographically, first by run (if not averaging) and then compartment, with time

as the first column. The headers of the columns are identical for both formats, except CSV

column headers are escaped with double quotes in line with the established conventions2.

Saving to CSV format triggers the modal dialog shown in figure 5.10 to pop up, allowing the

user to set the delimiter and number of decimal places for floating point numbers.

Saving to NPZ format enables users to work with extracted timeseries in Python. .npz files are

uncompressed zip files containing the same data CSV and XLS exports but stored as NumPy

arrays. These arrays retain their multi-dimensionality, so in order to enable users to access them

correctly an array containing the names of the axes is also written to the file, as are arrays of the

data and model file names, timepoints, runs/species/compartment names and their indices along

the respective axes. The arrays are named accordingly and can be extracted from the loaded file

like a regular Python dictionary. The array names can be listed using the keys() method of

the NumPy file object.

Listing 5.1 shows an interactive Python shell session where a .npz file is loaded and the various

arrays and metadata contained within are inspected. Finally, the quantities of the species FP2 in

every 16th compartment (of 1600) at all timepoints of run 1 are extracted and the shape of the

resulting array shown.

2Y. Shafranovich. Common Format and MIME Type for Comma-Separated Values (CSV) Files. Network Work-
ing Group http://tools.ietf.org/html/rfc4180standard
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1 >>> import numpy as np
>>> npz_file = np.load('extracted_timeseries.npz')
>>> sorted(npz_file.keys())
['amounts', 'amounts_axes', 'compartment_indices',

'compartment_labels_and_positions', 'data_filename', 'model_filename',
'run_indices', 'run_numbers', 'species_indices', 'species_names',
'timepoints']

5 >>> str(npz_file['data_filename'])
'patternFormation.h5'
>>> str(npz_file['model_filename'])
'patternFormation.lpp'
>>> npz_file['amounts'].shape

10 (5, 2, 1600, 121)
>>> tuple(npz_file['amounts_axes'])
('runs', 'species', 'compartment', 'timepoint')
>>> len(npz_file['timepoints'])
121

15 >>> list(npz_file['species_names'])
['FP1', 'FP2']
>>> list(npz_file['species_indices'])
[2, 4]
>>> npz_file['compartment_labels_and_positions'].shape

20 (1600,)
>>> npz_file['compartment_labels_and_positions']
array(['patternFormationCellbact at (1,1)',

'patternFormationCellbact at (1,2)',
'patternFormationCellbact at (1,3)', ...,

25 'patternFormationCellbact at (40,38)',
'patternFormationCellbact at (40,39)',
'patternFormationCellbact at (40,40)'],

dtype='|S35')
>>> npz_file['compartment_indices']

30 array([ 0, 1, 2, ..., 1597, 1598, 1599], dtype=uint64)
>>> npz_file['run_numbers']
array([1, 2, 3, 4, 5])
>>> npz_file['run_indices']
array([0, 1, 2, 3, 4])

35 >>>
>>> npz_file['amounts'][0][1][::16].shape
(100, 121)

Listing 5.1: Interactive Python session working with data exported in NPZ format.
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Figure 5.11: Histogram plotting interface.

Plotting histograms

Distributions of the average quantity of each selected species at a single timepoint can be plotted

as histograms for either:

1. each selected compartment over all selected runs, or

2. each selected run over all selected compartments.

Whether the distributions over runs or compartments is plotted or not is determined by the value

of the data combo box below the plot, shown in figure 5.11. Species can also be summed to,

for instance, group all complexes containing a particular protein if only those complex species

are selected. The number of bins from 2 to 100 (default 10) can be set using the bins slider.

The appearance of the histogram can be changed to any of the styles available in Matplotlib

[245] available styles: bar, barstacked, step or stepfilled, where bar means groups of bars

per bin, one for each species; barstacked is a single bar per bin, stacked on top of each other;

stepfilled is the standard adjacent rectangles of a histogram and step is the line joining the top

edge of each rectangle. Finally, the timepoint currently being plotted can be changed using the

timepoint index slider. As with timeseries plots, the histogram plot is “live”, so that as changes

to the options are effected immediately. Similarly images of the histograms can be saved with

the enhanced sizing functionality described in section 5.2.
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Plotting timeseries

Timeseries are plotted from the selected data, either combined in one plot or stacked/tiled

with individual amounts axes for better comparison of species whose timeseries are orders of

magnitude different in scale. Figure 5.12 shows the timeseries plotting interface for each style.

When working on a stacked or tiled plot, Refine timeseries selection will open a dialog in

which the order and visibility of subplots can be adjusted (figure 5.12c).

There are some restrictions on the plot elements items which can be customised using the inter-

face. For instance, line and marker colours are determined automatically on per species basis,

modulo a small number to discourage overcrowding (colours are eventually reused for other

species). Multiple timeseries of the same species in different compartments can be distinguished

by the shape of the markers, also chosen on the users behalf. Taken together these restrictions

place a natural limit on the number of timeseries that can reasonably be plotted before meaning

is lost. This is intentional as we believe it maintains clarity and consistency between plots.

The right-hand side of the interface groups the settable options. Axes values are initially ren-

dered in the display units of the datapoint selection interface, but these can be readjusted and

the data will scale accordingly. Timeseries of species quantities averaged over multiple runs are

augmented with markers at a default interval of 10 timepoints. The interval between markers

can be adjusted without affecting the resolution of the line, useful to declutter plots of many

timepoints. Markers can be hidden by setting an interval larger than the number of selected

timepoints. A (draggable) figure legend can be overlaid, instead of and in addition to the indi-

vidual plot legends. The legend’s font size can be also adjusted, as legends with too many entries

can become unwieldy. The text of each legend entry is computed from the set of species/com-

partment names and run numbers of the timeseries so that repetitive information is factored out

of legend text and into the default title text as demonstrated in figure 5.12 (a).

When averaging over multiple runs, each line is the sample mean and each marker is overlaid

with error bars of either the standard deviation of the sample (SD) or the confidence interval

(CI) describing the accuracy of the standard deviation. The mean timeseries from 100 runs of

a negative autoregulation motif model shown in figure 5.13 demonstrates that even when the

SD error bars are large (a), if the CI error bars are small (b) then we can be confident that the

SD error bars (for a particular marker) are close to the actual standard deviation, because the

sample size is sufficiently large. Figure 5.13 (c) shows 3 individual runs of the same model with

a high degree of variation after the peak. The degree of confidence with which the confidence

interval is calculated can be changed from the default of 0.95 to any real value in the range
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(a) Stacked.

(b) Combined. (c) Tiled (shown with Subplot dialog).

Figure 5.12: Timeseries plot styles.
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0.5 to 0.999, and the errors will be updated accordingly. The function to calculate CI is: CI =
SD×InverseStudentT (n−1,1−(1−d)/2)√

n−1
where n is the sample size and d is the degree of confidence.

The figure toolbar provided by Matplotlib enables zooming, panning, Subplot configuration: ad-

justment of the spacing between multiple plots and the figure boundary (dialog shown in figure

5.12c) and exporting plot image, as it appears for publication in bitmap and vector formats. Be-

cause it may be necessary to export larger or smaller images than displayed, we augmented this

functionality by adding a secondary save button (far right) which in addition to setting height

and width in inches with a certain DPI, allows pixel width and height to be configured reflexively

with inches measurements via the DPI.

With the timeseries plotting functionality, users can make exact (combined) or relative (stacked/tiled)

quantitative comparisons of the temporal behaviour of multiple molecular species in multiple

compartments, between several, or averaged over many, simulation runs. These plots can be

exported as images for further comparison with experimental observations.

Visualization of species quantities over the model lattice

One observable that timeseries plots cannot effectively visualize is how overall species quanti-

ties change over time in space, for instance when the population model is 100×100 grid of cells

models. The Infobiotics Dashboard enables users to visualise how species quantities change

in time and 2D space by using 3D heat-mapped meshes or surface (where the vertices of the

mesh correspond to model lattice points and the height of the peaks to the species quantities), to

capture the distribution of each selected species over the model at a single timepoint. Multiple

surfaces, one per species, each corresponding to particular species, can be visualized simulta-

neously side-by-side for qualitative comparison. The overlaid scalar bars map heat as colour to

quantity.

Two points should be noted about the data being visualised as a surface. Firstly, if multiple

simulation runs are selected then the quantities visualised will be the mean over those runs.

Secondly, when some of the selected compartments share a lattice point (i.e. some are enclosed

within another or are subcompartments of the same deselected compartment) then the species

quantities in those compartment are summed.3

Figure 5.14 shows an example in which two surface plots of 1600 compartments (40x40) are

rendered. Time is progressed manually by dragging the timepoint index slider or automatically

using the Play/Pause button. Multiple surfaces are synchronised to the same timepoint. The

3Averages could also be appropriate but are not implemented in version 1.0.
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Figure 5.14: Paired surface plots showing expression patterns of fluorescent proteins.

perspective of an individual surface can be spun, tilted, zoomed and panned using the mouse

and keyboard; the Mayavi [246] toolbar allows users to reset the perspective to isometric (the

default), side-on or top-down, and their reverse. The other buttons enable full screen viewing,

saving of single images, configuration of titles, colour maps, etc.

If the Dashboard detects that ffmpeg is installed it enables the Record button which captures a

frame for each time change (forward or backward) while recording and processes these into a

video file when recording is stopped. Frames from two or more surfaces are stitched together

automatically to produce a single movie of both, the results of which are demonstrated in figure

5.15.

Similarly to the Export data function (section 5.2), which saves the underlying multi-dimensional

arrays used to plot timeseries in NumPy NPZ format, the data used to plot each surface at all

timepoints can be saved in NPZ format for further analysis using the Save Data button. The

underlying functions called by the Record and Save Data methods can also be used in user

scripts to obtain the data and create movies without user intervention. We used these meth-

ods together to produce more sophisticated movies. By interpolating values between the saved

surface datapoints and then capturing frames of the much larger animations rendered in an off

screen buffer we created a smoother, overlaid and differentially coloured version of a pattern
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Figure 5.15: A stitched frame from an exported video of a surface plot.

formation model, as shown in figure 5.16 (right) alongside earlier synthetic biology models of

pulse propagation (left) and inversion (centre).

A further semi-quantitative comparison can be made between multiple surfaces using the Com-

pare feature in which some of the currently visualised surfaces may be overlapped (subtracted)

in pairwise fashion (figure 5.17). Subtraction of the top-down heat maps can help to identify

patterns where the amount of one species is negatively correlated with another, at the population

level.

The majority of figures used in this section to illustrate the surface plotting functionality (5.14

onwards), were obtained from various iterations of the pattern formation circuit design in figure

1.4a. This design was implemented in vivo by colleagues in E. coli DH5α cells, producing the

phenotypes shown in figure 5.18 and compared in figure 5.19. These images provide an indi-

cation that the design functions as expected. A publication is in preparation, pending further

controls. In conclusion, surfaces plots provide an intuitive and attractive means of qualitatively

gauging the behaviour of population level models, that may (cautiously) be compared to mi-

croscopy data.

We now look at how properties of LPP models can be verified, using model checking to me-

thodically sample the initial states and examine the subsequent dynamics.

5.3 Model checking with PMODELCHECKER

Properties of stochastic P system models can be expressed as temporal logic formulae and au-

tomatically verified using third party model checking software such as PRISM [34]. PMOD-

ELCHECKER, developed by Dr. Francisco Romero Campero, extends this capability to LPP
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Figure 5.16: Frames from animations of three synthetic biology models. Time is progressing as the frames descend.
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(a) Target pattern produced by model cells equipped with
designed circuit.

(b) High gain image showing both GFP and mCherry pro-
duced alternately by cells with chromosomally integrated
circuit DNA.

Figure 5.19: Comparison of in silico (a) and in vivo (b) functioning of synthetic Turing pattern formation circuit.

system models by acting as wrapper interface between LPP systems and the model checkers

PRISM [35, 247] and MC2 [224, 248, 249].

To perform probabilistic model checking with PRISM, LPP systems are loaded and automat-

ically converted into a Reactive Modules specification [223] that PRISM can accept as input.

Parameters are created for the lower and upper bounds of the number of molecules of each

species in each compartment: the user defined values of which are used to constrain the poten-

tial state space of the PRISM model. PRISM is then called to perform approximate/statistical

model checking using its own discrete event simulator, performing simulations up to a specified

maximum number of runs or confidence threshold. The state space and the generated transitions

matrix can also be used to “Build” the complete Markov chain and then “Verify” whether each

property is satisfied in all states of the model. Verification is generally infeasible for all but very

small models due to the size of the underlying Continuous Time Markov Chain (CTMC), but

can be useful for checking critical components of small reaction networks, such as the synthetic

bioparts.

To perform simulative model checking with MC2, previous simulation results can be reused or a

new simulation with a large number of runs to achieve higher confidence in the model checking

results can be performed. With model checking, properties such as the probability of a species

exceeding a certain threshold after a certain time can be determined to a specified degree of

confidence (corresponding to the number of independent simulation runs for simulative model

checking).
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Figure 5.21: Temporal formulas interface.

The Infobiotics Dashboard provides two parameterisation interfaces to PMODELCHECKER, one

for each of the model checkers it uses, as some of the parameters are specific to one but not the

other. Figure 5.20 contrasts the PRISM and MC2 interfaces showing how the P system model,

Temporal Formulas and Results file parameter widgets are common to both.

Temporal formula parameters

PRISM properties are specified in Continuous Stochastic Logic (CSL) - an extension of Prob-

abilistic Continuous Time Logic (PCTL) for CTMCs. MC2 properties are specified in Proba-

bilistic Linear Time Logic (PLTL), the discrete time steps of which correspond to the logging

interval of the simulation.

Multiple formulae can be loaded from, and must be saved to, a file. The currently selected

formula can be edited or removed, or a new formula added via the respective buttons below the

table widget (5.21). Formulae are edited manually and can be parameterised with variables that

are finite ranges with equal steps, with the dialog shown in figure 5.22.

Valid model parameters can be chosen from a combo box and inserted, while non-negative real-

valued formula parameters can be added or removed and their lower and upper bounds specified,

along with a step that determines the number of values a parameter can take and the interval

between them. Assistance can be obtained via the Help button which opens a new slimline web

browser window on the Property Specification page of the PRISM Manual, as shown in figure

5.23.

PRISM-only parameters

The PRISM model that is produced automatically (by the Dashboard calling PMODELCHECKER

when the P system model parameter changes) can be inspected via the View button to the right

of the PRISM model parameter field (figure 5.24).
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Figure 5.22: Editing a temporal formula.

Figure 5.23: Help with temporal formula syntax for property specification is delegated to the PRISM manual.
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Figure 5.24: Viewing the generated PRISM model

The next step for a PRISM model checking experiment is to choose a task (figure 5.25a) and

name the output files relevant to the particular task (figure 5.25d). In order to build construct

a state-space lower and uppers bounds (non-negative integers) for the number of molecules of

each species in each compartment (the model parameters) must be specified. Model parameters

names are part of the PRISM model computed by PMODELCHECKER, so to clarify their meaning

a description field accompanies each one (figure 5.25b). The degree of confidence to obtain for

approximate model checking, viewed as a percentage but passed to PRISM as a fraction, can be

set to 90%, 95%, 99%, or a custom fraction between 0 and 1 (figure 5.25c).

MC2-only parameters

In contrast to PRISM, which uses the bounds of model parameters to construct a state-space

and perform a discrete event simulation from which to calculate the probabilities of each for-

mula being satisfied, MC2 accepts suitably transformed pre-simulated timeseries from which it

computes probabilities.

The MC2 model checking experiment interface intelligently handles the possible combinations

of PMODELCHECKER parameters (shown in figure 5.26) which concern loading previously sim-

ulated results, previously generated MC2 input or performing new simulations and regenerating

MC2 input, by disabling parameters and changing parameter validation constraints as the usage
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(a) Available tasks for models checked with PRISM.

(b) Parameters derived from the model that constrain the state-space to be checked.

(c) The confidence level to obtain before acceptance, precision to adjust parameters by, and number of samples (execu-
tions) to perform.

(d) Naming of files which will be created by PRISM.

Figure 5.25: PRISM-only PMODELCHECKER parameters.
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Figure 5.26: MC2 input parameters. The number of samples is the number of simulation runs to perform and
analyse.

(a) Simulated MCSS output files must exist, negating parameterisation of a new simulation.

(b) Generated MC2 input files must exist.

Figure 5.27: Reusing previously simulated results or generated MC2 input places additional constraints on these
parameters.

changes. Users must specify an MCSS simulation results file and MC2 input file into which

these results are transformed and tell PMODELCHECKER whether or not these have been pre-

viously simulated and generated respectively (in which case each file must exist: figures 5.27a

and 5.27b).

If not previously simulated, new simulations can be parameterised from an MCSS parameters

file and a subset of these simulation parameters can be further edited (figure 5.28); while the

data_file and runs parameters are delegated to the

mcss_simulation_file and number_of_samples parameters in the main interface.

Figure 5.29 shows a model checking experiment running under Linux, with the current prop-

erty displayed above the percentage completion and an estimate of the time remaining. Under

Windows, due to unavoidable buffering of standard output, it is not possible to catch the output

of the model checkers invoked by PMODELCHECKER, instead a terminal is opened showing this

output as the program is running to provide at least some feedback as to its progress. Unlike sim-

ulation with MCSS, it is also not possible to preserve a truncated set of results if the experiment

is cancelled midway through.
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Figure 5.28: Editing the parameters of a new simulation. New simulations are partially parameterised by the MC2
experiment.

Figure 5.29: A running model checking experiment
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Model checking results

Once a model checking experiment has completed the results interface is loaded from the file

specified by the results_file parameter. The output is the same for either model checking

experiment: for each formula a list of the probability of each property being fulfilled for each

combination of formula parameters, usually time plus several others (e.g. figure 5.30a). The

varying probabilities of each property can be plotted in two ways: a 2D plot of the probabil-

ity that the property is satisfied against all values of one variable (figure 5.30b) or a 3D plot

of probability against all values two variables (figure 5.30c), at a single value of each remain-

ing variable. The constant values of the remaining variables can be set using sliders which

are dynamically added to the results interface above the plot depending on availability and the

currently selected axis variables. In this way both 2D and 3D plots can be used to visualise

queries with greater numbers of variables, enabling the results of N-dimensional queries to be

interrogated in a consistent manner.

5.4 Parameter and model structure optimisation with POPTIMIZER

POPTIMIZER, developed initially by Dr. Hongqing Cao and later Dr. Claudio Lima, is the

model optimisation component of the Infobiotics Workbench. Optimisation is the process of

maximising or minimising certain criteria by adjusting variable components of a model, fitting

simulated behaviour (quantitative measurements sampled at various time intervals) to observed

or desired behaviour in the case of natural or synthetic biological systems respectively. There

are two aspects of P system models that can be readily varied to optimise temporal behaviour:

1. numerical model parameters - the values of the stochastic rate constants associated with

rules can be tuned to fit the given target

2. model structure - the composition of the rulesets governing the possible state transitions

of the compartments can be altered to produce alternative reaction networks that recreate

the target dynamics more precisely

Both seek to minimise the distance between the stochastically simulated quantities of molecular

species and a set of user-provided values of the same species at each target timepoint; a quanti-

tative means of evaluating the fitness of candidate models and discriminating between them in

a automated manner.

POPTIMIZER search the parameter and structure spaces of single compartment stochastic P

systems with custom own implementations of state-of-the-art population-based optimisation

algorithms: Covariance Matrix Adaptation Evolution Strategies (CMA-ES) [250], Estimation

of Distribution Algorithms (EDA), Differential Evolution (DE) [110] and Genetic Algorithms
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(GA) [108]. Optimisation is limited to single compartment models, partly due to the increased

complexity of algorithmically manipulating spatially distributed or hierarchically organised com-

partmental structures (and the distinction made between these by the LPP formalism), but more

pragmatically because repeated stochastic simulation of each individual in a population of (po-

tentially unfeasible) single compartment models (with suboptimal rate constants) is very compu-

tationally expensive. Simulating many copies of those compartments, interacting on a 2D lattice

would multiply the cost and providing suitable or accurate target data would be difficult also.

Thus model optimisation is generally only tractable with smaller models (as with model verifi-

cation). However, submodels can be optimised in isolation and then reintegrated, provided they

can be decoupled: the assumption made by the modularised, engineering approach to synthetic

biology.

Model structure optimisation is an automated means of generating alternative hypotheses about

the network of molecular interactions underlying real biological system for which the actual

structure is unknown, or suggesting suitable networks that recreate a desired dynamics. We

distinguish between known or fixed components of the system that are included in all candidate

models, and unknown or non-fixed components that can vary between models. For the non-

fixed components, instead of generating new P systems rules without constraint, POPTIMIZER

utilises the knowledge captured in a library of P system modules to add or remove biologically

plausible sets of rules representing reactions as one. By recombining and mutating modules

that capture realistic network motifs the space of models is somewhat constrained, significantly

improving the quality and realism of the models produced.

POptimizer uses a nested genetic algorithm [251, 252] to generate a set of candidate models,

initially by random choice and thereafter by mutating the fittest individuals of the previous

generation, and performs several rounds of parameter optimisation on each individual to ensure

that the candidates are given a fair chance of fitting the desired behaviour (as previous rate

constants may be unsuited to the updated reaction network) before using the final fitness to

select the next generation. Parameter optimisation can of course be performed without structure

optimisation if the user is confident in their model’s structure.

Figure 5.31 shows the input parameters of an optimisation experiment. When performing struc-

ture optimisation a library of modules from which the non-fixed part of the model structure

can be constructed must be specified. A set of fixed modules, that will always be part of the

model, may also be specified, enabling the modeller to embed information about known/hy-

pothesised model structure around which optimisation can take place. To facilitate an effective

exploration of the parameter spaces of each rate constant, users can augment (in the module li-

brary XML/.plb input files, see section 4.3.2) the module definition of rate constants with lower

and upper bounds, precisions and linear or logarithmic scales, which POPTIMIZER then uses to
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Figure 5.31: POPTIMIZER input parameters.

constraint the values of parameters and thereby reduce the size, if not the dimensionality, of the

search space.

Because the output of a model can be highly dependent on the input, multiple sets of initial

conditions (the molecule counts of each species) can be specified as independent models, as can

multiple sets of target timeseries, so that the behaviour of the final model produced is robust

over a range of inputs and desired outputs. Figure 5.32 shows how the Infobiotics Dashboard

communicates the required format of target timeseries input files to users with them needing to

consult the documentation, although this is easily accessible through the help menu in figure

5.33 (which opens the relevant page of the Infobiotics website in the system web browser).

Figure 5.34 shows the parameters concerned with fitness evaluation, model structure and param-

eter optimisation. A maximum number of modules per model can be specified to select for more

parsimonious, and generally comprehensible, solutions. Parameter optimisation takes place af-

ter each round of recombination, to help realise the potential of the new structures that might

not be initially apparent. To perform parameter optimisation in isolation only a fixed module

library is required and the number of structural optimisation generations should be set to 1.

The fitness of candidate models is calculated using either random-weighted or equal-weighted

sum functions of the distance from the produced timeseries to the target timeseries for each

species (figure 5.35). In experiments [252] using POPTIMIZER the random-weighted sum fit-

ness function was found to produce a better convergence to designed target models when some



5.4. PARAMETER AND MODEL STRUCTURE OPTIMISATION WITH POPTIMIZER123

Figure 5.32: Target timeseries tooltip.

Figure 5.33: Accessing POPTIMIZER documentation via the Help menu.

Figure 5.34: POPTIMIZER evaluation and optimisation algorithm parameters.
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Figure 5.35: A choice of two fitness functions is offered to discriminate between candidate models.

Figure 5.36: The four parameter optimisation algorithms provided by POPTIMIZER.

of the target output timeseries of the models had quantities orders of magnitude larger than oth-

ers. This is particularly relevant to cellular systems where the number of transcribed messenger

RNAs does not necessarily correlate with the number of proteins translated from them. With

the equally-weighted sum fittest function, the search can be biased towards optimising the time-

series of higher concentrations, when those in lower concentrations could be of equal or greater

importance.

Figure 5.36 shows the four parameter optimisation algorithms available. Sensible defaults are

provided for population size and generations (not applicable for CMA-ES, hidden if selected),

taking into account that the algorithm will be run for each generation of the structure optimisa-

tion GA.

The output of an optimisation experiment is the fittest model produced. For a visual comparison

of the output models suitability and the optimisation algorithms success, timeseries of the target

and the optimised output are plotted for each species, as shown in figure 5.37. A summary of

the experiments inputs and the modules that comprise the optimised model are captured from

POPTIMIZER and displayed alongside the timeseries.
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Figure 5.37: POPTIMIZER results interface.

5.5 Summary

The Infobiotics Workbench is an integrated in silico platform for computer-aided modelling and

design of large-scale biological systems incorporating simulation, formal verification and opti-

misation algorithms. The optimisation components of the Workbench enables designs of syn-

thetic circuits matching a set of desired temporal dynamics (specified as timeseries of molecular

species) to be automatically composed from modules of abstract networks motifs and/or com-

pletely specified bioparts (with corresponding DNA sequences) drawn from libraries of reusable

model components. These circuits are simulated stochastically and tuned against a variety of ini-

tial conditions. The availability of deterministic and stochastic simulation of population models

enables comparisons between macroscopic and mesoscopic interpretations of molecular inter-

action networks. Model checking can be used to increase confidence in simulated observations

by quantifying the probability of reaching definable states for all possible trajectories.

The computational expense of using population-based evolutionary optimisation techniques,

which require multiple runs of stochastic simulation to evaluate each individual at each gener-

ation, places practical limits the size of the systems which can be automatically designed and

optimised; currently to a single cellular compartment. Therefore simulations of candidate cir-

cuits optimised in this context may not accurately reflect their performance when placed in the

context of a population of cells. For instance, when diffusible molecules produced by other

instances of those circuits - or other synthetic devices in the same compartment or other cells
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- in some way regulate the circuits operation, then emergence may begin to exert its effects on

the dynamics of the system at large. To evaluate these effects, users can simply add the module

invocations defining the optimised circuits to existing stochastic P system models of cellular

chassis, then use these to build LPP system models with specific spatial arrangements of cells,

and perform simulations or model checking.

The simulation results capabilities of the Infobiotics Dashboard enables molecular populations

to be animated as a surface over the cellular population on the lattice for a visually rich semi-

quantitative analysis of behaviour in space as well as time. Timeseries of molecular quantities

(as concentrations or number of molecules) in individual or averaged simulation runs can be

plotted for any combination of species, compartments and timepoints, enabling a fine-grained

quantitative comparison of expected and simulated temporal dynamics at multiple locations in

spatial models. Histograms can be used to estimate the distributions of molecular species in

cells or runs at different timepoints, possibly revealing differentiation of cell states as initially

homogeneous populations become heterogeneous through emergence.

Further information, tutorials and examples are available at the Infobiotics website (http:

//www.infobiotics.org/). The community can report bugs or request features at Info-

biotics Dashboard Bitbucket repostory issue tracker (http://bit.ly/qn9pUA).

In the next chapter we move from the design of individual models of synthetic biological devices

to families of related devices exploring biological problem-spaces with a scalable new approach

to the specification and synthesis of combinatorial DNA libraries: the DNALD language.

http://www.infobiotics.org/
http://www.infobiotics.org/
http://www.infobiotics.org/
http://bit.ly/qn9pUA
http://bit.ly/qn9pUA
http://bit.ly/qn9pUA


Chapter 6

DNALD: a language for DNA Library
Design

Chapter abstract
The aim of this chapter is to elucidate the requirement for and specification of the DNALD language that will enable
the formulation of a library of output DNA molecules as a function of combinatorial assemblages of the input and
intermediate sequences DNA sequences. This work is ongoing within the CADMAD project, involving research
groups from 7 European partner institutions, which aims to develop a novel synthesis platform based on DNA reuse.
The research in Chapters 6, 7 and the latter half of Chapter 8 represents one year of work by the author as part of this
three year project.

6.1 Background

Artificial or de novo DNA synthesis is the process of synthesising genes or other gene length se-

quences of nucleotides in vitro without a template strand. Gene synthesis can save time and

money compared to conventional techniques, relieving skilled researchers from the manual

labour of DNA editing with restriction enzymes and PCR. In addition to the planned incor-

poration (or avoidance) of subsequences required for further manipulation (affinity tags, an-

tibiotic selection markers, multiple cloning/restriction sites) [253], synthesis provides access to

sequences that have proven difficult to clone or are not found in nature, allowing rational re-

design of sequences for improved protein expression and promoter binding, as well as novel

uses in other fields such as DNA origami nanotechnology [254].

6.1.1 Artificial DNA synthesis

The primary method is ligation of chemically synthesised oligonucleotides 15-25 bases in length1,

of the kind used as primers for DNA amplification, antisense sequences and probes. DNA syn-

thesis companies such as DNA 2.0 or GENEART use proprietary protocols to assemble single-

stranded oligonucleotides, which are then cloned, complemented and the sequences verified.

1The error rate for oligo synthesis grows linearly with sequence length, with 200 base Ultramers (from IDT:
https://www.idtdna.com/pages/products/dna-rna/ultramer-oligos) being the longest presently available.

127
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Synthesised DNA sequences are delivered in 2−5µg (microgram) quantities which researchers

amplify using PCR to maintain a constant supply. Quality is certified by the full nucleotide se-

quence of the delivery plasmid and insert, which can be compared against downloadable chro-

matogram traces covering both strands.

Synthetic DNA lengths can range from hundreds of base pairs through tens of kilobases, to

just under half a megabase at the upper limit (https://www.dna20.com/index.php?

pageID=17). Beyond these sizes stitching is required [44].

6.1.2 DNA libraries

The ability to synthesise arbitrary sequences of DNA enables the construction of a library of

DNA sequences sampling a biological problem space. The effects of each sequence on the

system understudy can be screened in parallel, reducing the likelihood of small scale, unde-

tectable processing errors that can occur when repeating a protocol on different occasions, and

thereby improving reproducibility and debuggability of the experiment. This approach enable

the systematic investigation of biological problems at a larger scale and less ad hoc basis.

Constructing a DNA library requires a specification of the set of required sequences to syn-

thesise, that is complete, correct and compact. Both the specification and the synthesis should

scale efficiently, enabling libraries of increasing size and complexity to be manufactured. The

scalability of a library, and its specification, can be viewed as amount of overlap between its se-

quences, because each identical shared subsequence (down to a reasonable minimum length) can

be synthesised first and then reused in the construction of the other complete sequences. Where

multiple variant sequences differ at the same point - from a single nucleotide substitution to be-

ing composed of this or that synthetic biopart - the library can be termed combinatorial. Going

deeper, it is possible to consider the series of operations that would be required to transform one

sequence into another, and determining the starting sequence that represents the shortest path to

the remaining variants. Factoring out common subsequences and editing previously synthesised

sequences are both ways of producing, in several steps, DNA libraries in a scalable manner.

The chemical DNA synthesis services offered by GENEART and DNA2.0 manufacture each

sequence sequentially oligo-by-oligo, base-by-base, which does not take advantage of the com-

binatorial nature of DNA libraries. By this method, the production of two almost identical

sequences proceeds in parallel but without cross-talk, and costs scale linearly as a result.

The CADMAD platform (http://www.cadmad.eu/vision) aims to maximise DNA reuse in the

synthesis of combinatorial DNA libraries, by optimising the construction plan around the most

reusable intermediate sequences and, where errors occur, recursive construction of perfect DNA

molecules from imperfect oligonucleotides [22]. The key to CADMAD’s approach to DNA

reuse is the recursive “Y-operation”, shown in figure 6.1. Each Y takes a left and a right input

https://www.dna20.com/index.php?pageID=17
https://www.dna20.com/index.php?pageID=17
http://www.cadmad.eu/vision
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Figure 6.1: A single Y-operation, the basic recursive unit of CADMAD DNA synthesis platform, reproduced from
[21].

DNA molecule and outputs a third, the concatenation of right to left, which can be reused as

an input to another Y-operation. The choice of primers used to extract the starting sequences

enables editing operations to be performed, e.g. a single nucleotide substitution, in a manner

analogous to how we edit text in a word processor (cut, copy, paste, etc.). The robotics platform

that performs these operations can be thought of as the 21st century, DNA-producing equivalent

of Gutenberg’s movable type printing press of the 1450s.

Given the set of required sequences, a construction plan can be algorithmically designed in

terms of the ordering of Y-operations necessary to produce each required sequence, and then

join those to produce all target sequences, maximising the reuse of intermediate sequence frag-

ments between targets. In addition to the scalability advantages of subsequence reuse, there is

a reduction in the error rate as following each Y-operation the outputs are sequenced and deter-

mined to be correct; sharing these improvement between targets is analogous to the manner in

which bug fixes in widely used programming libraries propagate improvements throughout an

entire software stack.
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6.1.3 Programming combinatorial DNA library specifications

Before a construction plan involving Y or any other operations can be determined, the set of

sequences comprising the DNA must first be designed. Assuming a suitable synthesis platform

for combinatorial DNA libraries such as CADMAD exists, the problem then is how best to

solicit requirements from library consumers, and enable the communication of sequences and

intentions from library designer to manufacturer (and the verification of those requirements at

both ends of the pipeline).

DNA sequences, being essentially one long word in an alphabet of four letters, are notoriously

inscrutable and cumbersome to work with as the length and number of sequences grows. For

large, highly combinatorial libraries computer aided design is essential. A large body of algo-

rithms and software exists to handle, annotate, align and compare sets of sequences, but to

the best of our knowledge no software exists that describes libraries of sequences in terms

of the combinatorics of sequence fragments for library synthesis. While it is possible for

programming-literate biologists to use general purpose programming languages (Java, Python,

Perl or R) supplemented with bio-oriented libraries (BioJava, Biopython, BioPerl or Biocon-

ductor) to generate sets of sequences, there is no established method for doing so, resulting in

many, varied, one time (i.e. not reusable) efforts.

We believe that in order to be able to efficiently and correctly design DNA libraries it is neces-

sary to abstract away from raw sequences to a representation that enables reasoning about and

composition of fragments through operations on sets of sequences. A programming language

specifically for defining DNA libraries could provide a lingua franca to the synthetic systems

biology community and avoid error-prone reimplementations of sequence generating scripts.

6.2 The DNALD language

The first stage towards the creation of a DNA library is the formal specification of the DNA

molecules that comprise it. This process must be user friendly, easy to debug and yet it has to

provide the user with enough expressive power to specify non-trivial notions such as complex

combinatorics and certain degrees of freedoms which the manufacturer may have with respect

to producing the requested DNA sequences.

Certain tools for editing and manipulating DNA strings were developed long ago. In recent

years a new system called GENOCAD [234] was developed, offering a GUI based on attribute

grammars, to design biologically plausible DNA molecules based on known building blocks.

High-end closed-source/commercial packages, e.g. Gene Designer 2.02 from DNA 2.0, pro-

vide advanced features for designing cloning sequences and plasmids. These features include

2Gene Designer 2.0 http://www.dna20.com/genedesigner2/

http://www.dna20.com/genedesigner2/
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sophisticated GUI, project management, codon-usage optimizations, restriction site handling,

etc. However, similarly to GENOCAD, they are intrinsically geared towards building high-

level structured entities (e.g. plasmids) rather than multiple, combinatorially dependent DNA

sequences, which are more likely to advance research and development in biotechnology and

nanotechnology. In addition, these tools are limited in their expressive power, without a notion

of degrees of freedom, such as using ambiguous nucleotide codes to specify a set of alterna-

tives for a particular base to dramatically simplify the specification of multiple closely related

constructs.

We have recognised and addressed this need by creating a DNA programming language (DNALD

- DNA Library Design) that will permit the seamless specification of large combinatorial li-

braries. DNALD will have a major impact on the way scientists, and their programs, specify

DNA libraries and we plan to expand its influence through the creation of a visual programming

counterpart, providing an illustrative means of reasoning about and communicating DNA library

combinatorics, built on a proven textual backend.

To bootstrap the language design process and ensure that is relevant to a broad range of molec-

ular, systems and synthetic biological applications, we have worked in collaboration with Euro-

pean partners to gather application-specific requirements and preliminary DNA library designs.

Our current set of use cases includes: protein crystallization, post-transcriptional regulation

through RNA secondary structure or DNA-based nanotechnology. Section 6.3 details the de-

sign of a DNA library using DNALD which investigates the role of secondary structures in

post-transcriptional regulation of the azurin gene in Pseudomonas aeruginosa.

6.2.1 Origins

Although we say DNALD is a new language for the specification of combinatorial DNA li-

braries, in fact it has a short but important history. DNALD is a refinement and extension of

DNAPL prototype language developed by Yair Mazor, Uri Shabi and Ehud Shapiro at the Weiz-

mann Institute, from whom we have inherited the responsibility of bringing the idea to its fullest

fruition. DNALD inherits some of the structure and intentions of DNAPL whilst rationalising,

refining and extending the operations, syntax and semantics to make it more capable, consistent,

efficient to parse and evaluate, and amenable to future extension. To evince the extent of our con-

tribution, and as a specification for the core of DNALD, we present a brief overview DNAPL’s

structure and syntax. We then analyze its features and explain how these have informed the

development of DNALD.

A DNAPL library is a single file containing definitions of sequences as expressions editing and

recombining previously defined sequences. These definitions are divided between three sections

to form three disjoint subsets: inputs, intermediates and outputs. Each section has a slightly
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different meaning which in term places constraints on the content of the definition expressions

permitted:

Inputs are existing fragments of DNA that the library design can provide: a single unam-

biguous DNA sequence such as a sequenced plasmid. Input definitions cannot therefore

contain DNAPL operations that would yield a new sequence that does not exist. They can

be referenced by name in intermediate or output definitions.

Intermediates are definitions that can be referenced by name in other intermediate or out-

put definitions but are not directly required as an output of the library. Intermediates

are therefore either variations on inputs, outputs, other intermediates or entirely new se-

quences which must be obtained by synthesis. Intermediates can be used to factor out

reusable subsequences derived from series of DNAPL operations, enabling output to be

constructed in a more parsimonious and understandable manner.

Outputs are target sequences which the library designer needs to have manufactured by DNA

synthesis. Expressions of output definitions may refer to inputs, intermediates or other

outputs.

Listing 6.1 gives an example of a basic DNAPL library where two different intermediate se-

quences are inserted between the same left and right subsequences of a longer input sequence

to create two outputs sequences. Figure 6.2 shows a visualisation of the library in listing 6.1.
1 INPUT

pte := GAATTCATCACCAACAGCGGCGATCGGATCAATACCGTGCGCGGTCCTATCACAATCACC...;
END

5 # intermediates
loop1 := GATCTCTCACGATTATTGTTGCACAATCGACTGGGGAACTGCAAAATATAA...;
loop2 := GGCGCATGACGCGTCGTGTTTCATCGACTACTTCCCCAGCA...;

OUTPUT
10 T1_SsoPox := pte[1:808].loop1.pte[884:1023];

T2_AhlA := pte[1:808].loop2.pte[884:1023];
END

Listing 6.1: Example of a simple DNAPL library where two different intermediate sequences (loop1 and loop2)
are inserted between the same left and right subsequences of a longer input sequence (pte) to create to the outputs
T1_SsoPox and T2_AhlA. Example taken from http://www.cadmad.eu/general-explanation.

The FASTA equivalent of the output sequences of the DNApl library in listing 6.1 and visualised

in figure 6.2 is given in listing 6.2. What this simple example demonstrates is that the textual

representation of a DNA library using a programming language like DNAPL, where the oper-

ational semantics of the language are the set of target sequences, communicates the intentions

behind the library more clearly, succinctly and is more malleable than the sequences alone.
1 >T1_SsoPoxparsimonious

GAATTCATCACCAACAGCGGCGATCGGATCAATACCGTGCGCGGTCCTATCACAATCTCTGAAGCGGGTT
TCACACTGACTCACGAGCACATCTGCGGCAGCTCGGCAGGATTCTTGCGTGCTTGGCCGGAGTTCTT...
...TGAGAGTGATCCCATTCCTACGAGAGAAGGGCGTCCCACAGGAAACGCTGGCAGGCATCACTGTGAC

5 TAACCCGGCGCGGTTCTTGTCACCGACCTTGCGGGCGTCATGACTGCAG

http://www.cadmad.eu/general-explanation
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Figure 6.2: Visualisation of basic example DNAPL library in listing 6.1 showing fragments of the input sequence
in blue (with start and stop indices to the left and right respectively) and whole inserted fragments in red. The length
of the sequences is proportional to the number of nucleotides, measured on the x-axis.

>T2_AhlA
GAATTCATCACCAACAGCGGCGATCGGATCAATACCGTGCGCGGTCCTATCACAATCTCTGAAGCGGGTT
TCACACTGACTCACGAGCACATCTGCGGCAGCTCGGCAGGATTCTTGCGTGCTTGGCCGGAGTTCTT...
...CCCATTCCTACGAGAGAAGGGCGTCCCACAGGAAACGCTGGCAGGCATCACTGTGACTAACCCGGCG

10 CGGTTCTTGTCACCGACCTTGCGGGCGTCATGACTGCAG

Listing 6.2: FASTA file of the output sequences in the DNAPL library example.

DNApl syntax and semantics

The input and output sections are each delineated by the INPUT or OUTPUT keywords respec-

tively and the END keyword (keywords and symbolic names are case-insensitive). Intermediates

are any definitions that fall between the end of the input section and beginning of the output

section.

The primary innovation of DNApl was simply to replace long, cumbersome DNA sequences

with symbolic names by which they can be referred to. Symbolic names are associated with

the results of an expression using the definition operator :=. Most expressions return DNA

sequences. Unquoted DNA sequences are valid expressions which simple return that sequence.

For example the sequence expression CTCGAG is assigned to the name XhoI by: XhoI :=

CTCGAG;A semi-colon is required to terminate the definition. For clarity in what follows,

only the expression on the right hand side of the definition is shown and without a terminating

semi-colon.

Subsequences can then be obtained using symbolic names, the subsequence operator and an

integer index or range (colon-separated start and stop indices: [index] or [start:stop]

respectively (otherwise known as slicing). Indices are 1-based and stop indices are inclusive.

For example, XhoI[2] returns T the second nucleotide of the sequence referred to by XhoI,

and XhoI[2:5] returns TCGA the subsequence from the second to the fifth letter. The last
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index symbol end can also be used as a stop index to obtain everything from the start index up

to the 3’ end: XhoI[2:end] returns TCGAG.

The concatenation operator . (dot) joins two sequences returning operations, e.g.: C.XhoI[5:6]

returns CAG. Most expressions will consist of a series of concatenations.

Mutations can be made by using the assignment operator = (equals sign) in conjunction with

the subsequence operator. Given XhoI := CTCGAG,XhoI[1=A] returns ATCGAG. Multiple

mutations are separated by a comma so that XhoI[1=A, 3:4=GT] returns ATGTAG.

Sequences can be repeated using the repetition operator * (asterisk). XhoI*2 returns CTCGAGCTCGAG.

Variable length repeats of the form expr * (from:to) imply a single sequence but give the

manufacturer some leeway to produce one that is most feasible given biological and manufac-

turing constraints around repetitive sequences. From reading the documentation it is not clear

what impact this has indexing downstream of the repetition.

Sometimes it is more appropriate to work with sequences of amino acids rather than nucleotides.

To do this DNAPL provides the amino acid function a_a which implies back-translation from

amino acids to nucleotides given a codon table. For example gene := a_a(VVPSTQPVTTPPATTPVTTPTIPPS).

The choice of which back-translation to synthesise is at the discretion of the manufacturer, but

the designer can have some say by defining a codon table which fewer than 64 codons. Codon

tables take the form shown in listing 6.3. Only full amino acid names are used so as to avoid

clashes between nucleotide and amino acid single letter codes (although single letter codes are

used in the a_a function to refer to the amino acids). Codon alternatives are separated with

the pipe | and terminated with a semi-colon. Start must defined in addition to methionine

in order to account for the use of alternative start codons in bacteria. Only one codon table is

permitted by DNAPL file since they do not have names to distinguish between them. In libraries

with a codon table it should appear before the input section.
1 CODON TABLE

Alanine := GCG | GCC | GCA | GCT ;
Arginine := CGC | CGT | CGG | CGA | AGA | AGG ;
Asparagine := AAC | AAT ;

5 Aspartic acid := GAT | GAC ;
Cysteine := TGC | TGT ;
Glutamic acid := GAA | GAG ;
Glutamine := CAG | CAA ;
...

10 Serine := AGC | TCG | AGT | TCC | TCT | TCA ;
Stop := TGA | TAA ;
Threonine := ACC | ACG | ACT | ACA ;
Tryptophan := TGG ;
Tyrosine := TAT | TAC ;

15 Valine := GTG | GTT | GTC | GTA ;
Start := ATG ;

END

Listing 6.3: Example DNAPL codon table adapted
from E. coli K12 http://openwetware.org/wiki/Escherichia_coli/Codon_usage with 63 codons (the low frequency
TAG codon has been excluded).

http://openwetware.org/wiki/Escherichia_coli/Codon_usage
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Finally, DNAPL has three combinatorial operators used to define degrees of freedom in the DNA

library. The + and ++ operators return the set of sequences that is the union of there operands,

with the designation that each member be produced in a separate well (of a 96-well plate in

which sequences are delivered) or the same well respectively. The pipe | operator denotes a

choice between its operands which, as with codons, allows the manufacturer to decide which of

the set of alternatives to produce.

Visualisations of DNApl libraries from on the now defunct DNApl website are reproduced in

figure 6.3. They give a flavour of the scale and complexity of the DNA libraries that could be

expressed with DNAPL.

Observations

Some DNAPL operations documentation, e.g. variable length repetitions, appear to have been

intentions without implementations. The code for the parser and interpreter were unfortu-

nately unavailable to clarify these issues. Without an existing implementation on which to built

DNALD we were making a fresh start and took that opportunity to rethink some of the design

choices made by DNAPL.

From the above description of the syntax and semantics of DNAPL we can make several ob-

servations about the nature of the language in general and in comparison to more orthodox

programming languages like Java or Python, and establish the DNALD’s positions on these:

– Keywords and symbolic names are case-insensitive. This is reasonable as the intended

audience are biologists who may not be used to the case-sensitive restrictions of most

programming languages and therefore enforcing case-sensitivity, especially of keywords,

might seem pedantic. Additionally, by allowing case-insensitive symbolic names, names

must be unique words and will therefore be easier to discriminate and unambiguous in

conversation. DNALD will be a case-insensitive language.

– Sequence strings are not quoted. This is highly unusual and potentially problematic for

parsing. For instance, TAG could be a sequence but it is also a valid symbolic name.

DNALD will require all sequences to be quoted.

– Definitions are terminated by a semi-colon. This is unnecessary as what must follow an

expression is either another definition (symbolic_name :=) or the section terminator

(END). Semi-colons for terminating definitions will initially be optional in DNALD to

be inclusive of users who are experienced with languages which require semi-colons and

might miss them. In the future semi-colons may be repurposed, for example, to separate

sets of arguments.
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Figure 6.3: Set of example DNApl library visualisations representative of the size and complexity of DNA libraries
produced through DNA reuse. Each bar is a DNA sequence. Each colour represents a different input sequence
(topmost sequences) to communicate how these are recombined in the library outputs.
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– Subsequence indices start from 1 and go up to the length of the sequence inclusive,

whereas array indices in programming languages are usually zero-based and exclusive.

This is a sensible departure from Java as DNA sequences are also indexed starting from

1 and therefore the final index must be inclusive. DNALD will retain 1-based, inclusive

indexing of sequences consistent with biological usage. Library designers more famil-

iar with languages that use zero-based indexing must be careful not to confuse the two

systems (although this is a simple error to validate and provide instant feedback on in the

textual editor GUI).

– The symbol end can be used as a stop index in a subsequence expression to obtain every-

thing up to the 3’ end. This is a useful convenience as the length of a sequence returned

from several operations may be difficult to determine. Java has no such syntax while

Python allows slicing (aka subsequence expression) without a stop index to achieve the

same end, e.g. sequence[3:]. DNALD will use the end symbol as it is more ex-

plicit and therefore better conveying the intentions of the library designer to readers who

may be unfamiliar with the new language.

– The downstream processing of the sets of sequences defined by amino acids or combinato-

rial operations is unclear from the explanation of DNAPL given at http://www.cadmad.eu/general-

explanation. That a symbolic name may refer to a set of sequences would seem to imply

therefore that all operations must operate on and return sets of sequences, i.e. map each

member of the operand set to a member of the return set by applying the same operation

to each input. In which case a concatenation operation would produce the cross-product

of the input sets. All DNALD expressions return a set of sequences and all DNALD

operations should accept a set of sequences.

6.2.2 Specification

File structure

Reflecting the intention to manufacture, a DNALD file is structured similarly to DNAPL, with

some additional features. A DNALD file is comprised of an optional set of named codon tables

and a set of named libraries.

– Named libraries

· Inputs are unambiguous DNA sequences that can be obtained from the library con-

sumer (maybe as output of a previous library). Entirely synthetic libraries will not

have inputs and therefore the inputs section is optional.

· Outputs are always required therefore the outputs section is also strictly required.

http://www.cadmad.eu/general-explanation
http://www.cadmad.eu/general-explanation
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1 Codon Table DefaultCodonTable {
/* A */ Ala := 'GCA' 0.27 | 'GCC' 0.26 | 'GCG' 0.25 | 'GCT' //0.22
/* R */ Arg := 'CGT' 0.30 | 'CGC' 0.26 | 'CGG' 0.15 | 'AGA' 0.13 | 'CGA'

0.09 | 'AGG' //0.07
/* N */ Asn := 'AAT' 0.59 | 'AAC' //0.41

5 /* D */ Asp := 'GAT' 0.65 | 'GAC' //0.35
/* C */ Cys := 'TGT' 0.52 | 'TGC' //0.48
/* E */ Glu := 'GAA' 0.64 | 'GAG' //0.36
/* Q */ Gln := 'CAG' 0.65 | 'CAA' //0.35
/* G */ Gly := 'GGT' 0.34 | 'GGC' 0.29 | 'GGA' 0.19 | 'GGG' //0.18

10 /* H */ His := 'CAT' 0.63 | 'CAC' 0.37
/* I */ Ile := 'ATT' 0.47 | 'ATC' 0.31 | 'ATA' 0.21
/* L */ Leu := 'CTG' 0.38 | 'TTA' 0.18 | 'CTT' 0.15 | 'TTG' 0.13 | 'CTC'

0.10 | 'CTA' 0.06
/* K */ Lys := 'AAA' 0.71 | 'AAG' //0.29
/* M */ Met := 'ATG' //1.00

15 /* F */ Phe := 'TTT' 0.64 | 'TTC' //0.36
/* P */ Pro := 'CCG' 0.37 | 'CCT' 0.24 | 'CCA' 0.23 | 'CCC' //0.16
/* S */ Ser := 'AGC' 0.20 | 'AGT' 0.18 | 'TCA' 0.18 | 'TCT' 0.18 | 'TCC'

0.14 | 'TCG' //0.11
/* * */ Ter := 'TAA' 0.58 | 'TGA' 0.33 | 'TAG' //0.09
/* T */ Thr := 'ACC' 0.31 | 'ACA' 0.25 | 'ACG' 0.22 | 'ACG' //0.22

20 /* W */ Trp := 'TGG' //1.00
/* Y */ Tyr := 'TAT' 0.65 | 'TAC' //0.35
/* V */ Val := 'GTT' 0.32 | 'GTG' 0.29 | 'GTA' 0.19 | 'GTC' //0.19
}

Listing 6.4: DNALD’s default codon table targets E.coli K12, the most widely used model organism for genetic
manipulation.

· Intermediate definitions are any definition not in the input or output sections. In-

termediates are useful for sequence sets that are not manufacturing targets but can

simplify the expressions of targets. They can provide valuable information about

the relationships between targets that share them, ideally that two or more targets

are derived from them but cannot be more simply derived from each other.

– Named codon tables

· Codons can have optional usage values to allow for optimisation of back-translation

amino acid sequences in a corresponding target organism.

· A default codon table based on E. coli K12 will be used for back-translation when

no codon table is specified.

Default codon table

DNALD’s default codon table comes from E.coli K12 and was adapted from the Codon Usage

Database (http://www.kazusa.or.jp/codon/). It is based on 8087 coding sequences, with a sum

total of 2,330,943 codons. E. coli was used as it is the most prominent model organism in

molecular biology, used extensively in the development of novel genetic constructs.

Listing 6.4 shows the default codon table. Generally, each amino acid (represented by its three

letter code) is defined as a set of (optionally weighted) codon alternatives. Here the codons

http://www.kazusa.or.jp/codon/
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are weighted as probabilities (fractions of 1). The weighting of the codon with the lowest

probability in each set (here the rightmost, commented out) need not be specified as it can be

computed as 1.0 - the sum of the others. Weights exceeding of 1 or summing to less than one

are also permitted, allowing ratios or frequencies to be expressed, from which probabilities can

be calculated. When the sum of the weights exceeds 1 then all weights must be specified as it is

not possible to compute a remainder.

The single letter amino acid codes that would be used in an amino acid sequence are commented

out inline on the left. Three letter codes are preferred in codon table definitions because the

single letter codes would clutter the namespace (also ’*’ is reserved for the repetition operator)

and their meaning is clearer. The three letter codes are reserved, it is an error not to specify all

twenty and Ter, and available as literals in expressions corresponding to a (weighted) choice of

codons.

Expressions

Expression in the DNALD language are a combination of explicit sequences, operators and

functions (e.g. reverse, complement) that evaluate to a set of zero or more sequences.

– Individual sequences are evaluated to a set with that sequence as the lone member, except

the empty sequence which evaluates to the empty set.

– All DNALD operators operate on sets of sequences produced from the evaluated expres-

sions of their operands.

– Functions (e.g. reverse, complement) can take zero or more sequence sets as arguments

and must return a sequence set.

Operations and rules of precedence

(operation) (example) in descending order of precedence

parenthesised expressions (’aa’ + ’ac’)

sequence ’acgt’

reference x

function_call reverse(x)

subsequence x[1:3]

mutation x[2:3=’TA’]
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repetition x * 2

choice x | y

symmetric difference x ^ y

difference x - y

intersection x & y

union x + y

concatenation x y

Concatenation has the lowest precedence but is the most important operation in DNALD. This

is emphasised by the lack of an operator: any whitespace seperating two expressions will join

them, but these rules precedence will ensure that they are both evaluated first.

Associativity

Operations are either unary or binary, operating on one or two expressions respectively (or one

expression and an integer in the case of the repetition operation).

1. Unary operations are either function calls or intra-sequence operations. Unary operations

operate in a left-associative manner so that the result of the leftmost operation is the input

to the next leftmost and so on.

2. Binary operations are two expressions either side of an operator character or keyword.

Binary operations can be chained together and operate in a right-associative manner so

that the result of the rightmost operation becomes the right operand in the next rightmost

and so on.

Definitions

Definitions assign names to the result of evaluating an expression:

x := ’ATG’ makes x a proxy for the sequence value ATG.

y := x makes y the value of x.

y := ’CTG’changes y but does not x, whereas x := ’GTG’ changes x and y.
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Syntax and semantics

Concatenation is simply a series of whitespace separated subexpressions (actually binary ex-

pressions that are be chained): x := ’ATG’ ’CC’ defines x as ’ATGCC’.

As with DNAPL subsequences can be extracted with the [] operator and either an index i or

a start:stop range where 1 6 start 6 stop and start 6 stop 6 end. For example: x[2] is

’T’ and x[2:3] is ’TG’.

The operand of the slice operator is the expression to its left, which will be evaluated be-

fore slicing, so any expression can be sliced, including slices. For example, copy-pasted se-

quences can be sliced in situ (as intermediates) without needing to define them previously:

’ATGCCA’[2:5] is ’TGCC’. Where sequences in the operand set are of different lengths the

end keyword can, as in DNAPL, be used to indicate everything up to the length of each se-

quence in the set. Multiple indices are not permitted because concatenation of two fragments is

more explicit and amenable to insertion later; this is a design decision to make the language as

debuggable as possible, where there is the opportunity for cleverness/laziness it will be abused.

Mutations use a similar syntax to slices but replace the indicated range with a new sequence frag-

ment: ’ATG’[1=’T’] is ’TTG’. Multiple mutations are separated by a comma: ’ATGCCA’[1=’T’,

3:4=’AT’] returns ’TTATCA’. Mutations can be longer or shorter than the specified range,

enabling insertion and deletion. Because deletion and insertion change the length of the se-

quence, within the same mutation operator the original indices of the sequence will be honoured.

As with subsequences multiple indices per mutation are not permitted, although the potential for

abuse is smaller and could be perhaps be justified. At present it is not clear whether many mu-

tations would be the same, if that is the case this decision is open to review pending real world

examples that demonstrate its utility.

Sequences can be reversed or complemented with functions of the same name:

reverse(’ATG’) returns ’GTA’ and complement(’ATG’) returns ’TAC’.

These functions can be used together to obtain the reverse complement:

reverse(complement(’ATG’)) returns ’CAT’.

Both the combinatorial operations union (+) and choice (|) create sets of more than one se-

quence, except that only one sequence in in choice is required. ’TTA’+’TTG’ returns ’TTA’+’TTG’.

Concatenating a set returns the cross-product of the operands:

’ATG’ (’TTA’+’TTG’) returns another set of two sequences

’ATGTT’+’ATGTTG’.

A concatenation involving two set of sequences of size three and two, e.g.:

z := (’A’+’CC’+’GGG’) ’ATG’ (’TTA’+’TTG’)

returns a set of six sequences
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’AATGTTA’ + ’AATGTTG’ + ’CCATGTTA’ +

’CCATGTTG’ + ’GGGATGTTA’ + ’GGGATGTTG’.

All operations work on sets so that mutation of z affects all members, so that z[1=’T’] returns

the set:

’TATGTTA’ + ’TATGTTG’ + ’TCATGTTA’ +

’TCATGTTG’ + ’TGGATGTTA’ + ’TGGATGTTG’.

Repetition with ’*’ works as expected: ’ATG’*2 returns ’ATGATG’.

Variable length repetitions, e.g. ’TTA’*(1:3) returns the set of alternatives

’TTA’ |’ TTATTA’ | ’TTATTATTA’.

Listing 6.5 summarises current DNALD operations as a DNA library:
1 library Examples {

inputs {
Sequence := 'acgt'

}
5 # intermediates

5'end := 'atg'
3'end := 'uua'

outputs {
ReferenceWithAssertion := Sequence is 'acgt'

10 Concatenation := 5'end Sequence 'A' 3'end
Subsequence := Sequence[1:3]
Mutation := Sequence[1='c']
Mutations := Sequence[1:2='tg', 3='c', 4='a']
Repetitions := 2 * Sequence is Sequence * 2

15 VariableLengthRepetitions := "A" * (2:3) is "AA" + "AAA"

BackTranslation := backtranslate(exampleCodonTable, 'MS*')
CrossTranslation := backtranslate(DefaultCodonTable,

translate(exampleCodonTable, 'ATG' 'TCT' 'TAA'))

20 Union := 'a' + 'b' is 'b' + 'a'
Intersection := ('a' + 'b') & ('b' + 'c') is 'b'
Difference := ('a' + 'b') - ('b' + 'c') is 'a'
SymmetricDifference := ('a' + 'b') ^ ('b' + 'c') is 'a' + 'c'

25 Choice := 'a' | 'b' is 'b' | 'a'

^Reverse := reverse(Sequence) // '^' escapes keywords in names
^Complement := complement(Sequence)
ReverseComplement := reverse(complement(Sequence)) is

complement(reverse(Sequence))
30

}
}

Listing 6.5: Summary of current DNALD functionailty as a DNALD library. The is keyword is used to make an
assertion of equality between its operands, and when satisfied can be used to document the evaluated sequence set.

Evaluation

DNALD is a declarative language where each definition binds a name to the result of evaluating

an expression, i.e. a set of sequences. Names must be unique, cannot be redefined and there are

no evaluable operations that can change the value of that name. Consequently, each named set
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of sequences is immutable. The only way to change the value of a name is to change its defining

expression.

Changing the value of a definition implicitly changes the value of all the other definitions that

make reference it by name, just as a changing the value or formula of a cell in a spreadsheet can

trigger a wholesale update of the cells that reference it via its coordinates. A DNALD library

can similarly be modelled as a directed graph describing the dependency relationship between

definitions vertices, where an edge from definition A to definition B exists if A is referred to

be B. This property makes DNALD a dataflow language also. If a path from definition A to

definition C exists and the value of A changes then C must be re-evaluated.

A definition’s expression should not reference itself either directly or indirectly (through any

series of other definitions expressions), i.e. create a cycle in the graph. A definition that does

so is invalid because the value of the definition is indeterminable due to infinite regression. Any

referring definitions are also indeterminable, as are their referrers and so on. A DNALD library

is therefore unevaluable if its definitions do not constitute a directed acyclic graph (DAG).

The definitions in a valid DNALD can be evaluated either lazily, evaluating unevaluated def-

initions as they are encountered, or in an order which guarantees that all referred definitions

with have previously been evaluated: a topological sorting of the DAG. Section 8.1.5 details our

implementation of the DNALD evaluation process.

This specification implies but does not specify how the relationships between sequences (i.e.

which subsequences are shared between sequences and in which definitions they originated) is

to be managed. This is a detail of the implementation not the language. It is possible to ignore

the provenance of subsequence fragments and produce a DNALD evaluator that still computes

the correct output sequences, but that would be of little value. Our solution to the problem of

tracing provenance is described in detail in section 8.1.5.

6.3 A real combinatorial DNA library using DNALD

Azurin production in Pseudomonas aeruginosa is positively controlled by the RNA-binding pro-

tein RsmA. This control has been found not to be exerted upstream of the ATG start codon, and

cannot be exerted downstream of the rho-independent transcriptional terminator [255]. It may

be possible that RsmA, a known post-transcriptional regulator, enhances the stability of the

azurin mRNA transcript by binding and blocking degradation, thus increasing the quantity of

translated protein translated from it. RsmA usually binds to mRNA at stem-loop structures hav-

ing the following sequence: (U/A)CANGGANG(A/U). To bind, AGGA or AGGGA have almost

always been found on the single-stranded loops. The azurin ORF has three sites that could cor-

respond to RsmA binding sites. Interestingly of the three AGGA sites found, two (the second
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and third) are located in the loops of potential short stem-loop structures, as determined using

the mFold web server [256].

To investigate the contributions of each potential AGGA stem-loop to azurin transcript stability,

we first defined seven parts, three of which could be altered to remove the stem-loop structures

with AGGA sequences, and then recombined these to form a library of variants to test whether

any combination of these is responsible for positive regulation by RsmA.

The parts to be conserved are 1, 3, 5 and 7. The parts to be altered are 2, 4 and 6:

GGCCTGGACAAGGAT (2)

GGCGAGAAGGACTCG (4)

AAGCTGAAGGAAGGC (6)

We designed the library of azurin variants with altered parts in 5 steps:

1. translated Parts 2, 4 and 6 to get amino acid sequences to back-translate: GLDKD, GEKDS

and KLKEG respectively

2. back-translated each translation to obtain the set of coding sequences that encode the same

amino acid sequence: 192 in each case

3. filtered out the coding sequences containing AGGA

4. filtered the remainder to remove stem-loops with stems of length 3 or greater and loops

of length 3 or greater, resulting in 52, 41 and 70 plausible variants of Parts 2, 4 and 6

respectively, 149240 (52×41×70) potential combinations

5. Due to the practical limitations of screening such a large number of variants, we chose

4 alternatives for each part, with a mix of codons between them. Adding the wildtype

parts yielded 125 (5×5×5) variants of azurin, including the wildtype as a control. The

resulting library encoded variants with 0 (wt), 1, 2 or 3 alternative sequences.

Listing 6.6 contains the final azurin DNALD. The library contains 1 input (the azurin ORF),

11 intermediates and 1 output definition. The first intermediate is the 501bp azurin gene sliced

from the ORF. The 7 parts are defined as contiguous in-frame slices of the gene. The altered

parts are defined as sets (using the ’+’ operator) of 4 synthetic sequences, which were chosen

from the set of back-translations without AGGA or significant stem-loops; we did not use the
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1 library azurin {
inputs {

azurin_orf :=
"ATGCTACGTAAACTCGCTGCGGTATCCCTGCTGTCCCTGCTCAGTGCGCCACTGCTGG..."

}
5

azurin := azurin_orf[1:501]
Part_1 := azurin[1:258] # in frame slices so that no codons
Part_2 := azurin[259:273] # in 5'3' Frame 1 are truncated
Part_3 := azurin[274:327]

10 Part_4 := azurin[328:342]
Part_5 := azurin[343:360]
Part_6 := azurin[361:375]
Part_7 := azurin[376:501]

15 Part_2_altered := "GGCCTGGACAAAGAC" + "GGATTAGACAAAGAC" +
"GGCCTGGACAAAGAT" + "GGACTCGATAAAGAT" # 4/52 variants

Part_4_altered := "GGCGAGAAAGACAGC" + "GGAGAGAAAGATAGC" +
"GGGGAAAAAGACTCT" + "GGTGAGAAAGATAGT" # 4/41 variants

Part_6_altered := "AAGCTGAAAGAGGGC" + "AAGTTAAAAGAGGGG" +
"AAATTAAAAGAGGGT" + "AAGCTGAAAGAGGGA" # 4/70 variants, last
contains AGGGA

outputs {
20 azurin_alternatives := Part_1 (Part_2 + Part_2_altered) Part_3 (Part_4 +

Part_4_altered) Part_5 (Part_6 + Part_6_altered) azurin_orf[502:end]
}

Listing 6.6: DNALD library investigating post-transcriptional regulation of azurin.

back-translation capabilities of the DNALD language directly as those back-translations needed

to be filtered for stem-loops and this feature is not yet implemented in the language. Finally, the

125 variants are defined in one expression as the concatenation of each conserved part and the

union of each altered wildtype part with its alternatives.

Figures 6.7, 6.4 and 6.5 present three different views on to the outputs computed from the

azurin library: the sequences in FASTA format, the composition of the sequences according to

the origin of the fragments that compose them, and the minimal Directed Acyclic Word Graph

(DAWG) of the outputs with fragments as nodes.

Although the design of the azurin library is relatively simple, with the DAWG corresponding

exactly to the lone output expression, it is our intention to use the computation of minimal

DAWGs (from any user design or set of related nucleotide sequences) to inform the construction

planning stage of library manufacture, specifically regarding the minimal number and order of

concatenations that are required to construct the library.

Once the azurin library has been manufactured it will be processed by cloning each azurin vari-

ant into P. aeruginosa PAO1, characterization of Azurin levels and relating those to contributions

by combinations of AGGA stem-loops present.

In this chapter we have introduced the DNALD language and specified its syntax and semantics.

The next chapter introduces DNA Library Designer, our integrated development environment for

DNALD.
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1 >Part_6_altered (3 of 4)
AAGCTGAAAGAGGGC
>Part_6_altered (4 of 4)
AAGTTAAAAGAGGGG

5 >azurin_alternatives (1 of 125)
ATGCTACGTAAACTCGCTGCGGTATCCCTGCTGTCCCTGCTCAGTGCGCCACTGCTGGCTGCCGAGTGCTCGGTGGACAT
CCAGGGTAACGACCAGATGCAGTTCAACACCAATGCCATCACCGTCGACAAGAGCTGCAAGCAGTTCACCGTCAACCTGT
CCCACCCCGGCAACCTGCCGAAGAACGTCATGGGCCACAACTGGGTACTGAGCACCGCCGCCGACATGCAGGGCGTGGTC
ACCGACGGCATGGCTTCCGGACTCGATAAAGATTACCTGAAGCCCGACGACAGCCGTGTCATCGCCCACACCAAGCTGAT

10 CGGCTCGGGAGAGAAAGATAGCGTGACCTTCGACGTCTCCAAATTAAAAGAGGGTGAGCAGTACATGTTCTTCTGCACCT
TCCCGGGCCACTCCGCGCTGATGAAGGGCACCCTGACCCTGAAGTGATGCGCGAGCGATCCGCTGCATGAAAAAGCCCGG
CCGCTGCCGGGCTTTTTCATG
>azurin_alternatives (2 of 125)
ATGCTACGTAAACTCGCTGCGGTATCCCTGCTGTCCCTGCTCAGTGCGCCACTGCTGGCTGCCGAGTGCTCGGTGGACAT

15 CCAGGGTAACGACCAGATGCAGTTCAACACCAATGCCATCACCGTCGACAAGAGCTGCAAGCAGTTCACCGTCAACCTGT
CCCACCCCGGCAACCTGCCGAAGAACGTCATGGGCCACAACTGGGTACTGAGCACCGCCGCCGACATGCAGGGCGTGGTC
ACCGACGGCATGGCTTCCGGACTCGATAAAGATTACCTGAAGCCCGACGACAGCCGTGTCATCGCCCACACCAAGCTGAT
CGGCTCGGGAGAGAAAGATAGCGTGACCTTCGACGTCTCCaagctgaaagagggaGAGCAGTACATGTTCTTCTGCACCT
TCCCGGGCCACTCCGCGCTGATGAAGGGCACCCTGACCCTGAAGTGATGCGCGAGCGATCCGCTGCATGAAAAAGCCCGG

20 CCGCTGCCGGGCTTTTTCATG

Listing 6.7: Extract from generated FASTA file of azurin library azurin.fasta. The final two intermediates
of altered part 6 sequences are followed by the first and second outputs: azurin_alternatives (1 of 125) is the
reconstituted wildtype, (2 of 125) contains one altered part shown in lowercase.

Figure 6.4: Zoomed in view of the output sequences computed from the azurin library. The reconstituted wildtype
sequence is the long purely purple line at the top of the outputs stack. The variant parts 2, 4 and 6 are differentially
coloured, and the 125 combinations of these can be seen in the odometer-like rotations of colours: part 6 changes
most rapidly, then part 4 and then part 2 as the sequences descend.
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Figure 6.5: Directed Acyclic Word Graph (DAWG) of fragments constituting all outputs of the azurin library.
Every path in the DAWG from 5’ to 3’ is the sequence composed of the nodes in the path. The central path is the
reconstituted wildtype, the other paths are all unique output sequences missing either 1, 2 or 3 stem-loop forming
and AGGA containing subsequences depending on the number of parts 2, 4 or 6 traversed in that path.



Chapter 7

DNA Library Designer

Chapter abstract
Chapter 6 introduced the DNALD language for combinatorial DNA library design. This chapter introduces the DNA
Library Designer integrated development environment (IDE) for designing combinatorial libraries with DNALD.
DNA Library Designer is the reference implementation of the DNALD language and evaluator.

7.1 An IDE for DNALD

Their are several potential users of the DNALD language introduced in chapter 6:

1. Biologists requiring combinatorial DNA libraries to investigate a biological problem, for

whom the language is tailored.

2. Manufacturers of DNA libraries that need to know where common subsequences of the

output library originated in order to produce a construction plan that maximises DNA

reuse.

3. Programs that produce or consume DNA library specifications as part of their operation to,

for example, automate the iterative design and validation of synthetic biological devices.

We aim to cater for each of these different users in the most appropriate manner by providing

multiple interfaces to the language:

– a graphical user interface for writing and debugging library designs that transparently

handles evaluation

– a command line interface for shell scripts and web servers that evaluates DNALD files

and exports a variety of alternative sequence formats

– an application programming interface (API) for reading, writing and evaluating DNALD

files

148
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As stated previously, the DNALD language is still evolving and its implementation is likewise.

At this stage of development, when the APIs are still fluid, we have focused on supporting

human interaction by developing DNA Library Designer.

DNA Library Designer is a sophisticated integrated development environment (IDE) for DNALD

that enables biologists to design and explore combinatorial DNA sequence libraries with the sup-

port of a real programming editor. The parser and IDE are developed as a set of Eclipse plugins

using the Xtext framework for domain-specific language (DSL) development. DNA Library

Designer can be installed alongside other plugins in an existing Eclipse installation, and is also

available as a standalone product for Linux, Mac and Windows.

7.2 Features

DNA Library Designer fully leverages Xtext and the Eclipse Rich Client Platform (RCP) to

provide many of the standard features common to programming language editors: syntax/refer-

ence highlighting and validation, code completion, source navigation, outline views and rename

refactoring, find-replace (with regular expressions) and a workspace model of project and file

management with full text searching. We have added comprehensive validation of DNALD ex-

pressions and relevant quick fixes, templates and wizards for DNA libraries including examples.

The outputs of evaluated DNALD files are shown in visualisation and several table-based views.

Editing

Figure 7.1 shows a typical arrangement of DNA Library Designer’s workbench-style interface.

The main window consists of the editor area (right), docked and open views such as the Project

Explorer (left) and minimized view bars (bottom right), the Perspectives bar (top right) and

standard menu, toolbars (top) and status bar (bottom). An editor displays the contents of a

file and provides advanced editing facilities (discussed later). Views display information either

derived from the contents of the active editor or pertaining to the file system or other plugins.

Projects (top-level folders in The Project Explorer view) are located on disk in a workspace: a

directory of the users choosing.

Figure 7.2 demonstrates how multiple editors and collapsible views are easily rearrangement to

suit the current situation. Files that are open when the application is closed are reopened on

launch. Currently opened (and minimized) views, can be saved as Perspectives and switched

between.
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Figure 7.1: DNA Library Designer interface.

(a) Editor pane split vertically (b) Editor pane split horizontally

Figure 7.2: Multiple editors and collapsible views are easily rearrangement to suit the current situation.
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Figure 7.3: Syntactic validation and colouring.

Syntax highlighting

Figure 7.3 shows how DNALD syntax is highlighted with colours. Syntax colouring is fully cus-

tomisable via the Window > Preferences > DNALD > Syntax Coloring menu choices. By

default definition names and references are black, operators are bright pink and nucleotide bases

in sequences are coloured according the established convention (adenine is coloured green, cy-

tosine blue, guanine black and thymine/uracil red).

Browsing and navigation

The Outline view shown in figure 7.4 displays a list of definitions in the active editor. Items are

displayed in the order they are defined and can also be sorted alphabetically. Clicking an item

in the Outline view scrolls to the definition name in the editor for quick navigation.

When the Mark Occurrences button is toggled on, positioning the text cursor on a definition

reference highlights other references in the editor with a grey background and the definition

with a beige background (figure 7.5), useful for identifying reuse in densely specified libraries.
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Figure 7.4: The Outline view.

Figure 7.5: Marking occurrences of references throughout the library.
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(a) Find/Replace within selection/editor. (b) Beginning a search.

(c) The file search dialog. (d) Search results.

Figure 7.6: Finding and replacing text within and between files.

Searching

The IDE enables library designers to find, and replace, text within the current selection/editor

or across files/folders/projects/workspace to locate reused references, sequences and operations;

shown in figure 7.6. Searching can be case insensitive, utilise regular expressions to find partial

or multi-line matches, and perform batch replacements on multiple files (declinable in each

instance). Clicking a Search view result jumps to the relevant in the editor (opening the file in

an editor if necessary), providing a quick means of navigating across the workspace.

Version control

Versioning of libraries and projects is deferred to other Eclipse plugins such as MercurialEclipse

and EGit. The standalone DNA Library Designer product bundles MercurialEclipse, giving

library designers a fully integrated distributed version control system (DVCS). We envisage

DVCS as the primary means of communicating DNALD libraries within working groups and

back and forth to the manufacturer as designs are refined in line with what is possible to produce.
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Evaluation

All DNALD files in open projects are evaluated when DNA Library Designer is started and as

when they are changed. evaluation occurs transparently in a background thread, leaving the

user interface responsive. When files contain errors, erroneous definitions and their dependents

are skipped while the remainder are evaluated. FASTA files are automatically generated in a

subdirectory of the relevant project, ready for use in the bioinformatics pipeline or to send to

manufacture. Finally, the Definitions, Sequences, Sequence Fragment and Library visualiza-

tion views (section 7.2) are synchronised with the evaluated outputs of the libraries.

Validation

The DNALD editor reports three classes of errors with DNALD library designs. Syntactic er-

rors are derived from the grammar such as missing quotation marks around sequences, unpaired

parentheses, or a missing outputs section. Linking errors are created by misspelled or non-

existant references. Semantic errors are discovered by the validator or evaluator and include

cyclic references, invalid nucleotide characters, out-of-range subsequence indices, and overlap-

ping mutation indices.

Errors are reported to the user by underlining the error causing expression with a red squiggle,

and also by a red symbol on the left hand side of the DNALD file editor. Hovering over either

the underline or symbol brings up a tooltip explaining the source of the error. Certain errors can

be autocorrected with a quick fixes small user intervention (available only when possible and

appropriate from the tooltip or by pressing Ctrl-1 on the corresponding line).

Figure 7.7 demonstrates reporting of validation errors and suggestion of quick fixes. Unresolv-

able references which are obviously misspelled offer the most likely correction from the pool of

valid references (an Xtext feature). Out-of-range indices offer the minimum or maximum value

dependent on other valid indices in the expression.

Comparison The compare editor, shown in figure 7.8, highlights the differences between two

libraries (currently based on character differences rather than semantics). It provides actions

for navigating and copying differences between the libraries, enabling a supervised merging

process.

Evaluated library views

The Definitions view (figure 7.9) provides a tabular display of each definition, the expected

number of sequences and a reserialization of the parsed expression which users can compare
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(a) Unresolvable reference error and quick fix. (b) Out-of-range index error and quick fix.

Figure 7.7: Validation errors and quick fixes.

Figure 7.8: Comparing differences between libraries and versions.
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Figure 7.9: Definitions view.

with the input expression and gain confidence that the expression was understood correctly by

the evaluator.

The Sequence Fragments view (figure 7.10) lists all original fragment of sequence, which are ul-

timately concatenated (in the manner of the Y operation) to create the designed sequences. Frag-

ment tracking identifies the definition in which a fragment originates, the definition expressions

and sequences in which it is reused, enabling visualization of the flow of sequence information

through the library. Under the hood each original fragment of sequence is stored (interned) and

sequences are composed of references to fragment slices rather than copied sequence data which

saves memory, facilitates fast comparison and enables tracking of reuse within the library.

The Sequences view (figure 7.11) shows information about every sequence that the library de-

fines, particularly useful when a definition such as Library (pictured) uses combinatorial opera-

tors which result in multiple sequences to be produced from a single definition. The name and

number if applicable are shown along with the sequence type (inherited from the library sec-

tion in which the sequences parent definition resides), the length of the sequence, its computed

GC content and a concatenation expression that defines the sequence as a series of sequence

fragment slices.

The Library view (figure 7.12) visualizes the computed sequences using a different colour for

each sequence fragment to show their flow through the library. When zoomed out the nucleotide
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Figure 7.10: Sequence Fragments view.

Figure 7.11: Sequences view.
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sequences are hidden, providing a purely compositional view of the outputs useful for quickly

checking the order of fragments. When zoomed in close enough the nucleotides become visible,

as in subfigure 7.12c, allowing the designer to confirm that the fragments are coloured correctly.

This multifaceted visualisation is another important means of debugging libraries early on in

their design phase. The combinatorial nature of the libraries, coupled to the generative nature

of evaluating the library means that mistakes in definitions that are incorporated by many other

definitions will be propagated through the library. Tracing the origin of the unexpected fragment

will often lead directly to the problem. Fixing the problem at its source then propagates the fix

automatically to every dependent sequence.

7.3 Conclusions

DNA Library Designer is a work in progress but its user friendly features - a real programming

editor for a new language, and a robust validation/evaluation scheme - means that it can already

be used for real-world projects.

Regarding alternative workflows, as stated previously both human and non-human library con-

sumers alike should be able to use our DNALD evaluator to compute the output sequences of

a DNALD library, and export these in other formats (e.g. FASTA) as part of their investigation

workflow. We are working on a command line interface to the evaluator which can be called

manually, by shell scripts, or by programs.

Our datamodel for DNALD sequence sets, discussed in the next chapter, exposes a fluent Java

API which allows programmers in Java and other JVM-based languages construct and manip-

ulate sets of DNA sequences using DNALD operations. This fundamental design choice will

expose the DNALD to a new set of power users who will hopefully want to improve the language

and this software further.
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(a) Embedded Library view (b) Maximised Library view.

(c) Side-by-side textual specification and visualization of evaluated library.

Figure 7.12: Library visualisation view.



Chapter 8

Software engineering

Chapter abstract
This chapter is concerned with the design and implementation of the software presented in the previous chapters. An
overview of the software stacks on which DNA Library Designer and the Infobiotics Workbench were developed is
given with a attributions of their use. A selection of features and algorithms are used to illustrate the original code
contribution of this thesis.

8.1 DNA Library Designer

8.1.1 Software stack

Only a few Eclipse plugins and Java libraries were used in the development of DNA Library

Designer:

Eclipse plugin framework, Workbench UI for RCP product and countless plugins providing

project management, file comparison, etc.

Xtext open-source framework for developing domain-specific languages. First version

published in 2006 under the openArchitectureWare project and now on version

2.3.1 as an Eclipse project. Xtext handles the parser generation, editor UI and pars-

ing of DNALD, as well as providing and running threaded validation, and generator

skeletons using the Generation Gap Pattern1.

Guice dependency Injection framework from Google, used to configure Xtext but also to

inject the DNALDResourceScopeCache singleton which connects the DNALD

evaluator to the validator, various library views and the FASTA generator.

Guava advanced Java Collections from Google with immutable types, static methods and

fluent APIs. Highly recommended.

http://code.google.com/p/guava-libraries/

1http://www.drdobbs.com/architecture-and-design/231902091?pgno=3

160
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JGraphT generic graph data structures and topological sorting used by the evalulator.

Zest graph visualisation and layout algorithms.

Draw2D fast, component-based graphics framework, used to draw library visualisations.

The DNA Library Designer software stack is summarised in figure 8.1.

Figure 8.1: Dependencies of DNA Library Designer and its components. The diagram should be viewed as a stack
where each layer above is dependent on functionality provided by the layer below.

8.1.2 DNALD grammar implementation

The structure and syntax of Xtext DSLs are specified as a grammar using an Xtext DSL im-

plementing an extended Backus Naur Form (BNF) grammar. Xtext converts our grammar from

its grammar into an ANTLR (ANother Tool for Language Recognition) grammar, and ANTLR

generates a recursive-descent parser for DNALD. Figure 8.2 and those succeeding it visualise

the rules of the DNALD grammar using the conventional railroad iconography. The name of the

grammar rules are given to the left. Any path may be taken from left to right along the lines of

railroad to achieve a successful parse. Attributes which delegate to other rules are highlighted

in grey, keywords or symbols are shown in white boxes.

DNALD expression subgrammar

ANTLR generates LL(*) parsers which cannot handle left-recursion, e.g.: Expression:

Expression Operator Expression | Term. DNALD expressions contain opera-

tors whose operands are expressions (section 6.2.2) which presented a problem: how to define

the grammar without left-recursion? The solution was to left-factor the grammar according
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Figure 8.2: Railroad diagram of the file/library structure from the DNALD grammar.
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Figure 8.3: Railroad diagram of the DNALD expression grammar.

to: http://blog.efftinge.de/2010/08/parsing-expressions-with-xtext.html, so that each expression

delegates to a higher priority expression or a terminal but never a lower priority expression which

would create recursion. The top level expression Expression can however be reused as an

attribute of a subexpression. Figure 8.4 shows a railroad diagram of the current left-factored

DNALD expression grammar.

Terminals Figure 8.4 shows the terminals of the DNALD grammar to which allow expres-

sions must eventually delegate. AbstractTerminal groups the terminals as a bridge from

the expression grammar. Note that the terminal ParenthesizedExpression contains an

Expression attribute which enables reuse of the expression grammar with increased priority,

effectively implementing the standard functionality of parentheses directly as a consequence of

the grammar.

http://blog.efftinge.de/2010/08/parsing-expressions-with-xtext.html
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Figure 8.4: Railroad diagram of terminals in the DNALD grammar.
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8.1.3 Parsing DNALD into Ecore models

Xtext uses the rules of the grammar to generate a metamodel of the language comprised of a

Java interface and an implementing class for each rule. Parsing a DNALD file creates an abstract

syntax tree (AST) that Xtext walks to populate a Ecore model, conforming to the metamodel,

with instances of the rule objects containing the parsed data. Cross-linking between objects,

such as when a DNALD expression references another definition, are also established at this

point. We interact with the parsed model instance through its metamodel API when we are

performing validation checks and evaluating the DNA library design.

To integrate with Eclipse, Xtext registers the .dnald file extension with the EMF registry used

by Eclipse to determine which editor to open different file types with, in this case an Xtext-

generated editor. Parsing happens transparently as the files are edited and syntax errors are

handed to the validator. For testing and access to the parser outside Eclipse, e.g. for a command

line evalulator, it is necessary to inject an IResourceSetProvider which refers to the

EMF registry and provides an IResourceSet that loads and parses DNALD files, returning

the parsed Ecore model.

The Ecore model is used by the validator for first pass semantic validation and as the input to

the evaluator, whose output is the evaluated DNALD or datamodel (discussed in section 8.1.5).

8.1.4 Validation

Syntactic validation of DNALD files is managed by Xtext because it can be determined from the

grammar (described above). Customisations to provide less generic and more informative error

messages are achieved by implementing the ISyntaxError MessageProvider interface

and registering the implementation with the Guice injector through DNALDRuntimeModule

class. Our implementation translates, for instance, the message “no viable alternative at input

’}”’ into “library must contain an outputs section” when it can be sure that was the cause.

Semantic validation occurs twice: once when the DNALD is parsed into an Ecore model and

again when it has been evaluated because more information is available. Semantic validation

of parsed DNALD models occurs in our Guice injected (Xtend) DNALDValidator subclass

of the Xtext generated DNALDJavaValidator class. @Check annotated methods are called

automatically with appropriate model objects by Xtext when we evaluate the DNALD resource

or it is edited in the GUI. At this point we check for out-of-range indices, invalid nucleotide

codes, duplicated codons and uncomputable codon usages. Errors and warnings are logged and

reported in the GUI as described in section 7.2.

DNALDValidator is itself injected with a DNALDResourceScopeCache singleton that

it shares with the evaluator. This cache is updated with the evaluated object after a successful
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evaluation. A subset of @Check annotated methods in the validator fail-fast if there is no

evaluated object for the model object in the cache. When there is an evaluated object these check

methods implement the reporting of errors which were created in the evaluator as a result of

semantic errors in the parsed model. For example, if the DNALD library is not a directed acyclic

graph (see section 6.2.2) this reraises errors such as “Expression creates cyclic dependency:

A -> B -> C -> A” for each definition in the cycle.

During the second round we also test assertions of the form name := expression (is

assertion)*, where each assertion is also an expression that evaluates to a sequence

set. The assertion is true if the sets are equal (the set of sequences of the members regardless

of fragment composition are equal). For example in the definition x := ’ac’ ’gt’ is

’acgt’ is ’acg’ the first assertion, that the concatenation of AC and GT is ACGT, is

true, but the second is false. False assertions raise the warning “Evaluation does not match

assertion” on the defining expression.

8.1.5 Evaluating DNALDs to DNA libraries

Before discussing how parsed models of DNALD files and the expressions within are evaluated

it is important to understand how we model sequences in our implementation of DNALD. The

key feature of our implementation is that it tracks the origin of sequence fragments throughout

the DNA library.

Sequence data model

We model sequences as concatenations of sequence fragments. More precisely, instances of

DNALDSequence (sequence) hold a list of

DNALDSequenceFragmentReference instances (references). Each

DNALDSequenceFragmentReference points to a DNALDSequenceFragment (frag-

ment) and specifies a subsequence of that fragment with start and stop indices ranging from 1 to

the length of the fragment. The DNA sequence of a DNALDSequence is the concatenation of

the fragment subsequences specified by its references in the order they appear in the list.

Given the two DNALD definitions below:

x := ’ACGT’

y := x[2:3=’GC’]

the expression of x creates a new DNALDSequenceFragment X with the 4 nucleotide long

sequence ACGT, but evaluates to a DNALDSequencewith a single DNALDSequenceFragmentReference

specifying the whole sequence of X , which we can write a X [1 : 4]. The expression of y creates

a new
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DNALDSequenceFragment Y with sequence GC. In our sequence model y evaluates to a

DNALDSequencewith three DNALDSequenceFragmentReferences X [1],Y [1 : 2],X [4]

because the y mutates x replacing CG with GC but leaves A and T intact.

Our sequence model captures the interrelatedness of the sequences which will be manufactured,

enabling the library designer to trace the propagation of sequences through the library and giving

the library manufacture a head start in designing primers to extract and join subsequences of

various fragments (assuming that the library design is relatively optimal in terms of sequence

reuse).

This scheme is relatively impervious to poor library design. Copy-and-pasting the same, per-

haps complex, expression several times, instead of creating and reusing an intermediate defined

by that expression, will still result in sequences containing references to the original fragments.

Sequence reuse can be artificially limited however, when the same or potentially derivable se-

quences are repeatedly stated and not referenced. The current implementation does not cache

identical fragments (which would require linking the evaluated objects more tightly to the re-

source which defined them), or automatically refactoring/editing definitions to make optimal

use of previously stated fragments, which is more challenging still. A suitable compromise

would be a quick fix that suggests potential refactorings as this would alert the designer to the

possibility of improved sequence reuse and potentially unforeseen symmetries in their library.

Sequence sets and fluent APIs

The language specifiction of DNALD (section 6.2.2) mandates that all operations return se-

quence sets. In our implementation of the DNALD datamodel DNALDSequenceSet not only

collects sequences but is responsible for performing most of the languages operations on its

members. The DNALDSequence class is designed so that it exposes methods that mirror the

operations of the DNALD language pertaining to sequences (subsequence slicing, mutation, rep-

etition, reverse and complement) and implements these in terms of the DNALDSequenceFragmentReferences

that compose it. The DNALDSequenceSet class is designed so that it too exposes meth-

ods that mirror language operations, implementing those that pertaining to sets and delegating

those that do not every member sequence. Importantly, none of these methods change the

state of their object or those within, returning only new altered copies. These classes are

immutable with the concommitant benefits of thread safety and thereby amenability to

parallelisation.

The main methods of DNALDSequenceSet fluent API are:

slice delegates slicing to each DNALDSequence in turn. These return a new DNALDSequence

of a deep-copied and truncated list of references to fragments, with the start and stop



168 CHAPTER 8. SOFTWARE ENGINEERING

indices of the 5’ and 3’ terminating fragments adjusted as necessary, are gathered

into a new DNALDSequenceSet and returned.

mutate as for slice above, but the returning DNALDSequences have altered fragment ref-

erences that are interspersed with those of belonging to each sequence in the muta-

tion set.

repeat integer repetitions result in a new union where each sequence is composed of the

concatenation of its input sequence’s sequence fragment references, repeated n

times (the number of repetitions). Variable length repetitions with lower and up-

per integer bounds on n, follow the same procedure for each possible value of n,

but return a choice of those sequences in the set.

concatenation creates a new sequence for each sequence in the left hand set by con-

catenating the fragment references of that sequence to every member of the right

hand set (the Cartesian product). It calls, with a list of just left and right, a more

general method that passes any number of DNALDSequenceSets to Guava’s

Sets.cartesianProduct to produce every possible list that can be formed

by choosing one element from each of the given sets in order, and concatenates the

fragment references of all the sequences in each list to create a new DNALDSequenceSet.

union, intersection, difference and symmetricDifference delegate to their name-

sakes in the Google Guava’s Sets helper class too. Guava’s implementations of

these, cartesianProduct above and other data structures like ImmutableSet

are extremely well tested, performant and memory efficient, which improves the ro-

bustness of our DNALD implementation.

Shifting the computation of sequence and sequence set composition to methods on their imple-

menting classes has a number of benefits. Primarily, it means that code resides where it is most

relevant: evaluator code that is concerned with evaluating the meaning of parsed expressions

belongs in the evaluator not in the sequence model. Secondly, the sequence composition code is

more testable without the boilerplate necessary to create and invoking an evaluator on a string

of DNALD, improving understandability. Lastly and importantly, it constitutes a fluent inter-

face which both we as test writers and other programmers can utilise to perform traceable (via

fragment references) manipulations on sets of DNA sequences.

Evaluation strategy

A standalone static method accepts an array of DNALDs and creates an evaluator which is then

used repeatedly to evaluate each DNALD, populating an array of EvaluatedDNALD instances

to return.
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The evaluation of an individual DNALD proceeds as follows:

1. The contents (text) of the DNALD is parsed, yielding a Ecore model containing zero or

more codon table definitions and one or more library designs (as a tree of EObjects,

the types of which correspond to grammar rules). Syntactic errors are discovered but not

immediately reported.

2. The semantic model is traversed to ensure that links between models objects which are

lazily resolved in Xtext are fully resolved.

3. The resource containing the semantic model is then validated to obtain a list of issues:

syntactic, linking and pre-evaluation semantic errors such as erroneous indices in subse-

quence operations and, crucially, cyclic dependencies between definitions (section 6.2.2

explains why), any of which will cause the evaluation to abort gracefully.2

4. An evaluation context is created which will hold the values computed from the expres-

sions and assigned to a name by each definition. The context is initially populated with

the default codon table from E. coli K12 shown in listing 6.4.

5. From this point onwards each model object, starting with the root, is evaluated in the cur-

rent context by polymorphic dispatch to the relevant, type-checked evaluate method3.

All Expression objects evaluate to a

DNALDSequenceSet while other objects evaluate to corresponding evaluated version

of their parsed form. If the object being evaluated has a name (i.e. it is a codon table, a

library or a definition), the evaluate method updates the context by binding its result to

name before returning that result to the caller.

– The root object evaluates each codon table and library, adding the resulting objects to the

EvaluatedDNALD it returns.

– Each CodonTable evaluates to a CodonUsageTable which computes the probabili-

ties of each codon encoding a particular amino acid and derives mappings for translation

and back-translation.

– Each Library evaluates to an EvaluatedLibrary, populating sets of evaluated in-

puts, intermediates and outputs with the results of the evaluating each of the definitions it

2It is possible however, to prune definitions with errors (in cycles or otherwise) and those that depend on them,
before proceeding to evaluate the remainder. This is only relevant when the DNALD is being edited in DNA Library
Designer, because it enables issues identified by post-evaluation semantic validation of these to be reported to the
user, even though errors exist elsewhere.

3Xtend’s dispatch methods (http://www.eclipse.org/xtend/documentation/index.html#
polymorphicDispatch) obviate the need for the quite invasive visitor pattern.

http://www.eclipse.org/xtend/documentation/index.html##polymorphicDispatch
http://www.eclipse.org/xtend/documentation/index.html##polymorphicDispatch
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contains. Prior to evaluating the definitions, all definitions with errors are pruned from a

copy of the library’s dependency graph, along with any dependent definitions recursively.

The remaining valid definitions are evaluated in topological sorted order using JGraphT’s

TopologicalOrderIterator which uses Tarjan’s algorithm [257].

– Each Definition evaluates to the DNALDSequenceSetwhich results from evaluat-

ing its expression.

– Sequence expressions evaluate to a DNALDSequenceSet containing one DNALDSequence

that is comprised of one DNALDSequenceFragmentReference pointing to full se-

quence of a newly created DNALDSequenceFragment.

– Names evaluate to the value of their name in the current context.

– AminoAcidLiterals and AminoAcidReferences evaluate to the choice of codons

defined by the three letter code of the amino acid in the default or a named codon table

respectively.

– Subsequence and Mutation expressions both switch on the various combinations

of parameters (whether only a single index was specified, or if not whether a stop index

or the end keyword was given) and call the appropriate slice or mutate method on

the DNALDSequenceSet with, in the case of a Mutation, the result of evaluating its

mutation expression. As usual a new DNALDSequenceSet is returned.

– The other expression types, mainly concatenation and set operatons, devolve the actually

implementation of evaluation to methods of the DNALDSequenceSet resulting from

evaluation of their input expression.

The previous two chapters detailed the design and implemented functionality of DNA Library

Designer. The first half of this unevenly split chapter summarised the core contribution of the

language implementation and software engineering done in the CADMAD project. We now

present a short discussion of some software engineering notes that will hopefully be of use to

future developers of the Infobiotics Workbench, last seen in Chapter 5.

8.2 The Infobiotics Workbench

8.2.1 Software stack

The Infobiotics Workbench software stack, including those of the experiment executables and

the Dashboard, are summarised in figure 8.5. The functionality the direct dependencies provide

for our software are:
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Figure 8.5: The Infobiotics Workbench software stack. The diagram should be viewed as a stack where
each layer above is dependent on functionality provided by the layer below. At the bottom are the
programming languages the tools above are written in. The Infobiotics Workbench and the Infobiotics
Dashboard are mutually dependent as the Workbench contains the experimental executables needed by
the Dashboard and the Dashboard is the GUI of the Workbench. This is shown by the entwined blue and
green areas.

PRISM and MC2 probabilistic and simulative model checkers, simply executed with appro-

priate command line arguments, as specified in the (Dashboard generated) .params file,

by PMODELCHECKER using the C++ stdlib system function.

libxml2, libxml++ reading and writing P system XML files (libxml2 is also a dependency of

libSBML).

libSBML reading MCSS-SBML files into Infobiotics experiments

Boost Spirit implementing Domain Specific Embedded Languages (DSELs) grammars, from

which parser objects can be generated for the human-writable LPP system, SP system,

lattice and module library data formats (see section 4.3.3 on page 78 for example file

listings). The LPP parser was written by Dr. Francisco Romero-Campero.

GSL the GNU Scientific Library [240] provides extensively tested functions which LIBECSB

uses for random number generation, MCSS for fast logarithms, ODE solvers and dis-

tributions, and MCSS-POSTPROCESS for the function Tcdfinv used to calculate the

confidence interval of the standard deviation of the sample (number of simulation runs)

at each simulation logging interval. GSL is licensed under the GNU Public License4.

4Due to the “copyleft” provision of the GNU Public License (GPL) all software that uses it, including the Infobi-
otics Workbench, must also be released under the GPL, recursively.
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http://www.gnu.org/software/gsl/

libHDF5 1.8 high-performance, hierarchial data storage format used by MCSS to write simula-

tion output that is read by mcss-postprocess and the Dashboard (see PyTables below).

PyTables to retrieve simulation data from HDF5 on demand. PyTables combines HDF5, Python,

NumPy and Cython, providing extremely simple and fast programmatic access to data

stored in HDF5 arrays.

liblzo used by libhdf5 and PyTables as a compression filter. Compression is turned on and

set to the maximum level by default, as the time spent writing large datasets to disk is

generally greater than the time spent compressing, actually boosting performance. 50x

compression is often achieved, due to MCSS storing the quantities of all species at each

logging interval, when it can be the case that many do not change between timepoints,

particularly in large models, making the datasets particularly amenable to compression.

NumPy is the fundamental package for working with arrays in Python. It is used by the Dash-

board primarily to compose high-dimensional arrays of simulation and model checking

results, and to perform statistics along their axes. Together with its extension SciPy,

NumPy fulfills most of the same functionality of GSL but for Python rather than C++.

Quantities unit conversion (time, lengths, volumes) and amounts scaling of species quantities

in the Dashboard. On top of Quantities default units, we defined molecules mole and

molar UnitQuantity objects.

http://packages.python.org/quantities/user/tutorial.html

Matplotlib [245] 2D plotting of timeseries and histograms (section 5.2).

pexpect running and communicating with Infobiotics experiment executables under POSIX.

pexpect made it possible to report the progress of experiments to the user when all else

failed. Unfortunately none of the existing Windows ports could be made to work. http:

//www.noah.org/wiki/pexpect

Qt4 and PyQt design and implementation of the simulation results and surface comparison

interfaces.

Mayavi, TVTK and VTK 3D plotting of colony-level surface plotting and PRISM results in-

terfaces. Mayavi [246] is also based on Traits.

Traits, Traits UI and Envisage validating experiment parameter classes; timeseries, surface

and histogram datamodels; Workbench UI.

http://docs.enthought.com/traits/traits_user_manual/

http://www.gnu.org/software/gsl/
http://packages.python.org/quantities/user/tutorial.html
http://www.noah.org/wiki/pexpect
http://www.noah.org/wiki/pexpect
http://docs.enthought.com/traits/traits_user_manual/
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8.2.2 Experiment parameter classes of the Infobiotics Dashboard

The primary role of the Dashboard is as a container in which the various Infobiotics experiments

can be presented as an integrated software suite. This is achieved by reusing as many of the GUI

patterns as possible between components interfaces, while still using appropriate customisations

when necessary. For example, the loading, saving and performing subinterfaces are common to

all experiments. Experiment progress is interpreted and reported similarly. The results interfaces

differ because they are tailored to the data but still complex subinterfaces such as 2D and 3D

plotting widgets are also shared. The overall intention is to create a sense of unification

when in fact the underlying implementation is fairly heterogeneous. A case in point was

experiment parameter handling.

The executables implementing Infobiotics experiments are parameterised via XML format pa-

rameters files with the extension .params or .xml (figure 8.6 shows an MCSS parameters file).

Importantly, this decoupling of experiment parameters from models and the analysis of exper-

imental results enhances the reproducibility of in silico experimentation by allowing multiple

sets of experimental parameters to be used with each model and shared between experimenters.

Within a parameters file each parameter element has a name and value attribute. Each ex-

periment executable parses the parameters file using an object of a C++ class generated by the

make-parameter-class executable of LIBECSB from a parameters template file such as

mcss-parameters-template.xml (figure 8.7). As well as making the generation of pa-

rameter parsing simple to update for the different experiments, it was expected that this would

be enough information from which to generate the parameter setting interfaces in the GUI.

Generative Qt4/C++ prototype The initial Qt4/C++ experiment parameterisation interface

of the Infobiotics Workbench was generated from parameter-template files such as the one

shown in figure 8.7 that are used by all of the Infobiotics experiment components written in C++

(MCSS, PMODELCHECKER and POPTIMIZER) for their own code generation of parameter han-

dling classes. It was assumed that by using the same data (in the parameter-template.xml files)

to generate both the command line and graphical user interfaces for experiment parameterisa-

tion that the interfaces could be easily kept in sync as the capabilities of individuals components

changed.

Rather than perform an offline code generation step to obtain the GUI interface an online ap-

proach was taken where parameter-template files distributed with the program were read in at

runtime and created the interface on-the-fly. The intention was to eventually create an inter-

face system that would be capable of dynamically adapting to changes in the values of pa-

rameters, to hide or reveal certain parameters whether or not they depended on the values of

others, as a means of reducing the complexity of the experiments. In this schema each type
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Figure 8.6: Example parameter file for a simulation experiment.
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Figure 8.7: An example parameters template file used to generate a parameters class for each Infobiotics experiment.
Each parameter element in the template file contains an extra attribute type which defines the C++ data type a
parameter of that name will set the value for. The value attribute contains either a default value or a set of possible
values for an enum type delimited with an ’|’ character. Optional upper and lower bound attributes for numeric types
and a description attribute may also be specified.
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Figure 8.8: Generated parameterisation interface for model checking experiments using the Qt4/C++ implementa-
tion that was later shelved.

of parameter generates one of the several possible widgets that could be used to interact with

that type. Classes for each parameter type were created that could be constructed with values

and constraints given in the parameter element’s attributes. Names were treated separately to

create the aesthetically pleasing two-column arrangement shown in figure 8.8. Description at-

tributes were converted into tooltips (not shown). Specialization was achieved by mapping a

combination of parameter template filenames, parameter and parameterSet XML ele-

ment name attribute values, parameter names or types to custom widget implementations. For

example, the Property Builder button (shown in figure 8.8) was implemented by extending the

FileParameterWidget class with a special case for parameters of type file named ’tempo-

ral_formulas’.

Despite successfully coding the working prototype in figure 8.8, it quickly became clear that

this was not a suitable strategy for constructing the experiment parameterisation GUIs. Es-
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sentially, the information contained in the template files is insufficient to enable generation of

a high-quality, dynamic interface that reflected the semantics behind the choice of parameter

values, the main reason for producing such an interface. Several problems were identified. Mu-

tual exclusivity of certain parameters depending on the mode of operation of the experimental

component cannot be captured in the template file format as it was . Additionally, the lack of

structure in the XML format (other than the order of parameters in the template) means that

related parameters cannot be grouped to better highlight the existing synergy. The ordering of

parameter elements in the XML was used to order the parameter widgets in the generated inter-

face. These were wrapped in a scrollable widget to ensure that the dialog did not become too tall

for the screen. Beyond constraining numeric parameters with maximum and minimum values

or presenting choices in a combo box, the semantic validation of parameter values is impossible

because the generation process itself is not governed by a model of each experiments operation.

Users of a GUI dialog expect it to provide only a set of valid options, so that when they eventu-

ally click ’OK’ (or ’Run’ in this case) they know that the choices they have made are really OK,

if this is not true then the user experience is deeply unsatisfactory and people will quick tire of

using the software [258].

It is interesting to note that none of these issues are problematic for a generated command line

interface. On the command line irrelevant parameters can simply be ignored by the program,

although it would be better to provide feedback explaining this. Parameters can be given in the

order the user prefers, meaning they can impose their own understanding of the semantics of the

parameter set. Most saliently, the user expects the program to exit early if they pass it an invalid

parameter value, and hopefully they will receive an explanation for the failure. This very much

contrasts with the expectations users have of a graphical user interface.

Python/Traits-based solution Adding the validation layer in the generative approach was

considered to be outside the remit of the project. We decided to switch to a hard-coded ap-

proach and identified a framework, Enthought Traits for Python, that had the necessary features

to enable a dynamic, validating GUI. The general aesthetic can be seen in figure 5.6, which

shows the input parameters of a simulation experiment and the progress of a running simula-

tion, conducted within the main interface of the Dashboard.

Traits are typed-attributes of Python objects that provide the following advantages:

1. Initialisation: default values, static when known in advance, dynamic when dependent

on other traits or object attributes - used to manage dependent and mutually exclusive

parameter combinations.
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2. Validation: type-checking (for a dynamically typed language) and value-checking at the

point of attribute setting. Invalid values are highlighted red, a tooltip displays the reason

and experiments with invalid parameters are prevented from performing.

3. Notification: setting a traits value triggers events which can be statically or dynamically

linked to other traited objects including visualisations so that they are automatically up-

dated. This feature was used extensively to synchronise parameters, sometimes across

GUIs.

4. GUI generation via TraitsUI: typed-attributes have default editors, e.g. combo boxes

for enumerations, sliders for ranges, open dialogs for files, which are used to create a

graphical interface for manipulating traited objects. Multiple views and handlers can be

specified for the same objects and so a variety of interfaces appropriate to the situation can

used. We made full use of the various of handlers to create the most effective interfaces

possible for each experiments parameter set. Custom trait handlers were even written

for files with relative paths (not handled by the framework) that could validate whether a

directory was writable or not.

These features together enable a style of programming known as Reactive Programming which

results in clear, readable classes that integrate well into larger applications like the Dashboard.

Furthermore Traits provided the impetus to switch development language from C++ to Python,

which meant a lot of useful language features and libraries suddenly became available (PyTa-

bles, NumPy, Matplotlib, MayaVi) without which the analysis portion of the Infobiotics Work-

bench would not have been possible to produce within the duration of this project.

8.2.3 Handling simulation results with the McssResults class

The McssResults class provides a programmatic interface to the HDF5 output files produced

by MCSS. In the Infobiotics Dashboard the main user of McssResults is the McssResultsWidget

class which essentially provides a graphical wrapper around most of the simulation data extrac-

tion functions, and then uses that data to populate the various plotting interfaces it provides.

Objects of McssResults are stateful, meaning selection of units, species, compartments, runs

and timepoints are held and reused by various calls to methods returning either raw data species

amounts or compartment volumes data as NumPy arrays or Traits-based objects for timeseries,

surfaces or histograms.

A feature of McssResults that is not fully exploited by the Dashboard GUI is the ability to ap-

ply any functions over all or some of the simulation runs through the functions_of_amounts_over_runs

method. The simulation results interface only uses this method to compute the mean and stan-

dard deviations of amounts over runs. When it does the runs dimension of the amounts array
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(as extracted from the simulation data file in the previous section) is replaced with a functions

dimension, so that 1000s of runs are replaced by the 2 statistics of the amounts of each selected

species in each selected compartment at each (evenly spaced) selected timepoint. Developers in-

terested in adding functionality to the Infobiotics Workbench and working with very large mod-

els should consider starting by exploiting the latent power of functions_of_amounts_over_runs

through Python code or a live iPython session. The remainder of this section describes the im-

plementation of the method for those that may follow after. Listings 8.1 and 8.2 contain the

code of split over two pages.

functions_of_amounts_over_runs proceeds by attempting to create an empty f unctions ×
species × compartments × timepoints array in which to put the results, exiting with a warning

(via a popup or print to stdout depending on whether the McssResults instance has a par-

ent widget or not) if the array is too large to allocate in memory. Ideally all of the data needed

to compute the results could then be loaded into memory and the given reduce functions applied

along the runs axis to populate the results. However, in the case where many datapoints are

selected, or many functions specified, the size of the allocated array can be very large, limiting

the amount of memory available into which to load the simulation data from disk. To handle

this situation we implemented a chunking algorithm that takes advantage of the independence

of the non-run axes by splitting the input data into manageable chunks along the timepoints axis

and processing chunks one at a time to populate the results array.

A reasonable chunk_size is determined by repeatedly attempting the allocate a buffer ar-

ray of size f unctions × species × compartments × chunk_size (initially the total number

of timepoints), catching the MemoryError exception raised if unsuccessful and repeating with

the floor of chunk_size divided by 2, either until the allocation of buffer is successful

or chunk_size = 0 (meaning an array of size functions x species x compartments (x 1) was too

large to fit into memory, in which case the function suggests to the caller that they reduce the

size of the datapoints selection in the same manner as before).

Next, the number of selected timepoints is floor divided by chunk_size to obtain the quo-

tient; the number of times the buffer array can be fully filled with amounts data. The number

of selected timepoints modulo the chunk_size is used to obtain the remainder: the size of

the timepoints axis for a smaller buffer array. A parameterised inner function iteration is

defined that extracts variable sized portion of the selected data into buffer using the private

method _extract_amounts and fills the appropriate portion of the results array by ap-

plying each statistical function to buffer along the runs axis. iteration is then called the

quotient number of times with chunk_size, updating the starting point for the next extraction af-

ter each. If remainder > 0 a smaller buffer array is allocated and used in the call to iteration with

remainder instead of chunk_size. Finally the array of calculated statistics over runs is returned.
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1 def functions_of_amounts_over_runs(self, functions,
quantities_display_type=None, quantities_display_units=None,
volume=None, **ignored_kwargs):

'''Returns a 4D array of floats with the shape (functions, species,
compartments, timepoint).

5 '''
import types
if type(functions) in (types.FunctionType, types.LambdaType):

functions = (functions,)
results = self._allocate_array(# outputs error message if anything

goes wrong
10 (

len(functions),
len(self.species_indices),
len(self.compartment_indices),
len(self.timepoints)

15 ),
'Could not allocate memory for functions.\n' \
'Try selecting fewer functions, a shorter time window or a

bigger time interval multipler.'
)
if results is None:

20 return

# create biggest possible buffer
chunk_size = len(self.timepoints)
buffer = None

25 while buffer == None:
try:

buffer = np.zeros(
(

len(self.run_indices),
30 len(self.species_indices),

len(self.compartment_indices),
chunk_size,

),
self.type

35 )
except MemoryError:

if chunk_size == 0:
if self.parent is not None:

message = 'Could not allocate memory for chunk.\nTry
selecting fewer runs, a shorter time window or a
bigger time interval multipler.'

40 QMessageBox.warning(self.parent, QString('Out of
memory'), QString(message))

else:
print message
return

# progressively halve chunk_size until buffer fits into
memory

45 chunk_size = chunk_size // 2
buffer = None
continue

h5 = tables.openFile(self.filename)

Listing 8.1: McssResults.functions_of_amounts_over_runs
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1

def iteration(chunk_size=chunk_size, buffer=buffer,
quantities_display_units=quantities_display_units):
'''Fills buffer with amounts for all runs and updates results

with outcome of functions applied to runs.'''
self.amounts_chunk_stop = amounts_chunk_start + (chunk_size *

self.step)
5 self._extract_amounts(h5, buffer, amounts_chunk_start,

self.amounts_chunk_stop)
buffer, quantities_display_units =

self.convert_amounts_quantities(Quantity(buffer,
substance_units[self.quantities_data_units]),
quantities_display_type, quantities_display_units, volume)

self.stat_chunk_stop = stat_chunk_start + chunk_size
for fi, f in enumerate(functions):

stat = results[fi] # stat is a 'view' on results so change
stat changes results

10 stat[:, :, stat_chunk_start:self.stat_chunk_stop] =
f(buffer, axis=0) # axis 0 is runs

return quantities_display_units

amounts_chunk_start = self.start
stat_chunk_start = 0

15 # for each whole chunk
quotient = len(self.timepoints) // chunk_size
for _ in range(quotient):

quantities_display_units = iteration()#chunk_size, buffer)
amounts_chunk_start = self.amounts_chunk_stop

20 stat_chunk_start = self.stat_chunk_stop

# and the remaining timepoints
remainder = len(self.timepoints) % chunk_size
if remainder > 0:

25 buffer = np.zeros(
(

len(self.run_indices),
len(self.species_indices),
len(self.compartment_indices),

30 chunk_size,
),
self.type

)
quantities_display_units = iteration(remainder, buffer)

35

h5.close()

results = Quantity(results, quantities_display_units)
return results
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1 sum = lambda array, axis: np.sum(array, axis, dtype=dtypedefault)

var = lambda array, axis: Quantity(np.var(array.magnitude, axis, ddof=1,
dtype=dtypedefault), array.units) if isinstance(array, Quantity) else
np.var(array, axis, ddof=1, dtype=dtypedefault)

Listing 8.2: NumPy reduce functions used by functions_of_amounts_over_runs.

Listing 8.2 shows Python lambdas wrapping NumPy reduce functions5, that are members of

the mcss_results Python module, which demonstrate the form the input functions should take

in order by cope with the quantities conversions. The functions have been wrapped in lambda

functions in order to a) work around the Quantity object methods std and var not having a ddof

(degree of freedom) parameter, and b) set ddof parameter to 1 (standard deviation or variance of

the sample, as opposed to 0, the standard deviation or variance of the population, which is the

default).

To reemphasise, functions_of_amounts_over_runs is a vital algorithm for our soft-

ware. It allows us to obtain statistics over all simulation runs for a large number of model entities

and timepoints, with unit conversion and volume fluctuations. Each of the timeseries, histogram

and surface plotting features of the simulation results interface depend on it for their efficient

operation.

In this chapter we have touched on some of the software engineering highlights of this work:

our DNALD implementation and two central pillars of the Infobiotics Dashboard. The unifying

themes were building on the best available libraries to create good, reliable programs that do

something original, putting functionality where it can have the most benefit, and exposing that

functionality through programmer friendly APIs. In the final chapter we restate the motivation

for this research, summarise and evaluates the contributions, report ongoing refinements and

suggests future directions.

5Reduce functions are universal functions (ufuncs) supporting broadcasting and type casting which operate
on NumPy N-dimensional array objects (ndarrays) in an element-by-element fashion, applying a function across
one axis of the array and returning an array with one fewer dimensions in which each item is the result of the
functionhttp://docs.scipy.org/doc/numpy/reference/ufuncs.html

http://docs.scipy.org/doc/numpy/reference/ufuncs.html


Chapter 9

Conclusions and future directions

Chapter abstract
This chapter restates the motivations for the research, summarises and evaluates the contributions, reports ongoing
refinements and suggests future directions.

9.1 Restatement of motivations

Biology, medicine and the pharmaceutical industry are adopting mathematical and new compu-

tational tools to analyse and integrate this data into dynamic models that can recreate normal

and pathological states, and thereby suggest mechanisms and circumstances in which these are

reached. Synthetic biology uses the same tools to design engineered bacteria that can accom-

plish novel functions, such as biosynthesis of valuable substances, intelligent drug release and

larger scale assemblage of matter. Compiling these in silico representations into real biolog-

ical entities requires editing the genomes of cells to insert DNA encoding novel or adjusted

functions. Improving the tools on which the future progress of these fields rests is therefore of

paramount importance today.

Working at the right level of abstraction is crucial to any modelling endeavour and this is espe-

cially true for systems as integrated, fault-tolerant and non-deterministic as those found in biol-

ogy. Because cells and cellular populations are subject to and exploit stochasticity, we are, to

some extent, forced to work at both the level of individual reactions involving genetic regulation

and at the population level where communication between cells via small molecules mediates

and is mediated by population genetics. Additional uncertainty exists at the level of the biolo-

gists comprehension of the system being modelled. Each unknown presents another degree of

freedom, defining a space of models and their encodings. Only with a suitably generic approach

and application-agnostic facilities for representing and reusing recurrent organisational patterns

can we overcome the combinatorially explosive descriptions of increasingly complex systems.
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9.2 Overview and contributions

The research presented in this dissertation has attempted to affect the expansion of two computer-

aided methodologies in synthetic systems biology:

– modelling of cellular systems at the level of molecular interactions, from single cells to

large multicellular systems;

– specification of DNA constructs needed to validate model-driven hypotheses and imple-

ment synthetic biological designs, from single sequences to large combinatorial DNA

libraries.

We took the constructive approach of developing conceptual and software frameworks that rei-

fied the problems in order to uncover and overcome the theoretical and technical issues the scal-

ing up of these processes raises. The key issue faced for both expansions was how to achieve

scalability of specification from a single instance, cell or sequence, to very many instances with a

high-degree of overlap between instances. This issue demanded a satisfactory and generic solu-

tions to ensure the longevity of our software by not precluding unexpected usages. The solutions

we developed involved the creation of modular languages for multicellular models and DNA li-

braries, where larger application-specific subcomponents are constructed from smaller reusable

subcomponents. Effective tools for processing these languages into computational representa-

tions of the systems they were being used to model, and computing with those representations

to produce useful results was another major effort.

We developed and delivered the Infobiotics Workbench, a software package for performing in

silico experiments on Lattice Population P system models (described in chapter 4). Those exper-

iments are: deterministic and stochastic simulation; exact, approximate and simulative model

checking; parameter and model structure optimisation (discussed in detail in chapter 5). The

experiments are conducted via the Infobiotics Dashboard which provides sophisticated, easy to

use and consistent parameterisation, progress reporting and analysis interfaces (the design and

development of the which is covered in chapter 8).

Our modelling framework provides a mesoscopic, continuous-time and discrete-quantitative

rule-based formalism for spatially-discrete models of multicellular systems. Definitions of in-

dividual P systems with a hierarchical compartment structure representing either single cell,

intracellular domains or subpopulations of cells, with rulesets that might include library mod-

ules, can be distributed on a regular lattice to model systems where spatial interactions determine

system dynamics, grounded in stochastic chemical kinetics. This approach was underpinned by

the ongoing biological investigations described in chapter 1 and the literature on mathematical

and executable biology reviewed in chapters 2 and 3.
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We extended stochastic P systems to include the concept of a module of rules, allowing decom-

position of large rulesets into meaningful and composable units. These modules of rules may

be parameterised, with the values of species, rate constants and compartments only partially-

specified, and can therefore be made independent of a specific system, stored in libraries and

reused in multiple models, improving consistency and speeding up model development.

Fully abstract modules capture just the structure of a reaction network, communicating the roles

of species involved through the choice of parameter names. These are simple sets of related

biochemical interactions such as gene regulatory motifs, modelled at a certain level of detail.

Fully-specified modules capture well-characterised systems where all interactions and rates are

known, which can be reused as off-the-shelf components in synthetic biological circuits.

Our initial SBML implementation of the new formalism enabled models with many compart-

ments to be specified, visually using CellDesigner, without the need to replicate reaction net-

works for each instance of the same cell type, by defining modules as SBML compartments with

reaction networks with all species and rate constants set (i.e. fully parameterised, a limitation

of SBML). Different, related cell types can be defined by mixing in modules via compartment

names. This format bootstrapped the design of our simulator and its HDF5 output data model,

on which the simulation results plotting interfaces were built.

Our own XML format provided a more direct mapping of the LPP formalism to a machine-

readable data structure without the conceptual constraints of SBML. The ability to specify

parameterised modules meant we could develop model structure optimisation algorithms that

recombined modules, rather than single reactions, for a more biologically plausible exploration

of model space. Additional attributes describing the potential range and scale of rate constants

support concomitant parameter optimisation.

Our latest DSL for LPP systems refined our XML format and made it human-writable, adding

the ability to associate DNA sequences with modules representing genetic elements or proteins

with known coding sequences, outputting concatenations of these sequences (when grouped in

a higher order module) in FASTA format.

All of our formats are accepted by the simulator and model checking components of the Info-

biotics Workbench, enabling multicellular systems to be specified succinctly using a variety of

tools, processed by the Workbench and analysed verbosely with the Dashboard’s visualisation

capabilities. Any combination of model variables can be plotted, with the software imposing

important constraints and leveraging these to setup plots correctly, in order to maximise the

information gain from expensive computational experiments.

DNALD and its implementation DNA Library Designer, which currently represent one years

work on a three year project, repeat the formula of designing and refining a language and its

supporting software concurrently. DNALD enables large sets of variant DNA sequences to be
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defined in a programmatic manner where operations corresponding to biological interventions

like splicing and mutation are applied to sequence sets to generate large combinatorial DNA

libraries.

9.3 Evaluation

The Infobiotics Workbench integrates the several researchers work, comprising a major software

engineering effort with independent and integrative code bases. Furthermore, each component,

the Dashboard in particular, builds on a large variety of third party libraries to deliver a more

capable product than would have been possible starting from scratch. Ensuring the distribution

of the software on multiple platforms, each with their own take on dependency management was

particularly challenging. Coordinating the communication between components on different

platforms was unexpectedly difficult also.

The processing of DNALD files and the resulting outputs is more tightly integrated than for

Infobiotics models and their experiments, due to this author being the only developer and opting

to develop solely within the Eclipse framework. Eclipse’s OSGi implementation effectively

solves the problem of adding discrete units of functionality as plugins/bundles, and reduced the

distribution effort by building itself with the appropriate plugins for each target platform.

Regarding the practical use of the new languages introduced in this research, one criticism that

can be made of the Infobiotics DSLs, which we sought to amend with DNA Library Designer for

DNALD, is that tooling for working with the language is poor. For example, a new user’s initial

interaction with the Infobiotics Workbench will begin by following the tutorial provided in the

Infobiotics documentation1 and adapting the examples using the simple code editor provided

by the Infobiotics Workbench. The editor does not offer ongoing visual clues such as syntax

highlighting of keywords or structural aids like code folding of subsections. In the current

implementation syntax checking occurs only when the model is consumed by an Infobiotics

experiment (simulation or model checking). If the parser encounters an invalid token it prints

to STDOUT the line number of the offending token which is caught by the Dashboard and used

to jump the editor to the line containing the error. If the model parses successfully it is still

possible that it is semantically incorrect: a species name might be misspelled in a rule so that it

does not appear in the alphabet; the upper bound of a range may be less than the lower bound.

All of these problems should be detected and reported together, ideally overlaid on the model

files being edited. However, the parser exits immediately when it encounters an error, so that

only a single error can be reported for each attempt at performing the experiment. This results in

a negative user experience of having to repeatedly perform the experiment only to discover that

1Tutorial Using the Infobiotics Modelling Language: http://www.infobiotic.org/tutorial/tutorial_1.html

http://www.infobiotic.org/tutorial/tutorial_1.html
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(a) Reporting a syntax error caused by missing out the
number of molecules of a species in the initial multiset
of a compartment.

(b) Reporting a linking error caused by a misspelled refer-
ence to boundaryCell. Code folding, shown by the 	
element, is also supported in the editor which understands
the metamodel of the model.

Figure 9.1: Screenshots of a prototype Xtext-based editor for Infobiotics DSLs, showing how the validation mech-
anism reports (a) syntactic errors when the input file does not conform to the grammar, and (b) linking errors when
references are made to undefined elements.

it has failed again but for a different reason. The accretion of these bad experiences ultimately

undermines confidence in the language and the software.

To create a first-class Infobiotics DSL editor we now are developing an Eclipse/Xtext-based edi-

tor, in the same vein as DNA Library Designer, which highlights syntax, validates semantics and

reports errors at design time. Figure 9.1 demonstrates the reporting of syntactic and referencing

errors in a prototype of this application.

With hindsight the Infobiotics Dashboard could have been developed from the ground up as

an Eclipse RCP application as this offers similar input validation benefits as the present Traits

framework (used for the parameterisation and results interfaces). In fact the Envisage and its

Workbench plugin is a lighter weight clone of the Eclipse and its Workbench plugin. Eclipse’s

project management capabilities, augmented with a distributed version control plugin such as

MercurialEclipse can provide an excellent platform for iterative model development and col-

laboration that was unfeasible to replicate in Dashboard using Envisage components. On the

other hand, Traits being Python and its validation mechanism being hooked directly into object

attributes radically simplifies the development of executable workflows based on Infobiotics

components as Python scripts, or even in the interactive interpreter like Matplotlib’s pylab and

Mayavi’s mlab.

Fortunately, because the Infobiotics software was designed according to the Polyvalent-Program

Pattern, a next-generation model editor that takes advantage of Xtext will not obsolete the ex-

isting implementations of either the Workbench’s experiments or their Dashboard interfaces.

It is possible to edit the models within an Eclipse application, then by invoking a Simulate

command, for example, have the main ibw executable open the appropriate experiment param-

eterisation GUI with the model parameter set automatically. Performing the experiment will
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show its progress and when finished load the results interface in turn. Nevertheless, the overall

look-and-feel of the application would be slightly compromised by the use of two GUI widget

frameworks with differing layout and interaction rules: Traits command buttons being at the

bottom of the dialog, the Dashboard interfaces floating outside the Eclipse window.

Our modelling approach is largely incompatible with other existing approaches and software

tools precisely because it incorporates features that are not and cannot be supported within

the current paradigm. Our software overcomes this deficit by integrating simulation, model

checking and optimisation methods for working with these models, with a helpful user inter-

face and informative visualisations. Nevertheless, forging connections between the Infobiotics

Workbench and upcoming model repositories [259] will be important for our work to remain

relevant; this would occur at the level of modules rather than models.

It must also be recognised that a large number of potentially important phenomena are not cap-

ture by our approach. Cells and multicellular systems have constantly changing morphologies,

they grow and divide subject to biophysical forces, diversifying under evolutionary pressure.

Fluctuating environmental temperature and pH can dramatically affect the molecular interac-

tions. Mechanisms for modelling the physical interventions of researchers are also important.

Neither do we address the problem of handling combinatorial complexes.

Over the course of this PhD research in systems and synthetic biology has boomed, launching a

new wave of modular biomodel specification languages and tools with facilities for handling and

validating genetic constructs in addition to reaction networks. These include Antimony [118],

TinkerCell [260, 261], littleb [262, 117] Genetic Engineering of Cells (GEC) [263], proto [264]

and GenoCAD [234, 265, 266]. They have developed in parallel to our own effort and each

other with the result that the field is becoming increasingly fragmented. While by introducing

yet another biological modelling approach we are to some extent contributing to this fragmen-

tation, it can also be viewed as a very active area of research to which an all encompassing

formulation has not been arrived at yet, and perhaps never will. As such this work represents a

step forward that highlights some solutions but also the outstanding problems of multi-scale bi-

ological modelling, which we hope will challenge and guide other practitioners in the field that

are developing increasingly comprehensive, modular and composable modelling formalisms.

9.4 Future directions

Expected uses of the fluent API provided by DNALD’s datamodel are: import functions and

export plugins that read and write established sequence and annotation file formats; constraint

checkers incorporating secondary structure prediction algorithms such as those provided by the

mFold and Vienna packages; additional visualizations of library designs; visual programming

interfaces; an interactive interpreter.
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The Synthetic Biology Open Language (SBOL), the recently published [267] standard for repre-

senting bioparts formalises the object model of a biopart as a simple recursive structure of anno-

tated sequences within sequences that captures genes, parts, devices and even genomes. SBOL

is gaining significant traction, as evidenced by its recent incorporation into Gene Designer, and

is it therefore important to establish its relationship with DNALD. SBOL’s datamodel inverts

DNALD’s datamodel, with sequence fragments derived from sequences rather than sequences

derived from sequence fragments. It should be possible to interconvert between these in order

to read and write SBOL with DNALD.

Linking Infobiotics models to DNALD (as a means to biomatter compilation) via the exported

FASTA files for operon LPP modules is also straightforward task but would not exploit DNALD’s

unique selling point of combinatorial library generation. Adding set operations to our model

definitions, in a manner analogous to DNALD, would enable families of related models to be

defined in a compact form, explicitly capturing uncertainties or alternative mechanisms at ex-

actly the junctions where those models diverge. Where those alternative submodels contain

DNA sequences, a proper DNALD library can be extracted. This combinatorial modelling ap-

proach could also provide another mechanism for model structure optimisation: either the space

of models could be well-defined by the modeller or the optimisation would produce this speci-

fication from parts libraries.

Summing up, the methods and tools we have introduced increase the scale of models, designs

and libraries of biological systems that can be created by researchers. We have bridged the

gap between abstract and concrete molecular networks, in single cells and in heterogeneous

cellular populations. The benefits of this framework were demonstrated by its contribution to

the understanding of several natural and synthetic biological systems. We believe that the utility

of the DNALD language coupled with the high quality tooling that we are developing for it will

drive uptake of users, and that with the involvement of the community in its ongoing design

and improvement DNALD will become the de facto standard for design and communication

of rationally designed combinatorial DNA libraries, synthesised by biotechnological platforms

based on DNA reuse.



Bibliography

[1] Ideker T, Galitski T, and Hood L. A New Approach to Decoding Life: Systems Biology. Annu Rev Genomics
Hum Genet, 2:343, 2001

[2] Kitano H. Computational systems biology. Nature, 420(6912):206, 2002
[3] Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits. 1st edn. Chapman &

Hall/CRC, 2006
[4] Alon U. Network motifs: theory and experimental approaches. Nature reviews Genetics, 8(6):450, 2007
[5] Moya A, Krasnogor N, Peretó J, and Latorre A. Goethe’s dream. Challenges and opportunities for synthetic

biology. EMBO reports, 10 Suppl 1:S28, 2009
[6] Gibson DG, Glass JI, Lartigue C, Noskov VN, et al. Creation of a Bacterial Cell Controlled by a Chemically

Synthesized Genome. Science, 329(5987):52, 2010
[7] Deamer D. A giant step towards artificial life? Trends in Biotechnology, 23(7):336, 2005
[8] Hartwell LH, Hopfield JJ, Leibler S, and Murray AW. From molecular to modular cell biology. Nature,

402:C47, 1999
[9] Porcar M, Danchin A, Lorenzo V, dos Santos Va, et al. The ten grand challenges of synthetic life. Systems

and Synthetic Biology, 5(1):1, 2011
[10] Smaldon J. Modelling Tools and Methodologies for Rapid Protocell Prototyping. Ph.D. thesis, University of

Nottingham, 2010
[11] Twycross J, Band LR, Bennett MJ, King JR, et al. Stochastic and deterministic multiscale models for systems

biology: an auxin-transport case study. BMC Systems Biology, 4:34, 2010
[12] Dupeux F, Santiago J, Betz K, Twycross J, et al. A thermodynamic switch modulates abscisic acid receptor

sensitivity. The EMBO journal, (May):1, 2011
[13] Diggle SP, Crusz SA, and Cámara M. Quorum sensing. Current Biology, 17(21):R907, 2007
[14] Rampioni G, Pustelny C, Fletcher MP, Wright VJ, et al. Transcriptomic analysis reveals a global alkyl-

quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas
aeruginosa to plant and animal hosts. Environmental microbiology, 12(6):1659, 2010

[15] Garcia-Ojalvo J, Elowitz MB, and Strogatz SH. Modeling a synthetic multicellular clock: Represillators
coupled by quorum sensing. Proc Natl Acad Sci, 101(30):10955, 2004

[16] Elowitz MB and Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature,
403(6767):335, 2000

[17] Basu S, Gerchman Y, Collins CH, Arnold FH, et al. A synthetic multicellular system for programmed pattern
formation. Nature, 434(7037):1130, 2005

[18] Davidson EH. Gene Regulatory Systems: In Development and Evolution. Academic Press, 2001
[19] Misirli G, Hallinan JS, Yu T, Lawson JR, et al. Model Annotation for Synthetic Biology: Automating Model

to Nucleotide Sequence Conversion. Bioinformatics, 27(7):973, 2011
[20] Ben Yehezkel T, Linshiz G, Buaron H, Kaplan S, et al. De novo DNA synthesis using single molecule PCR.

Nucleic acids research, 36(17):e107, 2008
[21] Shabi U, Kaplan S, Linshiz G, Ben Yehezkel T, et al. Processing DNA molecules as text. Systems and

Synthetic Biology, 4:227, 2010
[22] Linshiz G, Yehezkel TB, Kaplan S, Gronau I, et al. Recursive construction of perfect DNA molecules from

imperfect oligonucleotides. Molecular Systems Biology, 4(191):191, 2008
[23] Rodrigo G, Carrera J, and Jaramillo A. Computational design of synthetic regulatory networks from a genetic

library to characterize the designability of dynamical behaviors. Nucleic Acids Research, 39(20), 2011
[24] Feist AM and Palsson BO. The growing scope of applications of genome-scale metabolic reconstructions

using Escherichia coli. Nature Biotechnology, 26:659, 2008
[25] Romero-Campero FJ. P Systems, a Computational Modelling Framework for Systems Biology. Ph.D. thesis,

University of Seville, 2007
[26] Krasnogor N, Gheorghe M, Terrazas G, Diggle S, et al. An appealing computational mechanism drawn from

bacterial quorum sensing. Bulletin of the EATCS, 85:135, 2005

190



BIBLIOGRAPHY 191

[27] Bernardini F, Gheorghe M, Krasnogor N, Muniyandi R, et al. On P Systems as a Modelling Tool for Biological
Systems. Membrane Computing, 3850:114, 2006

[28] Bianco L, Pescini D, Siepmann P, Krasnogor N, et al. Towards a P Systems Pseudomonas Quorum Sensing
Model. WMC 7 LNCS 4361, Volume 436:197, 2006

[29] Bernardini F, Gheorghe M, and Krasnogor N. Quorum sensing P systems. Theoretical Computer Science,
371(1-2):20, 2007

[30] Romero-Campero FJ and Pérez-Jiménez MJ. Modelling gene expression control using P systems: The Lac
Operon, a case study. Biosystems, 91(3):438, 2008

[31] Pérez-Jiménez M and Romero-Campero F. P systems, a new computational modelling tool for systems biol-
ogy. In Transactions on Computational Systems Biology VI, 176–197. Springer, 2006

[32] Romero-Campero FJ and Pérez-Jiménez MJ. A Model of the Quorum Sensing System in Vibrio fischeri
Using P Systems. Artificial Life, 14(1):95, 2008

[33] Gillespie DT. Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical Chem-
istry, 81(25):2340, 1977

[34] Romero-Campero F, Gheorghe M, Bianco L, Pescini D, et al. Towards Probabilistic Model Checking on P
Systems Using PRISM. In Membrane Computing, vol. 4361 of LNCS, 477–495. Springer Berlin Heidelberg,
2006

[35] Kwiatkowska M, Norman G, and Parker D. PRISM 4.0: Verifiction of Probabilistic Real-time Systems. In
Proc. 23rd International Conference on Computer Aided Verification (CAV’11), vol. 6806 of LNCS, 585–591.
2011

[36] Knight T, Rettberg R, Chan LY, Endy D, et al. Idempotent Vector Design for the Standard Assembly of
Biobricks. 2003

[37] Shetty RP, Endy D, and Knight TF. Engineering BioBrick vectors from BioBrick parts. Journal of Biological
Engineering, 2:5, 2008

[38] Weiner N. Cybernetics: or the Control and Communication in the Animal and the Machine: Or Control and
Communication in the Animal and the Machine. 2nd edn. MIT Press, 1948

[39] Von Bertalanffy L. General System Theory: Foundations, Development, Applications. George Braziller Inc,
1968

[40] Klipp E, Liebermeister W, Wierling C, Kowald A, et al. Systems Biology: A Textbook. Wiley, 2009
[41] Herrgard MJ, Swainston N, Dobson P, Dunn WB, et al. A consensus yeast metabolic network reconstruction

obtained from a community approach to systems biology. Nature Biotechnology, 26(10):1155, 2008
[42] Harel D. A Grand Challenge for Computing: Full Reactive Modeling of a Multi-Cellular Animal. Bulletin of

the EATCS, 81:226, 2003
[43] Jones D. All systems go. Nature Reviews Drug Discovery, 7:278, 2008
[44] Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, et al. Complete Chemical Synthesis, Assem-

bly, and Cloning of a Mycoplasma genitalium Genome. Science, 1151721—-, 2008
[45] Sole RV, Munteanu A, Rodriguez-Caso C, and Maca J. Synthetic protocell biology: from reproduction to

computation. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1486):1727, 2007
[46] Fellermann H, Rasmussen S, Ziock HJ, and Sole RV. Life Cycle of a Minimal Protocell - A Dissipative

Particle Dynamics Study. Artificial Life, 13(4):319, 2007
[47] Rodrigo G, Montagud A, Aparici A, Aroca MC, et al. Vanillin cell sensor. IET Synth Biol, 1(1-2):74, 2007
[48] Rodrigo G, Carreral J, and Jaramillo A. ECOLITASTER: cellular biosensor. BMC Systems Biology, 1(Suppl

1):P38, 2007
[49] Weinberger LS, Schaffer DV, and Arkin AP. Theoretical design of a gene therapy to prevent AIDS but not

human immunodeficiency virus type 1 infection. Journal of Virology, 77(18):10028, 2003
[50] Hodgkin A and Huxley A. A quantitative description of membrane current and its application to conduction

and excitation in nerve. Journal of Physiology, 117:500, 1952
[51] Noble D. The Music of Life. OUP, 2006
[52] Di Ventura B, Lemerle C, Michalodimitrakis K, and Serranò L. From in vivo to in silico biology and back.

Nature, 443:527, 2006
[53] Hänggi P. Stochastic Resonance in Biology: How Noise Can Enhance Detection of Weak Signals and Help

Improve Biological Information Processing. CHEMPHYSCHEM, 3:285, 2002
[54] Field RJ and Noyes RM. Oscillations in Chemical Systems IV. Limit cycle behavior in a model of a real

chemical reaction. The Journal of Chemical Physics, 60:1877, 1974
[55] Gillespie DT. Stochastic simulation of chemical kinetics. Annual review of physical chemistry, 58:35, 2007
[56] Gillespie D. A general method for numerically simulating the stochastic time evolution of coupled chemical

reactions. Journal of Computational Physics, 22(4):403, 1976
[57] Gillespie DT. A rigorous derivation of the chemical master equation. Physica A, 188:404, 1992
[58] Pahle J. Biochemical simulations: stochastic, approximate stochastic and hybrid approaches. Briefings in

Bioinformatics, 10(1):53, 2009



192 BIBLIOGRAPHY

[59] Gibson M and Bruck J. Efficient exact stochastic simulation of chemical systems with many species and many
channels. J Phys Chem A, 104(9):1876, 2000

[60] Manninen T, Makiraatikka E, Ylipaa A, Pettinen A, et al. Discrete stochastic simulation of cell signaling:
comparison of computational tools. In Engineering in Medicine and Biology Society, 2006. EMBS ’06. 28th
Annual International Conference of the IEEE, 2013–2016. 2006

[61] Cao Y, Petzold LR, Rathinam M, and Gillespie DT. The numerical stability of leaping methods for stochastic
simulation of chemically reacting systems. The Journal of Chemical Physics, 121(24):12169, 2004

[62] McCollum JM, Peterson GD, Cox CD, Simpson ML, et al. The sorting direct method for stochastic simulation
of biochemical systems with varying reaction execution behaviour. Comput Bio Chem, 30:39, 2006

[63] Cox CD, Peterson GD, Allen MS, Lancaster JM, et al. Analysis of Noise in Quorum Sensing. OMICS,
7(3):317, 2003

[64] Li H and Petzold L. Logarithmic Direct Method for Discrete Stochastic Simulation of Chemically Reacting
Systems. Tech. rep., Department of Computer Science, University of California, 2006

[65] Slepoy A, Thompson AP, and Plimpton SJ. A constant-time kinetic Monte Carlo algorithm for simulation of
large biochemical reaction networks. The Journal of chemical physics, 128(20):205101, 2008

[66] Ramaswamy R, González-Segredo N, and Sbalzarini IF. A new class of highly efficient exact stochastic
simulation algorithms for chemical reaction networks. The Journal of Chemical Physics, 130(24):244104,
2009

[67] Ramaswamy R and Sbalzarini IF. Fast Exact Stochastic Simulation Algorithms Using Partial Propensities.
Theoretical Computer Science, 1338–1341, 2010

[68] Ramaswamy R and Sbalzarini IF. A partial-propensity variant of the composition-rejection stochastic simu-
lation algorithm for chemical reaction networks. The Journal of Chemical Physics, 132(4):044102, 2010

[69] Ramaswamy R and Sbalzarini IF. A partial-propensity formulation of the stochastic simulation algorithm for
chemical reaction networks with delays. The Journal of chemical physics, 134(1):14106, 2011

[70] Li H, Cao Y, Petzold LR, and Gillespie DT. Algorithms and software for stochastic simulation of biochemical
reacting systems. Biotechnology Progress, 24(1):56, 2008

[71] Gillespie DT. Approximate accelerated stochastic simulation of chemically reacting systems. The Journal of
Chemical Physics, 115(4):1716, 2001

[72] Cao Y and Petzold L. Trapezoidal tau-leaping formula for the stochastic simulation of biochemical systems.
In Proc. Found. Syst. Biol. Eng. (FOSBE 2005). 2005

[73] Cao Y, Gillespie DT, and Petzold LR. Avoiding negative populations in explicit Poisson tau-leaping. The
Journal of chemical physics, 123(5):54104, 2005

[74] Cao Y, Gillespie DT, and Petzold LR. Efficient step size selection for the tau-leaping simulation method. The
Journal of chemical physics, 124(4):44109, 2006

[75] Cao Y, Gillespie DT, and Petzold LR. Adaptive explicit-implicit tau-leaping method with automatic tau
selection. The Journal of Chemical Physics, 126(22):224101, 2007

[76] Cao Y, Gillespie DT, and Petzold LR. The slow-scale stochastic simulation algorithm. The Journal of Chem-
ical Physics, 122(1):14116, 2005

[77] Cao Y, Gillespie DT, and Petzold LR. Accelerated stochastic simulation of the stiff enzyme-substrate reaction.
The Journal of Chemical Physics, 123(14):144917, 2005

[78] Cao Y and Petzold L. Slow Scale Tau-leaping Method. Comput Methods Appl Mech Eng, 197:43, 2008
[79] Puchalka J and Kierzek AM. Bridging the gap between stochastic and deterministic regimes in the kinetic

simulations of the biochemical reaction networks. Biophysical Journal, 86:1357, 2004
[80] Munsky B and Khammash M. The finite state projection algorithm for the solution of the chemical master

equation. The Journal of chemical physics, 124(4):44104, 2006
[81] Drawert B, Lawson MJ, Petzold L, and Khammash M. The diffusive finite state projection algorithm for

efficient simulation of the stochastic reaction-diffusion master equation. The Journal of chemical physics,
132(7):74101, 2010

[82] Dematté L and Prandi D. GPU computing for systems biology. Briefings in bioinformatics, 11(3):323, 2010
[83] Petzold L. Efficient Parallelization of the Stochastic Simulation Algorithm for Chemically Reacting Sys-

tems On the Graphics Processing Unit. International Journal of High Performance Computing Applications,
24(2):107, 2009

[84] Klingbeil G, Erban R, Giles M, and Maini PK. STOCHSIMGPU : Parallel stochastic simulation for the
Systems Biology Toolbox 2 for MATLAB. Bioinformatics, 2010

[85] Dittamo C and Cangelosi D. Optimized Parallel Implementation of Gillespie’s First Reaction Method on
Graphics Processing Units. In 2009 International Conference on Computer Modeling and Simulation, vol. 1,
156–161. Ieee, 2009

[86] Salwinski L and Eisenberg D. In silico simulation of biological network dynamics. Nature Biotechnology,
22:1017, 2004

[87] Lok L. The need for speed in stochastic simulation. Nature Biotechnology, 22:964, 2004



BIBLIOGRAPHY 193

[88] Hazapis OG and Manolakos ES. Scalable FRM-SSA SoC Design for the Simulation of Networks with Thou-
sands of Biochemical Reactions in Real Time. In 2011 21st International Conference on Field Programmable
Logic and Applications, 459–463. Ieee, 2011

[89] Cazzaniga P, Pescini D, Romero-campero FJ, Besozzi D, et al. Stochastic Approaches in P Systems for
Simulating Biological Systems. In Proceedings of the Fourth Brainstorming Week on Membrane Computing,
vol. 1 (edited by Gutirrez-Naranjo MA, Paun G, Riscos-Nuez A, and Romero-Campero FJ), 145–165. Sevilla,
2006

[90] Cazzaniga P, Pescini D, Besozzi D, and Mauri G. Tau Leaping Stochastic Simulation Method in P Systems.
In Proc of the 7th International Workshop on Membrane Computing, vol. 4361 (edited by Hoogeboom HJ),
298–313. LNCS, 2006

[91] Lu T, Volfson D, Tsimring L, and Hasty J. Cellular growth and division in the Gillespie algorithm. Systems
Biology, IEE Proceedings, 121–128, 2004

[92] Lecca P. A time-dependent extension of gillespie algorithm for biochemical stochastic pi-calculus. Proceed-
ings of the 2006 ACM Symposium on Applied Computing (SAC), 137–144, 2006

[93] Smaldon J, Blakes J, Krasnogor N, and Doron Lancet. A multi-scaled approach to artificial life simulation
with P systems and dissipative particle dynamics. In GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA,
249–256. 2008

[94] Versari C and Busi N. Stochastic Simulation of Biological Systems with Dynamical Compartment Structure.
Computational Methods in Systems Biology, 4695:80, 2007

[95] Versari C and Busi N. Efficient Stochastic Simulation of Biological Systems with Multiple Variable Volumes.
Electronic Notes in Theoretical Computer Science, 194(3):165, 2008

[96] Versari C. Stochastic modelling of cellular growth and division by means of the π@ calculus. In Formal
Methods in Molecular Biology, Dagstuhl Seminar Proceedings, 1–15. 2009

[97] Elf J and Ehrenberg M. Spontaneous separation of bi-stable biochemical systems into spatial domains of
opposite phases. Systems Biology, 1(2):230, 2004

[98] Hattne J, Fange D, and Elf J. Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics, 21:2923,
2005

[99] Ander M, Beltrao P, Di Ventura B, Ferkinghoff-Borg J, et al. SmartCell, a framework to simulate cellular pro-
cesses that combines stochastic approximation with diffusion and localisation: analysis of simple networks.
Systems Biology, 1(1), 2004

[100] McAdams HH and Arkin AP. Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA, 94:814,
1997

[101] McAdams HH and Arkin A. Simulation of prokaryotic genetic circuits. Annual Review of Biophysics and
Biomolecular Structure, 27(1):199, 1998

[102] Romero-Campero FJ, Twycross J, Cao H, Blakes J, et al. A Multiscale Modeling Framework Based on P
Systems. In WMC9 2008, 63–77. Springer-Verlag Berlin, 2009

[103] Novák B and Tyson JJ. Design principles of biochemical oscillators. Nature reviews Molecular cell biology,
9(12):981, 2008

[104] Kwiatkowska M, Norman G, Parker D, and O. Simulation and verification for computational modelling
of signalling pathways. In Proceedings of the 2006 Winter Simulation Conference (edited by Perrone LF,
Wieland FP, Liu J, Lawson BG, et al.), 1666–1674. 2006

[105] Kwiatkowska M, Norman G, and Parker D. Using probabilistic model checking in systems biology. ACM
SIGMETRICS Performance Evaluation Review, 35(4):14, 2008

[106] Kwiatkowska M, Norman G, and Parker D. Probablistic Model Checking for Systems Biology. In Symbolic
Systems Biology (edited by Iyengar MS), 31–59. 2010

[107] Ananiadou S, Kell DBB, and Tsujii JII. Text mining and its potential applications in systems biology. Trends
in Biotechnology, 24(12):571, 2006

[108] Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Welsey, 1989
[109] Krasnogor N and Smith J. MAFRA: A Java Memetic Algorithms Framework. In Proceedings of the 2000 In-

ternational Genetic and Evolutionary Computation Conference (GECCO 2000). The Rivera Hotel and Casino,
Las Vegas, Nevada, USA, 2000

[110] Storn R and Price K. Differential evolution - a simple and efficient heuristic for global optimization over
continuous spaces. J Global Optim, 11:341, 1997

[111] Hansen N. The CMA Evolution Strategy: A Comparing Review. In Towards a new evolutionary computation.
Advances in estimation of distribution algorithms (edited by Lozano JA, Larranaga P, Inza I, and Bengoetxea
E), 75–102. Springer, 2006

[112] Tomshine J and Kaznessis YN. Optimization of a Stochastically Simulated Gene Network Model via Simu-
lated Annealing. Biophysical Journal, 91:3196, 2006

[113] Smaldon J and Freitas Aa. A new version of the ant-miner algorithm discovering unordered rule sets. Pro-
ceedings of the 8th annual conference on Genetic and evolutionary computation - GECCO ’06, 43, 2006



194 BIBLIOGRAPHY

[114] Iqbal M, Freitas AA, and Johnson CG. Protein Interaction Inference Using Particle Swarm Optimization
Algorithm. In EvoBIO’08 Proceedings of the 6th European conference on Evolutionary computation, machine
learning and data mining in bioinformatics, 61–70. 2008

[115] Banga J. Optimization in computational systems biology. BMC Systems Biology, 2:47+, 2008
[116] Koza JR, Mydlowec W, Lanza G, Yu J, et al. Reverse engineering of metabolic pathways from observed data

using genetic programming. In Pacific Symposium on Biocomputing, 434–445. 2001
[117] Mallavarapu A, Thomson M, Ullian B, and Gunawardena J. Programming with models: modularity and

abstraction provide powerful capabilities for systems biology. J R Soc Interface, 6:257, 2009
[118] Smith LP, Bergmann FT, Chandran D, and Sauro HM. Antimony: a modular model definition language.

Bioinformatics, 25(18):2452, 2009
[119] Fisher J and Henzinger TA. Executable cell biology. Nature Biotechnology, 25(11):1239, 2007
[120] Fisher J and Henzinger T. Executable Biology. In Proceedings of the 2006 Winter Simulation Conference

(edited by Perrone LF, Wieland FP, Liu J, Lawson BG, et al.), 1675–1682. 2006
[121] Priami C. Algorithmic systems biology. Communications of the ACM, 52(5):80, 2009
[122] Priami C, Regev A, Shapiro E, and Silverman W. Application of a stochastic name-passing calculus to

representation and simulation of molecular processes. Information Processing Letters, 80:25, 2001
[123] Heiner M, Lehrack S, Gilbert D, and Marwan W. Extended Stochastic Petri Nets for Model-Based Design of

Wetlab Experiments. In Trans. on Comput. Syst. Biol. XI, LNBI 5750, 138–163. Springer-Verlag, 2009
[124] Dematte L, Priami C, and Romanel A. Modelling and simulation of biological processes in BlenX. ACM

Sigmetrics Performance Evaluation Review, 35(4):32, 2008
[125] Kuttler C, Lhoussaine C, and Nebut M. Rule-based Modeling of Transcriptional Attenuation at the Tryptophan

Operon. In Formal Methods in Molecular Biology, Dagstuhl Seminar Proceedings, 1–22. 2009
[126] Hucka M, Finney a, Sauro HM, Bolouri H, et al. The systems biology markup language (SBML): a medium

for representation and exchange of biochemical network models. Bioinformatics, 19(4):524, 2003
[127] Hucka M, Bergmann F, Hoops S, Keating S, et al. The Systems Biology Markup Language (SBML): Lan-

guage Specification for Level 3 Version 1 Core (Release 1 Candidate). Nature Precedings, 2010
[128] Le Novère N, Bornstein B, Broicher A, Courtot M, et al. BioModels Database: a free, centralized database of

curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research,
34(Database issue):D689, 2006

[129] Kauffman SA. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical
Biology, 22:437, 1969

[130] Kauffman SA. The Origins of Order: Self-Organization and Selection in Evolution. OUP USA, 1993
[131] Feiglin A, Hacohen A, Sarusi A, Fisher J, et al. Static network structure can be used to model the phenotypic

effects of perturbations in regulatory networks. Bioinformatics (Oxford, England), 28(21):2811, 2012
[132] Heiner M, Koch I, and Will J. Model validation of biological pathways using Petri nets–demonstrated for

apoptosis. BioSystems, 75:15, 2004
[133] Reddy VN, Mavrovouniotis ML, and Liebman MN. Petri net representations in metabolic pathways. In Proc

Int Conf Intell Syst Mol Biol, 328–336. 1993
[134] Reddy VN, Liebman MN, and Mavrovouniotis ML. Qualitative analysis of biochemical reaction systems.

Comput Biol Med, 26:9, 1996
[135] Chaouiya C. Petri net modelling of biological networks. Briefings in Bioinformatics, 8:210, 2007
[136] Will J and Heiner M. Petri nets in Biology, Chemistry, and Medicine. Bibliography. Tech. rep., Brandenbury

University of Technology at Cottbus, 2002
[137] Gilbert D, Heiner M, and Lehrack S. A unifying framework for modelling and analysing biochemical path-

ways using Petri nets. In Proceedings of the 2007 international conference on Computational methods in
systems biology, CMSB’07, 200–216. Springer-Verlag, Berlin, Heidelberg, 2007

[138] Gilbert D, Fuss H, Gu X, Orton R, et al. Computational methodologies for modelling, analysis and simulation
of signalling networks. Briefings in Bioinformatics, 7(4):339, 2006

[139] Heiner M, Gilbert D, and Donaldson R. Petri Nets for Systems and Synthetic Biology. Formal Methods for
Computational Systems Biology, 5016:215, 2008

[140] Koch I, Junker BH, and Heiner M. Application of Petri net theory for modelling and validation of the sucrose
breakdown pathway in the potato tuber. Bioinformatics, 21:1219, 2005

[141] Goss PJE and Peccoud J. Quantitative modelling of stochastic systems in molecular biology by using stochas-
tic Petri nets. Proc Natl Acad Sci USA, 95:6750, 1998

[142] Milner R. Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, Cambridge,
1999

[143] Milner R. A Calculus of Communicating Systems. Springer Verlag, 1980
[144] Hoare CAR. Communicating sequential processes. Communications of the ACM, 21(8):666, 1978
[145] Regev A and Shapiro E. Cells as computation. Nature, 419:343, 2002
[146] Regev A and Shapiro E. The π-calculus as an abstraction for biomolecular systems. In Modelling in Molecular



BIBLIOGRAPHY 195

Biology (edited by Ciobanu G and Rozenberg G), 219–266. Springer, 2004
[147] Regev A, Silverman W, and Shapiro E. Representing biomolecular processes with computer process alge-

bra: pi-calculus programs of signal transduction pathways. American Association for Artificial Intelligence
Publication, 2000

[148] Priami C and Quaglia P. Modelling the dynamics of biosystems. Briefings in Bioinformatics, 5(3):259, 2004
[149] Prandi D, Priami C, and Quaglia P. Process calculi in a biological context. Bulletin of the EATCS, 85:52, 2005
[150] Priami C. Process Calculi and Life Science. Electronic Notes in Theoretical Computer Science, 162:301,

2006
[151] Priami C. Computational Thinking in Biology. In Transactions on Computational Systems Biology VIII,

63–76. 2007
[152] Priami C. Stochastic π-calculus. Computer Journal, 38(7):578, 1995
[153] Regev A, Silverman W, and Shapiro E. Representation and simulation of biochemical processes using the

pi-calculus process algebra. In Pac Symp Biocomput 2001, vol. 26, 459–470. 2001
[154] Phillips A and Cardelli L. A Correct Abstract Machine for the Stochastic Pi-calculus. In Concurrent Models

in Molecular Biology, BioConcur ’04, ENTCS. 2004
[155] Phillips A and Cardelli L. Efficient, Correct Simulation of Biological Processes in the Stochastic Pi-calculus.

In Computational Methods in Systems Biology, LNCS 4695, LNCS, 184–199. Springer, 2007
[156] Phillips A and Cardelli L. A Graphical Representation for the Stochastic Pi-calculus. In Concurrent Models

in Molecular Biology. 2005
[157] Phillips A, Cardelli L, and Castagna G. A Graphical Representation for Biological Processes in the Stochastic

Pi-calculus. Transactions in Computational Systems Biology, 4230:123, 2006
[158] Versari C. A Core Calculus for a Comparative Analysis of Bio-inspired Calculi. Programming Languages

and Systems, 4421:411, 2007
[159] Regev A, Panina EM, Silverman W, Cardelli L, et al. BioAmbients: an abstraction for biological compart-

ments. Theoretical Computer Science, 325(1):141, 2004
[160] Cardelli L and Gordon AD. Mobile ambients. Theoretical Computer Science, 240(1):177, 2000
[161] Cardelli L. Brane Calculi. Interactions of Biological Membranes. Tech. rep., Microsoft Research, 2004
[162] Cardelli L. Bitonal membrane systems: Interactions of biological membranes. Theoretical Computer Science,

404(1-2):5, 2008
[163] Priami C and Quaglia P. Computational Methods in Systems Biology, vol. 3082 of Lecture Notes in Computer

Science, chap. Beta Binde, 20–33. Springer Berlin / Heidelberg, 2005
[164] Dematté L, Priami C, and Romanel A. The BlenX Language: A Tutorial. In Formal Methods for Compu-

tational Systems Biology, 8th International School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems, SFM 2008, no. 5054 in Lecture Notes in Computer Science, 123–138.
2008

[165] Monod J, Wyman J, and Changeux JP. On the nature of allosteric transitions: a plausibe model. Journal of
Molecular Biology, 12:88, 1965

[166] Calder M, Gilmore S, and Hillston J. Automatically deriving ODEs from process algebra models of signalling
pathways. In Proceedings of Computational Methods in Systems Biology (CMSB 2005) (edited by Plotkin G),
204–215. Edinburgh, Scotland, 2005

[167] Calder M, Gilmore S, Hillston J, and Vyshemirsky V. Formal methods for biochemical signalling pathways.
In Formal Methods: State of the Art and New Directions, 185–215. Springer, 2006

[168] Calder M, Duguid A, Gilmore S, and Hillston J. Stronger computational modelling of signalling pathways
using both continuous and discrete-state methods. In Proceedings of the Fourth International Conference on
Computational Methods in Systems Biology (CMSB 2006), vol. 4210 of Lecture Notes in Computer Science
(edited by Priami C), 63–77. 2006

[169] Gerosa L. Stochastic process algebras as design and analysis framework for synthetic biology modelling.
Master’s thesis, University of Trento, 2007

[170] Calder M and Hillston J. Process algebra modelling styles for biomolecular processes, chap. Modelling,
1–25. No. 4230 in LNCS. Springer, 2009

[171] Ciocchetta F and Hillston J. Bio-PEPA: A framework for the modelling and analysis of biological systems.
Theoretical Computer Science, 410(33-34):3065, 2009

[172] Ciocchetta F, Gilmore S, Guerriero ML, and Hillston J. Integrated Simulation and Model-Checking for the
Analysis of Biochemical Systems

[173] Stenico M. Modelling molecular systems with discrete concentration levels in the context of the process alge-
bra PEPA: Stochastic and deterministic interpretations. Corso di laurea in informatica specialistica, Università
degli Studi di Trento, 2006

[174] Danos V and Laneve C. Formal Molecular Biology. Theoretical Computer Science, 325:69, 2004
[175] Hlavacek WS, Faeder JR, Blinov ML, Posner RG, et al. Rules for Modeling Signal-Transduction Systems.

Sci STKE, 2006(344):1, 2006



196 BIBLIOGRAPHY

[176] Fontana W and Buss LW. Boundaries and Barriers: On the Limits of Scientific Knowledge, chap. The barrie.
Perseus Books,U.S., 1999

[177] Danos V, Feret J, Fontana W, and Krivine J. Programming Languages and Systems, 139–157. Lecture Notes
in Computer Science. Springer-Verlag Berlin Heidelberg, 2007

[178] Danos V, Feret J, Fontana W, Harmer R, et al. Rule-based modelling of cellular signalling. In CONCUR
2007, LNCS 4703 (edited by Caires L and Vasconcelos V), 17–41. Springer, 2007

[179] Lok L and Brent R. Automatic generation of cellular reaction networks with Moleculizer 1.0. Nature Biotech-
nology, 23:131, 2005

[180] Lis M, Artyomov MN, Devadas S, and Chakraborty AK. Efficient stochastic simulation of reaction-diffusion
processes via direct compilation. Bioinformatics (Oxford, England), 25(17):2289, 2009

[181] P\u aun G. Computing with Membranes. Journal of Computer and System Sciences, 61 (2000)(1):108, 2000
[182] Gutierrez-Naranjo MA, Perez-Jimenez MJ, and Romero-Campero FJ. A uniform solution to SAT using

membrane creation. Theoretical Computer Science, 371:54, 2007
[183] Gheorghe M, Krasnogor N, and Camara M. P systems applications to systems biology. BioSystems, 91(3):435,

2008
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