
Topics in Nevanlinna Theory

Matthew M. Buck, MMath.

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

July 2013



Abstract

Nevanlinna Theory is a powerful quantitative tool used to study the growth

and behaviour of meromorphic functions on the complex plane. It plays an

important role in value distribution theory, including generalising Picard’s

theorem that an entire function which omits two finite values is constant.

The Nevanlinna Characteristic T (r, f) is a measure of a function’s growth,

and its associated counting function estimates how often certain values are

taken. Using these tools, as well as other forms of modern complex anal-

ysis, we investigate several problems relating to differential polynomials in

meromorphic functions. We also present a result relating to integer-valued

meromorphic functions.
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Chapter 1

Introduction to Nevanlinna

Theory

1.1 Basic definitions and classical lemmas

We will first define some basic terms for describing functions, and from there build to-

wards a full explanation of Nevanlinna Theory.

Definitions 1.1.1 - Meromorphic functions

We say that a complex-valued function f is analytic at a point z0 ∈ C if there exists

a convergent power series for f about z0 with positive radius of convergence. We say

that f is entire if it is analytic at all points in C, and meromorphic if it is analytic at

all points in C except for some isolated points at which it takes the value infinity, and

with the property that the limit of the function at these points is infinity (there are no

essential singularities). We further say f is rational if it can be written in the form

f(z) =
P (z)

Q(z)
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where P and Q are polynomials with no common zeros, and Q 6≡ 0. If f is meromorphic

and cannot be written in this form then it is said to be transcendental. We note that an

entire function can only be rational if Q′(z) ≡ 0, i.e. f is a polynomial.

We may consider a meromorphic function on a domain to be the quotient of two

analytic functions on that domain, having poles when the denominator is zero. Points

z0 where both the denominator and numerator functions have zeros are handled using

the limit as z → z0.

Examples 1.1.2

• The function ez is entire, since it is analytic at all points in C.

• The function
1

ez − 1
is meromorphic, since it has isolated poles at integer multiples

of 2πi.

• The function e1/z is not meromorphic because the limit as z tends to 0 is undefined.

Definition 1.1.3 - The multiplicity of a zero

Given a function f which is analytic and not identically 0 in the neighbourhood of

a point z0 ∈ C such that f(z0) = 0, we define the order or multiplicity of the zero at

that point as the least n such that the coefficient of (z − z0)n in the Taylor expansion of

f about z0 is non-zero. If 1/f has a zero of order n at z0, we say that f has a pole of

order n at z0. A pole of order 1 is called a simple pole.

We may consider a zero to be a pole of negative order, and vice versa. It is quite

easy to see that if at some point two functions f and g have poles of order j and k

respectively, then fg has a pole of order j + k, and f + g has at most a pole of order
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max{j, k} (it is possible that the two poles could cancel out, for instance if f = z−1 and

g = −z−1).

Definitions 1.1.4 - The (unintegrated) counting function

Given a function f , meromorphic in the plane, we define the (unintegrated) counting

function, n(r, f), to be the number of poles (counting multiplicity) of f in B(0, r), the

closed disc of radius r centred on the origin. Thus a simple pole adds 1, a double pole

adds 2, etc. We further define n(r, f) to be the number of distinct poles of f in B(0, r),

that is, the number of poles of f not counting multiplicity. Thus, a pole of multiplicity

k ≥ 1 adds 1, no matter how large k is.

Examples 1.1.5

• n(r, ez) = n(r, ez) = 0 since ez has no poles in the closed disc B(0, r).

• n
(
r,

1

ez − 1

)
= n

(
r,

1

ez − 1

)
= 1 + 2

⌊ r
2π

⌋
, since the function has simple poles

at integer multiples of 2πi.

• n(r, csc2 z) = 2 + 4
⌊
r
π

⌋
and n(r, csc2 z) = 1 + 2

⌊
r
π

⌋
since csc2 z has double poles at

integer multiples of π.

We note that the unintegrated counting function is stepwise-increasing and, since the

poles of a meromorphic function are isolated, is finite for all r. We now state one of the

most useful tools of classical complex analysis.
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Proposition 1.1.6 - The Maximum Principle

Let the function f be analytic on the bounded domain D and continuous on D ∪ ∂D.

Then there exists z0 ∈ ∂D such that |f(z0)| ≥ |f(z)| for all z ∈ D.

This principle is very useful for analysing entire functions, or functions which are

analytic on a bounded domain. However, if we try and apply such a principle to a mero-

morphic function, it breaks down. For instance, if we take f(z) = z−1, it is clear that on

the unit circle, |f(z)| = 1, but this is smaller than |f(0)| =∞. We therefore need some

new method to investigate meromorphic functions. Finally in this section, we introduce

the Poisson-Jensen formula.

Proposition 1.1.7 - The Poisson-Jensen formula

Let R be finite and positive, f be meromorphic on a domain and not identically 0 in

B(0, R). Let z = reiφ ∈ B(0, R). Then

log |f(z)| = 1

2π

∫ 2π

0
log |f(Reiθ)| R2 − r2

R2 + r2 − 2Rr cos(θ − φ)
dθ + d log

∣∣∣ z
R

∣∣∣+
+

m∑
j=1

log

∣∣∣∣R(z − aj)
R2 − ajz

∣∣∣∣− n∑
k=1

log

∣∣∣∣R(z − bk)
R2 − bkz

∣∣∣∣ , (1.1.1)

where a1, . . . , am and b1, . . . , bn are respectively the zeros and poles of f in 0 < |z| < R,

with repetition according to multiplicity; and where the first term of the Laurent expansion

of f , valid on some annulus centred on the origin, is the term in zd.

1.2 The Nevanlinna functionals

The main tool used throughout this thesis is Nevanlinna Theory. This provides a means

to analyse meromorphic functions, since classical methods such as the Maximum Princi-

ple break down when confronted with poles. The seminal work in this field is Hayman’s
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Meromorphic Functions [16], where he laid out the fundamental results of Nevanlinna

Theory, and applied them to problems including differential polynomials. We use Hay-

man’s notation throughout. The results and theory presented here are taken from [16],

or are easily derived from it.

Definitions 1.2.1

We first define the (Integrated) Counting Function, N(r, f):

N(r, f) =

∫ r

0
[n(t, f)− n(0, f)]

dt

t
+ n(0, f) log r. (1.2.1)

If f has, counting multiplicity, p poles on |z| = q for some q > 0, then these contribute

p to n(t, f)− n(0, f) for t ≥ q, and thus p log(r/q) to N(r, f). We similarly use n(r, f)

to generate N(r, f).

We define the Proximity Function, m(r, f), by

m(r, f) =
1

2π

∫ 2π

0
log+

∣∣∣f (reiθ)∣∣∣ dθ, (1.2.2)

where log+ x = max{log x, 0}.

We define the Nevanlinna Characteristic, T (r, f) as the sum of the Proximity and

Counting functions,

T (r, f) = m(r, f) +N(r, f). (1.2.3)

We note that if f is an entire function it has no poles within the disc B(0, r), and so

N(r, f) ≡ 0, and therefore T (r, f) ≡ m(r, f).

We write S(r, f) for any terms which are o (T (r, f)) as r →∞, possibly outside some
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set of finite measure.

In many cases, we will be concerned with a function of the form 1/(f − a) for some

a ∈ C. As a form of shorthand, we may write the Characteristic of this function as

T (r, a, f). The Proximity and Counting functions may be written similarly.

We now state some basic properties of these functionals.

Lemma 1.2.2

Let f and g be meromorphic and non-constant in the plane, and let k ∈ N. Then the

following are true:

N(r, f) ≤ N(r, f) (1.2.4)

N(r, fk) = kN(r, f) (1.2.5)

m(r, fk) = km(r, f) (1.2.6)

T (r, fk) = kT (r, f) (1.2.7)

N(r, f + g) ≤ N(r, f) +N(r, g) (1.2.8)

m(r, f + g) ≤ m(r, f) +m(r, g) + log 2 (1.2.9)

T (r, f + g) ≤ T (r, f) + T (r, g) + log 2 (1.2.10)

N(r, fg) ≤ N(r, f) +N(r, g) (1.2.11)

m(r, fg) ≤ m(r, f) +m(r, g) (1.2.12)

T (r, fg) ≤ T (r, f) + T (r, g) (1.2.13)

These are all quite elementary from the definitions of the functionals. We now com-

pare T (r, f) and the maximum modulus function.
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Lemma 1.2.3

Let 0 < r < R, and let f be analytic on the disc B(0, R), and define M(r, f), the

maximum modulus function, by

M(r, f) = max{|f(z)| : z ∈ B(0, r)}.

Note that, by Proposition 1.1.6, this maximal value is taken on the circle of radius r,

centred on the origin. Then

T (r, f) ≤ log+M(r, f) (1.2.14)

logM(r, f) ≤
(
R+ r

R− r

)
T (R, f). (1.2.15)

The first of these inequalities follows from the fact that N(r, f) = 0, and the second

from an application of the Poisson-Jensen formula (1.1.1).

1.3 The Fundamental Theorems

We now move on to some basic theorems of Nevanlinna Theory, which many of our later

results reference. We start with one of the most important theorems, which follows from

taking the limit of the Poisson-Jensen formula (1.1.1) as z → 0.

Proposition 1.3.1 - The First Fundamental Theorem

Let f be a non-constant meromorphic function, and a ∈ C. Then, as r →∞,

T

(
r,

1

f − a

)
= T (r, f) +O(1). (1.3.1)

In particular, this allows us to say that T (r, f) = T (r, 1/f) + S(r, f), which is ex-

ceedingly useful. The proof of this is by the Poisson-Jensen formula (1.1.1). We now

make a note about the characteristic of a rational function.
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Lemma 1.3.2

T (r, f) = O(log r) if and only if f is a rational function.

This lemma is very useful in the later sections of this work. We now define the order

of a function.

Definition 1.3.3

Let f be meromorphic in the plane. Then we define the order ρ(f) by

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
.

We say that f has finite order if ρ(f) <∞, or equivalently T (r, f) = O(rρ). In particu-

lar, a rational function has order 0.

Example 1.3.4

T (r, ez) = r for a ∈ C, and thus ez has order 1. Further, for n ∈ N, T (r, ez
n
) = rn,

and thus ez
n

has order n. However, T (r, ee
z
) = O(ez), and thus ee

z
has infinite order.

Lemma 1.3.5 - The Lemma of the Logarithmic Derivative

Let f be non-constant and meromorphic in the plane. Then there are positive con-

stants cj such that as r →∞ outside some set of finite measure,

m

(
r,
f ′

f

)
≤ c1 log r + c2 log T (r, f). (1.3.2)

If f is of finite order, then m(r, f ′/f) = O(log r). In general, we simply say that, for

transcendental f , m(r, f ′/f) = S(r, f). Also note that since m(r, fg) ≤ m(r, f)+m(r, g)

for functions f and g, we can further say that, by induction,

m

(
r,
f (k)

f

)
≤ m

(
r,

f (k)

f (k−1)

)
+m

(
r,
f (k−1)

f (k−2)

)
+. . .+m

(
r,
f ′

f

)
≤ c1 log r+c2 log T (r, f).
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Lemma 1.3.6

Let f be non-constant and meromorphic in the plane. Then

T (r, f (k)) ≤ T (r, f) + kN(r, f) + S(r, f).

This follows from the Lemma of the Logarithmic Derivative (Lemma 1.3.5) and the

properties of the characteristic of two functions from Lemma 1.2.2. We now state what

is called the Second Fundamental Theorem.

Proposition 1.3.7 - The Second Fundamental Theorem

Let f be meromorphic in the plane. Then given any k distinct values bj in C∗ :=

C ∪ {∞}, we have that

(k − 2)T (r, f) ≤
k∑
j=1

N(r, bj , f) + S(r, f), (1.3.3)

which follows from the inequality

k∑
j=1

m(r, bj , f) ≤ 2T (r, f)−N1(r, f) + S(r, f), (1.3.4)

where N1(r, f) = N(r, f)−N(r, f) +N(r, 1/f ′).

This theorem allows us to easily prove Picard’s Theorem - suppose f is transcendental

and entire, and takes two finite values b1 and b2 only finitely often. Let k = 3 and b3 =∞.

Then (1.3.3) gives T (r, f) ≤ O(log r) + S(r, f), which by Lemma 1.3.2 gives that f is

rational, a contradiction.
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Definition 1.3.8 - The Nevanlinna Deficiency

Let f be meromorphic in the plane, and a ∈ C∗. We define the Nevanlinna Deficiency

δ of the point a by

δ(a, f) = 1− lim sup
r→∞

N(r, a, f)

T (r, f)
= lim inf

r→∞

m(r, a, f)

T (r, f)
. (1.3.5)

This describes how infrequently the value a is taken by f . By the First Fundamental

Theorem, it is clear that δ(a, f) ∈ [0, 1] - for a transcendental function f , any value which

is only taken finitely often would have a deficiency of 1. By the Second Fundamental

Theorem (1.3.4), we can see that

∑
a∈C∗

δ(a, f) ≤ 2. (1.3.6)

This is called the Defect Relation.

Examples 1.3.9

• δ(a, z) = 0 for any a ∈ C, since if a = 0 then N(r, 0, z) = log r, and if a 6= 0 and

r > |a| then N(r, a, z) = log(r/|a|) = log r − log |a| → log r as r →∞.

• δ(0, ez) = 1 because ez omits 0, and thus N(r, 0, ez) ≡ 0. Further, since N(r, f) ≡

0, δ(∞, ez) = 1, and thus by (1.3.6) δ(a, ez) = 1 for any non-zero a ∈ C.

• A function can take a value infinitely often but still have a deficiency of 1 at

that point. For instance if we take f = ez
2

tan z, δ(0, f) = 1 since N(r, 0, f) =

O(T (r, tan z)) = O(r), but T (r, f) ≥ T (r, ez
2
) = O(r2).

• It is also possible to have functions take values with deficiency in the open interval

(0, 1), but such examples are difficult to construct and beyond the scope of this

work.
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1.4 Differential polynomials

Most of the results in this thesis are concerned with the analysis of differential polynomi-

als. Differential polynomials have been extensively investigated over the years, beginning

with Chapter 3 of [16]. We will now give a brief summary of their properties.

Definitions 1.4.1

Let f be a function, meromorphic in the plane, and define Mj by

Mj [f ] = fµ0,j
(
f ′
)µ1,j . . .(f (q)

)µq,j
, (1.4.1)

where the µk,j are non-negative integers. We call Mj a differential monomial in f . We

say that Mj has degree

γj = µ0,j + . . .+ µq,j ,

and weight

Γj = µ0,j + 2µ1,j + . . .+ (q + 1)µq,j .

The weight of a monomial Mj [f ] is the order of the pole such a monomial would take if

f were to have a simple pole at a point. We further define a differential polynomial P [f ]

as a sum of differential monomials with suitable functions as coefficients. We say that

P has degree γ = max{γj}, and weight Γ = max{Γj}. We call a differential polynomial

linear if γ ≤ 1, and non-linear if γ > 1. We further say that a differential polynomial is

homogeneous if all terms have equal degree.

Exactly which functions are suitable coefficients is dependent upon the specific use,

and will be stated explicitly later. General classes of suitable functions include constants,

rational functions and functions cj such that T (r, cj) = S(r, f).
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Example 1.4.2

Let F = f2(f ′′)3 + f ′f (8) + (f ′′′)3 be a differential polynomial in a meromorphic

function f . Then F has degree

γ = max{5, 2, 3} = 5,

and weight

Γ = max{(2 ∗ 1 + 3 ∗ 3 = 11), (1 ∗ 2 + 1 ∗ 9 = 11), (3 ∗ 4 = 12)} = 12.

Finally, we introduce a very useful lemma which allows us to find the general form

of a function given a certain condition.

Lemma 1.4.3

If f ′/f is a rational function, then f = ReP , where R is a rational function and P

is a polynomial.

This proof of this lemma uses partial fractions, and is standard knowledge.
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Chapter 2

Pairs of non-homogeneous linear

differential polynomials

In [21], Langley proved a result concerning the zeros of pairs of (possibly non-

homogeneous) linear differential polynomials in a meromorphic function. In this chapter

we generalise this result by relaxing Langley’s assumption on the frequency of zeros

(counting multiplicity), and further prove some results based on restricting the order of

the differential operators. This work (with the exception of Theorem 2.2.4) was published

in Computational Methods and Function Theory [5].

2.1 Introduction

Let f be a non-constant meromorphic function in the plane. Throughout this section,

we use the convention that cs is a “small function” - i.e. a function such that T (r, cs) =

S(r, f). We further define a linear differential polynomial ψ in f by

ψ =

t∑
s=0

csf
(s). (2.1.1)
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We begin with a result of Milloux from [16], which may be viewed as a counterpart of

Nevanlinna’s Second Fundamental Theorem.

Proposition 2.1.1

Let f be meromorphic and non-constant in the plane, and ψ as defined by (2.1.1)

also be non-constant. Then,

T (r, f) < N(r, f) +N

(
r,

1

f

)
+N

(
r,

1

ψ − 1

)
−N0

(
r,

1

ψ′

)
+ S(r, f), (2.1.2)

where N0(r, 1/ψ′) counts only zeros of ψ′ which are not multiple 1-points of ψ.

Hayman showed in [16] that for ψ = f (k) with k ≥ 1, a version of (2.1.2) holds

without the N(r, f) term and, in particular, that if f omits 0 then f (k) must take every

finite non-zero value. This was subsequently extended by Bergweiler and Langley in [4]

to linear differential polynomials in f , subject to conditions on the coefficients cj .

It is possible to have both f and f (k) omitting 0, but it was shown in [14] and [19]

that if f and f (k) have only finitely many zeros for some k ≥ 2 then f = ReP where R

is a rational function and P a polynomial. The following result from [15] addresses the

case where two homogeneous linear differential polynomials have few zeros.

Proposition 2.1.2

Let f be meromorphic and non-constant in the plane, and let L1 and L2 be homo-

geneous linear differential operators, with coefficients which are rational functions and

leading terms
dk

dzk
and

dn

dzn
respectively, with k ≥ n ≥ 1. Let F = L1(f) and G = L2(f),

assume that

N

(
r,

1

F

)
+N

(
r,

1

G

)
= O

(
log+ T

(
r,
f ′

f

)
+ log r

)
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as r →∞ outside a set of finite measure and further assume that the equations L1(ω) = 0

and L2(ω) = 0 have no non-trivial common (local) solutions, so that in particular L1

and L2 are not the same.

Then f has finite order and finitely many zeros and f ′/f has a representation

f ′(z)

f(z)
= Y (z) +

P [Q(z) + logR(z)] (Q′(z) +R′(z)/R(z))

R(z)eQ(z) − 1

in which Y and R are rational functions and P and Q are polynomials, and at least one

of P and R is constant.

We now make some definitions which will be used throughout the rest of this chapter.

Definitions 2.1.3

Let L and M be linear differential operators of positive order k and n respectively,

with

L =
dk

dzk
+
k−1∑
j=0

aj
dj

dzj
, M =

dn

dzn
+
n−1∑
j=0

bj
dj

dzj
, (2.1.3)

where the coefficients aj, bj are rational functions, and where the equations L(ω) = 0

and M(ω) = 0 have no common non-trivial (local) solutions (i.e. other than the solution

which is identically zero). Then by lemmas from [15], there exist linear differential

operators P , Q, U , V and Y with coefficients which are rational functions in the aj, bj

and their derivatives such that

P (L) +Q(M) = 1, Y = U(L) = V (M), (2.1.4)

where 1 is the identity operator, and U , V , Y , have order n, k, n+ k, and leading terms

dn

dzn
,
dk

dzk
,
dn+k

dzn+k
respectively. The (local) solution space of Y (ω) = 0 is the direct sum

of the (local) solution spaces of the equations M(ω) = 0 and L(ω) = 0. The parentheses
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in (2.1.4) denote composition. We now define linear differential polynomials F and G

by

F = L(f) + a, G = M(f) + b, (2.1.5)

where f is meromorphic in the plane, and a, b are rational functions and we assume that

F 6≡ 0, G 6≡ 0. We define a rational function c by

c = P (a) +Q(b), (2.1.6)

and set

g = f + c = P (F ) +Q(G). (2.1.7)

Now, from these definitions, we see that

F = L(f) + a = L(g) + a− L(c), G = M(f) + b = M(g) + b−M(c). (2.1.8)

Furthermore,

U(F ) = V (G) + d, d = U(a)− V (b). (2.1.9)

where d is a rational function.

Finally, let Ω be a non-empty simply-connected domain on which the functions a, b,

and the coefficients aj, bj are analytic. Let the linearly independent solutions of L(ω) = 0

and M(ω) = 0 be, respectively, u1, . . . , uk and v1, . . . , vn, and let u and v be solutions of

L(ω) = a and M(ω) = b respectively.

We now state Langley’s result from [21], which provides our springboard for the

results which follow.
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Proposition 2.1.4

Let the function f be transcendental and meromorphic in the plane, and suppose that

Definitions 2.1.3 hold. Assume that

N

(
r,

1

F

)
+N

(
r,

1

G

)
= S(r, f). (2.1.10)

Then at least one of the following holds:

1. F = L(g) and G = M(g);

2. f has a representation f = R(u1, . . . , uk, v1, . . . , vn, u, v), where R is a rational

function in k + n+ 2 variables.

2.2 Results

We begin by stating our results, and will then give the proofs later. Our first result

weakens the assumption (2.1.10) in terms of T (r, f).

Theorem 2.2.1

Let the function f be transcendental and meromorphic in the plane, and let Defini-

tions 2.1.3 hold. Assume that γ1 ≥ 0, γ2 ≥ 0 and that

N

(
r,

1

F

)
≤ γ1T (r, f) + S(r, f), N

(
r,

1

G

)
≤ γ2T (r, f) + S(r, f). (2.2.1)

Further define

γ0 = max{γ1, γ2}, γ3 = γ1 + γ2. (2.2.2)

Then at least one of the following holds:

1. F = L(g) and G = M(g);
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2. f has a representation f = R(u1, . . . , uk, v1, . . . , vn, u, v), where R is a rational

function in k + n+ 2 variables.

3. the γj satisfy

k + n

k + n+ 1
≤ 2γ3 + γ0 +

2γ3 + 1

k + n
. (2.2.3)

Remark: We note here that conclusions 1 and 2 are as in Proposition 2.1.4, and that

(2.2.3) cannot hold if γ1 = γ2 = 0, so that Theorem 2.2.1 reduces to Proposition 2.1.4 in

this case. Further, if γ3 ≥ 0.4 then γ0 ≥ 0.2, and the inequality (2.2.3) will always hold,

in which case the conclusions of Proposition 2.1.4 need not hold.

Our second result shows that if k = n then N can be replaced by N in the hypothesis

(2.1.10) of Proposition 2.1.4.

Theorem 2.2.2

Let f be transcendental and meromorphic in the plane, let Definitions 2.1.3 hold with

k = n, and assume that

N

(
r,

1

F

)
+N

(
r,

1

G

)
= S(r, f). (2.2.4)

Then at least one of the following must hold:

1. F = L(g) and G = M(g);

2. f has a representation f = R(u1, . . . , un, v1, . . . , vn, u, v), where R is a rational

function in 2n+ 2 variables.

The next result also replaces (2.1.10) by (2.2.4). The last two results are more minor,

but we present them for completeness.
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Theorem 2.2.3

Let f be transcendental and meromorphic in the plane, and let Definitions 2.1.3 hold

with b ≡ 0 and a− L(c) 6≡ 0. Suppose that (2.2.4) holds and suppose further that

n > k + 2. (2.2.5)

Then at least one of the following holds:

1. F = L(g) and G = M(g);

2. f has a representation f = R(u1, . . . , uk, v1, . . . , vn, u, v), where R is a rational

function in k + n+ 2 variables.

Theorem 2.2.4

Let f be transcendental and meromorphic in the plane, and let Definitions 2.1.3 and

(2.1.10) hold.

If a− L(c) 6≡ 0, then at least one of the following holds:

1. f has finitely many poles;

2. n ≤ 2;

3. f has a rational representation f = R(f1, . . . , fn+1) where the fj are (local) solu-

tions to M(ω) = djb and each dj is a constant.

If b−M(c) 6≡ 0, then at least one of the following holds:

1. f has finitely many poles;

2. k ≤ 2;

3. f has a rational representation f = R(f1, . . . , fk+1) where the fj are (local) solu-

tions to L(ω) = dja and each dj is a constant.
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2.3 Preliminary lemmas

In this section we state and then refine a lemma from [21] which will be very useful in

our proofs. The case where A ≡ 0 is treated in [13] and [30].

Lemma 2.3.1 [21]

Let δ be a positive real number, and let the function h be transcendental and mero-

morphic in the plane. Let p be a positive integer, and c0, c1, . . . , cp−1 and A be rational

functions. Set

Qp =
dp

dzp
+

p−1∑
j=0

cj
dj

dzj
,

H = Qp(h) +A.

Then at least one of the following conditions holds:

(i) we have

pN(r, h) ≤ N
(
r,

1

H

)
+ (1 + δ)N(r, h) + S(r, h); (2.3.1)

(ii) h has a representation

h = R(h1, . . . , hp+1), (2.3.2)

where R is a rational function in p+ 1 variables and each hj is a (local) solution of

Qp(ω) = djA, (2.3.3)

with dj a constant.

We now present a refinement of Langley’s result.
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Lemma 2.3.2

Let h in Lemma 2.3.1 be such that (ii) does not hold. Then:

pN(r, h) ≤ N
(
r,

1

H

)
+N(r, h) + S(r, h). (2.3.4)

Proof:

Assuming that Lemma 2.3.1 (ii) does not hold, then (i) must hold for any δ > 0. In

particular, for all n ∈ N,

pN(r, h) ≤ N

(
r,

1

H

)
+

(
1 +

1

2n

)
N(r, h) + S(r, h)

≤ N

(
r,

1

H

)
+N(r, h) +

1

n
T (r, h)

for all r ≥ 1 outside a set En of finite measure. Now, take a sequence (rn) such that

Fn = En ∩ [rn,∞) has measure at most n−2, with rn ≥ rn−1 + 1, and r1 ≥ 1. Then

rn →∞. Let

F0 =

∞⋃
n=1

Fn.

Then F0 has measure at most 1 + 2−2 + 3−2 + . . . <∞. Now let r /∈ F0 be large, and rm

the largest member of (rn) which is not greater than r. Then m is large and r ∈ [rm,∞).

However, r /∈ Em, so

pN(r, h) ≤ N
(
r,

1

H

)
+N(r, h) +

1

m
T (r, h).

Thus, as r →∞ with r /∈ F0 (and thus m→∞),

pN(r, h) ≤ N
(
r,

1

H

)
+N(r, h) + o(T (r, h)),

which leads immediately to (2.3.4) by our definition of S(r, h).

QED
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2.4 Proofs of the theorems

2.4.1 Initial steps

Assume that f is transcendental meromorphic in the plane, and that the Definitions

2.1.3 hold. We state and prove several lemmas.

Lemma 2.4.1

If either U(F ) or V (G) is a rational function then f has finitely many poles and at

least one of the following must hold:

1. The following inequality holds:

T (r, f) ≤ N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S(r, f) (2.4.1)

≤ nN

(
r,

1

F

)
+ kN

(
r,

1

G

)
+ S(r, f). (2.4.2)

2. f has a representation f = R(u1, . . . , uk, v1, . . . , vn, u, v), where R is a rational

function in k+n+ 2 variables, and the uj, vj, u and v are as in Definitions 2.1.3.

Proof:

Assume without loss of generality that U(F ) is rational; then by (2.1.9) so is V (G).

Assume that neither vanishes identically. Then F and G each solve a non-homogeneous

linear differential equation with rational coefficients, and

U(F )

F
=
F (n)

F
+ . . . =

R0

F
,

where R0 6≡ 0 is a rational function. Thus, by Lemmas 1.2.2, 1.3.2 and the Lemma of
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the Logarithmic Derivative (Lemma 1.3.5),

m

(
r,

1

F

)
≤ m

(
r,
U(F )

F

)
+m

(
r,

1

U(F )

)
+O(1)

≤ m

(
r,
F (n)

F

)
+ . . .m

(
r, c1

F ′

F

)
+m (r, c0) + T (r,R0) +O(1)

≤ S(r, f)

and similarly forG, where the cj are the coefficients of U . Thus, by the First Fundamental

Theorem,

T (r, F ) + T (r,G) ≤ T

(
r,

1

F

)
+ T

(
r,

1

G

)
+ S(r, f)

≤ N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S(r, f). (2.4.3)

Now, we have that

P (F ) =

p∑
j=0

αjF
(j),

where αj are rational coefficients, and thus, by the Lemma of the Logarithmic Derivative

and (1.2.12),

m(r, P (F )) ≤ m(r, F ) +m

(
r,
P (F )

F

)
= m(r, F ) + S(r, f).

Moreover, as U(F ) is rational, F has only finitely many poles, and so does f since, apart

from finitely many exceptions due to the coefficients in L, a pole of f must generate a

pole of F . Thus,

N(r, P (F )) = O(log r),

and similarly for Q(G). Thus, by (1.2.10) and (2.1.7),

T (r, f) ≤ T (r, g) + S(r, f)

≤ T (r, F ) + T (r,G) + S(r, f),

to which we apply (2.4.3) to obtain (2.4.1). Now, a zero z0 of F of multiplicity m > n

with z0 large is a zero of U(F ) of multiplicity at least m−n, but this is impossible since
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U(F ) is rational. Thus

N

(
r,

1

F

)
≤ nN

(
r,

1

F

)
+ S(r, f),

and by the same method,

N

(
r,

1

G

)
≤ kN

(
r,

1

G

)
+ S(r, f).

We then apply these to (2.4.1) to obtain (2.4.2).

Now assume without loss of generality that U(F ) ≡ 0. Then by (2.1.4) and (2.1.5),

0 = U(F ) = Y (f) +U(a) so that with the uj , vj and u as defined, f +u solves Y (ω) = 0

and is a linear combination of u1, . . . , uk, v1, . . . , vn on Ω. Thus f has a representation

as asserted.

QED

It is clear from (2.1.8) that if a − L(c) and b −M(c) both vanish identically, then

F = L(g) and G = M(g) are satisfied. Hence we assume in the next lemma that at least

one of B = a− L(c) and C = b−M(c) does not vanish identically.

Lemma 2.4.2

Assume that both U(F ) and V (G) are transcendental. Then if a− L(c) 6≡ 0

T (r, f) ≤ N
(
r,

1

g

)
+N(r, f) +N

(
r,

1

F

)
+ S(r, f), (2.4.4)

and

T (r, f) ≤ (k + 1)N

(
r,

1

g

)
+N(r, f) +N

(
r,

1

F

)
+ S(r, f). (2.4.5)
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If b−M(c) 6≡ 0 then

T (r, f) ≤ N
(
r,

1

g

)
+N(r, f) +N

(
r,

1

G

)
+ S(r, f), (2.4.6)

and

T (r, f) ≤ (n+ 1)N

(
r,

1

g

)
+N(r, f) +N

(
r,

1

G

)
+ S(r, f). (2.4.7)

Proof:

Assume that B = a − L(c) 6≡ 0. We aim to apply Milloux’s result (2.1.2) to F =

L(f) + a, but to do so we must rearrange this to take account of a being nonconstant.

To this end, we take f + c = g = Bg∗ and F = L(g) +B = B(L∗(g∗) + 1), where B is a

rational function and L∗ is a linear differential operator. Hence

N

(
r,

1

L∗(g∗) + 1

)
= N

(
r,

1

F

)
+ S(r, f), (2.4.8)

and

T (r, f) = T (r, g∗) + S(r, f), N(r, f) = N(r, g) + S(r, f) = N(r, g∗) + S(r, f). (2.4.9)

Since U(F ) is transcendental, so is F , and thus (L∗(g∗) + 1)′ 6≡ 0, and so we may apply

Milloux’s result (2.1.2) to g∗, giving

T (r, g∗) ≤ N(r, g∗) +N

(
r,

1

g∗

)
+N

(
r,

1

L∗(g∗) + 1

)
−N0

(
r,

1

(L∗(g∗))′

)
+ S(r, g∗),

(2.4.10)

where N0 counts the zeros of (L∗(g∗))′ which are not also zeros of L∗(g∗) + 1. Now,

a zero z0 of g∗ of multiplicity p with z0 large contributes p to n(r, 1/g∗) and at least

max{0, p − k − 1} to n0(r, 1/(L∗(g∗))′), and hence at most min{p, k + 1} ≤ k + 1 to

n(r, 1/g∗)− n0(r, 1/(L∗(g∗))′). Hence, we can rewrite (2.4.10) as

T (r, g∗) ≤ N(r, g∗) + (k + 1)N

(
r,

1

g∗

)
+N

(
r,

1

L∗(g∗) + 1

)
+ S(r, g∗),
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and thus, by application of (2.4.8) and (2.4.9), we obtain (2.4.5). Now, returning to

(2.4.10), we may discard the N0 term and again apply (2.4.8) and (2.4.9) to give (2.4.4).

We follow similar steps to obtain (2.4.6) and (2.4.7).

QED

Lemma 2.4.3

Assume that U(F ) and V (G) are transcendental. If d = U(F )− V (G) 6≡ 0, then

N

(
r,

1

g

)
+N

(
r,

1

H

)
≤ N(r, f) + 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f), (2.4.11)

and

N

(
r,

1

g

)
+N

(
r,

1

H

)
≤ N(r, f) +A1

(
N

(
r,

1

F

)
+N

(
r,

1

G

))
+ S(r, f), (2.4.12)

where A1 is a positive constant and

H =

(
d

dz
− d′

d

)
(U(F )) 6≡ 0. (2.4.13)

If d ≡ 0, then

N

(
r,

1

g

)
+N

(
r,

1

H

)
≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f), (2.4.14)

and

N

(
r,

1

g

)
+N

(
r,

1

H

)
≤ A2

(
N

(
r,

1

F

)
+N

(
r,

1

G

))
+ S(r, f), (2.4.15)

where A2 is a positive constant and

H = U(F ) 6≡ 0. (2.4.16)

Proof:

Assume first that d = U(F ) − V (G) 6≡ 0. We define linear differential operators Ũ

and Ṽ by

Ũ =

(
d

dz
− d′

d

)
(U), Ṽ =

(
d

dz
− d′

d

)
(V ), (2.4.17)
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and thus by (2.4.13) and the definition of d, we have H = Ũ(F ) = Ṽ (G). If H ≡ 0,

then by the previous two equations, there exist constants µ, ν such that U(F ) = µd and

V (G) = νd, which, since d is rational by (2.1.9), contradicts our assumption that U(F )

and V (G) are transcendental. Thus, H 6≡ 0. Set

φ =
gH

FG
=
P (F )Ṽ (G)

FG
+
Q(G)Ũ(F )

FG
, (2.4.18)

using (2.1.7) and (2.4.13). Since P,Q, Ũ and Ṽ are linear differential operators with

rational functions as coefficients, by the Lemma of the Logarithmic Derivative (1.3.2),

m(r, φ) = S(r, f). We now turn to N(r, φ). Suppose f has a pole of multiplicity m at

some point z0 with z0 large. Then g, F,G and H have poles at z0 with multiplicities

m,m+ k,m+ n and m+ n+ k+ 1 respectively, and so φ has a simple pole at z0. Thus,

considering also the poles generated by zeros of F and G,

T (r, φ) ≤ N(r, f) +N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S(r, f). (2.4.19)

Writing 1/gH = 1/φFG and using (2.4.19) leads to, since g has only finitely many poles

at zeros of H (and vice versa),

N

(
r,

1

g

)
+N

(
r,

1

H

)
≤ N

(
r,

1

gH

)
+ S(r, f) (2.4.20)

= N

(
r,

1

φFG

)
+ S(r, f)

≤ N

(
r,

1

φ

)
+N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S(r, f)

≤ T (r, φ) +N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S(r, f), (2.4.21)

from which (2.4.11) follows from substitution of (2.4.19).

Since a zero of F (respectively G) gives at most a pole of F (j)/F (respectively G(j)/G)

of multiplicity j, we obtain, for some Ã1 > 0,

T (r, φ) ≤ N(r, f) + Ã1

(
N

(
r,

1

F

)
+N

(
r,

1

G

))
+ S(r, f). (2.4.22)
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Again, as g has only finitely many poles at zeros of H (and vice versa),

N

(
r,

1

g

)
+N

(
r,

1

H

)
≤ N

(
r,

1

gH

)
+ S(r, f) (2.4.23)

= N

(
r,

1

φFG

)
+ S(r, f)

≤ N

(
r,

1

φ

)
+N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S(r, f)

≤ T (r, φ) +N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S(r, f), (2.4.24)

from which (2.4.12) follows from substitution of (2.4.22).

Now consider the case where d ≡ 0. Then we define H and φ using (2.1.7) and (2.1.9)

by

H = U(F ) = V (G),

φ =
gH

FG
=
P (F )V (G)

FG
+
Q(G)U(F )

FG
, (2.4.25)

and H 6≡ 0 by our assumption that U(F ) and V (G) are transcendental. Again, m(r, φ) =

S(r, f), but here the only poles of φ are due to zeros of FG, as the poles of gH and FG

at poles of f cancel each other out. Thus, (2.4.19) and (2.4.22) hold without the N(r, f)

term, and on substitution into (2.4.21) yield (2.4.14) and (2.4.15).

QED

2.4.2 Proof of Theorem 2.2.1

Assume the hypotheses of the theorem. Suppose first that at least one of U(F ) and

V (G) is rational. Then by Lemma 2.4.1, either conclusion 2 of the theorem holds, or

T (r, f) ≤ N

(
r,

1

F

)
+N

(
r,

1

G

)
+ S(r, f)

≤ (γ1 + γ2)T (r, f) + S(r, f),

and hence γ3 = γ1 +γ2 ≥ 1 which implies (2.2.3). We henceforth assume that both U(F )

and V (G) are transcendental. Furthermore, if a − L(c) ≡ b −M(c) ≡ 0, then we have
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conclusion 1 of the theorem by (2.1.8). We henceforth assume that this is not the case.

Then by Lemma 2.4.2,

T (r, f) ≤ N
(
r,

1

g

)
+N(r, f) + γ0T (r, f) + S(r, f), (2.4.26)

where γ0 = max{γ1, γ2}. We now divide the proof into two cases.

Case I

Suppose that d = U(F ) − V (G) 6≡ 0 in (2.1.9). Then by Lemma 2.4.3 and (2.2.1),

we have

N

(
r,

1

g

)
+N

(
r,

1

H

)
≤ N(r, f) + 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f)

≤ N(r, f) + 2γ3T (r, f) + S(r, f), (2.4.27)

where

H = (U(F ))′ − d′

d
U(F ) 6≡ 0.

Now, by (2.1.4) and (2.1.5), H has a representation

H =

((
d

dz
− d′

d

)
(Y )

)
(f) +

((
d

dz
− d′

d

)
(U)

)
(a)

as a (possibly non-homogeneous) linear differential polynomial in f , of order k + n+ 1,

with rational functions as coefficients. Lemmas 2.3.1 and 2.3.2 now give two possibilities,

one of which is that f has a representation

f = R(y1, . . . , yk+n+2),

where R is a rational function in k + n+ 2 variables and each yj is a (local) solution of

((
d

dz
− d′

d

)
(Y )

)
(ω) = dj

((
d

dz
− d′

d

)
(U)

)
(a) (2.4.28)
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where each dj is a constant. By setting S = Y (yj)− djU(a), we may rewrite (2.4.28) as

S′ − d′

d
S = 0,

which has solution S = ejd for some constant ej . Thus, using (2.1.9),

Y (yj) = djU(a) + ejd = (dj + ej)U(a)− ejV (b),

and so, with uj , vj , u and v as defined, yj − (dj + ej)u + ejv solves Y (ω) = 0 on Ω

and is a linear combination of u1, . . . , uk, v1, . . . , vn. Thus conclusion 2 of the theorem is

satisfied. The other possibility is that

(k + n+ 1)N(r, f) ≤ N
(
r,

1

H

)
+N(r, f) + S(r, f). (2.4.29)

We combine this with (2.4.27), yielding

N

(
r,

1

g

)
+ (k + n+ 1)N(r, f) ≤ N

(
r,

1

g

)
+N

(
r,

1

H

)
+N(r, f) + S(r, f)

≤ N(r, f) + (2γ3 + 1)T (r, f) + S(r, f),

and so

N

(
r,

1

g

)
+ (k + n)N(r, f) ≤ (2γ3 + 1)T (r, f) + S(r, f),

which leads to

N(r, f) ≤ 2γ3 + 1

k + n
T (r, f)− 1

k + n
N

(
r,

1

g

)
+ S(r, f). (2.4.30)

We substitute this in to (2.4.27) and rearrange, ignoring the term N(r, 1/H), yielding

k + n+ 1

k + n
N

(
r,

1

g

)
≤
(

2γ3 +
2γ3 + 1

k + n

)
T (r, f) + S(r, f).

We then substitute this inequality and (2.4.30) into (2.4.26) to give

T (r, f) ≤
(

k + n

k + n+ 1

(
2γ3 +

2γ3 + 1

k + n

)
+

2γ3 + 1

k + n
+ γ0

)
T (r, f) + S(r, f),

from which (2.2.3) is immediate.
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Case II

Now suppose that d ≡ 0. Then by Lemma 2.4.3 we have

N

(
r,

1

g

)
+N

(
r,

1

H

)
≤ 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+ S(r, f)

≤ 2γ3T (r, f) + S(r, f), (2.4.31)

where H = U(F ). Now, by (2.1.4) and (2.1.5), H has a representation

H = Y (f) + U(a)

as a (possibly non-homogeneous) linear differential polynomial in f , of order k+n, with

rational functions as coefficients. Lemmas 2.3.1 and 2.3.2 now give two possibilities, one

of which is that f has a representation

f = R(y1, . . . , yk+n+1),

where R is a rational function in k + n+ 1 variables and each yj is a (local) solution of

Y (ω) = djU(a)

where each dj is a constant, so that yj − dju solves Y (ω) = 0, and thus conclusion 2 of

the theorem is satisfied. The other possibility is that

(k + n)N(r, f) ≤ N
(
r,

1

H

)
+N(r, f) + S(r, f).

Substituting in (2.4.31), we obtain

N(r, f) ≤ 2γ3 + 1

k + n
T (r, f) + S(r, f). (2.4.32)

We now substitute (2.4.31) into (2.4.26) to give

(1− 2γ3 − γ0)T (r, f) ≤ N(r, f) + S(r, f).
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We substitute this into (2.4.32) and thus obtain

(1− 2γ3 − γ0)T (r, f) ≤ 2γ3 + 1

k + n
T (r, f) + S(r, f),

which is a stronger condition than (2.2.3).

QED

2.4.3 Proof of Theorem 2.2.2

Assume the hypotheses of the theorem. If either U(F ) or V (G) is rational, then by

Lemma 2.4.1, either conclusion 2 of Theorem 2.2.2 holds, or by (2.2.4) and (2.4.2) we

have T (r, f) = S(r, f), which is a contradiction. Henceforth assume that both U(F ) and

V (G) are transcendental. Then if a−L(c) ≡ b−M(c) ≡ 0 then, by (2.1.8), Conclusion 1

of Theorem 2.2.2 holds. Assume henceforth without loss of generality that a−L(c) 6≡ 0.

Then by Lemmas 2.4.2 and 2.4.3 and (2.2.4),

T (r, f) ≤ (n+ 1)N

(
r,

1

g

)
+N(r, f) + S(r, f)

≤ (n+ 2)N(r, f) + S(r, f),

and in particular,

N(r, f) 6= S(r, f). (2.4.33)

We define λj = ψ(j)/ψ for j ≥ 0, and in particular, λ = λ1 = ψ′/ψ, where

ψ =
L(f) + a

M(f) + b
=
F

G
.

If ψ ≡ c1 for some constant c1, and thus λ ≡ 0, then

L(f) + a = F = c1G = c1(M(f) + b).

Since the equations L(ω) = 0 and M(ω) = 0 have no non-trivial solutions in common, f

solves a (possibly non-homogeneous) linear differential equation with rational coefficients.
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Thus, since all terms in the differential equation have differing weight, poles cannot cancel

out except at the finitely many poles of the coefficients, and thus f has only finitely many

poles, contradicting (2.4.33). Thus λ 6≡ 0. Since F and G have the same leading term,

all but finitely many poles of f are 1-points of ψ by (2.1.3) and (2.1.5). Poles of λ can

come from zeros of ψ (which generates a zero of ψ′ of multiplicity one less and thus a

simple pole of λ) or poles of ψ′ (which are also poles of ψ of multiplicity one less, and

thus a simple pole of λ), hence we have that

N(r, λ) = N

(
r,

1

ψ

)
+N (r, ψ) , (2.4.34)

and so by (2.2.4),

N(r, λ) ≤ N

(
r,

1

F

)
+N

(
r,

1

G

)
+O(log r) (2.4.35)

= S(r, f). (2.4.36)

Since λ is the quotient of a function and its derivative, we have that m(r, λ) = S(r, ψ) by

the Lemma of the Logarithmic Derivative (1.3.2). Furthermore, by Lemmas 1.2.2 and

1.3.6, we have that T (r, ψ) = O(T (r, f)), and so any term which is S(r, ψ) is also S(r, f).

Thus,

T (r, λ) = S(r, f). (2.4.37)

Now, for j ∈ N,

F (j) = (ψG)(j) =

j∑
φ=0

(
j

φ

)
ψ(j−φ)G(φ) (2.4.38)

= ψ

j∑
φ=0

(
j

φ

)
λj−φG

(φ). (2.4.39)

Let U and V be as in (2.1.4), and write

U(F ) =

n∑
j=0

pjF
(j), V (G) =

n∑
j=0

qjG
(j),
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with pn = qn = 1. Then (2.1.9) gives

V (G) + d = U(F ) =

n∑
j=0

pjF
(j) =

n∑
j=0

pjψ

j∑
t=0

(
j

t

)
λj−tG

(t)

= ψ
n∑
j=0

pj

n∑
t=0

(
j

t

)
λj−tG

(t)

= ψ
n∑
t=0

n∑
j=0

pj

(
j

t

)
λj−tG

(t)

= ψ

n∑
t=0

n∑
j=t

pj

(
j

t

)
λj−tG

(t), (2.4.40)

using the property that
(
µ
ν

)
= 0 for µ /∈ [0, ν]. Now, suppose that z0 is large and a pole

of f of order m. Then z0 is a pole of G of order m+n, and for 0 ≤ l ≤ n, Xl = G(l)/G(n)

has a zero of order n− l at z0. Further, we have ψ(z0) = 1 and λl(z0) ∈ C ∀l ≥ 0. Thus

at z0, by the definition of V (G),

V (G) + d

G(n)
= 1 + qn−1Xn−1 +M1 (2.4.41)

where Mj will denote functions with a zero of multiplicity at least two at z0. But we

also have, using (2.1.9) and (2.4.40),

V (G) + d

G(n)
=
U(F )

G(n)
= ψ (1 + (pn−1 + nλ)Xn−1 +M2) . (2.4.42)

Now, G has a pole of multiplicity m + n at z0, and so G(j) has a pole of multiplicity

m+ n+ j, and we may write, as z → z0,

Xn−1 ∼
(z − z0)−(m+2n−1)

−(m+ 2n− 1)(z − z0)−(m+2n)
=
−(z − z0)

m+ 2n− 1
. (2.4.43)

We then differentiate, giving X ′n−1(z0) = −(m+ 2n− 1)−1. We have using (2.4.41) and

(2.4.42),

1 + qn−1Xn−1 +M1 = ψ (1 + (pn−1 + nλ)Xn−1 +M2) , (2.4.44)

which we now differentiate to give, setting p̃ = pn−1 + nλ and using λ = ψ′/ψ,

q′n−1Xn−1 + qn−1X
′
n−1 +M ′1 = λψ (1 + p̃Xn−1 +M2) + ψ

(
p̃X ′n−1 + p̃′Xn−1 +M ′2

)
.

(2.4.45)
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We now substitute in ψ(z0) = 1, Xn−1(z0) = 0, X ′n−1(z0) = −(m + 2n − 1)−1 and

Mj(z0) = M ′j(z0) = 0, then rearrange to give, at z0,

λ− nλ

m+ 2n− 1
=
pn−1 − qn−1

m+ 2n− 1
(2.4.46)

λ =
pn−1 − qn−1

m+ n− 1
. (2.4.47)

Now, suppose there exists no m ∈ N such that λ ≡ pn−1 − qn−1

m+ n− 1
. We define Nm(r, f)

to be the counting function N(r, f) restricted to those poles of multiplicity m. We

rearrange (2.4.47) to give

Λ = λ− pn−1 − qn−1

m+ n− 1
= 0, (2.4.48)

and so

N
m

(r, f) ≤ N
(
r,

1

Λ

)
+ S(r, f), (2.4.49)

where the S(r, f) term takes account of the finitely many poles excluded from our analysis

above. But

T (r,Λ) ≤ T (r, λ) + T (r, pn−1) + T (r, qn−1) + S(r, f), (2.4.50)

which, by (2.4.37) and the fact that the pj and qj are rational functions, is itself S(r, f).

Thus, since Λ 6≡ 0 by assumption,

N
m

(r, f) ≤ T (r,Λ) + S(r, f) = S(r, f). (2.4.51)

Now, let ε > 0. For each κ ∈ N we may choose rκ such that

κ∑
m=1

N
m

(r, f) = S(r, f) = o(T (r, f)) ≤ 1

κ
T (r, f) (2.4.52)

for r ≥ rκ outside some set Eκ of measure at most κ−2. We further assume that rκ+1 ≥ rκ

∀κ ∈ N. Then E =
⋃
κ∈NEκ has finite measure. Let κ be big enough that 2κ−1 ≤ ε,
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and r large and not in E. Then r ≥ rκ, r /∈ Eκ, so

∑
m≤κ

N
m

(r, f) ≤ 1

κ
T (r, f) ≤ ε

2
T (r, f) (2.4.53)

∑
m>κ

N
m

(r, f) ≤ 1

κ
N(r, f) ≤ 1

κ
T (r, f) ≤ ε

2
T (r, f), (2.4.54)

and so

N(r, f) ≤ εT (r, f). (2.4.55)

This holds for all sufficiently large r /∈ E, and so

N(r, f) = S(r, f), (2.4.56)

which contradicts (2.4.33).

It follows that there is some m ∈ N such that

λ ≡ pn−1 − qn−1

m+ n− 1
, (2.4.57)

and so λ is a rational function. But, since ψ′ = λψ, we have by Lemma 1.4.3 that

ψ =
F

G
= ReP (2.4.58)

for some rational function R and polynomial P , and thus ψ has only finitely many poles

and zeros. Suppose that F has infinitely many zeros of multiplicity greater than n. Then

all but finitely many of these are zeros of G of the same multiplicity, since ψ has finitely

many zeros and poles, and they are zeros of U(F ) and V (G), and thus of d by (2.1.9).

Thus, there are infinitely many zeros of d, and so, since d is rational, d ≡ 0.

We now follow a slight variation on our previous argument. Suppose z0 is large and

a zero of G of multiplicity µ ≥ n. Then Xj = G(j)/G(n) has a zero of multiplicity n− j

at z0 for 0 ≤ j ≤ n. As before, Xn−1(z0) = 0, but now, as z → z0,

Xn−1(z) ∼ (z − z0)µ−n+1

(µ− n+ 1)(z − z0)µ−n
, (2.4.59)
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and so X ′n−1(z0) = (µ−n+1)−1. We again have (2.4.41) and (2.4.42), and hence (2.4.44)

and (2.4.45). We also have that ψ(z0) = 1 by (2.4.41) and (2.4.42). We substitute this

and (2.4.59) into (2.4.45), giving

qn−1

µ− n+ 1
= λ+

pn−1 + nλ

µ− n+ 1
, (2.4.60)

which we rearrange to find

λ =
qn−1 − pn−1

µ+ 1
. (2.4.61)

However, we already have an identity for λ by (2.4.57), which we equate to give

qn−1 − pn−1

µ+ 1
= λ ≡ pn−1 − qn−1

m+ n− 1
(2.4.62)

−1

µ+ 1
=

1

m+ n− 1
. (2.4.63)

But, µ > 0 and m+ n > 1, and so we are trying to equate one number which is strictly

positive and another which is strictly negative - clearly impossible. Thus, our supposition

that there are infinitely many such zeros of multiplicity greater than n false, and so

there are only finitely many of these zeros, which thus contribute O(log r) = S(r, f) to

N(r, 1/F ) and N(r, 1/G). Hence, by (2.2.4),

N

(
r,

1

F

)
≤ nN

(
r,

1

F

)
+ S(r, f) = S(r, f), (2.4.64)

N

(
r,

1

G

)
≤ nN

(
r,

1

G

)
+ S(r, f) = S(r, f), (2.4.65)

and thus we can apply Langley’s Proposition 2.1.4 with k = n and the conclusions of

Theorem 2.2.2 follow immediately.

QED

2.4.4 Proof of Theorem 2.2.3

We begin by stating a refinement of Lemma 2.3.1 from [23].
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Lemma 2.4.4 [23]

Let 0 < ε < 1, and let L0 be a homogeneous linear differential operator of order p ≥ 2

with rational functions for coefficients. Let h be transcendental and meromorphic in the

plane, and H = L0(h). Then at least one of the following two conclusions holds:

1. h is rational in p (local) solutions of L0(ω) = 0;

2. the functions h and H satisfy

N(r,H) ≤ CN
(
r,

1

H

)
+ (2 + ε)N(r, h) + S(r, f) (2.4.66)

where

C ≤ (2 + ε) exp
4(p− 1)

log(1 + ε)

We note here that H is required to be a homogeneous differential polynomial in h.

We may now begin the proof of Theorem 2.2.3.

Assume the hypotheses of Theorem 2.2.3. By Lemma 2.4.1, if either U(F ) or V (G)

are rational then either conclusion 2 of our theorem holds, or (2.4.2) holds, which, by

(2.2.4), means that T (r, f) ≤ S(r, f), which is a contradiction. Assume henceforth that

U(F ) and V (G) are transcendental. By Lemma 2.4.3 and (2.2.4),

N

(
r,

1

g

)
≤ N(r, f) + S(r, f).

We combine this with (2.4.5) of Lemma 2.4.2, which holds under our assumption that

a− L(c) 6≡ 0, to yield

N(r, f) ≤ T (r, f) ≤ (k + 2)N(r, f) + S(r, f). (2.4.67)

We apply Lemma 2.4.4 with p = n, h = f , H = G = M(f) and ε small. If conclusion

1 of the lemma holds, then f is a rational function in solutions of M(ω) = 0, and so
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conclusion 2 of the theorem holds. Assume this is not the case. Then (2.4.66) holds, and

we apply (2.2.4), and thus obtain

N(r,G) ≤ (2 + ε)N(r, f) + S(r, f). (2.4.68)

Now, the poles of G are caused either by poles of the coefficients, which since they are

rational contribute S(r, f), or by poles of f , where if z0 is large and a pole of f of order

m, then it is a pole of G of order m+ n. Thus,

N(r,G) = N(r, f) + nN(r, f) + S(r, f),

which we substitute into (2.4.68), giving

nN(r, f) ≤ (1 + ε)N(r, f) + S(r, f),

and hence by substitution of (2.4.67),

nN(r, f) ≤ (1 + ε)(k + 2)N(r, f) + S(r, f).

By (2.4.67) we have N(r, f) 6= S(r, f), and so n ≤ (1 + ε)(k+ 2). Since ε may be chosen

arbitrarily small, this contradicts (2.2.5).

QED

2.4.5 Proof of Theorem 2.2.4

We present the proof for a − L(c) 6≡ 0; the proof when b −M(c) 6≡ 0 follows along the

same lines.

Suppose that one of U(F ) or V (G) is rational. Then, as noted in the proof of Lemma

2.4.1, f has finitely many poles. Now, suppose that U(F ) and V (G) are transcendental.

Then by (2.4.4) and Lemma 2.4.3,

T (r, f) ≤ 2N(r, f) + 2N

(
r,

1

F

)
+ 2N

(
r,

1

G

)
+N

(
r,

1

F

)
+ S(r, f),
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which, by (2.1.10), reduces to

T (r, f) ≤ 2N(r, f) + S(r, f), (2.4.69)

and in particular N(r, f) 6= S(r, f). Applying Lemma 2.3.2 with p = n, Qp = M and

H = G gives either conclusion 3 of the theorem, or, by substitution of (2.4.69) and

(2.1.10),

nN(r, f) ≤ N

(
r,

1

G

)
+N(r, f) + S(r, f)

≤ 2N(r, f) + S(r, f),

from which conclusion 2 is immediate.

QED

43



Chapter 3

Non-linear homogeneous

differential polynomials in f and

f (k)

In this chapter, we apply lemmas of Mues and Steinmetz from [24] to non-linear homoge-

neous differential polynomials in the meromorphic function f and f (k) with coefficients

which are O(log r) + o (T (r, f)) in order to find sufficient conditions for f to be of the

form ReP where R is a rational function and P is a polynomial. This work was published

in Computational Methods and Function Theory [6].

3.1 Introduction and results

We consider non-linear homogeneous differential polynomials F in a meromorphic func-

tion f and f (k) with restrictions on the frequency of the zeros, and from there attempt

to determine the form of f . Other results on homogeneous differential polynomials have

been proved by various authors, for instance in [1], [31] and [33] (see also Chapter 4).
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We write λ(r, h) for any term which is O(log r) + o (T (r, h)) nearly everywhere (n.e.),

that is, outside some set of finite measure.

Let f be a transcendental meromorphic function in the plane. We define

u =
f

f (k)
(3.1.1)

for some k ≥ 1. Further, let

F = fn +
n−2∑
j=0

cjf
j
(
f (k)

)n−j
, (3.1.2)

be a homogeneous non-linear differential polynomial in f and f (k), with coefficients cj

such that T (r, cj) = λ(r, u). We may further rewrite (3.1.2) as

F =
(
f (k)

)n
ψ

where

ψ = un +
n−2∑
j=0

cju
j . (3.1.3)

We will assume in all results that N(r, 1/ψ) = λ(r, u).

Our first result is obtained by placing a restriction on the frequency of the distinct

zeros of f .

Theorem 3.1.1

Let u be as in (3.1.1) with k ≥ 2, and let ψ be as in (3.1.3). Suppose that

N(r, 1/f) + N(r, 1/ψ) = λ(r, u), and that there is at least one j such that cj 6≡ 0.

Then f = ReP , where R is a rational function and P a polynomial.
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Our second result is obtained by placing a restriction on the frequency of the zeros

of f (k).

Theorem 3.1.2

Let u be as in (3.1.1) with k ≥ 1, and let ψ be as in (3.1.3). Suppose that

N(r, 1/f (k)) + N(r, 1/ψ) = λ(r, u), and that there is at least one j such that cj 6≡ 0.

Then f = ReP , where R is a rational function and P a polynomial.

Our third theorem drops the restriction on the zeros of f and f (k), instead replacing

it with a requirement on the Nevanlinna deficiency δ(α, f) to give a much stronger con-

clusion.

Theorem 3.1.3

Let u be as in (3.1.1) with k ≥ 1, and let ψ be as in (3.1.3). Suppose that α ∈ C\{0}

is such that δ(α, f) > 0, that N(r, 1/ψ) = λ(r, u), and that there is at least one j such

that cj 6≡ 0. Then f is a rational function.

3.2 Lemmas

We begin by stating some useful lemmas, assuming throughout this section that ψ is as

in (3.1.3), that N(r, 1/ψ) = λ(r, u), and that there is no constant c such that ψ ≡ cun.

This requirement is slightly stronger than assuming some cj 6≡ 0. We first state a slightly

modified lemma from [10], which provides an important step in our working.
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Lemma 3.2.1 - Clunie’s Lemma [10]

Suppose that hnP [h] = Q[h], where h is meromorphic in the plane and P [h] and

Q[h] are polynomials in h and its derivatives with meromorphic functions c satisfying

T (r, c) = λ(r, h) as coefficients, Q[h] being of degree n at most. Then

m(r, P [h]) = λ(r, h). (3.2.1)

Remark: Clunie proved this as

m(r, P [h]) = O (log r + log T (r, h) + T (r)) ,

where T (r) is the maximum of the characteristics of the coefficients in P [h] and Q[h].

Given our restriction on T (r, c), and since log T (r, h) = o(T (r, h)), it is clear that this is

λ(r, h).

We now move on to a lemma from [24], which provides the main thrust of our argu-

ment by estimating the Nevanlinna functionals of u and 1/u.

Lemma 3.2.2 [24]

With the assumptions of this section on ψ and u, we have

m(r, u) = λ(r, u), (3.2.2)

m(r, 1/u) = λ(r, u), (3.2.3)

N1(r, u) = λ(r, u), (3.2.4)

N1(r, 1/u) = λ(r, u), (3.2.5)

where N1(r, u) = N(r, u) − N(r, u), and thus may be considered to only count multiple

poles of u.
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Remark: It is important to note that the definition of N1(r, f) used here is not the same

as in the statement of the Second Fundamental Theorem (1.3.4). The notation N1(r, f)

was used in [24] and so we retain it for simplicity. Mues and Steinmetz proved that the

above holds with λ(r, u) replaced by S(r, u). We include a full proof below, but note that

if u is transcendental, then λ(r, u) = S(r, u), and so we may simply apply the original

result. If however u is rational, then T (r, u) = O(log r) = λ(r, u), and so the result is

trivial.

Proof:

Let

a = u′ − 1

n

ψ′

ψ
u.

We will show that

T (r, a) = λ(r, u). (3.2.6)

Since ψ 6≡ un, we have by (3.1.3)

ψ = un +R[u], (3.2.7)

where R[u] 6≡ 0 is a polynomial in u with coefficients satisfying T (r, cj) = λ(r, u). Dif-

ferentiating (3.2.7), we have

ψ′ = nun−1u′ +R[u]′,

which we may rewrite as

un−1P [u] = Q[u] (3.2.8)

where P and Q are given by

P [u] = nu′ − ψ′

ψ
u and Q[u] =

ψ′

ψ
R[u]−R[u]′,
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and the degree of Q is at most n− 2 in u and its derivatives. We define

a = u′ − 1

n

ψ′

ψ
u =

P [u]

n
, (3.2.9)

and apply Clunie’s Lemma to (3.2.8). This gives us that

m(r, P [u]) = m(r, na) = m(r, a) +O(1) = λ(r, u). (3.2.10)

Suppose that a ≡ 0. Then by (3.2.9) we have that ψ = cun for some constant c,

which contradicts our assumption that no such c exists. Hence a 6≡ 0.

Now, let z0 be a pole of a of multiplicity µ. If u(z0) 6= ∞, then µ = 1 and either

ψ(z0) = 0, or ψ(z0) =∞ and thus there must be some j such that cj has a pole at z0. If

however u has a pole at z0 of multiplicity ν, we may assume the cj have poles of order

at most η, and by (3.2.8),

(n− 1)ν + µ ≤ 1 + (n− 2)ν + η, and so µ ≤ 1− ν + η ≤ η, (3.2.11)

where the terms in the first inequality come from un−1, a, ψ′/ψ, the powers of u in R[u],

and the cj respectively. Hence,

N(r, a) ≤ N
(
r,

1

ψ

)
+

n−2∑
j=0

N(r, cj) ≤ λ(r, u) (3.2.12)

by our hypothesis on the zeros of ψ and the characteristics of the coefficients cj . Thus,

combining this with (3.2.10), we return (3.2.6) and so prove the existence of this function.

Taking (3.2.8), we divide through by na = P [u], yielding un−2u = Q[u]/na, to which

we apply Clunie’s Lemma, and so (3.2.2) follows.

Now, divide (3.2.9) by au, hence

m

(
r,

1

u

)
= m

(
r,

1

a

(
u′

u
− 1

n

ψ′

ψ

))
≤ T (r, a) +m

(
r,
u′

u

)
+m

(
r,
ψ′

ψ

)
+O(1).
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But, by the Lemma of the Logarithmic Derivative (1.3.2),

m(r, u′/u) = O(log r + log+ T (r, u)) = λ(r, u)

outside a set of finite measure. Further, since T (r, ψ) = O (T (r, u) +
∑
T (r, cj)), we

have m(r, ψ′/ψ) = λ(r, u). Thus, by (3.2.6), (3.2.3) follows.

Let z0 be a pole of u of order ν ≥ 2, and suppose the cj have poles at z0 of order at

most η, and that at z0, a has a pole of order µ > 0 or has a zero of order −µ ≥ 0. Thus,

(3.2.8) gives (3.2.11) again, and we have that ν − 1 ≤ η − µ ≤ η + max{0,−µ}, and so

by (3.2.6)

N1(r, u) ≤ N

(
r,

1

a

)
+
n−2∑
j=0

N(r, cj)

≤ T (r, a) +
n−2∑
j=0

T (r, cj)

= λ(r, u),

thus proving (3.2.4).

Finally, suppose z0 is a zero of u of order ν ≥ 2. Then a has a zero of multiplicity at

least ν − 1 at z0, and so by (3.2.6)

N1(r, u) ≤ N
(
r,

1

a

)
≤ T (r, a) +O(1) = λ(r, u).

QED

Lemma 3.2.3

For any meromorphic function h, we have

N2+(r, h) ≤ 2N1(r, h),

where N2+(r, h) counts only multiple poles of h, each according to multiplicity.
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Proof:

If z0 is a pole of h of multiplicity j > 0, it adds 2(j−1) to 2n1(r, h). Since 2(j−1) ≥ j

for all j ≥ 2, we get n2+(r, h) ≤ 2n1(r, h), and thus N2+(r, h) ≤ 2N1(r, h).

QED

Our next lemma extends Lemma 1.4.3 to the quotient f/f (k), subject to conditions

on the frequency of zeros of either numerator or denominator.

Lemma 3.2.4

If u = f/f (k) is a rational function for some k ≥ 1 and either f or f (k) has finitely

many zeros, then f = ReP , where R is a rational function and P is a polynomial.

Remark: This does not hold without the restriction on the number of zeros, as f = cos z

solves f ′′ = −f yet has infinitely many zeros.

Proof:

By Lemma 1.4.3, it is sufficient to prove that v = f ′/f is a rational function. A pole

of f gives rise to a zero of u, and hence f has only finitely many poles since u is rational.

Further, since at least one of f and f (k) has finitely many zeros, this is true of both,

because u has finitely many zeros and poles. We aim to show that v = f ′/f is rational,

from whence Lemma 1.4.3 proves the result. We have that

N (r, v) = N

(
r,
f ′

f

)
= N(r, f) +N

(
r,

1

f

)
= O(log r). (3.2.13)

Using Lemma 3.5 from [16], we may write

1

u
= vk + S [v] ,
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where S is a differential polynomial in v with constant coefficients, of degree at most

k − 1. We rewrite this as

vk−1v =
1

u
− S [v] ,

and since u is rational we have T (r, u) = λ(r, v). Thus, Clunie’s Lemma implies

m (r, v) = λ(r, v),

and so, using (3.2.13),

T (r, v) = λ(r, v) = O(log r) + o (T (r, v)) ,

and hence v is rational.

QED

Lemma 3.2.5

Suppose that h is meromorphic in the plane and that

hm + dm−1h
m−1 + . . .+ d1h+ d0 ≡ 0 (3.2.14)

where the coefficients dj are meromorphic functions such that T (r, dj) = λ(r, h). Then

h is a rational function.

We omit the proof of this lemma as it is well-known and quite elementary. We now

prove one final lemma concerning the Nevanlinna deficiency δ(α, f).

Lemma 3.2.6

Suppose that the transcendental meromorphic function f has a value α ∈ C\{0} such

that

δ = δ(α, f) = 1− lim sup
r→∞

N (r, 1/(f − α))

T (r, f)
> 0. (3.2.15)
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Then

T (r, f) + T (r, u) = O (m(r, u)) (n.e.). (3.2.16)

Proof:

We rewrite

1

f − α
=

f

f (k)

f (k)

f(f − α)
=

f

αf (k)

(
f (k)

f − α
− f (k)

f

)
.

By the First Fundamental Theorem (1.3.1), T (r, f) = T (r, 1/(f − α)) +O(1), and so by

(3.2.15) and the Lemma of the Logarithmic Derivative (1.3.2),

(δ − o(1))T (r, f) ≤ m

(
r,

1

f − α

)
≤ m

(
r,

f

f (k)

)
+m

(
r,

f (k)

f − α

)
+m

(
r,
f (k)

f

)
+O(1)

= m

(
r,

f

f (k)

)
+ o (T (r, f)) (n.e.)

and so, outside a set of finite measure, m(r, u) = m(r, f/f (k)) ≥ (δ − o(1))T (r, f).

However, we also note that

T (r, u) = T

(
r,

f

f (k)

)
≤ T (r, f) + T (r, f (k)) = O (T (r, f)) (n.e.),

and hence

(δ − o(1))T (r, f) ≤ m(r, u) ≤ T (r, u) ≤ O (T (r, f)) (n.e.),

from which (3.2.16) follows.

QED
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3.3 Proof of the theorems

Proof of Theorem 3.1.1:

Suppose that u is rational. Then λ(r, u) = O(log r), and thus f has only finitely

many zeros. Hence by Lemma 3.2.4, f = ReP .

Now suppose that u is transcendental. Then there exists no c ∈ C such that ψ ≡ cun,

since otherwise we have an identity of the form (3.2.14), and produce a contradiction via

Lemma 3.2.5. Using the First Fundamental Theorem of Nevanlinna Theory (1.3.1),

T (r, u) = T

(
r,

1

u

)
+O(1)

= N

(
r,

1

u

)
+m

(
r,

1

u

)
+O(1)

= N1

(
r,

1

u

)
+N2+

(
r,

1

u

)
+m

(
r,

1

u

)
+O(1), (3.3.1)

where N1(r, 1/u) counts only simple zeros of u. By (3.2.3), (3.2.5) and Lemma 3.2.3, we

have

N2+

(
r,

1

u

)
+m

(
r,

1

u

)
≤ 2N1

(
r,

1

u

)
+ λ(r, u) ≤ λ(r, u).

Since for u to have a simple zero, f must have a zero,

N1

(
r,

1

u

)
≤ N

(
r,

1

f

)
= λ(r, u).

Thus (3.3.1) gives that T (r, u) = λ(r, u), implying that u is rational, a contradiction.

QED

Remark: We note here that the restriction in Theorem 3.1.1 to k ≥ 2 is since if k = 1,

then a pole of f will result in a simple zero of u, and we do not place any restriction on

the number of poles of f .
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Proof of Theorem 3.1.2:

Suppose that u is rational. Then λ(r, u) = O(log r), and thus f (k) has only finitely

many zeros. Hence by Lemma 3.2.4, f = ReP .

Now suppose that u is transcendental. Then there exists no c ∈ C such that ψ ≡ cun,

since otherwise we have an identity of the form (3.2.14), and produce a contradiction via

Lemma 3.2.5. Thus by (3.2.2), (3.2.4) and Lemma 3.2.3,

N2+(r, u) +m(r, u) ≤ 2N1(r, u) + λ(r, u) = λ(r, u).

Now, a simple pole of u cannot be a pole of f , and so must be a zero of f (k). Hence,

T (r, u) ≤ N
(
r,

1

f (k)

)
+N2+(r, u) +m(r, u) ≤ λ(r, u),

and so u is rational, a contradiction.

QED

Proof of Theorem 3.1.3:

Suppose that u is transcendental, then by Lemma 3.2.5 ψ/un is non-constant and

we apply Lemma 3.2.2 to give m(r, u) = λ(r, u). Thus by Lemma 3.2.6, we then have

T (r, u) = λ(r, u), and so u is not transcendental. Hence assume u is rational, and that f

is transcendental. Lemma 3.2.6 then gives us T (r, f) = O (m(r, u)) = λ(r, u) = O(log r),

a contradiction. Hence f is rational.

QED
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Chapter 4

A result on more general

homogeneous differential

polynomials

In this chapter, we substantially strengthen an unpublished result of Whitehead from his

PhD thesis [33] using a refinement of his techniques. This work is due to be published in

Results in Mathematics [7]. The polynomials used in this chapter are of a more general

type than in the previous chapter, although there are still some restrictions.

4.1 Introduction and result

Let Mj be a differential monomial of the form (1.4.1), in a function f , meromorphic in

the plane. We consider sums of monomials Mj of equal degree n, forming homogeneous

differential polynomials, and consider what we may deduce about f from knowing prop-

erties of this polynomial.
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Theorem 4.1.1

Let f be nonconstant and meromorphic in the plane. Let u = f/f ′, m ∈ N, and

let F , a homogeneous differential polynomial in f and its derivatives of weight ΓF , be

defined by

F = fn +

m∑
j=1

ajMj [f ] 6≡ 0, (4.1.1)

where the Mj [f ] are as defined in (1.4.1) with degree n, and the aj are small functions

with respect to u such that T (r, aj) = S(r, u). Suppose that

µ0,j /∈ {n− 1, n} ∀j, (4.1.2)

and that

ΓF ≥ 2n. (4.1.3)

Then at least one of the following must hold:

1. We have that

f = ReP (4.1.4)

for some rational function R and polynomial P in z;

2. We have that

F ≡ fn; (4.1.5)

3. The following inequality holds:

T (r, u) ≤ (ΓF − 3)N1

(
r,

1

f ′

)
+N2

(
r,

1

F

)
+ S(r, u), (4.1.6)

where N1(r, 1/f ′) counts zeros of f ′ which are not also zeros of f , without regard

to multiplicity, and N2(r, 1/F ) counts zeros of F which are neither poles nor zeros

of f , again without regard to multiplicity.
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Remark: Conditions (4.1.2) and (4.1.3) force n ≥ 2 and thus ΓF ≥ 4. Note that this

definition of N1 is again different to the N1 used by Hayman in the statement of the

Second Fundamental Theorem (1.3.4), and also different to the N1 used in Chapter 3.

This result is an improvement of Whitehead’s Theorem 5.16 [33]. Whitehead’s result

required that there be a term of unique maximal weight (see the remark in the proof of

the main theorem for details), replaced condition (4.1.3) with the stricter requirement

that there be some k such that µ0,k = 0, and had the inequality

T (r, u) ≤ N
(
r,

1

f

)
+ (ΓF − 3)N

(
r,

1

f ′

)
+N

(
r,

1

F

)
+ S(r, u)

in place of (4.1.6).

Condition (4.1.2) is necessary for us to apply this theorem (again, see the remark in

the proof of the main theorem for details), since we can construct examples without this

assumption such that none of the conclusions of the above theorem hold. For instance,

let F = f2 + 2ff ′′ − 3(f ′)2, with

f =
1

1− ez
, f ′ =

ez

(1− ez)2
, f ′′ =

ez(1 + ez)

(1− ez)3
.

Then F = f4 6= f2, and so conclusion 2 does not hold. Further, neither F nor f ′ have

any zeros, and hence conclusion 3 cannot hold. Since conclusion 1 clearly does not hold,

our example is such that none of the conclusions hold. Another example using the same

f is F = f3 + 3f2f ′′ + 7(f ′)3 − 3ff ′f ′′.

Corollary 4.1.2

Let the hypotheses of the main theorem hold, with the additional condition that m = 1

in (4.1.1) so that F = fn + aM [f ] where a 6≡ 0. Then at least one of (4.1.4) and (4.1.6)

holds.
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Remark: Whitehead had a similar corollary for his theorem.

4.2 Lemmas

4.2.1 An inequality related to a result of Zhang and Li

The first part of working towards a proof of the main theorem is to improve a result of

Zhang and Li of Tumura-Clunie type. First though, we need a lemma.

Lemma 4.2.1 - Clunie’s Lemma [10]

Let h be a transcendental meromorphic function, and let P [h] and Q[h] be polynomi-

als in h and its derivatives with meromorphic functions satisfying m(r, c) = S(r, h) as

coefficients. Suppose further that hnP [h] = Q[h], and that Q[h] has degree at most n.

Then,

m(r, P [h]) = S(r, h). (4.2.1)

A modified version of this lemma appeared in the previous chapter as Lemma 3.2.1.

Theorem 4.2.2

Let the function h be non-constant and meromorphic in the plane. Assume that

ψ = hn + P [h] 6≡ 0, (4.2.2)

where P [h] is a differential polynomial in h with coefficients cj which are small functions

with respect to h, i.e. T (r, cj) = S(r, h). Suppose that P [h] has degree at most n − 2.

Then at least one of the following is true:

1. We have

T (r, h) < (ΓP − n+ 3)N(r, h) +N0

(
r,

1

ψ

)
+ S(r, h) (4.2.3)
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as r → ∞, where ΓP is the weight of P and N0(r, 1/ψ) counts zeros of ψ which

are not zeros of h, without regard to multiplicity;

2. We have

ψ ≡ hn. (4.2.4)

Remark: This is an improvement of Whitehead’s Theorem 5.8 [33], based on the methods

of Zhang and Li [36], where it makes up the final two pages of their proof, but is not

itself presented as a result. Whitehead’s version had N(r, 1/ψ) instead of N0(r, 1/ψ).

This improvement will be very important later.

We also note here that this result still holds even if ΓP − n+ 3 is negative.

Proof:

Differentiating (4.2.2), we get ψ′ = nhn−1h′ + P ′, and so

ψ′

ψ
(hn + P ) = nhn−1h′ + P ′,

ψ′

ψ
P − P ′ = nhn−1h′ − ψ′

ψ
hn

= hn−1H, (4.2.5)

where

H = nh′ − ψ′

ψ
h. (4.2.6)

Case I:

Suppose that H 6≡ 0. Then m(r, ψ′/ψ) = S(r, ψ) by the Lemma of the Logarithmic

Derivative (1.3.2), and by Lemmas 1.2.2 and 1.3.6, S(r, ψ) = S(r, h). Since the left hand

side of (4.2.5) has degree at most n− 2, we may apply Clunie’s Lemma (Lemma 4.2.1),

giving that

m(r,H) = S(r, h). (4.2.7)
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Since P has degree at most n − 2 and P ′ has at most the same degree, we can write

(4.2.5) as

hn−2(hH) =
ψ′

ψ
P − P ′,

and use Clunie’s Lemma (Lemma 4.2.1) to give m(r, hH) = S(r, h). Using this, the First

Fundamental Theorem (1.3.1) and (4.2.7), we get

m(r, h) = m

(
r,
hH

H

)
≤ m

(
r,

1

H

)
+m(r, hH)

= T (r,H)−N
(
r,

1

H

)
+ S(r, h)

= N(r,H)−N
(
r,

1

H

)
+ S(r, h), (4.2.8)

and hence

T (r, h) ≤ N(r, h) +N(r,H)−N
(
r,

1

H

)
+ S(r, h). (4.2.9)

Let z0 ∈ C, and suppose that h has a pole of order q ≥ 0 at z0, and let its contribution

to n(r,H)− n(r, 1/H) be −t. Thus, t > 0 if z0 is a zero of H of multiplicity t and t < 0

if z0 is a pole of H of multiplicity −t.

If q ≥ 1, then a monomial M = chi0 (h′)i1 . . .
(
h(k)

)ik has a pole of order at most

qi0 + (q + 1)i1 + . . . + (q + k)ik + s where the s is the contribution from the coefficient

c. This is

k∑
j=0

(j + 1)ij + (q − 1)
k∑
j=0

ij + s = ΓM + (q − 1)γM + s

≤ ΓP + (q − 1)(n− 2) + S, (4.2.10)

since ΓP is the maximum of the ΓM over all monomial terms in P and where S is the

contribution from the coefficients. We now rewrite (4.2.5) in the form

hn−1 =

(
ψ′

ψ
P − P ′

)
1

H
.
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Then we have

(n− 1)q ≤ ΓP + (q − 1)(n− 2) + S + 1 + t,

where the 1 comes from ψ′/ψ having at most a simple pole, and t is as defined above.

Thus,

q − t ≤ ΓP − n+ 3 + S,

and hence z0 contributes at most ΓP − n+ 3 + S to

n1(r) = n(r, h) + n(r,H)− n(r, 1/H) (4.2.11)

and at least ΓP − n+ 3 to

n2(r) = (ΓP − n+ 3)n(r, h) + n0

(
r,

1

ψ

)
, (4.2.12)

where n0(r, 1/ψ) counts the distinct points at which ψ = 0 but h 6= 0.

Now suppose that q = 0 but t 6= 0. If t > 0, then the contribution to n1(r) is negative

and the contribution to n2(r) is non-negative. If t < 0, then z0 must be a simple pole

of H arising from the term ψ′/ψ in (4.2.6). Such a simple pole of H can be caused by

a zero of ψ which is not a zero of h, which then gives t = −1 and contributes 1 to each

of n1(r) and n2(r). The only other possibility is a pole of ψ caused by a pole of the

coefficients, which contributes 1 to n1(r) and 0 to n2(r), and the number of such poles

is S(r, h). Thus (4.2.9) becomes (4.2.3).

Case II:

Assume now that H ≡ 0. Then by (4.2.5), we have P = λψ for some λ ∈ C. If λ = 0

then P ≡ 0 and so (4.2.4) follows by (4.2.2). Now suppose that λ 6= 0, and let Λ = λ−1.

Then we have hn + P = ψ = ΛP , and so

hn−1h = (Λ− 1)P.
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We apply Clunie’s Lemma (Lemma 4.2.1), giving

m(r, h) = S(r, h). (4.2.13)

We further note that

h2 = (Λ− 1)Ph2−n,

and examine the poles of this function. As before, if h has a pole of order q ≥ 1, then

by (4.2.10), P has a pole of order at most ΓP + (q − 1)(n − 2) + s, and so Ph2−n will

have a pole of order at most

ΓP + (q − 1)(n− 2) + s− q(n− 2) = ΓP − (n− 2) + s.

Using (4.2.13),

T (r, h) = N(r, h) + S(r, h) =
1

2
N(r, h2) + S(r, h)

≤ 1

2
(ΓP − (n− 2))N(r, h) + S(r, h). (4.2.14)

With ΓP > n− 2, it is easy to see that this implies (4.2.3). If however, ΓP ≤ n− 2, then

by (4.2.13) and (4.2.14) we have T (r, h) = S(r, h), a contradiction.

QED

4.2.2 Several lemmas by Whitehead

We now present several lemmas from [33]. We include the proofs for completeness, as

Whitehead’s thesis is unpublished. We begin with a result comparing the weight of a

monomial with the weight of its derivative.
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Lemma 4.2.3 [33]

Let M [u] be a monomial as defined in (1.4.1). If M [u] has weight ΓM then M ′[u]

has weight ΓM + 1.

This result is proved by induction on q, the highest derivative of u occurring in M [u].

We now show that we may write higher derivatives of f in terms of f and u.

Lemma 4.2.4 [33]

Let p ∈ N and u = f
f ′ . Then,

f (p) = f
Sp[u]

up
, (4.2.15)

where

S1[u] = 1

S2[u] = 1− u′

and

Sp[u] = (1− u′)(1− 2u′) . . . (1− (p− 1)u′) + uTp−2[u] (4.2.16)

for p ≥ 3, with Tp−2[u] a differential polynomial in u with constant coefficients and de-

gree at most p− 2, such that T0[u] ≡ 0. Further, each Sp[u] has degree p− 1 and weight

2(p− 1).

Proof:

We begin by noting that

f ′ =
f

u
=
f

u
S1[u] and f ′′ =

f ′

u
− fu′

u2
=

f

u2
S2[u],
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and thus the lemma holds for p ∈ {1, 2}. Assume it holds for some p = k ≥ 2, then we

have

f (k)

f
=
Sk[u]

uk
,

and hence

f (k+1)

f
=

(
f (k)

f

)′
+
f (k)

f

f ′

f

=

(
Sk[u]

uk

)′
+
Sk[u]

uk
1

u

=
Sk+1[u]

uk+1
,

where

Sk+1[u] = uS′k[u] + (1− ku′)Sk[u]. (4.2.17)

We now prove (4.2.16). Substituting into (4.2.17), we have

Sk+1[u] = (1− u′) . . . (1− (k − 1)u′)(1− ku′) + (1− ku′)uTk−2[u] + uS′k[u],

and we set

Tk−1[u] = (1− ku′)Tk−2[u] + S′k[u]

which has degree at most

max{1 + (k − 2), k − 1} = k − 1 = (k + 1)− 2.

Also, (4.2.17) and Lemma 4.2.3 show that Sk+1[u] has weight at most

max{ΓSk
+ 2, ΓSk

, ΓSk
+ 2} = 2(k − 1) + 2 = 2((k + 1)− 1),

and the presence of the term (1 − u′) . . . (1 − ku′) in Sk+1[u] shows that the degree of

Sk+1[u] is (k + 1)− 1 and the weight is 2((k + 1)− 1).

QED
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We now show that we may write a differential monomial in f in terms of f and a

differential polynomial in u.

Lemma 4.2.5 [33]

Let the hypotheses of Theorem 4.1.1 hold, let L = ΓF − n and u = f
f ′ . Then

uL
Mj [f ]

fn
= Vj [u] (4.2.18)

where Vj [u] is a differential polynomial in u with constant coefficients, of degree at most

L− 2 and weight at most 2ΓF − n− 6.

Proof:

By the hypotheses, ΓF ≥ 2n, and so L ≥ n. We apply Lemma 4.2.4 to (1.4.1),

uL
Mj [f ]

fn
= uL

q∏
p=1

(
f (p)

f

)µp,j

= uL
q∏
p=1

(
Sp[u]

up

)µp,j
= uδj

q∏
p=1

Sp[u]µp,j

= Vj [u],

where

δj = L−
q∑
p=0

pµp,j

= ΓF − n−
q∑
p=0

pµp,j

= ΓF −
q∑
p=0

(p+ 1)µp,j

= ΓF − Γj

≥ 0.
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Since µ0,j /∈ {n− 1, n}, we have µ1,j + . . .+ µq,j ≥ 2. Thus using Lemma 4.2.4

γVj ≤ δj +

q∑
p=1

(p− 1)µp,j

= L−
q∑
p=1

(pµp,j − (p− 1)µp,j)

= L−
q∑
p=1

µp,j

≤ L− 2. (4.2.19)

Further, again by Lemma 4.2.4,

ΓVj ≤ δj + 2

q∑
p=1

(p− 1)µp,j

= L−
q∑
p=1

pµp,j + 2

q∑
p=1

(p− 1)µp,j

= L+

q∑
p=1

(p+ 1)µp,j − 3

q∑
p=1

µp,j

≤ L+ Γj − 6

= ΓF − n+ Γj − 6

≤ 2ΓF − n− 6. (4.2.20)

4.2.3 Some final lemmas

We conclude this section with two lemmas which are improvements of results from White-

head’s thesis [33].

Lemma 4.2.6

We have

N(r, u) ≤ N1

(
r,

1

f ′

)
, (4.2.21)

where the right hand term counts zeros of f ′ which are not also zeros of f , without regard

to multiplicity.
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Proof:

Since u = f/f ′, all poles of u must come from poles of f or zeros of f ′. But a pole

of f , or a zero of f ′ which is also a zero of f , would result in a zero of u. Therefore all

poles of u must come from zeros of f ′ which are not also zeros of f .

QED

Lemma 4.2.7

Let F be as defined in (4.1.1), and L = ΓF − n as before. Further, let

ψ =
uLF

fn
. (4.2.22)

Then we have

N0

(
r,

1

ψ

)
= N2

(
r,

1

F

)
, (4.2.23)

where N0(r, 1/ψ) counts the zeros of ψ which are not zeros of u without regard to mul-

tiplicity, and N2(r, 1/F ) counts zeros of F which are neither poles nor zeros of f , again

without regard to multiplicity.

Proof:

ψ could have a zero if f has a pole, if F has a zero or if u has a zero. However since

u = f/f ′, any pole or zero of f is also a zero of u and thus is not counted by N0(r, 1/ψ).

QED
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4.3 Proof of Theorem 4.1.1

If u is rational, then by Lemma 1.4.3 we obtain the first conclusion (4.1.4). Suppose now

that u is transcendental. Then by (4.1.1) and Lemma 4.2.5,

ψ =
uLF

fn
= uL +

m∑
j=1

aju
LMj [f ]

fn
= uL +

m∑
j=1

ajVj [u]. (4.3.1)

Since Vj [u] has constant coefficients and degree at most L − 2, we may apply Theorem

4.2.2; and so either ψ ≡ uL, and thus F ≡ fn; or

T (r, u) < (max{ΓVj} − L+ 3)N(r, u) +N0

(
r,

1

ψ

)
+ S(r, u).

Thus, by Lemma 4.2.5,

T (r, u) < (2ΓF − n− 6− L+ 3)N(r, u) +N0

(
r,

1

ψ

)
+ S(r, u)

= (ΓF − 3)N(r, u) +N0

(
r,

1

ψ

)
+ S(r, u),

from which (4.1.6) follows by Lemmas 4.2.6 and 4.2.7.

QED

Remark: Whitehead’s requirement that there be a term of unique maximal weight came

from his version of Lemma 4.2.7, which did not ignore zeros of u. He noted that having

a pole of f with two monomials of maximal weight could allow one to cancel the other

out. However, since we ignore zeros of u, and any pole of f is a zero of u, we may safely

ignore poles of f , and so this requirement can be disregarded.

The requirement (4.1.2) stems from the hypotheses of Theorem 4.2.2. If (4.1.2) does

not hold, then we could have that

µ1,j + . . .+ µq,j = 1,

which in Lemma 4.2.5 would give that Vj [u] could have degree L − 1, and so we would

not be able to apply Theorem 4.2.2 in the above proof.
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4.3.1 Proof of Corollary 4.1.2

Using the main theorem, at least one of (4.1.4), (4.1.5) or (4.1.6) holds. Suppose that

(4.1.5) holds, then

a

q∏
p=1

(
f (p)

)µp
≡ 0,

and so f (p) ≡ 0 for some 1 ≤ p ≤ q, since a 6≡ 0. Thus f is a polynomial and so satisfies

(4.1.4).

QED

Remark: Whitehead proved a version of this for his theorem, the method is identical.
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Chapter 5

A normal families result for

homogeneous differential

polynomials

In this chapter, we use a result of Tumura-Clunie type from the previous chapter and

show that for a homogeneous differential operator acting on a family F of functions f

with certain restrictions on zeros, there exist sufficient conditions such that the family

of functions U = {f/f ′ : f ∈ F} is normal.

5.1 Introduction and result

Let H be a family of meromorphic functions. We say that H is normal if every sequence

of functions (hn) ⊆ H has a subsequence which converges locally uniformly as n → ∞,

possibly to infinity. For example, the family of functions {fn(z) = z + n} is normal,

while the family {fn(z) = zn} is not normal. A classic result in this field is Montel’s

Theorem, which states that if a family of holomorphic functions on a domain all omit
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the same two values a, b ∈ C, that family is normal. Normal families have been the

subject of much study, overviews of which can be found in [2] and [35]. However, the

references to differential polynomials in these works are mainly to exceptional values of

certain very specific polynomials in f and f ′. Bergweiler does note in [2] the following

result by himself and Langley, which gives conditions such that the family of logarithmic

derivatives is normal:

Proposition 5.1.1 [3]

Let k ≥ 2, and let F be a family of functions meromorphic on a domain D. Suppose

that f and f (k) have no zeros in D for all f ∈ F . Then the family {f ′/f : f ∈ F} is

normal.

The example fn(z) = enz, for which all derivatives are zero-free, makes it clear that

the conclusion in Prop. 5.1.1, that the family of logarithmic derivatives is normal, can-

not be replaced by a conclusion that the family of functions themselves is normal. The

result which we prove below gives more conditions such that the family of logarithmic

derivatives is normal, in particular by application of certain homogeneous differential

polynomials F , and with restrictions on the zeros of f ′ and F . We note that unlike in

the Bergweiler-Langley result above, we do not require that either f or any derivative of

f be nonvanishing.

Theorem 5.1.2

Let the homogeneous differential polynomial F [f ], of degree n and weight ΓF , be
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defined by

F [f ] = fn +

d∑
j=1

cjMj [f ],

where the Mj [f ] are as defined in (1.4.1), and the cj are non-zero constants. Suppose

that

µ0,j /∈ {n− 1, n} ∀j, (5.1.1)

and that

ΓF ≥ 2n. (5.1.2)

For each j, define

αj =
µ2,j + 2µ3,j + . . .+ (k − 1)µk,j

µ1,j + µ2,j + . . .+ µk,j
. (5.1.3)

Let F be a family of non-constant meromorphic functions f on a domain D, with the

property that, for all f ∈ F , f ′ = 0 only if f = 0, and that F [f ] = 0 only if f ∈ {0,∞}.

If there exists some unique j which has maximal αj; or if for all j, we have µl,j = 0

for all l > 2; then the family U = {f/f ′ : f ∈ F} is normal, and so is the family of

logarithmic derivatives {f ′/f : f ∈ F}.

Remark: The properties of F are guided by (4.2.3), in order that it lead to a contra-

diction. The two conditions on the form of the differential polynomial F are due to the

conditions of Theorem 4.2.2, and the condition that the cj be constant is simply for ease

of use, as normal families results become arduous when using non-constant coefficients.

We also note that the properties of F mean that U is a family of holomorphic functions,

since f ′ = 0 only if f = 0.
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5.2 Lemmas

We first state the Pang-Zalcman Lemma [35], one of the most useful results in the study

of normal families.

Lemma 5.2.1 - The Pang-Zalcman Lemma [35]

Let U be a family of functions meromorphic on a domain D ⊆ C, let β, γ ∈ N, α ∈ R

with −β < α < γ. Suppose that all functions in U have no zeros with multiplicity lower

than β and no poles with multiplicity lower than γ. Further suppose that U is not normal

at z0 ∈ D. Then there exist a sequence (un) in U , a sequence (zn) in D, a sequence ρn

of positive real numbers and a nonconstant meromorphic function v such that zn → z0,

ρn → 0 and

ραnun (zn + ρnz)→ v(z) (5.2.1)

locally uniformly in C.

We now prove an equivalence between the limit of a function of fm and certain dif-

ferential polynomials.

Lemma 5.2.2

Let the fm be meromorphic functions on a domain D, members of a family of func-

tions F with the property that f ′m = 0 only if fm = 0. Let ρm → 0 from above as m→∞,

and let (zm) be a sequence of points tending to a limit z0 ∈ D as m→∞. Define

vm(z) = ραm
fm(zm + ρmz)

f ′m(zm + ρmz)

for some fixed α > −1, and let vm → v locally uniformly on C as m → ∞. Define, for
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p ∈ N,

φp,m(z) = ρp−1−α
m vpm(z)

f
(p)
m (zm + ρmz)

fm(zm + ρmz)
. (5.2.2)

Then, as m→∞,

φp,m → ∆p, (5.2.3)

locally uniformly on C, where

∆p = vp
(

1

v

)(p−1)

. (5.2.4)

Proof:

Note first that φ1,m = 1 = ∆1. Note also that φp,m is analytic, since a pole of

f
(p)
m /fm has multiplicity p and so is cancelled out by a zero of multiplicity p generated

by vpm = (ραmfm/f
′
m)p. We now show that if (5.2.3) holds for some p = q ∈ N, then it

holds for p = q + 1. We may write

ρq−1−α
m

f
(q)
m

fm
= v−qm φq,m,

where fm and its derivatives are evaluated at zm+ρmz, and all other terms are evaluated

at z. Differentiating, we have

ρq−1−α+1
m

(
f

(q+1)
m

fm
− f

(q)
m

fm

f ′m
fm

)
= −qv−q−1

m v′mφq,m + v−qm φ′q,m.

Multiplying through by vq+1
m (z) we get

ρ(q+1)−1−α
m vq+1

m

(
f

(q+1)
m

fm
− f

(q)
m

fm

f ′m
fm

)
= −qv′mφq,m + vmφ

′
q,m,

and then rearranging we have

ρ(q+1)−1−α
m vq+1

m

f
(q+1)
m

fm
= ρ(q+1)−1−α

m vq+1
m

f
(q)
m

fm

f ′m
fm
− qv′mφq,m + vmφ

′
q,m

φq+1,m =

(
ρq−1−α
m vqm

f
(q)
m

fm

)
ρ1+α
m

(
ρ−αm vm

f ′m
fm

)
− qv′mφq,m + vmφ

′
q,m

= ρ1+α
m φq,mφ1,m − qv′mφq,m + vmφ

′
q,m.
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We take the limit as m→∞, which, since 1 + α > 0, gives that

φq+1,m → 0.∆q.1− qv′∆q + v∆′q

= v∆′q − qv′∆q

= v

(
vq
(

1

v

)(q−1)
)′
− qv′vq

(
1

v

)(q−1)

= vq+1

(
1

v

)(q)

+ qvqv′
(

1

v

)(q−1)

− qvqv′
(

1

v

)(q−1)

= ∆q+1

as required. Thus by induction, we achieve the result.

QED

Recalling Theorem 4.2.2, we are in a position to prove Theorem 5.1.2.

5.3 Proof of Theorem 5.1.2

First, let α be the maximum of the αj , defined by (5.1.3), over all monomials occurring in

F [f ]. It is clear to see from the definition that α ≥ 0. We now proceed by contradiction.

Suppose that U is not normal. Then by the Pang-Zalcman Lemma, given some α′ ∈

(−β, γ), there exist a sequence (um) ⊆ U , a sequence (zm)→ z0 in D, and a sequence of

positive real numbers ρm → 0 such that

ραmum(zm + ρmz) = vm(z)

tends locally uniformly on C to a non-constant function v(z). Because U is a family

of holomorphic functions, we have that γ = ∞, and so in particular this holds for any

α′ ≥ 0, and so we may choose α′ = α. We also have that v is entire, since for any

fm ∈ F , f ′m = 0 only if fm = 0 and the um are holomorphic.
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Define Fm = F [fm] and let Mj [fm] = (fm)µ0,j (f ′m)µ1,j . . . (f
(k)
m )µk,j be a differential

monomial in fm of degree n, weight Γj and α-value αj as defined by (5.1.3). Let

Ψm =
vLmFm
fnm

, (5.3.1)

where Ψm and vm are evaluated at z, fm and Fm at zm + ρmz, and L = ΓF − n. Then

the term of Ψm generated by Mj [fm] is

vLm

(
f ′m
fm

)µ1,j
. . .

(
f

(k)
m

fm

)µk,j
= ρ

Aj
m v

ΓF−Γj
m

(
ρ−αm vm

f ′m
fm

)µ1,j
. . .

(
ρk−1−α
m vkm

f
(k)
m

fm

)µk,j
,

where, using (5.1.3),

Aj = αµ1,j + (α− 1)µ2,j + . . .+ (α− k + 1)µk,j

= α(µ1,j + µ2,j + . . .+ µk,j)− (µ2,j + 2µ3,j + . . .+ (k − 1)µk,j)

= (µ1,j + µ2,j + . . .+ µk,j)

(
α−

µ2,j + 2µ3,j + . . .+ (k − 1)µk,j
µ1,j + µ2,j + . . .+ µk,j

)
= (n− µ0,j)(α− αj) ≥ 0.

It is clear to see that this is, with the notation of Lemma 5.2.2,

v
ΓF−Γj
m (φ1,m)µ1,j (φ2,m)µ2,j . . . (φk,m)µk,jρ

Aj
m ,

and thus

Ψm = vL +
∑
j

ρ
Aj
m v

ΓF−Γj
m (φ1,m)µ1,j (φ2,m)µ2,j . . . (φk,m)µk,j . (5.3.2)

Although we can apply Lemma 5.2.2 for any α > −1, it is more convenient to consider

the case α = 0 using standard methods as follows. This value of α corresponds to the

case that F is a polynomial in f and f ′ only, and thus the differential polynomial Fm

has the form

Fm = fnm +

n−2∑
j=0

cj(fm)j(f ′m)n−j ,
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where at least one cj is non-zero. Let um = fm/f
′
m, then we may rewrite

ψm =
uLmFm
fnm

= uLm +
n−2∑
j=0

cju
L+j−n
m

=
(
ρ−αm vm

)L
+
n−2∑
j=0

cj
(
ρ−αm vm

)L+j−n
,

where ψm and vm are evaluated at z, Fm, um and fm at zm + ρmz. Taking the limit,

since α = 0, we have

ψm → Ψ = vL +
n−2∑
j=0

cjv
L+j−n,

where Ψ is non-constant because v is non-constant. Suppose that w0 ∈ C is a zero of Ψ

but not of v. Then Hurwitz’s theorem gives, for large m, a zero wm of ψm which is close

to w0 but not a zero of vm, and so zm + ρmwm is a zero of Fm, since if it were a pole

or a zero of fm then w0 would be a zero of vm. Since all zeros of Fm are zeros or poles

of fm, this forces vm(wm) = 0, a contradiction. Thus, all zeros of Ψ are also zeros of v,

and thus when we apply Theorem 4.2.2 to Ψ the inequality (4.2.3) fails, and so we have

n−2∑
j=0

cjv
L+j−n ≡ 0,

which is only solved by constants. This violates the conclusion of the Pang-Zalcman

Lemma that the function v is non-constant.

We may now assume that α > 0. Taking the limit of (5.3.2) as m→∞, we have

ψm → Ψ = vL + . . .+ cjv
ΓF−Γj (∆1)µ1,j (∆2)µ2,j . . . (∆k)

µk,jβj + . . . = vL + Φ

where ρ
Aj
m → βj ∈ {0, 1}. As we saw in the proof of Lemma 5.2.2, ∆q+1 = v∆′q − qv′∆q.

Thus, it is clear that since ∆1 = 1, each ∆q will have degree at most q − 1. Thus we
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have

deg(Φ) ≤ max{ΓF − Γj + µ2,j + 2µ3,j + . . .+ (k − 1)µk,j}

= max{L− Γj + µ0,j + µ1,j + 2µ2,j + . . .+ kµk,j}

= max{L− (µ1,j + µ2,j + . . .+ µk,j)}

≤ L− 2

by the hypotheses of the theorem and the fact that L = ΓF − n.

Consider first the case Ψ ≡ 0. Since v is entire, we have two cases: v is polynomial,

or v is transcendental. Assume first that v is a polynomial of degree q, then Φ is a

polynomial of degree at most q(L − 2), but vL is a polynomial of degree qL, and thus

we have a contradiction unless q = 0, in which case v is constant, which violates the

Pang-Zalcman Lemma. Now consider v to be transcendental. We write vL−2v2 = −Φ,

and thus by Clunie’s Lemma (Lemma 4.2.1) return m(r, v2) = 2m(r, v) = S(r, v), which

contradicts our statement that v is entire. Hence Ψ 6≡ 0, and we may apply Theorem

4.2.2. This gives us that either that

Ψ ≡ vL and so Φ ≡ 0

or

T (r, v) < (ΓΦ − L+ 3)N(r, v) +N0

(
r,

1

Ψ

)
+ S(r, v),

where ΓΦ is the weight of Φ and N0(r, 1/Ψ) counts zeros of Ψ which are not zeros of v,

without regard to multiplicity. We showed earlier that v is entire, hence N(r, v) = 0.

Now consider zeros of Ψ. Since Ψ 6≡ 0, if Ψ has a zero at some point w0, then Ψ must be

non-constant, and thus, since ψm → Ψ, Hurwitz’s Theorem gives a zero wm of ψm, with

wm → w0 as m → ∞. Therefore, by (5.3.1), we have that wm is a zero of vm, in which

case we do not count it; or zm + ρmwm is a pole of f or a zero of Fm, and so is a zero of
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um by the properties of F and U , and therefore wm is a zero of vm and is again ignored.

Thus w0 makes no addition to N0(r, 1/Ψ), and so N0(r, 1/Ψ) ≡ 0. Thus the inequality

fails and we have that Φ ≡ 0.

We now consider the first case given in the theorem, that there is a unique term

Mj [fm] with maximal αj . Since Aj = (n−µ0,j)(α−αj), it is clear that Aj = 0 if αj = α,

and is otherwise positive since for any monomial Mj , n − µj,0 ≥ 2 by the conditions of

the theorem. Since ρ
Aj
m → βj and ρm → 0, it is clear that βj = 1 if Aj = 0, and if Aj > 0

then βj = 0, and thus that particular term vanishes. Therefore, since we choose α to be

the maximal αj , and that αj is unique, we have only a single term remaining:

Φ = cjv
ΓF−Γj (∆1)µ1,j (∆2)µ2,j . . . (∆k)

µk,j ≡ 0,

and so one of the following is true:

1. cj = 0

2. v ≡ 0

3. ∆p ≡ 0 for some p ∈ N.

Case 1 is ruled out by the hypotheses of the theorem. Case 2 violates the statement of the

Pang-Zalcman Lemma that v is non-constant. Case 3 implies that either v ≡ 0, which

we have ruled out, or that (1/v)(p−1) ≡ 0, which implies that (1/v) is a polynomial, and

hence either v is constant, which again violates Pang-Zalcman, or v is not entire, which

is again a contradiction.

Finally, we come to the second case of the theorem, that there are no derivatives in

F of higher order than f ′′, and, since we have dealt with the case α = 0, there is at least

one term containing f ′′. We have α = µ2,j/(µ1,j+µ2,j) for some j, and this value of αj is
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shared by at least two monomials (otherwise, see the previous case). Thus µ1,j = γµ2,j

where γ = α−1 − 1. Then

Φ =
∑

j:Aj=0

cjv
L−µ1,j−2µ2,j∆

µ1,j
1 ∆

µ2,j
2

=
∑

j:Aj=0

cjv
L−(γ+2)µ2,j (1)γµ2,j (−v′)µ2,j

= vL
∑

j:Aj=0

cj(−1)µ2,j
(

v′

vγ+2

)µ2,j
(5.3.3)

By our earlier working, we know Φ ≡ 0, and hence we have that either vL ≡ 0, which

contradicts the Pang-Zalcman Lemma, or that there exists a polynomial Q such that

Q

[
v′

vγ+2

]
≡ 0,

which implies that v′ ≡ λ1v
γ+2 for some constant λ1. Thus, since γ 6= −1,

∫
v−γ−2dv =

∫
λ1dz

v−γ−1 = λ2z + λ3

for constants λp, and therefore v = (λ2z + λ3)−1/(γ+1). Clearly this will only be non-

constant entire when −1/(γ + 1) ∈ N. This in turn, by the definition of γ, gives us

that −α ∈ N, which is clearly impossible since α > 0. Therefore v is not entire, and so

violates the Pang-Zalcman lemma.

Thus, we see that in all cases, we reach a contradiction of the Pang-Zalcman Lemma,

and hence U is normal. Hence, since a subsequence in a normal family may converge

to ∞, the family of reciprocals of U , the family of logarithmic derivatives of F , is also

normal.

QED

Remark: We note here that this method can be applied to any homogeneous differential

polynomial of the form given in the theorem, not necessarily just those with no deriva-
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tives higher than f ′′ or a unique maximal αj . However, these polynomials give rise to

differential equations of the form

Φ =
∑
j

cjv
ΓF−Γj (∆1)µ1,j (∆2)µ2,j . . . (∆k)

µk,j ≡ 0, (5.3.4)

which can in general have non-constant entire solutions, which therefore do not violate

the Pang-Zalcman Lemma and thus do not lead to the required contradictions. For

instance, consider F [f ] = f3 + (f ′)2f ′′′ − f ′(f ′′)2. From this, we get that ΓF = 8, L = 5

and α = 2
3 , and so

Ψ = v5 + ∆3 − (∆2)2.

Thus when applying Theorem 4.2.2, we have

Φ = v3

(
1

v

)′′
−
(
v2

(
1

v

)′)2

≡ 0,

which is solved by the non-constant entire solution family aebz for non-zero constants

a, b, and this family is not normal. It is also worth noting that these entire solutions are

generally the exceptional case, and rely on specific values of coefficients. For instance,

if we take G[f ] = f3 + (f ′)2f ′′′ + f ′(f ′′)2, this has the same structure as F but different

coefficients. The associated differential equation (5.3.4) has solutions of the form v =(
a
√
b+ 2z

)−1
for constants a, b, and so has no non-constant entire solutions.
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Chapter 6

Integer points of meromorphic

functions

In this chapter, we work from a half-plane result of Fletcher and Langley [12] and show

that if f is an integer-valued function on some subset of the natural numbers of positive

lower density, and is meromorphic of sufficiently small exponential type in the plane,

then f is a polynomial. This work is due to be published in Proceedings of the Edinburgh

Mathematical Society [8].

6.1 Introduction and result

An integer-valued function is one such that f(Z) ⊆ Z, a simple example being a poly-

nomial with integer coefficients, or sin(πz). Research in this field generally focusses on

functions which are integer-valued on some subset of Z. Pólya proved an early result in

this field.
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Proposition 6.1.1 [26]

Let f be entire, taking integer values on N ∪ {0}, and suppose that

lim sup
r→∞

M(r, f)

2r
< 1

where M(r, f) is the maximum modulus function of f . Then f is a polynomial.

Langley in [20] later showed that the lim sup cannot be replaced by a lim inf. A corol-

lary to Pólya’s result is that 2z is the slowest growing transcendental entire function to

take integer values on the non-negative integers. Pólya further showed that

Proposition 6.1.2 [26]

Let f be an entire function such that f(n) ∈ Z for n = 0, 1, 2, . . . and

lim sup
r→∞

logM(r, f)

r
≤ α ≤ log 2.

Then there exist polynomials Pj(z) such that

f(z) = P1(z)2z + P2(z).

This was later improved to α ≤ log 2 + 1
1500 by Selberg in [28], then further by Pisot

in [25].

Fletcher and Langley proved a half-plane analogue to Pólya’s result [12],

Proposition 6.1.3 [12]

Let d, J and λ satisfy

0 < d < 1, J ∈ N, λ > 0,
16

J

(
1 + log

(
1 +

J

2

))
+ 8(J − 1)λ < d2.

Let E ⊂ N have lower density

D(E) = lim inf
n→∞

|E ∩ {1, . . . , n}|
n

> d,
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let f be analytic of exponential type less than λ in the closed right half plane, and assume

that f(n) ∈ Z for every n ∈ E. Then f is a polynomial.

Further related work may be found in [9], [11], [22], [27] and [34], among others.

However, there does not appear to have been any research into whether an analogue of

Pólya’s result can be obtained for meromorphic functions. In this chapter, we generalise

Fletcher and Langley’s result to meromorphic functions, following the general method

of their proof, which was in turn based on a method of Waldschmidt [32]. Our result

is restricted to functions which are meromorphic in the whole plane rather than a half

plane, mainly due to the Poisson-Jensen formula being significantly easier to use in the

whole plane.

Theorem 6.1.4

Given d ∈ (0, 1), there exists some λ = λ(d) > 0 with the following property. Let f

be meromorphic in the plane, taking integer values on some set E ⊆ N of positive lower

density d0 > d, with T (r, f) ≤ λr for all r ≥ r0. Then f is a polynomial.

We will calculate how small λ needs to be in the appendix (6.4).

6.2 Lemmas

To begin with, we will prove some lemmas. The first is an elementary result comparing

the integrated and unintegrated counting functions.
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Lemma 6.2.1

Let 0 < s < S, and let h be a meromorphic function on the set |z| ≤ S. Then

N(S, h) ≥ n(s, h) log
S

s
+ n(0, h) log s.

This is a well-known result, and so we omit the proof. The next lemma is found in

many texts, including [17], where it is presented as a mass distribution result. A more

elementary proof can be found in [18].

Lemma 6.2.2 - The (Boutroux-)Cartan Lemma

Let z1, . . . , zn ∈ C, and γ > 0. Then

V (z) =
n∑
j=1

log |z − zj | > n log γ (6.2.1)

for all z outside a union U of open discs of total radius at most 6γ.

Remark: We may assume that the discs are disjoint, since if some point z0 is within two

discs, of radius r1 and r2 respectively, we may choose a new disc of radius r3 < r1 + r2

that encloses both original discs. We may also assume that each disc contains at least

one zj , as otherwise (6.2.1) applies on the boundary of that disc, and since V is harmonic

inside the disc, we may extend (6.2.1) to the interior. We may therefore assume that

there are at most n discs.

We now apply Boutroux-Cartan to give a bound on the logarithm of the modulus of

a function in terms of its Nevanlinna characteristic.
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Lemma 6.2.3

Let m ≥ 0, s ≥ 1, 0 < ε ≤ 1, and let h be meromorphic on the set |z| ≤ 8s with at

least m distinct zeros in |z| ≤ s. Then

log |h(z)| ≤
(

6− log ε

log 2

)
T (8s, h) +m log

6

7
(6.2.2)

for all |z| ≤ 2s lying outside a union U of at most n(4s, h) open discs of total radius at

most 24εs.

Remark: A disc of radius s > 0 contains at most 1 + 2s distinct integers, and so the

number of integers in U is at most the number of discs plus double the total radius.

Proof:

Let S = 4s and n = n(4s, h), and further let b1, . . . , bn be the poles of h in |z| ≤ S,

repeated according to multiplicity. If m > 0, let a1, . . . , am be distinct zeros of h in

|z| ≤ s. Finally, define the function g by

g(z) = h(z)
m∏
j=1

S2 − ajz
S(z − aj)

n∏
k=1

z − bk
S

where an empty product is taken as 1. Thus g is analytic on |z| ≤ S. Also, for |z| = S,

we have ∣∣∣∣ S2 − ajz
S(z − aj)

∣∣∣∣ = 1 and

∣∣∣∣z − bkS

∣∣∣∣ ≤ 2,

and so,

T (S, g) = m(S, g) ≤ m(S, h) + n(S, h) log 2.

Since S > 1, we have by Lemma 6.2.1

N(2S, h) ≥ n(S, h) log 2,
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and so

T (S, g) ≤ m(S, h) +N(2S, h) ≤ 2T (2S, h).

Thus, by the standard comparison between the maximum modulus and characteristic

functions for functions analytic on a disc centred at the origin (1.2.15), we have for

|z| ≤ 2s = S/2,

log |g(z)| ≤
S + S

2

S − S
2

T (S, g) = 3T (S, g) ≤ 6T (2S, h) = 6T (8s, h).

Also in this region we have |z − aj | ≤ 3s and |S2 − ajz| ≥ 14s2, and so

∣∣∣∣S(z − aj)
S2 − ajz

∣∣∣∣ ≤ 4s3s

14s2
=

6

7
.

We apply Boutroux-Cartan with γ = εS to find that outside a union U of at most n

open discs of total radius at most 24εs,

n∑
k=1

log |z − bk| ≥ n log 4εs.

Thus, for |z| ≤ 2s, z /∈ U ,

log |h(z)| = log |g(z)|+
m∑
j=1

log

∣∣∣∣S(z − aj)
S2 − ajz

∣∣∣∣+
n∑
k=1

logS −
n∑
k=1

log |z − bk|

≤ 6T (8s, h) +m log
6

7
− n log 4εs+ n log 4s

= 6T (8s, h) +m log
6

7
− n log ε

where, by Lemma 6.2.1,

n = n(4s, h) ≤ N(8s, h)

log 2
≤ T (8s, h)

log 2
,

from which the result follows.

QED
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The following lemma allows us to say that if a function has some zeros in a certain

segment of the real line, then it has more zeros in a larger segment. Repeated application

of this allows us to cover the entire range [1,∞).

Lemma 6.2.4

Given d ∈ (0, 1), there exists ϑ = ϑ(d) > 0 with the following property. Let R ≥ 1,

E ⊆ N be such that |E ∩ [1, r]| ≥ dr for all r ≥ R, let F (E) ⊆ Z where F is meromorphic

in C and has at least dR/2 distinct zeros in E ∩ [1, R], and T (r, F ) ≤ ϑr for all r ≥ R.

Then F has at least dR distinct zeros in E ∩ [1, 2R].

Proof:

Let ε = d/96, and let m be the least integer such that m ≥ dR/2. We apply Lemma

6.2.3 with h = F and s = R to give, for |z| ≤ 2R outside some union U of at most

n(4R,F ) open discs of total radius at most dR/4,

log |F (z)| ≤
(

6− log ε

log 2

)
8ϑR+

dR

2
log

6

7
. (6.2.3)

It is easy to check that with small enough ϑ, this gives log |F (z)| < 0. Further, by our

earlier remark on Lemma 6.2.3, U encloses at most

n(4R,F ) + 48εR ≤ T (8R,F )

log 2
+ 48εR ≤

(
8ϑ

log 2
+
d

2

)
R (6.2.4)

integers. Given that |E ∩ [1, 2R]| ≥ 2dR, it is clear that if ϑ is small enough then

after removing any points of E ∩ [1, 2R] ∩ U we are left with at least dR integers in

(E ∩ [1, 2R]) \ U , which, since F (E) ⊆ Z and |F (z)| < 1 at these points, must be zeros

of F .

QED
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We now proceed to several lemmas from [12], which form the main structure of the

proof. We first create a sequence of polynomials, then look at an application of linear

forms, and finally note that if a function is algebraic on a half plane and takes integer

values, then it is a polynomial.

Lemma 6.2.5 [12]

Define polynomials p0, p1, . . . by

p0(z) = 1, p1(z) = z, ph(z) =
z(z − 1) . . . (z − h+ 1)

h!
(h = 2, 3, . . .).

Then for R > 0, H ∈ N, 0 ≤ h ≤ H and |z| ≤ R, we have ph(Z) ⊆ Z and

|ph(z)| ≤ eH
(
R

H
+ 1

)H
.

Proof:

It is easy to see that ph(Z) ⊆ Z. For the inequality, we write

|ph(z)| ≤ (R+H)h

h!
≤ Hh

h!

(
R

H
+ 1

)H
≤ eH

(
R

H
+ 1

)H
.

QED

Lemma 6.2.6 [12]

Let B ≥ 1 and N ≥ 2 be integers. Suppose that L1, . . . , Lm are linear forms in the

n variables x1, . . . , xn, with real coefficients aj,k for j = 1, . . . ,m and k = 1, . . . , n, such

that Lj = aj,1x1 + . . .+ aj,nxn. Suppose further that n > m and

max
j,k
|aj,k| ≤ B.

Then there exist integers x1, . . . , xn, not all zero, such that for j = 1, . . . ,m and k =

1, . . . , n,

|Lj | ≤
1

N
and |xk| ≤ 2(2nBN)

m
n−m .
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Lemma 6.2.7 [12]

Let the algebraic function f be analytic on the half plane Re(z) ≥ 0, and satisfy

f(E) ⊆ Z for some set E ⊆ N of positive lower density. Then f is a polynomial.

6.3 Proof of Theorem 6.1.4

Fix a large positive integer J , and given J let R be a large positive integer. How large

J must be will be determined later.

Apply Lemma 6.2.3 with h = f , m = 0, s = R/2 and ε = d/96 to give that, for

|z| ≤ R outside a union U of open discs of total radius at most dR/8,

log |f(z)| ≤

(
6−

log d
96

log 2

)
4λR = ΛR. (6.3.1)

By (6.2.4), replacing R with R/2,

|Z ∩ U | ≤ T (4R, f)

log 2
+ 24εR ≤

(
4λ

log 2
+
d

4

)
R <

dR

3
(6.3.2)

for small enough λ. Since R is large we therefore have m ≥ dR/2 distinct integers

α1, . . . , αm ∈ E ∩ [1, R], where m/J ∈ N, for which f(αj) ∈ Z and (6.3.1) is satisfied.

Now, set n = 2m, H = n/J ∈ N, and form n = HJ functions

gk(z) = pµ(k)(z)f(z)ν(k), (6.3.3)

for µ = 0, 1, . . . ,H − 1, ν = 0, 1, . . . , J − 1, where the pµ are as in Lemma 6.2.5. Note

that H is dependent on R, but that J is fixed. Let aj,k = gk(αj) ∈ Z. We obtain the

following estimate by Lemma 6.2.5 and (6.3.1):

|aj,k| = |gk(αj)| =
∣∣pµ(k)(αj)

∣∣ |f(αj)|ν(k)

≤ eH
(
R

H
+ 1

)H (
eΛR

)J−1

= A(R) ≤ dA(R)e = B(R) ≤ 2A(R),
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where dxe is the smallest integer not less than x. We apply Lemma 6.2.6 with N = 2

and n = 2m to give integers A1, . . . , An, not all zero, such that

n∑
k=1

Akgk(αj) = 0

for j = 1, . . . ,m, and

|Ak| ≤ 8nB,where B = B(R).

Now set

F (z) =

n∑
k=1

Akgk(z). (6.3.4)

F is meromorphic, takes integer values on E and is 0 at the αj for j = 1, . . . ,m. We

now estimate T (r, F ) for each r ≥ R. Note first that since the pµ(z) are polynomials, all

poles of F must come from poles of f , and so

N(r, F ) ≤ (J − 1)N(r, f).

Also, for non-negative x1, . . . , xn,

log+

(
n∑
k=1

xk

)
≤ log n+ max

1≤k≤n
log+ |xk|.

For r ≥ R, we have by Lemma 6.2.5 that

log |F (z)| ≤ log n+ max
1≤k≤n,|z|=r

(
log+ |Akgk(z)|

)
≤ log n+ log 8nB +H

(
1 + log

( r
H

+ 1
))

+ (J − 1) log+ |f(z)|.

Thus, by integrating we obtain

m(r, F ) ≤ log n+ log 8nB +H
(

1 + log
( r
H

+ 1
))

+ (J − 1)m(r, f),

and so

T (r, F ) ≤ log n+ log 8nB +H
(

1 + log
( r
H

+ 1
))

+ (J − 1)T (r, f)

≤ log n+ log 16nA+H
(

1 + log
( r
H

+ 1
))

+ (J − 1)T (r, f).
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Now, for r ≥ R, since Λ > λ by (6.3.1) and n = 2m ≤ 2r and R is large, we have

T (r, F ) ≤ 4 log 2 + 2 log n+ log

(
eH
(
R

H
+ 1

)H
e(J−1)ΛR

)
+

+H
(

1 + log
( r
H

+ 1
))

+ (J − 1)T (r, f)

≤ 4 log 2 + 2 log 2r +H

(
1 + log

(
R

H
+ 1

))
+ (J − 1)ΛR+

+H
(

1 + log
( r
H

+ 1
))

+ (J − 1)λr

≤ 2H
(

1 + log
( r
H

+ 1
))

+ 2(J − 1)Λr.

By differentiation, it may be verified that x−1(1 + log(x + 1)) is decreasing for x > 0.

So, for n = 2m ≤ 2R ≤ 2r, this gives

r

H
≥ R

H
=
RJ

n
=
RJ

2m
≥ J

2

and

2H
(

1 + log
( r
H

+ 1
))

= 2r
H

r

(
1 + log

( r
H

+ 1
))

≤ 2r
2

J

(
1 + log

(
J

2
+ 1

))
=

4r

J

(
1 + log

(
J

2
+ 1

))
.

Thus,

T (r, F ) ≤ 4r

J

(
1 + log

(
J

2
+ 1

))
+ 2(J − 1)Λr, (6.3.5)

and so we can say that for large enough R,

T (r, F ) < ϑr (6.3.6)

for r ≥ R, where ϑ > 0 can be arbitrarily small provided that Λ is small enough and

J large enough. We also have F (αj) = 0 for j = 1, . . . ,m where m ≥ dR/2. We apply

Lemma 6.2.4 to give at least dR zeros of F in E ∩ [1, 2R]. We apply this repeatedly to

give an infinite sequence of zeros of F on the real line. Assume that F (z) 6≡ 0. We have
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that n(2tR, 1/F ) ≥ 2t−1dR, and so n(r, 1/F ) ≥ dr/4 for all r ≥ R. By application of

Lemma 6.2.1 we find N(er, 1/F ) ≥ dr/4, thus T (r, 1/F ) ≥ dr/4e, and so by the First

Fundamental Theorem (1.3.1),

T (r, F ) ≥ dr/4e−O(1). (6.3.7)

However, if ϑ is small enough, this is incompatible with (6.3.6). Hence, F (z) ≡ 0.

Now, recall from (6.3.3) and (6.3.4) that

F (z) =
J−1∑
ν=0

H−1∑
µ=0

Aµ,νpµ(z)

 f(z)ν ,

where at least one Aµ,ν is non-zero, and where pµ(z) has degree µ. Thus, these polyno-

mials cannot cancel each other out, hence f is algebraic, and so must have only finitely

many poles. Therefore there is some x ∈ N such that there are no poles in the half plane

Re(z) ≥ x, so f is analytic in this region. We apply Lemma 6.2.7 to f(z − x), giving

that f(z − x) is a polynomial here. From this, we conclude that f(z) is polynomial in

the half-plane Re(z) ≥ x, and thus by the identity theorem f(z) must be a polynomial

on the whole plane.

QED

6.4 Appendix - How small is λ(d)?

An obvious question to ask about this theorem is “how small must λ be?” We will now

calculate this. We make no claim as to how sharp these values are, but have sought to

present a positive result in a reasonably accessible fashion.

We begin by calculating ϑ in Lemma 6.2.4. We use (6.2.3), substituting in d/96 for

ε, and noting that since we want |F (z)| < 1 in order to force F (α) = 0 for α ∈ E \ U ,
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we require log |F (z)| < 0. Hence,

ϑ <
d log 7

6

16
(

6− log(d/96)
log 2

) = γ(d). (6.4.1)

We also require that U encloses at most dR integers, and so by (6.2.4) we need

(
8ϑ

log 2
+
d

2

)
R ≤ dR,

which simplifies to

ϑ ≤ d log 2

16
. (6.4.2)

We further require by (6.3.6) and (6.3.7) that

ϑ <
d

4e
. (6.4.3)

However,

d log 7
6

16
(

6− log(d/96)
log 2

) < d log 7
6

96
<

d

48
<
d log 2

16
<

d

4e
,

hence both (6.4.2) and (6.4.3) are much looser bounds than (6.4.1) and so may be ig-

nored.

We now move on to Λ. The proof of the theorem by (6.3.2) requires

λ <
d log 2

48
. (6.4.4)

It also requires by (6.3.1) and (6.3.5) that

ϑ =
4

J

(
1 + log

(
J

2
+ 1

))
+ 2(J − 1)

(
6−

log d
96

log 2

)
4λ.

Suppose we choose J so large that

4

J

(
1 + log

(
J

2
+ 1

))
<
γ(d)

2
,
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and, given this J , choose λ such that

2(J − 1)

(
6−

log d
96

log 2

)
4λ <

γ(d)

2
.

Then the pair (J, λ) will satisfy (6.4.1). Further, we have

λ <
γ(d)

96
<
d log 7

6

962
<
d log 2

48
,

and so (6.4.4) holds. Solving these inequalities using Mathematica for J in terms of d

produces the following new inequality:

J >
128 log d

6144

d log 7
6 log 2

W


d log 7

6 log 2 exp

(
d log 7

6 log 2

64 log d
6144

− 1

)
64 log d

6144

− 2

where W is the Lambert W-function. Again using Mathematica, solving for specific

values of d gives the following results for J and λ:

d = 1 J ' 130, 000 λ / 2.9× 10−11

d = 0.5 J ' 290, 000 λ / 5.6× 10−12

d = 0.1 J ' 2, 000, 000 λ / 1.2× 10−13

d = 0.01 J ' 28, 000, 000 λ / 5.8× 10−16

Note that d = 1 is essentially meaningless here, as we require our set E to have lower

density greater than d, but it provides a useful upper bound.

By comparison, using a similar process on the Fletcher-Langley result (Proposition

6.1.3) yields a maximal value of λ of roughly 3.6× 10−4 for d close to 1.

6.5 Appendix - A thought on further work

We conclude by asking a question about a topic which does not appear to have been the

subject of any research: can any results be obtained by restricting what integer values
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may be taken? Specifically, for n ∈ {1, 2, 4}, is 2nz the slowest-growing transcenden-

tal meromorphic function taking only nth powers of integers on the natural numbers?

Pólya’s result (the corollary to Proposition 6.1.1) proves this for n = 1, but beyond this

the way forward is unclear. The restriction to only three integer values of n is due to the

sine function: for odd n ≥ 3, sin(πz/2) has the required properties and is smaller than

23z, and for even n ≥ 6, sin(πz) is sufficient.

97



Bibliography

[1] W. Bergweiler, On the zeros of certain homogeneous differential polynomials,

(Archiv der Mathematik, 64, no. 3, 1995, pp199-202).

[2] W. Bergweiler, Bloch’s principle (Computational Methods and Function Theory, 6,

no. 1, 2006, pp77-108).

[3] W. Bergweiler and J. K. Langley, Nonvanishing derivatives and normal families
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