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Abstract

The project concerned the study of quantum correlations (QC) in compound

systems, i.e. statistical correlations more general than entanglement which are

predicted by quantum mechanics but not described in any classical scenario. I

aimed to understand the technical and operational properties of the measures

of QC, their interplay with entanglement quantifiers and the experimental ac-

cessibility.

In the first part of my research path, after having acquired the conceptual and

technical rudiments of the project, I provided solutions for some computational

issues: I developed analytical and numerical algorithms for calculating bipar-

tite QC in finite dimensional systems. Then, I tackled the problem of the ex-

perimental detection of QC. There is no Hermitian operator associated with

entanglement measures, nor with QC ones. However, the information encoded

in a density matrix is redundant to quantify them, thus the full knowledge of

the state is not required to accomplish the task. I reported the first protocol to

measure the QC of an unknown state by means of a limited number of measure-

ments, without performing the tomography of the state. My proposal has been

implemented experimentally in a NMR (Nuclear Magnetic Resonance) setting.

In the final stage of the project, I explored the foundational and operational

merits of QC. I showed that the QC shared by two subsystems yield a gen-

uinely quantum kind of uncertainty on single local observables. The result is

a promising evidence of the potential exploitability of separable (unentangled)

states for quantum metrology in noisy conditions.
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CHAPTER 0

Introduction and Scope

Quantum Mechanics is one of the most precious scientific gifts of the last cen-

tury and the theoretical background of an impressive range of applications

and peculiar phenomena in complex systems. Notwithstanding, it manifests in

many complementary, sometimes elusive ways, so that a popular slogan claims

that “nobody understands Quantum Mechanics”1. Yet, we are able to advance

well-posed questions on it. For example, one of the most intriguing challenges

for quantum physicists is to characterize the boundary between the classical

and quantum worlds, finding out when and how quantum effects play a role in

describing physical phenomena or enhancing the performance of information

and communication tasks. The potential results of a better understanding of

the transition between the classical and quantum regimes, and of how to har-

ness quantum properties of macroscopic systems, would be tremendous. First,

to make quantum information processing feasible, by exploiting the superpo-

sition principle to improve our ability to store, manipulate and transmit data.

Also, to reach a deeper knowledge of the structure and behaviour of biological

processes and complex systems overall.

The burgeoning field of Quantum Information provides the tools for challeng-

ing the resilience of the quantum postulates and, at the same time, for pushing

technology over its inherent limits. The genuinely quantum speed-up in infor-

mation processing and in energy transport mechanisms is believed to be due to

1Attributed to R. P. Feynman.
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CHAPTER 0. INTRODUCTION AND SCOPE

quantum entanglement, i.e. peculiar correlations described by quantum laws

which are shared, for example, between the sender and the receiver of a mes-

sage. However, it has been recently shown that entanglement is not the most

general form of quantum correlations. Even unentangled states of compound

systems have a quantum character, as their subsystems can share truly quantum

correlations. This is an interesting result, as creation and protection of entan-

glement could be a too demanding condition to be satisfied in macroscopic bi-

ological systems and for engineering appliances, which have to deal with high

temperature and high disorder regimes. Indeed, entanglement is typically frag-

ile whenever the systems under scrutiny undergoes the detrimental interaction

of an external environment. Therefore, it sounds compelling to verify the fea-

sibility of large scale quantum technologies by making use of alternative re-

sources, and to identify the roots of the tangible signatures of quantumness at

the macroscopic scale.

The project aimed to investigate the theoretical framework of quantum corre-

lations (QC2), devise how we may take advantage from them and benchmark

their experimental accessibility and usefulness for technological applications.

In particular, this thesis consists of the most of my contributions to research on

bipartite QC in finite dimensional composite systems. Needless to say, I bene-

fited from fruitful collaborations with senior fellows and students.

The manuscript is organized in chapters. The first page of each chapter outlines

its content, while the last section summarises its main results. In the body of

the work, the narrative voice is “we”, as I repute it to be more suitable for the

scientific exposition. The content of each chapter is the following:

• Chapter 1 is merely introductory. First, I review basic facts and terminology

of Quantum Mechanics and Quantum Information. Then, I introduce and

motivate the concepts of entanglement, classical correlations and QC. I clarify

what these terms mean and fix notations and terminology adopted in the

2In this work, I call quantum correlations the statistical correlations not described by classi-
cal physics (entanglement included), and use the acronym QC whenever I specifically refer to
general quantum correlations, but not to entanglement.
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CHAPTER 0. INTRODUCTION AND SCOPE

body of the work.

• In Chapter 2, I detail and exploit the theoretical toolbox for calculating bipar-

tite QC in relevant case studies of finite dimensional systems. Essentially, I

report the results obtained in the first part of my PhD.

• Chapter 3 is about my attempt, in spite of the theoretical flavour of the project,

to answer to the quest for measuring the QC of an unknown state in labora-

tory. I both developed the theory and made the theoretical analysis of the

experiment, which has been implemented in a Nuclear Magnetic Resonance

system.

• A more mature, alternative point of view on QC is provided in Chapter 4. I

highlight the interplay between global quantum effects as QC, and local ones,

specifically the quantum uncertainty on single observables. Apart from the

foundational relevance of the result, this suggests to exploit QC to guarantee

the accuracy of phase estimation protocols.

• Finally, in Chapter 5 I briefly summarise the original contributions of the the-

sis and outline some of the potential future lines of investigations on QC

which meet my personal interest. It is a collection of pilot studies, unpub-

lished material and random discussions, which passed the stage of “sparse

thoughts” but, to date, have not reached yet the stand of proper research

work.

The most of the material presented here has been reported in various forms in

these papers:

[DG1] D. Girolami, M. Paternostro, and G. Adesso, Faithful non-classicality in-

dicators and extremal quantum correlations in two-qubit states, Journal of

Physics A: Mathematical and Theoretical 44, 352002, (2011)

[DG2] D. Girolami and G. Adesso, Quantum discord for general two-qubit states:

Analytical progress, Physical Review A 83, 052108, (2011)

[DG3] D. Girolami and G. Adesso, Interplay between computable measures of en-

tanglement and other quantum correlations, Physical Review A 84, 052110

3
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(2011)

[DG4] D. Girolami and G. Adesso, Observable Measure of Bipartite Quantum Cor-

relations, Physical Review Letters 108, 150403 (2012)

[DG5] D. Girolami, R. Vasile, and G. Adesso, Theoretical insights on measuring

quantum correlations, International Journal of Modern Physics B 27, 1345020

(2012)

[DG6] I. Almeida-Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J.

Bonagamba, E. R. deAzevedo, D. O. Soares-Pinto, and G. Adesso, Measur-

ing Bipartite Quantum Correlations of an Unknown State, Physical Review

Letters 110, 140501 (2013)

[DG7] D. Girolami, T. Tufarelli and G. Adesso, Quantum uncertainty on single ob-

servables, arXiv:1212.2214, submitted to Physical Review Letters.

During my PhD, I have also worked on the transposition to continuous vari-

ables and hybrid systems (qubits vs harmonic oscillators), in particular to Gaus-

sian states of continuous variable systems (which are arguably the most rele-

vant ones for quantum information processing), of the techniques developed

for qudits. I furthermore co-authored a “News & Views” article on quantum

optics experiments. My contributions on these topics are NOT included in the

thesis, but have been published in:

[DG8] L. Mista, R. Tatham, D. Girolami, N. Korolkova, and G. Adesso,

Measurement-induced disturbances and nonclassical correlations of Gaus-

sian states, Physical Review A 83, 042325, (2011)

[DG9] G. Adesso and D. Girolami, Gaussian geometric discord, International

Journal of Quantum Information 9, 1773 (2011)

[DG10] T. Tufarelli, D. Girolami, R. Vasile, S. Bose, and G. Adesso, Quantum re-

sources for hybrid communication via qubit-oscillator states, Physical Re-

view A 86, 052326 (20012)

[DG11] G. Adesso, S. Ragy, and D. Girolami, Continuous variable methods in rel-
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ativistic quantum information: Characterisation of quantum and classi-

cal correlations of scalar field modes in non-inertial frames, Classical and

Quantum Gravity 29, 224002 (2012)

[DG12] G. Adesso, D. Girolami, and A. Serafini, Measuring Gaussian quantum

information and correlations using the Renyi entropy of order 2, Physical

Review Letters 109, 190502 (2012)

[DG13] G. Adesso and D. Girolami, Quantum optics: Wave - particle superposi-

tion, Nature Photonics - News and Views 6, 579 (2012)

[DG14] T. Tufarelli, T. MacLean, D. Girolami, R. Vasile, and G. Adesso, The geo-

metric approach to quantum correlations: Computability versus reliabil-

ity, arXiv:1301.3526, submitted to Journal of Physics A: Mathematical and

Theoretical.

All the numerical simulations and plots have been generated by employing the

software Mathematica of the Wolfram Research.

Declaration of originality

I declare that the present thesis has been written by me and its content is my

own work.
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CHAPTER 1

Introduction to Quantum

Correlations

Here I introduce the concept of general quantum correlations (QC), which has repre-

sented the theoretical substrate of my research project. The chapter is divided in three

parts. First, I review some basic ingredients of Quantum Mechanics which will be use-

ful in the following chapters. I do not refer to any specific reference, while my point of

view has been certainly influenced by some of the countless excellent books on the topic,

as [15, 16]. Then, I present the young and rapidly evolving discipline of Quantum In-

formation. The reader should refer to the monumental opera of Nielsen and Chuang for

a complete perspective [17]. Finally, I discuss the characterisation of quantum states

of compound systems in entangled, unentangled but quantum correlated, and classical

states. I show the QC of a state can be measured by the quantum discord. Some explicit

examples are provided to clarify the main points.

6



CHAPTER 1. INTRODUCTION TO QUANTUM CORRELATIONS

1.1 Basics of Quantum Mechanics

1.1.1 States and Observables

We call physical system the portion of Universe we want to describe and refer

to the environment as one or more other systems interacting with it. A state of

the system is the available information on the properties of the system which

are of our interest. Such information is accessible by measuring the value of

appropriate physical quantities, called observables. For example, let us consider

a system given by one particle: it may be useful to know its position in space.

If this is all the information we wish to have, we just need to measure the value

of the three observables which represent the spatial coordinates.

It is possible to associate mathematical objects with these physical concepts.

In Quantum Mechanics, the conventional Dirac notation is largely employed,

because it is surprisingly simple yet insightful. A state is represented by a com-

plex unitary ray |ψ〉 in a complex vector space equipped with an inner product,

which can be a finite as well as an infinite (countable or uncountable) dimen-

sional space. The state |ψ〉 belongs then to a separable Hilbert space H, and

the vectors |ψ〉 and eiϕ|ψ〉, ϕ ∈ [0, 2π], describe the same physical state. The

dual spaceH∗ ofH is the space of continuos linear functionals fromH to C. Its

elements are defined as

〈φ| : |ψ〉 7−→ 〈φ|ψ〉. (1.1.1)

There exists an isomorphism between a Hilbert space and its dual:

† : |ψ〉 7−→ |ψ〉† = |ψ〉∗t = 〈ψ|. (1.1.2)

In this way, by representing |ψ〉 as a column vector


ψ1
...

ψd

, it is immediate to

identify 〈ψ| as a row vector
(

ψ1 . . . ψd

)∗
. The inner product 〈ϕ|ψ〉 is linear in

7



CHAPTER 1. INTRODUCTION TO QUANTUM CORRELATIONS

the second term and anti-linear in the first one (mathematicians usually adopt

the opposite convention):

|φ〉 = a|φ1〉+ b|φ2〉

|ψ〉 = c|ψ1〉+ d|ψ2〉

〈φ|ψ〉 = a∗c〈φ1|ψ1〉+ b∗c〈φ2|ψ1〉

+ a∗d〈φ1|ψ2〉+ b∗d〈φ2|ψ2〉. (1.1.3)

The vectors are normalized to 1, thus 〈ψ|ψ〉 = ||ψ||2 = 1.

A quantum observable is a self-adjoint operator with dense domain in H. Its

eigenvectors form an orthonormal complete basis of the Hilbert space. The

observable K is represented by a square matrix whose elements (kij) are kij =

〈i|K|j〉. A system with d degrees of freedom, which are the physical properties

we are interested to, is described by a set of d1 commuting observables {Ki}:

[Ki, Kj] = KiKj − KjKi = 0, ∀i, j ∈ 1, . . . , d. (1.1.4)

An observable L commuting with all the {Ki} is necessarily a function of them,

as a vector in the space is linearly dependent on three spatial coordinates x, y, z:

L = f (K1, . . . , Kd) (in this sense, the set of observables is said to be complete). It

is possible to diagonalize simultaneously the mutually commuting observables

{Ki}, and the relative eigenspace is non-degenerate. The simultaneous eigen-

vector is |k1 . . . kd〉 =
⊗d

i=1 |ki〉, where {ki} are the eigenvalues of a specific Ki,

while {|ki〉} are the eigenstates:

Ki|k1 . . . ki . . . kd〉 = ki|k1 . . . kd〉. (1.1.5)

1We only consider the case of a finite number of degrees of freedom.

8



CHAPTER 1. INTRODUCTION TO QUANTUM CORRELATIONS

As previously remarked, the set of all the simultaneous eigenvectors identifies

an orthonormal complete basis ofH:

∑
ki∈DS

|k1 . . . kd〉〈k1 . . . kd| = I, (1.1.6)

where DS is the spectrum of the discrete eigenvalues of the Ki (we do not take

into account the continuous variables case). Obviously, the choice of the ob-

servables {Ki} is arbitrary.

For limited operators, it is ensured the existence of the adjoint operator K†,

such that 〈K†i|j〉 = 〈i|Kj〉. In the non-limited case (infinite-dimensional Hilbert

spaces), further conditions are required to guarantee the existence of K†, but

caring about them is out of the scope of this brief review. Anyway, in Quantum

Mechanics all the interesting Hermitian operators have self-adjoint extensions,

therefore quantum observables are safely deemed to be Hermitian operators. If

A is self-adjoint, then K = K† and it is easy to prove that 〈i|K|j〉 = (〈j|K†|i〉)∗ =

(〈j|K|i〉)∗.

We claimed that a physical state is represented by the ray |ψ〉. But this is just

an ideal case, in which the full information content of the system is accessible.

More generally, there is a certain (classical) probability c1 that the system is in

the state |ψ1〉, a probability c2 that it is described by |ψ2〉, and so on. It is pos-

sible to introduce a more powerful formalism to take into account statistical

ensemble of states, called mixed states. Indeed, the more general description of

a physical state is given by a density operator ρ:

ρ = ∑
i

ciΠψi = ∑
i

ci|ψi〉〈ψi|. (1.1.7)

The operator ρ is physically meaningful if and only if it satisfies the properties:

ρ = ρ†

Tr[ρ] = ∑
i

ci = 1

〈i|ρ|i〉 ≥ 0, ∀|i〉 ∈ H. (1.1.8)

9



CHAPTER 1. INTRODUCTION TO QUANTUM CORRELATIONS

Ideal states, that we call pure states, are simply represented by ρ = |ψ〉〈ψ|.

A pure state of a composite system AB, with subsystems A and B, called bipar-

tite state, is described by a ray |ψ〉AB in a Hilbert space HAB = HA ⊗HB such

that

|ψ〉AB = ∑
ij

cij|i〉A ⊗ |j〉B , (1.1.9)

where {|i〉A} and {|j〉B} are bases of HA and HB respectively, while {|i〉A ⊗

|j〉B} is a basis ofHAB. The density matrix of a mixed state reads accordingly:

ρAB = ∑
i

ci|ψi〉〈ψi|AB. (1.1.10)

The marginal density matrix of the subsystem A is ρA = TrB[ρAB] = ∑j 〈j|ρAB|j〉B,

and for subsystem B it is: ρB = TrA[ρAB] = ∑i〈i|ρAB|i〉A.

1.1.2 Open Quantum Systems

At theoretical level, one could take in exam a quantum system S without deal-

ing with the potential disturbance induced by the external environment E. In

that case, the evolution of the system is assumed to be unitary, hence described

by the Schrödinger equation. However, in the real experimental practice, it is

unavoidable to have to consider the effects due to the interaction S − E. The

theory of Open Quantum Systems2 provides the theoretical tools to describe

the quantum dynamics of open systems. For a complete perspective, see [18].

The initial global state is assumed to be factorized: ρSE(0) = ρS(0)⊗ ρE(0). The

evolution of ρS fails to be unitary because of the noise produced on the sys-

tem by the environment, whilst the global system SE evolves unitarily. For a

time-independent Hamiltonian, one has

ρSE(t) = USE(t)ρSE(0)U†
SE(t) = e−iHtρSE(0)eiHt. (1.1.11)

2Note that in thermodynamics a system is open if it exchanges matter and energy with the
environment. Here, a system is open whenever its evolution is not unitary.
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At any time t, the density matrix of the system must be physical, thus ρS(t)

is Hermitian, positive and of trace one. Then, the evolution of the system is

described by a linear CPTP (completely positive and trace preserving) map Φ:

dρS(t)
dt

= Φ(t)ρS(0)

Tr[ρS(t)] = 1 (1.1.12)

ρS(t) > 0, (Φ(t)⊗ IT)ρST(t) > 0, ∀t.

Note that the complete positivity ensures that even by adding a system T the

global operation Φ(t) ⊗ IT is still positive. In the Schrödinger picture, if the

semigroup composition law holds:

Φ(t + s) = Φ(t) ◦Φ(s), ∀t, s ≥ 0, (1.1.13)

then the evolution of the system is described by the Lindblad master equation:

dρS(t)
dt

= L(ρS) = −i[H, ρS] +
n2−1

∑
i=1

γi(LiρSL†
i −

1
2
{L†

i Li, ρS})

ρS(t) = Φ(t)ρS(0) = eLtρS(0), (1.1.14)

where we distinguish the term [H, ρ] due to reversible evolution, a dissipative

component specified by the γi, which are positive constants determined by the

dynamics, and the Lindblad (super)-operators Li.

The most general method of describing the dynamics of an open quantum sys-

tem is by means of the operator-sum representation [17]:

ρS(t) = TrE[USE(t)ρSE(0)U†
SE(t)] = ∑

i
MS,i(t)ρS(0)M†

S,i(t), (1.1.15)

where {Mi}, ∑i M†
i Mi = 13 are called Kraus operators. In the case of unitary

evolution of the system S, there trivially exists one Kraus operator (the unitary

itself), while this representation allows us to describe any quantum process (as-

3A quantum map can be not trace-preserving: ∑i M†
i Mi < 1, but the argument is out of the

topic of the thesis.
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CHAPTER 1. INTRODUCTION TO QUANTUM CORRELATIONS

suming that ρSE(0) is factorized), quantum measurements and dissipative dy-

namics included.

1.1.3 Measurements

Two main theoretical frameworks have been developed to describe the mea-

surement process in Quantum Mechanics, which is inherently probabilistic.

The first one is the projective (von Neumann) measurement, which is defined

by a set of positive Hermitian operators {Πi} such that ∑i Πi = I and ΠiΠj =

δijΠi. A projective measurement maps a state ρ into a statistical ensemble of

states {pi, ρi}, where ρi =
ΠiρΠi

Tr[ΠiρΠi ]
is the post-measurement state with probabil-

ity pi = Tr[ΠiρΠi]. If we focus on a local projective measurement on the sub-

system A of a bipartite system in the state ρAB ≡ ρ, say {ΠA
i ≡ ΠA,i ⊗ IB}, the

state is then mapped into an ensemble of conditional states ρB|ΠA
i
=

ΠA
i ρΠA

i
Tr[ΠA

i ρΠA
i ]

.

Let us consider a system in a state |ψ〉, and suppose to measure the value of the

physical quantity K in this state by a projective measurement {ΠK,i ≡ Πki}. The

output will be one of the eigenvalues ki of K with a certain probability pψ(ki).

This unpredictability is not epistemic, i.e. it does not depend of the accuracy

and precision of the measurement, but it is a peculiar property of Quantum Me-

chanics. We remark that a quantum measuremeent of an observable K perturbs

the physical system. Indeed, it changes the state of the system, sending |ψ〉 in

one of the eigenstates |ki〉 of K with probability pψ(ki). A successive measure-

ment of the same operator would be deterministic, by producing the output ki

with probability pki(ki) = 1. Assuming that K takes only discrete values and

the related eigenspace to ki is non-degenerate, the probability of measuring ki

is given by

pψ(ki) = |〈ki|ψ〉|2 = 〈ψ|ki〉〈ki|ψ〉 = 〈ψ|Πki |ψ〉 = 〈Πki〉ψ, (1.1.16)

where Πki is the projector into the eigenspace of ki. Since K is a self-adjoint

operator with dense domain in the separable Hilbert space H, its eigenvectors

12
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form an orthonormal complete basis ofH:

K = ∑
ki∈ Sp K

kiΠki

∑
ki∈ Sp K

Πki = 1 (1.1.17)

∑
ki∈ Sp K

pψ(ki) = 〈ψ| ∑
ki∈ Sp K

Πki |ψ〉 = 1,

where Sp K is the spectrum of K. The mean value 〈K〉ψ is asymptotically achieved

by performing ideal measurements of K on infinite identical systems in the state

|ψ〉:

〈K〉ψ = ∑
ki∈ Sp K

ki pψ(ki)

= 〈ψ| ∑
ki∈ Sp K

kiΠki |ψ〉 = 〈ψ|K|ψ〉. (1.1.18)

If we pick a basis {|i〉} ofH such that ∑i |i〉〈i| = 1, then

〈ψ|K|ψ〉 = ∑
i
〈ψ|i〉〈i|K|ψ〉 = ∑

i
〈i|K|ψ〉〈ψ|i〉

= Tr[K|ψ〉〈ψ|] = Tr[KΠψ], (1.1.19)

and the probability related to an eigenvalue corresponds to the mean value of

its projector: pψ(ki) = Tr[ΠψΠki ].

In a mixed state, for every observable K, one obtains

〈K〉ρ = ∑
i

ci〈K〉ψi = ∑
i

ci〈ψi|K|ψi〉

= ∑
i

ciTr[KΠψi ] = Tr[Kρ]. (1.1.20)

Immediately, we see that the probability to obtain an output k j by measuring

an observable K on a state ρ is

pρ(k j) = Tr[Πk j ρ] = ∑
i

ci〈ψi|Πk j |ψi〉 = ∑
i

ci pψi(k j). (1.1.21)

13
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We point out that there is a fundamental difference between the mixed state

ρ = ∑
i

ci|ki〉〈ki|, (1.1.22)

and a pure state being a superposition of other pure states:

|ψ〉 = ∑
i

di|ki〉, |di|2 = ci. (1.1.23)

Let us consider a second observable L, having eigenvalues {lm} and relative

eigenvectors {|lm〉}, which does not commute with K. In the mixed state case,

the probability to have the eigenvalue lm as the result of a measurement of L is

pρ(lm) = Tr[ρΠlm ] = ∑
i

ci|〈lm|ki〉|2, (1.1.24)

while if the state is pure one has

pψ(lm) = |〈lm|ψ〉|2 = ∑
j

d∗j 〈k j|lm〉∑
i

di〈lm|ki〉

= ∑
i
|di|2|〈lm|ki〉|2 + 2 ∑

i 6=j
d∗j di〈k j|lm〉〈lm|ki〉

= pρ(lm) + 2Σi>jRe[d∗j di〈k j|lm〉〈lm|ki〉]. (1.1.25)

The pure state is more informative than the mixed one: this supplemental in-

formation is stored in the interference (coherence) term. In the mixed state, the

information about the relative phase β in the products did∗j = |α|eiβ is lost, as

only the square modules |di|2 = ci appear. Classically, also encouraged by our

common sense, we can imagine neither a coin that is in a superposition of the

states “head” and “tail” nor a Schrödinger’s cat that is both “dead” and “alive”

at the same time, while in the microscopic world quantum coherence is not only

relevant but also necessary to provide a satisfactory description of physical phe-

nomena.

The second, more general description of a quantum measurement is known as

POVM (positive operator-valued measure). It is still defined as a set of Her-

mitian positive operators {Fi} such that ∑i Fi = I, but they are not necessarily

14
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orthogonal nor commuting with each other. A POVM {Fi} is built as follows.

The system under scrutiny is supposed to be in the state |ψ〉S. Let us add an

ancillary system in an arbitrary state |α〉A, such that the global state is now

|ψ〉S ⊗ |α〉A, and the system SA undergoes a unitary evolution that couples

system and ancilla: |Ψ〉SA = USA(|ψ〉S ⊗ |α〉A). Finally, we make a projec-

tive measurement {ΠA
i ≡ IS ⊗ΠA,i} on the ancilla, thus the post-measurement

state is an ensemble of components: ρS|ΠA
i
= 1

pi
ΠA

i |Ψ〉〈Ψ|SAΠA
i . It has been

shown that TrA[ρS|ΠA
i
] = 1

pi
MS,i|ψ〉〈ψ|S M†

S,i, Mi M†
i = Fi, ∑i Fi = I (refer to

[17] for technical details). As a result of this, a global unitary and a projec-

tive measurement on the ancilla correspond to a local POVM {Fi} on the sys-

tem. This abstract construction describes physical situations in which we do

not know the post-measurement state of S because it is not uniquely deter-

mined by the outcomes of the measurement. For example, by detecting the

position of a photon destroys the photon itself, thus a POVM is the appropriate

description of the process. Indeed, the probability to obtain the i outcome is

pi = 〈ψ|M†
i Mi|ψ〉S = 〈ψ|Fi|ψ〉S, and it is verified for any Mi (and final state

MS,i|ψ〉S ) satisfying the equation Fi = Mi M†
i , which has infinite solutions. The

final state of the system S is therefore undetermined.

1.1.4 Quantum Entanglement

There is an important criterion of classification for states of composite systems,

related to a fundamental quantum fingerprint of Nature (in Schrödinger words,

this is the characteristic trait of Quantum Mechanics [19]). The bipartite state of

Eq. (1.1.9) is said to be separable if and only if it is factorized:

|ψ〉AB = ∑
i

ai|i〉A ⊗∑
j

bj|j〉B. (1.1.26)
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In general, by considering also mixed states Eq. (1.1.10), the density matrix of a

separable state reads

ρAB = ∑
i

piρA,i ⊗ ρB,i. (1.1.27)

If a state is not separable, then it is said to be entangled. Entanglement is a truly

quantum feature of a state. An entangled state describes a composite system

whose subsystems are not in definite states. For example, let us consider a

system of two (fair or unfair) coins which we are going to toss. The state of

the system is obviously classical, i.e. it is represented by a classical probability

distribution:

ρcoins =



p(h, h) 0 0 0

0 p(h, t) 0 0

0 0 p(t, h) 0

0 0 0 p(t, t)


, (1.1.28)

where p(h, t) is the probability to have “head” and “tail” as outcomes of the

toss of each coin, and so on. On the other hand, the information on the spins

of two particles could be not only encoded in the classical state of the form

Eq. (1.1.28), but also in an entangled state, for example 1√
2
(|01〉 + |10〉), such

that the subsystems are not in an eigenstate of any local observable (we will

discuss in detail this point in Ch. 4). Hence, it is appropriate not to deem the

entangled particles to be two different systems, but to form one single physical

system.

Entanglement is the umbrella concept of deep and insightful discussions about

validity and limitations of Quantum Mechanics. Referring to [20] for an ex-

tended review of the topic, we briefly introduce the concept of non-locality, and

see how it is linked to entanglement.

One of the most exciting features of Quantum Mechanics has been discussed

for the first time in the celebrated Einstein-Podolski-Rosen (EPR) paper [21].

They argue that a physical theory must satisfy three properties: realism, which
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implies that an element of reality in a physical system is a quantity whose value

can be known from the theory with certainty without perturbing the system it-

self; completeness, i.e. every element of the reality must be described by an ob-

ject of the theory; and locality, which means that the outcomes of measurements

made on a given system are independent of quantum operations on space-like

separated systems. EPR pointed out that the quantum theory does not satisfy

the three properties at the same time because it is not complete. Indeed, it para-

doxically implies that incompatible physical quantities, mathematically repre-

sented by non-commuting observables, have simultaneous reality in the physi-

cal world. Let us suppose that the state of the system is 1√
2
(|01〉AB + |10〉AB). If a

measurement on the basis |0, 1〉A (say of the spin σz) on A has outcome 0, then it

is known with certainty, without perturbing the system, that a second measure-

ment on B on the same basis will have outcome 1. But we could instead make

a local change of basis, and obtain 1
2 (|++〉AB + |−−〉AB), |±〉 = 1

2 (|0〉 ± |1〉).

Now, if a measurement on A in the basis |+,−〉A (of the spin σx) returns an

outcome +, then the result of a second measurement on B has outcome + with

certainty. Hence, eigenstates of incompatible observables, i.e. the local spin

components σz and σx, are both real at the same time, and this is in open con-

trast to the Heisenberg principle. In the 60’s, J. Bell found that the three con-

ditions of realism, completeness and locality impose that statistical correlations

of spacelike-separated measurements must satisfy constraints known as Bell in-

equalities. He developed an extension of Quantum Mechanics which satisfies

the three criteria (and then the inequalities) by introducing additional quantities

(hidden variables), whose value is not uniquely defined by a quantum state [21].

On the contrary, Quantum Mechanics predicts that Bell inequalities are violated

by entangled states, a condition known as non-locality. Pioneering experiments

have been implemented by Aspect and collaborators in early 80’s [22], and still

nowadays Bell tests feed a flourish research line. To date, Quantum Mechan-

ics is the most effective theory for explaining the results of all the experiments

carried out. Indeed, Bell inequalities have been violated in any experimental

realisation.
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The prototype of an experiment on Bell inequalities is described as follows [23].

The inequality here is a constraint on the correlation functions between the po-

larizations of two separated particles. A source sends a pair of entangled pho-

tons in the state |ψ〉 = 1
2 (|01〉AB + |10〉AB) to two polarization analyzers char-

acterized by the angles θA, θB, and then to a pair of detectors registering the

polarizations ±. It is possible to rotate the analyzers to different angles θA′ , θB′ ,

in such a way that the detection occurs in a different basis. Being 〈I±A,B〉|ψ〉 the

intensities measured by the detectors, which correspond to the probabilities of

detecting the photons in a certain polarization, and given the second order cor-

relation functions 〈I±A I±B 〉|ψ〉, the expectation value of the polarizations, when

the analyzers are set to angles θA, θB, has been calculated to be

E(θA, θB) =
〈(I+B − I+A )(I−B − I−A )〉|ψ〉
〈(I+B + I+A )(I−B + I−A )〉|ψ〉

. (1.1.29)

Then, the Bell inequality in the so called CHSH form derived in [24] reads:

B = |E(θA, θB)− E(θA, θB′) + E(θA′ , θB′) + E(θA, θB′)| ≤ 2. (1.1.30)

After straightforward calculations of intensities and correlation functions, one

has

E(θA, θB) = cos 2(θA − θB), (1.1.31)

and the constraints given by the problem imply that

B = |3 cos 2(θA − θB)− cos 6(θA − θB)|. (1.1.32)

Calling (θA − θB) = α, we have B = |3 cos 2α − cos 6α|. The plot of B vs α is

depicted in Fig. 1.1. The inequality is violated for
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The non-local correlations, which correspond to the entanglement between the

photons, allow an experimenter to violate the Bell inequality. Indeed, the two

particles are in a maximally entangled state. We note that for pure states entan-

glement and non-locality are synonyms: a violation of Bell inequalities occurs

if and only if the state is entangled. Conversely, for mixed states, entanglement

is necessary but not sufficient to ensure the violation of Eq. (1.1.30). For exam-

ple, the Werner state ρ = p|ψ〉〈ψ|+ (1− p)I/4, p ∈ [0, 1] [25] is entangled for

1
3 < p ≤ 1, but violates Eq. (1.1.30) only when 1√

2
< p ≤ 1 [20]. For a review on

non-locality, refer to [26]. One could argue that these instantaneous non-local
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correlations violate relativistic causality, which states that information (and any

other thing) does not travel faster than light. But it is not the case. Calling Alice

the observer performing measurement on the system A, and being Bob the one

on the system B, after that Alice has performed a measurement, the only way

she has to communicate to Bob the result is through a slower-than-light chan-

nel. Otherwise, Bob cannot know the polarization of the second photon before

measuring it. We also remark that non-local correlations do not necessarily con-

cern spatially separated objects, but just incompatible set of observables.

The arguments discussed in this section are a consequence of the postulates of

Quantum Mechanics. There is no a priori reason to suppose that the Nature be-

haves in this way, but all the experiments carried out in the last century have

confirmed with spectacular accuracy that is the case. For instance, the value of

the muon magnetic moment obtained theoretically fits the experimental result

by an error of 10−12 [27]. This is the magnitude order of the difference between

the weight of a battleship with and without a one pound coin on board.

1.2 Quantum Information

1.2.1 Classical Information Theory

Information can be described mathematically, but is better to describe it physi-

cally. This statement could be appointed as the motto of Quantum Information,

the research field studying how to exploit the law of Quantum Mechanics to

manage information.

In his Master’s Thesis [28], Shannon conceived and provided solid mathemat-

ical grounds for Information Theory. This is a theoretical programme where

the concept of information is quantitatively described in a probabilistic frame-

work. Indeed, probability is about what we know, the information we have or

could obtain on some event. The nature of such information, e.g. the content

of a message, does not play any role: whatever piece of information is always

codified in random variables that assume a certain range of values. One could
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ask how much information is gained if these variables take a particular value,

and what is the most convenient way to convey or store information. In order

to codify information, we want to minimise the errors during its manipulation

and transmission. Less symbols we use, smaller is the probability of error. One

cannot transmit any information content with an alphabet of only one symbol,

thus at least two symbols are needed. Indeed, the fundamental unit of measure-

ment in information theory is the bit, an object that either takes the value 0 or 1.

A bit is physically represented, for example, by a light switch, and a sequence

of bits allows us to transmit a message. Information is quantified in terms of

uncertainty. Given a random variable X taking the values {xi} with probability

{pi}, the associated Shannon entropy is defined as H(X) = −∑i pi log2 pi. It

is a measure of the uncertainty we have on a stochastic event and, in the same

way, it quantifies the information content of the variable X, which is the aver-

age information one obtains by knowing the value of X. The Shannon entropy

is the simplest quantity which satisfies three basic axioms:

• It is a function only of the probability p: H(X) = H(pi);

• It is a smooth function of the probability p (true by construction);

• The information obtained by knowing the values of two independent vari-

ables X, Y is the sum of the information gained by each of them separately:

H(X, Y) = H(X) +H(Y).

1.2.2 Quantum interpretation of Information

The fact that information is measured by an entropy suggested a potential link

to Physics. Seminal works of Szilard, Landauer and Feynman remarked, naively

speaking, that information is inherently physical (see [17] for an overview), and

an information theory based on Physics laws is necessarily quantum mechani-

cal. Indeed, the two main theories that describe the physical reality are Relativ-

ity and Quantum Mechanics. However, at “human” magnitude scales, say from

10−5m to 105m, classical physics is sufficient for our purposes: it approximates
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very well both of them. But to study the galaxies and the Universe overall,

Relativity is needed. On the other hand, to explore properties of atoms and in

general the microscopic world, Quantum Physics is the most reliable tool we

have. The quantum effects are negligible for macroscopic bodies (the proba-

bility that a car goes through a wall by tunnelling effect, appearing safely on

the other side of it, is different from zero, but it is very low), but they become

important for applications in telecommunications (lasers, fiber optics) and in-

formation technology (cryptography and computing), where dealing with an

increasing miniaturisation of the devices and low energy regimes is a necessity.

Remarkably, quantum features are useful to improve our capability to perform

information-related tasks [17].

In the quantum scenario, the information is stored in the quantum states of a

physical system. The random variables are replaced by the observables and

their possible values by the eigenvalues of the observables. The corresponding

unit of information is the quantum bit or qubit. The qubit is a quantum system

described by the state |ψ〉. Then, a qubit can be in the states |0〉, |1〉 or, and this

is the crucial difference with the bit, a quantum coherent superposition of the

orthogonal states |0〉 and |1〉, for example |ψ〉 = 1√
2
(|0〉+ |1〉). In general, for

pure states one has

|ψ〉 = a|0〉+ b|1〉, |a|2 + |b|2 = 1, (1.2.1)

where a, b are complex numbers. A quantum projective measurement in the

{|0〉, |1〉} basis sends the qubit to |0〉with probability |a|2 or onto |1〉with prob-

ability |b|2. A qubit is physically implemented, for instance, by a spin of an

electron or a nucleus, or the polarization of a photon.

The seminal argument which led to the development of a Quantum Informa-

tion theory is the following. Even if only one bit of information can be accessed

in a qubit (e.g. by making a measurement), we can nevertheless store and pro-

cess an arbitrary amount of information in the relative phase between |0〉 and

|1〉. The Shannon entropy is replaced by the von Neumann entropy S in the
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quantum domain4 (for the main properties, see [29]). The entropy of a state ρ

(in finite dimension) is defined as

S(ρ) = −Tr[ρ log2 ρ] = −∑
k

λk log2 λk, (1.2.2)

where {λk} are the eigenvalues of ρ. The von Neumann entropy S is a param-

eter that quantifies the mixedness of a state. If the state is pure, its entropy is

zero, while a maximally mixed state has the largest possible amount of entropy,

which is log d, where d is the dimension of the system.

A fundamental difference with respect to the Shannon entropy emerges as a

consequence of entanglement: given a bipartite state ρAB, its global entropy

S(ρAB) ≡ S(A, B) can be lower than one of the marginal entropies S(A),S(B)

(this never happens for the Shannon entropy). A bipartite state |ψ〉AB with en-

tropy S(A, B) = 0 could have mixed subsystems with non-vanishing entropy.

For example, let us consider again the two-qubit entangled state 1√
2
(|00〉 +

|11〉). One has S(A, B) = 0,S(A) = S(TrB[ρAB]) = 1. This result implies

that the quantum conditional entropy S(B|A) = S(A, B)− S(A) is negative.

Entanglement, which is a consequence of superposition principle, turns out to

be an important resource for Quantum Information. Its most relevant applica-

tion is the quantum teleportation [30]: Alice can transmit a qubit to Bob if and

only if they share entanglement and a classical communication channel (or a

quantum channel). Entanglement is a necessary ingredient for quantum tele-

portation [20]. In the simplest realisation, the protocol runs in this way. Alice

has two registers A and C, while Bob controls the system B. The subsystems

A and B are entangled, and Alice wants to send the qubit C to Bob. The global

state is

|ψ〉ABC = |φ〉AB ⊗ |α〉C

=
1√
2
(|00〉AB + |11〉AB)⊗

1√
2
(a|0〉C + b|1〉C). (1.2.3)

4One can still consider the Shannon entropy associated to the outcomes distributions of
a measurement: given an observable K being measured in a state |ψ〉, one has H(K)|ψ〉 =

−∑i pψ(ki) log2 pψ(ki).

23



CHAPTER 1. INTRODUCTION TO QUANTUM CORRELATIONS

Alice changes the basis on AC by a local rotation. The state now reads

|ψ〉ABC =
1
2

(∣∣φ+
〉

AC ⊗ (a|0〉B + b|1〉B) +
∣∣φ−〉AC ⊗ (a|0〉B − b|1〉B)

+
∣∣ψ+

〉
AC ⊗ (b|0〉B + a|1〉B) +

∣∣ψ−〉AC ⊗ (b|0〉B − a|1〉B)
)

,

(1.2.4)

where |ψ±〉 = 1√
2
(|01〉 ± |10〉), |φ±〉 = 1√

2
(|00〉 ± |11〉). The set {|ψ±〉, |φ±〉} is

known as the Bell basis [20]. A local projective measurement made by Alice on

the Bell basis sends the global state in one of the four states

1
2

∣∣φ±〉AC ⊗ (a|0〉B ± b|1〉B)
1
2

∣∣ψ±〉AC ⊗ (b|0〉B ± a|1〉B). (1.2.5)

Finally, Alice communicates (by two classical bits) the result of the measure-

ment to Bob. The latter, if the post-measurement state of Alice is |φ+〉, has

already received the qubit initially stored in C. Otherwise, he makes a local

unitary and obtains it. Remarkably, the classical, slower-than-light communi-

cation channel is a necessary ingredient to carry out the protocol.

In Quantum Information, one needs to quantify the amount of available re-

sources for a given task. Thus, it is necessary to introduce the paradigm of mea-

sure of entanglement, say E . For pure states, the entanglement is equal to the

von Neumann entropy of one of the two subsystems, E(ρpure) = S(A) = S(B),

while several functions have been adopted to measure quantitatively entangle-

ment in mixed states [20]. There are some properties that a measure of entan-

glement E(ρAB) must satisfy :

• Vanishing if and only if the state is separable:

E(∑i piρi,A ⊗ ρi,B) = 0, E(ρent
AB) > 0;

• Being invariant under local unitary operations:

E
(
(UA ⊗UB)ρAB(UA ⊗UB)

†
)
= E(ρAB);

• Being monotonically decreasing under a specific class of quantum op-
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erations, called Local Operations and Classical Communication (LOCC):

E
(

ΦLOCC(ρAB)
)
≤ E(ρAB).

The first property is a requirement of faithfulness of the measure5. The invari-

ance under local unitary transformations ensures the basis independence of

the concept of entanglement. The third requirement means that two scien-

tists, working in distant labs on two systems that are only classically corre-

lated, cannot increase their entanglement by making local operations on their

own systems and communicate their results by a classical communication line.

Any local operation takes the form Φlocal(ρAB) = ∑ij
1

Tr[ρAB(Ai⊗Bj)†(Ai⊗Bj)]
(Ai ⊗

Bj)ρAB(Ai ⊗ Bj)
†, where {Ai}, {Bi} are local Kraus operators. The LOCC are

difficult to characterize [20]. Here we mention a strictly larger class of opera-

tions which contains the LOCC one, the class of separable operations, whose

general form is ΦsepLOCC(ρAB) = ∑i
1

Tr[ρAB(Ai⊗Bi)†(Ai⊗Bi)]
(Ai ⊗ Bi)ρAB(Ai ⊗ Bi)

†

[31, 32].

Figure 1.2: Quantum Information genealogy.

Finally, we remark that, while Quantum Information is the result of the appli-

cation of Quantum Mechanics principles to Information Theory, this is not a

5Note that some widely exploited entanglement measures as the negativity and the distillable
entanglement can be zero even on certain entangled states [20].

25



CHAPTER 1. INTRODUCTION TO QUANTUM CORRELATIONS

one-way relationship. Quantum Information techniques have been exploited

to investigate foundational aspects of Quantum Mechanics as well as favoured

the development of quantum-enhanced technology with immediate commer-

cial impact (e.g. quantum cryptographic protocols). Moreover, a wide range of

brand new research fields have been started up and propelled by taking advan-

tage of Quantum Information concepts and methods (Fig. 1.2).

1.3 A hierarchy of quantum states: classical and quantum

correlations

1.3.1 Quantum Discord

We have claimed that a pivotal role in the success of Quantum Information is

played by the exploitation of entanglement, i.e. correlations between parts of

composite systems which cannot be described within a classical picture. Tradi-

tionally, entanglement is considered a synonym of quantum correlations [21].

The statement is true for pure states: entanglement is equal to non-locality and

encompasses every possible notion of “quantumness”, as remarked in Sec. 1.1.4.

Conversely, for mixed states the situation is more complex. We saw that entan-

glement is necessary but not sufficient to violate Bell inequalities, thus the sets

of non-local states is smaller and lies inside the set of entangled states.

The message of this section is that even mixed separable states show quantum

correlations. We will follow the historical path which led to define a class of

quantum correlations (QC) which is more general than entanglement. The QC

will be indirectly defined as the difference between total and classical correla-

tions.

One of the lessons we apprehend from Quantum Mechanics is that the mea-

surement process disturbs the state of a physical system. This differs from

what happens in the classical scenario. Hence, it is possible to conclude that
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the disturbance induced by a measurement on a state is a good evidence of its

quantumness. We are here interested to study a bipartite system in which a

local measurement on one of the subsystem is made. The disturbance induced

by the measurement on the system changes the properties of the global state, in

particular the amount of correlations between the two subsystems.

Let us consider the statistical correlations described by the classical Information

Theory. The correlations between two random variables X and Y, taking values

{xi}, {yj} with probabilities {pi}, {qj}, represent the information shared by the

two variables, and are measured by the mutual information I , defined as

I(X : Y) = H(X) +H(Y)−H(X, Y), (1.3.1)

where H(X, Y) = −∑ij rij log2 rij, ∑j rij = pi, ∑i rij = qj is the joint entropy of

X and Y. For independent variables, the third axiom satisfied by the Shannon

entropy implies I(X : Y) = 0. Reminding the Bayesian rules, the mutual in-

formation enjoys other equivalent expressions: I(X : Y) = I(Y : X) = J (X :

Y) = J (Y : X), where

J (X : Y) = H(X)−H(X|Y)

J (Y : X) = H(Y)−H(Y|X). (1.3.2)

The conditional entropy J (X : Y)(or J (Y : X)) represents the average uncer-

tainty (ignorance) we have on X(Y) given the value of Y(X):

H(X|Y) = H(X, Y)−H(Y) = −∑
ij

rij log2
rij

qj

= −∑
ij

qj
rij

qj
log2

rij

qj
= ∑

j
qjH(X|yj)

H(Y|X) = H(X, Y)−H(X) = −∑
ij

rij log2
rij

pi

= −∑
ij

pi
rij

pi
log2

rij

pi
= ∑

i
piH(Y|xi). (1.3.3)

The mutual information has also an equivalent formulation in terms of the sta-
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tistical distance (yet not symmetric) between the joint distribution rij and the

product of the marginal ones:

I(X : Y) = R(X||Y) = −∑
ij

rij log2

( rij

piqj

)
, (1.3.4)

whereR is the relative entropy, or Kullback-Leibler divergence [33].

In the quantum scenario, the random variables are replaced by a bipartite sys-

tem AB with a density matrix ρ ≡ ρAB, consisting of subsystems A, B with

marginal density matrices ρA, ρB. The quantum analogue of Eq. (1.3.1) reads

I(ρ) ≡ I(A : B) = S(A) + S(B)− S(A, B). (1.3.5)

The quantum mutual information quantifies the amount of total (classical and

quantum) correlations between the two subsystems. For example, for the (max-

imally) entangled pure state ρBell = |ψ+〉〈ψ+|, we have I(ρBell) = 2 bits, where

one bit is the amount of classical correlations and there is one bit of entangle-

ment (S(ρA) = S(ρB) = 1). Correlations between subsystems cannot be in-

creased if the subsystems A, B evolve independently: the mutual information

is non-increasing under local operations ΦA, ΞB: I((ΦA ⊗ ΞB)ρ) ≤ I(ρ), and

is invariant under local unitary transformations. The equivalence to the (quan-

tum) relative entropy still holds [34]:

I(ρ) = R(ρ||ρA ⊗ ρB) = Tr[ρ log2 ρ]− Tr[ρ log2(ρA ⊗ ρB)]. (1.3.6)

One is tempted to write a quantum version of J as well:

J (A : B) = S(A)− S(A|B),

J (B : A) = S(B)− S(B|A). (1.3.7)

From now on, we focus on J (B : A). We said that S(B|A) = S(A, B)− S(A)

is the quantum conditional entropy. However, in general J does not represent
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the mutual information of the post-measurement state, which depends on the

observable one has measured on the subsystem A. Intuitively, if we measure an

observable KA = KA ⊗ IB, the state is projected on one of the eigenstates of KA,

while a measurement of an observable KA′ = K′A ⊗ IB not commuting with KA

projects the state in an eigenstate of KA′ that is different from the KA’s one. We

recall that a local measurement {MA = MA ⊗ IB} on A maps the system into a

statistical ensemble {pk, ρk ≡ ρB|ΠA
k
}, such that ρk =

(MA,k⊗IB)ρ(M†
A,k⊗IB)

pk
, where

pk = Tr[ρMA†
k MA

k ]. Thus, the quantum version of Eq. (1.3.3) is S(B|{MA}) =

∑k pkS(ρk)
6, and the quantity

J (B : A){MA} = S(B)− S(B|{MA}), (1.3.8)

evaluates the average information gained on the subsystem B after that the local

measurement {MA} has been performed. The key point is that, conversely

to the classical case, this quantity is always smaller than the quantum mutual

information in the initial state:

I(ρ) = J (B : A) ≥ J (B : A){MA}, ∀{MA}. (1.3.9)

Indeed, it is easy to verify that S(B|{MA}) ≥ S(B|A) (for the proof, see [35]).

Therefore, the mutual information , which measures the total (classical and

quantum) correlations, decreases after the measurement. Since classical cor-

relations are certainly kept invariant7, the correlations which have been lost

appear to be genuinely quantum. Also, they seem to evaluate how much the

state is disturbed by the quantum measurement. The state is only classically

correlated if and only if there exists at least one measurement {MA} on A that

does not affect the mutual information and achieves the equality in Eq. (1.3.9):

I = J{MA}. We are able to quantify the QC of a state by finding the minimum of

the conditional entropy S(B|{MA}) over all the possible measurements on A,

i.e. determining the maximum of J{MA}, which is the largest possible amount

6From now on, we refer to this quantity as the quantum conditional entropy.
7It is legit to assume this point of view, as in the classical case I = J for any random variable.
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of correlations preserved after a measurement on A, and then subtracting it to

the total correlations the system had before the measurement, which are mea-

sured by the mutual information I . The amount of classical correlations is ex-

pressed by the mutual information obtained by considering the least disturbing

measurement [35–37]:

C(B : A) = max
{MA}

J (B : A)MA = S(B)− min
{MA}

∑
k

pkS(B|{MA
k }). (1.3.10)

Indeed, it satisfies all the requirements of a good measure of classical correla-

tions [37]:

• It is zero if and only if the state is uncorrelated:

C(B : A)(ρA ⊗ ρB) = 0, otherwise C(B : A)(ρ) > 0;

• For pure states: C(B : A)(ρpure) = C(A : B)(ρpure) = S(A) = S(B);

• It is invariant under local unitary operations:

C(B : A)
(
(UA ⊗UB)ρ(UA ⊗UB)

†
)
= C(B : A)(ρ);

• It is not-increasing under local operations:

C(B : A)
(
(ΦA ⊗ ΞB)ρ

)
≤ C(B : A)(ρ).

Consequently, the amount of QC is measured by the quantum discord [35, 36]:

DA(ρ) = I(ρ)− C(B : A) (1.3.11)

= S(A)− S(A, B) + min
{MA}

∑
k

pkS(B|{MA
k }).

We note that quantum discord is not symmetric. By performing the measure-

ment on Bob’s subsystem rather than on Alice’s one returns in general a differ-

ent value of discord: DA 6= DB. Thus, we state that the discordDA(B) quantifies

the amount of QC between Alice and Bob as perceived by Alice (Bob). From now

on, we will always consider local measurements on A. In the case of pure bipar-

tite states, discord equals the marginal entropy of one of the two subsystems,

which is a bona fide measure of entanglement: DA = DB = S(A) = S(B).
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Figure 1.3: Classification of correlations in quantum states of compound sys-
tems.

The analysis of the correlations properties in bipartite systems involves a re-

finement of the classification of the states of the systems themselves (Fig. 1.3).

It is immediate to verify that not only entangled states, but almost all separa-

ble states have a non-vanishing quantum discord [38], i.e. are affected by the

measurement process, thus they exhibit some quantum properties. In the set

of separable states, it is identified the subclass of classical-quantum states [39],

defined as

ρCQ = ∑
i

pi|i〉〈i| ⊗ ρB,i

ρQC = ∑
j

pjρA,j ⊗ |j〉〈j|, (1.3.12)

such that DA(ρCQ) = DB(ρQC) = 0, where {|i〉}, {|j〉} are orthonormal vector

sets. Indeed, by making a projective measurement {ΠA
i } on the basis {|i〉}

returns ρΠA

CQ = ∑i ΠA
i ρCQΠA

i = ρCQ, and leaves the state unperturbed. Then, the

set of the genuinely classically correlated states, called classical-classical states,
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Qualitative description Implicit form Example

Non-local {ρ : ρ violates Bell ineq.} ρ = p|ψ+〉
〈
ψ+
∣∣+ (1− p)I/4, 1√

2
< p ≤ 1

Entangled {ρ : ρ 6= ∑i piρA,i ⊗ ρB,i} ρ = p|ψ+〉
〈
ψ+
∣∣+ (1− p)I/4, 1

3 < p ≤ 1

Separable quantum correlated ρ = ∑i piρA,i ⊗ ρB,i , ρA,i 6= |i〉〈i| ρ = p|ψ+〉
〈
ψ+
∣∣+ (1− p)I/4, 0 < p ≤ 1

3

Classical-quantum correlated ρ = ∑i pi |i〉〈i| ⊗ ρB,i ρ = 1
2

[
|0+〉〈0 + |+ |1〉〈1|

(
1
2 (|+〉〈+|+ |−〉〈−|)

)]
Classically correlated ρ = ∑ij pij |ij〉〈ij| ρ = 1

2 (|0+〉〈0 + |+ |1−〉〈1− |)

Table 1.1: Hierarchy of bipartite quantum states.

consists of states of the form

ρCC = ∑
ij

pij|i〉〈i| ⊗ |j〉〈j|. (1.3.13)

Clearly, we have DA(ρCC) = DB(ρCC) = 0. We notice that not only the classical

states are just a subset of the separable states, but it is possible to show that

the states with zero discord are a null measure subset of the set of separable

states [38], that is the set of classical-quantum and classical-classical states. We

summarise the hierarchy of bipartite states based on correlations in Table 1.1.

1.3.2 Properties of QC measures, motivation for studying them, and

open issues

The quantitative and qualitative evaluation of QC captured the interest of the

quantum information community. Quantum discord is not the only way to

measure QC. Several alternative quantifiers have been introduced in literature

[35, 37, 40–44, DG1, DG7]. For a comprehensive review, about both bipartite

and multipartite QC, the reader should refer to [45].

The proposed QC measures are grouped in two main classes: entropic quan-

tities, such as the original quantum discord itself, and geometric ones. An en-

tropic measure is usually introduced to provide an information theoretic or a

thermodynamical interpretation of QC [46], but it is generally difficult to be

computed explicitly [45, DG14]. The geometric measures of QC are instead con-

structed by fixing a metric in the Hilbert space of the quantum states, and then

using it to evaluate the distance between the state under examination and the

set of classical (zero discord) states. For example, the relative entropy of discord
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introduced in [44] and defined as QA(B)(ρ) = min
ρCQ(QC)

R(ρ||ρCQ(QC)), represents

the distance in terms of relative entropy between the state under scrutiny and

the closest classical state. Other geometric measures have been appreciated for

their computability, as the geometric discord introduced in [43] (we will discuss

this measure in Ch. 2).

The theory of entanglement has been amply developed [20], leading to a set of

well motivated requirements that any bona fide entanglement measure should

satisfy, as we have seen in the previous Section. A similar formal backbone

has been built for QC indicators as well. To render the paradigm of QC widely

accessible and appealing experimentally, and be able to reveal truly quantum

rather than classical features in laboratory systems, one should first identify

those quantifiers of QC that are faithful, namely vanishing on all classical states,

and satisfy a set of criteria on the same line of what is expected for an entangle-

ment measure. The peculiar properties of a reliable QC measure, say Q, are:

• It is zero if and only if the state is classically correlated:

QA(ρCQ) = 0,QB(ρQC) = 0, otherwise QA(B)(ρ) > 0;

• It is an entanglement measure for pure states:

QA(B)(ρpure) = E(ρpure);

• It is invariant under local unitary operations:

QA(B)
(
(UA ⊗UB)ρ(UA ⊗UB)

†
)
= QA(B)(ρ);

• It is not-increasing under local operations on the unmeasured party:

QA
(
(IA ⊗ΦB)ρ

)
≤ QA(ρ), QB

(
(ΦA ⊗ IB)ρ

)
≤ QB(ρ).

The first condition is just the requirement of faithfulness, while the second one

reflects the fact the for pure states QC, entanglement (and non-locality) coin-

cide. The third property is still intuitive, as a local change of basis should not

affect correlations. Finally, the last property states that QA(B) is non-increasing

by local operations on Bob (Alice). On the other hand, an interesting peculiar

feature of QC, related to their asymmetry, is that they can be increased by lo-

cal operations on the measured subsystem: QA
(
(ΦA ⊗ IA)ρ

)
> QA(ρ) [47, 48]
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(from now on, we focus onQA, the same results apply toQB straightforwardly).

In general, given a classically correlated state, QC can be created by local opera-

tions whenever the commutativity of density operators is not preserved: every

local channel ΦA which does not satisfy [ΦA(ρ), ΦA(σ)] = 0, for any two den-

sity matrices ρ, σ such that [ρ, σ] = 0, creates QC in a classically correlated state:

QA(ΦA(ρCQ)) > 0.

There are two main motivations for studying QC. The first one is foundational.

QC represent an unexplored conceptual paradigm in the quantum theory. A

recent study confirmed that QC cannot be described by a classical probabilis-

tic framework [49]. In particular, QC are a natural benchmark of decoherence

[50], that is the loss of quantum coherence in a quantum system due to the in-

teraction with the environment. Technically, if the state of a single system S is

described by a density matrix having off-diagonal elements in a given basis of

interest, then coherence is present. An important question is to extend the con-

cept of coherence to multipartite systems. It has been shown that QC are the

most general signature of coherence, in this sense: If and only if QC are shared

among parts of a compound system, then quantum coherence is guaranteed

in any local basis [51]. Therefore, QC are the minimal requirement for non-

trivial quantumness in multipartite systems. Some interesting questions arise:

we would like to know the amount of QC a state has, and when correlations

of what states under what conditions present some potentially exploitable pe-

culiarities (e.g. resilience under dissipation, computational speed-up, etc). On

this hand, a great deal of interest has been recently addressed to the study of

the QC dynamics in open quantum systems [52–54], i.e. how the QC between

the system and the environment, or between parts of the system under investi-

gation, behave under dissipative dynamics (see Fig. 1.4). In general, QC have

been proven to be much more robust than entanglement and easier to be created

under interaction of common and independent reservoirs. This is a straightfor-

ward result: QC can be created by local operations from a classically correlated
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state, and vanish only on a null-measure set of states [38].

S 

E 

A B 

S 
Memory Effects 

Decoherence 

Figure 1.4: (Colours online) In an open quantum system, the system under
scrutiny, say S, interacts with a second system or a bunch of sys-
tems, collectively called environment E. The interaction entails
a two-way exchange of information: S → E (decoherence) and
S ← E (memory effects). The coupling S− E determines the QC
between S and E (big yellow shade) as well as the QC between the
parties A, B (the small yellow shade).

The second reason that makes QC interesting is their potential exploitability for

building quantum computers. Non-locality is intensively exploited in quan-

tum cryptography [26], while entanglement is proven to be a necessary condi-

tion for quantum speed-up in computational algorithms with pure states (with

some warnings, see [55]). On the other hand, there is no general prescription for

mixed states. It is therefore legit to wonder if separable but quantum-correlated

(i.e. Q > 0) states might be a useful for entanglement-free algorithms. An ul-

timate answer is missing. The current state of knowledge in the field is sum-

marized in Table 1.2. Nevertheless, quantum discord admits an operational

interpretation in some communication protocols with mixed states, such as the

local broadcasting [39], the quantum state merging [46, 56], the entanglement
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activation [51, 57] and the access to information due to coherent interaction8

[58]. The geometric discord has been linked quantitatively to the performance

of the remote state preparation protocol for (a class of) two-qubit states [59],

while the relative entropy of discord [44] has been shown to be a resource for

entanglement distribution [42, 60]. Yet, the most relevant application is in the

Deterministic Quantum Computation Model with One Qubit (DQC1), intro-

duced in [61].

The DQC1 algorithm is a non-universal quantum computing protocol estimat-

ing the normalized trace of a unitary matrix U. It provides an exponential speed

up compared to the best known classical algorithm for this specific task [62–64].

The surprising feature of the DQC1 is that this enhancement in the performance

is obtained despite a vanishing amount of entanglement required by the com-

putation. Thus, it sounds an appropriate ground to study the potential of QC.

In particular, the protocol works as follows. An ancillary qubit (Alice’s subsys-

tem) is initially in a state with arbitrary polarization µ: ρin
A = 1

2 (I2 + µσ3), while

the state of Bob is an n-qubit maximally mixed state: ρin
B = 1

2n I2n . Given an

initial uncorrelated state ρin = ρin
A ⊗ ρin

B , referring to the scheme of Fig. 1.5, the

protocol returns the final state

ρout = CU(HA ⊗ IB)ρ
in(HA ⊗ IB)

†C†
U

=
1

2n+1

 I2n µU†

µU I2n

 . (1.3.14)

where we denote by H = 1√
2

 1 1

1 −1

 a Hadamard gate to be performed

on Alice side, being CU =

 I2n 02n

02n U

 the controlled-U operation [17], where

U is the unitary matrix whose trace has to be estimated. It is easy to see that the

8In that case, the quantum discord for Gaussian states of continuous variables systems has
been considered [65].
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1
2 (I2 + µσ3) H •

I2n /2n U

Figure 1.5: DQC1 model with a n-qubit state in a maximally mixed state and
an attached ancilla of polarization µ. Measuring σ1, σ2 on the an-
cilla returns the real and imaginary part of Tr[U].

output state for Alice is

ρout
A =

1
2

 1 µ
2n Tr[U†]

µ
2n Tr[U] 1

 . (1.3.15)

The measurement of the ancilla polarization yields an estimation of the trace of

the unitary matrix: 〈σ1〉ρout
A

= Re [Tr[U]/2n] , 〈σ2〉ρout
A

= Im [Tr[U]/2n]. For esti-

mating the trace with error ε are necessary 1
µ2ε2 runs of the protocol, indepen-

dently of the number of qubits n, while the best classical algorithm requires an

exponential number of measurements to obtain the same accuracy [61, 66]. Let

us turn our attention to the correlations in the final state of the computation.

The entanglement between the ancilla and the n-qubit register is manifestly

zero and does not increase with the number of qubits involved (yet, there is en-

tanglement in other bipartitions [62]). On the other hand, the quantum discord

across the splitting A− B is monotonically increasing with the polarization of

the ancilla, which is the resource of the protocol: D ∝ µ. To evaluate the amount

of QC for n � 1 is not trivial. We will pick the DQC1 model as privileged case

study to calculate QC in Secs. 3.2.2, 4.1.4. To date, there is still neither a classical

algorithm for estimating the trace of a unitary matrix reaching the same perfor-

mance of the DQC1, nor a definitive theorem stating that it is impossible to find

it. We remark that one could pick a unitary U which does not create QC in the

final state [43]. However, in order to reach a quantum speed-up, QC must be

created in the intermediate states during the computation, obtained by splitting

the unitary and Hadamard gates in a set of operations (for technical details, see
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[67]).

Also, QC have been studied as a potential resource for quantum metrology. In

particular, by employing mixed separable states with QC rather than classical

ones appears to guarantee a better accuracy in the (more general than DQC1)

phase estimation protocol [68]. Yet, there is still no solid theoretical proof that

the quantum-enhancement in such task is due to QC.

Feature/Resource (state) Non-local Entangled Sep. quantum correlated Class. correlated

Non-locality > 0 ≥ 0 = 0 0
Entanglement > 0 > 0 = 0 0

QC > 0 > 0 > 0 0
Potential for Quant. Tech. Yes Yes ? No

Table 1.2: Characterisation of states of composite systems based on the de-
gree of correlations between their subsystems and their potential
exploitability for quantum technology.

Finally, we anticipate that in the next chapters three main issues will be tackled:

• Problem I: quantum discord, and any other entropic QC measure, are hard

to be computed;

• Problem II: the experimental detection of the QC of an unknown state is

challenging;

• Problem III: the killer application of QC is missing: there is no full-fledged

foundational and operational interpretation for them, and the rationale

behind their asymmetry is not well understood.

1.4 Summary of Chapter 1

• It is theoretically proven as well as experimentally tested that the exploita-

tion of entangled states improves our ability to manage information in sev-

eral ways. Indeed, the usefulness of a particular state of a quantum system

for a number of tasks could be traced back to the presence of internal corre-

lations among parts of the system, which correspond to the knowledge that

an observer Alice, probing a subsystem A, gains about the state of another
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subsystem B, controlled by another observer Bob, and vice versa. An im-

portant contribution to the development of Quantum Information and affine

disciplines is definitely due to this fundamental result [17, 20].

• Quantum entanglement has been considered for a long time as the necessary

ingredient for any theoretical landmark and experimental quest to beat the

limits imposed within the classical scenario [35–37]. However, it has been

recently shown that even separable states might play a relevant role in per-

forming better-than-classical communication and information protocols. It

is interesting to note that almost all separable states of compound systems

are inherently quantum, as their subsystems may share QC, i.e. a statistical

dependence which is not described by the classical probabilistic theory. It is

interesting to study the foundational and practical merits of QC.

• For pure states, QC equal entanglement, while for mixed states this is not the

case. Conversely to entanglement, QC can increase even under local opera-

tions on the measured subsystem. The recent literature on the field contains

a vast zoology of QC measures, which share some bona fide properties [45].

The most popular QC measure is the quantum discord, which has a clear-

cut interpretation in information theory: discord equals the difference of the

total correlations between two subsystems A and B before and after a local

measurement is performed on one of them.

• The current research in QC spans a wide range of questions. Three main

problems will be addressed: how to calculate QC in bipartite states of finite

dimensional systems, how to evaluate QC in an experiment without knowing

the full density matrix of the state; what is a possible physical interpretation

of the asymmetry of QC.
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Playing with quantum discord

and other QC measures

This is a technical chapter, collecting the results reported in [DG1, DG2, DG3]. To eval-

uate QC is in general computationally demanding. I tackle the problem of quantifying

QC in bipartite states of finite dimensional system. First, I provide a general prescrip-

tion to calculate the quantum discord of two-qubit states (contribution from G. Adesso

in the comparison with geometric discord). Then, I investigate the interplay between

measures of entanglement and QC, finding an unexpected relation between geometric

discord and negativity (the problem was suggested by G. Adesso). I remark that this

was one of the first attempts to link QC and entanglement measures. To date, it has

been essentially overcome by more solid and ambitious studies on the topic [51, 57, 69].

Finally, I deal with the peculiar asymmetry of QC: I introduce a measure which eval-

uates the state disturbance of local measurements made on both the subsystems (the

initial idea is of M. Paternostro, I acknowledge contributions from him and G. Adesso

in deriving the technical results).
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2.1 Quantum discord for two-qubit states

2.1.1 Overview

The evaluation of quantum discord is a hard task from a computational point

of view, implying an optimization of the conditional entropy S(B|{MA}), and

consequently of the post-measurement mutual information defined in Eq. (1.3.10),

over all local (generalized) measurements on one party, which is often obtain-

able by numerical methods only. A closed analytical solution is known in the

case of arbitrary two-mode Gaussian states [65], under the restriction of Gaus-

sian local measurements. Narrowing our overview to two-qubit states, an an-

alytical expression of discord has been derived in particular for the subclass of

rank-two states [70] and the so-called X-states [71–74]. A successful attempt

to generalize this procedure has not been advanced yet [45], apart from an up-

per bound quantity for the discord defined in [74]. The difficulty in calculating

quantum discord motivated the introduction of alternative measures of QC cor-

relations. In particular, the geometric discord [43] is one such a measure, which

quantifies the amount of QC of a state in terms of its minimal distance from the

set of genuinely classical states. The geometric discord involves a simpler opti-

mization and is easily computable for arbitrary two-qubit states. However, its

relationship with the original quantum discord is not entirely clear. We are go-

ing to present an algorithm to calculate quantum discord for general two-qubit

states. First, we obtain an explicit and simplified expression for the conditional

entropy, exploiting the Bloch representation of the density matrix; then, we in-

troduce new variables that allow to set the optimization conditions in a closed

form. Finally, we associate them to constraints over the eigenvalues of the statis-

tical ensemble obtained after the measurement process. This approach qualifies

as the most efficient and reliable way to evaluate quantum discord for arbitrary

states of two qubits. Exploiting this algorithm, we perform a numerical explo-

ration of the Hilbert space of two-qubit states to compare quantum discord and

the geometric discord as quantifiers of QC. We shed light on the relationship
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between these two quantities by identifying the states that extremize geometric

discord at fixed quantum discord (and vice versa). We are motivated by the

aim of establishing a reliable hierarchy of quantum states based on physically

and mathematically consistent criteria. We find that, interestingly, the quantum

discord of a two-qubit state never exceeds its (normalized) geometric discord.

In analogy with the study of maximal entanglement [75], the notion of maximal

QC is measure-dependent. The feasibility in a specific experimental realization

will determine which, among the various classes of maximally quantum corre-

lated states, are the most suitable ones to be employed for applications.

2.1.2 Setting

In this section, we restrict our attention to two-qubit states. An analytical al-

gorithm has been proposed for the subclass of states with maximally mixed

marginals (described by five real parameters) in [71]. Also, an extension to

states spanned by seven real parameters, called X-states because of the peculiar

form of their density matrix (with vanishing elements outside the leading diag-

onal and the anti-diagonal), has been introduced in [72], and amended by [73].

Here, we attempt to generalize the procedure to the entire class of two-qubit

states. We focus on projective measurements, for the sake of simplicity1, even if

the least disturbing measurement has been proven to be a rank-one POVM [66].

First, one needs to express the 4× 4 density matrix of a two-qubit state in the

so-called Bloch form [76, 77]:

ρ =
1
4

3

∑
i,j=0

Rijσi ⊗ σj (2.1.1)

=
1
4

(
I4 +

3

∑
i=1

xiσi ⊗ I2

+
3

∑
j=1

yjI2 ⊗ σj +
3

∑
i,j=1

tijσi ⊗ σj

)
,

1Note that the difference between the quantum discord calculated by optimising over projec-
tive measurements only and the one obtained including POVM is about 10−4 [45].
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where Rij = Tr[ρ(σi ⊗ σj)], σ0 = I2, σi (i = 1, 2, 3) are the Pauli matrices,

~x = {xi},~y = {yi} are the three-dimensional Bloch vectors associated to the

subsystems A, B, and tij denote the elements of the correlation matrix T. We

consider that, by performing local unitary transformations, we can recast the

density matrix for an arbitrary two-qubit state in the Bloch normal form [71, 78]

ρ′ =
1
4
(I4 + ∑

i
aiσi ⊗ I2 + ∑

i
biI2 ⊗ σi

+ ∑
i

ciσi ⊗ σi), (2.1.2)

that is a density matrix completely defined by nine real parameters arranged in

three 3-dimensional column vectors ~a = {ai}, ~b = {bi} and ~c = {ci}. This is

a consequence of the fact that local unitary operations ρ′ = (UA ⊗UB)ρ(UA ⊗

UB)
† correspond to left and right multiplication of the Bloch matrix R with or-

thogonal matrices [78],

R′ =

 1 0

0 Ot
A

 R

 1 0

0 OB

 , (2.1.3)

with OA,B ∈ SO(3). It is then straightforward to obtain the normal form of

Eq. (2.1.2): one needs to calculate the singular value decomposition of the lower

diagonal 3⊗ 3 block T of R, T = OACOt
B, divide OA and OB by their respective

determinant (to make sure they both have determinant +1), and then apply

Eq. (2.1.3). The density matrix is correspondingly transformed into the normal

form of Eq. (2.1.2), where the ci are identified with the elements of the diago-

nal matrix C, which equal the singular values of T. Every two-qubit state can

be then transformed in its simplified normal form by means of local unitary

transformations (which preserve quantum correlations, both entanglement and

QC, by definition), so we restrict our analysis to density matrices of this type

without incurring in any loss of generality.

Now, we move to calculate the quantum discordDA for generic states in normal
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form (from now on, we drop the index A):

D(ρ) = I(A : B)− C(B : A) (2.1.4)

= S(A)− S(A, B) + min
{MA}

∑
k

pkS(B|{MA
k }).

The marginal entropy S(A) and the global entropy S(A, B) are trivial to obtain.

Let us tackle the minimization of the conditional entropy.

2.1.3 General expression of the conditional entropy

Firstly, we have to write the conditional entropy in an explicit form, adopting

for convenience the notation in [72]. We remind that a von Neumann measure-

ment (from now on, just measurement) {PA
k } ≡ {PA,k ⊗ IB} sends the state of a

two-qubit system in a statistical ensemble {pk, ρk ≡ ρB|PA
k
}, such that

ρ→ ρk =
(PA,k ⊗ IB)ρ(PA,k ⊗ IB)

pk
, (2.1.5)

where

pk = Tr[ρ(PA,k ⊗ IB)] (2.1.6)

PA,k = VΠA,kV†

ΠA,k = |k〉〈k|A, k = 0, 1

V ∈ SU(2).

The average entropy over the ensemble is written as

S̃ = ∑
k

pkS(B|{PA
k }) = ∑

k
pkS(ρk) (2.1.7)

= p0S0 + p1S1,

where S0, S1 are the entropies associated to ρ0, ρ1.

The measurement is defined by the projectors {PA
k } and is consequently parametrized

by the elements of the special unitary matrix V, which we write in the basis of
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the Pauli matrices:

V = v0I2 + i~v ·~σ (2.1.8)

=

 v0 + iv3 iv1 + v2

iv1 − v2 v0 − iv3

 .

We notice that the real vector {v0,~v} = {vi} has norm one: ∑i v2
i = 1, and it is

possible to rearrange the four parameters in three variables only, for example

in this way:

h = v0v1 + v2v3

j = v1v3 − v0v2 (2.1.9)

k = v2
0 + v2

3.

Setting the vectors ~X = {2j, 2h, 2k − 1} and ~m± = {mi±} = {bi ± ciXi}, we

have that, after a straightforward calculation, the conditional entropy takes the

expression:

S̃ = −1
4

{
(1−~a · ~X)

[(
1− |~m−|

1−~a · ~X

)
log2

(
1− |~m−|

1−~a · ~X

)

+

(
1 +

|~m−|
1−~a · ~X

)
log2

(
1 +

|~m−|
1−~a · ~X

)]

+ (1 +~a · ~X)

[(
1− |~m+|

1 +~a · ~X

)
log2

(
1− |~m+|

1 +~a · ~X

)

+

(
1 +

|~m+|
1 +~a · ~X

)
log2

(
1 +

|~m+|
1 +~a · ~X

)]}
. (2.1.10)

This result is consistent with the formula provided in the Appendix of [74],

but we have reached a simpler expression by exploiting the normal form of the

density matrix, Eq. (2.1.2). However, we have to remark that in this picture

there is still an amount of redundancy [74]. A projective measurement on a

two-qubit state is characterized by two independent variables only, identifiable

as the angles θ and φ, which parametrize a generic one-qubit pure state as |ψ〉 =
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cos θ|0〉+ eiφ sin θ|1〉, and the Bloch sphere of coordinates {x, y, z} in this way,


x = 2j = 2 cos θ sin θ cos φ

y = 2h = 2 cos θ sin θ sin φ

z = 2k− 1 = 2 cos2 θ − 1.

(2.1.11)

It is immediate to verify that the following constraint holds

k2 + h2 + j2 = k. (2.1.12)

The algorithm originally designed for X-states in [72] is flawed, as it does not

consider the mutual dependence of h, j, k, thus is reliable only for a more re-

stricted class of states identified in [73].

The above mapping enables us to parameterize the conditional entropy defined

in Eq. (2.1.10) as a function of the azimuthal and polar angles θ, φ; we then

write S̃(h, j, k) = S̃(θ, φ) and perform the optimization of S̃ over these two

independent variables.

2.1.4 Optimization

In accordance with [72], we investigate symmetries in the expression of the con-

ditional entropy. We immediately notice the invariance under the transforma-

tion θ → θ ± π/2, which is translated in:


k→ 1− k

h→ −h

j→ −j.

(2.1.13)

We appreciate this with an explicit example. Let us pick an arbitrary state, such
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Figure 2.1: (Colours online) Example of conditional entropy S̃ for the random
two-qubit state in Eq. (2.1.14). The angles θ and φ parametrize the
measurement: we appreciate the symmetry properties of S̃ with
respect to such variables, expressed by the invariance S̃(θ, φ) =
S̃(θ ± π/2, φ). All the plotted quantities are dimensionless.

as
0.437 0.126 + 0.197i 0.0271− 0.0258i −0.274 + 0.0997i

0.126− 0.197i 0.154 −0.0115− 0.0187i −0.0315 + 0.170i

0.0271 + 0.0258i −0.0115 + 0.0187i 0.0370 0.00219− 0.0367i

−0.274− 0.0997i −0.0315− 0.170i 0.00219 + 0.0367i 0.372


;

(2.1.14)

we operate with local unitary transformations on it, obtaining a new state ρ

(albeit with the same entropies and discord) described by the simplified nor-

mal form presented in Eq. (2.1.2); we then perform a projective measurement

on subsystem A, obtaining an ensemble whose conditional entropy is plotted

in Fig. 2.1. One sees that there are no further apparent symmetries for the con-

ditional entropy. The analysis so far, while not being conclusive, allows us just

to refine the problem by safely letting the optimization of the conditional en-

tropy to be restricted to the interval θ ∈ [0, π/2). To determine the minimum

of S̃ , we need to calculate its derivatives with respect to θ and φ. The depen-

dence on these variables involves logarithms of non-linear quantities, so we do

not expect to solve analytically the problem in any case, whatever ingenious
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variables we might choose. However, we seek to write the two constraints in a

compact and elegant form. Let us impose


p = ~a · ~X

r+ = |~m+|

r− = |~m−|.

(2.1.15)

After a bit of algebra, we obtain

S̃ = −1
4

{
(1− p− r−) log2(1− p− r−) (2.1.16)

+ (1− p + r−) log2(1− p + r−)

+ (1 + p + r+) log2(1 + p + r+)

+ (1 + p− r+) log2(1 + p− r+)

− 4 + 2
(
− (1− p) log2(1− p)

− (1 + p) log2(1 + p)
)}

.

Now, we set the partial derivatives to zero,


∂S̃
∂θ = ∂S̃

∂p
∂p
∂θ + ∂S̃

∂r+
∂r+
∂θ + ∂S̃

∂r−
∂r−
∂θ = 0

∂S̃
∂φ = ∂S̃

∂p
∂p
∂φ + ∂S̃

∂r+
∂r+
∂φ + ∂S̃

∂r−
∂r−
∂φ = 0 .

Defining the quantities

α = Det


 ∂p

∂θ
∂p
∂φ

∂r+
∂θ

∂r+
∂φ




β = Det


 ∂p

∂θ
∂p
∂φ

∂r−
∂θ

∂r−
∂φ


 (2.1.17)

γ = Det


 ∂r+

∂θ
∂r+
∂φ

∂r−
∂θ

∂r−
∂φ


 ,
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after some manipulations, the stationarity conditions take the form


1
4 log2

(
1+p−r+
1+p+r+

)
+ 1

2 log2

(
(1+p)(1−p−r−)
(1−p)(1+p−r+)

)
β

α+β+γ = 0

1
4 log2

(
1−p−r−
1−p+r−

)
− 1

2 log2

(
(1+p)(1−p−r−)
(1−p)(1+p−r+)

)
α

α+β+γ = 0.

(2.1.18)

We see immediately that this system is further simplified to


log2

(
1+p−r+
1+p+r+

)
β +

log2

(
1−p−r−
1−p+r−

)
α = 0

1
4 log2

(
1−p−r−
1−p+r−

)
− 1

2 log2

(
(1+p)(1−p−r−)
(1−p)(1+p−r+)

)
α

α+β+γ = 0.

(2.1.19)

We can still express these equations as relations among the eigenvalues of the

ensemble {pk, ρk}. Calling λ+
0 , λ−0 the eigenvalues of ρ0 and λ+

1 , λ−1 the eigen-

values of ρ1, we have

λ±0 =
1
2

(
1± r−

1− p

)
λ±1 =

1
2

(
1± r+

1 + p

)
,

(2.1.20)

After some straightforward algebra, one shows that the vanishing of the deriva-

tives of S̃ occurs when the following constraints are satisfied



λ−0 =

(
λ+1
λ−1

) α
β

1+
(

λ+1
λ−1

) α
β

λ−1 = λ−0

(
λ+

0
λ−0

) α+β+γ
2α

.

(2.1.21)

These two transcendental equations can be solved numerically. They represent

the most compact formulation to date for the problem of calculating the quan-

tum discord of arbitrary two-qubit states. Let us call si the solutions obtained,

corresponding to values {θi, φi}. In order to establish if they represent minima

of S̃ , we adopt the conventional method and evaluate the signature of the Hes-
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sian matrix H at the points {θi, φi}, and, in case of Det [H] = 0, we study the

sign of the functions δi = S̃(θ, φ)− S̃(θi, φi). Naming {θmj, φmj} the angles such

that H is positive definite or δi > 0, the absolute minimum of the conditional

entropy is defined as

min
{PBk}

∑
k

pkS(B|A{PAk}) = min
{θmj,φmj}

S̃(θmj, φmj). (2.1.22)

The quantum discord for generic two-qubit states of the form of Eq. (2.1.2) fi-

nally reads

D(ρ) = S(A)− S(A, B) + min
{θmj,φmj}

S̃(θmj, φmj). (2.1.23)

2.1.5 Geometric discord

It has been argued that the experienced difficulty of calculating quantum dis-

cord can be coped, for two-qubit states, with the introduction of its geometric

version, called geometric discord [43].

As we have remarked in Sec. 1.3.2, almost all (entangled or separable) states are

disturbed by a local measurement on A; however, there is a subclass of states

which is invariant and presents zero discord, i.e. the classical-quantum states

[39], whose elements have a density matrix of the form ρCQ = ∑i pi|i〉〈i| ⊗ ρB,i.

A classical-quantum state is not perturbed by a projective measurement on the

{|i〉} basis: ∑i ΠA
i ρCQΠA

i = ρCQ.

Letting Ω be the set of classical-quantum two-qubit states, and ρCQ be a generic

element of this set, the geometric discord DG is defined as the distance between

the state ρ and the closest classical-quantum state. In the original definition

[43], the (squared) Hilbert-Schmidt distance is adopted. Recalling that ||A||22 =

Tr[AAt] = ∑i a2
i is the square of the Hilbert-Schmidt norm of a matrix A with

eigenvalues {ai}, the geometric discord has been introduced as

DG(ρ) = 2 min
ρCQ∈ Ω

||ρ− ρCQ||22. (2.1.24)

The quantity DG in Eq. (2.1.24) vanishes for classical-quantum states and is one
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for maximally entangled states ρ = |ψ〉〈ψ|, |ψ〉 = d−1/2 ∑d−1
j=0 |j〉 ⊗ |j〉. The

geometric discord enjoys two nice theoretical interpretations. First, it quantifies

the disturbance induced by local von Neumann projective measurements ΠA =

ΠA ⊗ IB on the subsystem A [79]

DG(ρ) = 2 min
ΠA
‖ρ−ΠA(ρ)‖2

2 . (2.1.25)

Moreover, it can be recast as the (Hilbert-Schmidt) distance of a state from itself

after the action of a “root-of-unity” local unitary operation2 on Alice UA =

UA ⊗ IB [80]:

DG(ρ) = 2 min
UA
‖ρ−UAρUA†‖2

2 . (2.1.26)

We again remark that DG is not symmetric under subsystems swapping: per-

forming the measurement on Bob rather than on Alice would lead to define

another class of QC signatures.

More important, it is possible to obtain an explicit closed expression of DG for

two-qubit states. Reminding Eq. (2.1.1), it is shown in [43] that the geometric

discord is given by

DG(ρ) =
1
2
(||~x~xt||2 + ||T||22 − k), (2.1.27)

with k being the largest eigenvalue of the matrix ~x~xt + TTt (in case of measure-

ment on Bob, one needs to replace ~x with ~y and TTt with TtT). Such an expres-

sion in Eq. (2.1.27) can be also recast as the solution to a variational problem

[79]: namely, for two qubits,

DG = 2
(

Tr[CtC]−max
A

Tr[ACtCAt]

)
, (2.1.28)

where C = R/2 and the maximum is taken over all 2 × 4 isometries A =

1√
2

 1 ~a

1 −~a

, with~a a three-dimensional unit vector.

2Unitaries whose eigenvalues are permutations of roots of unity.
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We will show in Ch. 3 that we may do even better than this, by writing geo-

metric discord in terms of observable quantities. It is easy to see that DG in [43]

was not normalized to one: its maximum value was 1/2 for two-qubit states.

So we found natural to add the factor 2, in order to make a comparison with the

quantum discord D.

Potential issues with the geometric discord

It is important to discuss the consistency of geometric discord DG as a reliable

estimator of QC. Recent works have shown that measures built on the Hilbert-

Schmidt norm, as geometric discord is, can increase under local reversible op-

erations on the unmeasured subsystem, being biased by the purity of the global

state [81, DG10]. This is contrast with one of the bona fide criteria for QC mea-

sures (Sec. 1.3.2). In spite of that, geometric discord is still a useful signature of

QC in a number of relevant cases. For example, it can be safely used to inves-

tigate correlations between system and environment in open quantum evolu-

tions, which are globally unitary thus leaving the purity unchanged. Even for

a bipartite state under local decoherent evolutions, as studied in Ch. 3, the ge-

ometric discord enjoys common dynamical behaviour with other full fledged

measures of QC [35, 52, 82]. Specifically, for a system of two qubits (keeping

the dimension fixed), as in our case, the problem highlighted in [81] does not

occur. Also, it has been shown that DG is a valid lower bound to measures of

QC based on relative entropy [45].

2.1.6 Comparison between quantum discord and geometric discord

We use our results to compare the quantum discord D with the geometric dis-

cord DG for general two-qubit states 3. We have generated up to 106 random

two-qubit states. After transforming each of them into the normal form of

Eq. (2.1.2), we have calculated their quantum discord D, as numerically ob-

3A similar study has been recently attempted in J. Batle, A. Plastino, A. R. Plastino, and M.
Casas, arXiv:1103.0704, albeit without identification of the extremal states.
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Figure 2.2: (Colours online) Comparison between normalized geometric dis-
cord DG and quantum discordD for 106 randomly generated two-
qubit states. The dashed line is obtained by taking the equality
sign in Eq. (2.1.30). Refer to the main text for details of the other
boundary curves. All the plotted quantities are dimensionless.

tained from the algorithm of Sec. 2.1.4, and their normalized geometric discord

DG. The latter admits an explicit analytic expression for states ρ in normal form,

derived from Eq. (2.1.27):

DG(ρ) =
1
2
(||~a~at||2 + ||~c~ct||2 − k̃), (2.1.29)

where k̃ is the largest eigenvalue of the matrix~a~at +~c~ct.

The results are shown in Fig. 2.2. We notice that physical states of two qubits

fill up a two-dimensional area in the space of the two QC measures, mean-

ing that the two impose inequivalent orderings on the set of mixed two-qubit

quantum states; this is reminiscent of the case of entanglement measures (see

e.g. [75]). Nevertheless, at fixed quantum discord, the geometric discord ad-

mits exact lower and upper bounds (and vice versa). We have identified them

numerically.

First of all, we have observed that an interesting relationship holds for arbitrary
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two-qubit states,

DG ≥ D2 . (2.1.30)

In other words, the quantum discord for any two-qubit state does never exceed

the square root of its (normalized) distance from the set of classical-quantum

states. The corresponding boundary curve is plotted as a dashed (gray) line in

Fig. 2.2. However, we see that such a bound is tight only in the region 0 ≤ D ≤

1/3, in which it coincides with what we refer to as branch (i) (see Fig. 2.2), while

it is not attainable for higher degrees of non-classical correlations. The tight

lower bound in the whole {D, DG} plane accommodates states with minimal

geometric discord at fixed quantum discord, or equivalently maximal quantum

discord at fixed geometric discord. Such extremal states are constituted by the

union of four different families, which sit on branches (i)-(iv) in Fig. 2.2:

(i) (Green online) This branch is filled by so-called α states [83]

ρα =



α
2 0 0 α

2

0 1−α
2 0 0

0 0 1−α
2 0

α
2 0 0 α

2


, 0 ≤ α ≤ 1/3 , (2.1.31)

for which D(ρα) = α and DG(ρα) = α2, thus saturating Eq. (2.1.30).

(ii) (Blue online) This small branch is filled by a subclass of the two-parameter

family

ρr =



(1− a)/2 0 0 r/2

0 a 0 0

0 0 0 0

r/2 0 0 (1− a)/2


,

1
3
≤ a ≤ 5

14
,
√

4a− 3a2 − 1 ,

(2.1.32)

with r ∈
[√

4a− 3a2 − 1, 1−a
3

]
given by the solution to

2r tanh−1(
√

a2+r2)√
a2+r2
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+ ln(−a− r + 1)− ln(−a + r + 1) + 2 tanh−1(r) = 0. The geometric dis-

cord of these states is simply DG(ρr) = a2, while their quantum discord is

calculated in [83]. We highlight the presence of the “pimple” at the joint

between branches (i) and (ii), a recurring feature in the profile of extremal

states involving quantum discord [83, 84].

(iii) (Red online) This branch accommodates asymmetric X-states of the form

ρg =



a 0 0
√

a− a2 − ac

0 c 0 0

0 0 0 0
√

a− a2 − ac 0 0 1− a− c


,

a =
1− 2c + 2c2 − g

2c
, 0 ≤ g ≤ 1 ,

(2.1.33)

with

c ∈

1−√g
2

,
1
2
−


1
2

√
2g− 1, g > 1

2 ;

0, otherwise;

 ,

solution to 8(1− 2c)c2 tanh−1
(√

8(c− 1)c− 2g + 3
)
− 4c2

×
√

8(c− 1)c− 2g + 3 tanh−1(1− 2c) + 2
√

8(c− c2)− 2g + 3

×
(
2c2 + g− 1

)
tanh−1

(
3c−2c2+g−1

c

)
= 0. For these states, DG(ρg) = g

and D(ρg) =
1

ln 4

[
− ln(−4c(a + c− 1))− 2

√
4c(a + c− 1) + 1

× tanh−1
(√

4c(a + c− 1) + 1
)
− 2 ln(1− a)+ 4a tanh−1(1− 2a)+ 2 ln(2−

2c)− 4c tanh−1(1− 2c)
]

.

(iv) (Black online) Pure states ρp = |ψ〉〈ψ|AB occupy the top-right-most branch,

for which the discord equals the marginal von Neumann entropy,D(ρp) =

S(ρA) = −p log2 p− (1− p) log2(1− p), and the geometric discord equals

the marginal linear entropy, DG(ρp) = 2(1−Tr[ρ2
A]) = 4Det [ρA] = 4p(1−

p), where we have denoted the eigenvalues of the reduced density matrix

ρA by {p, 1− p}.

On the other hand, the upper boundary (v) in Fig. 2.2, despite being single-
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branched, is more involved and we are unable to provide a tractable parametriza-

tion of the states that saturate it. They can be sought among symmetric X-states

of full rank, but with the two biggest eigenvalues dominating the other two.

The extremal curve has been obtained as the result of extensive numerical opti-

mization, in which the parameter space has been finely sliced in discrete inter-

vals of nearly constant discord, and for each interval the datapoint correspond-

ing to the random state with the maximum geometric discord has been selected.

Joining all such extremal states we have obtained the smooth (Magenta online)

line of Fig. 2.2. The two measures D and DG correctly coincide on classical-

quantum states Eq. (1.3.12), where both vanish, and on maximally entangled

Bell states, where both reach unity.

2.2 Interplay between computable measures of entangle-

ment and QC

2.2.1 Entanglement and QC measures

We stress again that on pure bipartite states of arbitrary quantum systems, en-

tanglement and QC are just synonyms. Both of them collapse onto the notion

of lack of information about the system under scrutiny, when only a subsystem

is probed. Quantitatively, this implies that any meaningful measure of entan-

glement or QC should just reduce to some monotonic function of the marginal

entropy of each reduced subsystem, when applied to pure bipartite states. The

question becomes significantly more interesting for mixed bipartite states. One

would expect to find an amount of QC that is no less than some valid entan-

glement monotone. In this section we prove such an intuition to hold true for a

particular choice of quantifiers of entanglement and QC, on arbitrary two-qubit

states and on a relevant subclass of two-qudit states.

We recall that a zoo of entanglement measures (say E the amount of entangle-

ment they aim to quantify) have been introduced [20, 85], and in a more recent
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drift several measures have been proposed as well to evaluate the degree of QC

(say Q) in composite systems [45]. It seems reasonable to expect that

Q ≥ E (2.2.1)

should hold for a bona fide chosen pair of quantifiers (see also [69]). However,

this claim turns out to be not mathematically fulfilled in some canonical cases.

Selecting for instance two well-established entropic quantifiers such as the “en-

tanglement of formation” [86] as an entanglement monotone, and the quantum

discord as a measure of QC, one finds that the latter may be greater as well as

smaller than the former depending on the states, and no clear hierarchy is es-

tablished, even in the simple cases of two-qubit systems or two-mode Gaussian

states [65]. An interesting study has recently succeeded in describing entan-

glement, classical and QC under a unified geometric picture [44], by quanti-

fying each type of correlations in terms of the smallest distance (according to

the relative entropy) from the corresponding set of states without that type of

correlations. For example, the amount of entanglement in a state ρ is given

by the relative-entropic distance between ρ and its closest separable state, and

it is called relative entropy of entanglement [87]. In this context, our expectation

holds: the relative entropy of entanglement ER is automatically smaller than the

so-called relative entropy of quantumnessQR [51], which in turn quantifies the

minimum relative entropic-distance from the set of purely classically correlated

states (a null-measure subset of the convex set of separable states [38]). The lat-

ter measure QR has been recently interpreted operationally within an “activa-

tion” framework that recognizes the value of QC as the necessary and sufficient

resource to generate entanglement with an ancillary system [51] (see also [57]).

Such a protocol is sufficiently general to let one define, in a natural way, quan-

tumness measures QE associated to any proper entanglement monotone E . In

this way the question of the validity of Eq. (2.2.1) becomes especially meaning-

ful given the natural compatibility of the involved quantifiers [69]. However,

there is a non-trivial optimization step required for the calculation of each QE
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that hinders the explicit computability of the desired resources.

Here we choose computable measures for entanglement and QC. In the case of

entanglement, we adopt the squared “negativity” N 2 [88], which is a measure

of abstract algebraic origin, quantifying how much a bipartite state fails to sat-

isfy the positivity of partial transpose (PPT) criterion for separability introduced

by Peres and the Horodeckis [89]. In the case of QC, we pick the geometric dis-

cord DG. Both measures are taken to be normalized between 0 and 1. In partic-

ular, we introduce the normalised version of the geometric discord for arbitrary

mixed states ρ of a d⊗ d quantum system,

DG(ρ) =
d

d− 1
min

ρCQ∈ Ω
‖ρ− ρCQ‖2

2 . (2.2.2)

Despite the very different origin and nature of these two measures, we prove

that Eq. (2.2.1) holds, namely DG ≥ N 2, for arbitrary mixed states of two qubits.

Furthermore, we prove that the inequality DG ≥ N 2 extends to arbitrary pure

states of two qudits for any higher dimension d. Our results demonstrate an

interesting hierarchy between two apparently unrelated quantifiers of quantum

correlations, for both of which closed formulas (and experimentally friendly

detection schemes, as we will show in Ch. 3) are available on the classes of

states considered.

2.2.2 Negativity

According to the PPT criterion [89], if a state ρ of a bipartite quantum system is

separable, then the partially transposed matrix ρtA is still a valid density opera-

tor, namely it is positive semidefinite. The matrix ρtA is defined as the result of

the transposition performed on only one (A, in this case) of the two subsystems

in some given basis. Even though the resulting ρtA does depend on the choice of

the transposed subsystem and on the transposition basis, the statement ρtA ≥ 0

is invariant under such choices [89]. For 2⊗ 2 and 2⊗ 3 mixed states [89], for

arbitrary d⊗ d′ pure states, and for all Gaussian states of 1⊗ n mode continuous
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variable systems [90], the PPT criterion is a necessary and sufficient condition

for separability and, at the same time, its failure reliably marks the presence of

entanglement. In all the other cases, there exist states which can be entangled

yet with a positive partial transpose: they are so-called bound entangled states,

whose entanglement cannot be distilled by means of local operations and clas-

sical communications (LOCC) [91].

On a quantitative level, the negativity of the partial transpose, or, simply, “neg-

ativity”N (ρ) [88, 92] can be adopted as a valid, computable measure of (distill-

able) entanglement for arbitrary bipartite systems. The negativity of a quantum

state ρ of a bipartite d⊗ d system is defined as

N (ρ) =
1

d− 1
(‖ρtA‖1 − 1) , (2.2.3)

where

‖A‖1 = Tr[|A|] = ∑
i
|ai| (2.2.4)

stands for the 1-norm, or trace norm, of the matrix A with eigenvalues {ai}.

The quantity N (ρ) is proportional to the modulus of the sum of the negative

eigenvalues of ρtA , quantifying the extent to which the partial transpose fails to

be positive.

The negativity N is an easily computable entanglement measure, and it has

been proven to be (along with its square N 2) convex and monotone under

LOCC [88]. The squared negativity N 2 satisfies a monogamy inequality on the

sharing of entanglement for multiqubit systems: for example, given a tripartite

system ρABC, one has N 2(AB|C) − N 2(A|B) − N 2(A|C) ≥ 0, where N 2(i|j)

is the entanglement between subsystems i, j. [93]. We observe that picking the

square of the negativity as entanglement measure is unconventional, yet nec-

essary in this case: we want to make a mathematically consistent comparison

of measures, both acting quadratically on the eigenvalues of the density matrix

(compare the expressions in Eq. (2.2.2) and Eq. (2.2.3)).
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2.2.3 Geometric discord vs Negativity in two-qubit systems

The main result of this Section is:

Theorem. For every two-qubit state ρ, the geometric quantum discord is always greater

or equal than the squared negativity,

DG(ρ) ≥ N 2(ρ) . (2.2.5)

Let us review the formulas needed to evaluate the two chosen measures for

generic two-qubit states. We remind that the normalized geometric discord

DG, Eq. (2.1.24), takes the form of Eq. (2.1.27). Concerning the negativity N ,

Eq. (2.2.3), it is known that a two-qubit state ρ is separable if and only if ρtA ≥ 0

[89], and, for entangled two-qubit states ρ, at most one eigenvalue of the partial

transpose ρtA can be negative [78]. Denoting by {λi} the eigenvalues of ρtA in

decreasing order, for two-qubit entangled states we have λ1 ≥ λ2 ≥ λ3 ≥ 0 ≥

λ4 and the negativity of ρ takes the form [88]

N = ‖ρtA‖1 − 1 = 2|λ4| , (2.2.6)

while for separable states (λ4 ≥ 0) one has N = 0.

We first compare entanglement and QC in the simple instance of pure two-qubit

states ρp = |ψ〉〈ψ|. Up to local unitary operations (which leave correlations

invariant), a two-qubit pure state can be written in its Schmidt decomposition,

corresponding to a density matrix of the form

ρp =



1
2

(√
1−N 2 + 1

)
0 0 N

2

0 0 0 0

0 0 0 0

N
2 0 0 1

2

(
1−
√

1−N 2
)


. (2.2.7)
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It is straightforward to show that in this case,

DG(ρ
p) = N 2(ρp) ≡ SL(ρ

p
A) , (2.2.8)

where SL(ρ
p
A) = 4Det [ρp

A] denotes the marginal linear entropy of one subsys-

tem in its reduced state. As expected, entanglement and QC correctly coincide

for pure two-qubit states, and specifically the two chosen measures (geometric

discord and squared negativity) collapse onto the very same quantifier of local

lack of purity.

For two-qubit mixed states, our intuition dictates that the amount of QC should

exceed entanglement. This is formalized in Theorem 2.2.3, which we are now

ready to prove.

Proof. We focus on the case of entangled states, as Eq. (2.2.5) trivially holds

when ρ is separable.

First, we have a look at the original formulation of geometric discord in [43]:

the closest classical-quantum state χ̄ ∈ Ω that achieves the minimum of the

Hilbert-Schmidt norm ||ρ− ρCQ||22 is such that Tr[ρχ̄] = Tr[χ̄2]. Thus, we rewrite

Eq. (2.1.24) as

DG(ρ) = 2 min
ρCQ∈ Ω

‖ρ− ρCQ‖2
2 = 2

(
Tr[ρ2]− Tr[χ̄2]

)
= 2

(
Tr[ρtA 2]− Tr[χ̄2]

)
. (2.2.9)

Then, defining by~λ = {λi} the vector of eigenvalues of ρtA in decreasing order

(λ1 ≥ λ2 ≥ λ3 ≥ 0 ≥ λ4), and similarly calling ~ς = {ςi} the vector of eigen-

values of χ̄ (ς1 ≥ ς2 ≥ ς3 ≥ ς4 ≥ 0), recalling that the Hilbert-Schmidt norm

is invariant under partial transposition [78], we obtain ∑4
i=1 ς2

i = Tr[ρtA χ̄]. We

further exploit the Hoffman-Wielandt theorem [94], which implies that

‖ρtA − χ̄‖2
2 ≥

4

∑
i=1
|λi − ςi|2 =

3

∑
i=1
|λi − ςi|2 + (|λ4|+ ς4)

2. (2.2.10)
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Thus, we have

4

∑
i=1

ς2
i =

4

∑
i=1

λiςi. (2.2.11)

Now, let us consider the function

f (~λ,~ς) =
3

∑
i=1

λi|λi − ςi| − |λ4|(|λ4| − ς4); (2.2.12)

it is easy to see that, performing an optimization by the Lagrange multipliers

method, the minimum of f keeping fixed |λ4| and ς4 (say f ′) is reached when

λ1 = λ2 = λ3 = (1+|λ4|)
3 and ς1 = ς2 = ς3 = 1−ς4

3 . Hence, we have

f ′(|λ4|, χ4) = (1 + |λ4|)
(

1 + |λ4|
3

− 1− ς4

3

)
− |λ4|(|λ4| − ς4).

Furthermore, by optimizing over ς4 we obtain f ′′, which is the minimum of f

at fixed |λ4| (which means that the negativity is kept fixed):

f ′′(|λ4|) =
1 + |λ4|

3
− |λ4| ≥ 0. (2.2.13)

Finally, the last inequality implies ∑3
i=1 λi|λi − ςi| ≥ |λ4|(|λ4| − ς4), which im-

plies
3

∑
i=1

λi|λi − ςi|+ |λ4|(|λ4|+ ς4) ≥ 2|λ4|2,

and thanks to Eq. (2.2.11) this yields

4

∑
i=1
|λi − ςi|2 ≥ 2|λ4|2 , (2.2.14)

which is equivalent to Eq. (2.2.5), thus demonstrating the claim. This concludes

the proof of Theorem 2.2.3 for all two-qubit mixed states.

To illustrate the comparison between geometric discord and squared negativ-

ity, we plot in Fig. 2.3 the physical region filled by 105 randomly generated

two-qubit states in the space DG versus N 2. Along with the (red online) lower
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bound emerging from Theorem 2.2.3, saturated by pure states (Eq. (2.2.7)) for

which DG = N 2, we notice the existence of an upper bound as well on DG

at fixed negativity. This shows that the QC (measured by geometric discord)

in excess of entanglement (measured by squared negativity) are somehow con-

strained. Two-qubit states saturating the (green online) upper bound can be

sought within the class of rank-two X-shaped density matrices of the form

ρX =



a 0 0
√

ad

0 b
√

bc 0

0
√

bc c 0
√

ad 0 0 d


, (2.2.15)

where d = 1− a− b− c and b =
[
2− 2a− 2c + 2

(
− 1 + 6a− 7a2 + 6c− 18ac−

7c2 + 4
√

2
√

ac(−1 + 2a + 2c)2
) 1

2
]
/4, with a and c varying in the parameter

range 0 ≤ a, c ≤ 1/2, −1+ 6a− 7a2 + 6c− 18ac− 7c2 + 4
√

2
√

ac|2a + 2c− 1| ≥

0. The remaining optimization of DG at fixedN 2 can be efficiently done numer-

ically.

In the limiting case of separable two-qubit states, N (ρsep) = 0, the maximum

value of the (normalized) geometric discord has been analytically found to be4

DG(ρ
sep
opt) =

1
4

. (2.2.16)

This is achieved by imposing the edge of separability, λ4 = 0, that corresponds

to ad = bc in Eq. (2.2.15). The maximum DG is then reached e.g. for a = c =

4We remark that in the original analysis [43] an attempt has been made to find the two-qubit
separable states with maximum geometric discord, within the family of Bell diagonal states
(symmetric states with maximally mixed marginals). The edge states identified in that study
have been reported to possess an unnormalized geometric discord of 1/6, which would corre-
spond, in our notation, to DG = 1/3 (thus apparently higher than the tight bound DG = 1/4
that we find here). However, such a reported value is unfortunately wrong, as following the
very same analysis of [43] one finds instead for those edge separable Bell diagonal states an un-
normalized value of the discord equal to 1/18, corresponding to DG = 1/9 in our notation. Our
analysis plus extensive numerical investigation confirm that no separable two-qubit state can
achieve a higher (normalized) geometric discord than 1/4, and in particular no Bell diagonal
separable state can come even close to saturate such a bound.
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Figure 2.3: (Colours online) Geometric quantum discord DG versus squared
negativity N 2 for 105 randomly generated states of two qubits.
The lower boundary (red online) in both plots accommodates pure
states. The upper boundary (green online) is saturated by a sub-
class of rank-two states of the form Eq. (2.2.15), while the (magenta
online) vertical side line at N 2 = 0 is filled by separable states yet
with non-zero QC, which reach up to the value DG = 1/4 on states
of the form Eq. (2.2.17). All the plotted quantities are dimension-
less.

1
8

(
2 +
√

2
)

. Notice that the corresponding state ρ
sep
opt,

ρ
sep
opt =



1
8

(
2 +
√

2
)

0 0 1
4
√

2

0 1
8

(
2−
√

2
)

1
4
√

2
0

0 1
4
√

2
1
8

(
2 +
√

2
)

0

1
4
√

2
0 0 1

8

(
2−
√

2
)


, (2.2.17)

upon swapping the subsystems A and B, becomes of the classical-quantum

form of Eq. (1.3.12), which means to be a state with zero DG, that is a classical-

quantum state. This suggests that the maximum geometric discord for two-

qubit separable states is obtained on an extremely asymmetric state (the marginal

state ρ
sep
opt A

is maximally mixed, while the marginal state of subsystem B is quasi-

pure, Tr
[
ρ

sep
optB

2]
= 3/4), that displays no signature of QC at all if subsystem A

rather than B is probed by local measurements. The example in Eq. (2.2.17) is
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Figure 2.4: (Colours online) Geometric quantum discord versus squared neg-
ativity for 3 × 104 (per panel) randomly generated states pure
states of two qudits with d = 2, . . . , 7. The two measures coin-
cide for d = 2 (pure two-qubit states). The dashed line (red online)
DG = N 2 is not attainable for intermediate values of both mea-
sures, while a tighter lower bound (solid green online) on DG ex-
ists at fixed negativity, given by Eq. (2.2.25). Such a bound is satu-
rated by states with Schmidt decomposition as in Eq. (2.2.24). The
upper bound on DG at fixed negativity is more structured. Notice
that the plots in this Figure can be also interpreted as the span of
the pair of entanglement measures τ2 [95] vsN 2 [88] for two-qudit
pure states. All the plotted quantities are dimensionless.

just one of an entire class of two-qubit states that enjoy the same property [51].

The full allowed range 0 ≤ DG ≤ 1/4 for the geometric discord of separable

states (magenta line in Fig. 2.3) can be spanned for instance by mixtures of the

form ρ
sep
p = pρ

sep
opt + (1− p)I/4, with 0 ≤ p ≤ 1, for which DG(ρ

sep
p ) = p2/4.

2.2.4 Geometric discord vs Negativity in higher-dimensional systems

We provide extensions of the results of the previous Section to pure states of

d⊗ d and d⊗ d′ systems.

Pure d⊗ d states

We first generalize Theorem 2.2.3 to arbitrary pure states of two qudits. Namely,

we prove the following theorem.

Theorem. For every pure two-qudit state |ψ〉 ∈ Cd ⊗Cd, the geometric quantum
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discord is always greater or equal than the squared negativity,

DG(ψ) ≥ N 2(ψ) . (2.2.18)

Proof. Any pure state |ψ〉 ∈ Cd ⊗ Cd is rewritten without loss of generality in

the Schmidt decomposition [17]:

|ψ〉 =
d−1

∑
j=0

√
αj|j〉 ⊗ |j〉 , (2.2.19)

where the Schmidt coefficients are probability amplitudes, ∑j αj = 1.

The geometric discord Eq. (2.1.24) is computed in this case in accordance with

Luo and Fu [79, 96] as well as our general formula Eq. (2.2.2). The closest classi-

cal state to |ψ〉, entering the definition Eq. (2.1.24), turns out to be the completely

uncorrelated state ρ⊗ = ρA⊗ ρB, obtained as the tensor product of the marginal

states ρA = TrB(|ψ〉〈ψ|) and ρB = TrA(|ψ〉〈ψ|). This implies

DG(ψ) =
d

d− 1

(
1−∑

i
α2

i

)
=

2d
d− 1 ∑

j>i
αiαj . (2.2.20)

Meanwhile, the negativity (Eq. (2.2.3)) is given by [88]

N (ψ) =
1

d− 1

(∑
i

√
αi

)2

−∑
i

αi


=

1
d− 1

(∑
i

√
αi

)2

− 1

 . (2.2.21)

We know from [97] that an inequality holds:

4 ∑
j>i

αiαj ≥
2

d(d− 1)

(∑
i

√
αi

)2

− 1

2

, (2.2.22)
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and we obtain

2
d

d− 1 ∑
j>i

αiαj ≥
1

(d− 1)2

(∑
i

√
αi

)2

− 1

2

. (2.2.23)

The left side is the normalized geometric discord, while on the right we have

the normalized squared negativity.

We have already seen that for d = 2, the two measures DG and N 2 indeed

coincide on pure states. However, for any d > 2, the geometric discord is strictly

larger than the negativity. This seems to go against the expectation that QC

should reduce to entanglement on pure states. In fact, DG does reduce to an

entanglement measure on two-qudit pure states, but such a measure is different

from the squared negativity for d ≥ 3. The pure-state entanglement monotone

that takes the very same expression as in Eq. (2.2.20) is a particular coefficient

τ2 of the characteristic polynomial of the non-trivial block of the Gram matrix

of pure two-qudit states (see [95] for details). Such a measure has not been

studied for mixed states, and it is an interesting (yet technically challenging)

open problem to see whether the hierarchy DG ≥ τ2 holds for two-qudit mixed

states beyond d = 2.

Coming back to our measures of choice in this Chapter, geometric discord and

squared negativity, we visualize their interplay on pure two-qudit states with

increasing d. We have generated a large ensemble of two-qudit states up to

d = 7 with random Schmidt coefficients. At fixed negativity, the geometric

discord displays both upper and lower bounds. The upper bounds are multi-

branched, with an increasing number of nodes appearing with increasing d.

The lower bounds are regular curves lying strictly above the bisector for any

d > 2, with DG = N 2 occurring only at the extremal points where both van-

ish (on factorized states) or both reach the maximum (on maximally entangled

states). We find that, for any d, the pure two-qudit states that achieve the min-

imum geometric discord at fixed negativity (green curve in Fig. 2.4) have a pe-
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culiar distribution of Schmidt coefficients:

α0 = sin2 θ , (2.2.24)

αi =
cos2 θ

d− 1
∀ i = 1, . . . , d− 1 ,

with arccos
√
(d− 1)/d ≤ θ ≤ π/2. Since this is true for every pure state in

the special case d = 2, this is a further proof that on two-qubit pure states DG

equalsN 2 as observed in the previous Section. The lower bound on DG at fixed

N as saturated by the states of Eq. (2.2.24) is given by

Dlow
G (N ) = [2(d− R− 1) + (d− 2)(d− 1)N ]

×
[
2
(
(d− 1)2 + R

)
− (d− 2)(d− 1)N

]
(2.2.25)

×
[
(d− 1)2d2]−1

,

with R =
√
(d− 1)2(1−N )[1 + (d− 1)N ].

Generic d⊗ d′ states

Encouraged by the previous results, one could conjecture that of the inequality

DG ≥ N 2 holds even for generic mixed states of arbitrary d⊗ d′ dimensional

systems, i.e. for arbitrary bipartite states of any dimension. Indeed, it might

be interesting to uncover an universal ordering relationship between the two

measures. In this case, the geometric discord could be computed according to

the prescription of [98], while the negativity still captures all entanglement po-

tentially present in the states [89]. However, a disprove and a counterexample

to such a conjecture recently appeared in [99].
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2.3 Symmetric measure of QC

2.3.1 A strongly faithful QC measure

It is legit to wonder if the inherent asymmetry of quantum discord and geomet-

ric discord is a serious limitation to catch all the quantum properties of the given

state of a compound system and, on a foundational perspective, if correlations

should depend on which party of the system is probed. We will provide an ar-

gument for the latter issue in Ch. 4, while here we focus on the former one. One

would be tempted to just pick min[DA,DB] as a reliable symmetric measure of

QC, but such quantity still vanishes for classical-quantum states, even if they

really show some quantumness. On the other hand, the quantity max[DA,DB]

would overestimates QC. Thus, it is preferable to extend the paradigm of QC to

the case in which the measurement is made on both Alice and Bob at the same

time. We will then obtain a measure which is symmetric with respect to the

swapping the subsystems as well as vanishing only on classical-classical states

(we call this property strong faithfulness).

Motivated by these premises, we assess the characterization of QC focusing on

the paradigmatic instance of two-qubit states. A QC measure that is symmet-

ric has been introduced in [41] and called MID (Measurement-induced distur-

bance). Unfortunately, this quantity is flawed and overestimate QC, as we are

going to show. We first deploy a quantitative benchmarking test of quantum

discord and MID as tools to investigate the interplay between QC and global

state mixedness. We find that the non-optimized nature of MID makes such in-

dicator unfaithful, being non-zero and even maximal on some classical-classical

states. On the other hand, due to its asymmetric definition [35], discord is not

strongly faithful, as it does not reliably detect the fine discrimination between

classical-classical and so-called classical-quantum states [39], which still possess

some quantum correlations, but exhibit zero discord. We thus propose to em-

ploy an ameliorated version of MID as a measure of QC, which we refer to as

“AMID”, operatively associated to the minimal state disturbance upon joint
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local measurements (in the spirit of [39, 40]). AMID is symmetric by construc-

tion, plays a clear role as quantum complement to the “classical mutual infor-

mation”, and vanishes on and only on all classical-classical states, yielding a

strongly faithful quantification of QC.

Reaching beyond the recent efforts of [83], and inspired by an analogous ear-

lier study of maximally entangled mixed states (MEMS) [75], we furthermore

identify and characterize rigorously the maximally quantum-correlated mixed

states of two qubits at given values of the global von Neumann entropy (vNE).

In the entropic plane, discord and AMID admit exactly the same (rather struc-

tured) set of extremal states. The result provides hints of the maximal robust-

ness of two-qubit QC against decoherence. Our investigation sheds unforeseen

light onto a topic of vast theoretical and practical interest. The families of ex-

tremal states identified can be experimentally engineered by means of light-

atom interfaces [100] or all-optical setups, and the QC are directly measured in

laboratory via suitable local detections or computed from the reconstructed (by

means of tomography) density matrices [53].

2.3.2 Maximally quantum-correlated mixed states of two qubits: Dis-

cord vs MID

We saw that discord is, in general, asymmetric asDA 6=DB withDB obtained by

swapping the roles of A and B. As we seen in the previous section, no closed

formulas are known forDA on two-qubit states, other than special cases [71, 72].

Luo introduced MID starting from the observation that a bipartite state con-

taining no QC commutes with the operators describing any complete projective

measurement [41]. On the other hand, although a state ρAB may be intrinsically

quantum, any complete bi-local projective measurement makes it classical as

a result of a decoherence-by-measurement process [41]. The least disturbing

measurement is conjectured to be a bi-local projection which leaves invariant

the marginal states of Alice and Bob. If ρA = ∑k pkΠA,k and ρB = ∑l plΠB,l ,

MID is then defined by restricting the attention to the complete projective mea-
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surement {Π ≡ ΠAB,kl≡ΠA,k ⊗ΠB,l} determined by the eigenprojectors Πj,k of

ρj (k=1, 2), and reads

M(ρ) = I(ρ)− I(ρΠ)

=
(
S(ρA) + S(ρB)− S(ρ)

)
−
(
S(ρΠ

A) + S(ρΠ
B )− S(ρΠ)

)
= S(ρΠ)− S(ρ) , (2.3.1)

where ρΠ ≡ ρΠ
AB is the state resulting from the application of ΠAB. Note that the

second step is due to the invariance of the marginal states: S(ρΠ
A,B) = S(ρA,B).

We begin our analysis by investigating QC versus global state mixedness (vNE)

for two qubits, looking in particular for the families of extremal states 5. We

have generated up to 2×106 random two-qubit density matrices, uniformly in

the space of Hermitian, positive semidefinite matrices, and for each of them

we have evaluated S , M (analytically) and DA (numerically). Most notably,

although our study has been performed using unconstrained density matrices,

we have found that the so-called X states of the form

ρX =



ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ∗23 ρ33 0

ρ∗14 0 0 ρ44


, with

4

∑
j=1

ρjj = 1 , (2.3.2)

allow us to span the whole physically-allowed regions of the planes studied

in this work, boundaries included. We will thus use the states in Eq. (2.3.2) as

our starting ansatz to seek analytical candidates to be the extremal states. A

posteriori, this appears as a natural choice, as all known MEMS [75] and states

that maximize discord at fixed entanglement [83] fall into this class.

In Fig. 2.5 (a) we plot the distribution of discord versus vNE for a sample of

2× 105 random two-qubit states. Although a profile similar to the one forDA vs

linear entropy is retrieved [83], including the peculiar region around S= log2 3

5A similar study has been recently pursued for discord vs linear entropy [83]. Here we use
vNE as a more “compatible” measure of mixedness, given the entropic nature of D and MID.
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where discord increases at the expense of entanglement [75], we reveal interest-

ing differences regarding the classes of extremal states drawing the boundary of

the physically allowed area. These have been determined, in our investigation,

by looking for the conditions to impose on ρX so as to achieve the absolute max-

imum of DA at fixed S . Recalling that analytic expressions for the discord of X

states are available [72], the problem is efficiently solved using the Lagrange-

multiplier method, in a way similar to [75], and searching for the stationary

points of the function DA(ρX)+λ(S(ρX)−S̃) with S̃ ∈ [0, 2] being an assigned

value of vNE. The solution is analytical and the resulting boundary states are

presented in the following.

2.3.3 Derivation of MQCMS

We detail the analytical derivation of the maximally quantum correlated mixed

states (MQCMS) collected in Table 2.1. Within the family of X states of two

qubits Eq. (2.3.2), we focus on the class of generalized Bell states ρB [75], defined

by

ρB
11 = ρB

44 = (λ1 + λ3)/2, ρB
22 = λ2, ρB

33 = λ4,

ρB
14 = (λ1 − λ3)/2, ρB

23 = 0 , (2.3.3)

up to permutations of the eigenvalues λi. This class encompasses all known

types of MEMS for various measures of mixedness and entanglement [75], as

well as the maximally discordant states at given entanglement of formation [83];

furthermore, our numerical simulation reveals that states of the form Eq. (2.3.3)

ρ S(ρ ≡ ρAB) colour
ρR with 0 ≤ a ≤ 1

3 , r = r?(a) [0, 0.9231) black
ρW with 0 ≤ f ≤ 1 [0.9231, 1.410) red

ρP with b = 0 [1.410, 1.497) blue
ρP with 0 ≤ b ≤ 1, a = a?(b) [1.497, 1.585) green

ρW with − 1
3 ≤ f ≤ 0 [1.585, 2] red

Table 2.1: Maximally quantum-correlated mixed states of two qubits, corre-
sponding range of the von Neumann entropy, and colour code for
the curves in Fig. 2.5(a),(c); the values of the parameters a? and r?6.
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alone are able to fill the whole upper region in the physically allowed DAvs S

diagram, thus a posteriori confirming the validity of the ansatz.

We proceed by applying the method of Lagrange multipliers to find stationary

points of the discord of such states at fixed global vNE. Since they are X states,

one determines their discord DA by using the algorithm presented in [72]. We

have DA(ρB) = min{d1, d2}, where d1, d2 are functions of the eigenvalues~λ ≡
{λi}. The first term is given by:

d1(~λ) = − [4(λ1 + 2λ2 + λ3) (λ1 + λ3 + 2λ4)]
−1
(
(λ2 − λ4)

2 − 1
)

×
[
|3λ2 + λ4 − 1| log2

(
2 (λ2 − λ4 + 1)

|3λ2 + λ4 − 1|+ λ2 − λ4 + 1
− 1
)
− 2 |λ1 − λ3|

× log2

(
−|λ1 − λ3|+ λ2 + λ4 − 1
|λ1 − λ3|+ λ1 + λ3

)
+ |λ2 + 3λ4 − 1|

× log2

(
− 2 (λ2 − λ4 − 1)
|λ2 + 3λ4 − 1| − λ2 + λ4 + 1

− 1
)
− 2 |λ2 − λ4|

× log2

(
2 (λ2 + λ4)

|λ2 − λ4|+ λ2 + λ4
− 1
)
+ log2

((
(λ2 − λ4)

2 − 1
)

2
)

− log2 (λ2λ4) + log2

(
1

(λ2 + λ4 − 1) 2

)
+ 2 log2 (−2λ3 (λ2 + λ3 + λ4 − 1))

− 2 log2 ((λ1 + 2λ2 + λ3) (λ1 + λ3 + 2λ4))

+ λ2

(
log2 (λ2)− 2 log2 (λ3) + 3 log2 (λ4) + 2 log2

(
− 1

λ2 + λ3 + λ4 − 1

))
+ λ4 (3 log2 (λ2) + 2 log2 ((λ2 − λ4 + 1) λ4))

+ λ4

(
−2 log2 (λ3 (λ2 − λ4 − 1) (λ2 + λ3 + λ4 − 1)) + log2

(
(λ1 + λ3 + 2λ4)

2

(λ2 − λ4 + 1) 2λ4

))]
,

(2.3.4)

while the second one is

d2(~λ) =
1
2

[√
(λ1 − λ3) 2 + (λ2 − λ4) 2 log2

(
1−

√
(λ1 − λ3) 2 + (λ2 − λ4) 2√

(λ1 − λ3) 2 + (λ2 − λ4) 2 + 1

)

+ log2

(
8 (λ2 + λ3 + λ4 − 1) 2

((λ2 − λ4) 2 − 1)
(
λ2

2 + (2λ3 − 1) λ2 + 2λ2
3 + 2λ3 (λ4 − 1) + (λ4 − 1) λ4

))

+ λ2 log2

(
λ2

2 (−λ2 + λ4 + 1)
(λ2 − λ4 + 1) (λ2 + λ3 + λ4 − 1) 2

)
+ 2λ3 log2

(
− λ3

λ2 + λ3 + λ4 − 1

)

+ λ4 log2

(
λ2

4 (−λ2 + λ4 − 1)
(λ2 − λ4 − 1) (λ2 + λ3 + λ4 − 1) 2

)]
. (2.3.5)

Now, we have to set two constraints: the vNE S(ρB) = −∑i λi log2 λi must

be equal to a constant S̃ and the trace of the density matrix must be obviously
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equal to one. Therefore, we have to find maxima of the unconstrained functions:

f1(~λ) = d1(~λ) + ν(−S̃ −∑
i

λi log2 λi) + µ(1−∑
i

λi)

f2(~λ) = d2(~λ) + ν(−S̃ −∑
i

λi log2 λi) + µ(1−∑
i

λi). (2.3.6)

After some lengthy but straightforward algebra, we find that the stationary con-

ditions for f1 are solved by rank-3 states. Local maxima for the constrained dis-

cord d1 are thus obtained in two independent cases:

(i) λ4 = 0, corresponding to a two-parameter family of states encompassing the

MEMS for the relative entropy of entanglement [75], whose density matrix ρR

is given by the first line of Eq. (2.3.7); or

(ii) λ3 = 0, corresponding to the two-parameter class described in [83], whose

density matrix ρP is given by the third line of Eq. (2.3.7).

We repeat the same procedure looking for a maximum of f2. In this case it is not

difficult to see that Werner states ρW , which satisfy the relation λ2 = λ3 = λ4 =

(1− λ1)/3, solve the stationarity conditions, and one verifies that they provide

a local maximum for the constrained discord d2.

Other possible candidates (not equivalent up to local unitary transformations

to the above considered classes of states) for MQCMS are excluded as they cor-

respond to local minima, rather than maxima, of either d1 or d2 at fixed vNE. We

are thus left with a competition between the three main families of Eq. (2.3.7),

which we report for completeness: the rank-3 class ρR encompassing the MEMS

for the relative entropy of entanglement [75], the Werner states ρW , and a two-

parameter family ρP studied in [83]. Their density matrices are as in Eq. (2.3.2)

with, respectively,

ρR
11 =

1− a
2

, ρR
22 = a , ρR

14 =
r
2

, ρR
33 = 0

ρW
11 =

1 + f
4

, ρW
22 = ρW

33 =
1− f

4
, ρW

14 =
f
2

(2.3.7)

ρP
11 = ρP

14 =
a
2

, ρP
22 =

1− a− b
2

, ρP
33 =

1− a + b
2

,
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and ρR,W,P
23 =0. The maximally quantum-correlated mixed states (MQCMS) ac-

cording to quantum discord are then reported in Table 2.1. We observe an intri-

cate profile of extremely “discordant” two-qubit states at fixed vNE, far more

structured than any instance of MEMS, thus showing the non-trivial relation

between QC and global state mixedness.

2.3.4 Comparison between quantum discord and MID

Let us now address a similar study when MID is used as a QC indicator. We

aim at finding whether MID could be effective in providing a simpler yet mean-

ingful picture of the behaviour of QC in two-qubit mixed states. As shown in

Fig. 2.5 (b), we find indeed that the physically allowed region in the M vs S

plane simplifies to a trapezium, whose upper extremity is spanned by two dif-

ferent extremal families only. The states attaining the horizontal (blue online)

boundary in Fig. 2.5 (b) belong to the so-called β family [83] ρβ = β|φ+〉〈φ+|+

(1− β)|ψ+〉〈ψ+| with |φ+〉=(|00〉+|11〉)/
√

2, |ψ+〉=(|01〉+|10〉)/
√

2, β∈[0, 1].

They have maximal MID, M=1, regardless of β and thus of S . On the other

hand, by simple geometrical considerations, we see that

ρδ=δρβ=1/2+(1−δ)1/4 (δ ∈ [0, 1]), having

M(ρδ) = [(1−δ) log2(1−δ) + (1+δ) log2(1+δ)]/2=2−S(ρδ), (2.3.8)

fill up the diagonal (purple online) side of the trapezium. Quite strikingly, how-

ever, the boundary state ρβ=1/2 and all the ρδ’s on the oblique edge of the trapez-

ium have strictly DA=DB=0 and are thus classical-classical: MID manifestly

overestimates QC, failing to meet the essential faithfulness requirement.

2.3.5 Ameliorated MID as a measure of QC

The evident overestimation given by MID, which is a consequence of the “rigid-

ity” of the projective bases used in its definition, urges us to look for a more

faithful figure of merit. The natural next step is to consider an ameliorated ver-
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sion of the measurement-induced disturbance (or AMID) where arbitrary com-

plete projective measurements are performed, locally, on parties A and B, and

a subsequent optimization over any possible set of local projectors is achieved.

We thus define AMID, for bipartite systems of any dimension, as

A(ρ) = inf
ΩAB

[I(ρ)− I(ρΩ)] = I(ρ)− Ic(ρ)

Ic(ρ) ≡ sup
ΩAB

I(ρΩ), (2.3.9)

where ΩAB,kl = ΩA,k ⊗ΩB,l is an arbitrary complete (bi-local) projective mea-

surement over the composite system. In particular, ΩA,k and ΩB,l are not nec-

essarily made out of eigenprojectors and the search for the infimum over the

set of ΩAB’s entails the non-trivial optimization missing in MID [41]. Our def-

inition is further motivated by the earlier analyses discussed in [40], where Ic

in Eq. (2.3.9) is recognized as the classical mutual information (optimized over

projective measurements), a proper symmetric measure of classical correlations

in bipartite states. AMID is thus recast as the difference between total and clas-

sical mutual information, which has all the good prerequisites to be a bona fide

measure of QC. From an operational point of view, the AMID can be interpreted

as a measure of inefficiency of local broadcasting, a primitive task that can only

be accomplished perfectly with classical-classical states [39].

The evaluation of Eq. (2.3.9) involves solving a double-optimization problem.

However, for two qubits the techniques of [71, 72] enable us to streamline the

formal apparatus needed for the quantification of AMID, as we made for the

one-way discord. Any two-qubit state can be transformed by local unitary

transformations (leaving AMID invariant by definition) into the form of Eq. (2.1.2).

Also, any projector Ωj,k for subsystem j=A, B is written as Ωj,k=VjΠj,kV†
j with

Vj=yj,01j+i~yj·~σj a special unitary matrix such that ∑3
p=0 y2

j,p=1, yj,p∈[−1, 1].

After some operator algebra, one has ρ′Ω = (ΩA,k ⊗ ΩB,l)ρ
′(ΩA,k ⊗ ΩB,l) =

∆kl(ΩA,k ⊗ΩB,l)/4, where the vectors γj (depending solely on ~yj) are defined
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Figure 2.5: (Colours online) (a) Discord, (b) MID, and (c) AMID versus vNE
for 2× 105 random two-qubit states. The boundaries in (a),(c) cor-
respond to the MQCMS of Table 2.1. In (b), the extremal states are
ρβ (horizontal, blue segment) and ρδ (oblique, purple segment),
while Werner states ρW lie on the dashed (red) curve.

by the relation V†
j ~σj,pVj=αj,p~σj,1+β j,p~σj,2+γj,p~σj,3, and

∆kl=1+(−1)k~a·~γA+(−1)l~b·~γB+(−1)k+l
3

∑
p=1

χpγA,pγB,p. (2.3.10)

It is then convenient to introduce the new set of variables κj=y2
j,0+y2

j,3, hj=yj,0yj,1

+yj,2yj,3, wj=yj,1yj,3−yj,0yj,2 and lj=1−κj, and then define

µ(κA, hA, wA, κB, hB, wB)≡I(ρ′)−I(ρ′
Ω
). (2.3.11)

By formulating and solving the conditions for stationarity of A, one evaluates

AMID numerically. Remarkably, for the relevant class of X states (Eq. (2.3.2)),

one finds (numerically) a closed expression of their AMID (as well as of their

classical mutual information Ic, see Eq. (2.3.9)):

A(ρX) = min[µ(1/2, 0, 1/2, 1/2, 0, 1/2), µ(1, 0, 0, 1, 0, 0)] , (2.3.12)

thus complementing the results of us and [71, 72] on discord. By construction,

one obtains A ≤ M. More important, it is immediately evident that AMID,

being intrinsically symmetric, is a strongly faithful measure of genuinely QC,

which vanishes if and only if a state is classical-classical as defined in[39], and

can be then adopted as a rightfully valid and well motivated alternative to

quantum discord. We conclude by studying AMID vs vNE for arbitrary two-
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qubit random states. Most notably (see Fig. 2.5 (c)), the physically allowed re-

gion in the (S ,A) plane is found precisely congruent to the one in the (S ,DA)

one (Fig. 2.5 (a)) and admits the same boundaries (Table 2.1, for those states,

A=DA=DB). We thus promote the interpretation of the set of states in Table 2.1

as two-qubit MQCMS, being simultaneously extremal for discord and AMID,

at fixed vNE. This highlights a fascinating connection between such entropic

QC indicators, that impose inequivalent orderings on partially quantum states,

but yield identical prescriptions for the extremal values at fixed mixedness. Our

methods can be extended to reliably investigate QC in higher dimensional sys-

tems. On this hand, our contribution to a comparative study of discord, MID,

and AMID for two-mode Gaussian states of continuous variable systems has

been published in [DG8]. In this respect, we remark that the engineering of

MQCMS is feasible via both atom-light interfaces and all-optical setups [100],

which adds an appealing feature of experimental demonstrability to our work.

2.4 Summary of Chapter 2

• We have presented a reliable and effective algorithm for the evaluation of the

quantum discord D of two-qubit states. We have simplified the optimization

involved in calculating the conditional entropy, by removing the redundant

degrees of freedom that are set to zero by means of local unitary transfor-

mations in the first place, and by properly taking into account the symme-

tries of the problem. The optimization problem for the conditional entropy,

and equivalently for the discord, is recast into a compact form that implies

an elegant relationship among the eigenvalues of the ensemble obtained af-

ter the local measurement process on one qubit. The derived transcendental

constraints are amenable to direct numerical solution. We have then com-

pared quantum discord with an alternative but affine quantity, the geometric

discord DG, identifying the classes of states with extremal values of geomet-

ric discord at fixed quantum discord. For a fixed geometric discord, max-

imal quantum discord is attained by different families of states depending
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on the degree of QC, encompassing pure as well as mixed, symmetric and

non-symmetric states. The the hierarchical bound D ≤
√

DG holds for all

two-qubit states.

• We have presented a qualitative and quantitative study of entanglement and

QC for two-qubit states and for relevant instances of higher-dimensional states.

First, we identified a computable measure of entanglement, the squared neg-

ativity N 2 [88], and proved that it is always majorized by a compatible mea-

sure of QC, the geometric discord DG [43], in the case of generic two-qubit

states. The inequality is saturated for pure states. Then, we explored the pat-

tern of the plane DG vs N 2, identifying the classes of two-qubit states with

maximal geometric discord at fixed negativity. In particular, the bound is

reached by a family of X states given in Eq. (2.2.15). Remarkably, for sepa-

rable states the upper bound accommodates a fully asymmetric state, which

is a state becoming a zero-discord classical-quantum state upon swapping of

the subsystems. Finally, we extended our analysis to pure states of d ⊗ d′

systems. For two-qudit pure states, we found that the hierarchy between

geometric discord and squared negativity still holds rigorously. We char-

acterized the states with minimal DG at fixed N 2: they present an elegant

parametrization of the distribution of their Schmidt coefficients, allowing to

express analytically the lower bound in the DG vs N 2 plane for any d as in

Eq. (2.2.25).

• Going beyond a mere hierarchical state classification, our analysis naturally

led to the proposal of adopting AMID, a strongly faithful quantum correla-

tion quantifier linked to minimal state-disturbance after optimized bi-local

measurements, and amounting to the quantum counterpart of the classical

mutual information [40]. We explicitly computed AMID on X states and

provided a recipe to calculate it for arbitrary two-qubit states by numerical

simulations. The MQCMS can be rightfully regarded as the two-qubit states

whose QC are maximally robust against state mixedness, and could thus to

play a key role in realistic (noisy) implementations of quantum information
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schemes based on QC as a resource [39, 53, 62].
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CHAPTER 3

Experimental detection of

Quantum Correlations

After having calculated QC on the paper, it is time to measure them in real world. The

chapter comprises the results published in [DG4, DG5, DG6] and is organized in three

parts. First, I present a theoretical study of the bipartite QC between a qubit and a d

dimensional system, providing a state-independent formula for the geometric discord.

I exploit the result to give a general prescription to measure the QC of a state exper-

imentally without full information on its density matrix. Specifically, by introducing

properly designed measures, the presented scheme allows us to quantify QC for arbi-

trary states of 2⊗ d systems without the need to reconstruct them by tomographic tech-

niques. Then, I take in exam the specifics of the required experimental architecture in

the optical and Nuclear Magnetic Resonance settings, discussing possible advantages

and limitations in such contexts. Finally, I describe the experimental implementation of

my proposal, which has been carried out at the Brazilian Center for Research in Physics

(CBPF) of Rio de Janeiro. In particular: I.A. Silva and R. Auccaise performed the ex-

periment, I made the theoretical analysis and all the authors of [DG6] contributed to

the general discussion.
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3.1 Experimental measurement of quantum correlations:

state of the art

3.1.1 The problem

It is known that entanglement is not directly measurable in laboratory. Indeed,

there is not a self-adjoint operator quantifying the amount of entanglement of a

state. Hence, an a priori knowledge of the density matrix appears necessary to

evaluate entanglement. This is a serious drawback, since dealing with high di-

mensional systems makes the state reconstruction extremely demanding if not

unfeasible in terms of required resources. The problem has been overcome by

introducing non-trivial lower bounds to entanglement measures, expressed as

non-linear functions of the density matrix coefficients, whose values is detected

by means of a limited number of measurements [101, 102].

The situation is similar for QC. Qualitatively, we saw that QC are related to the

disturbance induced by the measurement process on a physical system [41, 79],

while concepts and tools from information theory allow their quantitative eval-

uation, given the state of the system. At this stage, the natural next step should

be to establish a link between theoretical and experimental quantification of

QC: One could try to recast a QC measure as a function of observable quan-

tities. Unfortunately, they are all defined by means of a state-dependent op-

timization and seem not directly associable with Hermitian operators, whilst

it is desirable to find ways to evaluate them by means of a smaller number of

measurements than the ones required by tomographic techniques. In this direc-

tion, appreciable attempts to detect non-vanishing QC by observable witnesses

have been realized [53, 63, 103]. In these works, an experimental measurement

of a quantity W such that 〈W〉ρ > 0 ⇐⇒ Q(ρ) > 0 is implemented. How-

ever, reminding that almost all states possess QC [38], it still seems worthy to

pursue the more informative (but still experimentally manageable) quantitative

characterization, given by measuring the amount of QC in the state.
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3.1.2 Our solution

An entropic function as the quantum discord is not easily associable to observ-

ables, while taking into account distance-based measures offers a solution to

such conundrum.

First, we show in Sec. 3.2 that the geometric discord defined in Eq. (2.1.27) ad-

mits a neat expression as a function of density matrix elements whose form is

state-independent, being the minimisation in Eq (2.1.27) solved explicitly. We

also introduce a tight lower bound Q of geometric discord whose formula ap-

pears even more manageable.

Then, in Sec. 3.3, we study the feasibility of the direct implementation of the

non-tomographic measurement scheme required to detect the value of geomet-

ric discord and Q in an unknown state. In particular, we express it as a function

of observable quantities 〈Oi〉, i.e. the expectation values of proper Hermitian

operators Oi. The nature and the number of such operators is obviously depen-

dent on the particular setting considered. Two possibilities are taken in exam:

first, we focus on the quantum optical setup, which implies to recast Q in terms

of expectation values of projectors and swap operators. The number of mea-

surements required is independent of Bob’s dimension d, but to carry out a

quantum optics experiment appears to be hard. Moreover, we consider the Nu-

clear Magnetic Resonance (NMR ) setting [104], in which we obtain information

on the system by means of spin measurements. Here, the protocol allows us a

gain (over full state tomography) which is linearly dependent on Bob’s dimen-

sion. In spite of a minor advantage in terms of number of measurements, the

NMR implementation is by far easier to realize than the optical one.

Finally, we experimentally verify the theoretical results by preparing an un-

known two-qubit Bell diagonal state [17] (the choice of the state is due to ex-

perimental convenience exclusively) in a room temperature NMR system and

retrieving the value of geometric discord by means of local measurements over

one of the subsystems (Sec. 3.4). In this setting, the information is stored in
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magnetic nuclear spins, while transformations and state preparation are imple-

mented by applying highly controllable radio frequency (rf) pulses and mag-

netic field gradients. On the other hand, the environment affects the spin sys-

tem by inducing relaxation that drives the system back to the thermal equilib-

rium distribution. We investigate the robustness of QC in the open quantum

system framework, studying their dynamics under phase damping and am-

plitude damping channels acting separately on each qubit [18], which are the

theoretical description of the noise in NMR. It is predicted that in such dynam-

ical model, by appropriately engineering the initial state, QC measures should

undergo a sudden transition during their evolution [52, 82], exhibiting different

regimes of resilience to decoherence under noisy conditions. We carry out a

comprehensive analysis of QC, by monitoring the evolution of geometric dis-

cord [43], a tight lower bound of it and the negativity of quantumness. The latter

measure, introduced in [51] and discussed in detail in [105], is here investigated

for the first time in open systems. Whenever the measured subsystem is a qubit,

the negativity of quantumness equals the minimum trace distance from the set

of zero-discord states. It is unfortunately harder to compute and less accessi-

ble experimentally then geometric discord and its lower bound: to measure it

from direct data without tomography, we need a partial knowledge of the form

of the state, specifically the fact that it is a Bell diagonal state. Both geometric

discord and negativity of quantumness detect the same dynamical features as

quantum discord (see also [106, 107]): being provided an appropriate choice of

the initial state, the QC measures are kept frozen in time, then experience a sud-

den transition and start to decay exponentially. Conversely, the lower bound Q

of geometric discord is less accurate and does not reveal any of the mentioned

dynamical phenomena, as its expression is smooth at any time.
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3.2 Observable measure of bipartite QC

3.2.1 Closed formula for geometric discord in terms of observables

We recall that, for a two-qubit state in the Bloch form Eq. (2.1.1), the geometric

discord is given by

DG(ρ) =
1
2
(‖~x‖2 + ‖T‖2

2 − 4kmax)

= 2(Tr[S]− kmax), (3.2.1)

where kmax is the largest eigenvalue of the matrix S = 1
4 (X + T ), with X =

~x~xt, T = TTt. The maximization of the eigenvalue of S can be solved explicitly.

Since the characteristic equation of the matrix S is a cubic with real coefficients

and roots, is easily worked out by standard techniques [108]. Indeed, the eigen-

values of S are found by solving a polynomial equation:

k3 + a0k2 + a1k + a2 = 0, (3.2.2)

where

a0 = −Tr[S]

a1 =
1
2
(Tr[S]2 − Tr[S2])

a2 = −1
3
(a1Tr[S] + a0Tr[S2] + Tr[S3]). (3.2.3)

Introducing the variables

q =
1
9
(3a1 − a2

0)

r =
1

54
(9a0a1 − 27a2 − 2a3

0)

θ = arccos

(
r√
−q3

)
, (3.2.4)
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after a bit of algebra, one obtains

ki =
1
3

(
Tr[S] + 2

√
−q3 cos

(
θ + αi

3

))
q = − 3

√
1
4
(6Tr[S2]− 2Tr[S]2)

θ = arccos
(
(2Tr[S]3 − 9Tr[S]Tr[S2] + 9Tr[S3])

√
2/(3Tr[S2]− Tr[S]2)3

)
{αi} = {0, 2π, 4π}. (3.2.5)

We now have state independent expressions for the eigenvalues of S. Also, we

observe that θ is an arccosine function, thus its domain is 0 ≤ θ/3 ≤ π/3.

The maximum of cos
(

θ+αi
3

)
is then always reached for αi ≡ α1 = 0. Hence,

kmax ≡ max{ki} = k1, and the geometric discord for an arbitrary two-qubit

state ρ can be recast as an explicit function of the coefficients (ρij)

DG(ρ) = 2(Tr[S]− k1)

=
2
3

(
2Tr[S]−

√
6Tr[S2]− 2Tr[S]2 cos

(
θ

3

))
. (3.2.6)

At this point, we remind that the aim is to find an observable QC measure by

quantifying them in terms of observable quantities. The geometric discord in

Eq. (3.2.6) is just a function of polynomials of the density matrix entries. Proto-

cols for writing linear and even non-linear functionals of (ρij) in terms of expec-

tation values of Hermitian unitary operators have been developed extensively.

Furthermore quantum circuits estimating such quantities have been already de-

signed [109]. For an overview of the state of the art of the field see [110–113].

Thus, in principle nothing prevents us from measuring geometric discord in

real experimental setups. Unfortunately, in practice, the implementation of the

required architecture seems rather challenging, hence it is valuable to make a

further effort and trying to define a QC measure endowed with an even simpler

and more accessible experimental evaluation.
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Figure 3.1: Geometric discord DG versus Q. Sample of 104 randomly gener-
ated two-qubit states. The plotted quantities are dimensionless.

3.2.2 A tight lower bound of geometric discord

Moved by the previous considerations, we observe that in Eq. (3.2.6) one fixes

θ = 0 and define [DG4]

Q(ρ) =
2
3

(
2Tr[S]−

√
6Tr[S2]− 2Tr[S]2

)
. (3.2.7)

It is immediate to see, by the properties of the cosine function, that DG ≥ Q. In

Fig. 3.1 we compare the two quantities in a numerical simulation, showing that

Q is a very tight lower bound of geometric discord. More important, Q is still a

bona fide QC measure1. Indeed, the following properties hold.

• Q ≥ 0, being zero only for classical-quantum states ρCQ: Q = 0 ⇐⇒

DG = 0. To prove this, notice that the condition for vanishing Q is Tr[S]2 =

Tr[S2]. By the Cayley-Hamilton theorem, reminding the characteristic

equation Eq. (3.2.2), this implies Tr[S]3 = Tr[S3] and consequently DG = 0.

• For pure states, Q is equal to geometric discord, as it is easily proven. The
1Reminding that Q suffers the same pathologies of geometric discord highlighted in Sec. 2.1.5.
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Figure 3.2: The lower bound Q of geometric discord versus squared negativ-
ity for a sample of 105 randomly generated two-qubit states. The
chain of inequalities DG ≥ Q ≥ N 2 holds. The plotted quantities
are dimensionless.

Schmidt decomposition of a pure state ρp of a two qubits reads

ρp = ∑
ij=0,1

√
αi
√

αj|ii〉〈jj|, (3.2.8)

where {αi} are the Schmidt coefficients and ∑i αi = 1 [17]. Simple alge-

braic steps return θp = 0, thus DG(ρp) = Q(ρp).

For two-qubit states, numerical evidences show that a chain of inequalities

holds: DG ≥ Q ≥ N 2, where N is the negativity. Indeed, reminding the re-

sults of Ch. 2, the three quantities coincide for pure states, and one observes

that Q ≥ N 2 (Fig. 3.2). For a more advanced study of the interplay between QC

and entanglement, see [51, 57, 69].

Extension to 2⊗ d systems

We address the problem of measuring bipartite QC for states of 2⊗ d systems,

where subsystem A is the qubit. A generalization of geometric discord to catch

bipartite QC in such a case has been derived (for finite d) in [98]. Its expression
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is the very same as Eq. (3.2.1). The Bloch form for the state is

ρ =
1

2d

(
I2d +

3

∑
i=1

xiσi ⊗ Id +
d2−1

∑
j=1

yjI2 ⊗ τj +
3

∑
i=1

d2−1

∑
j=1

tijσi ⊗ τj

)
,

(3.2.9)

where we pick the generalized and normalized Gell-Mann matrices as the basis

{τj} of the d-dimensional subsystem B. Obviously, {yj} is now a d-dimensional

vector and T is a 3× (d2− 1) correlation matrix. One notices that the matrix S =

1
2d (X + T ) has still 3× 3 dimensions, thus its characteristic equation remains a

cubic and we can repeat all the previous steps to write closed expressions for

DG and Q formally equivalent to Eqs. (3.2.6, 3.2.7). The procedure is extendible

to d = ∞ according to the prescription of [DG10].

Case study: DQC1 model

We include a simple but meaningful case study to showcase a comparison of

QC measures. Let us consider a four-qubit implementation of the DQC1 model

introduced in Sec. 1.3.2. The case of an ancilla A vs n = 3 qubits has been

recently investigated experimentally in [63, 64, 114]. Specifically, the designed

unitary gate is U = (a, a, b, 1, a, b, 1, 1), with a = −(e−i3π/5)4, b = (e−i3π/5)8.

Referring to Fig. 3.3, the final state of the protocol is

ρout =
1
16

 I8 µU†

µU I8

 , (3.2.10)

while the final state of the ancilla is

ρout
A =

1
2

 1 µ
8 Tr[U†]

µ
8 Tr[U] 1

 . (3.2.11)

By measuring the ancilla polarization, one estimates the normalized trace of the

unitary U: 〈σ1〉ρout
A

= Re [Tr[U]/8] , 〈σ2〉ρout
A

= Im [Tr[U]/8].
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1
2 (I2 + µσ3) H •

I8/8 U

Figure 3.3: DQC1 model: a maximally mixed state of three qubits shares QC
with an ancilla of polarization µ. The quantity Tr[U] is estimated
by measuring the spins σ1, σ2 on the ancilla.
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Figure 3.4: (Colours online) Bipartite QC for the final state in the four-qubit
DQC1 model discussed in the text, as measured by D (magenta
continuous line), DG (blue dotted line) and Q (black dashed line)
as functions of the initial ancilla polarization µ. All the plotted
quantities are dimensionless.

We study the QC between the ancilla and the three qubits (measurement on the

ancilla). In particular, we compare the behaviour of geometric QC measures as

the geometric discord DG and the lower bound Q with the entropic discord D

defined in [35, 37]. The former measures are easily calculated from Eqs. (3.2.6,

3.2.7), while for the latter one we retrieve the approximated expression for the

output states of the DQC1 model calculated in [40]:

90



CHAPTER 3. EXPERIMENTAL DETECTION OF QUANTUM CORRELATIONS

DG(ρ
out) = 0.0531325 µ2

Q(ρout) = 0.0402856 µ2

D(ρout) = 2− h2

(
1− µ

2

)
− log2(1 +

√
1− µ2)

− (1−
√

1− µ2) log2 e, (3.2.12)

where h2 is the binary Shannon entropy: h2(p) = −(1 + p) log2(1 + p)− (1−

p) log2(1− p). Surprisingly, it has been shown in [64] that the geometric discord

of the DQC1 output state is directly linked to the trace of the square of the

unitary matrix: DG(ρ
out) = µ2

4
1
2n (1− Tr[U2]

2n ). In Fig. 3.4 we study the behaviour

of QC measured by D, DG, Q by varying the polarization of the ancilla in the

initial state. As expected, the amount of bipartite QC between the ancilla and

the three-qubit register is monotonically increasing with the polarization (and

the purity) of the ancillary qubit.

3.3 Experimentally appealing form of QC measures

3.3.1 Proposal for quantum optics (to date, theory only)

In this section, we exploit the following powerful result (see [110] for the proof).

It has been proven that any polynomial function of the density matrix entries

f (ρij) can be expressed in terms of expectation values of observables repre-

sented by Hermitian unitary operators {Ol}: f (ρij) = f̃ (〈Ol〉ρ), which can be

estimated by implementing the appropriate experimental architecture in the

laboratory [110]. Our findings (Eqs. (3.2.6, 3.2.7)) allow to recast DG and Q as

functions of the density matrix elements, and of observable quantities:

DG(ρ) = fDG(ρij) = f̃DG(Ol),

Q(ρ) = fQ(ρij) = f̃Q(Ol). (3.3.1)

The choice of the specific operators depends on the experimental setting. The

estimation of functionals of density matrix elements (ρij) has been vastly inves-
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tigated in quantum optical settings. Some devices for the evaluation of mean-

ingful quantities, for example the purity of the state Tr[ρ2], have been built hav-

ing as toolbox just the very basic principles of quantum computation. For a

broad perspective on theoretical and experimental progresses in the field, the

reader should refer to [110–113, 115]. It is important to stress that limits set by

the cutting edge technology could prevent from implementing what has been

successfully designed. So, from the very beginning, we look for a QC measure

which is really accessible to experimentalists (see also [109]).

Let us consider the specific case study of the implementation of the measure

of Q (which appears simpler than measuring the geometric discord) for a two-

qubit state. The task, as evident from Eq. (3.2.7), is to recast the quantities Tr[S]

and Tr[S2] in terms of observables. We see that

Tr[S] =
1
4
(Tr[X] + Tr[T ]), Tr[S2] =

1
16

(Tr[X2] + Tr[T 2] + 2Tr[XT ]) . (3.3.2)

After some algebra, one obtains

Tr[X] = 2Tr[ρ2
A]− 1

Tr[T ] = 4(Tr[ρ2]− Tr[ρ2
A]/2− Tr[ρ2

B]/2) + 1

Tr[X2] = (2Tr[ρ2
A]− 1)2

Tr[XT ] = −1 + 4Tr[ρ2](−1 + Tr[ρ2
A]) + 4Tr[ρ2

A]− 4Tr[ρ2
A]

2 + 2Tr[ρ2
B]

+ 8Tr[ρ(ρA ⊗ I2)ρ(ρA ⊗ I2)]− 8Tr[ρ(ρ2
A ⊗ ρB)]

Tr[T 2] = −32(Tr[ς4] + Tr[ς3]) + 3(Tr[T ]2/2− Tr[T ]− 1/2), (3.3.3)

where ς = ρ− (ρA⊗ I2)/2− (I2⊗ ρB)/2. Consequently, we write Q in terms of

traces of (tensor product of) copies of the global and marginal density matrices
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and their overlaps. In particular:

Tr[S] = Tr[ρ2]− Tr[ρ2
B]/2

Tr[S2] =
1
4
(−2− 8Tr[ρ4] + 8Tr[ρ3] + 6Tr[ρ2]2

− 2Tr[ρ2](5 + Tr[ρ2
B])− 2Tr[ρ2

A]
2 + 10Tr[ρ2

A]

− Tr[ρ2
B]

2 + 12Tr[ρ2
B]− 6Tr[ρ2

A]Tr[ρ2
B]

+ 4Tr[ρ(I2 ⊗ ρB)ρ(I2 ⊗ ρB)]− 24Tr[ρ(ρA ⊗ ρB)]

+ 8Tr[ρ(ρA ⊗ I2)ρ(ρA ⊗ I2)] + 8Tr[ρ2(ρA ⊗ ρB)]). (3.3.4)

The measure Q has been recast as a functional of (up to the fourth order) poly-

nomials of the density matrix elements (ρij)
2, specifically traces of matrix pow-

ers and overlaps. We identify nine independent terms in the expressions of

Eq. (3.3.4). Inspired by the historical lesson of non-tomographic entanglement

detection [101, 102], we associate to them the expectation values of the opera-

tors for optical set up {OOPT
l }9

l=1, and write fQ(ρij) = f̃Q(〈OOPT
l 〉ρ). Explicitly,

we pick as observables {OOPT
l } the swap (V2) and shift (Vk) operators:

V2 = ∑
iAiB jA jB

|ij〉〈ji|AB

Vk = ∑
i1 ...ik

|i1, i2 . . . ik−1, ik〉〈ik, i1 . . . ik−2, ik−1|A1 A2 ...Ak
, (3.3.5)

acting on the matrix product ρk of k (k ≤ 4) copies of the global and marginal

density matrices and related overlaps. A swap operator exchanges the states

of two systems: V2|ij〉AB = |ji〉AB, while a shift operator makes a permutation

around k parties: Vk|i1, i2 . . . ik−1, ik〉A1 A2...Ak
= |iki1i2 . . . ik−2ik−1〉A1 A2 ...Ak

. The

reason of our choice is that the expectation values of swap and shift operators

equal the trace of many-copies overlaps of density matrices, and they are evalu-

able in quantum optics experiments [110–113, 115]. One has Tr[ρk] = Tr[Vkρ⊗k].

Also, for two unknown states ρ1, ρ2, it has been proven that Tr[V2ρ1 ⊗ ρ2] =

Tr[ρ1ρ2] [111, 112]. More generally, we have Tr[ρ1ρ2 . . . ρk] = Tr[Vkρ1 ⊗ ρ2 ⊗
2For example, Tr[ρ2] = ∑ij ρ2

ij.
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. . . ⊗ ρk]. We briefly present a proof of the last statement, see also [116] for a

more elegant derivation. One sees that Tr[ρ1ρ2 . . . ρk] = Tr[Vkρ1 ⊗ ρ2 ⊗ . . .⊗ ρk]

by expanding the left-hand term in the equation:

Tr[ρ1ρ2 . . . ρk] = ∑
i1 j1...ik jk

ρi1
1 j1

ρi2
2 j2

. . . ρ
ik−1
k−1 jk−1

ρik
k jk

δ
j1
i2

δ
j2
i3

. . . δ
jk−1
ik

δ
jk
i1

= ∑
i1 ...ik

ρi1
1 i2

ρi2
2 i3

. . . ρ
ik−1
k ik

ρik
k i1

. (3.3.6)

Denoting by {|i〉} a Hilbert space basis, given ρ1...k = ⊗iρi and building the

shift operator as chain of swaps, one has

Vkρ1 ⊗ ρ2 ⊗ . . .⊗ ρk = ∑
i1 j1 ...ik jk

ρi1...ik
1...kj1...jk

|i1 jk . . . ik−1〉〈j1ik . . . jk−1| . . .

. . . |i1 . . . ik−1 jk〉〈j1 . . . jk−1ik|i1 . . . ik−1ik〉〈j1 . . . jk−1 jk|,

Tr
[
Vkρ1 ⊗ ρ2 ⊗ . . .⊗ ρk

]
= ∑

i1 ...ik

ρi1 ...ik
1...k i2...i1

δi1
ik

= ∑
i1 ...ik

ρi1
1 i2

ρi2
2 i3

. . . ρ
ik−1
k ik

ρik
k i1

= Tr[ρ1ρ2 . . . ρk], (3.3.7)

thus the assertion is proven. For example, 〈OOPT
1 〉 = Tr[ρ4] = Tr[V4ρ⊗4], and

so forth for the other terms. All the quantum circuits to be implemented for

estimating 〈OOPT
l 〉ρ have the same architecture, which is depicted in Fig. 3.5

(note the similarity to the DQC1 model). There is a Mach-Zender interferome-

ter, which is modified by a controlled-Ol gate:

COl =

 I2k 02k

02k Ol

 . (3.3.8)

The final state at the end of the routine is

ρfin = M(|0〉〈0|A ⊗
⊗
i=1,k

ρi)M†, (3.3.9)

M = (HA ⊗ I1,...,k) COl (HA ⊗ I1,...,k).

The visibility v related to the interference fringes yields the expectation value
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|0〉A H • H

ρ1

Ol

ρ2

...

ρk

Figure 3.5: Circuit estimating Tr[Olρ1 ⊗ ρ2 ⊗ . . .⊗ ρk] = v. A Hadamard gate
H is applied to the ancillary qubit, followed by a controlled-Ol gate
acting on the overlap of states and then another Hadamard gate.
Then, a measurement in the computational basis {|0〉, |1〉} returns
the visibility v = p0(ρ

fin)− p1(ρ
fin), which equals the expectation

value of the operator Ol .

of the operator Ol on the dummy overlap ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρk, as one can write

Tr[Olρ1 ⊗ ρ2 ⊗ . . .⊗ ρk] = v. Hence, to quantify the degree of QC for an arbi-

trary two-qubit state ρ, this method requires nine independent measurements

instead of the fifteen necessary for tomography [DG4].

There is still room for improvement. In particular, looking at [109], we may

appreciably reduce the number of measurements and the complexity of the set-

ting. We observe that V2 = ∑ij |ij〉〈ji| = 1
2 (I4 + ∑k σk ⊗ σk) (note that the V

defined in [109] is twice ours). Then, let us introduce the quantities

c1 = Tr[(P−A1 A2
⊗ P−B1B2

)(ρ⊗2)]

c2 = Tr[(P−A1 A2
⊗ IB1B2)(ρ

⊗2)]

c3 = Tr[(IA1 A2 ⊗ P−B1B2
)(ρ⊗2)]

c4 = Tr[(P−A1 A4
⊗ P−A2 A3

⊗ P−B1B2
⊗ P−B3B4

)(ρ⊗4)]

c5 = Tr[(P−A1 A4
⊗ IA2 A3 ⊗ P−B1B2

⊗ P−B3B4
)(ρ⊗4)]

c6 = Tr[(P−A1 A4
⊗ P−A2 A3

⊗ P−B1B2
⊗ IB3B4)(ρ

⊗4)]

c7 = Tr[(IA1 A4 ⊗ P−A2 A3
⊗ P−B1B2

⊗ I−B3B4
)(ρ⊗4)], (3.3.10)
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where P−ij = 1
2 (1 − Vij) is the projector on the antisymmetric subspace for a

two-qubit state. Evaluating ci is equivalent to measuring the quantities

d1 = Tr[(VA1 A2 ⊗VB1B2)(ρ
⊗2)]

d2 = Tr[(IA1 A2 ⊗VB1B2)(ρ
⊗2)]

d3 = Tr[(IA1 A4 ⊗VA2 A3 ⊗VB1B2 ⊗VB3B4)(ρ
⊗4)]

d4 = Tr[(VA1 A4 ⊗VA2 A3 ⊗VB1B2 ⊗VB3B4)(ρ
⊗4)]. (3.3.11)

Finally, one sees that

Tr[S] = 4c1 − 2c2 − c3 +
1
2
= d1 −

1
2

d2

Tr[S2] = 16c4 + 8(c7 − c5 − 2c6) + c2
3 + 4c2

2 − c3 − 2c2 +
1
2

= d4 − d3 +
1
4

d2
2. (3.3.12)

In conclusion, Q is a function of the expectation values of seven projective or,

alternatively, just four swap measurements:

Q(ρ) = f̃ (〈OOPT
l 〉)

{OOPT
l } = {cl} or {dl}. (3.3.13)

We remark that geometric discord would require a rather more complex expres-

sion in terms of overlaps or alternatively measurements over six copies of the

state [109], entailing a by far harder implementation.

Now, let us have a look at the extension to the 2 ⊗ d case. We arguably say

that the very same expressions hold, at least at formal level. We have to gen-

eralize the swap and the projectors to arbitrary finite dimension. A state of a

d-dimensional system reads ρ = 1
d (Id + ∑i xiτi), implying Tr[ρ2] = 1

d (1 + |~x|2).

Thus, in the most general fashion one obtains

V2 =
1
d
(Id2 + ∑

i
τi ⊗ τi), (3.3.14)
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and consequently

P− =
1

2d

(
(d− 1)Id2 −∑

i
τi ⊗ τi

)
, (3.3.15)

where the {τi} reduce to Pauli matrices in d = 2.

On the feasibility of a quantum optics experiment

It is remarkable that an optical setup would allow to detect QC by only seven

projective or four swap measurements for any d in Eq. (3.3.12), but evaluating

the expectation value of such operators appears to be challenging even with

state-of-the-art technology [117]. Also, the optical implementation of projectors

on PBi Bj , i.e. multiqubit projectors, is more complicated than the two-qubit case,

see e.g. [20, 118]. A method to simplify the problem could be the following.

If we restrict to the case of even d and pick for Bob’s subsystem the basis con-

sidered in Eq. (3.3.18), such that V, P− can be rewritten in terms of two-qubit

operators, the necessary number of optical devices should increase polynomi-

ally with d as the number of measurements should increase linearly with d not

compromising the scalability of the protocol. See also [119] for more a detailed

analysis. Anyway, swaps and projectors on large dimensional systems seem of

hard implementation. We leave for future investigations an extensive treatment

of this issue.

3.3.2 NMR setting

For this Section, the main references are [104, 120]. For a critical assessment and

an informative review on quantum information processing in NMR systems,

refer to [17].

In NMR experiments, quantum states are realized by spin configurations of

magnetic nuclei. A large ensemble (∼ 1018 elements) of liquid-state molecules
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is embedded in a strong magnetic field Bz = 12 T. The nuclear spins align

with Bz. Then, a second magnetic field (transverse to Bz) is applied by means

of radio frequency pulses, inducing a precession of the spins around z with

Larmor frequency ωL = µBz. The spin precession generates an oscillatory cur-

rent in a coil, which is then detected. The relaxation time of the nuclei (i.e.

the time they take to realign with Bz) is remarkably large when compared to

other qubit implementations (magnitude order of seconds). The dipole-dipole

interaction between two spins (averaged over all the ensemble) characterizes

the qubit. Indeed, the state of a spin- 1
2 nucleus (for example, the proton in 1H)

reads |ψ〉NMR = e
ωLt

2 |0〉+ e
ωLt

2 |1〉. At room temperature (T = 25oC), the thermal

energy is much higher than the energy difference between the states |0〉, |1〉 of

the spins. Given an n-qubit state of a NMR system at equilibrium, ρ = I2n
2n , by

applying appropriate rf pulses we can build the state

ρ =
1
2n I2n + ε∆ρ, (3.3.16)

where ε = h̄ωL/2nKBT ∼ 10−5 and kB is the Boltzmann constant [104]. Every

manipulation is implemented by varying the deviation matrix ∆ρ, which car-

ries the information content of the state. The unitary operations over ∆ρ are

implemented by the rf pulses as well (with an excellent control of the rotation

angle and direction).

A peculiarity of the NMR setting is that there is negligible entanglement in the

state of the system. In spite of that, quantum computational tasks as the Shor’s

algorithm have been studied and implemented by means of such a technique

[17, 121].

It is legit to suppose that QC might be one of the key resources for supra-

classical performances in NMR environments. Indeed, the DQC1 model of com-

putation we discussed in Secs. 1.3.2, 3.2.2 was designed by thinking about the

NMR implementation of quantum information processing, where one has nec-

essarily to deal with highly mixed states [61]. As a result of this, NMR appears

a well suited ground for investigating QC potentialities. On this purpose, mea-
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sures of QC such as geometric discord and Q have been built by considering

the density matrix of the two-qubit state in the Bloch form of Eq. (2.1.1) and its

generalized version in Eq. (3.2.9). This theoretical framework was introduced

in [76, 77] just for efficiently describing the resonance of magnetic nuclei under

the influence of an external magnetic field. Thus, we can exploit this privileged

interweaving between geometric quantification of QC and NMR techniques.

An overview of the recent studies of QC in this setting can be found in [120].

In the NMR context, performing global and local spin measurements is the

most convenient method for gaining information about a state. Tomography

would definitely require the spin measurements necessary to retrieve all the

Rij = Tr[(σi ⊗ τj)ρ] coefficients, and thus the state. On the other hand, to eval-

uate geometric discord DG and the lower bound Q, by definition, does not re-

quire to know the state of Bob’s subsystem, then we drop the d2 − 1 measure-

ments related to the Bloch vector ~y, with yj = Tr[(I2 ⊗ τj)ρ]. One has

〈ONMR
l 〉ρ = Tr[σν ⊗ τλρ], ν = 1, . . . , 3, ; λ = 0, . . . , d2 − 1

DG(ρ) = f (〈ONMR
l 〉ρ)

Q(ρ) = f̃ (〈ONMR
l 〉ρ). (3.3.17)

Thus, it is relatively easy to quantify QC in NMR setting [63, 64, 82, 103]. An

experimental trick for further simplifying the considered procedure allows us

to restate global spin measurements as local ones on Alice only, as detailed in

next Section.

One could maintain that, when d > 2, the global spin measurements which

estimate the expectation values of σν ⊗ τλ as introduced in Eq. (3.2.9) seem ex-

tremely intricate, and the realization of the global rotation might be beyond the

current technological possibilities. In such a case, at least for the paradigmatic

instance in which Bob is a n-qubit subsystem (d is even), we can pick, as basis
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{τj} for the d-dimensional subsystem, the tensor products of Pauli matrices

{τλ} = {Id, σ1 ⊗ Id−2, σ2 ⊗ Id−2, σ3 ⊗ Id−2, I2 ⊗ σ1 ⊗ Id−4, . . . , σ3 ⊗ . . .⊗ σ3},

(3.3.18)

thus reducing the detection of tij to local spin measurements on single qubits

only. In summary, for the NMR set up, the QC quantification, by both geometric

discord and the lower bound Q, demands 3d2 measurements, against the 4d2 −

1 required by full state reconstruction. Indeed, we are exempt from making

local spin measurements on Bob’s side.

3.4 The Experiment

In this Section, we report the results of the experiment carried out at the Brazil-

ian Center for Research in Physics (CBPF, Rio de Janeiro). The reader can find

a technical description of the implementation in [DG6]. Here, we focus on the

(theoretical) analysis of the experimental data. The plots in Fig. 3.6, 3.7 are cour-

tesy of I. Almeida-Silva and R. Auccaise.

3.4.1 Implementation of the quantum state and measurements

A two-qubit state of NMR system takes the form ρ = 1
4 I4 + ε∆ρ, where ∆ρ is the

deviation matrix, with ε = h̄ωL/4KBT ∼ 10−5. The two qubits are implemented

by the magnetization of the hydrogen 1H and carbon 13C nuclei in a (bulk

of) CHCl3 molecules. The precession frequencies are ωH
L = 125 MHZ, ωC

L =

500 MHZ, while B = 11.6 T. It is worth remarking that, since in NMR ex-

periments only the deviation matrix is detected, the coefficients of the density

matrix are given in units of ε.

To investigate the dynamics of QC, we implement two Bell-diagonal states
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ρα=1,2 [17]:

ρα =
1
4
(I4 +

3

∑
i=1

cα
i σi ⊗ σi)

=
1
4



1 + cα
3 0 0 cα

1 − cα
2

0 1− cα
3 cα

1 + cα
2 0

0 cα
1 + cα

2 1− cα
3 0

cα
1 − cα

2 0 0 1 + cα
3


, (3.4.1)

where the coefficients are: |c1
1| = |c1

2| = |c1
3| = 0.2, |c2

1| = 0.5, |c2
2| = 0.06, |c2

3| =

0.24. Such states are obtained from thermal equilibrium by applying the pulse

sequence for producing the state |11〉 [120].

After having prepared the initial state, the system is left to evolve. The decoher-

ence process is theoretically described through the operator sum representation

technique (see Sec. 1.1.2), in which the evolution of the density operator is given

by [122]

ρα(t) = Φ(ρα(0)) = ∑
i,j
(MA,i ⊗ IB)(IA ⊗MB,j)ρ

α(0)(IA ⊗MB,j)
†(MA,i ⊗ IB)

†,

where the {Mi(t)} are the Kraus operators.

NMR systems undergo two relaxation channels, namely the amplitude damp-

ing and the phase damping [17, 104]. The amplitude damping channel is de-

scribed by the Kraus operators

M0 =
√

γ

 1 0

0
√

1− p

 , M1 =
√

γ

 0
√

p

0 0

 , (3.4.2)

M2 =
√

1− γ

 √
1− p 0

0 1

 , M3 =
√

1− γ

 0 0
√

p 0

 ,

where, in the NMR context, γ = 1/2− ε/2 and p = 1− exp (−t/T1), being T1

the longitudinal relaxation time of the qubit under consideration. We observe

that in our case the relaxation times are different for the two qubits, since they
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have distinct Larmor frequencies: TH
1 = 3.57 s, TC

1 = 10.00 s.

For the phase damping channel, one has

M4 =

√
1− λ

2

 1 0

0 1

 , M5 =

√
λ

2

 1 0

0 −1

 , (3.4.3)

where λ = 1− exp (−t/T2) and T2 is the transverse relaxation time associated

with the qubits. Again, two different values are associated to the qubits: TH
2 =

1.20 s, TC
2 = 0.19 s.

For arbitrary states, the column vectors ~x and ~y of the density matrix in Bloch

form (Eq. 2.1.1) are proportional to the magnetization of each nuclear spin, ~x =

2〈~I ⊗ I2〉 and ~y = 2〈I2 ⊗~I 〉, where ~I = {Ix, Iy, Iz} is the nuclear spin operator,

which for spins - 1
2 is ~I = ~σ/2. The elements of the correlation matrix follow

accordingly: tνλ = 〈σν ⊗ σλ〉 = 4〈Iν ⊗ Iλ〉 [104]. For Bell diagonal states, ~x =

~y = ~0 and T = C = diag(c1, c2, c3). We note that global measurements can be

replaced by local ones [120]:

Tr[(σν ⊗ σλ)ρ
α] = Tr[(σ1 ⊗ Id)ξ

α
νλ]

ξα
νλ = UνλραU†

νλ, (3.4.4)

where Uνλ = KA→BRφν,φλ
(θνλ), for Rφν,φλ

(θνλ) = RA
φν
(θνλ) ⊗ RB

φλ
(θνλ), being

RA(B)
φν(λ)

(θνλ) a rotation by an angle θνλ over the direction φν(λ), the indexes ν, λ =

1, 2, 3 refer to the rotations for measuring the C matrix elements and KA→B rep-

resents the CNOT gate with subsystem A acting as the control qubit [17].

The experiment is run for each initial state in order to measure the magnetiza-

tion 〈IH
1 〉ξi in the states ξi that leads to determine the two-point correlation func-

tions 〈IH
i ⊗ IC

i 〉ρ. The rotations for transforming the elements of the correlation

matrix into expectation values of local magnetizations (〈IH
i ⊗ IC

i 〉ρ → 〈IH
1 〉ξii )
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are given by:

Rφ1,φ1(θ11) = Rxx(0), Rφ2,φ2(θ22) = Rzz(π/2),

Rφ3,φ3(θ33) = Ryy(π/2), Rφ1,φ2(θ12) = Rxz(3π/2),

Rφ2,φ1(θ21) = Rzx(3π/2), Rφ1,φ3(θ13) = Rxy(π/2)

Rφ3,φ1(θ31) = Ryx(π/2), Rφ2,φ3(θ23) = −Rzy(π/2),

Rφ3,φ2(θ32) = −Ryz(π/2).

This process allows us to reconstruct the deviation density matrix of the system

at each instant of time, benchmarking its behaviour under the coupling with

the environment.

3.4.2 Evaluation of QC

We monitor the QC of the state by evaluating from the experimental data the

values of the geometric discord DG, its lower bound Q, and the negativity of

quantumness [105].

The expression for DG and Q have been derived in Eqs. (3.2.6, 3.2.7), and, by

exploiting Eq. (3.3.17), they are translated in functions of the expectation val-

ues of the correlation matrix elements tνλ = 〈σν ⊗ σλ〉 = Tr[(σν ⊗ σλ)ρ] and

~x = 〈~σ ⊗ I2〉. By using the rotations described by Eq. (3.4.4) with a proper

set of angles (Eq. 3.4.5), the evaluation of DG and Q is reduced to a set of spin

magnetization measurements on one of the qubits. This means that, after an ap-

propriate set of rotations (rf pulses) applied to the prepared state, the geometric

discord (and its lower bound) can be determined directly from the NMR signals

(in units of the ε2 factor), without having to know the state. We dub this pro-

cedure as direct measurement. The procedure is repeated until the thermal equi-

librium state is re-established. The quantum state is also read-out by quantum

state tomography, as described in [123, 124], in order to check the consistency

of the results obtained by direct measurements. The negativity of quantumness

QA
N is defined for 2 ⊗ d systems as the minimum trace distance from the set

of classical-quantum states (see [105] for other definitions and interpretations),
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QA
N(ρ) =

1
2 min

χ
‖ρ− χ‖1, where we remind that ‖A‖1 = Tr

[√
A† A

]
is the trace

norm.

A partial knowledge of the state is instead required to evaluate QA
N . How-

ever, assuming (as a posteriori verified by tomography) that the state remains

in Bell diagonal form during the evolution, then the direct method still suffices

to extract the correct value of QA
N . To benchmark the effectiveness of the direct

method, overall, we compare its outcomes with the results obtained for the cor-

responding measures of QC by evaluating them on the state reconstructed by

complete tomography as well, as we do for DG and Q.

Figure 3.6: (Colours online). Time evolution of Q and DG for the state ρ1 in
(a) and (b), and ρ2 in (c) and (d). Two experiments have been car-
ried out. In the first one, we performed only the measurements
which are necessary to calculate DG, Q. The second experiment al-
lowed to reconstruct the full density matrix of the state and calcu-
late from it the value of the QC measures. The black open squares
corresponds to tomography results, the green dots represent the
direct measurement, and the red lines depict the theoretical pre-
dictions. The relaxation times of the qubits retrieved from exper-
imental data are: TH

1 = 3.57 s and TH
2 = 1.20 s for the hydrogen,

and TC
1 = 10.00 s and TC

2 = 0.19 s for the carbon. QC measures are
displayed in units of ε2.
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Figure 3.7: (Colours online) Time evolution of |c1| (upward triangle), |c2|
(downward triangle) and |c3| (hexagon) for state ρ1 in (a), and ρ2 in
(c). Again, two experiments have been realized. The open symbols
represent the tomography results and the filled symbols represent
the direct measurement. In (b), for the initial state ρ1, and (d), for
the initial state ρ2, the green dots represent the direct measurement
and the black squares represent the tomography results. The red
lines are the theoretical predictions for QA

N . QC are displayed in
units of ε.

Reminding Eqs. (3.2.6,3.2.7), for Bell-diagonal states one has

S =
C2

4
= diag{c2

1/4, c2
2/4, c2

3/4}. (3.4.5)

The expressions for DG and Q are easily obtained:
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DG(ρ
α) =

1
3

∑
i
(cα

i )
2 −

√√√√∑
i
(cα

i )
4 −

3

∑
i<j

(cα
i )

2(cα
j )

2 cos
(

1
3

arccos Kα

)
Kα =

2 ∑i(cα
i )

6 − 3 ∑3
i 6=j(c

α
i )

4(cα
j )

2 + 12(cα
1)

2(cα
2)

2(cα
3)

2

2
√
(∑i(cα

i )
4 −∑3

i<j,(c
α
i )

2(cα
j )

2)3


Q(ρα) =

1
3

∑
i
(cα

i )
2 −

√√√√∑
i
(cα

i )
4 −

3

∑
i<j,

(cα
i )

2(cα
j )

2

 . (3.4.6)

Also, the negativity of quantumness is analytically computable [105, 125]. De-

noting the ordered singular values of the Bloch correlation matrix C as |ci| ≥

|cj| ≥ |ck|, where i, j, k are permutations of 1, 2, 3, then the negativity of quan-

tumness is given by half the intermediate one: QA
N(ρ

α) = |cj|/2.

3.4.3 Analysis of the results

While the quantity Q is manifestly smooth at any time during the evolution,

DG and QA
N may have a cuspid at a critical time. The phenomenon clearly de-

pends on the peculiar form of the quantum state. As shown in [82, 103], and

as we appreciate by calculating the QC of the states ρα(t), the QC of the initial

state ρ1(t) should decay monotonically in time, while in the state ρ2(t) they are

expected to exhibit a non-trivial evolution, a phenomenon known as freezing

of QC, followed by a sudden transition to an exponential decay [54]. Such be-

haviour has been recently pinpointed as a further universal bona fide criterion

for QC measures (indeed, all the known reliable QC quantifiers satisfy it) [107].

The results obtained for DG and Q, by using the direct measurement (the 1H

nucleus has been detected) and tomography procedures as well as the theoreti-

cal predictions, are reported in Fig. 3.6 for both experimentally produced states.

In Fig. 3.7, we present the results obtained for QA
N by direct measurements, to-

mography and theoretical predictions for both states. In particular, for the first

time the negativity of quantumness is observed to undergo sudden transition

in the same dynamical conditions as the geometric discord and the entropic dis-
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cord [52, 106].

We highlight a satisfactory agreement between the direct measurements, the to-

mographic data, and the theoretical predictions. This demonstrates that we are

able to directly quantify bipartite QC in unknown (or partially known in the

case of QA
N) two-qubit states with our NMR setup. Indeed, the choice to pre-

pare a Bell-diagonal state is convenient, but not compulsory: we stress again

that our recipe for measuring bipartite QC of an unknown state would apply to

arbitrary states of 2⊗ d systems.

3.5 Summary of Chapter 3

• We showed that QC in a arbitrary two-qubit state ρ can be reliably quan-

tified without any explicit optimisation and with no need to know the full

shape of the state, if geometric quantifiers are adopted. We derived a state-

independent expression for geometric discord of two-qubit states, and de-

fined a QC measure Q which is a tight lower bound of geometric discord and

still a function of the density matrix elements.

• Both DG and Q are then expressed in terms of the expectation values of a

set of observables {Ol}. Consequently, they could be evaluated by design-

ing quantum circuits in optical setting by simulating the measurements of

{〈OOPT
l 〉}. By adopting the alternative approach of [101, 102, 109], we have

further seen that the quantity Q is less experimentally demanding than DG,

being measured by performing seven local projections or four swaps on up to

four copies of the state ρ . Then, we extended our measure to capture bipar-

tite QC in states of 2⊗ d dimensional systems, finding that seven projective

measurements are always sufficient to experimentally determine Q, i.e. the

number of measurements required is independent of d. Unfortunately, an

implementation in optical set-up appears to be hard even with cutting-edge

technology.

• NMR systems are a natural arena for quantum information processing with
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negligible entanglement, thus ideal testbeds for investigating dynamical prop-

erties of QC in open system dynamics. Our theoretical results allow one to

implement optimized protocols by reducing the number of required mea-

surements as compared to the full state reconstruction. Indeed, to know the

full state would demand 4d2 − 1 spin measurements, while to compute DG

and Q one can get rid of d2 − 1 local measurements on one the subsystems,

as information on the Bloch vector of one of the subsystems is unnecessary.

We have considered an NMR system and detected the QC of a two-qubit

Bell diagonal state by measuring geometric discord, its lower bound, and

the negativity of quantumness. We observed the sudden transition of geo-

metric discord and negativity of quantumness under phase and amplitude

damping channels. The sudden transition and the freezing [52], common to

various measures of QC under particular decoherent evolutions, are certainly

phenomena worthy of further theoretical and experimental investigation.
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CHAPTER 4

Rethinking Quantum

Correlations

Here I build up an alternative point of view on QC by starting from the concept of

quantum uncertainty. This chapter is based on [DG7] (T. Tufarelli and G. Adesso con-

tributed to derive the technical results). I show that quantum mechanics predicts that

even a single observable can be intrinsically uncertain on its own. In particular, quan-

tum uncertainty is forced to appear on a single local observable in a system A whenever

A shares QC with a second system B. The minimum achievable local uncertainty is

a measure of QC as perceived by A. This result links in a novel way two apparently

unrelated quantum features as (global) correlations of states and (local) uncertainty on

observables, shedding a new light on the ultimate meaning of QC: they trigger local

quantum uncertainty. Also, QC shared by the system under scrutiny affect the statis-

tical accuracy of experimental data analysis and the measurability of quantum observ-

ables. The QC-induced uncertainty has an application in quantum metrology tasks,

establishing a minimum guaranteed quantum enhancement in parameter estimation

with noisy probes.

109



CHAPTER 4. RETHINKING QUANTUM CORRELATIONS

4.1 Quantum uncertainty and quantum correlations

4.1.1 Quantum uncertainty on single observables

Physicists investigate Nature by making measurements and predicting their

outcomes. In a classical world, error bars are exclusively due to technologi-

cal limitations, while quantum mechanics entails that two non-commuting ob-

servables cannot be jointly measured with arbitrary accuracy [126], even if one

could access a flawless measurement device. The corresponding uncertainty

relations have been linked to distinctive quantum features such as non-locality,

entanglement and data processing inequalities [127–129].

Remarkably, even a single quantum observable may display an intrinsic uncer-

tainty as a result of the probabilistic character of quantum mechanics. Let us

consider for instance a composite system prepared in an entangled state [20],

say the Bell state |φ+〉 = 1√
2
(|00〉+ |11〉) of two qubits. This is an eigenstate of

the global observable σ3 ⊗ σ3, so there is no uncertainty on the result of such a

measurement. On the other hand, the measurement of local spin observables of

the form~a ·~σ⊗ I (where~a 6= 0 is a real vector) is intrinsically uncertain. Indeed,

the state |φ+〉〈φ+|, and in general any entangled state, cannot be eigenstates of

a local observable. Only uncorrelated states of the two qubits, e.g. |00〉, admit

at least one completely “certain” local observable.

Extending the argument to mixed states, one needs to filter out the uncertainty

due to classical mixing, i.e. lack of knowledge of the state, in order to iden-

tify the genuinely quantum one. We say that an observable K on the state ρ is

“quantum-certain” when the statistical error in its measurement is solely due to

classical ignorance. By adopting a meaningful quantitative definition of quan-

tum uncertainty, as detailed later, we find that K is quantum-certain if and only

if ρ = ρK, where ρK is the density matrix of the state after the measurement of

K. It follows that even on unentangled states (all but a null measure set thereof

[38]) no local observable is quantum-certain. The only states left invariant by

a local complete measurement are those described within classical probability
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theory [49], i.e. embeddings of joint probability distributions.

The quantum uncertainty on local observables is then entwined to the concept

of QC (see Fig. 4.1). In fact, the states ρK which admit a quantum-certain local

observable K are the states with zero QC. In the following, an entire class of QC

measures is defined, interpreted and analyzed within the framework of local

quantum uncertainty.

4.1.2 Skew information and Local Quantum Uncertainty

There are several ways to quantify the uncertainty on a measurement, but we

aim at extracting the truly quantum share. Entropic quantities or the variance,

though used extensively as indicators of uncertainty [126, 128, 129], do not fit

our purpose, since they are affected by the state mixedness. It has been pro-

posed to isolate the quantum contribution to the total statistical error of a mea-

surement as being due to the non-commutativity between state and observable:

this may be reliably quantified via the skew information [130, 131]

I(ρ, K) = −1
2

Tr
[
[
√

ρ, K]2
]

(4.1.1)

introduced in [130] and investigated in studies on uncertainty relations [131],

quantum statistics and information geometry [131–134]. Referring to [130] for

the main properties of the skew information, we recall the most relevant ones:

it is non-negative, vanishing if and only if state and observable commute, and

is convex, that is, non-increasing under classical mixing. Moreover, I(ρ, K) is

always smaller than the variance of K:

I(ρ, K) = Tr[ρK2]− Tr[
√

ρK
√

ρK]

≤ Tr[ρK2]− Tr[ρK]2

≡ Varρ(K), (4.1.2)
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Figure 4.1: (Colours online) QC trigger local quantum uncertainty. Let us con-
sider a bipartite state ρ. An observer on subsystem A is equipped
with a quantum meter, a measurement device whose error bar
shows the quantum uncertainty only (Note: in order to access such
quantity, the measurement of other observables may be required,
in a procedure similar to state tomography). (a) If ρ is uncorrelated
or contains only classical correlations (brown shade), then ρ is of
the form ρ = ∑i pi|i〉〈i|A ⊗ ρB,i (with {|i〉} an orthonormal basis
for A) [35, 37, 45], the observer can measure at least one observable
on A without any intrinsic quantum uncertainty. (b) If ρ contains
a non-zero amount of QC (yellow shade), as quantified by entan-
glement for pure states [20] and QC in general [45], any local mea-
surement on A is affected by quantum uncertainty. The minimum
quantum uncertainty associated to a single measurement on sub-
system A can be used to quantify QC in the state ρ, as perceived
by the observer on A. In this Chapter, we pick the Wigner-Yanase
skew information [130] to measure the quantum uncertainty on
local observables.
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with equality reached on pure states (ρ =
√

ρ), where no classical ignorance

occurs (see Fig. 4.2). Hence, we adopt the skew information as measure of

quantum uncertainty and deliver a theoretical analysis in which we convey and

discuss its operational interpretation.

As a central concept in our work, we introduce the local quantum uncertainty

(LQU) as the minimum skew information achievable on a single local measure-

ment. We remark that by “measurement” in this Chapter we always refer to a

complete von Neumann measurement. Let ρ ≡ ρAB be the state of a bipartite

system, and let KΛ = KΛ
A ⊗ IB denote a local observable, with KΛ

A a Hermitian

operator on A with spectrum Λ. We require Λ to be non-degenerate, which cor-

responds to maximally informative observables on A. The LQU with respect to

subsystem A, optimized over all local observables on A with non-degenerate

spectrum Λ, is then

UΛ
A (ρ) ≡ min

KΛ
I(ρ, KΛ). (4.1.3)

Eq. (4.1.3) defines a family of Λ-dependent quantities, one for each equivalence

class of Λ-spectral local observables over which the minimum skew informa-

tion is calculated. In practice, to evaluate the minimum in Eq. (4.1.3), it is con-

venient to parametrize the observables on A as KΛ
A = VAdiag(Λ)V†

A, where VA

is varied over the special unitary group on A. In this representation, the (fixed)

spectrum Λ may be interpreted as a standard “ruler", fixing the units as well as

the scale of the measurement (that is, the separation between adjacent “ticks”),

while VA defines the measurement basis that can be varied arbitrarily on the

Hilbert space of A.

In the following, we prove some qualitative properties of the Λ-dependent

LQUs, which reveal their intrinsic connection with QC.
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Figure 4.2: (Colours online) The plot shows different contributions to the error
bar of spin measurements on subsystem A in a Werner state [20]
ρ = p|φ+〉〈φ+| + (1 − p)I/4, p ∈ [0, 1], of two qubits A and B.
The red line is the variance Varρ(σA

3 ) of the σA
3 operator, which

amounts to the total statistical uncertainty. The blue dashed curve
represents the local quantum uncertainty UA(ρ), which in this case
is I(ρ, σA

3 ) (any local spin direction achieves the minimum for this
class of states). The green dotted curve depicts the (normalized)
linear entropy SL(ρ) = 4

3 (1− Tr[ρ2]) of the global state ρ, which
measures its mixedness. Notice that the Werner state is separable
for p ≤ 1/3 but it always contains QC for p > 0.

4.1.3 A class of QC measures

As anticipated, the non-existence of quantum-certain local observables charac-

terizes a quantum correlated state. In fact, we find that each quantity UΛ
A (ρ)

defined in Eq. (4.1.3) is not only an indicator, but also a full fledged measure of

bipartite QC (see Fig. 4.1) [135], as it meets all the known bona fide criteria for

a QC quantifier stated in Sec. 1.3.2. Specifically, in Sec. 4.1.4 we prove that the

Λ-dependent LQU (for any non-degenerate Λ) is invariant under local unitary

operations, is non-increasing under local operations on B, vanishes if and only

if ρ is a zero QC state with respect to measurements on A, and reduces to an

entanglement monotone when ρ is a pure state.

If we now focus on the case of bipartite 2⊗ d systems, we further find that quan-

114



CHAPTER 4. RETHINKING QUANTUM CORRELATIONS

tifying QC via the LQU is very advantageous in practice compared to quantum

discord and other entropic measures [45], which typically involve formidably

hard optimizations, not admitting a closed formula even for two-qubit states,

as we seen in Ch. 2. The minimization in Eq. (4.1.3) can be expressed in closed

form for arbitrary states ρAB of a qubit-qudit system defined on C2 ⊗ Cd, so

that UΛ
A admits a computable closed formula. Moreover notice that, when A is

a qubit, all the Λ-dependent measures are equivalent up to a multiplication

constant. Indeed, a non-degenerate qubit observable KA = KA ⊗ IB with fixed

spectrum can be parametrized as KA = VA(ασzA + βIA)V†
A = α~n ·~σA + βIA,

where α, β are constants (α 6= 0) while ~n varies on the unit sphere. Then

I(ρ, KA) = α2I(ρ,~n ·~σA⊗ IB), implying that all the UΛ
A are proportional to each

other. We thus drop the superscript Λ for brevity, and pick non-degenerate

observables KA on the qubit A of the form KA = VAσzAV†
A = ~n ·~σA, with

|~n| = 1. This choice corresponds to a LQU normalized to unity for pure, maxi-

mally entangled states. Eq. (4.1.3) can then be rewritten as the minimization of

a quadratic form involving the unit vector~n, yielding simply

UA(ρAB) = 1− λmax{WAB}, (4.1.4)

where λmax denotes the maximum eigenvalue, and WAB is a 3× 3 symmetric

matrix whose elements are

(WAB)ij = Tr
[√

ρAB (σi A ⊗ IB)
√

ρAB (σj A ⊗ IB)
]

,

with i, j = x, y, z. It is easy to check that, for a pure state |ψ〉〈ψ|AB, Eq. (4.1.4)

reduces to the linear entropy of entanglement, UA(|ψ〉〈ψ|AB) = 2(1− Tr[ρ2
A]).

Qubit-qudit states represent a relevant class of states for applications in quan-

tum information processing, and we present some pertinent examples in this

work. The evaluation of the LQU for Werner states of two qubits is displayed

in Fig. 4.2. A case study of the DQC1 model of quantum computation [61] is

reported in Sec. 4.1.4, showing that our measure (evaluated in the one versus
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n qubits partition) exhibits the same scaling as the canonical quantum discord

[35, 62]. The computability of the LQU opens a range of possibilities to inves-

tigate analytically the role of QC in open dynamical evolutions and commu-

nication protocols [45]. More generally, the approach adopted in this Chapter

provides a nice physical interpretation of QC as the minimum quantum con-

tribution to the statistical uncertainty associated to the measurement of local

observables in correlated quantum systems.

Interestingly, the LQU in a state ρAB of a C2 ⊗ Cd system is reinterpreted ge-

ometrically as the minimum squared Hellinger distance between ρAB and the

state after a least disturbing root-of-unity local unitary operation applied on

the qubit A, in a spirit close to that adopted to define geometric QC measures

based on other metrics [45, 80, 136, 137] as we discussed in Sec. 2.1.5. Let us

recall that the squared Hellinger distance between density matrices ρ and χ is

defined as D2
H(ρ, χ) = 1

2 Tr
[
(
√

ρ−√χ)2
]

[138, 139]. Observing that, for qubit

A, any generic non-degenerate Hermitian observable KA = ~n ·~σA is a root-of-

unity unitary operation, which implies KA f (ρAB)KA = f (KAρABKA) for any

function f , we have

I(ρAB, KA) = 1− Tr
[√

ρABKA√ρABKA
]
= 1− Tr

[√
ρAB

√
KAρABKA

]
= DH(ρAB, KAρABKA); (4.1.5)

this result highlights a geometric interpretation of the LQU, analytically com-

puted in Eq. (4.1.4), in terms of Hellinger distance. The study of further con-

nections between uncertainty on a single local observable and geometric ap-

proaches to quantumness of correlations, possibly in larger and multipartite

systems, opens an avenue for future investigations.

4.1.4 Proof of the properties of LQU

We refer to [130–132] for a summary of the relevant properties of the skew in-

formation which constitute the main ingredients of the proofs. We also remind
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that, for the classical-quantum states ρCQ defined in Eq (1.3.12), there exists at

least one set of projectors {ΠA
i = ΠA,i ⊗ IB} such that ρCQ = ∑i piΠA

i ρCQΠA
i .

To prove that the classical-quantum states have vanishing LQU UΛ
A , it is suf-

ficient to define the observable KA,Π = KΠ
A ⊗ IB where KΠ

A is diagonal in the

basis defined by {ΠA,i}, to obtain [ρCQ, KA,Π] = 0 which means UΛ
A (ρCQ) =

I(ρCQ, KA,Π) = 0. On the other hand, a vanishing LQU ensures the existence

of a local observable K̃A such that I(ρ, K̃A) = 0. Hence K̃A commutes with

the density matrix, and we can diagonalize them simultaneously. Since the

observable is assumed non-degenerate, its eigenvectors define a unique basis

on A (up to phases), say {|ki〉}. Then, an eigenvector basis for K̃A will be

simply {|ki〉A ⊗ |φij〉B}, and the state must necessarily be of the form ρKA =

∑i pij|ki〉〈ki|A ⊗ |φij〉〈φij|B, which is classical-quantum state. This proves that

UΛ
A (ρ) vanishes if and only if ρ = ρCQ, thus UΛ

A is a faithful QC measure.

Let us now show that the LQU is invariant under local unitary transformations.

We have

UΛ
A

(
(UA ⊗UB)ρ(UA ⊗UB)

†
)
=

= min
KA
I
(
(UA ⊗UB)ρ(UA ⊗UB)

†, KA ⊗ IB

)
= min

KA
I
(

ρ, (UA ⊗UB)
†(KA ⊗ IB)(UA ⊗UB)

)
= min

KA
I
(

ρ, (U†
AKAUA)⊗ IB

)
= UΛ

A (ρ), (4.1.6)

as minimizing over the local observables KA is obviously equivalent to do it

over the ones rotated by UA.

We then note that the skew information I(ρ, KA) is contractive under com-

pletely positive and trace-preserving maps ΦB on B, I(ρ, KA ⊗ IB) ≥ I
(
(IA ⊗

ΦB)ρ, KA ⊗ IB
)
. Consequently, the LQU inherits this property. Denoting as K̃A

the most certain observable for ρ, we have

UΛ
A (ρ) = I(ρ, K̃A ⊗ IB) ≥ I

(
(IA ⊗ΦB)ρ, K̃A ⊗ IB

)
≥ UΛ

A
(
(IA ⊗ΦB)ρ

)
.

(4.1.7)
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Finally, we remind that for pure states ρ = |ψ〉〈ψ|, the LQU reduces to the vari-

ance of KA minimized over all local observables KA. In the next Section, we

present a proof (which may be of independent interest) that such a quantity

decreases monotonically under local operations and classical communication

(LOCC), so that the LQU, alias minimal local variance, reduces to an entangle-

ment measure on pure states.

Proof of LOCC monotonicity of LQU for pure states

Lemma 1. Consider a N-dimensional density matrix ρ, and the set {K} of all observ-

ables with fixed spectrum Λ = (λ1, ..., λN). Then, the variance Varρ(K) ≡ V(ρ, K) =

Tr[ρK2]− Tr[ρK]2 is minimized by an observable K0 commuting with ρ.

Proof. Working in the eigenbasis of the density matrix, one has the represen-

tation ρ = diag(p1, ..., pN). An observable in the considered set can then be

expressed as K = Vdiag(λ1, ..., λN)V†, where V is a unitary transformation.

The variance of K on the state ρ reads (Vij ≡ 〈i|V|j〉)

V(ρ, K) = ∑
i,j

piλ
2
j |Vij|2 −

(
∑
i,j

piλj|Vij|2
)2

≡ Tr[PB]− Tr[QB]2

Pij ≡ piλ
2
j , Qij ≡ piλj, Bij ≡ |Vij|2. (4.1.8)

Note that B is a unistochastic matrix, and in fact, any unistochastic matrix is

expressible as Bij = |Vij|2 for some unitary V. Hence, the problem of minimiz-

ing the variance is equivalently formulated as a minimization of the right hand

side of Eq. (4.1.8) over the set of unistochastic matrices. Since every unistochas-

tic matrix is also bistochastic (but not vice versa), one has

min
{K}
V(ρ, K) ≥ min

B∈B

[
Tr[PB]− Tr[QB]2

]
, (4.1.9)

where B is the set of all N × N bistochastic matrices. One now exploits the

Birkhoff-von Neumann theorem, and express a generic bistochastic matrix as a

118



CHAPTER 4. RETHINKING QUANTUM CORRELATIONS

convex sum of permutations of the form B = ∑k qkSk, where the qk’s are proba-

bilities and {Sk} is the set of permutation matrices in dimension N, which has

N! elements. Then,

min
B∈B

[
Tr[PB]− Tr[QB]2

]
= min

{qk}

[
∑

k
qkTr[PSk]−

(
∑

k
qkTr[QSk]

)2]
≥ min

{qk}

[
∑

k
qk

(
Tr[PSk]− Tr[QSk]

2
)]

≥ ∑
k

qk

(
Tr[PSmin]− Tr[QSmin]

2
)

= Tr[PSmin]− Tr[QSmin]
2, (4.1.10)

where we have exploited the convexity of the square, and Smin is a particular

permutation that minimises the expression Tr[PSk]−Tr[QSk]. Such minimizing

permutation can always be found since {Sk} is a finite set. Noting that permu-

tations are also unistochastic matrices, the above steps imply that the equality

sign in Eq. (4.1.9) can be always achieved:

min
{K}
V(ρ, K) = Tr[PSmin]− Tr[QSmin]

2 = ∑
i

piλ
2
P(i) −

(
∑

i
piλP(i)

)2

, (4.1.11)

where P indicates the permutation of the indices associated to the matrix Smin.

This implies that the variance is minimized by an observable which takes the

form K0 = diag(λP(1), ..., λP(N)), which commutes with ρ.

Lemma 2. Let dA,B ≡ dim(HA,B). Suppose that dA ≤ dB. Under local operations on

subsystem A, a globally pure state |ψ〉 evolves within a subspaceHA ⊗ H̃B, where H̃B

is a dA-dimensional subspace ofHB.

Proof. We suppose that |ψ〉 is in Schmidt form:

|ψ〉 =
dA

∑
j

ci|i〉A|i〉B, (4.1.12)

Clearly, |ψ〉 ∈ HA ⊗ H̃B, where H̃B is spanned by the dA orthonormal vectors

{|i〉B}. A local operation on A is described via Kraus operators of the form
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MA = MA ⊗ IB. Applying the operator on the state, one has:

MA|ψ〉 =
dA

∑
j

ci(MA|i〉A)|i〉B, (4.1.13)

which is still a vector with support inHA ⊗ H̃B.

Corollary. When applying operations on A to a pure state, we suppose dA ≥ dB. A

proof of monotonicity in this particular case will then be sufficient.

Lemma 3. Suppose dA ≥ dB, and the (non-degenerate) spectrum of the A-observables

is fixed as Λ(KA) = {λ1, ..., λdA}. One has,

UΛ
A (|ψ〉〈ψ|) = min

KB∈KB
I(|ψ〉〈ψ|, IA ⊗ KB), (4.1.14)

where KB is the set of B-observables whose dB eigenvalues are non-degenerate and are

a subset of Λ(KA): Λ(KB) = {µ1, ..., µdB |µj ∈ Λ(KA), µi 6= µj(i 6= j)}.

Proof. We start by noting that

UΛ
A (|ψ〉〈ψ|) ≤ min

KB∈KB
I(|ψ〉〈ψ|, IA ⊗ KB). (4.1.15)

In fact, by rotating |ψ〉 to the Schmidt form, we see that the variance of any

observable KB ∈ KB is achieved by an operator KA on A. Given KB such that

KB|ψ〉 = ∑ij ci(KB)ij|i〉A|j〉B, it is sufficient to choose KA such that KA|ψ〉 =

∑ij ci(KA)ij|j〉A|i〉B = ∑ij ci(KA)ij|i〉B|j〉A. The two operators yield the same

variance, since the labels A, B do not affect its calculation. Note that it is al-

ways possible to pick KA in the above form since the operators on A restricted

to a dB-dimensional subspace can assume the same form as any operator in KB.

Reminding that the skew information equals the variance for pure states, we

now show that the inequality

UΛ
A (|ψ〉〈ψ|) ≥ min

KB∈KB
I(|ψ〉〈ψ|, IA ⊗ KB) (4.1.16)

is also verified, and equality must hold. The most certain observable on A has
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to commute with the reduced state ρA (Lemma 1). Hence, if the latter has eigen-

values pj, j ≤ dB, there is an appropriate permutation P such that:

UΛ
A (ψ) =

dB

∑
j=1

pj(λP(j))
2 −

(
dB

∑
j=1

pjλP(j)

)2

= I(|ψ〉〈ψ|, IA ⊗ K̃B). (4.1.17)

The latter equality is obtained by choosing K̃B diagonal in the same basis as

ρB, with eigenvalues µj = λP(j), and by noting that ρA and ρB have the same

eigenvalues.

Theorem. The LQU is an entanglement monotone for pure states.

Proof. By Lemma 2, we suppose dA ≥ dB. We already have proven the invari-

ance under local unitary transformations and contractivity under local opera-

tions on B. To complete the proof we need to show that, on average, the LQU of

|ψ〉 is non-increasing under operations on A. Let {MA
i } be the Kraus operators

on Alice: ∑i MA†
i MA

i = I. The output ensemble is given by {pi, |φi〉}, where

√
pi|φi〉 = MA

i |ψ〉. (4.1.18)

We want to prove that ∑i piUΛ
A (|φi〉〈φi|) ≤ UΛ

A (|ψ〉〈ψ|). Suppose that K0 ∈ KB

is such that UΛ
A (|ψ〉〈ψ|) = I(|ψ〉〈ψ|, IA ⊗ K0), as given by Lemma 3. Then, by

using Lemma 3 and the concavity of the variance, we have

∑
i

piUΛ
A (|φi〉〈φi|) = ∑

i
pi min

Ki∈KB
I(|φi〉〈φi|, IA ⊗ Ki) ≤∑

i
piI(|φi〉〈φi|, IA ⊗ K0),

= ∑
i

piV(|φi〉〈φi|, IA ⊗ K0) ≤ V
(

∑
i

pi|φi〉〈φi|, IA ⊗ K0

)
= ∑

i
pi〈φi|IA ⊗ K2

0|φi〉 −
(
∑

i
pi〈φi|IA ⊗ K0|φi〉

)2

= ∑
i
〈ψ|MA

i (IA ⊗ K2
0)MA†

i |ψ〉 −
(
∑

i
〈ψ|MA

i (IA ⊗ K0)MA†
i |ψ〉

)2

= 〈ψ|∑
i

M†
iA MiA ⊗ K2

0|ψ〉 −
(
〈ψ|∑

i
M†

iA MiA ⊗ K0|ψ〉
)2

= 〈ψ|IA ⊗ K2
0|ψ〉 −

(
〈ψ|IA ⊗ K0|ψ〉

)2

= I(|ψ〉〈ψ|, IA ⊗ K0) = UΛ
A (|ψ〉〈ψ|), (4.1.19)
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which proves the theorem.

Example: LQU in the DQC1 model

We calculate LQU for the bipartition ancilla-system in the final state of the

DQC1 model introduced Sec. 1.3.2 and discussed in Sec. 3.2.2. We consider

the protocol in the full generality: the ancilla is quantum correlated with a n-

qubit maximally mixed state. The task is to estimate the normalized trace of the

2n× 2n unitary matrix U.

Remark. The local quantum uncertainty for the output state of the DQC1 model cal-

culated via Eq. (4.1.4), for large n and unitaries with eigenvalues uniformly distributed,

yields:

UA(ρ
out) ' 1

2

(
1−

√
1− µ2

)
. (4.1.20)

Proof. We choose the basis {|k〉} on B which diagonalizes U: U|k〉 = e−iϕk |k〉.

We may then rewrite the output state as ρout = 2−n ∑k ρk ⊗ |k〉〈k|, where ρk =

1/2(IA +~µk ·~σ) and~µk = µ(cos ϕk, sin ϕk, 0). The square root of the density ma-

trix is then expressed as
√

ρout = 2−n/2 ∑k rk ⊗ |k〉〈k|, where rk = 2−1/2(v0IA +

~vk ·~σ), where ~vk = v(cos ϕk, sin ϕk, 0) and the pair v0, v verify v2
0 + v2 = 1 and

2v0v = µ. Both v0 and v ≡ |~vk| do not depend on k, while~vk does. The elements

of the matrix WAB are then given by

(WAB)ij =
1
2n ∑

k
Tr[rkσirkσj]

= v2
0δij + 2−(n+1) ∑

k,l,m
(~vk)l(~vk)mTr[σiσlσjσm]. (4.1.21)

Now, we see that Tr[σiσlσjσm] = 2(δilδjm − δijδlm + δimδjl). Hence,

(WAB)ij = (v2
0 − v2)δij +

2
2n ∑

k
(~vk)i(~vk)j. (4.1.22)

Substituting the explicit expressions for the components of ~vk, Eq. (4.1.22) re-

quires evaluation of the sums 2−n ∑k cos2 ϕk, 2−n ∑k sin2 ϕk, and
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2−n ∑k sin ϕk cos ϕk. We observe that for large n and unitary matrices where the

phases ϕk are uniformly distributed [62], we can approximate those sums with

integral averages of the trigonometric functions over the interval ϕ ∈ [0, 2π]:

〈cos2〉'〈sin2〉'1/2, 〈sin cos〉'0. Then,

WAB'diag{v2
0, v2

0, v2
0−v2}⇒λmax(WAB)=v2

0. (4.1.23)

Finally, the conditions given above on v0, v are used to express v0 in terms of

the qubit initial polarization, as v2
0 = 1/2(1 +

√
1− µ2). Substituting this in

Eq. (4.1.4) yields the anticipated result of Eq. (4.1.20). As expected, the expres-

sion increases monotonically with the ancilla polarization and is independent

of the number of qubits in the register. This is in agreement with what predicted

by using the quantum discord in Sec. 3.2.2.

4.2 Applications to quantum metrology

4.2.1 Classical and quantum parameter estimation

Quantum effects were long deemed as detrimental for the accuracy of a mea-

surement, e.g. by implying uncertainty on non-commutative observables. Nowa-

days, we have developed methods to take advantage of quantumness for im-

proving the performance of our devices. Quantum Metrology is the discipline

that studies how to exploit quantum mechanics to gain accuracy in a mea-

surement. Its range of applications is impressive (lossy optical interferometry,

atomic spectroscopy, gravitometry). We refer to a recent review [140]. Here we

discuss the paradigm of parameter estimation (the single parameter case) [141].

Classical parameter estimation

Let us consider a random variable X1. We make a set of n independent mea-

surements of X, which give outcomes {x1, x2, . . . xn}. We want to find the prob-

1We treat the discrete case only, the results apply to continuous variables straightforwardly.
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ability density function f (X) ≡ f (x1, x2, . . . xn) = Πn
i=1 f (xi) underlying the

outcomes we obtained. In the set of all the possible functions, we can employ a

parameter ϕ, which is usually not measurable, as a coordinate: f (X) ≡ fϕ(X).

Therefore, the task is to estimate the value of ϕ. A well developed method for

estimating a parameter is the maximum-likelihood estimation. The variable X

takes values xi = xi(ϕ) with probabilities pϕ(xi) ≡ p(xi|ϕ). The likelihood

function is defined as l(ϕ|X) ≡ l(ϕ|x1, x2, . . . xn) = fϕ(X). To clarify: the prob-

ability that the variable X has value xi given the value ϕj of the parameter ϕ is

equal to the likelihood of the value ϕj for ϕ given that X takes the value xi. Since

the parameter is not measurable, we cannot obtain l(ϕ|X) and then the density

function directly, but we can find an observable parameter ϕ̂ such that the cor-

respondent function f ϕ̂(X) is a reliable characterization of the statistics of the

experiment. The maximum likelihood method identifies the best estimator ϕ̂best

as the one such that max
φ̂

ln l(ϕ̂|X) = ln l(ϕ̂best|X) (the logarithm is just a con-

vention). This means that the function fϕbest(X) is the best function to describe

the statistics of the outcomes. Let us suppose that any estimator is unbiased, i.e.

its average value is the true value of the parameter: 〈ϕ̂〉X = ϕ. From now on,

let us fix X ≡ Xϕ, as the statistics of X is determined by the parameter. There

is a fundamental theoretical limit to the uncertainty on the value of any estima-

tor, that one measures with the variance VarXϕ(ϕ̂), determined as follows. Let

us observe that one is interested to know how the likelihood function changes

with the value of the parameter ϕ. This measures how much information on

ϕ we can infer from the measurements of Xϕ. If it does not change a lot, then

the estimation is hard, while a large variation would imply that a lot of infor-

mation on the parameter can be retrieved by sampling Xϕ. On this purpose,

the score function related to the true parameter reads: s(ϕ) =
∂ ln l(ϕ|Xϕ)

∂ϕ . This

function has mean value zero. Consequently, for quantifying the information

carried by the variable Xϕ on ϕ, one has to study the second moment, i.e. the

mean value of the square of the score, which equals its variance. The quantity
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is called Fisher Information:

F(Xϕ) = VarXϕ(s(ϕ)) = ∑
i

p(xi|ϕ)
(

∂ ln p(xi|ϕ)
∂ϕ

)2

. (4.2.1)

There is an important limitation to the ability of an experimenter to estimate the

parameter, known as the Cramér-Rao bound [142]:

VarXϕ(ϕ̂) ≥ 1
νF(Xϕ)

, (4.2.2)

where ν denotes the number of times the estimation is repeated (i.e., the se-

quence of independent measurements are done). Thus, the Fisher information

acts as the figure of merit of a phase estimation protocol. Note that the Cramér-

Rao bound is saturated by the best estimator ϕ̂best:

VarXϕ(ϕ̂best) =
1

νF(Xϕ)
. (4.2.3)

Quantum phase estimation

In the quantum case, the information on the parameter is encoded in the quan-

tum state: ρ = ρ(ϕ) ≡ ρϕ. For example, given a (pure or mixed) bipartite state ρ

used as a probe, the system undergoes a unitary transformation (specifically, a

phase shift) so that the global state changes to ρϕ = UϕρU†
ϕ, where Uϕ = e−iϕH,

with H being the Hamiltonian. The goal is still to estimate the unobservable

parameter ϕ.

Noting that ∑i p(xi|ϕ̂)
(

∂ ln p(xi |ϕ̂)
∂ϕ̂

)2
= 4 ∑i

((
∂
√

p(xi |ϕ̂)
∂ϕ̂

)2 )
, one is tempted to

write a formal definition for the Fisher information in the quantum domain

[132]:

F(ρϕ) = 4Tr

[(
∂
√

ρϕ

∂ϕ

)2
]
= 8I(ρϕ, H), (4.2.4)

where ∂
√

ρϕ

∂ϕ = −i[H,√ρϕ] is exploited. However, in the quantum case, a further

optimization on the measurement must be considered. Reminding the Born
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rule, one has: p(xi|ϕ) = Tr[ρϕ Mx
i ], where {Mx

i } is a POVM. Thus, the Fisher

information has to be rewritten as

F(ρϕ) = ∑
i

1
Tr[ρϕ Mx

i ]

(
Tr[∂ϕρϕ Mx

i ]
)2 . (4.2.5)

The quantum protocol, which has wide-reaching applications [140, 143], is op-

timized by picking the most informative measurement, the best estimator ϕ̂

and the best probe state ρ. First, the Fisher information is majorized by finding

the optimal POVM. It has been proven that F(ρϕ) ≤ Tr[ρϕL2
ϕ], where Lϕ is the

symmetric logarithmic derivative, an operator which is defined implicitly by

2∂ϕρϕ = Lϕρϕ + ρϕLϕ [144]. The Quantum Fisher Information (QFI) then reads

[143, 145]:

F (ρϕ) = Tr[ρϕL2
ϕ], (4.2.6)

and the quantum Cramér-Rao bound takes the form [144]:

Varρ(ϕ̂) ≥ 1/[νF (ρϕ)]. (4.2.7)

For any probe state ρ, the measurement of the best estimator saturates asymp-

totically the quantum Cramér-Rao bound. We have ϕ̂best = ϕI+
Lϕ

F (ρϕ)
obtained

from the optimal measurement strategy, so that

Varρ(ϕ̂best) = 1/[νF (ρϕ)]. (4.2.8)

Finally, we focus on the optimization of the input state. In practical conditions,

e.g. when the engineering of the probe states occurs within a thermal environ-

ment or with a reduced degree of control, it may not be possible to avoid some

degree of mixing in the prepared probe states. It is then of fundamental and

practical importance to investigate the achievable accuracy when the phase es-

timation is performed within specific noisy settings [146, 147]. In particular, one

could ask if QC offer any advantage for the protocol.
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4.2.2 QC in parameter estimation
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Figure 4.3: (Colours online) QC-assisted parameter estimation. A probe state
ρ of a bipartite system AB is prepared, and a local unitary transfor-
mation depending on an unobservable parameter ϕ acts on sub-
system A, transforming the global state into ρϕ. By means of a
suitable measurement at the output one construct an (unbiased)
estimator ϕ̂ for ϕ. The quality of the estimation strategy is bench-
marked by the variance of the estimator. For a given probe state
ρ, the optimal measurement at the output returns an estimator
ϕ̂best for ϕ with the minimum allowed variance given by the in-
verse of the QFI F (ρϕ), according to the quantum Cramér-Rao
bound [144]. In the prototypical case of optical phase estimation,
the present scheme corresponds to a Mach-Zender interferometer.
Restricting to pure inputs, research in quantum metrology [140]
has shown that in this case entangled probes allow to beat the shot
noise limit F ∝ n (n being the input mean photon number) and
reach ideally the Heisenberg scaling F ∝ n2. However, recent
investigations have revealed how in presence of realistic imper-
fections the achieved accuracy quickly degrades to the shot noise
level [146, 147]. For mixed bipartite probes, we show that the QFI
is bounded from below by the amount of QC in the probe state ρ
as quantified by the LQU.

We now highlight the operative role that QC, as quantified by the LQU, plays

in the paradigmatic scenario of phase estimation in quantum metrology [140].

We focus on an “interferometric” setup employing bipartite probe states, as

sketched in Fig. 4.3. See also [68] for a study of multipartite QC as a resource

for parameter estimation in a different setting. The unitary evolution is now

UA = UA ⊗ IB, so that the state changes to ρϕ = UA
ϕ ρUA†

ϕ , where UA
ϕ = e−iϕHA

,

with HA a local Hamiltonian on A, which we assume to have a non-degenerate

spectrum Λ̄. We assess whether and how QC in the (generally mixed) state

ρ play a role in determining the sensitivity of the estimation. Notice that the

remaining steps of the estimation process are assumed to be noiseless (the un-

known transformation Uϕ is unitary and the output measurement is the ideal
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one defined above). The key observation stems from the relation between the

Wigner-Yanase and the Fisher metrics Eq. (4.2.4), which implies that the skew

information of the Hamiltonian is majorized by the QFI [131, 148]. As HA is not

necessarily the most certain local observable with spectrum Λ̄, the Λ̄-LQU itself

fixes a lower bound to the QFI:

U Λ̄
A (ρ) ≤ I(ρ, HA) = I(ρϕ, HA) ≤ 1

4F (ρϕ). (4.2.9)

Then, for probe states with any non-zero amount of QC, and for ν � 1 repeti-

tions of the experiment, the optimal detection strategy which asymptotically

saturates the quantum Cramér-Rao bound produces an estimator ϕ̂best with

necessarily limited variance, scaling as

Varρ(ϕ̂best) =
1

νF (ρϕ)
≤ 1

4νU Λ̄
A (ρ)

. (4.2.10)

Hence, we established on rigorous footings that the QC measured by LQU,

though not necessary [68, 149, 150], are a sufficient resource to ensure a fixed

lower bound on the accuracy of optimal phase estimation with mixed probes.

We now provide a simple example to clarify the above discussion. Suppose

system A is a spin-j particle undergoing a phase rotation Uϕ = exp(−iϕJz),

where Jz is the third spin component, and ϕ the phase to be estimated. In this

case the estimation accuracy is bounded by the so-called Heisenberg limitFmax =

4j2 [140, 151]. A typical scheme achieving this limit can be outlined. Assume

that system B is simply a qubit with states |0〉B, |1〉B. The AB system is initially

prepared in the product state |j〉A|+〉B, where |m〉A are the eigenstates of Jz with

eigenvalues m = −j,−j + 1, ..., j, and |±〉B = 1√
2
(|0〉B ± |1〉B). Then, a “control-

flip” operation ∝ exp(iπ JxA|1〉〈1|B) is applied, so that the system evolves to

|ψ〉AB = 1√
2
(|j〉A|0〉B + |−j〉A|1〉B). One sees that the entangled state |ψ〉AB used

as a probe achieves the Heisenberg limit. This treatment allows us to study

quantitatively the effect of noise on the estimation power of the bipartite state

|ψ〉AB. Suppose now that the probe state, ideally |ψ〉AB, is prepared in a noisy
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environment, which induces partial dephasing in the basis |m〉A. Then, our

probe state is given by

ρAB =
1
2 [|j, 0〉〈j, 0|+ |−j, 1〉〈−j, 1|+ r (|j, 0〉〈−j, 1|+h.c.)] , (4.2.11)

where 0 ≤ r ≤ 1 quantifies the degree of residual coherence, and |m, φ〉 ≡

|m〉A|φ〉B. As this is effectively a 2-qubit state, we restrict our analysis to a trun-

cated 2× 2 Hilbert space. The restriction of Jz has the spectrum Λ̄ = (−j, j).

We thus calculate the Λ̄-LQU in this effective 2 × 2 Hilbert space, obtaining

U Λ̄
A = j2(1−

√
1−r2). For any j, notice that the QC is a monotonically increas-

ing function of the coherence r. Hence, from Eq. (4.2.9) one has F (ρϕ
AB) ≥

4U Λ̄
A (ρAB) = 4j2(1−

√
1−r2). For large j, this guarantees that the classical scal-

ing F ∼ 2j (the so-called shot noise limit [140]) can still be beaten provided that

r & 1/
√

j.

The connection between the LQU and the sensitivity of parameter estimation

can also be appreciated in more abstract geometrical terms, without the need

for invoking the Fisher information. As shown by Brody [133], the skew in-

formation I(ρϕ, HA) of the Hamiltonian HA determines the squared speed of

evolution of the density matrix ρ under the unitary UA
ϕ = e−iϕHA

. This pro-

vides another geometric interpretation for the LQU: The observable KA which

achieves the minimum in Eq. (4.1.3) is the local observable with the property

that the resulting local unitary operation e−iϕKA
makes the given state ρ of the

whole system evolve as slowly as possible (the observable KA is the least dis-

turbing in this specific sense). Since a higher speed of state evolution under a

change in the parameter ϕ means a higher sensitivity of the given probe state

to the estimation of the parameter, our result can be interpreted as follows: The

amount of QC (LQU) in a mixed correlated probe state ρ used for estimation of

a parameter ϕ bounds from below the squared speed of evolution of the state

under any local Hamiltonian evolution e−iϕHA
, and consequently the sensitiv-

ity of the given probe state ρ to a variation of ϕ, which is a measure of accuracy

for the considered metrological task.
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4.3 Other results on quantum uncertainty

4.3.1 Fine-tuned uncertainty relation for local observables

It is interesting to discuss the connections between the quantum uncertainty on

a single observable and conventional Heisenberg uncertainty relations on pairs

of incompatible observables [126]. Let us consider a bipartite state ρAB and let

us pick a set of n local observables {KA
j } on A, with j = 1, . . . , n. Then by def-

inition of skew information and by using Eq. (4.1.3) we have ∏j VarρAB(K
A
j ) ≥

∏j I(ρAB, KA
j ) ≥ [UA(ρAB)]

n. In the specific case of a pair of local measure-

ments, n = 2, the previous inequality can be regarded as an alternative un-

certainty relation, arising from the QC in the state rather than from the non-

commutativity of the chosen observables. This induces a refinement of the

Heisenberg principle on pairs of local observables, which is rewritten as

VarρAB(K
A)VarρAB(LA) ≥ max

[1
4

∣∣〈[KA, LA]
〉

ρAB

∣∣2, U 2
A(ρAB)

]
. (4.3.1)

For all the bipartite states and pairs of local observables KA, LA such that the

amount of QC on A, measured by the LQU, is strong enough, namely UA ≥
1
2 |〈[KA, LA]〉|, then such amount (squared) yields a tighter quantitative bound

on the product of the variances of the chosen observables, compared to the

Heisenberg one. This is the case, for instance, of pairs of local spin measure-

ments on two-qubit Werner states (see Fig. 4.2), where the variance is one and

the mean value is zero for any local observable. The right hand side of the con-

ventional uncertainty relation would be then trivially vanishing, while the LQU

is non-zero and increases with the purity of the state.

4.3.2 Quantum uncertainty and Superselection Rules

A superselection rule (SSR) can emerge not only from first principles, as it is

the case for the electric charge, but also due to practical constraints: for exam-
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ple, the typical energy scales involved in a quantum optics experiment imply

that the number of atoms in a cavity is a supercharge, and it may only fluc-

tuate as a result of classical ignorance. We remind the technical definition of

SSR [152, 153]. A G-SSR for a quantity Q (supercharge) is defined as a law of

invariance of the system with respect to a transformation group G. Given a

G-SSR and a unitary representation U(g) = eigQ, g ∈ G of the group, any phys-

ical operation Ephys on a quantum system must satisfy Ephys(U(g)ρU(g)†) =

U(g)Ephys(ρ)U(g)†. This entails that there is no way to distinguish by means

of a physical operation, without violating the SSR, between U(g)ρU(g)† and ρ.

Thus, for finite groups, the physical quantum states are described by the den-

sity matrices ρphys = 1
dimG ∑g∈G U(g)ρU(g)† (an equivalent definition holds

for Lie groups). A physical state ρphys is either eigenstate |q〉 of Q or mixture

of its eigenstates ∑q cq|q〉〈q|. Any state represented by a density matrix ρ with

off-diagonal entries (coherences) in the basis of the eigenstates of Q, even an en-

tangled state, is projected by the average over the group transformations into a

ρphys. Consequently, it cannot be distinguished, by allowed physical operations,

from (a mixture of) such eigenstates, and cannot be exploited for quantum in-

formation tasks unless one could overcome the limitations imposed by the SSR,

e.g. by accessing ancillary systems not obeying the SSR [153–155].

We then find

Remark. In presence of a local G-SSR for a supercharge QA, one has UA(ρphys) = 0.

This is proven by observing that a quantum G-SSR for Q are expressed by the

condition I(ρphys, Q) = 0 [154]. Focusing on one subsystem of a bipartite sys-

tem, a local G-SSR for the supercharge QA = QA ⊗ IB entails the existence of

a privileged local basis on A on which all the local physical observables diago-

nalise. Therefore, one has UA(ρphys) = 0. We find that a local SSR on subsystem

A implies that any observable KA, which is forced to commute with the super-

charge QA, is quantum-certain on physical states: I(ρphys, KA) = UA(ρphys) =

0. The quantum uncertainty is then a signature of asymmetry, and the LQU can

be read as “measure” of the local quantum symmetry of the system.
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4.4 Summary of Chapter 4

• Conventional uncertainty on measurements of pairs of observables, as in the

Heisenberg uncertainty principle, has been widely studied, whilst it is taken

for granted that a single physical quantity can be always measured without

any quantum limitation. We find that even the measurement of one observ-

able can display truly quantum uncertainty. We study when and how quan-

tum uncertainty manifests itself, proving a striking entwinement between

two apparently unrelated quantum features as QC of states and uncertainty

on observables.

• Quantum uncertainty is a measure of QC. Indeed, whenever we carry out a

measurement on a subsystem of a bipartite system whose state possesses QC,

quantum uncertainty is guaranteed to appear. The (minimum) quantum un-

certainty on a single local measurement is itself a quantifier of QC. The explo-

ration of this concept allowed us to define and investigate a class of measures

of bipartite QC, which are physically insightful and mathematically rigorous.

In particular, for qubit-qudit states a unique measure is defined (up to nor-

malization), and it is computable in closed form. QC manifest in the fact that

any single local observable displays an intrinsic quantum uncertainty.

• QC in mixed probe states, measured by the local quantum uncertainty, are

further proven to guarantee a minimum accuracy in the protocol of optimal

phase estimation in an interferometric setting. First, we showed that QC mea-

sured by the local quantum uncertainty are a lower bound of the uncertainty

on the Hamiltonian governing the dynamics of the system, and therefore of

the quantum Fisher information, which measures the accuracy of any metro-

logical scheme for the estimation of an unknown parameter (e.g. phase in

optical interferometry, which is at the heart of quantum-enhanced sensing,

gravitometry, and navigation). The variance of the best estimator is, by def-

inition, the inverse of the quantum Fisher information. Thus, it is necessary

lower than the inverse of the QC. This provides a universal setting demon-
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strating the resource value of those correlations, ready for immediate exper-

imental exploitation. Currently, we are collaborating with research groups

in Sao Paulo and Rio de Janeiro for implementing a related proposal in the

NMR setting.

• Uncertainty due to non-commutativity of local observables is lower bounded

by QC. We show that the theoretical framework delivered in the paper high-

lights an Heisenberg-like uncertainty relation where the product of the vari-

ances of non-commuting observables is lower bounded by the QC that the

system under scrutiny shares with a second system. Also, we showed that a

local superselection rule excludes QC.
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CHAPTER 5

Conclusions and future

developments

In this thesis, I presented and discussed the results of the research carried out during my

PhD. Here I summarise my original contributions, which represented the core content

of the manuscript. Then, I collect and discuss some lines of thinking about future

developments in the field of QC. I have not had the time nor the ability to explore

them and draw final conclusions on their relevance, but I still believe their potential

implications to be worthy of future investigations.
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5.1 Summary of the main results

The first part of the work has been dedicated to study the computability of QC

measures in bipartite states of finite dimensional systems. In particular:

• We developed a reliable prescription to evaluate quantum discord for gen-

eral two-qubit states, amending and extending an approach recently put for-

ward for the subclass of X states. A closed expression for the discord of ar-

bitrary states of two qubits cannot be obtained, as the optimization problem

for the conditional entropy requires the solution to a pair of transcendental

equations in the state parameters. Subsequently, we applied the algorithm

to run a numerical comparison between quantum discord and an alternative,

computable measure of QC, namely the geometric discord. We identified

the most quantum-correlated two-qubit states according to the (normalized)

geometric discord, at fixed value of the entropic quantum discord, and vice

versa. The latter does not exceed the square root of the former for systems of

two qubits [Chapter 2];

• The interplay between QC and entanglement is still not completely under-

stood. We investigated this issue focusing on computable and observable

measures of such correlations: entanglement is quantified by the negativity

N, while general QC are measured by the (normalized) geometric discord

DG. For two-qubit states, we found that the geometric discord reduces to the

squared negativity on pure states, while the relationship DG ≥ N2 holds for

arbitrary mixed states. The latter result is rigorously extended to pure states

of two-qudit systems for arbitrary d. The results establish an interesting hier-

archy, between two relevant and experimentally friendly QC indicators. This

ties in with the intuition that general QC should at least contain and in gen-

eral exceed entanglement on mixed states of composite quantum systems

[Chapter 2];

• To overcome the asymmetry of quantum discord and the unfaithfulness of

measurement-induced disturbance (severely overestimating QC), we intro-
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duced the AMID (ameliorated measurement-induced disturbance) as a QC

indicator, optimized over joint local measurements. We studied its analytical

relation with discord, and characterized the maximally quantum-correlated

mixed states, that simultaneously have extreme values of both quantifiers at

given von Neumann entropy: among all two-qubit states, these ones possess

the most robust QC against noise [Chapter 2].

Then, we provided theoretical recipes to evaluate the QC of an unknown bipar-

tite state in the laboratory:

• We introduced a measure Q (lower bound of geometric discord) of bipartite

QC for arbitrary two-qubit states, expressed as a state-independent function

of the density matrix elements. The amount of QC can be quantified exper-

imentally by measuring the expectation value of a small set of observables

on up to four copies of the state, without the need for a full tomography. We

extended the measure to 2⊗ d systems, providing its explicit form in terms

of observables and applying it to the relevant class of multiqubit states in

the DQC1 (deterministic quantum computation with one qubit) model. The

number of required measurements to determine Q in our scheme does not

increase with d. My results provided an experimentally friendly framework

to estimate quantitatively the degree of general QC in composite systems.

Then, we took in exam the specifics of the required experimental architecture

in optical and nuclear magnetic resonance settings [Chapter 3];

• We contributed to the experimental measurement of bipartite QC of an un-

known two-qubit state. Using a liquid state Nuclear Magnetic Resonance

(NMR) setup, we evaluated the QC (measured by the geometric discord and

Q) of a state without resorting to prior knowledge of its density matrix. The

negativity of quantumness was measured as well for reference. We also ob-

served the phenomenon of sudden transition of QC when local phase and

amplitude damping channels are applied to the state [Chapter 3].
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Finally, we contributed to outline the foundational stand of QC, unveiling a

connection to the concept of quantum uncertainty:

• Quantum mechanics predicts that measurements of incompatible observables

carry a minimum uncertainty which is independent of technical deficiencies

of the measurement apparatus or incomplete knowledge of the state of the

system. Nothing yet seems to prevent a single physical quantity, such as one

spin component, from being measured with arbitrary accuracy. We showed

that an intrinsic quantum uncertainty on a single observable is unavoidable

in a number of physical situations. When revealed on local observables of

a bipartite system, such uncertainty defines an entire class of bona fide mea-

sures of QC. For the case of 2⊗ d systems, we found that a unique measure

is defined, which has been evaluated in closed form. We then discussed the

role that QC might play in the context of quantum metrology. In particular,

the amount of discord present in a bipartite mixed probe state guarantees a

minimum accuracy, as quantified by the quantum Fisher information, in the

optimal phase estimation protocol [Chapter 4].

5.2 Proposals for future research

5.2.1 Big Picture

We still believe QC to be an appealing research line, for two main reasons. First,

they introduce a brand new quantum paradigm, a genuinely quantum statisti-

cal concept without any classical analogue. The meaning of QC in quantum

information theory, and in particular their interplay with entanglement, still

needs to be clarified,while they appear the most natural generalisation of quan-

tum coherence applicable to multipartite systems [69]. Also, we may exploit

them as an alternative resource for large scale implementations of quantum-

based technology. Indeed, QC are easier to create and more robust than en-

tanglement under dissipative dynamics. A number of results in literature con-

firmed that QC can even be created and controlled by interaction of quantum
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systems with external environments, definitely harnessing noise as a perfor-

mance enhancer, once that tasks in which QC are the figure of merit have been

identified.

We would like to assess the potential of QC as a resource for delivering quan-

tum technology and describing quantum effects in complex systems. The big

aim is to discriminate QC-ruled processes in Nature and pave the way to build

QC-based quantum devices. We would investigate open problems in quantum

metrology, open quantum systems and complexity science in which we believe

that QC take centre stage as benchmark of quantumness and definitely as a re-

source. This could lead to conceive new ways of exploiting quantum physics

for delivering entanglement-free quantum technology and provide conceptual

advances for the understanding of complex systems. In particular, we identify

three main open questions in which QC play a critical role, as detailed in the

following.

5.2.2 Quantum Metrology with mixed states

The first proposal is about quantum metrology. We have seen in Ch. 4 that QC

affect the measurement process. We remind that for pure states, standard limits

imposed on classical measurements have been overcome by employing quan-

tum strategies which exploit entanglement [140], while a generalisation/no-go

theorem for real world, mixed states is missing. We plan to establish the best

possible accuracy we are able to reach without entanglement in such a case. We

hypothesise that QC are sufficient to beat classical limits in a number of pro-

tocols: the assertion is supported by the surprising link between QC in probe

states and accuracy of parameter estimation that we reported in [68] and in

Ch. 4. Specifically, we would tackle two main questions:

• Parameter estimation with noisy probes

Given an initial state (the probe) undergoing a unitary evolution depending

on a parameter, e.g. a phase φ. As in Ch 4, the aim is to estimate the value

of such unobservable phase with the best possible accuracy, provided a num-
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Figure 5.1: Two strategies for parameter estimation. On the left, the parallel
one: N uncorrelated copies of the probe undergo a unitary evolu-
tion Uφ. At the end of the protocol, a measurement is performed
with uncertainty (∆φ)2

parUNC ∼ O(
1
N ). On the right, the sequen-

tial strategy: a sequence of N unitary transformations is applied to
a single probe. Every time quantum coherence is created in an ap-
propriate basis, the measurement allows us to estimate the param-
eter by a smaller uncertainty (∆φ)seq ∼ O( 1

N2 ). For pure states,
entanglement between the probes is necessary to reach the accu-
racy of the sequential strategy: (∆φ)2

parENT ∼ O(
1

N2 )[156], while
a conclusive study for mixed probes is missing. We would like to
determine the source of quantum enhancement when probes have
fixed mixedness, and then to extend the analysis to general quan-
tum channels.

ber n of copies of the state. The two strategies conventionally adopted, the

parallel and the sequential one, are detailed in Fig. 5.1. For pure states in the

parallel strategy, the best attainable classical accuracy (the shot noise limit)

scales with the number of probes (copies of the state), while to exploit en-

tangled copies allows us a scaling with the square of the number of probes.

We plan to assess QC as a resource for parameter estimation when the probe

states have a fixed, unavoidable degree of mixedness. A way to improve ac-

curacy in phase estimation is by increasing uncertainty (as measured by the

Wigner-Yanase information) on the generator of the evolution, the Hamilto-

nian H, which it is still a lower bound of the figure of merit of the protocol,

the Quantum Fisher Information (QFI). In Ch. 4, we have proven that the

uncertainty-based measure QC in the probe states is a lower bound of the

quantum uncertainty on H [DG7] when the available resources are one probe

state and an ancillary system: QC measure ≤ uncertainty on H ≤ QFI. Other

pilot studies suggest that QC, and not entanglement, may be sufficient to beat

139



CHAPTER 5. CONCLUSIONS AND FUTURE DEVELOPMENTS

classical limits [68]. We will generalise the chain of inequalities to an arbitrary

number of copies, showing that QC activate quantum enhancement, being a

monotone lower bound of QFI. We will consider both qudits and Gaussian

states of continuous variables systems as probes.

• Parameter estimation with noisy probes and general quantum channels

We will extend the analysis to non-unitary evolutions, keeping fixed the mixed-

ness of the probes. This generalisation is compelling, as the system of inter-

est may be interacting with an environment and its dynamics would be then

driven by a general quantum channel [17]. It is known that for pure states

even a small amount of noise quickly degrades to the shot noise limit for the

accuracy of the estimation. Nevertheless, quantum enhancement can be ob-

tained by devising channel-dependent strategies [147, 157]. We will study

the most general setting, characterized by mixed states and noisy channels.

We expect to find that QC and coherence sustain quantum-enhancement for

specific channels (no Hamiltonian here, we will directly prove that

QC (coherence) ≤ QFI), thus deriving channel-dependent conditions for beat-

ing classical limits in both sequential and parallel schemes.

We expect to provide an operational interpretation of QC in the context of quan-

tum metrology. We will adopt well developed tools from quantum estimation

theory to determine the figure of merit (the QFI), for parameter estimation of

both parallel and sequential strategies with probes at fixed mixedness (thus

simulating a realistic condition), for unitary evolutions as well as quantum

channels, for discrete and continuous variable systems. Then, we will eval-

uate coherence and QC by means of a multipartite extension of the bipartite

uncertainty-based QC measure that we introduced in Ch. 4. We will prove that

it is a monotone lower bound of the QFI, which means that QC yield a guar-

anteed improvement of accuracy over classical schemes. We have seen that is

possible to interpret quantum uncertainty as the quantum contribution to the

statistical error of a measurement (Fig 4.2). In this context, a striking relation

with the variance on measurement outcomes has been provided, paving the
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way to an experimental corroboration of the results in both optical and NMR

systems, where high temperature regime imposes to deal with highly mixed

states and vanishing entanglement.

5.2.3 Universal characterisation of quantum coherence in open quan-

tum systems

It has been proven that QC are the cheapest signature of quantum coherence

in multipartite systems. At macroscopic scales, we do not directly reveal more

than what is prescribed by classical physics. This is not only due to our “classi-

cal” intuition, but also to the fragility of the quantum feature we usually inves-

tigate. Absence of entanglement does not entail classicality, whilst coherence

is a non-negotiable fingerprint of quantumness, hence we should focus on the

latter. Entanglement is not necessary to ensure coherence in such scenario, as

we discussed in Ch. 1 and has been proven in [51]. On this hand, it is rea-

sonable to think that both biological systems and biologically-inspired quan-

tum devices should be optimized to catch and exploit the available quantum

resources. Even small improvements in sustaining coherence time may make

the difference between success and failure of a protocol. Such a situation is

effectively represented by the open quantum system paradigm: the system of

interest S is forced to interact with an external environment E (another physi-

cal system) (see Fig. 1.4), which, while usually destroying coherence and useful

quantum properties in S, can be an additional resource by means of back-flow

of information to S. A pivotal question is to develop universal efficient tools to

describe the exchange of (quantum) information between system and environ-

ment [17, 158, 159]. As pointed out above, QC are the fingerprint of coherence

in multipartite systems, thus are the quantum feature to investigate. Unfor-

tunately, the dynamics of an open quantum system is notoriously difficult to

model, and full information on the state of the system is rarely accessible [18].

We propose to attack the problem as follows: the information stored in the full

density matrix is unnecessary to evaluate its truly quantum character. We are
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only interested in the quantum properties of the system and how they evolve in

time. Thus, we aim to describe open quantum system dynamics in terms of the

evolution of a model-independent benchmark of QC and quantum coherence.

We foresee two milestones:

• Geometry of quantum coherence in open quantum systems

Any quantum process is described by a quantum channel acting on the state

of the system. Information geometry allows us to represent such a channel

as a curve linking two points on a statistical manifold, where the density

matrices of the physical states represent coordinates on it [160]. We shall

relate the dynamics of the quantumness of the system to geometric prop-

erties of the path determined by the channel. Such an approach has been

adopted in [161]: singularities of the metric tensor along a path describing

an adiabatic transformation correspond to quantum phase transition. Thus,

to employ differential geometry techniques sounds promising: all the infor-

mation carried by statistical distributions is encoded in their geometry. On

the same hand, we conjecture that high order geometric tensors, as the intrin-

sic slope/curvature tensors of the path associated with the channel, contain

all the relevant information about the dynamics of the interesting quantum

properties (QC and coherence) of the system. We anticipate development of

a general framework to describe open quantum system dynamics in terms

of model-independent geometric properties of the quantum channels, cor-

roborated by analytical and/or numerical evidences in relevant case studies

(realistic noisy channels as phase and amplitude damping, and depolarising

channels [17]).

• Quantum memory effects

The back-flow of information from environment is not always useful. We

would use the information on the geometry of the path to discriminate the

exploitable quantum memory effects emerging in non-Markovian dynamics.

There is a theoretical and experimental run to discover how to harness such

effects for quantum technology [162, 163]. While there is neither a master
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Non-Markovian Markovian 

AB AB 

Figure 5.2: Non-Markovian processes occur whenever the environment fluc-
tuations display correlation times longer than the relaxation time
of the system under scrutiny. Revivals in time of QC (quantified by
QAB as defined in Eq. (3.2.7)) between parts of the system S (pointed
by the blue arrow), witness the non-Markovian deviations from
exponential decay. The plot refers to a pilot study, in which a
two-qubit system is coupled to a bosonic bath (Jaynes-Cummings
model). On the left, the S− E coupling is weak and no revivals are
detected; on the right, the strong coupling condition is detected by
QC revivals. We want to determine what geometric properties of
the channel induce useful noise by favouring the revival of quan-
tum coherence and QC.

equation nor even a general coherent fashion for describing a non-Markovian

process (even how to evaluate the degree of quantum non-Markovianity of

a map is still disputed) [18], theoretical and experimental studies confirmed

that non-Markovianity can increase coherence time and the efficiency of en-

ergy transport in biological complexes [164, 165]. The QC have shown a pe-

culiar behaviour under specific non-Markovian dynamics in specific model-

dependent studies, but a theoretical underpinning for the phenomenon is

missing. We aim to introduce a qualitative and quantitative distinction be-

tween useful and detrimental noise by observing QC dynamics in the system

(see Fig. 5.2). Going beyond the plain dichotomy Markovian/non-Markovian,

we expect to identify the geometric properties of the channels related to quan-

tum memory effects. It will be then possible to devise strategies to maintain

the supra-classical performance of a given quantum protocol by studying the

geometry of the channel, e.g. by injecting supplemental noise with appropri-
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ate geometry.

Specifically, we plan to adopt the following methodology. On a statistical mani-

fold, density matrices are points and quantum evolutions are paths: two differ-

ent points in the path are two distinguishable quantum states. This information

is redundant, and a shift from a set in stone paradigm is needed. State distin-

guishability is the founding principle of quantum statistical inference, but two

states can be distinguishable, even orthogonal, yet carry the same operational

power (think about states |0〉 and |1〉). We will introduce a measure of quan-

tum state distinguishability, i.e. a geometric quantifier of how much two states

differ in their quantum properties. We will show that a measure of quantum

distinguishability in the neighbourhood of a state corresponds to a measure of

quantum uncertainty (on the generator of the evolution) and is consequently

linked to the quantum character of the state. Then, we will monitor quantum

memory effects by investigating the dynamics of such quantity. To extract the

very quantum back-flow of information from E, detrimental noise (the noise

which reduces quantum distinguishibility on the state of S) must be filtered out.

Convex (thus, not entropic) Fisher information-like measures, e.g. a quantum

version of the “Fisher memory matrix” introduced in [166], are ideal candidates

for the purpose.

5.2.4 Assessing complexity in quantum systems

The term Complexity has both wide extent and content. More than a unique defi-

nition of complexity (a recent review counts forty-two measures of complexity!

[167]), it is appropriate to refer to complexity signatures tailored to a specific

domain of investigation: e.g. computer scientists call computational complexity

a measure of how difficult is (how many resources/time are needed) to per-

form a certain calculation, and algorithmic complexity the length of the shortest

description of a message [168]. We will address the complexity yielded by the

degree of organisation of a given physical system [169]. A way to measure it is

by introducing the concept of statistical complexity [170]: the complexity (organi-

144



CHAPTER 5. CONCLUSIONS AND FUTURE DEVELOPMENTS

sation) of a system is given by the amount of information on the system needed

to predict its future dynamics. We hypothesise that quantum mechanical effects

entails a peculiar statistical complexity which implies a supplemental degree of

organisation in a system. The assertion is sustained by recent findings reported

in [171]: in order to simulate a stochastic process by means of the dynamics of

a physical system (e.g. a sequence of coin tosses), whenever this simulator has

quantum properties and undergoes a quantum dynamics, less initial data are

necessary to predict future measurement outcomes. Intuitively, this is due to

the fact that a quantum state encodes more information than a classical one.

We aim to define the quantum complexity of states of multipartite systems, its

main properties and the potential as a resource. Specifically: how complex-

ity is related to the (quantum) information content of the state, how it affects

(quantum) information processing, how it is linked to QC and coherence, if it

is observer dependent, i.e. if it depends on the properties of a system acting as

observer and/or on the observable we are measuring, how complexity behaves

under decoherence and if memory effects affect it, if a system tends to evolve so

as to maximize or minimize complexity and, definitely, if the complexity given

by the structure of the system is functional, i.e. is an asset for quantum technol-

ogy, as it seems to be for the efficiency of living systems. This is a promising

and well motivated venture: to build quantum appliances by studying and im-

itating macroscopic systems granted by Nature, which may hardly be in pure

entangled states yet are complex, the relation between quantumness and com-

plexity must be clarified. We envisage two cornerstones:

• Linking quantum correlations and complexity measures

In a multipartite system, interdependence between parts is expressed in terms

of statistical correlations. However, to date, no results have been reported

on the interplay between complexity and quantum correlations. We will in-

troduce a measure of quantum complexity (a quantum version of statistical

complexity [170]) and compare it with QC and entanglement in a number

of case studies. This will establish the foundational value of complexity by
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clarifying what role it takes in the quantum picture. Then, we will determine

how complexity is affected by decoherence and dissipation by investigating

its behaviour in the open quantum system framework. The goal is to assess

the robustness of quantum-induced complexity in a realistic setting. Finally,

we will devise an experimental set up to measure for the first time the quan-

tum complexity of a system, bridging the gap between an inherent blue-skies

research and the experimental necessity of having laboratory-friendly signa-

tures or even measures of complexity.

• Exploring the interplay between micro and macro-Complexity

Statistical complexity tells us about interactions in a compound system: the

whole matters more than the sum of its parts [172]. We want to determine

if macroscopic forms of organisations and complexity originate from micro-

scopic interactions described by quantum mechanics (by quantum complex-

ity and QC). We conjecture that macroscopic systems increase or decrease in

complexity in order to adapt themselves to the environment. Organisation

has to be a form of self-control, thus complexity is the way in which a system

self-regulates and takes advantage of the interaction with other systems. The

ability of a system to self-regulate and adapt to the action of external agents

is quantified through an entropic inequality called Law of Requisite Variety

(LRW), introduced in [173] and rediscovered in [174]. Our second conjec-

ture is that quantum strategies have been developed by complex systems

to improve their ability to adapt themselves to the environment, e.g. light-

harvesting complexes have developed quantum coherence-based methods

to trigger photosynthesis and discourage energy loss. We will translate the

LRW in the quantum domain. We expect to find that a macro-system which

exploits quantum complexity self-regulates better. More generally, we will

quantify the maximum degree of control achievable by a quantum system

given a fixed amount of noise and disorder (mixedness). Then, we hope to

prove the advantage of quantum strategies in terms of energetic principles,

hence unveiling the interplay between complexity and thermodynamics. We
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wish to determine if there exists a thermodynamic limit to the amount of

complexity which can be stored in a system of given dimension.

Research on quantumness and complexity will take a significant amount of

time, as demands to acquire proficiency in advanced mathematical techniques

and deep concepts of computational mechanics and information theory [17,

169]. First of all, we will introduce a measure of quantum complexity. There

is just a loose agreement about what characteristics a complex systems should

exhibit and a measure of complexity should evaluate: complexity vanishes

for completely ordered (a crystal) and completely random systems (a gas in

a box in thermal equilibrium) reaching its maximum at some point in the mid-

dle [169]. Information geometry will provide a common language for QC and

complexity: a geometric quantifier of complexity will be derived by the (en-

tropic) statistical complexity introduced in [170]. While this is a more specula-

tive research line, we will endeavour to propose an experimentally appealing

measure of complexity, being expressed as a function of observable quantities

(for NMR: spins/polarizations, for optics: swap operators and projectors). A

Fisher Information-inspired measure appears to fit for such requirement. Then,

the quantum version of the Law of Requisite Variety, which somehow gener-

alises the Shannon channel-correction theorem [173] to a universal condition

for efficient quantum control, will be obtained by exploiting tools from one shot

quantum information theory (OSQIT). Finally, we will study the role of quantum

complexity in energy transport mechanisms of macroscopic systems (e.g. in

the celebrated FMO complexes [158]), paving the way to determine universal

thermodynamical constraints to the creation of QC and complexity in quantum

systems (if any), which will be again addressed with OSQIT techniques.

5.2.5 Motivation

These projects seem to me timely and novel in both vision and methodology,

proposing to walk unconventional lines of thinking. We will tackle well-posed,

wide scope open problems, taking into account a realistic, fixed amount of
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mixedness, and deem QC as a mere conceptual tool, which gives access to a

privileged general framework for understanding a given issue and providing

a solution. Also, Complexity is usually seen as a “negative” feature of physical

systems, a synonym of uncontrolled sensitivity to initial conditions and an im-

pediment to model and understand them. We dispute this common belief, and

enlighten the positive, useful properties encoded in organized systems. Regard-

ing the methods, we remark that research on QC is usually limited to model-

dependent settings: a certain dynamics is selected, a restricted class of initial

available states are picked, and results with little or no generality are derived.

The proposal here outlined appear to be more solid. We expect to overcome

technical difficulties related to quantum dynamics modelling by adopting tech-

niques from information geometry, treating density matrices and channels as

geometric entities. Differential geometry techniques will be essential to trans-

late into a coordinate-free geometric language.

Also, the projects will deliver results of relevance for researchers in quantum

metrology, open quantum system/quantum biology and complexity science.

The contributions would be twofold. First, to lead to the full-fledged charac-

terisation of quantum correlations in multipartite systems. In spite of the the-

oretical flavour of the project, by bridging the gap between theory and experi-

ments will ensure a solid ground for the next generation of quantum-enhanced

devices. Second, to uncover elusive connections between quantum mechan-

ics and complexity, which will be of interest for complex system and informa-

tion geometry researchers, due to the proposed lines of investigations linking

quantum statistics and complexity in a coherent fashion. In conclusion, we ex-

pect that novel ways of manipulating and distributing information for metrol-

ogy and communication will be devised using QC, motivated by the poten-

tial future findings of the line of research detailed in this Section. On a more

speculative side, these proposals anticipate future courses of action that quan-

tum researchers might undertake. Only 30 years ago it would have been hard

to claim that quantum mechanics helps to improve communication or crypto

graphic protocols. Now, we see as a strategic priority to explore new, alterna-
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tive resources for quantum technology and the ultimate range of applicability

of quantum mechanics. In his last work, E. Majorana argued that quantum

mechanics could be the key to describe efficiently social and economic systems

[175], and a celebrated Schrödinger’s opera inspired the quest for a full un-

derstanding of Life mechanisms [176]. On a 10-50 years timescale, a question

to address is whether quantum probabilistic models, where amplitudes replace

probabilities, are intrinsically, universally more efficient than classical ones, and

definitely if biologists, engineers, economists and social scientists should study

quantum mechanics. On this hand, QC are more general, flexible quantum fea-

tures than entanglement, so more appealing building blocks for such models.
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