
Compiling Concurrency Correctly
Verifying Software Transactional Memory

Liyang HU

A Thesis submitted for the degree of Doctor of Philosophy

School of Computer Science

University of Nottingham

June 2012

Abstract

Concurrent programming is notoriously difficult, but with multi-core processors

becoming the norm, is now a reality that every programmer must face. Concurrency

has traditionally been managed using low-level mutual exclusion locks, which are

error-prone and do not naturally support the compositional style of programming

that is becoming indispensable for today’s large-scale software projects.

A novel, high-level approach that has emerged in recent years is that of software

transactional memory (STM), which avoids the need for explicit locking, instead

presenting the programmer with a declarative approach to concurrency. However, its

implementation is much more complex and subtle, and ensuring its correctness places

significant demands on the compiler writer.

This thesis considers the problem of formally verifying an implementation of STM.

Utilising a minimal language incorporating only the features that we are interested in

studying, we first explore various STM design choices, along with the issue of compiler

correctness via the use of automated testing tools. Then we outline a new approach to

concurrent compiler correctness using the notion of bisimulation, implemented using

the Agda theorem prover. Finally, we show how bisimulation can be used to establish

the correctness of a low-level implementation of software transactional memory.

i

ii

Acknowledgements

Many have had a part to play in this production, and I cannot hope to enumerate

them exhaustively. Nevertheless, I would like to begin by thanking everyone at the

Functional Programming Laboratory in Nottingham who have made it such an inter-

esting place, academically and socially. Conor McBride deserves a special mention for

his multitudes of infectious ideas that started me on this dependently-typed journey,

as do Ulf Norell and Nils Anders Danielsson for the years they have put into Agda

and its standard library that underpins a large part of this work.

There were plenty of ups and downs in the process. I am eternally grateful to

my flatmate Rebecca who had a large part in maintaining my sanity, my muse Ana

whose company kept my spirits up through those seemingly endless hours of writing,

and my friend Tom for sharing his inexhaustible enthusiasm with me. The numerous

thoughtful gifts from Star and Cosmo are also warmly received. I am very fortunate

to have my parents, whose support made my aspirations possible. Thank you all.

I appreciate the effort of Andy Gordon and Thorsten Altenkirch in undertaking

the rewardless task of my examination. Tsuru Capital—as well as being an excellent

place to work—afforded me much time and flexibility with which to complete my

corrections. Last but certainly not least, I would like to express my gratitude towards

my supervisor Graham Hutton for his guidance and enduring patience through all

these years, without whose insights and encouragement this thesis would certainly

have found itself in perpetual limbo.

iii

iv

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 A Brief Note on Moore’s Law 1

1.1.2 The End of the Free Lunch 2

1.1.3 A Brief Look at Parallel and Concurrent Computing 3

1.1.4 A Supercomputer on Every Desk 4

1.2 Approaches to Concurrent Software 5

1.2.1 Concurrency versus Parallelism 5

1.2.2 Counting: easy as 0, 1, 2. 6

1.2.3 Shared Memory and Mutual Exclusion 7

1.2.4 Example: Deadlock . 8

1.2.5 Message Passing and Implicit Synchronisation 10

1.2.6 Software Transactional Memory 12

1.3 Thesis Overview . 14

1.4 Contributions . 15

2 Software Transactional Memory 19

2.1 Database Transactions . 19

2.2 Transactional Memory . 21

2.2.1 Hardware Transactional Memory 22

v

CONTENTS

2.2.2 Software Transactional Memory 23

2.3 Implementing Transactions . 24

2.3.1 Log-Based Transactions . 25

2.3.2 Alternative Approaches to Atomicity 26

2.4 Haskell and Sequential Computation 27

2.4.1 Monads for Sequential Computation 27

2.4.2 Modelling Mutable State . 28

2.4.3 Monadic Properties . 31

2.4.4 Input, Output and Control Structures 33

2.5 Haskell and Concurrent Computation 34

2.6 Haskell and Software Transactional Memory 37

2.7 Conclusion . 43

3 Semantics for Compiler Correctness 45

3.1 Semantics . 45

3.1.1 Natural Numbers and Addition 45

3.1.2 Denotational Semantics . 46

3.1.3 Big-Step Operational Semantics 47

3.1.4 Small-Step Operational Semantics 48

3.1.5 Modelling Sequential Computation with Monoids 50

3.2 Equivalence Proofs and Techniques 51

3.2.1 Rule Induction . 51

3.2.2 Proofs of Semantic Equivalence 52

3.3 Compiler Correctness . 57

3.3.1 A Stack Machine and Its Semantics 57

3.3.2 Compiler . 59

3.3.3 Compiler Correctness . 60

3.4 Conclusion . 64

vi

CONTENTS

4 Randomised Testing in Haskell 65

4.1 Executable Semantics . 66

4.1.1 Denotational Semantics . 66

4.1.2 Big-Step Operational Semantics 66

4.1.3 Small-Step Operational Semantics 68

4.1.4 Virtual Machine . 70

4.2 Randomised Testing with QuickCheck and HPC 71

4.2.1 Generating Arbitrary Expressions 72

4.2.2 Semantic Equivalence and Compiler Correctness 74

4.2.3 Coverage Checking with HPC 77

4.3 Conclusion . 79

5 A Model of STM 81

5.1 A Simple Transactional Language . 81

5.1.1 Syntax . 82

5.1.2 Transaction Semantics . 83

5.1.3 Process Soup Semantics . 87

5.2 A Simple Transactional Machine . 91

5.2.1 Instruction Set . 91

5.2.2 Compiler . 91

5.2.3 Implementing Transactions . 92

5.2.4 Virtual Machine . 96

5.3 Correctness of the Implementation 101

5.3.1 Statement of Correctness . 101

5.3.2 Validation of Correctness . 103

5.4 Conclusion . 105

vii

CONTENTS

6 Machine-Assisted Proofs in Agda 107

6.1 Introduction to Agda . 107

6.1.1 Data and Functions . 108

6.1.2 Programs as Proofs and Types as Predicates 109

6.1.3 Dependent Types . 110

6.1.4 Equality and its Properties . 113

6.1.5 Existentials and Dependent Pairs 115

6.1.6 Reflexive Transitive Closure 117

6.2 Agda for Compiler Correctness . 120

6.2.1 Syntax and Semantics . 120

6.2.2 Semantic Equivalence . 122

6.2.3 Stack Machine, Compiler, and Correctness 124

6.3 Conclusion . 129

7 Compiling Non-Determinism Correctly 131

7.1 Existing Approach . 131

7.2 Related Work . 132

7.3 A Non-Deterministic Language . 134

7.3.1 Choice of Action Set . 136

7.4 Compiler, Virtual Machine and its Semantics 136

7.5 Non-Deterministic Compiler Correctness 137

7.6 Combined Machine and its Semantics 139

7.7 Weak Bisimilarity . 141

7.8 The elide-τ Lemma . 145

7.9 Compiler Correctness . 147

7.9.1 Proof of correctness . 147

7.9.2 The eval-left Lemma . 149

7.9.3 The eval-right Lemma . 152

viii

CONTENTS

7.10 Conclusion . 156

8 Compiling Concurrency Correctly 157

8.1 The Fork Language . 157

8.1.1 Syntax and Virtual Machine 157

8.1.2 Actions . 158

8.1.3 Semantics . 160

8.2 Combined Machines and Thread Soups 161

8.3 Silent and Visible Transitions . 162

8.4 Bisimilarity . 165

8.5 Properties of Thread Soups . 166

8.5.1 Soups Concatenation Preserves Silent Transitions 166

8.5.2 Partitioning Silent Transitions 167

8.5.3 Partitioning a Non-Silent Transition 167

8.5.4 Dissecting a Visible Transition 168

8.5.5 Extracting the Active Thread 169

8.6 The elide-τ Lemma . 170

8.7 Soup Concatenation Preserves Bisimilarity 172

8.8 Compiler Correctness . 175

8.9 Conclusion . 177

9 Transaction Correctness 179

9.1 The Atomic Language . 179

9.1.1 Syntax . 179

9.1.2 Heaps and Variables . 180

9.1.3 Stop-the-World Semantics . 181

9.1.4 Transaction Logs and Consistency 184

9.1.5 Log-Based Semantics . 187

ix

CONTENTS

9.2 Combined Semantics and Bisimilarity 190

9.2.1 Combined Semantics . 190

9.2.2 Bisimilarity of Semantics . 191

9.2.3 Definition of Correctness . 193

9.3 Reasoning Transactionally . 193

9.3.1 Consistency-Preserving Transitions 193

9.3.2 Heaps and Logs Equivalence 196

9.3.3 Post-Commit Heap Equality 199

9.4 Transaction Correctness . 200

9.4.1 Completeness of Log-Based Transactions 201

9.4.2 Soundness of Log-Based Transactions 203

9.5 Bisimilarity of Semantics . 209

9.5.1 Addition . 209

9.5.2 Right Evaluation . 210

9.5.3 Left Evaluation . 212

9.5.4 Transactions . 214

9.5.5 Putting It Together . 217

9.6 Conclusion . 217

10 Conclusion 219

10.1 Retrospection . 219

10.2 Summary of Contributions . 221

10.3 Directions for Further Research . 222

x

Chapter 1

Introduction

In this chapter we set the scene for this thesis. We begin with a brief background

on the history of concurrent computing, and the concepts and issues involved in

developing software that takes advantage of the additional computational capability.

We then describe a number of mainstream approaches to constructing concurrent

software, along with the transactional memory approach that is the focus of this

thesis, illustrated with some simple examples. We conclude with a synopsis of each

chapter and a summary of our primary contributions.

1.1 Background

1.1.1 A Brief Note on Moore’s Law

Since the invention of the integrated circuit over 50 years ago and the subsequent de-

velopment of the microprocessor, the number of transistors that engineers can manu-

facture on a single silicon chip for the same cost has been increasing at an exponential

pace, roughly doubling every two years. This growth has been remained consistent, so

much so that it has been informally codified as ‘Moore’s Law’ [Moo65]. The related

1

CHAPTER 1. INTRODUCTION

statement1 that “microprocessors performance roughly doubles every 18 months” has

also held true, once we factor in the improved performance of individual transistors.

The popular understanding of Moore’s Law tends to be simplified to “computer

speed doubles roughly every 18 months.” Until half a decade ago, this interpretation

sufficed, because in order to pack more transistors next to each other, each one had to

be made smaller. This in turn meant faster signal propagation between components,

and so faster switching (or clock speeds), increasing performance. The implication of

this is that one could expect the same piece of software to run twice as fast on the

available hardware, 18 months down the line.

1.1.2 The End of the Free Lunch

Moore’s Law had become self-perpetuating as the industry assumed its truth to make

projections for their technology roadmaps. By shrinking the size of individual tran-

sistors, not only were silicon manufacturers able to increase how many transistors can

be economically placed on a single piece of silicon, they were also able to clock their

processors at progressively higher frequencies due to reduced switching and signal

propagation delays.

Sadly, miniaturisation has some undesirable side-effects: on the sub-micron scales

of a modern microprocessor, current leakage due to quantum tunnelling effects across

the on-chip insulation is very much detrimental to signal integrity: the smaller the

features, the more power the integrated circuit needs to counteract these side-effects.

This additional power must be dissipated in the form of waste heat, limiting the

extent to which we can simply increase the clock speed. Indeed, some recent desktop

processors expend up to a third [LS08] of their power solely to ensure accurate clock

signal distribution to outlying areas of the silicon die, and expel as much as 150W of

excess heat in an area less than 15mm2.

1Due to David House—an Intel executive at the time—as claimed by Moore:
http://news.cnet.com/2100-1001-984051.html

2

1.1. BACKGROUND

Given the restriction that we cannot reasonably clock individual processors at

increasingly higher speeds, how could we pack more computing power onto each

silicon die? With the extra transistors afforded to us by Moore’s Law, the most

obvious and easiest solution is to resort to symmetric multiprocessing (SMP), by

fabricating multiple independent processors on the same die that share access to the

same memory.

1.1.3 A Brief Look at Parallel and Concurrent Computing

The concept of SMP had been put to practice as early as the 1960s with the in-

troduction of the Burroughs B5500 mainframe 2. In the decades that followed, the

entire computing industry resorted one by one to some form of parallelism in or-

der to achieve their stated performance. First steps in this dirction included the

development of vector processors, where each instruction simultaneously operate on

tens or sometimes hundreds of words of data. In today’s parlance, we refer to such

architectures as single instruction multiple data (SIMD).

In contrast, a multiple instruction multiple data (MIMD) architecture comprises

a number of independent processing units, each concurrently executing its own se-

quence of instructions. However, programming for multiprocessing systems is a task

fraught with pitfalls, as Seymour Cray was alleged to have once quipped: “If you were

ploughing a field, which would you rather use: two strong oxen or 1024 chickens?”

His remark alludes to the challenge of synchronising a large number of independent

processors with each one working on a small part of a larger problem while sharing

the same working memory. It is much easier for people to work with a few oxen than

to try and herd a large number of chickens.

Such systems with multiple, independent processors are therefore suited to do-

mains involving very large datasets and have intrinsically parallelisable solutions that

2https://wiki.cc.gatech.edu/folklore/index.php/Burroughs_Third-Generation_

Computers

3

CHAPTER 1. INTRODUCTION

do not require much synchronisation or communication between individual proces-

sors. This correlates closely with many scientific computation and simulation prob-

lems, and the insatiable demand for computational power in these domains drove the

development of massively parallel computers in the decades that followed. Even Cray

eventually conceded to the fact that multiprocessing was inevitable, as the costs and

resources required to breed and feed the two hypothetical oxen became prohibitive

compared to breeding, feeding and herding 1024 chickens.

Meanwhile, as multiprocessor computers grew increasingly larger, it became dif-

ficult to maintain fast access to the same shared memory for all processor nodes.

Cutting-edge systems therefore moved towards a more non-uniform memory archi-

tecture (NUMA), where each node had fast access to local memory, but access to

globally shared or non-local data took correspondingly longer. The lessons learnt

have strongly influenced the design today’s high-performance hardware, even in the

context of personal computing, as seen with the recent development of general-purpose

graphical processing units (GPGPUs). On a more distributed and larger scale, Be-

owulf clusters of networked computers may be seen as a looser interpretation of the

NUMA paradigm. Such systems typically form the workhorse behind many of today’s

large-scale scientific simulations, at least in part due to the fact that they can be and

often are built from cheap and readily available commodity hardware.

1.1.4 A Supercomputer on Every Desk

Moving back to the sphere of personal computing, it was not until the last decade that

shared memory SMP computers managed to establish a presence. The explanation for

this is twofold, yet complementary: on the one hand, the cost of motherboards that

can accommodate multiple processor packages were significantly more expensive, and

so were only sought after by users with specialist needs. On the other, the inability

for predominantly single-threaded software—such as a game or a word-processor—to

4

1.2. APPROACHES TO CONCURRENT SOFTWARE

take advantage of multiple processors, meant that the vast majority of users had no

interest in resorting to SMP: simply waiting another 18 months had been sufficient.

However as raw processor speeds have plateaued in recent years, we can no longer

afford to dismiss multiprocessor systems as being too difficult to program. Traditional

supercomputing problems—large-scale, loosely-coupled computations such as physical

simulations or graphical rendering—have been well-catered for, but they encompass

only a small fraction of our day-to-day software usage. We need to figure out how to

make concurrency accessible and manageable for everyday software.

1.2 Approaches to Concurrent Software

We resort to concurrency with the hope that the more computational power we have

at our disposal, the faster our programs will run. How successfully this is in practice

depends on how much concurrency we can exploit in our programs. How we model

concurrency has a large influence on how we—as software engineers—think and reason

about our concurrent programs, which in turn influences the ease with which we can

exploit concurrency. This chapter demonstrates using a few examples why concurrent

programming has such a reputation for being difficult, then review some of the basic

models of concurrency.

1.2.1 Concurrency versus Parallelism

In general computing literature, the terms ‘concurrency’ and ‘parallelism’ are often

taken as synonyms and used interchangeably by many, while others make a clear

distinction between the two. We will afford a few sentences to clarify what we mean

by each, in the context of this thesis.

When we say parallelism, we mean the extraction of better performance from a

program by inferring computations that do not interact with each other then simul-

5

CHAPTER 1. INTRODUCTION

taneously carrying them out, and the writing of programs in such a way as to make

this process easy or possible for the compiler. Concurrency on the other hand means

the use of interdependent threads of execution as a means of structuring the control

flow of programs. The focus of this thesis is on explicit concurrency.

1.2.2 Counting: easy as 0, 1, 2. . .

Consider the problem of incrementing a counter, represented in Haskell using a mu-

table reference:

type CounterIORef = IORef Integer

makeCounterIORef :: IO CounterIORef

makeCounterIORef = newIORef 0

The incrementIORef program could then be implemented as follows:

incrementIORef :: CounterIORef → IO ()

incrementIORef counter = do

n ← readIORef counter

writeIORef counter (n + 1)

When only a single instance of incrementIORef is executing, the above code behaves

as expected. Suppose however, that two instances of incrementIORef were executing

at the same time. This results in four possible interleavings of the two readIORef and

writeIORef operations, not all of which would have the intended effect of incrementing

the counter twice. For example, the following interleaving would only increment the

counter by one:

Thread A Thread B counter

nA ← readIORef counter 0

nB ← readIORef counter 0

6

1.2. APPROACHES TO CONCURRENT SOFTWARE

writeIORef counter (nB + 1) 1

writeIORef counter (nA + 1) 1

Typically, reading from and writing to mutable variables are relatively fast primitive

operations. When they occur in immediate succession, the probability of Thread A

being interleaved by Thread B in the above manner is very small, and can easily slip

through seemingly thorough empirical testing. Such errors are termed race conditions,

and can occur whenever there is the possibility of concurrent access to any shared

resource.

1.2.3 Shared Memory and Mutual Exclusion

The most widely used approach to prevent the kind of race conditions we have seen in

the previous section is to simply prevent concurrent accesses to the shared resource,

via a selection of related techniques—locks, semaphores, critical sections, mutexes—

all of which are based on the principle of mutual exclusion.

Without discussing implementation details, let us assume the existence of two

primitives operations—lock and release—with the following behaviour: lock attempts

to acquire exclusive access to a given mutable variable; if the variable is already

locked, lock waits until it becomes available before proceeding. Its counterpart release

relinquishes the exclusivity previously obtained.

We can now eliminate the earlier race condition as follows:

incrementlock :: Counterlock → IO ()

incrementlock counter = do

lock counter

incrementlock counter

release counter

7

CHAPTER 1. INTRODUCTION

Even if Thread A were interleaved mid-way, Thread B cannot proceed past the lock

primitive until Thread A releases counter , ruling out the earlier race condition:

Thread A Thread B counter

lock counter 0

nA ← readIORef counter 0

lock counter 0

writeIORef counter (nA + 1)
...

blocked on counter
...

1

release counter 1

nB ← readIORef counter 1

writeIORef counter (nB + 1) 2

release counter 2

Such two-state locks can easily be generalised to n states with counting semaphores

where some limited concurrent sharing may take place.

1.2.4 Example: Deadlock

Let us consider a slightly more interesting example: we are required to implement a

procedure to increment two given counters in lock-step. A first attempt may be as

follows:

increment′pair :: Counterlock → Counterlock → IO ()

increment′pair c0 c1 = do

incrementlock c0

incrementlock c1

However, this does not have the desired effect, because there is an intermediate state

between the two calls to incrementlock when c0 has been incremented but c1 has not,

yet neither is locked. A better implementation might lock both counters before in-

crementing:

8

1.2. APPROACHES TO CONCURRENT SOFTWARE

incrementpair :: Counterlock → Counterlock → IO ()

incrementpair c0 c1 = do

lock c0

lock c1

incrementlock c0

incrementlock c1

release c0

release c1

While this version ensures that the two counters are updated together, it however

suffers from a more subtle problem. If two threads A and B both attempt to increment

the same pair of counters passed to incrementpair in a different order, a potential

deadlock situation can occur:

A: incrementpair c0 c1 B: incrementpair c1 c0

lock c0 lock c1

lock c1 lock c0
...

blocked on c1
...

...

blocked on c0
...

Neither thread can make progress, as they attempt to acquire a lock on the counter

which is being held by the other. This could be solved by always acquiring locks in a

specific order, but enforcing this is not always straightforward.

Correctness considerations aside, there are the issues of code reuse and scalability

to consider. In terms of reuse, ideally we would not want to expose increment , as only

incrementlock is safe for concurrent use. On the other hand, to build more complex

operations on top of the basic ‘increment’ operation, chances are that we would need

access to the unsafe increment implementation. Unfortunately exposing this breaks

9

CHAPTER 1. INTRODUCTION

the abstraction barrier, with nothing to enforce the safe use of increment other than

trust and diligence on the part of the programmer.

On the issue of scalability, there is also some tension regarding lock granularity,

inherent to mutual-exclusion. Suppose we have a large shared data structure, and

our program makes use of as many threads as there are processors. In order to

allow concurrent access to independent parts of the data structure, we would need

to associate a lock with each constituent part. However acquiring a large number of

locks has unacceptable overheads; particularly noticeable when there are only a small

number of threads contending for access to the shared data. On the other hand,

increasing lock granularity would reduced the number of locks required, and in turn

the overheads associated with taking the locks, but this would also rule out some

potential for concurrency.

1.2.5 Message Passing and Implicit Synchronisation

The message passing paradigm focuses on the sending of messages between threads

in the computation as a primitive, rather than the explicit use of shared memory

and mutual exclusion as a medium and protocol for communication. Conceptually,

this is a higher-level notion which abstracts the act of sending a message from the

how, leaving it to the run-time system to choose the appropriate means. As a result,

programs written using this approach have the potential to scale from single processors

to distributed networks of multiprocessor computers.

Established languages and frameworks supporting message passing concurrency

include Erlang [AVWW96], the Parallel Virtual Machine (PVM) [GBD+94] and the

Message Passing Interface (MPI) [GLS99]. In Haskell, we can implement our previous

counter example using channels, where Chan α is the polymorphic type of channels

carrying messages of type α:

data Action = Increment | Get (Chan Integer)

10

1.2. APPROACHES TO CONCURRENT SOFTWARE

type CounterChan = Chan Action

Here we have defined a new datatype Action enumerating the operations the counter

supports. A counter is then represented by a channel accepting such Actions, to which

we can either send an Increment command, or another channel on which to return the

current count via the Get command.

The makeCounterChan function returns a channel, to which other threads may send

Actions to increment or query the counter:

makeCounterChan :: IO CounterChan

makeCounterChan = do

counter ← newChan

value ← newIORef 0

forkIO ◦ forever $ do

action ← readChan counter

n ← readIORef value

case action of

Increment→ writeIORef value (n + 1)

Get result → writeChan result n

return counter

Even though we make use of an IORef to store the current count, we have implicitly

avoided the mutual exclusion problem by only allowing the forked thread access,

essentially serialising access to the mutable variable. Implementing an incrementChan

operation is now straightforward:

incrementChan :: CounterChan → IO ()

incrementChan counter = writeChan counter Increment

If concurrent threads invoke incrementChan on the same counter, the atomicity of the

writeChan primitive rules out any unwanted interleavings.

11

CHAPTER 1. INTRODUCTION

Unfortunately, just like the previous mutual exclusion-based solution, it is not

trivial to build upon or to reuse incrementChan—say—to increment two counters in

lock-step.

1.2.6 Software Transactional Memory

The popularity of mutual exclusion could be partially attributed to the fact that its

implementation is relatively easy to comprehend. On the other hand, managing and

composing lock-based code is rather error-prone in practice.

Automatic garbage collection frees the programmer from having to manually man-

age memory allocation. Laziness in functional programming allows us to write efficient

higher-level programs without having to manually schedule the order of computation.

In a similar vein [Gro07], software transactional memory (STM) [ST97] allows us

to write programs in a compositional style in the presence of concurrency, without

requiring us to manually manage undesired interleavings of operations in a shared

memory environment.

The idea of using transactions to tackle concurrency originated in the context of

concurrent databases, which face similar issues of undesirable interleavings of basic

operations when different clients attempt to access the same database at the same

time. Rather than explicitly locking any requisite resources before proceeding with

some sequence of operations on shared data, the client simply informs the database

server that the operations are to be treated as a single transaction. From the per-

spective of other database clients, the server ensures that none of the intermediate

states of the transaction is visible, as if the entire transaction took place as a sin-

gle indivisible operation. Should it fail for whatever reason, the outside perspective

would be as if the transaction hadn’t taken place at all.

STM implements the same concept, but with shared memory being the ‘database’

and individual program threads taking the rôle of the ‘clients’. STM takes an op-

12

1.2. APPROACHES TO CONCURRENT SOFTWARE

timistic approach to concurrency: transactions are allowed to overlap in their exe-

cution, making the most of the available hardware. Conflicts between transactions

arise only when an earlier transaction commits a change to a shared variable which

a later transaction depended on. Should this happen, the later one is aborted and

retried. In particular, a transaction is only aborted when another one has successfully

committed, thereby ensuring overall progress and the absence of deadlocks.

Under the Haskell implementation of STM, transactional computations returning

a value of type α have the type STM α. We can give an almost identical implementa-

tion of incrementSTM as that of incrementIORef , but uses TVars (transactional variables)

instead of IORefs, and results in an STM action rather than an arbitrary IO action:

type CounterSTM = TVar Integer

incrementSTM :: CounterSTM → STM ()

incrementSTM counter = do

n ← readTVar counter

writeTVar counter (n + 1)

To effect a transaction, we have at our disposal an atomically primitive, which takes

an STM α and returns a runnable IO α action. The following program fragment

increments the given counter twice.

do

counter ← atomically (newTVar 0)

forkIO (atomically (incrementSTM counter))

forkIO (atomically (incrementSTM counter))

In particular, the atomically primitive guarantees that the two instances of incrementSTM

do not interleave each other in any way of consequence.

STM makes it straightforward to reuse existing code: simply sequencing two trans-

actions one after another creates a larger composite transaction that increments both

13

CHAPTER 1. INTRODUCTION

counters atomically when executed:

incrementBoth :: CounterSTM → CounterSTM → STM ()

incrementBoth c0 c1 = do

incrementSTM c0

incrementSTM c1

This section presented but a brief overview of STM. We will examine and discuss it

in more depth in Chapter 2.

1.3 Thesis Overview

The remaining chapters of this thesis comprise of the following:

Chapter 2 provides additional background on the use and implementation of trans-

actional memory, followed by a brief primer on STM Haskell.

Chapter 3 reviews the notions of denotational, big- and small-step operational se-

mantics along with some reasoning techniques, illustrated using a small lan-

guage. We then present a compiler for this language and its corresponding

virtual machine, to show the essence of a compiler correctness proof.

Chapter 4 implements executable semantics for the above language as a Haskell pro-

gram. We demonstrate the use of QuickCheck in conjunction with the Haskell

Program Coverage toolkit for randomised testing of the results established in

the previous chapter.

Chapter 5 puts the above empirical approach into practice, on a simplified subset

of STM Haskell with a high-level stop-the-world semantics, linked by a compiler

to a virtual machine with a log-based implementation of transactions.

14

1.4. CONTRIBUTIONS

Chapter 6 gently introduces the Agda proof assistant, for the purpose of construct-

ing formal machine-checked proofs, and culminates in a verified formalisation

of the results of chapter 3.

Chapter 7 extends the notion of compiler correctness to non-deterministic languages

using our new notion of combined machines, illustrated using the simple Zap

language, for which a complete compiler correctness result is produced and

discussed.

Chapter 8 scales our new technique to include explicit concurrency, by introducing

a ‘fork’ primitive and threads. We replay the compiler correctness proof of the

previous chapter in this new setting with the help of a few extra concurrency

lemmas.

Chapter 9 develops the concept of consistency between transaction logs and the

heap, which we use to establish the correctness of a log-based implementation

of software transactional memory in the presence of arbitrary interference by

an external agent.

Chapter 10 concludes with a summary of this thesis, and a list of various future

research directions.

The reader is assumed to be familiar with functional programming and their type

systems; knowledge of Haskell would be a bonus. Relevant ideas are introduced when

appropriate, with references for further reading.

1.4 Contributions

The contributions of this thesis are as follows:

• Identification of a simplified subset of STM Haskell with a high-level stop-the-

world semantics for transactions.

15

CHAPTER 1. INTRODUCTION

• A virtual machine for this language, in which transactions are implemented fol-

lowing a low-level log-based approach, along with a semantics for this machine.

• A compiler linking the language to the virtual machine with a statement of

compiler correctness, empirically tested using QuickCheck and HPC.

• The core idea of a combined machine and semantics, that allows us to establish

a direct bisimulation between the high-level language and the low-level virtual

machine.

• Putting the above technique into practice using the Agda proof assistant, giving

a formal compiler correctness proof for a language with a simple notion of non-

determinism.

• Showing that our technique scales to a language with explicit concurrency, com-

plete with a formal proof.

• A formal correctness proof for a transactional language that shows the equiva-

lence of the log-based approach and the stop-the-world semantics for transac-

tions.

Earlier accounts of some of these have been published in the following papers,

• Liyang HU and Graham Hutton [HH08]. “Towards a Verified Implementation of

Software Transactional Memory”. In Proceedings of the Symposium on Trends

in Functional Programming. Nijmegen, The Netherlands, May 2008.

• Liyang HU and Graham Hutton [HH09]. “Compiling Concurrency Correctly:

Cutting Out the Middle Man”. In Proceedings of the Symposium on Trends in

Functional Programming. Komárno, Slovakia, June 2009.

but have since been refined and expanded upon in this thesis.

16

1.4. CONTRIBUTIONS

The complete source code to this thesis, in the form of literate Haskell and Agda

documents, may be found online at http://liyang.hu/#thesis .

17

CHAPTER 1. INTRODUCTION

18

Chapter 2

Software Transactional Memory

While mutual exclusion is the dominant paradigm for shared memory concurrent pro-

gramming, it can be difficult to reason about and is error-prone in practice. Taking a

cue from the distributed databases community, software transactional memory applies

the concept of transactions to shared memory concurrent programming. In this chap-

ter, we introduce the notion of transactions and transactional memory, along with

high-level overviews of how transactional memory can potentially be implemented.

We then give a brief history of the development of the approach up to the present

day, followed by a primer to the implementation as found in the Glasgow Haskell

Compiler.

2.1 Database Transactions

Consider a database server that supports multiple concurrent clients. Each client may

need to carry out some complex sequence of operations, and it is up to the database

management server to ensure that different clients do not make conflicting changes

to the data store. As with any concurrent software, the clients could obtain exclusive

access to part of the database by taking a lock, but without careful coordination

between clients this can result in deadlock situations, as we have seen in the previous

19

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

chapter. This problem is only exacerbated by the possibility of failure on the part

of the client software or hardware: a failed client could be holding a lock to critical

parts of the database, thus preventing others from making progress.

The alternative is to make use of the concept of transactions [Dat95], which pro-

vides a higher-level approach to managing concurrency than explicit locking or mutial

exclusion. A client starts a transaction by issuing a begin command to the server.

Thereafter, all subsequent operations until the final commit command are considered

part of the transaction. The intended behaviour of such transactions is informally

captured by the following four properties, abbreviated by the term ‘ACID’ [Gra81]:

Atomicity The sequence of operations take place as if they were a single indivisible

operation, ensuring that transactions follow a simple ‘all-or-nothing’ semantics:

if any of its constituent operations fail, or if the transaction is aborted for

whatever reason, the server guarantees that the resulting state of the database

is as if none of the operations took place at all.

Consistency The sequence of operations cannot put the data store into a state that

is inconsistent with pre-defined invariants of the database. Were this the case,

the server would cause the commit operation to fail. Typically, such invariants

would be specific to the particular database application, and serve as a safety

net to catch client-side bugs.

Isolation As a transaction is running, other clients cannot observe any of its in-

termediate states. Conversely, until the transaction has completed and been

committed to the data store, it cannot influence the behaviour other concurrent

clients.

Durability Once the database server has accepted a transaction as being committed,

the effects of the operations on the database store should persist, even in the

event of system failure.

20

2.2. TRANSACTIONAL MEMORY

This approach to concurrency significantly simplifies client implementation. If a trans-

action fails—say because another client successfully committed a conflicting change—

the original client will be notified and may simply retry the transaction at a later

point. Atomicity ensures that the partially completed transaction is automatically

‘rolled back’: the client need not carefully undo the changes it had made so far to

avoid affecting subsequent transactions, while isolation ensures that potentially in-

consistent intermediate states of the transaction is not visible to others.

Furthermore, this approach is intended to be optimistic in the sense that we

can always proceed with any given transaction, as there are no locks to acquire,

making deadlock a non-issue. The trade-off is that the transaction may later fail or

be unable to commit, should a different transaction commit a conflicting change in

the meantime. Nevertheless, the system as a whole has made progress.

2.2 Transactional Memory

Transactional memory applies the idea of the previous section to concurrent software,

with shared memory playing the rôle of the database store and individual program

threads acting as the clients. Clearly there will be some differences: with shared

random-access memory being volatile, we may not be able to satisfy the durability

aspect of the ACID properties in the event of a power failure, for example. In addition,

consistency is more an issue of sequential program correctness and hence largely

orthogonal to our main concern of concurrency. The focus of transactional memory

is therefore on providing atomicity and isolation in the presence of concurrency.

In this section, we give a brief overview of various developments leading up to

the current state of the art in the application of transactional memory to concurrent

software.

21

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

2.2.1 Hardware Transactional Memory

While it is possible to implement synchronisation between multiple parties using

only primitive read and write operations, for example with Lamport’s bakery algo-

rithm [Lam74], such software-only techniques do not scale well with the addition of

further participants. Rather, most modern architectures feature in one form or an-

other a compare-and-swap (CAS) instruction that compares a given value to a word

in memory and conditionally swaps in a new value if the comparison yields true.

The key property of a CAS instruction is that it does so in an atomic and isolated

manner, enforced at the hardware level. This is a powerful primitive on which more

sophisticated synchronisation constructs can be readily built.

In a sense, a compare-and-swap primitive already allows us to implement simple

word-sized transactions on the hardware level: the CAS instruction can detect inter-

ference by comparing the current value of the word with what we had read during the

transaction, and if they match, commit the new value to memory. Features resem-

bling transactions are more readily observed on other architectures—such as the DEC

Alpha [JHB87]—that provided pairs of load-linked and store-conditional (LL and SC)

primitives. The load-linked instruction—as well as fetching a word from memory—

additionally places a watch on the system memory bus for the address in question.

The subsequent store-conditional instruction proceeds only when no writes to the ad-

dress has occurred in the meantime. Of course, the programmer must still check for

its success, and either manually retry the operation, or attempt an alternative route.

Herlihy and Moss [HM93] later extended this approach to explicitly support multi-

word transactions, building upon existing cache-coherency protocols for multiproces-

sor architectures. In effect, a transactional cache local to the processor buffers any

tentative writes, which are only propagated to the rest of the system after a success-

fully commit. They leverage existing cache-coherency protocols to efficiently guard

against potential interference. As the size of the transactional cache is limited by

22

2.2. TRANSACTIONAL MEMORY

hardware, this sets an upper bound on the size of the transactions that can occur.

To this end, Herlihy and Moss suggest virtualisation as a potential solution, trans-

parently falling back to a software-based handler in much the same way as virtual

memory gives the illusion of a practically infinite memory space.

2.2.2 Software Transactional Memory

While some form of hardware support beyond the basic compare-and-swap would be

desirable for the implementation of transactional memory, Shavit and Touitou [ST97]

propose a software-only version of Herlihy and Moss’s approach, which can be effi-

ciently implemented on existing architectures that support CAS or LL/SC instruc-

tions. In purely pragmatic terms, it does not require the level of initial investment

required by a hardware-assisted solution.

In his thesis, Fraser [Fra03] demonstrated that non-trivial data structures based on

his implementation of STM had comparable performance to other lock-based or intri-

cately crafted lock-free designs, running on a selection of existing modern hardware.

In this sense, STM could be considered practical for everyday use.

However, even though transactional algorithms can be derived from existing se-

quential ones by simply replacing memory accesses with calls to the STM library,

the impedance mismatch of having to use library calls for mutating variables makes

programming in the large somewhat impractical in many of today’s mainstream lan-

guages. Furthermore, it was not possible to prevent a programmer from directly

accessing shared data and circumventing the atomicity and isolation guarantees be-

stowed by the transaction.

Harris and Fraser [HF03] experimented with transactional extensions to the Java

language, along with an STM run-time library. Simply wrapping an existing block

of code within an atomic construct executes it within a transaction. Upon reaching

the end of such a block, the run-time system would attempt to commit its changes,

23

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

and should this fail, retries the transaction from the beginning.

Harris and Fraser’s Java bytecode translator traps in-language read and writes to

the program heap, replacing them with transaction-safe alternatives. However, this

does not prevent Java’s native methods from surreptitiously modifying the heap or

performing irreversible side-effects such as input or output, which would be prob-

lematic given that a transaction may execute more than once before it successfully

commits. Arbitrary Java code is permitted within atomic blocks, but calls to for-

eign methods within a transaction would raise run-time exceptions as these have the

potential to void any atomicity or isolation guarantees of the system. At present,

transactional memory has yet to be accepted by the wider Java community, al-

though there is much pioneering work in both commercial [Goe06] and academic

contexts [HLM06, KSF10].

Following on from this work, Harris et al. [HMPJH05] presented an implementa-

tion of software transactional memory for the Glasgow Haskell Compiler (GHC) as

part of their paper entitled Composable Memory Transactions. Contributions of this

work include the use of Haskell’s type system to ensure that only those operations that

can be rolled back are used in transactions, along with an operator for composing pairs

of alternative transactions. In later work, they introduce ‘data invariants’ [HPJ06]

for enforcing consistency.

More recent work has brought transactional memory to other programming lan-

guages [Tan05, Nodir0o0], as well as more efficient [Enn05] or alternative low-level

implementations [ATS09].

2.3 Implementing Transactions

The high-level view of transactions is that each one is executed atomically and in

isolation from other concurrent threads, as if the entire transaction took place in a

24

2.3. IMPLEMENTING TRANSACTIONS

single instant without any of its intermediate states being visible by concurrently

running threads. Indeed, an implementation could simply suspend all other threads

upon starting a transaction, and resume them after the transaction has ended. Prag-

matically, this stop-the-world view can be easily achieved by ensuring that only one

transaction is ever executing at any point in time, say using a global mutual-exclusion

lock. While this approach would be easy to implement, it prevents transactions from

proceeding concurrently, and would not be make good use of multi-core hardware.

2.3.1 Log-Based Transactions

A concurrent implementation of transactions might make use of the notion of a trans-

action log. During the execution of a transaction, its associated log serves to isolate

it from other concurrently running threads. Rather than immediately acting on any

side-effecting operations, the run-time makes a record of these in the log, applying

them globally only when the transaction successfully commits.

In the case of shared mutable variables, the log essentially acts as a transaction-

local buffer for read and write operations: for each variable, only the first read would

come from the shared heap, and only the last value written goes to the shared heap; all

intermediate reads and writes operate solely on the log. At the end of the transaction,

if any undesired interference has occurred, say due to another transaction having

completed in the meantime, the run-time system need only discard the log and re-run

the transaction, since no globally-visible changes have been made. Therefore it would

be only be appropriate to allow operations that can be buffered in some suitable

manner to be recorded in the transaction log, such as changes to shared mutable

variables; external side-effects—such as launching missiles [HMPJH05]—cannot be

undone, and should be prevented. As long as the transaction log corresponds to a

consistent state of the current shared heap on the other hand, the new values recorded

in the log can then be applied to the global heap in an atomic manner.

25

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

A simple implementation of the commit operation need only ensure that glob-

ally, only one commit is taking place at any time, say using a global lock. Even

then, we still make gains on multicore systems, as the bodies of transactions still run

concurrently. A more sophisticated implementation might allow transactions to com-

mit concurrently, for example by making use of specialised lock-free data structures.

While concurrent commits would be trickier to implement, additional complexities

are restricted to the run-time system implementer rather than the proletarian pro-

grammer

2.3.2 Alternative Approaches to Atomicity

Atomicity is undoubtedly a useful tool for writing programs in a modular, reusable

manner in the face of the challenges posed by concurrency. As well as using the

notion of a transaction log, there are a number of alternative approaches for creating

an illusion of atomicity:

Compensating transactions [Gra81, KLS90] may be thought of as a conflict-detection

framework, in which the programmer manually specifies how the whole system can be

returned to its initial state, should a transaction need to be retried. A transactions

could abort for a variety of reasons, and the roll-back code must be able to deal with

any failure mode. The as the roll-back operation is manually defined on a case-by-case

basis, there is the additional challenge of ascertaining its correctness. The advantage

on the other hand is that we may perform arbitrary I/O, provided we can undo them

in an undetectable way.

Lock inference [FFL05, CGE08] on the other hand attempts to automatically

insert the fine-grained locks that a programmer might have used, via various code

analysis techniques. For reasons of safety, the inference of such locks must necessarily

be conservative, and does not always allow for optimal concurrency. Additionally, as

code analysis techniques are generally ideally performed on whole programs, we might

26

2.4. HASKELL AND SEQUENTIAL COMPUTATION

lose modularity on the level of object files and/or require the use of sophisticated type-

systems [CPN98]. Since roll-back is no longer necessary in this approach, we can allow

arbitrary I/O side-effects, but isolation would only be afforded to mutable variables.

2.4 Haskell and Sequential Computation

In this section we will revisit some basic aspects of Haskell required for the under-

standing of the implementation of STM given by Harris et al. [HMPJH05]. The

material should be accessible to the reader with a general understanding of func-

tional programming; no working knowledge of Haskell in particular is required. To

aid readability, we will also make use of the following colour scheme for different

syntactic classes:

Syntactic Class Examples

Keywords type, data, let, do. . .

Types (), Bool, Integer, IO. . .

Constructors False, True, Just, Nothing. . .

Functions return, getChar, readTVar. . .

Literals 0, 1, ”hello world”. . .

2.4.1 Monads for Sequential Computation

The Haskell programming language [PJ03a, Mar10]—named after the logician Haskell

B. Curry—can be characterised by its three key attributes: functional, pure, and lazy.

Functional programming languages are rooted in Church’s λ-calculus [Chu36, Bar84],

and emphasise the evaluation of mathematical functions rather than the manipulation

of state. The core λ-calculus ideas of abstraction and application are typically given

prominent status in such languages. In turn, purity means functions depend only

on their arguments, eschewing state or mutable variables, akin to the mathematical

27

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

notion of functions. The same program expression will always evaluate to the same

result regardless of its context, and replacing an expression with its value leaves the

meaning of the program unchanged. In other words, the language is referentially

transparent [Sab98]. The laziness aspect of Haskell means that expressions are only

evaluated when their values are required, thus the evaluation order—or even whether

something is evaluated at all—is not necessarily immediately apparent from the pro-

gram text. Together, these properties meant that for some time, it was not clear

how to write programs that are more naturally expressed in an imperative, sequential

style, or to deal with input and output.

A solution was found in the form of monads, which Moggi [Mog89] and Wadler [Wad92]

adopted from category theory [ML98]. In the context of computer science, a monad

could be viewed as a ‘container’ for some general notion of computation, together

with an operation for combining such computations. As it turns out, sequential com-

putation is just one instance of a monad, as we shall see in the following section.

2.4.2 Modelling Mutable State

Since Haskell is referentially transparent, we cannot directly work with mutable vari-

ables, but we can model them. Let us consider the case of a single mutable variable:

the basic approach involves passing around the current value of the mutable variable—

say, of type σ—as an extra argument. Thus, rather than implementing a function

of type α → β which cannot access any mutable state, we instead write one of type

α → σ → (σ, β). This takes the current value of the mutable variable as an extra

argument and returns a new value of the variable, together with the original result of

type β.

As we will frequently make use of similar types that mutate some given state, it

is convenient to define the following State synonym:

type State σ α = σ → (σ, α)

28

2.4. HASKELL AND SEQUENTIAL COMPUTATION

A value of type State σ α can be regarded as a computation involving some mutable

σ state that delivers an α result. Thus we can write the following definitions of read

and write, corresponding to our intuition of a mutable variable:

read :: State σ σ

read = λs → (s , s)

write :: σ → State σ ()

write s ′ = λs → (s ′, ())

The read computation results in a value that is the current state, without changing

it in any way. On the other hand, the write computation replaces the current state s

with the supplied s ′, giving an information-free result of the singleton () type.

With these two primitives, we can implement an increment operation as follows:

increment :: State Integer ()

increment = λs →

let (s ′, n) = read s

in write (n + 1) s ′

The result of read is bound to the name n, then the state is updated with n +1 by the

subsequent write. The initial state s we have been given is passed to read—potentially

resulting in a different state s ′—which is then passed along to write.

In the above instance we know that read does not change the state, but in general

any State σ α computation could, therefore we must carefully thread it through

each computation in order to maintain the illusion of mutable state. The following

definition increments the counter twice:

twice :: State Integer ()

twice = λs →

let (s ′,) = increment s

in increment s ′

29

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

Were we to inadvertently pass the initial s to the second invocation of increment as

well, we would have made a copy of the initial state, having discarded the updated s ′.

The resulting twice would only appear to increment the counter once, despite its two

invocations of increment. Explicit state threading is not only rather tedious, small

errors can also silently lead to very unexpected results.

Fortunately, the act of threading state around is sufficiently regular that we can

implement a general purpose operator that hides away the details of the plumbing:

(>>=) :: State σ α→ (α→ State σ β)→ State σ β

ma >>= fmb = λs → let (s ′, a) = ma s in fmb a s ′

The >>= operator—pronounced ‘bind’—takes on its left a computation delivering

an α; its right argument is a function from α to a second computation delivering a

β. Bind then passes the result of its left argument—along with the modified state

s ′—and threads both through its right argument, delivering a stateful computation

of type β. Using this operation, we can rewrite increment and twice as follows:

increment′ :: State Integer ()

increment′ =

read >>= λn →

write (n + 1)

twice′ :: State Integer ()

twice′ =

increment′ >>= λ →

increment′

In the above definitions, we no longer need to explicitly thread state around as this

is handled automatically by the >>= operation, and the resulting code has a much

more imperative appearance. In fact, Haskell provides a few helper functions as well

30

2.4. HASKELL AND SEQUENTIAL COMPUTATION

as some lightweight syntactic sugar to support exactly this style of programming,

allowing the following succinct definition:

increment′′ :: State Integer ()

increment′′ = do

n ← read

write (n + 1)

twice′′ :: State Integer ()

twice′′ = do

increment′′

increment′′

Here, we may think of the expression n ← read in the definition of increment′′ as

binding the result of read to the name n, and in fact desugars to the same code as

that of increment′. Should we merely want to run a computation for its side-effects,

as we do in the definition of twice′′, we simply omit both the ← operator and the

resulting name.

To prevent direct manipulation or duplication of the threaded state, we can make

State an opaque data type to its users, hiding the above implementations, and offer

only read and write as primitives for accessing the state.

2.4.3 Monadic Properties

So far in this section we have deliberately avoided using the mathematical term

‘monad’. In fact, some members of the Haskell community have jokingly remarked

that they would rather have used the phrase ‘warm fuzzy thing’ [PJ03b] instead. The

>>= operator above already constitutes the primary component of the definition of

the State σ monad, and we need only one further function to complete it.

31

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

return :: α→ State σ α

return a = λs → (s , a)

Here, the return function produces a trivial computation that results in the value of its

given argument. Were they to agree with the mathematical definition of a monad, our

definitions of bind and return for the State σ monad must satisfy certain properties,

which are as follows:

return a >>= fmb ≡ fmb a (ident-left)

ma >>= return ≡ ma (ident-right)

(ma >>= fmb)>>= fmc ≡ ma >>= (λa → fmb a >>= fmc) (assoc)

The first two specify that return is a left as well as right-identity for >>=, while

the third says that the >>= operator is associative, modulo the binding operation

inherent in the use of >>=. Using the power of equational reasoning afforded to us in

this pure functional setting, we can show that our definition of >>= and return for the

State σ monad satisfies the above laws by simply expanding the relevant definitions.

For example, the (ident-left) property can be shown as follows:

return a >>= fmb

≡{ definition of >>= }

λs → let (s ′, a ′) = return a s in fmb a ′ s ′

≡{ definition of return }

λs → let (s ′, a ′) = (s , a) in fmb a ′ s ′

≡{ substitute for a and s }

λs → fmb a s

≡{ η-contract }

fmb a

32

2.4. HASKELL AND SEQUENTIAL COMPUTATION

2.4.4 Input, Output and Control Structures

Now that we have shown how we can sequence operations on mutable state, what

about input and output? In a sense, we can conceptually think of I/O as mutating

the outside world, and indeed this is the approach used in Haskell. By threading a

token representing the state of the real world through a program in a similar way

to the State σ monad, we ensure that real-world side-effects occur in a deterministic

order. For example, the IO type in Haskell could be defined as follows,

type IO α = State RealWorld α

where RealWorld is the opaque type of the token, inaccessible to the end-programmer.

Assuming two primitves getChar :: IO Char and putChar :: Char → IO () for interacting

with the user, we can implement an echo procedure as follows:

echo :: IO ()

echo = do

c ← getChar

putChar c

In Haskell, monadic actions such as getChar or echo are first-order, and when we write

a program, we are in fact just composing values—evaluating echo for example does

not prompt the user for a character nor print one out, it merely results in a value of

type IO () corresponding to the composition of getChar and putChar. The only way to

make echo actually perform input and output is to incorporate it into the definition

of the system-invoked main :: IO () action.

Being able to manipulate monadic actions is a very powerful concept, and allows us

to create high-level control structures within the language itself. For example, there’s

no need for Haskell to have a built-in for-loop construct, because we can implement

it ourselves:

33

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

for :: Integer→ Integer→ (Integer→ State σ ())→ State σ ()

for m n body = case m < n of

False→ return ()

True→ do

body m

for (m + 1) n body

The for function invokes body with successive integers arguments, starting at m and

stopping before n. While the type of for explicitly mentions the State σ monad, IO

is a particular instance of this, so the expression for 0 10 (λ → echo) corresponds to

an IO action that echoes 10 characters entered by the user.

Haskell’s typeclasses permits a form of ad-hoc polymorphism, which allows us to

give type-specific instances of >>= and return, so the above definition of for works in

any monad we care to define. However a discussion of the topic [WB89] is beyond

the scope of—and not required for—this thesis.

2.5 Haskell and Concurrent Computation

While the Haskell language is pure and lazy, occasionally we still need to make use of

certain imperative features [PJ01]. By keeping such features within the IO monad—

where a token of the external world state is implicitly threaded through each IO

action—not only can we then guarantee a particular execution order, we also preserve

the purity of the rest of the language.

For example, in those cases where the only known efficient solution to a problem

is explicitly imperative, Haskell’s standard library provides true mutable variables in

the form of the IORef datatype, where IORef α is a reference to values of type α. Its

basic interface is given below:

newIORef :: α→ IO (IORef α)

34

2.5. HASKELL AND CONCURRENT COMPUTATION

readIORef :: IORef α→ IO α

writeIORef :: IORef α→ α→ IO ()

For multiprocessor programming, Parallel Haskell [THLPJ98] provides the par :: α→

β → β combinator, which instructs to the run-time system that it may be worth

evaluating its first argument in parallel (cf. section 1.2.1), and otherwise acting as

the identity function on its second argument. As is evident from its type, the par

combinator is pure and cannot perform any side-effects, nor can there be any inter-

action between its arguments even if they are evaluated in parallel. In fact, it would

be perfectly sound for an implementation of par to simply ignore its first argument.

However, explicit concurrency is a necessity as well as a convenience when used as a

mechanism for structuring many real-world programs. Concurrent Haskell [PJGF96]

introduced the forkIO :: IO () → IO () primitive, which provides a mechanism analo-

gous to the Unix fork() system call, sparking a separate thread to run its argument

IO () action. Forking is considered impure as threads can interact with each other via

a variety of mechanisms, and this fact is correspondingly reflected in the return type

of forkIO. With the mutability provided by IORefs, we can create concurrent appli-

cations in the same imperative manner as other lower-level programming languages.

For example, the following program launches a secondary thread to repeatedly print

the letter ‘y’, while mainChar carries on to print ‘n’s:

mainChar :: IO ()

mainChar = do

forkIO (forever (putChar ’y’))

forever (putChar ’n’)

The user would observe an unending stream of ‘y’s and ‘n’s, interleaved in an unspec-

ified manner.

To demonstrate concurrency with interaction, the following program launches two

35

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

threads, both repeatedly incrementing a shared counter, as well as an individual one.

The mainIORef function meanwhile checks that the shared counter indeed equals the

sum of the two thread-local ones.

type CounterIORef = IORef Integer

incrementIORef :: CounterIORef → IO ()

incrementIORef c = do

n ← readIORef c

writeIORef c (n + 1)

incBothIORef :: CounterIORef → CounterIORef → IO ()

incBothIORef sum local = do

incrementIORef sum

incrementIORef local

mainIORef :: IO ()

mainIORef = do

sum ← newIORef 0

a ← newIORef 0

b ← newIORef 0

forkIO (forever (incBothIORef sum a))

forkIO (forever (incBothIORef sum b))

forever (do

nsum ← readIORef sum

na ← readIORef a

nb ← readIORef b

when (nsum 6≡ na + nb) (do

putStrLn ”oh dear.”))

Such a program, while seemingly straightforward in intent, can leave the programmer

36

2.6. HASKELL AND SOFTWARE TRANSACTIONAL MEMORY

with exponential number of possibilities to consider as it scales; it would simply be

impractical to apply sequential reasoning to each potential interleaving. Worse still

is the fact that the unwanted interleavings are often the least likely to occur, and can

easily slip through otherwise thorough empirical testing.

The above program has a number of potentially rare and unexpected behaviours.

Firstly, the two forked-off children both increment the sum counter, and it is quite

possible for one thread’s execution of incrementIORef to interleave the readIORef and

writeIORef of the other thread—as we have witnessed in section 1.2.2—losing counts in

the process. Requiring our implementation of increment to follow a locking discipline

for each counter in question would eliminate this particular race condition. Even with

this fix in place, another issue remains: each thread first increments sum, followed

by its own specific counter; meanwhile, the main thread may interleave either child

in-between the two aforementioned steps, and observe a state in which the value of

sum disagrees with the sum of the values of a and b.

As a concurrent program increases in size, race conditions and deadlock can be-

come much more subtle and difficult to debug. Transactional memory—amongst other

high-level approaches—aims to avoid such bugs, while retaining the speed benefits of

concurrency.

2.6 Haskell and Software Transactional Memory

The previous section outlined the standard approach to concurrency in Haskell, which

makes use of explicit threading and mutable variables via forkIO and IORefs within

the IO monad. In an analogous fashion, STM Haskell provides mutable transactional

variables of type TVar α, with the following interface:

newTVar :: α→ STM (TVar α)

readTVar :: TVar α→ STM α

37

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

writeTVar :: TVar α→ α→ STM ()

The newTVar function creates a transactional variable initialised to some given value,

while readTVar and writeTVar inspect and mutate TVars. The type STM α may be

read as a transaction which delivers a result of type α. We may combine the above

three primitives to form more elaborate transactions, using the following monadic

sequencing operators:

(>>=) :: STM α→ (α→ STM β)→ STM β

return :: α→ STM α

The definition of bind for the STM monad composes transactions in a sequential

manner, while return takes a given value to a trivial transaction resulting in the same.

Transactions are converted to runnable IO actions via the atomically primitive,

atomically :: STM α→ IO α

which when run, performs the while transaction as if it were a single indivisible step.

The intention is that when implementing some data structure for example, we need

only expose the basic operations as STM α actions, without the need to anticipate

all the potential ways in which a user may wish to compose said operations in the

future. The end-programmer may compose these primitives together in any desired

combination, wrapped in an outer call to atomically. Concurrent transactions are

achieved through explicit threading, using forkIO as before, while STM run-time takes

care of the book-keeping necessary to guarantee that each composite transaction takes

place in an atomic and isolated manner.

STM Haskell makes use of the notion of a transaction log (as we mentioned pre-

viously in section 2.3.1) and may automatically re-run transactions when conflicts

are detected. Therefore it is important that STM actions only make changes to

transactional variables—which can be encapsulated within its corresponding log—

rather than arbitrary and possibly irrevocable IO actions. This an easy guarantee

38

2.6. HASKELL AND SOFTWARE TRANSACTIONAL MEMORY

because the Haskell type system strictly and statically differentiates between IO α

and STM α, and there is no facility for actually performing an IO action while in-

side the STM monad. Of course, a transaction can always manipulate and return

IO actions as first-order values, to be performed post-commit. In any case, as we

idiomatically perform the bulk of computations in Haskell using only pure functions,

these are necessarily free from side-effects. Thus they do not need to be kept track

of by the transaction implementation and may simply be discarded in the event of a

conflict. The ability to statically make this three-fold distinction between irrevocable

(namely IO) and revocable (or STM) side-effecting computations—used relatively in-

frequently in practice—alongside pure ones, makes Haskell an ideal environment for

an implementation of STM.

Let us now revisit the example of the previous section, with two threads competing

to incrementing a shared counter. Using STM, we can make the previous program

behave in the intended manner as follows, with only minor changes to its structure:

type CounterTVar = TVar Integer

incrementTVar :: CounterTVar → STM ()

incrementTVar c = do

n ← readTVar c

writeTVar c (n + 1)

incBothTVar :: CounterTVar → CounterTVar → STM ()

incBothTVar sum local = do

incrementTVar sum

incrementTVar local

mainTVar :: IO ()

mainTVar = do

sum ← atomically (newTVar 0)

39

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

a ← atomically (newTVar 0)

b ← atomically (newTVar 0)

forkIO (forever (atomically (incBothTVar sum a)))

forkIO (forever (atomically (incBothTVar sum b)))

forever (do

(nsum , na , nb)← atomically (do

nsum ← readTVar sum

na ← readTVar a

nb ← readTVar b

return (nsum , na , nb))

when (nsum 6≡ na + nb) (do

putStrLn ”oh dear.”))

That is, the counter is now represented as an integer TVar rather than an IORef.

Correspondingly, the incrementTVar primitive and the incBothTVar function now result

in STM rather than IO actions. Finally, mainTVar atomically samples the three counters

inside a single transaction to avoid potential race conditions.

While the sequencing of transactions provides a convenient and composable way

to access shared data structures, a concurrency framework ought to also provide

efficient ways to perform coordination between threads, say to wait on some collection

of resources to become available before proceeding. With mutual exclusion, waiting

on a number of objects could be implemented by waiting on each one in turn, taking

care to avoid deadlocks. However, there are often cases where we might want to

proceed whenever any one of some collection of objects becomes ready. For example,

Haskell’s standard concurrency library offers generalised counting semaphores, which

could be used for coordination between multiple threads. Similarly, most flavours

of Unix provides a select(2) system call, which takes a set of file descriptors and

40

2.6. HASKELL AND SOFTWARE TRANSACTIONAL MEMORY

blocks until at least one is ready to be read from, or written to. Unfortunately, these

techniques do not scale: for example in the latter case, all the file descriptors being

waited upon must be collated up to a single top-level select(), which runs contrary

to the idea of modular software development.

STM Haskell answers this problem with a pair of primitives for blocking and

composing alternative transactions. The first primitive,

retry :: STM α

forces the current transaction to fail and retry. This gives a flexible, program-

matic way to signal that the transaction is not yet ready to proceed, unlike tra-

ditional approaches in which the requisite conditions must be specified upfront using

only a restricted subset of the language, such as e.g. Hoare’s conditional critical re-

gions [Hoa02].

Armed with the retry primitive, we can demonstrate how a CounterTVar could be

used as a counting semaphore [Dij65]. The decrementTVar function below behaves as

the wait primitive, decrementing the counter only when its value is strictly posi-

tive, and blocking otherwise. Correspondingly the earlier incrementTVar defined above

behaves as signal, incrementing the count.

decrementTVar :: CounterTVar → STM ()

decrementTVar c = do

nc ← readTVar c

unless (nc > 0)

retry

writeTVar c (nc − 1)

The retry statement conceptually discards any side-effects performed so far and restarts

the transaction from the beginning. However, the control flow within the transac-

tion is influenced only by the TVars read up until the retry, so if none of these have

41

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

been modified by another concurrent thread, the transaction will only end up at the

same retry statement, ending up in a busy-waiting situation and wasting processor

cycles. The STM run-time can instead suspend the current thread, rescheduling it

only when one or more of the TVars read has changed, thus preserving the semantics

of retry; the TVars involved in the decision to retry are conveniently recorded within

the transaction log.

Suppose we now wish to implement a function to decrement the sum variable of

the earlier example. In order to maintain the invariant a + b = sum, we must also

decrement either one of a or b. Knowing that decrementTVar blocks when the counter

is zero, we may conclude that if decrementTVar sum succeeds, then a and b cannot

both be zero, and we ought to be able to decrement one of the two without blocking.

But how do we choose? View CounterTVar as a counting semaphore, it is not possible

to wait on multiple semaphores unless such a primitive is provided by the system.

STM Haskell provides a second primitive,

orElse :: STM α→ STM α→ STM α

for composing alternative transactions. With this we may implement the function

described above:

decEitherTVar :: CounterTVar → CounterTVar → CounterTVar → STM ()

decEitherTVar sum a b = do

decrementTVar sum

decrementTVar a ‘orElse‘ decrementTVar b

The orElse combinator—written above using infix notation—allows us to choose be-

tween alternative transactions: the expression t ‘orElse‘u corresponds to a transaction

that runs one of t or u. It is left-biased, in the sense that t is run first: if it retries,

any changes due to t is rolled back, and u is attempted instead. Only when both t

and u cannot proceed, would the transaction as a whole retry. The final line of the

42

2.7. CONCLUSION

above fragment would decrement a preferentially over b, and blocking when neither

can proceed. (In practice, the latter case can never arise in the above program.)

Note that orElse need not be explicitly told which variables the transactions depend

on—this is inferred from their respective transaction logs by the run-time system.

Using orElse for composing alternative transactions also allow us to elegantly turn

blocking operations into non-blocking ones, for example:

decrement′TVar :: CounterTVar → STM Bool

decrement′TVar c = (do decrementTVar c; return True) ‘orElse‘ return False

This non-blocking decrement′TVar operation attempts to decrement the given counter

using the original decrementTVar and return a boolean True to indicate success. Should

that retry or fail to commit, orElse immediately attempts the alternative transaction,

which returns False instead.

By design, retry and orElse satisfy the following rather elegant properties:

retry ‘orElse‘ u ≡ u (ident-left)

t ‘orElse‘ retry ≡ t (ident-right)

(t ‘orElse‘ u) ‘orElse‘ v ≡ t ‘orElse‘ (u ‘orElse‘ v) (assoc)

In other words, the type STM α of transactions forms a monoid, with orElse as the

associative binary operation and retry as the unit.

2.7 Conclusion

In this chapter, we have reviewed the concept of transactions in the context of

databases, followed by an overview of the development of transactional memory in

both hardware and software, together with how transactions can be used as a high-

level concurrency primitive. In section 2.3, we examined a log-based approach to

43

CHAPTER 2. SOFTWARE TRANSACTIONAL MEMORY

implementing transactions, contrasted with some alternatives. Section 2.4 introduced

the Haskell language, in particular how monads are used to model mutable state in

a purely functional context. The penultimate section (§2.5) presented primitives for

mutable state and concurrency in Haskell, and we finished with a primer on STM

Haskell—in particular a novel form of composing alternative transactions—in order

to motivate the study of STM.

44

Chapter 3

Semantics for Compiler

Correctness

In the context of computer science, the primary focus of semantics is the study of

the meaning of programming languages. Having a mathematically rigorous defini-

tion of a language allows us to reason about programs written in the language in

a precise manner. In this chapter, we begin by reviewing different ways of giving a

formal semantics to a language, and various techniques for proving properties of these

semantics. We conclude by presenting a compiler for a simple expression language,

exploring what it means for this compiler to be correct, and how this may be proved.

3.1 Semantics

3.1.1 Natural Numbers and Addition

To unambiguously reason about what any given program means, we need to give a

mathematically rigorous definition of the language in which it is expressed. To this

end, let us consider the elementary language of natural numbers and addition [HW04,

45

CHAPTER 3. SEMANTICS FOR COMPILER CORRECTNESS

HW06, HW07].

Expression ::= N (Exp-N)

| Expression⊕ Expression (Exp-⊕)

That is, an Expression is either simply a natural number, or a pair of Expressions,

punctuated with the ⊕ symbol to represent the operation of addition. We will adhere

to a naming convention of m,n ∈ N and a, b, e ∈ Expression.

Although seemingly simplistic, this language has sufficient structure to illustrate

two fundamental aspects of computation, namely that of sequencing computations

and combining their results. We shall shortly expand on this in section 3.1.5.

3.1.2 Denotational Semantics

Denotational semantics attempts to give an interpretation of a source language in

some suitable existing formalism that we already understand. More specifically, the

denotation of a program is a representation of what the program means in the vo-

cabulary of the chosen formalism, which could be the language of sets and functions,

the λ-calculus, or perhaps one of the many process calculi. Thus, to formally give

a denotational semantics for a language is to define a mapping from the source lan-

guage into some underlying semantic domain. For example, we can give the following

semantics for our earlier Expression language, denoted as a natural number:

[[]] : Expression→ N

[[m]] = m (denote-val)

[[a⊕ b]] = [[a]] + [[b]] (denote-plus)

46

3.1. SEMANTICS

Here, a numeric Expression is interpreted as just the number itself. The expression

a ⊕ b is denoted by the sum of the denotations of its sub-expressions a and b; al-

ternatively, we could say that the denotation of the ⊕ operator is the familiar + on

natural numbers. This illustrates the essential compositional aspect of denotational

semantics, that the meaning of an expression is given in terms of the meaning of its

parts. The expression [[(1 ⊕ 2) ⊕ (4 ⊕ 8)]] say, has the denotation 15 by repeatedly

applying the above definition:

[[(1⊕ 2)⊕ (4⊕ 8)]] = [[1⊕ 2]] + [[4⊕ 8]]

= ([[1]] + [[2]]) + ([[4]] + [[8]])

= (1 + 2) + (4 + 8)

= 15

3.1.3 Big-Step Operational Semantics

The notion of big-step operational semantics is concerned with the overall result of a

computation. Formally, we define a relation ⇓ ⊆ Expression× N between Expressions

and their final values, given below in a natural deduction style:

m ⇓ m (big-val)

a ⇓ m b ⇓ n

a⊕ b ⇓ m+ n (big-plus)

The first (big-val) rule says that a simple numeric Expression evaluates to the number

itself. The second (big-plus) rule states that, if a evaluates to m and b evaluates to

n, then a⊕ b evaluates to the sum m+ n. Thus according to this semantics, we can

47

CHAPTER 3. SEMANTICS FOR COMPILER CORRECTNESS

show that (1⊕ 2)⊕ (4⊕ 8) ⇓ 15 by the following derivation:

(big-plus)

(big-plus)

(big-val)

1 ⇓ 1 2 ⇓ 2

1⊕ 2 ⇓ 3

4 ⇓ 4 8 ⇓ 8

4⊕ 8 ⇓ 12

(1⊕ 2)⊕ (4⊕ 8) ⇓ 15

For this simple language, the big-step operational semantics happens to be essentially

the same as the denotational semantics, expressed in a different way. However, one

advantage of a relational operational semantics is that the behaviour can be non-

deterministic, in the sense that each expression could potentially evaluate to multiple

distinct values. In contrast, a denotational semantics deals with non-determinism in

the source language by mapping it to a potentially different notion of non-determinism

in the underlying formalism. For example, should we require our expression language

to be non-deterministic, we would need to switch the semantic domain of the previous

semantics to the power set of natural numbers, rather than just the set of natural

numbers.

3.1.4 Small-Step Operational Semantics

Small-step semantics on the other hand is concerned with how a computation proceeds

as a sequence of steps. Both big-step and small-step semantics are ‘operational’ in

the sense that the meaning of a program is understood through how it operates to

arrive at the result. However, in this case each reduction step is made explicit, which

is particularly apt when we wish to consider computations that produce side-effects.

Again we formally define a relation 7→ ⊆ Expression × Expression, but between pairs

48

3.1. SEMANTICS

of Expressions, rather than between expressions and their values:

m⊕ n 7→ m+ n (small-plus)

b 7→ b′

m⊕ b 7→ m⊕ b′ (small-right)

a 7→ a′

a⊕ b 7→ a′ ⊕ b (small-left)

The first rule (small-plus) deals with the case where the expressions on both sides of

⊕ are numerals: in a single step, it reduces to the sum m + n. The second (small-

right) rule applies when the left argument of ⊕ is a numeral, in which case the right

argument can make a single reduction, while (small-left) reduces the left argument of

⊕ if this is possible. There is no rule corresponding to a lone numeric Expression as

no further reductions are possible in this case.

As each 7→ step corresponds to a primitive computation, it will often be more

convenient to refer to it via its reflexive, transitive closure, defined as follows:

a 7→? a

(small-nil)
a 7→ a′ a′ 7→? b

a 7→? b

(small-cons)

For example, the full reduction sequence of (1 ⊕ 2) ⊕ (4 ⊕ 8) 7→? 15 would begin by

evaluating the 1⊕ 2 sub-expression,

(small-left)

(small-plus)

1⊕ 2 7→ 3

(1⊕ 2)⊕ (4⊕ 8) 7→ 3⊕ (4⊕ 8)

49

CHAPTER 3. SEMANTICS FOR COMPILER CORRECTNESS

followed by 4⊕ 8,

(small-right)

(small-plus)

4⊕ 8 7→ 12

3⊕ (4⊕ 8) 7→ 3⊕ 12

before delivering the final result:

(small-plus)

3⊕ 12 7→ 15

3.1.5 Modelling Sequential Computation with Monoids

It would be perfectly reasonable to give a right-to-left, or even a non-deterministic

interleaved reduction strategy for the small-step semantics of our Expression language.

However, we enforce a left-to-right order in order to model the sequential style of

computation as found in the definition of the State α monad from §2.4.2.

In the case where the result type of monadic computations form a monoid, such

computations themselves can also be viewed as a monoid. Concretely, suppose we are

working in some monad M computing values of type N. Using the monoid of sums

(N, +, 0), the following definition of ~:

~ : MN→ MN→ MN

a~ b = a >>= λm→

b >>= λn→

return (m+ n)

gives the monoid (M N, ~, return 0). We can easily verify that the identity and

associativity laws hold for this monoid via simple equational reasoning proofs, as we

had done in §2.4.3. Therefore, we can view monoids as a degenerate model of monads.

50

3.2. EQUIVALENCE PROOFS AND TECHNIQUES

The expression languages of this thesis only computes values of natural numbers,

so rather than work with monadic computations of type M N, we may work directly

with the underlying (N, +, 0) monoid, since it shares the same monoidal structure.

This simplification allows us to avoid the orthogonal issues of variable binding and

substitution. By enforcing a left-to-right evaluation order for ⊕ in our expression

language to mirror that of the >>= operator, we are able to maintain a sequential

order for computations, which is the key aspect of the monads that we are interested

in.

3.2 Equivalence Proofs and Techniques

Now that we have provided precise definitions for the semantics of the language,

we can proceed to show various properties of the Expression language in a rigorous

manner. One obvious questions arises, on the matter of whether the semantics we

have given in the previous section—denotational, big-step and small-step—agree in

some manner. This section reviews the main techniques involved.

3.2.1 Rule Induction

The main proof tool at our disposal is that of well-founded induction, which can be

applied to any well-founded structure. For example, we can show that the syntax of

the Expression language satisfies the condition of well-foundedness when paired with

the following sub-expression ordering:

a @ a⊕ b b @ a⊕ b (Exp-@)

The partial order given by the transitive closure of @ is well-founded, since any @-

descending chain of expressions must eventually end in a numeral at the leaves of

the finite expression tree. This particular ordering arises naturally from the induc-

51

CHAPTER 3. SEMANTICS FOR COMPILER CORRECTNESS

tive definition of Expression: the inductive case (Exp-⊕) allows us to build a larger

expression a⊕ b given two existing expressions a and b, while the base case (Exp-N)

constructs primitive expressions out of any natural number. In this particular case,

to give a proof that some property P (e) holds for all e ∈ Expression, it suffices by the

well-founded induction principle to show instead that:

∀b ∈ Expression. (∀a ∈ Expression. a @ b→ P (a))→ P (b)

More explicitly, we are provided with the hypothesis that P (a) already holds for

all sub-expressions a @ b when proving P (b); in those cases when b has no sub-

expressions, we must show that P (b) holds directly.

The application of well-founded induction to the structure of an inductive def-

inition is called structural induction: to prove that a property P (x) holds for all

members x of an inductively defined structure X, it suffices to initially show that

P (x) holds in all the base cases in the definition of X, and that P (x) holds in the

inductive cases assuming that P (x′) holds for any immediate substructure x′ of x.

Our earlier reduction rules ⇓ along with 7→ and its transitive closure 7→? are simi-

larly inductively defined, and therefore admits the same notion of structural induction.

These instances will be referred to as rule induction.

3.2.2 Proofs of Semantic Equivalence

We shall illustrate the above technique with some examples.

Theorem 3.1. Denotational semantics and big-step operational semantics coincide:

∀e ∈ Expression, m ∈ N. [[e]] ≡ m ↔ e ⇓ m

Proof. We consider each direction of the ↔ equivalence separately. To show [[e]] ≡

52

3.2. EQUIVALENCE PROOFS AND TECHNIQUES

m→ e ⇓ m, we ought to proceed by induction on the definition of the [[]] function. As

it happens to be structurally recursive on its argument, we may equivalently proceed

by structural induction on e, giving us two cases to consider:

Case e ≡ n: Substituting e, this base case specialises to showing that:

[[n]] ≡ m→ n ⇓ m

By (denote-val) in the definition of [[]], the hypothesis evaluates to n ≡ m. This

allows us to substitute m for n in the conclusion, which is trivially satisfied by

instantiating (big-val) with m in the definition of ⇓.

Case e ≡ a⊕ b: Substituting e as before, we need to show that:

[[a⊕ b]] ≡ m→ a⊕ b ⇓ m

Applying (denote-plus) once to the hypothesis, we obtain that [[a]] + [[b]] ≡ m.

Substituting for m, the conclusion becomes a ⊕ b ⇓ [[a]] + [[b]]. Instantiate the

induction hypothesis twice with the trivial equalities [[a]] ≡ [[a]] and [[b]] ≡ [[b]]

to yield proofs of a ⇓ [[a]] and b ⇓ [[b]], which are precisely the two antecedents

required by (big-plus) to obtain a⊕ b ⇓ [[a]] + [[b]].

The second half of the proof requires us to show that [[e]] ≡ m ← e ⇓ m. We may

proceed by rule induction directly on our assumed hypothesis of e ⇓ m, which must

match either (big-val) or (big-plus) in the definition of ⇓:

Rule (big-val): Matching e ⇓ m with the consequent of (big-val), we may conclude

that there exists an n such that e ≡ n and m ≡ n. Substituting n for e and

m in [[e]] ≡ m and applying (denote-val) once, the desired conclusion becomes

n ≡ n, which is trivially satisfied by the reflexivity of ≡.

53

CHAPTER 3. SEMANTICS FOR COMPILER CORRECTNESS

Rule (big-plus): Again by matching e ⇓ m with the consequent of (big-plus), there

exists a, b, na and nb where e ≡ a ⊕ b and m ≡ na + nb, such that a ⇓ na and

b ⇓ nb. Substituting for e and m, the conclusion becomes [[a ⊕ b]] ≡ na + nb,

which reduces to:

[[a]] + [[b]] ≡ na + nb

by applying (denote-plus) once. Instantiating the induction hypothesis twice

with a ⇓ na and b ⇓ nb yields the equalities [[a]] ≡ na and [[b]] ≡ nb respectively,

which allows us to rewrite the conclusion as [[a]]+ [[b]] ≡ [[a]]+ [[b]] by substituting

na and nb. The desired result is now trivially true by reflexivity of ≡.

Thus we have shown both directions of the theorem.

Theorem 3.2. Big-step and small-step operational semantics coincide. That is,

∀e ∈ Expression, m ∈ N. e ⇓ m ↔ e 7→? m

Proof. We shall consider each direction separately as before. To show the forward

implication, we proceed by rule induction on the assumed e ⇓ m hypothesis:

Rule (big-val): There exists an n such that e ≡ n and m ≡ n, by matching e ⇓ m

with the consequent of (big-val). Substituting n for both e and m, we can

readily conclude that n 7→? n via (small-nil).

Rule (big-plus): There exists a, b, na and nb where e ≡ a⊕ b and m = na + nb, such

that a ⇓ na and b ⇓ nb. After substituting for e and m, the desired conclusion

becomes:

a⊕ b 7→? na + nb

Instantiating the induction hypothesis with a ⇓ na and b ⇓ nb gives us evidence

of a 7→? na and b 7→? nb respectively. With the former, we can apply ⊕ b to

54

3.2. EQUIVALENCE PROOFS AND TECHNIQUES

each of the terms and (small-left) to obtain a proof of a⊕b 7→? na⊕b, while with

the latter, we obtain na ⊕ b 7→? na ⊕ nb by applying na ⊕ and (small-right).

By the transitivity of 7→?, these two small-step reduction sequences combine to

give a⊕ b 7→? na⊕nb, to which we need only append an instance of (small-plus)

to arrive at the conclusion.

We proceed by induction over the definition of 7→? and using an additional lemma

that we state and prove afterwards. Given e 7→? m,

Rule (small-nil): If the reduction sequence is empty, then it follows that e ≡ m. In

this case, we can trivially satisfy the conclusion of m ⇓ m with (big-val).

Rule (small-cons): For non-empty reduction sequences, there exists an e′ such that

e 7→ e′ and e′ 7→? m. Invoke lemma 3.3 below with e 7→ e′ and e′ ⇓ m, where

the latter is given by the induction hypothesis, to obtain proof of e ⇓ m.

Pending the proof of lemma 3.3 below, we have thus shown the equivalence of big-

and small-step semantics for the Expression language.

Lemma 3.3. A single small-step reduction preserves the value of expressions with

respect to the big-step semantics:

∀e, e′ ∈ Expression, m ∈ N. e 7→ e′ → e′ ⇓ m → e ⇓ m

Proof. Assume the two premises e 7→ e′ and e′ ⇓ m, and proceed by induction on the

structure of the first:

Rule (small-plus): There are na and nb such that e ≡ na ⊕ nb and e′ ≡ na + nb. As

e′ is a numeric expression, the only applicable rule for e′ ⇓ m is (big-val), which

implies m ≡ na + nb. Thus the desired conclusion of e ⇓ m—after substituting

55

CHAPTER 3. SEMANTICS FOR COMPILER CORRECTNESS

for e and m—may be satisfied as follows:

(big-plus)

(big-val)

na ⇓ na nb ⇓ nb

na ⊕ nb ⇓ na + nb

Rule (small-right): There exists na, b and b′ such that b 7→ b′ with e ≡ na ⊕ b and

e′ ≡ na ⊕ b′. Substituting for e′, the second assumption becomes na ⊕ b′ ⇓ m,

with (big-plus) as the only matching rule. This implies the existence of the

premises na ⇓ na and b′ ⇓ nb,

na ⇓ na

...

b′ ⇓ nb

na ⊕ b′ ⇓ na + nb

for some nb such that m ≡ na + nb. Invoking the induction hypothesis with

b 7→ b′ and the above derivation of b′ ⇓ nb, we obtain a proof of b ⇓ nb. The

conclusion is satisfied by the following derivation:

na ⇓ na

...

b ⇓ nb
(IH)

na ⊕ b ⇓ na + nb

Rule (small-left): This case proceeds in a similar manner to the previous rule, but

with a, a′ and b such that a 7→ a′, where e ≡ a⊕ b and e′ ≡ a′⊕ b. Substituting

for e and e′ in the second assumption and inspecting its premises, we observe

56

3.3. COMPILER CORRECTNESS

that a′ ⇓ na and b ⇓ nb for some na and nb where m ≡ na + nb:

...

a′ ⇓ na

...

b ⇓ nb

a′ ⊕ b ⇓ na + nb

Instantiating the induction hypothesis with a 7→ a′ and a′ ⇓ na delivers evidence

of a ⇓ na. Reusing the second premise of b ⇓ nb verbatim, we can then derive

the conclusion of a⊕ b ⇓ na + nb:

(IH)

...

a ⇓ na

...

b ⇓ nb

a⊕ b ⇓ na + nb

This completes the proof of e 7→ e′ → e′ ⇓ m→ e ⇓ m.

3.3 Compiler Correctness

Now that we have established the equivalence of our three semantics for the expression

language, we consider how this language may be compiled for a simple stack-based

machine, what it means for such a compiler to be correct, and how this may be proved.

3.3.1 A Stack Machine and Its Semantics

Unlike the previously defined high-level semantics—which operate directly on Expressions

themselves—real processors generally execute a linear sequences of instructions, each

mutating the state of the machine in some primitive way. In order to give such a low-

level implementation of our Expression language, we will make use of a stack-based

57

CHAPTER 3. SEMANTICS FOR COMPILER CORRECTNESS

virtual machine.

Our stack machine has a stack of natural numbers as its sole form of storage, and

the state of the Machine at any point may be conveniently represented as the pair of

the currently executing Code, along with the current Stack,

Machine ::= 〈Code, Stack〉

Code ::= [] | Instruction :: Code

Stack ::= [] | N :: Stack

where Code comprises a sequence of Instructions, and Stack a sequence of values.

Due to the simple nature of the Expression language, the virtual machine only

requires two Instructions, both of which operate on the top of the stack:

Instruction ::= PUSH N | ADD

The PUSH m instruction places the number m on top of the current stack, while ADD

replaces the top two values with their sum. Formally, the semantics of the virtual

machine is defined by the � reduction relation, given below:

〈PUSH m :: c, σ〉� 〈c, m :: σ〉 (vm-push)

〈ADD :: c, n :: m :: σ〉� 〈c, m+ n :: σ〉 (vm-add)

As with the previous definition of 7→?, we shall write �? for the transitive, reflexive

closure of �:

t�? t

(vm-nil)
a� a′ a′�? b

a�? b

(vm-cons)

58

3.3. COMPILER CORRECTNESS

Informally, the difference between the semantics of a virtual machine versus a

small-step operational semantics is that the reduction rules for the former is simply

a collection of transition rules between pairs of states, and does not make use of any

premises.

3.3.2 Compiler

Given an Expression, a compiler in this context produces some Code that when exe-

cuted according to the semantics of the virtual machine just defined, computes the

value of the Expression, leaving the result on top of the current stack. To avoid the

need to define concatenation on instruction sequences and the consequent need to

prove various distributive properties, the definition of compile below accepts an extra

code continuation argument, to which the code for the expression being compiled is

prepended. To compile a top-level expression, we simply pass in the empty sequence

[]. This both simplifies reasoning and results in more efficient compilers [Hut07].

A numeric expression m is compiled to a PUSH m instruction, while a ⊕ b involves

compiling the sub-expressions a and b in turn, followed by an ADD instruction:

compile : Expression→ Code→ Code

compile m c = PUSH m :: c (compile-val)

compile (a⊕ b) c = compile a (compile b (ADD :: c)) (compile-add)

For example, compile ((1⊕ 2)⊕ (4⊕ 8)) [] produces the code below,

PUSH 1 :: PUSH 2 :: ADD :: PUSH 4 :: PUSH 8 :: ADD :: ADD :: []

59

CHAPTER 3. SEMANTICS FOR COMPILER CORRECTNESS

which when executed with an empty initial stack, reduces as follows:

〈PUSH 1 :: PUSH 2 :: . . . , []〉

� 〈PUSH 2 :: ADD :: . . . , 1 :: []〉

� 〈ADD :: PUSH 4 :: . . . , 2 :: 1 :: []〉

� 〈PUSH 4 :: PUSH 8 :: . . . , 3 :: []〉

� 〈PUSH 8 :: ADD :: . . . , 4 :: 3 :: []〉

� 〈ADD :: ADD :: [], 8 :: 4 :: 3 :: []〉

� 〈ADD :: [], 12 :: 3 :: []〉

� 〈[], 15 :: []〉

3.3.3 Compiler Correctness

By compiler correctness, we mean that given an expression e which evaluates to m

according to a high-level semantics, compiling e and executing the resultant code on

the corresponding virtual machine must compute the same m. Earlier in the chapter,

we had shown the equivalence of our denotational, big-step, and small-step semantics.

While we may freely choose any of these as our high-level semantics, we shall adopt

the big-step semantics, as it makes our later proofs much shorter.

Using these ideas, the correctness of our compiler can now be formalised by the

following equivalence:

e ⇓ m ↔ 〈compile e [], σ〉�? 〈[], m :: σ〉

The→ direction corresponds to a notion of completeness, and states that the machine

must be able to compute any m that the big-step semantics permits. Conversely, the

← direction corresponds to soundness, and states that the machine can only produce

60

3.3. COMPILER CORRECTNESS

values permitted by the big-step semantics. For this proof, we will need to generalise

the virtual machine on the right hand side to an arbitrary code continuation and

stack.

Theorem 3.4 (Compiler Correctness).

e ⇓ m ↔ ∀c, σ. 〈compile e c, σ〉�? 〈c, m :: σ〉

Proof. We shall consider each direction of the double implication separately. In the

forward direction, we assume e ⇓ m and proceed on its structure:

Rule (big-val): There exists an n such that e ≡ n and m ≡ n. Substituting n for

both e and m, the conclusion becomes:

〈compile n c, σ〉�? 〈c, n :: σ〉 ,

or 〈PUSH n :: c, σ〉�? 〈c, n :: σ〉

by (compile-val) in the definition of compile. The conclusion is satisfied by

simply applying (vm-cons) to (vm-push) and (vm-nil):

(vm-cons)

(vm-push)

〈PUSH n :: c, σ〉� 〈c, n :: σ〉 〈c, n :: σ〉�? 〈c, n :: σ〉
(vm-nil)

〈PUSH n :: c, σ〉�? 〈c, n :: σ〉

Rule (big-plus): By matching the assumed e ⇓ m with the consequent of (big-plus),

we see that there exists a, b, na and nb where e ≡ a⊕ b and m ≡ na + nb, such

that a ⇓ na and b ⇓ nb. Substituting for e and m, the conclusion becomes

〈compile (a⊕ b) c, σ〉�? 〈c, na + nb :: σ〉 , or

〈compile a (compile b (ADD :: c)), σ〉�? 〈c, na + nb :: σ〉

61

CHAPTER 3. SEMANTICS FOR COMPILER CORRECTNESS

by expanding compile. Instantiating the induction hypothesis with a ⇓ na and

b ⇓ nb yields proofs of

∀ca, σa. 〈compile a ca, σa〉�? 〈ca, na :: σa〉 , and

∀cb, σb. 〈compile b cb, σb〉�? 〈cb, nb :: σb〉

respectively. Note that crucially, these two hypotheses are universally quantified

over c and σ, written with distinct subscripts above to avoid ambiguity. Now

substitute cb = ADD :: c, ca = compile b cb, σa = σ, σb = na :: σa and we obtain

via the transitivity of �?:

∀c, σ. 〈compile a (compile b (ADD :: c)), σ〉

�? 〈(compile b (ADD :: c), na :: σ〉

�? 〈ADD :: c, nb :: na :: σ〉

A second application of transitivity to (vm-add) instantiated as follows,

〈ADD :: c, nb :: na :: σ〉� 〈c, na + nb :: σ〉

gives the required conclusion of:

∀c, σ. 〈compile a (compile b (ADD :: c)), σ〉� 〈c, na + nb :: σ〉

For the backward direction, we proceed on the structure of e:

Case e ≡ n: Substituting e with n, the base case becomes:

∀c, σ. 〈compile n c, σ〉�? 〈c, m :: σ〉 → n ⇓ m , or

∀c, σ. 〈PUSH n :: c, σ〉�? 〈c, m :: σ〉 → n ⇓ m

62

3.3. COMPILER CORRECTNESS

Assume the hypothesis and set both c and σ to [] to obtain 〈PUSH n :: [], []〉�?

〈[], m :: []〉, which must be a single reduction corresponding to (vm-push).

Therefore m and n must be one and the same, and the conclusion of n ⇓ n is

trivially satisfied by (big-val).

Case e ≡ a⊕ b: Substituting e with a ⊕ b and expanding the definition of compile,

we need to show that:

∀c, σ. 〈compile a (compile b (ADD :: c)), σ〉�? 〈c, m :: σ〉 → a⊕ b ⇓ m

Now, for both a and b, we know that there exists na and nb such that:

∀ca, σa. 〈compile a ca, σa〉�? 〈ca, na :: σa〉 , and

∀cb, σb. 〈compile b cb, σb〉�? 〈cb, nb :: σb〉

Substituting for the subscripted ca, cb, σa and σb as we had done in the (big-plus)

case of the first half of this proof, we obtain:

∀c, σ. 〈compile a (compile b (ADD :: c)), σ〉�? 〈c, na + nb :: σ〉

Contrast this with the hypothesis:

∀c, σ. 〈compile a (compile b (ADD :: c)), σ〉�? 〈c, m :: σ〉

Since the � reduction relation is deterministic, it must be the case that m

and na + nb are the same. Substituting in na + nb for m, the conclusion be-

comes a ⊕ b ⇓ na + nb—an instance of (big-plus)—whose premises of a ⇓ na

and b ⇓ nb are in turn satisfied by instantiating the induction hypothesis with

∀ca, σa. 〈compile a ca, σa〉�? 〈ca, na :: σa〉 and ∀cb, σb. 〈compile b cb, σb〉�?

63

CHAPTER 3. SEMANTICS FOR COMPILER CORRECTNESS

〈cb, nb :: σb〉.

This completes the proof of the compiler correctness theorem.

3.4 Conclusion

In this chapter, we have shown by example what it means to give the semantics of

simple language in denotational, big-step and small-step styles. We justified the use

of a monoidal model of natural numbers and addition—with left-to-right evaluation

order—as simplification of monadic sequencing. We then proved the three given

semantics to be equivalent, and demonstrate the use of well-founded induction on the

structure of the reduction rules (that is, rule induction) and of the syntax. Finally,

we defined a stack-based virtual machine and a compiler for running programs of the

Expression language, and presented a proof of compiler correctness.

64

Chapter 4

Randomised Testing in Haskell

During the initial development of a language, it is useful to be able to check that its

behaviour agrees with our intuitive expectations. Formal proofs require a significant

investment of effort, and are not always straightforward to revise in light of any un-

derlying changes. Using Haskell, we can implement our semantics as an executable

program: its high-level expressiveness leads to a much narrower semantic gap be-

tween the mathematical definitions and the implementation, giving us much greater

confidence in the fidelity of the latter, in contrast to more traditional programming

languages.

In turn, if we state the expected properties as Boolean functions in Haskell,

these can then be subjected to randomly generated inputs using the QuickCheck

tool [CH00], which displays any counterexamples found. While successful runs of

hundreds and thousands of such tests do not comprise a formal proof of the corre-

sponding property, they do however corroborate the existence of one. Additionally,

the use of the Haskell Program Coverage (HPC) toolkit offers confidence in the valid-

ity of these tests by highlighting any unexercised fragments of the implementation.

65

CHAPTER 4. RANDOMISED TESTING IN HASKELL

4.1 Executable Semantics

Let us begin by implementing the syntax of the expression language of the previous

chapter:

data Expression = Val Integer | Expression⊕ Expression

The Expression algebraic data type defined above has two constructors Val and (⊕),

corresponding to numerals and addition.

4.1.1 Denotational Semantics

The denotational semantics for our language given in the previous chapter map ex-

pressions to its underlying domain of numbers:

[[]] : Expression→ N

[[m]] = m (denote-val)

[[a⊕ b]] = [[a]] + [[b]] (denote-plus)

This can be directly implemented as the following denot function, mapping any given

Expression to an Integer:

denot :: Expression→ Integer

denot (Val m) = m

denot (a ⊕ b) = denot a + denot b

4.1.2 Big-Step Operational Semantics

While denotations can be implemented directly as functions, there is in general no

corresponding notion in Haskell for the transition relations given for a definition of

66

4.1. EXECUTABLE SEMANTICS

operational semantics, since transitions need not necessarily be deterministic. Nev-

ertheless, we can accommodate non-deterministic transitions by implementing them

as set-valued functions, that return a set of possible reducts for each expression.

Let us first define two type synonyms REL and Rel corresponding to heterogeneous

and homogeneous relations respectively:

type REL α β = α→ Set β

type Rel α = REL α α

That is, a heterogeneous relation between α and β can be realised as a function from

α to a set of possible βs.

For convenience, we also define some auxiliary functions not found in the Haskell

standard library. Firstly joinSet flattens nested sets,

joinSet :: Set (Set α)→ Set α

joinSet = Set.fold (∪) {}

by folding the binary set union operation (∪) over the outer set. Note that we have

typeset Set.union and Set.empty as their usual mathematical notations.

The productWith function computes a generalised Cartesian product of two sets,

combining the elements from each set with the function f :

productWith :: (α→ β → γ)→ Set α→ Set β → Set γ

productWith f as bs = joinSet ((λa → f a ‘Set.map‘ bs) ‘Set.map‘ as)

Let us remind ourselves of the big-step ⇓ relation given in the previous chapter:

m ⇓ m (big-val)

a ⇓ m b ⇓ n

a⊕ b ⇓ m+ n (big-plus)

67

CHAPTER 4. RANDOMISED TESTING IN HASKELL

Using our previously defined helpers, we can now implement the ⇓ relation as the

following bigStep function, where Set.singleton m is rendered as {m}:

bigStep :: REL Expression Integer

bigStep (Val m) = {m}

bigStep (a ⊕ b) = productWith (+) (bigStep a) (bigStep b)

The first case corresponds to the (big-val) rule, with Val m reducing to m. The second

case of a⊕b recursively computes the possible reducts for a and b, then combines the

two sets using productWith (+) to obtain the possible values corresponding to m + n.

4.1.3 Small-Step Operational Semantics

In the previous chapter, we had defined the small-step reduction relation 7→ as follows:

m⊕ n 7→ m+ n (small-plus)

b 7→ b′

m⊕ b 7→ m⊕ b′ (small-right)

a 7→ a′

a⊕ b 7→ a′ ⊕ b (small-left)

The above rules are implemented as the three cases of the smallStep function below,

corresponding to (small-plus), (small-right) and (small-left) in that order:

smallStep :: Rel Expression

smallStep (Val m ⊕ Val n) = {Val (m + n)}

smallStep (Val m ⊕ b) = (λb ′ → Val m ⊕ b ′) ‘Set.map‘ smallStep b

smallStep (a ⊕ b) = (λa ′ → a ′ ⊕ b) ‘Set.map‘ smallStep a

68

4.1. EXECUTABLE SEMANTICS

The three patterns for smallStep above are not exhaustive, as we are missing a case

for Val m. Since such expressions cannot reduce any further, we return an empty set

to indicate the lack of such transitions:

smallStep (Val m) = {}

In a small-step semantics, the eventual result of a computation is given by repeated

application of the small-step reduction relation to the initial expression. The following

reduceUntil—parametrised on the reduction relation—performs this task:

reduceUntil :: (α→ Maybe β)→ Rel α→ REL α β

reduceUntil p reduce init = step ({init}, {}) where

step :: (Set α, Set β)→ Set β

step (running , finished) = case Set.null running of

True → finished

False→ step (first (joinSet ◦ Set.map reduce)

(Set.fold partition ({}, finished) running))

partition :: α→ (Set α, Set β)→ (Set α, Set β)

partition e = case p e of

Nothing→ first (Set.insert e)

Just n → second (Set.insert n)

The step helper takes a pair of running and finished sets of states, accumulating those

that satisfy p into the finished set for the next iteration with the aid of partition, and

repeatedly applies reduce to the set of remaining running states until it becomes

exhausted.

Together with the auxiliary isVal function,

isVal :: Expression→ Maybe Integer

isVal (Val n) = Just n

isVal = Nothing

69

CHAPTER 4. RANDOMISED TESTING IN HASKELL

we obtain an executable implementation of 7→? as the following Haskell function:

smallStepStar :: REL Expression Integer

smallStepStar = reduceUntil isVal smallStep

4.1.4 Virtual Machine

The virtual machine presented previously is implemented in a similarly straightfor-

ward manner. We begin with a trio of type synonyms defining what comprises a

virtual machine:

type Machine = (Code, Stack)

type Code = [Instruction]

type Stack = [Integer]

We make use of Haskell’s built-in list type for Code and Stack rather than giving our

own definitions. Instructions are defined as the following algebraic data type, with

one constructor for each corresponding instruction:

data Instruction = PUSH Integer | ADD

Intuitively, a PUSH m instruction places the number m onto the top of the stack,

while the ADD instruction replaces the top two numbers on the stack with their sum:

〈PUSH m :: c, σ〉� 〈c, m :: σ〉 (vm-push)

〈ADD :: c, n :: m :: σ〉� 〈c, m+ n :: σ〉 (vm-add)

The (vm-push) and (vm-add) rules are directly implemented as the first two rules of

the following stepVM function:

stepVM :: Rel Machine

stepVM (PUSH m : c, σ) = {(c,m : σ)}

70

4.2. RANDOMISED TESTING WITH QUICKCHECK AND HPC

stepVM (ADD : c, n : m : σ) = {(c,m + n : σ)}

stepVM (c , σ) = {}

Since no other transitions are possible for the virtual machine, we return the empty

set in the final catch-all case.

The virtual machine is considered halted when its sequence of instructions is

exhausted, and the stack consists of only a single number corresponding to the result

of the computation:

isHalted :: Machine→ Maybe Integer

isHalted ([], n : []) = Just n

isHalted = Nothing

In the same way as small-step semantics, we may make use of our earlier reduceUntil

function to repeatedly iterate stepVM until the virtual machine halts:

stepVMStar :: REL Machine Integer

stepVMStar = reduceUntil isHalted stepVM

Finally, the compiler is more-or-less a direct transliteration of our previous defi-

nition:

compile :: Expression→ Code→ Code

compile (Val n) c = PUSH n : c

compile (a ⊕ b) c = compile a (compile b (ADD : c))

4.2 Randomised Testing with QuickCheck and HPC

QuickCheck is a system for testing properties of Haskell programs with randomly-

generated inputs. Informally, properties are specified as Haskell functions that return

71

CHAPTER 4. RANDOMISED TESTING IN HASKELL

a boolean result. For example, to assert that (2 × n) ÷ 2 ≡ n holds in virtually all

cases for floating-point numbers, we may interactively invoke the following call to

quickCheck:

*Main> quickCheck (λn → (2× n)÷ 2 ≡ n)

+++ OK, passed 100 tests.

It is important to highlight the fact that unlike certain model-checking tools, Qui-

ckCheck does not attempt to exhaustively generate all possible inputs. Thus even

given many successful repeated invocations of quickCheck, some rare corner cases

may remain unprobed. For example, even discounting the possibility of NaN and

infinity, the following expression evaluates to False for 32-bit IEEE-754 floating-point

numbers, due to its limited range and finite precision:

*Main> (λn → (2× n)÷ 2 ≡ n) (3e38 :: Float)

False

QuickCheck does not obviate the need for formal proofs. However, it is nevertheless

very helpful while the implementation is still in a state of flux, allowing us to detect

many flaws ahead of committing to more rigorous and laborious analyses.

4.2.1 Generating Arbitrary Expressions

While QuickCheck comes with existing generators for many built-in Haskell data

types, custom generators can also be seamlessly added for new data types defined in

our own programs. This is achieved using Haskell’s type class mechanism—a form

of ad-hoc polymorphism based on type-directed dispatch that in essence allows us to

overload function names for more than one type.

The following code defines the generator for an arbitrary expression, by instanti-

ating the Arbitrary type class for Expressions:

72

4.2. RANDOMISED TESTING WITH QUICKCHECK AND HPC

instance Arbitrary Expression where

arbitrary :: Gen Expression

arbitrary = oneof

[Val 〈$〉 arbitrary

, (⊕) 〈$〉 arbitrary 〈∗〉 arbitrary]

The oneof :: [(Gen α)] → Gen α combinator above picks one of the listed generators

with equal probability. In the first case, Val is applied to an Integer generated by

invoking a different instance of arbitrary, while the latter recursively generate the two

sub-expression arguments to (⊕). We can test this with the following incantation:

*Main> sample (arbitrary :: Gen Expression)

Val 5⊕ (Val 8⊕ Val 4)

Val 1

. . .

However, we soon find that this generates some unacceptably large expressions. Writ-

ing E[|e(n)|] for the expected size of the generated expression, we see why this is the

case:

E[|e(n)|] =
1

2
+

1

2
(E[|e(n)|] + E[|e(n)|]) =∞

To bring the size of the generated expressions under control, we can use the sized com-

binator as follows, to allow QuickCheck some influence over the size of the resulting

Expression:

instance Arbitrary Expression where

arbitrary :: Gen Expression

arbitrary = sized (λn → frequency

[(n + 1,Val 〈$〉 arbitrary)

, (n, (⊕) 〈$〉 arbitrary 〈∗〉 arbitrary)])

73

CHAPTER 4. RANDOMISED TESTING IN HASKELL

The frequency combinator behaves analogously to oneof, but chooses each alternative

with a probability proportional to the accompanying weight. That is, the above

definition of arbitrary produces a Val constructor with probability (n + 1)/(2n + 1),

and an (⊕) constructor with probability n/(2n + 1). Applying the same analysis as

above, we expect the generated expressions to be much more manageable:

E[|e(n)|] =
(n+ 1) + 2nE[|e(n)|]

2n+ 1
= n+ 1

When QuickCheck finds a counterexample to the proposition in question, we often find

that it is rarely the smallest such case, which makes it difficult to understand exactly

where and how the problem arises. QuickCheck provides a mechanism to automate

the search for smaller counterexamples, via the shrink method of the Arbitrary type

class:

shrink :: Expression→ [Expression]

shrink e = case e of

Val m → Val 〈$〉 shrinkIntegral m

a ⊕ b → [a, b]

QuickCheck expects our definition of shrink to return a list of similar values that

are ‘smaller’ in some sense. This is implemented in a straightforward manner for

Expressions by simply returning a list of direct sub-expressions for the (⊕) constructor.

For values, we use the built-in shrinkIntegral to obtain a list of ‘smaller’ candidates.

4.2.2 Semantic Equivalence and Compiler Correctness

While we have already given a formal proof of the equivalence between denotational,

big-step and small-step semantics in the previous chapter, we shall illustrate how we

could have informally asserted our theorems using QuickCheck with a much smaller

investment of effort.

74

4.2. RANDOMISED TESTING WITH QUICKCHECK AND HPC

Let us recall theorem 3.1, which states that our denotational and big-step seman-

tics are equivalent:

∀e ∈ Expression, m ∈ N. [[e]] ≡ m↔ e ⇓ m

That is, for all expressions whose denotation is m, the same expression also evaluates

under our big-step semantics to m. Written literally, this corresponds to the following

Haskell predicate,

prop DenotBig′ :: Expression→ Integer→ Bool

prop DenotBig′ e m = (denot e ≡ m) ≡ (bigStep e 3 m)

where 3 is the flipped Set membership operator. This can be checked as follows:

*Main> quickCheck prop DenotBig′

+++ OK, passed 100 tests.

There are some subtleties involved: in the above test, QuickCheck generates a ran-

dom Integer as well as an Expression, and checks that the implication holds in both

directions. However, given the unlikelihood of some unrelated m coinciding with the

value of e according to either semantics, both sides of the outer ≡ will be False a

majority of the time. This is clearly not a fruitful exploration of the test space.

We can write the same test much more efficiently by using only a single random

Expression, by rephrasing the property as below:

prop DenotBig :: Expression→ Bool

prop DenotBig e = {denot e} ≡ bigStep e

That is to say, denot e is the unique value that e can evaluate to under the big-step

semantics. When fed to QuickCheck, the response is as we would expect:

*Main> quickCheck prop DenotBig

+++ OK, passed 100 tests.

75

CHAPTER 4. RANDOMISED TESTING IN HASKELL

Theorem 3.2—that is, the correspondence between big-step and small-step semantics—

can be approached in the same way:

∀e ∈ Expression, m ∈ N. e ⇓ m↔ e 7→? m

Transliterated as a QuickCheck property, this corresponds to the following definition:

prop BigSmall′ :: Expression→ Integer→ Bool

prop BigSmall′ e m = bigStep e 3 m ≡ smallStepStar e 3 m

However, the above is just an instance of what it means for two sets to be equal.

Thus we may elide the m argument and just use Set’s built-in notion of equality:

prop BigSmall :: Expression→ Bool

prop BigSmall e = bigStep e ≡ smallStepStar e

Again, QuickCheck does not find any counterexamples:

*Main> quickCheck prop BigSmall

+++ OK, passed 100 tests.

Finally, we revisit our previous statement of compiler correctness:

∀e ∈ Expression, m ∈ N. e ⇓ m ↔ 〈compile e [], []〉�? 〈[], m :: []〉

Taking into account what we discussed in the previous paragraphs, the above can be

defined as the following property:

prop Correctness :: Expression→ Bool

prop Correctness e = smallStepStar e ≡ stepVMStar (compile e [], [])

Feeding this to QuickCheck yields no surprises:

76

4.2. RANDOMISED TESTING WITH QUICKCHECK AND HPC

*Main> quickCheck prop Correctness

+++ OK, passed 100 tests.

4.2.3 Coverage Checking with HPC

With any testing process, it is important to ensure that all relevant parts of the

program has been exercised during testing. The Haskell Program Coverage (HPC)

toolkit [GR07] supports just this kind of analysis. It instruments every (sub-)expression

in the given Haskell source file to record if it has been evaluated, and accumulates

this information to a .tix file each time the program is executed. Analysis of the

resulting .tix file enables us to quickly identify unevaluated fragments of code.

Using HPC is a straightforward process, as it is included with all recent releases

of the Glasgow Haskell Compiler. We do however need to turn our implementation

so far into a fully-fledged program, namely by implementing a main function:

main :: IO ()

main = do

quickCheck prop DenotBig

quickCheck prop BigSmall

quickCheck prop Correctness

This literate Haskell source file is then compiled with HPC instrumentation—then

executed—as follows:

$ ghc -fhpc testing.lhs --make

[1 of 1] Compiling Main (testing.lhs, testing.o)

Linking testing ...

$./testing

+++ OK, passed 100 tests.

77

CHAPTER 4. RANDOMISED TESTING IN HASKELL

+++ OK, passed 100 tests.

+++ OK, passed 100 tests.

Running the hpc report command on the resulting testing.tix file displays the

following report,

94% expressions used (181/192)

82% alternatives used (19/23)

50% local declarations used (2/4)

89% top-level declarations used (26/29)

which is not quite the 100% coverage we might have expected. To see where, we

may use the hpc draft command to produce a set of missing ‘ticks’, corresponding

to unevaluated expressions in our code. (Alternatively, we could have visualised the

results using the hpc markup command, which generates a highlighted copy of the

source code for our perusal.) The salient1 ones are listed below:

module "Main" {

inside "smallStep" { tick "Set.empty" on line 201; }

inside "stepVM" { tick "Set.empty" on line 295; }

tick function "shrink" on line 433;

}

The first two missing ticks refer to the use of Set.empty—otherwise typeset as {}—in

the cases where smallStep and stepVM are invoked on expressions or virtual machine

states that cannot reduce any further, which would imply the existence of a ‘stuck’

state. The third tick refers to the shrink function, which QuickCheck only invokes

when it finds a counterexample for any of the properties under test. Thus incomplete

coverage in these cases is not unexpected.

1The omitted ticks correspond to compiler-generated helper definitions.

78

4.3. CONCLUSION

4.3 Conclusion

The combination of QuickCheck for randomised testing and HPC to confirm com-

plete code coverage was first pioneered in-the-large by the XMonad project [SJ07],

providing a high level of assurance of implementation correctness with minimal effort.

Leveraging these same tools and techniques as a means of verifying semantic proper-

ties, we have conferred similar levels of confidence that our implementation satisfies

the compiler correctness property. Given the small semantic gap between our im-

plementation and the mathematical definitions of the previous chapter, it would be

reasonable to interpret this as evidence towards the correctness of theorem 3.4 for our

expression language.

79

CHAPTER 4. RANDOMISED TESTING IN HASKELL

80

Chapter 5

A Model of STM

In this chapter, we identify a simplified subset of STM Haskell that is suitable for

exploring design and implementation issues, and define a high-level stop-the-world

semantics for this language. We then define a low-level virtual machine for this

language in which transactions are made explicit, along with a semantics for this

machine. Finally, we relate the two semantics using a compiler correctness theorem,

and test the validity of this theorem using QuickCheck and HPC on an executable

implementation this language.

5.1 A Simple Transactional Language

In chapter §2, we introduced STM Haskell, which provides a small set of primitives

for working with transactional variables,

newTVar :: α→ STM (TVar α)

readTVar :: TVar α→ STM α

writeTVar :: TVar α→ α→ STM ()

along with a primitive for running transactions, and another for explicit concurrency:

81

CHAPTER 5. A MODEL OF STM

atomically :: STM α→ IO α

forkIO :: IO ()→ IO ()

The STM and IO types are both monads (§2.4), so we may use >>= and return on

both levels for sequencing effectful computations.

5.1.1 Syntax

As a first step towards a verified implementation of STM, let us consider a simplified

model of the above, to allow us to focus on the key issues. The language we consider

has a two-level syntax—mirroring that of the STM Haskell primitives—which can be

represented as the following Tran and Proc data types in Haskell:

data Tran = ValT Integer | Tran⊕T Tran | Read Var | Write Var Tran

data Proc = ValP Integer | Proc⊕P Proc | Atomic Tran | Fork Proc

The two types correspond to actions in the STM and IO monads respectively. The

language is intentionally minimal, because issues such as name binding and perform-

ing general-purpose computations are largely orthogonal to our goal of verifying an

implementation of STM. Thus, we replace the >>= and return of both monads with

the monoid of addition and integers, as motivated in section §3.1.5 of the previous

chapter. In our language, ValT and ValP correspond to return for the STM and IO

monads, while ⊕T and ⊕P combine Tran and Proc computations in an analogous way

to bind. By enforcing left-to-right reduction semantics for ⊕T and ⊕P, we nevertheless

retain the fundamental idea of using monads to sequence computations and combine

their results.

The remaining constructs emulate the STM and IO primitives provided by STM

Haskell: Read and Write correspond to readTVar and writeTVar, where Var represents a

finite collection of transactional variables. Due to the lack of name binding, we omit

an analogue of newTVar from our language, and assume all variables are initialised to

82

5.1. A SIMPLE TRANSACTIONAL LANGUAGE

zero. Atomic runs a transaction to completion, delivering a value, while Fork spawns

off its argument as a concurrent process in the style of forkIO.

For simplicity, we do not consider orElse or retry, as they are not required to

illustrate the basic implementation of a log-based transactional memory system.

Example

Let us revisit the transactional counter example from section 2.6:

type CounterTVar = TVar Integer

incrementTVar :: CounterTVar → STM ()

incrementTVar c = do

n ← readTVar c

writeTVar c (n + 1)

In our STM model, the corresponding increment function would be written as follows:

increment :: Var→ Tran

increment c = Write c (Read c ⊕T ValT 1)

To increment the same counter twice using concurrent threads, we would write:

incTwice :: Var→ Proc

incTwice c = Fork (Atomic (increment c))⊕P Fork (Atomic (increment c))

5.1.2 Transaction Semantics

We specify the meaning of transactions in this language using a small-step operational

semantics, following the approach of [HMPJH05]. Formally, we give a reduction

relation 7→T on pairs 〈h, e〉 consisting of a heap h :: Heap and a transaction e :: Tran.

In this section we explain each of the rules defining 7→T, and simultaneously describe

its implementation in order to highlight their similarity.

83

CHAPTER 5. A MODEL OF STM

First, we model the heap as a map from variable names to their values—initialised

to zero—and write h ? v to denote the value of variable v in the heap h. This may be

implemented in Haskell using the standard Map datatype:

type Heap = Map Var Integer

(?) :: Heap→ Var→ Integer

h ? v = Map.findWithDefault 0 v h

While the 7→T relation cannot be implemented directly, we may nevertheless model it

as a set-valued function where each state reduces to a set of possible results :

type REL α β = α→ Set β -- Heterogeneous binary relations

type Rel α = REL α α -- Homogeneous binary relations

reduceTran :: Rel (Heap,Tran)

Reading a variable v looks up its value in the heap,

〈h, Read v〉 7→T 〈h, ValT (h ? v)〉 (Read)

which is implemented by the following code, where we have written Set.singleton x as

{x} for clarity of presentation:

reduceTran (h,Read v) = {h,ValT (h ? v)}

Writing to a variable is taken care of by two rules: (WriteZ) updates the heap with

the new value for a variable in the same manner as the published semantics of STM

Haskell [HMPJH05], while (WriteT) allows its argument expression to be repeatedly

84

5.1. A SIMPLE TRANSACTIONAL LANGUAGE

reduced until it becomes a value,

〈h, Write v (ValT n)〉 7→T 〈h] {v 7→ n}, ValT n〉 (WriteZ)

〈h, e〉 7→T 〈h′, e′〉

〈h, Write v e〉 7→T 〈h′, Write v e ′〉
(WriteT)

writing h] {v 7→ n} to denote the heap h with the variable v updated to n.

We implement these two rules by inspecting the subexpression e whose value we

wish to update the heap with. In the the former case, e is just a plain number—

corresponding to (WriteZ)—and we update the heap with the new value of v accord-

ingly. The latter case implements (WriteT) by recursively reducing the subexpression

e, then reconstructing Write v e ′ by mapping second (Write v) over the resulting set

of (h ′, e ′):

reduceTran (h,Write v e) = case e of

ValT n → {h] {v 7→ n},ValT n}

→ second (Write v) ‘Set.map‘ reduceTran (h, e)

As we replace the act of sequencing computations with addition in our language, it is

therefore important to enforce a sequential evaluation order. The final group of three

rules define reduction for ⊕T, and ensure the left argument is evaluated to completion,

before starting on the right hand side:

〈h, ValT m ⊕T ValT n〉 7→T 〈h, ValT (m + n)〉 (AddZT)

〈h, b〉 7→T 〈h′, b′〉

〈h, ValT m ⊕T b〉 7→T 〈h′, ValT m ⊕T b ′〉
(AddRT)

〈h, a〉 7→T 〈h′, a′〉

〈h, a ⊕T b〉 7→T 〈h′, a ′ ⊕T b〉
(AddLT)

85

CHAPTER 5. A MODEL OF STM

Our implementation of ⊕T mirrors the above rules, as below:

reduceTran (h, a ⊕T b) = case (a, b) of

(ValT m,ValT n)→ {h,ValT (m + n)}

(ValT m,)→ second (ValT m ⊕T) ‘Set.map‘ reduceTran (h, b)

(,)→ second (⊕T b) ‘Set.map‘ reduceTran (h, a)

To complete the definition of reduceTran, we require a further case,

reduceTran (h,ValT m) = {}

where we return the empty set for ValT m, as it has no associated reduction rules.

Because 7→T only describes a single reduction step, we also need to implement

a helper function to run a given initial expression to completion for our executable

model. Let us first define joinSet, which flattens nested Sets:

joinSet :: Set (Set α)→ Set α

joinSet = Set.fold (∪) {}

Here, Set.union and Set.empty are written as (∪) and {} respectively.

The following definition of reduceUntil—parameterised over a relation reduce—

reduces the given init state to completion, according to the predicate p:

reduceUntil :: (α→ Maybe β)→ Rel α→ REL α β

reduceUntil p reduce init = step ({init}, {}) where

step :: (Set α, Set β)→ Set β

step (running , finished) = case Set.null running of

True → finished

False→ step (first (joinSet ◦ Set.map reduce)

(Set.fold partition ({}, finished) running))

partition :: α→ (Set α, Set β)→ (Set α, Set β)

86

5.1. A SIMPLE TRANSACTIONAL LANGUAGE

partition e = case p e of

Nothing→ first (Set.insert e)

Just n → second (Set.insert n)

The step helper takes a pair of running and finished sets of states, accumulating those

that satisfy p into the finished set for the next iteration with the aid of partition, and

repeatedly applies reduce to the set of remaining running states until it becomes

exhausted.

Finally, given the following isValT predicate,

isValT :: (Heap,Tran)→ Maybe (Heap, Integer)

isValT (h,ValT n) = Just (h, n)

isValT (h,) = Nothing

the expression reduceUntil isValT reduceTran then corresponds to an implementation of

7→?
T, which produces a set of (Heap, Integer) pairs from an initial (Heap,Tran).

5.1.3 Process Soup Semantics

The reduction relation 7→P for processes acts on pairs 〈h, s〉 consisting of a heap h

as before, and a ‘soup’ s of running processes [PJ01]. While the soup itself is to be

regarded as a multi-set, here we use a more concrete representation, namely a list of

Procs.

The reduction rules for process are in general defined by matching on the first

process in the soup. However, we begin by giving the (Preempt) rule, which allows

the rest of the soup to make progress, giving rise to non-determinism in the language:

〈h, s〉 7→P 〈h′, s′〉

〈h, p : s〉 7→P 〈h′, p : s′〉
(Preempt)

Our implementation of 7→P comprise a pair of mutually-recursive definitions,

87

CHAPTER 5. A MODEL OF STM

reduceP :: Proc→ Rel (Heap, [Proc])

reduceS :: Rel (Heap, [Proc])

where reduceP performs a single-step reduction of a particular Proc in the context of

the given heap and soup, and reduceS corresponds to the general case. We begin with

the definition of reduceS:

reduceS (h, []) = {}

reduceS (h, p : s) = (second (p :) ‘Set.map‘ reduceS (h, s))

∪ reduceP p (h, s)

That is, when the soup is empty, no reduction is possible, so we return a empty set.

When the soup is not empty, we can either apply (Preempt) to reduce the rest

rest of the soup s , or reduce only the first process p using reduceP. These two sets of

reducts are combined using (∪).

In turn, for the definition of reduceP, it is not possible for values to reduce any

further in our semantics, so we return an empty set when p is a ValP.

reduceP (ValP n) (h, s) = {}

Executing Fork p adds p to the process soup, and evaluates to ValP 0 (which corre-

sponds to return () in Haskell) as the result of this action:

〈h, Fork p : s〉 7→P 〈h, ValP 0 : p : s〉 (Fork)

This is handled by the following case in the definition of reduceP:

reduceP (Fork p) (h, s) = {h,ValP 0 : p : s}

Next, the (Atomic) rule has a premise which evaluates the given expression until it

reaches a value (where 7→?
T denotes the reflexive, transitive closure of 7→T), and a

88

5.1. A SIMPLE TRANSACTIONAL LANGUAGE

conclusion which encapsulates this as a single transition on the process level:

〈h, e〉 7→?
T 〈h′, ValT n〉

〈h, Atomic e : s〉 7→P 〈h′, ValP n : s〉
(Atomic)

In this manner we obtain a stop-the-world semantics for atomic transactions, prevent-

ing interference from other concurrently executing processes. Note that while the use

of 7→?
T may seem odd in a small-step semantics, it expresses the intended meaning

in a clear and concise way [HMPJH05], namely that the transaction executes as if it

were a single atomic step.

Our model of the (Atomic) rule implements the same stop-the-world semantics

using reduceUntil defined in the previous section. The values resulting from the exe-

cution of t are then placed back into the soup:

reduceP (Atomic t) (h, s) = second (λn → ValP n : s)

‘Set.map‘ reduceUntil isValT reduceTran (h, t)

Finally, it is straightforward to handle ⊕P on the process level using three rules, in

an analogous manner to ⊕T on the transaction level:

〈h, ValP m ⊕P ValP n : s〉 7→P 〈h, ValP (m + n) : s〉 (AddZP)

〈h, b : s〉 7→P 〈h′, b ′ : s ′〉

〈h, ValP m ⊕P b : s〉 7→P 〈h′, ValP m ⊕P b ′ : s ′〉
(AddRP)

〈h, a : s〉 7→P 〈h′, a ′ : s ′〉

〈h, a ⊕P b : s〉 7→P 〈h′, a ′ ⊕P b : s ′〉
(AddLP)

The corresponding implementation mirrors that of ⊕T, evaluating expressions in a

left-to-right order:

reduceP (a ⊕P b) (h, s) = case (a, b) of

89

CHAPTER 5. A MODEL OF STM

(ValP m,ValP n)→ {h,ValP (m + n) : s}

(ValP m, b)→ second (mapHead (ValP m ⊕P)) ‘Set.map‘ reduceS (h, b : s)

(a, b)→ second (mapHead (⊕P b)) ‘Set.map‘ reduceS (h, a : s)

where mapHead f (p : s) = f p : s

In a similar way to our earlier definition for isValT, we define an isValS predicate to

determine when an entire soup has finished reducing.

isValS :: (Heap, [Proc])→ Maybe (Heap, [Integer])

isValS (h, s) = case traverse isValP s of

Nothing→ Nothing

Just ns → Just (h, ns)

where

isValP :: Proc→ Maybe Integer

isValP (ValP n) = Just n

isValP = Nothing

This completes our executable model of the high-level semantics: in particular, the

term reduceUntil isValS reduceS then corresponds to an implementation of 7→P, which

produces a set of (Heap, [Integer]) pairs from an initial (Heap, [Proc]).

In summary, the above semantics for transactions and processes mirror those for

STM Haskell, but for a simplified language. Moreover, while the original semantics

uses evaluation contexts to identify the point at which transition rules such as (AddZP)

can be applied, our language is sufficiently simple to allow the use of explicit structural

rules such as (AddLP) and (AddRP), which for our purposes have the advantage of being

directly implementable.

90

5.2. A SIMPLE TRANSACTIONAL MACHINE

5.2 A Simple Transactional Machine

The (Atomic) rule of the previous section simply states that the evaluation sequence

for a transaction may be seen as a single indivisible transition with respect to other

concurrent processes. However, to better exploit the available multi-core hardware,

an actual implementation of this rule would have to allow multiple transactions to

run concurrently, while still maintaining the illusion of atomicity. In this section we

consider how this notion of concurrent transactions can be implemented, and present

a compiler and virtual machine for our language.

5.2.1 Instruction Set

Let us consider compiling expressions into code for execution on a stack machine, in

which Code comprises a sequence of Instructions:

type Code = [Instruction]

data Instruction = PUSH Integer | ADD | READ Var | WRITE Var

| BEGIN | COMMIT | FORK Code

The PUSH instruction leaves its argument on top of the stack, while ADD replaces

the top two numbers with their sum. The behaviour of the remaining instructions

is more complex in order to maintain atomicity, but conceptually, READ pushes the

value of the named variable onto the stack, while WRITE updates the variable with

the topmost value. In turn, BEGIN and COMMIT mark the start and finish of a

transaction, and FORK executes the given code concurrently.

5.2.2 Compiler

We define the compileT and compileP functions to provide translations from Tran and

Proc to Code, both functions taking an additional Code argument to be appended

91

CHAPTER 5. A MODEL OF STM

to the instructions produced by the compilation process, as in chapter 3. In both

cases, integers and addition are compiled into PUSH and ADD instructions, while the

remaining language constructs map directly to their analogous machine instructions.

The intention is that executing a compiled transaction or process always leaves a

single result value on top of the stack.

compileT :: Tran→ Code→ Code

compileT e c = case e of

ValT i → PUSH i : c

x ⊕T y → compileT x (compileT y (ADD : c))

Read v → READ v : c

Write v e ′ → compileT e ′ (WRITE v : c)

compileP :: Proc→ Code→ Code

compileP e c = case e of

ValP i → PUSH i : c

x ⊕P y → compileP x (compileP y (ADD : c))

Atomic e ′ → BEGIN : compileT e ′ (COMMIT : c)

Fork x → FORK (compileP x []) : c

For example, invoking compileP (incTwice counter) [] delivers the following code:

[FORK [BEGIN,READ counter ,PUSH 1,ADD,WRITE counter ,COMMIT]

,FORK [BEGIN,READ counter ,PUSH 1,ADD,WRITE counter ,COMMIT]

,ADD]

5.2.3 Implementing Transactions

The simplest method of implementing transactions would be to suspend execution of

all other concurrent processes on encountering a BEGIN, and carry on with the cur-

rent process until we reach the following COMMIT. In essence, this is the approach

92

5.2. A SIMPLE TRANSACTIONAL MACHINE

used in the high-level semantics presented in the previous section. Unfortunately, this

does not allow transactions to execute concurrently, one of the key aspects of trans-

actional memory. This section introduces the log-based approach to implementing

transactions, and discusses a number of design issues.

Transaction Logs

In order to allow transactions to execute concurrently, we utilise the notion of a

transaction log. Informally such a log behaves as a cache for read and write operations

on transactional variables. Only the first read from any given variable accesses the

heap, and only the last value written can potentially modify the heap; all intermediate

reads and writes operate solely on the log. Upon reaching the end of the transaction,

and provided that that no other concurrent process has ‘interfered’ with the current

transaction, the modified variables in the log can then be committed to the heap.

Otherwise, the log is discarded and the transaction is restarted afresh.

Note that restarting a transaction relies on the fact that it executes in complete

isolation, in the sense that all its side-effects are encapsulated within the log, and

hence can be revoked by simply discarding the log. For example, it would not be

appropriate to ‘launch missiles’ [HMPJH05] during a transaction.

Interference

But what constitutes interference? When a transaction succeeds and commits its log

to the heap, all of its side-effects are then made visible in a single atomic step, as if

it had been executed in its entirety at that point with a stop-the-world semantics.

Thus when a variable is read for the first time and its value logged, the transaction is

essentially making the following bet: at the end of the transaction, the value of the

variable in the heap will still be the same as that in the log.

In this manner, interference arises when any such bet fails, as the result of other

93

CHAPTER 5. A MODEL OF STM

concurrent processes changing the heap in a way that invalidates the assumptions

about the values of variables made in the log. In this case, the transaction fails and is

restarted. Conversely, the transaction succeeds if the logged values of all the variables

read are ‘equal’ to their values in the heap at the end of the transaction.

Equality

But what constitutes equality? To see why this is an important question, and what

the design choices are, let us return to our earlier example of a transaction that

increments a given counter. Consider the following timeline:

increment

1 BEGIN READ counter . . . COMMIT

increment

2 . . .

decrement

3 . . .

→

Time

Suppose the counter starts at zero, which is read by the first transaction and logged.

Prior to its final COMMIT, a second concurrent transaction successfully increments

the counter , which is subsequently decremented by a third transaction. When the

first finally attempts to commit, the count is back to zero as originally logged, even

though it has changed in the interim. Is this acceptable? That is, are the two zeros

‘equal’? We can consider a hierarchy of notions of equality, in increasing order of

permissiveness:

• The most conservative choice is to increment a global counter every time the

heap is updated. Under this scheme, a transaction fails if the heap is modified

at any point during its execution, reflected by a change in the counter, even if

this does not actually interfere with the transaction itself.

94

5.2. A SIMPLE TRANSACTIONAL MACHINE

• A more refined approach is provided by the notion of version equality, where a

separate counter is associated with each variable, and is incremented each time

the variable is updated. In this case, our example transaction would still fail

to commit, since the two zeros would be have different version numbers, and

hence considered different.

• For a pure language such as Haskell, in which values are represented as pointers

to immutable structures, pointer equality can be used as an efficient but weaker

form of version equality. In this case, whether the two zeros are considered

equal or not depends on whether the implementation created a new instance of

zero, or reused the old zero by sharing.

• We can also consider value equality, in which two values are considered the same

if they have the same representation. In this case, the two zeros are equal and

the transaction succeeds.

• The most permissive choice would be a user-defined equality, beyond that built-

in to the programming language itself, in order to handle abstract data struc-

tures in which a single value may have several representations, e.g. sets encoded

as lists. Haskell provides this capability via the Eq typeclass.

Which of the above is the appropriate notion of equality when committing transac-

tions? Recall that under a stop-the-world semantics, a transaction can be considered

to be executed in its entirely at the point when it successfully commits, and any prior

reads are effectively bets on the state of the heap at the commit point. Any inter-

mediate writes that may have been committed by other transactions do not matter,

as long as the final heap is consistent with the bets made in the log. Hence in our

instance, there is no need at commit time to distinguish between the two zeroes in

our example, as they are equal in the high-level expression language.

95

CHAPTER 5. A MODEL OF STM

From a semantics point of view, therefore, value or user-defined equality are the

best choices. Practical implementations may wish to adopt a more efficient notion

of equality (e.g. STM Haskell utilises pointer equality), but for the purposes of this

thesis, we will use value equality.

5.2.4 Virtual Machine

The state of the virtual machine is given by a pair 〈h, s〉, comprising a heap hmapping

variables to integers, and a soup s of concurrent threads. A Thread is represented as

a tuple of the form (c, σ, f , r ,w), where c is the code to be executed, σ is the thread-

local stack, f gives the code to be rerun if a transaction fails to commit, and finally, r

and w are two logs (partial maps from variables to integers) acting as read and write

caches between a transaction and the heap.

type Thread = (Code, Stack,Code, Log, Log)

type Stack = [Integer]

type Log = Map Var Integer

We specify the behaviour of the machine using a transition relation 7→M between

machine states, defined via a collection of transition rules that proceed by case analysis

on the first thread in the soup. As with the previous semantics, we begin by defining

a (PREEMPT) rule to allow the rest of the soup to make progress, giving rise to

non-determinism in the machine:

〈h, s〉 7→M 〈h′, s′〉

〈h, t : s〉 7→M 〈h′, t : s ′〉
(PREEMPT)

This rule corresponds to an idealised scheduler that permits context switching at

every instruction, as our focus is on the implementation of transactions rather than

scheduling policies. We return to this issue when we consider the correctness of our

96

5.2. A SIMPLE TRANSACTIONAL MACHINE

compiler later on in this chapter.

We implement 7→M using a pair of mutually recursive functions stepM and stepT

in a similar fashion to that of 7→P earlier. The former implements reduction between

arbitrary soups of threads:

stepM :: Rel (Heap, [Thread])

stepM (h, []) = {}

stepM (h, t : s) = (second (t :) ‘Set.map‘ stepM (h, s)) ∪ stepT t (h, s)

The first case handles empty soups, returning an empty set of resulting states. The

second case takes the first thread t in the soup, and implements the (PREEMPT) rule

by reducing the rest of the soup s before placing t back at the head. These are then

combined with the states resulting from a single step of t , implemeted by stepT:

stepT :: Thread→ Rel (Heap, [Thread])

stepT ([], σ, f , r ,w) (h, s) = {}

stepT (i : c, σ, f , r ,w) (h, s) = stepI i where

∼(n : σ1@∼(m : σ2)) = σ

stepI :: Instruction→ Set (Heap, [Thread])

. . . defined below

A thread with an empty list of instructions cannot make any transitions, so we return

an empty set. When there is at least one instruction remaining, we use the stepI

helper function to handle each particular instruction. The above code also brings

into scope the names c, σ, f , r and w as detailed previously, as well as σ1 and σ2 for

the current stack with one or two values popped.

Let us detail the semantics of each instruction in turn. Firstly, executing FORK

adds a new thread t to the soup, comprising the given code c ′ with an initially empty

97

CHAPTER 5. A MODEL OF STM

stack, restart code and read and write logs:

〈h, (FORK c ′ : c, σ, f, r, w) : s〉 7→M 〈h, (c, 0 : σ, f, r, w) : t : s〉 (FORK)

where t = (c′, [], [], ∅, ∅)

The above transition may be implemented directly, as follows:

stepI (FORK c ′) = {h, (c, 0 : σ, f , r , w) : t : s}

where t = (c ′, [], [], {}, {})

The PUSH instruction places its argument n on top of the stack, while ADD takes

the top two integer from the stack and replaces them with their sum:

〈h, (PUSH n, c, σ, f , r ,w) : s〉 7→M 〈h, (c, n : σ, f , r ,w) : s〉 (PUSH)

〈h, (ADD, c, n : m : σ, f , r ,w) : s〉 7→M 〈h, (c,m + n : σ, f , r ,w) : s〉 (ADD)

The corresponding cases in the definition of stepI are almost identical:

stepI (PUSH n) = {h, (c, n : σ, f , r , w) : s}

stepI ADD = {h, (c,m + n : σ2, f , r , w) : s}

Executing BEGIN starts a transaction, which involves clearing the read and write logs,

while making a note of the code to be executed if the transaction fails:

〈h, (BEGIN : c, σ, f , r , w) : s〉 7→M 〈h, (c, σ, BEGIN : c, ∅, ∅) : s〉 (BEGIN)

Accordingly, stepI sets up the retry code and initialises both read and write logs:

stepI BEGIN = {h, (c, σ,BEGIN : c, {}, {}) : s}

Next, READ places the appropriate value for the variable v on top of the stack. The

instruction first consults the write log. If the variable has not been written to, the

98

5.2. A SIMPLE TRANSACTIONAL MACHINE

read log is then consulted. Otherwise, if the variable has not been read from either,

its value is looked up from the heap and the read log updated accordingly:

〈h, (READ v : c, σ, f, r, w) : s〉 7→M 〈h, (c, n : σ, f, r′, w) : s〉 (READ)

where 〈n, r′〉 =

〈w(v), r〉 if v ∈ dom(w)

〈r(v), r〉 if v ∈ dom(r)

〈h(v), r] {v 7→ h ? v}〉 otherwise

The transliteration of the (READ) rule to our implementation is as follows:

stepI (READ v) = {h, (c, n : σ, f , r ′, w) : s}

where (n, r ′) = case (Map.lookup v w ,Map.lookup v r , h ? v) of

(Just n ′, ,)→ (n ′, r)

(Nothing, Just n ′,)→ (n ′, r)

(Nothing,Nothing, n ′)→ (n ′, r] {v 7→ n ′})

In turn, WRITE simply updates the write log for the variable v with the value on the

top of the stack, without changing the heap or the stack:

〈h, (WRITE v : c, n : σ, f, r, w) : s〉 7→M 〈h, (c, n : σ, f, r, w′) : s〉 (WRITE)

where w′ = w] {v 7→ n}

The (WRITE) rule has a similarly straightforward implementation:

stepI (WRITE v) = {h, (c, n : σ1, f , r , w ′) : s} where

w ′ = w] {v 7→ n}

Finally, COMMIT checks the read log r for consistency with the current heap h,

namely that the logged value for each variable read is equal to its value in the heap.

According to the above definitions of (READ) and (WRITE), variables written to

99

CHAPTER 5. A MODEL OF STM

before being read from during the same transaction will not result in a read log entry,

since the corresponding value in the global heap cannot influence the results of the

transaction. Therefore, we do not need to perform consistency checks for variables

that occur only in the write log.

Using our representation of logs and heaps, the consistency condition can be con-

cisely stated as r ⊆ h. That is, if they are consistent, then the transaction has

succeeded, so we may commit its write log w to the heap. This update is expressed

in terms of the overriding operator on maps as h]w. Otherwise the transaction has

failed, in which case the heap is not changed, the result on the top of the stack is

discarded, and the transaction is restarted at f :

〈h, (COMMIT : c, n : σ, f, r, w) : s〉 7→M 〈h′, (c ′, σ′, f, r, w) : s〉

where 〈h′, c′, σ′〉 =

〈h] w, c, n : σ〉 if r ⊆ h

〈h, f, σ〉 otherwise

(COMMIT)

There is no need to explicitly clear the logs in the above rule, since this is already

taken care of by the fact that the first instruction of f is always a BEGIN.

stepI COMMIT = {h ′, (c ′, σ′, f , r , w) : s}

where (h ′, c ′, σ′) = case (r ∩ h)⊆ h of

True → (h] w , c, n : σ1)

False→ (h, f , σ)

Finally we define a haltedM function on virtual machines to discriminate between

completed and running threads.

haltedM :: (Heap, [Thread])→ Maybe (Heap, [Integer])

haltedM (h, s) = case traverse haltedT s of

Just ns → Just (h, ns)

100

5.3. CORRECTNESS OF THE IMPLEMENTATION

Nothing→ Nothing

where

haltedT :: Thread→ Maybe Integer

haltedT ([], n : [], , ,) = Just n

haltedT = Nothing

5.3 Correctness of the Implementation

As we have seen, the high-level semantics of atomicity is both clear and concise, com-

prising a single inference rule (Atomic) that wraps up a complete evaluation sequence

as a single transition. On the other hand, the low-level implementation of atomicity

using transactions is rather more complex and subtle, involving the management of

read and write logs, and careful consideration of the conditions that are necessary

in order for a transaction to commit. How can we be sure that these two different

views of atomicity are consistent? Our approach to establishing the correctness of

the low-level implementation is to formally relate it to the high-level semantics via a

compiler correctness theorem.

5.3.1 Statement of Correctness

In order to formulate our correctness result, we utilise a number of auxiliary defini-

tions. First of all, because our semantics is non-deterministic, we define a relation

⇓P that encapsulates the idea of completely evaluating a process using our high-level

semantics:

〈h, ps〉 ⇓P 〈h′, ps′〉 ↔ 〈h, ps〉 7→?
P 〈h′, ps′〉 67→P

That is, a process soup ps :: [Proc] with the initial heap h can evaluate to any heap h ′

and soup ps ′ that results from completely reducing ps using our high-level semantics,

101

CHAPTER 5. A MODEL OF STM

where 67→P expresses that no further transitions are possible. We may implement the

⇓P relation as the following eval function:

eval :: REL (Heap, [Proc]) (Heap, [Integer])

eval = reduceUntil isValS reduceS

Similarly, we define a relation ⇓M that encapsulates complete execution of a thread

soup ts :: [Thread] with the initial heap h using our virtual machine, resulting in a

heap h ′ and a thread soup ts ′:

〈h, ts〉 ⇓M 〈h′, ts′〉 ↔ 〈h, ts〉 7→?
M 〈h′, ts′〉 67→M

Likewise, we may implement ⇓M as the following exec function:

exec :: REL (Heap, [Thread]) (Heap, [Integer])

exec = reduceUntil haltedM stepM

Next, we define a function load that converts a process into a corresponding thread

for execution, which comprises the compiled code for the process, together with an

empty stack, restart code and read and write logs:

load :: [Proc]→ [Thread]

load = map (λp → (compileP p [], [], [], {}, {}))

Using these definitions, the correctness of our compiler can now be expressed by the

following property:

∀p ∈ Proc, h ∈ Heap, s ∈ [Integer].

〈{}, p : []〉 ⇓P 〈h, s〉 ↔ 〈{}, load (p : [])〉 ⇓M 〈h, s〉

That is, evaluating a process p starting with an initial heap using our high-level stop-

the-world process semantics is equivalent to compiling and loading the process, and

102

5.3. CORRECTNESS OF THE IMPLEMENTATION

executing the resulting thread using the interleaved virtual machine semantics. For

the purposes of proving the result, we generalise the above over a process soup rather

than a single process, as well as an arbitrary initial heap:

Theorem 5.1 (Compiler Correctness).

∀ps ∈ [Proc], h, h′ ∈ Heap, s ∈ [Integer].

〈h, ps〉 ⇓P 〈h′, s〉 ↔ 〈h, load ps〉 ⇓M 〈h′, s〉

The above ↔ equivalence can also be considered separately, where the → direction

corresponds to soundness, and states that the compiled code will always produce a

result that is permitted by the semantics. Dually, the ← direction corresponds to

completeness, and states that the compiled code can indeed produce every result

permitted by the semantics.

In practice, some language implementations are not complete with respect to the

semantics for the language by design, because implementing every behaviour that is

permitted by the semantics may not be practical or efficient. For example, a real

implementation may utilise a scheduler that only permits a context switch between

threads at fixed intervals, rather than after every transition as in our semantics,

because doing so would be prohibitively expensive.

5.3.2 Validation of Correctness

Proving the correctness of programs in the presence of concurrency is notoriously

difficult. Ultimately we would like to have a formal proof, but the randomised testing

approach—using QuickCheck and HPC, as described in Chapter 4—can provide a

high level of assurance with relatively minimal effort. In the case of theorem 5.1, we

can transcribe it as the following property:

103

CHAPTER 5. A MODEL OF STM

prop Correctness :: Heap→ [Proc]→ Bool

prop Correctness h ps = eval (h, ps) ≡ exec (h, load ps)

In other words, from any initial heap h and process soup ps , the stop-the-world

semantics produces the same set of possible outcomes as that from executing the

compiled thread soup using a log-based implementation of transactions.

Given suitable Arbitrary instances for Prop and Heap, we can use QuickCheck to

generate a large number of random test cases, and check that the theorem holds in

each and every one:

*Main> quickCheck prop Correctness

OK, passed 100 tests.

Having performed many thousands of tests in this manner, we can be highly confident

in the validity of our compiler correctness theorem. However, as with any testing

process, it is important to ensure that all the relevant parts of the program have

been exercised in the process. Repeating the coverage checking procedure described

in §4.2.3, we obtain the following report of unevaluated expressions1:

module "Main" {

inside "reduceTran" {

tick "Set.empty" on line 303;

}

}

The {} corresponds to the ValT case of the reduceTran function, which remains unused

simply because we never ask it for the reduct of ValT m expressions.

1As before, unused expressions corresponding to compiler-generated instances have been omitted.

104

5.4. CONCLUSION

5.4 Conclusion

In this chapter we have shown how to implement software transactional memory

correctly, for a simplified language inspired by STM Haskell. Using QuickCheck and

HPC, we tested a low-level, log-based implementation of transactions with respect

to a high-level, stop-the-world semantics, by means of a compiler and its correctness

theorem. This appears to be the first time that the correctness of a compiler for a

language with transactions has been mechanically tested.

The lightweight approach provided by QuickCheck and HPC was indispensable in

allowing us to experiment with the design of the language and its implementation, and

to quickly check any changes. Our basic definitions were refined many times during

the development of this work, both as a result of correcting errors, and streamlining

the presentation. Ensuring that our changes were sound was simply a matter of

re-running QuickCheck and HPC.

On the other hand, it is important to recognise the limitations of this approach.

First of all, randomised testing does not constitute a formal proof, and the reliability

of QuickCheck depends heavily on the quality of the test-case generators. Secondly,

achieving 100% code coverage with HPC does not guarantee that all possible inter-

actions between parts of the program have been tested. Nonetheless, we have found

the use of these tools to be invaluable in our work.

105

CHAPTER 5. A MODEL OF STM

106

Chapter 6

Machine-Assisted Proofs in Agda

To give a formal proof of the correctness property posited in the previous chapter, we

may make use of a mechanised proof assistant. Agda [Nor07, The10] is a dependently-

typed functional programming language based on Martin-Löf intuitionistic type the-

ory [ML80, NPS90]. Via the Curry-Howard correspondence—that is, viewing types

as propositions and programs as proofs—it is also used as a proof assistant for con-

structive mathematics. In this chapter, we shall provide a gentle introduction to the

language, and demonstrate how we can formalise statements of compiler correctness

by means of machine-checked proofs, culminating in a verified formalisation of the

proofs of chapter 3.

6.1 Introduction to Agda

The current incarnation of Agda has a syntax similar to that of Haskell, and should

look familiar to readers versed in the latter. As in previous chapters, we will adopt a

colouring convention for ease of readability:

Syntactic Class Examples

Keywords data , where , with . . .

107

CHAPTER 6. MACHINE-ASSISTED PROOFS IN AGDA

Types N, List, Set. . .

Constructors zero, suc, tt, []. . .

Functions id, + , Star.gmap. . .

Semantically, Agda is distinguished by its foundation on dependent types, and is

closely related to systems such as Epigram [M+08, McB05] and Coq [The08]. Depen-

dent types systems are so-called because they allow for types to depend on values,

in addition to the usual parametrisation by other types as seen in languages such as

Haskell. This provides us with a much richer vocabulary of discourse for not only

stating the properties of our programs, but also to be able to prove such properties

within the same system. We will begin to explore how this is facilitated by dependent

types from section 6.1.2 onwards.

6.1.1 Data and Functions

We start our introduction to Agda with some simple data and function definitions.

The language itself does not specify any primitive data types, and it serves as a good

introduction to see how some of these may be defined in its standard library [Dan10b].

For example, we may define the Peano numbers as follows:

data N : Set where

zero : N

suc : N → N

This is syntactically similar to Haskell’s generalised abstract data type (GADT) decla-

rations [PJWW04] with a few minor differences. Firstly, arbitrary Unicode characters

may be used in identifiers, and we do not use upper and lower case letters to distin-

guish between values and constructors1. Secondly, we write : to mean has-type-of,

1The implication here is that the processes of syntax highlighting and type-checking are inextri-
cably linked, and that syntax colours provides more information for the reader.

108

6.1. INTRODUCTION TO AGDA

and write Set for the type of types2.

Thus, the above defines N as a new data type inhabiting Set, with a nullary

constructor zero as the base case and an unary constructor suc as the inductive case.

These correspond to two of the Peano axioms that define the natural numbers: zero

is a natural number, and every number n has a successor suc n.

We may define addition on the natural numbers as follows, by induction on its

first argument:

+ : N → N → N

zero + n = n

suc m + n = suc (m + n)

Agda allows the use of arbitrary mixfix operators, where underscores ‘ ’ denote the

positions of arguments. Another difference is that all functions in Agda must be

total. For example, omitting the zero case of + would lead to an error during

the typechecking process, rather than a warning as in Haskell. Additionally, only

structural recursion is permitted. In the definition of + above, we recurse on the

definition of N: the first argument is strictly smaller on the right hand side, i.e. m

rather than suc m. While more general forms of recursion are possible, Agda requires

us to explicitly prove that the resulting definitions are total.

6.1.2 Programs as Proofs and Types as Predicates

The Curry-Howard correspondence refers to the initial observation by Curry that

types—in the sense familiar to functional programmers—correspond to axiom-schemes

for intuitionistic logic, while Howard later noted that proofs in formal systems such

as natural deduction can be directly interpreted as terms in a model of computation

such as the typed lambda calculus.

2Agda in fact has countably infinite levels of Sets, with Set : Set1 : Set2 : This stratification
prevents the formation of paradoxes that would lead to inconsistencies in the system.

109

CHAPTER 6. MACHINE-ASSISTED PROOFS IN AGDA

The intuitionistic approach to logic only relies on constructive methods, disallow-

ing notions from classical logic such as the law of the excluded middle (P ∨ ¬P) or

double-negation elimination (¬¬P → P). For example, intuitionist reject P ∨ ¬P

because there exists a statement P in any sufficiently powerful logic that can neither

be proved nor disproved within the system, by Gödel’s incompleteness theorems. In

other words, intuitionism equates the truth of a statement P with the possibility of

constructing a proof object that satisfies P , therefore a proof of ¬¬P , refuting the

non-existence of P , does not imply P itself.

What does this mean for the proletarian programmer? Under the Curry-Howard

correspondence, the type A → B is interpreted as the logical statement ‘A implies

B ’, and vice-versa. Accordingly, a program p : A → B corresponds to a proof

of ‘A implies B ’, in that executing p constructs a witness of B as output, given a

witness of A as input. Thus in a suitable type system, programming is the same as

constructing proofs in a very concrete sense.

In a traditional strongly typed programming language such as Haskell, the type

system exists to segregate values of different types. On the other hand, distinct

values of the same type all look the same to the type-checker, which means we are

unable to form types corresponding to propositions about particular values. Haskell’s

GADTs break down this barrier in a limited sense, by allowing the constructors of

a parametric type to target particular instantiations of the return type. While this

allows us to exploit a Haskell type checker that supports GADTs as a proof-checker

in some very simple cases, it comes at the cost of requiring ‘counterfeit type-level

copies of data’ [McB02].

6.1.3 Dependent Types

Dependent type systems follow a more principled approach, being founded on Martin-

Löf intuitionistic type theory [NPS90]. These have been studied over several decades,

110

6.1. INTRODUCTION TO AGDA

and the current incarnation of Agda [Nor07, The10] is one example of such a system.

Coming from a Hindley-Milner background, the key distinction of dependent types

is that values can influence the types of other, subsequent values. Let us introduce

the notion by considering an example of a dependent type:

data Fin : N → Set where

fz : {n : N} → Fin (suc n)

fs : {n : N} → Fin n → Fin (suc n)

This defines a data type Fin—similar to N above—that is additionally indexed by a

natural number. Its two constructor are analogues of the zero and suc of N. The fz

constructor takes an argument of type N named n, that is referred to in its resultant

type of Fin (suc n). The braces { and } indicate that n is an implicit parameter, which

we may omit at occurrences of fz, provided that the value of n can be automatically

inferred. We can see how this might be possible in the case of the fs constructor: its

explicit argument has type Fin n, from which we may deduce n.

The above Fin represents a family of types, where each type Fin n has exactly

n distinct values. This is apparent in the resultant types of the constructors, for

example: neither fz and fs can inhabit Fin zero, as they both target Fin (suc n) for

some n. The only inhabitant of Fin (suc zero) is fz, since fs requires an argument of

type Fin zero, which would correspond to a proof that Fin zero is inhabited.

A routine application of the Fin family is in the safe lookup of lists or vectors,

where a static guarantee on the bounds of the given position is required. The following

definition defines the type of vectors, indexed by their length:

data Vec (X : Set) : N → Set where

[] : Vec X zero

:: : {n : N} → X → Vec X n → Vec X (suc n)

Unsurprisingly the empty list [] corresponds to a Vec X of length zero, while the ::

111

CHAPTER 6. MACHINE-ASSISTED PROOFS IN AGDA

constructor prepends an element of X to an existing Vec X of length n, to give a

Vec X of length suc n.

A lookup function can then be defined as follows:

lookup : {X : Set} {n : N} → Fin n → Vec X n → X

lookup fz (x :: xs) = x

lookup (fs i) (x :: xs) = lookup i xs

The first argument gives the position in the vector where we wish to extract an

element, with the second argument being the vector itself.

Earlier we mentioned that all definitions in Agda must be total, yet the lookup

function seemingly does not consider the case of the empty vector []. This is because

in a dependently-typed language, pattern matching on one argument can potentially

influence the types of other arguments: matching on either fz or fs i forces n to suc n′

for some n′, and in both cases the type of the vector is refined to Vec X (suc n′). As

[] can only inhabit Vec X zero, we needn’t explicitly list this case. Had we pattern

matched the vector with [] first on the other hand, the type of the position then

becomes Fin zero, which is uninhabited. In this case, we may use the ‘impossible’

pattern () for the first argument, to indicate that the case is unreachable:

lookup () []

In such cases, the right hand side of the definition is simply omitted.

This is only an elementary demonstration of the power of dependent types. Being

able to form any proposition in intuitionistic logic as a type gives us a powerful

vocabulary with which to state and verify the properties of our programs. Conversely,

by interpreting a type as its corresponding proposition, we have mapped the activity

of constructing mathematical proofs to ‘just’ programming, albeit in a more rigorous

fashion than usual.

112

6.1. INTRODUCTION TO AGDA

6.1.4 Equality and its Properties

The previous section introduced dependent types from a programming and data types

point-of-view. We shall now take a look at how we can use dependent types to state

logical propositions and to construct their proofs.

A simple and commonplace construct is that of an equality type, corresponding

to the proposition that two elements of the same type are definitionally equal. The

following definition encodes the Martin-Löf equality relation:

data ≡ {X : Set} : X → X → Set where

refl : {x : X } → x ≡ x

Agda does not provide the kind of Hindley-Milner polymorphism as seen in Haskell,

although we can simply take an additional parameter of the type we wish to be

polymorphic over. In the above definition of equality, the variable X corresponds to

the type of the underlying values, which can often be inferred from the surrounding

context. By marking this parameter as implicit, we effectively achieve the same end

result in its usage.

The above definition of ≡ is indexed by two explicit parameters of type X . Its

sole constructor is refl, that inhabits the type x ≡ x given an argument x : X .

Logically, refl corresponds to the axiom of reflexivity ∀x. x ≡ x. In cases where

the type of the argument—such as x here—can be inferred form the surrounding

context, the ∀ keyword allows us to write the type in a way that better resembles the

corresponding logical notation, for example:

refl : ∀ {x} → x ≡ x

In general, Agda syntax allows us to write ‘ ’ in place of expressions—including

types—that may be automatically inferred. The above is in fact syntactic sugar for

the following:

113

CHAPTER 6. MACHINE-ASSISTED PROOFS IN AGDA

refl : {x : } → x ≡ x

Agda includes an interactive user interface for the Emacs [Sta10] operating system

that supports incremental development by the placement of ‘holes’ where arbitrary

expressions are expected. Incomplete programs with holes can be passed to the type

checker, which then informs the user of the expected type. Thus, writing proofs in

Agda typically involves a two-way dialogue between the user and the type checker.

Given the above definition of reflexivity as an axiom, we may go on to prove that

≡ is also symmetric and transitive. The former is the proposition that given any x

and y , a proof of x ≡ y implies that y ≡ x . This is implemented as the following

sym function,

sym : {X : Set} (x y : X) → x ≡ y → y ≡ x

sym x y x≡y = ?

where the ‘?’ mark indicates an as-yet unspecified expression. Multiple arguments of

the same type are simply separated with spaces, while arrows between pairs of named

arguments can be omitted, since there cannot be any ambiguity.

Successfully type-checking the above turns the ‘?’ into a hole { } , inside which

we may further refine the proof. The expected type of the hole is displayed, and we

can ask the type-checker to enumerate any local names that are in scope. In this

case, the hole is expected to be of type y ≡ x , with the arguments x y : X and

x≡y : x ≡ y in scope.

At this point, we can ask the system to perform case-analysis on x≡y. Being an

equality proof, this argument must be the refl constructor. But something magical

also happens during the case-split operation:

sym x .x refl = { }

Since refl only inhabits the type x ≡ x , the type checker concludes that the first

two arguments x and y must be the same, and rewrites the second as .x to reflect

114

6.1. INTRODUCTION TO AGDA

this fact. Whereas pattern matching in Haskell is an isolated affair, in a dependently

typed context it can potentially cause interactions with other arguments, revealing

more information about the them that can be checked and enforced by the system.

Accordingly, y is no longer in-scope, and the goal type becomes x ≡ x , which is

satisfied by refl:

sym x .x refl = refl

As we do not explicitly refer to x on the right hand side, we could have made the x

and y arguments implicit too, leading to a more succinct definition:

sym : {X : Set} {x y : X } → x ≡ y → y ≡ x

sym refl = refl

We prove transitivity in a similar fashion,

trans : ∀ {X : Set} {x y z : X } → x ≡ y → y ≡ z → x ≡ z

trans refl refl = refl

where pattern-matching the first explicit argument with refl unifies y with x , refining

the type of the second argument to x ≡ z ; in turn, matching this with refl then

unifies z with x . The resulting goal of x ≡ x is met on the right hand side with

simply refl.

6.1.5 Existentials and Dependent Pairs

In the previous section, we had already surreptitiously modelled the universal quan-

tifier ∀ as dependent functions—that is, functions where values of earlier arguments

may influence later types. Dually, we can model the existential quantifier ∃ using

dependent pairs. This is typically defined in terms of the Σ type3:

3In this thesis, I deviate from the Agda standard library by writing ∧ instead of , , to avoid
excessive visual overloading.

115

CHAPTER 6. MACHINE-ASSISTED PROOFS IN AGDA

data Σ (X : Set) (P : X → Set) : Set where

∧ : (x : X) → (p : P x) → Σ X P

We can interpret the type Σ X (λ x → P x) as the existentially quantified statement

that ∃x ∈ X. P (x). Correspondingly, a proof of this comprises a pair x ∧ p, where

the latter is a proof of the proposition P x . Unlike classical proofs of existence which

may not necessarily be constructive, a proof of the existence of some x satisfying P

necessarily requires us to supply such an x . Conversely, we can always extract an x

given such a proof.

As X can often be inferred from the type of the predicate P , we may define a

shorthand ∃ that accepts X as an implicit argument:

∃ : {X : Set} (P : X → Set) → Set

∃ {X } = Σ X

The above definition of ∃ allows us to write ∃ λ x → P x , which better resembles

the corresponding logical proposition of ∃x. P (x).

Of course, the predicate P need not necessarily depend on the first element of a

pair. In such cases, the resulting type is a non-dependent pair, which corresponds

to a logical conjunction. This can be recovered as a degenerate case of the above Σ

type, in which we simply ignore the value of the first type:

× : Set → Set → Set

X × Y = Σ X (λ → Y)

Putting the above into practice, we present below a definition of splitAt that splits a

vector of length m + n at position m into left and right vectors of length m and

n respectively. Unlike the eponymous Haskell function, we can also witness that the

contatenation of the resulting vectors coincides with the input:

splitAt : (m : N) {n : N} {X : Set} (xs : Vec X (m + n)) →

116

6.1. INTRODUCTION TO AGDA

Σ (Vec X m) λ ys → Σ (Vec X n) λ zs → xs ≡ ys ++ zs

splitAt zero xs = [] ∧ xs ∧ refl

For the base case where the position is zero, we simply return the empty list as the

left part and the entirety of xs as the right. Since [] ++ xs reduces to just xs , a

simple appeal to reflexivity completes this clause.

In the inductive case of suc m, the input vector must contain at least one element,

followed by xs . We wish to split xs recursively at m and prepend x to the left result.

In Agda, we can pattern match on intermediate results using the magic ‘ with ’

keyword, which could be thought of as the dependently-typed analogue to Haskell’s

case:

splitAt (suc m) (x :: xs) with splitAt m xs

splitAt (suc m) (x :: .(ys ++ zs)) | ys ∧ zs ∧ refl = x :: ys ∧ zs ∧ refl

When we case-split on the proof of xs ≡ ys ++ zs , Agda sees that ≡.refl is the only

possible constructor, and correspondingly rewrites the tail of the input vector to the

dotted pattern .(ys ++ zs). This is simply a more sophisticated instance of what we

saw when case-splitting sym in the previous section.

6.1.6 Reflexive Transitive Closure

Before we conclude this brief introduction to Agda, we shall introduce the reflexive

transitive closure of McBride, Norell and Jansson [McB07], which generalises the

notion of sequences in a dependently-typed context. This general construct will prove

useful later when working with sequences of small-step reductions.

We begin by defining binary relations parametrised on their underlying types:

Rel : Set → Set1

Rel X = X → X → Set

117

CHAPTER 6. MACHINE-ASSISTED PROOFS IN AGDA

Rel has Set1 as its codomain in order to avoid the Set : Set inconsistency. We use

the Rel X shorthand to denote the type of binary relations on X . In fact, our earlier

definition of propositional equality could equivalently have been written as follows:

data ≡ {X : Set} : Rel X where

refl : {x : X } → x ≡ x

The definition of Star is parametrised on a set of indices I and a binary relation R

on I . The type Star {I } R is itself another binary relation, indexed on the same I :

data Star {I : Set} (R : Rel I) : Rel I where

ε : {i : I } → Star R i i

C : {i j k : I } → (x : R i j) → (xs : Star R j k) → Star R i k

Here, ε gives a trivial witness of reflexivity for any i . The C constructor provides

a heterogeneous definition of transitivity, accepting a proof of R i j and an R-chain

relating j and k as its two arguments. Thus Star R defines the type of the reflexive

transitive closure of R. Being data, we may take apart an element of Star R i k and

inspect each step of the R-chain.

Alternatively the constructors ε and C could be thought of as generalisations

of the nil and cons constructors of the list data type for proofs of the form R i k ,

with the constraint that two adjacent elements x : R i j and y : R j k must share

a common index j .

In the degenerate case of a constant relation (λ → X) : Rel > whose indices

provide no extra information, we recover the usual definition of lists of elements of

type X :

List : Set → Set

List X = Star (λ → X) tt tt

Here tt is the unique constructor of the unit type >, with ε and C taking the rôles

118

6.1. INTRODUCTION TO AGDA

of nil and cons respectively. For example, we could write the two-element list of 0

and 1 as follows:

two : List N

two = zero C suc zero C ε

As it is a generalisation of lists, Star admits many of the usual list-like functions. For

example, while the CC function below provides a proof of transitivity for Star R,

it could equally be considered the generalisation of append on lists, as suggested by

the structure of its definition:

CC : {I : Set} {R : Rel I } {i j k : I } →

Star R i j → Star R j k → Star R i k

ε CC ys = ys

(x C xs) CC ys = x C (xs CC ys)

Similarly, we can define an analogue of map on lists:

gmap : {I I ′ : Set} {R : Rel I } {S : Rel I ′} (f : I → I ′) →

({x y : I } → R x y → S (f x) (f y)) →

{i j : I } → Star R i j → Star S (f i) (f j)

gmap f g ε = ε

gmap f g (x C xs) = g x C gmap f g xs

As well as a function g that is mapped over the individual elements of the sequence,

gmap also takes a function f that allows for the indices to change.

To conclude, let us consider a simple use case for Star. Take the predecessor

relation on natural numbers, defined as <1 below:

data <1 : Rel N where

lt1 : (n : N) → n <1 suc n

119

CHAPTER 6. MACHINE-ASSISTED PROOFS IN AGDA

Here, lt1 n witnesses n as the predecessor of suc n. We can then conveniently define

the reflexive transitive closure of <1 as follows:

≤ : Rel N

≤ = Star <1

Of course, this is just the familiar less than or equal relation, for which we can easily

prove some familiar properties, such as the following:

0≤n : (n : N) → zero ≤ n

0≤n zero = ε

0≤n (suc n) = 0≤n n CC (lt1 n C ε)

Note that a proof of zero ≤ n as produced by the above 0≤n function actually consists

of a sequence of proofs in the style of “0 is succeeded by 1, which is succeeded by 2,

. . . which is succeeded by n” that can be taken apart and inspected one by one. We

will be doing exactly this when considering reduction sequences in our later proofs.

6.2 Agda for Compiler Correctness

In this section, we shall revisit the language of numbers and addition from chapter 3,

and demonstrate how the previous compiler correctness result can be formalised using

Agda.

6.2.1 Syntax and Semantics

As in chapter 5, we can encode the syntax of our language as a simple algebraic data

type:

data Expression : Set where

: (m : N) → Expression

⊕ : (a b : Expression) → Expression

120

6.2. AGDA FOR COMPILER CORRECTNESS

The two constructors # and ⊕ correspond to the (Exp-N) and (Exp-⊕) rules

in our original definition of the Expression language in chapter 3. Its denotational

semantics—being a mapping from the syntax to the underlying domain of N—can be

simply implemented as a function:

[[]] : Expression → N

[[# m]] = m

[[a ⊕ b]] = [[a]] + [[b]]

The two cases in the definition of [[]] correspond to (denote-val) and (denote-plus)

respectively. A numeric expression is interpreted as just its value, while the⊕ operator

translates to the familiar + on natural numbers.

We had previously modelled the big-step semantics of our language as a binary

relation ⇓ between expressions and numbers. In Agda, such a relation can be imple-

mented as a dependent data type, indexed on Expression and N:

data ⇓ : REL Expression N where

⇓-N : ∀ {m} → # m ⇓ m

⇓-⊕ : ∀ {a b m n} → a ⇓ m → b ⇓ n → a ⊕ b ⇓ m + n

The ⇓-N constructor corresponds to the (big-val) rule: an expression # m evaluates

to just the value m. The ⇓-⊕ constructor takes two arguments of type a ⇓ m and

b ⇓ n, corresponding to the two premises of (big-plus).

The small-step semantics for Expressions is implemented in the same fashion,

data 7→ : Rel Expression where

7→-N : ∀ {m n} → # m ⊕ # n 7→ # (m + n)

7→-L : ∀ {a a′ b} → a 7→ a′ → a ⊕ b 7→ a′ ⊕ b

7→-R : ∀ {m b b′} → b 7→ b′ → # m ⊕ b 7→ # m ⊕ b′

with (small-val), (small-left) and (small-right) represented as the 7→-N, 7→-L and 7→-R

121

CHAPTER 6. MACHINE-ASSISTED PROOFS IN AGDA

constructors. Using Star defined earlier in this chapter, we obtain the reflexive tran-

sitive closure of 7→ , along with proofs of the usual properties, for free:

7→? : Rel Expression

7→? = Star 7→

6.2.2 Semantic Equivalence

Let us move swiftly on to the semantic equivalence theorems of section 3.2.2. Our pre-

vious technique of rule induction essentially boils down to induction on the structure

of inductively-defined data types.

The proof for the forward direction of theorem 3.1—which captures the equiv-

alence of the denotational and big-step semantics—is implemented as denote→big,

proceeding by case analysis on its argument e : Expression:

denote→big : ∀ {e m} → [[e]] ≡ m → e ⇓ m

denote→big {# n} ≡.refl = ⇓-N

denote→big {a ⊕ b} ≡.refl = ⇓-⊕ (denote→big ≡.refl) (denote→big ≡.refl)

For the e ≡ # n case, matching the proof of [[# n]] ≡ m with ≡.refl convinces the

typechecker that m and n are equal, so e ⇓ n is witnessed by ⇓-N. Agda considers

terms equal up to β-reduction, so the [[a ⊕ b]] ≡ m argument is equivalently a proof

of [[a]] + [[b]] ≡ m, by the definition of [[]]. The goal type of a ⊕ b ⇓ [[a]] + [[b]]

is therefore met with ⇓-⊕, whose premises of a ⇓ [[a]] and b ⇓ [[b]] are obtained

by recursively invoking denote→big with two trivial witnesses to [[a]] ≡ [[a]] and

[[b]] ≡ [[b]].

The backwards direction of theorem 3.1 is given by the following big→denote,

which uses structural induction on the definition of ⇓ :

big→denote : ∀ {e m} → e ⇓ m → [[e]] ≡ m

big→denote ⇓-N = ≡.refl

122

6.2. AGDA FOR COMPILER CORRECTNESS

big→denote (⇓-⊕ a⇓m b⇓n) with big→denote a⇓m | big→denote b⇓n

big→denote (⇓-⊕ a⇓m b⇓n) | ≡.refl | ≡.refl = ≡.refl

For the base case of ⇓-N, it must follow that e ≡ # m, so the goal type after β-

reduction of [[]] becomes m ≡ m, which is satisfied trivially. The ⇓-⊕ inductive

case brings with it two proofs of a ⇓ m and b ⇓ n, which can be used to obtain

proofs of [[a]] ≡ m and [[b]] ≡ n via the induction hypothesis. The goal of

[[a]] + [[b]] ≡ m + n after β-reduction is then trivially satisfied, thus completing

the proof of theorem 3.1.

The with keyword provides an analogue of Haskell’s case . . . of construct that

allows us to pattern match on intermediate results. Agda requires us to repeat the

left hand side of the function definition when using a with -clause, since dependent

pattern matching may affect the other arguments, as noted earlier in this chapter.

We go on to prove theorem 3.2—the equivalence between the big-step and small-

step semantics—in a similar manner:

big→small : ∀ {e m} → e ⇓ m → e 7→? # m

big→small ⇓-N = ε

big→small (⇓-⊕ {a} {b} {m} {n} a⇓m b⇓n) =

Star.gmap (λ a′ → a′ ⊕ b) 7→-L (big→small a⇓m) CC

Star.gmap (λ b′ → # m ⊕ b′) 7→-R (big→small b⇓n) CC

7→-N C ε

The goal in the case of ⇓-N is trivially satisfied by the empty reduction sequence, since

e ≡ # m. In the ⇓-⊕ case, recursively invoking big→small with a⇓m and b⇓n gives

reduction sequences for a 7→? # m and b 7→? # n respectively. We can map over the

former using 7→-L over the witnesses and λ a′ → a′ ⊕ b over the indices to obtain

the reduction sequence a ⊕ b 7→? # m ⊕ b, and likewise for the second to obtain

m ⊕ b 7→? # m ⊕ # n. By appending these two resulting sequences, followed by

123

CHAPTER 6. MACHINE-ASSISTED PROOFS IN AGDA

a final application of the 7→-N rule—or equivalently invoking transitivity—we obtain

the desired goal of a ⊕ b 7→? # m + n.

The proof for the reverse direction of 3.2 proceeds by ‘folding’4 lemma 3.3—

implemented as the sound helper function below—over the e 7→? # m reduction

sequence:

small→big : ∀ {e m} → e 7→? # m → e ⇓ m

small→big ε = ⇓-N

small→big (e7→e′ C e′ 7→?m) = sound e 7→e′ (small→big e′ 7→?m) where

sound : ∀ {e e′ m} → e 7→ e′ → e′ ⇓ m → e ⇓ m

sound 7→-N ⇓-N = ⇓-⊕ ⇓-N ⇓-N

sound (7→-L a 7→a′) (⇓-⊕ a′⇓m b⇓n) = ⇓-⊕ (sound a 7→a′ a′⇓m) b⇓n

sound (7→-R b 7→b′) (⇓-⊕ m⇓m b′⇓n) = ⇓-⊕ m⇓m (sound b 7→b′ b′⇓n)

The sound helper performs case analysis on the structure of the e 7→ e′ small-step

reduction. In the case of 7→-N, it must be the case that e ≡ # m ⊕ # n and

e′ ≡ # m + n respectively, which in turn forces the e′ ⇓ m argument to be ⇓-N.

The goal type of # m ⊕ # n ⇓ m + n is accordingly witnessed by ⇓-⊕ ⇓-N ⇓-N.

For the two remaining 7→-L and 7→-R rules, it must necessarily be the case that

e′ ≡ a′ ⊕ b or e′ ≡ # m ⊕ b′ respectively. Thus the e′ ⇓ m argument contains

a witness of either a′ ⇓ m or b′ ⇓ n, which we use to recursively obtain a proof of

a ⇓ m or b ⇓ n.

6.2.3 Stack Machine, Compiler, and Correctness

In section 3.3.1 we used a stack machine as our low-level semantics, with the machine

modelled as a pair of a list of instructions and a stack of values. This translates to

the following Agda data declaration:

4Unfortunately we cannot use Star.gfold from Agda’s standard library, as ⇓ : REL Expression N
is not a homogeneous relation.

124

6.2. AGDA FOR COMPILER CORRECTNESS

data Machine : Set where

〈 , 〉 : (c : List Instruction) → (σ : List N) → Machine

The List type from in Agda’s standard library implements the familiar nil and cons

lists as found in Haskell. In turn, the virtual machine’s instruction set comprises the

standard PUSH and ADD for stack machines:

data Instruction : Set where

PUSH : N → Instruction

ADD : Instruction

The two reduction rules (vm-push) (vm-add) for the virtual machine are realised as

the �-PUSH and �-ADD constructors of the � relation:

data � : Rel Machine where

�-PUSH : ∀ {m c σ} → 〈 PUSH m :: c , σ 〉� 〈 c , m :: σ 〉

�-ADD : ∀ {m n c σ} → 〈 ADD :: c , n :: m :: σ 〉� 〈 c , m + n :: σ 〉

�? : Rel Machine

�? = Star �

Again, we define �? as Star � , and receive the usual properties of a reflexive

transitive closure absolutely free.

The compiler is defined identically to that of section 3.3.2,

compile : Expression → List Instruction → List Instruction

compile (# m) c = PUSH m :: c

compile (a ⊕ b) c = compile a (compile b (ADD :: c))

which compiles a number # m to PUSH m, and a sum a ⊕ b to the concatenation

of code that computes the value of a and b, followed by an ADD instruction.

125

CHAPTER 6. MACHINE-ASSISTED PROOFS IN AGDA

The following definition of �?# provides a convenient synonym for what it

means when we say that executing the compiled code for an expression e computes

the result m:

�?# : REL Expression N

e �?# m = ∀ {c σ} → 〈 compile e c , σ 〉�? 〈 c , m :: σ 〉

Note that the above proposition is quantified over any code continuation c and initial

stack σ, and a proof of compiler correctness (theorem 3.4) amounts to functions in

both directions between e ⇓ m and e �?# m. In the forward direction—that is, from

the high-level/big-step semantics to the low-level/virtual machine semantics—this is

implemented by induction on the structure of e ⇓ m:

big→machine : ∀ {e m} → e ⇓ m → e �?# m

big→machine ⇓-N = �-PUSH C ε

big→machine (⇓-⊕ a⇓m b⇓n) =

big→machine a⇓m CC big→machine b⇓n CC �-ADD C ε

In the case of ⇓-N we have e ≡ # m, and so �-PUSH C ε witnesses the reduction

sequence ∀ {c σ} → 〈 compile (# m) c , σ 〉�? 〈 c , m :: σ 〉. In the second case,

the recursive terms big→machine a⇓m and big→machine b⇓n are of the following

types:

big→machine a⇓m : ∀ {ca σa} → 〈 compile a ca , σa 〉�? 〈 ca , m :: σa 〉

big→machine b⇓n : ∀ {cb σb} → 〈 compile b cb , σb 〉�? 〈 cb , n :: σb 〉

The right hand side requires a proof of:

∀ {c σ} → 〈 compile (a ⊕ b) c , σ 〉�? 〈 c , m + n :: σ 〉

which can be obtained by instantiating ca = compile b (ADD :: c), cb = ADD :: c,

σa = σ, σb = m :: σ, and concatenating the resulting reduction sequences,

126

6.2. AGDA FOR COMPILER CORRECTNESS

followed by a final application of the �-ADD rule. As these values can be automat-

ically inferred by Agda, we do not need to make them explicit in the definition of

big→machine.

The backwards direction of the compiler correctness proof requires us to compute

a witness of e ⇓ m from one of e �?# m. We first need to implement a pair of

lemmas, however. The exec lemma simply states that that for any expression e, there

exists a number m for which executing compile e computes m:

exec : ∀ e → ∃ λ m → e �?# m

exec (# m) = m ∧ λ {c} {σ} → �-PUSH C ε

exec (a ⊕ b) with exec a | exec b

exec (a ⊕ b) | na ∧ a�?#na | nb ∧ b�?#nb = na + nb ∧

λ {c} {σ} → a�?#na CC b�?#nb CC �-ADD C ε

When e ≡ # m, this number clearly has to be m, with�-PUSH C ε serving as the

witness. Note that due to Agda’s handling of implicit arguments, we must explicitly

generalise over c and σ. In the e ≡ a ⊕ b case, we simply recurse on the a and b

subexpressions and concatenate the resulting reduction sequences with an �-ADD.

The unique lemma states that given two reduction sequences from the same initial

state, the resulting stacks must coincide:

unique : ∀ {c σ σ′ σ′′} → 〈 c , σ 〉�? 〈 [] , σ′ 〉 →

〈 c , σ 〉�? 〈 [] , σ′′ 〉 → σ′ ≡ σ′′

unique {[]} (() C c ′�?σ′) c�?σ′′

unique {[]} ε (() C c ′�?σ′′)

unique {[]} ε ε = ≡.refl

We proceed by recursion on the code c: the first group of cases above deal with

an empty c. Both sequences must be ε, since there no reduction is possible from

the machine state 〈 [] , σ 〉. In Agda, we identify such cases with the ‘impossible’

127

CHAPTER 6. MACHINE-ASSISTED PROOFS IN AGDA

pattern—written as ()—and accordingly the first two cases do not have a correspond-

ing right hand side. In the third case, the proof of σ′ ≡ σ′′ is trivial, since matching

on the two ε constructors for reflexivity has already unified the σ, σ′ and σ′′ variables.

The next two cases deal with the PUSH and ADD instructions. In the first instance,

we obtain the proof of σ′ ≡ σ′′ by recursion on c ′�?σ′ and c ′�?σ′′, both starting

from the machine state 〈 c ′ , m :: σ 〉:

unique {PUSH m :: c ′} (�-PUSH C c ′�?σ′)

(�-PUSH C c ′�?σ′′) = unique c ′�?σ′ c ′�?σ′′

unique {ADD :: c ′} { []} (() C c ′�?σ′) c�?σ′′

unique {ADD :: c ′} { m :: []} (() C c′�?σ′) c ′�?σ′′

unique {ADD :: c ′} {n :: m :: σ} (�-ADD C c ′�?σ′)

(�-ADD C c ′�?σ′′) = unique c ′�?σ′ c ′�?σ′′

The reduction rule for ADD requires at least two numbers on top of the stack, which

is ruled out by the first two cases in the latter group. The final case proceeds by

recursion on the remainder of the reduction sequence, both of which start from the

same 〈 c ′ , m + n :: σ 〉 machine state.

Returning to the second half of our compiler correctness theorem, it remains for

us to show that e �?# m implies e ⇓ m. The following definition of machine→big

provides the proof, which proceeds by case analysis on the expression e:

machine→big : ∀ {e m} → e �?# m → e ⇓ m

machine→big {# n} n�?#m with n�?#m {[]} {[]}

machine→big {# n} n�?#m | �-PUSH C ε = ⇓-N

machine→big {# n} n�?#m | �-PUSH C () C n′�?#m

The n�?#m argument is in fact a function that takes two implicit arguments, having

128

6.3. CONCLUSION

the type:

∀ {c σ} → 〈 compile (# n) c , σ 〉�? 〈 c , m :: σ 〉

To this we apply an empty code continuation and stack, then pattern match the re-

sulting reduction sequence against �-PUSH C ε. This unifies n and the implicit

argument m, allowing ⇓-N to witness the goal type of # m ⇓ m. The second case han-

dles the case of longer reduction sequences, which is impossible, since compile (# n)

outputs only a single PUSH instruction.

For expressions of the form e ≡ a ⊕ b, we first use the exec helper to obtain the

two reduction sequences a �?# na and b �?# nb, making use of a with clause:

machine→big {a ⊕ b} a⊕b�?#m with exec a | exec b

machine→big {a ⊕ b} a⊕b�?#m | na ∧ a�?#na | nb ∧ b�?#nb

with unique {σ = []} a⊕b�?#m (a�?#na CC b�?#nb CC �-ADD C ε)

machine→big {a ⊕ b} a⊕b�?#m | na ∧ a�?#na | nb ∧ b�?#nb

| ≡.refl = ⇓-⊕ (machine→big a�?#na) (machine→big b�?#nb)

The concatenation a�?#na CC b�?#nb CC �-ADD C ε produces a reduction

sequence of a ⊕ b �?# na + nb. Using the previously defined unique lemma, we

may match each step of the sequence with those of a⊕b�?#m to yield a proof of

na + nb ≡ m. Examining this proof using a second with clause, the goal becomes

a ⊕ b ⇓ na + nb. This calls for an instance of ⇓-⊕, whose two premises of a ⇓ na

and b ⇓ nb are obtained by recursion.

6.3 Conclusion

In this chapter we have given a tutorial of some basic Agda suitable for our needs,

and have produced a fully machine-verified version of the results of chapter 3 as an

129

CHAPTER 6. MACHINE-ASSISTED PROOFS IN AGDA

example. Finally we concluded with a brief to using coinductive data types in Agda.

On reflection, formalising such results in Agda has provided a number of advan-

tages: firstly, it clarifies thinking by forcing us to be very explicit with regards to

numerous low-level details that are often elided in pen-and-paper proofs. Testing

out new hypotheses also becomes easier, using the type checker to guide proof devel-

opment; in case of any invalid assumptions, Agda helps to pinpoint precisely where

these occur.

A final benefit of using a mechanised proof system such as Agda is that it aids

the incremental evolution of this work: often we would prove a simplified form of

a theorem to gain some insight. At this point, we may then change, extend, or

generalise some core definitions towards our target. Strictly-speaking, all the proofs

leading up to the final result would need to be proved again, but in the majority

of cases only minor tweaks to the simplified proofs are required. Agda helps out by

pointing out where these changes need to be made. This process would not be as

straightforward using a script-based theorem prover, or even possible in a pen-and-

paper-based approach.

130

Chapter 7

Compiling Non-Determinism

Correctly

The standard approach [Wan95] to proving compiler correctness for concurrent lan-

guages requires the use of multiple translations into an underlying process calculus. In

this chapter, we present a simpler approach that avoids the need for such an underly-

ing language, using a new method that allows us to directly establish a bisimulation

between the source and target languages. We illustrate this technique on a small

non-deterministic language, using the Agda system to present and formally verify our

compiler correctness proofs.

7.1 Existing Approach

The standard approach [Wan95] to proving compiler correctness for concurrent lan-

guages requires the use of multiple translations into an intermediate process calculus.

131

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

This methodology is captured by the following diagram:

Source
compile //

s[[]]
&&MMMMMMMMMMMMMM TargetAFBECD

MMMMMMMMMMMMMM cc

MMMMMMMMMMMMMM

t[[]]
xxqqqqqqqqqqqqq

Process Calculus / ≈@GABCD
qqqqqqqqqqqqq

[[

qqqqqqqqqqqqq

That is, for some compiler from a source language to a target language, we define sepa-

rate denotational semantics s[[]] and t[[]] for both languages in terms of an underlying

process calculus with a suitable notion of bisimulation, or observational equivalence.

The compiler is said to be correct when s[[p]] and t[[compile p]] are bisimilar for all pro-

grams p. The advantage of using a traditional process calculus is that we may reuse

existing theories and techniques, and perform our reasoning in a single, homogeneous

framework.

However, there are two drawbacks to this method: firstly, the source languages is

defined by a map s[[]] into an underlying process calculus, which adds an extra level

of indirection when reasoning about the operational behaviour of source programs.

Secondly, the target language and process calculus are given separate operational

semantics — represented by the two circular arrows in the above diagram — with a

semantic function t[[]] mapping the former to the latter. Thus we need to further

show that the operational semantics of the target language is adequate with respect

to that of the process calculus via the translation t[[]].

7.2 Related Work

The formal notion of compiler correctness dates back to 1967, when McCarthy and

Painter [MP67] proved the correctness of a compiler from arithmetic expressions to

a register machine. Their stated goal was “to make it possible to use a computer to

132

7.2. RELATED WORK

check proofs that compilers are correct”; we aim to do precisely this for a concurrent

language.

In the four decades since, a large body of pen-and-paper correctness proofs have

been produced for various experimental languages. (See [Dav03] for a detailed bibli-

ography.) However it is only recently—by making essential use of a formal theorem

prover—that it has become possible to fully verify a realistic compiler. In partic-

ular, Leroy [Ler06] has produced a certified compiler for a C-like core language in

the Coq [The08] framework, relating a series of intermediate languages, eventually

targeting PowerPC assembly code.

While compiler correctness for sequential languages has been well explored by

many researchers, the issue of concurrency has received relatively little attention, with

most of the progress being made by Wand and his collaborators. In the early 1980s,

Wand [WS95] initially suggested a methodology for sequential languages: by giving

the denotational semantics of both source and target languages in a common domain,

the correctness proofs relating the operational behaviour of the source and target

languages may then be carried out within the same domain. Wand then adapted

this paradigm to the concurrent setting [Wan95] as summarised in our introduction,

which is further elaborated by Gladstein [GW96, Gla94].

Our work in this chapter follows on from Hutton and Wright [HW07], who recently

considered the issue of compiler correctness for a simple non-deterministic language,

by relating a denotational source semantics to an operational target semantics, based

on the extensional notion of comparing final results. As noted in [HW07], the addition

of effects and concurrency requires an intensional notion of comparing intermediate

actions via a suitable notion of bisimulation. The purpose of this chapter is to explore

this idea, while retaining the approach of directly relating the source and target

without the need for an intermediate language.

133

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

7.3 A Non-Deterministic Language

In order to focus on the essence of this problem, we abstract from the details of a

real language and keep to a simple expression language consisting of integers and

addition [HW04, HW06, HW07] as we had done in previous chapters. We give its

operational semantics using a labelled transition system, together with an extra ‘zap’

rule to introduce a form of non-determinism. A virtual machine, and a compiler

linking the two completes the definition. We present and justify a novel technique for

proving compiler correctness in the presence of non-determinism.

We begin by recalling the syntax of our expression language—comprising natural

numbers and addition—from the previous chapter:

data Expression : Set where

: (m : N) → Expression

⊕ : (a b : Expression) → Expression

As we had previously noted in §3.1.5, the monoid (N, 0,⊕) may be seen as a degener-

ate monad, allowing us to avoid orthogonal issues such as binding and substitution.

The sequencing aspect of monads is retained by giving our language a left-to-right

evaluation order.

Rather than defining a reduction relation between pairs of states as in chapter 6,

we generalise to a labelled transition system. For this we define a shorthand LTS,

parametrised on the type of labels and the underlying state:

LTS : Set → Set → Set1

LTS L X = X → L → X → Set

We use Labels to indicate the nature of the transition:

data Action : Set where

� : Action

134

7.3. A NON-DETERMINISTIC LANGUAGE

 : Action

� : (m : N) → Action

data Label : Set where

τ : Label

! : (α : Action) → Label

Each transition either emits (denoted by ‘!’) one of the �, or � actions (pronounced

‘add’, ‘zap’ and ‘result’ respectively), or has the silent label τ . We make a two-level

distinction between Labels and Actions in this language so that potentially silent and

non-silent transitions may be identified by their types in the Agda proofs.

Transitions on expressions are defined as the following data type:

data 7→< > : LTS Label Expression where

7→-� : ∀ {m n} → # m ⊕ # n 7→< ! � > # m + n

7→- : ∀ {m n} → # m ⊕ # n 7→< ! > # 0

7→-R : ∀ {m b b′ Λ} (b 7→b′ : b 7→< Λ > b′) →

m ⊕ b 7→< Λ > # m ⊕ b′

7→-L : ∀ {a a′ b Λ} (a 7→a′ : a 7→< Λ > a′) →

a ⊕ b 7→< Λ > a′ ⊕ b

By convention, we will use the letters m and n for natural numbers, a, b and e for

expressions, α for actions and Λ for labels. Using Agda’s facility for mixfix operators,

the proposition that e reduces in a single Λ-labelled step to e′ is written quite naturally

as follows: e 7→< Λ > e′.

Each constructor of the above definition corresponds to a transition rule. Let us

consider the two base rules, covering expression of the form # m ⊕ # n. When

reducing # m ⊕ # n, one of two things can happen: either the two numbers are

summed as usual by the 7→-� rule, or they are ‘zapped’ to zero by 7→- ; the two

possible transitions are labelled accordingly. The inclusion of the 7→- rule introduces

135

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

a simple form of non-determinism, as a first step towards moving from a sequential,

deterministic language, to a concurrent, non-deterministic one. The two remaining

rules 7→-R and 7→-L ensure a left-biased reduction order, as mentioned previously.

7.3.1 Choice of Action Set

How was the set of actions chosen? As we shall see later in §7.5, we wish to distinguish

between different choices in the reduction path a given expression can take. In the

instance of this Zap language, we need to know which of the 7→-� or 7→- rules were

applied, hence the use of the distinct actions � and respectively. Where there is

only one unique transition from some given state, we label it with a silent τ . Later

in §7.6 we also wish to distinguish between different final results for an expression,

which are revealed using the � action.

7.4 Compiler, Virtual Machine and its Semantics

The virtual machine for this language has a simple stack-based design, with the same

two instructions as we had in the previous chapter:

data Instruction : Set where

PUSH : (m : N) → Instruction

ADD : Instruction

A program comprises a list of such instructions. The compiler for our expression

language is the same as the previous chapter, and is repeated below. In order to

make our proofs more straightforward, we take a code continuation as an additional

argument [Hut07], which corresponds to writing the compiler in an accumulator-

passing style:

136

7.5. NON-DETERMINISTIC COMPILER CORRECTNESS

compile : Expression → List Instruction → List Instruction

compile (# m) c = PUSH m :: c

compile (a ⊕ b) c = compile a (compile b (ADD :: c))

To execute a program c : List Instruction, we pair it with a stack σ : List N. This is

precisely how we represent the state of a virtual machine:

data Machine : Set where

〈 , 〉 : (c : List Instruction) (σ : List N) → Machine

Finally, we specify the operational semantics of the virtual machine through the

�< > relation:

data �< > : LTS Label Machine where

�-PUSH : ∀ {c σ m} → 〈 PUSH m :: c , σ 〉�< τ > 〈 c , m :: σ 〉

�-ADD : ∀ {c σ m n} →

〈 ADD :: c , n :: m :: σ 〉�< ! � > 〈 c , m + n :: σ 〉

�-ZAP : ∀ {c σ m n} →

〈 ADD :: c , n :: m :: σ 〉�< ! > 〈 c , 0 :: σ 〉

That is, the PUSH instruction takes a numeric argument m and pushes it onto the

stack σ, with a silent label τ . In turn, the ADD instruction replaces the top two

numbers on the stack with either their sum, or zero—labelled respectively with � or

 —in correspondence with the �-ADD and �-ZAP rules.

7.5 Non-Deterministic Compiler Correctness

In general, a compiler correctness theorem asserts that for any source program, the

result of executing the corresponding compiled target code on its virtual machine will

137

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

coincide with that of evaluating the source using its high-level semantics:

Source
compile //

eval
$$JJJJJJJJJJJJ Target

exec
zztttttttttttt

Result

With a deterministic language and virtual machine—such as our Zap language with-

out the two ‘zap’ rules—it would be natural to use a high-level denotational or big-step

semantics for the expression language, which we can realise as an interpreter

eval : Expression → N

In turn, the low-level operational or small-step semantics for the virtual machine can

be realised as a function

exec : List N → List Instruction → List N

that takes an initial stack along with a list of instructions and returns the final stack.

Compiler correctness is then the statement that:

det-correct : ∀ c σ e → exec σ (compile e c) ≡ exec (eval e :: σ) c

Equivalently, we can visualise this as the following commuting diagram:

det-correct : ∀ c σ → Expression
compile c //

exec (eval :: σ) c

%%JJJJJJJJJJJJJJJJ List Instruction

exec σ

xxqqqqqqqqqqqqqqqqq

List N / ≡

That is to say, compiling an expression a and then executing the resulting code to-

gether with a code continuation c gives the same result—up to definitional equality—

as executing c with the value of a pushed onto the original stack σ.

138

7.6. COMBINED MACHINE AND ITS SEMANTICS

The presence of non-determinism requires a more refined approach, due to the

possibility that different runs of the same program may give different results. One ap-

proach is to realise the interpreter and virtual machine as set-valued functions [HW07],

restating the above equality on final values in terms of sets of final values. A more

natural approach however, is to define the high-level semantics as a relation rather

than a function, using a small-step operational semantics. Moreover, the small-step

approach also allows us to consider the intensional (or local) notion of what choices

are made in the reduction paths, in contrast to the extensional (or global) notion of

comparing final results. In our Zap language, the available choices are reflected in

our selection of transition labels, and we weaken the above definitional equality to

a suitable notion of branching equivalence on intermediate states. This is just the

familiar notion of bisimilarity [Mil89], which we shall make concrete in §7.7. As we

shall see, the local reasoning afforded by this approach also leads to simpler and more

natural proofs.

7.6 Combined Machine and its Semantics

In this section, we introduce our key idea of a ‘combined machine’, which we arrive

at by considering the small-step analogue of the compiler correctness statement for

big-step deterministic languages. The advantage of the combined machine is that

it lifts source expressions and target virtual machine states into the same domain,

which avoids the need for an intermediate process calculus [Wan95] and allows us to

directly establish a bisimulation between the source and target languages.

139

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

Our approach to non-deterministic compiler correctness is illustrated below,

Source@GAFBE
==

compile //

injS

%%KKKKKKKKKKKKKKKK TargetAFBECD

KKKKKKKKKKKKKKKK bb

KKKKKKKKKKKKKKKK

injT

yyssssssssssssssss

Combined / ≈@GABCD
ssssssssssssssss

\\

ssssssssssssssss

making use of such a combined machine, where the lifting by injS and injT are trivial

enough to be ‘obviously correct’. Rather than considering final results, we consider

combined machines up to a suitable notion of bisimilarity.

In the case of our Zap language, a combined machine x : Combined has three

distinct phases of execution,

data Combined : Set where

〈 , 〉 : (e : Expression) (t : Machine) → Combined

〈 〉 : (t : Machine) → Combined

〈〉 : Combined

whose semantics is defined by the following transition relation:

data �< > : LTS Label Combined where

�-7→ : ∀ {e e′ t Λ} (e 7→e′ : e 7→< Λ > e′) → 〈 e , t 〉�< Λ > 〈 e′ , t 〉

�-� : ∀ {t t′ Λ} (t�t′ : t �< Λ > t′) → 〈 t 〉 �< Λ > 〈 t′ 〉

�-switch : ∀ {m c σ} → 〈 # m , 〈 c , σ 〉 〉�< τ > 〈 〈 c , m :: σ 〉 〉

�-done : ∀ {m} → 〈 〈 [] , m :: [] 〉 〉 �< ! � m > 〈〉

The first constructor 〈 , 〉 of Combined pairs an expression with a virtual machine

continuation. In this initial phase, a combined machine 〈 e , 〈 c , σ 〉 〉 can be

understood as the small-step analogue of the right side of the det-correct statement—

exec (eval a :: σ) c—which begins by effecting the reduction of a. The applicable

140

7.7. WEAK BISIMILARITY

reductions are exactly those of the Expression language, inherited via the �-7→ rule

above.

When the expression a eventually reduces to a value m, the�-switch rule pushes

m onto the stack σ, switching the combined machine to its second phase of execu-

tion, corresponding to the 〈 〉 constructor. This can be thought of as the small-step

analogue of pushing the result m ≡ eval a onto the stack, again following the right

side of det-correct, namely exec (m :: σ) c.

The second Combined constructor 〈 〉 lifts a virtual machine into a combined

machine, which then effects the reduction of the former via the �-� rule. This

corresponds to the small-step analogue of exec σ c, which matches the left side of

det-correct, and also the right side after the evaluation of the embedded expression

has completed.

Lastly, the�-done rule embeds the computed result in a � action, and terminates

with the empty 〈〉 state. This construction allows us to compare final result values

using the existing bisimulation machinery.

7.7 Weak Bisimilarity

Now we can give a concrete definition to our notion of bisimilarity. More specifically,

we shall be defining ‘weak bisimilarity’, as we are not concerned with silent transitions.

First of all, it is convenient to define a ‘visible transition’ Z⇒< > where only Actions

are exposed, in terms of the �< > relation from the previous section,

data Z⇒< > : LTS Action Combined where

Z⇒-� : ∀ {x x0 x1 x
′ α} (x�τ ?x0 : x �<τ>? x0)

(x0�x1 : x0 �< ! α > x1) (x1�τ ?x ′ : x1 �<τ>? x′) →

x Z⇒< α > x′

141

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

where we write �<τ>? as a shorthand for the reflexive transitive closure of�< τ >,

defined as follows:

�<τ> : Rel Combined

x �<τ> y = x �< τ > y

�<τ>? : Rel Combined

�<τ>? = Star �<τ>

Two states x and y are now defined to be ‘weakly bisimilar’ if and only if whatever

visible transition x can make, y is able to follow with the same action, resulting in

states x ′ and y ′ that are also bisimilar, and vice versa. Since this is symmetric in

both directions, we will define a helper 4 for ease of readability:

4 : Rel Combined

x 4 y = ∀ x′ {α} → x Z⇒< α > x′ → ∃ λ y′ → y Z⇒< α > y′ × x′ ≈′ y′

That is, we write x 4 y iff for whatever state x′ can be reached from x while emitting

the action α, y can reach a corresponding state y′ such that x′ and y′ are bisimilar.

In turn, a relation x ≈ y is simply a conjunction of x 4 y and y 4 x :

data ≈ : Rel Combined where

& : ∀ {x y} (x4y : ∞ (x 4 y)) (y4x : ∞ (y 4 x)) → x ≈ y

The types of both x4y and y4x arguments are coinductive, as indicated by the use

of the ∞ type, since bisimilarity is a coinductive notion [Mil89, San09].

Note that in the above definition of 4 , we demand a proof of x′ ≈′ y′ rather than

a direct proof of x′ ≈ y′, in order to ‘beat Agda’s productivity checker’ [Dan10a].

The ≈′ data type can be seen as the syntax for an embedded language, where

each constructor corresponds to an operation that we wish to perform on bisimilarity

proofs. In this instance we only require symmetry and transitivity, along with a

constructor ≈′-≈ that embeds ≈ proofs:

142

7.7. WEAK BISIMILARITY

data ≈′ : Rel Combined where

≈′-≈ : ≈ ⇒ ≈′

≈′-sym : Symmetric ≈′

≈′-trans : Transitive ≈′

We write ⇒ as a synomym for relational implication, which is—along with Symmetric

and Transitive—defined in the standard library in the obvious manner. With this tech-

nique, we are obliged to show that ≈′ implies ≈ , i.e. provide an interpretor from

this embedded language to an actual ≈ proof. However, as far as comprehension

is concerned, the reader can simply treat the use of ≈′ in the definition of 4 as

if it were ≈ .

Given the above, it is straightforward to prove that ≈ is an equivalence relation

on Combined. Reflexivity is shown by the following two mutual definitions:

mutual

4-refl : Reflexive 4

4-refl x′ x Z⇒x′ = x′ ∧ x Z⇒x′ ∧ ≈′-≈ ≈-refl

≈-refl : Reflexive ≈

≈-refl =] 4-refl &] 4-refl

The type of 4-refl is synonymous to ∀ {x} → x 4 x , which in turn expands by the

definition of 4 to the following:

∀ {x} x′ {α} → x Z⇒< α > x′ → ∃ λ x′′ → x Z⇒< α > x′′ × x′ ≈′ x′′

We prove the existence of an x′′ such that x Z⇒< α > x′′ and x′ ≈′ x′′ by returning

the same x′ and the witness of x Z⇒< α > x′ as we were given. Proof of x′ ≈′ x′ is

obtained by embedding the result of a corecursive call to ≈-refl : x′ ≈ x′.

The proof of Reflexive ≈ involves two symmetric invocations to 4-refl. Since

both corecursive instances of ≈-refl are guarded by an unbroken chain of & ,] ,

143

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

∧ and ≈′-≈ constructors with no intervening function invocations, Agda accepts

the above definition as productive.

Symmetry on the other hand is much more straightforward,

≈-sym : Symmetric ≈

≈-sym (x4y & y4x) = y4x & x4y

as we need only swap the two halves of the bisimilarity proof. Finally to show

transitivity of ≈ , we again make use of the symmetric nature of bisimilarity, with

the help of a mutually corecursive definition 4-trans:

mutual

4-trans : Transitive 4

4-trans x4y y4z x′ x Z⇒x′ with x4y x′ x Z⇒x′

4-trans x4y y4z x′ x Z⇒x′ | y′ ∧ y Z⇒y′ ∧ x′≈′y′ with y4z y′ y Z⇒y′

4-trans x4y y4z x′ x Z⇒x′ | y′ ∧ y Z⇒y′ ∧ x′≈′y′ | z′ ∧ z Z⇒z′ ∧ y′≈′z′

= z′ ∧ z Z⇒z′ ∧ ≈′-trans x′≈′y′ y′≈′z′

≈-trans : Transitive ≈

≈-trans (x4y & y4x) (y4z & z4y)

=] 4-trans ([x4y) ([y4z) &] 4-trans ([z4y) ([y4x)

The 4-trans proof—given x4y, y4z, x′ and x Z⇒x′—has a goal of:

∃ λ z′ → z Z⇒< α > z′ × x′ ≈′ z′

We can use x4y and y4z in two steps to construct evidence of y′ and z′ such that,

y Z⇒< α > y′ × x′ ≈′ y′ and z Z⇒< α > z′ × y′ ≈′ z′

with the witness to x′ ≈′ z′ obtained by ≈′-trans. The proof for Transitive ≈

proceeds in the same manner as ≈-refl, with two corecursive calls to 4-trans for each

half of the property.

144

7.8. THE ELIDE-τ LEMMA

Earlier we stated that we are obliged to show that ≈′ implies ≈ . Having now

implemented all of the functions corresponding to the terms of the embedded ≈′

language, we can proceed quite simply as follows:

≈′→≈ : ≈′ ⇒ ≈

≈′→≈ (≈′-≈ x≈y) = x≈y

≈′→≈ (≈′-sym y≈′x) = ≈-sym (≈′→≈ y≈′x)

≈′→≈ (≈′-trans x≈′z z≈′y) = ≈-trans (≈′→≈ x≈′z) (≈′→≈ z≈′y)

Here it is clear that ≈′→≈ is structurally recursive on its x ≈′ y argument, and

therefore must be total.

We conclude this section by noting that ≈ is an equivalence relation on Combined

machines, which enables us to use the equational (actually pre-order) reasoning com-

binators from the standard library module Relation.Binary.PreorderReasoning. The

plumbing details have been omitted in this presentation for brevity, however.

7.8 The elide-τ Lemma

A key lemma used throughout our correctness proofs states that a silent transition

between two states x and y implies that they are bisimilar:

elide-τ : �<τ> ⇒ ≈

elide-τ {x} {y} x�τy =] x4y &] y4x where

y4x : y 4 x

y4x y′ (Z⇒-� y�τ ?y0 y0�y1 y1�τ ?y′)

= y′ ∧ Z⇒-� (x�τy C y�τ ?y0) y0�y1 y1�τ ?y′ ∧ ≈′-refl

In the y4x direction, the proof is trivial: whatever y does, x can always match it by

first making the given x�τy transition, after which it can follow y exactly.

145

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

In the x4y direction, the proof relies on the fact that wherever there is a choice in

the reduction of any give state, each possible transition is identified with a distinct and

non-silent label, which we mentioned in §7.3.1. Conversely given a silent transition

x�τy : x �<τ> y , it must in fact be the unique transition from x , which we can

show by the following unique lemma:

unique : ∀ {x y Λ y′} → x �<τ> y → x �< Λ > y′ → Λ ≡ τ × y′ ≡ y

unique (�-7→ e7→e′) x�y′ = ⊥-elim (¬7→<τ> e 7→e′)

unique (�-��-PUSH) (�-��-PUSH) = ≡.refl ∧ ≡.refl

unique�-switch (�-7→ ())

unique�-switch�-switch = ≡.refl ∧ ≡.refl

Using unique, the x4y direction of elide-τ is shown in two parts; the first shows that

x cannot make a non-silent transition,

x4y : x 4 y

x4y x′ (Z⇒-� ε x�x0 x0�τ ?x′) with unique x�τy x�x0

x4y x′ (Z⇒-� ε x�x0 x0�τ ?x′) | () ∧ x0≡y

while the second shows that the first silent transition x makes must coincide with

x�τy, in which case y can transition to x′ by following the subsequent transitions:

x4y x′ (Z⇒-� (x�x0 C x0�τ ?x1) x1�x2 x2�τ ?x′) with unique x�τy x�x0

x4y x′ (Z⇒-� (x�τy C y�τ ?x1) x1�x2 x2�τ ?x′) | ≡.refl ∧ ≡.refl

= x′ ∧ Z⇒-� y�τ ?x1 x1�x2 x2�τ ?x′ ∧ ≈′-refl

Since ≈ is transitive and reflexive, we can generalise the above result to handle

silent transition sequences of arbitrary length, as well as a symmetric variant:

elide-τ ? : �<τ>? ⇒ ≈

elide-τ ? = Star.fold ≈ ≈-trans ≈-refl ◦ Star.map elide-τ

146

7.9. COMPILER CORRECTNESS

elide-τ ?′ : Sym �<τ>? ≈

elide-τ ?′ = ≈-sym ◦ elide-τ ?

7.9 Compiler Correctness

Now we have enough machinery to formulate the compiler correctness theorem, which

states that given a code continuation c and an initial stack σ, execution of the com-

piled code for an expression e followed by c is weakly bisimilar to the reduction of

the expression e followed by the machine continuation 〈 c , σ 〉,

correctness : ∀ e c σ → 〈 e , 〈 c , σ 〉 〉 ≈ 〈 〈 compile e c , σ 〉 〉

or equivalently as the following commuting diagram:

correctness : ∀ c σ → Expression
compile c //

〈 , 〈 c , σ 〉 〉
&&LLLLLLLLLLLLLLLLL List Instruction

〈 〈 , σ 〉 〉
wwppppppppppppppppppp

Combined / ≈

In particular, instantiating c and σ to empty lists results in the corollary that for any

expressions e, the bisimilarity 〈 e , 〈 [] , [] 〉 〉 ≈ 〈 〈 compile e [] , [] 〉 〉 holds.

7.9.1 Proof of correctness

We proceed to prove correctness by structural induction on the expression e. Two

additional lemmas corresponding to the following propositions are required, which we

will prove along the way:

eval-left : 〈 a ⊕ b , 〈 c , σ 〉 〉 ≈ 〈 a , 〈 compile b (ADD :: c) , σ 〉 〉

eval-right : 〈 # m ⊕ b , 〈 c , σ 〉 〉 ≈ 〈 b , 〈 ADD :: c , m :: σ 〉 〉

147

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

First, let us consider the base case of correctness, where e ≡ # m:

correctness (# m) c σ =

begin

〈 # m , 〈 c , σ 〉 〉

≈〈 elide-τ �-switch 〉

〈 〈 c , m :: σ 〉 〉

≈〈 elide-τ (�-��-PUSH) -1〉

〈 〈 PUSH m :: c , σ 〉 〉

≡〈 ≡.refl 〉

〈 〈 compile (# m) c , σ 〉 〉

�

As we mentioned in the conclusion of chapter 6, the equational reasoning combinators

defined in the standard library [Dan10b] allow us to present the proof in a simple

calculational style. In the code above, proofs of bisimilarity (or definitional equality)

are supplied as the second argument of the ≈〈 〉 operator; the ≈〈 -1〉 operator

is a symmetric variant, while ≡〈 〉 takes a proof of definitional equality instead.

The proofs are combined using the appropriate reflexivity, symmetry and transitivity

properties. That is, the above could have been equivalently written:

correctness (# m) c σ = ≈-trans (elide-τ �-switch)

(≈-trans (≈-sym (elide-τ (�-��-PUSH))) (≡→≈ ≡.refl))

However, the extra annotations in the equational reasoning version makes the proof

easier to read and understand.

Moving on to the inductive case, where e ≡ a ⊕ b:

correctness (a ⊕ b) c σ =

begin

148

7.9. COMPILER CORRECTNESS

〈 a ⊕ b , 〈 c , σ 〉 〉

≈〈 eval-left a b c σ 〉

〈 a , 〈 compile b (ADD :: c) , σ 〉 〉

≈〈 correctness a (compile b (ADD :: c)) σ 〉

〈 〈 compile (a ⊕ b) c , σ 〉 〉

�

The first bisimilarity is given by the eval-left lemma, while the second uses the in-

ductive hypothesis for the subexpression a, instantiating the code continuation with

compile b (ADD :: c).

7.9.2 The eval-left Lemma

The lemma eval-left has essentially a coinductive proof on the possible transitions

∃ λ α → ∃ λ a′ → a Z⇒< α > a′ starting from a, with a base case—when no

transitions are possible—that is mutually inductively defined with correctness. In the

instance of this Zap language however, it suffices to proceed by case analysis on a, as

the two alternatives happen to coincide with whether a has any possible transitions.

For the base case where a is a numeral # m, no further transitions are possible, and

we can reason equationally as follows:

eval-left : ∀ a b c σ →

〈 a ⊕ b , 〈 c , σ 〉 〉 ≈ 〈 a , 〈 compile b (ADD :: c) , σ 〉 〉

eval-left (# m) b c σ =

begin

〈 # m ⊕ b , 〈 c , σ 〉 〉

≈〈 eval-right m b c σ 〉

〈 b , 〈 ADD :: c , m :: σ 〉 〉

≈〈 correctness b (ADD :: c) (m :: σ) 〉

149

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

〈 〈 compile b (ADD :: c) , m :: σ 〉 〉

≈〈 elide-τ �-switch -1〉

〈 # m , 〈 compile b (ADD :: c) , σ 〉 〉

�

The proof above makes use of the inductive hypothesis for the subexpression b (of

e ≡ a ⊕ b) in the mutual definition of correctness, as well as the eval-right lemma. In

the coinductive case, we consider the x4y and y4x halves of the bisimilarity separately,

eval-left (al ⊕ ar) b c σ =] x4y &] y4x where

a = al ⊕ ar

As we mentioned earlier, this part of the proof is coinductive on the possible reductions

rather than structural on the expression a, so the fact that a ≡ al ⊕ ar is besides

the point. We define a as a synonym for al ⊕ ar for clarity as we do not need to

refer to al or ar in the proof. We also adopt the convention of writing x for the left,

and y for the right hand sides of the ≈ bisimilarity.

In the forward direction, we are given a witness to x Z⇒< α > x′, and must show

that y can follow with the same action to some y′, such that the resulting x′ and

y′ are bisimilar1. The coinduction hypothesis tells us that a can make some visible

transition to an a′ while emitting an action α. Since the evaluation of a ⊕ b is

left-biased, it must be the case that a ⊕ b reduces under the 7→-L rule. Therefore,

we can extract the witness a7→a′ and repack it to witness the following:

〈 a , 〈 compile b (ADD :: c) , σ 〉 〉 Z⇒< α > 〈 a′ , 〈 compile b (ADD :: c) , σ 〉 〉

1Recall that the type synonym 4 was defined in §7.7 as follows:

4 : Rel Combined
x 4 y = ∀ x′ {α} → x Z⇒< α > x′ → ∃ λ y′ → y Z⇒< α > y′ × x′ ≈′ y′

That is, x 4 y is a function that given an x′, an implicit α and a witness of x Z⇒< α > x′, must
return a triple comprising y′, a witness of y Z⇒< α > y′, along with a proof of x′ ≈′ y′.

150

7.9. COMPILER CORRECTNESS

The proof below does not explicitly mention the action α (among others identifiers)

as this is already implied by its type, and is automatically inferred.

x4y : 〈 a ⊕ b , 〈 c , σ 〉 〉 4 〈 a , 〈 compile b (ADD :: c) , σ 〉 〉

x4y . (Z⇒-� ε (�-7→ (7→-L {a′ = a′} a 7→a′)) ε)

= 〈 a′ , 〈 compile b (ADD :: c) , σ 〉 〉

∧ Z⇒-� ε (�-7→ a 7→a′) ε

∧ ≈′-≈ (eval-left a′ b c σ)

The above clause only matches visible transitions with empty sequences of silent com-

bined transitions (i.e. ε). Alternative cases are not possible since 7→< > transitions

cannot be silent, and are eliminated using the ¬7→<τ> lemma:

x4y x′ (Z⇒-� ε (�-7→ (7→-L a 7→a0)) (�-7→ a0⊕b 7→a1⊕b C x1�τ ?x′))

= ⊥-elim (¬7→<τ> a0⊕b 7→a1⊕b)

x4y x′ (Z⇒-� (�-7→ a⊕b 7→a0⊕b C x0�τ ?x1) x1�x2 x2�τ ?x′)

= ⊥-elim (¬7→<τ> a⊕b 7→a0⊕b)

In the opposite direction, the combined machine y makes a visible transition to 〈 a0 ,

〈 compile b (ADD :: c) , σ 〉 〉 (henceforth denoted by y0), from which we can extract

a witness a 7→a0. This is followed by some sequence of silent transitions y0�τ ?y′. In

response, x can make a transition to 〈 a0 ⊕ b , 〈 c , σ 〉 〉 (x′ from here on)

emitting the same action, that is bisimilar to y0 via the coinductive hypothesis on

a0. Finally, elide-τ ?′ y0�τ ?y′ provides a proof of y′ ≈′ y0, with which we can obtain

y′ ≈′ x′ by transitivity:

y4x : 〈 a , 〈 compile b (ADD :: c) , σ 〉 〉 4 〈 a ⊕ b , 〈 c , σ 〉 〉

y4x y′ (Z⇒-� ε (�-7→ {e′ = a0} a 7→a0) y0�τ ?y′)

= 〈 a0 ⊕ b , 〈 c , σ 〉 〉

∧ Z⇒-� ε (�-7→ (7→-L a 7→a0)) ε

151

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

∧ ≈′-trans (≈′-≈ (elide-τ ?′ y0�τ ?y′)) (≈′-sym (≈′-≈ (eval-left a0 b c σ)))

y4x y′ (Z⇒-� (�-7→ a 7→a0 C y0�τ ?y1) y1�y2 y2�τ ?y1)

= ⊥-elim (¬7→<τ> a 7→a0)

The second clause eliminates the impossible case of a making a τ transition, which

completes the proof of eval-left.

7.9.3 The eval-right Lemma

The eval-right lemma proceeds in a similar manner by coinduction on the possible

7→< > transitions from b. In the base case, b cannot make any further such tran-

sitions (i.e. is some number # n), and we need to show:

〈 # m ⊕ # n , 〈 c , σ 〉 〉 ≈ 〈 # n , 〈 ADD :: c , m :: σ 〉 〉

As the right hand side can make a silent �-switch transition, we can factor this part

out to make the proof a little neater:

eval-right : ∀ m b c σ → 〈 # m ⊕ b , 〈 c , σ 〉 〉 ≈ 〈 b , 〈 ADD :: c , m :: σ 〉 〉

eval-right m (# n) c σ =

begin

〈 # m ⊕ # n , 〈 c , σ 〉 〉

≈〈 ⊕≈ADD 〉

〈 〈 ADD :: c , n :: m :: σ 〉 〉

≈〈 elide-τ �-switch -1〉

〈 # n , 〈 ADD :: c , m :: σ 〉 〉

� where

⊕≈ADD : 〈 # m ⊕ # n , 〈 c , σ 〉 〉 ≈ 〈 〈 ADD :: c , n :: m :: σ 〉 〉

⊕≈ADD =] x4y &] y4x where

The ⊕≈ADD lemma is where we encounter the non-determinism in our Zap lan-

guage. The proof for the two halves x4y and y4x are as follows: in the first instance,

152

7.9. COMPILER CORRECTNESS

m ⊕ # n can transition with either the 7→-� or 7→- rule, and we must show that

〈 ADD :: c , n :: m :: σ 〉 can follow with the same action:

x4y : 〈 # m ⊕ # n , 〈 c , σ 〉 〉 4 〈 〈 ADD :: c , n :: m :: σ 〉 〉

x4y x′ (Z⇒-� ε (�-7→ 7→-�) x0�τ ?x′)

= 〈 〈 c , m + n :: σ 〉 〉

∧ Z⇒-� ε (�-��-ADD) ε

∧ ≈′-trans (≈′-≈ (elide-τ ?′ x0�τ ?x′)) (≈′-≈ (elide-τ �-switch))

x4y x′ (Z⇒-� ε (�-7→ 7→-) x0�τ ?x′)

= 〈 〈 c , 0 :: σ 〉 〉

∧ Z⇒-� ε (�-��-ZAP) ε

∧ ≈′-trans (≈′-≈ (elide-τ ?′ x0�τ ?x′)) (≈′-≈ (elide-τ �-switch))

x4y x′ (Z⇒-� ε (�-7→ (7→-R ())) x0�τ ?x′)

x4y x′ (Z⇒-� ε (�-7→ (7→-L ())) x0�τ ?x′)

x4y x′ (Z⇒-� (�-7→ e 7→e0 C x0�τ ?x1) x1�x2 x2�τ ?x′)

= ⊥-elim (¬7→<τ> e7→e0)

This is sketched in figure 7.1—read from the top down—where the left and right

branches correspond to the first two clauses above. The third and fourth clauses

handle the fact that neither # m nor # n by themselves can reduce any further, while

the last deals with silent 7→< > transitions.

The other direction of ⊕≈ADD is illustrated by reading figure 7.1 from the bottom

up, and proceeds in the same manner:

y4x : 〈 〈 ADD :: c , n :: m :: σ 〉 〉 4 〈 # m ⊕ # n , 〈 c , σ 〉 〉

y4x y′ (Z⇒-� ε (�-��-ADD) y0�τ ?y′)

= 〈 〈 c , m + n :: σ 〉 〉

∧ Z⇒-� ε (�-7→ 7→-�) (�-switch C ε)

∧ ≈′-≈ (elide-τ ?′ y0�τ ?y′)

153

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

〈 # m ⊕ # n , 〈 c , σ 〉 〉

≈
⊕
≈

A
D

D

! �
�-7→

7→-�

wwwwoooooooooooooooooooooooooo

!

�-7→ 7→-

&& &&LLLLLLLLLLLLLLLLLLLLLLL

〈 # (m + n) , 〈 c , σ 〉 〉

τ

�
-s

w
it

ch

����

≈
el

id
e-
τ

〈 # 0 , 〈 c , σ 〉 〉

τ

�
-s

w
it

ch

����

≈
el

id
e-
τ〈 〈 ADD :: c , n :: m :: σ 〉 〉

! �

�-�
�-ADD

wwwwoooooooooooooooooooooooooo

! �-�
�

-ZAP && &&LLLLLLLLLLLLLLLLLLLLLLL

〈 〈 c , m + n :: σ 〉 〉 〈 〈 c , 0 :: σ 〉 〉

〈 # n , 〈 ADD :: c , m :: σ 〉 〉

τ

�
-s

w
it

ch

OOOO

≈
el

id
e-
τ

Figure 7.1: Proof sketch for the base case of the eval-right lemma.

y4x y′ (Z⇒-� ε (�-��-ZAP) y0�τ ?y′)

= 〈 〈 c , 0 :: σ 〉 〉

∧ Z⇒-� ε (�-7→ 7→-) (�-switch C ε)

∧ ≈′-≈ (elide-τ ?′ y0�τ ?y′)

y4x y′ (Z⇒-� (�-� () C y0�τ ?y1) y1�y2 y2�τ ?y1)

The impossible pattern () in the final clause corresponds to the fact that there is no

transition in which an ADD instruction emits a silent action.

The coinductive case of the eval-right lemma follows a similar structure to that of

eval-left, on the possible transitions from b:

eval-right m (bl ⊕ br) c σ =] x4y &] y4x where

b = bl ⊕ br

In the x4y direction, 〈 # m ⊕ b , 〈 c , σ 〉 〉 must reduce according to b 7→b0,

therefore y can follow by transitioning to 〈 b0 , 〈 ADD :: c , m :: σ 〉 〉:

154

7.9. COMPILER CORRECTNESS

x4y : 〈 # m ⊕ b , 〈 c , σ 〉 〉 4 〈 b , 〈 ADD :: c , m :: σ 〉 〉

x4y x′ (Z⇒-� ε (�-7→ (7→-R {b′ = b0} b 7→b0)) x0�τ ?x′)

= 〈 b0 , 〈 ADD :: c , m :: σ 〉 〉

∧ Z⇒-� ε (�-7→ b 7→b0) ε

∧ ≈′-trans (≈′-≈ (elide-τ ?′ x0�τ ?x′)) (≈′-≈ (eval-right m b0 c σ))

x4y x′ (Z⇒-� ε (�-7→ (7→-L ())) x0�τ ?x′)

x4y x′ (Z⇒-� (�-7→ m⊕b 7→m⊕b0 C x0�τ ?x1) x1�x2 x2�τ ?x′)

= ⊥-elim (¬7→<τ> m⊕b 7→m⊕b0)

The second clause shows that # m 7→< Λ > a′ is uninhabited, while the third uses

the fact that # m ⊕ b cannot make a silent 7→< > transition, to show that both

cases are impossible.

For the y4x direction, the proof simply runs in reverse, with x following y by

transitioning to 〈 # m ⊕ b0 , 〈 c , σ 〉 〉:

y4x : 〈 b , 〈 ADD :: c , m :: σ 〉 〉 4 〈 # m ⊕ b , 〈 c , σ 〉 〉

y4x y′ (Z⇒-� ε (�-7→ {e′ = b0} b 7→b0) y0�τ ?y′)

= 〈 # m ⊕ b0 , 〈 c , σ 〉 〉

∧ Z⇒-� ε (�-7→ (7→-R b 7→b0)) ε

∧ ≈′-trans (≈′-≈ (elide-τ ?′ y0�τ ?y′)) (≈′-sym (≈′-≈ (eval-right m b0 c σ)))

y4x y′ (Z⇒-� (�-7→ b 7→b0 C y0�τ ?y1) y1�y2 y2�τ ?y1)

= ⊥-elim (¬7→<τ> b 7→b0)

The final case deals with the impossibility of silent b 7→b0 transitions. This completes

the proof of the eval-right and eval-left lemmas, and in turn the correctness theorem

for our Zap language.

155

CHAPTER 7. COMPILING NON-DETERMINISM CORRECTLY

7.10 Conclusion

In this chapter we introduced a new technique for handling non-determinism in

the context of compiler correctness proofs, which we illustrated using the Zap lan-

guage. By carefully choosing silent and visible actions to distinguish between non-

deterministic choices in the reduction of expressions and virtual machines, we were

able to show the crucial elide-τ lemma used in the compiler correctness proof that

follows. Finally, our notion of a combined machine allowed us to directly establish a

bisimulation between our source and target languages without the need for an under-

lying process calculus.

156

Chapter 8

Compiling Concurrency Correctly

In the previous chapter, we introduced our methodology of using the notion of bisim-

ilarity on combined machines for tacking compiler correctness for a simple non-

deterministic language. In this chapter, we shall demonstrate that this technique

is scalable to a concurrent setting, by extending the language with a simple fork

primitive that introduces explicit concurrency into our system.

8.1 The Fork Language

8.1.1 Syntax and Virtual Machine

As with the Zap language of the previous chapter, we base this Fork language on that

of natural numbers and addition. The inclusion of an extra fork primitive introduces

a simple and familiar approach to explicit concurrency:

data Expression : Set where

: (m : N) → Expression

⊕ : (a b : Expression) → Expression

fork : (e : Expression) → Expression

157

CHAPTER 8. COMPILING CONCURRENCY CORRECTLY

An expression fork e will begin evaluation of e in a new thread, immediately returning

0, in a manner reminiscent of Haskell’s forkIO primitive. The collection of concurrent

threads in the system is modelled as a ‘thread soup’ [PJ01], defined later in §8.2.

Similarly, we extend the virtual machine with a FORK instruction, which spawns a

given sequence of instructions in a new thread:

data Instruction : Set where

PUSH : (m : N) → Instruction

ADD : Instruction

FORK : (c : List Instruction) → Instruction

The compiler includes an extra case for fork, but remains otherwise unchanged from

the definition in §7.4:

compile : Expression → List Instruction → List Instruction

compile (# m) c = PUSH m :: c

compile (a ⊕ b) c = compile a (compile b (ADD :: c))

compile (fork e) c = FORK (compile e []) :: c

As before, each virtual machine thread comprises a list of Instructions along with a

stack of natural numbers:

data Machine : Set where

〈 , 〉 : (c : List Instruction) (σ : List N) → Machine

8.1.2 Actions

We extend the set of actions by + e, to indicate the spawning of a new thread e, and

the action ... α to indicate preemption of the foremost thread:

data Action (L : Set) : Set where

τ : Action L

158

8.1. THE FORK LANGUAGE

� : Action L

� : (m : N) → Action L

+ : (x : L) → Action L

... : (α : Action L) → Action L

The above definition of Action is parametrised over the type of spawned threads,

either Expressions or Machines. As we now have explicit concurrency in the language,

we no longer require the ‘zap’ action or its associated semantics.

With the Zap language, a τ label sufficed to identify silent actions, because its

semantics does not diverge at points where silent transitions occurred. With the Fork

language, we have a ‘soup’ of concurrent threads, of which more than one may be

able to make a silent transition at any given point. Previously we mandated that

distinct choices in the reduction path must be labelled with distinct actions: in this

case, we have folded the τ label into the definition of Action, such that e.g. both τ

and ... τ are considered to be silent, yet they remain distinct.

This choice does complicate matters somewhat: in the two-level definition of labels

and actions in the Zap language, we could simply pattern match a ‘label’ with τ to

determine if a transition was silent; in the same way, we know a priori that ‘actions’

cannot be silent. With the Fork language, we must use a more elaborate scheme:

data 'τ {l} : Action l → Set where

is-τ : τ 'τ

is-... : ∀ {α} → α 'τ → (... α) 'τ

The above type functions as a predicate on Actions: α 'τ is inhabited precisely

when α is considered silent. Conversely, the negation of 'τ serves the same rôle for

non-silent actions, defined as follows:

6'τ : ∀ {l} → Action l → Set

α 6'τ = ¬ α 'τ

159

CHAPTER 8. COMPILING CONCURRENCY CORRECTLY

8.1.3 Semantics

It remains for us to give the semantics for expressions and virtual machines. As per

§7.3, expression follow a left-biased reduction semantics given by the 7→-�, 7→-R and

7→-L rules:

data 7→< > : LTS (Action Expression) Expression where

7→-� : ∀ {m n} → # m ⊕ # n 7→< � > # (m + n)

7→-R : ∀ {m b b′ α} (b 7→b′ : b 7→< α > b′) → # m ⊕ b 7→< α > # m ⊕ b′

7→-L : ∀ {a a′ b α} (a 7→a′ : a 7→< α > a′) → a ⊕ b 7→< α > a′ ⊕ b

7→-fork : ∀ {e} → fork e 7→< + e > # 0

Spawning of new threads is handled by the 7→-fork rule, which embeds the expression

in an + e action. The expression fork e immediately reduces to # 0, in a manner

reminiscent of Haskell’s forkIO :: IO () → IO () primitive.

In turn, the virtual machine for our Fork language inherits the �-PUSH and

�-ADD rules from that of the Zap language, given in §7.4:

data �< > : LTS (Action Machine) Machine where

�-PUSH : ∀ {c σ m} →

〈 PUSH m :: c , σ 〉 �< τ > 〈 c , m :: σ 〉

�-ADD : ∀ {c σ m n} →

〈 ADD :: c , n :: m :: σ 〉 �< � > 〈 c , m + n :: σ 〉

�-FORK : ∀ {c c′ σ} →

〈 FORK c′ :: c , σ 〉 �< + 〈 c′ , [] 〉 > 〈 c , 0 :: σ 〉

In this instance, we have added a �-FORK rule that handles the case of a FORK c′

instruction: given a sequence of instructions c′, we emit a newly initialised virtual

machine embedded in an + 〈 c′ , [] 〉 action, leaving 0 on top of the stack.

160

8.2. COMBINED MACHINES AND THREAD SOUPS

8.2 Combined Machines and Thread Soups

Our definition of a combined machine remains unchanged from the Zap language, with

the constructors 〈 , 〉, 〈 〉 and 〈〉 corresponding to the three phases of executions:

data Combined : Set where

〈 , 〉 : (e : Expression) (t : Machine) → Combined

〈 〉 : (t : Machine) → Combined

〈〉 : Combined

So far, the semantics of the Fork language have been given in terms of individual

expression or virtual machine threads. Since the notion of a ‘thread soup’ is common

to both cases, we simply matters by introducing concurrency at the level of combined

machines. It suffices to model our thread soups as Lists of combined machines, and

we define labelled transitions between them as follows:

data �< > : LTS (Action Combined) (List Combined) where

�-7→ : ∀ {e e′ t s α} →

(e 7→e′ : e 7→< α > e′) → let α′ = E+ <$> α in

〈 e , t 〉 :: s �< α′ > 〈 e′ , t 〉 :: α′ +:: s

�-� : ∀ {t t′ s α} →

(t�t′ : t �< α > t′) → let α′ = M+ <$> α in

〈 t 〉 :: s �< α′ > 〈 t′ 〉 :: α′ +:: s

�-done : ∀ {m s} →

〈 〈 [] , m :: [] 〉 〉 :: s �< � m > 〈〉 :: s

�-switch : ∀ {m c σ s} →

〈 # m , 〈 c , σ 〉 〉 :: s �< τ > 〈 〈 c , m :: σ 〉 〉 :: s

�-preempt : ∀ {x s s′ α} → (s�s′ : s �< α > s′) →

x :: s �< ... α > x :: s′

161

CHAPTER 8. COMPILING CONCURRENCY CORRECTLY

As with the Zap language, the �-7→ and �-� rules lift transitions on expression

and virtual machine threads to soups of combined machines. The trivial E+ and M+

helpers lift Expression and Machine into Combined, given as follows,

E+ : Expression → Combined

E+ e = 〈 e , 〈 [] , [] 〉 〉

M+ : Machine → Combined

M+ = 〈 〉

while +:: inserts any spawned threads into the thread soup, defined below:

+:: : Action Combined → List Combined → List Combined

τ +:: s = s

� +:: s = s

� m +:: s = s

+ x +:: s = x :: s

... α +:: s = s

Aside from the generalisation to thread soups, the �-done and �-switch rules are

otherwise identical to those defined for the Zap language.

Finally, we allow arbitrary thread interleaving via the �-preempt rule. As our

focus is not on the subtleties of different scheduling algorithms, we therefore do not

place any restrictions on what thread the ‘scheduler’ may choose to execute next.

8.3 Silent and Visible Transitions

For our later proofs, it will be convenient to have a canonical definition of silent

and non-silent transitions. We regard a silent transition between r and s as a triple

comprising an action α, a proof of α 'τ , along with the transition r �< α > s :

162

8.3. SILENT AND VISIBLE TRANSITIONS

�τ : ∀ r s → Set

r �τ s = ∃ λ α → α 'τ × r �< α > s

Conversely, a non-silent transition carries a proof of α 6'τ instead:

�6'τ : ∀ r s → Set

r �6'τ s = ∃ λ α → α 6'τ × r �< α > s

Finally we may write �τ ? for the reflexive, transitive closure of �τ , using the

following definition:

�τ ? : ∀ r s → Set

�τ ? = Star �τ

When we are only interested in the transitions of a single thread, the following

synonyms are helpful for stating any relevant properties:

�τ1 : ∀ x y → Set

x �τ1 y = ∀ s → x :: s �τ y :: s

�τ ?1 : ∀ x y → Set

x �τ ?1 y = ∀ s → x :: s �τ ? y :: s

We subscript the above transitions with ‘1’ as a reminder that the propositions are

∀-quantified over the rest of the thread soup. For �6'τ1 , we must concatenate the

resulting x′+ : List Combined to the rest of the soup,

�6'τ1 : ∀ x x′+ → Set

x � 6'τ1 x′+ = ∀ s → x :: s �6'τ x′+ ++ s

as non-silent transitions may potentially spawn new threads. Finally, the C1 func-

tion allows us to conveniently combine �τ1 sequences, in the same manner as the

C constructor of the Star type:

163

CHAPTER 8. COMPILING CONCURRENCY CORRECTLY

C1 : ∀ {x x′ y} → x �τ1 x′ → x′ �τ ?1 y → x �τ ?1 y

x�τ1x′ C1 x′�τ ?1 y = λ s → x�τ1x′ s C x′�τ ?1 y s

Given the above definitions of silent and non-silent transitions, our notion of a

visible transition is identical in essence to that of the Zap language, given back in

§7.7:

data Z⇒< > : LTS (Action >) (List Combined) where

Z⇒-� : ∀ {s s0 s1 s′}

(s�τ ?s0 : s �τ ? s0)

(s0� 6'τs0 : s0 �6'τ s1)

(s1�τ ?s′ : s1 �τ ? s′) →

s Z⇒< [[s0� 6'τs0]] > s′

As we do not have direct access to the action emitted by the non-silent s0�6'τs0

transition, we require a helper [[]] to extract the visible action:

visible : ∀ {α : Action Combined} → α 6'τ → Action >

visible {τ} α 6'τ = ⊥-elim (α 6'τ is-τ)

visible {�} α 6'τ = �

visible {� m} α 6'τ = � m

visible {+ x} α 6'τ = + tt

visible {... α} ...α 6'τ = visible (...α 6'τ ◦ is-...)

[[]] : ∀ {s s′} → s �6'τ s′ → Action >

[[]] (α ∧ α 6'τ ∧ s�s′) = visible α 6'τ

By this point, any spawned threads will have been inserted into the thread soup

already, so we are no longer interested in its particulars, other than that a fork has

taken place. Correspondingly, [[]] returns an Action >—where > is the singleton

‘unit’ type—rather than an Action Combined.

164

8.4. BISIMILARITY

8.4 Bisimilarity

The definition of bisimilarity remains identical to that of the Zap language given in

§7.7, save for a change in the carrier set from Combined to List Combined:

4 : Rel (List Combined)

x 4 y = ∀ x′ {α} → x Z⇒< α > x′ → ∃ λ y′ → y Z⇒< α > y′ × x′ ≈′ y′

data ≈ (x : List Combined) : List Combined → Set where

& : ∀ {y} → (x4y : ∞ (x 4 y)) → (y4x : ∞ (y 4 x)) → x ≈ y

The embedded language of ≈′ gains an extra symbol ≈′-cong2 that allows us to

combine two pairs of bisimilar thread soups. Formally, it corresponds to the proposi-

tion that ≈′ is a congruence relation on the monoid (List Combined,++, []),

data ≈′ : Rel (List Combined) where

≈′-≈ : ≈ ⇒ ≈′

≈′-sym : Symmetric ≈′

≈′-trans : Transitive ≈′

≈′-cong2 : ++ Preserves2 ≈′ −→ ≈′ −→ ≈′

where the type of the ≈′-cong2 constructor expands to:

≈′-cong2 : ∀ {rl sl rr sr} → rl ≈′ sl → rr ≈′ sr → rl ++ rr ≈′ sl ++ sr

The same proofs from §7.7 suffices to show that ≈ forms an equivalence relation

on thread soups. The obligation to show that ≈′ implies ≈ will be fulfilled at

the end of §8.7, as it depends on the proof that ≈ is also a congruence relation on

(List Combined,++, []). Before we can do that however, we have a few more lemmas

to establish.

165

CHAPTER 8. COMPILING CONCURRENCY CORRECTLY

8.5 Properties of Thread Soups

In this section, we will highlight various lemmas concerning thread soups that are

used towards the final correctness theorem for this Fork language. For brevity, we

will omit the proofs, and instead hint at the proof method; the full Agda source code

may be found on my website.

8.5.1 Soups Concatenation Preserves Silent Transitions

Concatenation of thread soups preserve silent transition sequences,

�τ ?-++ : ++ Preserves2 �τ ? −→ �τ ? −→ �τ ?

or equivalently, given r �τ ? r′ and s �τ ? s′, we can produce a silent transition

sequence r ++ s �τ ? r′ ++ s′:

�τ ?-++ : ∀ {r r′ s s′} → r �τ ? r′ → s �τ ? s′ → r ++ s �τ ? r′ ++ s′

We can proceed by structural induction on the first thread soup argument, which is

x :: r in the inductive case. Using the fact that forking cannot be silent, we can

decapitate the x from the thread soup to obtain a pair of transitions x �τ ?1 x′ and

r �τ ? r′. The first of these can be instantiated to one half of the goal, that is:

x :: r ++ s �τ ? x′ :: r ++ s

The induction hypothesis on the other hand uses the second r �τ ? r′ to give the

sequence r ++ s �τ ? r′ ++ s′, which we can map �-preempt over to arrive at the

other half of the goal:

x′ :: r ++ s �τ ? x′ :: r′ ++ s′

Concatenation of the two halves completes the proof.

166

8.5. PROPERTIES OF THREAD SOUPS

8.5.2 Partitioning Silent Transitions

Conversely, the thread soups of a silent transition sequence r ++ s �τ ? r′s′ can be

partitioned into r �τ ? r′ and s �τ ? s′:

�τ ?-split : ∀ r s {r′s′} → r ++ s �τ ? r′s′ →

∃2 λ r′ s′ → r′ ++ s′ ≡ r′s′ × r �τ ? r′ × s �τ ? s′

Again, the proof uses structural induction on the first thread soup argument; decapi-

tating x from the x :: r in the inductive case—as per the proof for�τ ?-++—produces

a pair of transitions x �τ ?1 x′ and r �τ ? r′. The induction hypothesis delivers the

r �τ ? r′ needed to construct the sequence x :: r �τ ? x′ :: r �τ ? x′ :: r′, which

completes the proof.

A useful corollary of�τ ?-split allows us to focus our attention on a single thread,

by dissecting its transitions out of a transition sequence on the entire thread soup:

�τ ?-dissect : ∀ rl rr {x r′} → rl ++ x :: rr �τ ? r′ →

∃2 λ rl
′
rr ′ → ∃ λ x′ → r′ ≡ rl

′
++ x′ :: rr ′ ×

rl �τ ? rl
′ × rr �τ ? rr ′ × x �τ ?1 x′

In other words, given a silent transition sequence starting from the thread soup rl ++

x :: rr, there exists rl
′
, rr ′ and x′ satisfying rl �τ ? rl

′
, rr �τ ? rr ′ and x �τ ?1 x′

respectively.

8.5.3 Partitioning a Non-Silent Transition

We can also partition the thread soup for a non-silent transition, although the situa-

tion is a little more involved:

�6'τ -split : ∀ r s {r′s′} → (rs�r′s′ : r ++ s � 6'τ r′s′) →

(∃ λ r′ → r′ ++ s ≡ r′s′ × Σ (r � 6'τ r′)

λ r�r′ → [[r�r′]] ≡ [[rs�r′s′]])]

167

CHAPTER 8. COMPILING CONCURRENCY CORRECTLY

(∃ λ s′ → r ++ s′ ≡ r′s′ × Σ (s � 6'τ s′)

λ s�s′ → [[s�s′]] ≡ [[rs�r′s′]])

Partitioning the thread soup in a non-silent transition has two possible outcomes, as

the active thread responsible for the transition could be in either one of r or s . The

proof proceeds by structural induction on the soup r as before, by inspecting each of

its threads. If found, we construct and return the transition r � 6'τ r′; otherwise

none of the r threads are responsible for the non-silent transition, so by elimination

it must be in s , and we can respond with the transition s �6'τ s′. In both cases,

we construct a proof that the action emitted by the original rs�r′s′ transition is the

same as either [[r�r′]] or [[s�s′]], as appropriate.

In the same way that �τ ?-split has its �τ ?-dissect corollary, we can show the

following � 6'τ -dissect corollary for �6'τ -split:

�6'τ -dissect : ∀ rl rr {x x′ r′} →

x �τ1 x′ → (r lxr r�r′ : rl ++ x :: rr �6'τ r′) →

(∃ λ rl′ → r′ ≡ rl′ ++ x :: rr × Σ (rl �6'τ rl′)

λ rl�rl′ → [[rl�rl′]] ≡ [[r lxr r�r′]])]

(∃ λ rr ′ → r′ ≡ rl ++ x :: rr ′ × Σ (rr �6'τ rr ′)

λ rr�rr ′ → [[rr�rr ′]] ≡ [[r lxr r�r′]])

Here we are given an additional hypothesis that the thread x makes a silent initial

transition, which is unique by our choice of actions. Therefore the thread responsible

for the non-silent transition r lxr r�r′ must reside in either one of rl or rr, giving rise

to the two alternatives of either rl � 6'τ rl′ or rr �6'τ rr ′.

8.5.4 Dissecting a Visible Transition

Recall that a visible transition comprises of two sequences of silent transitions either

side of a single non-silent transition. Therefore combining the previous results allows

168

8.5. PROPERTIES OF THREAD SOUPS

us to dissect a visible transition in much the same way:

Z⇒-dissect : ∀ rl rr {x x′ r′ α} →

x �τ1 x′ → rl ++ x :: rr Z⇒< α > r′ →

rl ++ x′ :: rr Z⇒< α > r′]

∃2 λ rl′ rr ′ → r′ ≡ rl′ ++ x :: rr ′ ×

((rl Z⇒< α > rl′ × rr �τ ? rr ′)] (rl �τ ? rl′ × rr Z⇒< α > rr ′))

Given a witness of x �τ1 x′ and the visible transition rl ++ x :: rr Z⇒< α > r′,

there are two possibilities regarding the thread x : either x �τ1 x′ takes place

somewhere within the visible transition, so that removing it results in a witness of

rl ++ x′ :: rr Z⇒< α > r′; or that x remains inactive throughout while rl and rr

make transitions to some rl′ and rr ′ respectively. Depending on which of rl or rr the

thread responsible for the non-silent action is found in, we provide witnesses of either

rl Z⇒< α > rl′ and rr �τ ? rr ′, or rl �τ ? rl′ and rr Z⇒< α > rr ′ respectively.

The proof—totalling approximately 60 wrapped lines of code—follows a straight-

forward method, namely using�τ ?-dissect and�6'τ -dissect to tease apart the thread

soup, then putting the pieces back together in the right way, depending on what we

find inside.

8.5.5 Extracting the Active Thread

A number of the previous results were concerned with transitions from thread soups

of the form rl ++ x :: rr, where x makes an initial silent transition. This final lemma

shows that every silent transition r �τ r′ is in fact of this form. In other words, we

can extract from r �τ r′ the active thread x and a witness of its transition x �τ1 x′,

along with evidence that other threads in r remain unchanged:

�τ -extract : ∀ {r r′} → r �τ r′ → ∃2 λ rl rr → ∃2 λ x x′ →

r ≡ rl ++ x :: rr × r′ ≡ rl ++ x′ :: rr × x �τ1 x′

169

CHAPTER 8. COMPILING CONCURRENCY CORRECTLY

The proof proceeds simply by induction on the structure of r �τ r′.

8.6 The elide-τ Lemma

Given the arsenal assembled in the previous section, the proof of the elide-τ lemma

is relatively straightforward:

elide-τ : �τ ⇒ ≈

elide-τ {r} {s} r�τs =] r4s r�τs &] s4r where

s4r : s 4 r

s4r s′ (Z⇒-� s�?s0 s0�s1 s1�?s′)

= s′ ∧ Z⇒-� (r�τs C s�?s0) s0�s1 s1�?s′ ∧ ≈′-refl

For s4r the proof is trivial: whatever s does, r can always match it by first making

the given r�τs transition, after which it can follow s exactly.

In the other direction, we begin by extracting (§8.5.5) the active thread x from

r�τs. This refines r to rl ++ x :: rr, which allows us to dissect (§8.5.4) r Z⇒r′ using

x as the pivot:

r4s : ∀ {r s} → r �τ s → r 4 s

r4s r�τs r′ r Z⇒r′

with �τ -extract r�τs

r4s r�τs r′ r Z⇒r′

| rl ∧ rr ∧ x ∧ x′ ∧ ≡.refl ∧ ≡.refl ∧ x�τ1x′

with Z⇒-dissect rl rr x�τ1x′ r Z⇒r′

In the instance where r Z⇒r′ happens to already include the x�τ1x′ transition, the

proof is trivial:

r4s r�τs r′ r Z⇒r′

170

8.6. THE ELIDE-τ LEMMA

| rl ∧ rr ∧ x ∧ x′ ∧ ≡.refl ∧ ≡.refl ∧ x�τ1x′

| inL s Z⇒r′ = r′ ∧ s Z⇒r′ ∧ ≈′-refl

Here, Z⇒-dissect provides the witness s Z⇒r′ showing that s can transition to r′ too,

with r′ ≈′ r′ given by reflexivity of ≈′ .

Otherwise r Z⇒r′ has yet to make the x�τ1x′ transition. Two alternatives arise,

as the non-silent transition could have been on either side of x . Without loss of

generalisation suppose this is on the left, in which case Z⇒-dissect refines r′ to rl′ ++

x :: rr ′, and delivers witnesses of rl Z⇒< α > rl′ and rr �τ ? rr ′:

r4s r�τs . r Z⇒r′

| rl ∧ rr ∧ x ∧ x′ ∧ ≡.refl ∧ ≡.refl ∧ x�τ1x′

| inR (rl′ ∧ rr ′ ∧ ≡.refl

∧ inL (Z⇒-� rl�τ ?rl0 r
l
0�r

l
1 r

l
1�τ

?rl′ ∧ rr�τ ?rr ′))

with �6'τ -append (x′ :: rr) rl0�r
l
1

r4s r�τs . r Z⇒r′

| rl ∧ rr ∧ x ∧ x′ ∧ ≡.refl ∧ ≡.refl ∧ x�τ1x′

| inR (rl′ ∧ rr ′ ∧ ≡.refl

∧ inL (Z⇒-� rl�τ ?rl0 r
l
0�r

l
1 r

l
1�τ

?rl′ ∧ rr�τ ?rr ′))

| rl0x′rr�rl1x′rr ∧ [[rl0�r
l
1]]≡[[rl0x

′rr�rl1x
′rr]]

rewrite [[rl0�r
l
1]]≡[[rl0x

′rr�rl1x
′rr]]

= rl′ ++ x′ :: rr ′

∧ Z⇒-� (�τ ?-++ rl�τ ?rl0 (ε {x = x′ :: rr})) rl0x′rr�rl1x′rr

(�τ ?-++ rl1�τ
?rl′ (ε {x = x′ :: rr}) CC

�τ ?-++ (ε {x = rl′}) (�τ ?-++ (ε {x = x′ :: []}) rr�τ ?rr ′))

∧ ≈′-≈ (elide-τ (�τ -prepend rl′ (x�τ1x′ rr ′)))

Note that the earlier�τ -extract had established that s is in fact equal to rl ++ x′ :: rr.

Therefore, we can construct a visible transition from s ,

171

CHAPTER 8. COMPILING CONCURRENCY CORRECTLY

rl ++ x′ :: rr Z⇒< α > rl′ ++ x′ :: rr ′

by reconstituting the aforementioned rl Z⇒< α > rl′ and rr �τ ? rr ′. The final

bisimilarity component of the proof is obtained by coinduction on:

rl′ ++ x :: rr ′ �τ rl′ ++ x′ :: rr ′

For the case where the non-silent transition is to the right of x , the proof follows the

same approach.

Using the transitivity and reflexivity of ≈ we can generalise elide-τ to silent

transition sequences, as well as a symmetric variant:

elide-τ ? : �τ ? ⇒ ≈

elide-τ ? = Star.fold ≈ ≈-trans ≈-refl ◦ Star.map elide-τ

elide-τ ?′ : �τ ? ⇒ flip ≈

elide-τ ?′ = ≈-sym ◦ elide-τ ?

8.7 Soup Concatenation Preserves Bisimilarity

With the introduction of explicit concurrency in this Fork language, another impor-

tant lemma used in our compiler correctness proof concerns the result of combining

two pairs of bisimilar thread soups. That is, given rl ≈ sl and rr ≈ sr, concatenating

the soups pairwise results in a pair of bisimilar soups, rl ++ rr ≈ sl ++ sr.

Intuitively, one can appeal to the following reasoning to see why this is true;

without loss of generality, we need only consider rl ++ rr 4 sl ++ sr as the

other direction can be obtained by symmetry. We must show that whatever visible

transition rl ++ rr makes, sl ++ sr is able to follow with the same action. If non-silent

transition is due to rl, then the sl half of sl ++ sr can match it by rl ≈ sl, and vice

versa for rr. Any silent transitions can be bridged using the elide-τ ? lemma.

172

8.7. SOUP CONCATENATION PRESERVES BISIMILARITY

Let us now formalise the above argument. We are given r′ and the three transition

sequences r�τ ?r0, r0�6'τr1 and r1�τ ?r′ comprising r Z⇒< α > r′. By r , we actually

mean rl ++ rr; therefore we can use�τ ?-split to partition r�τ ?r0 into two sequences

rl�τ ?rl0 and rr�τ ?rr0, which refines r0 to rl0 ++ rr0:

4-cong2 : ++ Preserves2 ≈ −→ ≈ −→ 4

4-cong2 {rl} {sl} {rr} {sr} rl≈sl rr≈sr r′ (Z⇒-� r�τ ?r0 r0�6'τr1 r1�τ ?r′)

with �τ ?-split rl rr r�τ ?r0

4-cong2 {rl} {sl} {rr} {sr} rl≈sl rr≈sr r′ (Z⇒-� r�τ ?r0 r0�6'τr1 r1�τ ?r′)

| rl0 ∧ rr0 ∧ ≡.refl ∧ rl�τ ?rl0 ∧ rr�τ ?rr0

with �6'τ -split rl0 r
r
0 r0�6'τr1

Carrying on in the same vein, we use �6'τ -split on r0�6'τr1 to locate which side

of rl0 ++ rr0 the non-silent transition comes from. The proofs for both cases are

symmetrical, so let us consider just the left instance: � 6'τ -split returns a witness

rl0�6'τrl1, and refines r1 to rl1 ++ rr0:

4-cong2 {rl} {sl} {rr} {sr} rl≈sl rr≈sr r′ (Z⇒-� r�τ ?r0 r0�6'τr1 r1�τ ?r′)

| rl0 ∧ rr0 ∧ ≡.refl ∧ rl�τ ?rl0 ∧ rr�τ ?rr0

| inL (rl1 ∧ ≡.refl ∧ rl0�6'τrl1 ∧ [[rl0�τr
l
1]]≡[[r0�τr1]])

with �τ ?-split rl1 r
r
0 r1�τ

?r′

4-cong2 {rl} {sl} {rr} {sr} rl≈sl rr≈sr . (Z⇒-� r�τ ?r0 r0�6'τr1 r1�τ ?r′)

| rl0 ∧ rr0 ∧ ≡.refl ∧ rl�τ ?rl0 ∧ rr�τ ?rr0

| inL (rl1 ∧ ≡.refl ∧ rl0�6'τrl1 ∧ [[rl0�τr
l
1]]≡[[r0�τr1]])

| rl′ ∧ rr ′ ∧ ≡.refl ∧ rl1�τ
?rl′ ∧ rr0�τ

?rr ′

with ≈→4 rl≈sl rl′ (Z⇒-� rl�τ ?rl0 r
l
0�6'τrl1 rl1�τ ?rl′)

Partitioning r1�τ ?r′ along the two sides of r1 then gives us the witnesses rl1�τ
?rl′

and rr0�τ
?rr ′; the r′ argument is refined to rl′ ++ rr ′. The transitions rl�τ ?rl0,

rl0�6'τrl1 and rl1�τ
?rl′ are just what we need to build a witness of rl Z⇒< α > rl′.

173

CHAPTER 8. COMPILING CONCURRENCY CORRECTLY

When this is passed to the rl 4 sl component of rl≈sl, we receive back a matching

transition sl Z⇒< α > sl′ and a proof rl′≈′sl′:

4-cong2 {rl} {sl} {rr} {sr} rl≈sl rr≈sr . (Z⇒-� r�τ ?r0 r0�6'τr1 r1�τ ?r′)

| rl0 ∧ rr0 ∧ ≡.refl ∧ rl�τ ?rl0 ∧ rr�τ ?rr0

| inL (rl1 ∧ ≡.refl ∧ rl0�6'τrl1 ∧ [[rl0�τr
l
1]]≡[[r0�τr1]])

| rl′ ∧ rr ′ ∧ ≡.refl ∧ rl1�τ
?rl′ ∧ rr0�τ

?rr ′

| sl′ ∧ sl Z⇒sl′ ∧ rl′≈′sl′ rewrite [[rl0�τr
l
1]]≡[[r0�τr1]]

= sl′ ++ sr ∧ Z⇒-append sr sl Z⇒sl′

∧ ≈′-cong2 r
l′≈′sl′ (≈′-≈ (≈-trans

(elide-τ ?′ (rr�τ ?rr0 CC rr0�τ
?rr ′)) rr≈sr))

Finally, constructing a witness of sl ++ sr Z⇒< α > sl′ ++ sr from the above pieces

satisfies one half of the goal; the other half of rl′ ++ rr ′ ≈ sl′ ++ sr is obtained

coinductively, making use of elide-τ ?′ and transitivity of ≈ in the process.

The full result that soup contatenation preserves bisimilarity simply requires two

symmetric invocations of 4-cong2:

≈-cong2 : ++ Preserves2 ≈ −→ ≈ −→ ≈

≈-cong2 r
l≈sl rr≈sr

=] 4-cong2 rl≈sl rr≈sr

&] 4-cong2 (≈-sym rl≈sl) (≈-sym rr≈sr)

This makes ≈ a congruence relation on the monoid (List Combined,++, []).

We can now fulfill our obligation (§8.4) of providing an interpretor for the syntax

of ≈′ , as follows:

≈′→≈ : ≈′ ⇒ ≈

≈′→≈ (≈′-≈ r≈s) = r≈s

≈′→≈ (≈′-sym r≈′s) = ≈-sym (≈′→≈ r≈′s)

174

8.8. COMPILER CORRECTNESS

≈′→≈ (≈′-trans r≈′s s≈′t) = ≈-trans (≈′→≈ r≈′s) (≈′→≈ s≈′t)

≈′→≈ (≈′-cong2 r
l≈′sl rr≈′sr) = ≈-cong2 (≈′→≈ rl≈′sl) (≈′→≈ rr≈′sr)

8.8 Compiler Correctness

The compiler correctness property for our Fork language is essentially the same as that

of the Zap language, but on singleton thread soups rather than combined machines:

correctness : ∀ e c σ → 〈 e , 〈 c , σ 〉 〉 :: [] ≈ 〈 〈 compile e c , σ 〉 〉 :: []

There is no need to generalise over an arbitrary thread soup, since the ≈-cong2 lemma

of §8.7 allows us to concatenate as many pairs of bisimilar thread soups as is required.

The proof comprises of two parts, each showing one direction of the bisimulation.

Proceeding by case analysis on the visible transition, the fork4FORK part first shows

that fork e cannot make a non-silent transition:

correctness (fork e) c σ =] fork4FORK &] FORK4fork where

fork4FORK : 〈 fork e , 〈 c , σ 〉 〉 :: [] 4 〈 〈 FORK (compile e []) :: c , σ 〉 〉 :: []

fork4FORK s′ (Z⇒-� ((. ∧ () ∧ �-7→ 7→-fork) C))

fork4FORK s′ (Z⇒-� ((. ∧ α'τ ∧ �-preempt ()) C))

fork4FORK s′ (Z⇒-� ε (. ∧ α 6'τ ∧ �-preempt ()) s0�τ ?s′)

The two�-preempt clauses correspond to the fact that the empty soup [] cannot make

any transitions at all. In the case of a non-silent 7→-fork transition, the expression

side transitions to,

〈 # 0 , 〈 c , σ 〉 〉 :: 〈 e , 〈 [] , [] 〉 〉 :: []

while the virtual machine follows by the �-FORK rule:

fork4FORK s′ (Z⇒-� ε (. ∧ α 6'τ ∧ �-7→ 7→-fork) s0�τ ?s′)

= 〈 〈 c , 0 :: σ 〉 〉 :: 〈 〈 compile e [] , [] 〉 〉 :: []

175

CHAPTER 8. COMPILING CONCURRENCY CORRECTLY

∧ Z⇒-� ε (+ ∧ (λ ()) ∧ �-��-FORK) ε

∧ ≈′-≈

(begin

s′

≈〈 elide-τ ? s0�τ ?s′ -1〉

〈 # 0 , 〈 c , σ 〉 〉 :: 〈 e , 〈 [] , [] 〉 〉 :: []

≈〈 ≈-cong2 (elide-τ (�τ -switch {[]})) (correctness e [] []) 〉

〈 〈 c , 0 :: σ 〉 〉 :: 〈 〈 compile e [] , [] 〉 〉 :: []

�)

The two reducts of the original threads are bisimilar by the elide-τ lemma, while

bisimilarity of the two spawned threads is obtained from the induction hypothesis on

e. Finally, we use the ≈-cong2 lemma to combine these results, to give the overall

bisimilarity of the two thread soups.

In the opposite direction of FORK4fork, the proof follows the same steps, with

the first clause showing that the FORK instruction cannot be silent:

FORK4fork : 〈 〈 FORK (compile e []) :: c , σ 〉 〉 :: [] 4 〈 fork e , 〈 c , σ 〉 〉 :: []

FORK4fork s′ (Z⇒-� ((. ∧ () ∧ �-��-FORK) C))

FORK4fork s′ (Z⇒-� ((. ∧ α'τ ∧ �-preempt ()) C))

FORK4fork s′ (Z⇒-� ε (. ∧ α 6'τ ∧ �-preempt ()) s0�τ ?s′)

When the virtual machine makes a transition by the �-FORK rule, the expression

follows with 7→-fork,

FORK4fork s′ (Z⇒-� ε (. ∧ α 6'τ ∧ �-��-FORK) s0�τ ?s′)

= 〈 # 0 , 〈 c , σ 〉 〉 :: 〈 e , 〈 [] , [] 〉 〉 :: []

∧ Z⇒-� ε (+ ∧ (λ ()) ∧ �-7→ 7→-fork) ε

∧ ≈′-≈

(begin

176

8.9. CONCLUSION

s′

≈〈 elide-τ ?′ s0�τ ?s′ 〉

〈 〈 c , 0 :: σ 〉 〉 :: 〈 〈 compile e [] , [] 〉 〉 :: []

≈〈 ≈-cong2 (elide-τ (�τ -switch {[]})) (correctness e [] []) -1〉

〈 # 0 , 〈 c , σ 〉 〉 :: 〈 e , 〈 [] , [] 〉 〉 :: []

�)

and we obtain the bisimilarity of the two pairs of threads via the ≈-cong2 lemma as

before. The remaining clauses of correctness deal with # m and a ⊕ b, following the

same steps as that for the Zap language, modulo cosmetic changes to account for the

thread soup. This completes the compiler correctness proof for the Fork language.

8.9 Conclusion

We have demonstrated that our previously introduced technique of showing bisimi-

larity between combined machines does indeed scale to the explicitly concurrent Fork

language, modelled as a simple ‘thread soup’ of combined machines. The elide-τ

lemma was updated for this context using our arsenal of thread soup lemmas, while

the result that soup concatenation preserves bisimilarity meant that we could phrase

our compiler correctness statement on singleton thread soups. As a result, we were

able to reuse most of the correctness proof for the Zap language, with only the fork e

case requiring further attention.

177

CHAPTER 8. COMPILING CONCURRENCY CORRECTLY

178

Chapter 9

Transaction Correctness

The previous chapter scaled our proof technique to a language with explicit concur-

rency. In this chapter, we now consider a language with transactions. In order to

reconcile the stop-the-world and log-based semantics, we make two simplifications

to our approach. First of all, we replace concurrency with arbitrary interference by

an external agent, and secondly we replace the compiler and virtual machine with a

direct log-based transactional semantics for the source language.

9.1 The Atomic Language

9.1.1 Syntax

For the Atomic language, we migrate to a two-level syntax in a similar manner to

the Tran and Proc types of chapter 5. On the transaction level, we extend our base

language of natural numbers and addition with the read and write keywords for ma-

nipulating transactional variables,

data Expression′ : Set where

: (m : N) → Expression′

⊕ : (a b : Expression′) → Expression′

179

CHAPTER 9. TRANSACTION CORRECTNESS

read : (v : Variable) → Expression′

write : (v : Variable) (e : Expression′) → Expression′

while the ‘IO’ level is extended with an atomic keyword that runs a transaction of

type Expression′1:

data Expression : Set where

: (m : N) → Expression

⊕ : (a b : Expression) → Expression

atomic : (e : Expression′) → Expression

Note that we have not included the fork construct that spawns additional threads as

we did in chapters 5 and 8:

fork : (e : Expression) → Expression

The reason for this is that the presence of fork turned out to significantly complicate

the formal reasoning process, so we investigated a simpler approach. First we replace

concurrency with a ‘mutate’ rule that can change the heap at any time during a

transaction, which simulates the worst possible concurrent environment, in a similar

manner to the worst-case interrupt rule of [HW07]. Secondly we replace the compiler

and virtual machine with a direct log-based transactional semantics for the source

language, which makes the proof more manageable.

9.1.2 Heaps and Variables

Recall that previously in chapter 5, we modelled the heap as a total map from a fixed

set of variable names to their values, initialised to zero. In Agda, we can realise this

using the indexed Vec type (§6.1.3) from the standard library. As our proof is to be

1Throughout this chapter, I adopt the convention of using a ′ to identify types that are associated
with the transaction level of the Atomic language.

180

9.1. THE ATOMIC LANGUAGE

independent of the heap size—rather than parametrising the entire proof by it—we

simply postulate a number |Heap|,

postulate |Heap| : N

with the Heap type defined as follows:

Heap : Set

Heap = Vec N |Heap|

Correspondingly, a Variable is just a synonym for the finite set (§6.1.3) with |Heap|

distinct elements:

Variable : Set

Variable = Fin |Heap|

9.1.3 Stop-the-World Semantics

Now we have enough machinery to describe the high-level stop-the-world semantics

for the Atomic language. Due to the two-level stratification of the language, this

involves two separate transitions for Expression′ and Expression. The first of these is

7→′ , defined on the transaction level between pairs of Heaps and Expression′s. We

begin with the familiar rules for left-biased addition:

data 7→′ : Rel (Heap × Expression′) where

7→′-⊕N : ∀ {h m n} →

h , # m ⊕ # n 7→′ h , # (m + n)

7→′-⊕L : ∀ {h h′ a a′} b →

(a 7→a′ : h , a 7→′ h′ , a′) →

h , a ⊕ b 7→′ h′ , a′ ⊕ b

7→′-⊕R : ∀ {h h′ b b′} m →

181

CHAPTER 9. TRANSACTION CORRECTNESS

(b 7→b′ : h , b 7→′ h′ , b′) →

h , # m ⊕ b 7→′ h′ , # m ⊕ b′

7→′-read : ∀ h v →

h , read v 7→′ h , # h [v]

7→′-writeN : ∀ {h v m} →

h , write v (# m) 7→′ h [v]:= m , # m

7→′-writeE : ∀ {h e h′ e′ v} →

(e 7→e′ : h , e 7→′ h′ , e′) →

h , write v e 7→′ h′ , write v e′

Here the 7→′-read and 7→′-writeN rules refer directly to the heap, while 7→′-writeE

effects the reduction of the sub-expression argument to write. We write 7→? for the

reflexive, transitive closure of 7→′ , defined using the Star type:

7→? : Rel (Heap × Expression′)

7→? = Star 7→′

On the ‘IO’ level, transitions are labelled with a choice of actions,

data Action : Set where

τ � j : Action

where τ is the silent action, � corresponds to the addition operation, and j indicates

the successful completion of a transaction. These simple observable actions make

it possible to define a notion of bisimilarity for the stop-the-world and log-based

semantics, where there need not be a one-to-one correspondence of transition rules

on each side.

The labelled transition is defined as follows, with the first three rules corresponding

to the familiar left-biased addition:

182

9.1. THE ATOMIC LANGUAGE

data . 7→ : Action → Rel (Heap × Expression) where

7→-⊕N : ∀ {h m n} →

� . h , # m ⊕ # n 7→ h , # (m + n)

7→-⊕R : ∀ {α h h′ b b′} m →

(b 7→b′ : α . h , b 7→ h′ , b′) →

α . h , # m ⊕ b 7→ h′ , # m ⊕ b′

7→-⊕L : ∀ {α h h′ a a′} b →

(a 7→a′ : α . h , a 7→ h′ , a′) →

α . h , a ⊕ b 7→ h′ , a′ ⊕ b

The 7→-atomic rule implements a stop-the-world semantics for atomic blocks by taking

a reduction sequence e7→?m on the transaction level, and encapsulating it in a single

step:

7→-atomic : ∀ {h e h′ m} →

(e 7→?m : h , e 7→? h′ , # m) →

j . h , atomic e 7→ h′ , # m

7→-mutate : ∀ h′ {h e} →

τ . h , atomic e 7→ h′ , atomic e

Since there are no explicit threads in the Atomic language, we introduce a silent

7→-mutate rule to allow the heap to change at any time, which reflects the idea that

a concurrent thread may modify the heap while the current thread is running. The

above rule implements the worst possible case in which the heap h can be replaced

by a completely different heap h′. For simplicity, note that 7→-mutate is limited to

contexts where the expression is of the form atomic e, as this is the only construct

that interacts with the heap. We shall later examine how a corresponding rule in the

log-based semantics allows the heap to mutate during a transaction.

183

CHAPTER 9. TRANSACTION CORRECTNESS

9.1.4 Transaction Logs and Consistency

Before we give the log-based semantics for atomic blocks, let us first define what

transaction logs are. Recall from chapter 5 that we modelled them as partial maps

from variables to numbers, where an entry for a variable exists only when it has

been read from or written to. We take a similar approach to Heaps, using vectors of

Maybe N2 initialised to ◦:

data Logs : Set where

constructor &

field

ρ ω : Vec (Maybe N) |Heap|

∅ : Logs

∅ = Vec.replicate ◦ & Vec.replicate ◦

The ρ and ω fields of a Logs record correspond to the read and write logs of chapter

5, and are used in an identical manner to keep track of variables during a running

transaction. Let us quickly review the rules for log-based writes and reads in the the

context of the current chapter.

Writing to a transaction variable is the most straightforward of the two operations,

and is implemented by the following Write function that returns a new pair of logs

with the entry for v in ω updated to the new value m.

Write : Logs → Variable → N → Logs

Write (ρ & ω) v m = ρ & ω[v]:= • m

The Read function on the other hand takes a heap, a pair of logs and a variable as

arguments, and returns a potentially modified read log along with the in-transaction

value of the variable:

2For aesthetic reasons I have renamed nothing and just of Maybe to ◦ and • respectively.

184

9.1. THE ATOMIC LANGUAGE

Read : Heap → Logs → Variable → Logs × N

Read h (ρ & ω) v with ω[v]

. . . | • m = ρ & ω , m

. . . | ◦ with ρ[v]

. . . | • m = ρ & ω , m

. . . | ◦ = ρ[v]:= • m & ω , m where m = h [v]

If a variable has been written to according to ω, we immediately return the new value.

Otherwise we consult the read log ρ: if a previous value for v exists, we return that.

In both cases the transaction logs remain unchanged. Only when no cached value for

v exists—that is, when we are reading a variable for the first time—do we update

the read log ρ with the value of v from the current heap. Note that if a variable is

written to before it is read, the corresponding read log entry will never be filled.

On reaching the end of a transaction we either commit or roll back, depending on

whether the values of the variables gleaned from the heap during the transaction are

consistent with their corresponding values at the end. That is, all values recorded in

the read log must match those currently in the heap for corresponding variables. The

following predicate allows us to state this succinctly:

Consistent : Heap → Logs → Set

Consistent h (ρ &) = ∀ v m → ρ[v] ≡ • m → h [v] ≡ m

A read log ρ is consistent with the heap h precisely when all non-empty entries in

ρ have the same values as the corresponding entries in h. Note that a transactional

variable that is written to before being read from will not have a corresponding entry

in ρ; this is acceptable since its original value in the heap could not possibly have

influenced the behaviour of the transaction. Naturally the empty log ∅ is consistent

with any heap:

∅-Consistent : ∀ {h} → Consistent h ∅

185

CHAPTER 9. TRANSACTION CORRECTNESS

∅-Consistent v m rewrite Vec.lookup◦replicate v (◦ : Maybe N) = λ ()

The above uses the Vec.lookup◦replicate function to obtain a proof that the entry for

v in the newly-initialised read log is ◦, in which case we can use an absurd lambda

to eliminate the ◦ ≡ • m argument.

The Dec P type corresponds to the decidability of some proposition P . It has two

constructors yes and no, carrying the appropriate evidence in either case:

data Dec (P : Set) : Set where

yes : (p : P) → Dec P

no : (¬p : ¬ P) → Dec P

Thus an element of Dec P is strictly more informative than a boolean value. Using

this, we can give a decision procedure for whether a given heap and read log are

indeed consistent. This is implemented below as Consistent?, via the dec helper that

decides consistency for one particular variable:

Consistent? : (h : Heap) (l : Logs) → Dec (Consistent h l)

Consistent? h (ρ & ω) = Dec.map′ Vec.Pointwise.app Vec.Pointwise.ext

(Vec.Pointwise.decidable dec h ρ) where

dec : (hv : N) (ρv : Maybe N) → Dec (∀ m → ρv ≡ • m → hv ≡ m)

dec hv ◦ = yes (λ m ())

dec hv (• n) with hv
?
=N n

. . . | yes hv≡n rewrite hv≡n = yes (λ m → •-inj)

. . . | no hv 6≡n = no (λ p → hv 6≡n (p n ≡.refl))

The library fuctions Dec.map′ and Vec.Pointwise.decidable are used to generalise the

pointwise decision procedure over all variables.

Finally when a transaction is ready to commit, we can use the Update function to

commit the contents of the write log to the heap:

186

9.1. THE ATOMIC LANGUAGE

Update-lookup : Heap → Logs → Variable → N

Update-lookup h (ρ & ω) v = maybe id (h [v]) (ω[v])

Update : Heap → Logs → Heap

Update h l = Vec.tabulate (Update-lookup h l)

This is implemented using the library function Vec.tabulate that takes a function that

gives the new value for each index or variable. We have factored out Update-lookup

in order to leverage existing proofs in the standard library.

9.1.5 Log-Based Semantics

The log-base semantics makes transitions between pairs of Logs and Expression′ rather

than operating directly on a Heap. We can still read from the heap, but it is never

modified by the following rules. The first three rules corresponding to left-biased

addition should look familiar:

data ` �′ (h : Heap) : Rel (Logs × Expression′) where

�′-⊕N : ∀ {l m n} →

h ` l , # m ⊕ # n �′ l , # (m + n)

�′-⊕R : ∀ {l b l′ b′} m →

(b�b′ : h ` l , b �′ l′ , b′) →

h ` l , # m ⊕ b �′ l′ , # m ⊕ b′

�′-⊕L : ∀ {l a l′ a′} b →

(a�a′ : h ` l , a �′ l′ , a′) →

h ` l , a ⊕ b �′ l′ , a′ ⊕ b

The�′-read rule reduces a read v expression to the value of v using the Read function

defined in the previous section, potentially also resulting in a new log:

�′-read : ∀ l v → let l′m = Read h l v in

h ` l , read v �′ fst l′m , # snd l′m

187

CHAPTER 9. TRANSACTION CORRECTNESS

�′-writeN : ∀ {l v m} →

h ` l , write v (# m) �′ Write l v m , # m

�′-writeE : ∀ {l e l′ e′ v} →

(e�e′ : h ` l , e �′ l′ , e′) →

h ` l , write v e �′ l′ , write v e′

The �′-writeN rule updates the write log via the Write helper when the expression

argument to write is just a number, while �′-writeE effects the reduction of e in the

same manner as the stop-the-world semantics.

We write ` �′? for the reflexive, transitive closure of ` �′ under the same

heap, again defined using the Star type:

` �′? : Heap → Rel (Logs × Expression′)

` �′? h = Star (` �′ h)

For the ‘IO’ level of this log-based semantics, we define a transition . � between

triples of heaps, transaction states and expressions, labelled with the same Actions

we used earlier. During a running transaction, the state comprises of the original

expression and the transaction Logs; otherwise it is empty:

TState : Set

TState = Maybe (Expression′ × Logs)

The rules for addition are identical to those of . 7→ :

data . � : Action → Rel (Heap × TState × Expression) where

�-⊕N : ∀ {h m n} →

� . h , ◦ , # m ⊕ # n � h , ◦ , # (m + n)

�-⊕R : ∀ {α h t b h′ t′ b′} m →

(b�b′ : α . h , t , b � h′ , t′ , b′) →

α . h , t , # m ⊕ b � h′ , t′ , # m ⊕ b′

188

9.1. THE ATOMIC LANGUAGE

�-⊕L : ∀ {α h t a h′ t′ a′} b →

(a�a′ : α . h , t , a � h′ , t′ , a′) →

α . h , t , a ⊕ b � h′ , t′ , a′ ⊕ b

Next we move on to the transaction rules: when the expression to be reduced is of

the form atomic e and we have yet to enter the transaction, the�-begin rule sets up

the restart expression to e and initialises the transaction logs to ∅:

�-begin : ∀ {h e} →

τ . h , ◦ , atomic e � h , • (e , ∅) , atomic e

The second �-step rule allows us to make a single ` �′ transition on the trans-

action level; note that the heap h does not change:

�-step : ∀ {h r l e l′ e′} →

(e�e′ : h ` l , e �′ l′ , e′) →

τ . h , • (r , l) , atomic e � h , • (r , l′) , atomic e′

While the Atomic language does not contain explicit parallelism, we can model in-

terference using a �-mutate rule that changes to an arbitrary heap h′ at any time

during a transaction:

�-mutate : ∀ h′ {h t e} →

τ . h , • t , atomic e � h′ , • t , atomic e

Finally we come to the�-abort and�-commit rules, one of which applies when the

transactional expression has reduced down to a number:

�-abort : ∀ {h r l m} (¬cons : ¬ Consistent h l) →

τ . h , • (r , l) , atomic (# m) � h , • (r , ∅) , atomic r

�-commit : ∀ {h r l m} (cons : Consistent h l) →

j . h , • (r , l) , atomic (# m) � Update h l , ◦ , # m

189

CHAPTER 9. TRANSACTION CORRECTNESS

Both rules carry proof of the consistency or otherwise of the log l with respect to h.

While this is not technically necessary and we could make do with a single rule—as

consistency is decidable—having two rules labelled with distinct Actions makes later

proofs easier to work with.

In any case if we do have consistency, we commit the transaction by applying

the write log to the heap using the Update function, setting the transaction state to

◦, and reducing atomic (# m) to # m. Otherwise the �-abort rule applies, and we

silently restart the transaction by resetting the transaction state and the expression.

9.2 Combined Semantics and Bisimilarity

9.2.1 Combined Semantics

In a similar spirit to the combined machines of previous chapters, let us define a

Combined type that allows us to select which of our two semantics to use to interpret

some given expression:

data Combined : Set where

7→: : Combined

�: : (t : TState) → Combined

The 7→: constructor indicates that the associated expression should be interpreted

according to the stop-the-world semantics, while�: implies the log-based semantics.

The latter is also used to carry around the transaction state. How this works can be

seen in the definition of . � below:

data . � (α : Action) : Rel (Heap × Combined × Expression) where

�-7→ : ∀ {h e h′ e′} →

(e7→e′ : α . h , e 7→ h′ , e′) →

α . h , 7→: , e � h′ , 7→: , e′

190

9.2. COMBINED SEMANTICS AND BISIMILARITY

�-� : ∀ {h t e h′ t′ e′} →

(e�e′ : α . h , t , e � h′ , t′ , e′) →

α . h , �: t , e � h′ , �: t′ , e′

This combined transition is essentially a disjoint union of . 7→ and . � . We

will write �?
τ for an arbitrary sequence of silent τ transitions:

�?
τ : Rel (Heap × Combined × Expression)

�?
τ = Star (. � τ)

Finally, let us define a visible transition as a sequence of silent τ transitions

followed by a single non-τ transition:

data . Z⇒ (α : Action) (x x′′ : Heap × Combined × Expression) : Set where

constructor Z⇒:

field

{h′} : Heap

{c′} : Combined

{e′} : Expression

α 6≡τ : α 6≡ τ

e�?
τe′ : x �?

τ h′ , c′ , e′

e′�e′′ : α . h′ , c′ , e′ � x′′

The visible transition above is basically the same idea as that of the Fork and Zap

languages of the previous two chapters, but without a second sequence of τ -transitions

after the main e ′�e ′′ transition.

9.2.2 Bisimilarity of Semantics

The definition of bisimilarity differs in some details compared with the previous two

chapters. Since we are just comparing two different semantics for the same expression,

we define one half of bisimilarity as follows:

191

CHAPTER 9. TRANSACTION CORRECTNESS

` 4 : Heap × Expression → Rel Combined

h , e ` x 4 y = ∀ {h′ x′ e′ α} →

(x Z⇒x ′ : α . h , x , e Z⇒ h′ , x′ , e′) →

∃ λ y′ → α . h , y , e Z⇒ h′ , y′ , e′ × (h′ , e′ ` x′ ≈ y′)

That is given a heap h and expression e, whenever it can make a visible transition to

h′ and e′ under the semantics represented by x , an equivalent transition to the same

h′ and e′ exists under y , such that x′ and y′ are also bisimilar for h′ and e′.

Bisimilarity is then defined as a pair of coinductive ` 4 relations:

data ` ≈ (he : Heap × Expression) (x y : Combined) : Set where

constructor &

field

≈→4 : ∞ (he ` x 4 y)

≈→< : ∞ (he ` y 4 x)

Utilising the same proofs as before, we can show that ` ≈ is reflexive, symmetric,

and transitive on Combined, given a heap and an expression:

4-refl : {he : Heap × Expression} → Reflexive (` 4 he)

4-refl x Z⇒x ′ = , x Z⇒x ′ , ≈-refl

≈-refl : {he : Heap × Expression} → Reflexive (` ≈ he)

≈-refl =] 4-refl &] 4-refl

≈-sym : {he : Heap × Expression} → Symmetric (` ≈ he)

≈-sym (x4y & y4x) = y4x & x4y

4-trans : {he : Heap × Expression} → Transitive (` 4 he)

4-trans x4y y4z x Z⇒x ′ with x4y x Z⇒x ′

. . . | y′ , y Z⇒y ′ , x ′≈y ′ with y4z y Z⇒y ′

. . . | z′ , z Z⇒z ′ , y ′≈z ′ = z′ , z Z⇒z ′ , ≈-trans x ′≈y ′ y ′≈z ′

192

9.3. REASONING TRANSACTIONALLY

≈-trans : {he : Heap × Expression} → Transitive (` ≈ he)

≈-trans (x4y & y4x) (y4z & z4y) =

] 4-trans ([x4y) ([y4z) &] 4-trans ([z4y) ([y4x)

In this chapter, we managed to avoid the use of an embedded language (the ≈′

relation of previous chapters) to convince Agda that our coinductive definitions are

properly constructor-guarded, and hence productive. That said, we will need to

manually inline several uses of ≈-sym in later proofs, as the guardedness checker

cannot see through function definitions yet at the time of writing.

9.2.3 Definition of Correctness

Having accumulated enough machinery, we can now give a definition of correctness

of the log-based semantics, which is simply the following:

correct : ∀ h e → h , e ` 7→: ≈ �: ◦

That is for any heap h and expression e, the stop-the-world semantics (as represented

by 7→:) and the log-based semantics with an empty transaction state (proxied by�: ◦)

are bisimilar up to visible transitions.

9.3 Reasoning Transactionally

In this section, we will cover some useful lemmas concerning heaps and transaction

logs that are used to show that the stop-the-world and log-based transaction semantics

coincide.

9.3.1 Consistency-Preserving Transitions

First of all, recall that when the log-based semantics needs to read a variable v and

it is not present in either of the read and write logs, we update the read log with the

193

CHAPTER 9. TRANSACTION CORRECTNESS

value of v from the heap. The following lemma shows that this operation preserves

log consistency:

Read-Consistent : ∀ {h} l v → Consistent h l →

Consistent h (Logs.ρ l [v]:= • (h [v]) & Logs.ω l)

Read-Consistent {h} (ρ & ω) v cons v′ m with v′
?
=Fin v

. . . | yes v ′≡v rewrite v ′≡v | Vec.lookup◦update v ρ (• (h [v])) = •-inj

. . . | no v ′ 6≡v rewrite Vec.lookup◦update′ v ′ 6≡v ρ (• (h [v])) = cons v′ m

We have η-expanded Read-Consistent with a second variable v′ and m taken by the

resulting Consistent type, and need to show that ρ[v′] ≡ • m → h [v′] ≡ m.

There are two cases to consider, depending on whether v′ coincides with the

variable v whose read log entry is being updated. If they are indeed the same, we

can use Vec.lookup◦update to show that the updated read log entry is • hv , in which

case the goal of • h [v′] ≡ • m → h [v′] ≡ m can be satisfied by injectivity of •.

When v and v′ correspond to different variables, Vec.lookup◦update′ gives us a proof

that the read log entry for v′ remains unchanged, and the cons argument suffices.

Using the above result, we can demonstrate that any transaction transition under

the log-based semantics preserves consistency:

�′-Consistent : ∀ {h l e l′ e′} → Consistent h l →

h ` l , e �′ l′ , e′ → Consistent h l′

�′-Consistent cons �′-⊕N = cons

�′-Consistent cons (�′-⊕R m b�b′) = �′-Consistent cons b�b′

�′-Consistent cons (�′-⊕L b a�a′) = �′-Consistent cons a�a′

�′-Consistent cons (�′-writeE e�e′) = �′-Consistent cons e�e′

�′-Consistent cons �′-writeN = cons

�′-Consistent cons (�′-read l v) with Logs.ω l [v]

. . . | • m = cons

194

9.3. REASONING TRANSACTIONALLY

. . . | ◦ with Logs.ρ l [v]

. . . | • m = cons

. . . | ◦ = Read-Consistent l v cons

The proof proceeds by induction on the structure of the reduction rules, making use

of the Read-Consistent lemma when the read log changes. Naturally, we can extend

the above to an arbitrary ` �′? sequence by folding over it:

�′?-Consistent : ∀ {h l e l′ e′} → Consistent h l →

h ` l , e �′? l′ , e′ → Consistent h l′

�′?-Consistent {h} {l} {e} =

Star.gfoldl fst (const (Consistent h))�′-Consistent {i = l , e}

In the opposite direction, we can show a pair of similar but slightly more general

consistency-preservation lemmas. This extra generality in fact turns out to be crucial

to our later proofs. The Read-Consistent′ lemma shares an analogous structure to that

of Read-Consistent, but requires an extra argument showing that the pre-transition

read log entry for v is empty:

Read-Consistent′ : ∀ {h n} l v → Logs.ρ l [v] ≡ ◦ →

Consistent h (Logs.ρ l [v]:= • n & Logs.ω l) → Consistent h l

Read-Consistent′ {h} {n} (ρ & ω) v ρv≡◦ cons ′ v′ m with v′
?
=Fin v

. . . | yes v ′≡v rewrite v ′≡v | ρv≡◦ = λ ()

. . . | no v ′ 6≡v rewrite ≡.sym (Vec.lookup◦update′ v ′ 6≡v ρ (• n)) = cons ′ v′ m

As before, there are two alternatives: when v′ coincides with the variable v whose

read log entry is being updated, we use the ρv≡◦ argument to rewrite the goal to

◦ ≡ • m → h [v] ≡ m, which is then discharged with an absurd λ. This is

essentially making use of the fact that that each read log entry is only ever updated

once, from ◦ to •. When v′ differs, the cons ′ argument suffices.

195

CHAPTER 9. TRANSACTION CORRECTNESS

In the yes case of Read-Consistent, we required that the post-transition read log

entry for v be • (h [v]). Since the corresponding case here is absurd, this is no

longer necessary, and the proof can be generalised to any • n. This means that the

heap h under which the logs and expression make their transition need not be the

same as the heap h′ with which l and l′ are consistent in the following lemma:

�′-Consistent′ : ∀ {h h′ l e l′ e′} → Consistent h′ l′ →

h ` l , e �′ l′ , e′ → Consistent h′ l

�′-Consistent′ cons ′�′-⊕N = cons ′

�′-Consistent′ cons ′ (�′-⊕R m b�b′) = �′-Consistent′ cons ′ b�b′

�′-Consistent′ cons ′ (�′-⊕L b a�a′) = �′-Consistent′ cons ′ a�a′

�′-Consistent′ cons ′ (�′-writeE e�e′) = �′-Consistent′ cons ′ e�e′

�′-Consistent′ cons ′�′-writeN = cons ′

�′-Consistent′ cons ′ (�′-read (ρ & ω) v) with ω[v]

. . . | • m = cons ′

. . . | ◦ with ρ[v] | ≡.inspect ([] ρ) v

. . . | • m | = cons ′

. . . | ◦ | [[ρv≡◦]] = Read-Consistent′ (ρ & ω) v ρv≡◦ cons ′

This follows an identical structure to �′-Consistent, with the only difference being

the use of the ≡.inspect idiom to obtain a proof of ρ[v] ≡ ◦.

9.3.2 Heaps and Logs Equivalence

Recall that a pair of read and write logs is used to give an local view of the heap

during a running transaction. For our correctness proof, it will be convenient to

define a predicate stating that the view of the heap during the transaction—that is,

h overlaid with read and write logs—is equivalent to another heap h′ that is accessed

directly using the stop-the-world semantics:

196

9.3. REASONING TRANSACTIONALLY

Equivalent : Heap → Logs → Heap → Set

Equivalent h l h′ = snd ◦ Read h l $ [] h′

We write f $ g to mean pointwise equality of f and g , and is a synonym for

∀ x → f x ≡ g x . In other words, Read h l v gives the same value as h′ [v] for all

variables.

On commencing a transaction, the logs are initialised to ∅ by the �-begin rule,

while the heaps according to both semantics have yet to diverge. The following

definition shows that every heap h is equivalent to itself overlaid with empty logs:

∅-Equivalent : ∀ {h} → Equivalent h ∅ h

∅-Equivalent v rewrite Vec.lookup◦replicate v (◦ : Maybe N)

| Vec.lookup◦replicate v (◦ : Maybe N) = ≡.refl

The two rewrites correspond to showing that the write and read logs are always empty,

using the Vec.lookup◦replicate lemma to obtain proofs of Vec.replicate ◦ [v] ≡ ◦,

so that the value returned by Read reduces to just h [v]. The goal is then trivially

satisfied by reflexivity.

In a similar manner to Read-Consistent, the operation of updating the read log for

a variable v when it is first read preserves heap-log equivalence.

Read-Equivalent : ∀ {h l h′ v} → Logs.ρ l [v] ≡ ◦ →

Equivalent h l h′ → Equivalent h (Logs.ρ l [v]:= • (h [v]) & Logs.ω l) h′

Read-Equivalent {h} {ρ & ω} {h′} {v} ρv≡◦ equiv v′ with equiv v′

. . . | equiv -v ′ with ω[v′]

. . . | • m = equiv -v ′

. . . | ◦ with v′
?
=Fin v

We start by binding the application equiv v′ to equiv -v ′, which starts off with a type

of snd (Read h l v′) ≡ h′ [v′]. This is so that the Read function in its type can

197

CHAPTER 9. TRANSACTION CORRECTNESS

be refined as we perform case analyses on the write and read log entries for v′. Since

the write log does not change, the types of both the goal and equiv -v ′ reduces to

m ≡ h′ [v′]when ω [v′] is • m. Otherwise we must consider whether v′ refers to

the same variable as v whose read log entry is being updated:

. . . | yes v ′≡v rewrite v ′≡v | ρv≡◦

| Vec.lookup◦update v ρ (• (h [v])) = equiv -v ′

If v′ is indeed the variable being updated, we can use the ρv≡◦ argument to refine

the type of equiv -v ′ to h [v] ≡ h′ [v], and a final Vec.lookup◦update rewrites the

goal to the same type. Otherwise, we use the Vec.lookup◦update′ lemma to show that

ρ[v′] is unaffected by the update:

. . . | no v ′ 6≡v rewrite Vec.lookup◦update′ v ′ 6≡v ρ (• (h [v])) with ρ[v′]

. . . | • m = equiv -v ′

. . . | ◦ = equiv -v ′

In the two alternatives above, the types of the goals and equiv -v ′ reduce to m ≡

h′ [v′] and h [v′] ≡ h′ [v′], corresponding to the cases where v′ was already

cached in the read log, and when it is read for the first time respectively.

Unlike the Consistent property which only involves the read log, Equivalent also

depends on the write log (indirectly via Read). Therefore we must demonstrate that

write log updates preserve some notion of heap-log equivalence. We proceed by ap-

plying equiv to v′, and checking whether v′ and v are the same variable:

Write-Equivalent : ∀ {h l h′ v m} →

Equivalent h l h′ → Equivalent h (Write l v m) (h′[v]:= m)

Write-Equivalent {h} {ρ & ω} {h′} {v} {m} equiv v′ with equiv v′ | v′ ?
=Fin v

. . . | equiv -v ′ | yes v ′≡v rewrite v ′≡v | Vec.lookup◦update v ω (• m)

| Vec.lookup◦update v h′ m = ≡.refl

198

9.3. REASONING TRANSACTIONALLY

In the yes case, we use Vec.lookup◦update to first show that the value returned by

Read h (Write l v m) v is in fact m, which corresponds to the left-hand side of the

≡ goal. The next clause rewrites the right-hand side from (h′ [v]:= m) [v] to

the same m, and ≡.refl completes this half of the proof.

For the no half where v′ is not the variable being written to, the write log entry

ω [v′] and the value of h′ [v′] are not updated, which is taken care of by the two

Vec.lookup◦update′ rewrites. Thus the existing equiv -v ′ suffices to complete the proof,

although we do have to inspect the appropriate log entries to verify that equiv -v ′ and

the goal have the correct types in all cases:

. . . | equiv -v ′ | no v ′ 6≡v rewrite Vec.lookup◦update′ v ′ 6≡v ω (• m)

| Vec.lookup◦update′ v ′ 6≡v h′ m with ω[v′]

. . . | • n = equiv -v ′

. . . | ◦ with ρ[v′]

. . . | • n = equiv -v ′

. . . | ◦ = equiv -v ′

9.3.3 Post-Commit Heap Equality

When a transaction completes successfully, we proceed to update the unmodified heap

with the contents of the write log, using the Update function defined at the end of

§9.1.4. Given an h′ that is equivalent to some heap h overlaid with logs l and that

h and l are mutually consistent, we can proceed to show that updating h with the

contents of the write log results in a heap identical to one that is modified in-place

by the stop-the-world semantics:

Commit : ∀ {h l h′} →

Consistent h l → Equivalent h l h′ → Update h l ≡ h′

Commit {h} {l} {h′} cons equiv =

199

CHAPTER 9. TRANSACTION CORRECTNESS

Equivalence.to Vec.Pointwise-≡ 〈$〉 Vec.Pointwise.ext hω$h′ where

hω$h′ : ∀ v → Update h l [v] ≡ h′[v]

hω$h′ v rewrite Vec.lookup◦tabulate (Update-lookup h l) v

with Logs.ω l [v] | equiv v

. . . | • m | equiv -v = equiv -v

The main hω$h′ part of the proof shows pointwise equality of Update h l and h′, by

considering the entry for v in the write and read logs. When the write log contains

• m, the corresponding entry of h would be updated with m; not coincidentally

equiv -v has been refined to a proof of m ≡ h′[v]. Otherwise the write log contains

a ◦, and the goal type reduces to h [v] ≡ h′[v]:

. . . | ◦ | equiv -v with Logs.ρ l [v] | ≡.inspect ([] (Logs.ρ l)) v

. . . | • m | [[ρv≡m]] = ≡.trans (cons v m ρv≡m) equiv -v

. . . | ◦ | = equiv -v

We then proceed to inspect the read log: if it contains • m then equiv -v refines to a

proof of m ≡ h′ [v], so we use cons to show that h [v] is also equal to m, and

transitivity completes the proof. In the last case where both log entries are empty,

the Read on the left-hand side of the type of equiv -v becomes simply h [v], and so

completes the proof. Finally we use the proof of pointwise/definitional equivalence

for Vec from the Agda standard library to convert hω$h′ to a proof of definitional

equality.

9.4 Transaction Correctness

During a transaction, the high-level stop-the-world semantics manipulates the heap

directly, while the log-based semantics accumulates its reads and writes in a transac-

tion log, eventually committing it to the heap. In this section we show that for any

200

9.4. TRANSACTION CORRECTNESS

transaction sequence under one semantics, there exists a matching sequence under

the other semantics.

9.4.1 Completeness of Log-Based Transactions

We shall tackle the completeness part of transactional correctness first, as it is the

simpler of the two directions. Let us begin by defining a function that extracts the

7→? sequence from a visible transition starting from atomic e:

7→-extract : ∀ {α h e h′′ c′′ e′′} →

α . h , 7→: , atomic e Z⇒ h′′ , c′′ , e′′ →

∃2 λ h0 m → α , c′′ , e′′ ≡ j , 7→: , # m ×

h0 , e 7→? h′′ , # m

7→-extract (Z⇒: α 6≡τ ε (�-7→ (7→-mutate h1))) = ⊥-elim (α 6≡τ ≡.refl)

7→-extract (Z⇒: α 6≡τ ε (�-7→ (7→-atomic e 7→′?m))) =

, , ≡.refl , e 7→′?m

7→-extract (Z⇒: α 6≡τ (�-7→ (7→-mutate h1) C e�?
τe ′) e ′�e ′′)

with 7→-extract (Z⇒: α 6≡τ e�?
τe ′ e ′�e ′′)

. . . | h0 , m , ≡.refl , e 7→′?m =

h0 , m , ≡.refl , e 7→′?m

Under the stop-the-world semantics, the only non-silent transition atomic e can make

is 7→-atomic, which carries the e 7→′?m we desire. Note that the silent sequence pre-

ceding it may contain some number of 7→-mutate rules which we simply discard here,

hence the heap at the start of the transaction may not necessarily be the same as

that of the visible transition. We also give a proof that will allows us to refine α, c′′

and e′′.

Next, we show that for each of the transaction rules under the stop-the-world

semantics, there is an corresponding rule that preserves the equivalence of the heap

201

CHAPTER 9. TRANSACTION CORRECTNESS

and log of the log-based semantics with the in-place modified heap of the stop-the-

world semantics:

7→′→�′ : ∀ {l h0 h e h′ e′} →

Equivalent h0 l h → h , e 7→′ h′ , e′ →

∃ λ l′ → Equivalent h0 l
′ h′ × h0 ` l , e �′ l′ , e′

7→′→�′ equiv 7→′-⊕N = , equiv , �′-⊕N

7→′→�′ equiv (7→′-⊕R m b 7→b′) = Σ.map3 (�′-⊕R m) (7→′→�′ equiv b 7→b′)

7→′→�′ equiv (7→′-⊕L b a 7→a′) = Σ.map3 (�′-⊕L b) (7→′→�′ equiv a7→a′)

7→′→�′ equiv (7→′-writeE e 7→e′) = Σ.map3�′-writeE (7→′→�′ equiv e7→e′)

For 7→′-⊕N, this is simply �′-⊕N; the corresponding rules for 7→′-⊕R, 7→′-⊕L and

7→′-writeE are similarly named, and we can simply map them over a recursive call to

fulfil the goal.

The 7→′-writeN rule that modifies the heap directly has a counterpart �′-writeN

that updates the write log, and we use the Write-Equivalent lemma given previously

to show that equivalence is maintained:

7→′→�′ equiv 7→′-writeN = , Write-Equivalent equiv , �′-writeN

7→′→�′ {l} equiv (7→′-read h0 v) with equiv v | �′-read l v

. . . | equiv -v | �′-read -l -v with Logs.ω l [v]

. . . | • m rewrite equiv -v = , equiv , �′-read -l -v

. . . | ◦ with Logs.ρ l [v] | ≡.inspect ([] (Logs.ρ l)) v

. . . | • m | rewrite equiv -v = , equiv , �′-read -l -v

. . . | ◦ | [[ρv≡◦]] rewrite ≡.sym equiv -v =

, Read-Equivalent ρv≡◦ equiv , �′-read -l -v

The matching rule for 7→′-read is of course �′-read in all cases, although we need to

pre-apply it with l and v and inspect the write and read logs to allow its type and

that of the goal to refine so that they coincide. In the last alternative when both both

202

9.4. TRANSACTION CORRECTNESS

logs are empty, the Read-Equivalent lemma lets us show that heap-log equivalence still

holds with the updated read log.

Lastly we generalise the above to transition sequences of any length, proceeding

in the usual manner by applying 7→′→�′ to each transition from left to right:

7→′?→�′? : ∀ {h0 l h e h′ e′} →

Equivalent h0 l h → h , e 7→? h′ , e′ →

∃ λ l′ → Equivalent h0 l
′ h′ × h0 ` l , e �′? l′ , e′

7→′?→�′? equiv ε = , equiv , ε

7→′?→�′? equiv (e 7→e′ C e ′ 7→?e ′′) with 7→′→�′ equiv e 7→e′

. . . | l′ , equiv ′ , e�e′ with 7→′?→�′? equiv ′ e ′ 7→?e ′′

. . . | l′′ , equiv ′′ , e ′�?e ′′ = l′′ , equiv ′′ , e�e′ C e ′�?e ′′

Using the combination of 7→-extract and 7→′?→�′?, we can construct a transition

sequence under the log-based semantics given a visible transition under the stop-the-

world semantics, such that the heap and final log of the former is equivalent to the

final heap of the latter.

9.4.2 Soundness of Log-Based Transactions

The soundness part of transactional correctness involves showing that the stop-the-

world semantics can match the log-based semantics when the latter successfully com-

mits. This is more difficult as the heap can be changed at any point during a log-based

transaction by the �-mutate rule. Let us begin by defining a variation on ` �′

that encapsulates the heap used for each transition:

H` �′ : Rel (Logs × Expression′)

H` x �′ x′ = Σ Heap (λ h → h ` x �′ x′)

H` �′? : Rel (Logs × Expression′)

H` �′? = Star H` �′

203

CHAPTER 9. TRANSACTION CORRECTNESS

We write H` �′? for its reflexive, transitive closure. Every step of this transition

potentially uses a different heap, in contrast to the ` �′? relation where the entire

sequence runs with the same heap.

Next we define a function that discards the steps from any aborted transactions,

leaving only the final sequence of transitions leading up to a �-commit, along with

the heaps used at each step:

�-extract′ : ∀ {h α r l e h′ c′ e′ h′′ c′′ e′′} →

H` ∅ , r �′? l , e →

α 6≡ τ → h , �: • (r , l) , atomic e �?
τ h′ , c′ , e′ →

α . h′ , c′ , e′ � h′′ , c′′ , e′′ →

∃2 λ l′ m → α , h′′ , c′′ , e′′ ≡ j , Update h′ l′ , �: ◦ , # m ×

Consistent h′ l′ × H` ∅ , r �′? l′ , # m

�-extract′ r�′?e α 6≡τ ε (�-� (�-step e�e′)) = ⊥-elim (α 6≡τ ≡.refl)

�-extract′ r�′?e α 6≡τ ε (�-� (�-mutate h′)) = ⊥-elim (α 6≡τ ≡.refl)

�-extract′ r�′?e α 6≡τ ε (�-� (�-abort ¬cons)) = ⊥-elim (α 6≡τ ≡.refl)

The first argument to�-extract′ accumulates the sequence of transactions steps start-

ing from the initial r , while the next three correspond to the three fields of a visible

transition. The three clauses above eliminate the cases where a silent transition ap-

pears in the non-silent position.

If no further transaction steps remain, the only possible rule is �-commit, in

which case we return the accumulated sequence r�′?e and the proof of consistency

carried by �-commit, along with an equality showing the values of α, h′′, c′′ and e′′:

�-extract′ r�′?e α 6≡τ ε (�-� (�-commit cons)) =

, , ≡.refl , cons , r�′?e

When the transaction makes a single step, we append it to the end of the accumulator,

taking a copy of the heap used for that step:

204

9.4. TRANSACTION CORRECTNESS

�-extract′ {h} r�′?e α 6≡τ (�-� (�-step e�e′) C e ′�?
τe ′′) e ′′�e ′′′ =

�-extract′ (r�′?e CC (h , e�e′) C ε) α 6≡τ e ′�?
τe ′′ e ′′�e ′′′

Should we encounter a �-mutate rule, we simply move on to the next step, albeit

with a different heap:

�-extract′ r�′?e α 6≡τ (�-� (�-mutate h′) C e ′�?
τe ′′) e ′′�e ′′′ =

�-extract′ r�′?e α 6≡τ e ′�?
τe ′′ e ′′�e ′′′

Lastly if e has reduced completely to a number, but the read log was not consistent

with the heap at that point, the transaction aborts and retries. In this case, we reset

the accumulator to ε and carry on with the rest of the sequence:

�-extract′ r�′?e α 6≡τ (�-� (�-abort ¬cons) C e ′�?
τe ′′) e ′′�e ′′′ =

�-extract′ ε α 6≡τ e ′�?
τe ′′ e ′′�e ′′′

We can write a wrapper for the above that takes a visible transition, and strips off

the initial �-begin rule before invoking �-extract′ itself:

�-extract : ∀ {α h r h′′ c′′ e′′} →

α . h , �: ◦ , atomic r Z⇒ h′′ , c′′ , e′′ →

∃3 λ h′ l′ m → α , h′′ , c′′ , e′′ ≡ j , Update h′ l′ , �: ◦ , # m ×

Consistent h′ l′ × H` ∅ , r �′? l′ , # m

�-extract (Z⇒: α 6≡τ ε (�-��-begin)) = ⊥-elim (α 6≡τ ≡.refl)

�-extract (Z⇒: α 6≡τ (�-��-begin C e�?
τe ′) e ′�e ′′) =

, �-extract′ ε α 6≡τ e�?
τe ′ e ′�e ′′

The next lemma says that we can swap the heap used for any ` �′ transition, as

long as the target heap is consistent with the original post-transition log l′:

�′-swap : ∀ {h h′ l e l′ e′} → Consistent h′ l′ →

h ` l , e �′ l′ , e′ → h′ ` l , e �′ l′ , e′

205

CHAPTER 9. TRANSACTION CORRECTNESS

�′-swap cons ′�′-⊕N = �′-⊕N

�′-swap cons ′ (�′-⊕R m b�b′) = �′-⊕R m (�′-swap cons ′ b�b′)

�′-swap cons ′ (�′-⊕L b a�a′) = �′-⊕L b (�′-swap cons ′ a�a′)

�′-swap cons ′ (�′-writeE e�e′) = �′-writeE (�′-swap cons ′ e�e′)

�′-swap cons ′�′-writeN = �′-writeN

The first few cases are trivial since they either don’t interact with the heap, or the

proof burden can be deferred to a recursive call. The last�′-read case however does

require our attention:

�′-swap {h} {h′} cons ′ (�′-read l v) with �′-read {h′} l v

. . . | �′-read -l -v with Logs.ω l [v]

. . . | • m = �′-read -l -v

. . . | ◦ with Logs.ρ l [v]

. . . | • m = �′-read -l -v

. . . | ◦ rewrite cons ′ v (h [v])

(Vec.lookup◦update v (Logs.ρ l) (• (h [v]))) = �′-read -l -v

As long as one of the log entries for v is not empty, the transaction does not interact

with the heap, so �′-read -l -v by itself suffices. Otherwise by the time we see that

both entries are empty, Logs.ρ l′ has been refined to Logs.ρ l [v]:= • (h [v]), so

the type of cons ′ is now:

cons ′ : ∀ v′ m → (Logs.ρ l [v]:= • (h [v]))[v′] ≡ • m → h′[v′] ≡ m

Instantiating v′ to v and m to h [v] and invoking the Vec.lookup◦update lemma

leads to a witness of h′[v] ≡ h [v], which we use in a rewrite clause to show that

�′-read under h′ does indeed result in the same l′ and e′ as it did under h, completing

the proof of �′-swap.

Of course, we can generalise �′-swap to H` �′? sequences of any length:

206

9.4. TRANSACTION CORRECTNESS

�′?-swap : ∀ {h′ l e l′′ e′′} → Consistent h′ l′′ →

H` l , e �′? l′′ , e′′ → h′ ` l , e �′? l′′ , e′′

�′?-swap {h′} cons ′′ = snd ◦ Star.gfold id C` �′? trans (cons ′′ , ε) where

C` �′? : Logs × Expression′ → Logs × Expression′ → Set

C` (l , e) �′? (l′ , e′) = Consistent h′ l × h′ ` l , e �′? l′ , e′

trans : ∀ {x x′ x′′} → H` x �′ x′ → C` x′ �′? x′′ → C` x �′? x′′

trans (h , e�e′) (cons ′ , e ′�?e ′′) =

�′-Consistent′ cons ′ e�e′ , �′-swap cons ′ e�e′ C e ′�?e ′′

The auxiliary C` �′? relation pairs ` �′? with a proof of the consistency of

h′ with the read logs at the start of the sequence, while trans corresponds to the

transitivity of a one-step H` �′ and C` �′? . The proof of�′?-swap results from

folding trans over the H` �′? argument, using a final snd to discard the consistency

part of the C` �′? pair.

What we have shown with �′?-swap is that provided the read log is consistent

with the heap just before the commit, then regardless of what different heaps the

transaction had originally used, re-running the transaction with just the pre-commit

heap—without any intervening heap mutations—delivers the same result.

It remains for us to show that we can construct an equivalent transition under

the stop-the-world semantics, given one that uses the same pre-commit heap. We

start by taking a single log-based transition step and returning its corresponding

stop-the-world rule, while showing that heap-log equivalence is preserved:

�′→7→′ : ∀ {h l e l′ e′ h0} →

Equivalent h0 l h → h0 ` l , e �′ l′ , e′ →

∃ λ h′ → Equivalent h0 l
′ h′ × h , e 7→′ h′ , e′

�′→7→′ equiv �′-⊕N = , equiv , 7→′-⊕N

�′→7→′ equiv (�′-⊕R m b�b′) = Σ.map3 (7→′-⊕R m) (�′→7→′ equiv b�b′)

207

CHAPTER 9. TRANSACTION CORRECTNESS

�′→7→′ equiv (�′-⊕L b a�a′) = Σ.map3 (7→′-⊕L b) (�′→7→′ equiv a�a′)

�′→7→′ equiv (�′-writeE e�e′) = Σ.map3 7→′-writeE (�′→7→′ equiv e�e′)

�′→7→′ equiv �′-writeN = , Write-Equivalent equiv , 7→′-writeN

�′→7→′ {h} equiv (�′-read l v) with equiv v | 7→′-read h v

. . . | equiv -v | �′-read -h-v with Logs.ω l [v]

. . . | • m rewrite equiv -v = , equiv , �′-read -h-v

. . . | ◦ with Logs.ρ l [v] | ≡.inspect ([] (Logs.ρ l)) v

. . . | • m | rewrite equiv -v = , equiv , �′-read -h-v

. . . | ◦ | [[ρv≡◦]] rewrite ≡.sym equiv -v =

, Read-Equivalent ρv≡◦ equiv , �′-read -h-v

The above definition has an identical structure to that of 7→′→�′ from the previous

section, using the same Write-Equivalent and Read-Equivalent lemmas for the�′-writeN

and �′-read cases respectively, so we will let the code speak for itself.

Finally we extend�′→7→′ to handle any ` �′? sequence, in the same manner

as 7→′?→�′?:

�′?→7→′? : ∀ {h l e l′ e′ h0} →

Equivalent h0 l h → h0 ` l , e �′? l′ , e′ →

∃ λ h′ → Equivalent h0 l
′ h′ × h , e 7→? h′ , e′

�′?→7→′? equiv ε = , equiv , ε

�′?→7→′? equiv (e�e′ C e ′�?e ′′) with �′→7→′ equiv e�e′

. . . | h′ , equiv ′ , e7→e′ with �′?→7→′? equiv ′ e ′�?e ′′

. . . | h′′ , equiv ′′ , e ′ 7→?e ′′ = h′′ , equiv ′′ , e7→e′ C e ′ 7→?e ′′

To summarise, given a visible transition in which the log-based semantics commits a

transaction, we can use�-extract to obtain the final successful sequence of ` �′

transitions leading up to the commit, along with the heaps used at each step. The

�′?-swap lemma then lets us swap the different heaps for the pre-commit heap, while

208

9.5. BISIMILARITY OF SEMANTICS

�′?→7→′? maps each log-based transition to their corresponding stop-the-world ones,

allowing us to construct an equivalent transaction under the stop-the-world semantics.

9.5 Bisimilarity of Semantics

The proof that the stop-the-world semantics for our Atomic language is bisimilar to

the log-based semantics proceeds for the most part by corecursion on the applicable

transition rules, as well as structural recursion in the case of a ⊕ b : Expressions

when either a or b can make further transitions. We will show each of the cases

individually, then assemble the pieces to give the full correctness property.

We begin by showing that bisimilarity holds for numbers, where no further tran-

sitions are possible:

correct-# : ∀ {h m} → h , # m ` 7→: ≈ �: ◦

correct-# =] (⊥-elim ◦ #6Z⇒) &] (⊥-elim ◦ #6Z⇒)

The proof makes use of a trivial #6Z⇒ lemma showing that no visible transitions are

possible from expressions of the form # m, under either semantics.

9.5.1 Addition

For the first non-trivial case, we define correct-⊕N which handles expressions of the

form # m ⊕ # n. In this case, the only applicable rules are 7→-⊕N and �-⊕N. We

show each direction of bisimilarity separately:

correct-⊕N : ∀ {h m n} → h , # m ⊕ # n ` 7→: ≈ �: ◦

correct-⊕N {h} {m} {n} =] 7→4� &]�47→ where

7→4� : h , # m ⊕ # n ` 7→: 4 �: ◦

7→4� (Z⇒: α 6≡τ ε (�-7→ 7→-⊕N)) =

, Z⇒: α 6≡τ ε (�-��-⊕N) , correct-#

209

CHAPTER 9. TRANSACTION CORRECTNESS

7→4� (Z⇒: α 6≡τ ε (�-7→ (7→-⊕R . b 7→b′))) = ⊥-elim (#67→ b 7→b′)

7→4� (Z⇒: α 6≡τ ε (�-7→ (7→-⊕L . a 7→a′))) = ⊥-elim (#67→ a 7→a′)

7→4� (Z⇒: α 6≡τ (�-7→ (7→-⊕R . b 7→b′) C)) = ⊥-elim (#67→ b 7→b′)

7→4� (Z⇒: α 6≡τ (�-7→ (7→-⊕L . a 7→a′) C)) = ⊥-elim (#67→ a 7→a′)

To show that the log-based semantics can simulate the stop-the-world semantics we

inspect the visible transition that # m ⊕ # n makes under the latter. As hinted

above, the only applicable transition is 7→-⊕N, for which we use�-⊕N to show that

the log-based semantics can follow. The resulting expression of # (m + n) is then

bisimilar by the correct-# lemma. The remaining clauses amount to showing that

further transitions by # m or # n alone are impossible.

The proof for the opposite direction proceeds in exactly the same way:

�47→ : h , # m ⊕ # n ` �: ◦ 4 7→:

�47→ (Z⇒: α 6≡τ ε (�-��-⊕N)) =

, Z⇒: α 6≡τ ε (�-7→ 7→-⊕N) , ≈-sym correct-#

�47→ (Z⇒: α 6≡τ ε (�-� (�-⊕R . b�b′))) = ⊥-elim (#6� b�b′)

�47→ (Z⇒: α 6≡τ ε (�-� (�-⊕L . a�a′))) = ⊥-elim (#6� a�a′)

�47→ (Z⇒: α 6≡τ (�-� (�-⊕R . b�b′) C)) = ⊥-elim (#6� b�b′)

�47→ (Z⇒: α 6≡τ (�-� (�-⊕L . a�a′) C)) = ⊥-elim (#6� a�a′)

9.5.2 Right Evaluation

Given an induction hypothesis of h , b ` 7→: ≈ �: ◦, we can show that the two

semantics are bisimilar for expressions of the form # m ⊕ b:

correct-⊕R : ∀ {h m b} → h , b ` 7→: ≈ �: ◦ → h , # m ⊕ b ` 7→: ≈ �: ◦

correct-⊕R {h} {m} {b} b`7→≈� =] 7→4� &]�47→ where

For the completeness direction, we first use a �?/7→-⊕R helper that peels off any

7→-⊕R rules in the visible transition starting from # m ⊕ b. This is not always

210

9.5. BISIMILARITY OF SEMANTICS

possible: when b is already a number # n, the full expression cannot make any

transitions under 7→-⊕R, so it returns a witness b≡n that allows us to defer the rest

of the proof to one half of the correct-⊕N lemma given earlier:

7→4� : h , # m ⊕ b ` 7→: 4 �: ◦

7→4� (Z⇒: α 6≡τ e�?
τe ′ e ′�e ′′) with �?/7→-⊕R α 6≡τ e�?

τe ′ e ′�e ′′

. . . | inl (n , b≡n , ≡.refl , ≡.refl , ≡.refl) rewrite b≡n =

[(≈→4 correct-⊕N) (Z⇒: α 6≡τ ε (�-7→ 7→-⊕N))

Otherwise b must make some visible transition under 7→-⊕R, and �?/7→-⊕R returns

b�?
τb ′ : h , 7→: , b �?

τ h
′ , 7→: , b′ as well as b ′�b ′′ : α . h′ , 7→: , b′ � h′′ , 7→: , b′′,

essentially constituting a visible transition made by just b itself. The latter transition

is labelled with the same α as the original e ′�e ′′, which in turn has been refined to

h′ , 7→: , # m ⊕ b′ �?
τ h

′′ , 7→: , # m ⊕ b′′ by the two equality proofs returned from

�?/7→-⊕R:

. . . | inr (h′ , b′ , h′′ , b′′ , ≡.refl , ≡.refl , b�?
τb ′ , b ′�b ′′)

with [(≈→4 b`7→≈�) (Z⇒: α 6≡τ b�?
τb ′ b ′�b ′′)

. . . | c′′ , b Z⇒b ′′ , b ′′`7→≈� with Z⇒◦�-⊕R m b Z⇒b ′′

. . . | c ′′≡� , m⊕b Z⇒m⊕b ′′ rewrite c ′′≡� =

, m⊕b Z⇒m⊕b ′′ , correct-⊕R b ′′`7→≈�

Next we invoke one half of the induction hypothesis b`7→≈� with the aforemen-

tioned stop-the-world visible transition of Z⇒: α 6≡τ b�?
τb ′ b ′�b ′′, which returns an

equivalent log-based visible transition b Z⇒b ′′ : α . h , �: ◦ , b Z⇒ h′′ , �: ◦ , b′′.

Another lemma Z⇒◦�-⊕R then replaces the 7→-⊕R rules peeled off earlier with their

corresponding �-⊕R rules, and a corecursive call to correct-⊕R completes this part

of the proof.

The definitions of �?/7→-⊕R and Z⇒◦�-⊕R are straightforward but rather te-

dious, and they can be found in the full source code on the author’s website.

211

CHAPTER 9. TRANSACTION CORRECTNESS

The soundness direction operates in exactly the same fashion, so we shall be brief

with the similar details, and focus on the differences:

�47→ : h , # m ⊕ b ` �: ◦ 4 7→:

�47→ (Z⇒: α 6≡τ e�?
τe ′ e ′�e ′′) with �?/�-⊕R α 6≡τ e�?

τe ′ e ′�e ′′

. . . | inl (n , b≡n , ≡.refl , ≡.refl , ≡.refl) rewrite b≡n =

[(≈→< correct-⊕N) (Z⇒: α 6≡τ ε (�-��-⊕N))

. . . | inr (h′ , t′ , b′ , h′′ , b′′ , ≡.refl , ≡.refl , b�?
τb ′ , b ′�b ′′)

with [(≈→< b`7→≈�) (Z⇒: α 6≡τ b�?
τb ′ b ′�b ′′)

. . . | c′′ , b Z⇒b ′′ , b ′′`�≈7→ with Z⇒◦7→-⊕R m b Z⇒b ′′

. . . | c ′′≡7→ , m⊕b Z⇒m⊕b ′′ rewrite c ′′≡7→ =

, m⊕b Z⇒m⊕b ′′ , ≈→< 7→≈� & ≈→4 7→≈� where

7→≈� = correct-⊕R (≈-sym b ′′`�≈7→)

A�?/�-⊕R helper first attempts to peel off any�-⊕R from e�?
τe ′ and e ′�e ′′; we

invoke correct-⊕N should this not be possible. Otherwise the induction hypothesis

gives us a stop-the-world visible transition b Z⇒b ′′, and we can use Z⇒◦7→-⊕R to turn

this back into m⊕b Z⇒m⊕b ′′. To show that the semantics are bisimilar for h′′ , # m ⊕

b′′, one might be tempted to write ≈-sym (correct-⊕R (≈-sym b ′′`�≈7→)). However

Agda’s termination/productivity checker requires all corecursive calls be guarded by

constructors, and cannot see that the function ≈-sym preserves productivity. We

get around this issue by inlining the outer ≈-sym, since record projections—namely

≈→4 and ≈→<—are seen to be productivity-preserving.

9.5.3 Left Evaluation

The correct-⊕L lemma handles cases where the expression on the left of a ⊕ can

make further visible transitions. It requires suitable induction hypotheses on a and

b; in particular that for b must be generalised over any heap:

212

9.5. BISIMILARITY OF SEMANTICS

correct-⊕L : ∀ {h a b} → h , a ` 7→: ≈ �: ◦ →

(∀ h′ → h′ , b ` 7→: ≈ �: ◦) → h , a ⊕ b ` 7→: ≈ �: ◦

correct-⊕L {h} {a} {b} a`7→≈� ∀b`7→≈� =] 7→4� &]�47→ where

The �?/7→-⊕L lemma then lets us distinguish between the case when a is just a

number # m, and the case where a makes a visible transition. In the former case, we

pass the proof obligation on to the correct-⊕R lemma, instantiating ∀b`7→≈� with

the current heap:

7→4� : h , a ⊕ b ` 7→: 4 �: ◦

7→4� (Z⇒: α 6≡τ e�?
τe ′ e ′�e ′′) with �?/7→-⊕L α 6≡τ e�?

τe ′ e ′�e ′′

. . . | inl (m , a≡m) rewrite a≡m =

[(≈→4 (correct-⊕R (∀b`7→≈� h))) (Z⇒: α 6≡τ e�?
τe ′ e ′�e ′′)

. . . | inr (h′ , a′ , h′′ , a′′ , ≡.refl , ≡.refl , a�?
τa ′ , a ′�a ′′)

with [(≈→4 a`7→≈�) (Z⇒: α 6≡τ a�?
τa ′ a ′�a ′′)

. . . | c′′ , a Z⇒a ′′ , a ′′`7→≈� with Z⇒◦�-⊕L b a Z⇒a ′′

. . . | c ′′≡� , a⊕b Z⇒a ′′⊕b rewrite c ′′≡� =

, a⊕b Z⇒a ′′⊕b , correct-⊕L a ′′`7→≈� ∀b`7→≈�

Otherwise we have a visible transition Z⇒: α 6≡τ a�?
τa ′ a ′�a ′′, and the first inductive

hypothesis allows us to obtain a corresponding visible transition a Z⇒a ′′ under the

log-based semantics. Next we replace the b on the right hand side of ⊕ using the

Z⇒◦�-⊕L lemma to obtain the transition a⊕b Z⇒a ′′⊕b. Since b has not made any

transitions, a corecursive call with a ′′`7→≈� and the original ∀b`7→≈� completes

the proof.

We proceed with the soundness half of correct-⊕L in exactly the same way as that

of correct-⊕R:

�47→ : h , a ⊕ b ` �: ◦ 4 7→:

�47→ (Z⇒: α 6≡τ e�?
τe ′ e ′�e ′′) with �?/�-⊕L α 6≡τ e�?

τe ′ e ′�e ′′

213

CHAPTER 9. TRANSACTION CORRECTNESS

. . . | inl (m , a≡m) rewrite a≡m =

[(≈→< (correct-⊕R (∀b`7→≈� h))) (Z⇒: α 6≡τ e�?
τe ′ e ′�e ′′)

. . . | inr (h′ , t′ , a′ , h′′ , a′′ , ≡.refl , ≡.refl , a�?
τa ′ , a ′�a ′′)

with [(≈→< a`7→≈�) (Z⇒: α 6≡τ a�?
τa ′ a ′�a ′′)

. . . | c′′ , a Z⇒a ′′ , a ′′`�≈7→ with Z⇒◦7→-⊕L b a Z⇒a ′′

. . . | c ′′≡7→ , a⊕b Z⇒a ′′⊕b rewrite c ′′≡7→ =

, a⊕b Z⇒a ′′⊕b , ≈→< 7→≈� & ≈→4 7→≈� where

7→≈� = correct-⊕L (≈-sym a ′′`�≈7→) ∀b`7→≈�

Observe how correct-⊕L shares the same overall structure as correct-⊕R.

9.5.4 Transactions

Finally we arrive at the correctness proof for atomic expressions, where we need to

show that transactions run under the stop-the-world semantics coincide with those

using our log-based semantics:

correct-atomic : ∀ {h e} → h , atomic e ` 7→: ≈ �: ◦

correct-atomic {h} {e} =] 7→4� &]�47→ where

In the completeness direction, we show that the log-based semantics can follow the

stop-the-world one by simply running the entire transaction uninterrupted at the

same point as the 7→-atomic rule. First the 7→-extract helper from §9.4.1 picks out

the e 7→′?m sequence:

7→4� : h , atomic e ` 7→: 4 �: ◦

7→4� e Z⇒e ′′ with 7→-extract e Z⇒e ′′

. . . | h0 , m , ≡.refl , e 7→′?m

with 7→′?→�′? ∅-Equivalent e 7→′?m

. . . | l′ , equiv ′ , e�′?m with �′?-Consistent ∅-Consistent e�′?m

214

9.5. BISIMILARITY OF SEMANTICS

. . . | cons ′ rewrite ≡.sym (Commit cons ′ equiv ′) =

, eZ⇒m , correct-# where

The 7→′?→�′? function from the same section then translates each transition of

e 7→′?m to its log-based equivalent, as well as constructing a proof equiv ′ of the equiv-

alence of h0 and l′ with the heap h′ at the end of the e 7→′?m sequence. By the

�′?-Consistent lemma, we show that the consistency of h0 and the logs is preserved

along the e�′?m sequence, culminating in a witness cons ′ of Consistent h0 l
′ h′. Fi-

nally, a rewrite clause using the Commit lemma convinces Agda that Update h0 l
′ and

h′ are definitionally equal. Since running a transaction results in just a number # m,

correct-# suffices to show that both semantics are bisimilar in this case.

It remains for us to construct the visible transition e Z⇒m that uses the log-based

semantics. Should the heap be changed just before the stop-the-world semantics runs

the transaction, we need a corresponding �-mutate rule in the log-based transition

sequence. The mutate? helper checks whether this is necessary:

mutate? : h , �: • (e , ∅) , atomic e �?
τ h0 , �: • (e , ∅) , atomic e

mutate? with h
?
=Heap h0

. . . | yes h≡h0 rewrite h≡h0 = ε

. . . | no h 6≡h0 = �-� (�-mutate h0) C ε

Next, the auxiliary definition e�?
τm lifts each transition of e�′?m up to the . �

level using the �-step rule, prepending a �-mutate rules when necessary:

e�?
τm : h , �: • (e , ∅) , atomic e �?

τ h0 , �: • (e , l′) , atomic (# m)

e�?
τm = mutate? CC Star.gmap (�-� ◦ �-step) e�′?m

eZ⇒m : j . h , �: ◦ , atomic e Z⇒ Update h0 l
′ , �: ◦ , # m

eZ⇒m = Z⇒: (λ ()) (�-��-begin C e�?
τm) (�-� (�-commit cons ′))

Lastly we add a�-begin to beginning of the visible transition to initialise the trans-

action state, followed by e�?
τm as the main body of the transaction. A final non-silent

215

CHAPTER 9. TRANSACTION CORRECTNESS

�-commit carrying the cons ′ witness produces the desired visible transition.

The proof of soundness relies on us having shown that for every transaction that

commits successfully, re-running the entire transaction without any interference at the

point of �-commit computes the same result. We can then use this uninterrupted

transaction sequence to derive a corresponding visible transition under the stop-the-

world semantics.

We start with a similar�-extract lemma defined in §9.4.2 that returns a sequence

e�′?m : H` ∅ , e �′? l′ , # m where each transition potentially uses a different

heap, as well as the cons ′ proof carried by the final �-commit:

�47→ : h , atomic e ` �: ◦ 4 7→:

�47→ e Z⇒e ′′ with �-extract e Z⇒e ′′

. . . | h0 , l′ , m , ≡.refl , cons ′ , e�′?m

with �′?→7→′? ∅-Equivalent (�′?-swap cons ′ e�′?m)

. . . | h′ , equiv ′ , e 7→′?m rewrite ≡.sym (Commit cons ′ equiv ′) =

, eZ⇒m , ≈-sym correct-# where

There is one additional step involved: we must use the �′?-swap lemma to replace

the different heaps used throughout e�′?m with h0—to give a witness of h0 `

∅ , e �′? l′ , # m—before we can use �′?→7→′? to convert this to the sequence

e 7→′?m : h0 , e 7→? h′ , # m. This is necessary because the �′?→7→′? lemma

requires its input log-based transitions to be under the same heap in order to show

equivalence preservation.

The result of both transaction is the same expression # m, and we use the sym-

metry of the earlier correct-# lemma to provide evidence of bisimilarity. All that is

left is to wrap up the stop-the-world transactional transition sequence e 7→′?m as the

visible transition e Z⇒m. We define a mutate? sequence to correspond to any necessary

pre-transaction 7→-mutate rules,

216

9.6. CONCLUSION

mutate? : h , 7→: , atomic e �?
τ h0 , 7→: , atomic e

mutate? with h
?
=Heap h0

. . . | yes h≡h0 rewrite h≡h0 = ε

. . . | no h 6≡h0 = �-7→ (7→-mutate h0) C ε

e Z⇒m : j . h , 7→: , atomic e Z⇒ Update h0 l
′ , 7→: , # m

e Z⇒m = Z⇒: (λ ()) mutate? (�-7→ (7→-atomic e 7→′?m))

which simply slots in as the silent transitions before the final 7→-atomic, to give the

desired visible transition e Z⇒m. This completes the bisimilarity proof for transactions.

9.5.5 Putting It Together

Having shown for each individual case that our stop-the-world and log-based seman-

tics are indeed bisimilar, all that remains for us is to combine them to give the proof

of bisimilarity for any Expression:

correct : ∀ h e → h , e ` 7→: ≈ �: ◦

correct h (# m) = correct-#

correct h (a ⊕ b) = correct-⊕L (correct h a) (λ h′ → correct h′ b)

correct h (atomic e) = correct-atomic

In the a ⊕ b case, observe how correct-⊕L is supplied with the induction hypothesis

on a, but that for b is abstracted over an arbitrary heap h′.

9.6 Conclusion

In this chapter we considered a language with transactions, and a worst-case ‘mutate’

rule in place of explicitly modelling interference by concurrent threads. We gave a fully

formalised proof that our stop-the-world and log-based semantics for transactions do

indeed coincide, without resorting to any postulated lemmas: the completeness part

217

CHAPTER 9. TRANSACTION CORRECTNESS

simply ran the log-based transaction uninterrupted at the same time as the stop-

the-world 7→-atomic rule. For soundness we used a key �′?-swap lemma showing

that regardless of any heap interference during the log-based transaction, as long as

the pre-commit heap h′ and logs l′ were consistent, replaying the transaction under

h′ gives the same results. This underlines the importance of Consistent h′ l′ as the

correct criteria for a log-based transaction to commit.

218

Chapter 10

Conclusion

To conclude, these final pages will comprise an overview of this thesis and an account

of how it came to be, followed by a summary of its contributions and some directions

for further work.

10.1 Retrospection

The quest for higher-level abstractions to manage the complexities of concurrent pro-

gramming has been an especially apt topic in recent years, due to reasons outlined

in the introductory chapter. With respect to software transactional memory (Chap-

ter 2), I was fortunate enough to be in the right places at the right times to have

attended two of Tim Harris’s talks on the topic: the first in Cambridge during my

undergraduate years, on the JVM-based implementation; and a second time at Im-

perial College during my MSc course in the early part of 2005, on the composability

of STM Haskell.

My work for this thesis began in 2006 under the guidance of Graham Hutton, with

an initial goal of reasoning about concurrent programs, in particular those written

using STM. To this end, we opted for a simple formal language based on Hutton’s

Razor, extended with a minimal set of transactional primitives, described in Chapter

219

CHAPTER 10. CONCLUSION

§5. While this language—following the reference stop-the-world semantics given by

Harris et al. [HMPJH05]—had a simple implementation, it was not immediately clear

how STM Haskell dealt with conflicting transactions internally, consequently drawing

our attention towards the correctness of the low-level concurrent implementation.

To better understand the implementation issues behind software transactional

memory, we began building a stack-based virtual machine and a compiler for our

minimal language, of which the final version is given in §5.2. Using Haskell as a

metalanguage, it was a straightforward task to transcribe the syntax and semantics

of our model as an executable program. Combined with the use of QuickCheck

and the Haskell Program Coverage toolkit (Chapter 4), this allowed us to take a

‘rapid prototyping’ approach to the design of the virtual machine. Most notably, we

were able to clarify the appropriate conditions needed for a transaction to commit

successfully (§5.2.3), and to realise that writing to an as-yet unread variable within

a transaction does not imply a dependency on the current state of the heap.

Of course, regardless of how many times we run QuickCheck on our STM model,

overwhelming evidence does not constitute a proof of compiler correctness for our

interleaved semantics and log-based implementation of transactional memory. Due

to the influence of numerous type-theorists at Nottingham, I had become interested

in dependently-typed programming (Chapter 6) and dually, the application of intu-

itionistic type theory as a framework for conducting formal proofs. Therefore, the

goal of a mechanised compiler correctness proof for our model in a dependently-typed

language/proof-assistant seemed a natural choice.

Whereas compiler correctness theorems in a deterministic setting (Chapter 3)

are concerned only with the final results, with the introduction of non-determinism

(of which concurrency is one form) we can no longer afford to ignore how results

are computed, in addition to what is being computed. Bisimilarity as a notion

of behavioural equivalence is a standard tool in the field of process calculi, and

220

10.2. SUMMARY OF CONTRIBUTIONS

Wand [Wan95, WS95, GW96] et al. were the first to use it to tackle concurrent

compiler correctness over a decade ago. Their work relied on giving denotational

semantics to both source and target languages in an underlying process calculus,

and showing that compilation preserved bisimilarity of denotations. In contrast, we

defined our language and virtual machine in an operational manner, and sought a

simpler and more direct approach.

Thus, the idea of the combined machine was born, detailed in Chapter 7. A key

realisation was that certain kinds transitions preserve bisimilarity, giving rise to the

elide-τ lemma. Having tested the waters with the non-deterministic Zap language,

Chapter 8 then demonstrates that our approach can indeed scale to handle concur-

rency, at least for that of the Fork language. As well as updating the elide-τ lemma for

explicit concurrency, we also showed that combining bisimilar pairs of thread soups

preserves bisimilarity.

Finally, Chapter 9 considers a log-based implementation of transactions. In order

to simplify the proof of its equivalence with a stop-the-world semantics, we replaced

concurrency with a ‘mutate’ rule that simulates the worst possible concurrent environ-

ment, and directly defined a log-based transaction semantics on the source language.

The final correctness proof makes essential use of a notion of equivalence between

heaps and logs, and confirms our earlier hypothesis that consistency of the read log

with the heap is a sufficient condition for a transaction to commit.

10.2 Summary of Contributions

This thesis addresses the familiar question of compiler correctness in a current con-

text, with a particular emphasis on the implementation of software transactional

memory. We have identified a simplified subset of STM Haskell that is amenable to

formal reasoning, which has a stop-the-world transactional semantics, together with

221

CHAPTER 10. CONCLUSION

a concurrent virtual machine for this language, using the notion of transaction logs.

A compiler linking this simplified language to its virtual machine then allowed us to

formulate a concrete statement of compiler correctness. We were able to implement

the above semantics in a fairly direct manner using the high-level vocabulary pro-

vided by Haskell, enabling us to empirically test compiler correctness with the help

of QuickCheck and HPC.

Working towards a formal proof of the above hypothesis, we stripped down to a

minimal language with trivial non-determinism, and moving to a labelled transition

system. The core idea of a combined machine and semantics then allowed us to estab-

lish a direct bisimulation between this language and its virtual machine. This tech-

nique was put into practice using the Agda proof assistant, giving a machine-checked

compiler correctness proof for a language with a simple notion of non-determinism.

We then extended the above proof and our approach in the direction of the initially

identified subset of STM Haskell, in an incremental manner: first introducing explicit

concurrency in the form of a fork primitive, before finally tackling a language with an

atomic construct in a simplified setting, resulting in a formal proof of the equivalence

of the high-level stop-the-world semantics with a low-level log-based approach.

10.3 Directions for Further Research

Our original aim was to formally verify the compiler correctness result from Chapter

5, whereas in Chapter 9 we verified this result with some simplifications, in particular

the removal of the fork construct. While this establishes what we feel to be the

essence of the result, we believe our original aim is still achieveable with further

work, since our worst-case ‘mutate’ rule subsumes any interference by other threads

in a concurrent setting.

Our simplified model of STM Haskell focuses on the essence of implementing

222

10.3. DIRECTIONS FOR FURTHER RESEARCH

transactions, and consequently omits many of the facilities expected of a realistic

language. Namely, the lack of primitive recursion or even name binding limits the

computational power of our model in a very tangible sense. We could be tackle this

using a lightweight approach, by borrowing said facilities from the metalanguage and

defining the high-level semantics as a functional specification. For example, Gordon’s

thesis [Gor92] presents such a specification of teletype IO for a subset of Haskell in

terms of a low-level metalanguage, while Swierstra [Swi08] advocates the use of Agda

as the metalanguage, due to its enforcement of totality.

Given the above as a basis, a machine-verified formalisation of the omitted parts

of the STM Haskell specification—in particular retry/orElse and the interaction with

exceptions—becomes a much more tractable proposition. Open questions include:

How will these additions affect the design of the corresponding virtual machine?

Can we maintain the simplicity of our combined machine approach? Is the outline

of our reasoning for transactions still valid in this richer language? Our current

virtual machine immediately retries failed transactions, rather than waiting until

some relevant transactional variable has changed. How can our virtual machine more

faithfully model the implementation of STM in GHC?

Going further, we could extend the set of side-effects that can be safely rolled

back by the transactional machinery. One widely asserted advantage of STM Haskell

over other STM implementations is that its type system restricts transactions—aside

from modifying TVars—to pure computations, guaranteeing that rollback is always

possible. During my initial work on the model of STM Haskell, the notion of run-

ning multiple nested transactions concurrently arose quite naturally, when considering

their rôle in the implementation of retry/orElse. While the forkIO primitive is con-

sidered impure, forking a nested transaction need not be, as its side-effects can only

escape as part of that of its enclosing transaction. It could be interesting to flesh out

the precise behaviour of such a forkSTM :: STM () → STM ThreadId primitive, and

223

CHAPTER 10. CONCLUSION

to evaluate its utility for concurrent programming in the real world.

224

Bibliography

[ATS09] Ali-Reza Adl-Tabatabai and Tatiana Shpeisman. Draft Specification of

Transactional Language Constructs for C++. Intel, August 2009.

[AVWW96] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams.

Concurrent Programming in ERLANG. Prentice Hall, second edition

edition, 1996.

[Bar84] Hendridk Pieter Barendregt. The Lambda Calculus: Its Syntax and Se-

mantics. Elsevier, 1984.

[CGE08] David Cunningham, Khilan Gudka, and Susan Eisenbach. Keep Off the

Grass: Locking the Right Path for Atomicity. In Compiler Construction

2008, April 2008.

[CH00] Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. In ICFP Proceedings, 2000.

[Chu36] Alonzo Church. An Unsolvable Problem of Elementary Number Theory.

American Journal of Mathematics, 58(2):345–363, April 1936.

[CPN98] David G. Clarke, John M. Potter, and James Noble. Ownership Types

for Flexible Alias Protection. In Proceedings of the 13th Conference

on Object-Oriented Programming, Systems, Languages, and Applications

225

BIBLIOGRAPHY

(OOPSLA-98), volume 33:10 of ACM SIGPLAN Notices, pages 48–64,

New York, October 1998. ACM Press.

[Dan10a] Nils Anders Danielsson. Beating the Productivity Checker Using Embed-

ded Languages. In Workshop on Partiality and Recursion in Interactive

Theorem Provers, July 2010.

[Dan10b] Nils Anders Danielsson. The Agda Standard Library. Available from

http://cs.nott.ac.uk/~nad/listings/lib/, September 2010.

[Dat95] Christopher J Date. An Introduction to Database Systems. Addison-

Wesley, 6th edition, 1995.

[Dav03] Maulik A Dave. Compiler Verification: A Bibliography. ACM SIGSOFT

Software Engineering Notes, 28(6):2–2, November 2003.

[Dij65] Edsger Wybe Dijkstra. Cooperating Sequential Processes. Lecture notes,

Technological University, Eindhoven, The Netherlands, September 1965.

[Enn05] Robert Ennals. Software Transactional Memory Should Not be

Obstruction-Free. Submitted to SCOOL 2005, 2005.

[FFL05] Cormac Flanagan, Stephen N Freund, and Marina Lifshin. Type In-

ference for Atomicity. In Proceedings of Types in Language Design and

Implementation, January 2005.

[Fra03] Keir Fraser. Practical Lock-Freedom. PhD thesis, University of Cam-

bridge, September 2003.

[GBD+94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert

Manchek, and Vaidy Sunderam. PVM: Parallel Virtual Machine—A

Users’ Guide and Tutorial for Networked Parallel Computing. MIT

Press, 1994.

226

BIBLIOGRAPHY

[Gla94] David S Gladstein. Compiler Correctness for Concurrent Languages.

PhD Thesis, Northeastern University, Massachusetts, December 1994.

[GLS99] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI—

Portable Parallel Programming with the Message Passing Interface. MIT

Press, second edition edition, 1999.

[Goe06] Brian Goetz. Optimistic Thread Concurrency. Whitepaper, Azul Sys-

tems, Inc., January 2006.

[Gor92] Andrew Donald Gordon. Functional Programming and Input/Output.

PhD Thesis, University of Cambridge, 1992.

[GR07] Andy Gill and Colin Runciman. Haskell Program Coverage. In Haskell

Workshop Proceedings, September 2007.

[Gra81] Jim Gray. The Transaction Concept: Virtues and Limitations. In

Proceedings of the International Conference on Very Large Data Bases

(VLDB), 1981.

[Gro07] Dan Grossman. The Transactional Memory / Garbage Collection Anal-

ogy. In OOPSLA Proceedings, pages 695–706, October 2007.

[GW96] David S Gladstein and Mitchell Wand. Compiler Correctness for Concur-

rent Languages. In Proceedings of Coordination, volume 1061 of Lecture

Notes in Computer Science. Springer, April 1996.

[HF03] Tim Harris and Keir Fraser. Language Support for Lightweight Trans-

actions. In OOPSLA Proceedings, October 2003.

[HH08] Liyang HU and Graham Hutton. Towards a Verified Implementation of

Software Transactional Memory. In Proceedings of Trends in Functional

Programming, May 2008.

227

BIBLIOGRAPHY

[HH09] Liyang HU and Graham Hutton. Compiling Concurrency Correctly:

Cutting Out the Middle Man. In Trends in Functional Programming,

2009.

[HLM06] Maurice P Herlihy, Victor Luchangco, and Mark Moir. A Flexible Frame-

work for Implementing Software Transactional Memory. In Proceedings

of OOPSLA, 2006.

[HM93] Maurice P Herlihy and J Eliot B Moss. Transactional Memory: Archi-

tectural Support for Lock-Free Data Structures. In International Sym-

posium on Computer Architecture Proceedings, 1993.

[HMPJH05] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice P Herlihy.

Composable Memory Transactions. In Proceedings of Principles and

Practice of Parallel Programming, June 2005.

[Hoa02] Charles Antony Richard Hoare. Towards a Theory of Parallel Program-

ming (first published 1971). In The Origin of Concurrent Programming:

from Semaphores to Remote Procedure Calls, pages 231–244. Springer-

Verlag, 2002.

[HPJ06] Tim Harris and Simon Peyton Jones. Transactional Memory with Data

Invariants. In TRANSACT Proceedings, March 2006.

[Hut07] Graham Hutton. Programming in Haskell. Cambridge University Press,

January 2007.

[HW04] Graham Hutton and Joel Wright. Compiling Exceptions Correctly.

In Proceedings of International Conference on Mathematics of Pro-

gram Construction, number 3125 in Lecture Notes in Computer Science.

Springer, July 2004.

228

BIBLIOGRAPHY

[HW06] Graham Hutton and Joel Wright. Calculating an Exceptional Machine.

In Proceedings of Trends in Functional Programming, volume 5, Febru-

ary 2006.

[HW07] Graham Hutton and Joel Wright. What is the Meaning of These Con-

stant Interruptions? Journal of Functional Programming, 17(6):777–

792, November 2007.

[JHB87] Eric H Jensen, Gary W Hagensen, and Jeffrey M Broughton. A New

Approach to Exclusive Data Access in Shared Memory Multiprocessors.

Technical Report UCRL-97663, Lawrence Livermore National Labora-

tory, November 1987.

[KLS90] Henry F Korth, Eliezer Levy, and Abraham Silberschatz. A Formal

Approach to Recovery by Compensating Transactions. In Proceedings of

the International Conference on Very Large Data Bases (VLDB), 1990.

[KSF10] Guy Korland, Nir Shavit, and Pascal Felber. Noninvasive Concurrency

with Java STM. In Programmability Issues for Multi-Core Computers

(MULTIPROG), January 2010.

[Lam74] Leslie Lamport. A New Solution of Dijkstra’s Concurrent Programming

Problem. Communications of the ACM, 17(8):453–455, August 1974.

[Ler06] Xavier Leroy. Formal Certification of a Compiler Back-End, or: Pro-

gramming a Compiler with a Proof Assistant. In Proceedings of Princi-

ples of Programming Languages, volume 33, pages 42–54, 2006.

[LS08] Anand Lal Shimpi. Intel’s Atom Architecture: The Journey Begins.

Retrieved from http://www.anandtech.com/printarticle.aspx?i=

3276, page 14., April 2008.

229

BIBLIOGRAPHY

[M+08] Conor McBride et al. The Epigram System. Available from http:

//www.e-pig.org/, 2008.

[Mar10] Simon Marlow, editor. Haskell 2010 Language Report. Online, 2010.

[McB02] Conor McBride. Faking It (Simulating Depdent Types in Haskell). Jour-

nal of Functional Programming, 12(4–5):375–392, July 2002.

[McB05] Conor McBride. Epigram: Practical Programming with Dependent

Types. In Lecture Notes in Computer Science. Springer-Verlag, 2005.

[McB07] Conor McBride. R? is the new [α]. Talk given at Fun in the Afternoon,

York., November 2007.

[Mil89] Robin Milner. Communication and Concurrency. International Series

in Computer Science. Prentice Hall, 1989.

[ML80] Per Martin-Löf. Intuitionistic Type Theory. Lecture notes, 1980.

[ML98] Saunders Mac Lane. Categories for the Working Mathematician.

Springer, second edition edition, September 1998.

[Mog89] Eugenio Moggi. Computational Lambda-Calculus and Monads. In Pro-

ceedings of Logic in Computer Science, pages 14–23. IEEE Computer

Society Press, June 1989.

[Moo65] Gordon Moore. Moore’s Law. Retrieved from http://www.intel.com/

technology/mooreslaw/, 1965.

[MP67] John McCarthy and James Painter. Correctness of a Compiler for Arith-

metic Expressions. In Proceedings of Symposia in Applied Mathematics,

volume 19. AMS, 1967.

230

BIBLIOGRAPHY

[Nodir0o0] Cyprien Noël. Extensible Software Transactional Memory. In Proceed-

ings of the Conference on Computer Science and Software Engineering,

2010.

[Nor07] Ulf Norell. Towards a Practical Programming Language Based on De-

pendent Type Theory. PhD thesis, Chalmers University of Technology,

September 2007.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M Smith. Programming in

Martin-Löf ’s Type Theory. Oxford University Press, 1990.

[PJ01] Simon Peyton Jones. Tackling the Awkward Squad: Monadic In-

put/Output, Concurrency, Exceptions, and Foreign-Language Calls in

Haskell. In Engineering Theories of Software Construction, pages 47–

96. IOS Press, 2001.

[PJ03a] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The

Revised Report. Cambridge University Press, 2003.

[PJ03b] Simon Peyton Jones. Wearing the Hair Shirt: A Retrospective on

Haskell. (Invited talk.). In Principles of Programming Languages, 2003.

[PJGF96] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent

Haskell. In Proceedings of Principles of Programming Languages, pages

295–308, 1996.

[PJWW04] Simon Peyton Jones, George Washburn, and Stephanie Weirich. Wobbly

Types: Type Inference for Generalised Algebraic Data Types. Technical

Report MS-CIS-05-26, University of Pennsylvania, 2004.

[Sab98] Amr Sabry. What is a Purely Functional Programming Language? Jour-

nal of Functional Programming, 8:1–22, 1998.

231

BIBLIOGRAPHY

[San09] Davide Sangiorgi. On the Origins of Bisimulation and Coinduction. ACM

Transactions on Programming Languages and Systems, 31(4), May 2009.

[SJ07] Don Stewart and Spencer Janssen. XMonad: A Tiling Window Manager.

In Haskell Workshop, September 2007.

[ST97] Nir Shavit and Dan Touitou. Software Transactional Memory. Dis-

tributed Computing, 10(2):99–116, February 1997.

[Sta10] Richard Matthew Stallman. GNU Emacs. Available from http://www.

gnu.org/software/emacs/, 2010.

[Swi08] Wouter S Swierstra. A Functional Specification of Effects. PhD thesis,

University of Nottingham, November 2008.

[Tan05] Audrey Tang. Pugs: an implementation of Perl 6 in Haskell, February

2005.

[The08] The Coq Development Team. The Coq Proof Assistant. Available from

http://coq.inria.fr/, June 2008.

[The10] The Agda Team. The Agda Wiki. Available from http://wiki.portal.

chalmers.se/agda/, September 2010.

[THLPJ98] Philip W Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon

Peyton Jones. Algorithm + Strategy = Parallelism. Journal of Func-

tional Programming, 8(1):23–60, January 1998.

[Wad92] Philip Wadler. Comprehending Monads. Mathematical Structures in

Computer Science, 2:461–493, 1992.

[Wan95] Mitchell Wand. Compiler Correctness for Parallel Languages. In Proceed-

ings of Functional Programming Languages and Computer Architecture,

pages 120–134, June 1995.

232

BIBLIOGRAPHY

[WB89] Philip Wadler and Stephen Blott. How to Make Ad-Hoc Polymorphism

Less Ad-Hoc. In Proceedings of Principles of Programming Languages,

January 1989.

[WS95] Mitchell Wand and Gregory T Sullivan. A Little Goes a Long Way:

A Simple Tool to Support Denotational Compiler-Correctness Proofs.

Technical Report NU-CCS-95-19, Northeastern University College of

Computer Science, October 1995.

233

