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Abstract 

The influence of the member orientation on the strength of joints formed with 

square hollow sections is examined. The bird beak joint system is a relatively new truss 

arrangement for square hollow sections, where the chord and the brace have each been 

rotated by 45° about their own centreline axes. Based on previous experimental testing it 

has been suggested that this joint system leads to a stronger joint arrangement. 

Finite element analysis has been used to study the strength and behaviour of such 

bird beak joints and to compare them to similar joints in CHS and the traditional RHS 

configuration to test this claim. A comprehensive study has been undertaken for bird 

beak X -joints and T -joints and comparisons are made with similar traditional joints in 

RHS and CHS as the parameters of the width ratio ß, the chord slenderness ratio 2y and 

the chord length ratio a are varied. Displaced shape and contoured stress plots are 

included to aid understanding of the failure mechanisms. 
The finite element work on K -joints allows comparisons of the strength and 

stiffness of bird beak K -joints with those formed in the traditional RHS configuration as 

the boundary conditions (at the ends of the members), the brace angle and loading 

conditions are varied. 

A limited amount of experimental work has been carried out in the laboratories at 

Nottingham University, with some assistance from the author, involving the physical 

testing of bird beak joints so that the finite element models can be validated. This work is 

reported and examined critically. 

The conclusions focus on the claims that the bird beak joints are stronger and 

how they differ from the traditional form of joints. Equations are presented to extend the 

design information available for a practical parameter range. 
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1. 

Introduction and Aims of the Research 

1.1 Introduction 

The use of Structural Hollow Sections (SHS) has increased enormously world- 

wide due to their structural advantages and ready availability. Research has also been an 

important factor in their popularity as this has led to a greater understanding of joint 

strength and the behaviour of structural sections essential so that designers can use them 

with confidence. This work hopefully contributes to the field of knowledge and 

understanding of a new form joint proposed by Ono et al (1991) 

1.2 Structural hollow sections 
Nature makes many uses of hollow sections, canes, reeds and bones being just a 

few examples. Architects are attracted to the clean aesthetic lines of SHS that allow 

them to produce the elegant structures that we see all around us daily. Is this just a 
preference, or do hollow sections have significant advantages over other structural 
members? 

SHS have distinct properties that make their use as structural members very 
desirable and this has led to their increased use in recent years as the cost of 

manufacture has fallen in real terms. SHS have a very high strength to weight ratio when 

subjected to compressive axial loads. The larger radius of gyration about the "minor" 

axis provides a superior column performance and resistance to buckling. The void inside 

the hollow section can also be filled with concrete which not only allows an increase in 

strength of the column, but also the fire resistance. There is also a reasonably good 

resistance to bending in both directions provided by the high I values of the section, as 

most of the material is located away from the neutral axis. The closed cross section 

profile gives SHS a very high resistance to torsional forces when compared to sections 

with an open cross section profile. 
As the external surface area of a SHS is only about two thirds of that of an open 

section the maintenance costs of cleaning and painting are reduced. Providing the ends 
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of the section are closed then the risk of ponding of water is reduced which lowers the 

corrosion possibilities when used in an exposed location. Circular Hollow Sections 

(CHS) are used extensively in offshore platforms and other structures that have wind 

and/or wave loading, as their shape has a relatively low drag coefficient. The hollow 

section can also be used to supply services or transport fluids around the structure. 

There are disadvantages in using SHS, for example the higher cost of 

manufacturing the section, which is up to 25% more expensive and the higher cost of 

producing the joints during the fabrication stage. This is particularly so for CHS where 

the ends of the member have to be profiled so the members fit together for welding. 

However, this is offset by the fact that smaller lighter sections can be used and this 

reduction in weight can lead to significant savings in material purchase, transportation 

and erection costs. Each module of the structure produced by the fabrication yard is less 

flimsy and not so prone to damage during the transport and erection stage, although the 

relatively thin walls of the section are very susceptible to collision and corrosion 

damage. As there is no internal access to the section it is almost impossible to use bolts 

in the construction unless the sections to be joined are flanged. For the fixture of fittings 

to hollow sections British Steel has developed a system called "flow drill" that enables 

bolts to be used, although it is relatively expensive in labour. 

1.2.1 History of development 

Early uses of fabricated structural hollow sections can be seen in the Britainnia 

Bridge across the Menai straits (rectangular section) designed by Stephenson and 

Fairbairn and completed in 1850, the Royal Albert bridge at Saltash across the river 

Tamar (elliptical section) designed by I. K. Brunel and completed in 1851, the Firth of 

Forth Bridge (circular section) in Scotland designed by Baker and Fowler and completed 

in 1890. (The Forth bridge was also the first major structure built using mild steel. ) In 

these early examples, the structural hollow sections were made by riveting rolled plates 

together to form a hollow section. 

The first tubes were produced by an Englishman called Whitehouse in the 

nineteenth century from steel plate by rounding it and then fire welding the seam. SHS 

grew in importance after the development of the continuous welding process by Frenz- 

Moon in 1930 and the further development of the welding processes that occurred in the 

Second World War. However, the design procedures dated back to the riveting days 
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when gusset plates were used in the construction of joints. It was only in the early fifties 

that Janen (1951) began to determine the strength of welded tubular joints. 

1.2.2 Production 

SHS are manufactured in this country by British Steel at their plant in Corby, 

Northhants. Rolls of steel strip are fed into the rollers and joined together so that the 

manufacturing process is a continuous operation. The strip is rolled into circular shape 

and the free edges joined together by induction welding. 
RHS is formed from CHS by rolling the circular tube into a rectangular shape. 

After being cut to size the sections may then be heat treated to remove the residual 

stresses and restore the loss in ductility caused by the rolling process to form Hot- 

finished sections. Hot finished RHS sections can be visually identified by the small radii 

at the corners of the section, made possible by the heat treatment removing the very high 

residual stresses that would otherwise be present from the cold working. 

Cold formed sections where no heat treatment has been applied are increasing in 

popularity as they are cheaper to produce and although the steel is not as ductile as hot 

finished sections it has a similar ultimate strength. The hot finished and cold formed 

CHS have identical geometric properties but, due to the larger radii at the corners in the 

cold formed RHS they have slightly lower geometric properties than the hot finished 

sections. 

All technical information on the hot finished and cold formed sections can be 

found in the relevant British Steel publications (1994a & 1994b). 

All steel delivered by British Steel comes with the appropriate dual certification, 

according to British Standard/European Standard required. These certificates give the 

dimensions of the sections, chemical composition, material properties and the 

manufacturing process. 

Grade 43C Grade 50C 
S275JOH S355J2H 

Yield Value, fy (t<16m) 275 N/mm2 355 N/mm2 

Ultimate Tensile Strength 410/560 N/mm2 490/630 N/mm2 

Tablel. 1 The grades of steel available for hot finished structural sections and their basic 

properties. (British Steel 1994a) 
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1.3 Design codes 

Current design recommendations which will be reviewed in greater detail in 

Chapter 2, have been compiled on the basis of a series of physical tests or more recently 

using Finite Element Analysis (FEA) to determine the resistance of joints. These results 

are compiled together in a simplified form to enable the designer to assess the design 

strength of any joint. 

1.3.1 Current design practice 

In order to understand some of the failings of modem design methods a brief 

outline of the design procedure is considered here. Wardenier et al (1991) & Packer et al 

(1992) recommend that the following stages should be considered for a safe economical 

design: 

" determine the geometry of the structure keeping the number of joints to a minimum 

" determine the loads at the connections and on the members 

" determine the axial load in the members assuming a pinned structure and all 

centrelines are noding 

" determine chord member size by considering the axial loading 

" determine the brace member size based on the axial loading 

" standardise chord and brace members to minimise the number of different sections in 

the structure 

" check the joint geometry to satisfy the validity limits given in the code. 

" check the joint resistance, modifying the members if required 

" check the effect of the primary moments on the chord. For chords in compression the 

moments caused by the joint eccentricities are to be considered as well. Then check that 

the factored resistance of all the chord members is still adequate under the influence of 

both axial loads and the primary bending moments 

" check the deflections 

" design the welds 
One of the failings of current design practice is that the reduction of the joint 

resistance due to the interaction of axial load and bending moments in the chord is not 

always considered. In this thesis a new method is considered that allows for the 

reduction of the joint resistance due to the presence of bending moments in the chord. 
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There is very little design information on bird beak joints, although Packer et al 
(1992) briefly reports the findings of Ono, Iwata and Ishida (1991), no reference is made 
to them in Eurocode 3 Annex K (1994). 

1.3.2 Physical testing of the joints 

All the data for the formation of the original codes came from the physical 
testing of the joints in the laboratory, which is a long, expensive and tedious process. In 

any physical test joint there is an amount of uncertainty. Is the thickness of the material 

consistent? What are the exact material properties? Is there an unknown flaw in the test 

specimen that will increase/decrease the observed strength of the joint? Are the 

boundary conditions known exactly? These are just some of the unknown variables 

which could be present in a experimental test and although steel is a very consistent 

material there will always be a scatter in the results. 

The physical joints used to validate the computer models in this thesis were 
tested in the Civil Engineering laboratory at the University of Nottingham. 

1.3.3 Finite element research 
Recent progress in computing technology has enabled large advances to be made 

in finite element analysis. Large numbers of joints can now be tested economically on a 

workstation and provided that the standard models are verified against a few physically 

tested joints the results can be very reliable. Increasingly the results of finite element 

analysis are being used to provide the databank on the basis of which the design codes 

are being prepared. 

Some of the advantages of finite element modelling are that the values of the 

parameters entered into the input program are known precisely so that the errors due to 

measurements etc. are eliminated from the assessment procedure. In addition to this 

different load and boundary conditions can be easily imposed on the computer model, 

which would be difficult or impossible in a laboratory. 

There is however an important proviso, viz. "Is the computer modelling the 

joint that the user thinks that the computer is modelling? " Also it should always be 

borne in mind that just because the solution is given to four significant figures, there are 

inaccuracies inherent in the numerical idealisation so that the solution is not correct to 

this level of accuracy. 
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All the Finite Element Analysis in this work has been done using the ABAQUS 

suite of programs (Versions 5.2 to 5.5). ABAQUS Post was used to process the results 

and produce the graphics presented in this thesis. A mesh generation package FEMGEN 

(FEMVIEW 1989) was used when required for complex intersection models. The 

computational analysis was carried out on a DEC Alpha cluster of work stations at 

Nottingham University. 

1.4 Member orientation 

X -joint 

This thesis considers the effect that member orientation has on the strength of 
the joint, principally by comparing the bird beak joint with the more traditional forms of 

joint in RHS and CHS. However, in the work on K -joints the effect of changing the 

angle between the chord and the brace members is also considered both for the 

traditional RHS and the bird beak joints. 

1.4.1 Bird beak joints 

The bird beak joint system is a relatively new truss system in which the chord 

and the brace have each been rotated by 450 about their own centreline axes. Examples 

of the joints considered in this thesis are shown in Figure 1.1. 

0 El 

O 
T -joint K -joint 

Figure 1.1 Three different diamond bird beak joint configurations 

One of the advantages of a traditional RHS joint is that the profiling of the joint 

is a lot simpler than for CHS. However, with the increasing use of automated cutting 

equipment in the fabrication workshop more complex joints can be produced 

economically. The geometry of the bird beak joint, whilst more complex than the 

traditional RHS joint, is simpler than for a CHS joint and it should be possible to profile 

both ends of a member, which cannot be done for CHS without very sophisticated 

cutting equipment. The profiling required for bird beak joints made from cold formed 
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sections is a lot more complex than for hot finished sections due to the large corner 

radii. There has been no attempt to model the corner radii of RHS in this thesis, with 

one exception, so the models are more representative of hot finished rather than cold 

formed sections. 

1.4.2 Terminology used 

The term bird beak joint is used throughout this thesis. However, it is referred to 

by other names in other literature. Ono et al (1991) refer to aY truss system, whilst 

Packer et al (1992) refer to either a bird mouth joint or a bill-shaped joint. 

Figure 1.2 shows the descriptive terminology used in this thesis when discussing 

the bird beak joints. 

Diamond Section . 

Crown Top corner of the chord 

Toe 

Middle corner of the chord 

Bottom corner of the chord 

Figure 1.2 The descriptive terminology used 

1.5 The aim of the research 

Up to the present no other work has been carried out on bird beak joints other 

than the original work in Japan by Ono, Iwata and Ishida (1991,1993 & 1994) which is 

reviewed in more detail in Chapter 2. The principal aim of this investigation is to 

increase the understanding of the behaviour of bird beak joints and particularly to 

critically examine the claims made by Ono et al, about the increase in strength over 

other joint configurations and to see if they are justified. 
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Finite element analysis methods will be used to compare the strength, stiffness 

and failure mechanisms of bird beak joints with the more traditional forms of joints in 

RHS and CHS. There is very little design information on the strength of the bird beak 

joints published in the design recommendations for RHS joints by CIDECT (Packer et 

al 1992). There is also a caution that the equations presented should only be used for the 

same parameter ranges as the tests conducted. The results of this thesis will provide 

additional design equations and enlarge the parameter range. Furthermore there will be 

guidance on the behaviour of bird beak joints and how the failure mechanisms differ 

from that of the traditional RHS joints. 

1.5.1 The topics covered in the thesis 

There is very little literature to review on bird beak joints, Chapter 2 examines 

the published work by Ono, Ishida and Iwata on bird beak joints and other instances 

where square RHS sections have been used in the diamond configuration. During the 

course of this research some of the ideas and results presented in published work are 

explored and developed, principally by van der Vegte (1995) and Crockett (1994). A 

short summary of the relevant sections is given to provide the reader, who may not have 

read these works, a review of the work that has been carried out previously. 
Chapter 3 examines some of the basic theory of the finite element method and 

reviews some of the analysis options used in the thesis, explaining what they are and 

why they are used. 

The work reported in this thesis was carried out in approximately the same order 

in which it is reported. Bird beak X joints where 0= 90° were studied first and are 

reported in Chapter 4 to examine the joint behaviour in the absence of chord bending 

moments. Two forms of bird beak joint are examined, the diamond bird beak, shown 

Figure 1.1 and a hybrid joint referred to as the square bird beak joint (where the braces 

have not been rotated through 450). In order to compare the diamond and square bird 

beak joints with similar joints, a limited number of X joints in the traditional RHS and 

CHS configuration are examined and the results used in the comparison with the bird 

beak joints. 

Chapter 5 examines the possibilities of developing a yield line model to predict 

the joint capacity based on observations of the FE results in Chapter 4. The formulation 

of a pure yield line model proved impossible due to the many different complex 
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mechanisms operating at failure. These mechanisms are examined and an attempt is 

made to assess the contribution of each to the joint capacity. 

Van der Vegte (1994a, 1994b and 1995) proposed a new method of calculating 

the strength of CHS T joints where the force acting on the brace and the moment acting 

in the chord are considered when determining the joint capacity. This method requires 

that the joint capacity is known when the chord bending moment under the brace is zero. 

Consequently Chapter 6 examines T joints, first with and then without the effects of 

chord bending for the diamond bird beak joint. Again a series of traditional RHS T 

joints are examined in the same way and the results compared with those for the bird 

beak joints. 

Crockett (1994) posed the question of whether an angle function was required in 

the design formula for traditional RHS overlapped K joints. A series of analyses for 

overlapped traditional K joints, in addition to those reported by Crockett (1994), were 

examined and these results are reported in Chapter 7. Similar overlapped bird beak K 

joints were then analysed and the results compared to those obtained for the overlapped 

traditional RHS K joints. 

There has been no work to date on the effects of a purlin load on the joint 

capacity of diamond bird beak K joints. The effects of cross loading the chord, seen in 

the X and T joints studied previously, could possibly reduce the joint capacity 

significantly. Chapter 8 examines different methods of how the purlin load may be 

applied to the joint and the effect that this has on the joint capacity. 
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2. 

Literature Review 

2.1 Design codes 

The consequences of a badly designed structure can be catastrophic and 

designers need to know that their structures will be safe and fulfil the design 

requirements. It is therefore clearly to the designer's advantage to use standardised 

methods and assumptions that have proven acceptable in the past and can be used in the 

design of future structures. Examples of this procedure can be seen in some of the 

earlier civil engineering works (the construction of churches and cathedrals) where a 

proven structure was copied and adapted to fit the new situation. The need to define 

what is safe and acceptable has led to the development of design codes. The earliest 

example of a "design code" was published by Hammurabi the king of Babylon in 2200 

BC and although it does not specify how the structure should be built, the king laid 

down fearsome penalties should the structure collapse, which could lead to the builder 

being put to death. 

In Britain there have been government regulations of some sort since the Middle 

ages and their development has been based on disasters such as the Great Fire of 

London 1666 and the collapse of the Ronan Point flats 1968. The first standardisation of 

good design practice began in 1901 with the setting up of the Engineering Standards 

Committee (a forerunner of the British Standards Institute). Today there are a wide 

variety of different regulations, made under various government acts which in general 

do not specify specific detail, but refer to codes of practice published by the British 

Standards Institution. These British Standards now incorporate the regulations issued by 

the European Union in its attempt to standardise the various codes used throughout 

Europe. 

Before examining the individual design codes in greater detail, it is worth 

considering the historical development of design codes for tubular joints and structural 

members. The earlier design codes were based on a permissible stress approach, for 

example BS449, which limited the allowable stress in a structure. This approach limited 
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the working stress - based on an elastic analysis - to the material yield stress divided by 

a safety factor and did not allow for the plastic redistribution which occurs in ductile 

material such as mild steel. This method gave little indication of the real safety factor 

against collapse. 
In tubular joints where an elastic analysis of the joint is impossible to perform 

without finite element analysis due to the complex stress patterns involved, the working 

stress design codes have had to take a strongly empirical approach to the design of 

tubular connections. 

A more recent philosophy is the development of the "limit state" design codes, 

for example BS5950, which make the designer more aware of the real level of safety 

against a particular failure or limit state. A limit state is the point where the structure no 

longer satisfies the design requirements and can be considered as unfit for further use. 

Limit states are divided into two groups, the ultimate limit state based on structural 

collapse and the serviceability limit state when the structure is no longer fit for ordinary 

use without remedial work being carried out. Ultimate limit states include the strength 

of the structure, stability against overturning, fatigue and brittle fractures, whilst the 

serviceability limit state considers excessive deflections, vibration, repairable fatigue 

damage and corrosion. The reliability of the structure is controlled by the non- 

occurrence of each particular limit state and is determined by a series of partial safety 

factors. Some partial safety factors are associated with the applied forces (loads) or 

actions and others with the resistance or capacity of the element being considered. The 

former have to take into account the likelihood of a particular loading condition 

occurring within the design life of the structure, together with its distribution, whilst the 

latter consider the variability of the material properties (including strength) and the 

geometric tolerances associated with manufacturing and fabrication procedures. 

However, additional effects may also be included such as the difficulty of inspection and 

repair, the consequences of a failure and other socio-economic design criteria. All these 

factors are included on a rational probabilistic basis to achieve an overall safety margin 

that considers individually all the hazards and risks that have been identified. 

The principle of safe design is then embodied in the inequality 

Limit state action < Corresponding limit state resistance 

i. e. a general equation for the ultimate limit state design for the strength of an axially 

loaded joint is 
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Fk < 
N1, R 

YMj Ym YF 
Eqn 2.1 

Where 

Fk is the characteristic applied force or action 
N;, R is the internal axial resistance of the joint 

yF partial safety factor to account for the variability of the load 

ym partial safety factor to account for the variability of the material 

ymj partial safety factor for the resistance of the joint 

Additional partial safety factors may be included by the designer to increase the level of 
safety in the design of the joint at the designer's discretion. 

The most recent development in the standardisation of the design codes is the 

introduction of the Eurocode, which attempts to standardise good building design 

throughout Europe. Whilst BS449 and BS5950 are still valid in the UK, they will be 

eventually replaced by Eurocode 3 (1992). 

As BS449 and BS5950 have been written for the design of open section steel 

structures, recommendations for the design of hollow section steel joints have always 
been covered by separate guidelines. It was not until the introduction of the Eurocode 3 

that the design recommendations for the design of steel hollow section joints were 
included into the main code, in Eurocode 3 Annex K (1994). Some of the more 

important codes concerning the design of SHS joints are now examined in greater detail. 

2.1.1 American Petroleum Institute, API RP2A and API RP2A-LRFD (API 1993) 

The clauses for the design of tubular joints in API RP2A are based on a lower- 

bound interpretation of test data and a number of extrapolations which allow the design 

rules to be applied to joints where the geometry and load cases considered are outside 

the range covered by the test data. Although the API RP2A code is based on the ultimate 

strength test data for tubular joints the code is not formulated as a limit state design code 

and requires that the design load is not greater than the allowable joint capacity. This 

joint capacity is calculated by reducing the observed maximum strength from the test 

data to allow for changes in the loading conditions, configuration and geometry of the 

joint. The design load is calculated from the applied load magnified by a safety factor 

against static collapse appropriate to the load case (operating or storm loading). 
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The latest edition (20th) of this code RP2A has also been published as the first 

edition of RP2A-LRFD (LRFD = Load and Resistance Factored Design) as an 

alternative where a limit state approach is used. The main provisions of this code remain 

generally the same as API RP2A where the working strength approach is used, but 

where the safety factors against failure are considered as a series of partial safety factors 

as used in any other limit state code. This code is in the process of being adopted as the 

international standard ISO/DIS 13819. 

When considering the nominal load approach for a simple joint the API design 

code considers the following subsections in section E3. 

Joint classification. Defines the appropriate joint for calculating the allowable load. 

Allowable joint capacity. The API code requires that the nominal brace loads should not 

exceed the allowable joint capacity of 

'D <4jpuh Egn2.2 

MD <ýjMj Egn2.3 

where 

PD is the factored axial load in the brace member (PD=1.7P) 

MD is the factored bending moment in the brace member (MD=1.7M) 

i 
P�j is the ultimate joint axial capacity= 

f yt0 QuQ f 
sin 0 

z 
M�j is the ultimate joint bending moment capacity= 

fyt0 (0.8d, )Q,, Qf 
sin 0 

4q resistance factor for tubular joints (given in a table) 

fy is the (specified) yield strength 

to is the (nominal) chord wall thickness 

d1 is the diameter of the brace member 
When Eqns 2.2 & 2.3 are applied for the operating conditions the safety factor is 

1.7. When environmental loads are considered, the load is permitted to increase by 33% 

so that the safety factor is reduced to 1.28. 

The value of the load and eý ometry parameter QJ. This includes many different factors 

that affect the strength of the joint of which the principal one is Qp, the effect of the 

chord width ratio P. 
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The value of the chord stress factor (Of). This provides for a reduction in joint strength 

when there are high stresses in the chord. 
Brace-load interaction reciuirement. This provides for the interaction between axial load 

and the moments present in the brace acting together to be less than the capacity of the 

joint. 

Joint detailing. This provision details the requirements that have to be met for any extra 

material added to the joint configuration before it may be considered as a part of the 

joint. 

When the load is transferred through the chord i. e. X joints, then the chord 

should be designed to resist these forces. This may be an approximate ring analysis 

where an effective length of three chord diameters through the joint is considered. The 

provision of this clause is for checking the stresses in the hoop direction of the chord 

wall caused by the bending of the chord wall under the action of the applied loads. 

2.1.2 American Welding Society Structural Welding Code 

The AWS design code concerning tubular joints is more extensive than the API 

code in that RHS is considered. However, the basic approach is very similar to the API 

code with the main differences confined to detail and presentation. The "punching 

shear" is the only approach considered with no guidance for the nominal load approach 

being given. 

Considering only the sections that differ significantly with the API code for the 

static strength of welded hollow section joints, four different areas have been identified 

(UEG 1986). 

Geometric definitions. The AWS definition of aT joint includes Y joints where 0zW. 

Acting and allowable "punching shear stress". The formulation of permissible 

"punching shear" stress is similar to that described in the API however, the AWS 

introduces an ovalising parameter a4, to match more closely the test data. This technique 

has the advantage that there is an allowance made of the effects of multi-planar joints, 

although it should be used carefully until more multi-planar joint test data becomes 

available. 

The in-plane and out-of-plane bending stresses are combined to a single effective 

bending stress. (Whereas in the API the two components are kept separate. ) The 

14 



combined bending moment and axial stresses are then checked to ensure that the 

interaction between them is below the joint capacity. 

Brace load interaction requirements. The interaction between the brace loads discussed 

above is taken to be 

Acting 
1.75 

+ 
Acting < 1.0 Eqn 2.4 C Allowable) Allowable aýi., bending 

Load transfer through the chord. The compression in any brace of a DT/X joint is 

limited to 

2 

P=f yt° (1.9+7.2ß)QßQf 
sin 0 

Eqn 2.5 

In the 1992 edition of the AWS code a section is included in the tubular 

connection design on the ultimate strength format using a load reduction factor design 

(Marshall 1992). This was derived from and is intended to be equivalent to the earlier 

punching shear format. 

For the design of RHS connections the design formulae are based on the yield 

line theory and although other failure modes have been considered as the chord width 

ratio varies, material shear, web crippling and side wall buckling they all have been 

adapted to the punching shear format used in the rest of the code. 

V, = 
fy. 0 QßQf Eqn 2.6 
0.67 

where 

Qß = 1/(4ß(1-0)) for j3? 0.5 and Qp=1 for 0: 50.5 

For small values of the chord width ratio ß the AWS gives a more conservative value 

for the joint capacity than the IIW/CIDECT design codes for the same joint; however, as 

the chord width ratio P increases this tendency is reversed. This discrepancy may be 

attributed to an acceptance of a larger deformation at failure and an allowance of reserve 

strength factor of 1.5. 

The 1992 edition of the AWS code has substantially revised the area of the code 

concerning RHS as a general overhaul of the code to include both Allowable stress 

designs (ASD) and Load reduction factored design (LRFD) in the AWS code (Marshall 
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1992). The LRFD section is very similar to the IIW and CIDECT design codes in that it 
is based on the thickness squared ultimate strength format. 

2.1.3 International Institute of Welding Design recommendations for hollow 

section joints. IIW (1989) 

Prior to the publication of the first 11W recommendations in 1981, there were 
considerable differences in the design recommendations for tubular joints around the 

world. Through the work of the IIW-Subcommittee XV-E a consensus was obtained and 
published as the IIW design recommendations 1981 and updated in 1989. Many of these 

updated regulations were adopted into the CIDECT design recommendations and then 
into Eurocode 3 Annex K with little or no change. (CIDECT = Comit6 International 

pour le D6veloppement et 1' Itude de la Construction Tubulaire) 

Much of the work on which the IIW recommendations are based was initiated by 

CIDECT and financed by the European Coal and Steel Community (ECSC), CIDECT 

and their associated governments. The recommendations cover the design and 

calculation of predominately statically loaded, planar, unstiffened lattice girder joints, 

which may be fabricated from circular, square, rectangular hollow sections or any 
combination of these on to open section chords. It is laid out in an original manner with 
the recommendations on one page and the explanatory notes on the opposite page. This 

allows the authors to give further information on a clause, explain more clearly or 

reference other documents on which the clause was based. 

Some of the design formulae have been adapted from the monographs published 
by CIDECT (1986) and made simpler for the designer to use. The design information is 

presented in tabular form giving the nature of the joint as a diagram, with the design 

formula and the range of parameters applicable to the design information given in 

adjacent columns. (This format has been copied in the CIDECT and Eurocode 3 Annex 

K design codes. ) 

2.1.4 CIDECT design guides 

CIDECT was formed 1962 and is funded by the manufacturers of hollow 

sections from all around the world. The aim of CIDECT is to combine all the research, 

application of technical data, development of simple design and calculation methods on 

a world-wide basis and to disseminate the information by various publications. Since its 

formation 35 years ago CIDECT has initiated, sponsored and co-ordinated 160 projects 
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researching all aspects of tubular design (Dutta 1996). Originally this information was 

published as series of monographs covering various design aspects for structural hollow 

sections. It has subsequently published 5 design guides, such as the "Design guide for 

circular hollow sections (CHS) joints under predominately static loading" (Wardenier et 

al 1991) and the "Design guide for rectangular hollow sections (RHS) joints under 

predominantly static loading" (Packer et al 1992). 

The CIDECT Monograph No. 6 "The strength and behaviour of statically loaded 

welded connections in structural hollow sections" (CIDECT 1986) summarises all the 

research up to the late 70's giving details of modes of failure, strength formula and the 

range of parameters for which it is valid. Although this information can be of use to the 

designer it is not principally a design code and the information is not laid out in a user 

friendly manner. 

The design guides published by CIDECT are much more comprehensive than the 

design recommendations published by the IIW (1989) and are intended to lead the 

designer through all aspects of tubular design in simple stages, instead of concentrating 

solely on the strength of the connections. There are also areas covered in the CIDECT 

design guides, which are not given in the IIW design guide, (but have been considered 

by the IIW sub-commission XV-E). These include for example multi-planar joints, 

joints loaded with moments, bolted connections, flattened and cropped end bracing 

joints and the effect of filling the hollow sections with concrete. 

The origins of these design codes in the CIDECT monographs can be seen in 

that there are numerous references to the research on which the design guidance is based 

in the text. However, there is far less detail of the research and generally the design 

codes are much easier to understand than the monographs. The design information and 

the manner in which it is presented is taken from the 11W design recommendations (11W 

1989) with many of the diagrams and joint capacity formulae copied directly. 

2.1.5 Eurocodes 

The structural Eurocodes were initiated by the Commission of European 

Communities to provide a common structural design standard that is accepted in all the 

EU countries with the purpose of eliminating barriers to trade. Issued by the European 

Standards Organisation CEN, the standards are actually published by the relevant 

national standards office, which in the UK is the British Standards Institution. The 
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Eurocode for the design of steel structures is Eurocode 3 (1992), of which Annex K is 

concerned with the design of hollow section joints. 

The level of different symbols and subscripts used in the Eurocodes is far more 
complex and comprehensive than that used previously in design codes, for example 

CIDECT design guides or BS5950. The aim of this is to explain what the designer is 

doing in the calculation without the need for text, so making the code and subsequent 

designs multinational, i. e. language is not a barrier to understanding the design method. 

2.1.5.1 Eurocode 3 Annex K (1994) 

All the information in the Annex K of the Eurocode 3 is the same or very nearly 
the same as the CIDECT design guides and is presented in the same manner. (It is 

claimed that most of the design codes and recommendations regarding the use of steel 

hollow sections have a common basis in the research carried out for CIDECT (Dutta 

1996)). However, Annex K only contains the information on the strength of hollow 

section joints and omits a lot of the more general information on the design of steel 

structures (trusses etc. ) which the designer may find useful. There are no references to 

any of the research on which the design formulae are based and several smaller topics of 

less general interest are omitted. (Interestingly the work on bird beak joints and the joint 

strength equations published in Ono et al (1991), is mentioned in the CIDECT design 

guide (Packer et al 1992) but is not included in Annex K. ) This is a reflection of the 

manner in which they are funded and the purpose they are intended to fulfil. (The 

CIDECT guide is funded by the steel producers and is published so that designers can 

easily and confidently design steel structures using hollow sections, providing where 

possible imaginative solutions to gain maximum strength advantage of the hollow 

sections. On the other hand Annex K is published through the British Standards 

Institution and only provides the basic standardised design information that is needed. ) 

2.2 A brief history of the development of finite element analysis 

(FEA) 

Although the label "Finite element method" first appeared in a paper by Clough 

(1960) on plane elasticity problems, the idea of finite elements dates back much further. 

It was recorded that ancient mathematicians calculated the value of it to an accuracy of 
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forty significant digits by representing a circle as a polygon with a finite large number of 

sides. 

The Finite Element Method (FEM) has three origins depending on whether you 

ask a mathematician, physicist or an engineer. However, concentrating on the 

engineering aspects of finite element analysis, Hrenikoff, McHenry and Newmark (see 

Clough 1960) all published papers in the 1940's on numerical analysis of engineering 

problems using a lattice structure. In 1954 Argyris published a series of papers covering 

linear structural analysis using energy theorems which are well suited to automatic 

digital computations. The actual solution of plane stress problems using triangular 

elements with properties determined by the elasticity theory was given by Turner et al 

(1956), a method that is now known as the direct stiffness method. After further 

treatment of the plane elasticity problem by Clough (1960) engineers began to see the 

potential of the finite element method. Zienkiewicz and Chueng (1965) gave finite 

element analysis a much broader interpretation when they reported that this method 

could be used in a large number of areas that could be mathematically modelled by basic 

equations. 

Turner et al (1960) were responsible for the incremental step procedure, which 
developed the way for non-linear analysis. Non-linearity occurs in the analysis when 

response to an action is non-linear. Take for example Hooke's Law 

a=EE 

where 

a is the stress 

e is the strain 

E is a constant, called Young's Modulus 

Eqn 2.7 

In the elastic range Eqn 2.7 is valid and the response to an increase in stress is a 

proportional increase in the strain i. e. linear relationship. However, in the plastic range 

when the yield stress of the material is reached, then Eqn 2.7 is no longer valid as there 

will be relatively large and variable increases in strain for small increases in stress and 

the response may be considered non-linear. The incremental step procedure allows the 

final solution to be divided into a series of analyses where the response over a small 

range may be considered as linear. 

Non-linearity may occur in three different ways in finite element analysis: 
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" material non-linearity is used to describe the change in the behaviour of material after 

the yield stress has been exceeded 

" geometric non-linearity is used in problems where there are large deformations that 

change the shape of the model and so affect basic equilibrium and the future 

behaviour of the model 

" boundary non-linearity where the boundary conditions change during the course of 

the analysis 
Since then there have been many advances in the algorithms used so that the 

solution to each increment may be achieved more efficiently. For a long time non- 

linearity remained the domain of those who could afford the computers to run these 

complex programs. In the 70's perhaps only 1% of the finite element analyses modelled 

non-linearity, rising to 5-10% in the early 80's (NAFEMS 1986). However, with rapid 

developments in computers in recent years the software designers have released finite 

element packages which can model non-linearity and can be run on a personal computer 

(PC), opening the way for all potential users of FEM to use non-linear methods. 

ABAQUS for instance, released a program in 1995 which will run on a high powered 

PC. 

Offshore tubular joints were analysed in the early days using elastic behaviour 

for the assessment of the fatigue life of such joints - which is very important in offshore 

structures that are subjected to very high cyclic loads. Such analyses could also be used 

to provide lower bound estimates of strength. As computer storage and speed increased, 

it was possible to refine element meshes to obtain stress concentration factor (SCF) 

estimates for ever more complicated joints for specific designs or to provide general 

guidelines through parametric studies. 

2.3 The use of a square hollow sections in a diamond configuration 

The use of a square hollow section in a diamond shaped configuration has been 

suggested before as part of a triangular truss arrangement, shown in Figure 2.1. Bauer 

(1988) reports on the testing of sixteen double T joints (DT) and seven double K joints 

(DK) shown in Figure 2.2. The ultimate strength observed for these joints is then 

compared to that calculated by a yield line model with very favourable results in that the 

joint capacity was predicted with reasonable accuracy. 
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V 
Compression 

Tension 

Figure 2.1 RHS Triangular truss arrangement 

Double T joints Cross section 

Figure 2.2 The double T and K joints tested by Bauer & Redwood (1988) 

In the triangular truss arrangement the two compression chords are in the 

traditional RHS configuration (i. e. square), whilst the tension chord is in the diamond 

configuration, shown in Figure 2.1. The higher capacity of a tension member has 

enabled only one (tension) chord member to be used, resulting in the triangular nature of 

the truss. Orienting the tensile chord in the diamond configuration enables larger bracing 

members to be used when compared to the case where two bracing members meet on 

the single face of the chord in the square configuration, shown in Figure 2.3. 

Square configuration Diamond configuration 

Figure 2.3 The difference between the square and diamond configurations 

The advantages of using the diamond orientation of the tensile chord are: 

" cheaper fabrication, in that less steel is used 
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"a lighter and more efficient structure 

" larger brace members can be used, enabling stronger joints to be formed 

Figure 2.4 Deformation of the chord observed by Bauer and Redwood (1988) 

The use of the square RHS in a diamond configuration in this truss arrangement 

is different to that proposed in the bird beak joint, in that the joint is formed on the faces 

of the chord member instead of on the corners, although there are similarities. The cross 

sectional deformation of the chord member given by Bauer & Redwood (1988) and 

shown in Figure 2.4, is very similar to the type of deformation seen in all the chords of 

the bird beak joints. The chord can be seen to increase in width and decrease in depth, 

referred to as lozenging in this work. The decrease in the moment capacity of the 

deformed (tension) chord is not mentioned in Bauer and Redwood (1988), although this 

will not significantly affect the capacity of the truss arrangement. 

2.3.1 The bird beak joints 

T Ono, M Iwata and K Ishida (1991) first proposed the bird beak joint 

configuration (although they refer to it as the Y-shaped joint) to improve the efficiency 

of joints in trusses using square hollow sections. They considered the advantages of the 

new configuration are: 

" as the sides of the chord form an angle of 450 with the brace axis, the joint has a high 

stiffness and smoothly carries the axial force of the brace into the chord 

" the brace serves as a stiffener plate for the chord and restrains any local deformation 

of the chord in the immediate vicinity of the joint 

" the weld length of the joint is longer than that of a conventional joint 
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Figure 2.5 The arrangement shown by Ono et al (1991) for testing the bird beak T joint 

Ono et al (1991) describe the experimental testing of twenty five T joints where 

the parameters of chord wall slenderness bo/to and the chord width ratio ß are varied. In 

all cases the angle of intersection between the centre lines of the brace and the chord 

was 900 and the chord length ratio was maintained at a= 2Lo/bo = 6. The general 

arrangement of the joint as tested is shown in Figure 2.5. Regrettably no further detail is 

provided of the support arrangement, as this would have been useful in assessing the 

accuracy of these experimental results in the light of some of the analytical work carried 

out in this thesis. However, it is thought that this arrangement would provide a condition 

similar to holding the ends of the chord encastre. 

The ultimate strength of the joint was judged to be governed by a local failure of 

the chord in the vicinity of the brace member in all cases. A considerable strain 

concentration was noted in the brace member at the crown of the joint where the brace 

member sits on the corner of the chord, indicating that the major load path between the 

brace and the chord members is at the intersection of the corners of the sections. 

In four of the joints tested, the chord is pre-loaded with a compressive axial 

force of either 30 or 60% of the squash load of the chord. When a squash load of 30% 

was applied to the chord no significant difference was found in the strength or the 
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stiffness of the joint. However, when a squash load of 60% was applied to the chord 

there was a small decrease in the stiffness and the joint capacity decreased to 70% of 
that expected for the joint. 

Ono et al (1991) concluded that the ultimate strength of the diamond bird beak T 

joint could be given by 

zf. 11 bo 
F"'' = to r 

(0.211-0.147ß 
+ 

1.794-0.942ß to 
Eqn 2.8 

based on the experimental tests they carried out and this equation is given in the 

CIDECT design for RHS sections under a static loading (Packer et al 1992) for the 

strength of bird beak T joints. 

The bird beak joint capacities given by this equation are compared to similar T 

joints in RHS and CHS (where the cross sectional area and second moment of area were 

kept constant) and found to be very much stronger than these joints. 

In addition to the T joints tested, the results of sixteen gap K joints are reported. 

The angle of the brace members was 450 in all the K joints tested, where the parameters 

of chord wall slenderness bo/to, chord width ratio 0 (of both the tension and compression 

brace members), the eccentricity and the gap between the brace members was varied. 

Although it is stated that no moment is applied to the joint during the loading 

procedure, the method of testing the K joints described in Ono et al (1991) and shown 

schematically in Figure 2.6, will load the joint with a moment as soon as any 

displacement of the compression brace occurs. This is actually a common problem 

where K joints are loaded by only one actuator applying a compressive load to the brace 

member, the tensile load being applied by restraining the end of the tensile brace from 

moving and anchoring only one end of the chord. The length of the members is not 

given so it has not been possible to calculate the magnitude of the moment caused by the 

method of loading. No attempt is made by Ono et al to try to establish the secondary 

moments operating in the joint as it is loaded or the effect that these secondary moments 

would have on the collapse load or mechanism. 
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Cour 

Figure 2.6 Schematic diagram of the test rig used by Ono et al (199]) for the testing of bird 
beak K joints 

The deformation of the K joint as it is loaded is mainly confined to the chord 
face in the gap between the brace members with little deformation observed in the rest 

of the cross section. It was concluded that the force was transmitted between the brace 

members by the chord face between the brace members and this was used to determine a 

model on which the ultimate strength could be determined. An effective area of the 

cross section of the chord is determined and the joint is assumed to fail when the 

combination of normal stress and shear transmitted by the compression brace causes 

yielding across this effective area. The ultimate joint strength for a gap bird beak K joint 

is determined by 

Fu,, = 
t02 f y, o 4a * 

-bo- Eqn 2.9 
1+ sine A1 to 

where 

a* is the coefficient of the effective area of the chord and can be determined from the 

relevant diagram. This formula is given in the CIDECT design guide for RHS (Packer et 

al 1992) with the relevant diagrams to determine a*. 

No reference is made to the tension brace in this formula and whilst failure is 

likely to occur in the compression brace when the members are the same size, the joint 

capacity could be influenced by the presence of a smaller tension brace. The effect of 
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this was not investigated in the sixteen joints tested in the experimental program, where 

the tension and compression braces were the same size in thirteen of the joints and the 

tension brace was larger in the remaining three. 
When similar RHS, CHS and bird beak K joints were compared, in a comparison 

similar to that made for the bird beak T joints, the bird beak K joints were found to be 

much stronger. 
The failure of the bird beak T joints subject to in-plane and out-of-plane bending 

is reported in Ono (1993 and 1994 respectively), based on a further series of 

experimental tests. These forms of loading are not covered in this thesis and will only be 

discussed briefly. Failure was attributed to 2 different modes of collapse, failure of the 

brace by bending (mode B) and cracking of the chord on the tension side of the brace 

and at the same time failure of the chord wall on the compression side of the brace 

(mode C). 

For in-plane bending the moment capacity of the joint when the failure was in 

the brace (i. e. mode B) is given as 

M,,,, = 1.41 b, 2 t1 fy, 1 Eqn 2.10 

This is not the true moment capacity of the brace, but for all practical purposes this 

equation will suffice. 
For in-plane bending the moment capacity of the joint when the failure was in 

the chord (i. e. mode C) is given as 

M,,,, = 0.816bo b1 to fy, o 
053-1.41(32+ 3 

Eqn 2.11 
2(1.794-0.9420) 

and that the moment capacity of any joint subjected to in-plane bending is the smallest 

moment capacity predicted by Eqns 2.10 and 2.11. A comparison is made between the 

moment capacities of similar RHS and CHS to the bird beak T joints. The bird beak T 

joints were found to have a higher moment capacity in nearly every case. 

For out-of-plane bending in all the bird beak T joints with the exception of one, 

failure was caused by cracking of the chord on the tension side of the brace and local 

deformation of the chord on the compression side of the brace (mode Q. The mean 

ultimate joint capacity is given as 
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M,,, = bltofy 1.414- 0.0189 
b0 

-0.802 0-0.0102 
b0 

+1.421 

2 

Eqn 2.12 
to to 

For the one joint when the brace failed, the bending moment in the brace was 96% of 
the bending moment capacity and Eqn 2.10 can be used to estimate the joint capacity. 

In a comparison with traditional RHS and CHS T joints, the bird beak T joint 

was found to be stronger when loaded with out-of-plane moment on the brace in all 

cases where P<1.0. In the case where ß=1.0, the bird beak joint is weaker than similar T 

joints with RHS and CHS sections. 
The fatigue properties of the bird beak T joints and further details on the models 

used to determine the ultimate strength of T and K bird beak joints are reported in Ishida 

(1993). In the model for the bird beak T joint, failure is assumed to occur as the result of 

yield lines forming in the vicinity of area 1, shown in Figure 2.7 and the combination of 

the normal stress 6� and shear stress i in area 2 reaching the yield stress fy, based on the 

deformation and the strains observed in the experimental tests. 

+ 2P2 

Figure 2.7 Ishida et al's model for the collapse of the diamond bird beak T joint. 

The reasoning for the validation of this model appears to be incomplete. Five equations 

are given, with little explanation. 

P/2-P, PZ 
Eqn 2.13 

Aeff Aeft 
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ýPLo 
ßn = Eqn 2.14 

4Aeffbo 

fi =22 y ß� + 3i Eqn 2.15 

Pi = fl (ß) toe fy Eqn 2.16 

Av=J 2(ß)4boto Eqn 2.17 

where 
P is the load applied to the brace 
Pl is that part of the load supported by the yield line in area 1 
P2 is that part of the load supported by the shear in area 2 

Av is the effective cross sectional area of the chord affected by the shear 
Quoting directly from Ishida et al (1993) "Using equations 2.13,2.14,2.15,2.16 and 
2.17 [the] ultimate strength P is obtained by the following equation" (Note authors 
numbering but otherwise the same equations. ) 

n2.18 
P= fa (ß) + . 

fb (ß)b0 Eq 
to 2 fy to 

How this can be achieved is not explained. The functions of ß in Eqns 2.16 and 2.17 are 

not the same functions used in Eqn 2.18. In fact the values of e((3) and fb((3) are 
determined by the variation of the slope and the intercept (with the chord width ratio (3) 

of the plotted joint capacities P/t02fy (y axis) against the chord wall slenderness bo/to (x 

axis), assuming that the plotted joint capacities form a straight line and Eqn 2.18 only 

represents the equation of this straight line 

y=C+ mx 

The solution of this equation is shown in Eqn 2.8. 

Eqn 2.19 

In view of this Eqn 2.8 should not be considered as being based on a model but 

merely an empirical equation based on the results obtained from the experimental tests. 

When considering a model for the K joint Ishida et al (1993) admit that it is a 

similar model to that used in the analysis of the bird beak T joint. The ultimate strength 
formula that is derived from this model is 
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Pk 3C2 sine 
+ 

4C1 bo 

toe fy ((1+Cl)cose-ßi)2+ 3sin20 ( (1+CI)cose-ßc)2+ 3sin2e to V 

where 

O5(3 -F210c 
)Z +3 053-. J 3C)2 +3 Ct 

8(1.794 - 0.9420c) 
and CZ = 

3(0.211-0.1470, ) 

Eqn 2.20 

Pc = chord width ratio of the compression brace 

However, when the influence of the gap between the brace members is considered, the 

ultimate strength formula is given as 

Pk 

to, 
= f. fefg 

to fy 

where 

f= 1.33 
+10.8+I 

0.374 
+0.266 

b 
1.23- 12.11-ß, to 

1+0561cosh-0.354cos2 9 fe= -1 (0.95ßc+0.05)+1 
sin 0 

and 

fg = 0.853 + 
0.201 

where g is the gap between the braces 
0.5 g 

1+e 

Eqn 2.21 

Eqns 2.20 and 2.21 are very different from Eqn 2.9 published in Ono (1991) and in the 
CIDECT RHS design guide (Packer et al 1992) for the strength of bird beak K joints. 

(Both equations are based on the same experimental results. ) 

An approach similar to that described for the T joint model is used for the 

validation of the K joint model; however, even less information is given. However, as 

Eqn 2.20 has the same format as Eqns 2.8,2.18 and 2.19 it is concluded that a similar 

process has been performed on the results and that Eqn 2.20 should be counted as an 

empirical equation, at least until more details of how the model is validated are 

published. A letter has been written to Messrs T. Ono, K. Ishida and M. Iwata 

29 



requesting further information on this and a variety of topics but no replies have been 

received. 

2.4 van der Vegte's work 

Gerhardus Jacob van der Vegte was a research student at Delft University, in the 

Netherlands, completing his thesis in Jan 1995 (van der Vegte 1995). Whilst all his 

work has been on uni-planar and multi-planar CHS joints, there have been areas of 

similarities with this work, notably the effect of chord length on the resistance of the 

joint and development of interaction diagrams for the design of T joints. 

Van der Vegte used the finite element program MARC to analyse all the joints 

he studied, with the necessary experimental work to validate the finite element results. 

Butt welds were modelled in all the CHS joints studied, with the exception of those 

where the chord width ratio 0=1, with shell elements being used to model the small 

amount of reinforcement present in a butt weld. 

2.4.1 X -Joints in CBS 

Van der Vegte notes, with some truth, that in the last thirty years many CHS X 

joints have been tested and that there are many different semi-empirical approaches 

which have led to different design formulae. In order to investigate the effects of the 

chord width ratio ß and the chord wall slenderness dato, twenty two CHS X joints with 

an axial load applied to the brace (where 9=900) were analysed by finite element 

analysis. A ring model, based on Togo's ring model for CHS, was developed and using 

regression analysis the results of the finite element analysis were fitted to the model with 

suitable regression constants. 

Using this method van der Vegte gives the mean ultimate strength of a CHS X 

joint as being 

8.7 
do ý0.5p_0.5p2 

= 
to Eqn 2.22 

zz fy, oto (1-0.9f3)+ 
i(1 

-0.9ß)z+(2-(0.9(32) do 

which is a good deal more complex than the present design formula given in the 

CIDECT CHS design guide (Wardenier et al 1991) for the same joint 
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FY ,, -5.2 Eqn 2.23 
fr, oto2 1-0.810 

Eqn 2.22 is not tested beyond comparing it with the results observed by his own finite 

element analyses. 
The majority of the load/deflection curves published for these CHS X joints all 

demonstrated a maximum joint capacity, a point which is taken up further when CHS X 

cross joints are analysed for comparative purposes in this thesis. 

2.4.2 The effects of chord length on CHS X joints 

In order to investigate the effects of chord length on the strength of CHS X joints 

with an axial load applied to the brace, sixteen joints were analysed by finite element 

methods. (Chord width ratio 0.25,0.48 0.73 and 1.0 and chord length ratio a=3,6, 

11 and 18. ) Had van der Vegte analysed a wider variety of chord lengths and boundary 

conditions at the end of the chord he would have developed a greater understanding of 

the variation of the joint capacity with chord length. 

The CHS X joint capacity was found to increase with chord length significantly 

when compared to the shorter chord lengths joints and this variation is given by: 

12.5 Eqn 2.24 F u, l(a) =Fu, l(a=11S) 
11.5(1-a) 

where 

a is the chord length ratio (=2L /do) 

is the joint capacity at a specific value for a 

is the joint capacity of a similar joint where a= 11.5 and is given by 

fy, o t2o8.7 do/2to) o. sp-o. sp' 
Fß. 1(a=1 ts) 

Eqn 2.25 
-2 

(1-0.9(3 + (1-0.9(3)2+2-(0.9p) 
do/2to 

No limiting value of the chord length ratio was identified beyond which the joint 

capacity did not increase in value, although van der Vegte does note that after a= 11.5 

the increase in the joint capacity is small. 
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2.4.3 T -joints in CHS 

In his introduction to uni-planar T joints van der Vegte (1994a & 1995) notes 

that different forms of failure can be observed in the T joint as the chord length is 

varied. The failure may be due to the plastification of the chord face for short chord 
length joints and an overall chord bending failure for long chord length joints, or a 

combination of the two. This variation in joint capacity with chord length is different to 

that noted in the previous section, as there is no chord bending in the X joints. 

In order to establish what the effects of chord bending were seventeen CHS T 

joints were analysed by van der Vegte with an axial load applied to the brace without the 

effect of chord bending to establish the local joint strength F,,, 1, lo,. The effects of chord 

bending are eliminated by applying a moment to the ends of the chord such that the 

chord bending moment under the brace is zero. During the course of the investigation 

the parameters of chord width ratio ß and the chord wall slenderness do/to were varied 

and in one joint the chord length was changed to establish that the local joint capacity 

F., 1, Ioc was independent of the chord length. 

Again using the ring model (based on Togo's ring model) an equation for the 

ultimate strength of CHS T joints was developed. Using regression analysis the results 

of the finite element analyses were fitted to the model with suitable regression constants 

so that the local joint capacity of CHS T joints where the effects of chord bending have 

been eliminated is 

o. 66p-o. sß2 
2.3(ý-O 

) 

Fl, u, toc to 

fy, oto2 1_0.8W2 sin(0.8412)(1+C1)-(1-wcsinO. 
80 

0.80(1+cos0.8W2)+0.7t°2 
n) ln1 doe 

Eqn 2.26 

where 

C, = 1- (0.80)2 and yi2 = 1.2 + 0.8(32 rad 

In order to provide a comparison to the previous results twenty nine CHS T 

joints (van der Vegte 1995) were analysed with the effects of chord bending, where the 

parameters of the chord length ratio cc, the chord width ratio 0 and the chord wall 
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slenderness do/to were varied to find the effect of chord length on the joint capacity of 

the CHS T joints. 

2.4.4 Interaction diagrams in CHS 

Van der Vegte (1995) notes that the factor which governs the joint capacity of a 

T joint most is not included in the design calculation for the joint strength directly, 

namely that of chord length. The idea of using an interaction approach was first 

proposed by van der Vegte (1994b) where the relationship between the force on the 

brace and the moment acting in the chord are plotted to form an interaction curve. The 

magnitude of the moment acting in the chord is dictated by the force acting on the brace 

and the length of the chord, so that the length of the chord is now considered in the 

design process. 

In order to normalise the interaction curve so that it can be used in all 

circumstances the values of the force and the moment are normalised against their 

respective capacities. The capacity of a joint to withstand the force applied to the brace 

is determined by analysing a similar joint (to that being designed) without the effects of 

chord bending, to obtain the local joint capacity F.,,,,. discussed in the previous section. 

The moment acting in the chord is normalised by the moment capacity of the chord 

reduced to allow for the effects of the shear acting in the chord, due to the action of the 

force on the brace. The moment capacity of the chord calculated in this manner reflects 

the true moment capacity in the presence of a force acting on the brace. 

The interpretation of the results varies between van der Vegte (1994b) and 

(1995). In the earlier paper van der Vegte (1994b), the interaction curve produced for 

the CHS T joints was defined as 

3 

0.67 1.0+ 
do Mo F 

,1 
. 7=1 

Eqn 2.27 
l00to Mp, v. o 1., 1, j« 

where as in the latter, van der Vegte (1995), the interaction curve produced for the CHS 

T joints is defined as 

0.32 
M°, o +F ,1=1 Eqn 2.28 

Mp, v, o Fwt, 1o, 
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where by definition M°, o <I 
Mp, v, o 

Eqn 2.27 produces a series of curves, varying with chord wall slenderness and some of 

the values of the normalised moment exceed 1, whilst Eqn 2.28 produces two straight 
lines which are used to define the interaction between applied force and the moment 

acting in the chord. No reason is given for this. However, it is noted that Eqn 2.27 

provides an accurate representation of the points plotted but is impossible to solve 
directly. (To solve for F,,, 1, substitute M,,, o = 0.25F,,, 14). Eqn 2.28 provides a less 

accurate representation of the points plotted but provides a safe lower bound solution 

and can be simply solved by the designer. 

2.4.5 Interaction diagrams in RHS 

Yu (1995) uses the same approach as van der Vegte (1994b) to establish the 

strength of RHS T joints with varying chord lengths. Using finite element analysis Yu 

analysed thirty four RHS T joints with the effects of chord bending, varying the 

parameters of chord length Lo, chord width ratio p and chord wall slenderness bo/to. The 

local joint strength for similar RHS T joints was determined by analysing ten RHS T 

joints without the effects of chord bending, varying the parameters of the chord width 

ratio 0 and chord wall slenderness bo/to. (In addition to these results there are three T 

joints analysed with only half the moment applied to ends of the chord, "to provide extra 

data points for the regression analysis". No further reference is made to these joints and 

it is not known how these results were incorporated into the interaction diagram. ) 

The interaction diagram produced by Yu is very similar to that produced by van 

der Vegte (1994b) in that the results are represented by a series of curves. The major 

difference being that the curves produced by Yu are banded according to the chord 

width ratio ß and accordingly the definition of the interaction curve for RHS T joints 

given by Yu is 
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Mu, o =1 Eqn 2.29 
Fu. i, 1 Mp, v. o 

Eqn 2.29 suffers from the same problem as Eqn 2.27 in that it cannot be solved easily. 
Recent work published by Yu (1996) has considered using interaction diagrams 

for traditional RHS X joints loaded by axial forces on the brace members and by 
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moments on the chord in the manner shown in Figure 2.8. This approach represents the 

design of a joint in a structure where the strength of the joint may be influenced by the 

bending moment acting on the chord from the rest of the structure. The adaptation of the 

interaction diagram applied in this way is a natural progression of the initial concept and 

will probably influence all future methods of design. 

J 

M 

M 

Figure 2.8 Traditional RHS X joint loaded with axial forces on the brace members and 
bending moments on the chord 

The interaction diagram for the traditional RHS X joint loaded in this manner is 

very similar to the one produced for the traditional RHS T joints described previously. 

The points plotted by Yu on the interaction diagram clearly vary with the chord width ß 

and the interaction curve can be defined in the same manner. Yu has combined the 

results for the T and X joints and concludes that both joints can be represented by an 

interaction curve defined by 

3t 
1-0.85ße6 Fý t+ Mu, o =1 Eqn 2.30 

Mp, v. o 

2.5 Peter Crockett's research work 

Peter Crockett was a research student at Nottingham University, who completed 

his Ph. D. thesis in July 1994 (Crockett 1994). Some of the work on K joints herein is a 

direct continuation of his work, whilst other parts make use of some of his findings. 

2.5.1 Welds and Corner radii 

Crockett compared the results between experimental tests and finite element 

modelling of the same joints with comer radii and different forms of weld to replicate 

the test results as closely as possible. The experimental test results used were 3D T-DT 

joints in RHS (T in-plane, DT out of plane) tested at the University of Nottingham as 
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part of a larger project for the European Coal and Steel Community (ECSC), Davies et 

al (1993). 

2.5.1.1 Welds 

The importance of modelling welds in RHS joints is widely recognised as the 

extra weld material increases the effective width ratio (3, leading to an increased joint 

resistance. Crockett considered four different forms of modelling the weld using 4 node 

shell elements, shown in Figure 2.9, for comparison on aT joint which had been 

previously physically tested. 

Brace Brace 

II Chord 

Solid Element 
II 
Brace 

b) Solid Element, with MPC 

Brace 

Throat thickness 
of the weld 

Chord 

c) Solid Element, with MPC 

Chord 

d) Shell Element 

Figure 2.9 Four different forms of weld modelled with 4 node shells elements 

Weld case a) 6 node solid element sharing the same nodes as the 4 node shell 

elements. 

Weld case b) 6 node solid element, offset by a distance of tl/2 from the brace and 

chord, which are 4 node shell elements. There is also a small gap between the brace and 

chord elements. The directional movements of the nodes on the welds are fixed to 

adjacent chord/brace nodes by multi-point constraints (MPC). 

Weld case c) is the same as for weld case b). However, the node in the chord has 

been moved from being directly under the centreline of the brace to directly under the 

nodes of the weld. 
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Weld case d) models the weld by using a4 node shell element of the same 
thickness as the throat of the weld. 

Weld cases a) and b) provide a fair representation of the test data, although both 

finite element load/indentation curves underestimated the resistance of the joint in the 

elasto-plastic region of the curve. Weld case c) gave better representation of the elasto- 

plastic region but thereafter overestimate the plastic proportion of the curves by 10% 

(author's own estimate). Weld case d) overestimated the joint resistant by 25% and was 

rejected as not worth further study. 

When 8 node shells became available this study was repeated to investigate any 
differences that these new elements may make. Instead of the T joint used previously a 
T-DT joint was used, MPJT3 where a tensile force is applied to the DT braces of the 

joint. Crockett reports that Delft University had experienced trouble in calibrating this 

joint with finite element methods and considered it important that different weld models 

were tried to improve the results. The four welds investigated are shown in Figure 2.10. 

Brace Mid side node of 
II 

Mid side node of IXx 
element 

Brace x 
element 

Chord L x--ý x 

e) Solid Element 6 nodes 

Brace x 
Mid side node of 

Chord --; K 

fl Solid Element 6 nodes, with MPC 

Mid side node of x Brace 
element 

Throat thickness 
of the weld 

Chord L+J x\ 

h) Shell Element 8 nodes 

Figure 2.10 Four different forms of weld modelled with 8 node shells elements 

Weld case e) 6 node solid element sharing the same corner nodes as the 8 node 

shell elements. 
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Weld case f) 6 node solid element, offset by a distance of ti/2 from the brace and 

chord, which are 8 node shell elements. There is also a small gap between the brace and 

chord elements. The directional movements of the nodes on the welds are fixed to 

adjacent chord/brace nodes by multi-point constraints (MPC). 

Weld case g) 15 node solid element sharing all the nodes with the adjacent 8 

node shell elements representing the chord/brace. 

Weld case h) models the weld by using a8 node shell element of the same 

thickness as the throat of the weld. 

All the load/indentation curves reproduced by finite element analysis in this 

study underestimated the load/indentation curves obtained from physical tests of the 

joint. The best comparison is achieved by using a solid 6 node element to model the 

weld and with an 8 node shell to model the rest of the joint i. e. weld case (f). The finite 

element load/indentation curves produced for this joint show that the joint strength is 

underestimated by 8%. In weld case (h) where a shell element is used to model the weld 

material, the joint strength is underestimated by 12% although in the previous case study 

this was shown to overestimate the strength of the joint considerably. Weld case g, using 

a 15 node solid element to model the weld causes the joint strength to be underestimated 

by 20%. This was attributed to the 15 node solid element being a lot more flexible than 

the 6 node solid element (or the shell elements) being used before. 

This weld case (g) has been used in this thesis to represent all the welds, where 

the welds have been modelled, although a poor comparison is obtained in this series of 

analyses when compared to the experimentally tested joints. It is considered that the 

finite element model of joint MPJT3 as a whole underestimates the strength of the joint 

being tested and that a good agreement is only achieved with the different weld cases (f 

and h) is due to the stiffness of the method used to model the weld, contributing towards 

the strength and stiffness of the joint. This method was chosen because it would 

probably give a conservative result, the 15 node solid element is more flexible and it is 

compatible with the 8 node shell elements used to model the rest of the joint (i. e. they 

both use quadratic interpolation functions). The incompatibility problem of mixing solid 

and shell elements remains. 

Three different ways of modelling the corner of the weld were studied by 

Crockett, shown below in Figure 2.11. Modelling the full corner shown in Figure 2.11c 
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consistently provided the best result in all the cases studied and this procedure is used in 

all the models in this work. 

a) Corner not included b) The cut off corner c) The full corner 

Figure 2.11 3 Methods of modelling the corner of the weld 

Different material properties were used to represent the weld material, but 

increasing the strength by as much as 20% had very little effect on the overall joint 

resistance. BS 639 states that the ultimate strength expected for the E51 electrode used 
is significantly larger than the ultimate strength of the steel used in the joints, the yield 

strengths being approximately equal. However, lack of information about the measured 

properties of the weld material led Crockett to assume the weld material was the same 

as the steel and this would not significantly affect the results. 

Crockett recognised all the models described have limitations due to the 

compromises and approximations made. It is possible that there are numerical 

incompatibility problems between the solid and shell elements used to model the weld 

that could lead to incorrect stress and strain levels in the vicinity of the weld. These 

incompatibility problems could be overcome if shell elements are used to represent the 

weld material. However, as this is the least representative of all the cases, because of the 

"air gap". It is considered that the stress and strains then observed in this vicinity would 

also be inconsistent with the test results. 

2.5.1.2 Corner radii 

The main problem in modelling the corner radii is that if there is a large 

curvature across the element, the finite element package rejects the element as being 

badly deformed. This can be solved by reducing the width of the element however, this 

causes further problems by creating long thin elements (i. e. with a high aspect ratio ) 

and an increase in the total number of elements. Increasing the number of elements 

again to decrease the aspect ratio of the curved elements is undesirable as the additional 

elements further increase the computing time required for the analysis. 
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A comparison of the results between finite element models with and without the 

corner radii modelled showed no significant difference up to an indentation of 3% bo. 

For indentations above this level, the comer radii model exhibits a slightly lower joint 

resistance than the model where no corner radii has been modelled. 

Given the problems and the additional computing time required, Crockett 

concludes that increasing the mesh density in non critical regions in the outreaches of 
the chord is wasteful, time consuming and beyond a certain refinement does not 

improve the accuracy of the results any further. 

2.5.2 Overlapped K joints in RHS with 0=0.6 

Crockett (1994) in his thesis considers the effects of boundary conditions and the 

effects of the hidden weld on the strength of partially overlapped K joints. Only the 

work on joints where the chord width ratio 0=0.6 is considered, as this is the only 

chord width ratio examined in this work on K joints. 

2.5.2.1 The effects of boundary conditions 
Crockett investigates the effects of changing the support arrangement at the ends 

of the brace and the chord members. All his investigations include changing the sense of 

the loading, i. e. the through brace loaded in tension and compression in different 

analyses. He concludes that the boundary conditions do have a significant effect on the 

joint strength and in particular that: 

" changing the restraint supporting the ends of the chord, i. e. fixed or pinned can have 

a significant effect on the joint strength when the angle between the chord and the 

brace members 0 is small, but this effect decreases as angle 9 increases 

" when the ends of the brace member were unsupported, then excessively large 

rotations were observed between the members of the joint and that the joint strength 

was often severely reduced in these models. He concludes that this is an unreal 

situation as in a truss the brace members would not be capable of such large rotations 

" the more realistic end condition for the braces is supporting the brace end by pinned 

rollers moving in a direction parallel to the centre line of the member. This boundary 

condition is used in all further research. 
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2.5.2.2 The effect of the hidden weld 
In fabricating an overlapped K joint in a truss, it is standard practice to tack both 

the members into position before welding around the outside perimeter. Crockett 

considers the effects of welding the "through member" completely to the chord, before 

the overlapping member is placed into position for two different K -joints, where 0= 30° 

and 600. Three different methods of connection are considered, brace and chord nodes 
being common i. e. joined, brace and chord nodes being separate i. e. no connection 
between brace and chord members and finally brace and chord nodes being separate 

with a solid element to represent the weld joining the brace and chord. 

When 0= 60° and the through brace is loaded in tension, there is a significant 

increase in the joint capacity with the hidden weld included. This is attributed to the fact 

that when the hidden weld is not included, there is no load transfer to the chord from 

that face of the brace member and this lack of restraint causes large joint deformations. 

When the through brace is loaded in compression there is no significant change in the 

joint capacity. 

When 0= 30° there is very little change in the joint capacity when the through 

brace was loaded in tension or compression, with or without the hidden weld included. 

This was shown to be due to the fact that the joint failure occurred elsewhere because 

the top face of the chord failed under the combined action of the axial load and the 

bending moment caused by the eccentricity of the joint. 

There was no significant difference in the results when the weld was modelled as 

a solid element or when the weld was represented by the brace and chord nodes being 

common. 
Four different load and boundary conditions were analysed when 0= 30° and 600 

and the hidden weld was represented by the brace and the chord having common nodes. 

The results presented by Crockett raised the question of whether an angle function was 

required by CIDECT RHS design codes for K joints, but with the limited amount of 

information that was available he was not able to be conclusive. This question is taken 

up in Chapter 7 of this thesis for further study. 

2.6 The definition of the ultimate joint capacity 
The joint capacity is easy to define when a maximum value is obtained during 

testing or finite element analysis however, many of the joints examined do not reach a 
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maximum value. Therefore a method is required to define a load which can be 

considered as the joint capacity and produces compatible results with those joints where 

a maximum joint capacity is achieved. 
The International Institute of Welding (IIW 1989) defines the working joint (or 

serviceability) capacity for axially loaded hollow section joints, (where the working 

joint capacity is taken as approximately 2/3'd' the ultimate joint capacity), as being "the 

deflection in the connection between one bracing and the chord which does not exceed 

I %bo or do". 

Van der Vegte (1995) uses Yura's (1980) deformation limits to define failure for 

both CHS axially loaded joints and joints loaded by bending. Where failure is defined as 

an indentation of 60fyd1/E for axially loaded joints and for joints loaded by bending a 

rotation of 80 fy/E. (fy yield strength of material, d1 diameter of brace member and E the 

value of Young's Modulus) 

Korol (1982) suggests, based on a study of RHS T joints, that failure can be 

defined as 25 times the elastic limit (i. e. 25ö/Sy or Voy where Sy and 4y are the yield limit 

displacement and rotation values respectively) for RHS joints with either an axial load 

or a moment applied to the branch member. 

Lu (1994) examined a wide range of different joint types and methods of 

loading, where CHS or RHS sections have been used as the chord member and 

concluded that the local indentation at failure varied between 2.5% and 4%bo when a 

maximum load was attained. Therefore she suggests that a local deformation limit of 3% 

bo at the intersection of the chord face should be considered to define the joint capacity 

where no maximum value is attained. This is a conservative estimate as Lu considers 

that the strength at the deformation limit of 3%bo gives about 10% lower values than the 

CIDECT design formula. Care was taken to ensure that so far as possible the ratio 

between N�/N, <1.5, where N� is the ultimate load (from the test data) and Ns is the 

serviceability load (from the design codes) was maintained by using this definition of 

failure. This could not be achieved for RHS joints of a low chord width ratio 0 and high 

chord wall slenderness bo/to values, in which case the strength at the serviceability 

deformation will be critical. This proposal was accepted by the IIW and incorporated 

into the design recommendations as IIW Doc. XV-E-94-215. 
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Lu's recommendations to define the joint capacity has been used in this work to 
define a joint capacity at failure where a maximum joint capacity is not attained. The 

precise method in which this is carried out for the different joints is shown later. 
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3. 

Finite Element Modelling 

3.1 Introduction 

The use of finite element analysis in determining the static strength of structural 

hollow section joints is now well established and there are many packages available on 

the market today. No attempt is made in this work to examine the different finite 

element suites to decide which is the most accurate as the decision on which package to 

use was limited to those provided at the University of Nottingham. 

The finite element package used in this research is ABAQUS. This is widely 

used in industry and research as a general-purpose finite element program for a wide 

range of applications and it is commonly used for non-linear work such as the static 

strength analysis of structural hollow section joints. It is held in high regard for the 

accuracy of its elements and the simple and efficient way it performs the analysis. 

This chapter will examine some of the theory of the finite element method 

(mainly the basic principles) and how the analysis is performed. Some of the features 

available in ABAQUS and used in the modelling of the joints in this work will then be 

examined. Details will be given where these features are unique to the ABAQUS suite 

of programs, explaining what they do, why they are used and how they work. More 

general features common to most finite element programs will be discussed in less 

detail. Finally the general finite element model details will be explained with regard to 

the type of element used and the manner in which the welds are modelled. 

3.2 Finite element programs and the hardware used 

The majority of the finite element analyses carried out in this research have been 

performed on a Dec Alpha cluster of workstations, effectively providing 3 computer 

processors to do the calculations. The computer facilities provided by the regional 

computing centre at Manchester and used extensively by Crockett (1994) were 

investigated, but did not provide the level of post processing facilities needed. 

The ABAQUS suite of programs used in this work is updated on a yearly basis 

by the software company Hibbet, Karlson and Sorenson (HKS) and the research 
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reported has been carried out on versions 5.2 to 5.5. Extensive use of the restart files 

available in the ABAQUS package has been made to store all the information generated 
in the analysis and to produce the graphics used later in this work. The very large files 

generated by this method have produced storage problems however, these have been 

overcome with memory upgrades and storing files on tape. 

The ABAQUS package provides facilities to construct the mesh for joints of 
simple geometry, typically most RHS connections, by stipulating key nodes and using a 

node generation command to create the remainder of the nodes dictated by the mesh. 
Automatic mesh generation packages have to be used for joints where the geometry is 

more complex, such as for CHS connections, where the positioning of the nodes at the 

interconnection of the chord and brace members would require many tedious 

calculations. Where such joint complexity occurred the mesh generation program 

FEMVIEW (1989) produced by FEMVIEW Limited was used, so that the basic joint 

geometry is automatically meshed and translated into a format which can be used in the 

analysis by ABAQUS. 

3.3 The finite element method 

Many discrete problems in engineering, such as the structural members in a 

framework structure, can be solved by using a simplified analytical model. The 

behaviour of its members, which are readily definable, can be described by simple 

relationships defined in the model and the properties of the member. The response of the 

whole structure can then be calculated by considering the accumulated behaviour of all 

the individual members. The assumptions made in formulating the model may cause 

inaccuracies in the solution, but if the model has been formulated correctly then validity 

of the solution should not be affected, as the error should be small. 

In the stiffness matrix method, which may be used to solve the example given 

above, a set of structural equilibrium equations are solved in terms of the unknown 

nodal deflections from which the internal member forces or stresses can be derived. For 

low axial forces, causing only elastic deformations, the relationships formed are more or 

less exact (small changes in the model's geometry will occur) and the only 

approximations lie in the numerical rounding off in the equation solving process. 

For more complex engineering problems involving a continuous structure (the 

continuum) such as a shaped steel plate, the sub-division of the model is not as readily 
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definable as in the previous example. However, the same principle can be used by the 

discretization of the structure, that is dividing the structure into a finite number of 

different interconnecting parts or elements representing a small portion of the entire 

structure. The behaviour (i. e. the deformation) of each element or part can still be 

described mathematically using the stiffness method approach. Providing that conditions 

of continuity and equilibrium are satisfied, the sum deformation of all the parts or 

elements describes the behaviour of the whole system. Where the material properties are 

not linear-elastic, or large deflections effects need to be included then the correct 

solution will be achieved through an iteration process and the accuracy will depend on 

the convergence criteria stipulated. 

As the size of each element decreases, a better prediction can be made of its 

deformation and this improves the performance of the whole model, leading to a more 

accurate solution. The disadvantage to this is that more computational time is required 

for the solution to be reached, which may be prohibitively expensive, in terms of 

computing time, when compared to the improvement in the accuracy achieved. Thus 

each model can only contain a finite number of elements (the exact number depending 

on the computing power available) for the solution to be achieved economically. 

3.3.1 The finite element theory 

The finite element method solves the analytical model by finding the 

displacements of the nodes used to define the elements within the model. To achieve 

this a series of equations are set up, one for each degree of freedom at every node. The 

external forces (Fe) acting on each node are known and the stiffness of each element (lcd) 

can be assessed. The displacement of the nodes (u) can then be found from 

Fe ° ke ue Eqn 3.1 

Having found the displacement of the nodes, the internal forces acting on the 

nodes can then be resolved and hence the strains, stresses and any other unknown by 

manipulation of the displacement data. 

3.3.1.1 An example of the construction of the stiffness matrix 
Considering a very simple case of a discrete 2 dimensional pin ended linear truss 

element to explain the finite element process, shown in Figure 3.1. Only one degree of 

freedom is permitted in this example, that of axial movement. 
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uy2 

Global Y +Fy2 

Ux2 

F2 

Node 2 

uXi 

Node 1F1 

Figure 3.1 A 2-dimensional discrete pin ended element 

Where 

Le = the length of the element 

Ae = the cross sectional area of the element 

x, y= Cartesian (global) co-ordinates 

x* y* = local directions between nodes 1&2 

U,,, uy = global displacements in the x and y directions 

u* = local displacement along the element (in the direction x*) 
F, Fy = Global forces in the x and y directions 

F* = Local force along the element (in the direction of x*) 
Expressing the displacement of the two nodes in matrix form where C1 is the 

global movement of the element and C24 is the movement of node 2 in relation to node 

1, i. e. C2 = the strain. Both are unknown constants called trail functions that must satisfy 

the boundary conditions, at Node 1 (x=0) u=u1 and at Node 2 (x=L) u=u2. 

Iu1 *_10 Cl 
=ue=AC Egn3.2 

u2 *1 Le CZ 

where ue* is the displacement vector and A is the coordinate vecor 
hence 
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C=A-' ue* Eqn 3.3 

Resolving the displacements along the direction of the element, the global 
displacements can be determined as 

*= {Z: } _ 
ulcosO+ulsin8 

ue t2coso+uy2siIJe Eqn 3.4 

substituting this into Eqn 3.3 gives 

UXi 

C- 
CI 

-1 
Lecos9 Lesin9 00 uyi 

Eqn 3.5 CZ Le 

[-cos0 

-sing cosh sineJUx2 
U y2 

The strain along the length of the element C2 can then be written as 

uxl 

C2 =ý=1 [- cos 8 -sin O cosh sin 0] u '1 Eqn 3.6 
Le Ux2 

U y2 

or in general 

E= BUe Egn3.7 

where B=1 [- cos 8- sin 8 cos 0 sin 0] is called the strain shape function. 
Le 

Hooke's law for elastic behaviour can be written in matrix form as 

a= De Eqn 3.8 

where D is the material properties matrix, in the case of a linear truss element where the 

force is uniaxial D takes the value of Young's Modulus E. The stress can be expressed 

as a function of the displacements by substituting Eqn 3.7 into Eqn 3.8 

a= DBu. Eqn 3.9 

The "external" forces acting each node can be written in terms of the internal axial force 

F* 
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Fxl -F*cos6 
Fy1 -F*sin9 F= F. 
Fx2 - F* cos 8 

Eqn 3.10 

[FY2J 
F*sin8 

which, using the strain shape function B may be written as 

F. = LeBT F* Eqn 3.11 

The element stress is found by dividing the uniaxial force F* by the element area Ae 

F*=Aea Egn3.12 

The substituting Eqns 3.12 and 3.9 into Eqn 3.11 

Fe=AeLeBTDBue Egn3.13 

This however, is usually written in the form of 

F. = ke Ue Eqn 3.14 

where [ke] is the element stiffness matrix and is equal to 

ke =AeL0BTDB Egn3.15 

This process is repeated for all the members in a structure adding each element stiffness 

matrix ke to the global stiffness matrix k at the appropriate points until the whole 

structure is included in the model. The global form of Eqn 3.14 (F =k u) with the 

appropriate boundary conditions can then be solved for the displacements at all the 

nodes from which the internal forces, the stress and strain in each element can be 

calculated. 

3.3.1.2 The alternative energy formulation 

Whilst finite element programs could use the equilibrium approach to formulate 

the stiffness matrix, it is more common to use the energy formulation to derive the 

stiffness matrix as it is more robust and applies equally to quadratic and cubic elements 

as well as three dimensional problems. 
The total potential energy (TPE) of the element can be written as 

TPE = Internal work - External work 

TPE =, f aTB dv - UT Fe Eqn 3.16 
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where v is the volume and hence dv = A. dx*. Substituting expressions for a&c given 
in Eqns 3.7 and 3.9 into Eqn 3.16 gives 

TPE = J, (DBue)T(BueXAedx) - UT Fe 
L. 

TPE =f %Ae DBT ueTBuedx - UT Fe Eqn 3.17 
L. 

Then using the principle of minimum total potential energy, the differential of the TPE 

with respect to the displacement ue must be equal to zero (or the lowest possible value) 

S(TPE)= 
0= Ae LeBTDBue - F. 

6[u] 

=ke Ue -Fe Egn3.18 

Which is the same basic form as Eqn 3.14 

3.3.1.3 Shape functions 

A shape function is a polynomial expression that relates the displacements that 

occur at any point within the element to the displacements that occur at the nodes. The 

number of terms in the general shape function is dependent on the degrees of freedom 

(DOF) and the order of the element (linear, quadratic etc. depending on the number of 

nodes on the side of the element) with a term for each possible DOF and order. Each 

node of an element has a shape function. 

In the previous example the shape functions were not considered explicitly as it 

is a trivial problem however, the general shape function of the linear 2-node beam 

element with one degree of freedom is 

Ný (x*)= a, +a2x * Eqn 3.19 

where Nc(x*) is the shape function at node c and at and a2 are unknown coefficients for 

the shape function N, 

Ný(x*)=a1+ a2x* 

N2(x*)=a3+ a4x* 
Eqn 3.20 

When at node 1, x=0, Ni (x*) =1, Nc(x*) =0 for all other nodes (node 2 in this case) 
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and at node 2, x=L, N2(x*) =1, Nl(x*) = 0. Using these conditions the value of the 4 

unknowns can be found as 

a1=1 ; a2=-1 ; a3=0 ; as= 
1 

L. Le 

Although expressed differently, this is the same result as Eqn 3.2 using the trail 

functions. 

I 
ui _10 

C1 

U21 Le CZ 

Solving for C gives 

C1=u1 and C2=u2-u' 
Le 

Substituting these values into the general displacement function 

u*(x*)=C1+C2x* 

and rearranging gives 

U* X* 
X )= 1-- Ui+ 

X 
-U2 

L'e Le 

3 
Y 
Yx 

12 

a) 3 node triangular 
element 

3 

65 

142 

b) 6 node triangular 
element 

Figure 3.2 Two forms of triangular elements 

Eqn 3.21 

Eqn 3.22 

The general displacement function of a linear 3-node triangular element, with 2 

DOF (movement in the x and y direction) shown in Figure 3.2a is 

u *=CI+C2x+C3y Eqn 3.23 

however the general displacement function of a quadratic 6-node triangular element, 

with 2 DOF (movement in the x and y direction) shown in Figure 3.2b is 
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U *=CI+CZX+C3Y+C4X2 +C5y2 +C6Xy Eqn 3.24 

The displacement function can become quite complex if one of the degrees of 
freedom permitted is a rotation. Returning to the example of the 2-node truss element, 

shown in Figure 3.1 with the pins removed to allow the transfer of moments between 

elements. The element, which appears to be a linear element due to the number of 

nodes, is in fact a cubic element. (Consider the deformed shape of the element when a 

moment of the same sense is applied to both nodes. ) The general displacement function 

for this element is 

U *=C1+C2X+C3X2 +C4X3 Eqn 3.25 

This function permits the displacements u, but not the rotations 8 to be expressed. 
However, as 

du 
=e Eqn 3.26 

dx 

0*= C2+2C3x+3C4x2 Eqn 3.27 

Using the conditions when x=0, u* = ul and 9* = 91 or x=L, u* = U2 and 9* = 02 using 

Eqns 3.25 and Eqn 3.27, the equivalent equation of Eqn 3.3, [u 
e*]=[ 

A] [C] becomes 

ul 1000 C1 
ei 

_0100 
C2 

Eqn 3.28 
u2 1L L2 L3 C3 

02,0 1 2L 3L2 C4 

(Similarly with Eqns 3.23 and 3.24) 

The shape function can be found from solving for C (i. e. [C]= [A''J[ue *] and 

substituting into the displacement function expressed as 

c=n 

u *_ N. (X, y) (ui ), 
c=I 

Eqn 3.29 

It can be appreciated from these 4 relatively simple examples that an 8-node 

shell element, with 3 directional and 3 rotational degrees of freedom has very complex 

shape functions (Ni). However, the reduction in the number of nodes (20 for a quadratic 

solid element) represents an overall reduction in the number of equations (60-48=12 for 

each element) to be solved in the analysis. 
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3.3.1.4 Continuity at the boundaries of the element 
When the total energy approach is used to equate the work done on the model by 

the external forces with the sum total of all the internal work in the elements, it is 

implicitly assumed that there are no discontinuities at the boundaries of adjacent 

elements. If such a discontinuity existed, there would be an infinite strain at the 

boundary causing infinite stresses that would have to be accounted for in Eqn 3.16. 

Continuity of displacement at the nodes is ensured in the stiffness matrix 

however, the displacement along adjacent sides of two elements may not be equal unless 

the first derivatives of the shape functions Ni of the elements are also equal. This is 

shown in Figure 3.3 where two elements A and B, with a common boundary 1-2, are 

subjected to a deformation. The deformed shape of the boundaries are defined by Na 

and NB;, therefore for continuity to exist along the element boundary 
dNAi 

= 
dNB` 

dx dx 

A 
121 _-2 

B 

z 

x 

Slope = 
dz 
- 
dx 

1 

Figure 3.3 Compatibility requirements at inter element boundaries 

2 

Elements that have shape functions chosen such that this condition of continuity 
is complied with are called conforming elements, whilst those elements which do not 

comply are called non-conforming elements. In order that convergence can be achieved 

with non-conforming elements, the mesh should be sufficiently fine that the 

discontinuities at the boundaries of the elements are within acceptable limits. 

The patch test is a series of simple tests that can be applied to the mesh in order 

to check that the discontinuities at the boundaries of the elements are within the 

prescribe limits and convergence can be achieved for the mesh. 

3.3.1.5 Numerical integration 

Although there are advantages in using global Cartesian co-ordinates to define 

the element's shape function, the expressions cannot be easily modified for different 

element shapes. The alternative is to use a local co-ordinate system where the local axis 

element A 

Boundary element B 
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have the same polynomial expressions as the shape functions, a process known as 
isoparametric mapping. The shape functions are then used to define the geometry and 
the displacement functions of the element. The one disadvantage of this is that very 

complex integrals have to be solved. However, no attempt is made to solve the integrals 

analytically, but by using a numerical integration technique. 

The trapezoidal rule and Simpson's rules are examples of numerical techniques 

however, they are only exact when the order of the curve examined is one less than the 

number of points sampled, usually spaced at equal intervals along the curve. The Gauss 

quadrature is a very much more accurate method of numerical integration. An exact 

solution can be found for curves of the order of 2G-1, where G is the number of points 

sampled, by choosing specific positions at which the curve should be sampled. 

Therefore, using 3 points in a single plane, an exact solution can be found when 
integrating a 5t' order polynomial. 

X0 X 
OX 

X3x3 integration points 
XXX02x2 integration points 

0xx 0x 1" 
Nodes 

Figure 3.4 A square 8-node element showing two different arrangements of integration points 

If full integration were to be calculated for an 8-node shell element, the 

displaced shape would be sampled at the 9 (i. e. 3x 3) integration points, shown in 

Figure 3.4. However, with a small loss of accuracy and a large reduction in the 

computation required the displaced shape is only sampled at 4 points (2 x 2). Therefore 

the displaced shape calculated is a 3'' order polynomial in any single direction. The loss 

in accuracy in using the reduced number of integration points is not the disadvantage it 

would at first appear. The displacement-based formulation of the stiffness matrix is an 

upper bound solution to the true stiffness of the element. Therefore underestimating the 

contribution of the stiffness matrix in the numerical integration will actually give a 

better result than if the full integration was carried out in most cases. 
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3.4 Analysis options 

ABAQUS being a batch program requires an input data deck that specifies the 

geometry of the model, the history of the loading pattern and the procedures to be used 

in the analysis. In non-linear problems the challenge is to obtain a convergent solution in 

an economic period of computing time and many different methods have been 

developed to achieve this. A review of the various analysis procedures used in the finite 

element suite to ensure accurate analyses and efficient use of the computer time is 

carried out in this section. 

3.4.1 Method of loading 

Load may be applied to the model in different ways, for example, by load control 

where the magnitude of the increment of force applied to the loaded member is specified 

by the operator. Alternatively displacement control may be used where the magnitude of 

the increment of the displacement of the loaded member can be specified. When load 

control is used, ascertaining the maximum load and observing post peak behaviour of 

the model is impossible without subsequent analyses being performed. Displacement 

control is the preferred approach as the maximum load and the post peak behaviour can 

be observed although it cannot be used when proportional loads have to be applied to 

other parts of the model. 

The disadvantage of direct control methods is that the operator does not know 

the response of the model in advance when preparing the analysis and this can be 

wasteful of the computer time. 

3.4.2 The modified RIKS algorithm 

In finite element analysis it is often necessary to carry out non-linear static 

equilibrium solutions for unstable problems, where the resistance may decrease as the 

analysis progresses. The modified RIKS algorithm used in ABAQUS allows the 

equilibrium solution to be found, regardless of whether the response of the model is 

stable or unstable. The basis of the algorithm is a Newton method for determining the 

path of equilibrium in the analysis. Within each increment the solutions to the non- 

linear equilibrium equations are solved iteratively by minimising the force residuals so 

that eventually they are within predefined tolerances (usually the default values) and 

convergence is achieved. The size of the load increment is determined by the ABAQUS 
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standard convergence rate dependent, automatic incrementation algorithm for static 

cases. The convergence of the previous increment determines the size of the initial load 

increment of the next part of the analysis, although this may be modified if convergence 

is not achieved. The user can set the size of the initial load increment for the first 

increment, and limit the maximum and minimum size of further load increments. 

This method of controlling the loading of the model has been used in all the 

analyses as it provides a maximum load, post peak behaviour and uses the computing 

time efficiently. 

3.4.3 Non-linear material behaviour 

The stress-strain properties of steel are non-linear. Typically the behaviour is 

linear and elastic, obeying Hooke's Law, until the yield point is reached, thereafter 

further increases in strain are non-linear and plastic. These material properties can be 

modelled in the analysis by ABAQUS using the *ELASTIC and *PLASTIC options. 

This data is entered, with a unique name, for each material used in the model so that 

different materials can be used for the chord, brace and weld if so desired. 

The simplest form of elastic behaviour is the isotropic case where the material 

properties are the same in every direction, which is the case with steel. These material 

properties are then defined by giving the Young's Modulus E and the Poisson's ratio u 

in the elastic option. 

The plasticity model used by ABAQUS for isotropic materials at low 

temperatures, relative to the melting point, is the von Mises yield surface model with 

associated plastic flow rules. This yield surface assumes that the yield of the material is 

independent of the pressure stresses operating on the material and for the static analysis 

of SHS joints made with ductile steels, this assumption may be regarded as correct in 

both tension and compression. The associated plastic flow rule assumes that when the 

material is yielding, the direction of the deformation is normal to the yield surface at that 

point. The work hardening of the material on the von Mises yield surface is defined in 

the input data by giving the values of the uni-axial yield stress as a function of the uni- 

axial equivalent plastic strains. These stresses and strains for ductile materials such as 

steel, whose behaviour can exhibit large inelastic strains when yielding, should be 

entered as the true stress (Cauchy stress) and the (natural) log plastic strains as given by 

Eqns 3.30 and 3.31. 
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ßtme - ßeng 
(1+Eeng ) Eqn 3.30 

ElnPI = ln(l+Eeng)-Cel, 
yietd 

Eqn 3.31 

where 

ßß�e is the true or Cauchy stress 
ae�g is engineering stress or nominal stress 

ej, P1 is the log plastic strain 

Ceng is the engineering or nominal strain 

EeI, rield is the elastic strain at yield 

3.4.4 The material properties used in this thesis 

When comparisons have been made to experimental test joints, the material 

properties found from tensile test specimens have been used in the manner outlined in 

the previous section. Details of the materials used are given with the results of the joints 

tested experimentally. 
For the parametric work on the X and T joints the material properties were 

assumed to be grade 43C steel (S 275 JO) with elastic perfectly plastic material 

properties. The reasons for the choice of elastic perfectly plastic material properties 

were: 

" to conform with one of the original intentions of the research to compare finite 

element joint failure with a yield line model for the collapse mechanism. The choice 

of an elastic perfectly plastic material allowed comparisons to be made on an equal 

basis 

" when loaded in compression that there is only a small difference in the joint 

capacities between analyses where full work hardening properties are assumed and 

that of elastic perfectly plastic material properties are assumed 

" that the material properties of hollow sections can vary enormously, particularly 

between hot formed and cold rolled sections. Estimating work hardening properties 

could led to an overestimation of the joint capacity where the material properties 

differed significantly from those assumed, therefore a conservative assumption was 

made in that the properties were elastic perfectly plastic. 
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Van der Vegte (1995) reports a comparison between work hardening and elastic 

perfectly plastic material properties for a CHS uni-planar X joint axially loaded in 

compression. These results showed that there was a 4.7% difference in the observed 

collapse loads for the change in the material properties in the same model. This is a little 

more than the author would have expected, but shows small influence of the work 
hardening properties on the joint capacity when loaded in compression. 

For the work on K joints, originally started by Crockett (Crockett 1994 and 

Davies et al 1996), the material properties used previously by him were retained so that 

comparisons could be made with his earlier work. These material properties are given 
when discussing the K joints in Chapter 7. 

3.4.5 Geometric non-linearity 

Significant improvements can be made in the accuracy of geometric non-linear 

problems by updating the stiffness matrix between each load increment to take account 

of the changes in the geometry that have occurred due to the deformations in the 

previous increment. The increase in the computing time required to do this is 

compensated for by the improved accuracy of the analysis. In ABAQUS this option is 

controlled by the parameter NLGEOM which is used in all the models. 

3.4.6 Boundary conditions 

Full advantage is taken in all the joints modelled of any planes of symmetry in 

the geometry and the method of loading to reduce the size of the model. The presence of 

the rest of the model beyond a plane of symmetry is represented by the boundary 

conditions at that plane of symmetry. In ABAQUS these boundary conditions are 

invoked by the commands XSYMM, YSYMM and ZSYMM for symmetry in the x, y 

and z planes respectively. 

3.5 Element types 

3.5.1 Shell elements 

Shell elements are predominately used in models to find the static strength of 

structural hollow section joints where typically the thickness of an element may be 

regarded as low in comparison to its length and breadth. 

Two basic assumptions are made in the formulation of the equations governing 

the shell element that: 
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" during the deformation of the element, sections normal to the middle plane remain 

plane during the deformation 

" the through thickness stress a are small (i. e. tending to zero) and hence the strain c 

can be neglected, i. e. a plane stress situation 
Additionally for thin shells, discussed later, normals to the middle plane remain 

normal to the middle plane during deformation, therefore assuming that the effects of 

shear are negligible. 

Considerable savings can be made in the computation by using shell elements 
due to the reduction in the number of nodes that have to be considered even though 

there are additional degrees of freedom and the governing differential equations are a 

great deal more complex. 

ABAQUS provides two types of shell element, those that use 5 degrees of 
freedom at each node (3 displacement and 2 rotational components) and those that use 6 

degrees of freedom at each node (3 displacement and 3 rotational components). The 

elements where 5 degree of freedom are allowed can be more economical in terms of 

computing and storage but elements with 6 degrees of freedom are better able to model 

the curved surfaces caused by deformation of the model. There are two methods to 

define the cross sectional behaviour of a shell. When the *SHELL GENERAL 

SECTION option is used, the linear moment-curvature and the force-membrane 

relationships are defined and the calculations are carried out in terms of the section 

forces and moments. When the *SHELL SECTION option is used the cross sectional 

behaviour of the shell element is calculated by numerical integration at any number of 

calculation points that may be defined through the thickness of the element. The 

*SHELL SECTION option is used throughout this work with the number of calculation 

points through the thickness of the shell element set at five. 

In addition to this shell elements may be modelled as thick or thin shells 

depending on whether transverse shear flexibility, which allows for shear deformations, 

is provided for. (Thick shells permit this shear deformation. ) The ABAQUS user's 

manual suggests that the transverse shear is only important when the thickness of a 

uniform material is greater than a 1/15 of the span of the shell elements between 

supports. 

The shell elements provided by ABAQUS which are suitable for the static 

strength analysis of SHS joints are shown in Figure 3.5 and are: 

59 



" S3R 3-node triangular thin or thick shell, finite membrane strain 

" STRI65 6-node triangular thin shell, using 5 degrees of freedom per node 

" S4R 4-node doubly curved thin or thick shell, reduced integration, hourglass 

control, finite membrane strains 

" S8R 8-node doubly curved thick shell, reduced integration 

" S4R5 4-node doubly curved thin shell, reduced integration, hourglass control, 

using 5 degrees of freedom per node 

" S8R5 8-node doubly curved thin shell, reduced integration, using 5 degrees of 

freedom per node 

" S9R5 9-node doubly curved thin shell, reduced integration, using 5 degrees of 

freedom per node 

(a) 
3-node triangular element 

S3R 

(b) 
6-node triangular element 

STRI65 

(d) 
8-node rectangular element 

S8R, S8R5 

F-I Shell element 

" Node 

+ Integration point 

(e) 
9-node rectangular element 

S9R5 

+ 

(c) 
4-node rectangular element 

S4R, S4R5 

Figure 3.5 The different shell elements available in ABAQUS 

Elements S4R5 and S8R5 can be degenerated into triangles. However, element 

S8R cannot and in which case element STRI65 is used. This causes a conflict in that 

thick and thin shell are mixed however, the triangular element is only used sparingly to 

model parts of the chord enclosed by the area of the brace at the intersection of the joint. 

There is no appreciable deformation in this vicinity and the fact that this triangular 

element does not calculate the shear deformation within the material is not considered 

important. 
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3.5.2 Solid elements 

Solid elements are only considered in this work to model the material of a weld 

at the connection of the brace and chord members. Typically a 15-node quadratic 
triangular prism C3D15 is used or, occasionally, to fill a hole created in the mesh by the 

geometry of the weld, a 10-node quadratic tetrahedron C3D10 is required. Both of these 

(a) (b) 
15-node quadratic triangular prism 10-node quadratic tetrahedron 

C3D15 C3D10 

Figure 3.6 Solid elements available in ABAQUS to model the weld material 

These elements have 3 degrees of freedom at each node for displacement components 

only. It is recognised that there are incompatibilities in the degrees of freedom permitted 

at the nodes between the solid elements when used with shell elements; however, as 

they are only used to represent the presence of the weld material and the effect that this 

has on the shell elements in the vicinity, total compatibility is not essential. 

3.5.3 Comparison between shell elements 

Crockett (1994) compared 4-node (S4R) and 8-node (S8R) elements and 

concludes that for the cases studied, 8-node elements gave a realistic although 

conservative prediction of the joint capacity. However, the same number of 4-node 

elements produced similar results with the benefit of a reduction in the CPU time. He 

notes that he considers the 8-node shell element to be more accurate than the 4-node 

shell element but does not explain very clearly why, other than to point out that 

comparisons of the strains observed between the test joints and the finite analyses were 
improved. 

Van der Vegte (1995) undertook a more serious study of different element types 
in modelling a simply supported plate with ten elements and a perpendicular force at the 
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mid point. Van der Vegte concludes that 4-node and 8-node thin shell elements have 
benefits in the lower storage space and CPU time required, but are less accurate than the 
8-node thick shell elements as quadratic interpolation functions have been used to 

calculate the displacements in the latter. (The author would have expected that quadratic 
interpolation is used on the 8-node thin shell element as well and that any improvement 
in the accuracy may be due to the increased number of nodes. ) 

In a second study of a CHS X joints with 200 elements, the results are shown in 

Table 3.1. Each of the shell elements he has considered in the finite element program 

MARC has 4 gauss integration points, each with 7 calculation points at different levels 

to calculate the effects of the deformation through the thickness of the shell element. 

The limiting slenderness of the thin shell element in MARC that van der Vegte 

gives is 2y = do/to > 20. The slenderness of the chord wall of the joint compared is equal 
to 40 so it is not surprising that the results of the 8-node thin shell element compare 
favourably with the thick shell elements. No comparison is made for lower values of 

2y to compare the behaviour of the thin elements when thick shell elements should be 

used nor are these comparisons compared to a test joint to verify which element is 

giving the best results. The use of the 8-node thin shell elements demonstrates the large 

amount of CPU time that can be saved in the analysis when these elements are used. 
Number of Number of Relative Ultimate Strength 
elements nodes CPU time Load kN ratio 

8-node thick 
shell elements 200 654 1.00 466.0 1.000 
8-node thin 

shell elements 200 654 0.41 474.0 1.017 
4-node thick 

shell elements 200 227 0.50 511.4 1.097 

Table 3.1 A Comparison between three different shell elements, van der Vegte (1995) 

Van der Vegte's conclusion is that thick shell elements are the preferred element, 

although the 8-node thin shell elements could be considered for models with a large 

number of elements and where 2y > 20 to cut down on the computing time. Why he has 

concluded this from these results is unclear. He however, does note that in multi-planar 

XX joints where large transverse shear stresses may be expected to occur with equally 

loaded braces, there could be significant differences if thin shell elements were used 
instead of thick shell elements, although this is not shown. 
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3.5.4 The shell elements used in this research 

Chord slenderness ratios of bo/t0 = 9.3,15,23.8 and 35.3 are typically used in 

this research and rather than use different elements to model the behaviour with a 

possible influence on the results observed, the rectangular 8-node thick shell element 

S8R and triangular 6-node thin shell element STRI65 with quadratic interpolation have 

been used throughout. Each of these elements has five calculation points through the 

thickness of the element at each of the integration points. 

Node Brace 

Shell element 
-40 

Butt weld 

.ý 
.ý 

ý,. .ý 
The physical weld 

Figure 3.7 Example of the detail when a butt weld is assumed 

Node Brace 

Shell element 
k: 

representing 
olid element Fillet weld 

the weld 
Z 

Chord 

The FE representation The physical weld 

Figure 3.8 Example of the detail when a fillet weld is assumed 

3.6 Modelling welds 

The literature review in Chapter 2 shows that there are many different ways in 

which a weld may be modelled. The way this is implemented for the work carried out in 

this research is discussed in this section. 

Chord 
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When a butt weld is assumed, no attempt is made to include the presence of any 
weld material. Figure 3.7 shows the physical and finite element representation of the 

connection at a butt weld. When a fillet weld is assumed, then a solid element is used to 

represent the weld material in the manner shown in Figure 3.8. 

3.7 Problems caused by the 3D geometry 
Vector geometry has been used extensively in the construction of the model to 

solve the problems of 3D geometry in the diamond bird beak joints. It was also 

particularly useful in calculating the angle of rotation of plastic hinges between rigid 

plates in various yield line models to examining possible collapse mechanisms, although 

these have since been discarded as unsatisfactory. A simple example of the use of vector 

geometry in the calculation of the angle between the faces of the brace and chord is 

shown in the next section. 

3.7.1 Calculating the angle between the welded faces 

In the diamond bird beak joints, where both the chord and the brace have each 

been rotated by 450 about their own centre line axes, the angle of intersection between 

faces can no longer be worked out easily by simple geometry. The most convenient 

method is to use vector geometry where a normal vector is calculated for the faces of the 

chord c and brace b. The angle between these vectors can then be found by the dot 

product 

b. c =IM Ijpose Eqn 3.32 

Taking as an example the case where the brace and chord centre lines intersect at 900, 

where c= (Oi + 0.707j + 0.707k) and b= (0.7071 +Oj+0.707k) the angle between 

the normals is 0= 600 and therefore the angle between the face of the members is 120°. 
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4. 

Member Orientation in X joints 

4.1 Introduction 

In this Chapter the effects of member orientation will be studied for different 
forms of orthogonal X joint under axial loading. Diamond and square bird beak X 

joints will be examined in detail and comparisons made between bird beak X joints and 

similar X joints in the traditional RHS and CHS configurations. 
In order to understand the fundamental behaviour of the diamond bird beak X 

joints, a detailed study was necessary to develop an understanding of how the failure 

modes are affected by the section orientation. During the course of the study the 

parameters for the chord length L0, width ratio ß, chord slenderness bo/to and the 

material yield strength fy were varied to observe the effect on the joint capacities. A 

hybrid joint, the square bird beak joint is studied as a comparison to examine the 

variation of the effect of chord length and the differences in the failure mechanisms. 

A limited amount of experimental work has been carried out at Nottingham 

University by Grunberg (1994) and Fundament (1995), the results of this work are 

reported and used to validate the models used in the finite element analysis. 

In order that comparisons can be made to assess the advantages and 
disadvantages of the bird beak joint with other joint arrangements, a limited number of 

traditional RHS and CHS joints were analysed. The differences in the failure modes are 

discussed and comparisons made between the joint capacities. 

4.2 Definition of terms used in this Chapter 

To avoid any confusion in the meaning of the terms used in this Chapter, they 

are defined in this section. 

4.2.1 The joint capacity F., 1 

The joints studied in this Chapter exhibit many different forms of behaviour, in 

the majority of cases a maximum load is attained. The joint capacity Fu, I is defined as 

the maximum load attained during the test or analysis, or if a maximum load is not 

attained then the load reached with an indentation of 3%bo. 
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4.2.2 Load deformation curves 

In order to assess the stiffness and joint load capacity of the finite element 

models or experimentally tested joints, load/indentation curves and load/lozenging 

curves are examined. The indentation is taken as the change in the distance between a 

point on the brace (approximately a distance of bl from the toe of the brace) to the 

middle corner of the chord. The lozenging is the change in the overall width of the 

section measured cross the chord at a point directly under the centre line of the brace as 

shown in Figure 4.1. 

Indentation 

Figure 4.1 The definition of datum lengths for "indentation" and "lozenging" 

4.2.3 Descriptions of chord failure 

The term "crushing" is used in reference to the failure of the chord when there is 

a decrease in the vertical dimension along the whole length of the chord. The term 

"lozenging" is used only when the deformation occurs in the vicinity of the brace and 

the cross section shape at the end of the chord remains unchanged. 

4.2.4 The Chord length, Lo 

The chord length refers to the whole length of the chord, shown in Figure 4.2a 

and not the length of the chord in the finite element models. 

4.2.5 Chord width ratio ß 

In the square bird beak joint, the chord width ratio is still defined as bl/bo, even 

though the orientation of the chord means that this not the true width ratio of the joint. 

(The width of the brace is bl, whilst the width of the chord is bo/sin 450) 
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4.3 The model details for the X joints studied 
The X joints considered in this Chapter and the method of loading are shown in 

Figure 4.2. In the diamond bird beak joint both the chord and brace members are 

rotated through 450 about their own centreline axes. The square bird beak joint, where 

only the chord is rotated by 450 about its own centre line axis, is studied as it may be a 

necessary hybrid joint in some structural situations. Studying the behaviour of this joint 

may also extend our understanding of the diamond bird beak joint system. Traditional 

RHS and CHS X joints formed in the conventional way are studied to provide bench 

marks for comparison with bird beak joints and consequently are not examined in such 

great detail. 

(a) Diamond Bird Beak X Joint (b) Square Bird Beak X Joint 

(c) Traditional RHS X 

Figure 4.2 The different forms of X joint studied in this Chapter 

67 

(d) CHS X Joint 



4.3.1 The finite element meshes 

X joints with only axial forces applied to the brace members have three planes 

of symmetry. By taking advantage of this symmetry only an eighth of the joint need be 

modelled, with the rest of the joint represented by the boundary conditions imposed at 

the planes of symmetry. An example of some of the meshes used for these finite 

element models, representing the different forms of X joint analysed, are shown in 

Figure 4.3. 

All the elements used in the X joint models are 8-node thick shell elements, 

ABAQUS element S8R described in Chapter 3. 

(c) Traditional RHS X joint 

Figure 4.3 Examples of the finite element meshes for the X joints considered 

The distribution of the shell elements was determined by running simple models 

to determine the stress gradients and the forms of failure that occurred along the chord 

as the length was increased. This led to a very high mesh density in the vicinity of the 
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(d) CHS X joint 



brace and very few elements at the end of the chord for very long joints (not shown 

above). 

4.3.2 Mesh connectivity and weld considerations 

Due to the different joint types considered in this Chapter, alternative solutions 
have had to be found to connect the meshes for the brace and the chord. In the 
following sections the methods used to connect the meshes are described, recognising 

that in the design guide recommendations, fillet welds are not permitted in all cases. 
It is appreciated that the presence of a fillet weld can significantly affect the 

strength of some joints and that this effect will vary between the different joint types 

considered. When the fillet weld influences the joint strength, the total joint capacity 
becomes dependent on the size of the weld chosen, as the effective branch/chord width 

ratio varies in such cases. 

4.3.2.1 The diamond bird beak X joints 
The method used to connect the brace to the chord for the diamond bird beak 

can be seen in Figure 4.3 and in greater detail in Figure 4.4. 

Elements representing 

the b 

Figure 4.4 The connection between brace and chord elements 

When a solid element representing the material of a fillet weld was added to this 

mesh, the sloping faces of the brace and chord distorted the solid element to such an 

extent that the analysis could not be performed. For this reason no fillet welds were 

modelled in the diamond bird beak X joints and a butt weld connection was assumed. 

The validity of this approach can in someway be justified by the fact that: 
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" the angle between the face of the brace and the chord is 120°, which is also the 

limiting angle, above which fillet welds are not recommended. (Packer et al 
1992)(IIW 1989) 

" fillet welds are generally used only up to a throat thickness of 8mm, whereafter butt 

welds are recommended (IIW 1989) 

" that when using grades of steel higher than 43C and thicknesses greater than 8mm, 

preheating of the joint for a fillet weld may be required, making butt welds more 

economic. 

" this study is considering the fundamental behaviour of the bird beak joints and the 

presence of weld material may obscure a failure mechanism and the true strength of 

the joint. 

The geometry required for fillet and butt welds in this joint is shown in Figure 

4.5. Where "L" is the leg length and "a" is the throat thickness of the fillet weld and is 

calculated as the greater of 

_ 
Capacity 

a Weld strength. Weld Length 
Eqn 4.1 

or 

Material strength a= Load function xxt, Eqn 4.2 
Weld strength 

where the load function is the greater of 
Applied factored load 

or Members tension capacity 

Applied factored load 
Joint Capacity 

Assuming that the welded joint is to have a tensile strength equal to the joint capacity 

this gives a throat thickness of 8.06mm for S 275 JO (Grade 43C) steel 90x9Ox6.3mm 

branch member and E43 21R electrode. 
The design strength of the butt weld may be taken as the strength of the brace, 

providing that the electrodes used have at least the same yield and tensile properties as 

the steel used in the brace. 
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2mm Max 

60" 

to 2.5mm 

Hmin = ti 

IL 

2a 

2 to 3mm 

Butt weld 

Figure 4.5 Examples of the different types of weld 

4.3.2.2 Square bird beak X joint 

Due to the orthogonal nature of the geometry of this joint there were no 

problems fitting the brace member to the chord and the finite element analysis could be 

performed using solid elements to model the weld material. Fillet welds may be used 

for the sides of the brace members perpendicular to the longitudinal axis of the chord 

where the angle of intersection between the faces is 900. However, for the sides parallel 

to the longitudinal axis of the chord where the angle of intersection is 135°, butt welds 

are recommended by the design codes as the angle is greater than 1200. 

Brace 

Fillet Weld 

Butt Weld 

Chord 

Figure 4.6 Reccontmended positioning of fillet and butt weld on the square bird beak joint 

4.3.2.3 Traditional RHS X joints 

Due to the simple orthogonal nature of the geometry of the traditional RHS X 

joints where 0=900, the angle between all the faces of the brace member and the chord 

is a right angle. Therefore there are no problems in connecting the elements in the brace 

and the chord and adding solid elements to represent the fillet weld material. 
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The preferred method of welding a traditional RHS X joint is to use a fillet weld 

providing it is within the design recommendations' limits, as it is usually more 

economic than a butt weld. In addition to this the presence of a fillet weld can 

significantly increase joint capacity by increasing the effective width ratio of the joint. 

4.3.2.4 CHS X joints 

The complex connection between brace and the chord members is achieved 

using an automatic mesh generation program, FEMVIEW (1989), that calculates all the 
intersection points at the connection. 

The angle of intersection between the walls of the chord a nd the brace members 

varies around the joint and (with the possible exception of small width ratio joints (ß < 

0.5) where the angle of intersection everywhere is less than 1200 when 0=900), 

fillet/butt or butt welds are the recommended methods of welding CHS sections. For 

the width ratio considered in this Chapter (0=0.6) fillet/butt or plain butt welds should 

be used. 

4.3.3 The type of weld assumed in the finite element models 

In the previous four sections, the reasons why fillet welds cannot be used for 

some of the welded joints are discussed. In addition to these reasons the designer or the 

prefabricator may have a preference for a butt weld, as a large fillet weld is unsightly 

and difficult to manufacture in terms of quality. 

Assuming fillet welds for all the welded connections could lead to an 

overestimation of the joint capacity and be against the recommendations in the design 

guidance in some cases. Assuming a mixture of fillet welds and butt welds in line with 

the design guidance has the problem that true comparisons of the joint capacity cannot 

be made between the joints where different welding techniques are used. In addition to 

this, should a fillet weld be replaced by a butt weld for whatever reason, then the joint 

capacity will be overestimated. If all the welds are assumed to be butt welds then true 

comparisons can be made between the different joint types because they are all welded 

in the same manner and if a butt weld is replaced by a fillet weld then the joint capacity 

will be underestimated, a safer alternative. 

Due to problems of modelling the weld material for a fillet weld in the diamond 

bird beak models discussed in section 4.3.2.1 and so that comparisons can be made of 

the true strength of all the joint configurations considered, no welds were modelled in 
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any of the models, i. e. butt welds were assumed throughout. The only exception to this 

are the traditional RHS joint where the increase in the strength of the joint with a weld 

was investigated as it is unlikely that this type of joint will be butt welded. 

4.3.4 The material properties used in the analysis 

To facilitate the theoretical analysis of bird beak joints, which was the original 
intention of this research, elastic perfectly plastic material properties were assumed in 

all the models. The only exceptions to this are the joints used for benchmark validation 

of the finite element work where the material properties of the test joints themselves 

were simulated. This is unlikely to make a large difference to the joint capacity when 

loaded in compression as the strain hardening of the steel at joint failure will be low. 

The material used in the analyses was assumed to be S 275 JOH, Grade 43C 

steel with Young's Modulus E= 207 kN/mm2 and a yield stress fy = 275 N/mm2. 

4.3.5 Method of loading 

An axial compressive force is applied to the brace members of all the X joints 

analysed in this Chapter. The load is applied uniformly to all the nodes at the end of the 

brace, with only half the load applied to the nodes lying on the planes of symmetry. 

4.3.6 Convergency tests 

In order to achieve the optimum efficiency in the analysis of the models, 

balancing accuracy and CPU time, the appropriate mesh size of the models was 

investigated. One external factor which was considered important was that the analysis 

of all the models could be completed within two CPU hours ön the DEC Alpha 

workstations at Nottingham University, to avoid the slow turn around of the twenty 

four CPU hour queue. The reason for the selection of each mesh is briefly discussed in 

the following sections. 

4.3.6.1 Diamond bird beak X joint 

Examples of the meshes used in the convergency study for the diamond bird 

beak joint are shown in Figure 4.7. The load/indentation curve, shown in Figure 4.8, for 

the coarse mesh shows the joint strength to be 2% greater than the medium mesh. There 

is a small decrease (I%) in the joint strength of the fine mesh however, the CPU time 

increased from 1.75hrs to 4hrs. 
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This decrease in the joint capacity, indicating an improvement in the accuracy, 
does not justify the increase in the CPU time required to analyse the model. The 

medium mesh is used in all further analyses. 

Figure 4.7 The three diamond bird beak meshes used in the convergence study 
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(a) Coarse mesh 
(240 elements) 

(b) Medium mesh 
(790 elements) 

(c) Fine mesh 
(1175 elements) 
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Figure 4.8 The results of the convergency study for the diamond bird beak X joint 

4.3.6.2 Square bird beak X joint 

The three meshes used in the convergency study are shown in Figure 4.9. The 

load/indentation curve for the coarse mesh, shown in Figure 4.10 differs from the 

medium and fine meshes by a considerable amount (15%) and it may be reasonable to 

assume that increasing the element size significantly affects the failure mechanism. 

There is however, only a very small difference between the medium and the fine 

meshes (<1%), therefore it is justifiable to use the medium mesh for further analyses. 
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Figure 4.9 The three square bird beak meshes used in the convergency study 
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(a) Coarse mesh - 285 elements (b) Medium mesh - 870 elements 

(c) Fine mesh - 1294 elements 
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Figure 4.10 The results of the convergency study for the square bird beak X joints 

4.3.6.3 CHS X joint 

The meshes used in the convergency study are shown in Figure 4.11 The 

load/indentation curves shown in Figure 4.12 for the two different meshes used in this 

study gave virtually identical curves. It was not thought necessary to run a fine model as 

the results were only being used to compare with the bird beak joints. The coarse mesh 

is used in the comparisons. 

(a) Coarse mesh - 342 elements (b) Medium mesh - 730 elements 

Figure 4.11 The two CHS meshes used in the convergency study 

In the light of further experience it is regretted that the mesh for these analyses 

was not further refined. 
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Figure 4.12 The results of the convergency study for the CHS X joints 

4.3.6.4 Traditional RHS X joint 

. The variation of the joint capacities from the load/indentation curves shown in 

Figure 4.13 between the three models (Figure 4.14) used in the convergence study is 

not as conclusive as some of the previous studies. 
120 
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Figure 4.13 The results of the convergency study for the traditional RHS X joints 

Although the difference in joint capacities between the coarse-medium and the 

medium-fine mesh is tending to converge, true convergence is not achieved. However, 
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the CPU time for the fine mesh has increased to 2.8hrs, so a trade off in the accuracy of 
the joint capacity against the CPU time taken resulted in the medium mesh joint being 

used in further analyses. 

(a) Coarse mesh - 410 elements (b) Medium mesh - 696 elements 

(c) Fine mesh - 978 elements 

Figure 4.14 The three traditional RHS meshes used in the convergency study 

4.3.7 Validation of the bird beak models 

Although finite element analysis is a very useful and accurate tool for analysing 

joint strength, it is important to validate the finite element models to ensure that the 

joint capacity and failure mechanism are correctly predicted in the analysis. Using the 

physical data from the joints tested by Grunberg (1994) and Fundament (1995) in the 

civil engineering laboratories at Nottingham University, four finite element models 

were analysed to compare the results and validate the finite element models. The details 

of the joints tested are given in Table 4.1 and the engineering material properties in 

Figure 4.15. The experimental joints tested were fabricated using fillet welds around 

the brace members. 
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Chord Chord Brace Chord Brace 
Length L0 Size b0 Size bi bl/bo Thickness Thicknes 

mm mm mm to mm s t, mm 

Diamond bird 520 149 90 0.6 6.2 6.25 
beak X joint 

Diamond bird 1000 149 90 0.6 6.2 6.25 
beak X 

. 
joint 

Square bird 520 149 90 0.6 6.2 6.25 
beak X joint 
Square bird 1000 149 90 0.6 6.2 6.25 
beak X joint I -i 

Table 4.1 Details of the joints tested by Grunberg (1994) and Fundament (1995) 

Brace Chord 
Stress Strain True True Stress Strain True True 

N/mm2 Stress Plastic N/mm2 Stress Plastic 
N/mm2 Strain N/mm2 Strain 

0 0 0.0 - 0 0 0.0 - 
400 0.00193 400.8 0 320 0.00153 320.5 0 
400 0.04159 416.6 0.03882 333 0.02240 340.5 0.02061 
486 0.110 539.5 0.10243 400 0.05115 420.5 0.04834 
486 0.260 612.4 0.22918 462 0.110 512.8 0.10281 
360 0.310 471.6 0.26809 462 0.270 586.7 0.23747 

350 0.310 458.5 0.26848 

Table 4.2 The stress/strain relationship of the test joints 

50() 

- ' Z 7" 77 n 400 

`n 30() ----'------ 

200 -- -Test Coupon 

100 

FE representation 

(1 5 10 15 20 25 30 35 
% Strain E 

Brace member (90x9Ox6.3mm) 

500 

400 
e 

300 

200 -----'--- Test Coupon 

-"- FE representation 

100 --ý--ýý 

05 10 15 20 25 30 35 
k Strain F. 

Chord member (150x l 5Ox6.3mm) 

Figure 4.15 The engineering material properties of the joints tested 
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The comparison between the finite element analyses and the experimental test 

joints is made in terms of the average indentation across the chord (by dividing the 

measured deflection by 2) and the lozenging of the chord. 
The load/indentation and lozenging curves can be seen for the diamond bird 

beak X joint in Figure 4.16 and Figure 4.17, and for the square bird beak X joint in 

Figure 4.18 and Figure 4.19. Although the finite element models did not have any 

weld material modelled there is a very good correlation between the test joints and the 

finite element models. The joint capacity in most cases is correctly predicted and a 

good estimate of the stiffness of the joint is achieved. On the basis of the fair 

comparison of these results, it is considered that the finite element models are 

validated even though no welds were modelled and that they can be expected to give 

reasonable estimate of the physical joint capacity. 
JUU 

'b 
ci 

,9 250 

200 
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100 

50 

0 

1 

-------------- ---- , ------- 

3 
------------------ 

ai 
0 10 20 30 40 50 60 

Chord Length Ratio a 

Degree of freedom permitted to the nodes at the end of the chord 
I Encastre, i. e. no movement or rotation permitted 
2 Freedom to move in the longitudinal direction of the chord 
3 Freedom to move in the longitudinal direction of the chord and rotate about any axis 
4 None i. e. complete freedom 

Figure 4.20 The effect of length and boundary conditions on the joint capacity for the 
diamond bird beak X joint 
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Model Chord Brace Boundary Failure 
load 

jo 
mm 

a 
2La/bo 

bo 
mm 

to 
mm 

bi 
mm 

t1 
mm 

Condition F,,, I 
kN 

B45V10 400 5.3 150 6.3 90 6.3 1 282.2 
B45V17 800 10.6 150 6.3 90 6.3 1 205.0 
B45V16 1400 18.7 150 6.3 90 6.3 1 167.0 
B45V 14 2000 26.7 150 6.3 90 6.3 1 160.3 
B45V19 3800 50.7 150 6.3 90 6.3 1 158.5 
B45V9 450 6.0 150 6.3 90 6.3 2 239.0 

B45V30 800 8.0 150 6.3 90 6.3 2 170.0 
B45V32 1400 18.7 150 6.3 90 6.3 2 162.3 
B45V8 450 6.0 150 6.3 90 6.3 3 176.0 

B45V31 800 8.0 150 6.3 90 6.3 3 134.8 
B45V33 1400 18.7 150 6.3 90 6.3 3 142.5 
B45V5 400 5.3 150 6.3 90 6.3 4 85.0 

B45V 12 600 8.0 150 6.3 90 6.3 4 104.5 
B45V3 800 10.7 150 6.3 90 6.3 4 123.5 
B45V7 1400 18.7 150 6.3 90 6.3 4 138.8 
B45V2 2000 26.7 150 6.3 90 6.3 4 146.0 
B45V15 3000 40.0 150 6.3 90 6.3 4 158.6 
B45V4 3800 50.7 150 6.3 90 6.3 4 158.6 
B45V1 6000 80.0 150 6.3 90 6.3 4 158.6 
B45V34 450 6.0 150 6.3 90 6.3 5 85.3 
B45V35 800 10.6 150 6.3 90 6.3 5 124.9 

Boundary conditions a t the nod es at the end of the chord 
1 Encastr6, i. e. no movement or rotation permitted 
2 Freedom to move in the longitudinal direction of the chord 
3 Freedom to move in the longitudinal direction of the chord and rotate about any 

axis 
4 None i. e. complete freedom 
5 Symmetrical boundary conditions, i. e. restrained from moving in the longitudinal 

direction of the chord and rotating about the two axes perpendicular to this 

Table 4.3 The variation of joint capacity with chord length and boundary conditions for the 
diamond bird beak X joint 

4.4 The numerical results for the diamond bird beak X joints 

The main part of this investigation on bird beak joints has involved the 

diamond bird beak. The results of the finite element investigation are reported in this 

section and discussed in the next. 
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4.4.1 The effect of chord length LO and boundary conditions on the strength of 
diamond bird beak joints 

During the initial investigations it was found that the chord length and the 
boundary conditions at the end of the chord had a significant effect on the joint 

capacity. This effect has also been observed in CHS joints (van der Vegte 1995). The 

results of the analyses for variation of chord length and the boundary conditions at the 

end of the chord are given in Table 4.3 and shown in Figure 4.20. 

4.4.2 The effect of changing the chord width ratio 0 and the chord wall 

slenderness ratio on the strength of diamond bird beak joints 

In this part of the investigation the chord length is kept constant a= 40 (L o= 
3000mm), whilst the parameters for chord slenderness bo/to, chord width ratio ß, yield 

stress fy and brace thickness tl are varied. The results of the finite element analyses are 

given in Table 4.4. 

Model Chord 
thickness 

Chord 
slenderness 

ratio 

Brace 
width 

Chord 
width 
ratio 

Yield 
stress 

Joint 
capacity 

to 
mm 

2Y= bo/to bl 
mm 

ß= bl/bo fy 
N/mm2 

Fß,, 1 
kN 

6BETA3 4.25 23.8 45 0.3 400 88.9 
6BETA4 4.25 23.8 60 0.4 275 69.9 
6BETA6 4.25 23.8 90 0.6 275 83.0 
6BETA8 4.25 23.8 120 0.8 275 110 
BETA3 6.3 23.8 45 0.3 275 126 
BETA4 6.3 23.8 60 0.4 275 135 
BETAS 6.3 23.8 75 0.5 275 144 
BETA6 6.3 23.8 90 0.6 275 158.5 
BETAT 6.3 23.8 105 0.7 275 176 
BETA8 6.3 23.8 120 0.8 275 200 
BETA9 6.3 23.8 135 0.9 275 225 

BETAIO 6.3 23.8 150 1.0 275 336 
IBETA5 6.3 23.8 75 0.5 400 198 
1BETA9 6.3 23.8 135 0.9 400 310 
1BETA3 10.0 15.0 45 0.3 400 369 
1BETA6 10.0 15.0 90 0.6 400 472 
1BETA4 12.5 12.0 90 0.4 400 540 
2BETA3 10.0 15.0 45 0.3 275 261 
2BETA5 10.0 15.0 75 0.5 275 310 
2BETA7 10.0 15.0 105 0.7 275 367 
2BETA9 10.0 15.0 135 0.9 275 462 
4BETA3 12.5 12.0 45 0.3 275 386 
4BETA5 12.5 12.0 75 0.5 275 446 
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4BETA7 12.5 12.0 105 0.7 275 526 
4BETA9 12.5 12.0 135 0.9 275 649 
5BETA5 16.0 9.4 75 0.5 275 676 
5BETA7 16.0 9.4 105 0.7 275 814 

Table 4.4 The finite element results of the parameter study, chord length a= 40 

The variation in the brace thickness ti and low width chord ratio 0 joints are 
considered separately in Table 4.6. 

There is no restraint on the end of the chord in these analyses. However, this 

should not affect the joint capacity as can be seen in Figure 4.20 at a= 40, that the 
boundary conditions no longer affect the joint capacity. 

Model Chord 
thickness 

Yield 
stress 

Joint 
capacity 

4 F.,, 

toe fy 

4F.,, 

to1.6 fy 

to 
mm 

fy 
N/mm2 

F,,, 1 
kN mm 0.4 

6BETA3 4.25 400 88.9 49.22 87.80 
6BETA4 4.25 275 69.9 56.29 100.41 
6BETA6 4.25 275 83.0 66.84 119.23 
6BETA8 4.25 275 110 88.58 158.01 
BETA3 6.3 275 126 46.18 96.42 
BETA4 6.3 275 135 49.47 103.30 
BETAS 6.3 275 144 52.77 110.19 
BETA6 6.3 275 158.5 58.09 121.29 
BETAT 6.3 275 176 64.50 134.68 
BETA8 6.3 275 200 73.30 153.04 
BETA9 6.3 275 225 82.46 172.17 

BETA 10 6.3 275 336 123.14 257.11 
IBETA5 6.3 400 198 105.54 104.16 
1BETA9 6.3 400 310 165.25 163.09 
1BETA3 10.0 400 369 53.67 92.69 
IBETA6 10.0 400 472 68.65 118.56 
IBETA4 12.5 400 540 78.55 94.92 
2BETA3 10.0 275 261 37.96 95.36 
2BETA5 10.0 275 310 45.09 113.26 
2BETA7 10.0 275 367 53.38 134.09 
2BETA9 10.0 275 462 67.20 168.80 
4BETA3 12.5 275 386 35.93 98.69 
4BETA5 12.5 275 446 41.52 114.03 
4BETA7 12.5 275 526 48.97 134.48 
4BETA9 12.5 275 649 60.42 165.93 
5BETA5 16.0 275 676 38.41 116.43 
5BETA7 16.0 275 814 46.25 140.20 

Table 4.5 The normalised joint capacities of the parameter study 
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4.4.3 The effect of brace thickness tl on the strength of diamond bird beak 

joints 

The effect of changing the brace thickness have been separated out from the 

main parameter study because the joint capacity is only affected at very low chord 

width ratios and the different nature of the failure which can be seen in Figure 4.22. 

The results of the finite element analyses are shown in Table 4.6. 

Model Chord 
thickness 

Chord 
thickness 

ratio 

Brace 
width 

Chord 

width 
ratio 

Brace 
thickness 

Failure 
load 

to 
mm 

2y = bo/to bi 
mm 

(3 = b1/b0 tj 
mm 

F., 1 
kN 

BETA 1 6.3 23.8 15 0.1 6.3 60.5 
BETA2 6.3 23.8 30 0.2 6.3 123 

2BETA 1 10.0 15.0 15 0.1 5.0 48.0 
2BETA2 10.0 15.0 30 0.2 6.3 118 
3BETA 1 6.3 23.8 15 0.1 5.0 48.0 
3BETA5 6.3 23.8 75 0.5 5.0 144 
3BETA7 6.3 23.8 105 0.7 5.0 173 

Table 4.6 The finite element results of the parameter study for the change in brace thickness 

with the chord length Lo constant (a = 40) 

4.5 Discussion of the results for the diamond bird beak X joint 

Using the information from contoured stress plots, displaced shape diagrams 

and load/indentation curves the results given in Tables 4.3,4.4 and 4.6 are examined 

and discussed to analyse the different forms of failure which may be occurring. 

4.5.1 The presence of yield lines at the corners of the chord 

The presence of yield lines at the corners of the chord is verified by the 

example shown in Figure 4.21 for joint B45V7 ((=18.6), where the transverse stress 

across the chord are shown for three different levels through the thickness of the shell 

element. (Where the blue areas indicate a compressive stress, the green areas indicate 

low tensile or compressive stresses (approximating to zero) and the red areas a tensile 

stress. ) Forming a stress block for the different stress levels shown for the three 

different levels reveals the presence of a plastic or elasto-plastic hinge, an example of 

which is also shown in Figure 4.21 for the top corner of the chord 

87 



Ono I ozz I..; 

! 
Ell 

F, --now U 
(a) Outside surface 

ý> 
IS'=! 

-a 

0 

+6 

(b) 

Middle layer 

Inside surface 

(d) A stress block formed by the stresses 
at the top corner of the chord 

Figure 4.21 Transverse stress in B45V7 at maximum load (138.8 kN) showing the presence 
of yield lines 

4.5.2 The effect of changing the chord width ratio 0 and the chord wall 

slenderness ratio on the strength of diamond bird beak joints 

The effect of changing the brace width ratio ß, chord wall slenderness bo/t� and 

the yield stress fy are considered in this section. The effect of changing the brace wall 

thickness is considered separately in the next section. The chord length ratio a= 40, so 

the asymptotic strength of the joint is observed, removing any influence caused by the 

chord length and the boundary conditions at the end of the chord. The results of the 

investigation are given in Table 4.4. 

The effect of the variation of the chord width ratio 0 on the joint capacity is 

illustrated by a series of finite element analyses carried out for the diamond bird beak 

joint where bo/to = 23.8 shown in Figure 4.22. Examination of Figure 4.22 reveals that 

there are three different regimes of failure, when ß50.2,0.2 < 03 < 0.9 and ß >_ 0.9. 

For the range 0,2 <_ ß <_ 0.9 the failure mechanism is the same as that examined 

previously, a general plasticification of the chord walls. For the nearly full width joint, 

when 0 >_ 0.9 the increase in the joint capacity is attributed to the crushing of the brace 

Middle layer 
0i Outside surface 

88 

(c) Inside surface 



members as they are compressed together. The toe of the brace shows considerable 

yielding and deformation as the brace members transfer the axial load directly to each 

other. This is a very complex failure mechanism and no further work has been done to 

estimate design guidance. 
icn 

0 

125 
w 

100 

75 

50 

25 

0 
0.0 

" to = 4.25mm 

to = 6.3mm 

t0 = lOmm 

x to = 12.5mm 

0 
to = l6mm 

------------------------- -- 

-------- " 

----------------------- 

0.2 0.4 0.6 0.8 1.0 
Chord Width Ratio (3 

Figure 4.22 The variation of the joint capacity with chord width ratio ß and chord wall 
thickness, normalised by the plastic moment capacity per unit length of the chord wall m, 

Figure 4.22 shows the variation of the normalised joint capacity with chord 

width ratio (3 for all the results where the yield stress fy = 275N/mm2. (N. B. some of 

the results from Table 4.6 have been in included into this figure to demonstrate the 

change in behaviour at low chord width ratio values (3. ) These results are normalised 

against the chord wall plastic moment capacity per unit width mp=to2 fy/4, with the 

values given in Table 4.5, on the assumption that the failure mechanism is principally 

dependent on chord wall flexure. The spread of the results in Figure 4.22 suggests that 

this assumption is not correct as it can be seen that increasing the chord wall thickness 

decreases the non-dimensional strength. It was observed that if the chord thickness to is 

raised to the power 1.6 then all the results converge to a single curve in the range 0.2< 

0 <_ 0.9. This is a clear indication that the failure mechanism cannot be attributed to a 

single mode of failure, but is a combination of different modes such as membrane or 

shear yielding (f (to) ), plastic failure of the chord wall (f (to) ) and possibly the 

rotational stiffness of the chord wall (f (to) ). 
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4.5.2.1 The variation of the joint capacity with the chord width ratio ß and chord 

wall slenderness bo/to 

Analysing the results from the range 0.2 0.9 and 9.4 <_ b0/to 
_< 

35.3 the 

expected joint capacity for a diamond bird beak X joint is given in Newtons by 

00 

Fu'_ 
2.6 

275 
.8 f'' 

t°2 
b° .4 

Eqn 4.3 
1-0.6ß 275 to 

The fit of the predicted joint capacities by Eqn 4.3 against the normalised results can 

be seen in Figure 4.23. Where the curve has been normalised by t°1.6 (representing the 

influence of the chord wall thickness to and 275(fy/275)0,8 (representing the influence 

of the change in yield stress fy). These are based on 25 sets of data points, yielding a 

mean of 1.029, with a Coeff. of Correlation of 1.000 and a Coeff. of Variation of 

0.0704. 

10 
ö* to =4.25mm a=40 

-o- to = 6.3mm bo = 150mm 
N9 8" to =lOmm fy= Var 

" t0 = 12.5mm to = t, 
NO t0 

= 16mm 
6 

1- N 

w 41 _ ýý, 

2 -{ / 

0 
0 0.2 0.4 

E 
0.6 0.8 

Chord Width Ratio ß 

Figure 4.23 The fit of the predicted joint capacities against the nornnalised results 

4.5.3 The effect of changing the brace thickness tl on the strength of diamond 

bird beak joints 

For joints with a very low chord width ratio, (3 
_< 

0.2, the failure mechanism is 

much simpler to understand than those studied previously. With the low chord width 
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ratio of the brace member it may be expected that failure could be attributed to 

punching shear of the chord, in which case the joint capacity could be estimated as 

1 follows (where 4 1.5 blt° is the perimeter of the brace on the chord and 
sin 45° 

allows of the inclination of the chord wall thickness). 

4-1-3 blto fy 
Fu, 1- 

sin 45° 

F�, '= 
sin450y 

= ývFl6btofy Egn4.4 
sin 45° 

However, examination of Table 4.7, which shows the punching shear capacity of the 

chord wall, the brace shear capacity and the joint failure load, reveals that for ß=0.1 

and for to = 6.3 (3BETA 1) and 10mm (2BETA1) the joint capacity is 48.0 kN in both 

cases. Clearly then these results are either wrong or there is a different failure 

mechanism operating as Eqn 4.4 has a term for to although the joint capacity does not 

change. 

In fact the joint capacity is determined by shear of the brace member and the 

joint capacity can be estimated by 

F�, =4b, tl 
f 

Egn4.5 

and given the same values for to and tl, Eqn 4.5 gives a lower joint capacity. Therefore 

punching shear of the chord (as predicted in Eqn 4.4) is unlikely to occur as the chord 

wall thickness should always be greater than the brace wall thickness (as advised by 

Packer et al 1992). 
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Model Chord 
thickness 

Chord 
punching 

Brace 
width 

Brace 
thickness 

Brace 
shear 

Failure 
load 

to 

mm 

shear 
capacity 

kN 

bl 

mm 

tl 

mm 

capacity 

kN 

F,,, I 

kN 
BETA I 6.3 120.1 15 6.3 60.0 60.5 
BETA2 6.3 240.1 30 6.3 120.0 123 
2BETA 1 10 190.5 15 5.0 47.6 48.0 
2BETA2 10 381.0 30 6.3 120.0 118 
3BETA1 6.3 120.1 15 5.0 47.6 48.0 
3BETA5 6.3 599.9 75 5.0 300.0 144 
3BETA7 6.3 840.2 105 5.0 420.0 173 

Table 4.7 A comparison between the chord punching shear capacity and the brace capacity 
to the joint capacity 

The question of why should the brace fail in shear still remains? This can be 

answered when the deformation of the joint is considered. As a compressive load is 

applied to the chord by the brace members the chord lozenges (i. e. flattens and 

widens). If the chord and the brace were not attached and the chord is free to deform 

without restraint from the brace member, then the projected shape of the brace on the 

chord changes. This is shown in Figure 4.24, where the drawing on the right shows 

both the original and the deformed outlines of the brace on the chord. 

In a joint where the brace and the chord are attached, the brace acts to restrain 

the deformation of the chord and it is this action which causes the shearing of the 

brace. This is confirmed by finite element analyses where the brace thickness has been 

varied, shown in Table 4.7 where all the results shown agree very closely with the 

predicted shearing of the brace values. The only exceptions are the larger width ratio 

joints (3BETA5 and 3BETA7) where the strength of the joint is almost independent of 

the brace thickness. This can be seen by comparing joints BETAS (144 kN) and 

BETAT (176 kN) given in Table 4.4, with 3BETA5 (144kN) and 3BETA7 (173kN) 

given in Table 4.7, where the only difference is the brace thickness ti. 
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Chord undeformed Chord deformed 

fide Eleval 

ig action in 
ce wall 

Figure 4.24 The cause of the shear action in the brace 

In the series of finite element analyses where the variation of the joint capacity 

with the width ratio ß is observed the brace wall thickness is maintained at ti = 

6.3mm, unless otherwise stated, so that the effect of the restraint of the brace on the 

chord remains constant for the size of the section. This has led to some theoretical 

stocky sections being used for the brace member. Should more realistic (of normal 

slenderness) sections be used, then shearing of the brace member would be more likely 

to occur. It is therefore recommended that all brace members should be checked to 

ensure that their shear capacity is greater than the joint capacity and not to rely on 

shear failure only occurring at a value of 050.2. 

4.5.4 The effect of chord length 4 and boundary conditions on the strength of 
diamond bird beak joints 

Examination of Figure 4.20 shows that the variation of joint capacity with 

chord length for the diamond bird beak X joints can be divided into three different 

groups according to the chord length: 

" short joints (5 <a< 10) where the rate of change of joint capacity with chord 

length is rapid and uniform 
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" medium joints (10 <_ a< 40) where the rate of change of the joint capacity with 

chord length is approximately uniform and with a lower rate of change than the 

short joints 

" long joints (a >_ 40) where the joint capacity is constant with increasing chord 
lengths 

Figure 4.20 shows four different boundary conditions applied to the ends of the 

chord and the increase in the joint capacity observed as more restraint is applied to the 

ends of chord can be clearly seen. The intermediate boundary conditions (2 & 3) are 

not chosen to represent any particular physical condition, but to show how the joint 

capacity observed may vary between the extremes of fully encastre and complete 

freedom. 

Figure 4.25 shows the simplified behaviour of the failure of the chord when 

there is no restraint at the end of the chord. When a< 10 there is an overall crushing 

of the chord and when a> 10 there is only lozenging of the chord at the centre line of 

the joint. (This form of behaviour can be seen in the displaced shape diagrams in 

Figure 4.26 and Figure 4.29. ) It is therefore concluded that when a> 10 the chord can 

support the load applied to the brace without a failure of the end of the chord in a 

crushing mode. 
Simplified failure of the chord when Simplified failure of the chord when 

a<10 a>10 

Original profile of the chord 

----------- - ----------------- - ----- -- 

--___-----_rt-____--- ýý_ýý &-Fq-----. ---- 

Deformed profile of the chord 

Failure occurs as a complete 
crushing of the chord 

Failure occurs only as lozenging at 
the center line of the joint 

Figure 4.25 The deformation apparent in the failure of the chord with no restraint at the 

ends 

The increase in joint capacity for short chord length joints (a < 10), when the 

ends of the chord are held encastre is due to the restraint offered by the support 

conditions resisting the overall crushing of the chord (example shown in Figure 4.27) 
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and the membrane action in the chord walls caused by the deformation of the joint as 

the brace members are forced into the chord. This effect is most pronounced in short 

chord lengths (a = 5.3), decreasing as the chord length increases. At a= 10.6 the 

encastre boundary conditions at the end of the chord no longer resist the overall 

crushing of the chord as the chord can support the load without a crushing failure 

when there is no restraint at the ends of the chord. 

The decrease in the joint capacity when a= 10.6 for boundary condition 3, 

which then increases as the chord length increases is again attributed to the influence 

of the boundary conditions at the shorter chord lengths. When the chord length a< 10, 

the joint capacity is increased as the ends of the chord are prevented from being 

crushed by the boundary conditions. When the chord length is a> 10 the fact that ends 

of the chord are prevented from being crushed is no longer important as the models 

with no restraint (i. e. boundary condition 4) no longer exhibit any crushing at the end 

of the chord. Thus the joint capacities for boundary conditions 3&4 are very similar 

at this and larger chord lengths. A similar trend of the joint capacity decreasing and 

then increasing again with increasing chord length can be seen later in Chapter 6 in 

Figure 6.25 for CHS T joints (when load by the method shown in CHS3) and Figure 

6.31 for diamond bird beak T joints. 

Models were analysed with symmetrical boundary conditions (i. e. with the 

nodes restrained from moving in the longitudinal direction of the chord and rotating 

about the two axes perpendicular to this) at the end of the chord to represent the 

presence of an identical joint a chord length away from the analysed joint. (Note that 

there is no restraint preventing the cross sectional deformation of the chord. ) With 

these chord end conditions, there was a minimal increase in the joint capacity when 

compared to joints where there is no restraint at the ends of the chord. (These results 

shown in Table 4.3, are not shown in Figure 4.20 as results are virtually coincident 

with each other). 

At chord length of a> 10 the boundary conditions at the end of the chord still 

affect the joint capacity although to a lesser extent. Although Figure 4.25 assumes that 

there is no deformation at the end of the chord this is only due to the simplification. At 

a chord length of a= 18.6, Figure 4.20 shows that the restraint offered by boundary 

condition 3 in resisting the cross sectional deformation at the end of the chord is 
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minimal, so that the increase in joint capacity for boundary condition 2 must come from 

resisting the rotation of the nodes at the end of the chord. 

4.5.4.1 Displaced shape diagrams and contoured stress plots 

The contoured stress plots of the models where the ends of the chord have no 

restraint and chord length ratio 5<a< 10, an example shown in Figure 4.26, indicates 

that yielding occurs at the corners of the chord for the entire length of the chord,. This 

is consistent with the deformed shape diagrams, where the faces of the chord can be 

seen to have rotated, causing the crushing of the chord and it is reasonable to assume 

that the joint capacity is a direct function of the length of the plastic hinge and the angle 

of rotation of the hinge. This is the reason why the rate of increase in joint capacity is 

rapid and uniform in Figure 4.20 for short chord length joints with no restraints at the 

ends of the chord. The contoured stress plot where the ends of the chord are held 

encastre (shown in Figure 4.27), reveals the wide spread yielding of the chord walls 

particularly at the end of the chord caused by the restraint of the boundary conditions 

resisting the deformation of the joint. 
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Figure 4.26 The deformed shape and von Mises contoured stress plot (outside surface, 

maximum load) of aX joint B45VI2 where a=8 and there is no restraint at the end of the 
chord 

The widespread yielding of the chord wall material in the vicinity of the brace 

member, common to both cases, is due to the presence of the brace member stiffening 

the chord wall locally and the deformation of the material in this area that is required, 

so that compatibility is maintained with the deformed shape of the rest of the chord. 
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Figure 4.27 The deformed shape and von Mises contoured stress plot (outside surface, 
maximum load) of a diamond bird X joint B45VIO where a=5.33 and the ends of the chord 

are held encasire 

For the medium length joints where 10 <a< 40 the displaced and contoured 

stress plots are shown just prior to and at maximum load in Figure 4.29. In the 

contoured stress plots the yield lines can be identified at the corners of the chord 

section but there is an interesting phenomenon in the stress distribution at the end of 

the chord, where there appears to be a different form of mechanism operating. 

Examination of the displaced shape diagram shows that this part of the chord is 

actually deformed in the opposite sense to the rest of the model having passed through 

a point of zero deformation, where the original cross section shape of the chord is 

maintained. Figure 4.28 shows the exaggerated deformation of the three cross sections 

from Figure 4.29c. 

Section A Section B Section C 

<> 

<0 

Normal deformation Zero deformation Reverse deformation 

Figure 4.28 Three cross section of the chord shown in Figure 4.29c 

Comparing the diagrams just before the maximum load and at the maximum 

load, it can be seen that a large amount of deformation occurs for a very small load 
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step. The yield lines have not increased in length and the stress concentration at the end 

of the chord has increased dramatically. The reason for this is that just before the 

maximum load the plastic mechanism, i. e. in-plane yielding in the vicinity of the brace 

and the yield lines at the corners of the section, is fully developed and no further 

increase in the joint capacity can be obtained from this mechanism. The small increase 

in the joint capacity observed comes from the deformation at the end of the chord in 

resisting the deformation caused by the plastic mechanism to maintain continuity. 

(a) just before maximum load (136.1 kN) (b) just before maximum load (136.1 kN) 

(d) at maximum load (138.8 kN) 

Figure 4.29 The deformed shape and von Mises contour stress plot of the outside layer of 'a 
diamond bird beak X joint B45 V7, where a- 18.7 and there is no restraint at the end of the 

chord 

In the long joints, where a> 40 (Lo = 3000mm) the joint strength is constant 

with increasing chord length, referred to as the asymptotic joint strength and the effect 

of the boundary conditions at the end of the chord is no longer important. Regrettably 

due to the size of the model not much detail can be shown. The deformed shape 

diagram shown in Figure 4.30 reveals that most of the deformation is confined to the 

first 900mm from the brace member. The contoured stress plots display the same form 

of yielding pattern seen in the previous contoured stress plots shown in Figure 4.29, 

although the stress distribution is not confused by the presence of the end of the chord. 
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of yielding pattern seen in the previous contoured stress plots shown in Figure 4.29, 

although the stress distribution is not confused by the presence of the end of the chord. 

900 mm 
(a) Deformed shaped, zoomed in on the deformation 
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Figure 4.30 Deformed shape and von Mises contour stress plot of a long diamond bird beak 
X joint B45VI5 where a= 40 and at maximum load of 158.6kN. There is no restraint at the 

end of 'the chord 

Figure 4.31 shows the vertical and horizontal deformation of the top and 

middle corners of the chord respectively along the length of the chord. The 

deformation of the top corner of the chord is considerable at the brace member and for 

the next 50mm. At the brace there is a considerable discontinuity in the rate of 

indentation indicating local failure possibly due to punching shear. The stiffness of the 

corners of the chord and brace attract a larger proportion of the axial load transmitted 

from the brace to the chord. This can be verified by examining all the contoured stress 

plots where the stress concentration at the corners of the brace member indicates a 

significantly greater extent of yielding than the rest of the brace member. It is 

interesting to note that there is a clear change in the gradient of the slope at a point 
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approximately 450mm (3bo) along the chord from the centre line. The middle corner of 
the chord exhibits a smooth curve all the way along the length to the point where no 
deformation occurs, with a similar change in the gradient at 450mm from the centre 
line. 
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(b) The deformed profile of the corners of the chord for the I" l 000mm 

Figure 4.31 Deformed profile of the top and middle corners of the chord for the joint B45V1 

At a distance of 900mm (6bo) a point of zero deformation is reached, after 

which the deformation can clearly be seen to be reversed, tending towards zero as the 

chord length increases. Examining the data for the deformation reveals that the 
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deformation continues to oscillate between positive and negative deformation, although 
this effect is too small to be seen in the figure. 

Figure 4.32 shows the deformation of the chord wall for the joint B45 V1 at the 

last load measured (151.5kN), at different cross sections along the length of the chord 

from the centre line of the joint. The restraint offered by the brace member on the 

chord wall can clearly be seen in the first three cross sections and the twisting nature of 

the deformation of the remainder of the chord wall in the other cross sections. 
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Figure 4.32 Cross section deförmation of the chord in joint B45V1 at last recorded load 
(151.5 kN) 

4.5.4.2 Moment along the hinge at the corner of the chord 

In order to calculate the magnitude of the moment at the middle corner along 

the length of the chord, the transverse stresses (across the chord) at the five different 

levels in the shell element, shown in Figure 4.33, were summed up using the 

relationship expressed in Eqn 4.6. The basis of the formulation of this equation is only 

approximate. However, if it is simplified it then approximates to the elastic and plastic 

chord wall moment capacities of to2ff/6 and t02fy/4 respectively. 

Due to the nature of the finite element program ABAQUS, the stresses at the 

different levels can only be obtained at the integration points rather than the nodes. 

The exact position of the integration points is not known however, it is thought that 
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they lie close to the edge of the elements. The information used to plot Figure 4.34 is 
derived from the integration points closest to the corner of the chord. 
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Figure 4.33 The stress distribution through the shell element 

Figure 4.34 shows the magnitude of the moment acting along the middle 

corner of the chord for joint B45V 15. The plastic and elastic moments (2728 N/mm2 

and 1819 N/mm2 respectively) are drawn on the figure to provide a reference which 
define the type of moment acting in the chord wall, plastic, elasto-plastic or elastic. 

Considering the chord between 0- 450mm (3bo) from the centre line of the 
brace where a plastic moment is acting in the chord wall, the value of the moment 
(approx. 2950 N/mm2) is above the plastic moment because of a von Mises effect 
which allows the stress to reach a maximum value of 317.5 N/mm2 when the yield 

stress is 275 N/mm2. 

When considering the deflected profile of the top and middle corners of the 

chord shown in Figure 4.31, it was noted that at 450mm (3bo) there was a distinct 

change in the profile of the deformed section. Examination of Figure 4.34 reveals that 

this is also the limit of the plastic hinge. The influence of the corner of the brace can 

be seen by the small reduction in the moment acting at the corner of the chord directly 

below it. An elasto-plastic moment is acting in the chord wall between 450 - 600mm ( 

3-4 bo) from the centre line of the brace. The rate of decrease in the magnitude of 

the moment acting in the chord wall is approximately uniform between plastic 

moment capacity and zero, at 400 and 900mm (2.7 -6 bo) respectively. There is an 

elastic moment acting in the chord wall from 600mm to the end of the chord, positive 

between 600 - 900mm (4 -6 bo) and negative between 900 - 1500mm (6 - 10 bo). 
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This agrees with Figure 4.31 where the point of zero deformation was noted to be at 
900mm (6 bo) and the deformation of the section reversed thereafter. 
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Figure 4.34 The magnitude of the moment along the middle corner of the chord of the joint 
B45V15 at maximum load 158.5kN 
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Figure 4.35 A comparison between the loadlindentation curve and load/lozenging curve for 

the joint B45VI5 

4.5.4.3 Load/lozenging curves 

When the load/indentation and the load/lozenging curves shown in Figure 4.35 

and the relationship between the indentation and the lozenging shown in Figure 4.36 

are compared it is revealed that there is not a constant relationship between the 
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Elastic moment 

Corner 
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moment at the 
comer AB CD 

B 
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indentation and the lozenging. Figure 4.36 shows the relationship between the 
theoretical value of the lozenging and the observed value of the lozenging, where the 
theoretical value has been calculated by simple geometry. 

Lozenging=2 bot -( -indentation)' Eqn 4.7 
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048 12 16 20 24 28 32 

Lozenging mm 

Figure 4.36 The relationship between the indentation and the lozenging at the centre line of 
the joint B45V15 

The difference between the observed and theoretical values of the lozenging are 

attributed to the restraining action of the brace and the Z shaped deformation of the 

chord walls, which can be seen in Figure 4.32. 

4.5.4.4 Load/indentation curves 

The variation in the load/indentation curves for joints with different chord 

lengths where there is no restraint on the end of the chord can be seen in Figure 4.37. 

All the curves show the same approximate initial stiffness, although when a= 80 there 

is a marginal increase in the initial stiffness. It is very noticeable that when a< 10.6 

none of the curves reach a maximum load, but continue to gain strength due to the 

presence of the brace member restraining the lozenging of the chord. When a >_ 10.6 

all the curves reach a maximum load, although the curve shape differs considerably. 

At a= 10.6 failure occurs rapidly, possibly due to the formation of the plastic hinges 

at the corners of the chord section, whereas when a= 80 the failure occurs gradually 

and at a much larger indentation than for :,, shorter joints. 
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Figure 4.37 Load indentation curves for the diamond bird beak X joints of different chord 
lengths and no restraint on the chord ends 
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Figure 4.38 Load/Indentation curves for the Diamond bird beak X joint, chord ends held 

encastre 

Figure 4.38 shows the load/indentation curves when the ends of the chord are 

held encastre. The encastre end conditions stiffen the models considerably and 

increases the joint capacity. In the short model a=5.3 (joint B45V 10) where this 

effect is most pronounced, it can be seen that this curve reaches a maximum, has the 

highest initial stiffness and the largest joint capacity. This is completely the opposite 
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to the curves in Figure 4.37 for the chord length of a=5.3 (joint B45V5) which did 

not reach a maximum and had the lowest joint capacity. As the chord length increases 

so the initial stiffness and the joint capacity decrease until the asymptotic strength is 

attained when the curve for the load/indentation is almost identical to those curves for 

similar length joints when the ends of the chord have no restraint. 
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Figure 4.39 A comparison between long diamond bird beak X joints of the same length with 
different chord end boundary conditions 

A comparison of these long joints with different chord end conditions is shown 

in Figure 4.39. The load/indentation curves are very nearly identical. However, there is 

a distinct increase in stiffness before and after the maximum load in the model where 

the ends are held encastre. This shows that the boundary conditions at the end of the 

chord may still affect the behaviour of the joint even through the joint capacity is 

constant. 

4.5.4.5 Determining the joint capacity when the chord length is varied for the 

diamond bird beak X joint 

It is appreciated that the range of data is very limited however, for the joints 

analysed in this section, the variation of joint capacity with chord length can be 

predicted as: - 

for no restraint at the end of the chord 

F 
u, i, length - Fu, l, asymp[o[ic - 

124.7 e-o. loba Eqn 4.8 
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and for the ends of the chord encastre 

F'u, 1,1ength = Fu, l, asymptotic + 334.4 e-0- 186(x Eqn 4.9 

where the asymptotic strength FIasymptotic is determined by Eqn 4.3 

when ß=0.6, bo = 150mm to = 6.3mm and fy =275N/mm2 
The fit of these predictions against the finite element results can be seen in Figure 4.40 
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Figure 4.40 The predicted joint capacity against chord length for the diamond bird beak X 
joint 

4.5.4.6 Comparisons with the work of Ono, Iwata and Ishida 

The work carried out by Ono et al (1991) and Ishida (1993) was on T joints 

where a=6 (i. e. very short to prevent chord failure by bending). No reference is made 

to the method of supporting the joint during the test, although it appears from the 

drawings shown in Figure 2.5 that the ends of the chord are supported in some sort of 

cradle. The minimum restraint on the chord imposed by this form of support would be 

similar to boundary condition 3 describe in Figure 4.20, although there are likely to be 

additional restraints imposed by the support in addition to this. Should the same 

behaviour that has been observed in the X joints, i. e. the joint capacity is increased for 

a short chord lengths and additional restraints on the end of the chord, then it is 

possible that Ono et al (1991) may have overestimated the strength of the bird beak T 

joints that they have tested. 
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4.6 The numerical results for the square bird beak X joints 

The use of a hybrid joint such as the square bird beak joint is considered a 
possibility in a structure where the traditional and bird beak configurations 
interconnect. As a hybrid joint, the square bird beak X joint has not been studied in as 

great a detail as the diamond bird beak X joint. 

4.6.1 The effect of chord length Lo and boundary conditions on the strength of 
square bird beak X joints 

In this section the behaviour of the square bird beak X joint is investigated to 

examine what effect the change of the orientation of the brace member has on the joint 

capacity, when the parameters of chord length Lo and boundary conditions at the end 

of the chord are varied. 

Model Chord Brace Boundary 
Condition 

Failure 
load 

Lo a bo to b1 t1 End of F,,, 1 
mm 2Lo/bo mm mm mm mm Chord kN 

B90V11 400 5.3 150 6.3 90 6.3 None 70.0 
B90V20 600 8.0 150 6.3 90 6.3 None 93.3 
B90V 10 800 10.6 150 6.3 90 6.3 None 115.6 
B90V28 1400 18.7 150 6.3 90 6.3 None 128.6 
B90V12 2000 26.7 150 6.3 90 6.3 None 138.8 
B90V13 3000 40.0 150 6.3 90 6.3 None 104.1 
B90V26 3800 50.7 150 6.3 90 6.3 None 143.5 
B90V 1 6000 80.0 150 6.3 90 6.3 None 143.5 
B90V22 400 5.3 150 6.3 90 6.3 Encastr6 263.8 
B90V23 800 8.0 150 6.3 90 6.3 Encastr6 191.5 
B90V30 1400 18.7 150 6.3 90 6.3 Encastr6 167.0 
B90V24 2000 26.7 150 6.3 90 6.3 Encastre 145.1 
B90V25 3000 40.0 150 6.3 90 6.3 Encastr6 144.2 
B90V31 3800 50.7 150 6.3 90 6.3 Encastrt 143.5 

Table 4.8 The results of the finite element investigation on the effects of chord length and 
boundary conditions on the square bird beak X joint. 

The results of the finite element analyses are shown in Table 4.8. The variation of the 

joint capacity with chord length and the different boundary conditions are plotted in 

Figure 4.41 and compared to the behaviour of the diamond bird beak joint plotted as 

the dotted line. 
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4.7 Discussion of the results for the square bird beak X joint 

The variation of the joint capacity caused by the change of orientation of the 
brace member is discussed in this section using the displaced shape diagrams, the von 
Mises contoured stress plots and the load/indentation curves to observe any differences 

between the diamond and square bird beak X joints. 

4.7.1 The effect of chord length L� and boundary conditions on the strength of 

square bird beak X joints 

Examining Figure 4.43 it can been seen that the general behaviour of the square 
bird beak X joints is very similar to diamond bird beak joints and that the joint capacity 
is a little reduced throughout the entire range of chord lengths considered. The same 

classification used for the diamond bird beak X joints (short, medium and long) may 

also be applied to the square bird beak X joints with similar transition points. 
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Figure 4.43 The effect of'length and boundary conditions at the end of the chord on the joint 

capacityfor the square bird beak joint 

The short chord length joints (5 <a< 10) exhibit the same form of behaviour 

as the diamond bird beak joints and it may be assumed suffer the same form of failure, 

i. e. yield lines forming at the corners of the chord leading to a crushing of the chord. 

This assumption is based on the fact that the gradient of the lines is approximately the 

same and over the same chord length as the diamond bird beak joints. Also, the 
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restraint offered by the ends of the chord when held encastr6 strengthen the chord by 

approximately the same amount. (When a=5.3, diamond bird beak difference = 
197. OkN, square bird beak difference = 193.8kN and when a= 10.7 the difference is 

81.5kN and 75.9kN respectively) 

The medium chord length joints (10 <a< 50) exhibit a similar form of 
behaviour to the diamond bird beak joints. The joints converge to an approximate 
asymptotic strength at a chord length of a= 26.7 but true convergence does not occur 
until a= 50.7. 

The long chord length joints ((x > 50) show the same behaviour in that an 

asymptotic strength is achieved. 

4.7.1.1 Displaced shape diagrams and contoured stress plots 
Examination of the displaced shape and contoured stress plots also show 

similarities and subtle differences between the diamond and square bird beak X joints. 

Examining the displaced shape diagrams and the von Mises contoured stress 

plots shown in Figure 4.42 it can be seen that they are generally the same as for the 

diamond bird beak X joints. One very noticeable difference is the area of low (i. e. 

zero) stress under the toe of the brace. This would indicate that this area is deforming 

in the same manner as the rest of the chord face, in that a yield line has formed at the 

toe of the brace and rotated in respect to a yield line at the corner of the chord 

immediately below it. 

Figure 4.43 shows the von Mises contoured stress plots of the middle layer at 

maximum load for the diamond and square bird beak X joints. The stresses in the 

middle layer indicate where the in-plane yielding due to the membrane action of the 

chord walls is occurring (red colour). It can be seen that there is very little membrane 

action in the shorter joints, but that this increases as the chord length increases and that 

there is more membrane action in the diamond bird beak joints than the square bird 

beak joints. 
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Figure 4.42 The displaced shape and von Mises contoured stress plots for the square bird 
beak joint. for the outside surface at maximum load and no restraint at the end of the chord 

This is attributed to the orthogonal geometry of the square bird beak joint 

which allows the chord face to deform with less membrane action in the chord walls. 

This may account for the fact that all the square bird beak joints have a joint capacity 

below that of the equivalent diamond bird beak joint. 
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Figure 4.43 A contrast in the von Mises contoured stress plots between the diamond and 
square bird beakX joints for the middle layer at maximum load and no restraint at the end of 

the chord 

4.7.1.2 Load/indentation curves 

The load indentation curves for the square bird beak X joints with no restraint 

at the end of the chord shown in Figure 4.44, are very similar to those for the diamond 

bird beak X joints shown in Figure 4.37. Both sets of curves exhibit the behaviour for 

the different chord lengths. The initial stiffness is approximately the same for both the 

diamond and square bird beak joints. 

Examining the load/indentation curves for the square bird beak joints with the 

ends held encastre shown in Figure 4.45, it can be seen that all the joints achieve a 

maximum strength and that the shorter joints have a higher initial stiffness than those 

which attain the asymptotic strength. Comparing these curves with those for the 

diamond bird beak joint, shown in Figure 4.38, where the ends of the chord is also 

Diamond bird beak X joints 

Square bird beak X joints 
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held encastre the curves again show a similar behaviour and each curve, for a 

particular chord length, have the same approximate initial stiffness. 
160 
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Figure 4.44 Load indentation curves for square bird beak cross joint with no restraint on 
the ends of the chord 
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Figure 4.45 Load indentation curves for square bird beak X joint with the ends of the chord 
held eucastre 
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4.7.2 Determining the joint capacity when the chord length is varied for the 

square bird beak X joint 

It is appreciated that the range of data is very limited however, for the joints 

analysed in this section the variation of joint capacity with chord length can be 

estimated as: - 
for no restraint at the end of the chord 

F'u, l, length - -Fu, 1, asymptotic - 15 9.2 e -0- 147cc EQn4.10 

and for the ends of the chord encastre 

F, (, length =Fu, , asymptotic +304.0e-0,114« Eqn 4.11 ( 

when 0=0.6, bo = 150mm to = 6.3mm and fy =275N/mm2 
The fit of these predictions against the finite element results can be seen in Figure 

4.46. 
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Figure 4.46 The estimated joint capacity against chord length for the square bird beak X 
joint 

4.8 Traditional RHS X joints 

The results given in this Section on RHS and the next Section on CHS are only 

reported so that comp: -? lsons can ̀ oe ;!, ý. de with the bird beak joints. 
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4.8.1 The numerical results for the traditional RHS X joints 

The results of the analyses for variation of chord length and the boundary 

conditions at the end of the chord are given in Table 4.9. The yield stress in all models 
is 275 N/mm2. 

Due to the large increase in the joint capacity when a fillet weld is included in 

a traditional RHS joint, the effect of including a weld is investigated. When a weld has 

been modelled it has the same properties as the parent material and a throat thickness 

equal to the brace thickness ti. 

Model Chord Brace Boundary 
Condition 

Failure 
Load 

L0 
mm 

a 
2Wb 

0 

bo 
mm 

to 
mm 

b1 
mm 

to 
mm 

End of 
Chord 

F,,, 1 
kN 

No weld included in the model 
RHS200 400 5.3 150 6.3 90 6.3 None 92.0 
RHS300 600 8.0 150 6.3 90 6.3 None 91.8 
RHS400 800 10.7 150 6.3 90 6.3 None 91.7 
FRHS200 400 5.3 150 6.3 90 6.3 Encastre 91.8 
FRHS400 800 10.7 150 6.3 90 6.3 Encastre 91.9 

W eld included in t he model 
WRHS200 400 5.3 150 6.3 90 6.3 None 119.5 
WRHS400 800 10.6 150 6.3 90 6.3 None 119.8 
WRHS850 1700 10.6 150 6.3 90 6.3 None 119.7 

Table 4.9 The variation of joint capacity with chord length and boundary condition for the 
traditional RHS X joint 

4.8.2 Discussion of the traditional RHS X joints 

There is no significant variation in the joint capacity for a traditional RHS X 

joint when the chord length or the boundary conditions at the end of the chord were 

changed. All the load/indentation curves obtained were coincident to each other, an 

example load/indentation curve obtained for one joint RHS400, without a fillet weld, 
is shown in Figure 4.47. 
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Figure 4.47 Load/indentation curve for the traditional RHS X joint 

The fact that the joint capacity does not vary with chord length or boundary 

conditions can be easily explained by considering the yield line failure mechanism of 

the traditional RHS joints. Plasticification is assumed to occur in the chord wall along 

yield lines, which act like stiff hinges, in a pattern similar to the one shown in Figure 

4.48. The internal work to rotate these yield lines can easily be calculated and hence 

the external work and then the joint capacity. Providing the chord is long enough for 

these yield lines to form, further increases in chord length or a change in the boundary 

conditions at the end of the chord do not affect the failure mechanism. 

A= Atan( 1- ß)°'S Deformed shape caused 
by the yield lines 

e 

----------- Sagging yield line 

-'- Hogging yield line Plastic Hinge 

Figure 4.48 The yield line failure mechanism in RHS X joints 

The lack of stiffness of the top and bottom faces of the chord in resisting the 

load imposed on the brace leads to the relatively low joint capacity for the traditional 

RHS X joints. If a yield line collapse mechanism is assumed, as opposed to the 

116 



collapse of the side walls of a slender chord section, a maximum load will never be 

achieved for this form of joint. (This behaviour can be seen in the load/indentation 

curve shown in Figure 4.47. ) This behaviour can be explained by considering the 
deformation of the joint. The brace members punch into the chord as the load is 

applied, forming the yield line pattern. The increase in area of this yield line pattern as 
the joint deforms causes further internal work to be done in stretching the connecting 
face of the chord wall. The plastic nature of the yield lines mechanism supports a 

constant load as the brace members are punched further into the chord. However, the 

membrane action in the chord wall will support a small increase in the load as further 

deformation occurs, thus a maximum load will never be attained for this form of joint. 
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(c) (d) 
RHS400 Lo = 800mm a= 10.6 

Figure 4.49 The deformed shape diagrams and the von Mises contoured stress plots for the 
traditional RHSX joints at the joint capacity and for the outside surface 

The deformation of the top face of the chord caused by the yield line 

mechanism can be seen in the displaced shape diagrams shown in Figure 4.49. The 

contoured stress plots for the different chord lengths show that the area of yielded 

material in the chord wall is virtually identical in all the joints which is a further 
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indication of the independence of the joint capacity and chord length. The presence of 

the yielded material in the chord side wall of the finite element model indicates that 

some of the rotation attributed to the yield line at the corner of the chord section does 

in fact occur in the side wall. This does not affect the operation of the mechanism as it 

can be shown that any rotation in the chord side wall is equivalent to a rotation at the 

corner of the chord. 

4.9 The numerical results for the CHS X joints 

In order that comparisons can be made with the rectangular sections used in the 

previous sections, the circular section was sized to keep the wall thickness and cross 
sectional area the same. In this manner the plastic moment capacity of the chord wall 

per unit length (me), the membrane action effect of the chord wall and the volume of 

steel per metre is kept the same for the circular and the rectangular sections. The 

circular sections used in the finite element models therefore is do=189.2mm, 

to=6.3mm, dato=30.0, d1=1 13.5mm, 0=0.6. The same material properties are also used 

in the circular section fy=275N/mm2. 

Model Chord Brace Boundary 
Condition 

Failure 
Load 

Lo 
mm 

a 
2L. a/d 

0 

do 
mm 

to 
mm 

d, 
mm 

to 
mm 

End of 
Chord 

F,,, I 
kN 

CHS200 400 4.2 189.2 6.3 113.5 6.3 None 108.6 
CHS300 600 6.3 189.2 6.3 113.5 6.3 None 139.2 
CHS400 800 8.5 189.2 6.3 113.5 6.3 None 146.2 
CHS700 1400 14.8 189.2 6.3 113.5 6.3 None 160.9 
CHS 1000 2000 21.6 189.2 6.3 113.5 6.3 None 166.5 
CHS 1500 3000 31.7 189.2 6.3 113.5 6.3 None 166.5 
FCHS200 400 4.2 189.2 6.3 113.5 6.3 Encastr6 226.6 
FCHS400 800 8.3 189.2 6.3 113.5 6.3 Encastr6 193.3 
FCHS700 1400 14.8 189.2 6.3 113.5 6.3 Encastr6 167.4 
FCHS 1000 2000 21.6 189.2 6.3 113.5 6.3 Encastr6 166.5 

Table 4.10 The variation of joint capacity with chord length and boundary condition for the 
CHS X joint 
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Figure 4.50 The variation of joint capacity with chord length for the CHS X joint 

The results of the finite element investigation to study the effects of chord 

length and the change in boundary conditions on the joint capacity for CHS X joints 

are given in Table 4.10. The variation of chord length L0, and the different boundary 

conditions considered are shown in Figure 4.50. 

4.10 The discussion of the results for the CHS X joints 

Van der Vegte (1995) reported the variation of joint capacity with chord 

length, although he did not investigate the effects of holding the ends of the chord 

encastre or identify an asymptotic strength. He does note however, that the joint 

capacity increases very little after the chord length ratio a> 11.5 for the CHS X joints 

that he investigated. The results reported in this section confirm van der Vegte's work 

and also show the effects of holding the ends of the chord encastre. 

A similar behaviour to that of the bird beak X joints is shown in Figure 4.50 

for the CHS X joints, that is when the ends of the chord are held encastre the joint 

capacity is increased for the shorter joints, which then decreases to the asymptotic 

strength as the chord length increases. When the ends of the chord have no restraint 

then the joint capacity increases with chord length until the asymptotic strength is 

reached. The asymptotic strength of the joint is achieved when the chord length ratio a 

= 21.6. 
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Figure 4.51 Load indentation curves for the CHS X joints 

4.10.1 Load/indentation curves 

In order that the joint capacity can be easily defined a failure criteria of 3% do 

was used to determine failure. This can be seen in the load/deflection curves shown in 

Figure 4.51. None of the models for the CHS X joints reached a maximum value 

although the shorter chord length appears to reach a limiting value. 

It was noted in the section on convergency tests that van der Vegte (1995) 

reported that for a>6 he obtained a maximum joint capacity for similar analyses and 

that the mesh used for these analyses is overly stiff. Therefore, it is considered that 

detailed comments on the shape of the load/indentation curves are invalid until more 

work is done on validating the mesh used. 
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(a) CHS200 Lo = 400mm a=4.3 

(b) CHS400 Lo = 800mm a=8.5 

(c) CHS 1000 L0 = 2000mm a= 21.6 
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Figure 4.52 The displaced shape diagrams and the von Mises contoured stress plots for the 
CHSX joints at maximum load and the outside surface, no restraint at the end of the chord 

4.10.2 Displaced shape diagrams and contoured stress plots for the CHS X joints 

Examination of the displaced shape diagrams shown in Figure 4.52 reveals that 

failure occurs due to the chord crushing when a=4.3, whilst in the longer joints a 

8.5, the chord can support the load applied to the brace without failing in a crushing 

manner. There is considerably more membrane action in the vicinity of the brace 

member in the longer joints to accommodate the deformation of the chord, indicated by 

the von Mises contoured stress plots of the middle layer at the joint capacity which can 

be seen in Figure 4.53. 
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(b) CHS400 Lo = 800mm a=8.5 

(c) CHS700 Lo = 1400mm a=14.8 (d) CHS 1000 L0 = 2000mm a=21.6 

Figure 4.53 The von Mises contoured stress plots for the CHSX joints at maximum load at 
the middle layer, no restraint at the end of the chord 

4.10.3 Determining the joint capacity when the chord length is varied for the 

CHS X joints 

Van der Vegte (1995) reports the variation of joint capacity against chord 

length with no restraint on the end of the chord to be 

F 
., ], ia, gtt, = 

12.5a 
Fu. 

a=>>. 5 
Eqn 4.12 

1 1.5(1 +a) 

where F,,,, -11.5 is the joint capacity of a joint with a chord length of a= 11.5. 

Eqn 4.12 when applied to van der Vegte's results produces a very poor fit at low 

values of a, in most cases overestimating the strength of the finite element analyses. 

(This can be seen in Vegte (1995) and in Figure 4.54 where Eqn 4.12 is applied to the 

results obtained in this work. ) Due to the formulation of Eqn 4.12 a maximum value 

will never be achieved, although it is accepted that for practical circumstances this 

effect is not significant. 
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Again it is appreciated that the range of data is very limited. However, for the 

joints analysed in this section the variation of joint capacity with chord length can be 

predicted as: - 
for no restraint at the end of the chord 

F'u, length - Fu, 
asymptotic - 

181.2 e 0.276a Eqn 4.13 

and for the ends of the chord encastre 

F'u, l, length = Fu, l, asymptotic + 157 e-0.224a Eqn 4.14 

when ß=0.6, do = 189.26mm to = 6.3mm and fy =275N/mm2 
The fit of these predictions against the finite element results and van der Vegte's 

prediction can be seen in Figure 4.54. 

It is suggested from these results that the use of an exponential function to base 

the formulation of the variation of joint capacity against chord length is better able to 

replicate the type of curve produced (i. e. to tend towards an asymptotic value and 

predict the strength of the very long and very short chord lengths). 
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Figure 4.54 The predicted joint capacity against chord length for CHS X joint 
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4.11 Comparisons between the joint types 

Each form of joint configuration has been studied, some in more detail than 

others. The similarities and differences of all the joints systems will now be examined. 

4.11.1 The variation of joint capacity with chord length 

It has been shown in this Chapter that the joint capacity of all the X joints 

studied varies to some extent with chord length and the boundary conditions at the end 

of the chord, with the exception of the traditional RHS X joints. Figure 4.55 shows 

how the relationships between joint capacity, chord length and boundary conditions 

vary between the different joint configurations. From this figure we can see that: 

" the traditional RHS X joint is the not affected by chord length, although the 

increase in joint capacity by the inclusion of the weld material is significant. 

" of the remaining joints the CHS X joint is the least affected by chord length, where 

the asymptotic strength is achieved practically at U. = 14.8 and actually at a= 21.6. 

" the diamond bird beak X joint is the most affected by chord length not attaining the 

asymptotic strength until a= 40.0. 

" the square bird beak joint is the somewhere in between in that the practical 

asymptotic strength is achieved at a= 26.6, although actual convergence is not 

achieved until cc = 50.0. 
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Figure 4.55 A comparison of joint capacity with chord length and boundary conditions at 
the end of the chord for all the joints studied 
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All the joints where the joint capacity is affected by chord length are in turn 

affected by the boundary conditions at the end of the chord. Imposing encastre 

boundary conditions at the end of the chord increases the joint capacity, particularly 
for the shorter chord length joints. The CHS X joint shows the least increase in 

strength, whilst the square and diamond bird beak joints both demonstrate a larger 

increase, the magnitude of which is approximately equal. 
When the ends of the chord have no restraint on them, short joints (for the 

CHS joints a <_ 6.3 and for the bird beak joints (x S 10.6) failure was attributed to the 

crushing of the chord. When the ends of the chord were held encastre, the restraint 

offered by the support conditions in resisting this deformation causes a dramatic 

increase in the joint capacity observed. 

4.11.2 Load/indentation curves 

The load/indentation curves studied in this Chapter have exhibited a wide 

variety of different behaviours. The traditional RHS and the CHS X joints consistently 

did not reach a maximum value. However, it is regrettable that the CHS X joint 

load/indentation curves have to be considered unreliable in this respect. Ideally it 

would be useful to further develop the CHS model to see if it can be improved and 

verify whether these curves are correct or incorrect. 
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Figure 4.56 A comparison of some the load/indentation curves of the various joints studied 
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The load/indentation curves for the bird beak joints usually reach a maximum 

with the exception of the diamond bird beak when (x: 5 8.0 and the square bird beak 

when a=5.3 when there is no restraint at the end of the chord. The reason for this is 

attributed to the membrane action of the chord wall, due to the deformation of the 
joint. The indentation at which the maximum joint strength occurred, increased as the 

chord length increased and the indentation at the maximum load where the asymptotic 

strength is reached was in the order of 5%bo 

Figure 4.56 shows an example of the load/indentation for each joint 

configuration at the same chord length (for all the RHS configurations a=26.7 and for 

the CHS (c=21.1) so that they can be compared. The traditional RHS load/indentation 

curves were identical for all chord lengths, so a chord length of 800mm can be 

regarded as equivalent to a 2000mm chord length. 

4.11.3 Failure mechanisms 

It would appear from the contoured stress plots that the CHS and bird beak X 

joints have failure mechanisms that are very similar to each other, in that yield lines 

appear to occur at similar points, i. e. the top, middle and the bottom of the section 

running in direction parallel to the centre of the chord. In the bird beak configuration 

the discontinuity at the corners of the chord provide a natural weakness in the section 

which causes lozenging (or in some circumstances crushing) of the section. 

The in-plane yielding due to the membrane action within the chord walls, 

required to permit the deformation of the joint is evident in all the CHS, diamond and 

square bird beak X joints, although it is most notable in the CHS sections 
The traditional RHS X joint has a failure mechanism which is unique to itself, 

in that the yield lines can be assumed to occur on the connecting face of the chord in a 

manner described previously in the Section 4.8.2. 

4.12 Summary 

The behaviour of the X joints with the variation of chord length identified in 

this Chapter is very important as it has influenced much of the research that followed. 

With the exception of the traditional RHS X joint and joints where the asymptotic 

strength is attained, the joint capacity is dependent on: 
0 the length of the chord 
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" the boundary conditions at the end of the chord 
In addition to this: - 
" that when there is no restraint at the end of the chord, the joint capacity increases 

with increasing chord length 

" that when the ends of the chord are held encastrd, the joint capacity decreases with 
increasing chord length 

The asymptotic strength was obtained in the joints studied when a> 40 for diamond 

bird beak X joints, a> 50 for square bird beak X joints and a> 21.6 for CHS X joints. 

Further increases in chord length or changes in the boundary conditions did not affect 

the joint capacity observed. 

The failure mechanisms observed for X joints studied can be classified 

according to the joint chord length and with the exception of the traditional RHS X 
joints, failure occurs for: 

" short chord length joints as a crushing of the chord, with yield lines running the 
length of the chord 

" medium chord length joints as a lozenging of the chord. The chord can support the 
load applied to the brace without complete failure at the end of the chord. The yield 
lines do not run for the full length of the chord and the moment in the chord wall 
decreases to an elasto-plastic or an elastic moment (+ve or -ve) with increasing 

length 

" long chord length joints as a lozenging of the chord. However, the length of the 

chord is sufficient for the reverse deformation, apparent in the medium length joints 

to tend towards zero and the asymptotic strength of the joint is achieved 
In addition to the plastic moment acting in the chord walls, the amount of 

membrane action that occurs as the joint deforms also contributes to the joint capacity. 

The medium and long chord length joints particularly exhibited large amounts of 

membrane action. 

The traditional RHS X joint was unique in that the failure mechanism can be 

represented by a yield line mechanism and providing that the length of the chord is 

sufficient for this mechanism to form, then the joint capacity is independent of chord 

length. 
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For the diamond bird beak joint where a parametric study was carried out it 

was established that altering the design parameters for the chord width ratio ß, and 

chord slenderness 'c--bo/to in the range of 0.2 50S0.9 and 9.4 5 bo/to <_ 35.3 the joint 

capacity for the asymptotic strength can be determined by: 

F., 1- 
2.6 275 

fyo. st 
2 b0 oA 

1-0. bß 275 o to 

for the range of yield stress of 2755fy 4OO N/mm2 

In addition to these formulae a separate failure mechanism was identified in 

that the brace could fail in shear and this could be a lower bound value to the joint 

capacity when there was either a low chord width ratio 0 or a high brace slenderness 

value bl/ti 

F�1 =44b, t, fy 
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5. 

The Analysis of the Bird Beak X joint 

5.1 Introduction 

One of the original intentions of this research was to formulate a yield line 

model to represent the failure mechanism of bird beak joints. However, due to the 
complex nature of the failure mechanisms it has not been possible to complete this. This 
Chapter will examine these failure mechanisms and attempt to assess their relative 
importance to the collapse mechanism. 

The best analysis models replicate the collapse mechanism and produce a similar 
form of deformation. Using the deformation of the chord wall and the contoured stress 
plots examined in Chapter 4, the collapse mechanisms for long, medium and short chord 
length joints are examined in this Chapter. The failure mechanism for a short chord 
length is relatively simple and can be fully explained, whereas those for the medium and 
long joints are more complex and cannot be completely explained. The nature of the 

collapse mechanism of the long chord length is studied in detail and a plastic collapse 
mechanism, based on the effective length of the yield lines is suggested. The deformed 

shape of the chord wall is then examined and an alternative method where two semi- 

rigid mechanisms are identified in addition to the plastic mechanisms. The contribution 

of all these mechanisms to the final collapse load is then investigated. 

5.2 The plastic mechanisms operating in the bird beak X joints 

In a simple yield line model the deformation, which may occur over a large area, 

is assumed to be confined to the rotation of yield lines that form between rigid plates. If 

the rotation of the yield lines produces a similar form of deformation to that actually 
observed, then equating the internal work done in the plastic hinges and with the work 
done by the external force leads to a fair estimate of the collapse load for that 

mechanism. This will be an upper bound solution to the true collapse load. 

In addition to this, the internal work done due to the in-plane yielding of the 

material may be included into the calculation to satisfy compatibility requirements. 
However, due to the interaction of the stresses between the different mechanisms the 
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estimation of the collapse load may not be as good as when a pure flexural yield line 

mechanism is considered. 

5.2.1 Yield lines at the corners of the chord section 

The presence of yield lines at the corners of the chord section was clearly 

demonstrated in Chapter 4 in the contoured stress plots, by the nature of the deformation 

of the chord section and Figure 4.34 reproduced here as Figure 5.1. The distribution of 

the moment along CD is similar to that along AB, although it has irregularities caused 
by the presence of the brace and the shape of some of the elements. 

3000 

2500 

2000 

1500 

1000 

500 

0 

-500 + 

0 200 400 600 800 1000 1200 1400 1600 

Distance from the centre line of the brace mm 

Figure 5.1 The magnitude of the moment along the middle corner AB of the chord of the joint 
B45V15 at maximum load 158.5kN 

Hence, a yield line model representing the collapse mechanism would have yield lines at 

the corners of the chord section in the manner shown in Figure 5.2 and would assume 

the faces of the chord section to be rigid plates. 

The angle of rotation of the yield line (0) can be determined from the geometry 

of the joint and the indentation (S) of the load. However, problems arise in defining the 

length of the yield lines (L) and the value of the moment operating in the chord wall 

(me) at the corner of the chord section, but if values are assumed the collapse load F,,, i 

can then be estimated by 

Plastic moment 

Elastic moment 

Corner 

of brace 

Value of the 
moment at the 
corner AB CD 

B 

External work = Internal work 
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F,,,, 8= 4(2L mp o)+ other internal work Eqn 5.1 

The term of "other internal work" arises through the need to satisfy compatibility 

requirements which is discussed next. This term will be used to include the work done 
by various different mechanisms discussed in this Chapter, such as the in-plane yielding 

of the chord wall, the twisting and the in-plane bending of the chord faces. 

F 
Area of in-plane yielding 

Length of yield lines Yield lines 

F 

Figure 5.2 A yield line model of the collapse mechanism 

Undeformed cross section of the chord wall 

Deformed cross section of the chord wall, 
free from any restraint of the brace member 

Deformed cross section of the chord wall, 
partially restrained by the presence of the 
brace member 

eformation of the chord wall restrained 
y the presence of the brace member 

ction OP 

Figure 5.3 The effect of the restraint of the brace member on the deformation of the chord wall 

5.2.2 Membrane action in the chord walls 

The restraint offered by the brace in resisting the deformation of the chord wall, 

shown in Figure 5.3 and in any of the displaced shape diagrams in Chapter 4, causes 

considerable yielding of chord wall so that compatibility in the deformation is 
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maintained between the restrained and unrestrained regions. The area affected is shown 

as the shaded area in Figure 5.2. A considerable amount of internal work is done in this 

area and this must be accounted for when the internal work of the collapse mechanism is 

assessed. The internal work done by the in-plane yielding of the chord walls is entered 
in Eqn 5.1 as "other internal work" as a function of S, the indentation assumed in the 

calculation of the external work done. 

The restraint offered by the brace is likely to be independent of the chord length 

and its contribution to the strength of the joint will depend on the width ratio ß, the 

chord width bo and thickness of the chord to. 

5.3 Short chord length joints 

Chapter 4 showed that, short chord length joints (55 W5 10 for bird beak joints) 

yield lines were found to run along the full length of the chord. This can be seen in the 

contoured stress plots and the deformed shape diagrams, shown in Figure 4.26, where 

the chord was crushed (i. e. the same vertical displacement along the length of the chord) 

when there was no restraint at the end of the chord. This is also confirmed in Figure 5.1, 

which shows that the value of the plastic moment mp in the chord wall is approximately 

constant at a value of 2950 Nmm/mm over a length of 0- 400mm (i. e. (X = 10.6). 

However, a value for the plastic moment of mp = toe fy /4 = 2728 Nmm/mm 

(fy=275Nmm 2 and to=6.3mm) will be used in all the following calculations. 

In this section on short chord length joints the angle of rotation of the yield lines 

8 is assumed to be constant along the length of the yield line, which is the case if the 

chord is crushed. This is not quite the case and is discussed later, but for short chord 

length this is a reasonable assumption. 

The two mechanisms discussed previously are initially assumed to be operating 

independently of each other to form the collapse mechanism are shown in more detail in 

Figure 5.4. This figure shows that: 

" the chord wall free of the restraint of the brace member (Area ABDE) is assumed to 

be a yield line mechanism where the angle of rotation of the plastic hinge (8) is 

constant along the length of the yield line (L) and the chord wall behaves as a rigid 

plate. The internal work done by the yield line mechanism can be calculated by 

Internal work = 4(2L mp o) Eqn 5.2 
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" the chord wall beneath the brace member (Area AGCD) is assumed to deform by in- 

plane yielding in such a manner that the deformation at the connection between the 

mechanisms is compatible. The internal work done by this mechanism cannot be 

calculated directly, but is arrived at by empirical methods. 
Figure 5.5 shows the variation of joint capacity with chord length for the 

diamond bird beak X joints with no restraint at the end of the chord. The load supported 

by the internal work of the yield line mechanism, calculated by Eqn 5.2 is shown as a 
dashed line and it is noticeable that it is parallel to the short chord length joint 

capacities. It therefore appears that the additional work - probably associated with in 

plane yielding - is constant with changing chord length up to a= 10 (and in this case the 

correction term is equivalent to 565. With more data it should be possible to derive an 

empirical expression to estimate this term. ) Substituting this value into Eqn 5.1, the 

results are plotted as the solid thick line. 

Undeformed Joint Mechanism 
ine Yield lines 
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AA.............................. B 

D DI ................................. E 

L= Lß/2 - biN2 

Deformed Joint j, F 

1F 

Area of in-plane yielding to allow 
for compatibility between the 
deformed shape of the yield line 

mechanism and chord restrained 
by the presence of the brace 

Figure 5.4 The assumed deformation and the yield line mechanism for short chord length 
joints 

If the same procedure is followed for the square bird beak X joints, then the internal 

work done to cause in-plane yielding in the vicinity of the brace is 425. The results of 
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combined yield line and in-plane yielding mechanism compared against the finite 

element joint capacities for the square bird beak joint with no restraint at the end of the 

chord can be seen in Figure 5.6. 
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Figure 5.5 A comparison between the finite element joint capacity and the analytical capacity 
for short chord length diamond bird beak X joints 
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Figure 5.6 A comparison between the f nite element joint capacity and the analytical capacity 
for short square bird beak X joints 
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In this section it has been assumed that the angle of the rotation of the plastic 
hinge is constant and that the two mechanisms are independent of each other, these two 

assumptions will now be examined more carefully. Examination of Figure 4.26 shows 

that the indentation is not quite constant along the length of the chord and therefore the 

angle of rotation of the plastic hinge will not be constant along the length of the chord. 
This will result in less work being done by the plastic hinge at the end of the chord 

section where the angle of rotation is less than 6. However, examination of Figures 4.44 

a&b, that show the von Mises contoured stress plots of the middle layer of the joint 

and give an indication of the amount of in-plane yielding present, reveals that the 

amount of in-plane yielding increases with increasing chord length. For this chord wall 

slenderness at least, it is apparent that the increase in the work done by the in-plane 

yielding is equal to decrease in the work done by the rotation of the plastic hinges when 

the angle of rotation is not considered constant along the length of the chord. Therefore 

the assumptions made initially can be seen to be reasonable, although further work is 

required to ascertain whether these assumptions are true for other chord wall slenderness 

values. 

5.4 Medium chord length joints 

It was shown in the contoured stress plots in Chapter 4 that for medium chord 
length joints (for the diamond bird beak 10 <a< 40 or 800 < Lo < 3000mm) the yield 

lines did not run the full length of the chord. This was confirmed when the magnitude of 

the moment acting in the chord wall was plotted for the joint B45V15 where a= 40, 

shown in Figure 5.1. This figure shows that moment in the chord wall changes from 

plastic to elasto-plastic at 450mm (3bo), from elasto-plastic to elastic at 600mm (4b0) 

and becoming negative at a distance of 880mm (=6bo) from the centreline of the joint. 

Clearly then plastic theory which has been used for the short chord length joints 

is no longer suitable and alternative methods should be sought which would account for 

all the internal work done. In the plastic theory, the moment acting in the chord wall is 

considered to act as a stiff hinge requiring a moment of Mp (= L toe fy /4) to turn it. For 

given values of the length of the yield line L, the section thickness to and the yield stress 

fy, the work done by the yield line is directly proportional to the angle of rotation of the 

yield line 0. 
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In bird beak joints there is a limiting value to the length of the yield lines, shown 

by the fact that all medium and long chord length joints reach a maximum load shown in 

Figure 4.36. If this were not the case, then a further displacement of the external force 

would cause the yield lines to increase in length, supporting a larger load. This limit to 

the yield line's length can be seen in Figure 5.7 and Figure 5.8 which shows the 

deformed shape of the top corner of the chord for different load levels. Observing the 

"point of zero deformation" will indicate any change in the length of the mechanism 

operating at the corner of the chord. 
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Figure 5.7 The deformed shape of the top coaster of the chord for joint ß45V1 for successive 
load levels 
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Figure 5.8 The deformed shape of the top corner of the chord for joint B45V1 for successive 
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Figure 5.7 shows the deformations that occur under the brace of the joint and 
how the point of zero deformation appears to be stationary with increasing load on the 

brace. Figure 5.8 shows that the point of zero deformation changes from 907mm at 

maximum load, to 952mm from the centre line of the joint for the last load recorded. 

However, given the large changes in geometry and the overall length of the deformation 

this may be considered as a constant length. 

When similar curves were drawn for the middle corner of the chord, the 

deformed shape varied due to the absence of the brace member (shown in Figure 4.31), 

but the equivalent figure to Figure 5.8 was identical. 

Therefore, when the yield line is fully developed (i. e. the length attained at the 

maximum load) the value of the moment acting at any particular point along the length 

of the mechanism can be assumed to be constant with increasing displacement of the 

external force. (Even when there is an elasto-plastic or elastic moment acting in the 

chord wall. ) If a hinge is then considered to operate at the corner of the chord, of varying 

stiffness according to the moment acting in the chord at that point, the work done by the 

rotation of the hinge can be calculated. 

In this model the face of the chord will not be considered as rigid, but allowed to 

twist along its length. In this way the angle of rotation at the centre line of the joint is 0 

and 0 at the point of zero deformation. The angle of rotation is assumed to change 

linearly between 0 and 0 along the length of the yield line. The effect of allowing the 

chord face to be twisted instead of rigid will be investigated in the next section when 

long chord length joints are examined. 

Value of the moment acting in the chord wall 

0 

The angle of rotation c 
the hinged mechanism 

0 450 900 

Distance along the chord from the center line of the joint mm 

Figure 5.9 The assumed relationship between the moment and the angle of rotation of the 

yield line along the length of the chord 
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Figure 5.9 shows the assumed relationship of the moment and the angle of rotation 
along the length of the chord. If the length of the mechanism is assumed to be L, then 
summing the work done in the first part of the chord from the centre line to 450mm (0 

to U2), the internal work done is 

=sf mP 
LX+ 

otherinternal work Eqn 5.3 

However, from the work on short length joint it is known that the total internal 

work is 135.18 (yield lines=79.1& and in-plane yielding=566) when a=12 (L0 =900mm). 

Summing the work done by the second part of the mechanism from 450mm to a 

point A between 450mm and 900mm, the internal work is 

-8L 
2(L-x) L-x EqnS. 4 J2 

LPL 

When A= 900mm the expression becomes 

_ 
2mPOL Eqn 5.5 
3 

If the length of the mechanism is assumed to be 900mm, then the total work done by 

this mechanism, using Eqn 5.5 is 15.38. Plotting the values of Eqn 5.4 for the range of 

chord lengths 4 (i. e. - 2L) 900mm to 1800mm (10.6<a<21.2) and adding them to 

Figure 5.5 gives the results shown in Figure 5.10. 

Examining Figure 5.10 it is observed that whilst the curve produced by Eqn 5.4 

has a limiting value and is approximately the shape that should be expected, the 

predicted capacity of the asymptotic strength is underestimated and the increase in the 

joint capacity with chord length is overestimated. 
This method has tried to calculate the internal work of the failure mechanism by 

considering the moment acting in the chord wall and an assumed rotation of that 

moment, with an allowance made for the in-plane yielding observed in the vicinity of 

the brace. As the asymptotic joint capacity was underestimated and the assumptions 

made are considered to be reasonable, there must be additional mechanisms operating in 

the collapse mechanism as this is an upper bound method of calculating the collapse 
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load. One of these has already been identified as the twisting of the chord wall to allow 

the angle of rotation to vary between 0 and 0 and is discussed in the next section as a 

semi rigid mechanism. 
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Figure 5.10 A comparison between the finite element joint capacity and the analytical 
capacityfor medium chord length diamond bird beak X joints 

5.5 Long chord length joints 

This section will consider both plastic and semi-rigid mechanisms which are 

thought to operating in the collapse mechanism of long chord length joints (a>40 for 

diamond bird beak joints) and which may be used to estimate the asymptotic collapse 

load. 

5.5.1 Yield line and in-plane yielding mechanisms 

This model will use some of the mechanisms identified in the previous sections, 

but will only consider how the asymptotic collapse load can be determined using plastic 

mechanisms. Yield line and in-plane yielding mechanisms clearly operate in the collapse 

mechanism of long chord length joints and this is confirmed by the contoured stress 

plots shown in Chapter 4 (Figures 4.24 and 4.44 for example) and Figure 5.1. The 

question remains how can the yield line mechanism be incorporated into an analytical 

theory to predict the joint capacity? 
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Togo (1967) used a ring model to describe a yield line mechanism for CHS 

joints where a the yield lines are assumed to have an effective length and run in a 

direction parallel to the centre line of the chord member, shown in Figure 5.11. The 

effect of transferring this model directly to the diamond bird beak joint can be seen in 

Figure 5.12. However, comparisons with the contoured stress plots shown in Chapter 4 

(Figure 4.24 for example) reveal that the yield lines are clearly in the wrong position in 

this model, running along the middle of the chord face instead of at the corners of the 

chord. 

Total effective length of the yield lines 
--------------------5: 

Yield lines 

Figure 5.11 Togo's ring model for CHS X joints 

This modified ring model is felt to represent the collapse mechanism with a 

reasonable accuracy with the following exceptions: 

" compatibility is not maintained at the end of the mechanism with the undeformed 

parts of the chord 

" the faces of the chord are assumed to be rigid plates and because of this the angle of 

rotation along the length of the yield lines is constant. This is not the case, a fact 

which can be established from Figure 5.7 where the deformation varies along the 

length of the chord and hence the angle of rotation. 
Combining the yield line failure mechanism for the short chord length joints 

with the Togo's ring model produces a modified ring model shown in Figure 5.13. The 

yield lines are correctly positioned at the corners of the chord and the restraint offered 

by the brace on the chord is accounted for by the in-plane yielding. The effective length 

of the yield lines can be calculated by Eqn 5.1, where the asymptotic strength of the 

diamond bird joint is 158.5 kN, the work done by the in-plane yielding is 568 kNmm 
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and mp = 2728 Nmm/mm. The effective length of the yield lines is then 500mm which 
is in close agreement with the length of the yield lines observed previously. 

---------------------- 
Total effective length of the yield lines 
----------------------- - 

Yield lines 

Figure 5.12 Togo's ring model applied to the diamond bird beak X joint 
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Figure 5.13 Modified ring model for the diamond bird beak X joint 

5.5.2 Semi-rigid mechanisms 

This section examines some of the semi-rigid mechanisms identified from the 

deformation of the chord walls and an attempt is made to assess their contribution to the 

collapse mechanism. The work done in the short and medium chord length joints and 

identified in Sections 5.3 & 5.4 is included to assess the total work done at the 

asymptotic joint capacity. (Short chord length, yield line (L0/2-bi/V2=386mm) =79.15, 

in-plane yielding = 566 and the moment rotation of the medium length joints = 15.36. ) It 

is totally independent of the plastic mechanisms discussed in the previous section, 5.5.1. 

In order to define the work done by a semi-rigid mechanism at the collapse load, 

failure is defined as an indentation of 3%bO (which is the definition used in Chapter 4 to 
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define the joint capacity when a maximum load was not attained) as the load supported 

by the semi-rigid mechanism increases with the deflection assumed, shown in Figure 

5.14. The semi-rigid internal work is then calculated by 'h F S, and is entered in Eqn 5.1 

as "other internal work" in addition to the work done by the in-plane yielding. 

FI 
Internal work =F8 

Fu, 

b 
(a) A rigid plastic mechanism 

FI 
Internal work ='/z F5 

FLA. 

3% bo b 

(b) A semi rigid mechanism 

Figure 5.14 Comparisons of plastic and semni-rigid loadldeflection curves 

5.5.2.1 The twisting of the chord walls 

The twisting nature of the deformation of the chord walls can be seen in the 

series of chord cross sections shown in Figure 4.31 and in a simplified finite element 

model where the brace was removed and replaced by a single point force acting on the 

chord shown in Figure 5.15. 
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Figure 5.15 Cross section profiles along the length of the model without a brace present 
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The twisting of the chord face was considered as part of the yield line model instead of 
the rigid plates when medium chord length joints were discussed. This section will 
consider the internal work done in twisting the chord face and the effect that it may have 

on the collapse load. This may be significant in determining the joint capacity when to is 

large as the internal work done by twisting the chord face is a function of toi. 

The internal work done by this mechanism can be calculated from 

l ýTO= 4 GJ 2I 
Eqn 5.6 

where 

T= the applied torque 
<D = the angle through which the chord face is twisted, when a indentation of 3%bo 

was imposed on the chord 
G= the torsional rigidity modulus 
L= the length of the chord face which is considered to be twisted 

J= The torsional constant of the chord face - 
b° t°3 

3 

The internal work done by the twisting mechanism is relatively low. When to= 6.3mm, 

bo=150mm, G=80kN/mm2,0=0.042rads and L=900mm was used for the length of the 

chord twisted, the internal work done by the twisting of the chord is 28. It is therefore 

considered that this mechanism is of minor importance in determining the collapse load 

but does help with the resolution of compatibility problems. 
If the face of the chord is considered to be twisted, then the angle of rotation 

varies along the length of the yield line. This rotation has been assumed to vary linearly 

with the distance along the chord in this work however, the variation could be non- 
linear with distance. Examination of the deformed shape of the chord, shown in Figure 

5.7 for example, reveals that deformation at points of 0mm, 450mm and 900mm from 

the centre line of the joint is approximately 18,28 and zero respectively. It is therefore 

expected that for small changes in geometry that the angle of rotation of the yield line 

varies linearly with length. 
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5.5.2.2 The bending of the chord walls 
Considering the twist of the chord walls is not a complete mechanism in terms of 

compatibility of the deformation, as there has to be an additional mechanism for the 
bending of the chord face about an axis perpendicular to that face. This can be seen in 

Figure 5.16 which shows a simplified version of the cross section profiles shown in 

Figure 5.15. 
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Figure 5J6 A simplified view of the cross section profiles along the length of the model 

Each of the profiles is considered as a straight line with a cross at the mid point. 

If the chord face is subjected to a twisting action only, then there would be no 

displacement of the crosses at the mid point and the edges of the face would describe an 

arc shown in the figure. However, due to the boundary conditions the movement of the 

crosses numbered 1-6 indicate the deflection of the centre line of the chord face as the 

face is twisted. Using simple geometry, the deflection of the chord face in the plane of 

the face is approximately 8 /12, where 8 is the indentation of the chord. 

The first assumed shape of the chord face subjected to this bending action is 

shown in Figure 5.17, where continuity dictates that there is no rotation of the chord 

face at the ends of the mechanism about an axis perpendicular to the face. The 

compatibility between the twisting action and the assumed shape of the chord for 

bending action shown in this figure is not known however, the compatibility at the ends 

of the mechanism is maintained with adjacent parts of the chord and it is possible that 
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the angle of twist 1 per unit length is not uniform along the length of the chord face as 
discussed previously. 

The assumed deformation of the chord face due to the bending action only, 
viewed perpendicular to the face 
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Figure 5.17 The first assumed shape of the chord face under the bending action 

The internal work done in the in-plane bending of the chord face in this manner 

is 

I 
Fd =4(1 

12EId2 
J Eqn S. 7 

22 L-' 

where 

d= the assumed deflection of the chord face, = 0.7 of the indentation of the chord, S 

E= Young's Modulus (=207kN/mm2) 

I= the second moment of area of the chord face = toi b03/12 

L= the length of the mechanism where the deformation occurs. 
If values of L= 900mm, d=0.7 x 4.5mm = 3.15mm and to= 6.3mm and b0 = 150mm 

are assumed, then the internal work of this semi-rigid mechanism is 765. Adding this 

into Eqn 5.1 (including terms for the work done by the short and medium length joints) 

gives a total joint strength of 226.3kN compared to that of 158.5kN obtained from the 

finite element analysis. 
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However, it is possible that a different form of bending of the chord face is 

taking place. One possible alternative is that a plastic hinge forms in the centre of the 

chord face in the vicinity of the brace member. The work required to rotate this hinge is 

already accounted for in the in-plane yielding that occurs in this area to maintain 

continuity between the deformed shapes of the different mechanisms. 
The assumed deformation of the chord face due to bending action only, 

viewed perpendicular to the face 

The assumed boundary conditions acting at either end of 
the deformed part of the centre line of the chord face 

2F 

Figure 5J8 The second assumed shape of the chord face under the bending action 

The internal work done in the bending of the face of the chord in this manner is 

I 
Fd= 41 

3EId2 Eqn 5.8 
22 L-1 

Using the same figures as before, the work done by this mechanism is exactly a quarter 

of that predicted by Eqn 5.7 so that internal work done by this semi rigid mechanism is 

195. Adding this into Eqn 5.1 (including terms for the work done by the short and 

medium length joints) gives a total joint strength of 169.3kN compared to that of 

158.5kN obtained from the finite element analysis. 

It is likely that the work done by the bending of the chord face lies between these 

two models however, it is considered that the value tends towards that predicted by Eqn 

5.8. 

Examination of Eqns 5.7 and 5.8 reveals that the internal work done by the 

bending of the chord face is a function of b03 in the same manner as the twisting of the 

chord face was a function of toi. The work done in bending the chord face is an 
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important term (whereas the twisting was of minor importance unless to was very large) 

and the calculated joint capacity will be a function of boa 

If the same procedure is followed for the square bird beak joints the calculated 

asymptotic strength is 159.2k N compared to the finite element analysed capacity of 
143.5kN. (Calculated by yield line and in-plane yielding 124.98, rotation of the moment 

in the elasto plastic and elastic regions 15.35 and bending of the chord face 198. ) 

5.6 Discussion 

This Chapter has examined the deformed shape of the diamond bird beak X joint 

and estimated the internal work required to produce each form of deformation observed. 
Many assumptions have been made during the course of this analysis and the total effect 

of all these assumptions is not known. The biggest failing is that all the mechanisms 

examined in this Chapter have had to use prior knowledge of the failure of the joint in 

order to assume the length of yield lines and the internal work done by the in-plane 

yielding mechanism. In addition to this, for the semi-rigid mechanisms of the long chord 

length joints, the indentation at the maximum joint capacity and the length of the 

mechanism have had to be assumed as well. 

Increasing the database of the results for the variation of joint capacity with 

chord length whilst parameters such as chord width and chord thickness are varied 

would help establish the relationship between these parameters. It has been shown that 

the joint capacity is likely to be function of to, toe toi bo and b3 and that complex 

interaction between the failure mechanisms can be expected as these parameters are 

varied. However, using the approaches outlined in this Chapter it is likely that a 

empirical yield line model could be developed. 

Two different models were considered to estimate the asymptotic strength of the 

long chord length joints. In the plastic model the effective length of the yield line was 

determined however, the deformation assumed is not compatible with the rest of the 

chord and does not represent the deformation actually observed. This will inevitably 

cause problems when trying to establish the total effective yield line length for different 

chord width and slenderness ratios. Regrettably there is insufficient data to establish the 

in-plane yielding constant of other joints with different parameters where the asymptotic 

strength is known, so no relationship to determine the total effective yield line length 

can be made. 
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The second method using a combination of plastic and semi rigid mechanisms 

required extensive knowledge of the length of the mechanisms involved however, 

summing the internal work of the various mechanisms provided a very good estimation 

of the total work done. It is considered that this mechanism is an impractical method of 
determining the collapse load of the joint, unless relationships can be established to 

determine the length of the plastic and semi rigid mechanisms. However, it does provide 

a good model showing all the mechanisms involved and how the joint capacity may vary 

as the parameters are changed. 
One problem common to both methods is to establish a relationship for the in- 

plane yielding of the chord material in the vicinity of the brace. It is considered that with 

a larger database of results this could be easily established. This would also enable the 

joint capacity of short chord length joints to be determined using the yield line model 

describe previously. 

5.7 Summary 

In this Chapter various plastic and semi-rigid mechanisms were examined to 

assess their contribution to the total collapse mechanism. The classification of the joint 

according to the length of the chord has helped in identifying the different mechanisms 

operating in the collapse mechanism. 
A plastic collapse mechanism was suggested for short chord length joints, 

combining a yield line mechanism and in-plane yielding of the chord walls. In the yield 

line mechanism, the yield lines are positioned at the comers of the chord section and run 

along the length of the chord free of any restraint from the brace member. The angle of 

rotation of the yield lines was assumed to be constant along the length of the yield lines. 

The in-plane yielding of the chord walls is caused by the restraint offered by the brace 

member in resisting the deformation of the chord. Considerable in-plane yielding of the 

chord walls is required so that there is compatibility of the deformation in the chord wall 

between deformation caused by the restraint of the brace member and the yield line 

mechanism. This is accounted for in the collapse mechanism as an empirical allowance, 

estimated from the difference between the joint capacity observed and the load 

supported by the yield line mechanism. 

The joint capacity of the medium chord length joints was estimated by 

considering the work done by the rotation of the moment at the corner of the chord 

148 



section in addition to the in-plane yielding in the vicinity of the brace. The result 
underestimated the work done at the asymptotic strength which was taken as evidence of 
additional mechanisms operating in the collapse mechanism. 

A plastic collapse mechanism was suggested for long chord length joints to 

calculate the asymptotic strength of the bird beak joints, based on Togo's ring model for 

CHS joints. This model was then modified to place the yield lines at the corners of the 

chord and to allow for the restraint offered by the brace. The effective yield line length 

and the restraint from the brace member had to estimated by empirical means. 
A combination of semi-rigid and plastic mechanisms based on the known 

deformation of the chord walls was then examined to further the understanding of the 

collapse mechanism. The plastic mechanism remained the same as for the short chord 
length joints, whilst the additional work done by the semi-rigid mechanisms was 
estimated by assuming an indentation at which failure occurred. The internal work done 
in twisting the chord was found to be of minor importance to the strength of the joint, 

whilst the work done in bending the chord face about an axis perpendicular to that face 

was found to be significant, although the strength of the joint was overestimated. 

No method was identified in this Chapter in which the strength of the joint could 
be calculated from the joint's physical specification, all the methods relied on empirical 

observations to assess the length of the yield line, the length affected by the semi-rigid 

mechanisms and the restraint offered by the brace. With a larger database of joint 

capacities obtained from further research it is felt that empirical formula could be 

established to estimated these unknown quantities. 

5.8 Conclusion 

It should be recognised that many of the conclusions made here are tentative, 

with empirically based assumptions and are consequently not proven. This Chapter and 

the conclusions reached, do however convey to the reader how the failure mechanism is 

thought to operate and should provide a good starting point for further investigations. 

For the long chord length bird beak joints analysed, it has been shown that a 

reasonable upper bound estimation of the asymptotic joint strength can be made by 

calculating the internal work done by: 

" the yield lines, with a linear variation of the angle of rotation along the length of the 

yield line 
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" the in-plane yielding of the chord wall in the vicinity of the brace member 
" the rotation of the moment in the elasto plastic and elastic regions 
" the bending of the chord face about an axis perpendicular to the face of the chord 

when a plastic hinge of negligible stiffness is formed at the centre of the chord face 

The work done in twisting the chord face was found to be of minor importance and for 

this and most other chord thicknesses and it can be ignored. 

Good estimates can be made for short chord length joints by calculating the 

internal work done by: 

" the yield lines 

" the in-plane yielding of the chord wall in the vicinity of the brace member 

The estimation of the joint capacity for the medium length joints underestimated 

the asymptotic strength and overestimated the joint capacity with increasing chord 
lengths. Obviously there is some degree of bending of the chord face, which has been 

considered for the long chord length joints, but this could not be incorporated into this 

model as the end of the mechanism cannot be assumed to be held encastre. 
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6. 

The effect of member orientation in T joints 

6.1 Introduction 

The effect of the orientation of the members of T joints will be discussed in this 

Chapter by examining traditional RHS and diamond bird beak T joints, where 9= 900 

and the brace member is axially loaded. The results of the finite element analyses for 

these joints are presented and compared to establish what effect the orientation of the 

chord has on the joint capacity. The variation of the joint capacity with the chord 

length is then investigated for both the traditional RHS and the bird beak T joints. 

In traditional methods of T joint design, the local joint capacity is found from 

the design recommendations in the appropriate design code which have been 

established from physical tests. The moment capacity of the chord is then checked 

separately. However, the interaction between the local joint failure and the overall 

chord failure is liable to have an effect on the capacity of the connection itself leading 

to a possible overestimate (or underestimate) of the capacity of the connection. In this 

Chapter the interaction method, first proposed by van der Vegte (1994b) will be used 

where all the factors which affect the strength of aT joint, including the moment acting 

in the chord, are combined into one diagram. The interaction relationship is established 

by considering the local joint capacity, i. e. the joint capacity when the bending moment 

in the chord at the joint is zero and the moment capacity of the chord reduced to allow 

for the effects of shear in the vicinity of the brace member. The interaction between the 

joint strength and the moment operating in the chord is then defined by 

The joint capacity 
and 

The moment operating in the chord 

The local joint capacity The reduced moment capacity of the chord 

In this Chapter the interaction relationship is established by examining T joints 

of different chord lengths whilst the parameters of chord slenderness and width ratio 

are varied to find how the joint capacity is affected by the moment acting in the chord. 

Then local joint capacity for each combination of chord slenderness and width ratio 

examined previously, is found by analysing a series of T joints where the effects of 
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chord bending have been eliminated by applying a moment to the chord such the 
bending moment under the brace is zero. Finally the reduced moment capacity of the 

chord in calculated theoretically. These results are plotted on the interaction diagram in 

the manner shown in Figure 6.1. 

The joint capacity 
The local joint capacity 

The moment operating in the chord 
The reduced moment capacity of the chord 

Figure 6.1 An example of the interaction diagrams consider in this Chapter 

The method by which van der Vegte determined the local joint strength without 

the effects of chord bending will be examined and improvements to the method 

suggested. As a comparison to the bird beak joints, similar traditional RHS T joints are 

examined in the same manner and the differences between the interaction diagrams of 

the traditional RHS T joints in this work and those published by Yu (1996) will be 

noted. Finally the different interaction curves for the traditional RHS, CHS and 
diamond bird beak T joints will be compared and discussed to establish the variation in 

the behaviour of the various joint configurations. 

A limited amount of experimental testing of diamond bird beak T joints was 
carried out by Steller (1996) in the Civil Engineering laboratory at Nottingham 
University. The results from this work are reported and are used to validate the models 

used in this Chapter. 

6.2 The model details of the T joints studied 
The general arrangement of the traditional RHS and the diamond bird beak T 

joints considered in this Chapter are shown in Figure 6.2. The diamond bird beak T 

joint is formed by rotating the brace and the chord members through 45° about their 

own centre line axes. The square bird beak T joint is not considered in this Chapter as 
it is expected that its behaviour will be very similar to the diamond bird beak T joint. 

The traditional RHS T joint is formed in the traditional manner. 
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(a) Traditional RHS T joint (b) Diamond bird beak T joint 

Figure 6.2 The traditional RHS and diamond bird beak 7 joints studied 

Figure 6.3 Examples of the. fi nite clement mesh fo, - the traditional RNS and diamond bird 
beak Tjoint 

T joints with an axial force applied to the brace member have two planes of 

symmetry, so that only one quarter of the joint need be modelled. The rest of tic joint 

is represented by the symmetrical boundary conditions on the planes of symmetry. 

Examples of the finite element meshes used to represent the different forms of T joint 

analysed in this Chapter are shown in Figure 6.3 

6.3 The method of loading 

All the joints analysed in Section 6.10, where the effects of chord bending are 

considered, have been loaded by an axially compressive force applied to the brace 

member only. The load is applied uniformly to all the nodes at the end of the brace 

with the exception of the nodes on the planes of symmetry, where only half the load is 

applied. This is shown in Figure 6.4a. Later in this Chapter, in Section 6.1 1, the effects 

of chord bending will be removed to find the local joint strength by loading the joint in 
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the manner shown in Figure 6.4b. This is described in more detail later however, it is 

important not to confuse the two methods of loading. 

(a) With the effects of chord (b) Without the effects of chord 

Figure 6.4 The two methods of loading the diamond bird beak 7 'Joint 

6.4 The material properties 

The same properties used in Chapter 4 are also used in this Chapter, that is an 

elastic/perfectly plastic material with Young's Modulus E= 207 kN/mm' and a yield 

stress of fy = 275 N/mm2. The reason for this choice is to aid the analytical analysis of 

the failure mechanisms, which are discussed in Chapter 5. 

6.5 The method of supporting the chord 

Traditionally T joints are tested with a thick diaphragm plate on the end of the 

chord to transfer the reaction from the chord to the base of the test machine. However, 

in Chapter 4 it was established that the boundary conditions at the end of the chord 

influenced the behaviour of the X joint and its capacity. An example of how the 

boundary conditions at the end of the chord affect the behaviour of the T joint occurs 

when the models loaded without the effects of chord bending are analysed with a thick 

plate supporting the end of the chord and is discussed in more detail in Section 6.5. 

Chord lengths longer than a= 12 could not be analysed without the calculation 

becoming unstable, i. e. the load increment tending to zero at a relatively low load. To 

overcome this problem the nodes at the end of the chord were supported in a vertical 

direction only for all the models considered. This is shown in Figure 6.5 where the 

nodes at the end of the chord are allowed every degree of freedom except that of 

vertical displacement. 
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Figure 6.5 The method of supporting the end of the chord 

It is acknowledged that this method of support cannot be replicated in the 

laboratory or in a structure however, it does have the advantage that a minimum 

amount of restraint is applied to the end of the chord. This is important as it has been 

established in Chapter 4 that the shorter chord length joints will be strengthened by any 

restraint imposed at the end of the chord. It is unfortunate that imposing a vertical 

restraint at the end of the chord has the most influence on the joint capacity however, 

this is unavoidable when analysing T joints. 

6.6 The type of weld assumed 

A butt weld was assumed for all the joints analysed in this Chapter, for similar 

reasons to those discussed in Chapter 4. These were: 

" the angle of intersection between the faces of the chord and the brace members for 

the diamond bird beak joint is 1200, the limit for considering fillet welds 

" the distorted shape of the elements to model the weld material, caused by the 

geometry of the joint could not be analysed 

" the strength of the weld does not mask the natural strength of the joint and so true 

comparisons can be made between different joint configurations 

6.7 The method of measuring the indentation 

As models with different chord lengths are analysed, it is not very useful to 

observe the deflection of the brace, as all that is measured is the stiffness of the chord. 

To overcome this problem the indentation is observed between a point on the brace 

close to the chord (approximately a distance of 0.75b1 from the toe of the brace) and 

the bottom corner of the chord, shown in Figure 6.6. The load/indentation curves 

achieved by this method reflect the stiffness of the whole joint. 
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Figure 6.6 The datum point for the measuring the indentation of the diamond bird beak T 
joint 

6.8 The moment capacity of the chord 

The elastic moment capacity of the chord when a square section is used for a 
traditional RHS T joint is 

Me_2lfy Egn6.1 
bo 

and when an identical section is used for the diamond bird beak T joint it is 

ýIf 
Me =y Eqn 6.2 

bo 

where the value for the second moment of area I is the same in both configurations 

because the product moment I., y =0 due to the symmetry of the section. 
It can be seen from Eqns 6.1 and 6.2 that the elastic moment capacity of the 

chord in the traditional RHS chord section is higher than the diamond bird beak section 

and hence yielding will occur first in the diamond bird beak section. 

(a) Normal RHS 

bo A111 

bo 

Figure 6.7 The orientation of the chord in the traditional RHS and bird beak joints 
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The approximate plastic moment capacity of the chord when used for 

traditional RHS joints can be estimated from 

Mp = 13bo2tofy 

but is calculated exactly from (ignoring the corner radii) 

i 
MP= bo 

2 +(b0-to)( bo-2to)] fyto 

Mp= 1.5(bo2to-2boto2 +44tä )fy 

when allowances are made for the corners of the section. 

Eqn 6.3 

Eqn 6.4 

The approximate plastic moment capacity of the chord when used in diamond 

bird beak joints can be estimated from 

Mp =. b02tofy Eqn 6.5 

However, a better estimate can be made from 

ý My =. ' (bo - to)i tofr 

Mp = 4-2(bo2to 
- 2boto2 + to )fy Eqn 6.6 

The exact value of the plastic moment capacity can be obtained by calculus 

(b0 
-2t0) 

-72 

Figure 6.8 Calculation of the plastic moment of the chord for a diamond bird beak joint by 

calculus 

M=4 %t°ZNt°f+ 
P23 y 

(no-2to ) 

ff 
J Nf2-t0f y -Lo-+x 
0 
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Mp = r2-( b 2to - 2botö + Y3 to3)fy Eqn 6.7 

Comparing the plastic moment capacities of the two different sections using 
Eqns 6.4 and 6.7 it can be seen that the plastic moment capacity of the traditional RHS 

configuration is only slightly larger (1.5 opposed to 1.414) and so it will be expected 

that the diamond bird beak configuration will fail plastically at a slightly lower 

moment. Examining Eqn 6.6 and Eqn 6.7 it is found that the difference between these 

two equations is only $'2to3 and for all practical purposes Eqn 6.6 can be used to 

calculate the plastic moment of the diamond bird beak section. 

Sections with corner radii will have different values for the moment capacities, 

which would have to calculated by numerical integration techniques. This difference 

may be particularly significant if cold rolled sections are considered with their larger 

corner radii. 

6.9 Validation of the model 

To ensure optimum meshing of the model, a convergency test was carried out 

to establish the number of elements and their best arrangement. Then to ensure that the 

failure modes are accurately reproduced in the finite element model, a comparison is 

made between physical tests carried out in the civil engineering laboratories at 
Nottingham University by Steller (1996) and the finite element analyses of the models. 

6.9.1 Convergency tests 

In the convergency tests three different models were analysed, coarse, medium 

and fine (280,546 and 845 elements respectively). The results of these analyses are 

given in Table 6.1 and the load/indentation curves are shown in Figure 6.9. The CPU 

time required for the analysis of the fine mesh was 1.75hrs, which when extra elements 

were added to lengthen the chord, was thought to be the optimum number of elements 

that could be used so that the analysis was completed in the 2hr CPU queue. 

During the convergency test it was realised that the elements could be rearranged to 

improve the mesh density in areas of stress concentrations. This was done in model 

TB45V5 and resulted in a decrease of the joint capacity of 8kN (3.2%). It was not 

thought necessary to repeat the convergency tests as the optimum number of elements 

had been determined for the 2hr CPU time queue and there was a convergency between 

the fine and medium meshes with the original mesh. 
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Model Number of Elements Maximum Load kN 

TB45V2 280 284.7 
TB45V3 546 257.6 

TB45V4 845 257.0 

TB45V5 881 249.0 

Table 6.1 The results of the convergency test 
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TB45V2 280 elements 
b�t° =- 

TB45V3 546 elements = 150 

_ TB 45V4 845 elements 
-TB45VS 881 elements 

0(..... ! 
012345 

Indentation mm 

Figure 6.9 The load/indentation curves for the convergency tests 

TI T2 T3 
Chord length LD 450mm 900mm 1350mm 
Chord length ratio a 6 12 18 
Chord breadth (Nom. ) b0 150x 150min l 50x I50mm 150x 150mm 
Brace breadth (Nom. ) b, 90 x 90mm 90 x 90m, n 90 x 90mm 
Wall thickness (Nom. ) to& t, 6.3mm 6.3mm 6.3mm 

Table 6.2 The nominal dimensions of the diamond bird beak T joints tested by Steller (1996) 

6.9.2 Validation of the finite element models 

In order that the results from the finite element models may be considered valid 

they need to be compared with physical test results. Steller (1996) tested three diamond 

bird beak T joints in the Civil Engineering laboratories at Nottingham University with 

the nominal dimensions given in Table 6.2 and the measured values given in Table 6.5. 
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6.9.2.1 Introduction 

The experimental tests carried out by Steller (1996) used cold rolled sections 
which have two appreciable differences to hot formed sections used previously in the 
X joint tests and assumed in all the finite element models - the material properties and 
the cross section profile. 

The material properties of a cold formed section are changed due to the cold 
working of the RHS section as it is manufactured and rolled from a circular to a 
rectangular section. The work hardening and subsequent loss in ductility caused by this 
deformation is not removed by heat treatment. The effect of this on the stress strain 

relationship is to decrease the elongation at failure and to mask the true yield strength 

of the material. (The design yield stress of the material is then taken as the 0.1 % proof 

stress, which may lead to an increase in the yield stress used in the design process). 
These material properties can be determined by tensile test coupons cut from the side 

walls of the section being tested. The problem in modelling a cold formed section is 

that the corners of the section, which have been deformed to a greater extent than the 

sides will have different material properties, due to the extra work hardening that has 

taken place and that this change in the properties is not known. It is likely that the 
design yield stress (0.1 % proof stress) in corners of the section has been increased up 

to a value approaching the ultimate tensile stress of the material. This will significantly 

affect the strength of bird beak joints, which are formed on the corners of the sections 

and derive much of their strength from the stiffness of the corners. 

Section Hot Finished Cold Formed 

Maximum' Actual Maximum2 Actual 

90x9Ox6.3mm 12.6mm 7.5mm 18.9mm 18.0mm 

150x l50x6.3mm 12.6mm 7.1 mm 18.9mm 12.0mm 

1 Defined in BS4848 as 2. Ot 
2 Defined in BS6363 as 3. Ot 

Table 6.3 The outside corner radii of the hot rolled and cold formed sections used in the 

validation of the X and T joints respectively 

The second major difference of cold formed sections, is the cross sectional 

profile of the section. In order that the residual stresses and the loss in ductility is not 

excessive, the cold formed RHS are produced with larger corner radii than the hot 

finished sections. The differences in corner radii are shown in Table 6.3, where the 
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maximum is defined in the respective British Standard. The values for the actual corner 
radii are from the tested joints, hot finished sections being used for the testing of the X 

joints described in Chapter 4 and cold formed sections being used in the testing of T 
joints described in this section. It can be seen that there are appreciable differences 

between the two sections formed by different processes, particularly in the case of the 
90x9Ox6.3mm section. 

No corner radii have been modelled for the majority of joints in this thesis and 
Crockett (1995) found there was little to be gained from modelling the corner radii in 
RHS section for traditional RHS joints. However, the effect of the larger corner radii of 

cold formed sections on the bird beak joints is likely to be completely different 

because: 

" the bird beak joints are formed on the corners of the section and this will affect the 
transference of the load from the brace to the chord member 

" when considering the yield line failure model of a traditional RHS joints it makes no 
difference if the yield line is assumed at the corner of the chord section or in the 

chord wall 

" of the change in the moment capacity of the chord when considering bird beak T 

joints due to change in the cross section profile 

In order to investigate the effect of the corner radii and to model the test joints 

as closely as possible, corner radii were modelled in some of the joints used for the 

comparisons with the experimental results and compared to models were the corner 

radii was not modelled. The same material properties were used in all the models. 

6.9.2.2 The general arrangement of the joint 
The reaction from the load applied to the brace of the T joint is transferred to 

the base of the testing machine by a 15mm plate, welded to the ends of the chord and a 

roller bearing under the plate. This arrangement is shown in Figure 6.10. This was 

modelled in the finite element representation as a roller bearing at the bottom of the 

plate, which should be an accurate representation providing there is no friction in the 

physical roller bearing. 

Regrettably, in order to measure the lozenging of the chord, a hole was flame 

cut in the 15mm plate to provide access into the inside of the chord section. This is 

also reproduced in the finite element model as accurately as possible however, due to 
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the irregularities of the edges of the hole, errors may be expected in estimating the 

stiffness and strength of the end plate. After testing the first T joint ((x = 12), the end 

plate was noticeably deformed and in the remainder of the tests ((x =6 and 18) the end 

plate was reinforced by two steel bars 38x25mm in the manner shown in Figure 6.11. 

FE Representation 

Figure 6.10 The support arrangements at the ends of the chord 

End Plate 
300 x 270 x 15mi 

38x25mm Steel Bar 

ole cut in the end plate 
provide internal access 
the chord 

Figure 6.11 The plate at the end of the chord 

The deformation of the end plates in the first test demonstrates the importance 

of the chord end conditions in assessing a joint's strength. Doubtless the failure of the 

end plate affected the failure capacity of the joint tested. Although all these factors are 

represented in the finite element models as accurately as possible, estimates have had 

to made of the material properties of the end plate and the reinforcing bars as they were 

not derived from tensile test coupons. The accuracy of these estimates will affect the 

accuracy of the joint strength comparison and the reliability that can be placed on the 

results because unfortunately the strength of the support arrangement used was not 

sufficient and influences the strength of the T joint observed. 
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6.9.2.3 The material properties 

The material properties of the sections used for the chord and brace were found 

by tensile test coupons cut from the sides of the respective section. The material 

properties found during the tensile test are given in Table 6.4 and shown in Figure 6.12 

where the stress and strain relationship is given as an engineering stress/strain 

relationship. (This is changed to a true stress/strain relationship using Eqns 3.1 and 3.2 

before it is entered into the finite element models. ) 

Chord Brace 
Stress Strain Stress Strain 

N/mm2 N/mm'` 
0 0.0000 0 0.0000 

420 0.0021 360 0.0017 
440 0.0026 380 0.0023 
460 0.0037 400 0.0031 
480 0.0084 440 0.0085 
500 0.0196 462.5 0.0395 
520 0.0471 460 0.14 
524 0.0796 
520 0.12 
518 0.14 

Table 6.4 Engineering stress/strain relationship of the test joints and used in the finite 

element analyses to validate the diamond bird beak T joint models 

600 
E 

500 
400 

300 

200 Chord 
100 

-x- Brace 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 
Strain 

Figure 6.12 Engineering stress/strain relationship of the test joints and used in the finite 

element analyses to validate the diamond bird beak T joint models 
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6.9.2.4 The physical properties 
The physical properties of the joints tested reported by Steller (1996) are given 

in Table 6.5 and were used in the construction of the models used to validate the finite 

element work. During the work on the validation of the models, both straight corner 

models and radii corner models are considered. The straight corner models had no 

corner radii modelled and are identical to the parametric models used in this Chapter, 

whereas the radii comer models had the radii modelled but are otherwise identical to 

the straight corner models considered in this validation procedure. (All the joints had 

the same material properties, that of the cold formed section. ) The inclusion of the 

corner radii necessitated the inclusion of 125 extra elements so that the curvature of the 

corner radii could be modelled without the elements being considered unduly distorted. 

Chord 
mm 

Brace 
mm 

Outside dimensions bo 152.5 b1 94 
Wall Thickness to 5.77 ti 5.89 
Outside Radius - 12.0 - 16.13 
Inside Radius - 4.41 - 10.5 

N/mm2 N/mm2 
0.1% Proof stress fy 445.5 fy 387.1 
UTS 524 462 

Table 6.5 Physical properties of the test joints and used in the finite element analyses to 

validate the diamond bird beak T joint models 

Fillet welds were modelled in these finite element models to represent the weld 

material in the physical joint. The welding of the joints was very irregular and untidy 

due to the slope of the weld surfaces of the joint. However, observations made 

indicated a throat thickness of 6.2mm, which is used in the models. 

6.9.2.5 Comparison of the results 
The load/indentation and the load/lozenging curves for the test joints and the 

finite element models representing them are given in Figure 6.13. These results are 

summarised in Table 6.6, giving the maximum joint capacity observed and the initial 

stiffness of the load/deflection curves. (The initial stiffness has been calculated by 

considering the deflection observed at approximately 40% of the maximum load and 

assuming that the joint behaves elastically in this range. ) 
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The finite element analysis predicts the maximum joint capacity with 

reasonable accuracy for all the radii corner models (3.3%, 0.2% and 1.8% when a=6, 

12 and 18 respectively) however, the straight cornered models overestimated the 

maximum joint capacity (7.6% and 7.9% when a=6 and 18 respectively). 
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The deformation at the maximum load predicted by the finite element models 
in all cases under-estimated the deformation observed in the physically tested joints by 
15-25%. This may be seen in Table 6.7 where the deformation observed at the 
maximum joint capacity is given. 

Corner radii model Straight corner 
model 

Physically tested 
joints 

Model a Load Deflect. Load Deflect. Load Deflect. 
2Lo/bo kN mm kN mm lcN mm 

Ti 6 416.4 5.45 463.6 5.27 430.7 7.35 
T2 12 261.2 9.93 - - 260.6 11.68 
T3 18 216.2 14.45 228.9 12.45 212.2 16.89 

Table 6.7 The deflection at maximum joint capacity 

Considering the results of each joint shown in Figure 6.13 in turn, it can be 

seen that in addition to these general observations that when a=6 in joint Ti, there are 

significant differences between the load/deflection curves for the physically tested joint 

and those predicted by finite element analysis. This is thought to be due to the end 

plate and the reinforcing bars at the end of the chord influencing deformation 

behaviour of the joint (the effect of which is not entirely known). The load/lozenging 

curve, which is not influenced by the conditions at the end of the chord to the same 

extent, shows a better correlation between the curves. The joint capacity predicted by 

finite element analysis based on straight cornered models is 11% greater than that 

predicted for the corner radii models, showing that for the bird beak joints there may be 

a substantial difference in the joint capacity depending on the type of section used. 
When a= 12 in joint T2, there appears to be good agreement between the 

predicted curves and those observed for the physical test. In this particular joint there 

were no reinforcing bars on the end plate of the chord and at the maximum joint 

capacity there was considerable deformation of the end plate. This in turn caused 

considerable deflections at the centre of the chord with little change in the load 

recorded. This appears to make the comparison between the curves better than it 

should be. Table 6.6 shows that there is a large difference in the deflection at 

maximum joint capacity, but as there is little difference in the load applied to the brace, 

this cannot be seen in the load deformation curves shown in Figure 6.13b. 
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When a= 18 in joint T3, there is again a substantial difference between the 

predicted load deformation curves and those observed for the physical test. There are 
reinforcing bars on the end plate of the chord for this joint however, they should affect 
the joint strength less because of the longer chord length and the lower joint capacity 

observed, although this cannot be seen by comparing Figure 6.13 a&c. The 

load/lozenging curves show a better correlation between the predicted and the observed 
deformation than the load/deflection curves although there are still significant 
differences in the stiffness of the joints. The difference between the finite element 

analysis prediction of the straight cornered model and the corner radii model joint 

capacity is reduced to 6% as the mode of failure becomes that of a chord bending 

failure due to the longer chord length. 

6.9.2.6 Conclusions 

From the examination of these results, it is concluded that: 

" when the physically tested joints are compared against the finite element models 

with corner radii modelled there is a good agreement between the predicted and 

observed joint capacities. However, the experimental deformation (deflection or 

lozenging) is underestimated in all the finite element models by approximately 20% 

at maximum load. 

" when the physically tested models are compared against the finite element models 

with straight corners the joint capacity is overestimated by 7- 8%. Again the 

experimental deformation is underestimated by approximately 25% at maximum 
load in the finite element models. 

" there are appreciable differences in the joint strength in the finite element model 

depending on whether straight or radii corners are used to form the joint and that the 

cause of this difference is the shape of the cross section profile as the same material 

properties have been used. 

6.10 Diamond bird beak T joint with the effects of chord bending 

The variation of the joint capacity including the effects of chord bending 

(loaded in the manner shown in Figure 6.4a) with chord length will be examined in this 

section. The moment operating in the chord at failure will be examined and compared 

to the calculated plastic moment capacity to establish how the chord may be expected 
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to fail when the chord wall thickness and chord length are varied. The displaced shape 
diagrams, von Mises contoured stress plots, the load/indentation curves and the 

moment/deflection curves are then studied to show what effect the variation of chord 
length has on the respective diagrams for those joints where bo/to=23.8. 

The joint capacities predicted by the equation published by Ishida et al (1993) 

are then compared to joint capacities predicted by finite element methods to establish 
the accuracy of the Ishida's equation and using the results contained in this work a 

different equation is presented to estimate the joint capacity of the diamond bird beak 

T joint. Finally, the design methods used at present are examined to study how the 

variation in chord length and the effect that this has on the joint capacity is allowed for 

in the design recommendations. The joint capacities estimated from the design codes 

for various chord lengths are then compared to the finite element joint capacities. 

Model Chord a to Fß, 1 F., 1 Fý. iLo F (L 
-Ib 

L h b kN kN 4M ß, 1 o o ` engt 2L0 mm o p.. Imd 4M 
10 -bo- to (With end 

p. chord 

mm plate) 

TBV8 450 6 4.25 35.3 104.8 (132.9) 0.426 0.241 
TBV5 450 6 6.3 23.8 202.5 (249.0) 0.450 0.478 
TBV9 450 6 10.0 15 407.7 (495.0) 0.601 0.657 
TBVIO 450 6 16.0 9.4 786.8 (915.7) 0.792 0.879 
TBV20 900 12 4.25 35.3 86.81 (102.2) 0.556 0.323 
TBV19 900 12 6.3 23.8 161.3 (183.6) 0.717 0.616 
TBV21 900 12 10.0 15 322.5 (342.5) 0.951 0.835 
TBV22 900 12 16.0 9.4 601.8 (607.4) 1.211 1.006 
TBV16 1350 18 4.25 35.3 75.52 (80.5) 0.725 0.432 
TBV12 1350 18 6.3 23.8 138.2 (140.9) 0.921 0.817 
TBV17 1350 18 10.0 15 247.2 (247.6) 1.094 0.991 
TB V 18 1350 18 16.0 9.4 415.2 (415.4) 1.254 1.051 
TBV13 2700 36 4.25 35.3 48.0 (47.0) 0.922 0.568 
TBV 11 2700 36 6.3 23.8 79.2 (76.2) 1.056 1.040 
TBV14 2700 36 10.0 15 124.6 (124.3) 1.103 1.136 
TBV15 2700 36 16.0 9.4 202.1 (201.5) 1.220 1.163 

Table 6.8 The finite element analysis results of bird beak T joints with the effects of chord 
bending, width ratio ß=0.6 
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6.10.1 The results of the finite element analyses for the diamond bird beak T 
joint with the effects of chord bending 

In order to investigate the effects of chord bending in detail, a series of analyses 

were performed where the parameters of chord length and slenderness are varied. The 

results of the finite element analyses with the effects of chord bending for a chord 

width ratio of ß=0.6 and the method of support shown in Figure 6.5 are given in 

Table 6.8. 
The values of the same joints analysed with a thick plate (40mm) supporting 

the end of the chord are also given in brackets so that the increase in the observed joint 

capacity can be seen. These results are not used in any further analyses of the joint 

capacities, as the joints to which they are to be compared, loaded without the effects of 

chord bending, do not have an end plate. Comparing two different joints with and 

without an end plate would cause significant differences to be observed in some of the 

shorter joints, which would be due to the presence of the end plate alone. This trend 

can be seen by comparing the joint capacities shown in Table 6.8 with and without the 

end plate. The lower joint capacities with the end plate when a =36, contrary to what 

may be expected, is not considered significant and is attributed to differences which 

may be expected in solving the analyses. 

To increase the database of results, further joints were analysed where the 

parameters of chord length, chord wall slenderness and the chord width ratio were 

varied. The results for these joints where the chord width ratio ß=0.2,0.4 and 0.8 are 

given in Table 6.9. 

6.10.2 The variation of joint capacity with chord length with the effects of chord 

bending. 

6.10.2.1 Introduction 

When considering the effect of changing the chord length Lo on the joint 

capacity F,,, I for a diamond bird beak T joint, there are two different effects which may 

influence the joint capacity. The first effect applies to all T joints in that as the mode of 

failure changes from a local joint failure for short chord lengths to an overall chord 

bending failure for the longer joints, the capacity of the joint can be expected to 

decrease with increasing chord length. 
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The second effect is specific to those joint configurations where the joint 

capacity of the X joint varied with changing chord length. It is possible that a similar 
effect may influence the strength of diamond bird beak T joint, particularly at short 

chord lengths where there may be an increase or decrease in the joint capacity 
depending on the boundary conditions at the end of the chord. 

Model Chord a ß to bo Fu, i 
Length Lo 2L0 b, mm to kN 

rrim bo bo 

TBV54 900 12 0.2 4.25 35.3 68.2 
TBV50 450 6 0.2 6.3 23.8 144.4 
TBV51 900 12 0.2 6.3 23.8 122.9 
TBV52 1350 18 0.2 6.3 23.8 112.7 
TBV53 2700 36 0.2 6.3 23.8 68.02 
TB V 55 1350 18 0.2 10 15.0 203.3 
TBV57 2700 36 0.2 10 15.0 112.1 
TBV56 900 12 0.2 16 15.0 459.9 
TBV44 900 12 0.4 4.25 35.3 80.94 
TBV45 1350 18 0.4 4.25 35.3 72.38 
TBV40 450 6 0.4 6.3 35.3 189.1 
TB V41 900 12 0.4 6.3 23.8 150.1 
TBV42 1350 18 0.4 6.3 23.8 132.2 
TBV43 2700 36 0.4 6.3 23.8 77.47 
TBV46 450 6 0.4 10 15.0 362.7 
TB V 47 1350 18 0.4 10 15.0 238.9 
TBV48 900 12 0.4 16 9.3 554.5 
TBV49 2700 36 0.4 16 9.3 207.6 
TBV34 450 6 0.8 4.25 35.3 130.5 
TBV35 900 12 0.8 4.25 35.3 101.5 

TBV35A 1350 18 0.8 4.25 35.3 85.07 
TBV30 450 6 0.8 6.3 23.8 231.9 
TBV31 900 12 0.8 6.3 23.8 185.9 
TBV32 1350 18 0.8 6.3 23.8 151.1 
TBV33 2700 36 0.8 6.3 23.8 77.96 
TBV38 450 6 0.8 16 9.4 887.7 

Table 6.9 The finite element analysis results of diamond bird beak T joints 
with the effects of chord bending for all other chord width ratios 

6.10.2.2 The influence of the chord length on joint capacity F0,1 

The effect of the chord length on the joint capacity can be seen in Figure 6.14, 

where identical joints with the same chord wall thickness were tested with different 
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chord lengths. All the joints demonstrate a decrease in joint capacity with increasing 

chord length as expected 
800 

H b(& = 35.3 

700 b(V4) = 23.8 

bd4) =15.0 
600 bo/t0 = 9.3 

500 (3 = 0.6 
bo> = 150mm 

400 fy = 275N/mm2 

300 --- -- - 

200 

100 

0 

0 5 10 15 20 25 30 35 40 
Chord length ratio a= 2L(/bo 

Figure 6.14 The effect of' chord length on the joint capacity when ß=0.6 for various chord 
thicknesses 

However, all the joints where bO/tO S 23.8 (to >_ 6.3mm) show a definite change 

in the rate of decrease of the joint capacity with chord length at some point in the range 

of chord lengths plotted. Whether this decrease is due to the change in the failure node 

from a local joint failure to an overall chord bending failure or a change in the local 

joint failure capacity, or a combination of both, cannot be ascertained from this figure. 

6.10.2.3 The influence of the chord length on the moment acting in the chord 

The variation in the chord moment at the joint with the chord wall thickness to 

is shown in Figure 6.15 where the chord width ratio is (3=0.6. The plastic moment 

capacity at which the joints may be expected to fail by overall chord failure has been 

calculated in two ways, using Eqns 6.5 and 6.7 with the latter being the more accurate 

method. 

When a=6 the joints can be seen to be failing by a local joint failure and can 

be considered to be largely independent of the plastic capacity of the section for all of 

the chord wall thicknesses considered. As the chord length increases, the moment 

acting in the chord also increases. It would be expected that the value described by the 

plastic moment calculated by Eqn 6.7 would be the limiting value however, Figure 

173 



6.15 shows that this value is exceeded by the longer chord length and the stockier 

chord sections. 

160 

140 
FF,,, 

LO/4=Mp -'(bo2to-2boto+43 t03)fy 

120 Fý, i 4�4 = Mp_ ý2bo2r<) fy 

Ci 100 

80 J, 

60 

40 
ß=0.6 

20 bo = 150mm 
fY = 275N/mmZ 

0 

2468 10 

a6 

1 ýa=12 
A a=18 

-x-a=36 

12 14 16 18 
Chordwall thickness to mm 

Figure 6.15 The variation of the moment at the joint with chord wall thickness when Q=0.6 

It is interesting to note that as the chord length increases, the moment in the 

chord at which joint failure occurs, tends towards the plastic moment capacity 

calculated by Eqn 6.5, which is the least accurate way of determining the moment 

capacity. No explanation can be given for this other than coincidence as Eqn 6.5 

clearly overestimates the plastic moment capacity by considering the corners of the 

section twice in the calculation. It is possible that it might be due to a von Mises effect 

due to the tri-axial stress operating in the corner of the section. 
Figure 6.16 shows the variation in the normalised moment acting in the chord 

with chord length. The moment M, () is calculated at a point in the chord free of any 

restraint or stiffening effect from the brace member and is considered the most likely 

place where the chord will fail due to a plastic hinge forming. The plastic moment Mi, 

is calculated using the Eqn 6.7. If the failure is to be attributed to overall chord failure, 

then the normalised moment acting in the chord should be constant and equal to 1. The 

following points can be made from examination of Figure 6.16: 

" for very short chord length joints, where a=6, the value of the normalised moment 

is significantly less than 1, so the failure mode is predominately that of a local joint 
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failure. However, the chord bending may still influence the joint capacity, as the 

moment acting in the chord is still significant 
. 1.6 

be&= 35.3 P=0.6 
1.4 

-a b(J )= 23.8 h= 150mm 
Cy = 275N/mmz 

° -k- bo &= 15 1.2 
bcvki = 9.3 

0.6 

0.4 

0.2 

0.0 
05 10 

Failure is assumed to occur 
here, M,, () = FL,, I ALU -'i2b i )/4 

F 

15 20 25 30 35 40 
Chord length ratio a= 2LSbO 

Figure 6.16 The variation in the normalised nzoinent in the chord with the chord length when 
13=0.6 and the failure is assumed to occur in the chord free of the influence of the brace 

inember (M, using Eqn 6.7) 

" the normalised moment acting in the chord increases as the chord length increases, 

tending to a limiting value of about one, suggesting that in these joints the dominant 

failure mechanism is an overall chord bending failure 

" the magnitude of the moment acting in the chord when a> 18 for the joints where 

bo/t0 = 15 and 9.3 (to = 10 or 16mm) is clearly above the plastic moment capacity of 

the chord. It would also appear that the plastic moment capacity of the chord is 

exceeded in those joints where b0/to = 35.3 and 23.8 (toi = 4.25 and 6.3mm) as the 

chord length increases beyond the range of chord lengths considered 

" the normalised moment acting in the chord increases with chord wall thickness. 

6.10.2.4 Von Mises contoured stress plots and displaced shape diagrams 

The contoured stress plots shown in Figure 6.17 for similar diamond bird beak 

T joints with varying chord length show the transition from a local joint failure when a 

=6 to an overall chord bending failure when a= 36. This is best observed by 

examining the stress levels on the lower face of the chord at the centre line of the joint. 

When a=6 the stress level is relatively low in the centre of the face and clear of the 
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yield lines forming at the corners of the chord section, but as the chord length increases 

so the level of stress in this area increases. 

For the longest joint, when a= 36, all the material in the vicinity of the centre line of 

the joint has yielded indicating the formation of a plastic hinge in the chord member 

under the brace. 

Examining Figure 6.17 in more detail it can be seen that: 

" when a=6 the material in the upper face of the chord has undergone widespread 

yielding as would be expected with a local joint failure. There is further yielding of 
the material at the end of the chord due to the restraint offered by the boundary 

conditions. These two areas of yielded material have merged together and it is not 

possible to differentiate how much yielding is caused by either mechanism. Further 

evidence of the effect of the restraint at the end of the chord can be seen in the 

displaced shape diagram at the end of the chord where the local deformation of the 

top corner of the chord shows the influence of the restraint. The stress distribution 

in the brace member indicates that the majority of the load is transferred into the 

chord at the top corner of the chord. 

" when a= 12 and 18 the mode of failure is a combination of local joint failure and 

overall chord bending failure. There is evidence of yield lines forming at the top, 

middle and bottom corners of the chord section. The support conditions at the end 

of the chord do not unduly appear to affect the failure of the joint. 

" when a= 36 the mode of failure is predominately that of overall chord bending 

failure. It is interesting to note that there is no evidence of a yield line forming at 

the middle corner of the chord when a= 36, although a yield line can be identified 

at the middle corner of the joints where a= 12 and 18. Examination of the stress 

distribution in the brace member indicates that the load transference into the chord 

is more evenly distributed through the brace member. 
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(a) TB V5 a=6 

(b) TB V 19 a= 12 

(d) TBVII a=36 
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Figure 6.17 Displaced shape diagrams and von Mises contoured stress plots fir the diamond 
bird beak joint with the effects of chord bending at maximum load on the outside surface 
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6.10.2.5 Load indentation curves 
The load/indentation curves for the same joints shown in contoured stress plots 

are shown in Figure 6.18. Examining this figure it can be seen that: 

" as would be expected, the maximum load decreases with increasing chord length 

" all the joints, regardless of the chord length, attain a maximum load although the 

indentation at which this occurs varies widely, from 3%bo when (x =6 to 0.6%b0 

when a= 36 

" the restraint offered by the support conditions increases the initial stiffness when 

a= 
250 

200 

150 0.6 

bo = 150mm 
100 ATBVS a =6 b, =90mm 

3 *TBV19 a=12 mm . 
50 TB V 12 18 b(�4) = 23.8 

TBV 11 a= 36 f,, = 275 N/mm'` 
0 r -t ýý wIt ,_ ýý 

0I2345678 
Indentation mm 

Figure 6. I8 Load indentation curves jor the diamond bird beak T joint with the effect of 
chord bending 

The load/indentation curves shown in Figure 6.18 give an indication of how the 

stiffness of the joint changes as the chord length is varied, whilst the 

moment/deflection curves shown in Figure 6.19 show how the stiffness of the chord 

changes as chord length is varied. The moment has been calculated at a point in the 

chord free of any restraint form the brace and is considered the most likely place for the 

plastic hinge to form. 

Comparing the moment/deflection curves for TBV5 and TBV19 where a=6 

and 12 respectively, the initial slopes of the curves are virtually identical and the curves 

are similar in shape. The moment in TBV 19 (31.2kNm) is virtually twice that of 

TBV5 (16.3kNm) as would be expected as the chord length has been doubled. The 

initial slope of TBV12 is less than that of TBV5 and TBV 19 and the moment at failure 
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(42.2kNm) is not quite three times that of TBV5. The moment in TBV12 is at 85% of 

the moment capacity of the chord (50.6kNm) and it can be expected that chord bending 

is becoming more dominant in the failure mechanism when a= 18. In joint TBVI 1 

where a= 36 the curve is very different to that seen in the previous three curves 
discussed. The initial slope is significantly less and the moment in the chord is no 
longer related to the length of the chord and is 97% the moment capacity of the chord. 
The dominant mechanism in the failure of the joint is obviously chord bending. 
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ý- TB V 11 a= 36 f, = 275 N/mm2 

Figure 6.19 Moment/deflection curves for the diamond bird beak T joint with the effect of 
chord bending 

6.10.3 Calculation of joint strength for the diamond bird beak T joints 

Ono et al (1991) suggested that the joint capacity of a diamond bird beak T 

joint can be estimated from Eqn 6.8 based on a series of experimental test joints where 

a=6. The joint capacities predicted by Eqn 6.8 are compared against those finite 

element results where a=6 and are shown in Table 6.10. 

Fß,, 1=to2fy 
I+1" b° 

Eqn 6.8 
0.211-0.147P 1.794-0.942P to 

Examination of the predicted joint capacities against the finite element results show 

that Eqn 6.8 overestimates the expected capacity considerably. The reason attributed to 

this large discrepancy is the method of restraining the chord used in experimental tests. 
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This was discussed in Chapter 4, where a large increase in the X joint capacity was 

noted when the ends of the chord were restrained for short chord length joints. The 

precise method used to support the ends of the chord in the experimental tests 

performed by Ono et al (1991) is not known (see Figure 2.5) however, it is thought that 

the conditions resemble that of the chord ends held encastre. 
In view of these results, the design equation established by Ishida et al (1993) 

and published in the CIDECT design guide (Packer et al 1992) should be used with 

caution until further work has been done on this type of joint configuration. 

Model bo 
mm 

to 
mm 

(3 bW/to fy 
N/mm 2 

FE 
analysis 

kN 

Ishida et al 
Eqn 6.8 

kN 

% 
Difference 

TBV50 150 6.3 0.2 23.8 275 144.4 222.0 54 
TBV40 150 6.3 0.4 23.8 275 189.1 255.1 35 
TBV46 150 10 0.4 15.0 275 362.7 471.8 30 
TBV8 150 4.25 0.6 35.3 275 104.8 183.1 75 
TBV5 150 6.3 0.6 23.8 275 202.5 300.4 48 
TBV9 150 10 0.6 15.0 275 407.7 559.6 37 
TBVIO 150 16 0.6 9.4 275 786.8 1110.4 41 
TBV34 150 4.25 0.8 35.3 275 130.5 221.2 70 
TBV30 150 6.3 0.8 23.8 275 231.9 366.3 58 
TBV38 150 16 0.8 9.4 275 887.7 1389.2 56 

Table 6.10 A comparison between Ishida et al design equation for diamond bird beak T 
joints and similar finite element results where a=6 

Using the T joint results where a=6 analysed with the effects of chord bending 

that may be used to establish the joint strength. Longer joints, when az 12, cannot be 

used as the mode of failure will include a significant amount of chord bending failure. 

However, using the few results that are available the mean joint strength can be 

estimated empirically by 

2 ßo. s bo Fu� =4 fytp 
to 

Eqn 69 

for the range of parameters 0.25 P: 5 0.8,9.45 bo/to 5 35.3, bo =150mm and fy = 275 

N/mm2. Using the results given in Table 6.10 (which have a wide variation of 

parameters) giving a Coeff. of Correlation of 0.999 so that a mean of 1.034 and CoV. 

of 0.0505 enables Eqn 6.9 to be used with confidence when a=6. 
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6.10.4 A comparison of the results to current design methods 

In the design methods used at present for the design of T joints the local joint 

strength is derived from design equations based on the physical tests of short chord 
length joints. (Typically a=6. ) The chord is then checked separately to ensure that the 

moment capacity of the chord at the joint and the shear capacity at the supports is not 

exceeded. 
900 

4, = 16mm FE Joint capacities 
800 - ...... Predicted design capacities (Traditional method) 

cx: 
700 

f3=O. 6 
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200 ......... ..... 4ý=4.25mm _...... 
100 --........ ...................... ...... . 
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Figure 6.20 A comparison between the observed. finite element and the predicted joint 
capacities 

The joint capacities calculated using this method (the joint capacities at a=6 are 

calculated using Eqn 6.9) are compared against the observed finite element joint 

capacities in Figure 6.20 and examining this figure it can be seen that: 

" for very slender joints when to, = 4.25mm (b(ýto = 35.2) the design guidance will 

overestimate the joint strength by up to 25% F,,, 1,,,,, _6 

" for stocky sections when to = 16mm (bo/toý = 9.3) the design guidance will 

substantially underestimate the joint strength by up to 12% F,,, i,, x_c, 

" that the assumption that that the local joint capacity is independent of the effects of 

chord bending is not correct 

Clearly then there is a need to consider the length of the chord (and hence the moment 

acting in the chord), when considering the design strength of the joint. An alternative 

method (i. e. the interaction method) will be considered later in this Chapter where the 
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effect of the co-existing moment acting in the chord is considered in the design 

procedure for the diamond bird beak T joints. 

6.11 Diamond bird beak joints without the effects of chord bending 

This section discusses how the local joint strength without the effects of chord 

bending F,,,,, i,, c is found using finite element methods. There were problems in applying 

the moment to the chord for the bird beak T joints in the same manner as van der Vegte 

(1994a). In order to confirm van der Vegte's work and to examine possible 

improvements to the method of loading the chord with a moment, a series of CHS 

joints similar to those analysed by van der Vegte are examined. The improvements to 

the method of loading the chord with the moment suggested by this study are then 

applied to the diamond bird beak joints with improved results. 

6.11.1 Removing the effects of chord bending 

The method used to remove the effects of chord bending is to apply a moment 

to the chord, such that the bending moment at the joint is zero, shown in Figure 6.21. 

M=FL0/4 

MM Force diagram 

_M _M Bending moment diagram 

Figure 6.21 The method used to remove the effects of chord bending 

It is considered that the most likely place for a plastic hinge to form in the 

chord is next to the brace, where the chord is free of any restraint from the brace. In the 

case of a diamond bird beak T joint, the moment that should then be applied to the 

chord to remove the effects of chord bending is 

F LO-Ib1 
M= Eqn 6.10 

4 

and the effect of this is shown in Figure 6.22. 
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"F Chord failure is assumed 
42b, to occur here 

MM Force diagram 
4Li 

_M _M Bending moment diagram 

Figure 6.22 Removing the effects of chord bending from a diamond bird beak T joint 

When this method was used to remove the effects of chord bending in the 

diamond bird beak T joints, consistent results could not be obtained as the local joint 

capacity F,,,,, ior still varied with chord length and in the longer joints the failure was 
due to chord bending failure at the end of the chord due to the size of the moment 

applied. In order to investigate this and to verify how van der Vegte (1995) obtained 
his results for the local joint capacity F.,,,,,, c, similar CHS T joints were analysed and 

are reported in the next section. 

6.11.1.1 Removing the effects of chord bending from CHS T Joints 

When van der Vegte (1994a and 1995) used this technique to remove the 

effects of chord bending to CHS T joints, he applied a single moment to the end of the 

chord. He was able to show that for chord lengths of a= 12 and 18 there was no 

significant difference in the local joint strength, 162lkN and 1615kN respectively, 

when do = 406.4mm, to = 16mm, d, = 244.5mm and t, = 16mm. To achieve this result, 

van der Vegte states that "to avoid plasticification of the chord end, the yield strength 

of the elements over a small distance of the chord, adjacent to the ends of the chord 

have been increased" without saying over what distance and by how much the yield 

strength had been increased. 

In this study three different methods of applying the moment to the chord have 

been investigated, which are shown in Figure 6.23. In all these cases the moment has 

been applied to the chord as a series of longitudinal forces (in the form of a plastic 

moment distribution) producing a couple equal to the moment acting in the chord due 

to action of the load on the brace. In the model series CHS2 the moment is applied to 

the end of the chord only. However, in the model series CHS3 the moment is applied 

in several small increments in the manner shown in Figure 6.24. 
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Elastic Elements 

4 

F 

a= 12 
(c) Model Series CHS4 

Figure 6.23 Three different methods of applying the moment to the chord 

The moment is applied by a single couple at the end of the chord in the series 

CHS4 (i. e. the same as the CHS2 series) however, the elements at the end of the chord 

shown as the shaded area in Figure 6.23c, are purely elastic with no plastic properties 

at all, to prevent yielding and premature failure. The elements in the middle of the 

chord over a length equivalent to a= 12 have both elastic and plastic properties to 

assess the local joint strength. 

1F 

-M; -M; 

F(Lo-d1) 
4 4 

Force diagram 

Bending moment diagram 

Figure 6.24 The method of applying moment in the model series CHS3 

The joint parameters used in the analysis of the CHS T joints are do = 406.4mm, to = 

16mm, di = 244.5mm and t1 = 16nun, where P =0.6 and d�/t�=25.4. The material 

properties used, estimated from van der Vegte's data and are given in Table 6.11. The 

Young's Modulus was taken to be 207 kN/mnY. 
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Stress Plastic Strain 
N/mmZ 

355 0.00 
355 0.02 
440 0.05 
510 0.10 

Table 6.11 The material properties used in the CHS T joints 

The results of the CHS finite element models analysed are given in Table 6.12 

and shown in Figure 6.25. Examples of the von Mises contoured stress plots for the 
different methods of applying the moments are shown in Figure 6.26 for the CHS T 

joints where a =24. 
Examining the data shown in Table 6.12 and Figure 6.25 and using the 

contoured stress plots to interpret this information it can seen that: 

" the values of for the model series CHS2 are not constant with increasing 

chord length. Examination of the von Mises contoured stress plot reveals that the 

size moment applied to the chord is causing the chord to fail by bending at the end. 

" the values of F,,,,, iý, c for the model series CHS3 are constant with increasing chord 
length when the chord length ratio a2 18. Examination of the von Mises stress plot 

shows that the failure occurs in the chord locally about the brace member 

" the values of F,,,,, i. for the model series CHS4 are approximately constant with 

increasing chord length for the range of 12 5a5 24. The values of Fu,,, ioc are 

marginally higher than for the model series CHS3 reflecting the increase in the joint 

capacity by removing the plastic properties from the elements at the end of the 

chord. When the chord length increases to a= 36 a fall in the value F,,, i, ioc can be 

observed as the elastic part of the chord begins to deform and so provide less 

support for the central part of the joint where the elements have the elastic and 

plastic properties. Examination of the von Mises contoured stress plot shows that 

the areas of high stress are not confined to the chord in the vicinity of the brace 

member but extend the whole length of the chord. The failure of the joint cannot be 

considered to be localised in the vicinity of the brace member and total failure of the 

chord is only prevented by removing the plastic properties of the elements at the end 

of the chord 
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" comparing joints CHS2-12 and CHS4-18, i. e. similar to the joints van der Vegte 

used to establish that the local joint capacity F,,, 1,10 was independent of chord 

length, it can be seen that similar values of F,,, 1 ion are obtained for these joints (1550 

and 1537kN respectively). 

Model Lo oc F,, 1 ion 
mm kN 

CHS2-6 609.6 6 1535 
CHS2-12 1219.2 12 1550 
CHS2-18 1828.8 18 1376 
CHS2-24 2438.4 24 1034 
CHS2-36 3657.6 36 742 
CHS3-6 609.6 6 1535 

CHS3-12 1219.2 12 1489 
CHS3-18 1828.8 18 1511 
CHS3-24 2438.4 24 1510 
CHS3-36 3657.6 36 1510 
CHS4-18 1828.8 18 1537 
CHS4-24 2438.4 24 1548 

CHS4-36 3657.6 36 1485 

Table 6. /2 The results of the finite element analyses for the CHS T joints without the effects 
of chord bending. 
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Figure 6.25 The comparison between the different methods of eliminating the chord bending 

effects for the CHS T joints 
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CHS2 F 

(a) CHS2-24 

CHS3 F 

a=24 
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Figure 6.26 Examples of the von Mises contoured stress plots fcbr the different methods of 
applying the moment to remove the e fects of'chord bending, shown Jbr the outside surface at 

the maximum load 
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do = 406.4mm to = 16mm 
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0 

0 10 20 30 40 50 
Indentation mm 

Figure 6.27 Load indentation curves for the model series CHS3, CHS T joint loaded without 
the effects of chord bending 

The load/indentation curves and the von Mises contour stress plots shown in 

Figure 6.27 and Figure 6.28 respectively for series CHS3 show how identical the 

failure is regardless of the length of the chord. The load/indentation curves are 

coincident and the stress distribution shown in the von Mises contoured stress plots are 

virtually identical. 

The conclusion of this investigation is that the best way of finding the local 

joint strength F�"i, ioc is to apply the moment to the chord in incremental steps as shown 

in Figure 6.24. This method produces the most consistent results particularly when a 

18 and does not change the properties of any part of the model, ensuring that the true 

local joint strength is observed. 
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Figure 6.28 Von Mises contoured stress plots ihr different chord lengths for model series 
CH. S3jor the outside surface at maximum load 

6.11.1.2 Removing the effect of chord bending from diamond bird beak T Joints 

The effect of removing the influence of chord bending is now examined by 

applying a moment to the chord as a series of incremental steps according to the 

relationship shown in Figure 6.29. The distribution across the section of the 

longitudinal forces that cause the moment is shown in Figure 6.30. Applying the 
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moment in the form of an elastic moment distribution was investigated however, this 

caused significantly higher stresses at the top and bottom of the chord section. 
1F 

M,... n Ml... n 

E 
Lý 

ý. 

M; = 
F(L0- 

4 

V2 b, ) 

Force diagram 

-M; -M; 
Bending moment diagram 

Figure 6.29 The method of applying moment to the diamond bird beak joint 

The variation in the local joint capacity F,,, i, i,, c, with chord length when the 

moment is applied in this manner and all the other parameters remain constant, is given 
in Table 6.13 and shown in Figure 6.31. It can be seen that a consistent value can be 

obtained for the local joint strength F,,,,, ioc when the chord length ratio a> 24. 

Fk 

F (L 
_V2b I) Fin i. j Hý where 2Pk and M 

Jo0 

Fm ;j 

Hj 

Ir 0 

L- 

N m- 

-fl 
ý/2 (L0 - 

J2b, ) 

Figure 6.30 The axial forces applied to the chord in the finite element model to cause a 
moment in the chord 

Furthermore when (x: 5 24 the joint capacities of diamond bird beak T joints can 

be seen to be dependent on the length of the chord, although this effect is small and is 

normally masked by the effects of chord bending. Comparing the results of the model 

series CHS3 shown in Figure 6.25 with Figure 6.31 a similarity in the curves is noted. 

Comparing these values relatively to the asymptotic value, both curves show an 

increased value for F,,, i, i,, c when a=6, a decrease in the value Fu,,,,,, c when a= 12 and a 
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. ý, j.. _F 

constant asymptotic value when a> 18 for the CHS T joints and a >_ 24 for the 

diamond bird beak T joints. 

Model Lo 

mm 

b0 

mm 
(3 b(jt(ý ti 

mm 

F����, 
kN 

TBMV5 450 6 150 0.6 23.8 6.3 253.8 
TBMV19 900 12 150 0.6 23.8 6.3 224.0 
TBMV 12 1350 18 150 0.6 23.8 6.3 232.7 
TBMV23 1800 24 150 0.6 23.8 6.3 242.1 
TBMV 11 2700 36 150 0.6 23.8 6.3 243.7 
TBMV24 3600 48 150 0.6 23.8 6.3 243.5 

Table 6.13 The variation of local joint capacity F,,, 1, I,,,: with chord length afor diamond bird 
beak T joints without the effects of chord bending 
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Chord length ratio a 

Figure 6.31 The variation of joint capacity with chord length without the effects of chord 
bending 

The restraint offered by the boundary conditions at the end of the chord can be 

seen to increase the joint capacity above the asymptotic strength when a=6. As the 

chord length is increased, then the boundary conditions no longer affects the strength 

of the joint to the same extent and the joint capacity drops below the asymptotic joint 

strength for a= 12 and 18. This form of behaviour was noted for the X joints for 

boundary condition 3 shown in Figure 4.20, where the cross sectional shape of the end 

of the chord was maintained and is similar to the boundary conditions used for the 

diamond bird beak T joints. So it is concluded that the strength of diamond bird beak T 

joints is affected by the boundary conditions at the end of the chord in the same way as 

the diamond bird beak X cross joints. 
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6.11.1.3 Displaced shape diagrams and von Mises contoured stress plots 
Figure 6.32 shows the displaced shape diagrams and von Mises contoured stress 

plots for the range of chord lengths considered in ascertaining a constant local joint 

strength F.,,,,., for diamond bird beak T joints without the effects of chord bending. A 

comparison of this figure with Figure 6.28 (which shows the von Mises contoured 

stress plots for the CHS T joints studied) shows that the area of material affected by the 
joint failure in the CHS T joints is much more localised than with the diamond bird beak 

joint. For the CHS T joints the material failure on the surface is confined to a chord 
length equivalent to a9 whilst in the diamond bird beak joints the material failure on 

the surface extends to a chord length equivalent to a z- 18. This will account for the fact 

that a larger chord length ratio needs to be considered for the diamond bird beak T joint 

((x = 24) than for the CHS T joints (a = 18) before a constant value of the local joint 

strength F, s1,1. c is ascertained. 

(a) TBMV 19 a= 12 

nl 

Maximum load = 224. OkN 
S[O]ON WINI 

Mills uLlt 

-IK fN IiV 

"z. sec "ei 
v. sec. aý 

"ý. zsc"ez 

e ru. oz 
.z ýsc. ez 

ý 3"C "02 

(b) TBMV 12 a= 18 Maximum load = 232.7kN 

Figure 6.32 Displaced shape diagrams and von Mises contoured stress plots jor the diamond 
bird beak T joints without the eJJicts of chord bending for identical joints with differing chord 

lengths for the outside surface at maximum load 
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Figure 6.32 (cont) Displaced shape diagrams and von Mises contoured stress plots for the 
diamond bird beak T joints without the efJicts of chord bending for identical joints with 

differing chord lengths for the outside surface at maximum load 

The presence of yielding material at the corners of the chord section evident in 

all the contoured stress plots would indicate the presence of yield lines in same manner 

shown to exist in the bird beak X joints. Examination of all the displaced shape 
diagrams shows that the cross sectional height of the chord has been reduced and the 

width increased in the vicinity of the joint, this deformation is attributed to the plastic 

hinges occurring in the chord wall at the comers of the section. The effect of this 

deformation is that the moment applied to the chord to remove the effects of chord 

bending is also reduced according to the change in the cross sectional height of the 
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chord. Hence the loading of the joint is no longer balanced to produce a zero bending 

moment under the crown of the brace. It would therefore be expected that the chord 

should sag as the moment supplied by the force acting on the brace (sagging) is greater 

than the moment acting on the deformed chord to remove the effects of chord bending 

(hogging). Why the chord can be clearly seen to be hogged in the longer chord length 

joints can only be explained by the accumulation of all the small hogging moments 

acting on the chord, shown in Figure 6.29. This effect is small and is not thought to 

affect the joint capacities observed. 
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Figure 6.33 load indentation curves of'the diamond bird beak T joints without the effects of 
chord bending for different chord lengths 

6.11.1.4 Load/indentation curves for the diamond bird beak T joints without the 

effects of chord bending 

The variation in the load/indentation curves with chord length can be seen in 

Figure 6.33 for the diamond bird beak T joints without the effects of chord bending. 

All the joints attain a maximum load at an indentation of = 7%b0. The joints TBMV19 

and TBMV 12 where a= 12 and 18 do not attain the asymptotic local joint strength. 

The joints where a> 24 attain the asymptotic joint strength with all the curves being 

virtually coincident with each other. 

6.11.1.5 Conclusions 

Section 6.5.1 has shown that the effects of chord bending can be eliminated 

from diamond bird beak T joints and that a constant value for the local joint strength 
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Fý i iý can be achieved when az 24. The best way of achieving this is to apply the 

moment incrementally along the chord. As a result of this investigation a chord length 

of a= 36 is used to find the local joint strength F,, i, i,, for all the joints where the 

effects of chord bending have been eliminated. 
When the effects of chord bending have been removed, it can be seen that the 

strength of the T joints is dependent on the length of the chord (when a< 24) in a 

similar manner to the X joints studied in Chapter 4. 

6.11.2 The results of the finite element analyses without the effects of chord 

bending for the diamond bird beak T joints, for various ß and bo/to values 

The finite element analysis results represented in Table 6.14 are obtained from 

T joints loaded in the manner shown in Figure 6.29 and Figure 6.30 to remove the 

effects of chord bending. 

6.11.3 Discussion of the finite element analyses without the effects of chord 

bending for the diamond bird beak T joints, for various 0 and bo/to values 

The results of the finite element analyses given in Table 6.13 are shown 

graphically in Figure 6.34 and Figure 6.35. These figures indicate that the local joint 

capacity F.,,, is principally a function of chord wall thickness to and the chord width 

ratio P. 

Analysis of this data gives an empirical formula to predict the local joint 

capacity of diamond bird beak T joints without the effects of chord bending of 

F -5.7f t2 
b° Egn6.11 
to 

for the range of parameters fy = 275N/mm2, bo = 150mm, 0.25 0: 5 0.6 and 4.255 to :5 

16mm. The data for Eqn 6.11 was derived from 14 results with a Coeff. of Correlation 

of 0.9962, a mean of 1.0267 and CoV. of 0.0669, enabling this equation to be used 

with confidence. 
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Model a bpi (3 toi bo/tO Fu, 

nlm mm kN 
TBMV50 36 150 0.2 4.25 35.3 84.0 
TBMV51 36 150 0.2 6.3 23.8 150.7 
TBMV52 36 150 0.2 10 15.0 288.9 
TBMV53 36 150 0.2 16 9.4 501.7 
TBM V40 36 150 0.4 4.25 35.3 112.6 
TBMV41 36 150 0.4 6.3 23.8 213.8 
TBMV42 36 150 0.4 10 15.0 433.2 
TBMV43 36 150 0.4 16 9.4 829.5 
TBMV25 36 150 0.6 4.25 35.3 120.5 
TBMV23 36 150 0.6 6.3 23.8 243.7 
TBMV26 36 150 0.6 10 15.0 496.6 
TBMV27 36 150 0.6 16 9.4 979.9 
TBMV30 36 150 0.8 4.25 35.3 148.9 
TBMV31 36 150 0.8 6.3 23.8 265.8 

Table 6.14 The local joint capacities F,,, /,,,,,. for diamond bird beak T joints without the 
effects of chord bending 
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Figure 6.34 the variation in local joint Capacity , with the chord wall thickness tjor 
diamond bird beak T joints without the effects of chord bending, 

The fit of these predictions against the results from the finite element analyses 

can be seen in Figure 6.35. Generally there is a good fit between the actual and the 

predicted results with the exception of the joint TBMV53 where (3 = 0.2 and b0/tOý = 9.3 
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where there is a possibility of a different form of failure. Careful examination of this 
joint reveals that the brace may have failed in shear (discussed in Chapter 4 for the X 

joints) before the expected joint capacity could be attained. 
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Figure 6.35 The variation in local joint capacity Fu, /, i,,,. with the chord width ratio ß for 
diamond bird beak T joints without the effects of chord bending 

When joints where 0=0.8 and a chord wall slenderness of b(VtO = 15 and 9.3 or 

P=I were considered, the moment applied to the chord to remove the effects of chord 

bending exceeded the plastic moment of the chord section. Hence the moments applied 

to the chord become unbalanced, thus the bending moment at the centre line of the 

joint was no longer zero. Attempts were made to solve this problem by decreasing the 

size of the moment applied to the chord and increasing the number of moment 

increments to compensate. This resulted in a small increase in the value of 

However, no consistent value could be found for the local joint capacity. Further 

changes in the increment size resulted in further increases in the value of F,,, i, i,, c. It was 

concluded that for full width or nearly full width joints the failure mechanism was 

principally that of a chord bending failure and the local joint capacity is of minor 

importance. This can be confirmed by examining the joint capacity of TBV38 = 

887.7kN, shown in Table 6.9 where a=6, ß=0.8 and to =16mm. The load at which 

this joint can be expected to fail by a plastic moment at the centre line of the joint is 

993kN which indicates the dominance of the chord bending in the failure mechanism. 
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6.12 The interaction curve method 
This section will show how the reduced moment capacity MP, v, o of the chord is 

calculated to allow for the effects of shear caused by the load applied to the brace. This 

information together with the values of the joint strength F,,, 1 and the local joint 

strength F,,,,,,,, obtained by finite element analyses in the previous sections will then be 

used to produce an interaction curve between the load applied to the brace and the 

moment acting in the chord to provide the designer with a better model to estimate the 

design strength of T joints of different chord lengths. 

6.12.1 Introduction 

Van der Vegte (1995) suggested an approach for CHS T joints considering the 

interaction between the force applied to the brace and the moment acting in the chord. 

The force applied to the brace F,,, 1 is normalised by the local joint capacity F I, i,, c of 

similar T joint determined by finite element analysis, where all the effects of chord 

bending have been eliminated. The moment acting in the chord Mu, o is normalised by 

the reduced plastic moment capacity of the chord MP, v, o which allows for the reduction 

in the moment capacity caused by the shear action of the brace on the chord. When 

these values are determined, then the load applied to the brace and the moment acting 

in the chord can be related to each by a normalised interaction curve defined by 

Fo, l and 
Mu, 0 

F1,1 Mp, v, 0 

where 
F,,, i is the maximum axial force applied to the brace which causes a local joint failure 

and/or a chord bending failure. 

M,,, o the moment acting in the chord due the action of the axial force applied the to 

brace F,,, 1. 
Fu, 1, i. the local joint capacity, found by analysing the joint without the effects of chord 

bending. 

MP, v, o the theoretical moment capacity of the chord reduced to allow for the effect of 

shear caused by the load acting to cause the plastic collapse of the chord. 
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6.12.2 The theoretical determination of the reduced plastic moment capacity due 
to coincident shear 

It was noted at the beginning of this section that the reduced moment capacity 

of the chord MP, v, o needed to be calculated so that moment capacity of the chord is 

accurately determined for all joint conditions. The moment capacity of the chord needs 

to be reduced to allow for the presence of shear caused by the axial load on the brace 

when a chord bending failure contributes to the failure mechanism. This term is a 

constant dependent on the cross sectional dimensions, the yield stress fy and the length 

of the chord in the T joint considered. 

F 

b, xbl xt, 

(Lo - /2b1)/2 III/ bo x bo x to 

VI 
ýIV 

/4 
Plastic moment is assumed to form here 

Figure 6.36 The loading of the diamond bird beak T joint with the effects of chord bending 

In this calculation the chord plastic hinge is assumed to form under the crown 

of the brace member where the chord is free of any restraint from the brace, shown as a 
dotted line in Figure 6.36. It is recognised that the plastic hinge could form anywhere 

under the brace, but this position is considered most likely as the chord is not stiffened 

by the presence of the brace which will act to restrain the rotation of the hinge. Van der 

Vegte assumes that the relationship between the moment and the shear in the (CHS) 

chord is of the form 

22 

1M+ 
(V, 

Eqn 6.12 
MP v 

(Van der Vegte gives this relationship in his work with no further explanation. This 

formula actually represents the interaction between the bending moment and the shear 
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of a circular hollow section calculated theoretically based on an assumed distribution 

of the normal stress and shear stress, Wardenier (1982). A different assumption of the 
distribution normal stress and shear stress gives the same formula for a solid 

rectangular beam. ) Assuming the same relationship for the shear and the moment for 

RHS in a diamond configuration as Wardenier does for either a solid rectangular beam 

or a CHS hollow section provides a means to calculate the reduced plastic moment 
capacity in the presence of shear. As no better relationship is available it is reasonable 

to assume that this relationship is correct, but to be aware of its possible limitations. 

When the brace is axially loaded by a force F, the shear V and the moment M in 

the chord in the cross section under the crown of the brace are given by 

V =)F Eqn 6.13 

M= %F(L0 
- 

Jb, ) Eqn 6.14 

and V, and MP, the plastic capacities for the shear and moment in the chord 

respectively, are given by 

Vp =4 
(b° 

72- 
to) fY 

Eqn 6.15 

Mp = J(bo - to)2 to fy Eqn 6.16 

Substituting Eqns 6.13 to 6.16 into Eqn 6.12 and solving for FP, v, o, the assumed force 

in the brace when the chord failures by a combination of shear and bending, the value 

F, now called Fp. v, o, is found to be 

Fp. v. o = 
8(bo-to) 2 

tofy 
Egn6.17 

z V6(bo-to)2+2(Lo-4bi) 

The value of MP, v, o, the moment capacity of the chord with shear present, can be found 

by substituting the value of Fp v, o into Eqn 6.14 
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2 (bo 
- to) 2 t0 fy (Lo 

-'bI 
ý 

Mp. V, O - 
6(bo-toý2+2(Lo-4b, )Z 

Egn6.18 

6.12.3 Interaction curves for the diamond bird beak T joints 

The results presented for the joint capacity F.,, in Table 6.8 & 6.9 and for the 
local joint capacity F,, Ic , 

in Table 6.14 are reproduced in Table 6.15. The values of 
M,,, o and MP, v. o have been calculated using Eqns 6.14 & 6.18 respectively. This 

information is then used to produce the interaction diagram shown in Figure 6.37. The 

point labelled TBV56 can be discounted as examination of this point revealed that in 

the model TBMV53 used to find the local joint strength the brace failed by 

shear before the expected joint capacity was attained. 

A circular arc is drawn in Figure 6.37 to provide a basis for comparison of the 
finite element results and a possible relationship of 

22 
F"', 

+ 
M°o 

Eqn 6.19 
FUu, 1,1( Mp. v, o 

which is of a similar form to the Eqn 6.12. The spread of the finite element results, 
however, rules out any relationship of this kind. 

Lines connecting joints of the same chord length ratio a but different chord 

slenderness bdto, where ß=0.6, are drawn as an example to establish the relationship 
between chord length and slenderness. The chord slenderness of the joints on each line 

decreases from left to right along the line, as indicated on Figure 6.37. 
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Model a bo Fu,! M°, o MP, v, o MU o 2L, olbo . 
to kN kN F°". Ioc kNm kNm Mp, V. o 

TBV54 12 35.3 68.2 84 0.812 14.6 33.7 0.434 
TBV59 18 35.3 44.1 84 0.525 29.3 35.0 0.838 
TBV50 6 23.8 144.4 150.7 0.958 14.7 43.2 0.341 
TBV51 12 23.8 122.9 150.7 0.816 26.3 48.6 0.542 
TBV52 18 23.8 112.7 150.7 0.748 36.8 49.7 0.741 
TBV53 36 23.8 68.02 150.7 0.451 45.2 50.4 0.897 
TBV55 18 15.0 203.3 288.9 0.704 43.6 73.4 0.594 
TBV57 36 15.0 112.1 288.9 0.388 74.5 75.9 0.981 
TBV56 12 9.3 459.9 501.7 0.917 98.6 107.9 0.914 
TBV44 12 35.3 80.94 112.6 0.719 16.5 33.5 0.492 
TBV45 18 35.3 72.38 112.6 0.643 22.9 34.4 0.665 
TBV40 6 23.8 189.1 213.8 0.884 17.3 41.8 0.413 
TBV41 12 23.8 150.1 213.8 0.702 30.6 48.4 0.632 
TBV42 18 23.8 132.2 213.8 0.618 41.8 49.6 0.842 
TBV43 36 23.8 77.47 213.8 0.362 50.6 50.4 1.006 
TBV46 6 15.0 362.7 433.2 0.837 33.1 63.5 0.521 
TBV47 18 15.0 238.9 433.2 0.551 75.6 74.9 1.009 
TBV48 12 9.3 554.5 829.5 0.668 113.0 107.4 1.052 
TBV49 36 9.3 207.6 829.5 0.250 135.7 111.3 1.220 
TBV8 6 35.3 104.8 120.5 0.870 8.5 27.7 0.306 
TBV20 12 35.3 86.8 120.5 0.720 16.7 33.4 0.502 
TB V 13 18 35.3 75.5 120.5 0.627 23.1 34.4 0.671 
TBV16 36 35.3 48 120.5 0.398 30.9 35.0 0.883 
TBV5 6 23.8 202.5 243.7 0.831 16.4 40.0 0.408 
TBV19 12 23.8 161.3 243.7 0.662 31.2 48.2 0.647 
TBV 12 18 23.8 138.2 243.7 0.567 42.2 49.6 0.852 
TBV11 36 23.8 79.2 243.7 0.325 50.9 50.4 1.012 
TBV9 6 15.0 407.7 496.6 0.821 32.9 60.9 0.540 
TBV21 12 15.0 322.5 496.6 0.649 62.3 72.7 0.857 
TB V 14 18 15.0 247.2 496.6 0.498 75.6 74.8 1.011 
TBV17 36 15.0 124.6 496.6 0.251 80.1 75.9 1.056 
TB V 10 6 9.3 786.8 979.9 0.803 63.5 90.7 0.700 
TB V22 12 9.3 601.8 979.9 0.614 116.3 107.0 1.086 
TBV15 18 9.3 415.2 979.9 0.424 126.9 109.8 1.156 
TBV18 36 9.3 202.1 979.9 0.206 130.0 111.3 1.168 
TBV34 6 35.3 130.5 148.9 0.876 9.1 26.1 0.351 
TBV35 12 35.3 101.5 148.9 0.682 18.5 33.2 0.558 

TBV35A 18 35.3 85.07 148.9 0.571 25.1 34.3 0.731 
TBV30 6 23.8 231.9 265.8 0.872 16.3 37.8 0.430 
TBV31 12 23.8 185.9 265.8 0.699 33.9 47.9 0.709 
TBV32 18 23.8 151.1 265.8 0.568 44.6 49.5 0.901 
TBV33 36 23.8 77.96 265.8 0.293 49.3 50.4 0.979 

Table 6.15 The values used to produce the interaction diagrams for the diamond bird 
beak Tjoints 
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Figure 6.37 Interaction curve for the diamond bird beak T joint 

Examining Figure 6.37 it can be seen that: 

" the failure of joints with short chord lengths, i. e. low a, occurs when F,,, 1fF,,, I, ioc -a 1 

and the moment in the chord does not contribute significantly towards the failure. 

" failure occurs for long chord lengths, i. e. high a, when Fu, i/F,,, i, io, -0 and 

M,,, o/Mp, v, 0 =1 when the dominant mode of failure is caused by chord bending. 

" the values for the moment acting in the chord exceed the estimated reduced plastic 

moment capacity of the chord Mp, v, o. However, it was shown in Figure 6.16 that the 

moment observed in the longer and stockier joints exceeded the moment capacity of 

the chord section, so that this is not unexpected. 

" as the slenderness of the chord decreases, so the results move down and to the right. 

The movement to the right is attributed to the presence of plastic hinges in the chord 

wall at the corners of the chord member, increasing the strength of the joint as a 

function of toe instead of to (i. e. a plastic hinge forming in the chord under the brace 

member). The result of the increased strength of the joint is that a larger moment 

M, o acts in the chord due to the action of Fu, 1 and hence to ratio MU, (/MI), v, O 

increases. This can be clearly seen when a=6 and when a= 12,18 & 36 although 
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the reduction in the FU, 1 due to the chord bending effect becomes progressively more 

evident. 

Examining this data a lower bound (i. e. safe) solution that may be used to predict the 
joint capacity with the variation of chord length is given by 

F°, I +M a0 = 1.2 E(In 6.20 
F, 

ý, 1, Ioc M 
p. V, O 

with the limits of 

0 

g 
0.8 

\Aq, 

0.613 
a 0.4 

A 
" 0.6 

0.4 0.8 A 
ý 
" 

" 
0.2 " 

0 0.2 0.4 0.6 0.8 I 1.2 
M 

u, o 
M 

i,, v. o 

and is shown in Figure 6.38 

1.0 

F°, i 
and 

m 
oo 

_< 
1 

Fu. ý. 10 Mp, V, o 

0 

Figure 6.38 Interaction diagram for the diagram bird beak T joint showing the. /it of'tlte 
design prediction 

6.13 Comparisons between the predicted joint capacity and the 

observed joint capacity 

The diamond bird beak T joint capacities with the effects of chord bending 

obtained by finite clement analysis are compared to the different methods of predicting 

the joint capacity considered in this Chapter are shown in Figure 6.39. The accuracy of 

the different predictions when compared to the finite clement analyses are discussed in 

the following sections. 
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Figure 6.39 A comparison of the different design methods to the finite element joint 

capacities for diamond bird beak T joints with varying chord lengths 

6.13.1 The traditional design method 

The design methods used at present may overestimate or underestimate the 

results considerably, as discussed in detail in Section 6.4.4. The method is simple to 

understand and the calculations easily performed. However, the behaviour of the 

predicted joint design with chord length has little in common with the results obtained 

by finite element analysis. 

6.13.2 Predicted design capacity from the interaction diagrams 

The design capacity using the interaction design methods is compared with the 

joint capacities from the finite element analyses and is shown in Figure 6.39. 

Examining this figure it can been seen that the interaction design method gives a better 

representation of the variation of joint capacity with chord length and that the joint 

capacities of the slender chord sections are predicted with a reasonable accuracy, 

although the stockier sections are seriously underestimated. 

Attempts have been made to rectify this discrepancy by modifying the design 

prediction in the form of 

rF°" 
+ u0 - 1.2 f 

b° 
I Egn6.21 ( o) 
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where fb 
to 

is some function of the chord slenderness. However, no satisfactory 
0 

solution has been found to date due to the large variation in the results with chord wall 
slenderness and the chord width ratio ß. 

6.13.3 Conclusions 

The traditional design approach can be simply calculated by the designer with 

minimal reference to design codes and other data sources. The interaction approach is 

more complex and requires the local joint strength and the moment capacity of 

the chord reduced for the effects of shear to be pre-calculated before the joint capacity 

can be determined. The fact that design equations are used twice in the calculation, to 

determine the local joint strength and then the joint capacity F,, 1 will introduce 

an extra source of error into the calculation. There could be a possible improvement in 

the accuracy if the local joint capacity is calculated (by finite element analysis) for all 

the possible combinations of parameters. However, this would require a large database 

of knowledge to be consulted. The interaction design approach may be more suited for 

use in a computer based system where data could be referenced and the calculations 

performed in the background without the user being aware of the details of the 

calculation. 

The interaction approach does give a better reflection of the variation in the 

joint capacity with chord length, although until a relationship incorporating the effects 

of the chord wall slenderness is found the accuracy of the method is not good. 

6.14 RHS T joints 

To provide a comparison for the diamond bird beak T joints, similar RHS T 

joints are examined in this section. The general arrangement of the RHS T joint can be 

seen in Figure 6.2 and an example of the finite element mesh in Figure 6.3. The 

material properties remain the same as before, that Young's Modulus E= 207 kN/mm2 

and a yield stress fy = 275 N/mm2. 

The end of the chord is supported in the same manner as the diamond bird beak 

T joints, in that all the nodes at the end of the chord are restrained vertically to provide 

a reaction to the load applied to the brace. This is not likely to affect the joint strength 

of the traditional RHS T joint as the failure mechanism is independent of the length of 
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the chord, but is applied in this manner to keep to the principle of applying the 
minimum restraint at the end of the chord and to keep the joints as similar as possible. 

The indentation is measured in a similar manner to the diamond bird beak T 
joints, between a point on the brace approximately b1/2 from the connection on the 
centre line of the joint to the corner of the chord on the bottom face, shown in Figure 
6.40. The plastic moment capacity of the chord has been determined by using Eqn 6.4. 

II bl/2 

Measured indentation bo 

Figure 6.40 The method of measuring the indentation of the traditional RHS T joint 

6.14.1 The results of the finite element analyses for the RHS T joints with the 

effects of chord bending 

The method of loading to obtain the results with the effects of chord bending is 

shown in Figure 6.2 and the results of these finite element analyses are given in Table 

6.16 for the RHS T joints. 

6.14.2 Discussion of the results of the finite element analyses for the variation in 

joint capacity with chord length RHS T joints with the effects of chord bending 

When traditional RHS X joints were studied in Chapter 4 it was established that 

the joint capacity was unaffected by the length of the chord, provided that there was 

sufficient chord length for the yield line pattern to form in the connecting face of the 

chord. The same yield line pattern can be expected to form in the traditional RHS T 

joint so that the local joint capacity can be expected to remain constant with changing 

chord length and any change in the joint capacity with chord length can be attributed to 

the chord bending effects. 
An example of the effect of the variation in joint capacity with chord length can 

be seen in Figure 6.41 where four similar RHS T joints with ß=0.6 and different 

chord wall slendernesses and chord length are compared. The joint capacity can be 

seen to decrease with chord length and with increasing chord slenderness. The apparent 
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discontinuity of the curve where bo to = 9.3 and a=6 may be due to a shear failure of 
the chord was becoming more predominant in the failure mechanism. 

Model I.. a bo to ß b1 t, Fu. I 
mm 2Lo/b o mm mm boho b, /bo mm mm kN 

RHST44 1800 24 150 6.3 23.8 0.2 30 3.0 38.4 
RHST40 2700 36 150 6.3 23.8 0.2 30 3.0 34.6 
RHST41 2700 36 150 10 15.0 0.2 30 3.0 82.1 
RHST45 1800 24 150 16 9.3 0.2 30 3.0 199.7 
RHST42 2700 36 150 16 9.3 0.2 30 3.0 160.0 
RHST28 1350 18 150 4.25 35.3 0.4 60 5.0 27.0 
RHST25 2250 30 150 4.25 35.3 0.4 60 5.0 25.4 
RHST35 3600 48 150 4.25 35.3 0.4 60 5.0 23.2 
RHST31 900 12 150 6.3 23.8 0.4 60 5.0 58.6 
RHST27 1800 24 150 6.3 23.8 0.4 60 5.0 55.3 
RHST20 2700 36 150 6.3 23.8 0.4 60 5.0 50.0 
RHST29 1350 18 150 10 15.0 0.4 60 5.0 135.2 
RHST24 2250 30 150 10 15.0 0.4 60 5.0 115.0 
RHST34 3600 48 150 10 15.0 0.4 60 5.0 82.3 
RHST30 900 12 150 16 9.3 0.4 60 5.0 338.6 
RHST32 1350 18 150 16 9.3 0.4 60 5.0 299.0 
RHST26 1800 24 150 16 9.3 0.4 60 5.0 248.1 
RHST22 2700 36 150 16 9.3 0.4 60 5.0 178.6 

RHST17 900 12 150 4.25 35.3 0.6 90 6.3 42.6 
RHST16 1800 24 150 4.25 35.3 0.6 90 6.3 39.0 
RHST15 2700 36 150 4.25 35.3 0.6 90 6.3 34.4 
RHST61 3600 48 150 4.25 35.3 0.6 90 6.3 30.2 
RHST4 450 6 150 6.3 23.8 0.6 90 6.3 92.3 
RHST3 900 12 150 6.3 23.8 0.6 90 6.3 89.3 

RHST2 1350 18 150 6.3 23.8 0.6 90 6.3 84.8 
RHST5 1800 24 150 6.3 23.8 0.6 90 6.3 78.6 

RHST6 2250 30 150 6.3 23.8 0.6 90 6.3 72.0 
RHST I 2700 36 150 6.3 23.8 0.6 90 6.3 64.6 
RHST7 3600 48 150 6.3 23.8 0.6 90 6.3 53.9 

RHST 10 900 12 150 10 15.0 0.6 90 6.3 207.9 
RHST60 1350 18 150 10 15.0 0.6 90 6.3 186.5 
RHST9 1800 24 150 10 15.0 0.6 90 6.3 159.7 
RHST8 2700 36 150 10 15.0 0.6 90 6.3 118.5 

RHSTJ3 450 6 150 16 9.3 0.6 90 6.3 507.5 

RHST 19 900 12 150 16 9.3 0.6 90 6.3 449.2 
RHST12 1350 18 150 16 9.3 0.6 90 6.3 348.0 

RHST 11 2250 30 150 16 9.3 0.6 90 6.3 220.2 
RHST14 3600 48 150 16 9.3 0.6 90 6.3 137.1 

Table 6.16 The variation of the joint capacity F.,, with chord length a for traditional RHS T 
joints with the effects of chord bending 
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Figure 6.4/ The variation of joint capacity with chord length for the traditional RHS T joint 

with the effects of chord bending 

The variation in the normalised moment acting in the chord with the chord length can 

he seen in Figure 6.42. The joints where bºº/ttº= 9.3 and a>_ 30 can be seen to befall ing 

by overall chord bending whilst the others fail by a combination of chord bending and 

local joint failure (with the possibility of a shear failure of the chord wall for the joint 

where b)t0 = 9.3 and (x = 6). 
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Figure 6.42 The variation of the normalised moment with chord length and chord wall 
thickness for traditional RHST. joints with the effrcls of'chord bending 

It is interesting to compare this Figure with the corresponding diagram for the 

diamond bird beak T joints shown in Figure 6.16. In Figure 6.42 the limiting value for 
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the normalised moment acting in the chord is 1, whereas in Figure 6.16 the limiting 

value is 1.16. Clearly the orientation of the chord in the traditional RHS T joint does 

not affect the moment capacity of the chord in the manner which has been observed in 

the diamond bird beak T joint. 

6.14.2.1 Displaced shape and von Mises contoured stress plots 
The displaced shape diagrams and the contoured stress plots are shown in 

Figure 6.43, for the outside level at the joint capacity for the traditional RHS T joints. 

The transition between a local joint failure in the shorter chord length joints to the 
failure of the chord by a plastic hinge forming in the vicinity of the brace for the longer 

chord length joints can be seen clearly in this figure. Examining the contoured stress 

plots carefully it can be seen that when a=6 or 12 there is little evidence of any 
increase of stress in the material on the lower part of the chord. The shape and size of 

the yield material in the top part of the chord is virtually identical between the two 

joints and it is concluded that failure is predominately of a local nature. 

When a= 18 there is evidence of the increase in stress on the lower part of the 

chord as the plastic hinge begins to form. The shape of the yielded material in the top 

part of the side wall of the chord shows a distinct change from the shorter chord length 

joints. The contoured stress plot when a= 24 is very similar to that of the joint where 

a= 18 however, there is a distinct increase in the size of the area of the material in the 

top face where the stress has increased, but the material has not yielded. It is concluded 

that these two joints represent a transitional region between the local failure and the 

overall chord bending failure. 

The displaced shape diagram when a= 30 shows that there is a distinct bending 

of the chord, none of the displaced shape diagrams of the shorter chord length joints 

(i. e. (x <30) have shown any significant bending of the chord. The area of yielded 

material in the lower part of the brace has increased in size significantly as has the area 

of material in the top face of the chord where there is an increase in the stress, but the 

material has not yielded. It is concluded that the failure is dominated by the formation 

of the plastic hinge in the chord under the brace. 
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Figure 6.43 (con!. ) Displaced shape diagrams and von Mises contoured stress plots of the 
outside level for the traditional RHS T joints at the joint capacity Fa.,. Joints loaded with the 

effects of chord bending 

The joints where a= 36 or 48 are very similar to that when a= 30, but there is 

progressively more bending in the chord shown in the displaced shape diagrams and the 
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the areas where the stress shows an increase but has not yielded. The area of yielded 

material in all the joints (where a= 30,36 or 48) is remarkably consistent both in 

shape and size. 

An attempt has been made in this section to distinguish the dominant mode of 
failure operating in any particular joint. Examination of Figure 6.42 shows that for 

those joints where to = 6.3mm, even when a= 48 the maximum moment operating in 

the chord is only 88% of the plastic capacity of the chord section, so it cannot be said 

that the failure is completely that of chord bending failure even for this very long joint. 

6.14.2.2 Load indentation curves 
The load/indentation curves are shown in Figure 6.44 for similar joints of 

varying chord length. When a=6 the failure is due predominately to the formation of 

the yield lines in the connecting face of the chord. No maximum load is attained, as 

further increases in load cause more rotation at the yield lines and additional in-plane 

yielding within the mechanism. However, when the long chord length joint e. g. a= 48 

is considered, a maximum value is attained as the failure is predominately that of chord 

bending as the moment acting in the chord approaches the moment capacity of the 

chord and a further increase in load cannot be supported. The intermediate curves show 

the transition between the local failure of the joint (i. e. yield line failure) through to an 

overall chord bending failure (i. e. moment capacity of the section is reached). 
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Figure 6.44 Example of the load/indentation curves for the traditional RHS T joints with 

varying chord length 
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Figure 6.45 The three different forms of curves seen in Figure 6.44 

Whilst the classification of the failure mechanism of the joints with different 

chord lengths used in the previous section is subjective, in that there are no clear 
boundaries between the different forms of failure, it is observed that the 

load/indentation curves shown in Figure 6.44 exhibit three distinct forms as shown in 

Figure 6.45. The first representing a local joint failure, where the rate of change of the 

slope is -ve but becomes +ve in the range of the observed data. The second 

representing the transitional region, where the rate of change of the slope of the graph 

is always -ve. (What happens beyond the range of data given in Figure 6.44 is not 

known) and the third and last, where a chord bending failure is observed and a 

maximum joint capacity is achieved. The classification of the failure mechanism with 

chord length observed by examination of the load/indentation curves agrees with that 

made from the contoured stress plot examined in the previous section. 

The load/indentation curves for 4 similar joints with the same chord length ratio 

a= 12 (Lo = 900mm) but with different chord slenderness are shown in Figure 6.46 

where the results have been normalised by the moment capacity of the chord wall. 

Examination of these curves shows that they are not coincident which would be 

expected if the failure was due to the formation of a yield line pattern. Instead, the 

normalised strength decreases with increasing chord wall thickness showing that 

another mechanism must be operating. Examining the moment acting in the chord it is 

found that at the joint capacity when bo/t0 = 35.3 the moment is 25% of the capacity of 

the chord however, when bo/to = 9.3 the moment is 76% of the capacity of the chord. 

214 



Showing that even though the same chord length is considered, stockier sections are 
failing by chord bending rather than a yield line failure mechanism. 
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Figure 6.46 Example of the load/indentation curves for the traditional RHS T joints with 
varying chord slenderness 

This should be expected as the joint capacity is a function of toe for the yield 

line failure and a function of to when the failure is due to the formation of a plastic 

hinge in the chord. The fact that the curve for bo/toý = 9.3 attains a maximum load 

confirms the chord bending failure is likely to be dominant in the failure mechanism. 

The intermediate curves show the transition as the chord bending becomes 

progressively more dominant in the failure mechanism as the curves have a lower 

normalised strength and exhibit less work hardening as the slenderness decreases. 

6.14.2.3 Comparisons between the traditional RHS T joints and the diamond 

bird beak T joints 

If Figure 6.41 is compared to Figure 6.14, where similar diamond bird beak T 

joints are studied, the curves show remarkable similarity. The most notable difference 

being the joint capacity at which the joints fail for the same size chord; the diamond 

bird beak T joints being significantly stronger (up to 100%) than traditional RHS T 

joint for shorter chord lengths. For the longer joints where the failure is due to chord 

bending then the joint capacities are more comparable. 

215 



z 250 
x -u- Normal RHS T joint b0 = 150mm 

Diamond Bird Beak T joint ; b1 = 90mm 
200 (3=0.6 

b(ýto=23.8 

150 ---- 
fy=275N/mm' 

100 
I 

50 

0 
05 10 15 20 25 30 35 40 

Chord Length Ratio a 

Figure 6.47 Comparison between identical bird beak and traditional RHS T joints, assuming 
butt welds 

Figure 6.47 shows the comparative joint strengths of the traditional RHS and 
diamond bird beak T joint for identical joints (i. e. the same chord and brace members) 

over a range of chord lengths. The joint capacity for the diamond bird beak joint when 

a=6 can be seen to be inflated due to the support given to the joint by the boundary 

conditions at the end of the chord whilst the traditional RHS T joints derive no extra 

strength from the support conditions at the end of the chord. Additionally, if the 

traditional RHS T joint is constructed using a fillet weld (not modelled in these joints) 

then there will be an appreciable increase in the strength of the traditional RHS joints. 

As a result of this it is not completely correct to say that the bird beak joints are 100% 

stronger than the traditional RHS T joints when a=6. 
At the beginning of this Chapter it was shown that the moment capacity of the 

chord in the traditional RHS joint configuration is slightly greater (6%) than that for 

the diamond bird beak configuration. Therefore the fact that the diamond bird beak 

joint is stronger than the traditional RHS joint when a= 36 may seem surprising, 

although it would appear that the curves may converge outside the range of this figure. 

Comparing the moment acting in the chord of the two joints it can be seen with 

reference to Figure 6.16 and Figure 6.42 that in the diamond bird beak joint the 

moment is 100% of the moment capacity compared to only 80% for the traditional 

RHS joint. It could be expected that if the chord length were further increased, the 
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RHS joint would be stronger than the diamond bird beak joint however, the fact that 
the diamond bird beak joints can achieve a higher moment capacity than calculations 
predict may enable the bird beak joint to retain its strength advantage. 

6.14.3 The method of loading used to remove the effects of chord bending 

As the failure mechanism of a traditional RHS T joint is independent of the 

chord length, shorter chord lengths can be used to find a constant value of It 

would therefore be expected that there should be no problem in applying the moment 
in the same manner as van der Vegte (1995) for CHS T joints and Yu (1995) for 

traditional RHS T joints shown in Figure 6.48a. However, as applying the moment as a 

series of incremental moments has been shown to be a better method to remove the 

effects of chord bending, the moment is applied in this manner and is shown in Figure 

6.48b. 
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L 
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MM 

M=F(Lo-bi)/4 
(a) A single moment applied to the ends 

of the chord 

M; M1 

IM = F(L. o - bi)/4 
(b) An incremental moment applied to 

the chord 

Figure 6.48 The methods of removing the effects of chord bending 

6.14.3.1 The results of the finite element analyses for the RHS T joints without 

the effects of chord bending 

The results of the joints analysed without the effects of chord bending are given 

in Table 6.17. 
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Model 1-0 a bo to (3 b1 ti F,,,,. ioc 
2LJbo bo/to bi/bo 

mm mm mm kN 
RHST40M 2700 36 150 6.3 23.8 0.2 30 3.0 40.3 
RHST41M 2700 36 150 10 15.0 0.2 30 5.0 96.3 
RHST42M 2700 36 150 16 9.3 0.2 30 12 220.4 
RHST23M 2700 36 150 4.25 35.3 0.4 60 5.0 28.4 
RHST20M 2700 36 150 6.3 23.8 0.4 60 5.0 60.1 
RHST21 M 2700 36 150 10 15.0 0.4 60 5.0 147.3 
RHST22M 2700 36 150 16 9.3 0.4 60 6.3 355.3 
RHSTI5M 2700 36 150 4.25 35.3 0.6 90 6.3 44.8 
RHSTIM 2700 36 150 6.3 23.8 0.6 90 6.3 94.1 
RHST8M 2700 36 150 10 15.0 0.6 90 6.3 219.6 

RHST18M 2700 36 150 16 9.3 0.6 90 6.3 507.5 

Table 6.17 The local joint capacity F ,,,,,, for traditional RHS T joints without the effects of 
chord bending 

6.14.4 Discussion of the results of the finite element analyses for the RHS T joints 

without the effects of chord bending 

It would have been thought that as the effects of chord bending have been 

eliminated, that the yield line prediction given in the CIDECT design guide for 

rectangular hollow sections Packer et al (1992) would predict with reasonable accuracy 
the local joint strength F% 1,1.. 

t°2 f ho (23+4 1-{3 Eqn 6.22 
(1-ß) 

l 

(for aT joint where 0= 900). 

However, this is not the case as can be seen in Figure 6.49 where the local joint 

capacities reported in Table 6.17 have been normalised by the plastic moment capacity 

of the chord wall mp (= fyta2/4) and plotted against the chord width ratio. The dotted 

line represents the predicted capacity of the joint as given by the yield line prediction. 

The yield line gives an upper bound solution and the failure mechanism is dominated 

by a different form of failure at low chord width ratios, most likely a punching shear 

failure of the top face of the chord. 
Further examination of Figure 6.49 shows that even though the joint capacity 

has been normalised by the plastic moment capacity of the chord wall m p, the non- 
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dimensional strength increases with chord wall slenderness. This effect can be 

eliminated by "normalising" the curves to a function of to' 85» showing that the failure 

mode is not completely that of a yield line failure. 
40 

s 
135 

30 

25 

20 

15 

10 
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0 

Figure 6.49 Local joint capacities normalised by the plastic moment capacity of the chord 
wall, a= 36 

Figure 6.49 shows that a good estimate can be made of the local joint capacity 

F,, ion when ß=0.6 and a reasonable estimation when 0=0.4. (It is thought likely that 

a reasonable estimation of the local joint capacity could be made for (3 = 0.8 as 

punching shear will not affect the failure load at this chord width, although no joints 

with this chord width ratio were examined. ) 

6.14.4.1 Displaced shape diagrams and von Mises contoured stress plots for the 

RHS T joints without the effects of chord bending 

The displaced shape diagrams and von Mises contoured stress plots for RHS T 

joints loaded without the effects of chord bending for the outside level and at the joint 

capacity are shown in Figure 6.50. The deformations in the displaced shape diagrams 

have been magnified by a factor of 3 to show more clearly where the deformation is 

occurring. The joints chosen are identical except in chord length to confirm that the 

effects of chord bending have been removed. 

The effects of chord bending can be seen to be removed by examining the 

displaced shape diagrams that reveal no deformation of the chord. Figure 6.51 shows 

the deformation shown in Figure 6.50c, zoomed in to the chord in the vicinity of the 
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brace, where it can be clearly seen that the failure is that of a local joint failure observed 
in the short chord length joints shown Figure 6.43 a or b. 
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Figure 6.50 Displaced shape diagrams and von Mises contoured stress plots of the outside 
level for the traditional R HS T joints at the joint capacity F,, i, r., Joints loaded without the 

effects of chord bending 

Examination of the von Mises contoured stress plots reveals that the mode of 

the failure is identical in all three joints in that the stress distribution is identical in all 

three figures. It is interesting to compare the stress distribution observed in Figure 6.50 
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to that observed in Figure 6.43a & b. The stress distribution pattern is virtually 
identical, confirming again that the dominant mode of failure in RHST3 and RHST4 is 

that of a local joint failure 

Figure 6.51 Displaced shape diagram of joint RHSTI zoomed in on the deformation in the 
vicinity of 'the brace. (displacements magnified by 3) 
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Figure 6.52 Load indentation curve for similar traditional RHS T joints with varying chord 
length without the effects of chord bending 

6.14.4.2 Load indentation curves 

The load/indentation curves shown in Figure 6.52 for three similar traditional 

RHS T joints without the effects of chord bending show that the local joint strength 

F, ij. is independent of chord length as the three curves are coincident with each other. 

If these load/indentation curves are compared with that for joint RHST4, where a=6 
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and the effects of chord bending have not been excluded as shown in Figure 6.44, it 

can be seen that they are again nearly identical to each other. This shows that when a= 
6 the joint capacity F,,, 1 is equal to the local joint strength F,,, i, i0C and effects of chord 
bending are negligible at this chord length. . 

The load/indentation curves for the traditional RHS T joints (for similar joints 

with varying chord slenderness values) where the effects of chord bending have been 

eliminated are shown in Figure 6.53. There is a wide variation in the curves 

considering that the effects of chord bending have been removed and all the joints 

should fail by the same yield line pattern. It is likely that an additional mechanism is 

operating in the failure mechanism due to the increase in the membrane effect for the 

more slender chord walls. 
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Figure 6.53 Examples of load/indentation curves for RHS T joints without the effects of 
chord bending for different values of slenderness 

Examination of the results published by Yu (1995) show a similar increase in 

the normalised strength with increasing chord slenderness although the range of 

difference between her results is smaller than those reported here. 

6.14.5 Calculation of the reduced moment capacity of the traditional RHS chord 

Due to the different orientation of the chord, the calculation for the reduced 

plastic moment capacity of the chord changes. This is brought about by the different 

relationships between the shear and the bending moment and the fact that the flanges 
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the RHS section offer no resistance to the shear force applied perpendicular to the 
flange and all the shear is resisted by the webs of the section. 

Wardenier (1982) gives the following for the relationship between the bending 

moment and the shear acting on a section. 
For a solid rectangular section 

zz 
1_ 

M+V 
MP VP 

For a RHS section 

Eqn 6.23 

FT-ý7 
M= 

1- 1- 
A° 

Eqn 6.24 
MP j2A_Av 

Where A is the area of the section and Av the area of the section resisting the shear. If 

the section is square, then AP, 2Av and therefore 
Av 

=I 2A-Av 3 

Therefore for Square rectangular hollow sec on Eqn 6.24 can be written as 

ssz 
5= 9M+V -4 1- 

V 
Eqn 6.25 

11ý VP Vp 

This complex expression cannot easily be solved in the manner used previously and by 

van der Vegte when studying CHS T joints. However, a good representation of Ecun 

6.25 can be approximated by the expression 
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1_M+1V Egn 6.26 
MP 2 VP 

which is of the same form used before and can be solved relatively simply. 
It can be seen from Eqn 6.26 that the function for the moment is the dominant 

term and the effect of shear is not particularly significant. Eurocode 3 Clause 5.5 (1992) 

states that when considering the moment resistance of a section, the effects of shear can 

be neglected if the shear load is less than 50'/0 of the shear capacity. Yu (1995) 

develops this approach and uses the following rehaionships for the moment Capacity of 

the chord reduced for the effects of shear Mp, v, o. 
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For Class I and 2 sections (where full plasticity moment capacity is developed) and 
V<0.5V, 

MP. 
V. 0 = Mp 

and for Class I and 2 sections and V? 0.5V1g 

bat 2fy (2y - 1) (-Cl 
+ C12 +8 

(2 
- ß) 

Mp, v, 0 = AF3 
4 

Eqn 6 28 

where 

Y -and C1- 2 2= 
1° 

(2 
-R) 

_ t° ýl1-2 
J 

For Class 3 sections (where only the elastic moment capacity is developed) and 

F. qn 627 

V<0.5Vp 

Me, v. o = M$ = 

4 l 
boa f y Y 

Eqn 6.29 

For Class 3 sections and V, -ýO. 5Vp 

6 

Zý1 1_C4+[C42_4(1C5)Jbo1_) 

Mco =4 Eqn 6.30 

where 

aa (2 
Ca =Z2 and C5 =3 

2I 1-Zr 
)! 

1-Zr) 

Yu's approach whilst complying with Eurocode 3 and covering all possible options is 

thought to be overly complex. None of the sections considered in this work are 

classified as Class 3, although the majority of the joints come in the category of 

V<O. 5 Vp where the effects of shear do not have to considered and MP = Mpv. o. 
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In order that shear is considered for all curves to avoid any discontinuities in the 

curve and to maintain a similar approach to that used previously in this work (and also 
by van der Vegte (1995)) Eqn 6.26 is used for the basis of the relationship of the 
bending moment and the shear. 

b1xb1xt1 
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P , nD is assunisd to form here 

boxboxto 

Pý 
Figure 6 54 The loading of the traditional RNS T joint with the effects of chord bending 

When the brace is axially loaded by a force F, the shear V and the moment M in 

the chord in the cross section at the edge of the brace section is given by 

V =, F F. gn6.31 

M =, F(Lo - b1) F, qn 6 32 

and V. and M,, the plastic capacities for the shear and moment in the chord 

respectively, are given by 

2 bo to fy 
Vp .ý Eqn 6.33 

Mp= ) Ob02 -6boto+4to2)tofy F. qn 634 

Substituting Eqns 6.31 to 6.34 into Eqn 6.26 and solving for FRv, o, the assumed force in 

the brace when the chord fails by a combination of shear and bending, the value F, now 

called Fp, v, o is found to be 
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4botofy 
FP, v, o - Eqn 6.35 

z 
3+ a-2ß 
2 3-3+ 1 

YY 

The value of Mpv, o the moment capacity of the chord with shear present, can be found 
by substituting the value of Fav, o into Eqn 6.32 

M- 
botofy(L°-b') 

Eqn 6.36 P, v, o Z 
3+ a-2ß 
2 3+ 

2 

YY 

6.14.6 Interaction diagrams for the traditional RHS T joints 

The interaction diagram for the traditional RHS T joints shown in Figure 6.55 is 

plotted using the information calculated and given in Table 6.18. The values for F,, 1 and 
F., 1,,. have been determined by finite element analysis and are given originally in Table 

6.16 and Table 6.17 respectively. The value for M,,, o has been calculated by Eqn 6.32 

and Mvo by Eqn 6.36. 

Examining the interaction diagram shown in Figure 6.55, where the points are 

plotted for the joints analysed when the parameters of chord width ratio, chord length 

and slenderness were varied, the curves can be seen to be clearly banded according to 

the chord wall slenderness. This is caused by the fact that curves with different chord 

width ratios, but the same chord slenderness values, are virtually coincident with each 

other. Increasing the chord length of the joint causes the point to move in clockwise 
direction along the curve, i. e. short chord lengths where FF, i/F., ib. -* I and long chord 
lengths where Ma, o/M. v, o --+ 1. 
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Model a bo F�� F.., 1,1�, F,., Mu. o MP, v, o M.. o 
to kN kN F�i, joc kNm kNm MP, v. 0 

RHST61 48 35.3 30.2 44.8 0.674 26.5 37.2 0.713 
RHST15 36 35.3 34.4 44.8 0.769 22.4 37.1 0.606 
RHST16 24 35.3 39.0 44.8 0.871 16.7 36.8 0.453 

RHST17 12 35.3 42.6 44.8 0.953 8.6 35.5 0.243 
RHST7 48 23.8 53.9 94.0 0.574 47.3 53.6 0.884 
RHST1 36 23.8 64.6 94.0 0.687 42.2 53.4 0.789 
RHST6 30 23.8 72.0 94.0 0.766 38.9 53.3 0.729 
RHST5 24 23.8 78.6 94.0 0.836 33.6 53.1 0.633 
RHST2 18 23.8 84.8 94.0 0.902 26.7 52.6 0.507 
RHST3 12 23.8 89.3 94.0 0.950 18.1 51.3 0.353 
RHST4 6 23.8 92.3 94.0 0.982 8.3 43.9 0.189 
RHST8 36 15.0 118.5 219.6 0.539 77.3 80.6 0.958 
RHST9 24 15.0 159.7 219.6 0.727 68.3 80.2 0.851 

RHST60 18 15.0 186.5 219.6 0.849 58.7 79.6 0.738 
RHSTIO 12 15.0 207.9 219.6 0.947 42.1 77.6 0.542 

RHST13 6 9.3 507.5 507.5 1.000 45.7 101.5 0.450 
RHST19 12 9.3 449.2 507.5 0.885 91.0 114.9 0.792 

RHST12 18 9.3 348.0 507.5 0.686 109.6 117.3 0.935 

RHST 11 30 9.3 220.2 507.5 0.434 118.9 118.5 1.004 

RHST14 48 9.3 137.1 507.5 0.270 120.3 118.8 1.012 

RHST35 48 35.3 23.2 28.4 0.815 20.5 37.2 0.552 

RHST25 30 35.3 25.4 28.4 0.892 13.9 37.0 0.375 

RHST28 18 35.3 27.0 28.4 0.950 8.7 36.5 0.239 

RHST20 36 23.8 50.0 60.1 0.831 33.0 53.5 0.617 

RHST27 24 23.8 55.3 60.1 0.919 24.0 53.1 0.453 

RHST31 12 23.8 58.6 60.1 0.974 12.3 51.4 0.239 

RHST34 48 15.0 82.3 147.3 0.559 72.8 80.8 0.901 

RHST24 30 15.0 115.0 147.3 0.781 63.0 80.5 0.782 

RHST29 18 15.0 135.2 147.3 0.918 43.6 79.6 0.548 

RHST22 36 9.3 178.6 355.3 0.503 117.9 118.7 0.993 
RHST26 24 9.3 248.1 355.3 0.698 107.9 118.1 0.914 

RHST32 18 9.3 299.0 355.3 0.842 96.4 117.4 0.822 

RHST30 12 9.3 338.6 355.3 0.953 71.1 115.2 0.617 

RHST40 36 23.8 34.6 40.3 0.859 23.1 53.5 0.432 

RHST44 24 23.8 38.4 40.3 0.953 17.0 53.2 0.319 

RHST41 36 15.0 82.1 96.3 0.853 54.8 80.7 0.680 

RHST42 36 9.3 160.0 220.4 0.726 106.8 118.7 0.900 

RHST45 24 9.3 199.7 220.4 0.906 88.4 118.2 0.748 

Table 6.18 The values used to produce the interaction diagram for the traditional RHS T 

joints 
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Figure 6.55 Interaction diagram for the traditional RHS T joint(0.2 S fi 50.6) 
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Figure 6.56 Modified interaction diagram for the traditional RHS T joint (0.2S P: 5'0.6) 
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Analysing this data it has been possible to produce design guidance in the form 

of 

10 
t0 

10 
to 

p bo M h� 
F 

". 
1+Mu. 

0 
1<I 

Eqn 6.37 Tu. 
I. 10ý 

J 
P. V. 0 

for the traditional RHS T joint. The results shown in Figure 6.55 are modified by this 

relationship and shown in Figure 6.56 where the banding caused by the chord 

slenderness has been eliminated and a circular curve defined. 

Comparing these results to the work done by Yu (1995) reveals that similar 
banding was noted, but in Yu's work the cause of the banding is the chord width ratio 
instead of the chord wall slenderness. The relationship between the force on the brace 

and the moment acting on the chord reported by Yu is 

1 3i Fý1 
+ 

Mio ß<1 Egn6.38 
M 

p. v. o 
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Figure 6.57 Interaction diagram produce by Yu (1995) Jbr RHS T joints 

How the designer is expected to solve this equation easily is not explained, Eqn 

6.37 is arranged to have the same powers for each term and can be solved explicitly in 

the form of 
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Fß, 1= 
1 

Eqn 6.39 

10. 
1 b° ((La 

- b, ) 

4Mp, v, o 

This is not so in Eqn 6.38 and an iterative technique will have to be employed. 
Examining the results reported by Yu it is noted that the chord width ratios 

examined were 0=0.4,0.6,0.8 and 1.0 with chord wall slenderness values of 35,24 
and 15. All the points plotted in the interaction diagram for 0=1.0 are on the right 

hand side of the figure where 
M 

u. 0 z1 and are independent of the value 
F,, I 

M a. v. o Fu. i. ioc 

The results of joints where A=0.8 and 1.0 have been discounted in this work, because 

the failure will be dominated by a plastic hinge forming in the chord under the brace 

and the local joint strength is irrelevant, a fact which is confirmed by Yu's results. The 

points plotted for ß=0.4 and 0.6 appear to be virtually coincident with each other 
(which is in agreement with this work), with the most notable banding occurring when 
ß=0.8. This should be expected as a transition between the form of failure observed 

when ß=0.4 and 0.6 and the failure observed when ß=1.0. Therefore the reason for 

the difference between Yu's work and this work is attributed to the different range of 

parameters chosen for the joints analysed, in that the larger chord width ratios chosen 
by Yu have influenced the pattern observed. 

6.14.7 A comparison between finite element values and the different design 

techniques 

The traditional RHS T joint capacities with the effects of chord bending 

obtained by finite element analysis are compared to the different methods of predicting 

the joint capacity considered in this section and are shown in Figure 6.58. 

The traditional design method, based on the yield line method, can be seen to 

predict the joint capacity of the short chord length joints (where a= 6) with reasonable 

accuracy (with the exception of the joint where 0=0.6, bodto =23.8 and to = 16mm). 

The joint capacity for the long chord length joints, when the moment capacity of the 

section is achieved is also predicted with reasonable accuracy. However, the joint 

capacities predicted for the transitional joints where the failure is a combination of the 
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local joint and chord bending failure are overestimated (i. e. unsafe) by up to 30%, the 
joint capacities observed from the finite element analyses. 

The joint capacities predicted by the interaction curve, however, give a better 

estimation of the joint capacity and the variation of the joint capacity when the chord 
length is changed. The results presented here are better than those of the diamond bird 

beak joint because it was possible to normalise the joint capacities with chord wall 

slenderness and obtain a small band width of results. The interaction design curve 

gives similarly good predictions for the chord width ratios 0 of 0.2 and 0.4, but these 

are not presented to avoid repetition. 
It is appreciated that the results shown in Figure 6.58 for the predicted design 

capacities using the interaction curves are being compared with the results that 

produced the interaction design curve and a good comparison could be expected, so 

that this work is not truly validated until the interaction curve is compared with 

independent results. 
800 

. f_ FE joint capacities 
700 design capacity (Traditional methods) 

600 " Predicted design capacity (Interaction diagram) 

to = 16mm 0.6 
500 boy = 150mm 

400 fy = 275N/mm` 

300 f- 
to) =l Omm 

200 

to = 6.3mm 
100 -- llý 

tu=4.25ibin - ---- 
0 

0 10 20 30 40 50 

Chord length ratio a 

Figure 6.58 A comparison of the different design methods to tue finite element joint 

capacities for diamond bird beak T joints with varying chord lengths 

6.15 Comparison of the Interaction diagrams 

The interaction diagrams for traditional RHS, CHS and diamond bird beak T 

joints are shown in Figures 6.58,6.59 and 6.60 respectively. The Interaction diagram 

for the CHS T joints has been produced from the information published by van der 
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Vegte (1994). The chord width ratios have been added into this diagram to distinguish 
trends between the different results. Examining this figure it is immediately apparent 
that all the points for ß=1.0 M,. JMavo > 1, with the exception of one point where the 
slenderness is 50.8. This is in accordance with the work published by Yu (1995). 
However, more careful examination of this figure shows two tendencies which are 

contradictory to the results published by Yu. The first is that the results for ß=0.2 are 

on the right hand side of the figure and Fwl/F,, 1 --ý I and as the chord width ratio 
increases so the results move in a clockwise direction along the circle. The second is 

that as the chord wall slenderness decreases so the results show a small decrease in 
Fuj/F.,,, 1. and a large increase in Mu. o/Mp, v, o moving the plotted points down and to the 

right. 
An arc of a circle with its centre at the origin and a radius of I is shown on all 

the interaction diagrams as a reference that may be used to compare between the 

different diagrams. A circle is drawn as there can be seen to be a loose connection 
between the relationship of the shear and the bending moment in the chord 

22 

1=V+M Eqn 6.40 
Vp MP 

and a circle drawn on the Figures 

22 

1= 
Fa' 

+M a0 Eqn 6.41 
ýaý. 

loo 
MRV, 

o 

in that 

U, V 
Eqn 6.42 

Vp 

Comparing these interaction diagrams it can be observed that: 

" there is a clear banding of the points according to the chord wall slenderness. In the 

traditional RHS interaction diagram the plotted results form an arc centred about the 

origin according to the chord wall slenderness, whereas for the CHS and the 

diamond bird beak joints, the results plotted may be represented by straight lines, 

(disregarding the CHS points where 0=1.0). 
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Figure 6.59 

Interaction diagram for the 
RHS T joints 

Figure 6.60 

Interaction diagrain for 
the CHS T joints van der 

Vegte (1995) 

Figure 6.61 

Interaction diagram for the 
diamond bird beak T joints 
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" there are several points in the diamond bird beak and CHS interaction diagrams 

where the value Mu. o/Mp, v, o > 1. In the CHS diagram most of these points have a 

chord width ratio of ß=1.0 and it should be expected that the chord will fail by a 

plastic hinge forming near the brace (or possibly failure of the side walls of the 

chord) and the term for the joint failure F,,,,, io, becomes meaningless. This can be 

seen by joining points of equal chord wall slenderness values when 0=1.0, which 

results in four nearly vertical lines. The fact that some of the points exceed 
Mu. o/MP, v, o =1 by a large amount indicates the increase in the moment capacity of 
the chord caused by the restraint offered by the brace. 

For the diamond bird beak interaction diagram, chord width ratios of 13 = 0.8 & 

1.0 were not considered due to similar problems that have been observed in the CHS 

diagram. However, several of the points have a value for M,,, oIM , v, o > 1, mainly for 

the low slenderness joints. The chord length ratio of the results plotted in this area vary 

from a= 12 to 36 and the chord width ratio ß=0.4 & 0.6. (This is shown in Figure 

6.37). This should be expected as the moment operating in the chord exceeded the 

moment capacity of the chord, as it was observed in Figure 6.16 that the diamond bird 

beak T joints (loaded with the effects of chord bending) failed when the moment in the 

chord was 116% of the plastic moment capacity when ß=0.6 and bo/to = 9.3. 

6.16 Summary 

The diamond bird beak T joints were studied in some detail and it was found 

that the mean joint capacity of the short chord length T joint (a = 6) with the effects of 

chord bending could be safely found by 

F,,, =4fyto' ao. s bo 

to 

for the range of parameters 0.25 P: 5 0.6,9.45 bo/to 5 35.3, bo =150mm and fy = 275 

N/mm2 

When the effects of chord bending were eliminated, the local joint strength 

used in the design of T joints using the interaction curve, could be estimated by 

b 
F.. j. º« = 5.7 fyto2 

V 
%j to 

0 
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for the range of parameters 0.25 ß50.6,9.4 5 bo/to 5 35.3, bo =150mm and fy = 275 
N/mm2 

A safe lower bound solution to predict the mean joint capacity of a diamond 
bird beak T joint using the interaction curve is given by 

F"'' 
+M 30 = 1.2 

F11 
I. Ioc 

M 
P, V, 0 

and that 

F°'' 
and 

M"o 
51 Fu. 

t. Ix 
MP. 

v. 0 

for the range of parameters 0.25 0: 5 0.6,9.4: 5 bo/to S 35.3, bo =150mm and fy = 275 
N/mm2 

The interaction curve for the traditional RHS T joint was studied and it was 

concluded that a safe lower solution estimate of the design capacity could be given by 

10 6 10 6 

FU, ' +M wý 51 
F.,,, 

Ioc 
M,,, 

,0 

for the range of parameters 0.25 0: 5 0.6,9.4 5 bo/to 5 35.3, bo =150mm and fy = 275 

N/mm2 

6.17 Conclusions 

This Chapter has examined diamond bird beak and traditional RHS T joints of 

varying chord lengths, with the weld modelled as a butt weld in both cases. It has been 

shown that the diamond bird beak butt welded T joint is stronger in all the cases 

considered than the butt welded T traditional RHS T joint despite the fact that the 

moment capacity of the chord is slightly reduced in the diamond bird beak 

configuration. 

The variation of the joint capacity with the chord length was examined for both 

forms of joints and compared to the traditional design method of considering the 

variation in chord length. The traditional method of joint design did not represent the 

variation in joint capacity with chord length very satisfactorily. Short chord length 

joints where the failure was principally that of a local joint failure and long chord 

length joints where the failure was principally that of chord bending were accurately 
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predicted. However, the joint capacity of any joint in the intermediate range where 
failure was attributed to a combination of local joint and overall chord bending failure 

was severely overestimated. 

An alternative method of predicting the joint capacity, using an interaction 

relationship between the load on the brace and the bending moment in the chord was 
then examined. In both cases this method gave a better prediction of the behaviour of 
the joint capacity with increasing chord length. The large scatter in the results of the 
diamond bird beak T joints led to a lower bound estimate of the design capacity which 
underestimated the strength of the joints with a stocky chord wall however, this was a 
safe solution compared with the overestimate predicted by the traditional design 

methods. The interaction curve for the traditional RHS T joint could be normalised to 

account for the variation in the results with chord wall slenderness and the predicted 

strength could be estimated with reasonable accuracy. Although much further work 

should be done in this area, it is felt that the interaction curve is a definite improvement 

to the traditional method of predicting the joint capacity of aT joint. 

When it is required to achieve consistent and reliable estimates of the local 

joint capacity by removing the effects of chord bending from aT joint, the method of 

applying the moment to the chord as a series of small increments is shown to be a more 

reliable method than that used by Yu (1995) and van der Vegte (1995). In the cases of 

the bird beak and CHS T joints there was a small variation in the joint capacity with 

chord length for the shorter chord lengths until the asymptotic strength was achieved. 

236 



7. 

Member Orientation in Overlapped K joints 

7.1 Introduction 

In this Chapter a study of the effect of the brace angle 0, on the failure mode 
and joint capacity is carried out for both the traditional RHS and bird beak K joint 

configurations under different load and boundary conditions. The traditional 

overlapped RHS K joint configuration is studied to resolve the question posed by 

Crockett (1994) of whether an angle function is required in the design guidance given 
by CIDECT for overlapped K joints. Similar bird beak K joints are then studied to 

compare the strength and behaviour of the traditional RHS K joints with bird beak K 

joints to ascertain if the advantages demonstrated by bird beak configuration previously 

apply to K joints. 

The models used to represent the traditional RHS K joints are the same models 

that Crockett (1994) used in his investigations on the boundary conditions effects, 

therefore the models have different material properties from those used previously in 

this thesis. The same material properties are transferred to the bird beak models so that 

comparisons can be made with the traditional RHS K joints. Full details of these 

material properties are given when describing the models. 

7.2 The requirement for an angle function. 

The inclination of the braces has long been recognised as having an important 

effect on the joint capacity for T joints, K and N gap joints, with the minimum capacity 

observed when the branch is positioned at 900 to the chord. This implies that the 

normal component of the branch force is critical in determining the joint capacity and 

when the branch is inclined the joint resistance, represented by the force in the inclined 

brace should be increased by 

f(8) =1 
sin 0 

Egn7.1 
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This can be seen to occur when the failure mode is due to complete shearing of the 

chord for RHS K gap joints, shown in Figure 7.1. However, in other cases there is an 

additional effect of the larger footprint of the connection which further enhances the 

value of f(@). Examples of this can be seen in RHS K gap joints where the mode of 
failure is due to punching shear failure or yield line deformation of the connection face 

of the chord member, shown in Figure 7.2 and Figure 7.3 respectively. 
Clearly then, there is a case for considering the inclusion of an angle function in 

a design formula for K gap joints. However, the question posed is whether a case can 
be justified for overlapped K joints. 

0-0 

eil\. '`.. \ fie' 

_. _. _. _. _. _. _. _. _. _. _. _. _. _. _. __r _-lF sin 0 

Figure 7.1 Overall shear failure of the 
chord 

bi b 
s n& 

JIlL 
...... """""" Hog yield lines 

Sag yield lines 

SUI Hj 

F 

Figure 7.2 Punching shear failure of the Figure 7.3 Flexural failure of the chord face 

chord face 

The International Institute of Welding/CIDECT/Eurocode 3 design 

recommendations for RHS partially overlapped K joints, all use the effective width 

concept. This approach recognises that the strength of a transverse welded plate 
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connected to an RHS chord wall does not fully reach the full yield strength of the 

connection. The value of this contribution depends on the RHS wall slenderness (2y = 
bo/to) providing the reaction for the plate. A generalised expression for the effective 

width of 

baff 
-Cf 

to 
f(p) 

.1f 
(n) Eqn 7.2 

b; by fy; t; sinA 
to 

where C= constant 

was considered appropriate. However, the angle function could not be justified by test 

results and the effective width expression of 

beff 
_C 

fypto 
Eqn 7.3 Ti- b f>, t; 

to 

was adopted. 
The design recommendations given in Appendix K of Eurocode 3 and the 

CIDECT design guidelines, are based on the IIW recommendations for checking brace 

failure of a partially overlapped K joint in square RHS and are 

25% << 50% 

N i, Rd =f yi ti bef +be, ov +-°° (2h j -4t i) 
1)J Eqn 7.4 

50 /'M' 

50%5iX<70% 

Ni, Rd-fyiti 
[bets'+beov, +2hi-4ti 

f 

/k 

] 
Eqn 7.5 

Xz70% 

N i, Rd -f yi 
ti [b 

i+b, 0v +2h i -4t i 
fy'] 

Eqn 7.6 

where 
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bo 

Figure 7.4 Representation of the terms used in Eqns 7.4 - 7.6 

where 

100 Eqn 7.7 
P 

e=- h0 
1 

ýoV 
loo 

Eqn 7.8 
cos9 

when the braces are at equal angles i. e. 9=e; 

Considering the variation of the design value of the joint resistance, Ni, Rd , to the 

overlap X, described by Eqn 7.4 - 7.6, the designed joint resistance increases linearly 

when the overlap increases from 25% to 50%. This represents the increasing efficiency 

of an overlapped joint as the applied load passes more directly through the overlapped 

portion of the joint so that the failure no longer occurs in the chord. The step functions 

given by Eqns 7.4 to 7.6 represent a crude simplification of the continuously increasing 

strength of the connection with increasing overlap. 
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7.3 Finite element model details for the traditional RHS K joints 

The mesh of 970 elements is generated by the ABAQUS input deck. There is 

no verification of the traditional RHS overlapped K joints models used in Crockett's 

thesis, but further mesh refinement, concentrating the elements in the areas of the joint 

produced only a 3% decrease in the joint capacity. Although this does not validate the 

model it at least shows that the model is performing adequately. Therefore in order that 

comparisons can be made with previous analyses the original mesh was used 

throughout this study: 

" as the joint only has one plane of symmetry, half' of the joint is modelled. 

" eight noded thick shell elements (ABAQUS S8R) are used for the brace and chord 

members. 

" fifteen noded solid elements are used for the fillet welds (weld case "e", shown in 

Chapter 2). The hidden weld (i. e. the part of the continuous brace concealed by the 

overlapping brace) was connected to the chord by common nodes. 

" the non-linear material properties used to represent the brace and the chord 

members plus the weld material are given in Table 7.1 and shown in Figure 7.5. 

(These properties are changed to the true stress/strain properties using Eqns 3.30 

and 3.31. ) 

Stress N/mm` Strain 

0 0.00 

420 0.0020 

420 0.0100 

510 0.0405 

540 0.1005 

540 0.1500 

Table 7. / The Engineering 
Material Properties 

N 

E 600 

Z 500 
400 

300 

200 

100 

0 

Figure 7.5 The Engineering Material Properties 

" the non-linear geometry option was used to update the mesh at the beginning of 

every increment for the deformations which have already taken place. 
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" the chord dimensions were 150x150x6.3mm and the brace 90x90x6.3mm, giving a 

width ratio ß=0.6, slenderness ratio b0/t0 = 23.8 and ti/to = 1. 

" in order to provide consistency between all the different joints of varying 0, 

the overlapped was kept consistent at 56%, the eccentricity varying between 0.25b0 

and 0.35 bo. 

" the chord length was maintained as the footprint of the overlapped joint plus 

800mm. The length of the brace was maintained at 400mm as shown in Figure 7.7. 

" weld throat thickness was maintained at 6.3mm. 

" the construction of the mesh was not altered when altering the angle 0, the key 

nodes were simply moved to their new positions. 

0 the eccentricity and overlap for the various models with different values of 0 is 

given in Figure 7.7. 

Inclination of the 
brace 00 

30 40 50 60 

Overlap 56% 56% 56% 56% 

Eccentricity e/h0 -0.356 -0.337 -0.306 -0.251 
Eccentricity mm 53.4 50.55 45.9 37.65 

Table 7.2 The eccentricities of the various models 

Shell element S8R 
representing the brace 

Solid element C31)15 

reoresentinm the weld material 

Nodes 
Shell element S8R 
representing the chord 

Figure 7.6 The arrangement of the elements representing the weld detail 

Figure 7.7 and Figure 7.8 show the general arrangement and the finite element 

idealisation of the K joint under consideration. 
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Figure 7.7 Partially overlapped K joint 

0=300 

0 =50° 

0= 40° 

0 =600 

Figure 7.8 Finite element i(Iealisatioii of'the f )tlr traditional RHS K joints 

7.3.1 The advantages of using a very high yield stress value 

Crockett (1994) uses a very high yield strength for his models which originally 

dates back to some tests carried out in 1992 at the University of Nottingham (Davies 

1992) as part of the European Coal and Steel Community (ECSC) sponsored project 

into the behaviour of three dimensional T joints. These test results provided a large 

data base of results on which Crockett based much of his work on the effects of 

modelling the weld and corner radii. 

243 

400mm ý I-*-- 400mm w 



Steel producers are manufacturing increasingly high grades of steel that can be 

economically used in stronger, lighter structures. However, there are other 

considerations when using higher grades of steel, other than the higher strength of the 

material. Increasing the yield stress of the material has a significant effect on the 

buckling behaviour of simple struts, in that as the yield stress of the material is 

increased and all other parameters remain constant, increasingly stocky sections will 

fail by buckling. This is shown in Figure 7.9 where 2, is the slenderness value, 6y the 

yield stress of the material and 6, the critical buckling stress. 

The advantage of using a higher yield stress value in the finite element models, 

as this will automatically incorporate a greater tendency to local buckling, which will 

give safe results for materials with lower yield stress values. 

6 

6yI 
Buckling occurs at lower 

slenderness values for 
higher yield stresses 

Gy2 

Slenderness A. 

Figure 7.9 The effect of the yield stress on the buckling behaviour of a simple strut 

7.4 The different boundary and the loading conditions. 

Crockett (1994), in his thesis, showed that the boundary conditions and the 

sense of loading chosen when testing isolated joints can have a significant effect on the 

observed joint capacity. The boundary conditions chosen here are considered to 

represent the boundary conditions experienced in a truss structure as far as practicable. 

The ends of the branches are pinned rollers to allow axial movement but no major 

rotation of the member. The chord is supported by a fixed pin and a pinned roller 

which allows the axial and shear forces in the chord to be resisted, whilst allowing 

rotations at each end and axial movement at the roller. The four different load cases 

considered are shown in Figure 7.10. Equal loads are applied to the brace members to 

provide a balanced joint. 
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L 
Figure 7.10 The four combinations of load and boundary conditions considered 

7.4.1 Defining the joint capacity for the K joints 

Previously in this work the joint capacity has been defined as the maximum 

load attained or the load, at an indentation of 3%bo, of one of the brace members into 

the chord. Observing the indentation of aK joint is a lot more complex where the 

direction of the displacement (or a component of it) of the datum points has to be 

considered so that the movement of the datum points have a common vector. It then 

becomes very difficult to achieve consistent results where the angle of the branch 

member changes. It was considered that there was no advantage to be gained in using 

the indentation to define failure and in all the K joints studied in this work, failure has 

been defined as the maximum load attained or the load attained when the deflection at 

the end of either brace exceeded 3%b0. 

7.5 The results of the analyses for the traditional RHS K joints 

The results of all the analyses for the traditional RHS K joints and all the load 

cases are given in Table 7.3 and shown graphically in Figure 7.11 where the results 

have been normalised by the squash load of the brace (A; fyi ). 

Failure can occur due to the over stressing of the chord due to combined axial 

load and bending exceeding the elastic capacity of the chord determined by the simple 

equation shown in Eqn 7.9, referred to as an L7 failure. 

fy =F 
A. 

o 

�, + 
ZM� 

Eyn7.9 
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This expression for the force applied to the brace members producing first yield in the 
chord under the combined action of the axial force and moment acting in the chord can 
be rearranged to give 

A0/ 
Fl 

Eqn 7.10 
Alfy1 2(1+A Z0(Ce)k)Cos0 

h, 
where e=- yho 1- 

1-°{ 
Eqn 7.11 

ho Cos9 

and 

C is a factor which allows for the distribution of the joint moment amongst the 

members 
ka reduction factor for the moment appropriate for the position of the critical chord 

section. 

Figure 7.11 shows two curves representing the L7 chord failure according to 
Eqn 7.10, the lower where failure is assumed to occur at the centre line of the joint and 
the upper curve where the failure is assumed to occur adjacent to the heel of the brace. 

All the points above these lines represent cases where the elastic capacity of the chord 
has been theoretically exceeded for the chosen location. 

7.6 Discussion of the results for the traditional RHS K -joints 
It can seen from Figure 7.11 that there is a wide variation in the joint capacities 

between the different load cases as 0 varies. This section will examine the models 

where 0= 300 and 600 separately and with reference to the contoured von Mises stress 
plots, the displaced shape diagrams and moment load interaction diagrams explain the 

failure mechanism. 

In the contoured von Mises stress plots, drawn at maximum load for the outside 

surface, the red areas indicate regions of high stress where the material has yielded (i. e. 

az 420 N/mm2) and the blue areas indicate regions of low stress. All the displaced 

shape diagrams, also drawn at the maximum load, have had the displacements 

magnified by a factor of 3 so that small deformations can readily be identified. 
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Figure 7.11 A summary of the results for the traditional RHS K joints 

Angle 300 400 50° 60° 

Load Case 
1 657.2 kN 670.0 kN 663.2 kN 652.7 kN 
2 869.9 kN 809.6 kN 792.0 kN 767.9 kN 
3 826.2 kN 734.9 kN 667.9 kN 657.1 kN 
4 637.3 kN 657.7 kN 713.7 kN 763.7 kN 

Table 7.3 A summary of the results for the traditional RHS K joints (overlap = 56%) 

The moment/force interaction diagrams shown later in Figure 7.16 and Figure 

7.18 relate the member (primary and secondary) moment to the axial force in that 

member at the points shown in Figure 7.12. It is appreciated that calculating the 

displacement of the centre lines of the member, by using the movement of a node 

originally on the centre line is not a completely accurate way of calculating the 

secondary moments acting in that member as movement of the centreline of the 

member may not be the same as that of the node chosen. However, useful indications 

about the failure mechanism are obtained by this method. The curves for the variation 

of the elastic and plastic moment capacity with load are plotted on the moment load 
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diagrams as a guide to determining the failure method. The variation of the normalised 

plastic moment capacity with load is virtually identical for both the chord and the brace 

and there is no significant difference between the two. There is a small difference 

between the two curves for the normalised elastic moment/load capacity in that 

Z' fy 
= 0.8295 and 

Z° fy 
=0.8527 

This means that the curves diverge slightly at low loads. However, as the moment/load 

curves cross the elastic moment/load capacity curve at a relatively high load, the two 

curves for the brace and chord elastic moment/load capacity can be treated as a single 

curve. 

For these reasons and to simplify the drawings only one curve (for the brace) 

will be shown for each of the elastic or plastic moment/load capacity. 

Applied axial 
force 

Calculation points 
for the moments 

Applied axial 
force 

Shear Reaction 

-e 

Shear Reaction 

Reaction at rolling pin Reactions at fixed pin 

Figure 7.12 The calculation points of the moment/load interaction diagrams 

7.6.1 The direction of the shear reactions at the brace members 

The directions of the expected shear reactions at the rollers at the end of the 

brace members, for load case I shown in Figure 7.10, would be those shown in Figure 

7.13a. However, the reactions experienced are those shown in Figure 7.13b. 
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Figure 7.13 The theoretical reactions and the actual reactions experienced 

This can be seen in the moment/load diagrams where the sense of the moment in the 

chord and the brace are always opposite to each other. 

This is explained by examining the deformed shape diagrams for all the 

traditional RHS K joints shown in this Chapter. The top face of the chord, i. e. the 

connected face, offers very little resistance to the axial load applied to the brace 

members in that the compression member is punched into the chord face and the 

tension member is pulled out. Figure 7.14 shows the rotation at the joint caused by 

these displacements and as the ends of the brace members are constrained to move in 

an axial direction only, with no significant rotation of the member, the reactions at the 

rollers are reversed in order to comply with the boundary conditions. 

/ 

Top face of the chord 

Figure 7.14 The action of t{re braces on the top face of the chord 

Evidence of the deformation of the top face of the chord as described in this 

section can be seen in all the displaced shape diagrams for the traditional RHS K joint 

shown in this Chapter. 
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The axial contoured stress diagrams shown in Figure 7.15 show the sense of the 

moment acting in the brace members and therefore the shear reaction at the roller at the 

end of the brace member. 
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Figure 7.15 Illustration of the reactions/sense of 'the moments discussed 

7.6.2 Traditional RHS overlapped K Joints where 0 =300 

I 

Examining Figure 7.11 it can be seen that there are two probable modes of 

failure at 0= 300, depending on whether the chord is in tension (load cases 2& 3) or 

compression (load cases I& 4). The von Mises stress contoured plots and displaced 

shape diagrams shown in Figure 7.17 confirm that similar modes of failure must exist 

between these groups as there are distinct similarities in the diagrams for each pair of 

load cases. 
Considering load cases I&4, the displaced shape diagrams show the 

deformation of the top face of the chord in the areas indicated. The axial load and the 

bending moment both produce compression in the connecting face of the chord in this 

region, which leads to joint failure. This is confirmed by the moment/load interaction 

diagrams shown in Figure 7.16 where the chord is seen to fail before the braces, 

although at maximum joint capacity the braces are very close to failure. 

Considering load cases 2&3, von Mises contoured stress plots and the 

displaced shape diagrams shown in Figure 7.17 indicate that there is wide spread 
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plastification and considerable deformation of the chord due to the rotation of the joint. 

Failure does not occur in the same manner as load cases 1&4 because the axial force 

and the moment acting on the chord both act in tension on the top face. Examination of 
the moment/load diagrams shown in Figure 7.16 reveals that there has been 

considerable strain hardening of the top face of the chord, which being in tension does 

not fail on reaching the plastic capacity. In load case 2 both the brace members attain 

their plastic capacities with the joint failure being attributed to failure of the 

discontinuous brace in compression shedding moment to the chord which then fails as 

well. However, in load case 3, the continuous brace (in compression) reaches the 

plastic capacity and begins to shed moment to the chord. Failure occurs as the chord 

attains its plastic capacity and the discontinuous brace (in tension) reaches the plastic 

capacity although the moment acting in both the braces operates in the reverse 

direction to that indicated by Figure 7.13b. 

However, given the large deformations that have occurred at joint failure, 

concluding that the discontinuous brace (in tension) fails at the plastic capacity may be 

misleading, due to errors in determining the secondary moments. Similarly the errors in 

determining the secondary moment would explain why the compression member 

exceeds the plastic capacity in both cases which is unlikely to happen. 

Table 7.4 gives a brief summary of the different failure mechanisms and the 

order in which they occur. 

Load Case Failure Mechanism Failure Load 

1 Plasticification of the top face of the chord in compression 0.731 Fs 1 
2 Plasticification of the top face of the chord in tension 0.974 Fsq, 

Plasticification of the continuous brace in tension 
Plasticification of the discontinuous brace in compression 

3 Plasticification of the top face of the chord in tension 0.947 Fsq, i 
Plasticification of the continuous brace in compression 
Plasticification of the discontinuous brace in tension 
(possibly) 

4 Plasticification of the top face of the chord in compression 0.710 F 

Table 7.4 A summary of the failure mechanisms at 0= 30° 
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Figure 7.16 Chord and Brace moment/load interaction diagrams 9=300 
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Tension 
Load Case 3 Load Case 4 

Figure 7.17 von Mises contoured stress plots and displaced shapes at the maximum load ihr 

the outside surface 0= 300 

7.6.3 Traditional RHS overlapped K Joints where 0 =600 

Examining Figure 7.11 it can be seen that there are again two probable modes of 

failure depending on whether the continuous brace is in tension (load cases 2& 4) or 

compression (load cases I& 3). The sense of loading in the chord is not important as 

for each pair one is in tension and other is in compression. The failure loads given in 
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Table 7.3 are virtually identical for these groups and examining the displaced shape 
diagrams shown in Figure 7.19 indicates that each pair appear to have the same failure 

mechanism. The lack of stiffness of the top face of the chord in resisting the axial loads 

applied to the brace members can be seen in all the load cases, causing the joint to 

rotate. 

Considering load cases 1&3, the moment/load interaction diagrams shown in 

Figure 7.18, indicate just how similar the failure mechanism must be as the diagrams 

are virtually identical. Examining these diagrams it appears that the chord and 
discontinuous brace play no part in the mechanism as they remain well within the 

elastic limit. The failure appears to occur only in the continuous brace, which is in 

compression when the plastic capacity is reached. 
Examination of the von Mises contoured stress plots in Figure 7.19 shows that 

failure is confined to the top face of the chord and the lower part of the brace members 
as would be expected from the moment/load interaction diagrams. The displaced shape 
diagrams would appear to confirm that the failure occurs only in the continuous brace 

as this is the one member with any deformation. 

Considering load cases 2&4, the moment/load diagrams show that joint failure 

occurs when both the braces have reached their plastic capacities. The chord remains 

well inside the elastic limit and does not contribute to the failure mechanism. The 
deformation of both the braces, shown in Figure 7.19, would appear to confirm that 
failure is confined to brace members. This would account for the increase in the joint 

capacity for these two load cases over the previous two load cases by the increase in 

the work done to cause this extra deformation. Evidence of the extra work required to 

cause failure can be seen in the increased area of plasticity shown in the von Mises 

contoured stress plots. 

Load Case Failure Mechanism Failure Load 
1 Plasticification of the continuous brace in compression 0.737 Fi 
2 Plasticification of the continuous brace in tension 

Plasticification of the discontinuous brace in compression 

0.767 Fsq, I 

3 Plasticification of the continuous brace in compression 0.742 F 

4 Plasticification of the continuous brace in tension 
Plasticification of the discontinuous brace in compression 

0.762 Fsq, j 

Table 7.5 A summary of the failure mechanisms at 0= 60° 
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Figure 7.18 Chord and Brace moment/load interaction diagrams 6= 60° 
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7.6.4 Traditional overlapped RHS K joints 0= 400 and 50° 
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Figure 7.20 Chord and brace interaction diagrams 0= 40° 
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Figure 7.21 Chord and brace interaction diagrams 0= 500 
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The joints with 0= 40° or 50° are not discussed in detail. However, study of the 

moment/load interactions diagrams, shown in Figure 7.20 and Figure 7.21, reveals a 

transition between failure in the chord at 05 400 to a failure in the brace members for 

larger angles of 0 
_> 500. 

7.7 The effect of disconnecting the hidden weld 

Standard practice in the fabrication of K joints is to tack weld both members 
into position on the chord and then weld around the perimeter of the connection. This 

results in one face of the overlapped brace not being properly welded, referred to as the 

hidden weld. Crockett (1994) observed that if the hidden weld is considered to be 

unconnected then the joint capacity is reduced. As some joints analysed previously 
failed at values below the CIDECT design recommendations it was felt necessary to 

investigate exactly how much the joint capacity is reduced by this condition. Only the 

joints which may be critical have been analysed. 

In the models, where the continuous brace is loaded in compression, the 

unconnected edge of the brace at the concealed intersection has been prevented from 

passing through the chord wall by use of an equation constraint. 

Through 
Brace ý 

Nodes connected around the 
perimeter of the joint 

z' 
! -- 3' 

Nodes prevented from Top face of the chord 

passing through the Hidden weld 
chord 

Figure 7.22 The arrangement of nodes at the hidden weld 

The vertical displacements of the respective nodes in the chord and the brace walls 

being made equal, shown in Figure 7.22. This allows a vertical reaction to be passed 
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between brace and chord but no horizontal reactions, as would be the case if the 

unconnected face of the brace was allowed to slide over the chord wall. In the cases 

where the continuous member is in tension, then the nodes on the brace have no 

restraint on them and they are free to move away from the chord. 

Angle Hidden 300 400 50° 60° 
Load Case weld 

I Disconnected 636.7 kN 650.5 kN 657.0 kN 647.4 kN 
Connected (657.2 kN) 670.0 kN) (663.2 kN (652.7 kN) 

2 Disconnected 
Welded (869.9 kN) (809.6 kN) (792.0 kN) (767.9 kN) 

3 Disconnected 667.3 kN 653.3 kN 
Welded (826.2 kN) (734.9 kN) (667.9 kN) (657.1 kN 

4 Disconnected 630.7 kN 652.5 kN 
Welded (637.3 kN) 657.7 kN) (713.7 kN) (763.7 kN 

Table 7.6 The results of 'the analyses when the hidden weld is released 

I. 
4>. 

d 

w 
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Figure 7.23 The effect of not welding the hidden joint upon joint capacity 

The results of the analyses are given in Table 7.6 and shown in Figure 7.23. 

The main effect of releasing the hidden weld is to: 

" reduce the overall strength marginally from that observed previously 
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" reduce the range between the different load cases in most of the load cases 

observed, for example load cases 1&4 at 0= 300, where previously there was a 
significant difference in capacity. 

The CIDECT design guide predicts a joint strength of 676 kN, when the failure 

is not attributed to a failure of the chord, whilst the minimum that can be expected 
from the joints analysed is only 647.4 kN a reduction of 4.2%. Clearly there is scope 

for further work in this area to verify whether a reduction in the CIDECT design 

guidance is necessary. 

7.8 Conclusions about the failure of the traditional RHS K joints 

Two different forms of failure were identified, the first when 0: 5 400 and the 

failure occurred in the chord (when either there was a local failure of the top face of the 
chord in compression or the general plasticification of the chord in tension). The 

second when 0 >_ 500 and the failure is confined to the brace members. 

When the failure was in the chord (i. e. 0: 5 400) the sense of overlapping of the 
brace members was not important. The joint strength was dependent on whether the 

chord was in tension or compression. 

When the failure was in the brace members (i. e. 02 50) the higher joint 

capacities were achieved when the continuous member was in tension. 
There is no case for an angle function in a design formula, although the joint 

capacity does vary with angle it is predominately determined by the load and boundary 

conditions imposed. 

The CIDECT/Eurocode 3 formula based on the effective width concept gives a 

reasonable estimate of the joint capacity. However, it has been shown to overestimate 

the joint capacity by up to 4.2% based on these results. The largest difference occurring 

when the failure is predominately in the chord, although it is likely that the joint 

capacity will be determined by the chord capacity in these circumstances. 

7.9 Bird beak K -joints 

In order that a comparison can be made between the traditional RHS and bird 

beak K joints, the analyses described in the first part of the Chapter for traditional RHS 

joints are repeated for the bird beak K joints. All the parameters are maintained as 

closely as possible to those for the original traditional RHS K joints. 
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All the traditional RHS K joints were defined by keeping the overlap constant 
at 56%, however, due to the geometry of bird beak joints the projected shape of the 
brace members on the chord is irregular as shown in Figure 7.24. Consequently the 
definition of the overlap has very little meaning in defining the geometry of the joint 

and the eccentricity. 
The outline of the continuous The projected outline of the 
brace on the chord overlapping brace on the chord 

Overlap ? 0V = q/p x 100% 

The outline of the overlapping 
Pq brace on the chord 

Figure 7.24 The projected shape of the braces on the chord of a bird beak K joint 

In order that there could be a comparison between traditional RHS and bird 

beak K joints for a particular value of 0, the geometry of the bird beak joint was 

adjusted so that both joint types had the same eccentricity in absolute (millimetres) 

terms, shown in Table 7.2. The moment caused by the eccentricity will then be equal 

for the same applied force and have a similar effect on the chord of either joint type 

using identical sections. (It should be borne in mind that the elastic and plastic moment 

capacities are reduced when a RHS section is used in a diamond configuration whereas 

the depth of the section is increased by 42. Thus any attempt to base to the eccentricity 

on a ratio of the eccentricity and the depth of the section will lead to larger 

eccentricities in the diamond configuration and hence larger moments for the same 

applied force, although the moment capacity of the section is actually lower. ) 

This arrangement of the geometry has resulted in a bird beak K joint where 

three corners of the overlapping brace rest on the overlapped member. This is conceded 

as being a little unrealistic since it is probable that the joint would be designed so that 

the corners of the brace coincided with each other on the face of the chord producing a 

stronger joint that would also be simpler to produce. 
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7.10 Model details of the bird beak K joint 

As with the traditional RHS K joints there is one plane of symmetry and 
therefore only half the joint is actually modelled. Examples of the finite element mesh 
for the three different models used in the analyses can be seen in Figure 7.25. 

Figure 7.25 Finite element idealisation of the 3 bird beak K joints, J6 = 0.6 

" the mesh of approximately 800 elements is generated by FEMVIEW (1989) using 8 

node thick shell elements (ABAQUS S8R) for the chord and brace members. Fifteen 

noded solid elements (ABAQUS C3D15) have been used to represent the visible 

welds, whilst the hidden welds of the continuous brace were connected to the chord 
by common nodes. The arrangement of the weld detail is the same as that shown in 

Figure 7.6 for the traditional RHS joints. 

" the same non-linear material properties as shown in Table 7.1 and Figure 7.5 are 

used in these bird beak models. 

" chord dimensions 150xl5Ox6.3mm and brace dimensions of 90x9Ox6.3mm give a 

width ratio 0=0.6, chord wall slenderness ratio 2y =23.8 and the thickness ratio t= 

ti/to= l 

" chord length was maintained as the footprint of the overlapped joint plus 800mm, in 

the same manner as the traditional RHS joints shown in Figure 7.7 
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" weld throat thickness was maintained at 6.3mm 

" length of the brace was maintained at 400mm, in the same manner as the traditional 
RHS joints shown in Figure 7.7 

" the construction of the mesh for the joints with different values of 0, was kept the 

same so far as possible. 

" the same boundary conditions and load cases were used as shown in Figure 7.10 for 

the traditional RHS joint. However, there were no end plates fitted to the chord or 
braces which may affect the joint capacity observed. Each node had individual 

restraints to support the shear and axial load according to the loading condition 
imposed, in the same manner used in previous Chapters 

Model e End Chord length 
mm 

Brace Length 
mm 

Weld modelled 

BKJ3E-1 30 400 400 No 
BKJ3E-1-LC 300 700 400 No 
BKJ3E-1-LB 30° 400 700 No 

BKJ3W-1 30° 400 400 Yes 
BKJ6E-1 60 400 400 No 

BKJ6E-1-W 60° 400 400 Yes 
BKJ6E-1-LC-W 60° 700 400 Yes 
BKJ6E-1-LB-W 60° 400 700 Yes 

Table 77 Parameters varied in the initial investigations 

7.11 Initial investigation on the bird beak K joints 

Previous studies of the bird beak joint configuration have shown how the chord 
length affects the joint capacity. In this investigation it was felt necessary to study the 

effects of changing the length of chord and braces in turn. Table 7.7 details the changes 
that were made to the models during the initial investigation whilst Figure 7.26 shows 
the effect on the brace deflection of the different models. The end chord length is 
defined as the shortest distance between the joint and the end of the chord, shown in 
Figure 7.7. 

264 



The load condition used during the initial 
investigations 
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Figure 7.26 A comparison between different models of bird beak Kjoint 

The moment/load interaction curves were also studied, but show no noticeable 

differences and are not presented. 

7.11.1 Discussion of the initial investigation for 0= 300 

For the four joints analysed, using load case 1, the results show similar 

behaviour with some small differences. 

Only one joint had a weld modelled BKJ3 W- I and was only slightly stronger 

(up to 5% FSq, i) than the non-welded models. 
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A decrease in the stiffness of both of the braces when the chord was increased in 
length can be observed in the joint BKJ3E-1-LC, although it is particularly evident in 

the overlapped brace. 

7.11.2 Discussion of the initial investigation for 0= 60° 

For the four joints analysed the results show similar behaviour with some small 
differences. 

Only one model did not have the weld modelled BKJ6E-1 and is noticeably 
weaker than the others (7% Fes, ). 

A decrease in the stiffiiess of the overlapped brace can be observed in the joint 

with the longer chord length BKJ6E-1-LC-W. 

7.11.3 Conclusions from the initial investigations. 

As a result of the initial investigation it is concluded that: 

" the length of the members does not significantly affect the joint capacity although it 

may affect the stiffness of the brace and that the member length can be the same as 
for the traditional RHS K joints. 

" the inclusion of the weld does have a significant affect on the joint capacity 

particularly for larger angles of 0, therefore the weld is included in all the subsequent 
joints discussed. 

7.12 The results of the analyses of the bird beak K joints 

The results of all the analyses for the bird beak K joints is given in Table 7.8 and 

shown in Figure 7.27. The models analysed in this section have the properties outlined 
in section 7.10. 

Angle 30 45 600 
Eccentricity 53.4mm 47.3mm 37.6mm 
Load Case 

1 3% bo 827.7 kN 892.6 kN 850,7 kN 
(864.0) (811.6) 

2 3% bo 839.1 kN 851.7 kN 867.0 kN 
ax (872.1) (854.4) 

3 3% bo 817.2 kN 825.1 kN 857.7 kN 
830.7 - 

4 3% bo 807.2 kN (-) 863.7 kN 
Max) 854.2 (857.2) - 

Table 7.8 A summary of the results for the bird beak Kjoints 
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Failure was defined as the load where the deflection on either brace exceeded 3% bo (or 

the maximum if obtained before the 3%bo deflection was exceeded). The results shown 
in Figure 7.27 have been normalised against the brace squash load (A; f; ). 
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Figure 7.27 A summary of the results for the bird beak K joints 

7.13 Discussion of the results for the bird beak K joints 

Comparing Figure 7.27 with Figure 7.11 it is immediately apparent that the bird 

beak K joints are up to 20% of Fsq,, stronger than the respective traditional RHS K 

joints and that the range of the results of the bird beak joints is a lot smaller. Identifying 

different failure groups is difficult, although it appears that the joint is stronger when 

the continuous brace is loaded in tension with one exception which will be discussed 

later. 

There are two general points that can be made from examination of all the 

displaced shape diagrams. Figure 7.30, Figure 7.32 and Figure 7.34 that show there is 

very little deformation of the faces of the joint members, which is common to most of 

the traditional RHS K joints. This is attributed to the increased stiffness of the corners 
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of the members (opposed to the flat faces of the traditional RHS joints) on which the 
joint is formed and accounts for the increase in joint capacity observed. The second 
point can be seen from further examination of the displaced shape diagrams which show 
that there is no lozenging of the chord, that has been a weakness in the T and X joints 

observed previously. With the balanced loading applied to the K joints in this Chapter, 

the vertical components of the applied load to the braces cancel each other out and 
therefore there is no "crushing action" on the chord. This has the advantage that the 
moment capacity of the chord is not reduced, due to the reduction of the cross sectional 
depth. Therefore the full capacity of the diamond configuration may be utilised resisting 
the moment caused by the eccentricity and the axial force in the chord. 

In the stress plots, the red areas indicate regions of high stress where the 

material has yielded (i. e. as 420 N/mm2) and the blue areas indicate regions of low 

stress. All the displaced shape diagrams have the displacements magnified by a factor of 
5 so that the very small deformations, common to all these bird beak K joints can be 

readily identified. 

The moment/load interaction diagrams discussed in this section also have the 

ultimate plastic capacity plotted, based on the ultimate tensile stress of the material 

rather than the yield stress to indicate the maximum capacity of the section. The fact 

that some of the plotted lines exceed this value indicates that inaccuracies do occur in 

determining the secondary moment acting on the member. In the same manner as before 

only the elastic and plastic moment/load capacities of the brace are plotted, as these 

curves are virtually identical to those for the chord (discussed previously in Section 7.6) 

7.13.1 The direction of the reactions on the brace members 

In Section 7.6.1 the reactions on the braces for the traditional RHS joints was 
discussed. It was noted that the rotation of the joint, due to lack of stiffness of the top 
face of the chord, the reactions on the brace were in the opposite sense to those of the 

chord. Examination of the moment/load diagrams for the bird beak K joints shows that 

the reactions on the brace and the chord are always of the same sense, resisting the 

moment caused by the eccentricity, as in the example shown in Figure 7.28 
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show that there is no lozenging of the chord, that has been a weakness in the T and X 
joints observed previously. With the balanced loading applied to the K joints in this 
Chapter, the vertical components of the applied load to the braces cancel each other out 
and therefore there is no "crushing action" on the chord. This has the advantage that 

the moment capacity of the chord is not reduced, due to the reduction of the cross 

sectional depth. Therefore the full capacity of the diamond configuration may be 

utilised resisting the moment caused by the eccentricity and the axial force in the 

chord. 

In the stress plots, the red areas indicate regions of high stress where the 

material has yielded (i. e. cr 5 420 N/mm2) and the blue areas indicate regions of low 

stress. All the displaced shape diagrams have the displacements magnified by a factor 

of 5 so that the very small deformations, common to all these bird beak K joints can be 

readily identified. 

The moment/load interaction diagrams discussed in this section also have the 
ultimate plastic capacity plotted, based on the ultimate tensile stress of the material 

rather than the yield stress to indicate the maximum capacity of the section. The fact 

that some of the plotted lines exceed this value indicates that inaccuracies do occur in 

determining the secondary moment acting on the member. In the same manner as 
before only the elastic and plastic moment/load capacities of the brace are plotted, as 

these curves are virtually identical to those for the chord (discussed previously in 

Section 7.6) 

7.13.1 The direction of the reactions on the brace members 

In Section 7.6.1 the reactions on the braces for the traditional RHS joints was 
discussed. It was noted that the rotation of the joint, due to lack of stiffness of the top 

face of the chord, the reactions on the brace were in the opposite sense to those of the 

chord. Examination of the moment/load diagrams for the bird beak K joints shows that 

the reactions on the brace and the chord are always of the same sense, resisting the 

moment caused by the eccentricity, as in the example shown in Figure 7.28 
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Figure 7.28 An example of the reactions for the bird beak K joint 

Examination of the displaced shape diagrams reveals the reason for this, in that 
all the displacements are very small and the stiffness of the corners of the chord on 
which the joint is formed prevents the rotation of the joint. This rigidity allows the 
braces to resist the moment caused by the eccentricity. 

7.13.2 Bird beak K joints where 0= 300 

Determining and classifying the mode of failure is very difficult for this series 
of models as there is no distinct pattern. Examination of Figure 7.27 shows that there is 

no similarity with the traditional RHS K joints where the chord in tension (load cases 2 
& 3) is a stronger arrangement than the chord in compression (load cases 1& 4). All 

the points representing the joint capacities for 9= 300 are above the line representing 
L7 failure at the centre of the chord, indicating that chord failure should be the 
predominate mechanism. 

The contoured stress plots in Figure 7.30 show very little with regards to the 
form of the failure, except that there is large scale plasticification to the loaded 

members, which is in agreement with the moment/load curves shown in Figure 7.29. 
Examination of these moment/load diagrams shows that: 

" in all cases the discontinuous brace attracts more moment than the continuous brace. 

" in all cases the method of failure appears to be the plasticification of the chord, 

followed by the plasticification of the discontinuous brace and then the 

plasticification of the continuous brace. 

" in load cases 1&2 the chord attracts less moment than load cases 3&4. 

" there are similarities between the moment/load plots of the braces in load cases 1& 

3 and load cases 2&4 in the way the brace moments change sense and the chord 
behaviour, although this is not reflected in the joint capacities. 
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Figure 7.29 Moment load interaction diagrams for the bird beak joint 69 = 300 
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Figure 7.30 Bird beak Kjoints von Mises and displaced shape diagrams at maximum 
load for the outside surface, for 0= 300 

In the displaced shape diagrams shown in Figure 7.30, for load cases I&4 

where the loaded part of the chord is in compression, there appears to be evidence of 

the plasticification of the chord, circled in red on the diagrams. This is very similar to 

the L7 failure observed in the traditional RHS joints, with the stiffness of the corners 
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preventing deformation until a large part of the chord has been plastified. In load cases 
2&3 where the loaded part of the chord is in tension, the compression brace appears 
to be failing by bending. Whilst this is not so distinct for load case 3, it was the only 
joint at 0= 300 not to reach a maximum value. Had the computation been carried 
further it is possible that the bending of the compression brace would be of the same 

magnitude as for load case 2. Given the narrow range of results and conflicting 
indicators, the differentiation of the load cases has proved impossible. However, in 

summary it would be fair to say that the high level of plasticity exhibited in all the 

members has caused a general joint failure and several different mechanisms seem to 
be operating to cause the failure. 

7.13.3 A comparison of the bird beak to the traditional RHS K joints 

Chord failure is common to both joint configurations when 0= 300 however, 

for the load cases I&4 for the traditional RHS joints, the weakness due to the 
deformation of the chord wall caused joint failure at a relatively low joint capacity. 
There is very little plastification of the material at joint failure, which occurs in the 

chord in the vicinity of the deformation. For load cases 2&3 for the traditional RHS 

joints, there is considerable joint deformation and widespread plasticification of the 

material when failure occurs. The joint capacities observed occur when the chord and 
brace members are approaching their squash load capacities. 

In contrast to this the bird beak joint configuration shows very little 

deformation at failure and widespread plasticification of the material. Failure occurs in 

all the joints when the chord and brace members are approaching their squash load 

capacities, at similar levels to the load cases 2&3 of the traditional RHS joints. 

7.13.4 Bird beak K joints where 9= 45° 

Examination of Figure 7.27 shows that there is a relatively wide range of joint 

capacities at 0= 450. The joints where the continuous brace is loaded in tension, (load 

cases 2& 4), having the larger capacity. All the points representing the joint capacities 

at 0= 450 lie very close to the curve for the L7 failure at the centre of the chord. It is 

therefore expected that failure will be a combination of mechanisms involving both the 

brace and the chord members. 
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Figure 7.31 Moment load interaction diagrams for the bird beak joint 0= 450 
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Figure 7.32 Bird beak Kjoints von Mises and displaced shape diagrams at maximum load 

for the outside surface, for 0= 450 

The reason for the decrease in the strength of load case I is not understood however, 

modelling error is ruled out as all the joints have been copied from this one with the 

load and boundary conditions changed. 
The moment/load interaction diagrams shown in Figure 7.31 show similar 

trends to those discussed in the previous section. However, the chord does not reach 
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the plastic capacity, with exception of load case 2. The elastic capacity of the chord is 

exceeded in all cases as all the points shown in Figure 7.27 for 0= 450 are above the 
L7 failure line indicating an elastic chord failure. Load cases 2&4 show that at failure 

both the braces have reached the plastic capacity, whilst load cases 1&3 the 

continuous brace loaded in compression has failed to reach the plastic capacity and this 

may be the reason that load cases 1&3 have a lower joint capacity than load cases 2& 

4. 

The displaced shape diagrams shown in Figure 7.32 show both deformation of 
the chord and the braces. The deformation of the chord is from the punching in and 

pulling out of the respective brace members. The brace members in the vicinity of the 

chord have been deformed, spread out in compression and narrowed in tension which 
is due to the movement of the other brace. There is a small amount of bending in the 

compression brace in load cases 2&4. 

7.13.5 Bird beak K joints where 0= 600 

Examination of Figure 7.27 shows that the joints where the continuous brace is 
loaded in tension are somewhat stronger (load cases 2& 4) although the capacity of the 

joints is very similar. The moment/load interaction diagrams shown in Figure 7.33 

show that the failure is confined to the brace members and is principally due to the 

axial load in the brace, the secondary moment only being significant at failure. This is 

confirmed by the von Mises contoured stress plots in Figure 7.34 which show very 

little plasticification of the chord except in the vicinity of the brace members and 

extensive plasticification of the brace members with significantly more in the 

compression brace. 

Again the similarities for the moment/load diagrams noted in Section 7.13.1 

can be seen in the moment/load diagrams for 9 =600. 

The displaced shape diagrams shown in Figure 7.34 show similar behaviour to 

those models where 6= 450 in the deformation of the braces at the base of the 

members and in that there is bending in the compression brace. 

275 



Load case 
1 

Load case 
2 

r1 

----- Elastic Capacity 

- -Plastic Capacity rx... 
-, Ul 

\ 
timate Plastic ........ 

'.. -. LeftChord 1 

... --Right Chord 

-+- Conunuous Brace 
-Discontiriuola Brace 

1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

IIVL MW 

ý -- 
-* 
;1 -- * .......... ,: -. - -, -0' - x 

: ýA. 

---------- 
--- 

... 

------ ------ --- 

--- Elastic Capacity 

-- Plastic Capacity 
Ultimate Plastic Capacity ' 

+" Left Chord 

- K- Right Chord 
Continuous Brace 

-0.8 -0.6 -0.4 -0.2 0 

Load case 
3 

Load case 
4 

0.2 0.4 0.6 0.8 1 
M. / MPi 

-------- - ---- -1: 2 

....... 6: 8 

--- Elastic Capacity 
-- Plastic Capacity 

- Ultimate Plastic Capacity 
Left Chord 

--Right Chord 
-e:? - 

ýContinuous Brace 

.......... .......... 

......... .......... ............ 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

--------- --- 

:.......... _ : 0.4 

.. -0.3 

-0.8 -0.6 -0.4 -0.2 0 

i 
i 

,.: 

- Elastic Capacity 

-- Plastic Capacity 
Ultimate Plastic Capacity 
Left Chord 
Right Chord 

---. --Contutuous Brace 

- Dtscontinuous Brace 

0.2 0.4 0.6 0.8 
M. ' Ma 

Figure 7.33 Moment load interaction diagrams. for the bird beak K joint, 0= 600 
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Figure 7.34 von Mises contoured stress plot and displaced shapes at the maximum load 

for the outside surface, 0= 600 

The distortion at the base of the brace members, spreading in compression and 

narrowing in tension, explains why the presence of the weld increases the joint 

capacity of joints where 0= 600 noted earlier in the initial investigations. Clearly the 
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presence of the extra material due to the weld acts to restrain the deformation in this 

area. 

All the joints where 0= 600 failed to reach a maximum joint capacity in the 

time allowed for the computer analysis. Given more time a maximum may have been 

reached however, due to the widespread plasticification a lot of CPU time would be 

required for little benefit. 

7.13.6 A comparison of the bird beak to the traditional RHS K joints for 9= 600 

Failure occurs only in the brace members for both joint configurations. 
However, the deformation that occurs in the brace members for the traditional RHS 

joint causes a weakness, which leads to a joint failure at a capacity below that observed 

for the bird beak joints. In the traditional RHS joints the plasticification of the material 

occurs in the vicinity of the joint, where the deformation occurs. Whereas in the bird 

beak joint the plasticification of most of the brace members reflects that the joint 

failure occurs at a load where the brace members are approaching their squash load 

capacity. The only deformation observed in the bird beak joints, which is very small 

and does not cause a significant weakness, is the widening/narrowing of the X- 

sectional shape of the member due to the action of the other brace. 

7.13.7 Conclusions about the failure of the bird beak joint 

The increase in the joint capacity of the bird beak K joints over the traditional 

RHS K joints is derived from the stiffness of the corners of the member on which the 

joint is formed. The lack of stiffness of the faces of the RHS members is not a 

disadvantage and if the effective width concept is applied to the bird beak joint, the 

effective width may be said to be 100%. 

In general the mode of failure was the plasticification of one or both of the 

brace members, although when 0 =300 the plasticification of the chord may have 

contribute towards the failure mechanism. 

All the joints of varying values of 0 seem to have similar failure modes, as all 

the moment/load interaction diagrams show similar trends, the only variation being the 

decrease in the significance of the chord in the failure mechanism as the angle 0 

increases. 
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The definition of overlap which is widely used in the design of traditional RHS 
joints is meaningless for bird beak joints. Bird beak joint would be best described by 
the eccentricity (either relative or absolute) of the brace members. 

The lozenging of the chord, which has been seen to be a weakness of other bird 

beak joint configurations, is not present as there is no cross loading of the chord in the 
K joints studied in this Chapter. This has enabled the bird beak K joint to develop the 

advantages of the diamond configuration of the chord and to be substantially stronger 

than similar traditional RHS K joints. 

7.13.8 Design information 

Examination of Figure 7.27 shows that the plastic collapse of the chord will be 

the limiting factor for the joints where 05 45° when the axial force in the chord and the 

moment due to the eccentricity are calculated by 

> 
2F, cose + 

12eFcose 
Eqn 7.12 

Aofy, o 2 Zofy, o 

where 
Ao is the area of the chord 
Fl is the axial load applied the brace 

fy, o if yield stress of the chord 

e is the eccentricity of the joint 

Zo is the elastic modulus of the chord 
0 is the angle between the brace and the chord members 

For the joints where the plastic collapse of the chord is not critical, limiting the 

axial force in the brace to 

Fy = 0.9A, fy, l Eqn 7 13 

will give a conservative estimate of the joint capacity, for the parameters of bo/to = 
23.8, ß=0.6, when the joint is arranged so that the corners of the brace members 

intersect on the chord and angle between the chord and the brace is 30 <6< 60. 
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7.14 The principal differences between the traditional RHS K joints 

and the bird beak K joints 

The principal difference between the traditional and the bird beak overlapped K 

joints studied in this Chapter, is the manner in which failure occurs. The dominating 

factor of the failure mechanism in the traditional RHS K joints was the rotation of the 

joint due to the lack of stiffness of the top face of the chord in resisting the axial loads 

applied to the brace members. The tension member was pulled out and the 

compression member was pushed into the top face of the chord causing the joint to 

rotate. For low angles of 0 (0 < 450) and in load cases 1&4, this caused a weakness in 

the top face of the chord, which being loaded in compression failed at relatively low 

joint capacity. For load cases 2&3, the chord was loaded in tension, and the weakness 

caused by rotation of the joint in the top face of the chord did not produce failure. The 

rotation of the joint continued until the joint was badly deformed and failure occurred 

due to the widespread plasticification of the joint. For larger angles of 9 (i. e. 9> 450), 

the rotation of the joint caused a weakness in the brace members which led to joint 

failure. For load cases 1&3 the rotation caused a weakness in the compression brace, 

which led to joint failure. In load cases 2&4 the rotation caused a weakness in both 

the brace members leading to a joint failure at slightly higher joint capacity than load 

cases 1&3. 

In the bird beak joints, the stiffness of the corner of the chord on which the joint 

is formed prevented this rotation, and permitted the brace members to resist the 

moment caused by the eccentricity. The individual failure mechanisms are difficult to 

determine however, generally failure occurred due to the plasticification of the 

members at joint capacities much higher than those observed for the traditional RHS K 

joints. For the joints where 9= 300, plasticification occurs in the brace members and 

the part of the chord carrying the axial load which leads to joint failure. For the joints 

where 0= 60°, the failure of the joint occurs due to the plasticification to the brace 

members only. The axial load in the brace members at joint failure generally was 

greater than 90% of the squash load of the brace member. 

The sense of the reactions at the rollers on the brace are different with the two 

joint configurations, due to the rotation of the chord connecting wall in the traditional 

RHS joint. In the traditional RHS joints the reactions on the brace members act in the 

280 



same sense as the moment caused by the eccentricity of the joint whereas in the bird 
beak joint configuration the reactions on the brace members act to oppose the moment 

caused by the eccentricity of the joint. 
The joint capacities observed for the bird beak joint are generally higher and 

more consistent for the different load cases than for the traditional RHS joints for all 

angles of B. 

7.15 Conclusions on traditional and bird beak K joints 

At the beginning of this Chapter a question was posed as to whether there is 

any justification for an angle function in the CIDECT/Eurocode 3 design formula for 

the traditional RHS overlapped K joint. This Chapter has shown conclusively that the 

joint capacity varied considerably with the brace angle 0 and load/boundary conditions. 

By taking the lower bound of these results there is no need to introduce an angle 

function in the design formula. For the models analysed, the CIDECT/Eurocode 3 

design formula estimated with reasonable accuracy (with up to a 4.2% overestimate) 

the lowest joint capacity produced by the different load and boundary conditions for a 

given brace angle. 

Failure usually occurred when one of faces of the brace or chord, (depending on 
the brace angle 6, ) deformed reducing that member's moment capacity, particularly if 

that member was loaded in compression. It was also shown that the joint rotated under 

load, the brace members did not contribute to resisting the moment caused by the 

eccentricity. 

The overlapped bird beak K joints, where the joint is formed on the corner of 

the RHS section utilised the stiffness of the corners to great effect. There was very little 

deformation and no rotation of the joint as it was loaded. The brace members 

contributed to resisting the moment caused by the eccentricity until the maximum joint 

capacity was achieved. The combination of these two effects allowed the overlapped 

bird beak K joints to achieve much higher joint capacities (up to 30% higher) than 

similar traditional overlapped K joints, (i. e. with the same RI-IS sections, brace angle 

and eccentricity). Failure occurred when either the brace or chord member approached 

their plastic capacity for combined moment and axial load. 
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8. 

Bird Beak K joints with a Purlin Load 

8.1 Introduction 

If bird beak K -joints are to be used in a truss framework it is inevitable that 

purlin loads will occur either at the joint or between the joints in some cases, as the 

load is transferred to the truss, shown in Figure 8.1. In this Chapter a study is made of 

the effects of applying these purlin loads to bird beak K joints. The nature of this 

Chapter is more of a preliminary investigation rather than a comprehensive study of the 

effects of purlin loads as there are a large number of parameters that can be varied in 

the boundary and load conditions alone. 

The model chosen to analyse the effects of the purlin loads is the bird beak 

model for 0= 450 examined in the previous Chapter. This model was chosen because it 

was potentially the most critical of all the models analysed in Chapter 7, although it is 

recognised that any of the other joints may have a failure mode which could be more 

critical when a purlin load is applied. 

bF cF 

Figure 8.1 An example of a truss loaded with many purlin loads 

8.1.1 The axial load in the chord members 

From the example truss shown in Figure 8.1 it can be seen that axial loads in 

the chord members are inevitable when purlin loads are applied to the truss 

arrangement. In this Chapter the effects of the purlin load itself on the joint capacity is 

studied followed by the reduction in the joint capacity when axial loads are considered 

in the chord. 
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For overlapped K joints, Eurocode 3 and CIDECT recommendations do not 
make an allowance for the axial load in the chord reducing the joint capacity, i. e. k� or 
f(n) = 1, as the load in the brace members is considered to be transferred directly 

between the brace members through the overlapping part of the joint. In the case of 

through loading of the chord (a K joint with a purlin load applied to the opposite side 

of the chord), CIDECT (Packer et al 1992) recommends that if the cross loading is 

significant, then the joint should be checked as an X joint with equivalent members 

sizes. In which case the axial loading of the chord is taken into account for this 

particular load case. No similar reference can be found in EC3. 

The validity of this method of assessing the joint capacity of an overlapped bird 

beak K joint with a purlin load, with and without an axial load in the chord will be 

studied and appropriate design recommendations made. 

8.2 Method of loading used 

The effects of the purlin load will be analysed for the four different boundary 

and load conditions used in Chapter 7, with tension or compression purlin loads 

applied to the K joint. The total loading on the joint is, however balanced, although 

unequal loads will have to be applied to the braces to achieve this. 

F FSin45-xF 
Sin 45 

IxF 

FSin45-xF F 
Sin 45 

+xF 

COMPRESSION 
FSin45-xF F 

Sin 45 

2 

IxF 

F FSin45-xF 
Sin 45 

IxF 

FSin45-xF F 
Sin 45 

4 

IxF 

F FSin45-xF 
Sin 45 

4 

IXF 

TENSION 
FF Sin 45 - xF 

Sin 45 

2 

+xF 

F Son 45 - xF F 
Sin 45 

3 

1 

xF 

Figure 8.2 The eight combinations of load and boundary conditions considered 
(e! = 92 = 45°) 
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The load applied to the purlin is a fixed proportion (x) of the load applied to the braces 

in the manner shown in Figure 8.2 (Compression is considered +ve and Tension -ve). 
The failure load of the joint will be considered as the value of F, when the deflection of 

either brace is 3% bo. During the investigation the size of the proportion of the load 

applied to the purlin will be varied (-0.4 <x<0.4) to examine the effects on the joint 

capacity and failure mechanism. It is appreciated that a purlin load of 0.4 of the squash 

load of the brace is very high, and a truss design is unlikely to have such high purlin 

loads, although possible at a support in a continuous girder. 

8.3 Initial investigations 

Loading the K joint with a purlin load is similar to the X joints studied earlier, 

in that the chord is subjected to a load that will cause lozenging. An initial 

investigation was carried out to investigate the effect of the length of the chord and the 

restraint offered by the member carrying the purlin load on the joint capacity. 

8.3.1 The method of supporting the purlin load 

The restraint offered by the member supporting the purlin load is likely to affect 

the joint capacity as it will effect the lozenging of the chord. Under certain 

circumstances it could even be the limiting factor on the strength of the joint 

considered. In this initial investigation three different forms of supporting the purlin 

load were considered as shown in Figure 8.3. 

End 
Elevation 

Side 
Elevation 

T Joint Purlin Plate T Bar 

Figure 8.3 Three dy erent forms of supporting the purlin load 
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8.3.1.1 The T joint 
The T joint arrangement offers the chord the maximum restraint against 

lozenging and distributes the purlin load over a wide area of the chord making local 

failure of the chord wall less likely. The stiffness of a short RHS member also removes 

the possibility of buckling or tripping of the member (when due to the deformation of 

the chord, the action and reaction forces on the member become out of line causing a 

moment that leads to premature failure). 

Despite these advantages, this method was discounted without any models 
being tested for the following reasons: 
" the difficulty in attaching the member carrying the purlin load. 

" the extra expense of fabricating the joint was thought to be unjustifiable. 

" the advantages of this method are only apparent when very high purlin loads are 

considered, which would be in excess of the normal loads carried by a truss 

arrangement with several loading points. One possible exception to this is a truss 

where a single load is applied at the mid point; however, this is a special case which 

will be discussed later. 

8.3.1.2 The purlin plate 
This is a very simple arrangement where a plate is cut to fit the chord profile 

and welded into position. The member carrying the purlin loads can easily be fastened 

to the plate by welding or bolting. 

The restraint offered by the plate in preventing the lozenging of the chord is 

likely to affect the joint capacity. Local failure of the chord wall is likely when large 

purlin loads are applied and there is a possibility of the plate tripping when a 

compressive load is applied to the joint. 

8.3.1.3 The T bar 

In this arrangement a length of T bar is welded to the lower corner of the chord 

to support the purlin loads. The ends of the bar have been tapered to avoid stress 

concentrations, which may cause local failure. The member carrying the purlin loads 

may be bolted to the T bar although the number of bolts that can be used is restricted. 

No restraint is offered to the chord in this method and therefore the thickness of the 

plate will not affect the strength of the joint. There is a possibility of the T bar tripping 

when a compressive load is applied to the joint. 
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8.3.2 Applying a compressive purlin load 

To avoid the possibility of the purlin plate and the T bar tripping, a restraint 

was applied to the purlin plate/T bar to ensure that it remained vertical in the finite 

element model. This restraint is justified by the presence of the purlin or side rail in a 

truss structure that would act to restrain this tripping behaviour. The purlin or side rail 

itself is prevented from moving bodily in a lateral direction by the presence of tie rods 
fitted at intervals along the member in a similar manner to that shown in Figure 8.4. 

P, iriin nr. Cirh Rail 
Purlin Load 

Braces 

Figure 8.4 The restraint offered by the member carrying the purlin load 

8.3.3 The results of the initial investigation 

The results of ten different models are presented in Tables 8.1,8.2 & 8.3 to 

investigate the effect of the different methods of carrying the purlin load. Table 8.1 and 

Table 8.2 shows the results when the purlin is load by 0.1559F and 0.3118F in tension 

respectively. The increase in thickness of the purlin plate does not significantly affect 

the joint capacity, although the joint capacity is significantly reduced when the T bar is 

considered. This reduction in joint capacity is attributed to the deformation caused by 

the T bar on the chord. 

Examination of the joint capacities shown Table 8.3, when the joints are loaded 

in compression by a purlin force 0.4F, show similar trends as when the joints are 

loaded in tension. Increasing the thickness of the purlin plate causes a small increase 

the joint capacity whilst loading the joint through the T bar arrangement significantly 

reduces a joint capacity. 
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Examination of the von Mises contoured stress plots for the K joints with a 

purlin, show considerable yielding of the corners of the chord suggesting the formation 

of yield lines in the same manner as the T and X joints studied previously. Two 

different chord lengths are examined to discover what effect chord length has on the 

joint capacity. Table 8.3 shows that there is only a marginal difference between the 

joint capacities when different chord lengths are considered and that further variation 

of the chord length were not considered necessary as the increase in chord length where 

a difference may be found would be unrealistic in a truss structure. 

Model Tension F,,, I/ Fs( 1 Load kN 

2BK45P63 0.9657 855.5 
6.3 mm 

0.1559 F 

2BK45P10 0.9705 859.8 
10.0 mm 

N 

0.1559 F 

2BK45T 

0.1559 F 

0.9388 831.7 

Table 8.1 Purlin loaded in tension by 0.1559P (Load case 1) 

Model Tension F, I/ Fs, 1 Load kN 

4BK45P63 0.7720 683.9 
63 nom 

0.3118 F 

4BK45P10 w 0.7829 693.6 
10.0r»n, 

0.3118 F 

4BK45T 

0.31181- 

0.6877 609.2 

Table 8.2 Purlin loaded in tension by 0.3118P (Load case 1) 
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Model Compression F,,, I / Fs,,, 1 Load kN 
4BK45P63C 

0.7528 666.9 kN 
Chord length 6.3 mm 

1076 mm 0.4 F 

4BK45PC P 

0.7960 705.2 kN 
Chord length O.., 

1076 mm 0.4 F 
4BK45PLC 

0.7973 706.3 kN 
Chord length _o onini 

1876 mm I 0.4 r 

4BK45T 0.6377 564.9 kN 

OAF 

Table 8.3 Purlin loaded in compression by 0.4 P (Load case 1) 

8.3.4 Conclusions of the initial investigation when loading the chord with a 

purlin load 

In deciding which arrangement should be used to apply the purlin load to the 

chord, the following points were considered: 

" the fabrication costs of the T joint arrangement is unlikely to outweigh the benefits 

of the extra strength, therefore this arrangement is unlikely to be used in a practical 

situation. 

" the arrangement where the T bar is welded to the bottom of the chord has proved to 

be the weakest method of supporting the purlin load in all analyses carried out in 

the initial investigation. 

" the purlin plate, which is almost as simple as the T bar to fit, is appreciably 

stronger and is considered to be the more practical arrangement of transferring the 

purlin load to the chord. Of the two thicknesses of purlin plate analysed, the thicker 

10mm plate, is slightly stronger in compression than the 6.3mm plate. The costs of 

fabricating and fitting the thicker plate is minimal and therefore it is considered that 

it would be cost effective to use the thicker plate. 

All the models analysed in the remainder of this Chapter, all use a purlin plate 

10mm thick, unless otherwise stated. 
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8.3.5 Determining the failure capacity of purlin loaded K joints 

The failure capacity of the joint is defined as the point when the deflection of 

either brace exceeds 3% bo and the actual joint capacity is the value F, defined in 

Figure 8.2. From the load/deflection curves shown this provides a conservative 

estimation of the joint capacity. Although a line representing 3%b0 is shown on the 

load/deflection curves, the actual value is calculated by linear interpolation rather than 

relying on the "curve smoothing operation" performed in Excel 5a (Microsoft 1993). 

Tension Compression 
1 Y 11" 

0.8 

0.6 

0.4 !. m 
d 

0.2 -- ----- Continous Bra 
B,, c. e -o- Discontinuous 

-+ Nrlin 
0 

0 2468 10 12 

Deflection mm 

4BK45P10 I 

0.8 

0.6 

0.4 n. o nl 

0.2 Continous Rrlcc 

o- Discontinuous Urnce 
Purlin 

0 
0 2468 10 12 

Deflection mm 

0.8 

0.6 

0.4 

0.2 

0 

0.8 

0.6 

0.4 

0.2 

0 

u 
0.8 

0.6 

0.4 

0.2 

0 

4BK4.5111, C63 

Conlinous Brice 

-o- Disc ontinuous Brace 

-PP rlin 

2468 10 12 

Deflection min 

024G8 10 12 

Uctluaion mm 

0.8 

0.6 

0.4 

0.2 

0 

02468 10 12 02468 10 12 

Deflection film 
Deflection mm 

Figure 8.5 Examples of the load/deflection curves for purlin loaded K joints (Load case 1) 

The deflection measured is the displacement observed at the ends of the member being 

considered. 
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8.4 The results of the analyses of the purlin loaded K joints 

The results of the analyses for the bird beak joints where 0= 45° for all of the 
load cases 1&4 with purlin loads varying from 0.4 tension to 0.4 compression are 
given in Table 8.4 and are shown graphically in Figure 8.6. Details of the method and 
size of the loading applied to each joint are given in Figure 8.2. 

Load Case 1234 
Purlin load Fy kN Ft kN Fi kN Fi kN 

4BK45PLT-1 4BK45PLT-2 4BK45PLT-3 4BK45PLT-4 
-0.4 F 0.8123 719.6 0.9267 821.0 0.8940 792.0 0.8493 752.4 

2BK45PLT-1 2BK45PLT-2 2BK45PLT-3 2BK45PLT-4 

-0.2 F 0.9463 838.3 0.9762 864.8 0.9594 849.9 1.0014 887.1 
BK45W-1 BK45W-2 BK45W-3 BK45W-4 

0.0 F* 0.8947 792.6 0.9614 851.7 0.9314 825.1 0.9676 857.2 
2BK45PLC-1 2BK45PLC-2 2BK45PLC-3 2BK45PLC-4 

0.2 F 0.9705 859.7 0.9490 840.7 0.9807 868.8 0.9427 835.2 
3BK45PLC-1 3BK45PLC-2 3BK45PLC-3 3BK45PLC-4 

0.3 F 0.9257 820.1 0.8728 773.2 0.9158 811.3 0.8917 789.9 
4BK45PLC-1 4BK45PLC-2 4BK45PLC-3 4BK45PLC-4 

0.4 F 0.7973 706.4 T775567 669.4 0.7807 691.7 0.7676 680.0 
* Purlin Plate not fitted on this series of models 

Table 8.4 The results of the analyses for the purlin loaded K joints 

Examination of Figure 8.6 reveals some interesting features. When the purlin is 

loaded in tension, load cases 2&4 are stronger than load cases 1&3. This tendency is 

reversed, however, when the purlin is loaded in compression, load cases 1&3 have a 
higher joint capacity than load cases 2&4. There also appears to be a decrease in 

strength when a purlin load is zero, this effect being most distinct for load cases 1&3, 

which appears illogical. 

These trends can be explained by considering the method of loading and the 
definition of the failure load. The decrease in the joint capacity when there is no purlin 

load was considered first. It is possible that the purlin plate, which is not physically 

present for the joints with a zero purlin load, strengthens the joint, which causes the 

increase in the joint capacity. However taking load case 1 as an example, an analysis 

was run where the purlin plate was physically present, but no purlin load was applied. 

The joint capacity increased from 792.6 kN (0.8947 brace squash load Fi, sq) to 803.9 
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kN (0.9075 brace squash load Fi, sq) which although this indicates a small increase in 

strength does not account for the differences shown in Figure 8.6 

1.00 \F B 
A tiF / 

LC 0.95 CD 

0.90 ý 

Load Case I, purlin plate } 

0.85 present but no purlin load 
applied 

0.80 Load Case I 

i- Load Case 2 
Load Case 3 

0.75 
Load Case 4 

0 70 . 
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 

Tension Purlin load Fr / Fs,,, 1 Compression 

Figure 8.6 The results of the analyses for the purlin loaded K joints 

Secondly, if the method of loading for the joints with a purlin load is 

considered, it is noted that the loading in one brace is much higher than the other and 

the axial force in the chord is reduced 

Axial force in the chord, no purlin load =2F Cos 0 

Axial force in the chord, with a purlin load =F Cosa 
SinO -X+1 

C 

sine 

However, the larger axial force in the brace defines the joint capacity, even though the 

axial force in the other members is reduced. The effect of this is to allow a larger axial 

load to be achieved in the brace with the higher loading ratio, which explains why an 

increase in the joint capacity appears to be achieved when a purlin load is applied. 

This can also be seen in the moment load diagrams, shown in Figure 8.7 and 

Figure 8.9 where the purlin is loaded by 0.2F in tension and compression respectively, 

where the brace with the higher loading ratio exceeds the plastic capacity before the 

chord. Compared to the moment load diagram shown in Figure 8.8, where there is no 

purlin applied to the chord, the chord is clearly seen to reach the plastic capacity before 

either of the brace members. 
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Figure 8.7 Moment/load interaction diagrams for the purlin bird beak joint 0= 450 x=0.2 
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Figure 8.8 Moment load interaction diagrams for the bird beak joint 0= 450 no purlin plate 
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Figure 8.9 Moment/load interaction diagrams for the purlin bird beak joint 9= 450 x=0.2 
Compression 

There are two possible explanations as to why the load cases 2&4 have a higher joint 

capacity when the purlin plate is loaded in tension than load cases 1&3. (This 

tendency is reversed when the purlin plate is loaded in compression. ) Either there is a 

"hydrostatic effect" on the stresses present in the chord, i. e. when chord has both 

compression stresses axially and transversely, the observed stress in the chord may 

raise above the yield stress or it is again due to the nature of the loading on the joint. 

Considering the "hydrostatic stress" effect on the chord, it is true that the 

highest joint capacities are observed when both the chord and the purlin plate are 

loaded in the same sense, tension or compression. However, Figure 8.7 and Figure 8.9, 

which show the moment load interaction curves for K joints loaded with a purlin load, 

indicate that the failure occurs primarily in the brace loaded with the full force F. In 

some of the analyses the chord does not even reach the plastic capacity, therefore this 

form of failure is unlikely to affect the joint capacity. Examination of some sample 

stress plots shown in Figure 8.10 show that yielding is confined to the vicinity of the 

purlin plate and the brace. This is best shown in the von Mises stress plot where the 

material that has yielded is shown in red (stress is greater than 420 N/mm'). 
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Joints loaded in Compression 0= 450 

2BK45PLC-1 Shear Stress plot 2BK45PLC-1 von Mises Stress plot 
Joint loaded in Tension 0= 450 

2BK45PLT-2 Transverse stress plot 
-- 

"3.5K"0ý 

-¢. ýYE-Y[ 

ý: 

2BK45PLT-2 Shear stress plot 
2BK45PLT-2 von Mises stress plot 

Figure 8.10 Examples of the contoured stress plots when a purlin load is applied to the 

chord 
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The axial and transverse stress plots show very little material in the chord where the 

stress has risen above the yield stress as would be expected if this "hydrostatic stress" 

effect was taking place. It is therefore unlikely that any form of "hydrostatic stress" 

effect is taking place 

It was noted in Chapter 7 that the highest joint capacities were achieved when 
the through brace was loaded in tension. With reference to Figure 8.2 and Figure 8.6 

where the 8 results of the K joints with a purlin load of 0.2 (tension & compression) 
are divided into four groups (A to D) according to the loading condition. Examining 

Figure 8.6 it can be seen that: 

" the results when the purlin plate are loaded in tension (and the larger axial force is 

tensile) A&C, are significantly higher as a group, than when the purlin plate is 

loaded in compression (and the large axial force is compressive) B&D. 

" the higher joint capacities are achieved when the larger axial force is applied to the 

continuous brace, tensile or compressive A&B, than when the larger force is 

applied to the discontinuous brace C&D. 

Although it may be stating the obvious, it is therefore concluded that: 

"a brace member is stronger when loaded in tension than compression 

" the continuous brace is stronger than the discontinuous brace. 

It may be further concluded that for the K joints and all the load cases 

considered that the dominant effect is the extra strength of the continuous brace on the 

joint capacity and the effect of the member being loaded in tension is less significant. 

This can be seen by comparing the differences of the mean values of groups A&C 

(change member loaded by largest axial force) and A&B (change direction of 

loading) in that 

(A-C)>(A-B) 
The same relationship also holds for CD and BD. 

8.4.1 Design information 

In Chapter 7 it was concluded that the plastic collapse of the chord was critical 

in most of the joints when no purlin load was applied to the chord. When a purlin load 

is applied, the axial load in the chord is reduced and the plastic collapse of the chord 

is less likely to be critical. Examination of Figure 8.6 shows that for the a purlin load 
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in the range of -0.25 < Fp < 0.25 of the brace squash load Fi, sq, the joint strength can 
still be calculated by 

F,,, 1 =0.9A1fy, 1 Eqn 8.1 

and in the unlikely case that the purlin load is higher, -0.4 < Fp < -0.25 or 0.25 < Fp < 
0.4 then the joint strength may be defined by 

F,,, t = 0.75A1 fy, 1 Eqn 8.2 

The axial load and bending moment in the chord should still be checked in all cases to 

ensure that the elastic capacity of the chord is not exceeded. 

8.5 A special case where only one purlin load is applies to a truss 

8.5.1 Introduction 

In Section 8.3.1, when the methods of supporting the purlin load were 
discussed, an arrangement called the T joint, shown in Figure 8.3, was discounted as 
too costly and complicated, as the majority of purlin loads are fairly low in 

comparison to the chord capacity. However, if the purlin load is only applied at the 

centre of the truss arrangement, as shown in Figure 8.11, then the extra cost of 

providing aT joint arrangement to support the purlin load could be justified as the 

purlin load would be significantly larger and only requires one support per truss. 

I ±P=xF Wherex=1.41 
Figure 8.11 Example of a truss arrangement where the purlin load maybe very high 

The difference in the loading method of this particular type of joint was felt to 

be worth investigating as the cross loading of the chord is significant and this is the 

form of loading which CIDECT considers should be designed as aX joint, where the 

effects of the axial load and bending moment acting in the chord should be 

considered. Constructing the arrangement to carry the purlin load in the form of aT 
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joint then has the added advantage that any approximation made by assuming the joint 

is aX joint is more likely to valid. 
This section will examine the variation of joint capacity of a diamond bird 

beak K joint with an axial chord load, where the cross loading of the chord is 

significant to establish that designing the K joint as aX joint is valid and that the 

decrease in the joint capacity as the chord load increases is accurately predicted. 

8.5.2 Method of loading a diamond bird beak K joint where there is an axial 
chord load and the cross loading of the chord is significant 

The four methods of loading the models analysed are shown in Figure 8.12, 

where the value F defines the joint capacity. The chord is axially loaded with no 

restraint on the brace members allowing them to move freely according to the 

deformation of the chord. When the chord load is attained, the roller restraints and 

load are applied to the brace members. 

Braces loaded in 
Tension 

Braces loaded in 
Compression 

Chord loaded in Compression 
FF 

4 

xFo, sq xFoýs 

1.41F 
F 

1.41 F 

Chord loaded in Tension 
FF 

' F°'sq xFo-s 

1.41F 
FF 

xFo, sq xFo, sq 
r1.41F 

Figure 8.12 Four different erent methods of loading diamond bird beak K joint with a substantial 
cross loading of the chord and an axial chord load 
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8.5.3 The results of the analyses for diamond bird beak K joints where there is 
an axial chord load and the cross loading of the chord is significant 

The results of the analyses for diamond bird beak K joints where there is an 
axial chord load and the cross loading of the chord is significant are given in Table 8.5 

and shown graphically in Figure 8.13. 

Model Method of 
loading the chord 

Method of loading 
the brace members 

Joint Capacity 

Fo Fl S kN 
14BK45T 0 Ten. 0.5227 463.1 
14BK45C 0 Comp. 0.3468 307.2 

2C-14BK45C 0.2 Comp Comp. 0.3443 305.0 
4C-14BK45C 0.4 Comp Comp. 0.3378 299.3 
6C-14BK45C 0.6 Comp Comp. 0.3204 283.8 
8C-14BK45C 0.8 Comp Comp. 0.2847 254.3 
8C-14BK45T 0.8 Comp Ten. 0.2847 288.2 
8T-14BK45C 0.8 Ten Comp. 0.3253 252.2 
8T-14BK45T 0.8 Ten Ten. 0.5376 476.3 
9C-14BK45C 0.9 Comp Comp. 0.228.6 228.6 

Table 8.5 The joint capacities of the K joints where there is an axial chord load and the 
cross loading of the chord is significant 

The expected decrease in the joint capacity due to the axial force in the chord 
is represented in this figure by two functions given in the CIDECT design 

recommendations. (Eurocode 3 Annex K uses the same formula, although the signs 

are changed to allow for the fact that in Eurocode 3 compression is +ve. ) The first for 

CHS joints (Wardenier 1991) 

f(n')=1+0.3n'-0.3n'2 Eqn 8.3 

where f(n') =1 when n' >_ 0 (tension) 

and the second for RHS joints (Packer et al 1992) 

f(n) = 1.3+=4 n Eqn 8.4 
0 

where f(n) S1 
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Eqn 8.3 is considered as it was used by Ishida et al (1993) to describe the 
decrease in the joint capacity of a gap bird beak K joint with an axial loading on the 

chord. 

450 

f(n) 1.3+0.4n/ß ! 400 

350 

o t 

250 

200 

0 

150 
f(nj =1+0.3n'- 0.3nß 

100 
A Braces loaded in Compression 

50 o Braces loaded in Tension 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 
Compression Chord stress level (n) F(/FQ, sq Tension 

Figure 8.13 The variation in joint capacity of the Kjoints where there is an axial chord 
load and the cross loading of the chord is significant 

8.5.4 The discussion of the results for diamond bird beak K joints where there 

is an axial chord load and the cross loading of the chord is significant 

The capacity of joint 14BK45C (=307.2kN) has been used to define the 

strength of the joint when there is no axial load applied to the chord so that an 

accurate base level can be established to compare the decrease in the joint capacity as 

the axial load is applied. 

Examining the results shown in Figure 8.13 it can be seen that the lowest joint 

capacities are obtained when the braces are loaded compression, regardless of whether 

the chord is loaded in tension or compression. This shows an anomaly in that the 

functions for the decrease in joint capacity when an axial load is applied to the chord 

predict that there should be no decrease in the joint capacity if the chord is loaded in 

tension. Regrettably when this research was carried out, loading the chord in tension 

was not thought to be critical and only a few joints were tested under these conditions. 

On consideration this should be expected as an overlapped K joint is not affected by 

the sense of the chord load in the same manner as a gap K joint in that in the gap joint 
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the load from the brace members has to be transferred through the chord and is 

therefore sensitive to the sense in which the chord is loaded. In the overlapped joint 

the 

load from the brace members is transferred directly between the brace members and 
the sense of loading in the chord is not important and that the joint capacity is only 

going to be affected by the stress level present in the chord. 

When the braces are loaded in tension higher joint capacities are achieved and 
therefore are not critical. It is, however, interesting to note that the joint capacities 

now display the type of behaviour that would be expected by examination of the 

function given in Eqns 8.3 & 8.4, i. e. the lowest capacity is achieved when the chord 

is loaded in compression and the highest when the chord is loaded in tension. 

When the chord is loaded in compression for the overlapped bird beak K joint, 

the function f(n) given in the RHS design guide (Packer et at 1992) predicts the 

decrease in the joint capacity with reasonable accuracy, whilst the function for f(n) 

given in the CHS design (Wardenier et al 1991) overestimates the decrease in the joint 

capacity significantly. 
It was stated in the beginning of this section that this form of joint and loading 

condition would in fact be designed as X joint with equivalent member sizes. Using 

Eqn 4.7, (shown here as Eqn 8.5) for the joint capacity of a diamond bird beak X joint 

(where the chord length is such that the asymptotic strength has been achieved) the 

expected joint capacity can be calculated. 
0.4 2.6 

ft2 
(bo l 

Eqn 8.5 
°'' 1-0.6ß y to 

to 

Considering two chord width ratios of 0=0.6 and 0.8 (representing the chord 

width ratio of the braces and an average of the chord width ratio of the T joint holding 

the purlin load and the braces) the joint capacities of the equivalent X joint are 240.6 

and 296.2 kN. It is likely that a designer would chose the lower value and indeed 

using this value a safe joint capacity (i. e. underestimated) would be achieved in all the 

loading conditions examined. If the average value for the chord width ratio is chosen, 

in this case a representative value is obtained for the joint capacity when no load is 

applied to the chord and safe estimate is made when a compressive load is applied to 
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the chord, (although there is no margin for error). The joint capacity would however, 

be overestimated should a tensile load be applied to the chord. 

8.5.5 Conclusions 

From this short examination of the behaviour of an overlapped bird beak K 

joint where there is a significant cross loading and an axial load applied to the chord 

has revealed that: 

" the lowest joint capacities are obtained when the brace members are loaded in 

compression, regardless of whether the chord is loaded in tension and compression. 

" when the chord is loaded in compression, the function f(n) given by the CIDECT 

RHS design guide gives an accurate representation of the variation of the joint 

strength with axial load. 

" when the brace members are loaded in tension, the joint capacities vary in a similar 

manner to that predicted by the functions in the design guides, but these joint 

capacities are not critical 
" contrary to the advice given in the design guides, that there is a decrease in the joint 

capacity when the chord is loaded in tension and the braces in compression 

8.6 Summary 

A preliminary study has been made in this Chapter of the behaviour of 

overlapped bird beak K joints where 9= 450 and purlin load was applied to the chord. 

During the course of the study different methods of securing the purlin load to the 

chord were investigated and the effect that they had on the joint capacity. The 

arrangement referred to as the T bar provided no support against deformation to the 

chord and the lower joint capacities were observed for this arrangement. The purlin 

plate, whilst being relatively easy to fit did provide a measure of support against the 

deformation of the chord and consequently a higher joint capacity was observed. 

Examining the joint capacities when a purlin load was applied to the chord 

showed that there were significant differences in the strength of the joint when the 

load and boundary conditions and the sense of loading on the purlin plate were 

changed. These differences were attributed to the facts that the continuous brace is 

stronger than the discontinuous brace and that the brace member is stronger in tension 

the compression. The strength of the joint could be determined by 
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F�� =0.9A1fy, 1 

where the load on the purlin plate Fp was in the range of -0.25 < Fp < 0.25 of the brace 

squash load F1, sy. When a higher purlin load was applied to the chord such that Fp was 
in the range of -0.4 < Fp < -0.25 or 0.25 < Fp < 0.4 then the joint strength could be 

determined by 

F,,, 1 = 0.75A1 fy, 1 

When an axial load was applied to the chord in these joints then the joint 

capacity was determined by the plastic failure of the chord. 
A special case was then examined where there was a significant cross loading 

of the chord in the presence of an axial load in the chord and CIDECT recommends 

that overlapped K joints are designed as X joints with an equivalent sized members. 

This was found to provide a safe solution when the chord width ratio was assumed to 

that of the braces however, when an average chord width ratio between the braces and 
the T joint carrying the chord load was considered a better estimate of the joint 

capacity in this case was found although it was not a safe estimate in all loading cases. 
The decrease in the predicted joint capacity as the chord load increased was 

compared against two functions published by CIDECT to predict the decrease in the 

joint capacity. The function for f(n) published in the RHS design guide (Packer et al 

1992) gave a better representation of the variation of the joint capacity as the chord 

was loaded, but an anomaly where the braces loaded in compression and the chord 
loaded in tension was shown to exist. 
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9. 

Conclusions and Recommendations for Further Work 

9.1 Introduction 

The principal aim of the work presented in this thesis was to increase the 

understanding of behaviour of the bird beak joints and to expand the parameter range 

of joints that have been studied. This has been achieved by examining a selection of 
bird beak X, T and overlapped K joints and by making comparisons to similar 
traditional RHS and CHS joints. The study of the behaviour of bird beak joints using 
finite element methods has revealed many interesting features and characteristics of 
bird beak joints. Controlled parameter variation and changing boundary conditions 
have uncovered forms of behaviour that would have been difficult and expensive to 
determine from laboratory experimental work. While it has not been possible to 
formulate a yield line failure clearly, the database of finite element results and the 

analysis carried out for the X joints will provide a foundation for such an approach to 
be tackled in the future. 

The main conclusions are summarised in this Chapter, giving joint strength 

equations where appropriate. 

9.2 Diamond and square bird beak X joints 

The strength of bird beak X joints was found to vary significantly with chord 

length, boundary conditions at the end of the chord, chord width ratio ß and chord 

wall slenderness ba/to etc. all which have been investigated. When the ends of the 

chord are completely free of any boundary conditions, the effect of chord length can 

be divided into three categories: 

" short chord length joints (a 5 10) where the joint capacity increased rapidly with 

length 

" medium length joints (10 Sa -5 40) where the capacity still increases with chord 
length, although at a significantly reduced rate to that observed in the short chord 
length joints 
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" long chord length joints (a >_ 40) where there was no variation in the joint capacity 

with chord length and this is referred to as the asymptotic joint capacity 

When the ends of the chord are held encastrd the same categories can be used to 

define the transition points, although the joint capacity now decreases with increasing 

chord length. 

The parametric study has shown the importance of the chord width ratio ß and 

the chord wall slenderness ratio bo/to in the evaluation of joint strength, the asymptotic 

mean joint capacity of the diamond bird beak X joint can be predicted by 

F 
2.6 

275 
fyo. 8 

t2 
bo o. a 

_ ý'_ 1-0.6ß 275 ° to 

for the range of parameters of 0.2 <ß50.9,9.4 <_ bo/to 5 35.3 and for the range of 

yield stress of 2755fy<_400 N/mm2. 

A full parametric study of the asymptotic square bird beak joint strength was 

not carried out. However, by comparing the results of the joints (studied in the 

investigation of the variation of joint capacity with chord length, where 0=0.6 and 

bo/to = 23.8), it is considered that the square bird beak X joint capacity is 

approximately 10% lower than that for the diamond bird beak X joints. 

In some circumstances, where there is a relatively slender brace wall (in 

comparison the chord wall slenderness) and low chord width ratio, the deformation of 

the chord caused the brace member to fail in shear, as the brace does not have the 

capacity to resist the deformation of the chord. Therefore the shear capacity of the 

brace may be a limiting factor on the strength of the joint and in all cases the joint 

capacity should not exceed 

4 bl t1 
fy 

-v 3 

9.2.1 Theoretical analysis of the X joints 

Limited localised yielding was observed along the comers of the chord section 

in the bird beak joints similar to that found when yield lines are assumed in a failure 

mechanism. However the failure mechanism is a great deal more complex and is 

thought to also include: 

9 in-plane yielding of the chord wall in the vicinity of the brace members 
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" twisting of the chord faces, although this is has little effect on the value of the 

collapse load 

" in-plane bending of the chord faces 
It has not been possible to derive an independent theoretical model where the 

collapse load could be simply estimated from the joint parameters. 

9.3 Diamond bird beak T joints 

Diamond bird beak T joints where 9= 900 were examined and compared to 

similar traditional RHS T joints. Joints with varying chord length ratio a were used to 

examine whether the mode of failure was a local joint failure or an overall chord 
bending failure or a combination of both. The method used to predict the joint 

capacity in a design procedure was then examined to determine the accuracy of 

calculating the strength of the joint. The traditional method of joint design was then 

compared to a new innovative interaction method which uses both the force acting on 

the brace and the moment acting in the chord to determine the strength of the joint. 

Generally the interaction method was found to be an improvement giving a better 

indication of the strength of the joint as the chord length was varied. 

9.3.1 T joints loaded with the effects of chord bending 

The manner in which the shorter chord length diamond bird beak T joints 

failed was found to be very similar to that of the diamond bird beak X joints in that 

yield lines can be assumed to form at the comers of the chord section and that there 

was considerable in-plane yielding in the vicinity of the brace. As the chord length 

increased so the failure became more progressively that of an overall chord bending 

failure associated with the maximum moment in the chord under the brace. The 

diamond bird beak T joints demonstrated an interesting phenomenon whereby the 

moment acting in the chord can exceed its plastic moment capacity at the assumed 

point of failure. This was particularly noticeable for the stockier sections studied. 
Although the plastic moment capacity of a square RHS section bending about 

its diagonal is less than that when bending about an axis perpendicular to any face, the 

diamond bird beak T joints were shown to be stronger than similar traditional RHS T 

joints for all the chord lengths considered. Using the analyses of joints where a=6, 

the strength of diamond bird beak T joints was empirically determined to be 
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bo 2 I0.5 F ,,, 1= 4 fyto 
to 

for the range of parameters 0.2 <0<0.6,9.4 < bo/to < 35.3, fy = 275 N/mm2. 

9.3.2 T joints loaded without the effects of chord bending 

To establish an interaction relationship between the branch axial load and 

chord bending moment it is necessary to establish the local joint capacity F,,,,, IOC in the 

absence of any chord bending moment. An improved method of removing the effects 

of chord bending was developed where the moment was applied to the chord in a 

series of incremental steps along the chord length. In the case of CHS T joints this was 

shown to produce a better representation of the local joint capacity where the failure 

was localised to the area around the brace and consistent results could be achieved 

with different chord lengths without altering the material properties of any part of the 

chord. The von Mises contoured stress plots for the diamond bird beak T joints 

showed that at failure the effected part of the chord was much less localised than the 

CHS T joints, but that the area of yielded material was relatively constant as the chord 

length was increased. 

When the effects of chord bending were removed from the diamond bird beak 

T joints, the joint capacity varied with chord length in a similar manner to the 

diamond bird beak X joints with similar boundary conditions at the end of the chord. 

The strength of the diamond bird beak T joint without the effects of chord 

bending can be determined by using 

b o Fß.,., 0=5.7fyto2 

for the range of parameters 0.2 <0<0.6,9.4 < bo/to < 35.3, fy = 275N/mm2. 

9.3.3 Interaction diagrams 

The plotted points in the interaction diagram produced for the diamond bird 

beak T joint displayed a wide spread in the results according to the slenderness of the 

chord and according to the chord width ratio. It was not possible to reduce the spread 
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in the results and a lower bound limit was used to predict the joint strength of the 

diamond bird beak T joint 

F'"' 
+ 

M'1, ° = 1.2 
F1.1. 

toc 
Mpv, 

o 

with the limits 

F., 1 and 
M 

°, o <1 
Fu, 1,10 MP. 

v. 0 

This produced a safe estimate of the joint capacity, although severely underestimating 

the strength of the stockier chord wall sections. 
The plotted points in the interaction diagram produced for the traditional RHS 

T joint displayed a spread in the results according the chord slenderness, but in a 

regular manner and it was possible to reduce the spread and achieve a good estimate 

of all the joint capacities by using 

F 10 
u. l 

b0 
+ 

M., 0 
10k. -. 

<1 
Fo, l, Ioc M 

p, V, 0 

This is in contrast with Yu 1995, where her results varied according to the chord 

width ratio J. This was found to be attributed to the different range of chord width 

ratios examined but otherwise the results were reasonably compatible. 

9.4 Traditional RHS overlapped K Joints 

Traditional RHS overlapped K joints were studied in detail to see whether an 

angle function should be included in the design formula published be CIDECT. 

Various load and boundary conditions were examined for different brace member 

inclinations (300 S05 60). Although the mode of failure and joint capacity varied 

with the different load and boundary conditions it was established that the branch 

angle did not have a significant influence on joint strength. The design formula 

published in the CIDECT design guide (Packer et al 1992) gave a good estimation of 

the joint capacity although it marginally overestimated the strength of the joints 

analysed. 
The moment/load curves produced showed that the shear reactions at the end 

of the braces were in the opposite sense to that expected, in that the moment produced 

by the reaction acted in the same sense as the moment caused by the eccentricity of the 
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joint. This was attributed to the rotation of the joint as it was loaded and subsequently 
deformed. 

9.5 Diamond bird beak K joints 

Similar overlapped bird beak K joints were studied (with the same absolute 

eccentricity values) and were found to be substantially stronger than traditional RHS 

overlapped K joints. The failure of the joints generally being attributed to 

plasticification of the chord or the brace when the moment/load capacity was 

achieved. It was determined that for the joints analysed the joint capacity could be 

determined by 

) 
2F cose + 

12eF core 
Aof 

y, o 2 Zo f y, o 

when the failure may occur in the chord and 
Fu. t = 0.9A1 fy, 1 

where the failure occurs in the brace for the parameter range of 300 5 0: 5 = 600, ß= 

0.6, bo/to = 23.8, to/t1= 1. 
Very little deformation occurred in the joints at failure due to the stiffness of 

the corners of the section on which the joint is formed. The reactions at the end of the 
braces, unlike the traditional RHS overlapped K joint, acted to oppose the moment 
caused by the eccentricity of the joint. 

One of the reasons why the bird beak K joint is so much stronger is that there 
is no cross loading of the chord to cause lozenging of the chord section. In the 

presence of a purlin load to the chord it was found that the strength of the joint was 

not diminished until a relatively large purlin load of 25% of the brace squash load was 

applied. When very large purlin loads were applied to the chord of between ±0.25 and 

±0.4 of the brace squash load then the joint strength was reduced to 

F., 1 = 0.75A, fy, 1 

A special case when the cross loading of the chord was very high and the CIDECT 

RHS design recommendations (Packer et al 1992) states that overlapped K joints 

should be designed as X joints with similar member sizes was considered. In this 

particular case the axial load (and bending moment) acting in the chord should then be 

taken into account and the joint strength reduced accordingly. The function published 
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in the CIDECT RHS design recommendations gave an accurate representation of the 

variation in the joint capacity as the load in the chord was varied although it failed to 

predict a decrease in the joint capacity when the braces were loaded in compression 

and the chord in tension. 

9.6 General advantages and disadvantages of bird beak joints 

The main advantage of the bird beak joints is that the joint is formed using the 

comers of the sections and therefore can utilise the stiffness of corners in transferring 

the load from one member to the other. 

The advantages of the bird beak X and T joint are considered to be: 

"a smother transfer of the brace axial force into the chord due to the alignment of the 

members in the diamond configuration 

" the brace, providing it is strong enough, acts to restrain any lozenging deformation 

in the chord in the immediate vicinity of the joint 

"a greater weld length than that for the traditional RHS joint 

The strength advantage of the bird beak K joints where there is no cross 

loading of the chord, utilises the stiffness of the corners to great effect and 

demonstrates that there can be large increase in the efficiency of a truss using bird 

beak joints. 

During the course of the work reported in this thesis some disadvantages have 

emerged such as: 

" the lower moment capacity of the diamond section configuration 

" the lack of stiffness of the diamond section when a cross loading is applied to the 

chord causing lozenging or crushing of the section 

" the variation of the joint capacity when there is a cross loading of the chord with 

chord length and the boundary conditions at the end of the chord. 

Despite these disadvantages it is felt that the bird beak joint configurations 

offer a more efficient joint arrangement, the use of which will increase as problems in 

the fabrication are overcome by increasing automation in the manufacturing process. 

9.7 Future investigation 

Bird beak joints are a relatively new form of joint configuration which have 

yet to achieve wide spread popularity. Very little research has been carried out besides 
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the work done in Japan together with this investigation. It has not been possible to 

cover all the aspects of joint behaviour in this work and there is a wide scope for 

future investigations that could include some of the following: 

" the parametric studies should be widened to include a greater range of variation, 
including 0, bo/to, a, the joint angle 9 and higher strength materials. 

" to examine further the reason for the wide scatter of the results in the interaction 

diagrams for the bird beak joints, particularly when compared to other forms of 
joint. (Very recent thoughts are that this may be associated with the variation in the 

shear resistance with length for the RHS section in the diamond configuration and 

that this should be examined) 

" to expand the work on K joints to allow for change in the parameters such as the 

eccentricity (which will in turn affect the gap or overlap of the joint), the chord 

width ratio ß and chord wall slenderness bo/to. 

" to investigate other forms of loading such as in-plane and out-of-plane bending 

using finite element methods to complement the work carried out in Japan, so that 

a greater depth of understanding of the failure can be achieved. 

An excellent data base of results has been obtained from the finite element 

investigations carried out in this work which should allow a more rigorous theoretical 

determination of the joint strength to be developed in future. 
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