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ABSTRACT

Using spatial patterns to infer biotic and abiotic processes underlying plant population
dynamics is an important technique in contemporary ecology, with particular utility
when investigating arid shrub population dynamics, for which experimental and
observational methodologies are rarely feasible. Using a novel one-class
classification technique, the locations of over 17,000 Spartocytisus supranubius
individuals were mapped from aerial imagery generating a spatially extensive (162

ha), yet accurate, dataset.

The recent rapid increase in studies using pattern—process inference has not been
accompanied by a rigorous assessment of the behaviour of these techniques, nor an
appraisal of their utility in addressing ecological research questions. The first part of
the thesis addresses these concerns, investigating whether current methodologies are
adequate to test hypotheses concerning spatial interactions. A literature review
reveals a preponderance of studies of small, little-replicated plots. The results of the
research raise concerns about the utility of spatial point pattern analyses as currently
applied in the literature. To avoid inaccurate description of fine-scale spatial
structures it is recommended that researchers increase plot replication. Furthermore,
studies of spatial structure and population dynamics should account for spatial
environmental gradients, whatever plot size is used. The second part of the thesis
presents a rigorous investigation, incorporating a priori inference and the application of
fine-scale spatial statistical and modelling techniques, of the biotic and abiotic
mechanisms underlying the spatial structure and population dynamics of S.
supranubius, a leguminous shrub species endemic to the Canary Islands. The spatial
structure of S. supranubius populations is consistent with the operation of clonal
reproduction and intra-specific competition. However, the results indicate that spatial
environmental heterogeneity (from small to broad scales), in particular topography,
can interact with biotic processes to generate quantitatively different S. supranubius
patterns in different locations. Future research into the spatial and temporal dynamics

of interactions between abiotic and biotic processes is recommended.
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CHAPTER 1:INTRODUCTION AND RESEARCH CONTEXT

1.1 GENERAL INTRODUCTION

Understanding the forces that generate spatial patterns in natural communities is one
of the main goals of ecology (Levin, 1992; Tuda, 2007). Observational and
experimental techniques provide some of the most direct ways to measure the
presence, strength and influence of biotic and abiotic processes on population spatial
structures. However, in some situations the observation and measurement of
processes is not feasible. For example, the slow and event-driven demographics of
arid shrubs typically operate over longer timescales than the duration of most
experimental and observational studies (Wiegand and Jeltsch, 2000). This thesis
focuses on an increasingly popular approach used to investigate the processes and

dynamics structuring plant populations: spatial point pattern analysis.

The vegetation of arid and semi-arid systems is usually dominated by shrub and tree
species. These species are important elements of the semi-arid landscape as they
regulate many community and ecosystem processes. In contrast, perennial
herbaceous plants are generally too sparse to determine ecosystem and landscape
properties, and annuals are too temporally transient to have long-lasting effects
(Whitford, 2002). Understanding the dynamics of dominant arid shrub species may be
an important first step in understanding the dynamics of the ecosystem as a whole,
yet little is known about their population processes and the factors underlying their
dynamics (Jiménez-Lobato and Valverde, 2006; Kyncl et al., 2006). There is a long
history of studies investigating the dynamics of arid shrubs at the patch-scale, initiated
by the identification of spatially periodic arid vegetation patterns in the 1950s
(MacFadyen, 1950; Clos-Arceduc, 1956; cited in Couteron, 2002). To obtain a greater
understanding of arid shrub population dynamics, however, we need to investigate the
biotic and abiotic processes operating at the scale of the individual. Pattern—process
inference may allow information about the dynamics and long-term demographics of
arid shrub populations to be extracted in situations where experimental and

observational techniques are not feasible.



Pattern—process inference relies upon the spatio-temporal theory that the biotic and
abiotic processes underlying a population's dynamics will give rise to a non-random
pattern of individuals. Consequently, the pattern of individuals can be interpreted as a
spatial signature of the processes structuring a population (Law et al., 2009). Despite
the increasing popularity of the technique, it continues to be criticised (Mahdi and Law,
1987; Cale et al., 1989; Turner et al., 2001; Moravie and Robert, 2003). In many
cases, efforts to deduce processes from patterns have been rejected because the
inferential link between pattern and process is believed to be too weak (Mclntire and
Fajardo, 2009). It has, however, been proposed that these concerns are rooted in the
analytical and methodological procedures used, rather than the biological justification
of pattern—process inference (Mcintire and Fajardo, 2009). Despite its increasing
utilisation in the ecological literature, applications of pattern—process inference have
not been accompanied by an appraisal of the methodological application of the

technique, or its ability to address ecological research questions.

This thesis investigates the application of pattern—process inference in the
contemporary ecological literature and asks whether the methodological approaches
commonly used hinder our ability to infer processes from patterns. Subsequently,
fine-scale spatial statistical and modelling techniques are used to investigate the
spatial structure and the inferred population dynamics of Spartocytisus supranubius, a

narrow-ranged endemic dominating the high-altitude desert of Tenerife.



1.2 RESEARCH AIMS AND OBJECTIVES

The overall aim of the research is to:

Investigate the potential methodological constraints of spatial point pattern
analysis, as currently applied in the literature, and how, with the support of
remotely sensed data, their application could be improved to help
understand the biotic and abiotic processes structuring populations of

Spartocytisus supranubius.

To address the central aim of the research, four hypotheses were developed to be
tested in subsequent chapters. These hypotheses, the associated methods and the
corresponding chapters in which the results are reported and discussed are outlined in
Figure 1-1. The research context underlying the hypotheses is discussed in Section
1.3 which examines the current state of knowledge regarding the biotic and abiotic
processes driving arid vegetation and shrub population dynamics, the discipline of
spatial ecology, and the inference of process from pattern. The final part of this
section reviews the methodological application of spatial point pattern analyses in the

ecological literature. A detailed thesis structure is provided in Section 1.4.
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1.3 THE RESEARCH CONTEXT

1.3.1 THE PROCESSES DRIVING ARID PLANT POPULATION DYNAMICS

Biotic drivers of arid vegetation dynamics

The stress-gradient hypothesis (Bertness and Callaway, 1994) states that the
importance of competition as an organising force decreases, and the importance of
facilitation increases, with environmental severity. While studies in some severe
environments (e.g., salt marsh and alpine systems) support the stress-gradient
hypothesis, the relative importance of competition and facilitation in arid systems is
commonly debated (Sthultz et al., 2007, Maestre et al., 2009). In a meta-analysis of
studies evaluating the effect of abiotic stress on net plant-plant interactions in arid
systems, Maestre et al. (2005) found little support for theoretical predictions that the
importance or intensity of facilitation should increase with abiotic stress (but see Lortie

and Callaway, 2006; Brooker et al., 2008).

Several factors could affect the relative importance of facilitation and competition in
arid environments, including the age of individuals (ontogeny, Reisman-Berman, 2007,
Lortie and Turkington, 2008; Armas and Pugnaire, 2009), the species concerned
(Lortie and Turkington, 2008; Valiente-Banuet and Verdu, 2008) and the methods of
investigation used (i.e., observational vs. experimental, Maestre et al., 2005). Maestre
et al. (2009) also note that whereas the most important type of stress experienced in
arid systems is resource based (e.g., water availability), although non-resource based
stresses are also present (e.g., photoinhibition, Jefferson and Pennacchio, 2005),
vegetation in sait marsh and alpine systems predominantly experiences non-resource
based stress (e.g., salinity, temperature). When abiotic stress is resource-based,
facilitation will occur only when a neighbour increases the quantity of the resource
(e.g., water availability) beyond its own requirements (Maestre et al., 2005, 2009).
Under drought conditions, individuals may be unable to increase water availability
beyond their own requirements and competition for water may over-ride any

amelioration of non-resource based stresses (Maestre and Cortina, 2004).



Almost all studies of biotic interactions in arid systems have focused on inter-specific
interactions, typically between individuals of different functional types (trees, shrubs,
herbs and grasses [e.g., Maestre et al., 2003; Armas and Pugnaire, 2005; Holzapfel et
al., 2006]). Relatively few studies have considered the importance of competition
and/or facilitation in structuring populations and how these interactions may vary
spatially and temporally. This thesis seeks to address this shortcoming. Interestingly,
a recent study of intra-specific processes, a simulation model by Malkinson and
Jeltsch (2007), concluded that the dominant force structuring a shrub population in
xeric sites was neither competition nor facilitation, but random mortality because of

drought stress.

Abiotic drivers of arid vegetation dynamics
Water availability is believed to be the most important abiotic factor driving biological
processes in arid ecosystems. Precipitation in arid systems typically occurs in short
pulses. Consequently, arid areas exhibit great temporal variability in water availability
(Snyder and Tartowski, 2006). Introduced over 30 years ago, the pulse-reserve
paradigm (Noy-Meir, 1973) assumes that the dynamics of arid vegetation are
predominantly determined by their reaction to the environment, in particular the highly
_intermittent availability of water. In other words, rainfall events trigger a pulse of
activity (e.g., growth) some of which is stored in a reserve, such as seeds. The pulse—
reserve model continues to form the basis of contemporary arid vegetation research,
often motivated by the need to understand the consequences of changing precipitation
regimes (Ogle and Reynolds, 2004; Schwinning et al., 2004). Climate change
scenarios are predicting significant alterations to the timing and magnitude of
precipitation in arid and semi-arid areas (Robertson et al., 2009). Understanding how
variation in water availability affects biological processes is essential if we are to
predict and manage the effects of future climate change (Synder and Tartowski,
2006). Recent studies have investigated (empirically and theoretically) the effects of
variation in precipitation timing (Snyder et al., 2004; West et al., 2007), magnitude

(Huxman et al., 2004) and frequency (Heisler-White et al., 2009) on plant physiological



activity. However, recent research is suggesting that arid vegetation is more

responsive to soil water availability than precipitation per se (Robertson et al., 2009)

The translation of precipitation into soil moisture, and the resultant spatial and
temporal heterogeneity in water availability, is complex (Loik et al., 2004). The main
focus of studies to date has been on the role of vertical heterogeneity in soil-water
availability (Loik et al., 2004, e.g., Ryel et al., 2004, 2008). Whereas water in shallow
soil layers is quickly lost to evaporation, water that infiltrates to deep soil layers is
conserved for a longer time (Chesson et al., 2004). Because the root systems of
woody plants typically penetrate to deeper soil layers than herbaceous species, a
larger amount of deep water is believed to benefit shrubs and trees (the two-layer
hypothesis - Walter, 1971). However, there are several situations where a relationship
between woody biomass and deep soil moisture availability has not been found
(Breshears et al., 2009). There is growing evidence that horizontal variation in soil
moisture may be as substantial as vertical heterogeneity (Breshears et al., 2009),
although this is rarely considered in models of arid ecosystem and vegetation

dynamics (Loik et al., 2004).

To date, horizontal water heterogeneity has been most frequently documented at the
scale of canopy patches (Loik et al., 2004; Breshears et al, 2009). However,
horizontal water heterogeneity is also influenced by geomorphological and
topographical characteristics (Loik et al., 2004, Zou et al., 2010). For example,
Fravolini et al. (2005) found that the response of a woody legume to precipitation
pulses of different magnitude was largely dependent upon soil texture (Fravolini et al.,
2005). Monger and Bestelmeyer (2006) propose that arid vegetation dynamics are
influenced by the ‘soil-geomorphic template’. Their conceptual model describes the
combined effects of the soil, topography and parent material on vegetation patterns
and dynamics. All three factors are believed to influence water availability, primarily
through their control on the water-holding capacity of the soil and the lateral

redistribution of water. However, the potential effect of geomorphologically driven,



horizontal variation in soil water availability on the spatial structure and dynamics of

arid shrub populations has been relatively understudied.

Understanding arid vegetation heterogeneity: the interaction of abiotic and
biotic factors

Understanding the independent and interactive effect of biotic and abiotic processes
on the dynamics of populations remains a fundamental aim of ecology (Dahigren and
Ehrién, 2009). Following a review of research into Monte Desert ecosystems, Bisigato
et al. (2009) conciuded that coarse-scale vegetation heterogeneity (i.e., at the
landscape and community scale) was determined by abiotic factors, whereas biotic
interactions determined fine-scale vegetation patterns (i.e., at the patch and intra-
patch scale). Theoretical evidence, however, suggests that interactions and
feedbacks between biotic and abiotic processes across a range of spatial and
temporal scales may be important drivers of vegetation and population dynamics.
Indeed, Agrawal et al. (2007) identified a need in population and community ecology
studies to understand how biotic interactions vary with abiotic context, and to
understand how biotic and abiotic factors interact over time and space. One
conceptual model, the storage effect (Chesson, 2000a, b), proposes that the dynamics
of arid vegetation communities are in part driven by an interaction between temporal
environmental variation and biological processes, specifically competition.  If
competing species experience fithess advantages at different times, and are able to
store the gains made using favourable periods, then coexistence will be enhanced
(Adler et al., 2009). In order for the storage effect to operate, competition must vary
with temporal environmental variation such that intra-specific competition is strongest
and limits growth in favourable periods (Verhulst et al., 2008). Support for the
covariance of competition and temporal environmental variation is, however, limited

(Adler et al., 2009).

Research on how spatial environmental variation influences biotic interactions in arid
vegetation has predominantly focused on comparing the spatial structure and

dynamics of populations under different abiotic scenarios (Schenk et al., 2003,



Malkinson and Kadmon, 2007; Biganzoli et al., 2009). There is surprisingly little
understanding of whether and how continuous spatial environmental heterogeneity
interacts with biological processes to determine population dynamics (Wagner and
Fortin, 2005; Murrell, 2009). Understanding the spatial dynamics of biotic interactions
and their relationship with abiotic factors is important if we are to gain an

understanding of the dynamics and processes that organise arid shrub populations.

1.3.2 METHODS OF INVESTIGATING THE DYNAMICS OF ARID SHRUB
POPULATIONS

The popuilation dynamics of arid, perennial shrubs are slow, with infrequent
establishment of new individuals, low growth rates and extended longevity (Cody,
2000; Bowers, 2005). Vegetative responses to abiotic and biotic pressures may
operate over much longer time scales than variability in the pressures themselves.
This results in a temporal mismatch between the typical duration of observational and
experimental methodologies (years) and the time scales of vegetation change
(decades) which has made it difficult to investigate the long-term dynamics of arid
shrub populations (Wiegand and Jeltsch, 2000). One approach to investigating arid
vegetation dynamics over medium to long time scales has been to mark and
repeatedly sample individuals in permanent plots (e.g., Shreve and Hinckley, 1937;
Goldberg and Turner, 1986; Turner, 1990; Tielbérger and Kadmon, 1997; Pierson and
Turner, 1998; Cody, 2000; Bowers et al., 2004; Bowers, 2005; Kraaij and Milton,
2006). There is no doubt that long-term, systematic studies of arid vegetation have
advanced our understanding of the processes influencing their population dynamics,
especially in relation to grazing pressures (e.g., Ward et al., 2000; Angell and
McClaran, 2001) and precipitation regimes (e.g., Milton and Dean, 2000; Ward et al.,
2000; McClaran and Angell, 2006). However, most long-term observational studies
are limited to monitoring a small subset of the target population from which
generalisations about the demography of a species or population are made (e.g.,

Henschel and Seely, 2000).



Because of the time and financial limitations of long-term studies, most studies of arid
vegetation dynamics are conducted over relatively short time periods (i.e., seasons or
years). The slow dynamics of arid perennials means that many studies base their
interpretations upon physiological responses at the individual level. Studies often
compare the performance of target individuals growing in the vicinity of a neighbour
with the performance of individuals growing in open areas (either naturally devoid of
vegetation or where vegetation has been experimentally removed). Common
measures of performance include growth (biomass, height, diameter or the number of
leaves) and fecundity (number/weight of flowers/fruit/seeds; Maestre et al., 2005).
However, the ability of individual-level responses to impart structure at the population
level has been questioned (Freestone, 2006). To understand population dynamics,
population-level responses should be measured (Goldberg et al, 1999). The
discipline of spatial ecology may provide suitable techniques. In this approach the
spatial structure of individuals within a population is used to infer its dynamics and the
influence of abiotic and biotic factors. Coupled with the increasing availability of high-
resolution remotely sensed data and Geographical Information Systems (GIS)
software, spatial ecology may provide an important opportunity to investigate the

population dynamics of arid shrubs over large spatial extents.

1.3.3 THE IMPORTANCE OF SPACE AND SPATIAL PATTERN ANALYSIS

[Wje must find ways to quantify patterns of variability in space and time, to
understand how patterns change with scale..., and to understand the causes

and consequences of pattern... (Levin, 1992 p. 1961)

Why space matters

Over recent decades ecologists have become increasingly aware of the importance of
the spatial dimensions of the phenomena they study. Organisms, both motile and
sessile, are discrete entities that interact with their biotic and abiotic neighbourhood.
Spatial confinement is strongest in sessile organisms such as terrestrial plants, marine
macrophytes, corals and other species that are attached to surfaces (Tilman et al.,

1997). Spatial ecology is a specialisation of geography and ecology that aims to

10



understand the spatial dimensions of the processes driving the dynamics and spatial

structure of populations and communities (Murrell et al., 2001).

Some have attempted to investigate the spatial mechanisms underlying arid
vegetation patterns with experimentation (e.g., Buonopane et al., 2005; Sthuitz et al.,
2007; Weedon and Facelli, 2008) or modelling biological and abiotic processes within
a spatial domain (e.g., Meyer et al., 2007; Barbier et al., 2008; Moustakas et al., 2009;
Popp et al, 2009). However, converting ecological theories into mathematical
formulae can over-simplify the processes operating in natural communities, and
experimental techniques can be time consuming, financially demanding and unethical
(Mcintire and Fajardo, 2009). Furthermore, depending upon the process being
investigated, experimental techniques can be impractical. This is especially so when
studying the dynamics of arid shrubs which operate over extremely long time scales.
Therefore, this thesis is concerned with our ability to infer biological and abiotic

processes from detailed analyses of observed spatial patterns.

Inferring process from pattern

The theory of spatial point processes can be used to extract information from the
spatial pattern of plants (Law et al., 2009). A spatial point process is a stochastic
model that generates a set of countable points in a two-dimensional plane. The
simplest point process is the Poisson point process which describes complete spatial
randomness (i.e. a random number of individuals are located independently following
a uniform distribution in region A [Law et al., 2009]). More complicated point
processes introduce interactions between neighbouring points (e.g. Neyman-Scott

processes).

The theory of spatial point processes can be applied to plant ecology by envisaging
individual plants as points, with their locations represented by Cartesian coordinates.
The abiotic and biotic processes driving a species’ spatial structure (i.e., the spatial
pattern presented by individuals) operate at discrete scales. These processes give
rise to non-random patterns of individuals at the population level. Therefore, the
pattern displayed by individuals can, with appropriate caution, be interpreted as a

11



spatial reflection of the mechanisms underlying population dynamics. Point process
theory uses ‘space as a surrogate’ for unmeasured spatio-temporal processes

(Mclintire and Fajardo et al., 2009: 46).

The ability to infer biologically important process from observed spatial patterns was
first recognised by Watt (1947). Nowadays there is a great impetus to study the
spatial structure of plant populations and relate their characteristics to underlying biotic
and abiotic processes. The spatial patterns of individuals within a population have
been used to investigate and infer processes such as seed dispersal (Plotkin et al.,
2002; Strand et al., 2007; Cousens et al., 2008; Wiegand et al., 2009), competition
(Stoll and Bergius, 2005; Meyer et al., 2008), facilitation (Montesinos et al., 2007),

herbivory (Zavala-Hurtado et al., 2000) and predation (Rossi et al., 2009).

Over recent decades, advances in computation have allowed ecologists to become
increasingly sophisticated in their ability to quantify spatial patterns. However, despite
the increasing ease with which patterns can be quantified, the inference of processes
from observed patterns stili remains theoretically challenging. Inferring processes
from spatial patterns requires a substitution of space for time, and is consequently
controversial. Many authors have questioned the extent to which processes can be
reliably inferred from spatial patterns (Mahdi and Law, 1987; Cale et al., 1989,
Moravie and Robert, 2003). In a study of the spatial organisation of limestone

grassland species Mahdi and Law (1987) stated that:

“...a spatial analysis of a plant community does not, on its own, give insights

into the processes operating in a community.” (Mahdi and Law, 1987:474)

However, despite these uncertainties it can be argued that non-random processes Wwill
typically result in highly structured, distinctive patterns (Mclintire and Fajardo, 2009).
Biological organisation exists and, although the link between pattern and process may
be imperfect, patterns of ecological phenomena continue to provide important
opportunities for enhancing our understanding of population dynamics and spatial

structure. Inferring processes will, however, be more difficult in complex communities

12



as many processes and factors will be operating simultaneously (Felinks and
Wiegand, 2008). Studies of relatively simple systems, therefore, should improve our
understanding of the theoretical association between pattern and process. In such
systems, conceptual models of anticipated processes can be translated into expected
spatial signatures. The relative abiotic and biotic simplicity of arid systems (Holzapfel

and Mahall, 1999) aids the applicatior and utility of spatial pattern analyses.

Mcintire and Fajardo (2009) describe the inference of process from pattern as a
multistage procedure requiring the precise implementation of ecological theory and
knowledge, a priori inference of the anticipated processes and their spatial signatures,
and the precise application of spatial analytical tools. Numerous authors repeatedly
disapprove of the lack of a fourth stage: experimental verification of the operation of
processes inferred from observed patterns (Steinberg and Kareiva, 1997; Murrell et
al, 2001; Perry et al., 2006). However, because of the slow demographics and
dynamics of arid shrubs and legislation protecting the focal species (S. supranubius;
see Chapter 2) this fourth stage is not addressed in the current thesis. Chapters 5
and 6 of this thesis are specifically concerned with the third stage of process
inference: the precise application of spatial analytical tools. Chapters 7 and 8 use all
three stages in an investigation of the processes underlying the spatial structure of S.

supranubius populations.

Methods of spatial pattern analysis are discussed in Chapter 3. Specifically, Chapter
3 provides a quantitative description of the pattern analysis techniques with which this
thesis is concerned: the L(r)-function (a derivative of Ripley's K(r)-function) and the
pair-correlation function (g(r)). Although the details of these techniques are not
discussed until Chapter 3, the following section reviews the application of these

techniques in the ecological literature, in order to inform the research context.

1.3.4 REVIEW OF THE APPLICATION OF SPATIAL POINT PATTERN ANALYSES
IN THE ECOLOGICAL LITERATURE

Spatial pattern analysis is a subject of considerable current statistical research (Law et

al., 2009). However, much of this work is technical and there is relatively little
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discourse between mathematicians and ecologists (Law et al., 2009). Furthermore,
with the ever-increasing power of desktop computers, the widening availability of GIS
software, and the publication of independent spatial analysis programs over the
internet, it seems that undertaking statistical analysis of spatial point patterns is no
longer limited to either mathematicians or those who understand the techniques well
enough to apply them with care. This has resulted in a rapid increase in the
application of pattern analyses to plant distribution data over recent years. This
increase has not, however, been paralleled by rigorous assessment of the behaviour
of these techniques. This section reviews the ecological literature using second-order
spatial statistics (i.e., statistics that quantify the pattern of points relative to one
another, see Table 3-1) to describe the spatial patterns of woody plants (trees and
shrubs), to identify where research is required. To maintain comparability with the
analyses performed in this thesis, the review was limited to those studies using g(r)
and L(r) (and the related functions K{(r) and O(r)). Only those studies applying spatial
pattern analysis techniques to real (i.e., not simulated) data were included in the
review. Methodological studies were not considered. While the review was not limited
to studies of single species patterns, studies solely investigating the pattern of
seedlings were not included, nor were articles that investigated the spatial patterns of
herbs or grasses. Articles were selected by searching ISI Web of Knowledge using
various combinations of the following search terms: ‘spatial pattern’, ‘spatial point
pattern analysis’, ‘ecology’, ‘Ripley's’, ‘pair correlation function’, ‘tree’ and ‘shrub’. No
restriction was placed on the year of publication. The aspects considered in the
review are detailed in Table 1-1. Some information could not be retrieved from some
articles. A total of 109 articles were reviewed (Appendix A). The notable features of

the review are discussed below.
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Spatial pattern analysis is increasingly popular

The review confirmed an increase in the ecological application of pattern analyses
over the last 15 years (Figure 1-2a). There is a notable lack of articles published in
2001 and 2002. Interestingly, articles produced in these years are noted for
attempting to develop new indices of spatial pattern (Dale and Powell, 2001; Fehmi
and Bartolome, 2001), apply alternative pattern indices (Dov¢iak et al., 2001; Cressie
and Collins, 2001) or to deal with the problems facing point pattern analyses, such as
heterogeneity (Pélissier and Goreaud, 2001) and missing data (Freeman and Ford,
2002). The majority of the articles investigated the spatial patterns of temperate or
tropical forest trees with only 18 articles investigating species in arid or semi-arid

systems (Appendix A).

Cumulative measures favoured

Despite the complexities of interpreting cumulative measures (see Chapter 3), the
majority of articles (c. 76%) analysed spatial patterns using only L(r) or K(r) (Figure
1-2b). Of the 25 articles that used a discrete measure (i.e., g(r) or O(r)), nine used the

techniques in combination with L(r).

Low number of replicates used

The majority of articles (n = 75) based their interpretations upon analyses performed
in a single replicate plot (Figure 1-2c). Of these studies, 46% used a single plot of
1 ha or less in extent and 20% used a plot of s 0.25 ha. Fifteen articles used two
replicates per spatial environmental context. Seven of these studies used plots of
s 0.33 ha in extent. Nineteen articles used more than two replicate plots. In general
these studies used the smallest plot extents with over half (n = 10) of the studies using

plots of < 0.25 ha.
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Figure 1-2 Results of a review of 109 published articles using spatial pattern analyses (g(r),
L(r), O(r), or K(r)) to study the pattern of woody plants (trees and shrubs). Graphs show (a) the
year of publication (2010 data not included [n=107]), (b) the spatial pattern analysis technique(s)
used, and (c) the number of replicate plots used per environmental context (e.g., the number of
replicate plots used per site when comparing the patterns observed in two sites of differing fire
regime). NB: in graph (b) the studies using both L(r) and g(r) (i.e., the final column) are not

included in the count of studies using only one of the techniques (i.e., the 2™ and 3™ columns).
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Point analysis vs. real shape
Only one study (Barbeito et al., 2008) represented the location of individual plants as

objects as well as dimensionless points with co-ordinates x,y.

No consensus on sample size requirements

In standard statistical methods it is often accepted that a minimum sample size of 30
is adequate for simple comparisons and correlations. There is no such established
consensus in spatial point analyses, with articles imposing independent, unfounded
sample size restrictions. Malkinson et al. (2003), Meyer et al. (2008) and Linares-
Palomino and Ponce-Alvarez (2009) restricted their analyses to plots containing 30 or
more individuals, whereas Eccles et al. (1999), Mast and Veblen (1999) and Zhu et al.
(2010) required 40 individuals and Wiegand et al. (2007a) required 70 individuals.
Baddeley and Turner (2005) claim that K(r) is biased if fewer than 15 points are used
(Rossi et al., 2009). Other studies have set limits of 10 individuals (Arévalo and
Fernandez-Palacios, 2003; Aldrich et al., 2003) and 20 individuals (Fulé and
Covington, 1998), whereas Jacquemyn et al. (2009: p. 211) considered a sample size
of 80 individuals to be ‘relatively low’. However, the majority of studies do not impose
a lower sample size limit, with some artic!es interpreting the spatial pattern detected
from as few as six individuals (Fajardo et al., 2006). Precise data on sample sizes
could only be extracted from 51 of the 109 studies reviewed. Of those studies, 34
performed one or more analyses on data with fewer than 70 individuals. Twenty-four

of these articles performed one or more analyses on fewer than 30 individuals.

Plots mostly < 1 ha in extent

About 79% of the articles (for which information on plot extent was available, n = 106)
used plots of less than 5 ha in extent (n = 84; Figure 1-3a). Over half of the articles
(n = 56) used plots of 1 ha or less in extent. Of those studies using plots of less than
1 ha, there was a general trend for the smallest extents to be the most popular (Figure

1-3b).
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Figure 1-3 The plot extent (geometric mean) used in 109 published articles using spatial pattern analyses (g(r), L(r), O(r), or K(r)) to study the pattem of woody plants (trees and

shrubs). Graph (a) shows all data whereas (b) is a subset of (a) and shows only those studies using plot extents of < 2 ha.
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Data collection

Only eight (c. 7%) of the studies used computational techniques to generate data on
the distribution of individual shrubs and trees. One study used ground-based,
hemispherical photography (Montes et al., 2008), whereas the remaining seven
studies used remotely sensed data. All seven studies used aerial photography,
although Moustakas et al. (2008) and Koukoulas and Blackburn (2005) combined this
with lkonos imagery and LiDAR data respectively. Of the seven studies using

airborne sensors, four were performed in arid areas.

Interpretation

The detection of significant spatial pattern from Monte Carlo simulation envelopes has
been criticised because building envelopes from the result of many simulated patterns
underestimates the Type | error rate (Loosmore and Ford, 2006, Chapter 3).
Furthermore, the width of simulation envelopes is in part determined by sample size
(Figure 3-3). Despite this, almost all of the articles (n = 104) assessed spatial pattern
by the scales at which the empirical function fell outside Monte Carlo simulation
envelopes. Only eight studies (Peterson and Squiers, 1995; Pélissier, 1998,
McDonald et al., 2003; Fang, 2005; Seidler and Plotkin, 2006; Getzin et al., 2008;
Barbeito et al., 2009; LeMay et al., 2009) used the height of the empirical functions
above the value expected from a completely spatially random pattern (CSR; L(r) = 0,

g(r) = 1) to assess and compare patterns (see Table 3-1).

Summarising remarks

The results of the literature review presented above reveals a clear preponderance of
methodological procedures that rely upon small plot extents with little replication. Very
few studies use remote sensing technologies, which could enable the extent of the
study area to be increased with relative ease. The majority of studies investigate
spatial pattern using cumulative statistics (L(r) or K(r)), and almost all assess the

presence of pattern from Monte Carlo simulation envelopes.
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1.4 DETAILED THESIS STRUCTURE

Chapter 2 introduces the study site and the focal species, Spartocytisus supranubius.
Chapter 3 describes some of the methods available to quantify the pattern of
individuals within a population. Particular attention is paid to the methods used in the
subsequent results chapters (Chapters 5 — 8), the L(r)-function and the pair-correlation
function (g(r)). Specific methodologies and analytical techniques are discussed in

further detail as appropriate in the subsequent chapters.

To address the stated research objectives, this thesis required the mapped location
and size of individual S. supranubius shrubs across extensive areas. For this purpose
data were collected via the classification of aerial photographs (Objective 1). Image
classification was performed by one-class classification using support vector data
description. Chapter 4 details the performance of 960 alternative classifier models.
Following extensive cross-validation, a high-accuracy classifier is developed. This
chapter details the application of this classifier to 162 ha of the study area for this

research, and presents the resulting maps.

Chapter 5 investigates the effect of varying plot extent on the detection of spatial
pattern using L(r) and g(r) (Objective 2). Extensive analyses at six different extents
are performed to examine how changing plot extent influences the accuracy and
reliability of pattern detection. Particular interest is directed towards pattern detection
within small sample windows (< 1 ha), which are commonly applied in the
contemporary literature (see Section 1.3.4). The potential interaction between plot

extent and spatial environmental heterogeneity is considered.

Chapter 6 investigates the differences in the pattern detected by analyses that
approximate the location of individual shrubs as points, and those that preserve the
size and shape of individuals (Objective 3). The types of pattern detected and the
magnitude and scale of the strongest pattern are compared, and the consequences

for the inference of ecological processes are considered.
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Chapter 7 uses fine-scale, second-order spatial statistics to investigate the spatial
structure of S. supranubius on five focal substrates (Objective 4). Deductive
reasoning was adopted: a priori hypotheses of the likely abiotic and biotic processes
driving the dynamics of S. supranubius, and their expected spatial signatures were
formulated. These hypotheses are challenged with data. The spatial structure of S.
supranubius on substrates experiencing different levels of spatial abiotic heterogeneity
is compared to investigate whether environmental variation interacts with biological

processes to determine S. supranubius dynamics.

Chapter 8 builds upon the findings of Chapter 7. Using data collected in the field,
point process modelling techniques are used to investigate whether topography
influences the spatial structure of an S. supranubius population (Objective 5). A
conceptual model of topographically driven spatial variation in water availability is

developed.

Chapter 9 summarises the principal conclusions and implications of the previous

chapters, and provides recommendations for further research.
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CHAPTER 2: STUDY AREA AND FOCAL SPECIES

21 THE CANARY ISLANDS

Situated in the northeast Atlantic Ocean, the Canary Islands extend for more than
500 km in a WSW-ENE orientation from Cape Juby on the African Coast (Kunkel,
1976). The archipelago comprises seven voicanic islands: Lanzarote, Fuerteventura,

Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro (Figure 2-1).

2.1.1 BIOGEOGRAPHY OF THE FLORA OF MACARONESIA AND THE CANARY
ISLANDS

The Canaries, along with the other north-west Atlantic archipelagos — the Azores,
Madiera, the Salvage Islands and the Cape Verde lIslands — comprise the
biogeographical region of Macaronesia. Macaronesia has been considered to be a
phytogeographically distinct region for more than a century (Whittaker and Fernandez-
Palacios, 2007). However, there is a general floristic trend that parallels the
considerable latitudinal range the archipelagos span. This has led some to question
the validity of a distinct biogeographical Macaronesian region (Whittaker and

Fernandez-Palacios, 2007).
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Oceanic islands are renowned for having a high proportion of endemic species.
Adaptive radiation and genetic drift are often cited as the mechanisms underlying this
phenomenon. The Canary Islands are no exception. The endemic flora of the
archipelago is very rich with over 680 endemic taxa recognised (species and
subspecies, Santos-Guerra, (2001), cited in Carine et al., 2009). This corresponds to

an endemicity rate of over 50%.

Alexander von Humboldt (1799), aided by the earlier manuscripts of Bomplant and
Broussonet, was the first to attempt a description of the archipelago’s flora (Ministry of
the Environment, 2006). This work was later completed by Bory de Saint-Vincent
(1802), who produced the first printed account of the flora and fauna of the Canary
Islands (Ministry of the Environment, 2008). The floral richness of the islands is
estimated at over 2000 species (lzquierdo et al., 2004). Generic endemism is
common with 15 genera thought to exist only on the Canarian archipelago (Francisco-
Ortega et al., 2009) and a further 12 genera specific to the Macaronesian region. The
remaining non-endemic flora consists mostly of Mediterranean species as well as a

large proportion of introduced, non-native species (Bramwell, 1976).

The Canary Islands have a strong network of protected areas (146 in total) covering
around 40% of the archipelago (Reyes-Betancort et al., 2008). There are eight
categories of protected area recognised in the Canary Islands (Reyes-Betancort et al.,
2008). Populations of most endangered plant species can be found in these protected
areas. National parks in particular contain >30% of the archipelago’s endemic flora
despite only covering about 4% of the land area (Marrero-Gémez et al., 2003). This
thesis focuses on populations of S. supranubius in the Las Cafladas caldera, which is
within the Teide National Park of Tenerife. The Spartocytisus genus is endemic to the

Canary Islands.

2.2 TENERIFE

At 2,058 km? in area and reaching 3,718 m in altitude, Tenerife is the largest of the

Canary Islands and the highest peak in Spain. Tenerife resulted from the fusion of
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three palaeo-islands (Teno, Anaga and Adeje) following volcanic activity ¢. 3 Ma
(Carracedo and Day, 2002). The landscape of Tenerife is dominated by the Cafiadas
volcanic series, rising to about 2,000 m, and the Pico del Teide (3,718 m.a.s.l.) and
Pico Viejo (3,103 m.a.s.l.), which rise from the floor of the Las Cafiadas caldera. The
volcanic history of Tenerife prior to the formation of the Cafiadas caldera (c. 0.17 Ma)
is beyond the scope of this thesis: see Gill et al. (1994) and Guillou et al. (2004). In
the following sections the floral biogeography of Tenerife is discussed in the context of
the other Canary Islands before the focal site of this research — the Cafiadas caldera -

is introduced.

2.2.1 BIOGEOGRAPHY OF THE FLORA OF TENERIFE

A mentioned above, the floral richness and endemicity of the Canary Islands are very
high. In a recent study, Reyes-Betancort et al. (2008) concluded that the endemic
flora had a highly heterogeneous distribution both within and between the separate
islands. They found that high rates of plant endemicity occurred in the three palaeo-
islands (Teno, Anaga and Adeje) which fused to form the island of Tenerife ¢. 3 Ma
(Carracedo and Day, 2002). The Teno, Anaga and Adeje palaeo-islands had plant

endemicity rates of ¢. 23, 18 and 16% respectively (Reyes-Betancort et al., 2008).

Following Reyes-Betancort et al’s study, Carine et al. (2009) attempted to delimit
areas of endemism within the Canarian archipelago. Of the 17 areas of endemism
they recognised, six occurred within Tenerife, more than in any of the other islands.
The palaeo-islands of Anaga and Teno were both resolved as areas of endemism in
their own right. According to Carine et al.’s (2009) study, the area of highest
endemism was the high mountain area (i.e., Las Cafadas), together with the Glimar
valley and the Tamadaya ravines of the south. This area also includes the third
palaeo-island, Adeje. Thus the geological history of the island appears to contribute
highly to its endemicity. However, studies by both Reyes-Betancort et al. (2008) and
Carine et al. (2009) uncovered a more contemporary gradient between the high

species richness and high endemicity of the north side of the island and the
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comparatively species poor south of the island. This is believed to be driven by

current climatic differences.

2.3 THE LAS CANADAS CALDERA

2.3.1 GEOLOGY OF THE LAS CANADAS CALDERA

The volcanic nature of the Las Cafladas caldera has created a mosaic of lava flows of
differing ages and morphology (boch pahoehoe and aa) and pyroclastic sediments
(Figure 2-2). The Las Cafiadas caldera is an elliptical depression measuring 16 km at
its widest axis and 9 km at its smallest with a total perimeter of 45 km (Marti and
Gudmundsson, 2000). Truncating the Las Cafiadas edifice at an altitude of 2000 to
2200 m.a.s.l. (Galindo et al., 2005), the caldera is delimited by the Circo de las
Cafadas, an elliptical wall up to 500 m high that encompasses all but the northern
flank of el Teide. From the floor of the caldera rise the Pico Viejo (3,103 m.a.s.l.) and
the Pico del Teide (3,718 m.a.s.l.), eruptions from which have covered much of the
caldera floor with a mosaic of lava flows (both aa and pahoehoe) and pyroclastic
sediments. Construction of the Teide—Pico Viejo complex began ¢. 2 Ma (Edgar et al.,
2007). Both of the cones, and the smalier eruptive centres on their flanks (e.g.,

Montafia Blanca, Montafia Rajada), remain active to this day.
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2.3.2 THE FIVE FOCAL SUBSTRATES
The focal site of this research contains five different substrates (Figure 2-3). These

were selected to incorporate variation in the age and formation of the substrate while

maintaining spatial proximity.

Figure 2-3 The five focal substrates used in this thesis (see Figure 2-3 and Table 2-1). The
colours correspond to the colours used in Figure 2-2. Substrates that are not considered in this

thesis have been left unshaded (white). Map co-ordinates in UTM (‘000).

Further information and photographs of the five focal substrates are provided in Table

2-1 and Plate 2-1 respectively.
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2.3.3 CLIMATE OF THE LAS CANADAS CALDERA

Despite the proximity of the Canary Islands to the African Sahara, the passage of the
north-east trade winds over cold oceanic upwellings off the African coast provides the
archipelago with a mild climate (Fernandopullé, 1976). Temperatures at sea level
typically exceed 20°C throughout the year. Atmospheric stability produces constant
winds most of the year, although the cyclonic influence of the Atlantic weather system

can bring unstable conditions in the winter months (Fernandopullé, 1976).

The Cafiadas caldera experiences large daily and seasonal oscillations in
temperature. Diurnal temperature ranges of 15°C, winter lows of -16°C and summer
highs of over 30°C are common (Seguela and Truijillo, 2004; Ministry of Environment,
2006). Annual insolation is high with around 3500 hours of sunlight per year (Ministry
of Environment, 2006). The caldera is dry for 90% of the year with annual
precipitation typically less than 300 mm (most consider a desert to have less than 250
mm precipitation a year [Ward, 2009]). Precipitation is concentrated between October
and March, with the majority falling in December and January (Seguela and Trujillo,
2004). Consequently, much of the precipitation falls as snow (Ministry of
Environment, 2006). The high mountain climate of Tenerife is controlled by a constant
thermal inversion that occurs between 1,500 m and 2,000 m, because of the
convergence of the cool and humid north-east trade winds and the hot and dry
north-west winds (from the African continent). The thermal inversion and insular
orography isolate the caldera from marine influences, producing climatic conditions

more similar to continental areas than witnessed elsewhere on the archipelago.

2.3.4 FLORA OF THE LAS CANADAS CALDERA

Sventenius (1946) was one of the first to attempt to catalogue the caldera’s flora,
gathering specimens until the 1960s (cited in Dickson et al., 1987). Estimates of
species richness in the Cafadas caldera vary. In 1946, Sventenius published 76
vascular plant species comprising the flora of Las Cafiadas. In 1980, Kunkel listed 94

taxa for the same area (cited in Dickson et al., 1987), whereas Dickson et al. (1987)
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estimates the vascular plant richness of the Cafiadas caldera at 125 species.
Richness estimates are higher when the entire Teide National Park is considered with
de la Torre and Osorio (2004) reporting the vascular floral diversity of the park at 168
taxa. Dickson et al. (1987) believe that at least half of the vascular plant species
within the caldera can be considered aliens, most thought to have been introduced by
tourism and pre-1950 pastoralism. Prior to the creation of the Teide National Park, the
caldera's flora was affected by the grazing of goat herds, which migrated to the area in
the spring and summer months. In the prologue of Sventenius' 1946 work, Jorge

Menéndez provides the following description of the condition of the caldera’s flora:

“‘Debido al aislamiento de tales parajes y a la incultura de los cabreros y
lefiadores que a ellos acuden, se encuentra gravemente amenazada de
extinction, todo esta interesantisima y bella vegetacién, habiendo algunas
especies descritas en épocas anteriores, que ya no es possible encontrar
hoy y otras muchas en la que los ejemplares que existen son tan contados
que hacen prever su préxima desaparicién si no se toman urgentes medidas

para su defensa” (quoted from de la Torre and Osorio, 2004).

(Because of the isolation of [the caldera)] and ignorance of the goat-herders
and woodcutters, the [flora] is seriously threatened with extinction. All this
interesting and beautiful vegetation, some species of which are already
extinct and others with seriously low abundances, may disappear if urgent

measures for their protection are not taken)

The Las Cafadas caldera is renowned for its distinctive flora comprising many
endemic species (Bramwell and Bramwell, 2001). Many of these endemics are also
strictly confined to the high altitude Cafiadas area (Reyes-Betancort et al., 2008). The
high proportion of endemicity can be explained by both the physical isolation of
Tenerife from continental landmasses, and the ecological insularity of the caldera
resulting from its altitude and climate. However, endemic annuals are absent and
herbs are few (Dickson et al., 1987). The two most common species (Spartocytisus

supranubius (L.f.) Christ ex Kunk and Adenocarpus viscosus (Wild.) Webb and
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Berthel), are both in the Fabaceae. The vegetative community is typically open, with
limited vertical stratification; herbs and low shrubs tend to occur in the open spaces

between taller shrubs rather than beneath their canopies (Lausi and Nimis, 1986;

pers. obs.).

Today, the main threat to the caldera's flora comes from rabbits (Ortctolagus
cuniculus) and the Corsican mouflon (Ovis gmelini musimon) (de la Torre and Osorio,
2004). While the rabbit was introduced during the colonisation of the islands, the
mouflon was deliberately introduced to the caldera in 1971 as game for hunters. The
mouflon population has increased ever since. Attempts are now being made to
control both herbivores by excluding them from ecologically fragile areas, in addition to
long-term plans to reduce both populations to ecologically benign levels, although
these plans are meeting some resistance from local hunters (De Nascimento, pers.

comm.).

2.3.5 THE TEIDE NATIONAL PARK

The Cafadas caldera is situated within the Teide National Park (TNP). Created by
decree on the 22™ of January 1954, the TNP is the most visited protected natural area
in Spain, receiving an average of 3 million visitors per year since 1996. In 1981 the
TNP was reclassified under Law 5/1981 to include a peripheral protection zone
(7,515 ha) to prevent external impacts on the ecology and landscape of the park. The
TNP covers almost 19,000 ha, extending from 1,650 m.a.s.l. at its lowest point to
3,718 m.as.l. at the top of Teide. Surrounding the TNP is a buffer zone which
includes the Corona National Park. In total, the Teide National Park and the
surrounding buffer zone (consisting of the Corona Forestal Natural Park and the
Peripheral Protection Zone) cover in excess of 54,000 ha (Ministry of the Environment,

2008).

All resource use has now become tightly controlled, regulated by the Management

and Usage Administration Plan (Decree 153/2002). The greatest visual and

ecological improvement has been gained by the prevention of goat herding. Certain
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areas of the park are, however, still harvested for their resources but only traditional
practices are authorised and are both spatially and temporally limited. These activities
include the collection of coloured soil and flowers for decorative use in the celebration
of the Octava del Corpus Christi, the operation of twenty apiaries in the spring and the
collection of firewood and culm from the area of Llano La Rose (Montafia Limén).
These practices are not believed to impact on the dynamics of the flora or fauna.
Following the designation of the site as a World Heritage Site in June 2007, all terrain
within both the Park and buffer zone has been classified as non-buildable land under
special protection, except when it can be certified that building is in the public interest

(Ministry of the Environment, 2006).

2.4 SPARTOCYTISUS SUPRANUBIUS

2.4.1 LOCATION AND PROTECTION

Spartocytisus supranubius (L.f.) Christ ex Kunk. (Fabaceae; hereafter S. supranubius)
is endemic to the high altitude communities of Tenerife (> 1,900 m.a.s.l) and
La Palma (> 1,700 m.a.s.l.) in the Canary Islands (Bramwell and Bramwell, 2001).
S. supranubius is protected under regional legislation (Annex Il of the Flora Order
20/02/1991). Annex Il of the Flora Order requires that governmental authorisation is
sought before any S. supranubius individual, or any part of it, is up-rooted or cut down,
deliberately disturbed or destroyed (including their seeds), or used for commercial

purposes.

2.4.2 PHYSICAL DESCRIPTION

S. supranubius is more commonly known as ‘retama blanca’ (white broom) or ‘retama
del Teide' (Teide broom). Individuals usually take a hemispherical shape, and can
grow to a height of 3 m. The stems are thick and glaucous with a greyish-hue. The
leaves of S. spartocytisus are small, deciduous, ephemeral, nearly sessile and
trifoliate. The individual leaflets are pale green and linear, measuring less than 5 mm

in length. S. supranubius blooms between May and July producing highly aromatic
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dense racemes at the upper parts of its branches. The individual flowers are bilabiate,
have short pedicels and a very short-toothed calyx with a white or pink corolla. The
fruit of this shrub consists of black, 4-6-seeded, villous legumes. The seeds are
dormant and may remain viable for a long time in the soil. Mechanical abrasion is

thought to be necessary for germination (Kyncl et al., 2006).

Both isozyme and morphological analyses demonstrate that as well as reproducing
sexually, S. supranubius is capable of clonal growth (Kyncl et al, 2006).
S. supranubius reproduces asexually by the rooting of lateral branches (branch
layering), unlike related species which sprout from roots (Kyncl et al., 2006; personal
observations). Kyncl et al. also suggest that the successful establishment of both
sexually and clonally produced juveniles, and the growth of adult individuals, is
controlled by winter precipitation levels. Kyncl et al. (2006) indicate that mechanical
abrasion by water may be required to break S. supranubius seed dormancy. They
also indicate that whereas 1978-1980 had above average winter precipitation levels,
the decade 1990-1999 was the driest ever recorded. The longevity of S. supranubius
individuals is not known. However, by examining aerial photographs from 2007 and
1954 it is clear that individuals are visible on both images suggesting that S.

supranubius individuals can live for at least 50 years (Figure 2-4).

Spartocytisus supranubius roots are infected by the endo-symbiotic bacteria
Bradyrhizobium canarienese bv. genistearum (Vinuesa et al, 2005a). This
relationship enables S. supranubius to fix atmospheric nitrogen, sometimes creating a
16-fold increase in the nitrogen content of the soil beneath S. supranubius canopies
compared with soils 5 m away (Wheeler and Dickson, 1990). Wheeler and Dickson
(1990) cited this attribute as a potential reason for the dominance of the shrub within
parts of the caldera. A previous study (Jarabo-Lorenzo et al., 2000) has shown that
endemic canarian genistoid legumes are nodulated exclusively by Bradyrhizobium
species. B. canariense has a known geographic distribution covering the Canary
Islands, Spain, Morocco and the Americas (Vineusa et al., 2005a). Relatively little is

known about B. canarienese, but as with all rhizobia it is expected to live
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saprophytically in the soil when not infecting root hairs (Salisbury and Ross, 1992), is
acid-tolerant and is thought to experience optimum growth at temperatures of

28-30°C, but be inhibited at 37°C and above (Vinuesa et al., 2005b).
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2.4.3 S. SUPRANUBIUS ONTOGENY

Following field observations, a seven stage morphological ontogeny for S.
supranubius is hypothesised comprising the following stages: seedling, cone,
hemisphere, collapse, ring, outliers, dead and young clone (Figure 2-5). A
corresponding plate of photos is provided in Plate 2.1. Following reproduction from
seed (Figure 2-5a), young S. supranubius are cone shaped (Figure 2-5b). Over time
the shrub expands both horizontally and vertically to become hemispherical in shape
(Figure 2-5c). Eventually most shrubs collapse outwards (Figure 2-5d), perhaps
because of the increased strain placed on the central stem as the shrub continues to
expand. Total collapse is typified by the formation of a complete or partial ring
structure (Figure 2-5e) whereby the main stems run horizontal to the ground producing
upright vegetation some distance from the centre. The collapse stage is critical for
clonal reproduction as it positions the branches in contact with the ground. Once an
individual has collapsed and formed a ring it is unclear how long it takes for clonal
outliers to be produced. It is apparent, however, that in many cases the ring stage is
succeeded by the production of clonal outliers (Figure 2-5f). in most cases only a few
daughter ramets are produced from each maternal shrub. Although often no taller
than individuals in the cone stage, young clonal ramets are hemispherical in shape

(Figure 2-5g).
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CHAPTER 3:DATA ANALYSIS METHODS

This chapter provides descriptions of the spatial point pattern analysis techniques that
form the basis of this thesis, namely Ripley’'s K(r) (and it's derivative, the L(r)-function)

and the pair-correlation function (g(r)).

3.1 QUANTIFICATION OF SPATIAL PATTERNS FROM THE ‘PLANT’S-
EYE’

It is well accepted that plants do not respond to average spatial structures, such as
density per hectare, but to the biotic and abiotic composition of their immediate
neighbourhood (Purves and Law, 2002). Turkington and Harper (1979) argued that
analyses of vegetation are most biologically meaningful if there is no imposed
anthropocentric scale. By using plants themselves as sampling locations, indices
based on plant-plant distances quantify the “plant's-eye view” (Turkington and Harper,
1979), assessing the spatial distribution of individuals within the local neighbourhood

of an individual plant (Murrell et al., 2001).

This section describes the techniques available to analyse the spatial pattern of
individuals within a population. The study of spatial pattern has arisen more or less
independently, and with different motivations, in several branches of science (e.g.,
geology, geography, ecology, hydrology). Consequently, the choice of analytical
techniques is overwhelming (Dale et al., 2002). Although many of the techniques are
computationally and mathematically similar, they are often shown to have differing
powers and sensitivities and can result in contrasting interpretations of equivalent
patterns (Diggle, 2003; Perry et al., 2006). Some studies have attempted to direct the
selection of techniques depending upon research objectives and/or sample design
(Fortin et al., 2002; Perry et al., 2006). It is often recommended that muitiple
techniques are employed simultaneously to avoid interpretative bias (Dale, 1999,
Perry et al., 2002, 2006). In the following text attention is paid to the use of distance

based indices in general and specifically the techniques with which this thesis is
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concerned: Ripley’'s K(r)-function (and the associated L(r)-transformation) and the g(r)-
function. These techniques provide formal measures of the density of individuals in the
neighbourhood of the average plant, providing a quantification of the average plant’s-

eye view.

Table 3-1 defines some of the fundamental concepts used in spatial pattern analysis.
The analysis of spatial patterns first became commonplace in ecological studies in the
1950s and 1960s (Perry et al., 2006). Early techniques were based on counts of
individuals within sampling units, such as quadrats (Dale et al., 2002). These are
broadly defined as area based methods. Area-based methods are, however, heavily
criticised, primarily because the detection of spatial pattern is strongly influenced by
the size of the sample unit used (Curtis and Mcintosh, 1950; Grieg-Smith, 1983).
Furthermore, area-based analyses such as block-quadrat variance and the
variance-to-mean ratio could not reveal the scales at which spatial structure is most
apparent (Mahdi and Law, 1987). Thus, while area-based methods can help
understand a pattern’s ‘first-order effects’ (see Table 3-1), they neglect information
about the distances separating individual points. The spatial correlation structure of
points describes the ‘second-order effects’ of a pattern (see Table 3-1). An
understanding of the second-order properties of a pattern is required if inferences
about the underlying mechanisms (e.g., abiotic or biotic processes) are to be made.
Over recent decades, advances in computation power and the improved ability to
manage spatial datasets has meant that mapped distributions of individuals can be
analysed, leading to a new class of analyses using distance-based measures. The
following sections describe some of the main distance-based techniques used in the
analysis of ecological spatial patterns. A complete survey of all the techniques
available is beyond the scope of this thesis, and several comprehensive texts already
exist (e.g., Dale, 1999; Diggle, 2003; Fortin and Dale, 2005; lllian et al., 2008; and the
2002 special issue in Ecography [Volume 25, Issue 5]). Information on how the
various methods compare and relate to one another is provided by Dale et al. (2002),

Fortin et al. (2002) and Perry et al. (2006).
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3.2 DISTANCE-BASED METHODS FOR THE QUANTIFICATION OF
SPATIAL PATTERN

Second-order spatial point pattern statistics describe the correlation structure among
points relative to point density (lllian et al., 2008). One of the earliest and most widely
recognised techniques is Clark and Evan’s (1954) nearest neighbour method. This
technique measures the distance separating randomly selected plants from their
nearest neighbouring plant. The mean nearest neighbour distance is compared to the
mean distance expected under CSR, with the ratio of these two values indicating the
presence and form of spatial pattern. Specifically, the ratio would be less than one,
equal to one, or greater than one (with a maximum value of 2.1491) under conditions
of aggregation, randomness or dispersion respectively. Although Clark and Evans’
technique gave some indication of the scale of the observed patterns, it could only
assess spatial structures occurring at the 1% spatial order, and is biased towards the

detection of regularity (Figure 3-1).

(b)

(a)

Figure 3-1 A limitation of Clark and Evans’ (1954) index. In both (a) and (b) the distances
between plants and their nearest neighbours are equal and will thus produce the same
distribution under the nearest neighbour analysis of Clark and Evans (1954). However, (a) and
(b) clearly demonstrate contrasting spatial patterns operating at different spatial scales.

The biotic and abiotic processes that drive a population’s spatial structure operate at
multiple spatial scales. In order to fully understand the spatial structure of a

population, analytical techniques must be capable of identifying how patterns change
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with scale. Many refinements of Clark and Evans' technique (1954) were
recommended (e.g., Cottam et al., 1953; Thompson, 1956; Davis et al., 2000; Diggle,

" nearest neighbour.

2003). These mostly suggested the use of the 2™ 3™..n
However, these techniques only assessed pattern from a random selection of
individuals. Without considering all individuals the scales of pattern identified would

depend upon local neighbourhood densities.

Nowadays the most commonly employed methods of spatial pattern analysis are
Ripley's K(r)-function (Ripley, 1976, 1981), the L(r)-function (a transformation of K(r)),
and the g(r)-function (also known as the ‘pair-correlation function' and the
‘neighbourhood density function’, Stoyan and Stoyan, 1994). Such analyses require
spatially referenced maps of all individuals within a sample plot. Analysing such data
requires computer software capable of its manipulation, especially if large datasets are
to be analysed. Over recent decades such computational power has been developed.
All three techniques are powerful tools capable of describing the second-order
structure of a spatial point pattern using information on all inter-point distances.
Consequently, these functions are able to detect mixed spatial patterns (e.g.,
dispersion at small scales and aggregation at large scales). This property is
particularly important as virtually all ecological processes operate at discrete scales
(Levin, 1992), and usually more than one process is responsible for the spatial

structure of a population.

3.2.1 DEFINITION OF K(r), L(r) AND g(r)
All three of the techniques described below are global pattern statistics providing an
indication of the density of other plants at increasing distances (r) around an average

plant (Law et al., 2009).

Ripley’s K(r)-function
Ripley’s K(r)-function superimposes circles of increasing radius r on each point. The
maximum scale of interest (rmax) is pre-defined by the user. K(r) provides the expected

number of points within distance r of an arbitrary point (without counting the focal
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point; Felinks and Wiegand, 2008). The observed distribution of points is compared
with the distribution of points expected for a spatially random pattern of the same

intensity. K(r) is defined as:

n n Jid.
k=433 \d,)

i=l j=1 wq‘

Where A is the area of the plot, nis the number of points in the study region,
d,.j measures the distance between point i and point j, /,is a counter variable
[7,d,)=1fif d;<r,and ], (d,.j) = ( otherwise], and w; is a weighting factor used
to reduce the problem of edge effects. The weight, W, for a pair of points is given by

the proportion of the area of a circle centred on the th point, with radius d,j, that lies

within the study region (Perry et al., 2006). If the circle is completely contained within

the study area, w;, = 1, otherwise it is the reciprocal of the proportion of the circle’s

circumference within the plot (Fortin and Dale, 2005; Haase, 1995; Goreaud and

Pélissier, 1999). For a completely random (Poisson) process:

2
K s rHN=m

The L(r) transformation
It can be difficult to interpret K(r) visually (Wiegand and Moloney, 2004). To stabilise
the variance and increase the ease of interpretation a square-root transformation of

K(r)-function, the L(r)-function, is often used (Besag, 1977; Wiegand et al., 2006):

K@)

L(r) =

L(r) has a value of 0 under CSR. Aggregation is indicated if L(r) > 0, whereas
dispersion is indicated if L(r) < 0 (although note that some authors use a slightly
different form of the formula which gives the reverse interpretation [e.g., Dale, 1999;

Dale et al., 2002; Stoll and Bergius, 2005]; Figure 3-2a and b).
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The g(r)-function

g(r) is directly related to K(r):

K'(r)
2w

g(r)=

where K'(r)is the derivative of K(r). The g(r)-function (hereafter g(r)) is calculated

by replacing the circles used in the calculation of K(r), with rings (Figure 3-2c). Thus,
instead of counting the number of points within circles of radius r, g(r) counts the
number of points at distance r away from the focal point. As with K(r), the observed
distribution of inter-point distances is compared to the distribution of distances
expected for a spatially random pattern of the same intensity. Under CSR g(r) = 1. If
g(r) > 1 then pairs of plants are more frequent at distance r than expected under CSR,
indicating aggregation. If g(r) < 1, then pairs of plants are less frequent at distance r
than the spatial average distance, indicating dispersion (Law et al., 2009; Figure 3-2¢

and d).

The calculation of g(r) requires a technical decision on the width of the rings. Ring
widths that are too small will produce jagged plots as there will be too few points
falling within each distance class (Figure 3-2e and f). This may lead to erroneous
interpretations of aggregation and/or dispersion. However, increasing the ring widths
too much will remove the advantage of isolating specific distance classes (Wiegand
and Moloney, 2004). Wiegand (pers. comm.) recommends that several ring widths

are trialled and the smallest ring width that produces a smooth plot is selected.
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Figure 3-2 The quantification of spatial pattern using, (a) and (b) L(r) and, (c) and (d) g(r). The

effects of different ring widths on g(r) are shown in graphs (e) and (f) which use ring widths of

1 m and 4 m respectively. The black lines on graphs (b), (d), (e) and (f) show the values of the

empirical functions, whereas the grey lines show the values of approximately 99% Monte Carlo
simulation envelopes constructed from the 5™-highest and 5™ lowest value of 999 simulations of
the CSR null model. The data underlying figures (b), (d), (¢) and (f) are taken from Chapter 5.
Specifically they display and analyse the point pattern of all S. supranubius individuals in the 5"

replicate at an extent of 1 ha on Substrate 2 (see Chapter 5 for more details).
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Both K(r) and L(r) are cumulative functions. Thus measurements made at small
values of r will be incorporated into measurements made at larger values of r (Getzin
et al, 2006). Because of this memory effect, both K(r) and L(r) can confound
structures at large scales with structures at smaller scales. This can severely
complicate interpretation (Getzin et al., 2006). Most notably, the ability of K(r) and L(r)
to identify processes at large scales may be impeded, especially if small-scale
patterns are strong. For example, the effect of small-scale aggregation may still be
apparent at larger scales, leading to the misinterpretation of clustering over longer
distances than operate in reality (Wiegand and Moloney, 2004). Consequently, K(r)
and L(r) may not be ideal choices for exploratory analysis, especially if several
independent processes may be influencing the population's spatial structure. In
comparison, g(r) is easier to interpret (Law et al., 2009). However, despite the relative
benefits of g(r), it has been less frequently applied in the contemporary ecological

literature (see Section 1.3.4).

The following sections describe some of the major features of spatial pattern analysis
before providing a description of the calculation of the indices in the grid-based
software Programita, which is used in Chapters 5 — 7 (Wiegand and Moloney, 2004).
Specific details of analytical settings are provided in the subsequent chapters. The
following sections focus on the analysis of point data. Techniques for the analysis of

objects are described in Chapter 6.

Null models

Spatial patterns can be compared to null models of spatial processes, enabling
researchers to test biological hypotheses. The most common null model is CSR,
although alternative null models may be defined. The selection of a suitable null
model is a critical step if misinterpretations and incorrect biological conclusions are to

be avoided (Diggle, 2003).
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Simulation envelopes

The ‘significance’ of an observed pattern is usually assessed by comparing the
observed data with Monte Carlo simulations of the processes underlying the spatial
null model. Each Monte Carlo simulation generates a test function (g(r) or L(r)).
Approximate n(n+1) x 100% simulation envelopes can be constructed from the highest
and lowest values (at each scale r) of n simulations of the null mode! (Bailey and
Gatrell, 1995). A more accurate approach constructs simulation envelopes from the
5M_highest and 5"-lowest values of the simulations of the function (Wiegand and
Moloney, 2004). Departure from the null model is indicated if the empirical function
lies outside the simulation envelopes. It is stressed that this technique does not
provide a formal estimate of the statistical significance of an observed pattern, as
Type | error rates are underestimated (Loosmore and Ford, 2006). Nevertheless,
Monte Carlo envelopes provide an indication of the likelihood of an observed pattern.
Monte Carlo simulations of the null model are used in subsequent chapters, although
their interpretations are reinforced with additional analyses. In the subsequent
chapters Monte Carlo simulation envelopes are constructed from the 5"-highest and
5™M_lowest value of 999 simulations of the null model to try to reduce the likelihood of
making Type | errors. Increased sample sizes produce narrower simulation envelopes
(Wiegand, 2004). Therefore, it is possible that, when comparing spatial patterns,
apparent differences in pattern significance could be due to either a real difference in
the magnitude of aggregation (for example), or a sample-size driven change in the

width of the simulation envelope (Figure 3-3).
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Figure 3-3 Sample-size driven changes in the width of Monte Carlo simulation envelopes. Two
simulations of a Thomas cluster process (rThomas(10,0.2,5)) were performed in Spatstat
(Baddeley and Turner, 2005), the first over a small area (n = 73 points; red lines), the second
over a larger area (n = 819 points; blue lines). The simulations envelopes were produced from
the highest and lowest value of 99 simulations of the CSR null model using each dataset in turn.

Edge effects

Individuals located near the edge of the sample window have fewer neighbours than
individuals located nearer the centre of the sample window. If K(r), L(r) or g(r) were
calculated from an individual near the edge of the sample window, portions of the
circles and/or rings of the function would fall outside the sample window and they
would necessarily detect a lower density of individuals than equivalent analyses
centred on points closer to the centre of the sample window. When the size of the
sample window is large relative to the scales of the analysis, relatively few individuals
are located near the edge of the sample window, and the average function should not
be greatly affected by edge effects. However, when the sample window is small
relative to the scale of the analysis a high proportion of individuals will be located near
the edge of the sample window and edge effects may influence the calculation of the
statistic. In these situations corrections for edge effect should be used. The
calculation of K(r), L(r) and g(r) includes a weighting factor that helps to account for
edge effects.
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The assumption of homogeneity

Ripley's K(r) and the derivations of this function operate under the assumption that the
density of points across the study region is constant (i.e., the point process is
homogeneous). However, in natural communities, several internal and external forces
may cause first-order intensity to vary across space. Baddeley et al. (2000)
suggested an inhomogeneous K{(r), and associated L(r) and g(r). However, it is often
difficult to determine whether processes are truly homogeneous since a particular
realisation of a homogeneous process may appear heterogeneous. The issue of

heterogeneity is considered further in Chapters 5, 7 and 8.

Calculation of indices

In Chapters 5 to 7, both L(r) and g(r) are used to analyse the spatial structure of S.
supranubius. Because of the aforementioned complications with the interpretation of
L(r), most emphasis is placed on g(r). In Chapters 5 to 7 analyses using L(r) and g(r)
were performed in the software Programita (Wiegand and Moloney, 2004). Because
of the need for modelling capabilities, analyses in Chapter 8 were performed using the
spatstat package (version 1.17-4; Baddeley and Turner, 2005) in R (version 2.10.1; R

Development Core Team, 2009).

The analytical approaches described above use all pairs of points to derive K{(r), L(r)
and g(r). These calculations are based on complex algorithms that can be
computationally intensive and time-consuming to compute, especially when large
quantities of data are used (Law et al., 2009). Programita uses an underlying grid to
simplify the computation of second-order statistics (Figure 3-4). The calculation of
point—point distances necessary for estimation of second-order statistics is then based
on distances between cells, and counting points in cells (Figure 3-4). It may be
argued that the use of grids will reduce the accuracy of pattern analyses at small
scales as information on spatial location below the size of the cell will be lost
(Wiegand and Moloney, 2004). This may introduce error into the small scale

approximation of the location of points, which has been shown in previous studies to

53



affect the performance of L(r) (Freeman and Ford, 2002). However, if grid sizes are

small relative to the size of the individuals considered, accuracy will not be lost.

Analyses in Chapters 5 to 7 use a grid size of 1 m? as this is the smallest S.

supranubius canopy area investigated (see Section 4.4).
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Figure 3-4 Implementation of (a) g(r) and, (b) L(r) in the grid-based software Programita. Graph
(a): For implementation of g(r) Programita counts the number of points inside the ring at
distance r from the focal point (i.e., the grey shaded area), and the number of cells within this
area. Graph (b): For implementation of L(r) Programita counts the number of points within a
circle with a radius r (i.e. the grey shaded area), and the number of cells within thie region.



CHAPTER 4:DATA COLLECTION: MAPPING THE SIZE AND
LOCATION OF S. SUPRANUBIUS

To address the aims of the research (Section 1.2) data on the size and location of S.
supranubius individuals over large spatial extents were required. When using such
extents, remote sensing is the only feasible option for data collection. This chapter
details the image classification techniques used to generate spatially referenced data
on the size and location of S. supranubius individuals in the Las Cafiadas caldera. In
addition, this chapter discusses the application of remote sensing technologies in

spatial ecology studies, with specific reference to arid ecology.

This chapter is divided into four sections. The first section considers the growing
importance of remote sensing in ecological studies and the potential difficulties
surrounding its use in arid environments. This section also discusses the data source
used in this thesis. The second section considers methods of image classification and
introduces classification by support vector machines, specifically one-class
classification by support vector data description. The third section details the
extensive cross-validation used to determine the optimum classifier structure for
analysis of the current imagery. In the final section methods of image post-processing
are detailed and the optimum classifier is used to produce one-class maps of the
distribution of S. supranubius on five contrasting substrates in the Las Cafladas

caldera.

41 ECOLOGICAL APPLICATIONS OF REMOTE SENSING

Although ecological studies at all spatial extents remain important, the ability to
conduct ecological studies at broad extents has arisen in part from advances in
technology (Foody, 2007), in particular the increasing availability and utility of remote
sensing and geographical information systems (GIS). Through the acquisition and
interpretation of aerial and satellite images, remote sensing is able to provide
ecologists with information on the Earth's surface and environment, whereas GIS

provides a means to store, visualise and analyse the data generated (Foody, 2007).

55



Remote sensing is routinely used to produce thematic maps of land cover. Depending
upon the spatial resolution of the imagery, these thematic maps can provide
information ranging from the location of vegetation assemblages, to the location of
specific species, and sometimes individuals. There is a long history of studies using
aerial photography to classify, delineate and map broad vegetation types (e.g., Wilson,
1920; Tiwari and Singh, 1984; lbrahim and Hashimi, 1990; Turner et al., 1996,
Huebner et al., 1999; Fensham et al., 2002; Mullerova, 2004). Furthermore, aerial
photographs have been instrumental in discovering vegetation organisations not
observable from the ground, such as the discovery of spatially periodic vegetation
patterns in arid and semi-arid ecosystems (MacFadyen, 1950; Clos-Arceduc, 1956;

cited in Couteron, 2002).

Aerial photographs are one of the only information sources extending back into the
20" century, with many areas photographed as early as the Second World War
(Verheyden et al., 2002; Okeke and Karnieli, 2006). This provides an unparalleled
opportunity to study medium- to long-term temporal vegetation dynamics with minimal
time and financial input (e.g., Ambrose and Bratton, 1990; Jacobson et al., 1991;
Tanaka and Nakashizuka, 1997; Huebner et al., 1999; Kadmon and Harari-Kremer,
1999; Wu et al, 2000; Fujita et al., 2003). Furthermore, the availability of
high-resolution imagery (particularly from airborne platforms) is increasingly allowing
users to locate, identify and monitor the dynamics of individual plants and populations.
Despite the potential utility of remote sensing, however, its application in ecological
studies remains limited (Newton et al., 2008). This could be attributed to concerns
over the accuracy with which the technique is capable of identifying vegetation cover
types and individual species, financial limitations, or a lack of awareness of remote

sensing techniques and their capabilities.

The surface characteristics and structure of an object determine its reflectance.
Different land covers usually have distinct spectral characteristics displayed in the
ratio of red, green and blue wavebands. Most historical aerial images are

monochromatic and, as such, many studies have employed grey-level threshholding
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to discern floristic compositions. However, by expressing all visible wavelengths in
grey tones, the spectral distinctiveness of different species is reduced. Thus many
studies have been limited to identifying phytosociological groups of species (e.g.,
‘tree’, ‘shrub’ and 'herbaceous’) instead of individuals (e.g., Carmel and Kadmon,
1998; Hudak and Wessman, 1998; Kadmon and Harari-Kremer, 1999; Sharp and
Whittaker, 2003; Laliberte et al., 2004; Briggs et al., 2007), or studying easily
separable (often dominant) species (e.g., Goslee et al., 2003; Leckie et al., 2003).
Realistically, classifications based upon grey values alone are merely mapping
changes in image intensity (i.e., vegetation density) and inferring changes in
vegetation class, which can result in many errors of omission and commission (Goslee
et al., 2003). Colour photography provides greater between-species spectral
discrimination. Using various measures of pixel colour, brightness and intensity,
Meyer et al. (1996) and Leckie et al. (2003) were able to use semi-automatic analysis
to identify four and six tree species respectively. The accuracy of automatic
identification from colour photography depends upon species’ spectral uniqueness
(i.e., low within-species variation and high between-species variation in spectral
responses) (Mullerova, 2004). Variations in crown structure (shading effects), crown
density (background materials) and differing visibility of tree components (twigs,
needles, leaves, branches) can all increase the within-species spectral variability,

potentially reducing the accuracy of automatic identification (Meyer et al., 1996).

4.1.1 REMOTE SENSING AND ARID ECOLOGY

Aerial photographs covering large spatial and temporal extents provide an exciting
opportunity to monitor the dynamics of slow-growing arid shrubs. Several studies of
arid systems have employed digital imagery analysis to investigate the dynamics of
woody vegetation encroaching into savannah grasslands (Hudak and Wessman,
1998; Sharp and Whittaker, 2003; Laliberte et al., 2004; Briggs et al., 2007). The
sparse and structurally simple vegetation of arid regions means that the canopies of

individual plants are often clearly discernable, making the delimitation and
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identification of individuals easier than in less dispersed communities. It is therefore
surprising, perhaps, that more studies have not used aerial photographs to investigate
the demography and dynamics of arid shrubs. However, despite offering a seemingly
simple canvas, several attributes typical of arid landscapes and vegetation can limit

the accuracy of image classification, even when high resolution imagery is available.

Substrate spectral qualities

The accurate retrieval of pixel-based information is influenced by the nature of the
substrate. With low organic matter content, desert soils tend to be bright. Therefore,
the spectral qualities of the soil may interfere with the spectral contribution of the
vegetation, especially when pixels are large (Okin and Roberts, 2004). This may
result in the mis-classification of vegetation as substrate, especially when vegetation

cover is sparse.

Evolutionary adaptations of desert plants

Because of the intense radiation they experience, many desert plants have evolved
several morphological and physiological adaptations that can have a marked effect on
their spectral reflectance. For example, because of the high water and energy
demands of producing new leaves, many desert plants reduce leaf surface area, or
avoid leaves altogether, moving photosynthesis to stalks and stems (Okin and
Roberts, 2004). Many desert plants have highly reflective spines or hairs encasing
their stems (Sandquist and Ehleringer, 1998). These are designed to further reduce
evapotranspiration by reflecting radiation and creating a still-air layer around
photosynthetic organs. Furthermore, because of the high concentration of ambient
photosynthetically active radiation, many desert plants maintain low chlorophyll

concentrations in their leaves and stems.

Highly reflective organs and reductions in plant biomass can greatly reduce the per-
pixel spectral contribution of vegetation (Ehleringer and Mooney, 1978; Okin and

Roberts, 2004). Highly reflective vegetation may be difficult to distinguish from the
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typically bright and reflective soils of arid regions. Further, with numerous arid species
adopting these techniques, different species may be spectrally similar. For example,
when using field reflectance spectra Okin et al. (2001) found that the desert shrubs
Atriplex polycarpa (Torr.) S. Wats. (Chenopodiaceae) and Larrea tridentata (DC)

Colville (Zygophyllaceae) were spectrally alike.

Intra-specific spectral variability

The spatial and temporal heterogeneity of resources in deserts can produce parallel
heterogeneities in intra-specific plant morphology (Okin and Roberts, 2004).
Event-driven demographics may mean that individuals of the same species may
exhibit highly variable spectral qualities across space and through time.
Consequently, a priori knowledge of the spectral qualities of species during different
phenological stages may be an important tool for arid species identification (Karnieli et
al., 2002). In addition to event-driven phenological changes, arid plants are known to
undergo temporally sequential morphological changes. For example, Atriplex
hymenelytra (Torr.) S. Wats. (Chenopodiaceae), found in the hot deserts of Mexico
and the southwestern USA, changes its leaf characteristics (surface area) in time with

the seasons in an apparently adaptive manner (Mooney et al., 1977).

Perhaps because of the difficulties surrounding image interpretation of arid vegetation,
relatively few studies have used the technique to map and investigate the dynamics of
arid shrubs. However, with recent improvements in both spectral and object-
orientated image classification techniques, several studies have been able to locate
and quantify attributes of individual plants (Couteron, 2001; Strand et al., 2006;
Malkinson and Kadmon, 2007). However, these studies typically only consider a small
area of a species’ range. By combining improved image classification techniques and
high resolution imagery with pattern—process inference (see Section 1.3.3), ecologists
are now ideally placed to investigate the dynamics of arid shrubs. In addition to this
theoretical opportunity, aerial imagery analyses have practical benefits.  Arid

ecosystems are often some of the most inhospitable and inaccessible regions of the
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world, so field-based investigation of communities can be both expensive and

physically demanding.

4.2 IMAGE CLASSIFICATION

A three waveband (red, green and blue) image of the Las Cafiadas caldera was
obtained from Grafcan Plc. This imagery was captured on the 31 of December 2006
using a Wild RC-30 camera and provides high resolution, with pixel widths of 0.26 m.
Imagery was obtained for the Parador colluvium, and the Majua, Arenas Blancas,
Moiditana and Conejos lava flows (Substrates 1 to 5§ respectively, see Section 2.3.2).
Other than geo-rectification in Erdas Imagine 9.1, no pre-processing of the image was

necessary.

Deriving data from remotely sensed images requires the image to be classified.
Image classification aims to categorise all the pixels in a digital image into one of a
number of classes. This categorisation can then be used to produce thematic maps
detailing the spatial distribution and extent of a particular class of interest. This

chapter applies the most common classification technique: spectral classification.

Spectral classificaton can be manual or computer-aided. Although manual
interpretation has been shown to produce accurate distribution maps of species
(Driscoll and Coleman, 1974; Myers and Benson, 1981: Trichon, 2001; Trichon and
Julien, 2006), the technique has been criticised for two main reasons. Firstly, manual
photo-interpretation lacks objectivity and consistency in measurement approach.
Secondly, manual interpretation is labour intensive, increasing research costs and
often limiting analysis to the consideration of either coarse vegetation structures over
broad areas, or detailed structure (i.e., individuals) over small extents (Kadmon and
Harari-Kremer, 1999; Mullerova, 2004). Furthermore, the success of manual photo-
interpretation is largely determined by the familiarity of the researcher with both the
technique and the area being studied, and therefore may be highly subjective and

non-transferable (Driscoll and Coleman, 1974).
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In contrast, automated techniques are non-subjective, transferable, efficient and
capable of producing classification accuracies in excess of 80% (Meyer et al., 1996;
Carmel and Kadmon, 1998; Kadmon and Harari-Kremer, 1999; Pouliot et al., 2002;
Mullerova, 2004). Automated spectral classifications either categorise pixels by their
spectral similarity (unsupervised) or allocate pixels to classes based on their similarity
with pre-defined spectral responses defined by the user (supervised) (Foody, 2002).
Supervised spectral classification is by far the most commonly applied technique in

image classification.

Supervised classification comprises three distinct stages: training, allocation and
testing. In the training stage, a quantitative description of the spectral characteristics
of each class of interest is generated. Using this information each pixel in the image is
allocated to the class with which it has the highest spectral similarity. Finally, the
accuracy of the final classification is assessed. To avoid over-estimating classification
accuracy, the testing stage should use a sample of pixels not used to train the
classifier (Foody and Mathur, 2004). The accuracy of the classification is dependent
upon the appropriateness of training data and the precise classification algorithm
selected. Consequently, much research has focused on optimising these two stages.
Achieving a high performance and transferable classifier is challenging. Specifically,
the selection of training data (dataset size, composition and sampling design) and
classifier algorithm are usually interdependent (Mathur and Foody, 2008), and often

influenced by the research questions being addressed.

One of the most commonly applied supervised techniques is the maximum likelihood
(ML) classifier (Huang et al., 2002). The ML classifier is parametric, and as such
requires an exhaustive quantitative description of the spectral characteristics of each
class in the image. Furthermore, the classes must be spectrally discrete and mutually
exclusive (Foody, 2004). Resulting classifications may be spurious if these conditions
are not met. ML classification requires large training datasets to ensure any variation
in the spectral response of a class is fully described. It is often suggested that 30

independent training cases per class per waveband are needed to form a
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representative training dataset, with a ‘the larger the better' attitude often held
(Mather, 2004). All classes within the image must be included in the training stage of
the analysis (Foody et al., 2006). Standard supervised classifiers, such as ML, will
typically seek to optimise the classification accuracy of all classes within the image
even though researchers are typically only interested in the accurate classification of a
single class of interest. Thus conventional classifiers are largely inefficient, and may
produce poor classification accuracies. Several classification techniques have been
developed that significantly reduce the effort required during training. This thesis
considers classification by support vector machines (SVMs) which have been shown

to be at least as accurate as other widely used techniques, if not more so.

4.21 SUPPORT VECTOR MACHINE (SVM) CLASSIFICATION
The principles of SVMs were established in the 1970s by Vapnik and Chervonekis’

(1971) theories of statistical machine learning. The SVM algorithm was later
developed by Vapnik (1995). SVM classifiers have been used in handwritten digit
recognition (Gorgevik and Cakmakov, 2005), face detection (Osuna et al., 1997), text
categorisation (Manomaisupat et al., 2006), signal recognition (Fagerlund, 2007) and
automated animal species identification by sound (Acevedo et al., 2009). However,
the potential of SVM in remote sensing has only recently been realised (Chapelle et
al., 1999; Huang et al, 2002; Zhu and Blumberg, 2002; Pal and Mather, 2005).
Comparative studies have shown that classification by a SVM can produce
classifications that are at least as accurate as those from techniques such as
maximum likelihood, neural networks and decision trees (Huang et al., 2002; Camps-
Valis et al., 2004; Melgani and Bruzzone, 2004; Pal and Mather, 2005; Mufioz-Mari et
al., 2007; Sanchez-Hernandez et al., 2007; Dixon and Candade, 2008; Guo et al.,
2008). SVMs were designed for the binary separation of two classes, although the
technique can be extended to multi-class scenarios (Huang et al., 2002). A detailed
explanation of SVM can be found in Vapnik (1995). The salient features are

discussed below.
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SVMs provide a non-parametric boundary classification technique. Consider a
situation in which there are two spectral classes whose values do not overlap (i.e.,
they can be easily separated by a linear plane): the class of interest and another class
representing everything else in the image that does not belong to the former class.
Each class occupies a unique location in n-dimensional feature space. For each of
the r training cases there is a vector x; that represents its location in feature space
along with a definition of class membership, y. Using the training data represented
by {x,, Y },i =1...r, y, € {1,—1}, an optimal separating hyperplane (OSH) is defined
that divides the two classes (Foody and Mathur, 2006). The image can then be
classified using the position of each pixel in relation to the OSH to determine which
class the pixels should be allocated to. Theoretically several hyperplanes could be
fitted, but only one OSH exists. The OSH is expected to generalise well when applied

to unseen data requiring classification (Foody and Mathur, 2006).

Optimum separation is achieved by focusing on the data points located at the
boundary of each class's distribution in feature space (so-called ‘support vectors').
The support vectors of the two classes lie on two hyperplanes (H; and H, in Figure
4-1). The OSH lies equidistant between the two hyperplanes such that ali the samples
of a class are on one side of it and the distance from the OSH to the training cases in
both of the classes is as large as possible (Foody and Mathur, 2006; Figure 4-1a).
Support vectors are the critical elements of the training dataset. If all other training
points were removed or changed location, and the training was repeated, the same
separating hyperplane would be created. Thus whereas other non-parametric
classification techniques often require large training datasets (Hubert-Moy et al.,
2001), SVM classification is able to achieve high accuracies from a very small training
dataset comprising of a few support vectors. Mathur and Foody (2008) have shown
that by intelligently selecting training samples predicted to lie on the edge of a class’s
spectral distribution, SVM classifiers can achieve high accuracy (~91%) with only very

small training samples (see also Foody and Mathur, 2004).

63



(@ (b)

Figure 4-1 Support vector machine (SVM) classification for (a) linearly separable classes and,
(b) non-linearly separable classes. The optimal separating hyperplane is shown as a solid line.
The boundary hyperplanes for each class are shown as dashed lines. Circled cases are

support vectors.

The above description applies when dealing with linearly separable classes (cf. Figure
4-1b). However, datasets are rarely linearly separable. More often classes overlap in
feature space. As such both classes will have a high proportion of outliers (i.e.,
training samples on the ‘wrong side’ of the linear hyperplane). In these situations it is
possible to distinguish non-linearly separable classes (Figure 4-1b) by applying kernel
functions. Kernel functions map the training data into a higher dimensional space
where a linear learning machine can be applied (Figure 4-2). Kernels have several
parameters that must be pre-defined by the user. The accuracy with which a SVM
classifies is largely dependent upon these parameters; however, there is very little
guidance in the literature on the criteria to be used to select the optimum kernel and
parameter values (Pal and Mathur, 2005). The most commonly used kernels are the
Gaussian radial basis function and the polynomial kernel. More information on these

and other kernels is provided in 4.3.2.
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Figure 4-2 Classifying non-linearly separable classes using kernels. Re-mapping data to a
higher dimension via a polynomial kernel function can make the data more easily separable.
Figure (a) shows two sets of data that are easily separable by a linear classifier (dashed line)
whereas in (b) they are not. If the data in (b) are re-mapped at a higher dimension (quadratic in
this case) they may be more easily separable (c).

In the above examples, training data from two classes are used: the class of interest
and another class representing everything that does not belong to the former class
(Foody et al., 2006). However, it is possible to adapt the technique to a one-class
classifier (OCC), requiring only data on the class of interest. ~OCCs have
demonstrated considerable utility in many applications including ecological modelling
(Guo et al., 2005; Drake et al., 2006; Kelly et al., 2007), document classification
(Zhuang and Dai, 2006; Manevitz and Yousef, 2007), facial expression recognition
(Zeng et al., 2006) and machine diagnostics (Shin et al., 2005). Although they have
great potential in remote sensing, OCCs have been little used (but see Sanchez-

Hernandez et al., 2007). OCCs can use a variety of analytical approaches, including
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reconstruction methods, density methods and boundary methods (Sanchez-
Hernandez et al., 2007). Using the principles of SVM, Tax (2001) was able to create
an OCC that employs the boundary method and so requires relatively few training
data. This technique, the support vector data description (SVDD), is ideally suited to

remote-sensing applications.

4.2.2 ONE-CLASS CLASSIFICATION (OCC) BY SUPPORT VECTOR DATA
DESCRIPTION (SVDD)

Support vector data description (hereafter referred to as SVDD) is a boundary method
OCC based on the principles of the support vector machine (SVM) (Tax, 2001; Tax
and Juszczak, 2003; Tax and Duin, 2004). In the following text the basic operation

and main features of SVDD are discussed.

In SVDD classification a closed n-dimensional sphere (hereafter referred to as a
hypersphere) is fitted around the training data, separating the class of interest from all
other classes. The hypersphere can be described as having centre a and radius R
(Figure 4-3). The hypersphere can be constructed using only the spectral data for the
class of interest (hereafter referred to as the target data). SVDD aims to find a
hypersphere of minimal volume containing all or most of the training data. Knowing
the location of the centre of the hypersphere, a, and the hypersphere’s radius, R, it is
a relatively simple task for the classifier to test whether a new case (i.e., pixel) belongs
to the class of interest (Foody et al., 2006). The distance of a new pixel, z, to the
centre of the hypersphere is calculated. The pixel will be allocated to the class of
interest when this distance (z) is smaller than or equal to R. Because a closed
boundary is placed around the data, only those data points that lie on the edge of the
hypersphere (the support vectors) are used in defining the classifier (Figure 4-3).
Thus, as with SVM classification, SVDD has the advantage of needing very few data
during training and does not rely on restrictive assumptions regarding data distribution.
For instance, the example data plotted in Figure 4-3 are described by only five support

vectors.
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Figure 4-3 Classification using support vector data description (SVDD) and hyperspheres. A
hypersphere is fitted around the class of interest; objects shaded grey are support vectors. The
black object is classified as an outlier as it falls outside the hypersphere.

As with a standard SVM classifier, the SVDD can be extended to allow for non-linearly
separable cases by mapping the data to a higher dimension using kernel functions.
The hypersphere is a very rigid model and will generally provide a poor description of
the target data (Tax and Juszczak, 2003). By applying kernel functions and varying
the parameter values, it is possible to improve the fit between the hypersphere and the
actual boundary of the data. The kernels and parameter values considered in this

research are discussed in 4.3.2.

The SVDD requires only target training data. However, when data on outlier objects
are available (i.e., pixels that do not belong to the class of interest), they can be
incorporated into classifier training to improve the model description. By using two
feature classes (target and outlier) the decision boundary is supported from two sides
allowing a tighter boundary around target data to be calculated (Tax, 2001). As with
SVM classifiers, two boundaries will be calculated to describe the distributions of the
target and outlier data. The optimal hypersphere will be located equidistant between
these boundaries. When large, representative samples of both the target and outlier
data are available, a conventional two-class classifier may out-perform the SVDD
(Tax, 2001). The SVDD is preferred when the outlier data are poorly sampled or

unavailable. More detail on the incorporation of outlier data is given in 4.3.2.
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4.3 CREATING THE S. SUPRANUBIUS SVDD CLASSIFIER

The stages involved in the classification of imagery in this thesis are detailed in Figure

4-4.
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4.3.1 STAGE ONE: COLLECTING TRAINING AND TESTING DATA

For accurate classification, a reliable sample of the spectral characteristics of pixels
belonging to the classes of interest must be provided. Although larger sample sizes
may provide a more comprehensive account of the spectral characteristics of the
class, collecting such data can be time consuming. It is usually suggested that a
minimum sample size of 30p is collected per class, where p is the number of features
(i.e., spectral bands; Mather, 2004). In the present analysis this corresponds to a
minimum sample size of 90 pixels for both the target and outlier classes. Total sample
sizes of 771 and 890 were collected for the target and outlier classes respectively.
Summary statistics of the target and outlier data coliected are shown in Table 4-1.
From each dataset, 250 pixels were randomly selected (stratified: 50 pixels selected
from each substrate) to create an independent testing dataset with which to assess
the accuracy of the classifiers. The remaining data were used to train the classifiers,
although, as explained below, only a subset of the remaining data were used to train

the outlier class.

Target data

The geographical locations of 301 S. supranubius individuals were recorded during
fieldwork in December 2007. Individuals were recorded from randomly located
60 x 6 m transects as well as opportunistically. Locations were logged on a hand-held
GPS receiver (ProMark3) allowing the reading to stabilise for a minimum of
25 seconds. GPS recordings were taken as close to individual's rooting points as
possible, although the sheer size and density of some individuals meant this was not
always within two metres. The locations of individuals on the transects were also

recorded using Cartesian co-ordinates (Figure 4-5).
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Figure 4-5 lllustration of the collection of target data (S. supranubius) from 60 x 6 m transects
(axes not to scale). GPS and Cartesian location of individuals were taken if part of their canopy
fell within the transect, or if their canopy merged with an individual within the transect.

The locations of the surveyed S. supranubius individuals were digitised and overlaid
on the digital aerial imagery in ArcMap. Inspection of the data revealed unacceptable
non-systematic error in the GPS readings when both the internal and external aerial
were used. Consequently the readings were adjusted by converting the Cartesian
recordings to @ Mercator grid (i.e., polar to rectangular co-ordinate conversion). This
procedure could only be used on those individuals where the Cartesian locations were
recorded, removing all opportunistic data from the analysis. It is important that no
data belonging to other classes (hereafter referred to as ‘outliers’) are inadvertently
incorporated into the target training data. For the purposes of this analysis, outliers
are pixels belonging to anything other than healthy S. supranubius individuals. Thus
only the locations of healthy individuals (i.e., those with a dense canopy) were

digitised. Individuals recorded as ‘dead’, ‘dying’ or as having a ‘sparse canopy' were
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not digitised and were not used in the generation of the target data. Similarly, S.
supranubius individuals with other species growing within or surrounding their canopy
(mixed spectral responses) were excluded to prevent contamination of the training
data with species other than S. supranubius. Removal of these individuals left 143
positively identified healthy S. supranubius from which to create the target data set.
The spectral responses (red, green and blue values) of pixels within each individual
were recorded and compiled into a target dataset. Pixels were selected from
throughout the canopy to prevent the creation of an artificially small data description
(hypersphere) which may result from always selecting pixels from (e.g.) the centre of
the canopy. The target data were augmented with data taken from S. supranubius
individuals in the area surrounding each transect if they could be positively identified
from the imagery. This avoided sampling too heavily from any one individual which

may bias the data collected.

Statistical analyses (details below) were performed to determine whether there was
any spatially systematic variation in the spectral responses of the S. supranubius
individuals. Spatial variation in classification accuracy is common, although frequently
not acknowledged (Foody, 2005). If marked spatial variation in the spectral response
of S. supranubius existed, training a classifier on cases from across the site is likely to
produce a high-volume hypersphere. When applied to unseen imagery, such a
classifier would be likely to produce frequent misclassification errors, over-estimating
the extent of the target class (i.e., false positive classification [commission] errors).
The intra- and inter-substrate variation in S. supranubius spectral response was
investigated. Because of violation of the normality assumption, all statistical analyses
were non-parametric. The analyses were augmented with Cohen’'s d statistics to

assess the practical significance of spectral differences. Cohen’s d is given by
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where x and s are the mean and standard deviation of groups 1 and 2. Cohen
(1988) provided rough guidelines for interpreting d: values between 0.2 and 0.5
represent a small effect size, values between 0.5 and 0.8 a medium effect size, and

values greater than 0.8 a large effect size (d can exceed 1).

Analysis of the intra-substrate (i.e., between transects) spectral responses by Mann-
Whitney U tests (Appendix B) suggested statistically and practically significant within-
substrate spatial variation in the spectral response (red, green and blue) of S.
supranubius on Substrates 2 and 3. Spatial variation in the spectral of S. supranubius
in the green and blue colour bands was detected on Substrate 1 (Appendix B).
Substrate 4 showed no spatial variation in spectral response, although only two
transects were analysed. Analyses could not be performed on Substrate 5 as data

were only collected from one transect.

Kruskal-Wallis analyses revealed significant differences in the substrate-specific

spectral responses of S. supranubius on all three colour bands (R: y’= 28316,

p<0.001; G y*=34.180, p <0.001; B: y*=37.751, p < 0.001 [3 d.p.], critical level

reduced to 0.005 using Bonferroni correction). Assessing the pairwise differences
with Mann-Whitney U-Tests suggests that the spatial variation in S. supranubius
spectral response is not constant across the three wavebands (Tables 4-2). However,
with large samples, especially when variances are small, statistically significant

differences may be reported when little practical or theoretical difference exists.
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Tables 4-2 Comparison of substrate-specific spectral responses of S. supranubius on the (a)
red, (b) green and, (c) blue wavebands respectively. Differences in mean spectral intensity
values ranging from 0 to 255 (column minus row). ** difference significant at the 0.001 level, *
difference significant at the 0.05 level (pairwise Mann—-Whitney U-tests). All values reported to
2d.p.

Substrate 1 2 3 4 5
1 -

2 -3.86* -

3 -6.89** -3.03 -

4 2.79 6.65** 9.68** -

5 -0.85 3.01 6.04" -3.64 -
(a) Red

Substrate 1 2 3 4 5
91 -

2 1.13 -

3 -4.10 -5.23 -

4 -4.89** 3.76 11.99 -

5 3.23 210 7.33 -1.66 -
(b) Green

Substrate 1 2 3 4 5
1 -

2 489 -

3 3.10 -1.78 -

4 8.42™ 3.54 5.32 -

5 4.56** -0.32 1.46 -3.86* -
(c) Blue

Spatial variations in the spectral response of S. supranubius are strongest at the local
scale and more spatially consistent at broader (i.e., substrate) scales. Spectral
variation at the local scale may result from the shading effects of local topography, or
localised variation in canopy colour. Without producing location-specific classifiers for
individual areas of the field site, it is not possible to incorporate spectral variation at
the local scale into the classification procedure. There are few consistent statistical
differences in the spectral signature of S. supranubius on the different substrates, and
almost no practical differences. In terms of the SVDD classifier this means that the

position and volume of the hypersphere around the target data is relatively consistent
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between substrates. Therefore, assuming the target data are spectrally separable
from the outlier data, a single classifier trained on target data from all five substrates
should be suitable for the classification of all substrates. The training dataset for the
target class (S. supranubius) was created from the red, green and blue values of

pixels (n = 521) belonging to S. supranubius canopies from all five substrates.

Outlier data

Recent research has shown that the intelligent selection of target training data
believed to lie at the boundary of the data distribution can improve classification
accuracy (Foody and Mathur, 2004; Mathur and Foody, 2008). It seems reasonable to
suggest that when applying an SVM as a binary classifier, the intelligent selection of
training cases from the outlier class could also influence classification accuracy. The
optimal separating hypersphere will be located such that the distance to training cases
of both classes is maximised. Thus if outlier training cases are spectrally dissimilar to
the target training cases the SVDD will produce a higher volume hypersphere than if
the outlier training cases were spectrally similar to the target cases (Figure 4-6). The
hypersphere produced in the latter case will have greater generalisation ability than

the former data description, which may misclassify outlier pixels as target.

(a) (b)

Figure 4-6 Intelligent training of outlier datasets for image classification. When outlier datasets
are selected such that they are spectrally similar to the target data a higher generalisation ability
is achieved (a) than when spectrally dissimilar outlier training cases are used (b).
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S. supranubius may be expected to be most spectrally similar to other leguminous
shrub species, notably Adenocarpus viscosus. Thus four dataset combinations were
devised. All four used the same target training data. Dataset A used no outlier
training data, whereas datasets B, C, and D used outlier training sets composed of

substrate pixels, A. viscosus pixels, and all outlying classes (substrate and other

species) respectively.

The A. viscosus training data (Dataset C) were collected by digitising the locations of
positively identified A. viscosus individuals and randomly selecting and recording the
spectral responses of pixels within their canopies. The quantity of outlier data
collected was deliberately restricted so that classification effort was focused on the
class of interest (S. supranubius). Following Sanchez-Hernandez et al. (2007), the
quantity of outlier and target training data were maintained at a ratio of 1:3. Thus with
521 target training cases, 174 outlier training cases were used, with the exception of
the A. viscosus outlier training dataset which comprised only 65 cases as only a few
positive identifications and GPS recordings of these individuals were collected in the
field. The spectral characteristics of each outlier training dataset are summarised in

Table 4-3.

Table 4-3 The spectral characteristics of the outlier training data (mean[stdev]) in each of the
four datasets. Dataset A used no outlier training data, whereas datasets B, C, and D used
outlier training sets composed of substrate pixels, A. viscosus pixels, and all outlying classes
(substrate and other species) respectively.

Red Green Blue
Dataset A - - -
Dataset B 153 (28) 127 (27) 95 (25)
Dataset C 113 (16) 99 (17) 65 (17)
Dataset D 146 (30) 121 (29) 90 (27)

To assess the spectral separability of the target and outlier training classes in each
dataset the Bhattacharyya distance (B-distance) was calculated. The B-distance

measures the similarity of two discrete probability distributions and is commonly used
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to assess the separability of classes during classification (Schmidt and Skidmore,

2003). Larger B-distances indicate greater separability. The B-distance is defined as:

_%[M_ﬂ i {znzz} 11— 4 2] | G1+32)/2

1/|21||22|

where g, and Xl are the mean vector and the covariance matrix of class 1. The B-

distance is closely related to the probability of accurate classification. There are no
predefined thresholds for the degree of class separability represented by B-distances.
Therefore, only the relative separability of classes can be assessed. The B-distance
of each of the three outlier training datasets from the target training data set was
calculated using the Bhattacharyya tool in Matlab (Cao, 2008). B-distances of 2.037,
1.0373 and 1.4294 were obtained for the separability of the target training data from
the substrate only, A. viscosus only, and mixed outlier training data sets respectively.
As anticipated the outlier dataset comprising the spectral responses of A. viscosus
individuals only was the least separable from the S. supranubius class. Although the
classification accuracy provided by all three outlier datasets was assessed, it was
hypothesised that classifiers trained on the A. viscosus outlier data would provide the

highest accuracy.

4.3.2 STAGE TWO: CLASSIFIER TRAINING AND ALLOCATION

To ensure maximum classification accuracy was achieved, the performances of
several classifier models were assessed. This section describes the classifiers that
were employed. All classifications were performed in Matlab R2007a (MathWorks,
2007) using the dd_toolbox (Tax, 2008). SVDD classification accuracy is largely
determined by the selection of suitable kernels and parameter values (Ali and Smith-
Miles, 2007). The literature provides littie guidance on the selection of appropriate
kernel functions and parameters. Most commonly, kernels are selected through a
process of trial and error (Ali and Smith-Miles, 2007). This thesis uses the data
intensive approach of cross-validation to determine the optimum parameters and
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kernel functions. Following Sanchez-Hernandez et al. (2007) three kernels were

assessed. These were the Gaussian radial basis function,

2
k(x,,xj) =eXp M

the polynomial kernel,
k(x,,xj): (x, X, +1)’

and the exponential kernel
k(x,,x ) =exp| ——5——

For each kernel, the value of the parameter p must be pre-defined. In the Gaussian
radial basis kernel and exponential kernel, p controls the width of the kernel, whereas
in the polynomial kernel function p determines the order of the kernel. Following
Sanchez-Hernandez et al. (2007), the performance of each kernel was assessed
using p values of 1 — 10 inclusive. In addition to p, the user can define the value of a
second parameter, C, also known as the rejection error. This parameter determines
the fraction of the target data that is allowed to lie on the ‘wrong side’ of the data
description (i.e., extreme values), and thus allows for outliers in the training samples
(Sanchez-Hernandez et al., 2007). In this way it enables the user to control the trade-
off between training error and model complexity. However, if too many target training
points are allowed to lie beyond the data description (i.e., a large C) the optimal
hypersphere will produce an over-fitted model with limited generalisation ability (Foody
and Mathur, 2006). C values of 0.1, 0.01, 0.001 and 0.0001 were used (following

Sanchez-Hernandez et al., 2007).
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As well as testing the SVDD classifier, the performance of the incremental SVDD
(INCSVDD) was assessed, as preliminary analyses (not reported) indicated that this
technique may produce higher classification accuracies than the standard SvDD.
Including the training data combinations described in 4.3.2 this resulted in 960

different classifiers (Figure 4-7).
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4.3.3 STAGE THREE: ACCURACY ASSESSMENT

Quantitative assessment of classification accuracy

The accuracy of the thematic map produced by a classification is of great importance,
especially if the imagery is to be used in further analysis. Two datasets comprising
data known to belong to the target and outlier classes were created (hereafter referred
to as the ‘testing’ datasets). Fifty target testing cases and fifty outlier cases were
drawn randomly from each substrate, generating two testing datasets of 250 cases.
The pixels used in testing were independent from the training data to avoid any biases
in the confidence of classifier accuracy. Because of the small number of A. viscosus
data, the outlier testing data consisted only of known substrate cases. The accuracy
provided by each classifier model is calculated as the proportion of testing pixels (both

target and outlier) correctly classified (Foody, 2002).

The testing dataset is small relative to the quantity of data that is being classified.
Therefore it is important that the classifier selected has both a high accuracy and good
generalisation capacity. However, very high classification accuracies as assessed
from the testing data may be a consequence of over-fitting to the training data. Such
classifiers are unlikely to classify large quantities of unseen data with high accuracy.
Consequently, instead of selecting the highest performing classifier as measured by
the testing datasets, statistical analyses were performed to investigate the average
response of classifiers to changes in structure (e.g., changes in parameter value).
Initially these analyses focused on the major elements of classifier structure; model
(i.e., SVDD vs. INCSVDD), kernel and dataset. Selecting criteria that consistently out-
performed competing criteria would result in greater confidence in the final classifier.
The effect of both parameters (p and C) will be dependent upon selection of other
criteria. Therefore the selection of values for p and C was made after the selection of

classifier model, kernel and dataset.

As the data were measured as proportions, the accuracy values were arcsine

transformed prior to analysis. Analyses for paired and related data were used so that
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the independent effect of each classifier variable (model, kernel, dataset, p, and C) on
classification accuracy could be assessed. Because of normality violation, the non-
parametric Friedman's test and Wilcoxon signed rank tests for related samples were
employed. Because of large sample sizes, which can overemphasise small effects,
the results of the Freidman’s test were augmented with calculations of the average
classification accuracy differences. Other studies have investigated the performance
of SVM classifiers of differing structure (Cortes and Vapnik, 1995; Huang et al., 2002,
Sanchez-Hernadez, 2006; Ali and Smith-Miles, 2007; Sanchez-Hernandez et al.,
2007). However, as the optimum classifier structure will be data-dependent, direct
comparison of the classifier structure selected in this research with the classifier

structures used in previous studies will not be made.

Of the 960 classifiers tested, computational errors prevented 69 from producing
output. Of the remaining 891 classifiers, ones providing an overall accuracy of 2 85%
were deemed to be ‘high performance’ classifiers. An example of the classification
accuracies of the various models is provided in Appendix C. 286 models produced
overall classification accuracies of 85% or greater. Seven classifiers achieved overall
accuracies of 98% or greater. 80% of the high performing classifiers used the
Incremental SVDD model. On average INCSVDD models produced c¢. 13% higher
classification accuracy than their SVDD counterparts (Wilcoxon signed rank test,

Z = -14.592, p < 0.0005 [3dp]).

Out of the 286 high performing classifiers, almost equal proportions used the four
different dataset combinations; datasets A, B, C and D were used by 77, 75, 64 and
70 of the higher performance classifiers respectively. This indicates that the addition
of outlier datasets, and the composition of those datasets, was of limited importance.

However, statistical analysis indicated that the different datasets may influence the
classification accuracies achieved (Friedman'’s test, 12 = 15.528, p = 0.001 [3dp)).

When all other classifier variables are kept constant, selecting dataset A (no outlier
training data) produced routinely higher classification accuracies than datasets B and

D (Wicoxon signed rank test, Z = -2.089, p = 0.037 and Z = -3.200, p = 0.001 [3dp]
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respectively). Dataset C produced an intermediate level of accuracy which was not
significantly different from the accuracy achieved by dataset A (Z = -1.845, p = 0.065).
Yet despite statistical significance, classifiers using dataset A produced classifiers that
were on average < 1.5% more accurate than like-for-like classifiers using the other
datasets. No statistically significant differences in classification accuracy were found
when comparing classifiers using the three different outlier training datasets (datasets
B-D). Therefore, there appeared to be no notable increase in classification accuracy
when outlier training data were included, concurring with Sanchez-Hernandez et al.
(2007). Previous studies (Foody and Mathur, 2004; Mathur and Foody, 2008) have
suggested that the intelligent selection of target training data can significantly improve
classifier performance. However, the use of A. viscosus outlier training data (dataset
C) did not show improved classifier accuracy over other outlier training datasets. In
explanation, it is suggested that the A. viscosus outlier training data shared too little
feature space with the target training data (Figure 4-8). Such outlier training data
would only influence the data description of the target class in the small area of
feature space in which the outlier and target distributions overlap. As such, it was
decided to perform the classifications without outlier training data as these classifiers

produced slightly higher classification accuracies and will require less input to train.
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All three kernel functions were capable of producing high accuracies, although the
polynomial was used by 145 of the high performance classifiers, compared to 75 and
66 using the Gaussian RBF and exponential kernel respectively. Pair-wise Wilcoxon
tests revealed statistically significant differences between all three kernels (Gaussian-
Polynomial: Z = -11.098, p < 0.0005; Gaussian-Exponential: Z = -4.983, p < 0.0005;
Polynomial-Exponential: Z = -11.080; p < 0.0005 [3dp]) with the polynomial kernel
providing the highest overall accuracies and the exponential kernel providing the
lowest overall accuracies. On average, classifiers using the polynomial kernel
produced classification accuracies 13.65% and 13.87% higher than comparable
classifiers using the Gaussian and exponential kernels respectively. Selecting a
Gaussian kernel over an exponential kernel, however, only provided an increase in
classification accuracy of 0.22%. These results concur with Sanchez-Hernandez et al.

(2007).
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The above analyses indicate that high classification accuracy should be achieved by
the incremental SVDD using the polynomial kernel. Although the choice of dataset
had only a small effect on classification accuracy, dataset A produced marginally
higher accuracies and the lack of outlier training data greatly reduced computational
time. The effect of parameter values (p and C) will depend largely upon the choice of

classifier model and kernel, and are therefore discussed in this context.

It is noted that the effect of rejection error (C) on classification accuracy is
predominantly controlled by the selection of classifier model (Figure 4-9, Figure 4-10).
When using SVDD classifiers an increase in the rejection error increases the average
classification accuracy regardless of the dataset or kernel used. When INCSVDD
classifiers are used there is still an increase in classification accuracy with increasing
rejection error, but of a much smaller magnitude (maximum of 5.8% difference).
When using the incremental SVDD, therefore, it seems that the choice of rejection
error has little effect on classification accuracy, concurring with Belousov et al.’s
(2002) conclusions that SVM based classification displays a large degree of
robustness to variation in parameter values. It is known, however, that large values of
C can result in over-fitting of the classifier to the target data which can reduce the
classifier's generalisation capacity (Foody and Mathur, 2006). Thus, when there is no
noteworthy difference in classification accuracy (as with the INCSVDD), lower values

of C are preferable.
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Figure 4-9 The change in overall accuracy (measured as a proportion) as the rejection error (C)
increases from 0.0001 to 0.1. The results are divided by kernel (Gaussian RBF, Exponential
RBF and polynomial) and by classifier model (INCSVDD and SVDD). The black line shows the
mean accuracy and the shaded area shows the standard deviation (n = 40).
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Figure 4-10 The change in overall accuracy (measured as a proportion) as the rejection error

(C) increases from 0.0001 to 0.1. The results are divided by dataset (A, B, C and D) and by
classifier model (INCSVDD and SVDD). The black line shows the mean accuracy and the

Accuracy

shaded area shows the standard deviation (n = 30).
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When using both the SVDD and INCSVDD classifier, increasing the parameter value
(p) of the Gaussian RBF and Exponential RBF kernels (i.e., increasing kernel width)
causes an increase in classification accuracy (Figure 4-11). For both kernels the
increase in accuracy as parameter values increase is greatest when using the
INCSVDD classifier. The above analyses revealed, however, that the polynomial
kernel consistently outperformed the other two kernels. When increasing the
parameter value of the polynomial kernel (i.e., the order of the kernel), the effects of
classification accuracy were more complex. When using a SVDD classifier there was
seemingly no systematic increase or decrease in classification accuracy as the order
of the kernel increased. When using an INCSVDD classifier parameter values of 1
and 2 underperformed relative to larger values, whereas increasing the parameter
value above 3 caused a decrease in classification accuracy. For both classifier
models, however, the effect on classification accuracy of increasing the order of the
polynomial kernel was substantially less than the effect of increasing the width of
either the Gaussian or Exponential RBF kernels. For all datasets increasing the
parameter value caused an increase in classification accuracy. This increase was
strongest when using the INCSVDD classifier. Increasing the parameter value of the
polynomial kernel dramatically increases the dimensionality of feature space relative
to similar increases in the Gaussian RBF and exponential kernels. This can cause
polynomial kernels to over-fit to the training data, reducing the ability of the model to
accurately classify unseen data (i.e., a reduced generalisation capacity; Cortes and
Vapnik, 1995). To minimise the potential of classifier over-fitting, it was decided to
limit the range of parameter values considered to between 1 and 6. This increase was
strongest when using the INCSVDD classifier. Increasing the parameter values
beyond p = 6 only resulted in minimal improvements in classifier accuracy (Figure

4-12).
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Figure 4-11 The change in overall accuracy (measured as a proportion) as the parameter value
(p) increases from 1 to 10. The results are divided by kernel (Gaussian RBF, Exponential RBF
and polynomial) and by classifier model (INCSVDD and SVDD). The black line shows the
mean accuracy and the shaded area shows the standard deviation (n = 16).
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Figure 4-12 The change in overall accuracy (measured as a proportion) as the parameter value
(p) increases from 1 to 10. The results are divided by dataset (A, B, C and D) and by classifier
model (INCSVDD and SVDD). The black line shows the mean accuracy and the shaded area
shows the standard deviation (n = 12).
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Following the above analyses, and considering computation time and the risk of
classifier over-fitting, the ideal classifiers for the data presented use the incremental
SVDD classifier model trained on target data only (dataset A). The fit of the classifier
to the data was improved using a polynomial kernel with a low rejection error (i.e.,
0.001 or 0.0001) and a parameter value of 6 or less. The 286 classifiers achieving
classification accuracies =285% were eliminated until the above criteria were met,

leaving six potential classifier structures (Table 4-4).

Table 4-4 The six optimum support vector data description (SVDD) classifier models.

Classifier Overall
number Model Kernel p C Target Qutlier accuracy
1 INCSVDD P 1 0.0001 250 224 0.95

2 INCSVDD P 1 0.001 250 224 0.95

3 INCSVDD P 2  0.0001 250 225 0.95

4 INCSVDD P 2 0.001 250 225 0.95

5 INCSVDD P 6 0.0001 178 248 0.85

6 INCSVDD P 6 0.001 178 248 0.85

‘P’ represents the polynomial kernel function. Columns’ p' and ‘C’ provide the values of the
parameter and rejection error respectively. Columns ‘Target’ and ‘Outlier’ contain the number of
pixels classified correctly from the target and outlier testing datasets (each containing a total of
250 pixels). The ‘Overall accuracy’ column shows the total proportion of pixels classified
correctly. The model selected for the final image classification is highlighted in bold.

Quantitative assessment of classification accuracy reduced the 286 classifiers
producing >85% accuracy to six potential classifiers. Quantitative accuracy
assessments made from testing datasets can only provide an estimate of the eventual
‘correctness’ of the thematic map (Foody, 2002). The final classifier should have high
generalisation ability in that it should be able to classify previously unseen data to a
high level of accuracy. To compare the performance and generalisation ability of the
six remaining classifiers, each model was applied to areas of 4 ha (200 x 200 m)
randomly selected from each of the five substrates. The classified images were
displayed in raster format in ArcMap 9.2 with a cell size of 0.26 x 026 m. By
comparing the images produced by the six different classifier models it was possible to

assess the level of disagreement between the classifiers.
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When applied to the 4 ha sample plots the differences in classifications provided by
the six optimum classifiers were minimal (Table 4-5). Classification disagreements
are primarily attributed to changes in p, with changes in C having little impact.
Classifiers with a parameter value of 1 (i.e., Classifiers 1 and 2; Table 4-4) had the
greatest disagreement with the remaining four classifiers, most notably Classifier 6
(Table 4-5). The largest disagreement between any two classifiers occurred on
Substrate 2. However, this disagreement totalled only 6714 cells, corresponding to
only 1.17% of the 4 ha image classified (Table 4-4b). Investigation of the classified
images suggested that classifiers with p = 1 frequently mis-classified areas of
substrate as belonging to the target class. Furthermore, classifiers with p = 1 also
incorrectly classified many shaded areas of S. supranubius canopy as ‘outlier. These
errors are despite the seemingly high accuracy of Classifiers 1 and 2 (Table 4-4)
suggesting that, when applied to the current data, incremental SVDD classifiers with
polynomial kernels of order 1 have poor generalisation ability. This concurs with other
studies concluding that linear class boundaries are rare, with most studies preferring
to use non-linear solutions (e.g., Sanchez-Hernandez et al., 2007). On all substrates
the disagreement between classifiers with parameter values of 2 and 6 (Classifiers 3—
6; Table 4-4) was in the classification of cells as ‘target’ by the former which were
classified as ‘outlier by the latter (Figure 4-13). This is consistent with Table 4-4
which suggests that Classifiers 5 and 6 have a low accuracy on the target class.
Thus, the two classifier types identify the same objects as being S. supranubius
individuals, but models with a parameter value of 6 produce slightly lower estimates of
canopy cover (Figure 4-13). Given the increased potential for over-fitting as the order
of the polynomial kernel increases, and the minimal differences between classifiers
with parameter 2 and 6, a parameter value of 2 was deemed most appropriate given
the data. With rejection errors of C = 0.0001 and C = 0.001 producing identical results
when p = 2, the selection of C was largely arbitrary. A rejection error of 0.001 was
chosen to allow for a greater number of outliers in the training data. This gave a final
classifier that used the incremental INCSVDD model, trained on target data only using

the polynomial kernel of the second order and a rejection error of 0.001.
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Table 4-5 Comparison of six optimum support vector data description (SVDD) classifier models.

Each classifier was applied to a randomly selected area of 4 ha on each of the five substrates.

Values in the top right indicate how many cells were classified as ‘outlier’ by the column

classifier, but classified as ‘target’ by the row classifier. Values in the lower left indicate how

many cells were classified as ‘target’ by the column classifier, but as ‘outlier’ by the row

classifier. All values are out of a total 570025 cells.

Classifier 1 2 3 4 5 6
number

1 - 0 856 856 837 837
2 0 - 856 856 837 837
3 784 784 - 0 0 0

4 784 784 0 - 0 0

5 1355 1355 590 590 - 19

6 1355 1355 571 571 0 -

(a) Classification disagreements on Substrate 1

Classifier

number 1 2 3 4 ] 6

1 - 0 3583 3583 3510 3578
2 0 - 3583 3583 3510 3578
3 2600 2600 - 0 0 0

4 2600 2600 0 - 0 0

5 3136 3136 609 609 - 68

6 3136 3136 541 541 0 -

(b) Classification disagreements on Substrate 2.

Classifier 1 2 3 4 5 8
number

1 - 0 1410 1410 1389 1402
2 0 - 1410 1410 1389 1402
3 761 761 - 0 0 0

4 761 761 0 - 0 0

5 1334 1334 594 594 - 13

6 1334 1334 581 581 0 -

(c) Classification disagreements on Substrate 3

Classifier

number 1 2 3 4 5 6

1 - 0 2300 2300 2220 2299
2 0 - 2300 2300 2220 2299
3 938 938 - 0 0 0

4 938 938 0 - 0 0

5 1116 1116 258 258 - 79

6 1116 1116 179 179 0 -

(d) Classification disagreements on Substrate 4

Classifier 1 2 3 4 5 6
number

1 - 0 2902 2896 2782 2887
2 0 - 2902 2896 2782 2887
3 1033 1033 - 1" 9 9

4 1024 1024 8 - 7 7

5 1534 1534 630 631 - 105
6 1534 1534 525 526 0 -

(e) Classification disagreements on Substrate 5
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Classifier4 — Classifier 6

_

Figure 4-13 Comparison of the classification of a 4 ha sample area on Substrate 1 using
optimum Classifiers #4 and #6 (Table 4-4). Subtracting the images produced by the two

classifiers reveals minimal disagreements in the resultant maps.
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When assessing classifier performance, global measures of accuracy can hide spatial
variation in error (Foody, 2002). The performance of the selected classifier INCSVDD
using target training data only and a polynomial kernel with a parameter value of 2 and
a rejection error of 0.001) on each of the five substrates was assessed. On each
substrate the classification of the 50 target and 50 outlier cases in the testing datasets
was assessed. The classification accuracy of the target testing data was 100% on all
five substrates. Substrate 1 also had 100% classification accuracy on the outlier
class. The other four substrates showed some classification errors in the outlier class,

but all exceeded the aim of 85% accuracy.

4.4 CLASSIFICATION OF THE S. SUPRANUBIUS IMAGERY

Because of lava flow morphology, the extent of the sample window classified on each
substrate varied. Table 4-6 details the areas and locations of the classified sample
windows as well as the number of S. supranubius individuals identified by the
classifier. The number of S. supranubius individuals classified was calculated after

the images were post-processed in Matlab and ArcMap.

Classification accuracies as measured from independent testing datasets can only
provide an estimate of the overall accuracy of the resultant thematic map. Thus,
despite the high estimated classification accuracy of the selected classifier, the
classified imagery showed ‘speckles’ where outlier pixels were misclassified. These
‘speckles’ were removed by applying a circular morphological filter with a radius of 2

pixels (c. 0.52 m) to the image using the Image Processing Toolbox in Matlab.

During image classification, individuals with adjacent canopies were often classified as
a single object. Consequently, merged canopies were manually separated by hand-
digitising in ArcMap. During visual analysis of the imagery it was often unclear
whether small objects were juvenile S. supranubius, or large rocks and boulders.
During the December 2007 field trip, very few individuals were observed to have
canopy areas of < 1 mZ. Therefore, all classified objects below this size were removed

in ArcMap. This action was deemed appropriate because of the large area and
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number of individuals mapped. With this quantity of data it was considered more
important to reduce the likelihood of commission errors (wrongly classifying a shadow
or rock as a S. supranubius individual), while accepting some errors of omission
(failing to identify a S. supranubius individual), i.e., the set of objects identified as
S. supranubius should have a high probability of being S. supranubius. Consequently,
any classified objects greater than 1 m? that were deemed unlikely to be
S. supranubius individuals on the basis of their shape and spectral response were

manually removed from the dataset.

Table 4-6 Summary information of the classified images. The morphology of Substrate 1
prevented a single large area being classified. Therefore two separate areas were classified.

Substrate ULX/ULY LRX/LRY Area (ha) S. supranubius
1a 340150/ 3124050 340700/ 3123700 19.25 1949
1b 340080 / 3125350 340330/ 3125000 8.75 1029
2 340400/ 3125100 341100/ 3124400 49.00 4880
3 341710/ 3126780 342110/ 3126130 26.00 1967
4 342600 / 3124300 343300/ 3123600 49.00 6478
5 342585 / 3124995 342985 / 3124745 10.00 1174

Figure 4-14 shows the final classified map of S. supranubius on Substrates 1 to 5.
The classification of S. supranubius individuals was verified in the field. Using
stratified random sampling, 54 quadrats (each 0.25 ha) covering a total area of
13.5 ha were located within the focal plots (see Table 4-6). Twelve quadrats were
located in each of Substrates 1 to 4, and six quadrats were located on Substrate 5.
Within these quadrats there were a total of 1572 objects classified as S. supranubius.
Of these objects, 1407 were verified as being S. supranubius individuals. Therefore,
165 objects were incorrectly classified as S. supranubius. The maijority of the
incorrectly classified objects (n = 106) were identified as rocks and accompanying
shadows. The remaining objects belonged to other species, either Pterocephalus
lasiospermus or Adenocarpus viscosus. A further 35 S. supranubius individuals were
identified that were not identified in the image classification. Since the objective of the
classification was to reduce the probability of commission errors (i.e., the set of

individuals identified as S. supranubius should have a high probability of being S.
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supranubius individuals) the error matrices focus on user's accuracy. The overall
user's accuracy was 90%, although this varied between 84% and 92% on the various

substrates (i.e., commission errors of between 8% and 16%; Table 4-7).
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Figure 4-14 Classified imagery of S. supranubius on the five focal substrates. Classification
performed in Matlab using the Incremental SVDD classifier, training on target data only, using
the polynomial kernel with a parameter of 2 and a rejection error of 0.001
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On all substrates except Substrate 5 the target accuracy of 85% was exceeded. The
accuracy on Substrate 5 was only marginally below the target. For analysis in
subsequent chapters the thematic maps were converted into point patterns using
ArcMap 9.2, using the centroid of the canopy to represent the point location of the
shrub. This produced a mapped point pattern, the properties of which describe the
horizontal spatial structure of the S. supranubius population. Point approximation is
intended to represent the rooting location of the shrub. Clearly, however, the rooting
location will not always be at the centre of the canopy. Thus the process of reducing
the thematic map to points will have incorporated some error into the final mapped

point pattern.

4.5 CONCLUSIONS

Following extensive cross-validation of different classifier structures, an area of 162 ha
was classified using an incremental SVDD model, trained on 521 target cases,
polynomial kernel with parameter 2 and a rejection error of 0.001. By testing so many
classifier structures it was possible to assess the general effect of different factors on
classification accuracy. Noteworthy resuits include that the polynomial kernel
produced consistently greater classification accuracies than either the Gaussian RBF
or exponential kernel. Secondly, when training the classifier, incorporating training

data on the outlier classes caused an unexpected reduction in classification accuracy.
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CHAPTER 5:THE EFFECT OF EXTENT ON PATTERN ANALYSES
USING g(r) AND L(r)

We can no longer...cling to the belief that the scale on which we view

systems does not affect what we see... (Wiens, 1999 p. 371)

5.1 INTRODUCTION

The concept of scale is fundamental in ecological studies (Levin, 1992; Wiens, 1999;
Schneider, 2001). Three attributes of scale are particularly important: grain, focus and
extent. Grain describes the area represented by each observational unit, focus
describes the area of the analytical unit, and extent refers to the total geographic area
being investigated. Variations in all three can affect the results of an analysis, its
comparability with other studies and our perception of the processes controlling
ecological phenomena. This chapter considers the effect of the last measure, extent,
on the accuracy of spatial point pattern analyses. The following terminology applies in
the chapter. The area of each mapped plot defines the extent of the analysis, and
scale refers to the intervals and distances of spatial autocorrelation reported by the
g(r)-function and the L(r)-function (a commonly used transformation of Ripley’s K(r)).

These functions are hereafter referred to as g(r) and L(r).

It has long been recognised that the choice of extent can dramatically alter results and
interpretations in ecological systems (Gehlke and Biehl, 1934). Studies of broad-scale
species richness have shown that the scale of observation can greatly affect estimates
of alpha (Tylianakis et al., 2006) and beta (Kallimanis et al., 2008) species richness,
and the predicted relationships between species richness and external influences
such as disturbance (Hill and Hamer et al., 2004) and environmental factors (Rahbek
and Graves, 2001; Foody, 2004; Hurlbert and White, 2005). Thus, through their
selection of extent, researchers may instigate interpretative bias. Nonetheless, there

is no pre-defined ‘correct’ extent at which to study a system or its components.
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Point pattern data are increasingly being collected in plant communities and analysed
using spatial point pattern statistics (Law et al., 2009; Section 1.3.4). Both g(r) and
L(r) are commonly used to draw inferences about the biotic and abiotic processes
driving plant population spatial structure. However, for a detailed analysis and
meaningful interpretations, the robustness of the functions must be understood
(Freeman and Ford, 2002). Despite the increasing frequency with which these
techniques are being applied, only a few published articles have considered their
robustness. Freeman and Ford (2002) found that both missing data and
measurement errors could affect the magnitude and scale of the spatial patterns
identified by L(r). Zenner and Peck (2009) provide the only known attempt, to my
knowledge, to assess the effect of changing extent on the performance of spatial point
pattern analyses. They concluded that an extent of 0.5 ha was sufficient to
characterise the spatial structure of managed forests using Ripley’'s K(r). However,
Zenner and Peck did not directly compare the performance of Ripley's K(r) in windows
of different extent. Instead the authors compared the patterns indicated by Ripley's
K(r) at 0.5 ha with other metrics (such as dbh distribution and tree density) measured
in windows of 0.05 — 1 ha in extent. Their conclusions were based on the assumption
that spatial structures estimated at 1 ha represented the ‘true’ population structure.
Despite the frequency with which suc}w small extents are used (Figure 1-3), they
represent only a minute fraction of the range of most species. No studies have
considered the performance of g(r) and L(r) at larger extents and how they compare to
the spatial patterns detected at more commonly published extents. This comparison
is timely as, with the growing availability of aerial photographs and image classification
software, the potential to digitally map extensive areas of plant populations is

increasing (e.g., Moustakas et al., 2008; Chapter 4).

Details of the analytical procedures used in 109 studies employing univariate spatial
point pattern analyses are summarised in Appendix A. About 77% of the articles
(n = 84) use plot extents of less than 5 ha, and just over half of all articles (n = 56) use

a plot extent of 1 ha or less (see Figure 1-3). Several factors are likely to drive the
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selection of small plot areas. Firstly, most studies aim to conduct analyses in
homogeneous areas to eliminate the confounding effect of environmental
heterogeneity (Wagner and Fortin, 2005; Getzin et al., 2008). These conditions will be
more easily satisfied in smaller areas. Secondly, most studies collect data manually
(Section 1.3.4). Mapping small extents reduces both the time and cost requirements
of a field-based study. Furthermore, reducing the area mapped will usually reduce the
number of units (e.g., shrubs) being mapped, potentially reducing the propagation of
location (xy) measurement errors that have been shown to influence the detection of

spatial patterns (Freeman and Ford, 2002).

5.1.1 AIMS AND OBJECTIVES

This chapter investigates the effect of varying plot extent on the identification of spatial

patterns using g(r) and L(r). Three main hypotheses are outlined:

Hypothesis 1: Quantitative pattern detection: Changes in plot extent will

affect the spatial pattern described by g(r) and L(r).

Hypothesis 2. Spatial consistency of quantitative pattern detection: The
geographical location of the plot will affect the spatial pattern

described by g(r) and L(r).

Hypothesis 3: Qualitative pattern detection: Changes in plot extent will affect
the interpretation of ‘significant’ patterning based upon Monte

Carlo simulations of the CSR null model.

5.2 METHODS

5.2.1 STUDY AREA AND DATA COLLECTION

Two sites were selected: the Majua and the Montafia lava flows (see Table 2-1).
These substrates were selected as they had the largest mapped area of S.
supranubius individuals (49 ha each). To maintain consistency with other chapters
these are referred to as Substrates 2 and 4 respectively. Six experimental extents

were selected; 0.0625 ha (25 x 25 m), 0.25 ha (50 x 50 m), 1 ha (100 x 100 m),
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2.25 ha (150 x 150 m), 4 ha (200 x 200 m) and 6.25 ha (250 x 250 m). Ten replicate
plots of each experimental extent were randomly located within both of the 49 ha
plots. Table 5-1 provides summary statistics for the ten replicate plots at each extent
on both substrates (more detail is provided in Appendix D). According to published
sample size recommendations (see Section 1.3.4), extents of 1 ha and greater (in this
system) have enough individuals to provide robust descriptions of spatial pattern.
Pseudo-replication within extents was avoided by rejecting plots that overlapped
substantially with another plot. Plots were randomly re-located if they overlapped with
another plot by 25% or more. There were no pair-wise overiaps of greater than 25%
at plot extents of 2.25 ha and lower. Some overlaps of greater than 25% had to be
accepted at the two largest extents. On Substrate 2 there were four quadrat pairs with
an overlap of greater than 25% at the 4 ha extent, and 10 quadrat pairs with an
overlap of greater than 25% at the 6.25 extent. The corresponding numbers of pair-

wise overlaps on Substrate 4 were three and five respectively.

Table 5-1 Average number of shrubs per replicate plot at each extent. Standard error is given in

parentheses
Extent
Substrate 0.0625 ha 0.25 ha 1ha 2.25 ha 4 ha 6.25 ha
) 6.9 25.6 97.9 218.9 377.2 619.4
(1.3) (4.2) (11.2) (22.4) (27.4) (31.8)
5.8 31.2 128.5 300.7 500.8 802.4
(0.8) (2.0) (8.0) (16.7) (22.9) (24.4)

5.2.2 SPATIAL POINT PATTERN ANALYSIS

The pattern of all S. supranubius individuals within each plot was assessed using g(r)
and L(r). At each experimental extent the empirical g(r) and L(r) calculated in the ten
replicate plots were combined to produce a single g(r) and L(r). A ring width of 3 m
was used when calculating g(r). As the replicate plots within each extent class are
congruent (i.e., the same size and shape), and the processes generating the patterns

are hypothesised to be spatially consistent within each substrate, the combined
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function was calculated as the unweighted average of the individual function values at
each scale (Diggle, 2003: Eq. 4.20 on Page 52; lllian et al., 2008; Law et al., 2009).
Alternative methods for the analysis of replicated spatial point patterns can be found in
Mateu (2001) and Bell and Grunwald (2004). The pattern for each full 49 ha plot was
also calculated. The results for the 49 ha plots were assumed to provide the most
accurate, i.e., most ‘correct, assessment of S. supranubius spatial pattern. This is

hereafter referred to as the ‘reference’ pattern.

All analyses were performed in Programita (Wiegand and Moloney, 2004). The
commonly used estimator of K(r) (from which L(r) and g(r) are derived) proposed by
Ripley (1976, 1981) incorporates a weighting factor to account for edge effects (Getis
and Franklin, 1987; Haase, 1995). Although the functions applied include weighting
factors to correct for edge effects, additional measures were taken to ensure the
results reported are accurate. To minimise edge effects indices should not be
calculated up to the maximum scale of the sample window, unless the sample window
is very large. Previous studies have recommended limiting the interpretation of g(r)
and L(r) to distances equal to a quarter of the length of the plot (Baddeley and Turner,
2005). Others have been less conservative, interpreting functions up to scales
equalling two thirds the side length of the plot (Fortin, 1999). In the following analyses
g(r) and L(r) were interpreted to a maximum scale that equalled half the side length of
the plot (i.e., spatial patterns in plots of 50 x 50 m were only analysed up to scales of

r=25m).

The main aim of this chapter is to investigate whether the extent of analyses
influences the detection of spatial pattern. Spatial patterns are frequently used to infer
the operation of ecological processes. Thus, the analyses in this chapter focus on the
performance of g(r) and L(r) at scales that are ecologically meaningful to
S. supranubius  individuals. The maximum scale of interaction between
S. supranubius individuals is estimated at 22 m (see Section 7.3.2 for more detail). To
allow some leeway, g(r) and L(r) are calculated to a maximum scale of 30 m (in plots

> 1 ha). Additionally, g(r) and L(r) are not calculated for scales <2 m. At these scales
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the influence of canopy extent will affect the reliable calculation of the statistics and
may result in the incorrect detection of regularity (i.e. soft-core effects, Wiegand et al.,

2006, see Section 6.1).

Preliminary analysis: environmental heterogeneity

Preliminary analyses were conducted to assess the presence of large-scale
environmental heterogeneity on both substrates as this may influence the pattern of
individuals. The distribution of the largest adults (=2 30 m?) across the entire plot
(49 ha) was compared to the null model of compiete spatial randomness (CSR) using
g(r) and L(r). Based on the assumption that large adults persist only in
environmentally benign areas, deviation of their distribution from CSR at large scales
(r > 20 m) indicates the presence of environmental heterogeneity (Getzin et al., 2008).
Further justification of this technique is provided in Chapter 7 (see Section 7.3.2). The
spatial structure of large (2 30 mz) individuals was investigated to a maximum scale of
50 m. A ring with of 4 m was used in the calculation of g(r) as this gave a relatively
smooth function. Spatial pattern was evaluated by comparing the empirical g(r) and
L(r) to the 5"-lowest and 5"-highest value of 999 Monte Carlo simulations of the CSR

null model, generating approximately 99% simulation envelopes.

Analysis 1: the effect of extent on the estimation of pattern trend

The unweighted average function calculated at each extent was compared to the
reference function. Both the ability of analyses at different extents to identify the major
pattern trend (i.e., aggregation or dispersion) and the scale-dependent accuracy of
function estimates were considered. Greater differences between the average
function and the reference function indicate less accurate pattern detection. The
height of g(r) is taken as a measure of pattern strength, with larger values indicating
the detection of stronger (aggregative) patterns (foliowing Barbeito et al., 2009; Getzin

et al., 2008).
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Analysis 2: the spatial consistency of pattern detection
This analysis considers the effect of extent on the accuracy and spatial consistency of
pattern detection. Two aspects of pattern detection are considered: (un)reliability and

pattern strength.

Analysis 2a: the effect of extent on the (un)reliability of pattern detection

For each extent, the standard deviation in the g(r) and L(r) values was calculated at
each scale across the ten replicates. The use of the standard deviation allows the
analysis to investigate the range within which the empirical g(r) and L(r) functions may
be expected to lie if individual plots were performed at each of the experimental

extents. A large standard deviation indicates unreliable pattern detection for that

scale.

Analysis 2b: the effect of extent on the magnitude and scale of the dominant

pattern

This analysis considered whether extent affects the magnitude of the dominant pattern
detected (i.e., the maximum value g(r) and L(r) attains) and the scale at which the
dominant pattern occurs. For the ten plots at each extent the maximum values of g(r)
and L(r), and scale at which the maximum value occurred were recorded. The
average magnitude and scale of the dominant pattern was calculated for each extent
(Figure 5-1) and compared to the magnitude and scale of the dominant pattern
detected at 49 ha. For each calculation of the average magnitude and scale the
coefficient of variation is reported. This is calculated as the ratio of the standard
deviation to the mean, and is a useful measure for comparing the variability of

datasets when their means differ greatly (see Table 5-2 and Table 5-3).
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Figure 5-1 Calculation of the average magnitude and scale of the dominant pattern from several
replicate plots. The maximum values of each replicate (open circles) are averaged to find the

average magnitude and scale of the pattern (solid red circle).

Analysis 3: the effect of extent on pattern detection by Monte Carlo simulation

envelopes

The majority of studies determine the presence of spatial pattern by comparing the
empirical L(r) or g(r) to envelopes created from Monte Carlo simulations of a specified
null model (Section 1.3.4). ‘Significant’ pattern is reported to occur at the scales
where the empirical function falls outside the simulation envelope. This analysis
investigated whether plot extent influences spatial pattern interpretation based upon
Monte Carlo simulations. The results focused on the detection of significant
aggregation, as analyses reveal the pattern of S. supranubius to be predominantly
aggregative (see Section 5.3.2). For each replicate plot approximately 99% simulation
envelopes were created from the 5"-highest and 5"-lowest value of 999 Monte Carlo
simulations of the CSR null model. Each Monte Carlo simulation used the same
number of individuals as in the observed pattern. For each plot the number of 1 m
intervals at which the empirical g(r) and L(r) exceeded the simulation envelope was
recorded (Figure 5-2). For each extent the results for the ten plots were combined to

give the average number of scales at which Monte Carlo techniques detected
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aggregation. The standard error of the mean is reported as an estimate of the

precision of the mean (i.e. the deviation of the sample mean from the population

mean).
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Figure 5-2 Calculation of the number of scales at which g(r) exceeds the 99% CSR simulation
envelopes. On graph (a) g(r) only exceeds the simulation envelope at 4 and 5 m, thus
significant aggregation is detected at two scales. On graph (b) g(r) exceeds the simulation

envelope between 4 and 14 m (inclusive), thus significant aggregation is detected at 11 scales.
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5.3 RESULTS

5.3.1 ENVIRONMENTAL HETEROGENEITY

The pattern of mature individuals (230 m?) was compared to the CSR null model to
investigate the presence of large-scale environmental heterogeneity. For the
purposes of this study, large-scale environmental heterogeneity is defined by deviation
of the pattern of the largest individuals from CSR at scales r > 20 m. It is likely that
patterns detected at smaller scales will result from biological interactions between
individuals. Consequently, the patterns detected at scales of less than 20 m are not
used in the assessment of environmental heterogeneity. To determine whether the

two substrates differ notably in their heterogeneity g(r) and L(r) are plotted

simultaneously (Figure 5-3).

On Substrate 2 g(r) fails to detect a random distribution of individuals at all scales
greater than 20 m. L(r) generally confirms this trend, but detects aggregation beyond
40 m. On Substrate 4, g(r) detected aggregation at 24 m, whereas L(r) detected
aggregation at all scales greater than 20 m. Both g(r) and L(r) suggest that large-
scale environmental heterogeneity is greater on Substrate 4. Consequently, the
homogeneous g(r) and L(r) were used to analyse spatial patterns on Substrate 2,
whereas the inhomogeneous g(r) and L(r) were used on Substrate 4 (see Section

7.3.2, page 187, for more information on the inhomogeneous g(r)).
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Figure 5-3 Comparing the heterogeneity on Substrate 2 (blue lines) and Substrate 4 (red lines)
as assessed by (a) the homogeneous g(r) and, (b) the homogeneous L(r). On both graphs the
solid lines plot the function for all mature individuals (= 30 mz) against their respective 99%
simulation envelopes (dotted lines). Deviation from CSR at scales greater than 20 m
(represented by the vertical lines) is taken as evidence for large-scale heterogeneity.
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5.3.2 THE EFFECT OF EXTENT ON THE ESTIMATION OF PATTERN TREND

The effect of extent on pattern detection by g(r)

Substrate 2 (Figure 5-4) — Analysis at 49 ha identified strong aggregation between 3
and 7 m with a peak in inter-shrub distances at 4 m. At scales beyond 7 m the
function approaches a value of 1 indicating a tendency towards a random distribution
beyond this scale. All experimental extents identified a peak in inter-shrub distances
at c. 3-5m. The best accuracy was achieved at the two largest extents, which
showed minimal deviation from the reference g(r) at all scales. As the plots decreased
in size, the accuracy of the function estimate decreased at all scales. Extents of 1 ha
showed the greatest inaccuracy at small scales (2 to 4 m) where the strength of shrub
aggregation was over-estimated. Analyses at 1 ha also detected dispersion at scales
greater than 23 m. The patterns identified at the two smallest experimental extents
were the least accurate. Analyses at 0.25 ha overestimated g(r) at 3 and 10 — 11 m,
and incorrectly identified dispersion at 7 - 8 m and scales over 15 m.  Plots of
0.0625 ha provided the least accurate estimation of the reference g(r), incorrectly

identifying dispersion at almost all scales.
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Figure 5-4 Unweighted mean homogeneous g(r) calculated from ten replicate plots at each of
the six experimental extents plotted against the g(r) calculated at 49 ha on Substrate 2. The
dotted line at g(r) = 1 indicates the expected value under CSR.
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Substrate 4 (Figure 5-5) — Analysis at 49 ha identified notable aggregation between 4
and 6 m, peaking at 5 m. At larger scales g(r) decreases and approaches a value of 1
indicating an increasingly random distribution of individuals at scales of c. 12 m and
greater. All experimental extents identified the same peak in shrub densities at 5 m,
although at 0.0625 ha this peak was not strong enough to be considered aggregative.
The accuracy of the estimates decreased with extent. The accuracies provided by the
two largest extents were similar at all scales. Both showed the greatest inaccuracy at
small scales (2 — 3 m) with accuracy improving as the scale increased. Plots of
2.25 ha also provided reasonably accurate estimates of g(r). The functions produced
at extents of 1 ha and larger identified the same patterning trend as at 49 ha,
decreasing towards a value of g(r) = 1 at a similar rate as the reference pattern.
Analyses at 0.25 ha overestimated g(r) at small scales (2 — 3 m) and underestimated
g(r) at most other scales. At scales larger than 20 m, dispersion was incorrectly
identified. Analyses at 0.0625 ha under-estimated g(r) at all scales and incorrectly
detected dispersion at all scales. In general, the functions produced at all extents

were more accurate than at comparable extents on Substrate 2.

g(r) (unweighted mean)

0 5 10 15 20 25 30
Scaler (m)

Figure 5-5 Unweighted mean inhomogeneous g(r) calculated from ten replicate plots at each of
the six experimental extents plotted against the g(r) calculated at 49 ha on Substrate 4. The
dotted line at g(r) = 1 indicates the expected value under CSR.
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The effect of extent on the estimation of pattern trend by L(r)

Substrate 2 (Figure 5-6) — Analyses at 49 ha show that the shrubs are dispersed at
the smallest scales, but increase in density to become aggregated by 4 m. The
function stabilises between 14 and 27 m. Analyses at all experimental extents
described the initial dispersion of shrubs at small scales. The accuracy of the average
function, however, decreased with decreases in plot extent. The three largest extents
provided the most accurate estimations, detecting a similar spatial pattern trend to that
observed at 49 ha. The average function calculated at 1 ha was also reasonably
accurate although overestimated the value of L(r) at all scales r < 25 m, detecting a
peak in aggregation at 15 m. Analyses at the two smallest extents were the least
accurate, failing to identify the correct spatial pattern trend. Analyses at 0.25 ha
generally replicated the reference pattern up to 7 m, although over-estimated L(r) at
4 — 5 m, but underestimated L(r) at subsequent scales. At 0.0625 ha the estimated

function bore little similarity to the correct spatial pattern, strongly under-estimating

L(r) at almost all scales.

2.5 1

L(r) (unweighted average)

——6.25ha
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Figure 5-6 Unweighted mean homogeneous L(r) calculated from ten replicate plots at each of
the six experimental extents plotted against the L(r) calculated at 49 ha on Substrate 2. The

dotted line at L(r) = 0 indicates the expected value under CSR.
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Substrate 4 (Figure 5-7) — When analysed at 49 ha, L(r) detected dispersion at scales
less than ¢. 6 m. Beyond this scale the pattern of shrubs becomes aggregated. The
function continues to increase until it reaches scales of ¢. 23 m where it stabilises.
Analyses conducted at 0.25 ha and larger correctly identified shrub dispersion up to
scales of 5 m. Analyses at 0.0625 ha, however, incorrectly detected dispersion at all
scales. The two largest extents (4 and 6.25 ha) correctly replicated the aggregation of
individuals at scales of ¢. 20 m and above. These extents provided the most accurate
estimation of the reference function, although accuracy decreased slightly at smaller
scales (r < 10 m). Analyses at 1 and 2.25 ha underestimated the strength of
aggregation at large scales (r>20 m). Plots of 0.25 ha in extent underestimate L(r) at
all scales r > 5 m. The average function calculated at the smallest extent strongly
under-estimated the reference function value at all scales. All extents provided a

better estimate of pattern trend on Substrate 4 compared to Substrate 2.
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Figure 5-7 Unweighted mean inhomogeneous L(r) calculated from ten replicate plots at each of
the six experimental extents plotted against the L(r) calculated at 49 ha on Substrate 4. The

dotted line at L(r) = 0 indicates the expected value under CSR.
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5.3.3 THE EFFECT OF EXTENT ON THE SPATIAL CONSISTENCY OF PATTERN
DETECTION

The effect of extent on the (un)reliability of pattern detection by g(r)

Substrate 2 (Figure 5-8) — The reliability of g(r) estimates improves with increasing plot
extent. The reliability at the two largest extents is very similar. Within each extent,
except 0.0625 ha, the least reliable estimation of g(r) occurs at the scale of shrub
aggregation. Unreliability increases notably when plot extent decreases to 1 ha. At
this plot extent estimates of g(r) are quite unreliable up to scales of 15 m.
Decreasing the plot extent to 0.25 ha reveals a peak in unreliability at 3 ~ 4 m and a
notable increase in unreliability at 10 m which is not observed at the other extents.

Analyses at 0.0625 ha are unreliable at all scales.

Substrate 4 (Figure 5-9) — As observed on Substrate 2, the reliability of g(r) estimates
at all scales improves as plot extent increases. The largest three extents provided
similarly reliable results. A notable decrease in the reliability of g(r) did not occur until
plot extent was reduced to 0.25 ha, where the greatest unreliability occurred at 3 -
4 m corresponding with the scale of maximum shrub aggregation. Function estimates
were unreliable at all scales when estimated from plots of 0.0625 ha. The reliability of

g(r) estimates was notably better on Substrate 4 when compared to equivalent extents

on Substrate 2.
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Figure 5-8 The unreliability of g(r) estimates calculated on Substrate 2 from ten replicate plots at
six extents, (a) 0.0625 ha, (b) 0.25 ha, (c) 1 ha, (d) 2.25 ha, (e) 4 ha and (f) 6.25 ha. The grey
area represents the standard deviation of g(r) estimates across ten replicates at each scale.

The black line shows the reference g(r) calculated at 49 ha.
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Figure 5-9 The unreliability of g(r) estimates calculated on Substrate 4 from ten replicate plots at
six extents, (a) 0.0625 ha, (b) 0.25 ha, (c) 1 ha, (d) 2.25 ha, (e) 4 ha and (f) 6.25 ha. The grey
area represents the standard deviation of g(r) estimates across ten replicates at each scale.

The black line shows the reference g(r) calculated at 49 ha.
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The effect of extent on the (un)reliability of pattern detection by L(r)

Substrate 2 (Figure 5-10) — The reliability of L(r) estimates is remarkably consistent
across scales when estimated in plots 1 ha, or larger, in extent, although there is an
increase in reliability of L(r) at small scales. The reliability of the L(r) estimate does
not show a notable improvement with increases in extent beyond 4 ha. Decreasing
plot extent to 1 ha, causes a sudden decrease in function reliability. Figure 5-12
suggests that the increased deviation at 1 ha compared to 6.25 ha may be driven by a
single replicate. At the two smallest extents the unreliability of L(r) remains high but

becomes more variable with scale.

Substrate 4 (Figure 5-11) — At all extents, the reliability of L(r) estimates was notably
better on Substrate 4 compared to equivalent extents on Substrate 2. L(r) estimates
were largely consistent across scales, although slightly improved at small scales. The
reliability of the L(r) estimates improved as extent increased, but little improvement in
reliability was provided by increasing plot extent beyond 4 ha. Figure 5-12 suggests
that the decreased reliability at extents of 1 ha (compared to 6.25 ha) may be

attributed to spatial inconsistency in scale-dependent pattern detection across the ten

replicates.
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Figure 5-10 The unreliability of L(r) estimates calculated on Substrate 2 from ten replicate plots

at six extents, (a) 0.0625 ha, (b) 0.25 ha, (c) 1 ha, (d) 2.25 ha, (e) 4 ha and (f) 6.25 ha. The

grey area represents

the standard deviation of L(r) estimates across ten replicates at each

scale. The black line shows the reference L(r) calculated at 49 ha.
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Figure 5-11 The unreliability of L(r) estimates calculated on Substrate 4 from ten replicate plots
at six extents, (a) 0.0625 ha, (b) 0.25 ha, (c) 1 ha, (d) 2.25 ha, (e) 4 ha and (f) 6.25 ha. The
grey area represents the standard deviation of L(r) estimates across ten replicates at each

scale. The black line shows the reference L(r) calculated at 49 ha.
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Figure 5-12 The L(r) functions produced in each of ten replicate plots of 1 ha and 6.25 ha on
Substrate 2 and 4. Note the different y-axis scales used to present L(r) on Substrate 2 and

Substrate 4.

128



The effect of extent on the magnitude and scale of the dominant pattern
detected by g(r)

Substrate 2 (Table 5-2) — The magnitude of the dominant pattern decreased as extent
increased, with the exception of analyses at 0.0625 ha. The correct magnitude of
g(r) = 1.6 was identified at extents of 4 and 6.25 ha. At these extents there was also
considerable consistency in the estimation of pattern magnitude across the ten plots.
The scale at which the dominant pattern occurs was approximated well at all extents
with the exception of results at 0.25 ha where the scale of the dominant pattern
increased by c. 1 m. This increase was accompanied by an increase in the coefficient
of variation suggesting instability in the scale of peak magnitude at 0.25 ha on
Substrate 2. The consistency with which the scale of the pattern was detected

generally improved as plot extent increased.

Substrate 4 (Table 5-2) — Again, the magnitude of the dominant pattern decreased as
extent increased. The ‘correct’ magnitude of g(r) = 1.3 is detected at extents of
2.25 ha and above. With exception of analyses at 0.0625 ha, the consistency of
magnitude detection was better on Substrate 4 than on Substrate 2. The scale of the
dominant pattern changed considerably with extent. At the three smallest extents the
scale of the strongest pattern was over-estimated. This was accompanied by an
increase in the coefficient of variation suggesting instability in the identification of

pattern scale at these extents.
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Table 5-2 The average magnitude and scale of the dominant pattern detected across ten
replicates at each of six experimental extents using g(r). The mean and coefficient of variation
(in parentheses) are reported to 1 dp. The magnitude and scale of the dominant pattern

detected at 49 ha is also shown.

Substrate Extent Magnitude Scale

2 0.0625 ha 1.8 (0.4) 4.3 (0.4)
0.25 ha 2.0 (0.5) 5.3 (0.6)
1 ha 2.0 (0.6) 4.2 (0.3)
2.25ha 1.8 (0.5) 43(0.2)
4 ha 1.6 (0.2) 4.2 (0.2)
6.25 ha 1.6 (0.2) 4.1 (0.1)
49 ha 1.6 4

4 0.0625 ha 1.8 (0.5) 7.2(0.4)
0.25 ha 1.6 (0.2) 6.2(0.7)
1 ha 1.4 (0.2) 8.1 (0.9)
225 ha 1.3 (0.1) 5.4 (0.3)
4 ha 1.3(0.0) 4.8(0.2)
6.25 ha 1.3(0.1) 4.9(0.2)
49 ha 1.3 5

The effect of extent on magnitude and scale of dominant pattern detected by
L(r)
Substrate 2 (Table 5-3) — Although changing extent had little effect on pattern

magnitude, the magnitude detected became increasingly consistent as extent
increased. At all extents above and including 0.25 ha the magnitude of dominant
pattern detected was over-estimated. The magnitude detected was much lower at

0.0625 ha. Increases in extent did, however, improve the approximation of the scale

of the dominant pattern.

Substrate 4 (Table 5-3) — Analyses approximated the reference pattern magnitude at
extents of 1 ha and above. These estimates became increasingly consistent as extent
increased. The consistency of magnitude detection was generally better on Substrate
4 compared to Substrate 2. Pattern magnitude was over-estimated at 0.0625 and
0.25 ha. Increases in extent appear to cause an increase in the scale of the dominant

pattern, although the relationship is not as clear as observed on Substrate 2.
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Table 5-3 The average magnitude and scale of the dominant pattern detected across ten
replicates at each of six experimental extents using L(r). The mean and coefficient of variation
(in parentheses) are reported to 1 dp. The magnitude and scale of the dominant pattern

detected at 49 ha is also shown.

Substrate Extent Magnitude Scale

2 0.0625 ha 0.7(1.2) 7.4(0.3)
0.25 ha 22(1.2) 12.0 (0.6)
1 ha 22(1.0) 16.6 (0.5)
2.25 ha 1.9(0.6) 22.7 (0.3)
4 ha 1.8 (0.6) 21.7 (0.4)
6.25 ha 2.0(0.6) 22.6 (0.4)
49 ha 1.6 30.0

4 0.0625 ha 1.7 (1.3) 8.3(0.3)
0.25 ha 1.3(0.8) 17.8 (0.3)
1 ha 1.0 (0.6) 23.2 (0.3)
2.25ha 0.8(0.4) 15.7 (0.4)
4 ha 1.0(0.3) 23.2 (0.3)
6.25 ha 1.0(0.3) 19.7 (0.4)
49 ha 0.9 240

5.3.4 THE EFFECT OF EXTENT ON PATTERN DETECTION BY MONTE CARLO
SIMULATION ENVELOPES

This analysis focuses on extents 1 to 6.25 ha on Substrate 4 as previous analyses
suggest these plots have greater consistency in the average quantitative pattern
description by both g(r) and L(r) compared to equivalent extents on Substrate 2.
Maximum stability in quantitative pattern detection across extents was desired so that
any differences in qualitative pattern detection via Monte Carlo envelopes could be

more certainly attributed to changing extent and/or sample size rather than real

differences in spatial pattern.

Both g(r) and L(r) detected fewer scales of significant spatial pattern as the plot extent
decreased (Figure 5-13). The detection of significant aggregation at fewer scales in
small plots could be due to one of two effects: a real decrease in the magnitude of
aggregation (i.e., an increase in the empirical function value), or an increase in the

width of the simulation envelope (or both) (see Figure 3-3).
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Figure 5-13 Number of scales at which a significant pattern is detected by g(r) and L(r) on
Substrate 4 at extents of 1 ha and greater, as measured by 99% Monte Carlo simulation
envelopes. Averages are based on ten replicates at each extent. Error bars represent the

standard error of the mean.

The average simulation envelope width for both g(r) and L(r) increased as the extent
of the plot decreased. At most scales the increase in the width of the simulation
envelope as extent decreased was greater than the change in the function value.
Thus, for analyses by both g(r) and L(r) the reduced detection of ‘significant’ spatial
pattern in small extents can be primarily attributed to an increase in the width of the
simulation envelope rather than an actual change in the magnitude of aggregation.
The exception appears to be the increased detection of aggregation between analyses
at 2.25 and 4 ha where increases in g(r) and L(r) exceeded any decrease in the

simulation envelope at most scales suggesting a real increase in aggregation

magnitude may by occurring.

Table 5-4 summarises the main findings of this chapter.
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5.4 DISCUSSION

The majority of studies using second-order spatial statistics to investigate the spatial
patterns of woody species use small plot extents (Chapter 1, Appendix A). However,
the results presented in this chapter suggest that analyses conducted on data

collected from plots of small extent may provide inaccurate descriptions of spatial

pattern.

5.4.1 THE EFFECT OF EXTENT ON QUANTITATIVE PATTERN DETECTION

On both substrates the greatest agreement with the reference spatial pattern occurred
when the function was estimated at large experimental extents. The detection of
pattern trend was, however, consistently better on Substrate 4 compared with
Substrate 2. The most accurate replication of pattern trend occurred at 6.25 ha on
Substrate 2 and at 4 ha on Substrate 4 (this analysis was indistinguishable from
analyses at 6.25 ha). Decreasing plot extent had a considerable effect on the spatial
pattern identified by g(r). Extents of 2.25 ha and greater identified similar spatial
structure to analyses at 49 ha, when estimated from ten replicate plots. Thus, if
spatial pattern analyses are applied merely as an exploratory technique and
interpretation is not intended to go beyond the visual assessment of graphical output,
it seems that increasing sample effect beyond extents of 2.25 ha offers little
improvement in pattern detection in the current ecosystem, as long as replicate plots
are used. On Substrate 4 analyses at 1 ha also provided a good estimation of spatial
pattern. Smaller extents, however, did not identify the correct pattern trend. The
performance of the different extents differed when investigating L(r). For visual
interpretation, analysis by L(r) generally requires greater extents (2 4 ha) than analysis
by g(r). This is attributed to the cumulative nature of L(r), as discrepancies in spatial

pattern at small scales will be propagated at larger scales.

Unlike Zenner and Peck's (2009) study, this research investigated the patterns
detected by L(r) and g(r) when applied to windows of different extent. The results
suggest that, for accurate pattern description, a much larger extent is required than

the 0.5 ha recommended by Zenner and Peck. Furthermore, pattern detection by both
134



g(r) and L(r) required much greater plot extents than used in the majority of published
studies. An extent of 2.25 ha exceeds the plot size used in 75 (71%) of the studies in
Appendix A (for which information on plot extent was available, n = 106). The
selection of plot extent will largely depend on the study species, with greater areas
needed as the size of individual plants increases, and/or plant density decreases.
However, even studies of arid shrubs and trees, which are typically low density, have
predominantly used small plot extents. Eighteen of the studies reviewed in
Appendix A investigate the patterns of woody species in arid ecosystems. Eleven of
the 17 studies for which information was available used an average plot extent of less
than 2.25 ha. All of these studies used an average plot extent of < 1 ha. Of these

only three used more than one replicate plot (Haase et al., 1997; Schenk et al., 2003;

Meyer et al., 2008).

In the present study system, an extent of 2.25 ha corresponds to an average sample
size per plot of 219 and 301 on Substrates 2 and 4 respectively. Summed over ten
replicate plots the estimated functions at 2.25 ha were created from a total of 2189
and 3007 individuals on Substrates 2 and 4 respectively. This sample size far
exceeds any previous assertions of minimum sample size requirements (Eccles et al.,
1999; Plotkin et al., 2000; Malkinson et al., 2003; Wiegand et al., 2007a; Meyer et al.,
2008; Jacquemyn et al., 2009). Of the 75 studies using extents less than 2.25 ha
(Appendix A), information on sample size was available from 37 studies. In fifteen of
these articles the geometric mean sample size per plot fell below the minimum sample
size of 70 recommended by Wiegand et al. (2007a). However, 29 studies performed
at least one analysis on plots containing fewer than 70 individuals and 19 performed at
least one analysis on fewer than 30 individuals. The validity of pattern interpretations
generated at such low sample sizes and small extents is questioned. Formal tests
comparing the pattern detected when varying numbers of points are removed from a

known pattern would help elucidate the role of sample size in pattern detection.
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542 THE SPATIAL CONSISTENCY OF QUANTITATIVE PATTERN
DESCRIPTION AT ECOLOGICALLY MEANINGFUL SCALES

Because of differences in the reliability of analyses by g(r) and L(r) they are discussed

separately.

The spatial consistency of g(r)

Compared with smaller extents, analyses at 2.25 ha and larger were remarkably
spatially consistent (Figure 5-8 and Figure 5-9). At these extents, there was little
spatial inconsistency in the detection of dominant pattern magnitude (Table 5-2).
Analyses at 4 and 2.25 ha, and larger, on Substrates 2 and 4 respectively, identified
dominant patterns of the same strength as analyses at 49 ha (Table 5-2). At smaller
extents the magnitude of the dominant pattern in the average plot was over-estimated.
Correct approximations of the scale of the dominant pattern were achieved at extents
of 4 ha. However, even at this extent the plots varied quite widely in the scale of the
dominant pattern. These results suggest that reasonably reliable estimates of spatial
pattern could be obtained from individual plots with a minimum extent of 2.25 ha.
There was, however, some spatial inconsistency in the scale of the dominant pattern.
The scale of the dominant (maximum) g(r) indicates the modal inter-shrub distance.
Inaccurately quantifying this distance could affect interpretations of dominant
ecological processes. |t is therefore recommended that when using single or few
replicates, especially when plot sizes are small, interpretation is limited to the major

trends and range of distances indicated by the analysis rather than specific distance

classes.

At all plot extents, the greatest inconsistency in g(r) occurred at small scales (Figure
5-8 and Figure 5-9). Patterns at these scales are presumed to represent interactions
between individual shrubs. The inconsistency at small scales increased as plot extent
decreased. At the smallest extents (0.0625 and 0.25 ha) the sample sizes are often
very small (Appendix D) and thus inconsistency may in part be caused by a lack of
statistical power. At 1 ha, however, where the results are assumed to be statistically
robust, there is considerable inconsistency in g(r) at small scales, especially on
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Substrate 2. This result is particularly concerning as 1 ha is a commonly employed
extent (Figure 1-3). At larger extents (2 2.26 ha) the sample size is large enough to
assume that the results are statistically robust (Appendix D). This implies, therefore

that the detection of local interactions may vary with the extent of the plot.

Therefore, as plots decrease in extent, the inference of biological processes from
single plots may depend increasingly upon the locations sampled. The small-scale
inconsistency of g(r) on Substrate 2 is of particular interest as analyses suggest that
this substrate has little large-scale environmental heterogeneity. The results on
Substrate 4, despite its apparent heterogeneity, were more spatially consistent. Much
current statistical research focuses on methods to remove the confounding effects of
large-scale environmental heterogeneity on the spatial signal generated by biological
interactions (Law et al., 2009). One of the commonly recommended techniques is to
define homogeneous sub-regions within the larger heterogeneous pattern and to
calculate the spatial structure within these separately (Pélissier and Goreaud, 2001).
These separate functions can be combined into a single ‘master’ function (illian et al.,
2008).  Law et al. (2009) recommend this technique if the aim of the study is to
understand spatial autocorrelation at small scales. However, the current study
suggests that even within homogeneous subplots of congruent shape and size, there
is inconsistency in the detection of small-scale spatial structure. If it is assumed that
plots of ¢. 1 ha contain, on average, a large enough sample size (n~100) to produce
statistically sound assessments of spatial structure, as published studies suggest,
then it appears that there may be real differences in spatial pattern when assessed at
this extent. Two possible explanations are suggested: the presence of small-scale
heterogeneity, and the effect of remotely sensed data collection. Both these

explanations have important consequences for the conduct of spatial pattern studies

and are therefore discussed in turn.

Remotely sensed data vs. manual field collection
Although manually mapping plant distributions over small areas may take

considerable time, it usually results in high accuracy maps of stem distributions.
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Remotely sensed data enable large extents to be mapped quickly. This may,

however, come at the expense of fine-scale accuracy.

A major source of error when using remotely sensed data occurs when the centre of
mass of the canopy is used to represent stem locations. Canopies are not necessarily
symmetrically distributed around the central stem, and effects such as wind-throw may
dramatically alter their relative position. If the approximation of rooting point shows
spatially systematic error, this could cause spatial inconsistency in the quantification of
small scale spatial structures. This must be considered when analysing spatial
patterns obtained from remotely sensed data. Surveys in December 2007 and
November 2009 did not provide any evidence of wind-throw affecting S. supranubius
individuals. Furthermore, canopies were observed to be largely symmetrical about the
central stem. Therefore, error in the estimation of S. supranubius rooting points is

considered to be both small and spatially random and should not be driving the

observed spatial inconsistency in small-scale patterns.

When using remotely sensed data large extents are recommended to average any
spatially systematic error in the data. If remotely sensed data were collected at the
extents routinely used in field collections (e.g., Malkinson et al., 2003; Malkinson and
Kadmon, 2007) small scale errors in the estimation of rooting locations may over-ride

the true signature of plant—plant interaction.

Small-scale heterogeneity and the importance of replicates

Although relatively homogeneous at the large scale, analyses indicate that
environmental heterogeneity may be present at small scales. Large-scale
heterogeneity has been shown to interact with plant dynamics to generate
quantitatively different spatial patterns (Getzin et al., 2008; Chapter 7). It is therefore
feasible that heterogeneity at smaller scales could have a similar effect. Individuals
may inhabit different resource micro-habitats (Beckage and Clark, 2003). Small plots
may sample different micro-habitats, whereas large plots will incorporate multiple
micro-habitats and thus average their impact on species distributions.
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Manually collecting data on the distribution of arid shrubs may have a dual effect on
spatial pattern reliability as the demanding environment may limit the extents covered,
which, because of the typically low density populations, may result in inadequate
sample sizes. Fourteen of the studies in Appendix A estimated the spatial patterns of
woody species in arid areas using manually collected data. Seven of these studies
estimated spatial patterns from single plots (per environmental context) of small extent
(< 0.5 ha; Haase et al., 1996; Eccles et al., 1999; Zavala-Hurtado et al., 2000;
Malkinson et al., 2003; Schurr et al., 2004, Malkinson and Kadmon, 2007, Biganzoli et
al., 2009). The remaining studies either used multiple small plots, or single large plots
(> 2.25 ha). Spatial pattern reliability may also be a problem in higher density
systems, such as temperate forests. In such systems, achieving an adequate sample
size will require much smaller areas to be mapped (depending on plant size) than if
the same sample size were desired in an arid system. As plot extents decrease the
variation in small-scale heterogeneity within each plot will tend to decrease and

estimates of spatial pattern will become less reliable representations of the population

as a whole.

In the present study, decreasing plot extent resulted in an increased inconsistency in
pattern detection by g(r) and L(r). This is attributed to heterogeneity in the small-scale
pattern. For example, a plot may have spatially consistent intensity (ie.,
homogeneous), but individuals may be arranged in clusters of varying size. Whereas
larger plots will detect aggregation at the average cluster size, small plots will pick up
the variation in cluster size and so produce seemingly inaccurate results. Clearly,
identifying and mapping small-scale heterogeneity in any system is unfeasible in most
cases, requiring too much time and inconceivable amounts of knowledge of the
species’ resource requirements and fine-scale distribution of these resources (but see
Chapter 8). Therefore, caution is urged when using small plot extents, even in
seemingly homogeneous areas. Greatest concern is raised where plots of small
extent are used to infer the operation of biological processes and extrapolate these to

the dynamics of much more extensive populations. Unless a considerable portion of
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the focal population (population here may refer to a forest or a species on a particular
substrate) of interest can be mapped, an accurate estimate of spatial pattern will
require replicate plots across the area of interest. However, despite the tendency of
published studies to be based on sample plots with small extents, very few studies
use replicate plots. More than two-thirds (n = 75) of the 109 articles summarised in
Appendix A estimated spatial pattern from single plots per environmental context. Of

the remaining 34 articles, 15 used only two replicate plots per environmental context.

The number of replicate plots should increase as the extent of those plots decreases.
In the current system, the reliability analyses reveal a strong need to increase the
number of replicate plots used once the extent of the plots decreases from 2.25 to
1 ha. However, when mapping individuals by hand, increasing plot replication over
large and/or multiple areas will considerably increase the time and financial costs of
the study. In situations where spatial patterns are necessarily quantified from single
small plots it is strongly recommended that interpretations of patterns are cautious and
are not over-extrapolated. It is also recommended that strong inferences about
ecological processes are not made from spatial structure alone. Where possible,
spatial pattern investigation and interpretation should be supported with a priori

knowledge, with the ultimate aim of experimentally verifying the operation of inferred

processes (Perry et al., 2006).

The spatial consistency of L(r)

Spatial inconsistency in spatial pattern detection by g(r) was greatest at small scales.
When assessed by L(r) spatial inconsistency in pattern detection was greatest at large
scales reflecting the accumulation of inconsistencies occurring at smaller scales. As
inconsistencies in pattern detection by L(r) are primarily at large scales, it is

recommended that L(r) is only interpreted up to the scales of interest derived from a

priori hypotheses.
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5.4.3 THE EFFECT OF EXTENT ON PATTERN DETECTION BY MONTE CARLO
SIMULATION ENVELOPES

As the extent of the plot decreased, ‘significant’ aggregation was detected at fewer
scales by both g(r) and L(r). This is attributed to an increase in the width of the
simulation envelope rather than an actual decrease in the magnitude of aggregation,
with the possible exception of increased detection of aggregation as extent increased
from 2.25 to 4 ha, which may be driven by real increases in the empirical g(r) and L(r).
Increasing sample size narrows the simulation envelopes as a random simulation of a
few individuals shows a greater degree of apparent spatial variation than a random
simulation of many individuals. This research suggests that the lower sample sizes
associated with smaller extents will increase the width of the simulation envelope and
may prevent notable patterns from being detected (i.e., Type |l error). This effect was

much more pronounced when analysing patterns with L(r) because of the cumulative

nature of the statistic.

Kenkel (1988) pioneered the use of Monte Carlo simulation envelopes to detect spatial
pattern using K(r) (Loosmore and Ford, 2006). This method of interpreting spatial
point pattern statistics dominates the literature (Section 1.3.4).  Furthermore, the
majority of articles limit interpretation to the scales at which the empirical function
exceeds the simulation envelope limits, with no assessment of the height of the curve
in relation to other curves or the values expected under the null model. Only six of the
articles in Appendix A compare the magnitude of empirical function curves (see
Section 1.3.4). Of these studies, the majority visually compared curves, with only one
study (Peterson and Squiers, 1995) making numerical comparisons. Studies basing
analyses and interpretations solely upon Monte Cario techniques may be at risk of
misinterpreting the range of spatial autocorrelation.  Furthermore, the strong
dependence of Monte Carlo simulation envelopes on sample size will make it difficult

to make meaningful comparisons of spatial patterns formed from different numbers of

individuals.
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The reliance of spatial pattern analyses on Monte Carle simulation envelopes has
been previously questioned (Diggle, 2003). Loosmore and Ford (2006) present a
critique of the use of Monte Carlo simulation envelopes claiming that their use to
determine whether, and at what scale, an observed pattern deviates from a specified
null model is invalid because of incorrect type 1 error rates. Simulation envelopes are
constructed from, at every distance, the maximum and minimum (or, e.g., the
5"-highest and 5"-lowest) value of the pattern statistic (g(r) or L(r)) calculated from a
number of simulated patterns. Consequently, simulation envelopes are constructed
from the results of many simulated patterns, each contributing to the envelope over
different distances. Therefore, many tests are being performed concurrently at each
distance class (Loosmore and Ford, 2006). This simultaneous inference yields
underestimated Type | errors rates and can lead to Type | errors being made,

especially when the empirical function is close to the simulation envelope.

Studies have recommended alternative techniques, such as the accumulated
deviation of an observed function from a theoretical statistic, to assess the departure
of an observed pattern from a specified null model (e.g., Plotkin et al., 2000; Law et
al., 2009). Despite these recommendations, the majority of studies continue to assess
spatial pattern solely by comparing observed functions to Monte Carlo simulation
envelopes. This chapter recommends that Monte Carlo envelopes are treated as an
analogue to statistical assessment via p-values; they provide an indication of the
importance of the pattern. Primary interest, however, should be in biological
importance, which may be assessed using the magnitude of an effect rather than its
statistical significance (Nakagawa and Cuthill, 2007). Monte Carlo simulation
envelopes do not allow for the calculation of statistical power or effect sizes.
Therefore, analysis of pattern by Monte Carlo envelopes should be supplemented by
the direct comparison of empirical functions, and examination of the deviation the

observed pattern has from its distribution under the null model, an analogue of effect

sizes.
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5.5 CONCLUSIONS

Part of the allure of techniques such as L(r) and g(r) is the apparent ease with which
they are able to provide information on the scale of departure of an observed pattern
from a hypothetical spatial model (Loosmore and Ford, 2006). However, the
increasing use of spatial point pattern statistics to gain ecological insights into the
processes driving plant population structure has not been accompanied by critical
analysis of the accuracy of the techniques, resuiting in much variation in the methods
and their application. This chapter investigated how variations in plot extent (and
associated variations in sample size) affect both the quantitative and qualitative resuits

of spatial point pattern analysis by L(r) and g(r).

According to previously published studies, sample sizes in excess of 70 individuals
should provide reliable estimates of spatial pattern when estimated by g(r) and L(r). In
the present system this corresponds to a plot of c. 0.7 ha in extent. However,
analyses suggest that larger plot extents (a minimum of 2.25 ha) are needed to obtain
accurate descriptions of S. supranubius spatial pattern because of spatial
inconsistency in the quantitative detection of small-scale pattern. These
inconsistencies were most pronounced at the smallest extents, but still evident when
plots contained relatively large sample sizes (n > 100). Assuming the statistical
detection of pattern is robust at these sample sizes, it is hypothesised that on both
substrates these inconsistencies arise from the effects of undetected heterogeneity at
small scales. Mapping the distribution of small-scale heterogeneity is not usually
feasible, especially if knowledge of the focal species life history is limited.
Furthermore, small-scale heterogeneity will not necessarily be present in all systems,
and the scale of any heterogeneity will be location dependent. Therefore, it is
impossible to define a plot extent at which the effect of small-scale heterogeneity will
be averaged out. Consequently, a cautious approach is recommended to prevent the
incorrect extrapolation of localised patterns to whole communities. Randomly
distributed replicate plots of congruent shape and size should be used, even in areas

that appear to be homogeneous at broad scales. When sample plots are small and
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there is no potential to either increase their size or number, researchers are urged to
ensure their interpretations only consider the major pattern trends and scales, and

should acknowledge the potential effect of location on their results.

When assessing the ‘significance’ of a pattern, it is recommended that Monte Carlo
envelopes are treated as an analogue to statistical assessment via p-values; i.e., they
provide an indication of the importance of the pattern. This assessment should be
supplemented by direct comparison of empirical functions, and examination of the
deviation the observed pattern has from its distribution under the null model, an

analogue of effect sizes. Assessments of this kind are vital if spatial patterns are to be

meaningfully compared.
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CHAPTER 6: THE CONSEQUENCES OF POINT VERSUS REAL-
SHAPE APPROXIMATION IN SPATIAL PATTERN ANALYSIS

6.1 INTRODUCTION

Almost all studies of plant population spatial structure approximate the locations of
individuals as dimensionless points (see Appendix A). Such techniques are probably
favoured because of the relative ease with which data can be collected, and the
reliance of most software on this data format. Plants, however, are not dimensionless;
they are discrete entities occupying a non-zero, finite space within the landscape. The
space they occupy, both above- and below-ground, largely determines the intensity
and scale of biological processes operating between individuals. It is only in recent
years that researchers have begun to consider the statistical and interpretative
consequences of representing individuals as points (Wiegand et al., 2006; Barbeito et
al., 2008; Muller-Landau et al., 2008; Rossi et al., 2009). Point approximation is now
considered by some to be one of the major limitations in contemporary fine-scale

ecological pattern analysis (Wiegand et al., 2006).

Representing individuals as points is valid when the size of the plants is small relative
to the spatial scales being studied. However, most ecologists are typically concerned
with the interactions occurring at small scales where plant-plant interactions are
assumed to occur. At these scales point approximation may obscure real spatial
structures. There are three primary consequences of representing individuals as
points instead of objects: the hard-core distance and soft-core effect (Matérn, 1986)
and the aggregation effect (Wiegand et al., 2006; see also Fehmi and Bartolome,
2001). Wiegand et al’s (2006) software Programita provides two techniques to

control for these effects. These effects and techniques are summarised below.

The hard-core distance
The hard-core distance (HCD) applies in populations of non-overlapping individuals.

As the distance under consideration by g(r) decreases, the HCD is the radius at which
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the pattern detected begins to be influenced by the fact that the shrubs cannot
overlap. In the simplest situation of a uniform population of shrubs with circular
canopies, the HCD corresponds to the canopy diameter (Figure 6-1a). |f
approximated as points, randomisation during Monte Carlo simulations may locate
individuals closer together than their canopy extents would in reality allow (Figure
6-1b). Consequently, distances less than the canopy diameter will occur less
frequently in the observed pattern than expected under a random distribution leading
to the incorrect detection of dispersion at small scales. In the more realistic case of a
mixed size population, the HCD corresponds to the maximum canopy diameter. The
populations used in this chapter (and thesis) are of mixed size. Therefore, the hard-
core distance refers to the canopy diameter of the largest individuals. Consequently, it
is possible for real interactions to occur at scales less than the hard-core distance,
although the probability of such interactions occurring will be small and will decrease
rapidly as the distance considered by g(r) decreases. At scales below the hard-core
distance a soft-core effect occurs (see below). This definition is in contrast to the
description of hard-core distances and hard-core effects in Wiegand et al. (2006)

which apply to the less realistic situation of uniform shrub populations.

The soft-core effect

Soft-core effects occur at all distances below the HCD in populations of non-
overlapping individuals of variable size (Figure 6-1c). As the distance considered by
g(r) decreases the effect of the inability of shrubs to overlap on the pattern detected
increases. When individuals are approximated as points, individuals that are
separated by short distances will occur less frequently than expected under a random
distribution. Consequently, the soft-core effect produces an ever more pronounced

dispersion of shrubs as distance decreases (Figure 6-1d).
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Non-overlapping Monte Carlo simulations
Both the hard- and soft-core effect can be mitigated by preserving the size and shape
of individuals (i.e., real-shape analysis), and by preventing the overlap of individuals

during Monte Carlo simulations (see Section 6.2.5).

Aggregation effect

An aggregation effect may occur when non-overlapping individuals vary greatly in
size. Large individuals may occupy a considerable proportion of the available space,
forcing smaller individuals into the intervening gaps (Figure 6-1e). If the pattern of
small individuals were analysed, the restriction of small individuals to gaps between
large individuals may be incorrectly diagnosed as aggregation when in fact they may
be regularly distributed within the available space (Figure 6-1e). Thus, calculation of
g(r) may be distorted if the spatial structure of older individuals is non-random at the

scales at which plant—plant interactions may be occurring (Wiegand et al., 2006).

Space restriction (free-space analysis)

Wiegand et al.’s (2006) grid-based software Programita provides a technique of space
restriction to control for the aggregation effect. The space available for individuals to
establish, and therefore their spatial structure, may be limited by the presence of older
individuals. By masking the location of older individuals and preventing individuals
being placed in occupied locations during Monte Carlo simulations, the “genuine”

pattern of the younger individuals may be quantified (Figure 6-1f).

Considering the size and shape of individuals is important if accurate interpretation of
the small-scale spatial structure of the community is required (Purves and Law, 2002).
The interpretative effects described above are most extreme when populations consist
of non-overlapping individuals, such as most arid shrubs, especially when individuals

reach large sizes, as observed in S. supranubius.

Throughout this chapter the following abbreviations are used:
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gwo(r) — the pair-correlation function calculated from a pattern of shrubs

represented as points (point analysis).

grs(r) — the pair-correlation function calculated from a pattern of shrubs where the
size and shape of individuals has been preserved (real-shape analysis).

grs(r) — the pair-correlation function calculated from a pattern of shrubs where the
size and shape of individuals has been preserved and the space made
inaccessible by larger individuals has been masked (free-space analysis).

HCD - the hard-core distance.

HCD, - the hard-core distance estimated from the convergence of gp,(r) and g,(r)
(see Section 6.2.2).
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6.1.1 PREVIOUS STUDIES

The earliest attempt to account for the size of objects when investigating their spatial
organisation was provided by Simberloff (1979), who developed a corrected form of
Clark and Evans’ (1954) nearest neighbour statistic. A few years later, Prentice and
Werger (1985) adapted the CSR null model to account for the average size of objects
during calculation of Ripley's K(r). However, despite the rapid growth in the
application of second-order pattern analyses (such as Ripley's K(r)) and
acknowledgement of the problems associated with point approximation, only three
studies (to my knowledge) have since attempted to extend traditional pattern analysis
to consider objects’ sizes and shapes (Wiegand et al., 2006; Barbeito et al., 2008;
Nuske et al., 2009). Both Wiegand et al. (2006) and Barbeito et al. (2008) concluded
that point pattern analyses detected weaker spatial structure than real-shape analysis,
and that the differences between the two types of analysis increased as the size of the
individuals increased. Using simulated data, Nuske et al. (2009), however, found that
real-shape analysis detected weaker (i.e., lower g(r)) patterns than point analysis
when patterns were aggregated and regular. Nuske et al. (2009) also found that the

peaks in g(r) produced by real-shape analysis were less distinct, detecting significant

pattern over a wider range of scales.

More research is needed to achieve a greater understanding of the ecological
implications of employing real-shape analysis versus point analysis. One of Wiegand
et al.’s main conclusions was that point analysis was unreliable at scales less than the
hard-core distance (r < hcd, i.e. a soft-core effect). The accurate identification of
spatial structures at small scales is important as it is at these scales that plant—plant
interactions are expected to occur. Plants can, however, interact at scales beyond
the limit of their canopy. Arid shrubs in particular are noted for their laterally extensive
root systems, which can extend well beyond canopy limits (Hartle et al., 2006; Barbier
et al., 2008; Caldwell et al.,, 2008). Nevertheless, there has been little emphasis on
whether and how point approximation affects the detection of spatial structures at

scales exceeding the hard-core distance. This may result from uncertainty in
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detecting the hard-core distance. In this chapter a technique for detecting the hard-
core distance is proposed (see Section 6.2.2), allowing analyses to consider the
effects of point approximation versus real-shape analysis on the detection of spatial

structure both above and below the hard-core distance.

This chapter also investigates the effect of masking inaccessible space on the
patterns detected. Wiegand et al. (2006) provide the only other investigation, of which
I am aware, of the potential impact of masking inaccessible areas. In their study the
locations of other dominant species were masked whilst the patterns of the focal
species were investigated. They found that dispersive patterns were weaker when the
areas covered by other species were masked. Unlike Wiegand et al.'s (2006) study,
this chapter masks the locations believed to be made inaccessible by older

S. supranubius individuals, under the assumption that larger individuals are also older.

6.1.2 AIMS AND OBJECTIVES
This chapter investigates the quantitative differences in the pattern detected by three
data representation techniques: point analysis, real-shape analysis and free-space

analysis. Three hypotheses are outlined:

Hypothesis 1: The method of data representation (i.e. point or object) will
affect the type of pattern detected (i.e., dispersed, random or
aggregated).

Hypothesis 2:  The method of data representation will affect the magnitude
and scale of the strongest pattern.

Hypothesis 3: The method of data representation will affect the
interpretation of ecological processes.

6.2 METHODS

6.2.1 DATA COLLECTION

The following analyses were performed on the S. supranubius individuals on

Substrate 2 (49 ha plot; see Section 2.3.2). The point locations of individuals were
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estimated by taking the co-ordinates of the centre of the canopy. The size and shape
of individuals for real-shape and free-space analyses were taken from the classified

imagery with a resolution of 1 m’.

6.2.2 IDENTIFYING THE HARD-CORE DISTANCE

When the distribution of a population of sparse, non-overlapping shrubs of mixed size
is represented as a point pattern, soft-core effects will cause g(r) to be underestimated
at scales below the hard-core distance. Conversely, when the size and shape of
individuals is preserved the g(r) will be overestimated at scales below the hard-core
distance because there is an increasing chance of the presence of points within the
same bush as the focal bush. Consequently, the g(r) produced by real-shape analysis

(gr(r)) and by point pattern analysis (gp(r)) will differ at scales up to the hard-core

distance. Specifically: g ,,(r) < g,,(r) for r < HCD

Assuming that only a very small proportion of canopies within the population will be in

contact with neighbouring canopies, g.(r) and g(r) are expected to become

equivalent at, or close to, the hard-core distance: g ,,(r) =g, (r)for r ~ HCD

Thus the scale at which g(r) and gy(r) converge provides an estimate of the hard-
core distance. This method for identifying the hard-core distance only applies in
univariate analyses and will work best for sparse communities. S. supranubius data

were used to test this method (Figure 6-2). Individuals were divided into different

datasets of different canopy area. The hard-core distance was estimated (Hé'D) as

the canopy diameter of the largest individual within the dataset (see Section 6.1).

Both a real-shape and a point pattern analysis were run on each dataset. The hard-
core distance was then estimated graphically (HCDg) as the scale of convergence

between gw(r) and gge(r). In all datasets the graphical estimate of the HCD

corresponded (within 0.5 m) with the maximum canopy diameter.
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Figure 6-2 Calculation of the hard-core distance from 1) the maximum observed canopy

diameter (HéD) and, 2) from the scale of convergence of the real-shape and point g(r)

( Hé’Dg ). The vertical lines illustrate the scale of convergence of the real-shape and point g(r)
for individuals with canopy areas between (@ 1sxs5 (b)5=sxs10 and (c) 10=x=20,

where x is canopy area in m?. The estimates of //CD and HCD, are shown on each graph.
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6.2.3 THE EQUIVALENCE OF Ggs(R) AND Ggp(R) BEYOND THE HARD-CORE
DISTANCE

It is predicted that at scales beyond the hard-core distance, the patterns detected by
point and real-shape analysis should become more similar than observed at scales
below the hard-core distance. Both techniques should identify the greatest density of
points at similar scales beyond the hard-core distance. However, calculations of g(r)
from real-shape data are initiated from numerous points representing the same
individual to numerous points representing the same neighbouring individual (Figure
6-3b). Therefore, it is hypothesised that although both techniques should identify the
same scales of the strongest pattern, real-shape analysis may detect significant

spatial structure at a wider range of scales (Figure 6-3c; cf. Nuske et al., 2009).
°
Y ® X Y

z—-2R
z+ 2R

© X Y

Figure 6-3 The calculation of plant-plant distance between one individual (X) and a
neighbouring individual (Y) using point analysis (a) and real-shape analysis (b) and (c).
Individuals X and Y have a canopy radius of R. In point analysis the distance separating
individual X from Y is a single, discrete value, z. When real-shape analysis is used, X and Y are
composed of multiple adjacent points. The distance separating X from Y is no longer a single
value, but multiple distances separating each point in X from each point in Y (b). Although the
average distance separating X and Yin (b) is still z, a high density of points will be detected at

scales ranging from z—2Rto z + 2R (c).

6.2.4 ANALYSES

The third hypothesis addressed in this chapter is that the method of data

representation will affect the interpretation of ecological processes. As demographic
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processes are often life-stage specific, the signature of certain processes will only be
evident in the spatial pattern of individuals of a certain age. Understanding how
patterns change with age can also provide important information on processes such
as intra-specific competition. No information on the age of individuals is available.
The size of individuals is, however, considered to be a good approximation of relative
age. Consequently, all S. supranubius individuals were assigned to one of three size
classes before analysis: small, medium-sized or large. These size classes correspond
to canopy areas (x) of 1 x < 2.8 m? 2.8 s x <20.6 m” and 20.6 s x m? respectively.
The size classes had sample sizes of 432, 1711 and 329 respectively. Further
information on, and justification of these size class divisions can be found in Chapter 7
- (see Section 7.3.2). Analyses were performed on each size class respectively. In all

analyses the distribution of individuals was compared with the null model of CSR.

Analysis 1: the effect of data representation on the type of pattern detected
The type of pattern detected (aggregation, random or dispersion) at each scale (1 — 30
m) was recorded. This was assessed by comparing the empirical g(r) to simulation

envelopes created from the 5"-highest and 5"-lowest values of 999 simulations of the

CSR null model.

Analysis 2: the effect of data representation on the magnitude and scale of the

strongest aggregation

The height of the empirical g(r) above the CSR expectation (g(r) = 1) can be used to
quantify the strength of aggregation at any one scale (e.g., Barbeito et al., 2009;
Getzin et al., 2008). Larger magnitudes of g(r) indicate stronger patterns. An
alternative technique defines the strongest aggregation as occurring at the scale at
which the distance between the empirical g(r) and the upper simulation envelope is
greatest (Wiegand et al., 2006). Another possible technique would calculate the ratio
of the distance between the empirical g(r) and the upper simulation envelope and the
width of the simulation envelope, with larger ratios indicating stronger patterns. All

three measurements are employed and compared in this chapter.
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Analysis 3: the effect of data representation on the interpretation of ecological

processes

In addition to the patterns detected within each size class, understanding how patterns
change with the age/size of individuals can provide important information on the
processes structuring the population. For each technique (point, real-shape and free-

space) the empirical g(r) for each size class was plotted simultaneously.

6.2.5 ANALYTICAL PROCEDURES

Point pattern analyses

Because of differences in data density, different ring widths were used to construct
g(r) in the different size classes. Analysis of the small, medium-sized and large size
classes used ring widths of 3, 2 and 4 m respectively, as these produced relatively

smooth functions in all cases, while maintaining detail at small spatial scales.

Real-shape analyses

The grid-based software Programita (Wiegand and Moloney, 2004) has been
extended to enable the analysis of objects (Wiegand et al., 2006). Individual shrubs
are approximated by a group of adjacent cells on a categorical raster map. Each
shrub may occupy several adjacent cells, depending upon its size and shape. As cell
size decreases, the accuracy with which the size and shape of canopies can be
mapped increases. However, very small cell sizes increase computational time.
Therefore, a minimal resolution should be selected, depending upon the biological
questions being addressed. In the present analysis, the cell size was equivalent to the
smallest S. supranubius canopy area (i.e., 1 m?). A formal point pattern is generated
from the categorical raster map. A point is created at the centre of each cell that is
part of a shrub. Therefore, whereas the smallest individuals (1 m?) are represented by
a single point, larger individuals may be represented by several adjacent points. The
number of points is therefore much higher than the number of objects, and
consequently much higher than the number of points in the conventional point pattern

analysis. For calculation of the real-shape g(r) a ring width of 2 m was used when
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analysing the pattern of small individuals, and a ring width of 1 m was used in the
analysis of medium-sized and large individuals. These ring widths produced relatively

smooth functions, while maintaining detail at small spatial scales.

Simulations of the CSR null model are constructed by rotating (by 0, 90, 180 or
270 degrees, with equal probability), mirroring (or not) and shifting the location of
individual shrubs. Field observations of the focal system confirm that S. supranubius
canopies rarely overlap. Therefore, objects were not allowed to overlap during Monte
Carlo simulations of CSR, providing a more realistic simulation of the conditions
observed in the field. Unlike points, randomised objects may fall partially outside the
study region during Monte Carlo simulations. This would reduce the proportion of
occupied cells in the null model (reducing first-order intensity), producing a (positive)
bias towards aggregation (Wiegand et al., 2006). Programita provides several options
for mitigating this effect (see Wiegand et al., 2006). In the present analyses a torus
correction was applied, which wraps the window so that individuals that overlap the
window edge also appear on the opposite side of the sample window. This correction,
however, breaks individuals into two smaller individuals which can create a bias
towards aggregation (Wiegand et al., 2006). Therefore, guard areas were also
applied which prevented calculation of g(r) in the edges of the window. The width of
the guard area should be selected so that it is greater than the diameter of most
plants, but not so big that it dramatically reduces the sample window extent.
Therefore, guard areas were selected to exceed the diameter of 90% of the individuals
within each size class. This corresponded to guard area widths of 2 cells, 5 cells and

8 cells when analysing the small, medium-sized and large individuals respectively.

Free-space analyses

As with the real-shape analysis, individuals were represented on a raster map with a
resolution of 1 m?, and shrubs were not allowed to overlap during Monte Carlo
simulations of the null model. Further to the real-shape analysis, the calculation of g(r)
and the simulations of the null model excluded areas that were considered to be

inaccessible to the individuals being studied. Thus, when analysing the distribution of
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the small individuals, the locations of the medium-sized and large individuals were
masked. Similarly, when analysing the pattern of the medium-sized individuals the
locations of the large individuals were masked. Free-space analysis was not
performed for large individuals as the small and medium-sized individuals are
assumed to be younger and therefore could not have driven the establishment of the

large individuals (i.e., the analysis would be equivalent to the real-shape analysis of

large individuals).

6.3 RESULTS

6.3.1 THE EFFECT OF DATA REPRESENTATION ON THE TYPE OF PATTERN
DETECTED

Small individuals
All three analyses identified aggregation of small individuals at almost all scales, both
above and below the hard-core distance of 2 m. The functions produced by the real-

shape and free-space analyses are noted for being almost identical in shape (Figure

6-4a).

Medium-sized individuals

All three analyses identified aggregation at all scales greater than the hard-core
distance of 4 m (Figure 6-4b). Slight differences in pattern were identified at scales
below the hard-core distance (i.e. a soft-core effect). Point analysis detected
dispersion at 1 m and a random distribution at 2 m. Real-shape analysis detected a
random distribution at 1 m whereas free-space analysis detected dispersion. Both the
real-shape and free-space analysis identified dispersion at 2 m. All three techniques
identified aggregation at 4 m, but whereas the point and real-shape analysis identified

aggregation at 3 m, free-space analysis detected a random distribution.
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Large individuals

Notable differences were observed between the real-shape and the point analysis at
scales greater than the hard-core distance of 8 m (Figure 6-4c). Both analyses detect
a random distribution between 19 and 29 m. However, whereas the real-shape
analysis detected aggregation between 9 and 18 m, point analysis detected
aggregation at 8 - 11 and 15 m. Disagreement also occurs at scales below the hard-
core distance (i.e. a soft-core effect). Whereas the real-shape analysis detected a
random distribution at all scales below the hard-core distance, point analysis detected

dispersion between 1 and 5 m, a random distribution at 6 — 7 m and aggregation at

8 m.
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6.3.2 THE EFFECT OF DATA REPRESENTATION ON THE MAGNITUDE AND
SCALE OF THE STRONGEST AGGREGATION

Table 6-1 compares the magnitude and scaie of the strongest aggregation detected by
the different data representation techniques. Three measures of pattern strength are
used. The first identifies the strongest aggregation as occurring at the scale at which
g(r) reaches its maximum value. The second identifies the strongest aggregation as
occurring at the scale at which the height of g(r) above the upper simulation envelope
is greatest (the ‘difference’ technique). The final technique identifies the strongest
aggregation as occurring at the scale at which the ratio between the height of g(r)

above/below the simulation envelope and the width of the simulation envelope is

greatest (the ‘ratio’ technique).

When analysed as point data, all three measures of pattern strength detect the
strongest aggregation at similar scales, although the ratio technique detected the
strongest aggregation at slightly larger scales when analysing small and medium-
sized individuals. When used in real-shape and free-space analysis, the difference
and the ratio techniques typically identified the strongest aggregation at the same
scales. When using the maximum value of g(r) however, the strongest aggregation
was always detected at the smallest scale (1 m). Regardless of the pattern strength
measure used, free-space and real-shape analysis detected the strongest aggregation
at similar, or the same scale for both the small and medium-sized individuals. When
measuring the pattern strength as the maximum g(r), the scale of the dominant pattern
is larger when individuals are represented as points. However, when measuring
pattern strength using the difference or the ratio technique, the scale of the strongest
aggregation is shorter when medium-sized and large individuals are represented as
points. With the exception of the maximum g(r) measure of pattern strength, analyses
using points identified stronger aggregation than real-shape or free-space when
analysing small and medium-sized individuals. When analysing the pattern of large

individuals, real-shape analysis identified the strongest aggregation regardless of the

pattern strength measure.
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6.3.3 THE EFFECT OF DATA REPRESENTATION ON THE INTERPRETATION OF
ECOLOGICAL PROCESSES

When analysed as points the difference between the empirical g(r) indicated that
aggregation was strongest among the small individuals (Figure 6-5¢c). The medium-
sized individuals continue to show a weak aggregative signature at a slightly larger
scale than the small individuals. The distribution of the large individuals is only slightly

more aggregated than a completely spatially random distribution (i.e., g(r) = 1).

Interpretation of the free-space analysis is limited as it was only performed on the
small and medium-sized individuals (Figure 6-5b). These analyses concur with the

point analysis by detecting weaker aggregation among the medium-sized individuals

than among the smail individuals.

As with the point analysis, the real-shape analysis detected stronger aggregation
among the small individuals then among medium-sized individuals (Figure 6-5a).
However, unlike in the point analysis, the gx(r) of large individuals in the real-shape

analysis is quite similar to the g,s(r) of the small individuals, especially at scales less

thanr=12 m.
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Figure 6-5 Comparing the pattern detected in each size class when using (a) real-shape, (b)
free-space and, (c) point analysis. Free-space analysis was not conducted for large individuals.

Note that graphs (a) and (b) are plotted on a log scale.
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6.4 DISCUSSION

It has recently been recommended that pattern analyses should preserve the size and
shape of objects (Purves and Law, 2002; Wiegand et al., 2006). Studies by Wiegand
et al. (2006) and Barbeito et al. (2008) have added some weight to these assertions
by concluding that real-shape analyses detected stronger and, in some cases,
different patterns compared with point analysis. However, the results presented in this

chapter question the utility of both real-shape and free-space analysis.

6.4.1 THE IMPORTANCE OF FREE-SPACE

The small-scale spatial structure of individuals is determined by biological interactions
and abiotic conditions. In extreme situations, individuals may be prevented from
establishing in certain areas because of their adverse biotic or abiotic conditions. If
these effects are not considered during analysis, inaccurate patterns could be
detected. Wiegand et al. (2006) provide the only example, to my knowledge, of
masking inaccessible space during analysis. They found that by masking the location
of other species, the dispersion detected between two focal species was stronger.
This analysis assumed that the presence of individuals of other species would render
the area inaccessible for occupation regardless of their age. It can be presumed,
however, that a heterospecific individual could only influence the position of another
individual if it was already present at the time of establishment (i.e., if it was older than
the establishing individual). Using the masking technique for a single-species pattern,
this research investigates whether adjusting for the area made inaccessible by older

(i.e., larger) individuals influences the patterns detected among younger (i.e., smaller)

individuals.

Compared with real-shape analysis, masking the space considered to be inaccessible
had no notable effect on the scale-dependent patterns detected in either the small or
medium-sized individuals (Figure 6-4). Furthermore, both real-shape and free-space
analysis found the strongest aggregation to occur at the same scale (Table 6-1). The

only notable difference was that free-space analysis detected slightly weaker
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aggregation than real-shape analysis (Table 6-1, Figure 6-1f), although the difference
was minimal. In the current system, therefore, it seems that controlling for the location
of larger individuals has little effect on the spatial structures, and the inferred
ecological processes, of small or medium-sized individuals. This is despite the fact

that many of the large individuals are considerably greater in canopy area than the

small individualis.

It is suggested that the S. supranubius population is so sparse that controlling for the
effect of large individuais on the establishment of small does not affect the patterns
detected at ecologically meaningful scales. The effect of older individuals' locations
on the distribution of young individuals may be greater in denser communities.
However, the justification and utility of the free-space analysis is questioned,
especially when used to define biotically inaccessible locations. The most obvious
theoretical restriction of this technique is the use of the contemporary distribution of
(presumed) inaccessible space which, because of the senescence and growth of
individuals, will be temporally dynamic. Free-space analysis may have greater utility
when locations can be unequivocally determined as abiotically inaccessible. This too,
however, would require much information on the abiotic requirements of the focal

species, and is probably of limited utility given the plot extents commonly used in the

literature (Figure 1-3).

6.4.2 REAL-SHAPE VERSUS POINT APPROXIMATION

Interpreting real-shape analysis is difficult at small scales

Approximating the size and shape of an individual as a group of adjacent points
makes it harder to interpret the pair-correlation function at small scales. The distance
between two objects is no longer measured as a single metric, but as a distribution of
distance separating every point within one individual from every point in a
neighbouring individual (Figure 6-3b). More importantly, however, the distribution of
distances separating points within the same individual are also included in the

calculation of the pair-correlation function. Consequently, there is a high frequency of
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inter-point distances up to the scale of the canopy diameter which may mask any real
interaction effects occurring in this range (Figure 6-4). This effect should be reduced
in communities of non-overlapping individuals, as the spatial structure resulting from
interactions should occur beyond the scale of the canopy diameter. It is suggested,
however, that in denser communities, where interactions may occur at scales smaller
than the canopy diameter, real-shape analysis may lose information at the scale of the
individual and real interaction effects may be masked. In these situations it is
recommended that the average canopy diameter is acknowledged and the strength of

the pair-correlation function below this distance is investigated to ensure no interaction

effects are being overlooked.

Detecting the strength of aggregation in real-shape analysis

One technique of assessing pattern strength is to define the scale at which the pair-
correlation function obtains its highest value as the scale at which the strongest spatial
structure occurs (e.g., Getzin et al., 2008; Barbeito et al., 2009). This technique
appears to be suitable when individuals are represented as points. However, because
calculation of the pair-correlation function in real-shape analysis incorporates the
distances separating the cells belonging to the same individual, the function is inflated
at small scales (Figure 6-4). Thereore, measuring pattern strength using gna(r) can
result in an under-estimation of the scale of the strongest pattern (Table 6-1). When
analysing individuals as objects composed of multiple points, evaluation of pattern
strength should assess either the height of the empirical g(r) above the upper
simulation envelope or the ratio between this measure and the width of the simulation
envelope. The height of the empirical g(r) above the simulation envelope could be
misleading as two patterns with (apparently) equal strength may have very different
simulation envelope widths. Conversely, the ratio technique would enable the

researcher to consider the likelihood of the pattern detected.
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The difference between real-shape and point approximation depends on the size

of the individuals

As anticipated, the difference in the pattern detected by the real-shape and point
analysis was greatest at scales less than the hard-core distance. At these scales
point analysis detected a greater dispersion of both medium-sized and large
individuals than the real shape analysis, as would be expected from a soft-core effect
(Wiegand et al., 2006; Figure 6-1a,b; Figure 6-4, Section 6.1). Differences between
real-shape and point analysis, at scales both below and above the hard-core distance,
increased as the size of the individuals investigated increased. Both analyses
detected the same spatial structure when analysing the distribution of small individuals
(Figure 6-4 1a and 2a). This is easily explained as the small size of the individuals
(1- 2.8 m? and the small grid cell size (1 m?) would mean that once converted to
points, the real-shape pattern would essentially replicate the point pattern. When
analysing the medium-sized individuals, the most notable difference between real-
shape and point analysis was in the scale of the strongest pattern, which was
estimated at a higher scale by real-shape analysis. Real-shape analysis also detected
the strongest pattern of large individuals at a greater scale than point analysis.
Therefore, when individuals are represented as a group of adjacent points, real-shape
analysis identifies a greater modal plant-plant distance than point analysis. The
following explanation is provided. Unlike point analysis, the distance between two
objects in real-shape analysis is not a single, discrete value but a distribution of
distances measured between multiple cells (Figure 6-3b). Despite this, however, the
average distance should equal the distance separating the centroids of those objects
and should therefore be equivalent to point analysis. However, because real-shape
analysis calculates multiple distances for every pair of individuals, pairs that consist of
one or more large individual (i.e., larger than average) will contribute more distances
to the estimation of the function than pairs that consist of average or below-average
sized individuals (Nuske et al., 2009). Competition theory predicts that large
individuals will be separated from neighbouring individuals by greater distances

(Getzin et al., 2006). Consequently, a few object pairs containing large individuals
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separated by great distances may overpower the effect of a larger number of smaller,
less widely spaced individuals. This weighting effect, therefore, may explain the
increased modal distance observed when using real-shape analysis compared to point
analysis and indicates that when analysing the spatial structure of a population of

individuals of varying size, real-shape may overestimate the scale of the strongest

pattern.

In addition to differences in the scale of the strongest pattern, real-shape analysis of
large individuals detected aggregation over a larger spatial range than corresponding
point analysis, agreeing with Nuske et al.'s (2009) analysis of simulated data. This
may again be explained by the use of multiple distances between pairs of individuals,
perhaps causing real-shape analysis to detect aggregation at scales ranging from the

separation of near canopy edges to the separation of far canopy edges (Figure 6-3c).

Both Wiegand et al. (2006) and Barbeito et al. (2008) concluded that point
approximation detected weaker effects that real-shape analysis, whereas Nuske et
al’s (2009) study of simulated data found that point approximation detected stronger
effects than real-shape analysis. In the present research, the patterns identified by
real-shape analysis were weaker than identified by point approximation when
analysing the small and medium-sized individuals, but slightly stronger than point
approximation when analysing the large individuals. This is, again, attributed to the
use of multiple distances separating individuals which dampens the signature at the
scale where distances are more frequent (Nuske et al., 2009). This seemingly size-

dependent effect has not been acknowledged in previous studies.

Interpretative consequences of real-shape versus point analysis

Implications for the interpretation of ecological processes arise from the analysis of
medium-sized and large individuals where the differences between real-shape and
point analysis were greatest. Most notably, the aggregation detected by real-shape
analysis was more spatially extensive and the strongest pattern occurred at a larger

scale than under corresponding point approximation. Both these effects are believed
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to be consequences of the calculation of the real-shape pair-correlation function from
multiple points within the same individual, leading to the overestimation of modal

plant—plant spacing and overestimation of the importance of biological interactions in

structuring a population.

Further assessment of the ecological consequences of data representation type was
made by comparing the empirical functions between size classes. When analysed as
points, the aggregation of individuals decreased as size increased. This is usually
considered to be consistent with the operation of density-dependent thinning (Phillips
and MacMahon, 1981, Lep$ and Kindimann, 1987). When analysed as real-shapes,
there was a decrease in the pair-correlation function between small and medium-sized
individuals, but the function for large individuals was similar to that of the small
individuals. This could be considered as evidence for a shift towards facilitative
interactions as a cohort ages (Bruno et al., 2003). However, the similarity between the
functions for large and small individuals may also be evidence for the operation of
clonal reproduction whereby clumps of clonally reproduced ramets are of a similar size
and shape as large individuals and follow a similar distribution (Figure 6-6). Such an
interpretation is only possible with a priori knowledge of the study system. However,
although real-shape analysis may be capable of detecting patterns consistent with
clonal reproduction, it does not give information about the relative spacing of ramets
within clumps as point approximation does. When individuals are very closely
distributed, real-shape analyses may lose information at the individual scale. Thus it
seems that real shape analyses may be useful if there are specific hypotheses to be
tested, and using both real-shape and point analysis in tandem may have merits when

supported by knowledge of the study system.
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Figure 6-6 Diagram explaining the potential use of real-shape analysis to examine clonal

reproduction. The clonal dynamics of S. supranubius may explain why the real-shape pair-
correlation function for small individuals was similar to the function calculated for large
individuals (Figure 6-5). Figure (a) shows the expected distribution of recently produced ramets
whereas figure (b) shows the expected distribution of the maternal shrubs.

6.4.3 THE POTENTIAL UTILITY OF REAL-SHAPE ANALYSIS

Real-shape analysis may reduce error and improve the precision of scale-

dependent pattern detection

Real-shape analysis has several potential advantages. Firstly, it removes the
potential for error associated with measurements of precise point locations, which
Freeman and Ford (2002) demonstrated can affect the significance and scale of
identified patterns.  The errors associated with point approximation could be
considerable when data are obtained from remote sensing. In these situations the
best approximation of the rooting point is usually the centre of the canopy, although
effects such as wind-throw, asymmetric canopies or the underlying topography will

increase the error of such approximations.

When calculating the pair-correlation function the selection of ring widths is important
as it determines the resolution with which patterns are detected. With point data there
are often many empty rings, producing a jagged function, which can be difficult to
interpret (Wiegand and Moloney, 2004; lllian et al., 2008). Increasing the ring width,

however, reduces the ability of the pair-correlation function to isolate specific distance

classes. Real-shape analysis increases the occupied proportion of the sample
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window. Consequently, fewer rings are empty and narrower ring widths can be used.
Real-shape analysis, therefore, has the potential to detect scale-dependent patterns
with a higher precision than point analysis. Furthermore, the ability to use smaller ring
widths may make real-shape analysis more useful when sample sizes are small
and/or the density of points is low. Under these conditions, analysis of point patterns
would require large ring widths with the associated problems with pattern
interpretation mentioned above. This improved precision is, however, balanced
against the tendency for real-shape analysis to over-estimate the extent of significant

spatial structure and the scale of the strongest pattern, as discussed above.

Identifying the hard-core distance and inferring density-dependent competition

Much of the criticism of point pattern analysis comes from the inability of distinguish
small-scale dispersion from soft-core effects. However, identifying the presence and
scale of soft-core effects could be useful. When applied in a sparse community, the
scale of convergence of the pair-correlation function produced by real-shape and point
analysis reveals the hard-core distance below which soft-core effects operate.
Understanding how the scale of the strongest pattern relates to the hard-core distance
and how this difference changes with the size of individuals could have important
implications for determining the presence of density-dependent competition. An
increase in both the hard-core distance and the scale of maximum aggregation with
size would provide strong evidence for density-dependent competition. In other
words, as shrubs increase in size (i.e. increase in the hard-core distance) they
become separated by larger distances (i.e. increase in the scale of maximum
aggregation) as previous neighbours are outcompeted. Furthermore, the distance
between the hard-core distance and the scale of maximum aggregation should

increase as competition increases in strength. This technique is investigated further in

Chapter 7.
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The application of real-shape analysis in studies of biomass

Real-shape analyses may have important applications where the distribution of
biomass, rather than rooting points, is of interest. For instance, Barbeito et al. (2008)
used a combination of real-shape and point analyses to investigate the influence of
tree crown pattern on the spatial pattern of seedlings and saplings. Maheu-Giroux
and de Blois (2007) suggested real-shape techniques may be important when
analysing clonal species whose population growth and spread is predominantly by the
contiguous expansion of existing patches rather than the establishment of new
patches or ramets, as in S. supranubius. Real-shape analyses could also be useful in

studies of the distribution of gaps in biomass, such as forest-gap dynamics and

patch—gap dynamics in arid systems.

6.5 CONCLUSIONS

The utility of real-shape analyses that approximate the size and shape of individuals
as multiple adjacent points is questioned. Most of the limitations of the technique can
be attributed to the fact that the distance between two neighbouring objects is not a
single value as in point analysis, but a distribution of distances separating muitiple
points. This is believed to have many effects, including overestimating the spatial
extent of significant structure, overestimating the scale of the strongest pattern and
underestimating the magnitude of the strongest pattern. These effects are

exacerbated as the size of the individuals being analysed increases.

As expected, substantial differences between real-shape and point analysis occurred
below the hard-core distance. These are attributed to soft-core effects making point
analysis incorrectly detect dispersion at small scales. [f only point data are available,
caution should be practised when interpreting spatial structures at small scales.
Ideally interpretation should be supported by consideration of the hard-core distance
which could be estimated from field measurements of the maximum canopy diameter.
However, although real-shape analyses do not incorrectly detect small-scale

dispersion as readily, they can also be difficult to interpret at small scales. This is
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especially so when neighbouring individuals are located close together. In these
situations information at the scale of the individual may be masked by the calculation

of multiple distances both within and between neighbouring objects.

Real-shape analysis does, however, have some benefits. In addition to allowing more
precise assessment of scale-dependent pattern, the technique may be useful where
patterns of biomass, rather than individuals, are of interest. It is suggested, however,
that the benefits of real-shape analysis may be greatest when it is applied in tandem
with point analysis, and supported by knowledge of the study system. Clearly,
mapping the real shape of plants is a lot more time consuming than mapping point
coordinates, which may explain the lack of interest in the real-shape approach until
recently. However, with the increasing availability of remotely sensed data it should
become increasingly feasible to quickly and accurately map the size and shape of tree

and shrub crowns (see Chapter 4; Getzin et al., 2008).

The recommendations and comments in this chapter apply predominantly to analyses

of populations of non-overlapping individuals.
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CHAPTER 7:PATTERN AND PROCESS IN S. SUPRANUBIUS AND
THE EFFECT OF HETEROGENEITY

7.1 INTRODUCTION

One of the central aims of ecology is to investigate and understand the processes
driving patterns of ecological phenomena (Levin, 1992; Tuda, 2007). Experimental
techniques for studying plant population dynamics cannot generally be applied to long-
lived species in low productivity systems, as direct measurements of processes are
not feasible within realistic time-frames (see Section 1.3.2). Consequently, this
chapter uses detailed spatial analyses to investigate the fine-scale characteristics of

the distribution of S. supranubius, and to infer the operation of abiotic and biotic

processes.

Despite much research, we have a poor understanding of the factors determining the
spatial pattern of vegetation (Bestelmeyer et al., 2006). Process inference can be
hampered by the presence of spatial environmental heterogeneity. Almost all natural
environments are patchy (Hewitt et al., 2007). Topography, microclimate and
resource availability all vary in space, producing a mosaic of habitat quality. Many
studies have demonstrated the preferential location of individuals within, for example,
certain habitats (Pueyo and Alados, 2007) or topographic regimes (Klausmeier, 1999).
Thus spatial environmental heterogeneity can affect the broad-scale distribution of a
species, known as first-order effects (see Table 3-1). Cases where the spatial pattern
of individuals can be unequivocally shown to be a consequence of biological
interactions between individuals alone are uncommon (Rohani et al., 1997; Perfecto
and Vandermeer, 2008; Rietkerk and van de Koppel, 2008). The pattern induced by
exogenous abiotic controls can be mistaken for spatial correlation that is due to
demographic processes (Wagner and Fortin, 2005), or may mask true demographic
effects. Consequently, much work in contemporary ecology attempts to separate the
abiotic and biotic controls on species’ patterns and dynamics. To achieve this, many

studies are performed in what are presumed to be environmentally homogeneous
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areas (Wagner and Fortin, 2005; Perfecto and Vandermeer, 2008) to try to remove the
effect of environmental heterogeneity. These, and the majority of other studies,
including simulation studies of species self-organisation (e.g., Barbier et al., 2008;
Pueyo et al, 2008), are based on the assumption that the second-order spatial
structure of a species (which is believed to result from ecological interactions between
individuals) occurs independently of environmental heterogeneity. This is despite the
fact that almost all natural communities are embedded in a landscape of numerous

environmental heterogeneities, both spatial and temporal (Hewitt et al., 2007, see

Chapter 5).

While theoretical studies have considered how spatial environmental heterogeneity
can influence co-existence mechanisms (e.g., Chesson, 2000a, Amarasekare, 2003),
few studies, either theoretical or analytical, have considered how spatial
environmental heterogeneity can affect the secondary spatial structure of individual
species. Those studies that have, used artificial research designs (Hartgerink and
Bazzaz, 1984; Neatrour et al., 2007; Roiloa and Returto, 2006, 2007; Roiloa et al.,
2007) and therefore cannot test the importance of natural heterogeneity, especially at
large scales. Therefore, there is surprisingly little theory or understanding of how
natural spatial environmental heterogeneity may interact with biological processes to
determine population dynamics (Wagner and Fortin, 2005; Murrell, 2009). One
exception is a study by Getzin et al. (2008), which demonstrated that the biological
processes operating in Douglas fir (Pseudotsuga menziesii) forests interact with
spatial environmental heterogeneity to produce qualitatively and quantitatively different
population spatial structures in different areas. The interaction of abiotic and biotic
processes operating at different scales poses a formidable challenge to ecological
researchers (Shimatani and Kubota, 2004, Wagner and Fortin, 2005). Thus, in
addition to investigating the spatial structure of S. supranubius, this chapter also
considers whether, and how, spatial environmental heterogeneity interacts with

biological processes to determine the spatial structure of S. supranubius.
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A priori predicted versus observed spatial patterns

When investigating spatial point patterns most ecological studies apply Ripley’'s K(r) or
the pair-correlation function (or their variants) to mapped distributions of points
representing individuals of the species of interest. Despite the ubiquity of articles
using these techniques (Figure 1-2), numerous studies have asserted that the analysis
of pattern alone is not enough to infer underlying processes (Mahdi and Law, 1987;
Borcard et al., 2004; Schurr et al., 2004). However, it is widely accepted that non-
random processes frequently result in highly structured, distinctive patterns (Mclintire
and Fajardo, 2009). Biological organisation exists and, although the link between
pattern and process may be imperfectly understood, patterns of ecological
phenomena continue to provide important opportunities for enhancing our
understanding of population dynamics and structure. To account for the inferential
gap between pattern and process, increasing emphasis is being placed on deductive
reasoning rather than inductive description of pattern (Schurr et al., 2004; Fajardo et
al., 2008; Mcintire and Fajardo, 2009). Instead of attempting to assign processes to
observed patterns, deductive reasoning uses ecological theory and knowledge of the
focal system and species to formulate precise a priori hypotheses of the likely abiotic
and biotic processes of importance and their expected spatial signatures. Support for
these hypotheses can then be tested by analysing the observed pattern of individuals

and assessing how closely they fit the predictions.
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7.2 AIMS AND OBJECTIVES

This chapter addresses two main hypotheses:

Hypothesis 1: The five focal substrates will exhibit differing levels of large-

scale spatial environmental heterogeneity.

Hypothesis 2: Large-scale environmental heterogeneity will not influence the
spatial structure of, and (by inference) the biological

processes structuring, the S. supranubius populations.

A priori hypotheses of the likely biological processes are formulated and their support
tested using detailed spatial analysis of the observed patterns of S. supranubius
individuals. A summary of the hypothesised processes and their associated spatial

predictions is provided in Table 7-1.
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Hypothesised Process 1: vegetation reproduction by branch layering

S. supranubius is capable of both sexual and vegetative reproduction (Kyncl et al.,
2006). Many studies have suggested that vegetative spread is more important than
sexual reproduction for maintaining population growth rates in clonal species
(Mandujano et al., 2001; Clark-Tapia et al., 2005; Mandujano et al., 2007). Vegetative
spread by branch layering is therefore expected to be an important process driving the
spatial structure of S. supranubius. The production of clonal offspring via branch
layering primarily occurs when individuals attain large sizes (McAuliffe et al., 2007).
Field observations indicate that S. supranubius individuals typically reproduce clonally
once individuals reach a diameter of ¢. 10 m. The rooting of lateral branches
produces independent ramets around the periphery of the senescing maternal shrub.

This is expected to produce smail-scale aggregations of young individuals at scales of

less than 10 m.

Hypothesised Process 2: intra-specific competition

Limited water availability invokes strong competitive interactions between arid plants
(Briones et al., 1998; Gebauer et al., 2002). Density-dependent thinning should cause
cohorts of shrubs to become increasingly dispersed over time (Metsaranta and
Lieffers, 2008). Field observations suggest that interconnections between ramets are
lost shortly after ramet establishment and senescence of the maternal shrub. Thus, it
is expected that density-dependent thinning will influence the distribution of S.
supranubius individuals shortly after ramet establishment. This process should be
evident in the decreasing strength of aggregation with cohort age (i.e., a decrease in

the magnitude of the strongest pattern as cohorts age).

Hypothesised Process 3: clonal reproduction will occur regardless of

environmental heterogeneity

Landscape-scale heterogeneity, perhaps associated with broad habitat types, has
been shown to influence the dynamics of clonal plants, often by driving spatial
variation in reproductive dynamics (Mandujano et al., 2001, 2007). However, all focal

S. supranubius populations come from the same habitat type and it is therefore
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predicted that S. supranubius will portray a spatially consistent signature of clonal
growth, regardless of the degree of environmental heterogeneity present.  Thus,
where environmentally heterogeneity is present, individuals will be clustered at large
scales but within these patches, the spatial pattern of young individuals should follow
the signature of clonal reproduction (see Hypothesis 1). This should be evident in
similar scales of aggregation of young individuals on all five substrates once the

effects of large-scale heterogeneity have been removed from the species distribution.

Hypothesised Process 4: the magnitude of spatial environmental heterogeneity

will vary between substrates

The five substrates considered are of different age and vary considerably in their
surface geomorphological characteristics (pers. obs.; Kyncl et al., 2006; see Table
2-1). Assuming that the geomorphology of the substrates affects the broad-scale

distribution of S. supranubius it is hypothesised that the substrates will display differing

levels of biologically relevant environmental heterogeneity.

7.3 METHODS

7.3.1 DATA COLLECTION

The canopy areas and locations of 17,551 S. supranubius individuals were mapped
over 162 hectares on five substrates, using spectral one-class classification (Chapter
4). The locations of S. supranubius individuals were represented by points located at

the centre of the canopies, defined by co-ordinates (x, y) (see Section 4.4). Sample

windows on each substrate were rectangular. However, because of variation in the
shape and extent of the five substrates, the sample window size had to vary between
substrates (see Section 4.4). For each substrate the data were divided into two
equally sized, spatially contiguous datasets. One dataset from each substrate was
randomly selected for analysis in the present chapter (Table 7-2). The remaining data

have been retained for the validation of a simulation model that is currently in

development.
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Table 7-2 Dimensions of the sample windows used in Chapter 7. The dimensions of the sample
windows are given in Universal Transverse Mercator (UTM). ULX/ULY and LRX/LRY provide
the x and y coordinates of the upper left, and lower right corners of the sample window

respectively (metres).

Substrate ULX/ULY LRX/LRY Area (ha)
1* 340150 / 3124050 340700/ 3123700 19.25

2 340400/ 3125100 340750 / 3124400 24.50

3 341710/ 3126780 342110/ 3126455 13.00

4 342600 / 3123950 343300 / 3123600 24 .50

5 342785 / 3124995 342985 / 3124745 5.00

* Substrate 1a in Table 4-6.

7.3.2 ANALYSES

All pattern analyses were performed in Programita (Wiegand and Moloney, 2004).

Analysis 1: environmental heterogeneity

This analysis determined the level of spatial environmental heterogeneity present on
each of the five substrates (Hypothesis 1, Hypothesised Process 4). Separating the
true effects of environmental heterogeneity from the effects of biological processes is

not a clear-cut task, and is the subject of current statistical research (Law et al., 2009).

Heterogeneity is defined as spatially structured variability in a property of interest
(Wagner and Fortin, 2005). Because of differences in resource requirements and life
history attributes, species will differ in their response to the spatial distribution of
particular resources. Thus, measures of heterogeneity should capture the distribution
of resources important to the species of interest. To ensure this, S. supranubius
individuals were used as a biological indicator of habitat suitability and thus
environmental heterogeneity (foliowing Stoyan and Penttinen, 2000; Getzin et al.,
2008, Barbeito et al., 2009; Zhu et al., 2010). It is assumed that very large S.
supranubius individuals are either very old, or have a very high growth rate. Either
way, the presence of very large individuals implies the local habitat quality is superior

relative to surrounding locations. Thus, the location of the largest individuals is
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assumed to provide a reasonable proxy for biologically relevant environmental

heterogeneity.

The small-scale structure of plant communities is typically attributed to plant—plant
interactions, whereas deviation from spatial randomness at larger scales is attributed
to environmental heterogeneity (Stoyan and Penttinen, 2000; Wiegand et al., 2007b).
Environmental heterogeneity should cause broad-scale patches of elevated plant
density. This should be represented by deviations of g(r) and L(r) from the CSR
expectation (i.e., g(r) = 1, L(r) = 0) at scales exceeding the distance at which shrub—
shrub interactions are believed to be important (Wiegand and Moloney, 2004). Biotic
interactions between S. supranubius individuals are not expected to extend beyond
c. 22 m (see page 188). Because L(r) is a cumulative function small-scale spatial
structure can influence the function values at larger scales. This may cause a steady
increase in L(r) as scale increases independent of any heterogeneity effects.
Therefore, L(r) was only considered to represent heterogeneity if statistically notable
pattern (i.e., location of the empirical function outside the simulation envelopes)
followed an increase in the gradient of the function. To ensure any heterogeneity
indicated by the pattern analyses is genuine, it is important to support the analyses

with knowledge of the heterogeneity processes that may be important (Law et al.,

2009).

On each substrate the spatial pattern of the largest individuals (2 30 m? was
compared to the null mode! of CSR using both g(r) and L(r). This excluded all but the
largest mature adults and thus should be a good indicator of environmentally driven
habitat quality. Sample sizes for this analysis were 431, 131, 47, 141 and 15 on
Substrates 1 to 5 respectively. A ring width of 5 m was used in analyses using g(r) as

it produced relatively smooth functions.

Analysis 2: size—abundance distribution

Several methods were used to describe the size—abundance distribution of S.
supranubius (Hypothesis 2). For each substrate the density of individuals, the
average canopy area and the standard deviation in canopy area was calculated. Size
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inequality within substrates was characterised by the coefficient of variation (CV) in

canopy area (Coomes and Allen, 2007). Larger values of CV indicate greater size

inequality.

Mathematical distribution functions can be used to model the size-abundance
distribution of a population (i.e., the number of individuals that fall within each size
class). Over recent years there has been an increasing emphasis on using size—
abundance distributions to help understand underlying demographic processes (Wang
et al., 2009). Under demographic equilibrium, the size-abundance distribution of
plants can be understood as the consequence of size-dependent variation in growth
and mortality (Coomes et al., 2003). Both mortality and growth reduce the number of
individuals in a size class; mortality decreases the number of individuals in the present
and subsequent size classes, whereas growth decreases the number of individuals in
the present size class and moves individuals into the next larger size class (Muller-
Landau et al., 2006; Figure 7-1a). Depending on how growth and mortality scale with
size, different size—abundance distributions will be created. Muller-Landau et al.
(2006) used relationships between size, growth and mortality to derive three analytical
predictions of size—-abundance distributions: power law, exponential and Weibull
functions. Using the predictions of Muller-Landau et al. (2006) and knowledge of the

focal species the size-abundance distribution of S.supranubius could be predicted.

In addition to the effects of mortality and growth, clonal reproduction is expected to
have a strong infuence on the S. supranubius size-abundance distribution
(Hypothesised Process 1). Because of clonal reproduction, large individuals are not
only lost from the system through mortality (as in Muller-Landau et al.'s models) but
may re-enter the model as multiple small individuals (Figure 7-1b). New ramets are
expected to be clustered and consequently, competitive interactions among the
smallest individuals are expected to be intense. Therefore, mortality in the smallest
size-classes is predicted to be a function of individual size, decreasing as individuals
increase in size and become more dispersed (following the hypothesis of density-

dependent thinning). These processes are predicted to generate a steep size-
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abundance distribution among small S. supranubius individuals, which should be most
closely fit by a scaling function (Coomes et al., 2003) or the Weibull distribution
(Muller-Landau et al., 2006). In the intermediate size-classes competition is expected
to be less intense and exogenous disturbance may be a major source of mortality
(Coomes et al., 2003). The mortality rate should therefore be constant across the
intermediate size classes, corresponding with a Weibull distribution (Muller-Landau et
al., 2006). However, in the largest size classes clonal reproduction is again predicted
to have a strong influence on mortality dynamics. In many demographic models, the
mortality rate is often expected to remain constant in the largest size classes. Among
S. supranubius individuals, however, the mortality rate is expected to increase with
size as large individuals collapse and produce clonal ramets. Following the predicted
effects of demographic processes on size-abundance distributions described Coomes
et al. (2003) and Muller-Landau et al. (2006) it is hypothesised that the size-
abundance distribution of S. supranubius should be most accurately described by

either a scaling function or the Weibull distribution.
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Figure 7-1 Size abundance distributions as conceptualised by (a) Muller-Landau et al. (2006)
and, (b) and with the addition of clonal reproduction. Clonal reproduction is expected to
produce a steeper size—abundance relationship than when only growth and mortality determine
its shape. Furthermore, whereas some demographic models predict mortality rate to be
constant with size (e.g., the power-law and exponential distribution [Muller-Landau et al., 2006,
a]), mortality rate is expected to scale with size among the smallest and largest individuals (b)

(see text for explanation).
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Exponential, power, two-parameter Weibull, and lognormal functions were fit to the
observed S. supranubius size-abundance data using maximum likelihood methods.
The exponential, Weibull and lognormal functions were fit using the fit.distr tool in the
MASS package of R (Ripley, 2009). The power law distribution was fit using the
pareto.fit tool. Akaike’s Information Criterion (AIC) (Akaike, 1974) was used to

compare the fit of the different functions.

Analysis 3: the spatial structure of S. supranubius

This analysis aimed to compare the spatial structure of individuals between
substrates, without the confounding effects of environmental heterogeneity. This
comparison would reveal whether there were any differences in the structure of S.
supranubius individuals on different substrates that could be attributed to
environmental heterogeneity (Hypothesis 2). The biological processes driving the
dynamics of a cohort of individuals are likely to change with the age of the cohort. Itis
therefore common to analyse the spatial structure of individuals of different age (e.g.,
Barbeito et al., 2009; Zhang et al., 2009). As information on the age of S. supranubius
individuals was not available, size was used as a proxy for relative age. Details of the
size classes and the methodological techniques for removing the effects of
heterogeneity are described below. The spatial structures revealed in this analysis

allow the support for hypotheses 1 to 3 to be assessed.

Defining the S. supranubius size classes

The relative importance of different biological processes for the spatial structure of S.
supranubius will change as a cohort ages. Therefore, the definition of size class must
consider the processes being investigated. There is, however, a theoretical-statistical
trade-off when defining size classes. On the one side it is important not to dilute
spatial signatures by including individuals that are too large or too small for the
predicted process. For instance, the signature of clonal reproduction is expected to be
strongest among the youngest individuals before processes such as competitive
thinning modify the pattern. On the other hand, narrow size classes may produce

small sample sizes, potentially affecting the reliable identification of spatial pattern
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(Chapter 5). There is, however, no formal definition of a minimum sample size in
spatial pattern analyses. Published recommendations range from 15 individuals

(Rossi et al., 2009) to 70 individuals (Wiegand et al., 2007a).

Both clonal reproduction by branch layering, and intra-specific competition are
expected to be major processes driving the spatial structure of S. supranubius. The
spatial signature of clonal reproduction should be most pronounced among recently
produced ramets (Hypothesised Process 1). Kyncl et al. (2006) assumed that recent
S. supranubius clonal offspring would have canopy diameters of less than 1 m (i.e,
0.79 m? canopy area). However, as individuals with a canopy area less than 1 m?
were excluded from the dataset (see Section 4.4), replicating Kyncl et al.'s (2006) size
class definition was not possible. Conversely, because of the slow dynamics of arid
shrubs, the univariate signature of intra-specific competition may not be evident until
cohorts are very old (Hypothesised Process 2). Therefore, the investigation of these

processes requires size classes that allow the investigation of individuals that are

reliably very young and very old.

For subsequent analysis, S. supranubius individuals were divided into three canopy-
size classes representing small, medium-sized and large individuals. For various
reasons, size may be an inadequate representation of age. However, because of the
slow growth of S. supranubius, it is assumed that a broad division based upon canopy
area provides a suitable correlate of age. In general the log-normal distribution was
found to fit the size—abundance distribution of S. supranubius most accurately (see
Section 7.4.1). The canopy-area data were logged to give normally distributed data.
Medium-sized shrubs were defined as those with (log)canopy area within one
standard deviation of the mean. Individuals with smaller canopy-areas were defined
as small, whereas individuals with larger canopy-areas were defined as large. This
corresponded to canopy-area (x) ranges of 1< x <2.8 m”, 2.8< x <20.6 m” and
20.6< x m? for small, medium-sized and large individuals respectively. Table 7-3
shows the number of individuals within each size class for each sample window. The

definition of the large size class produced relatively small sample sizes on Substrates
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3 and 5 (Table 7-3). It was decided, however, that reducing the lower size limit to
increase sample sizes would risk diluting any spatial signature of intra-specific
competition. For the purpose of describing large-scale environmental heterogeneity
an extra size class was defined containing all individuals with a canopy area x2z 30
m?2  This class excluded all but the largest mature adults and thus should be a good
indicator of environmentally driven habitat quality. Small samples sizes, however,

were produced on Substrates 3 and 5 (Table 7-3).

Table 7-3 The number of S. supranubius individuals within each size class in each of the five
sample windows used in Chapter 7. The number of individuals used in the analysis of

heterogeneity (Het.) is also given.

Number of individuals per size class
Substrate

Small Medium Large Het.
1 342 988 619 431
2 432 1711 329 131
3 224 423 83 47
4 345 2333 382 141
5 219 264 43 15

Removing the effect of heterogeneity: the inhomogeneous g(r)

The inhomogeneous g(r) compares the distribution of individuals to a heterogeneous
Poisson null model. The heterogeneous Poisson process displaces the original
location of shrubs in accordance with a user-defined intensity function ﬂ(x, y) that
represents first-order effects (i.e., environmental heterogeneity). This destroys the
small-scale spatial structure (driven by biological interactions) whilst maintaining the
large-scale pattern (driven by environmental heterogeneity). The intensity function
was constructed from the distribution of the largest individuals (= 30 m? using a
circular moving window of radius h. The intensity A(x, y) is weighted by an edge-
corrected Epane¢hnikov kernel (Stoyan and Stoyan, 1994; Wiegand et al., 2007a).
This technique produces a spatially explicit intensity function that is notably smoother

than more traditional moving window approaches. The Epanechnikov kernel is

defined as:
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3 d’
e,(d) ={E[1—Fj

if —h<d<h and zero otherwise, where d is the distance from the focal point and

h is the bandwidth (Cousens et al., 2008; Zhu et al., 2010).

The above approach is based on the assumption of the separation of scales (Wiegand
et al., 2007a); that is, environmental heterogeneity will influence the distribution of
shrubs at large scales, whereas shrub—shrub interactions will take place at small
scales. Therefore, to account for environmental heterogeneity, the kernel bandwidth
(h) should be greater than the scale of second-order effects, but smaller than the
scale of environmental controls (Thorsten Wiegand, personal communication). In
northern forests second-order effects are widely believed to extend to a maximum of
15 m (Stephan Getzin, personal communication). However, no comparable studies
are available for arid shrubs. It is generally accepted that ecological interactions in
arid systems are primarily conducted below ground for water resources (Noy-Meir,
1973) via laterally extended root systems, which can stretch well beyond shrub
canopy limits (Hartle et al., 2006). Without excavation, which is not permitted in the
study site or for the study species, scales of below-ground interaction can only be
estimated from above-ground morphology. Although some studies have attempted to
map the below-ground morphology of arid shrubs, and in some cases its relationship
to canopy morphology (e.g., Kummerow et al., 1977; Palacio and Montserrat-Marti,
2007), results are species specific and based on the excavation of relatively few
individuals, making it difficult to generalise to equivalent species. Barbier et al. (2008)
estimated that arid shrub root systems extended horizontally beyond the canopy by a
minimum 25% of the canopy radius. Assuming isotropic root distributions and canopy
circularity, S. supranubius individuals in the study system have a maximum canopy
radius of ¢. 9 m. Using the above metric, this corresponds to a maximum horizontal
root extent of 11 m, and thus a maximum interaction scale of 22 m. Conversely,
Caldwell et al. (2008) found that the influence of Larrea tridentata and Lycium pallidum
Miers. (Solanaceae) canopies on the structure of soils and their hydraulic properties
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extended to 1.4 times the canopy radius. In the present system, this would represent
a maximum scale of interaction of c. 25 m. Consequently, a conservative value of h =
30 m was selected for the EpaneChnikov kernel. This incorporated both Barbier et

al's and Caldwell et al’s metrics, but also allowed for slightly longer-distance

interactions to occur.

To control for the effects of heterogeneity, the second-order structure of
S. supranubius was analysed using the homogeneous g(r) and the inhomogeneous
g(r) on environmentally homogeneous and heterogeneous substrates respectively.
The g(r) for each size class on each of the substrates was compared. If analyses
revealed similar spatial structures on the homogeneous and heterogeneous
substrates it could be concluded that no interaction occurred between environmental
heterogeneity and S. supranubius demographic processes (e.g., Hypothesised
Process 3). Conversely, strong differences in the patterns detected in homogeneous
and heterogeneous substrates would provide evidence consistent with feedback

effects between heterogeneity and demographic processes (Hypothesis 2).

Because of differences in data density, different ring widths (&) were used to
construct g(r) in each size class. Small ring widths can produce noisy function
estimates, often producing spurious and meaningless spikes, especially when sample
size is small (Wiegand and Moloney, 2004; Illian et al., 2008). However, large ring
widths lose fine-scale information (see Figure 3-2e and f). Analysis of the small,
medium and large size classes used ring widths of 3, 2 and 4 m respectively, as these

produced relatively smooth g(r)-functions.

When individuals in a population do not overlap, approximating their location as
dimensionless points can lead to the g(r) incorrectly detecting dispersion at small
scales (Wiegand et al., 2006; see Section 6.1). To estimate the hard-core distance
below which g(r) may be influenced by the shape and size of individuals (i.e. soft-core
effects), the analyses were performed once with the data estimated as points and
again with the size and shape of the shrubs maintained (i.e., real-shape analysis; see

Section 6.2.5). The scale at which these two functions have equivalent g(r) values
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estimates the maximum canopy diameter (see Section 6.2.2). The convergence of the
point and real-shape g() is interpreted as the hard-core distance below which soft-
core effects may affect the pattem detected by g(r). For each analysis the maximum
value of g(r). the scale at which it occurred, and the hard-core distance were recorded.

Analysis of spatial pattems beyond the hard-core distance used the results of the point

pattern analysis.

Comparing pattern strength

Studies of population patterns commonly use simulation envelopes generated from
Monte Carlo simulations to generate qualitative interpretations of pattern aggregation,
randomness or dispersion (see Section 1.3.4). Such interpretations can prevent
meaningful comparisons being made between different populations or scenarios
(Fajardo et al.. 2006): especially as the width of the simulation envelope is closely
related to the number of individuals mapped (see Sections 5.3.4 and 5.4.3). As these
analyses used point pattemns and the nuil model of complete spatial randomness
(CSR) (expected values of g(r) = 1 and L(r) = 0 under CSR), differences in pattern
strength between size classes and substrates were assessed by directly comparing

the empinical g(r) curves (following Getzin et al., 2008; Barbeito et al., 2009; Meador et

al., 2009; see Section 6.4.2 page 166).
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7.4 RESULTS

7.4.1 ENVIRONMENTAL HETEROGENEITY

To determine the presence of large-scale spatial environmental heterogeneity, the
pattern of the largest individuals (2 30 m?) on each substrate was compared with the
null model of CSR (Figure 7-2). A strong increase in L(r) at large scales (> 20 m) was
observed on Substrate 4. Substrate 2 showed a weak increase in L(r) at large scales
but as there was no obvious change in the gradient of the curve it was not considered
to represent heterogeneity. The L(r) on Substrate 1 did not indicate the presence of
heterogeneity. Analysis by g(r) largely confirmed the results of L(r), indicating

homogeneity on Substrates 1 and 2, but a deviation from homogeneity at large scales

on Substrate 4.

The sample sizes used on Substrates 3 and 5 are considered to be small (i.e., < 70;
Wiegand et al., 2007a). The results of both the g(r) and L(r) may therefore be
unreliable, especially on Substrate 5 where only 15 individuals were used. At such
small samples sizes the simulation envelopes can become wide, increasing the risk of
Type Il error. As such, interpretation focuses only on the main patterning trends
revealed by the functions, and whether these indicate any underlying heterogeneity
(i.e., the ‘significance’ of the pattern is not considered as important as the presence of
strong increases or decreases in the function values). Analysis by g(r) on Substrate 3
does not exceed the simulation envelopes at any scale. The function does, however,
increase sharply after 35 m and approaches significance at the largest scales. The
L(r) function on Substrate 3 oscillates around the upper simulation envelope at all
scales. These results suggest that the substrate is environmentally heterogeneous.
Observations in the field revealed strong ridge—~trough topography on this substrate
which adds support to the apparent presence of heterogeneity. The L(r) function on
Substrate 5 does not indicate the presence of heterogeneity, but the g(r) function
shows considerable fluctuations. However, because of the small sample size
(exacerbated by the non cumulative nature of the g(r) function) fluctuations in g(r)

were expected. Furthermore, field observations did not reveal any obvious
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heterogeneity forces. Analysis of the same data as real-shapes using g(r) detected
dispersion (g(r) < 1) of the largest individuals between 21 and 30 m (see Appendix E).
However, the real-shape g(r) remained within the simulation envelope at all scales.
Therefore, along with Substrates 1 and 2, Substrate 5 was considered to be
homogeneous in subsequent analyses. Conversely, both Substrates 3 and 4 appear
to be environmentally heterogeneous (supporting Hypothesised Process 4).
Knowledge of the different substrates supports this conclusion as both Substrates 3
and 4 are pahoehoe flows and thus have pronounced ridge-trough topography.
Substrate 5 is treated as homogeneous in the following analyses, but it is

acknowledged that some heterogeneity may be present.
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Figure 7-2 Assessing the presence of environmental heterogeneity on the five substrates. The
pattern of large individuals (= 30 m?, black lines) is analysed using the pair-correlation function
(g(r)) (1) and the L(r)-function (2) on Substrates 1 to 5 (graphs (a) to (e) respectively).
Approximately 99% simulation envelopes generated from the 5™-highest and 5"-lowest value of
999 simulations of the CSR null model (grey lines). Note the changes in the y-axis scales.
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7.4.2 SIZE-ABUNDANCE DISTRIBUTION

Density

Table 7-4 summarises the characteristics of the S. supranubius population size-
structure on each of the five substrates. Substrate 4 has the highest density of
individuals. Substrates 1, 2 and 5 have similar densities of individuals (c.100
individuals per hectare), whereas Substrate 3 has a much lower density, about half
that of the other substrates. The highest density of small individuals is found on
Substrate 5, with over twice the density observed on the remaining four substrates.
The density of small individuals on Substrates 1 to 4 is remarkably similar. Greater
inter-substrate variation is observed in the density of medium-sized individuals, which
is highest on Substrate 4 and lowest on Substrate 3, with Substrates 1, 2 and 5
showing roughly similar, intermediate densities. Substrate 1 has by far the highest
density of large individuals with roughly twice the density found on Substrates 2 and 4,

and four and five times the density present on Substrates 5 and 3 respectively.

Canopy area

Substrate 1 has the largest mean canopy area, reflecting the greater density of large
individuals. The mean canopy area on Substrates 2, 3 and 4 are similar, differing by a
maximum of only 1 m?. Substrate 5 had the smallest mean canopy area, reflecting the
high density of small individuals on this site. Games—Howell test (used because of
unequal variances and sample sizes) revealed statistically significant differences in
mean canopy between all substrates (p < 0.05). Cohen’s d (a measure of effect size)
revealed most of these differences to have a medium or large effect (Table 7-5). Size

inequality was greatest on Substrate 3, followed by Substrates 1, 5, 2 and 4 in

descending order (Table 7-4).
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Size distribution

On all substrates the size distribution of S. supranubius was highly positively skewed,
with abundance decreasing with plant size (Figure 7-3). On all substrates, therefore,
the majority of individuals have a canopy area that is smaller than the mean. Larger
size classes have relatively few individuals, but some individuals attain very large
sizes (especially on Substrate 1). The log-normal function provided the closest fit to
the S. supranubius size-abundance data for all individuals on Substrate 1 to 4 (Table
7-6). Substrate 5 appears to have a different size-abundance distribution to the other
four substrates, being most accurately described by a power-law distribution.
Compared to the best-fitting function, there was little empirical support for the
competing functions (A4IC >10; Burnham and Anderson, 2002). The Weibull
distribution provided the second closest fit on Substrates 1, 2 and 4. On Substrate 3,
the second closest fit was provided by the power-law distribution. The worst

description of the size—abundance distribution on Substrate 5 was given by the

Weibull distribution.
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Figure 7-3 The observed (black columns) and best-fitting (white columns) canopy area
distribution of S. supranubius individuals on Substrates 1to 5 (graphs (a) to (e)).
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7.4.3 STRUCTURE OF DIFFERENT SIZE CLASSES

Following the analysis of environmental heterogeneity, the homogeneous g(r) was
used to analyse the spatial pattern of S. supranubius on Substrates 1, 2 and 5,
whereas the inhomogeneous g(r) was used on Substrates 3 and 4 (Figure 7-4). All
analyses, with the exception of large individuals on Substrates 3 and 5, exceeded the
minimum sample size of 70 individuals recommended by Wiegand et al. (2007a). The
hard-core distance increased with the size classes reflecting the increase in canopy
extent. At scales exceeding the hard-core distance, the use of real-shape or point
analysis had little effect types of pattern identified. The only exceptions were in the
analysis of large individuals on Substrates 3 and 5 where the function produced by
analysis of points was more jagged than that produced by real-shape analysis. This

was probably a result of the relatively low sample sizes in these size classes (Table

7-3; Wiegand and Moloney, 2004).

Interpretation of the S. supranubius spatial structure uses the results of the point
analysis. Any dispersion or decreases in g(r) detected below the hard-core distance
are not discussed, as it is not possible to separate real dispersion from the effects of
canopy extent at these scales. Increases or peaks in g(r) below and above the hard-

core distance are, however, discussed as these represent real aggregation rather than

an artefact of the canopy extent.

The distribution of small individuals on all five substrates was aggregative
(corresponding with Hypothesised Process 1; Figure 7-3). Aggregation of small
individuals was strongest on Substrate 2 followed by Substrates 1, 4, 3 and 5 in
descending order (Table 7-7). On all substrates the modal inter-shrub distance
between small individuals occurred at distances of between 1 and 3 m (corresponding
with hypotheses 1 and 3). On Substrates 2 and 3 the scale of maximum aggregation
coincided with the hard-core distance (Table 7-7). On Substrate 1 and 4 maximum
aggregation occurred at scales below the hard-core distance, whereas the scale of

maximum aggregation exceeded the hard-core distance on Substrate 5.
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Table 7-7 The hard-core distance, maximum magnitude of g(r) (gmax(r)) and scale (1) of gmax(r)
for each S. supranubius size class on each of the five substrates. Both the hard-core distance

and the scale (r) are measured in metres.

Small Medium-sized Large
§ Hard-core Gmaslt) i Ha.rd-core Galt) i Hard-core Gous(F) .
7] distance distance distance
1 3 4.90 2 4 2.73 4 8 1.40 10
2 2 6.47 2 4 1.82 4 8 142 11
3 3 3.91 3 4 2.98 4 10 3.27 10
4 3 4.15 1 4 1.42 4 8 1.61 9
5 2 3.60 3 5 1.62 3 7 1.86 8

The distribution of medium-sized individuals was also aggregative on all five
substrates (Figure 7-4). On all substrates the aggregation among medium-sized
individuals was weaker than the aggregation among small individuals (corresponding
with Hypothesised Process 2; Table 7-7). The strongest aggregation of medium-sized
individuals occurred at 4 m, except on Substrate 5§ where the strongest aggregation
was at 3 m (Figure 7-3; Table 7-7). However, the strength of aggregation in the
medium-sized shrubs does not follow the strength of aggregation among small
individuals (Table 7-7). The strongest aggregation among medium-sized individuals
was observed on Substrate 3, followed by Substrates 1, 2, 5 and 4 (Table 7-7). As
with the small individuals, the g(r) for medium-sized shrubs remained above 1 at all
scales on Substrates 1, 2, 3 and 5 (Figure 7-4). On Substrates 1 to 4 the scale of the
maximum aggregation coincided with the hard-core distance (Table 7-7). On
Substrate 5, however, the strongest aggregation of medium-sized individuals occurred

at scales below the hard-core distance.

Large individuals were aggregated on all substrates (Figure 7-4). The scale at which
maximum aggregation occurred increased to between 8 and 11 m (Table 7-7). On all
substrates this either coincided with, or exceeded, the hard-core distance. On
Substrates 1 and 2 the aggregation was weak, with the function reaching a maximum

height of g(r) = 1.4 at scales of 10 and 11 m respectively (Figure 7-4a, b; Table 7-7).

201



On both Substrates 1 and 2 this aggregation is weaker than observed in previous size
classes (corresponding with Hypothesised Process 2). Similar aggregation strengths
were detected on Substrate 4 with maximum aggregation occurring at 9 m (Figure
7-4d; Table 7-7). On this substrate, however, the aggregation is stronger than the
aggregation among medium-sized individuals. This increase in aggregative strength
is also observed on Substrates 3 and 5 (disagreeing with Hypothesised Process 2;
Figure 7-4c, e). Furthermore, the spatial pattern of large individuals on the latter two
substrates shows notable structure at larger scales. Large individuals were dispersed
between 20 and 21 m on Substrate 5, and there was a dip in g(r) to randomness
between 15 and 18 m on Substrate 3. Re-analysing these data with a real-shape
approach (because of small sample sizes) detected slight dispersion of large
individuals between 29 and 39 m on Substrate 3, and between 16 and 21 m and 36

and 41 m on Substrate 5 (Appendix F).

On all substrates the scale of aggregation and the hard-core distance increased with
size class (Table 7-7 and Figure 7-4). There is a general trend across all substrates
for the scale of maximum aggregation to coincide with, or fall below, the hard-core
distance among small and medium-sized individuals. Among large individuals the

scale of aggregation exceeds the hard-core distance by up to 3 m.

Figure 7-4 (pages 203 — 207) The spatial pattern of different size classes of S. supranubius on
five substrates of contrasting spatial environmental heterogeneity. Substrates 1 to 5 are shown
in graphs () to (e) respectively. The inset graphs compare the results of analyses using real-
shape data (grey lines) and analyses using point data (black lines). The main graph shows the
results of analyses using point data. The solid lines show the result for each size class (small,
medium and large — blue, red and green lines respectively), whereas the vertical dotted lines
show the hard-core distance below which point analysis g(r) may be influenced by the shape
and size of individual shrubs. The black, horizontal dotted line at g(r) = 1 show the expected
value under the null model of complete spatial randomness. The homogenous g(r) was used on
substrates 1, 2 and 5, and the inhomogeneous g(r) was used on substrates 3 and 4. The
intensity functions used in the inhomogeneous g(r) were constructed from positions of the

largest individuals (2 30 m?).
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7.5 DISCUSSION

This chapter investigated the spatial patterns of S. supranubius individuals on five
substrates with the aim of inferring the biological processes underlying the species’
spatial structure and investigating whether these processes interact with large-scale
environmental heterogeneity. A priori hypotheses describing the expected processes
of importance were developed and translated into expected spatial signatures (Table
7-1). Support for the hypotheses was tested by applying detailed univariate spatial
statistics to the observed spatial point pattern of S. supranubius. These results were
compared between five spatially adjacent substrates with differing magnitudes of
spatial environmental heterogeneity. To date, studies investigating the patterns and
processes of species and their interaction with spatial environmental heterogeneity
have focused on only two sites (e.g., Mandujano et al., 2001, 2007; Getzin et al.,
2008). Such studies are unable to determine whether observed differences are due to
site specificity or the true effects of heterogeneity. By studying five independent sites

the effects of heterogeneity, if present, could be assessed with greater confidence.

7.5.1 ENVIRONMENTAL HETEROGENEITY

Analyses detected large-scale homogeneity on two susbtrates (1 and 2) and
heterogeneity on two substrates (3 and 4; corresponding with Hypothesised
Process 4). Substrates 3 and 4 are pahoehoe lava flows with prominent ridge-trough
topographies. Such topographic variation could feasibly influence the distribution of
water resources (believed to be the most important resource to arid shrubs) via run-off
effects, adding support to the interpretation of heterogeneity. Substrate 5 was
considered to be homogeneous, although this interpretation was based on an analysis
of only 15 individuals. Indeed, re-analysing these data as 'real shape’ (which may
ameliorate the effects of small sample sizes; Section 6.4.3) indicated the presence of
a heterogeneous process operating between 21 and 30 m on Substrate 5 (Appendix

E). Because of the uncertainty regarding the level of heterogeneity on Substrate 5,
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this discussion will focus most attention on Substrates 1 to 4, where the heterogeneity

results are more conclusive.

Water availability is widely believed to be the main driver of ecological processes in
arid environments (Noy-Meir, 1973; Walker and Langridge, 1997). Thus the observed
heterogeneity on Substrates 3 and 4 may represent spatial variation in the provision of
plant-available water. As inter-substrate distances are relatively small, external
precipitation inputs are assumed to be consistent across the study area. Thus the
spatial heterogeneity in plant-available water will be determined by the local balance
of infiltration and evaporation, and any surface or subsurface flow. Soil and
geomorphic conditions can determine the availability of plant-available water via their
control on infiltration rates, depth of moisture storage and evaporative losses (Grayson
et al., 2006). Broad-scale geomorphologically and edaphically induced variation in
moisture regimes in arid environments have been shown to influence vegetation
distribution (Bisigato et al., 2009) as well as the spatial patterns (Schenk et al., 2003),
abundance (Hamerlynck et al., 2002; Bestelmeyer et al., 2006), physiological activity
(Hamerlynck et al., 2000), mortality (Hamerlynck and McAuliffe, 2008) and competitive
interactions (Hamerlynck et al., 2002) amongst arid perennials. Similarly, substrate-
driven water availability at the local scale can drive the response of individual plants to
precipitation events (Pérez, 2000, 2003). The potential for soil and geomorphic
properties to vary at several spatial scales means they can theoretically produce
highly heterogeneous plant-available water distributions. It is proposed that the ridge—
trough topography on Substrates 3 and 4 drives meso-scale spatial variation in plant-
available water, and thus the heterogeneous distribution of the largest individuals.
Specifically, run-off effects are expected to reduce the quantity of water infiltrating the

ridges, resulting in increased plant-available water in the intervening troughs. This is

investigated further in Chapter 8.

7.5.2 SIZE-ABUNDANCE DISTRIBUTION

The S. supranubius populations on all five substrates followed a similar size hierarchy

with monotonically declining abundance with increasing plant size. On Substrate 4
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this distribution was interrupted by a lower abundance in the first size class (0 - 5 m%
Figure 7-3). This reverse-J distribution has been observed in other semi-arid
perennials (Barbour, 1969; Fonteyn and Mahall, 1981; Turner, 1990). The reverse-J
distribution is often interpreted as representative of populations with a constant rate of

recruitment and time-dependent survivorship and is often observed in clonal species

(Mandujano et al., 2007).

Understanding the size—abundance distribution of a population can allow inferences to
be made about the processes underlying its structure. Size distributions in nature are
typically Gaussian with the average size of an individual dictated by physical and
biological constraints (Manor and Shnerb, 2008). However, two recent studies (Kefi et
al., 2007; Scanlon et al., 2007) have shown that vegetation patches in arid zones are
power-law distributed. Scanlon et al. (2007) concluded that the power law distribution
of tree clusters arose from the interaction of resource constraint effects (water
availability) and local facilitation. Other studies have suggested that power law
distributions can occur when a system shows self-organised criticality (Allen et al.,
2008). The power-law distribution, however, did not provide a good description of the
S. supranubius size—abundance distribution except on Substrate 5. On the remaining
substrates the lognormal distribution provided the best description of the
S. supranubius size-abundance distribution.  These results suggest that the
population dynamics of S. supranubius (i.e., growth and mortality) on Substrate 1, 2,

3, and 4 are approximately equivalent whereas Substrate 5 may have different S.

supranubius dynamics.

7.5.3 SPATIAL PATTERN OF DIFFERENT SIZE CLASSES

Wheeler and Dickenson (1990) provide the only other known study of S. supranubius
distribution patterns. Using Clark and Evans’ (1954) nearest neighbour technique,
they measured the distances separating 100 pairs of S. supranubius individuals and
concluded that the species was uniformly distributed, a conclusion that this chapter is
at variance with. Following germination experiments, Wheeler and Dickenson (1990)

suggested intraspecific competition for water and/or herbivory as the mechanisms

210



behind the distribution of individuals. Although field observations suggest the
presence of herbivory, it is not expected to affect the success of clonal reproduction in
S. supranubius (Kyncl et al., 2006). The current research supports their suggestion of

the importance of intraspecific competition (supporting Hypothesised Process 2).

It has previously been assumed that abiotic heterogeneity will affect the broad-scale
distribution of plants (i.e., the first-order properties of spatial patterns), but is less likely
to affect the distribution and size of individuals relative to one another (i.e., the
second-order properties of patterns). By using the inhomogeneous g(r) to remove the
effect of environmental heterogeneity on Substrates 3 and 4, this study found notable
differences in the second-order properties of S. supranubius patterns between
homogeneous and heterogeneous sites, indicating that S. supranubius interactions

and demographics are affected by habitat characteristics.

The spatial structure of small individuals

Some 70% of all plant species display capability for clonal growth (Kiime$ et al.,
1997). Despite the ubiquity of clonal reproduction in arid shrubs (Schenk, 1999), no
studies, to my knowledge, have considered how this process, and specifically branch-
layering, influences the spatial structure of a species. That vegetative reproduction
can generate distinct spatial structures has been acknowledged in studies of
herbaceous species (Mahdi and Law, 1987; Kenkel, 1993; Oborny and Cain, 1997;
Pottier et al., 2007), but there has remained a lack of understanding of the role of
clonal propagation in the population spatial structure of arid-zone shrubs (Jiménez-
Lobato and Valverde, 2006). The spatial patterns of small individuals were consistent
with the operation of clonal reproduction (hypotheses 1 and 3). On all substrates the
peak inter-shrub distance between small individuals occurred at small scales (between
1 and 3 m), with high frequencies of inter-shrub distances relative to CSR observed up
to 10 m. This indicates that small individuals in clumps are separated from their
neighbours by between 1 and 3 m. Furthermore, clonal reproduction appears to have
a strong influence on the spatial structure of older cohorts, with small-scale

aggregation persisting among medium-sized individuals on all substrates (Figure 7-4).
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Cional reproduction may explain the reverse-J shaped size—abundance distribution

and the constant recruitment rate this distribution implies.

As with species of similar physiology (McAuliffe et al., 2007), field observations
indicate that S. supranubius individuals generate clonal offspring only when they have
attained a certain size. It is assumed that individuals are only capable of reaching
these sizes in resource-rich/sufficient areas. As such, clonally reproduced ramets are
also assumed to be located in resource-rich sites. With no anticipated differences in
inter-ramet competition on the different substrates, it was hypothesised that any clonal
signature should show little variation between substrates of differing heterogeneity
(Golubski et al., 2008; Hypothesised Process 3). However, although clonal
reproduction appears to be occurring on all substrates, the relative importance of the
process seems to vary. The magnitude of aggregation among small individuals is
notably stronger on the two homogeneous substrates (Substrates 1 and 2) compared
to the heterogeneous substrates (Substrates 3 and 4). Assuming the observed spatial
pattern is indeed a signature of clonal reproduction, the results suggest that clonal
reproduction is more prevalent or more successful on homogeneous substrates

(disagreeing with Hypothesised Process 3).

Recent studies highlight the importance of environmental heterogeneity in describing
plant regeneration dynamics (Barbeito et al., 2009 and references therein). McAuliffe
et al. (2007) concluded that the successful growth and clonal reproduction of
L. tridentata, an arid shrub known to vegetatively reproduce in a similar fashion to
S. supranubius (Vasek, 1980, McAuliffe et al., 2007), is largely dependent on
substrate conditions. McAuliffe et al. (2007) contend that vegetative spread in
L. tridentata requires fine, continually renewed aeolian deposits which have high rates
of infiltration and moisture storage. These conditions, they propose, enhance
individual plant performance and prospects for long-term survival, which are
necessary for clonal development. The homogeneous substrates have much more
extensive coverage of fine surface sediments than the heterogeneous substrates

(pers. obs.; Table 2-1). However, large individuals were present on all substrates
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indicating that all the substrates provide the resource conditions required for clonal
reproduction. Therefore, in addition to the geo-hydrologic relationships proposed by
McAuliffe et al. (2007), it is hypothesised that the geomorphologic conditions on the
heterogeneous substrates may have a direct effect on reproduction by physically
restricting the adventitious rooting of branches. Both Substrates 3 and 4 have
prominent rocky ridges, with Substrate 4 also noted for the dominance of large,
unsorted surface clasts in the intervening troughs (Table 2-1). Alternatively, the fine
surface materials on Substrates 1 and 2 may enable lateral branch rooting and thus

extensive clonal reproduction (lila et al., 2006).

The spatial structure of medium-sized and large individuals

On all substrates the pattern of medium-sized and large individuals was predominantly
aggregative. The scale of maximum aggregation among medium-sized individuals
was 4 m on all substrates except Substrate 5, perhaps suggesting inter-substrate
consistency in the demographic processes operating on medium-sized shrubs. There
was no apparent relationship between the magnitude of aggregation among either
medium-sized or large individuals, and the heterogeneity of the substrate. However,
there was a notable difference in the relative aggregation of medium-sized and large
individuals on heterogeneous and homogeneous substrates. On the homogeneous
substrates the strength of aggregation decreases in subsequent size classes with the
weakest aggregation observed among large individuals, corresponding with the
operation of density-dependent competition (e.g., Meyer et al., 2008; Metsaranta and
Lieffers, 2008; Gray and He, 2009; Hypothesised Process 2). On both homogeneous
substrates the large individuals show only minimal deviation from complete spatial
randomness. Conversely, on the heterogeneous substrates the weakest aggregation
is among the medium-sized individuals, with aggregative strength increasing among
large individuals. As well as exceeding the intra-substrate magnitude of aggregation
of medium-sized individuals, the aggregative strength of large individuals on
Substrates 3 and 4 exceeds that of large individuals on Substrates 1 and 2. It

therefore appears that the patterns of stand development on Substrate 3 and 4 are
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more complex than predicted by competition alone (Metsaranta and Leiffers, 2008;

Hypothesised Process 2).

It has been proposed that as desert shrubs mature they gain access to less readily
depletable, deep-soil moisture reserves, reducing the total impact of both inter- and
intra-specific competition (Golluscio et al., 1998; Toft and Fraizer, 2003). Thus, it may
be predicted that upon reaching a large size, mortality should become density
independent and older cohorts should revert to a random distribution as individuals
are lost from the system because of stochastic events. This explanation fits the
distribution of large individuals on the homogeneous substrates which show only small
deviations from complete spatial randomness. However, on the heterogeneous
substrates the increase in aggregation among large individuals suggests that the
relative risk of mortality increases with isolation as the shrubs age. Ontogenetic shifts
in biological interaction have been previously reported (Miriti, 2006), but these
generally describe an increase in competition, not facilitation, as individuals age. It is
presumed that competition and facilitation in arid environments are driven by water
availability. Thus, one possible explanation is that the geological make-up of the
heterogeneous substrates has prevented the formation of deep water reserves, or the
distribution of deep water reserves is spatially heterogeneous. Alternatively, the
geological make-up of the heterogeneous substrates may prevent the roots of S.
supranubius from penetrating the substrate to access the deep water reserves. The
positive feedback between plant biomass and infiltration is widely recognised (Rietkerk
et al., 2004; Ludwig et al., 2005). Increasing aggregation among large individuals may
increase infiltration enhancing the survival of individuals in clumps relative to isolated
individuals. Alternatively, it is possible that clustering of large individuals has climatic
benefits by reducing low-level wind speeds and thus reducing wind-induced

desiccation. However, this explanation is deemed less plausible because of the

sheltering effects of the caldera walls.
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7.5.4 A SIGNATURE OF COMPETITIVE THINNING

On all substrates the decrease in aggregation among medium-sized individuals
relative to small individuals is consistent with commonly cited hypotheses of density-
dependent mortality (Hypothesised Process 2). Further evidence in support of the
operation of competition is provided by the comparison of the hard-core distance to
the scale of maximum aggregation. On all substrates except Substrate 5, the scale of
maximum aggregation of small and medium-sized individuals equalled or was slightly
less than the hard-core distance (Table 7-7). In practice this means that within each
cohort, an individual's neighbours are most commonly found immediately adjacent to
their canopy, corresponding with the observed modal shrub-shrub distance of
between 1 and 3 m. Occasionally the canopies of these individuals overlap (causing
the scale of maximum aggregation to fall below the hard-core distance), but mostly
they do not (i.e., scale of maximum aggregation equals the hard-core distance; Figure
7-5). There may, however, be unobserved overlap in the root zones. The increase in
both the hard-core distance and the scale of maximum aggregation with size is strong
evidence for density-dependent competition. On all substrates except Substrate 3 the
scale of maximum aggregation among large individuals exceeds the hard-core
distance by between 1 to 3 m (Table 7-7). In practice that means that within the large
cohort individual canopies do not overlap or even touch (Figure 7-5). Instead they are
separated by 1 to 3 m at least. The increase in the spacing of large individuals
relative to small and medium-sized individuals suggests that competition may become
more spatially extensive as individuals reach large sizes (i.e., zone of influence
increases disproportionately with canopy size; Figure 7-5). Furthermore, the distance
between the hard-core distance and the scale of maximum aggregation should
increase as competition increases in strength. Because the distance between the
hard-core distance and the scale of the strongest pattern among large individuals was
greatest on Substrates 1 and 2, the results suggest that competition, at least among
large individuals, is strongest on the two homogeneous substrates. The decrease in
the maximum g(r) of large individuals, compared to small or medium-sized individuals

on Substrates 1 and 2 reflects the loss of previous neighbours whose canopies/root
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systems began to interfere with other, more competitive individuals (i.e., density-

dependent competition; Figure 7-4a and b; Table 7-7).

Figure 7-5 A signature of competitive thinning derived from the changes in the difference
between the hard-core distance and the maximum scale of aggregation as cohorts age.

7.6 CONCLUSIONS

It is generally accepted that while abiotic heterogeneity can affect the first-order
structure of a species, it operates on too large a scale to have a quantitative influence
on the second-order structure of a population. This study, however, has demonstrated
that after removing the effects of environmental heterogeneity, neighbouring lava flows
that differ in age and geomorphological structure, but which are not expected to differ
significantly in climate, had notably different S. supranubius population spatial
structures. Differences in the inter-substrate first- and second-order properties of S.
supranubius spatial pattern are both attributed to substrate geomorphological
characteristics. However, whereas differences in the former are attributed to the effect
of geomorphology on plant-available water, differences in second-order properties are
attributed to the physical effects of geomorphology on the physiology of individuals.
This latter effect is hypothesised to limit both the rooting of lateral branches (and thus
clonal reproduction), and the access of large shrubs to deep water reserves on the
heterogeneous substrates. Thus, in accordance with other studies (Hamerlynck et al.,
2000, 2002; Peters et al., 2008) it is proposed that population spatial structures in arid
environments cannot be understood without an understanding of how the soil-

geomorphic template influences the spatial distribution of plant-available water.
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CHAPTER 8: SPATIAL VARIATION IN THE DENSITY AND LOCAL
SPATIAL STRUCTURE OF S. SUPRANUBIUS: THE ROLE OF

TOPOGRAPHY

8.1 INTRODUCTION

Analyses in Chapter 7 concluded that spatial environmental heterogeneity had a
notable effect on the spatial structures of, and therefore interactions between, S.
supranubius individuals (following Getzin et al., 2008). This chapter aims to map
potential biologically relevant heterogeneity sources to further investigate their

influence on the density and the spatial structures of S. supranubius populations.

Understanding the relationship between abiotic and biotic processes, and how they
influence population dynamics, is a fundamentai aim of ecology (Dahigren and Ehrién,
2009). Some studies have compared the spatial patterns of plants under different
abiotic conditions (most commonly comparing patterns under different fire [Fulé and
Covington, 1998; Park, 2003; Yu et al., 2009] or disturbance regimes [Wells and Getis,
1999; Call and Nilsen, 2003; Fajardo and Alaback, 2005; Malkinson and Kadmon,
2007; Appendix A]). However, little attention has been paid to investigating and
quantifying the effect of continuous abiotic gradients on plant population spatial
structure, perhaps because the plot sizes commonly used are too small to contain
noteworthy abiotic gradients (Figure 1-3). Consequently, there is surprisingly little
understanding of how continuous spatial environmental heterogeneity may interact
with biological processes to determine population dynamics (Wagner and Fortin, 2005;
Murrell, 2009). If abiotic factors influence both long-term demographic processes
(e.g., establishment and survival) and interactions between individuals, then both the
density and second-order structure of the population should change simultaneously
with abiotic gradients. Investigation of such phenomena has, to date, been limited to a
study by Shimatani and Kubota (2004), in which they quantified changes in the spatial
pattern of a coniferous tree by constructing and assessing the fit of a novel

inhomogeneous point process model that incorporated spatial variation in both density

and point—point interactions.
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To investigate the role of spatial environmental heterogeneity, that heterogeneity must
be identified and mapped. Soil water availability is widely believed to be the main
driver of ecological processes in arid environments (Noy-Meir, 1973; Walker and
Langridge, 1997, Grayson et al., 2006; Robertson et al., 2009) and is therefore
assumed to be important in the present system. Consequently, understanding the
spatial structure of S. supranubius may require knowledge of the spatial distribution of
water. Water availability at any one location is determined by the balance between
the vertical transfer (infiltration and evaporation) and horizontal redistribution (surface
and subsurface) of water (Grayson et al., 2006). This chapter assumes that any
feature that significantly influences local hydrology is likely to have an effect on
overlying vegetation structure and dynamics. Field studies have demonstrated that
substrate characteristics in arid regions, such as clast size (Diaz et al. 2005), clast
depth (Tejedor et al., 2002) and clast sorting (Pérez, 2000; Tejedor et al., 2003), can
influence the local balance of infiitration and evaporation and thus the moisture
availability in upper soil layers. This can have subsequent effects on the distribution
and dynamics of individual plants (Pérez, 2003; Hamerlynck et al., 2002). However,
woody shrubs which remain physiologically active throughout the year, such as
S. supranubius, are expected to be more affected by the distribution and dynamics of
water stored at depth (Gebauer et al., 2002; Schenk and Jackson, 2002). Therefore,
the spatial structure and intensity of S. supranubius may be expected to correlate with

abiotic features that influence the recharge of deep water reserves.

Deep water stores are recharged when the storage capacity of upper soil layers is
exceeded (Grayson et al., 2006; Wilcox et al., 2006a). Thus deep water recharge
occurs when there are large precipitation pulses (Gebauer et al., 2002), or when the
water from small precipitation puises is concentrated into confined locations.
Topography and slope influence the horizontal redistribution of water from
precipitation events (Chaplot and Le Bissonnais, 2000; Wilcox et al., 2003; Grayson et
al., 2006) and therefore may be important in determining the spatial distribution of
deep water recharge. Topographically driven water availability has previously been

shown to affect the density and biomass of arid vegetation (Imeson and Prinsen,
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2004; Ju et al., 2008; Hamerlynck and McAuliffe, 2008; Svoray et al., 2008; Popp et
al., 2009). However, most of our current understanding concerns how topography
interacts with hydrological processes to determine vegetation patterning at the patch
scale, for example the generation of banded vegetation patterns or ‘tiger bush’ (Saco
et al., 2007; McDonald et al., 2009). Our understanding of how topography influences

vegetation dynamics at the scale of individuals is still poor.

This chapter investigates whether topography influences the density and spatial
structure of the S. supranubius population on Substrate 3. Substrate 3 is the youngest
of the focal sites and has prominent ridge-trough topography (see Table 2-1).
Chapter 7 concluded that intra-specific competition may be an important process
structuring S. supranubius populations, and that the importance of competition may be
influenced by spatial environmental heterogeneity. Consequently, this chapter
investigates the presence of spatial structures that are consistent with the operation of
intra-specific competition as an important organising force. The results are interpreted

in relation to the following conceptual model of topographically driven water

redistribution.

8.1.1 A MODEL OF WATER REDISTRIBUTION ON SUBSTRATE 3

Despite common acceptance of the importance of water availability in driving
biological processes in arid systems, there are very few datasets of sufficient duration
and spatial extent to quantify aspects of water availability that are relevant to arid
shrub dynamics (Breshears et al., 2009). Given the large inter-annual variability in
arid precipitation events (Snyder and Tartowski, 2006), the typically short duration of
precipitation events, and the slow demographic responses of arid shrubs (Cody, 2000;
Bowers, 2005), many years of continuously collected data would be required to
empirically investigate the relationship between water availability and shrub dynamics.
Neither time nor financial resources allowed such measurements to be made.
Consequently, a priori knowledge on the focal sites and the influence of
geomorphological characteristics on the spatial partitioning of rainfall events (e.g.,

Monger and Bestelmeyer, 2006) was used to develop the following conceptual model.
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Substrate 3 is composed of rocky ridges with intervening troughs of pumice and
erosional deposits. It is hypothesised that the distribution of the ridges and the slope
of the terrain will produce linearised spatial variation in water availability. The model
predicts that there will be four zones of alternating high and low water availability

between each ridge and the centre of the neighbouring trough (Figure 8-1).

Zone 1: low water availability

Zone 1 is located on the rocky ridges where the slope of the terrain is relatively steep.
Runoff magnitude increases with increasing slope, reducing the chance of infiltration
(Chaplot and Le Bissonnais, 2000; Wilcox et al., 2003; Monger and Bestelmeyer,
2006). Furthermore, the presence of large rocks will reduce the volume available for
moisture storage to the areas of soil/humus trapped between rocks. Consequently, it

is hypothesised that the majority of the precipitation in this zone will be lost via run-off.

Zone 2: high water availability

Zone 2 occurs where the pumice troughs adjoin the rocky ridges. The zone
represents a change in substrate characteristics and a sudden decrease in the slope
of the terrain. Sandy and coarse textured soils have a high infiltration rate and enable
deep drainage (Wiicox et al., 2006a; Popp et al,, 2009). Much infiltration of run-off

from zone 1 is expected to occur and recharge deep water reserves in zone 2

Zone 3: low water availability

Much of the run-off from zone 1 has already been absorbed in zone 2. Therefore
zone 3 largely relies on precipitation inputs. It is hypothesised that much of the

precipitation will be lost to evaporation before it can reach deep storage.

Zone 4: high water availability
Sub-surface topography is expected to result in the sub-surface flow of the water
infiltrated in zone 2 through zone 3 to accumulate in zone 4. The subsurface

movement of water is hypothesised to generate a reservoir of deep water in the centre

of troughs.
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8.1.2 AIMS AND OBJECTIVES

Two main hypotheses are outlined:

Hypothesis 1: Topography will influence the pattern and density of S.

supranubius individuals.

Hypothesis 2: Topography will induce spatial variation in the importance of
competition as a force structuring the S. supranubius

population.

8.2 METHODS

8.2.1 DATA COLLECTION

A subset of the original field site on Substrate 3 was selected (Figure 8-2). The focal
area was located such that it contained minimal variation in the ridge-trough
orientation and no obvious broad-scale trends in the density of Adenocarpus viscosus
(the other leguminous shrub dominating the Cafiadas caldera). Within this focal area
(6.2 ha [200 x 310 m]), the locations of ridges tops were mapped using a Promark3
differential GPS. Ridges were defined as linear features over 2 m in height and
greater than 10 m in length that were composed of more than one rock. The resulting
map of ridge locations was used to create a map of the distance of each location to
the nearest ridge (Figure 8-3). The elevation of the site was also mapped on a
10x10 m grid. A continuous map of elevation was produced using kriging
interpolation in ArcMap 9.2. This map was subsequently used to generate a slope
surface using the Spatial Analyst function in ArcMap9.2 (Figure 8-4). Both the slope
of the terrain and the distribution of ridges were used as spatial covariates in the

following analyses. They are hereafter referred to as the slope and ridge covariates

respectively.
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Figure 8-2 The focal site for Chapter 8 (highlighted in the yellow box) — a subset of Substrate 3.
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Figure 8-3 Raster image (resolution 1 m) showing the distance to the nearest ridge top (m).

Superimposed on the image are the locations of S. supranubius individuals (small = blue,
medium-sized = red, large = green). NB: although shown as a categorical map a continuous

surface was used during analysis.
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Figure 8-4 Raster image showing the slope (degrees) of the terrain. Superimposed on the
image are the locations of S. supranubius individuals (small = blue, medium-sized = red, large =
green). NB: although shown as a categorical map a continuous surface was used during

analysis.
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8.2.2 ANALYSES

Analysis 1: the effects of ridge distribution and siope on the density of S.
supranubius

Point process modelling techniques were used to investigate whether the ridge and
slope covariates were able to explain the spatial variation in the density of
S. supranubius. Point process modelling allows the fit between a hypothesised point
process and the observed point data to be assessed. Therefore, the technique can be
used to assess how well spatial variables (e.g., the distribution of ridges or the slope
of the terrain) account for the heterogeneous distribution of S. supranubius (as
identified in Chapter 7). Hypothesised point processes are fit to the observed point

pattern by the method of maximum pseudo-likelihood (Besag, 1975).

Table 8-1 describes the models that were fit to the observed S. supranubius
distribution. Model 1 is essentially a null model, attempting to describe the distribution
of S. supranubius as a homogeneous Poisson process (i.e., the intensity of
S. supranubius does not vary with spatial location). The remaining three models
attempt to explain the distribution of S. supranubius as inhomogeneous Poisson
processes (i.e., the density of S. supranubius varies with location in accordance with a
spatial covariate). Two models are developed to assess how well the topography
covariates (ridge and slope) account for the distribution of S. supranubius. Mode! 3
fits an inhomogeneous Poisson process with intensity that is a loglinear function of the
topographical covariates. Conversely, model 4 fits an inhomogeneous Poisson
process with intensity that is proportional to the values of the topography covariates.
Unlike models 3 and 4, model 2 does not use measured spatial covariates. Instead,
model 2 attempts to describe the distribution of S. supranubius using Cartesian
effects. The identification of Cartesian effects that account for the distribution of

S. supranubius may imply the presence of gradients in abiotic conditions that have not

been directly measured.
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Table 8-1 The four point process models fit to the observed point pattern of S. supranubius.

Model Description Intensity term

A homogeneous Poisson process where the
. . . . Au)=a
density l(u) of shrubs is spatially uniform.

An inhomogeneous Poisson process where the
2 density /?,(u)of shrubs is log-linear in the Z(u) =exppa+bx + cy)2 }
Cartesian coordinates.

An inhomogeneous Poisson process where the

3 density of shrubs /l(u) is a log-linear function of  A(u) = exp(a + bZ (u))
the covariate Z(u) .
An inhomogeneous Poisson process where the

4 density of shrubs l(u) is proportional to the A(u) =aZ(u)

covariate Z(u) .

In the intensity term, a, b and ¢ are parameters to be estimated from the fitted model, and Z(u)
is the value of the covariate (i.e., the distance to the nearest ridge or the slope of the terrain) at
location u. The ridge and slope covariates are derived from Figure 8-3 and Figure 8-4.

Akaike information criterion (AIC) was used to assess the relative fit of competing
hypothetical models to the observed point pattern. The intensity term in model 2
(Table 8-1) was simplified by removing terms to identify the individual Cartesian effect
(e.g. x, xy) that best described the density of S. supranubius. The AIC values of the
models were compared. The model producing the lowest AIC was assumed to
provide the best available description of S. supranubius density. The difference
between the AIC of each model and the best-fitting model was calculated ( A4/C").

Interpretation of AAIC follows Burnham and Anderson (2002). Models with

AAIC > 10 provide a poor explanation of the variation in the data relative to the best-
fitting model (i.e., little empirical support; Burnham and Anderson, 2002). Models with
4 < AAIC s Thave ‘considerably less’ support than the best-fitting model (Burnham
and Anderson, 2002: p.70), whereas models with 0 <sAAIC s 2 have substantial
support. If either of the models containing the topographical covariates (i.e., model 3
or 4) provided the lowest AIC value it implies that topographical gradients are
important in determining the distribution of S. supranubius individuals. However, if

both models 3 and 4 produced higher AIC values than models 1 and 2, then two
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possible interpretations existed. It could be that topography has little influence on
S. supranubius density compared to other, unmeasured environmental gradients (cf.
model 2). Alternatively, it could be that the relationship between topography and the
density of S. supranubius is non-proportional (cf model 4). The hypothesised water
redistribution model (Section 8.1.1) suggests that the effects of topography and
geomorphology will generate distinct zones of vegetation response rather than a
continuous surface, therefore a non-proportional relationship between S. supranubius
density and the topography covariates was considered to be more likely. Therefore, if
models 3 and 4 provided weak explanations of S. supranubius density, the topography
covariate was adapted to test for discrete heterogeneity effects by dividing the original
continuous image into a series of binary images where the value separating the two
binary classes took increasing values. Each binary image was used as a covariate in
model 3. The binary covariate that produced the lowest AIC value indicates the

topographical position (i.e., the siope or the distance from a ridge) which has the

greatest effect on the density of S. supranubius.

The point process models described in Table 8-1 were fit to the observed pattern of
S. supranubius in each of the three size classes (Section 7.3.2). Models 3 and 4 (and
any binary models) were applied separately using the ridge (Analysis 1a) and the
slope covariate (Analysis 1b). Up to this point the models fitted to the S. supranubius
distribution have contained only one term (i.e., either slope, ridge or Cartesian). In
Analysis 1c, models incorporating a combination of these three terms are fit to the
S. supranubius distribution. To try to achieve the best fit possible, these combined
models used the best-fiting binary topography covariates and the best-fitting
Cartesian effects as identified in Analyses 1a and 1b. All analyses were performed

using the spatstat package (v.1.17-2, Baddeley and Turner, 2005) in R (v.2.10.0, R

Core Development Team, 2009).
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Analysis 2: the effect of ridge distribution and slope on the local spatial

structure of S. supranubius
This analysis investigates the presence of local spatial structures that are consistent

with the importance of intra-specific competition as an organising force.

Size-distance correlation as a signal of competition

Competition may control both the size and the local density of shrubs. Nearest
neighbour techniques provide a simple and intuitive approach to exploring local
interactions (Perry et al., 2009). Under the presence of competition, the size of an
individual is expected to be a function of the size and distance of all neighbouring
individuals that fall within its zone of influence. A positive correlation between the size
of an individual and the distance separating it from its nearest neighbouring individuals
is expected if competition reduces growth (Getzin et al., 2006). Therefore, analysing
the correlation between the sum of the area of several nearest‘ neighbours and the
sum of distances separating them from the focal shrub provides a good indication of
the importance of competition as an organising force at the local scale. This
technique has been employed in several recent articles (Schenk et al., 2003; Getzin et
al., 2006; Getzin and Wiegand, 2007; Meyer et al., 2008, Gray and He, 2009).
Steeper regression slopes between the two variables suggest the presence of local

spatial structures that are indicative of an increased importance of competition.

Quantile regression

The relationship between the sum of the canopy area of the five nearest neighbours
(following Gray and He, 2009) plus the canopy area of the focal shrub, and the sum of
the distances separating them from the focal shrub, was analysed using quantile
regression (following Meyer et al., 2008; Lawes et al., 2008) to reveal whether there
was more than a single slope (rate of change) describing the relationship between
area and distance (Cade and Noon, 2003). The presence of multiple rates of change
would imply inconsistency in local spatial structure and the presence of a factor(s) that
interacts with nearest neighbour distances to increase the heterogeneity of shrub size

(i.e., an interactive factor that is influencing local spatial structure; Cade and Noon
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2003; Meyer et al., 2005). Further analysis could then be conducted to determine

whether either the ridge or the slope covariate could be the interactive factor.

Quantile regression can be used to fit linear (or non-linear) trends to quantile surfaces
within the data (Koenker, 2005). Thus, whereas ordinary least-squares regression
models the relationship between a variable X and the mean of the response variable

Y, quantile regression models the relationship between X and the quantiles of ¥
such as the 75" percentile. For example, the 7" quantile regression function Q(r)
describes a linear (or non-linear) fit through the data so that 7 proportion of the data
are located below the regression line (Q(7)), and 1— 7 proportion of the data are

located above the regression line (Q(7)). Thus, instead of just modelling the mean
effect corresponding to a set of xs, multiple properties of the distribution are modelled
(Guisan et al., 2006). Linear regressions were fit to the 0.95, 0.9, 0.75, 0.5, 0.25, 0.1
and 0.05 quantiles. The slope of the regression line for each quantile was extracted.
The estimates of rates of change in quantile regression are semi-parametric in the
sense that no parametric distributional form (e.g. normal, Poisson) is assumed for the
error (i.e. residuals) of the model (Cade and Noon, 2003). Confidence intervals (90%)
were constructed for the slope estimates (following Meyer et al., 2008). Where the
lower 90% confidence limit was greater than zero, a significant positive relationship
between the combined nearest neighbour distance and the combined area was
deemed to exist. Differences in the regression slopes imply that factors other than
nearest neighbour distances are having an (interactive) effect on shrub size (Meyer et
al., 2005, 2008). Analysis of deviance techniques were used to test the equality of the

quantile regression slopes.

Further analyses were performed to investigate whether either the ridge or slope
covariate could explain any observed inconsistency in local spatial structure. As the
effects of the covariates are anticipated to be non-linear (Section 8.1.1) the covariates
could not simply be incorporated as interaction terms in linear regressions between
size and distance. Instead, the data were divided into seven subsets of similar sample
size such that each subset contained covariate values higher than the previous
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subset, but lower than the next subset. Seven subsets were chosen as this provided
a large sample size in each subset (7 ~ 100) but did not reduce the covariate into too
few spatial categories. This was done once for the ridge and once for the slope
covariate. Within each subset a bivariate linear regression between nearest
neighbour distance and combined canopy area was performed and the coefficient of
determination (Rz) calculated. Differences in R? between the data subsets suggest
that the covariate influences the local spatial structure. Higher values of R? indicate
spatial structures that are consistent with competition as an important organising
force; lower R? values indicate factors other than competition may be driving local
spatial structure. In addition to reporting the values of R?, the statistical significance of
the model and the slopes of the regression lines are also reported. This provides a
more robust comparison of the relationship between nearest neighbour distance and
combined canopy area in different locations within the terrain, and allows more
confidence in making assessments of the likelihood that any observed differences in
R? may have occurred by chance. Nearest neighbour calculations were performed
using Hawth's tools in ArcMap 9.2, quantile regression was performed using R and the

quantreg package (Koenker, 2009).

Shackleton et al. (2002) provide one of the only studies, to my knowledge, that uses
the regression between nearest neighbour distances and the sum of shrub sizes to
investigate how site factors (e.g. aspect, slope, landscape position) correlate with the
presence/absence and relative importance of intraspecific competition between woody
savanna species (as measured by R? values). They concluded that slope position
influenced the presence of competition. To maintain comparability with Shackleton et
al's (2002) study the regressions discussed above used canopy area (m’) as a

measure of shrub size, instead of more commonly used measurements such as

canopy diameter (e.g. Meyer etal., 2008).
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8.3 RESULTS

8.3.1 ANALYSIS 1A: THE EFFECT OF RIDGES ON THE DENSITY OF S.
SUPRANUBIUS

Table 8-2 shows the AIC values when the four point process models were fitted to the
S. supranubius point pattern in each size class. Model 2 (Cartesian trends) provided
the best explanation of the density of S. supranubius in all three size classes. Relative
to the competing models, model 4 (which assumed that shrub density was
proportional to the distance to the nearest ridge) has no empirical support. Compared
to model 2 there was considerably less support for either model 1 or 3 when
attempting to explain the density of medium-sized and large individuals. When fit to
the density of small individuals, however, the explanatory power of models 1 — 3 was

largely indistinguishable. Therefore, if the distribution of ridges does affect the density

of shrubs, the effect is probably non-linear.

Table 8-2 The AIC values (1 d.p.) for each of the four point process models described in Table
8-1 when fitted to the pattern of S. supranubius individuals in each of the three size classes.
Models 3 and 4 use the ridge covariate. Bold text indicates the model with the lowest AIC.
AAIC calculates the difference in AIC between each model and the best-fitting model. The
Cartesian trends providing the best spatial fit are shown in parentheses.

Model 1 Model 2(best fitting Model 3
0
Cartesian model) ode Model 4

Size
| AIC AAIC AIC AAIC AIC AAIC AIC AAIC
class
2707.
Small 27081 0.8 ( )3 0 27090 1.7 2855.8 1485
x*y
ium- 5082.5
Medim 50874 4.9 0 5087.7 52 53221 2396
sized (\)]
1299.5
Large 13059 64 0 13049 54 13111 116

)

Figure 8-5 plots the AIC values of models using binary distance classes. For each

size class the binary model providing the greatest improvement in fit over the

Cartesian effects (model 2) is described.
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Small individuals

Compared to the Cartesian model, the binary distance classes did not improve the
explanation of the observed point pattern until large distance classes were separated
out (Figure 8-5a). The best model divided the ridge distribution covariate into two
classes, separated at a distance of 28 m (AIC = 2698.3). The model identified a
decrease in density from 33 individuals at distances Iess than 28 m from a ridge, to 0

individuals per hectare at greater distances. Compared to this model, the best fitting

Cartesian model had A4IC= 9, and thus provided a considerably worse explanation

of the data.

Medium-sized individuals

The only model which had a better fit than the Cartesian model divided the ridge
distribution covariate at 12 m (AIC = 5082.2; Figure 8-5b). This model identified a
density of 61 individuals per hectare in locations close (< 12 m) to a ridge compared
with a density of 79 individuals per hectare at greater distances. However, compared
to this model, the best-fitting Cartesian model had A4/C = 0.3 suggesting that there

was little difference in the explanatory power of the two models.

Large individuals

When applied to large individuals, the binary ridge covariate provided a good fit when
divided at distances of 5 m (AIC=1288.6, Figure 8-5c). This model identified a low
density of individuals in areas less than 5 m from a ridge (3 individuals per hectare)
and a higher density of individuals in locations more than § m from a ridge

(17 individuals per hectare). Compared to this model, the best-fitting Cartesian model

had AA4IC = 10.9 suggesting that it had relatively little explanatory power.
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Figure 8-5 The AIC of models using the binary ridge distribution covariates to explain the
density of (a) small, (b) medium-sized and, (c) large S. supranubius individuals. The red line
shows the change in AIC as spatial covariates using different distance classes are fitted to the
data. The black dashed line shows the AIC value of the best-fitting continuous model (see

Table 8-2).
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8.3.2  ANALYSIS 1B: THE EFFECT OF SLOPE ON THE DENSITY OF S.
SUPRANUBIUS

Compared to the competing models, model 4, which assumed that S. supranubius
density was proportional to slope, provides a poor explanation of the data
(AAIC > 10) indicating that if slope has an effect it is spatially discontinuous (Table
8-3). The slope covariate (model 3) provided a notably better explanation of the
density of small and medium-sized individuals than either model 1 or 2. However,
unmeasured Cartesian trends (model 2) provided the best explanation of the density

of large individuals.

Table 8-3 The AIC values for each model when fitted to the S. supranubius point pattern.
Models 3 and 4 use the slope covariate. Bold text indicates the model with the lowest AIC.

AAIC calculates the difference in AIC between each model and the best-fitting model.

Model 2 (best-

Model 1 fitting Cartesian Model 3 Model 4
model)

Size AIC  AAIC AIC
class A4IC A€ AAIC  AIC AIC
Small 27081 65 27073 57 27016 0 28374 1358
Medium-  s0g74 499 50825 450 50375 0
sized ' ' ’ : . 54548 417.3
Large 13059 64 1299.5 0 13043 438 13695 700

Figure 8-6 plots the AIC values of models using binary distance classes.

Small individuals

Analyses revealed a change in the density of small individuais at slopes of 16 degrees
(Figure 8-6a; AIC = 2696.6). The model identified greater densities (37 individuals per
hectare) on shallower slopes, and lower densities (18 individuals per hectare) on
slopes of 16 degrees and steeper. This model, however, was practically
indistinguishable from the 11 degrees binary model ( A4/C = 1.2) which also identified
greater densities (39 individuals per hectare) on shallower slopes, and lower densities

(23 individuals per hectare) on steeper slopes. Compared to these models, the best

fitting Cartesian model had little empirical support (A4/C = 10.6 and 9.4 respectively)
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and the best-fitting continuous slope model (Model 3 [see Table 8-3])) had

considerably less support (A4IC = 3.8 and 5.0 respectively).

Medium-sized individuals
Binary covariates using a break in slope between 8 and 23 degrees all provided a
notably better explanation of the density of medium-sized individuals than the best-

fitting Cartesian model (Figure 8-6b). The difference in AIC between these models
and the best-fitting Cartesian model was consistently greater than 10 (A4/C > 10).
The largest A4/C was obtained when the best-fitting Cartesian model was compared
to the covariate identifying a break in slope at 18 degrees (AAIC = 56.8). This
mode! identified greater densities on slopes of less than 18 degrees (79 individuals

per hectare) and lower densities on slopes steeper than 18 degrees (19 individuals

per hectare). Compared to this model, there is very little empirical support for either

the Cartesian model ( A4AIC = 56.8) or the best-fitting continuous slope model (Model

3 [see Table 8-3], A4IC =11.9).

Large individuals

All binary slope covariates provided a poorer description of S. supranubius density
than the best-fitting Cartesian model (Figure 8-6c). The strongest effect of slope was

observed at 19 degrees (AIC = 1301.8).
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Figure 8-6 The AIC values of models using the binary slope covariates to explain the density of
(a) small, (b) medium-sized and, (C) large S. supranubius individuals. The red line shows the
change in AIC as spatial covariates using different distance classes are fit. The black dashed

line shows the AIC value of the best-fitting continous model (see Table 8-3).
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8.3.3 ANALYSIS 1C: COMBINED MODELS

Iin this section the fit of models using multiple terms (i.e., a combination of the
topography covariates and Cartesian effects) is assessed. The models use the best-
fitting binary topography covariates and the best-fitting Cartesian effect as identified in
Analyses 1a and 1b. In all size classes the best explanation of the data was obtained

from models using a combination of terms, rather than a singie term.

Small individuals
The best explanation of the data was obtained from the model containing both the
ridge and slope covariate (AIC = 2685.5; Figure 8-7a). The model containing all three

terms (i.e. ridge, slope and Cartesian) also provided a good fit to the data

(AAIC =2.2, AIC = 2687.7).

Medium-sized individuals

Slope provides the biggest single contribution to explaining the density of medium-
sized individuals. The model containing both slope and Cartesian effects provided the
best fit to the data (AIC = 5016.7; Figure 8-7b), suggesting the presence of notable,
but unmeasured, gradients in environmental condition. Although indistinguishable
from the model containing all three terms (A4IC = 0.1), the former model is simpler

and therefore accepted as the best model.

Large individuals
The mode! containing all three terms (slope, ridge and Cartesian) provided the best

explanation of the density of large individuals (AIC = 1274.3; Figure 8-7). The model

containing only ridge and Cartesian effects also provided a good fit ( A4IC =1.7).
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Figure 8-7 The AIC values of models containing the optimum Cartesian, ridge and slope effects

(and combinations thereof) when fit to the distribution of (a) small individuals, (b) medium-sized

individuals and, (

c) large individuals. The difference in AIC values between each model and the

best-fitting model (highlighted in red) is shown above each bar.
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8.3.4 ANALYSIS 2: THE EFFECT OF RIDGE DISTRIBUTION AND SLOPE ON THE
LOCAL SPATIAL STRUCTURE OF S. SUPRANUBIUS

This analysis investigated the presence of local spatial structures that are consistent
with the importance of intra-specific competition as an organising force. Competition
is assumed to be an important organising force if there is a positive correlation
between the size of an individual and the distance separating it from its nearest
neighbouring individuals. Steeper regression slopes indicate an increased importance
of competition in determining the local spatial structure. Quantile regression was used
to assess whether there was any spatial inconsistency in the importance of intra-
specific competition. Further analyses investigated whether any observed spatial

inconsistency could be explained by either the distribution of ridges or the siope of the

terrain.

The lower 90% confidence intervals of all the quantile regression slopes between
canopy area and the distance separating individuals, except the 0.05 quantile, were
greater than zero (Figure 8-8). The slopes of the quantile regression lines became
progressively steeper as the quantiles increased. The majority of slopes were
significantly different at the a = 0.05 level, with the exception of the slopes of the 0.05
and 0.1 quantiles, the 0.5 and 0.75 quantiles and the 0.9 and 0.95 quantiles. This

suggests that local spatial structure may be influenced by the interactive effect of an

external factor.
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Figure 8-9 shows the results of the regressions between nearest neighbour distance
and canopy size in different locations within the terrain. When the data are subdivided
by either distance to the nearest ridge or by the slope of the terrain, the slopes of the
regression lines are of a similar range as the siopes of the quantile regression lines
presented in Figure 8-8. However, notable differences in the regression slopes with
location were only observed when the data were divided by their position relative to
the ridges. Thus, Figure 8-9 suggests that the local spatial structure may depend
partly upon the location of individuals in relation to ridges. At the furthest location from
the ridges (20 — 30 m), the distribution of neighbours accounts for ¢. 20% of the
variation in the size of individuals. This regression also had the steepest slope
indicating that at these locations the distribution of individuals is having a greater
effect of the size of those individuals than in other locations. The regression at 10 —
13 m achieved the second highest R? value (R? = 0.128) and had a steeper regression
slope than other locations (except 20 — 30 m) although it is indistinguishable from the
regression slope produced by the model at 20 — 30 m. Both these regression models
achieved high statistical significance (p < 0.005). At other locations the distribution of
individuals does not have as strong an effect of the size of those individuals,

suggesting that factors other than shrub distribution are influencing the size of

individuals.

The effect of the slope of the terrain on the local spatial structure of S. supranubius
does not appear to be as strong as the effect of the ridges (i.e. the standard errors of
the regression slopes produced in all seven slope categories overlap). The regression
model at c. 4 - 6 degrees achieved the highest R? value (R?= 0.183). This model
achieved statistical significance (p < 0.005) and had the steepest regression slope,

although this slope was indistinguishable from the regression slope produced by the

model at 17 — 20 degrees.
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8.4 DISCUSSION

Understanding the interaction between ecological and hydrological processes is
particularly important in arid and semi-arid regions (Svoray et al., 2008; Popp et al.,
2009). While heterogeneity in water availability has been shown to be important in
organising arid vegetation at the patch scale (i.e, the location and dynamics of woody
vegetation patches relative to herb and grass dominated areas; Sankaran et al., 2005,
Saco et al., 2007; McDonald et al., 2009), this chapter investigates how topography
(and its assumed effects on water distribution) influences the density and spatial
structure of S. supranubius at the scale of the individual. It is expected that vegetation
cover and dynamics will be affected by topographically induced runoff regimes
(Svoray et al., 2008). This chapter provides evidence that topography may influence

both the density and local spatial structures of S. supranubius.

8.4.1 THE EFFECT OF TOPOGRAPHY ON S. SUPRANUBIUS DENSITY

The survival of perennial plants is largely determined by the availability of water,
specifically the dynamics of deep water (Walter, 1971; Gebauer et al., 2002; Schenk
and Jackson, 2002; Popp et al., 2009). Therefore, areas with deep water availability
should have lower levels of mortality from drought stress. Topography was assumed
to be the major determinant of the distribution of deep water availability on Substrate 3
because of its expected effects on the horizontal redistribution of precipitation (Figure
8-1). Analysis 1 revealed that topography was important in describing the density of
S. supranubius. In the case of medium-sized and large individuals there appear to be
additional, unmeasured gradients in environmental condition (i.e., Cartesian effects)
that are influencing density in addition to the measured topographical variables (Figure
8-7b, c). However, the small individuals appear to be well described by the measured
topographical variables with little evidence that there are additional, important

gradients in environmental conditions (Figure 8-7a).

Assuming that topography influences the distribution of deep water, this research may

support previous studies that show that topographically driven water availability can
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affect the density and biomass of arid vegetation (Imeson and Prinsen, 2004; Ju et al.,
2008; Hamerlynck and McAuliffe, 2008; Svoray et al., 2008; Popp et al., 2009). The
effect of the topographical variables on the density of S. supranubius individuals of all
size classes is spatially non-linear, with abrupt changes in density associated with
certain positions within the landscape. However, the importance of the distance class
furthest from the ridges (> 28 m) is questioned as only c¢. 3 % of the study site falls into
this category. The density of both the medium-sized and large individuals was lower
at locations close to the ridges, and increased at greater distances. This interpretation
is supported by the results for the slope covariate which suggest that the density of
both the small and medium-sized individuals was greater on shallow slopes (< 16 and
18 degrees respectively). A reduction in shrub abundance on steep slopes
corresponds with the outcomes of simulation models applied by Popp et al. (2009).
This could correspond with the expectations of the water redistribution model (Section
8.1.1) which assumes that the steep slope and rocky composition of the ridges will
reduce the chance of infiltration and thus reduce water availability in this location,
resulting in a lower density of S. supranubius. 1t is also noted, although not studied,
that the physical composition of the ridges could have an effect on S. supranubius
individuals. Studies have shown that the presence of isolated large rocks may
facilitate the establishment and growth of cacti and other desert plants by
concentrating moisture (Peters et al., 2008). In the current focal system, however,
rocks do not usually exist as discrete entities but as part of a solid ridge complex.
Limited soil availability in these locations (pers. obs.) could reduce the successful

establishment of S. supranubius and thus reduce their density in this area.

Interestingly, the influence of the two topographical variables considered seems to
vary according to the size of the S. supranubius individuals. Whereas the density of
both small and medium-sized individuals was influenced by the slope of the terrain,
the distribution of ridges had a greater influence on the density of large individuals
(Analysis 1c). These results suggest that the dynamics of S. supranubius populations

may be influenced by multiple abiotic factors, and that the relative importance of these

factors may vary with life stage.
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8.4.2 THE EFFECT OF TOPOGRAPHY ON S. SUPRANUBIUS SPATIAL
STRUCTURE

A positive relationship between the size of individuals and the distances separating
them is consistent with the operation of competition as a structuring force. Therefore,
the positive regression slopes identified in Analysis 2 (Figure 8-8) provide further
evidence of the importance of competition in driving S. supranubius spatial structure,
as suggested in Chapter 7. However, differences in the quantile regression slopes
suggest that the importance of competition is not consistent throughout the population.
The steep slopes in the upper quantiles (e.g., the 95" and 90" percentile) indicate that
competition is an important structuring force in some locations. However, the less
steep regression slopes in the lower quantiles suggests that in other locations
additional factors may be over-riding the influence of competition as a structuring
force. This corresponds with previous work by Shackieton (2002), who used nearest-
neighbour techniques to show that the importance of both intra- and inter-specific
competition between woody vegetation in the African savannah varied between sites.

Shackleton (2002) observed that sites lacking evidence of intra-specific competition

were at lower slope positions.

Analysis 2 detected patterns that are consistent with spatial variation in the effect of
the relative distribution of individuals on the canopy size of those individuals (Figure
8-9). In locations that are between 20 and 30 m, and 10 — 13 m away from a ridge the
distance separating individuals has a stronger effect on the size of those individuals
than observed in other locations. These patterns are consistent with stronger
competitive interactions in these locations.  Although competition may still be
occurring in the other locations (i.e., the regression slope is still positive), the effect of
the distances separating individuals on the size of those individuals is not as strong
indicating that factors other than competition may be influencing the local size-
distribution. The implication of this interpretation is that while spatial environmental
variation may not influence or aiter the biological processes operating, it may influence

their importance and thus their impact upon population spatial structure.
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The results of Analysis 2 are consistent with the presence of terrain-induced
alternating zones of competition importance. This interpretation would coincide with
the predictions of the water redistribution model presented in Section 8.1.1. The
stress-gradient hypothesis (Bertness and Callaway, 1994) predicts that under severe
abiotic conditions, the importance of competition should decrease and facilitation
should become the dominant structuring force. Based upon this hypothesis it is
possible that the apparent spatial variation in the structuring force of competition
indicated by Analysis 2 may be driven by topographically-induced spatial variation in
resource (i.e. water) availability. It is important to note that this assertion is
speculative and would require the direct measurement, or modelling, of water
distribution and availability to substantiate the claims. It is also important to
acknowledge the possible alternative explanations. For instance, Analysis 2 provided
little evidence for the structuring force of competition close to the ridges. Under
Bertness and Callaway's (1994) hypothesis this could be an area experiencing severe
abiotic conditions (i.e. low water availability). However, it could also be explained by
the physical properties of the ridges which may prevent the root systems of
neighbouring individuals from overlapping. Consequently, competition for below-

ground water resources will have a minimal effect on the local structure of the

population.

Despite the above interpretation, it is noted that in all locations the ability of the
distribution of individuals to explain the size of those individuals was low (R? < 0.25;
Analysis 2). This is at best equivalent to, or lower than, the results observed when
applying similar techniques to woody vegetation in South African Savannas (Briones,
et al., 1996; Shackleton, 2002) and temperate forests (Getzin et al., 2006; Getzin and
Wiegand, 2007). This suggests that intra-specific competition is not the only force
driving the structure of the S. supranubius population. Although the results presented
in Figure 8-8 Graph b and Figure 8-9 Graph 1b are consistent with topographically-
induced spatial variation in the importance of competition, it is important to consider
other possible alternatives for the observed heterogeneity in the effect of shrub

distribution on the size of those shrubs (Figure 8-8). Two alternative explanations are
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provided which may help account for the increased heterogeneity of canopy sizes
when individuals are widely spaced (i.e. the right hand side of Figure 8-8a). (1) Large
distances between S. supranubius individuals may be caused by the presence of
other species. If so, and these other species are competing with S. supranubius
individuals, the size of those S. supranubius individuals may be smaller than expected
given their separation. (2) If a large S. supranubius individual, separated from
neighbouring individuals by large distances, undergoes vegetative reproduction to
produce few (i.e. one or two) ramets, the local population will remain similarly

distributed (i.e. wide inter-shrub distances) but the average canopy size will have

decreased.

Ecological systems are typically complex, and it is likely that the spatial structure and
dynamics of S. supranubius populations are influenced by a range of processes.
Determining the relative importance of alternative processes will require further field
observations and/or the application of mathematical simulation models. The results
presented in this chapter are consistent with abiotic variation over short gradients
influencing the spatial structure of arid shrub populations. The implication of this is
that even when investigating spatial pattern and process in small plots (as are
commonly used, Chapter 1, Appendix A), studies should consider the potential

influence of short gradients in environmental variation on the patterns and processes

being investigated.
The importance of topographically driven water availability

The research presented in this chapter suggests that topography may affect the
dynamics of woody vegetation perhaps through its effects on water availability.
However, it is noted that additional, unobserved abiotic factors may be influencing the
dynamics of S. supranubius. A review of empirical studies by Grayson et al. (2006)
concluded that terrain properties rarely account for more than 50% of the variation in
soil water availability. Similarly, Wilcox et al. (2006b) found that overland runoff only
contributed to a very small part of the water budget in an arid shrubland, and only

occurred during extraordinary precipitation events. It is likely, therefore, that factors
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other than topography are important in driving the spatial distribution of water
availability in the focal site. One potential factor that may influence the spatial
distribution of water availability is the feedback between vegetation patches and
runoff. Following a review of their own data, and data from other studies, Ludwig et al.
(2005) concluded that vegetation patches in arid systems could obstruct and store
more water than inter-patch areas. It is feasible that large S. supranubius individuals
in particular could interact with topographically induced runoff to generate complex

spatial variation in the availability of water.

To date, almost all studies of arid vegetation pattern and its relation to abiotic effects
have been conducted in warm deserts. In contrast to many deserts, a large proportion
of the precipitation in the Las Cafladas caldera falls as snow. Combined with the
reduced potential evapotranspiration during winter months, snow melt can be more
effective at recharging soil water than rainfall, per unit precipitation (Loik et al., 2004).
A greater understanding of the dynamics and horizontal redistribution of snow melt
may be required to understand the dynamics of vegetation in cold deserts. For
example, if snow melt is slow, the majority of water will be infiltrated in situ and there
may be limited spatial variation in deep water recharge.  Under these conditions
differences in water availability may not be as important in influencing vegetation
biomass in cold deserts, increasing the relative importance of other effects, such as

the physical effects of the substrate.

8.5 CONCLUSIONS

In this chapter spatial variation in the density and spatial structure of an
S. supranubius population was investigated and related to topographical features.
The density of individuals was partly determined by a spatially non-linear response to
both the slope of the terrain and the distribution of the ridges. The results suggest that
multiple abiotic factors may influence the population dynamics of arid shrubs, and that

the relative importance of abiotic factors may depend upon the life stage of the

individual.
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Competition is commonly observed in arid shrub communities. This chapter provides
evidence that the importance of intra-specific competition as an organising force may
vary spatially. In this chapter it is recommended that, even when investigating spatial
pattern and process in small plots, studies of density-dependent effects should
account for spatial environmental variation over short gradients. It is also
recommended that further attention is paid to the horizontal redistribution of

precipitation events (especially when precipitation is frozen) and its effects of

vegetation dynamics.
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CHAPTER 9:DISCUSSION AND CONCLUSIONS

This thesis has addressed a number of methodological and ecological hypotheses.
The main aim of the research was to investigate the potential methodological
constraints of spatial point pattern analysis, as currently applied in the literature, and
how, with the support of remotely sensed data, their application could be improved to
help understand the biotic and abiotic processes structuring populations of
Spartocytisus supranubius. As the results of each chapter have been evaluated in
their specific context, this concluding chapter highlights only the key findings and
major implications. Figure 9-1 provides a summary of the key findings, the implications
of the research, methodological recommendations for the application of spatial pattern
analyses, and future research questions. Section 9.1 discusses the utility of remote

sensing in arid shrub ecology. The following sections discuss the conclusions of the

research in relation to the research hypotheses detailed in Chapter 1 (Figure 1-1):

Section 9.2:  Spatial pattern analysis: reproofs and recommendations
(Hypotheses 1 and 2)
Section 9.3:  The biotic processes driving arid shrub population dynamics
(Hypothesis 3)
Section 9.4:  The abiotic processes driving arid shrub population dynamics
(Hypothesis 4)
The final section of the thesis (Section 9.5) makes a critical evaluation of the thesis.
This is subdivided in to two parts. The first part (Section 9.5.1) critically evaluates the
assumptions made throughout the thesis and the potential implications these have for
the reported results. The second part (Section 9.5.2) considers the potential role of

other factors (i.e. alternative biotic and abiotic processes) on the observed S.

supranubius spatial structure.
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KEY FINDINGS, RECOMMENDATIONS & IMPLICATIONS/ QUESTIONS
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9.1 THE UTILITY OF REMOTE SENSING IN ARID SHRUB ECOLOGY

Spatial ecology is a specialisation of geography and ecology that aims to understand
the spatial dimensions of the processes driving the dynamics and spatial structure of
populations and communities (Murrell et al., 2001). Such investigations require data
detailing the locations of individuals within a population. Although imagery collected
from spaceborne platforms does not usually provide resolutions suitable for the
analysis of individual shrub dynamics (typical resolution 1 — 4 m [Aplin, 2005]), the fine
spatial resolution of data obtained from airborne remote sensors could provide a
useful data collection tool. The extensive spatial coverage of these data sources
could help avoid the problems associated with the small plot sizes that are typically
used in the literature (Chapter 1, Appendix A, Chapter 5). Remotely sensed data
could also allow temporal changes in population dynamics to be investigated (e.g.,
Moustakas et al., 2006), where a chrono-sequence of imagery is available. Despite
these advantages, only seven of the 109 studies reviewed in Chapter 1 (Appendix A)
used airborne remote sensors to generate data on the spatial pattern of individuals.
Remotely sensed data are particularly suited to studies of arid shrub dynamics. Arid
vegetation is typically sparsely distributed with limited vertical stratification, making the
delimitation and identification of individuals easier than in less dispersed communities.
It is therefore surprising, perhaps, that only c. 20% of the studies of woody plants in

arid systems (n = 18) reviewed in Chapter 1 (Appendix A) used remotely sensed data.

Several reasons could help explain the limited use of remotely sensed data in spatial
ecology. The first issue concerns availability. Compared with the continuous
acquisition of imagery from spaceborne platforms, airborne data are infrequently
captured. Cost is another potential restriction as aerial photography can be expensive
to obtain (Aplin, 2005), especially if flights must be commissioned. In addition to these
logistical problems, spatial ecologists may be dissuaded from using remotely sensed
data for other reasons. Unlike manually collected data which are typically of high
accuracy, remotely sensed data can contain errors. A common error when mapping

individual trees or shrubs is to incorrectly classify two or more neighbouring individuals
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with overlapping or adjacent canopies as a single individual (Moustakas et al., 2008).
Remotely sensed data can also suffer from errors of omission (e.g., failing to identify
an S. supranubius individual) and commission (e.g., incorrectly identifying a different
species or object as an S. supranubius individual). Typically, the primary objective is
to minimise errors of commission (i.e., the set of objects identified as S. supranubius
individuals has a high probability of being S. supranubius individuals; Atkinson et al.,
2007). Although errors of commission should be infrequent in sparse, arid
communities, they have the potential to distort the detection and interpretation of
pattern (Freeman and Ford, 2002). Using simulated data, Atkinson et al. (2007)
showed that commission errors could affect the strength of the pattern detected by g(r)
(i.e., the position of the empirical g(r) in relation to simulation envelopes). Commission
errors in this thesis ranged from 8% (on Substrate 3) to 16% (on Substrate 5), and
could therefore affect the pattern detected when using Monte Carlo simulation
envelopes (Atkinson et al., 2007). To avoid inaccurate interpretations of pattern it is
recommended that attention is also paid to the magnitude of the empirical functions as
a measure of pattern strength (Chapter 7, Section 9.2.2). Further research is needed
to determine how greatly errors of commission and omission influence the
quantification of pattern from real (i.e., not simulated) data, and whether this effect
could be minimised by increases in plot extent. If large plot extents can successfully
average the effects of occasional and random classification errors on pattern

detection, then remote sensing may provide a realistic alternative to manual data

collection.

Errors in remotely sensed data may also occur from the necessary approximation of
rooting points as the centre of the canopy, although such errors may be avoided by
preserving the size and shape of individuals during analysis (Chapter 6). Another
problem that may deter spatial ecologists from using remote sensing data is the
restriction of subsequent analyses of pattern and process to individuals above a
certain size (usually dictated by the pixel resolution of the image). This may prevent

studies that use remotely sensed data from investigating the dynamics of dispersal

and establishment.
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Despite these potential problems, remotely sensed data offer a valuable, yet
underused, resource in studies of arid shrub dynamics. Hyperspectral and LiDAR
data could provide information on the characteristics and spatial variation in abiotic
conditions such as the texture and moisture properties of soil (Anderson and Croft,
2009). These data could be used to investigate the relationship between abiotic
conditions and biotic patterns and processes. A closer collaboration between remote
sensors and spatial ecologists may provide exciting opportunities for research
(Newton et al.,, 2009), specifically in our understanding of the interaction between

biotic processes and abiotic conditions and their spatio-temporal dynamics.

9.2 SPATIAL POINT PATTERN ANALYSIS: REPROOFS AND
RECOMMENDATIONS

The spatial pattern of individuals within a population may provide valuable insights into
the biotic and abiotic processes driving its dynamics. However, some authors have
contended that the analysis of pattern alone is not enough to infer underlying
processes (Mahdi and Law, 1987; Borcard et al., 2004, Schurr et al., 2004), whilst
others have condemned the lack of empirical verification of the spatio-temporal theory
upon which pattern—process inference is based (Murrell et al., 2001; Perry et al.,
2006). However, when the demographics of the focal species are very slow, such as
arid shrubs, it may not be feasible to empirically assess the operation of biological
processes, especially when the focus of the study is on population-level dynamics
(see Section 1.3.2). Until datasets of sufficient spatial and temporal coverage are
generated, pattern—process inference may be one of the few techniques available to
investigate arid shrub population dynamics. Therefore, we must ensure the inferential
link between pattern and process is as strong as possible. The wide availability of
spatial point pattern analysis techniques has led to a sharp increase in their
application over the last 15 years (Chapter 1, Appendix A). However, our ability to
infer processes from patterns is being impeded by the methodological procedures
being used. Chapters 5 and 6 investigated the robustness of pattern detection to

changes in plot extent and data representation.
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The strength of pattern—process inference can be improved by using deductive rather
than inductive reasoning; i.e., using ecological theory and knowledge of the focal
system and species to formulate precise a priori hypotheses of the likely abiotic and
biotic processes of importance and their expected spatial signatures (Chapter 7,
Mclntire and Fajardo, 2009). This approach can be extended by using point process
theory to test and explore predictions. Chapter 8 used point process modelling
techniques to investigate the influence of measured and unmeasured spatial

covariates on the spatial structure of a S. supranubius population.

Based on the review of ecological spatial pattern analysis studies (Chapter 1,
Appendix A) and the results of Chapters 5, 6 and 8, the following sections provide

recommendations for future studies using spatial pattern analyses to infer population

dynamics.

9.2.1 PLOT EXTENT AND REPLICATION

In Chapter 1 (and Appendix A) it was noted that studies investigating the spatial
patterns of woody species typically used small plot extents. Analyses in Chapter 5
demonstrated that the patterns detected by commonly used plot extents (< 1 ha) are
spatially inconsistent, and that inconsistency was greatest at the scales at which
biological interactions are presumed to occur. Furthermore, spatially inconsistent
patterns were detected on both homogeneous and heterogeneous substrates. These
results have implications for the utility of spatial pattern analyses as currently applied
in the literature. Specifically, the patterns detected and the processes inferred from
small plots may not be representative of the population as a whole. This is of
particular concern when few or single plot replicates are used, as is common in the
contemporary literature (Chapter 1, Appendix A). In Chapter 5, the spatial
inconsistency in pattern detection was attributed to unobserved, small-scale
environmental heterogeneity. Chapter 8 provides further weight to this argument by
detecting a change in population spatial structure associated with local topography.
This chapter concluded that small-scale environmental variability could have (spatially)

non-linear effects on the local spatial structure of S. supranubius populations.
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Therefore, it is important that the design of future studies into plant spatial patterns
consider the potential importance of both long (Chapter 7) and short (Chapters 5
and 8) gradients in environmental conditions. Based on my findings, | recommend
that one of two approaches is taken: either use plots with an extent larger than any
anticipated environmental heterogeneity effects, or use multiple replicate plots. Both
techniques allow for any effects of small-scale heterogeneity to be averaged; however,
as environmental variables of importance may not always be known, the second
approach is preferred. Indeed, using a single large plot may obscure the effect of
important environmental gradients. If multiple plots can be used, each of a size large
enough to provide a reasonable estimation of pattern (see Chapter 5), analyses may
be able to start investigating which external abiotic or biotic (i.e., other species) factors
are affecting the dynamics of the focal species. However, more research may be
required if the results of multiple piots are to be combined into a single pattern
statistic, as methods for the analysis of replicated point patterns remain relatively

under-developed and untested (Diggle et al., 2000; Bell and Grunwald, 2004, lllian et

al., 2008).

It is important to note that an aiternative explanation may account for the increased
inconsistency of g(r) at small plot extents. As noted in Chapter 5, changes in plot
extent are inherently linked with the issue of sample size. Consequently, the
inconsistency in g(r) at small plot extents may also be attributable to small sample
sizes and associated reductions in statistical power. There is no consensus in the
literature on the sample size requirements for either g(r) or L(r) (Chapter 1), and
further research is needed to determine at which sample sizes the application of these
indices becomes unreliable. That said, the resuits of Chapter 5 clearly demonstrate
an increase in inconsistency with decreases in plot extent while sample sizes are high
(i.e. n > 100). Further research is needed to disassociate the effect of small-scale

heterogeneity and low sample sizes at the smallest extents (i.e. < 1 ha).
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9.2.2 ASSESSING PATTERN USING MONTE CARLO SIMULATION ENVELOPES

As sample size increases (e.g., with increases in plot extent), the width of envelopes
generated from multiple Monte Carlo simulations of a hypothesised null model
decreases. Changes in the width of the Monte Carlo simulation envelopes with
variation in plot extent can affect the detection of ‘significant’ pattern (Chapter 5). This
adds weight to previous criticisms that the construction of Monte Carlo simulation
envelopes from the result of many simulated patterns underestimates the Type | error
rate and is consequently invalid for inferring pattern significance (Loosmore and Ford,
2006). Despite these limitations, however, the majority of studies use Monte Carlo
simulation envelopes to detect pattern and infer processes (Chapter 1, Appendix A),
perhaps because the main authors in the field continue to recommend their usage
(e.g. Diggle, 2003, Wiegand and Moloney, 2004, lllian et al., 2008). In Chapter 5 |
recommend that Monte Carlo envelopes are treated as an analogue to statistical
assessment via p-values; i.e., the position of the empirical function in relation to the
simulation envelopes provides an indication of the importance of the pattern. Greater
attention should also be paid to the magnitude of the empirical function relative to the

null model expectation; an analogue of effect size.

9.2.3 POINT PROCESS MODELLING

In the majority of studies, analyses of spatial point processes focus on tests of
deviation from complete spatial randomness. While such analyses can provide
evidence for the occurence of a hypothesised process (Chapter 7), they are unable to
explicitly test processes, and therefore may have limited applicability (Comas and
Mateu, 2007). Point process modelling techniques, however, allow the effect of
hypothesised abiotic and biotic processes and mechanisms on point patterns to be
more rigorously tested and explored. The scope of possible models is very wide and
may include spatial (Cartesian) trends, dependence upon measured covariates
(Chapter 8), interpoint interactions, and dependence on marks (i.e., a categorical [e.g.,
species] or continuous [e.g., size] value assigned to each point; Baddeley and Turner,

2005). Despite the relatively long history of point process theory, its application in
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studies of plant population dynamics remains limited (Comas and Mateu, 2007).
While studies are beginning to use non-Poisson point process models such as
Neyman-Scott processes (e.g., Thomas processes or Matérn cluster processes [e.g.,
Wiegand et al, 2007b; Yu et al., 2009]) to test and explore interactions between
points, relatively few studies have used point process modelling techniques to explore
the effects of abiotic gradients on either first- or second-order population spatiai
structure (Chapter 8; but see Shimatani and Kubota, 2004). This technique provides a
promising technique to infer the influence of abiotic gradients (either measured or
assumed) on population-scale structure. Such techniques could be essential for
improving our understanding of how biotic and abiotic processes interact to drive

population dynamics, which remains a fundamental question in ecology (Dahigren and

Ehrlén, 2009).

9.3 THE BIOTIC PROCESSES DRIVING ARID SHRUB POPULATION
DYNAMICS

One of the aims of plant population and community ecology is to investigate biotic
interactions and predict how these translate into consequences for the whole
population/community (Freckleton et al., 2009). Shrubs are important, often dominant,
elements of arid and semi-arid vegetation communities. Understanding the dynamics
of the dominant shrub species may be an important first step in understanding the
dynamics of the ecosystem as a whole, yet little is known about their population
processes and the factors underlying their dynamics (Kyncl et al., 2006; Jiménez-
Lobato and Valverde, 2006). The spatial structures of S. supranubius populations are
consistent with the operation of clonal reproduction and intra-specific competition
(Chapter 7). There is also evidence that the biotic processes driving the dynamics of

S. supranubius may be influenced by spatial environmental heterogeneity (see

Section 9.4).

9.3.1 CLONAL REPRODUCTION
The spatial patterns quantified in Chapter 7 are consistent with the clonal reproduction
of S. supranubius. 1t is therefore reasonable to assume that clonal reproduction is an
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important process organising S. supranubius populations. Asexual reproduction is
assumed to be favoured in marginal or harsh environments (Peck et al., 1998; Klimes,
2008). In these locations sexual reproduction may be hampered, and so clonal
reproduction enables the population to persist in the short and mid-term (Mandujano
et al., 2001; Honnay and Bossyut, 2005; Wesch et al., 2005). As such, clonal growth
can greatly increase the resilience of a plant population and, in the case of a keystone
species, the whole community (Wesche et al., 2005). In the long-term, however,
prolonged clonal reproduction can have implications for the future viability of a

population (Honnay and Bossyut, 2005; Honnay et al., 2006).

Clonal reproduction can influence the spatial structure and competitive interactions in
plant communities (Song et al., 2002). S. supranubius follows a phalanx clonal growth
form: i.e., ramets form consolidated groups compared to the spreading, widely spaced
characteristics of ramets typical of guerrilla clonal growth (Ye et al., 2006). The
phalanx growth form increases the frequency of S. supranubius intra-ramet contacts
and may in part explain the importance of intra-specific competition posited in
Chapters 7 and 8. By ensuring close proximity and strong intra-specific competition
among S. supranubius individuals (as observed on the homogeneous substrates,
Chapter 7), clonal reproduction could have implications for the structure of the
Cafadas vegetation community. Additionally, the senescence of S. supranubius
individuals following strong intra-specific competition may leave islands of fertility

which could be exploited by other species (Alvarez et al., 2009).

Clonal reproduction is believed to be a common attribute of arid shrubs (Schenk,
1999), and has been demonstrated in several species of tree and shrub in the cold
deserts of central Asia (Bruelheide et al., 2003; Qong et al., 2002; Song et al., 2002;
Wesche et al., 2005). The presence of clonal species, especially when those species
dominate the community, as S. supranubius does, could be an important mechanism
driving community dynamics. However, the importance of this strategy in the
dynamics of arid shrub populations, and the implications for the structure and

dynamics of the wider vegetation community, has received little attention.
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The use of deductive reasoning provides confidence in the interpretation of the
observed spatial patterns as a signature of clonal reproduction. However, it is
important to evaluate the other possible explanations. Scholes and Archer (1997,
cited in Meyer et al., 2008) suggest that aggregated spatial patterns in savanna plants
may be generated by topography (e.g. termite mounds), fire patchiness and soil depth.
However, field observations did not indicate the presence of any topographical
variation at the scales required to generate the aggregation observed (i.e. 3 - 10 m),
and there is no documented evidence of fires within the caldera. Although soil depth
is a possible explanation it is believed to be unlikely because of the remarkable
consistency in aggregation between the substrates (Chapter 7). It is unclear how
spatial variation in soil depth would be consistent between substrates that were

generated at different times and have different formations (e.g. aa and pahoehoe lava

flows).

9.3.2 INTRA-SPECIFIC COMPETITION

Many studies have investigated the interactions between different functional groups in
arid systems (e.g., shrubs, herbs and grasses; Maestre et al., 2003; Armas and
Pugnaire, 2005; Anthelme and Michalet, 2009), but relatively little has been concluded
about the interactions between the dominant woody components of arid systems.
Bertness and Callaway’s (1994) stress-gradient hypothesis proposes that facilitation
should dominate species interactions in systems where extreme abiotic stress limits
productivity, such as arid environments (Weedon and Facelli, 2009). Over the last 15
years there has been much debate about the relative importance of competition and
facilitation in structuring arid vegetation communities, leading to the generality of
Bertness and Callaway’s (1994) model being questioned (Michalet, 2006, 2007; Lortie
and Callaway, 2006; Maestre et al., 2005, 2009). The results presented in Chapters 7
and 8 are consistent with the operation of intra-specific competition as an important
process driving the spatial structure of S. supranubius populations. This is in contrast
to the predictions of Bertness and Callaway's (1994) stress-gradient hypothesis,

perhaps suggesting that whereas facilitative interactions dominate inter-specific
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interactions, intra-specific interactions are predominantly competitive. This
interpretation is in contrast to a simulation study which found that neither facilitation
nor competition were as important as random mortality from drought in structuring an
intra-specific arid shrub population (Malkinson and Jeltsch, 2007). Notably, however,
the model developed by Malkinson and Jeltsch (2007) did not incorporate clonal

reproduction, which may explain the absence of strong intra-specific competition (see

Section 9.3.1).

The importance of intra-specific competition in structuring S. supranubius populations
supports previous assertions that when the limiting factor is a scarce, depletable
resource, such as water, facilitation will be reduced. Under these conditions,
facilitation will only occur when neighbours can increase the absolute volume of the
resource (water) beyond their own requirements (Maestre and Cortina, 2004; Maestre
et al., 2009). It is noted, however, that intra-specific competition alone does not fully
explain the spatial structure of S. supranubius (Chapter 8), and that other factors

(either biotic or abiotic) are important in driving the population’s spatial structure.

The interpretation of intraspecific competition is given extra credence by the variety of
techniques used to assess its presence: spatial structures in different size classes
(Chapter 7), comparison between the hard-core distance and the maximum scale of
aggregation (Chapter 7, see also 9.3.3) and size-distance regressions (Chapter 8).
All three techniques produced results that were consistent with the operation of intra-
specific competition. In response to criticisms that snap-shot spatial patterns cannot
be used to infer processes (Mahdi and Law, 1987; Cale et al., 1989; Moravie and
Robert, 2003; references in Mcintire and Fajardo, 2009) it is recommended that

practitioners utilise multiple approaches when investigating the presence and

importance of a hypothesised process.

The following section considers the typical use of spatial pattern analysis to detect

competition and makes recommendations for a more rigorous approach.
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9.3.3 THE MYTH OF REGULARITY AND A NEW METHOD FOR DETECTING
COMPETITION

Spatial pattern analysis is often used to deduce the presence, or absence, of
competition in a plant population. When individuals are competing, the fitness of an
individual is expected to be a function of the distance separating that individual from
neighbouring individuals, and the size of those individuals. If individuals successfully
outcompete all others within their zone of influence then a regular (also known as
dispersed) spatial pattern will result. A regular pattern of individuals can, therefore, be
considered as strong evidence for the importance of competition (Stoll and Bergius,
2005). However, there are very few documented examples of plant populations with
regularly distributed individuals from any ecosystem. Indeed, regular distributions are
most commonly observed in self-thinned, even-aged, single-species forest stands
(Toft and Frazier, 2003). Even after removing the effects of heterogeneity (which is
often cited as a cause of aggregated distributions), none of the S. supranubius size

classes on any of the substrates displayed a regular distribution (Chapter 7).

The lack of a regular pattern does not necessarily indicate the absence of competition.
Many recent articles consider a decrease in the strength of aggregation with age to be
evidence of competition, even if no individual age/size class achieves regularity (e.g.,
Getzin et al., 2008; Metsaranta and Lieffers, 2008; Meyer et al., 2008; Gray and He,
2009). A decrease in the strength of aggregation of S. supranubius individuals with
increases in size class was observed (Chapter 7). However, | suggest that merely
investigating age/size-dependent changes in pattern is not enough to determine the
existence, or otherwise, of competition. For instance, random (i.e.,
density-independent) mortality can have the same qualitative effect on the pattern of a
population as density-dependent mortality (Toft and Frazier, 2003). Furthermore,
using a spatially explicit individual-based model, Murrell et al. (2009) demonstrated
that an increase in aggregation with size class may be consistent with a self-thinning
process under certain conditions (i.e., slow growth, low fedundity or high juvenile—
juvenile competition). Toft and Frazier (2003) suggest that in order to conclude the

operation of competition, the pattern of individuals should become more dispersed

263



with increases in age/size than expected under the hypothesis of density-independent
thinning. This approach would, however, be time-consuming; quantifying the pattern
expected under density-independent thinning could only be achieved by repeatedly
simulating the loss of individuals in a density-independent manner and calculating an

average pattern expectation.

In Chapters 6 and 7 a more rigorous approach to detecting competition in sparse
communities was introduced. The technique compares the scale of modal shrub—
shrub separation within a cohort with the hard-core distance (i.e., maximum canopy
diameter) below which interactions are not expected to occur. | suggest that a
decrease in aggregation strength and an increase in the modal shrub—shrub distance
(relative to the canopy diameter) with increases in age/size provides strong evidence
for the operation of density-dependent thinning. Furthermore, this technique enables
the relative strength of competitive forces in replicate populations to be compared, as
a greater difference between the modal shrub-shrub distance and the hard-core
distance indicates stronger competitive interactions. Although not tested in this thesis,
this technique should be also applicable in populations with overlapping canopies
where the modal shrub-shrub distance may be less than the average canopy
diameter. Notably this technique is only possible if patterns are assessed using the
pair-correlation function (g(r)) which, unlike its cumulative counterpart (L(r)), provides
information on modal point—point separation. This provides further support for the
application of this measure in favour of the more commonly applied cumulative

measures (L(r) and K(r); Chapter 1, Appendix A).

9.4 ABIOTIC PROCESSES DRIVING ARID SHRUB POPULATION
DYNAMICS AND THEIR INTERACTION WITH BIOTIC PROCESSES

Understanding how abiotic factors, especially water availability, influence biological
processes is essential if we are to predict and manage the effects of future
environmental and climatic change on arid vegetation dynamics (Snyder and
Tartowski, 2006). Current efforts are being directed towards investigating (empirically

and theoretically) how temporal variation in precipitation timing (Snyder et al., 2004;
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West et al., 2007), magnitude (Huxman et al., 2004) and frequency (Heisler-White et
al., 2009) may influence arid vegetation productivity. Comparatively little attention is

being paid to the influence of spatial variation in water availability (Loik et al., 2004;

Breshears et al., 2009).

Although no direct measurements of processes were made, the results presented in
this thesis are consistent with the influence of spatial variation in abiotic conditions
(particularly topography) on the spatial structure of S. supranubius populations.
Analyses in Chapter 7 suggest that spatial environmental heterogeneity can influence
the spatial patterns and demographics of S. supranubius. These analyses were
extended in Chapter 8, the results of which are consistent with an influence of
topography on both the density of S. supranubius and the importance of competitive
interactions between individuals. The results of Chapter 8 provide support for the
assertions of Monger and Bestelmeyer (2006) who suggested that the effect of
geomorphological and topographical conditions on water and nutrient conditions can
influence the dynamics of arid vegetation at a range of scales. Two possible
explanations were proposed for the apparent spatial variation in the structuring force
of competition: (1) the physical effect of pahoehoe ridges preventing the interaction of
neighbouring root masses and reducing the effects of below-ground competition, and
(2) topographically-induced spatial variation in resource (i.e. water) availability. The
former explanation may also help explain why clonal reproduction appears to be less

prevalent on the two pahoehoe lava flows (Substrates 3 and 4; Chapter 7).

In response to the latter explanation it is acknowledged that further research is needed
to investigate how geomorphological and topographic conditions might interact with
precipitation events to determine spatial variation in water availability. Currently, our
understanding of these processes is limited to independent studies of the effects of
geomorphic features (e.g., Pérez, 2003; Zou et al., 2010), and the effects of changes
in precipitation conditions (e.g., Huxman et al., 2004; Snyder et al., 2004; West et al.,
2007: Heisler-White et al., 2009). Studies of the latter are largely experimental

whereas studies of both effects typically focus on the physiological response of
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individual plants or the large-scale response of vegetation assemblages (i.e., biomass
or productivity). Long-term datasets of water availability are needed to further our
understanding of the factors that determine local water availability, the resulting
natural spatio-temporal variation in water availability, and how it affects arid shrub
population structure. It should aiso be noted that, in addition to topography, other

unmeasured abiotic gradients may influence the distribution of S. supranubius.

Without further data the likelihood of either of the explanations suggested above
cannot be assessed. Furthermore, the complexities of ecological systems mean that
the spatial structure and dynamics of S. supranubius populations are likely to be
influenced by a range of processes. As noted in Chapter 8, in addition to spatial
variation in the importance of competition, the observed heterogeneity in the effect of
shrub distribution on the size of those shrubs may also be influenced by the processes
of clonal reproduction and interspecific competition. However, the results and

speculations made raise some important questions and implications:

(1) While vertical heterogeneity in water availability has been shown to be important in
determining patch dynamics (i.e., the location and dynamics of woody vegetation
patches relative to herb and grass dominated areas; Sankaran et al., 2005), horizontal

heterogeneity in water availability may be important in determining population spatial

structure.

(2) The spatial structure and dynamics of S. supranubius and other arid shrub
populations may be influenced by the physical effects of abiotic variables that are not

temporally transient over ecologically meaningful timescales (i.e. physical

geomorphological effects).

(3) Spatial variation in individual abiotic variables may have multiple effects on the

dynamics of arid shrubs, and these effects may be life stage specific (Chapter 8).

(4) The effects of abiotic variables on arid shrub dynamics may be more complex than
realised. It is generally accepted that the processes driving vegetation distribution

vary with scale. It is a commonly held belief that whereas abiotic factors determine
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vegetation heterogeneity at coarse, landscape scales, small-scale structure is
determined by biotic processes (Stoyan and Penttinen, 2000; Wiegand et al., 2007b;
Bisigato et al., 2009). However, the results presented in Chapter 7 and 8 suggest that
spatial environmental heterogeneity (at a range of scales) may affect the fine-scale
spatial structure of S. supranubius populations. The effect of abiotic variables on
small-scale population structure can come from both long (Chapter 7) and short
gradients in abiotic conditions (Chapters 5 and 8). Therefore, even when using small
plots, studies of plant pattern and process should account for the potential effects of
spatial environrﬁental variation over short gradients. Research into population
dynamics in all systems should place more emphasis on investigating the role of

spatial environmental heterogeneity in determining plant pattern formation.

9.5 A CRITICAL EVALUATION OF THE THESIS

9.5.1 THE MAJOR ASSUMPTIONS

Throughout the thesis, two major assumptions were made. In both cases these
assumptions were deemed necessary to enable further analysis and were encouraged
by the precedent set in the literature. This section reviews each of the major
assumptions, considers how the assumptions may influence the results reported in the

thesis, and how these assumptions couid be empirically tested.

The age and size of S. supranubius individuals are positively correlated

Why and where the assumption was made:

The relative importance of different biological processes (e.g. reproduction,
competition) varies with the age of an individual. Therefore, if a researcher aims to
use spatial patterns to infer the presence of multiple, age-specific processes, the
spatial structure of individuals of different ages should be examined. Measuring the
age of all individuals is typically unfeasible. Consequently, a common approach in the
ecological literature is to use an individual's size as a proxy for its age, under the

assumption that larger individuals will also be older (e.g. Meyer et al., 2008). This
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assumption was utilised to define three size classes (small, medium-sized and large)
which were assumed to represent cohorts of differing age. These size classes are

used in the analyses found in Chapters 6 — 8.
The potential implications of this assumption:

Age and size are not necessarily related. For example, a young individual may grow
very quickly, or an old individual that has experienced intense competition may have a
low or minimal growth rate. Consequently, there may be occasions where individuals
allocated to a size class (e.g. small) are not of the assumed age (e.g. young). In the
context of the work presented in this thesis, deviations from this assumption would
mean that the spatial signature of processes assumed to dominate at certain ages
may be diluted by the presence of individuals of a differing age. However, because of
the large number of individuals mapped (over 17,000) it is expected that the proportion
of individuals incorrectly assigned to a size/age class would be very low and unlikely

to adversely affect the detection of age-specific patterns and processes.
How the assumption could be empirically tested:

It is possible that this assumption could be empirically tested by taking cores of the
main stem of individuals of a known size and counting growth rings to achieve an
estimate of the individual's age. However, there are three issues that limit the use of
this technique in the present system: (1) S. supranubius is a protected under regional
legislation (Annex II of the Flora Order 20/02/1991). Under this protection it is illegal
to remove any part of an S. supranubius individual, or knowingly disturb or destroy it,
without governmental authorisation. (2) The dynamics of arid shrubs are event driven,
and discernable growth may only occur in climatically favourable years.
Consequently, S. supranubius individuals may not possess annual growth rings which
would impede any assessment of their absolute age, although relative ages could still
be assessed. (3) S. supranubius individuals typically have a dense canopy with little,

and frequently no, gap between the canopy and the ground. This would physically
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impede access being made for the purpose of coring without contravening Annex Il of

the Flora Order.

Large individuals persist in environmentally benign areas

Why and where the assumption was made:

This assumption underlies the analyses found in Chapters 5 and 7. The assumption
of spatial environmental homogeneity is an important limitation of the second order
statistics used throughout this thesis (g(r) and L(r)). If environmental conditions vary
from one location to another (i.e. the environment is heterogeneous at a scale greater
than the size of an individual shrub) the inference of biotic processes from the spatial
pattern of individuals can be hindered because the distribution of plants may depend
as much on the environmental template as on internal, biotic processes (Law et al.,
2009). The potential effects of environmental heterogeneity must be removed if the
spatial patterns driven by biotic processes are to be uncovered. To remove the effects
of environmental heterogeneity, that heterogeneity must first be mapped. Without
information on the types of environmental conditions that may influence the
distribution of S. supranubius, this research utilised S. supranubius individuals
themselves as indicators of habitat quality (following Stoyan and Penttinen, 2000;
Getzin et al., 2008; Barbeito et al., 2009; Zhu et al., 2010). Specifically, it was
assumed that very large S. supranubius individuals were either very old, or had
experienced much higher growth rates than other, smaller individuals. It was
consequently assumed that these individuals would be located in optimal habitat.
Deviation of the distribution of very large individuals from randomness would imply

that the distribution of optimal habitat was also not random and therefore that the

environment was heterogeneous.
The potential implications of the assumption:

Individuals may attain large sizes for reasons other than being located in an
environmentally benign area. For example, individuals that occupy a suboptimal

habitat but experience little or no competition may reach large sizes. Conversely
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individuals in optimal habitats that undergo intense competition may not achieve large
sizes. Such discrepancies may result in an inaccurate representation of the
magnitude of environmental heterogeneity, although assessments of relative

heterogeneity between sites should remain valid as any discrepancies are unlikely to

be spatially systematic.
How the assumption could be empirically tested:

A more accurate assessment of the environmental heterogeneity of a site could be
provided by directly mapping the abiotic factors of importance. However, such a
technique would require in-depth knowledge of the abiotic variables influencing the
dynamics and distribution of S. supranubius and an ability to map the distribution of
these variables at a scale relevant to individual shrubs. This level of knowledge was
not available. Identifying and dealing with heterogeneous patterns is a matter of
current research (Law et al, 2009). When measurements of environmental
heterogeneity are statistical (as in this thesis) it is recommended that the conclusions
of the heterogeneity analyses are justified with non-statistical scientific arguments
(ian et al., 2008). In this thesis the statistical assessments of heterogeneity were
supported by visual identification of a potential source of heterogeneity; the

pronounced ridge-trough topography of Substrates 3 and 4.

9.5.2 OTHER POSSIBLE EXPLANATORY FACTORS

Interspecific interactions

Evaluation and potential importance:

Interspecific interactions between arid shrubs and other species are well documented
(e.g. Gebauer et al., 2002; Holzapfel et al., 2006; Armas and Pugnaire, 2009). It is
therefore considered likely that other species may influence the dynamics and
therefore spatial structure of S. supranubius populations. In particular, the following

species were noted for being relatively common on Substrate 1 — 5. Adenocarpus
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viscosus (leguminous shrub), Pterocephalus lasiospermus (small shrub) and

Descurainia bourgeauana (small shrub).

How the process could be measured:

Because of the slow dynamics and demographics of arid shrubs, investigating the
potential influence of interspecific interactions on the dynamics of S. supranubius via
experimental and/or observational techniques would be unfeasible. Pattern—process
inference remains the most promising and accessible method of investigating
interspecific interactions.  The distribution of interspecific individuals could be
manually mapped in the field, although the time and financial limitations of this
technique would likely result in plots of small extent and low sample size. The
imagery used in this thesis is not of a suitable resolution to map the distribution of
small shrubs (e.g. P. lasiospermus and D. bourgeauana) and attempts to apply the
imagery classification procedure utilised in Chapter 4 to the distribution of A. viscosus
have so far been unsuccessful (data not shown). One possible technique that has so
far received little attention in ecology is that of remote sensing from kite platforms.
Such techniques are capable of producing high resolution imagery from which
individuals of multispecies assemblages may be identifiable. One of the major
advantages of this technique would be that the equipment could theoretically be

deployed at optimal times (e.g. during flowering) to allow maximum species

discrimination.

Grazing

Evaluation and likelihood:

Studies suggest that livestock grazing can influence arid vegetation dynamics and the
relative abundance of different functional groups (Metzger et al., 2005; Facelli and
Springbett, 2009). There are two herbivores that may influence the spatial structure of
S. supranubius populations: the Corsican mouflon and rabbits. While attempts are
being made to control both species, they are still present in the caldera. Field

observations made in December 2007 indicate that at some locations active grazing

271



was occurring, to a height of c. 70 cm. This thesis investigates the spatial structure of
S. supranubius individuals with a canopy area of 2 1 m% These individuals are
expected to have escaped the threat of grazing, although it is possible that the

observed spatial patterns have been influenced by grazing-induced mortality of

neighbouring individuals.

Personal observations suggest that the presence of the herbivores may not be evenly
distributed across the five focal substrates. In particular, faecal evidence of rabbit
inhabitation was variable between substrates, and was notably lower on those
substrates with a high proportion of large surface clasts (e.g. Substrate 4). Thus it
may be reasonable to assume that the any impact of grazing on the spatial structure

of S. supranubius would not be equal between sites.
How the process could be measured:

Direct measurements of the impact of grazing on the spatial structure and dynamics of
S. supranubius would likely be unfeasible because of the slow response of the
species. A short-term assessment of the impact of grazing could be obtained by
establishing exclosures that prevent rabbits accessing areas of the population. The
growth and survival of individuals within these exclosures and nearby control areas
could be compared. However, an understanding of the long term impacts of grazing

may only be obtainable via mathematical models.

Sexual reproduction and dispersal

Evaluation and likelihood:

Although field observations provided evidence of seed production, there was
remarkably little evidence of regeneration via sexual reproduction (i.e. established
seedlings), corresponding with previous assertions by Kyncl et al. (2006) that S.
supranubius seedling establishment is highly episodic. These observations, however,
do not preclude the possibility that sexual reproduction may influence the spatial
structure of S. supranubius. Gravity is believed to be the major mode of S.
supranubius seed dispersal as there is no evidence (either observational or in the
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literature) to suggest that dispersal is either ballistic or is aided by animals, wind or

water.

How the process could be measured:

It is likely that the influence of sexual reproduction and dispersal on the spatial
structure and dynamics of S. supranubius will be strongly linked to the presence and
intensity of grazing. Because of the slow demographics and dynamics of S.

supranubius both processes would be best studied in mathematical modeils.

Disturbances

Evaluation and likelihood:

The Cafadas caldera is believed to be a relatively undisturbed habitat. There is no
documented evidence of fires and the low precipitation level reduces the likelihood of
hydrological disturbances. Furthermore, the substrates investigated are
geomorphologically stable and there is no evidence of pathogen-induced disturbance.
The only potential source of disturbance is believed to be the impact of human visitors
to the area. There is, however, a well-defined network of paths in area and the focal

plots used in this thesis were situated away from any major roads or tracks.

Summarising remarks

Pattern—process inference is typically limited to investigations of specific processes for
which predicted spatial hypotheses can be developed. The technique provides little
opportunity to investigate the operation and relative importance of multiple and
interacting processes. With observational and experimental techniques largely
unfeasible when the focal species is a slow-growing arid shrub, it seems that
investigating the operation and potential interaction of alternative processes will
require relatively sophisticated mathematical modelling techniques. In addition to
improving the methodological application of pattern—process inference, the utilisation

of mathematical simulation models is expected to be an important technique in

advancing our understanding of arid shrub ecology.
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APPENDIX B: SPATIAL VARIATION IN WITHIN-SUBSTRATE S. SUPRANUBIUS

SPECTRAL RESPONSE

The S. supranubius spectral response on the red, green and blue wavebands was
compared between transects to assess the level of within-substrate spatial variation.
All tables show the mean differences of spectral intensity values ranging from 0 to 255
(column minus row). Statistically significant differences (assessed by pairwise Mann
Whitney U-tests) at the 0.05 and 0.001 level are shown by ‘* and "** respectively.
Cohen’s d values are given in parentheses. Cohen'’s d values describing a medium or
large effect (i.e., > 0.5) are highlighted in bold. No results are shown for Substrate 5

as data were only collected from one transect.

Substrate 1

Transect 1-A 1-B 1-C
1-A -

1-B 0.81 (0.06) -

1-C -3.76 (0.28) -4.58" (0.44) -

Comparing the transect level spectral response of S. supranubius on the red waveband on
Substrate 1.

Transect 1-A 1-B 1-C
1-A -

1-B 0.24 (0.02) -

1-C -6.82* (0.52) -7.06* (0.66) -

Comparing the transect level spectral response of S. supranubius on the green waveband on
Substrate 1.

Transect 1-A 1-8 1-C
1-A -

1-B 0.14 (0.01) -

1-C -5.17 (0.42) -5.31* (0.51) _

Comparing the transect level spectral response of S. supranubius on the blue waveband on
Substrate 1.
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Substrate 2

Transect 2-A 2-B 2-C 2-D
2-A -

2-B 7.11* (0.52) -

2-C -13.40** (1.09) -20.51** (1.50) -

2-D 2.63 (0.21) -4.48 (0.32) 16.03** (1.26) -
Comparing the transect level spectral response of S. supranubius on the red waveband on
Substrate 2.

Transect 2-A 2-B 2-C 2-D
2-A -

2-B 1.38 (0.11) -

2-C -7.27* (0.65) -8.65* (0.67) -

2-D 1.81 (0.16) 0.43 (0.03) 9.08** (0.79) -

Comparing the transect level spectral response of S. supranubius on the green waveband on

Substrate 2.

Transect 2-A 2B 2-C 2-D
2-A -

2B 0.04 (0.00) -

2-C -5.44 (0.49) -5.48" (0.21) -

2-D 1.43 (0.13) 1.40 (0.05) 6.88* (0.69) -

Comparing the transect level spectral response of S. supranubius on the blue waveband on

Substrate 2.
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Substrate 3

Transect 3-A 3-B 3-C
3-A -

38 -2.27 (0.18) -

3C -11.96** (0.98) -9.69"* (0.68) -

Comparing the transect level spectral response of S. supranubius on the red waveband on

Substrate 3.

Transect 3-A 3-B 3-C

3-A -

3B -1.43(0.12) -~

3-C -13.11** (1.09) -11.69" (0.87) -

Comparing the transect level spectral response of S. supranubius on the green waveband on
Substrate 3.

Transect 3-A 3B 3-C

3-A -

3B 1.53 (0.14) -

3C -7.84* (0.63) -9.37** (0.73) -

Comparing the transect level spectral response of S. supranubius on the blue waveband on

Substrate 3.
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Substrate 4

Transect 4-A 4-B
4-A -
4-B 1.62 (0.10) -

Comparing the transect level spectral response of S. supranubius on the red waveband on
Substrate 4.

Transect 4-A 4-B
4-A -
4-B 1.60 (0.12) -

Comparing the transect level spectral response of S. supranubius on the green waveband on
Substrate 4.

Transect 4-A 4-B
4-A -
4-8 1.87 (0.14) -

Comparing the transect level spectral response of S. supranubius on the blue waveband on
Substrate 4.
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APPENDIX C: EXAMPLE OF CLASSIFIER ACCURACY OUTPUT

Classification accuracies produced by the polynomial kernel using the INCSVDD classifier
model. Classifiers trained on target training data only (dataset A). Accuracies are calculated
from a total of 250. ‘p’ provides the order of the polynomial kerne!, and ‘C’ details the fraction of
target cases that can be rejected by the data description (the rejection error). The classifier
highlighted in bold is the final model used in the image classification.

P (o] Target accuracy (#) Outlier accuracy (#) Overall accuracy (%)
1 0.1 230 240 94.0
0.01 250 228 95.6
0.001 250 224 94.8
0.0001 250 224 94.8
2 0.1 235 240 95.0
0.01 250 228 95.6
0.001 250 225 95.0
0.0001 250 225 95.0
3 0.1 245 237 96.4
0.01 250 227 954
0.001 250 225 95.0
0.0001 250 225 95.0
4 0.1 245 235 96.0
0.01 250 226 95.2
0.001 250 225 95.0
0.0001 250 225 95.0
5 0.1 245 235 96.0
0.01 250 228 95.6
0.001 250 225 95.0
0.0001 250 225 95.0
6 0.1 245 235 96.0
0.01 250 227 95.4
0.001 250 225 95.0
0.0001 250 225 95.0
7 0.1 245 231 95.2
0.01 250 225 95.0
0.001 250 225 95.0
0.0001 250 225 95.0
8 0.1 246 229 95.0
0.01 250 226 95.2
0.001 250 225 95.0
0.0001 250 225 95.0
9 0.1 245 232 95.4
0.01 250 225 95.0
0.001 250 225 95.0
0.0001 250 225 95.0
10 0.1 246 229 95.0
0.01 250 224 94.8
0.001 250 225 95.0
0.0001 250 225 95.0
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APPENDIX D: INFORMATION ON QUADRATS USED IN CHAPTER 5

Substrate 2 Substrate 4
Extent Quadrat  Number of Number of
uLx ULY uLx ULy
(ha) number  individuals individuals

1 6 340990 3124460 10 342994 3124162

2 8 340421 3124566 5 343185 3124102

3 4 341053 3124892 5 343196 3124176

4 6 340528 3124073 5 342640 3124067

5 2 340456 3124805 6 343248 3123911

0.0625 6 6 341006 3124534 4 342892 3123889

7 14 340501 3124930 10 342631 3123937

8 14 340806 3124491 4 342878 3123825

9 340860 3124825 7 342647 3123767

10 5 340510 3124752 2 343021 3123652
T 1T s 340687 3124046 33T 342674 3123682

2 30 340555 3124936 27 342863 3123779

3 17 340446 3124932 27 343210 3123851

4 35 340431 3124641 42 343102 3123972

5 22 340589 3124982 42 342980 3124063

0.25 6 22 340649 3124485 28 342606 3123803

7 47 340791 3124488 30 342730 3123907

8 43 340708 3124408 30 342779 3123642

9 11 340763 3124953 22 342788 3124249

10 24 340451 3125012 Kh| 342718 3124085
TToTTTTTTTTIITTIs R T R 340652 3124995 7 169 343044 3123654

2 65 340777 3124622 155 342720 3123731

3 119 340764 3124689 140 342673 3123947

4 130 340910 3124426 130 343129 3123991

5 115 340435 3124436 87 342908 3123718

1 6 95 340649 3124613 114 342851 3123662

7 75 340984 3124979 131 342851 3123662

8 79 340944 3124553 119 342858 3123854

9 146 340442 3124523 143 343079 3123746

10 124 340648 3124733 97 342918 3123935
TTrmmommmemToTes g 260 T 340806 3124637285 T 342757 7 3123874

2 246 340455 3124835 305 342614 3123647

3 186 340476 3124656 274 342925 3123947

4 290 340543 3124480 288 342817 3123604

5 235 340612 3124688 247 342639 3123840

2.25 6 61 340694 3124941 277 342616 3124089

7 252 340824 3124468 278 343103 3123853

8 137 340672 3124833 337 343025 3123684

9 272 340735 3124750 436 342998 3124131

10 250 340780 3124746 280 342828 3124047
semmemmememmeees g 395 T 340431 3124596 3¢9 T 342817 3123666

2 410 340879 3124406 651 343011 3123061

4 3 181 340701 3124891 464 342911 3123926

4 393 340645 3124568 500 342668 3123880
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408 340752 3124555 531 342992 3123725

5
6 409 340859 3124761 482 342765 3124034
7 320 340515 3124889 528 343038 3123852
8 349 340882 3124892 493 342600 3123672
9 524 340692 3124439 409 342818 3123826
10 383 340412 3124786 551 342967 3123608
T 17T 388 340619 3124815 T 7gi T 342993 3123744
2 622 340552 3124563 744 342870 3123913
3 634 340627 3124678 731 342759 3123606
4 665 340786 3124611 814 343045 3123939
5 644 340751 3124722 763 342641 3123803
625 6 799 340421 3124431 750 342644 3124045
7 594 340836 3124475 726 342605 3123695
8 648 340657 3124481 858 342985 3123622
9 587 340411 3124702 8956 342942 3124037
10 613 340420 3124579 891 342843 3124036
Notes:

ULX = X-coordinate (UTM) of the lower left corner of the quadrat.

ULY = Y-coordinate (UTM) of the lower left corner of the quadrat

All quadrats are square.
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APPENDIX E: ASSESSING THE HETEROGENEITY OF SUBSTRATE 5 USING

REAL-SHAPE ANALYSIS (CHAPTER 7)

1000 1

100 A

10

log1og(r)

0.1 1

0.01 -

0.001 A

0.0001 ' : : : : : : . ‘ :
0 5 10 15 20 25 30 35 40 45 50
Scale r (m)

The pattern of the largest individuals (2 30 m?) on Substrate 5 was compared to the
null model of CSR using the homogeneous g(r) to assess the presence of
environmental heterogeneity. In contrast to the original analyses (Section 7.4.1), the
real size and shape of the shrubs was preserved during analysis to ameliorate the
effect of the small sample size (n = 15). While the empirical function (black line) falls
below the CSR expectation of g(r) = 1 between 31 and 30 m, the empirical function

remains within the 99% CSR simulation envelope (constructed from the highest and

lowest value of 99 simulations of the null model).

Note: the lower simulation envelope returned values of 0 at several scales. To enable
plotting on log-axes these values were replaced with the second lowest value for the

lower simulation envelope (0.00062).
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APPENDIX F: ANALYSING THE SPATIAL PATTERN OF LARGE INDIVIDUALS ON

SUBSTRATES 3 AND 5 USING REAL-SHAPE ANALYSIS (CHAPTER 7)

100 1

10 1

log109(r)

4

0.1 T v T + T . T :
0 5 10 15 20 25 30 35 40 45 50

Scale r(m)

The pattern of the large individuals on Substrate 3 was compared to the null model of
CSR using the homogeneous g(r). In contrast to the original analyses (Section 7.4.3)
the size and shape of the shrubs was preserved during analysis to ameliorate the

effect of the small sample size (n = 83). The empirical function (black line) falls below

the CSR expectation of g(r) = 1 between 29 and 39 m.
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The pattern of the large individuals on Substrate 5 was compared to the null model of
CSR using the homogeneous g(r). In contrast to the original analyses (Section 7.4.3)
the size and shape of the shrubs was preserved during analysis to ameliorate the
effect of the small sample size (n = 43). The empirical function (black line) falls below

the CSR expectation of g(r) = 1 between 16 and 21 m, and between 36 and 41 m.
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