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ABSTRACT 

Using spatial patterns to infer biotic and abiotic processes underlying plant population 

dynamics is an important technique in contemporary ecology, with particular utility 

when investigating and shrub population dynamics, for which experimental and 

observational methodologies are rarely feasible. Using a novel one-class 

classification technique, the locations of over 17,000 Spartocytisus supranubius 

individuals were mapped from aerial imagery generating a spatially extensive (162 

ha), yet accurate, dataset. 

The recent rapid increase in studies using pattern-process inference has not been 

accompanied by a rigorous assessment of the behaviour of these techniques, nor an 

appraisal of their utility in addressing ecological research questions. The first part of 

the thesis addresses these concerns, investigating whether current methodologies are 

adequate to test hypotheses concerning spatial interactions. A literature review 

reveals a preponderance of studies of small, little-replicated plots. The results of the 

research raise concerns about the utility of spatial point pattern analyses as currently 

applied in the literature. To avoid inaccurate description of fine-scale spatial 

structures it is recommended that researchers increase plot replication. Furthermore, 

studies of spatial structure and population dynamics should account for spatial 

environmental gradients, whatever plot size is used. The second part of the thesis 

presents a rigorous investigation, incorporating a priori inference and the application of 

fine-scale spatial statistical and modelling techniques, of the biotic and abiotic 

mechanisms underlying the spatial structure and population dynamics of S. 

supranubius, a leguminous shrub species endemic to the Canary Islands. The spatial 

structure of S. supranubius populations is consistent with the operation of clonal 

reproduction and intra-specific competition. However, the results indicate that spatial 

environmental heterogeneity (from small to broad scales), in particular topography, 

can interact with biotic processes to generate quantitatively different S. supranubius 

patterns in different locations. Future research into the spatial and temporal dynamics 

of interactions between abiotic and biotic processes is recommended. 
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CHAPTER 1: INTRODUCTION AND RESEARCH CONTEXT 

1.1 GENERAL INTRODUCTION 

Understanding the forces that generate spatial patterns in natural communities is one 

of the main goals of ecology (Levin, 1992; Tuda, 2007). Observational and 

experimental techniques provide some of the most direct ways to measure the 

presence, strength and influence of biotic and abiotic processes on population spatial 

structures. However, in some situations the observation and measurement of 

processes is not feasible. For example, the slow and event-driven demographics of 

and shrubs typically operate over longer timescales than the duration of most 

experimental and observational studies (Wiegand and Jeltsch, 2000). This thesis 

focuses on an increasingly popular approach used to investigate the processes and 

dynamics structuring plant populations: spatial point pattern analysis. 

The vegetation of and and semi-arid systems is usually dominated by shrub and tree 

species. These species are important elements of the semi-arid landscape as they 

regulate many community and ecosystem processes. In contrast, perennial 

herbaceous plants are generally too sparse to determine ecosystem and landscape 

properties, and annuals are too temporally transient to have long-lasting effects 

(Whitford, 2002). Understanding the dynamics of dominant and shrub species may be 

an important first step in understanding the dynamics of the ecosystem as a whole, 

yet little is known about their population processes and the factors underlying their 

dynamics (Jim6nez-Lobato and Valverde, 2006; Kyncl et al., 2006). There is a long 

history of studies investigating the dynamics of and shrubs at the patch-scale, initiated 

by the identification of spatially periodic and vegetation patterns in the 1950S 

(MacFadyen, 1950; Clos-Arceduc, 1956; cited in Couteron, 2002). To obtain a greater 

understanding of and shrub population dynamics, however, we need to investigate the 

biotic and abiotic processes operating at the scale of the individual. Pattern-process 

inference may allow information about the dynamics and long-term demographics of 

and shrub populations to be extracted in situations where experimental and 

observational techniques are not feasible. 
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Pattern-process inference relies upon the spatio-temporal theory that the biotic and 

abiotic processes underlying a population's dynamics will give rise to a non-random 

pattern of individuals. Consequently, the pattern of individuals can be interpreted as a 

spatial signature of the processes structuring a population (Law et al., 2009). Despite 

the increasing popularity of the technique, it continues to be criticised (Mahdi and Law, 

1987; Cale et al., 1989; Turner et al., 2001; Moravie and Robert, 2003). In many 

cases, efforts to deduce processes from patterns have been rejected because the 

inferential link between pattern and process is believed to be too weak (McIntire and 

Fajardo, 2009). It has, however, been proposed that these concerns are rooted in the 

analytical and methodological procedures used, rather than the biological justification 

of pattern-process inference (McIntire and Fajardo, 2009). Despite its increasing 

utilisation in the ecological literature, applications of pattern-process inference have 

not been accompanied by an appraisal of the methodological application of the 

technique, or its ability to address ecological research questions. 

This thesis investigates the application of pattern-process inference in the 

contemporary ecological literature and asks whether the methodological approaches 

commonly used hinder our ability to infer processes from patterns. Subsequently, 

fine-scale spatial statistical and modelling techniques are used to investigate the 

spatial structure and the inferred population dynamics of Spartopytisus supranubius, a 

narrow-ranged endemic dominating the high-altitude desert of Tenerife. 
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1.2 RESEARCH AIMS AND OBJECTIVES 

The overall aim of the research is to: 

Investigate the potential methodological constraints of spatial point pattern 

analysis, as currently applied in the literature, and how, with the support of 

remotely sensed data, their application could be improved to help 

understand the biotic and abiotic processes structuring populations of 

Spartocytisus supranubius. 

To address the central aim of the research, four hypotheses were developed to be 

tested in subsequent chapters. These hypotheses, the associated methods and the 

corresponding chapters in which the results are reported and discussed are outlined in 

Figure 1-1. The research context underlying the hypotheses is discussed in Section 

1.3 which examines the current state of knowledge regarding the biotic and abiotic 

processes driving and vegetation and shrub population dynamics, the discipline of 

spatial ecology, and the inference of process from pattern. The final part of this 

section reviews the methodological application of spatial point pattern analyses in the 

ecological literature. A detailed thesis structure is provided in Section 1.4. 
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1.3 THE RESEARCH CONTEXT 

1.3.1 THE PROCESSES DRIVING ARID PLANT POPULATION DYNAMICS 

Biotic drivers of and vegetation dynamics 

The stress-gradient hypothesis (Bertness and Callaway, 1994) states that the 

importance of competition as an organising force decreases, and the importance of 

facilitation increases, with environmental severity. While studies in some severe 

environments (e. g., salt marsh and alpine systems) support the stress-gradient 

hypothesis, the relative importance of competition and facilitation in and systems is 

commonly debated (Sthultz et al., 2007; Maestre et al., 2009). In a meta-analysis of 

studies evaluating the effect of abiotic stress on net plant-plant interactions in and 

systems, Maestre et al. (2005) found little support for theoretical predictions that the 

importance or intensity of facilitation should increase with abiotic stress (but see Lortie 

and Callaway, 2006; Brooker et al., 2008). 

Several factors could affect the relative importance of facilitation and competition in 

and environments, including the age of individuals (ontogeny, Reisman-Berman, 2007; 

Lortie and Turkington, 2008; Armas and Pugnaire, 2009), the species concerned 

(Lortie and Turkington, 2008; Valiente-Banuet and VerdO, 2008) and the methods of 

investigation used (i. e., observational vs. experimental, Maestre et aL, 2005). Maestre 

et al. (2009) also note that whereas the most important type of stress experienced in 

and systems is resource based (e. g., water availability), although non-resource based 

stresses are also present (e. g., photoinhibition, Jefferson and Pennacchio, 2005), 

vegetation in salt marsh and alpine systems predominantly experiences non-resource 

based stress (e. g., salinity, temperature). When abiotic stress is resource-based, 

facilitation will occur only when a neighbour increases the quantity of the resource 

(e. g., water availability) beyond its own requirements (Maestre et al., 2005,2009). 

Under drought conditions, individuals may be unable to increase water availability 

beyond their own requirements and competition for water may over-ride any 

amelioration of non-resource based stresses (Maestre and Cortina, 2004). 
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Almost all studies of biotic interactions in and systems have focused on inter-specific 

interactions, typically between individuals of different functional types (trees, shrubs, 

herbs and grasses [e. g., Maestre et al., 2003; Armas and Pugnaire, 2005; Holzapfel et 

al., 2006]). Relatively few studies have considered the importance of competition 

and/or facilitation in structuring populations and how these interactions may vary 

spatially and temporally. This thesis seeks to address this shortcoming. Interestingly, 

a recent study of intra-specific processes, a simulation model by Malkinson and 

Jeltsch (2007), concluded that the dominant force structuring a shrub population in 

xeric sites was neither competition nor facilitation, but random mortality because of 

drought stress. 

Abiotic drivers of and vegetation dynamics 

Water availability is believed to be the most important abiotic factor driving biological 

processes in and ecosystems. Precipitation in arid systems typically occurs in short 

pulses. Consequently, and areas exhibit great temporal variability in water availability 

(Snyder and Tartowski, 2006). Introduced over 30 years ago, the pulse-reserve 

paradigm (Noy-Meir, 1973) assumes that the dynamics of and vegetation are 

predominantly determined by their reaction to the environment, in particular the highly 

intermittent availability of water. In other words, rainfall events trigger a pulse of 

activity (e. g., growth) some of which is stored in a reserve, such as seeds. The pulse- 

reserve model continues to form the basis of contemporary and vegetation research, 

often motivated by the need to understand the consequences of changing precipitation 

regimes (Ogle and Reynolds, 2004; Schwinning et al., 2004). Climate change 

scenarios are predicting significant alterations to the timing and magnitude of 

precipitation in and and semi-arid areas (Robertson et al., 2009). Understanding how 

variation in water availability affects biological processes is essential if we are to 

predict and manage the effects of future climate change (Synder and Tartowski, 

2006). Recent studies have investigated (empirically and theoretically) the effects of 

variation in precipitation timing (Snyder et al., 2004; West et al., 2007), magnitude 

(Huxman et al., 2004) and frequency (Heisler-White et al., 2009) on plant physiological 
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activity. However, recent research is suggesting that and vegetation is more 

responsive to soil water availability than precipitation per se (Robertson et al., 2009) 

The translation of precipitation into soil moisture, and the resultant spatial and 

temporal heterogeneity in water availability, is complex (Loik et al., 2004). The main 

focus of studies to date has been on the role of vertical heterogeneity in soil-water 

availability (Loik et al., 2004; e. g., Ryel et al., 2004,2008). Whereas water in shallow 

soil layers is quickly lost to evaporation, water that infiltrates to deep soil layers is 

conserved for a longer time (Chesson et al., 2004). Because the root systems of 

woody plants typically penetrate to deeper soil layers than herbaceous species, a 

larger amount of deep water is believed to benefit shrubs and trees (the two-layer 

hypothesis - Walter, 1971). However, there are several situations where a relationship 

between woody biomass and deep soil moisture availability has not been found 

(Breshears et al., 2009). There is growing evidence that horizontal variation in soil 

moisture may be as substantial as vertical heterogeneity (Breshears et al., 2009), 

although this is rarely considered in models of and ecosystem and vegetation 

dynamics (Loik et al., 2004). 

To date, horizontal water heterogeneity has been most frequently documented at the 

scale of canopy patches (Loik et al., 2004; Breshears et al., 2009). However, 

horizontal water heterogeneity is also influenced by geornorphological and 

topographical characteristics (Loik et al., 2004; Zou et al., 2010). For example, 

Fravolini et al. (2005) found that the response of a woody legume to precipitation 

pulses of different magnitude was largely dependent upon soil texture (Fravolini et al., 

2005). Monger and Bestelmeyer (2006) propose that and vegetation dynamics are 

influenced by the 'soil-geomorphic template'. Their conceptual model describes the 

combined effects of the soil, topography and parent material on vegetation patterns 

and dynamics. All three factors are believed to influence water availability, primarily 

through their control on the water-holding capacity of the soil and the lateral 

redistribution of water. However, the potential effect of geornorphologically driven, 
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horizontal variation in soil water availability on the spatial structure and dynamics of 

and shrub populations has been relatively understudied. 

Understanding and vegetation heterogeneity: the interaction of abiotic and 
biotic factors 

Understanding the independent and interactive effect of biotic and abiotic processes 

on the dynamics of populations remains a fundamental aim of ecology (Dah1gren and 

Ehri6n, 2009). Following a review of research into Monte Desert ecosystems, Bisigato 

et al. (2009) concluded that coarse-scale vegetation heterogeneity (i. e., at the 

landscape and community scale) was determined by abiotic factors, whereas biotic 

interactions determined fine-scale vegetation patterns (i. e., at the patch and intra- 

patch scale). Theoretical evidence, however, suggests that interactions and 

feedbacks between biotic and abiotic processes across a range of spatial and 

temporal scales may be important drivers of vegetation and population dynamics. 

Indeed, Agrawal et al. (2007) identified a need in population and community ecology 

studies to understand how biotic interactions vary with abiotic context, and to 

understand how biotic and abiotic factors interact over time and space. One 

conceptual model, the storage effect (Chesson, 2000a, b), proposes that the dynamics 

of and vegetation communities are in part driven by an interaction between temporal 

environmental variation and biological processes, specifically competition. if 

competing species experience fitness advantages at different times, and are able to 

store the gains made using favourable periods, then coexistence will be enhanced 

(Adler et al., 2009). In order for the storage effect to operate, competition must vary 

with temporal environmental variation such that intra-specific competition is strongest 

and limits growth in favourable periods (Verhulst et al., 2008). Support for the 

covariance of competition and temporal environmental variation is, however, limited 

(Adler et al., 2009). 

Research on how spatial environmental variation influences biotic interactions in and 

vegetation has predominantly focused on comparing the spatial structure and 

dynamics of populations under different abiotic scenarios (Schenk et al., 2003; 
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Malkinson and Kadmon, 2007; Biganzoli et al., 2009). There is surprisingly little 

understanding of whether and how continuous spatial environmental heterogeneity 

interacts with biological processes to determine population dynamics (Wagner and 

Fortin, 2005; Murrell, 2009). Understanding the spatial dynamics of biotic interactions 

and their relationship with abiotic factors is important if we are to gain an 

understanding of the dynamics and processes that organise and shrub populations. 

1.3.2 METHODS OF INVESTIGATING THE DYNAMICS OF ARID SHRUB 
POPULATIONS 

The population dynamics of arid, perennial shrubs are slow, with infrequent 

establishment of new individuals, low growth rates and extended longevity (Cody, 

2000; Bowers, 2005). Vegetative responses to abiotic and biotic pressures may 

operate over much longer time scales than variability in the pressures themselves. 

This results in a temporal mismatch between the typical duration of observational and 

experimental methodologies (years) and the time scales of vegetation change 

(decades) which has made it difficult to investigate the long-term dynamics of and 

shrub populations (Wiegand and Jeltsch, 2000). One approach to investigating and 

vegetation dynamics over medium to long time scales has been to mark and 

repeatedly sample individuals in permanent plots (e. g., Shreve and Hinckley, 1937; 

Goldberg and Turner, 1986; Turner, 1990; Tielborger and Kadmon, 1997; Pierson and 

Turner, 1998; Cody, 2000; Bowers et al., 2004; Bowers, 2005; Kraaij and Milton, 

2006). There is no doubt that long-term, systematic studies of and vegetation have 

advanced our understanding of the processes influencing their population dynamics, 

especially in relation to grazing pressures (e. g., Ward et al., 2000; Angell and 

McClaran, 2001) and precipitation regimes (e. g., Milton and Dean, 2000; Ward et al., 

2000; McClaran and Angell, 2006). However, most long-term observational studies 

are limited to monitoring a small subset of the target population from which 

generalisations about the demography of a species or population are made (e. g., 

Henschel and Seely, 2000). 
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Because of the time and financial limitations of long-term studies, most studies of and 

vegetation dynamics are conducted over relatively short time periods (i. e., seasons or 

years). The slow dynamics of and perennials means that many studies base their 

interpretations upon physiological responses at the individual level. Studies often 

compare the performance of target individuals growing in the vicinity of a neighbour 

with the performance of individuals growing in open areas (either naturally devoid of 

vegetation or where vegetation has been experimentally removed). Common 

measures of performance include growth (biomass, height, diameter or the number of 

leaves) and fecundity (number/weight of flowers/fruit/seeds; Maestre et al., 2005). 

However, the ability of individual-level responses to impart structure at the population 

level has been questioned (Freestone, 2006). To understand population dynamics, 

population-level responses should be measured (Goldberg et al., 1999). The 

discipline of spatial ecology may provide suitable techniques. In this approach the 

spatial structure of individuals within a population is used to infer its dynamics and the 

influence of abiotic and biotic factors. Coupled with the increasing availability of high- 

resolution remotely sensed data and Geographical Information Systems (GIS) 

software, spatial ecology may provide an important opportunity to investigate the 

population dynamics of and shrubs over large spatial extents. 

1.3.3 THE IMPORTANCE OF SPACE AND SPATIAL PATTERN ANALYSIS 

[Kge must find ways to quantify patterns of variability in space and time, to 

understand how patterns change with scale..., and to understand the causes 

and consequences of pattern... (Levin, 1992 p. 1961) 

Why space mafters 

Over recent decades ecologists have become increasingly aware of the importance of 

the spatial dimensions of the phenomena they study. Organisms, both motile and 

sessile, are discrete entities that interact with their biotic and abiotic neighbourhood. 

Spatial confinement is strongest in sessile organisms such as terrestrial plants, marine 

macrophytes, corals and other species that are attached to surfaces (Tilman et al., 

1997). Spatial ecology is a specialisation of geography and ecology that aims to 

10 



understand the spatial dimensions of the processes driving the dynamics and spatial 

structure of populations and communities (Murrell et al., 2001). 

Some have attempted to investigate the spatial mechanisms underlying and 

vegetation patterns with experimentation (e. g., Buonopane et al., 2005; Sthultz et al., 

2007; Weedon and Facelli, 2008) or modelling biological and abiotic processes within 

a spatial domain (e. g., Meyer et al., 2007; Barbier et al., 2008; Moustakas et al., 2009; 

Popp et al., 2009). However, converting ecological theories into mathematical 

formulae can over-simplify the processes operating in natural communities, and 

experimental techniques can be time consuming, financially demanding and unethical 

(McIntire and Fajardo, 2009). Furthermore, depending upon the process being 

investigated, experimental techniques can be impractical. This is especially so when 

studying the dynamics of and shrubs which operate over extremely long time scales. 

Therefore, this thesis is concerned with our ability to infer biological and abiotic 

processes from detailed analyses of observed spatial patterns. 

Inferring process from paftern 

The theory of spatial point processes can be used to extract information from the 

spatial pattern of plants (Law et al., 2009). A spatial point process is a stochastic 

model that generates a set of countable points in a two-dimensional plane. The 

simplest point process is the Poisson point process which describes complete spatial 

randomness (i. e. a random number of individuals are located independently following 

a uniform distribution in region A [Law et al., 2009]). More complicated point 

processes introduce interactions between neighbouring points (e. g. Neyman-Scott 

processes). 

The theory of spatial point processes can be applied to plant ecology by envisaging 

individual plants as points, with their locations represented by Cartesian coordinates. 

The abiotic and biotic processes driving a species' spatial structure (i. e., the spatial 

pattern presented by individuals) operate at discrete scales. These processes give 

rise to non-random patterns of individuals at the population level. Therefore, the 

pattern displayed by individuals can, with appropriate caution, be interpreted as a 
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spatial reflection of the mechanisms underlying population dynamics. Point process 

theory uses 'space as a surrogate' for unmeasured spatio-temporal processes 

(McIntire and Fajardo et al., 2009: 46). 

The ability to infer biologically important process from observed spatial patterns was 

first recognised by Watt (1947). Nowadays there is a great impetus to study the 

spatial structure of plant populations and relate their characteristics to underlying biotic 

and abiotic processes. The spatial patterns of individuals within a population have 

been used to investigate and infer processes such as seed dispersal (Plotkin et al., 

2002; Strand et al., 2007; Cousens et al., 2008; Wiegand et al., 2009), competition 

(Stoll and Bergius, 2005; Meyer et al., 2008), facilitation (Montesinos et al., 2007), 

herbivory (Zavala-Hurtado et al., 2000) and predation (Rossi et al., 2009). 

Over recent decades, advances in computation have allowed ecologists to become 

increasingly sophisticated in their ability to quantify spatial patterns. However, despite 

the increasing ease with which patterns can be quantified, the inference of processes 

from observed patterns still remains theoretically challenging. Inferring processes 

from spatial patterns requires a substitution of space for time, and is consequently 

controversial. Many authors have questioned the extent to which processes can be 

reliably inferred from spatial patterns (Mahdi and Law, 1987; Cale et al., 1989; 

Moravie and Robert, 2003). In a study of the spatial organisation of limestone 

grassland species Mahdi and Law (1987) stated that: 

. ... a spatial analysis of a plant community does not, on its own, give insights 

into the processes operating in a community. " (Mahdi and Law, 1987: 474) 

However, despite these uncertainties it can be argued that non-random processes will 

typically result in highly structured, distinctive patterns (McIntire and Fajardo, 2009). 

Biological organisation exists and, although the link between pattern and process may 

be imperfect, patterns of ecological phenomena continue to provide important 

opportunities for enhancing our understanding of population dynamics and spatial 

structure. Inferring processes will, however, be more difficult in complex communities 
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as many processes and factors will be operating simultaneously (Felinks and 

Wiegand, 2008). Studies of relatively simple systems, therefore, should improve our 

understanding of the theoretical association between pattern and process. In such 

systems, conceptual models of anticipated processes can be translated into expected 

spatial signatures. The relative abiotic and biotic simplicity of and systems (Holzapfel 

and Mahall, 1999) aids the application and utility of spatial pattern analyses. 

McIntire and Fajardo (2009) describe the inference of process from pattern as a 

multistage procedure requiring the precise implementation of ecological theory and 

knowledge, a priori inference of the anticipated processes and their spatial signatures, 

and the precise application of spatial analytical tools. Numerous authors repeatedly 

disapprove of the lack of a fourth stage: experimental verification of the operation of 

processes inferred from observed patterns (Steinberg and Kareiva, 1997; Murrell et 

al., 2001; Perry et al., 2006). However, because of the slow demographics and 

dynamics of and shrubs and legislation protecting the focal species (S. supranubius; 

see Chapter 2) this fourth stage is not addressed in the current thesis. Chapters 5 

and 6 of this thesis are specifically concerned with the third stage of process 

inference: the precise application of spatial analytical tools. Chapters 7 and 8 use all 

three stages in an investigation of the processes underlying the spatial structure of S. 

supranubius populations. 

Methods of spatial pattern analysis are discussed in Chapter 3. Specifically, Chapter 

3 provides a quantitative description of the pattern analysis techniques with which this 

thesis is concerned: the L(r)-function (a derivative of Ripley's K(r)-function) and the 

pair-correlation function (g(r)). Although the details of these techniques are not 

discussed until Chapter 3, the following section reviews the application of these 

techniques in the ecological literature, in order to inform the research context. 

1.3.4 REVIEW OF THE APPLICATION OF SPATIAL POINT PATTERN ANALYSES 
IN THE ECOLOGICAL LITERATURE 

Spatial pattern analysis is a subject of considerable current statistical research (Law et 

al., 2009). However, much of this work is technical and there is relatively little 
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discourse between mathematicians and ecologists (Law et al., 2009). Furthermore, 

with the ever-increasing power of desktop computers, the widening availability of GIS 

software, and the publication of independent spatial analysis programs over the 

internet, it seems that undertaking statistical analysis of spatial point patterns is no 

longer limited to either mathematicians or those who understand the techniques well 

enough to apply them with care. This has resulted in a rapid increase in the 

application of pattern analyses to plant distribution data over recent years. This 

increase has not, however, been paralleled by rigorous assessment of the behaviour 

of these techniques. This section reviews the ecological literature using second-order 

spatial statistics (i. e., statistics that quantify the pattern of points relative to one 

another, see Table 3-1) to describe the spatial patterns of woody plants (trees and 

shrubs), to identify where research is required. To maintain comparability with the 

analyses performed in this thesis, the review was limited to those studies using g(r) 

and L(r) (and the related functions K(r) and O(r)). Only those studies applying spatial 

pattern analysis techniques to real (i. e., not simulated) data were included in the 

review. Methodological studies were not considered. While the review was not limited 

to studies of single species patterns, studies solely investigating the pattern of 

seedlings were not included, nor were articles that investigated the spatial patterns of 

herbs or grasses. Articles were selected by searching ISI Web of Knowledge using 

various combinations of the following search terms: 'spatial pattern', 'spatial point 

pattern analysis', 'ecology', 'Ripley's', 'pair correlation function', 'tree' and 'shrub'. No 

restriction was placed on the year of publication. The aspects considered in the 

review are detailed in Table 1-1. Some information could not be retrieved from some 

articles. A total of 109 articles were reviewed (Appendix A). The notable features of 

the review are discussed below. 
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Spatial pattem analysis is increasingly popular 

The review confirmed an increase in the ecological application of pattern analyses 

over the last 15 years (Figure 1-2a). There is a notable lack of articles published in 

2001 and 2002. Interestingly, articles produced in these years are noted for 

attempting to develop new indices of spatial pattern (Dale and Powell, 2001; Fehmi 

and Bartolome, 2001), apply alternative pattern indices (Dovdiak et al., 2001; Cressie 

and Collins, 2001) or to deal with the problems facing point pattern analyses, such as 

heterogeneity (PL&Iissier and Goreaud, 2001) and missing data (Freeman and Ford, 

2002). The majority of the articles investigated the spatial patterns of temperate or 

tropical forest trees with only 18 articles investigating species in and or semi-arid 

systems (Appendix A). 

Cumulative measures favoured 

Despite the complexities of interpreting cumulative measures (see Chapter 3), the 

majority of articles (c. 76%) analysed spatial patterns using only L(r) or K(r) (Figure 

1-2b). Of the 25 articles that used a discrete measure (i. e., g(r) or O(r)), nine used the 

techniques in combination with L(r). 

Low number of replicates used 

The majority of articles (n = 75) based their interpretations upon analyses performed 

in a single replicate plot (Figure 1-2c). Of these studies, 46% used a single plot of 

1 ha or less in extent and 20% used a plot of :50.25 ha. Fifteen articles used two 

replicates per spatial environmental context. Seven of these studies used plots of 

:50.33 ha in extent. Nineteen articles used more than two replicate plots. In general 

these studies used the smallest plot extents with over half (n = 10) of the studies using 

plots ofs 0.25 ha. 
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Figure 1-2 Results of a review of 109 published articles using spatial pattern analyses (g(r), 

L(r), O(r), or K(r)) to study the pattern of woody plants (trees and shrubs). Graphs show (a) the 

year of publication (2010 data not included [n=1 07]), (b) the spatial pattern analysis technique(s) 

used, and (c) the number of replicate plots used per environmental context (e. g., the number of 

replicate plots used per site when comparing the patterns observed in two sites of differing fire 

regime). NB: in graph (b) the studies using both L(r) and g(r) (i. e., the final column) are not 
included in the count of studies using only one of the techniques (i. e., the 2nd and 3 rd columns). 
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Point analysis vs. real shape 

Only one study (Barbeito et al., 2008) represented the location of individual plants as 

objects as well as dimensionless points with co-ordinates x, y. 

No consensus on sample size requirements 

In standard statistical methods it is often accepted that a minimum sample size of 30 

is adequate for simple comparisons and correlations. There is no such established 

consensus in spatial point analyses, with articles imposing independent, unfounded 

sample size restrictions. Malkinson et al. (2003), Meyer et al. (2008) and Linares- 

Palomino and Ponce-Alvarez (2009) restricted their analyses to plots containing 30 or 

more individuals, whereas Eccles et al. (1999), Mast and Veblen (1999) and Zhu et al. 

(2010) required 40 individuals and Wiegand et al. (2007a) required 70 individuals. 

Baddeley and Turner (2005) claim that K(r) is biased if fewer than 15 points are used 

(Rossi et al., 2009). Other studies have set limits of 10 individuals (Ar6valo and 

Ferngindez-Palacios, 2003; Aldrich et al., 2003) and 20 individuals (FuI6 and 

Covington, 1998), whereas Jacquemyn et al. (2009: p. 211) considered a sample size 

of 80 individuals to be 'relatively low'. However, the majority of studies do not impose 

a lower sample size limit, with some articles interpreting the spatial pattern detected 

from as few as six individuals (Fajardo et al., 2006). Precise data on sample sizes 

could only be extracted from 51 of the 109 studies reviewed. Of those studies, 34 

performed one or more analyses on data with fewer than 70 individuals. Twenty-four 

of these articles performed one or more analyses on fewer than 30 individuals. 

Plots mostly <I ha in extent 

About 79% of the articles (for which information on plot extent was available, n= 106) 

used plots of less than 5 ha in extent (n = 84; Figure 1-3a). Over half of the articles 

(n = 56) used plots of 1 ha or less in extent. Of those studies using plots of less than 

1 ha, there was a general trend for the smallest extents to be the most popular (Figure 

1-3b). 
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Data collection 

Only eight (c. 7%) of the studies used computational techniques to generate data on 

the distribution of individual shrubs and trees. One study used ground-based, 

hemispherical photography (Montes et al., 2008), whereas the remaining seven 

studies used remotely sensed data. All seven studies used aerial photography, 

although Moustakas et al. (2008) and Koukoulas and Blackburn (2005) combined this 

with Ikonos imagery and LiDAR data respectively. Of the seven studies using 

airborne sensors, four were performed in and areas. 

interpretation 

The detection of significant spatial pattern from Monte Carlo simulation envelopes has 

been criticised because building envelopes from the result of many simulated patterns 

underestimates the Type I error rate (Loosmore and Ford, 2006, Chapter 3). 

Furthermore, the width of simulation envelopes is in part determined by sample size 

(Figure 3-3). Despite this, almost all of the articles (n = 104) assessed spatial pattern 

by the scales at which the empirical function fell outside Monte Carlo simulation 

envelopes. Only eight studies (Peterson and Squiers, 1995; P61issier, 1998; 

McDonald et al., 2003; Fang, 2005; Seidler and Plotkin, 2006; Getzin et al., 2008; 

Barbeito et al., 2009; LeMay et al., 2009) used the height of the empirical functions 

above the value expected from a completely spatially random pattern (CSR; L(r) = 0, 

g(r) = 1) to assess and compare patterns (see Table 3-1). 

Summarising remarks 

The results of the literature review presented above reveals a clear preponderance of 

methodological procedures that rely upon small plot extents with little replication. Very 

few studies use remote sensing technologies, which could enable the extent of the 

study area to be increased with relative ease. The majority of studies investigate 

spatial pattern using cumulative statistics (L(r) or K(r)), and almost all assess the 

presence of pattern from Monte Carlo simulation envelopes. 
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1.4 DETAILED THESIS STRUCTURE 

Chapter 2 introduces the study site and the focal species, Spartopytisus supranubius. 

Chapter 3 describes some of the methods available to quantify the pattern of 

individuals within a population. Particular attention is paid to the methods used in the 

subsequent results chapters (Chapters 5- 8), the L(r)-function and the pair-correlation 

function (g(r)). Specific methodologies and analytical techniques are discussed in 

further detail as appropriate in the subsequent chapters. 

To address the stated research objectives, this thesis required the mapped location 

and size of individual S. supranubius shrubs across extensive areas. For this purpose 

data were collected via the classification of aerial photographs (Objective 1). Image 

classification was performed by one-class classification using support vector data 

description. Chapter 4 details the performance of 960 alternative classifier models. 

Following extensive cross-validation, a high-accuracy classifier is developed. This 

chapter details the application of this classifier to 162 ha of the study area for this 

research, and presents the resulting maps. 

Chapter 5 investigates the effect of varying plot extent on the detection of spatial 

pattern using L(r) and g(r) (Objective 2). Extensive analyses at six different extents 

are performed to examine how changing plot extent influences the accuracy and 

reliability of pattern detection. Particular interest is directed towards pattern detection 

within small sample windows (< 1 ha), which are commonly applied in the 

contemporary literature (see Section 1.3.4). The potential interaction between plot 

extent and spatial environmental heterogeneity is considered. 

Chapter 6 investigates the differences in the pattern detected by analyses that 

approximate the location of individual shrubs as points, and those that preserve the 

size and shape of individuals (Objective 3). The types of pattern detected and the 

magnitude and scale of the strongest pattern are compared, and the consequences 

for the inference of ecological processes are considered. 
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Chapter 7 uses fine-scale, second-order spatial statistics to investigate the spatial 

structure of S. supranubius on five focal substrates (Objective 4). Deductive 

reasoning was adopted: a priori hypotheses of the likely abiotic and biotic processes 

driving the dynamics of S. supranubius, and their expected spatial signatures were 

formulated. These hypotheses are challenged with data. The spatial structure of S. 

supranubius on substrates experiencing different levels of spatial abiotic heterogeneity 

is compared to investigate whether environmental variation interacts with biological 

processes to determine S. supranubius dynamics. 

Chapter 8 builds upon the findings of Chapter 7. Using data collected in the field, 

point process modelling techniques are used to investigate whether topography 

influences the spatial structure of an S. supranubius population (Objective 5). A 

conceptual model of topographically driven spatial variation in water availability is 

developed. 

Chapter 9 summarises the principal conclusions and implications of the previous 

chapters, and provides recommendations for further research. 
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CHAPTER 2: STUDY AREA AND FOCAL SPECIES 

2.1 THE CANARY ISLANDS 

Situated in the northeast Atlantic Ocean, the Canary islands extend for more than 

500 km in a WSW-ENE orientation from Cape Juby on the African Coast (Kunkel, 

1976). The archipelago comprises seven volcanic islands: Lanzarote, Fuerteventura, 

Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro (Figure 2-1). 

2.1.1 BIOGEOGRAPHY OF THE FLORA OF MACARONESIA AND THE CANARY 

ISLANDS 

The Canaries, along with the other north-west Atlantic archipelagos - the Azores, 

Madiera, the Salvage Islands and the Cape Verde Islands - comprise the 

biogeographical region of Macaronesia. Macaronesia has been considered to be a 

phytogeographically distinct region for more than a century (Whittaker and Fernindez- 

Palacios, 2007). However, there is a general floristic trend that parallels the 

considerable latitudinal range the archipelagos span. This has led some to question 

the validity of a distinct biogeographical Macaronesian region (Whittaker and 

Fernandez-Palacios, 2007). 
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Oceanic islands are renowned for having a high proportion of endemic species. 

Adaptive radiation and genetic drift are often cited as the mechanisms underlying this 

phenomenon. The Canary Islands are no exception. The endemic flora of the 

archipelago is very rich with over 680 endemic taxa recognised (species and 

subspecies, Santos-Guerra, (2001), cited in Carine et al., 2009). This corresponds to 

an endemicity rate of over 50%. 

Alexander von Humboldt (1799), aided by the earlier manuscripts of Bomplant and 

Broussonet, was the first to attempt a description of the archipelago's flora (Ministry of 

the Environment, 2006). This work was later completed by Bory de Saint-Vincent 

(1802), who produced the first printed account of the flora and fauna of the Canary 

Islands (Ministry of the Environment, 2006). The floral richness of the islands is 

estimated at over 2000 species (Izquierdo et al., 2004). Generic endemism is 

common with 15 genera thought to exist only on the Canarian archipelago (Francisco- 

Ortega et al., 2009) and a further 12 genera specific to the Macaronesian region. The 

remaining non-endemic flora consists mostly of Mediterranean species as well as a 

large proportion of introduced, non-native species (Bramwell, 1976). 

The Canary Islands have a strong network of protected areas (146 in total) covering 

around 40% of the archipelago (Reyes-Betancort et al., 2008). There are eight 

categories of protected area recognised in the Canary Islands (Reyes-Betancort et al., 

2008). Populations of most endangered plant species can be found in these protected 

areas. National parks in particular contain >30% of the archipelago's endemic flora 

despite only covering about 4% of the land area (Marrero-G6mez et al., 2003). This 

thesis focuses on populations of S. supranubius in the Las Ca6adas caldera, which is 

within the Teide National Park of Tenerife. The Spartocytisus genus is endemic to the 

Canary Islands. 

2.2 TENERIFE 

At 2,058 kM2 in area and reaching 3,718 m in altitude, Tenerife is the largest of the 

Canary Islands and the highest peak in Spain. Tenerife resulted from the fusion of 
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three palaeo-islands (Teno, Anaga and Adeje) following volcanic activity c. 3 Ma 

(Carracedo and Day, 2002). The landscape of Tenerife is dominated by the Canadas 

volcanic series, rising to about 2,000 m, and the Pico del Teide (3,718 m. a. s. l. ) and 

Pico Viejo (3,103 m. a. s. l. ), which rise from the floor of the Las Cat)adas caldera. The 

volcanic history of Tenerife prior to the formation of the Canadas caldera (c. 0.17 Ma) 

is beyond the scope of this thesis: see Gill et al. (1994) and Guillou et al. (2004). In 

the following sections the floral biogeography of Tenerife is discussed in the context of 

the other Canary Islands before the focal site of this research - the Canadas caldera - 

is introduced. 

2.2.1 BIOGEOGRAPHY OF THE FLORA OF TENERIFE 

A mentioned above, the floral richness and endemicity of the Canary islands are very 

high. In a recent study, Reyes-Betancort et al. (2008) concluded that the endemic 

flora had a highly heterogeneous distribution both within and between the separate 

islands. They found that high rates of plant endemicity occurred in the three palaeo- 

islands (Teno, Anaga and Adeje) which fused to form the island of Tenerife c. 3 Ma 

(Carracedo and Day, 2002). The Teno, Anaga and Adeje palaeo-islands had plant 

endemicity rates of c. 23,18 and 16% respectively (Reyes-Betancort et al., 2008). 

Following Reyes-Betancort et al. 's study, Carine et a[. (2009) attempted to delimit 

areas of endemism within the Canarian archipelago. Of the 17 areas of endemism 

they recognised, six occurred within Tenerife, more than in any of the other islands. 

The palaeo-islands of Anaga and Teno were both resolved as areas of endemism in 

their own right. According to Carine et al. 's (2009) study, the area of highest 

endemism was the high mountain area (i. e., Las Cahadas), together with the GUimar 

valley and the Tamadaya ravines of the south. This area also includes the third 

palaeo-island, Adeje. Thus the geological history of the island appears to contribute 

highly to its endemicity. However, studies by both Reyes-Betancort et al. (2008) and 

Carine et al. (2009) uncovered a more contemporary gradient between the high 

species richness and high endemicity of the north side of the island and the 
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comparatively species poor south of the island. This is believed to be driven by 

current climatic differences. 

2.3 THE LAS CARADAS CALDERA 

2.3.1 GEOLOGY OF THE LAS CARADAS CALDERA 

The volcanic nature of the Las CaMadas caldera has created a mosaic of lava flows of 

differing ages and morphology (bot h pahoehoe and aa) and pyroclastic sediments 

(Figure 2-2). The Las CaMadas caldera is an elliptical depression measuring 16 km at 

its widest axis and 9 km at its smallest with a total perimeter of 45 km (Marti and 

Gudmundsson, 2000). Truncating the Las CaMadas edifice at an altitude of 2000 to 

2200 m. a. s. l. (Galindo et al., 2005), the caldera is delimited by the Circo de las 

Canadas, an elliptical wall up to 500 m high that encompasses all but the northern 

flank of el Teide. From the floor of the caldera rise the Pico Viejo (3,103 m. a. s. l. ) and 

the Pico del Teide (3,718 m. a. s. l. ), eruptions from which have covered much of the 

caldera floor with a mosaic of lava flows (both aa and pahoehoe) and pyroclastic 

sediments. Construction of the Teide-Pico Viejo complex began c. 2 Ma (Edgar et al., 

2007). Both of the cones, and the smaller eruptive centres on their flanks (e. g., 

Montaha Blanca, MontaMa Rajada), remain active to this day. 
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Figure 2-2 Geological map of the central Pico Teide - Pico Viejo (PT-Pv) formation adapted from 

Ministerio de Industria y Energia (1978a, b) and Ablay and Marti (2000). PT-PV members are shown 
in three groups: Pico Teide, Pico Viejo and flank vents. Adjacent text gives the names of the members 

where focal sites are located. Unshaded (white) areas are of uncertain origin. Stratigraphic order is 

observed within each group, with the youngest flows appearing first in the legend. Map co-ordinates in 

UTM ('000). The red box highlights area within which the focal substrates are located (see Figure 

2-3). The locations of the active cones (Pico del Teide: PT Pico Viejo: PV, Montana Blanca and 
Montana Rajada: MR) are shown on the map. 28 



2.3.2 THE FIVE FOCAL SUBSTRATES 

The focal site of this research contains five different substrates (Figure 2-3). These 

were selected to incorporate variation in the age and formation of the substrate while 

maintaining spatial proximity. 

3 
3126' 

2 

3124' 4 

340' 342' 344' 

Figure 2-3 The five focal substrates used in this thesis (see Figure 2-3 and Table 2-1). The 

colours; correspond to the colours; used in Figure 2-2. Substrates that are not considered in this 

thesis have been left unshaded (white). Map co-ordinates in UTM ('000). 

Further information and photographs of the five focal substrates are provided in Table 

2-1 and Plate 2-1 respectively. 
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2.3.3 CLIMATE OF THE LAS CARADAS CALDERA 

Despite the proximity of the Canary Islands to the African Sahara, the passage of the 

north-east trade winds over cold oceanic upwellings off the African coast provides the 

archipelago with a mild climate (Fernandopulld, 1976). Temperatures at sea level 

typically exceed 20*C throughout the year. Atmospheric stability produces constant 

winds most of the year, although the cyclonic influence of the Atlantic weather system 

can bring unstable conditions in the winter months (Fernandopu116,1976). 

The Cafiadas caldera experiences large daily and seasonal oscillations in 

temperature. Diurnal temperature ranges of 15*C, winter lows of -160C and summer 

highs of over 30*C are common (Seguela and Trujillo, 2004; Ministry of Environment, 

2006). Annual insolation is high with around 3500 hours of sunlight per year (Ministry 

of Environment, 2006). The caldera is dry for 90% of the year with annual 

precipitation typically less than 300 mm (most consider a desert to have less than 250 

mm precipitation a year [Ward, 20091). Precipitation is concentrated between October 

and March, with the majority failing in December and January (Seguela and Trujillo, 

2004). Consequently, much of the precipitation falls as snow (Ministry of 

Environment, 2006). The high mountain climate of Tenerife is controlled by a constant 

thermal inversion that occurs between 1,500 m and 2,000 m, because of the 

convergence of the cool and humid north-east trade winds and the hot and dry 

north-west winds (from the African continent). The thermal inversion and insular 

orography isolate the caldera from marine influences, producing climatic conditions 

more similar to continental areas than witnessed elsewhere on the archipelago. 

2.3.4 FLORA OF THE LAS CAAADAS CAMERA 

Sventenius (1946) was one of the first to attempt to catalogue the caldera's flora, 

gathering specimens until the 1960s (cited in Dickson et al., 1987). Estimates of 

species richness in the Cahadas caldera vary. In 1946, Sventenius published 76 

vascular plant species comprising the flora of Las Cahadas. In 1980, Kunkel listed 94 

taxa for the same area (cited in Dickson et al., 1987), whereas Dickson et al. (1987) 
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estimates the vascular plant richness of the CaMadas caldera at 125 species. 

Richness estimates are higher when the entire Teide National Park is considered with 

de la Torre and Osorio (2004) reporting the vascular floral diversity of the park at 168 

taxa. Dickson et al. (1987) believe that at least half of the vascular plant species 

within the caldera can be considered aliens, most thought to have been introduced by 

tourism and pre-1950 pastoralism. Prior to the creation of the Teide National Park, the 

caidera's flora was affected by the grazing of goat herds, which migrated to the area in 

the spring and summer months. In the prologue of Sventenius' 1946 work, Jorge 

Men6ndez provides the following description of the condition of the caldera's flora: 

"Debido al aislamiento de tales parajes ya la incultura de los cabreros y 

lehaddres que a ellos acuden, se encuentra gravemente amenazada de 

extinction, todo esta interesantisima y bella vegetaci6n, habiendo a1gunas 

especies descritas en 6pocas anteriores, que ya no es possible encontrar 

hoy y otras muchas en /a qua los ejemplares que existen son tan contados 

que hacen prever su pr6xima desaparici6n si no se toman urgentes medidas 

para su defensa"(quoted from de la Torre and Osorio, 2004). 

(Because of the isolation of [the caldera] and ignorance of the goat-herders 

and woodcutters, the [flora] is seriously threatened with extinction. All this 

interesting and beautiful vegetation, some species of which are already 

extinct and others with seriously low abundances, may disappear if urgent 

measures for their protection are not taken) 

The Las Cahadas caldera is renowned for its distinctive flora comprising many 

endemic species (Bramwell and Bramwell, 2001). Many of these endemics are also 

strictly confined to the high altitude CaMadas area (Reyes-Betancort et al., 2008). The 

high proportion of endemicity can be explained by both the physical isolation of 

Tenerife from continental landmasses, and the ecological insularity of the caldera 

resulting from its altitude and climate. However, endemic annuals are absent and 

herbs are few (Dickson et al., 1987). The two most common species (Spartocytisus 

supranubius (L. f. ) Christ ex Kunk and Adenocarpus viscosus (Wild. ) Webb and 
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Berthel), are both in the Fabaceae. The vegetative community is typically open, with 

limited vertical stratification; herbs and low shrubs tend to occur in the open spaces 

between taller shrubs rather than beneath their canopies (Lausi and Nimis, 1986; 

pers. obs. ). 

Today, the main threat to the caldera's flora comes from rabbits (Ortctolagus 

cuniculus) and the Corsican mouflon (Ovis gmelini musimon) (de la Torre and Osorio, 

2004). While the rabbit was introduced during the colonisation of the islands, the 

mouflon was deliberately introduced to the caldera in 1971 as game for hunters. The 

mouflon population has increased ever since. Attempts are now being made to 

control both herbivores by excluding them from ecologically fragile areas, in addition to 

long-term plans to reduce both populations to ecologically benign levels, although 

these plans are meeting some resistance from local hunters (De Nascimento, pers. 

Comm. ). 

2.3.5 THE TEIDE NATIONAL PARK 

The Cahadas caldera is situated within the Teide National Park (TNP). Created by 

decree on the 22 nd of January 1954, the TNP is the most visited protected natural area 

in Spain, receiving an average of 3 million visitors per year since 1996. in 1981 the 

TNP was reclassified under Law 5/1981 to include a peripheral protection zone 

(7,515 ha) to prevent external impacts on the ecology and landscape of the park. The 

TNP covers almost 19,000 ha, extending from 1,650 m. a. s. l. at its lowest point to 

3,718 m. a. s. l. at the top of Teide. Surrounding the TNP is a buffer zone which 

includes the Corona National Park. In total, the Teide National Park and the 

surrounding buffer zone (consisting of the Corona Forestal Natural Park and the 

Peripheral Protection Zone) cover in excess of 54,000 ha (Ministry of the Environment, 

2006). 

All resource use has now become tightly controlled, regulated by the Management 

and Usage Administration Plan (Decree 153/2002). The greatest visual and 

ecological improvement has been gained by the prevention of goat herding. Certain 
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areas of the park are, however, still harvested for their resources but only traditional 

practices are authorised and are both spatially and temporally limited. These activities 

include the collection of coloured soil and flowers for decorative use in the celebration 

of the Octava del Corpus Christi, the operation of twenty apiaries in the spring and the 

collection of firewood and culm from the area of Llano La Rose (Montafla Lim6n). 

These practices are not believed to impact on the dynamics of the flora or fauna. 

Following the designation of the site as a World Heritage Site in June 2007, all terrain 

within both the Park and buffer zone has been classified as non-buildable land under 

special protection, except when it can be certified that building is in the public interest 

(Ministry of the Environment, 2006). 

Z4 SPARTOCYTISUS SUPRANUBIUS 

2.4.1 LOCATION AND PROTECTION 

Spartocytisus supranubius (L. f. ) Christ ex Kunk. (Fabaceae; hereafter S. supranubius) 

is endemic to the high altitude communities of Tenerife (> 1,900 m. a. s. l. ) and 

La Palma (> 1,700 m. a. s. l. ) in the Canary Islands (Bramwell and Bramwell, 2001). 

S. supranubius is protected under regional legislation (Annex 11 of the Flora Order 

20/02/1991). Annex 11 of the Flora Order requires that governmental authorisation is 

sought before any S. supranubius individual, or any part of it, is up-rooted or cut down, 

deliberately disturbed or destroyed (including their seeds), or used for commercial 

purposes. 

2.4.2 PHYSICAL DESCRIPTION 

S. supranubius is more commonly known as 'retama blanca' (white broom) or'retama 

del Teide' (Teide broom). Individuals usually take a hemispherical shape, and can 

grow to a height of 3 m. The stems are thick and glaucous with a greyish-hue. The 

leaves of S. spartocytisus are small, deciduous, ephemeral, nearly sessile and 

trifoliate. The individual leaflets are pale green and linear, measuring less than 5 mm 

in length. S. supranubius blooms between May and July producing highly aromatic 
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dense racernes at the upper parts of its branches. The individual flowers are bilabiate, 

have short pedicels and a very short-toothed calyx with a white or pink corolla. The 

fruit of this shrub consists of black, 4-6-seeded, villous legumes. The seeds are 

dormant and may remain viable for a long time in the soil. Mechanical abrasion is 

thought to be necessary for germination (Kyncl et al., 2006). 

Both isozyme and morphological analyses demonstrate that as well as reproducing 

sexually, S. supranubius is capable of clonal growth (Kyncl et al., 2006). 

S. supranubius reproduces asexually by the rooting of lateral branches (branch 

layering), unlike related species which sprout from roots (Kyncl et al., 2006; personal 

observations). Kyncl et al. also suggest that the successful establishment of both 

sexually and clonally produced juveniles, and the growth of adult individuals, is 

controlled by winter precipitation levels. Kyncl et al. (2006) indicate that mechanical 

abrasion by water may be required to break S. supranubius seed dormancy. They 

also indicate that whereas 1978-1980 had above average winter precipitation levels, 

the decade 1990-1999 was the driest ever recorded. The longevity of S. supranubius 

individuals is not known. However, by examining aerial photographs from 2007 and 

1954 it is clear that individuals are visible on both images suggesting that S. 

supranubius individuals can live for at least 50 years (Figure 2-4). 

Spartocytisus supranubius roots are infected by the endo-symbiotic bacteria 

Bradyrhizobium canarienese bv. genistearum (Vinuesa et al., 2005a). This 

relationship enables S. supranubius to fix atmospheric nitrogen, sometimes creating a 

16-fold increase in the nitrogen content of the soil beneath S. supranubius canopies 

compared with soils 5m away (Wheeler and Dickson, 1990). Wheeler and Dickson 

(1990) cited this attribute as a potential reason for the dominance of the shrub within 

parts of the caldera. A previous study (Jarabo-Lorenzo et al., 2000) has shown that 

endemic canarian genistoid legumes are nodulated exclusively by Bradyrhizobium 

species. B. canariense has a known geographic distribution covering the Canary 

Islands, Spain, Morocco and the Americas (Vineusa et al., 2005a). Relatively little is 

known about B. canarienese, but as with all rhizobia it is expected to live 
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saprophytically in the soil when not infecting root hairs (Salisbury and Ross, 1992), is 

acid-tolerant and is thought to experience optimum growth at temperatures of 

28-300C, but be inhibited at 37*C and above (Vinuesa et al., 2005b). 
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2.4.3 S. SUPRANUBIUS ONTOGENY 

Following field observations, a seven stage morphological ontogeny for S. 

supranubius is hypothesised comprising the following stages: seedling, cone, 

hemisphere, collapse, ring, outliers, dead and young clone (Figure 2-5). A 

corresponding plate of photos is provided in Plate 2.1. Following reproduction from 

seed (Figure 2-5a), young S. supranubius are cone shaped (Figure 2-5b). Over time 

the shrub expands both horizontally and vertically to become hemispherical in shape 

(Figure 2-5c). Eventually most shrubs collapse outwards (Figure 2-5d), perhaps 

because of the increased strain placed on the central stem as the shrub continues to 

expand. Total collapse is typified by the formation of a complete or partial ring 

structure (Figure 2-5e) whereby the main stems run horizontal to the ground producing 

upright vegetation some distance from the centre. The collapse stage is critical for 

clonal reproduction as it positions the branches in contact with the ground. Once an 

individual has collapsed and formed a ring it is unclear how long it takes for clonal 

outliers to be produced. It is apparent, however, that in many cases the ring stage is 

succeeded by the production of clonal outliers (Figure 2-5f). In most cases only a few 

daughter ramets are produced from each maternal shrub. Although often no taller 

than individuals in the cone stage, young clonal ramets are hemispherical in shape 

(Figure 2-5g). 
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CHAPTER 3: DATA ANALYSIS METHODS 

This chapter provides descriptions of the spatial point pattern analysis techniques that 

form the basis of this thesis, namely Ripley's K(r) (and it's derivative, the L(r)-function) 

and the pair-correlation function (g(r)). 

3.1 QUANTIFICATION OF SPATIAL PATTERNS FROM THE'PLANT'S- 
EYE' 

It is well accepted that plants do not respond to average spatial structures, such as 

density per hectare, but to the biotic and abiotic composition of their immediate 

neighbourhood (Purves and Law, 2002). Turkington and Harper (1979) argued that 

analyses of vegetation are most biologically meaningful if there is no imposed 

anthropocentric scale. By using plants themselves as sampling locations, indices 

based on plant-plant distances quantify the "plant's-eye view" (Turkington and Harper, 

1979), assessing the spatial distribution of individuals within the local neighbourhood 

of an individual plant (Murrell et al., 2001). 

This section describes the techniques available to analyse the spatial pattern of 

individuals within a population. The study of spatial pattern has arisen more or less 

independently, and with different motivations, in several branches of science (e. g., 

geology, geography, ecology, hydrology). Consequently, the choice of analytical 

techniques is overwhelming (Dale et al., 2002). Although many of the techniques are 

computationally and mathematically similar, they are often shown to have differing 

powers and sensitivities and can result in contrasting interpretations of equivalent 

patterns (Diggle, 2003; Perry et al., 2006). Some studies have attempted to direct the 

selection of techniques depending upon research objectives and/or sample design 

(Fortin et al., 2002; Perry et al., 2006). It is often recommended that multiple 

techniques are employed simultaneously to avoid interpretative bias (Dale, 1999; 

Perry et al., 2002,2006). In the following text attention is paid to the use of distance 

based indices in general and specifically the techniques with which this thesis is 
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concerned: Ripley's K(r)-function (and the associated L(r)-transformation) and the g(r)- 

function. These techniques provide formal measures of the density of individuals in the 

neighbourhood of the average plant, providing a quantification of the average plant's- 

eye view. 

Table 3-1 defines some of the fundamental concepts used in spatial pattern analysis. 

The analysis of spatial patterns first became commonplace in ecological studies in the 

1950s and 1960s (Perry et al., 2006). Early techniques were based on counts of 

individuals within sampling units, such as quadrats (Dale et al., 2002). These are 

broadly defined as area based methods. Area-based methods are, however, heavily 

criticised, primarily because the detection of spatial pattern is strongly influenced by 

the size of the sample unit used (Curtis and McIntosh, 1950; Grieg-Smith, 1983). 

Furthermore, area-based analyses such as block-quadrat variance and the 

variance-to-mean ratio could not reveal the scales at which spatial structure is most 

apparent (Mahdi and Law, 1987). Thus, while area-based methods can help 

understand a pattern's 'first-order effects' (see Table 3-1), they neglect information 

about the distances separating individual points. The spatial correlation structure of 

points describes the 'second-order effects' of a pattern (see Table 3-1). An 

understanding of the second-order properties of a pattern is required if inferences 

about the underlying mechanisms (e. g., abiotic or biotic processes) are to be made. 

Over recent decades, advances in computation power and the improved ability to 

manage spatial datasets has meant that mapped distributions of individuals can be 

analysed, leading to a new class of analyses using distance-based measures. The 

following sections describe some of the main distance-based techniques used in the 

analysis of ecological spatial patterns. A complete survey of all the techniques 

available is beyond the scope of this thesis, and several comprehensive texts already 

exist (e. g., Dale, 1999; Diggle, 2003; Fortin and Dale, 2005; Illian et al., 2008; and the 

2002 special issue in Ecography [Volume 25, Issue 5]). Information on how the 

various methods compare and relate to one another is provided by Dale et al. (2002), 

Fortin et al. (2002) and Perry et al. (2006). 
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3.2 DISTANCE-BASED METHODS FOR THE QUANTIFICATION OF 

SPATIAL PATTERN 

Second-order spatial point pattern statistics describe the correlation structure among 

points relative to point density (Illian et al., 2008). One of the earliest and most widely 

recognised techniques is Clark and Evan's (1954) nearest neighbour method. This 

technique measures the distance separating randomly selected plants from their 

nearest neighbouring plant. The mean nearest neighbour distance is compared to the 

mean distance expected under CSR, with the ratio of these two values indicating the 

presence and form of spatial pattern. Specifically, the ratio would be less than one, 

equal to one, or greater than one (with a maximum value of 2.1491) under conditions 

of aggregation, randomness or dispersion respectively. Although Clark and Evans' 

technique gave some indication of the scale of the observed patterns, it could only 

assess spatial structures occurring at the 1st spatial order, and is biased towards the 

detection of regularity (Figure 3-1). 

00 00 

000 000 
00 0* 

00 
00 0 

00 % 

0 
00 00 

Figure 3-1 A limitation of Clark and Evans' (1954) index. In both (a) and (b) the distances 

between plants and their nearest neighbours are equal and will thus produce the same 

distribution under the nearest neighbour analysis of Clark and Evans (1954). However, (a) and 
(b) clearly demonstrate contrasting spatial patterns operating at different spatial scales. 

The biotic and abiotic processes that drive a population's spatial structure operate at 

multiple spatial scales. In order to fully understand the spatial structure of a 

population, analytical techniques must be capable of identifying how patterns change 
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with scale. Many refinements of Clark and Evans' technique (1954) were 

recommended (e. g., Cottarn et al., 1953; Thompson, 1956; Davis et al., 2000; Diggle, 

2003). These mostly suggested the use of the 2 nd 
, 3rd ... n th nearest neighbour. 

However, these techniques only assessed pattern from a random selection of 

individuals. Without considering all individuals the scales of pattern identified would 

depend upon local neighbourhood densities. 

Nowadays the most commonly employed methods of spatial pattern analysis are 

Ripley's K(r)-function (Ripley, 1976,1981), the L(r)-function (a transformation of K(r)), 

and the g(r)-function (also known as the 'pair-correlation function' and the 

'neighbourhood density function'; Stoyan and Stoyan, 1994). Such analyses require 

spatially referenced maps of all individuals within a sample plot. Analysing such data 

requires computer software capable of its manipulation, especially if large datasets are 

to be analysed. Over recent decades such computational power has been developed. 

All three techniques are powerful tools capable of describing the second-order 

structure of a spatial point pattern using information on all inter-point distances. 

Consequently, these functions are able to detect mixed spatial patterns (e. g., 

dispersion at small scales and aggregation at large scales). This property is 

particularly important as virtually all ecological processes operate at discrete scales 

(Levin, 1992), and usually more than one process is responsible for the spatial 

structure of a population. 

3.2.1 DEFINITION OF K(r), L(r) AND g(r) 

All three of the techniques described below are global pattern statistics providing an 

indication of the density of other plants at increasing distances (r) around an average 

plant (Law et al., 2009). 

Ripley's K(r)-function 

Ripley's K(r)-function superimposes circles of increasing radius r on each point. The 

maximum scale of interest (r,,, ) is pre-defined by the user. K(r) provides the expected 

number of points within distance r of an arbitrary point (without counting the focal 
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point; Felinks and Wiegand, 2008). The observed distribution of points is compared 

with the distribution of points expected for a spatially random pattern of the same 

intensity. K(r) is defined as: 

n 
K(r) An Ir (dy 

2 
n j=l w, 

Where A is the area of the plot, n is the number of points in the study region, 

d, measures the distance between point i and point j, I, is a counter variable 

[ I, (dj )=I if dij :! ý r, and I, (dj )=0 otherwise], and w. is a weighting factor used 

to reduce the problem of edge effects. The weight, wy , for a pair of points is given by 

the proportion of the area of a circle centred on the ith point, with radius d., that lies 

within the study region (Perry et al., 2006). If the circle is completely contained within 

the study area, w, = 1, otherwise it is the reciprocal of the proportion of the circle's 

circumference within the plot (Fortin and Dale, 2005; Haase, 1995; Goreaud and 

P61issier, 1999). For a completely random (Poisson) process: 

KP�� (r) = Ar 

The L(r) transformation 

It can be difficult to interpret K(r) visually (Wiegand and Moloney, 2004). To stabilise 

the variance and increase the ease of interpretation a square-root transformation of 

K(r)-function, the L(r)-function, is often used (Besag, 1977; Wiegand et al., 2006): 

L(r) = 
[-K(-r-) 

vz 

L(r) has a value of 0 under CSR. Aggregation is indicated if L(r) > 0, whereas 

dispersion is indicated if L(r) <0 (although note that some authors use a slightly 

different form of the formula which gives the reverse interpretation [e. g., Dale, 1999; 

Dale et al., 2002; Stoll and Bergius, 2005]; Figure 3-2a and b). 
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The g(r)-function 

g(r) is directly related to K(r): 

g(r) = 
K'(r) 
2nr 

where K'(r) is the derivative of K(r). The g(r)-function (hereafter g(r)) is calculated 

by replacing the circles used in the calculation of K(r), with rings (Figure 3-2c). Thus, 

instead of counting the number of points within circles of radius r, g(r) counts the 

number of points at distance r away from the focal point. As with K(r), the observed 

distribution of inter-point distances is compared to the distribution of distances 

expected for a spatially random pattern of the same intensity. Under CSR g(r) = 1. If 

g(r) >1 then pairs of plants are more frequent at distance r than expected under CSR, 

indicating aggregation. If g(r) < 1, then pairs of plants are less frequent at distance r 

than the spatial average distance, indicating dispersion (Law et al., 2009; Figure 3-2c 

and d). 

The calculation of g(r) requires a technical decision on the width of the rings. Ring 

widths that are too small will produce jagged plots as there will be too few points 

falling within each distance class (Figure 3-2e and 0. This may lead to erroneous 

interpretations of aggregation and/or dispersion. However, increasing the ring widths 

too much will remove the advantage of isolating specific distance classes (Wiegand 

and Moloney, 2004). Wiegand (pers. comm. ) recommends that several ring widths 

are trialled and the smallest ring width that produces a smooth plot is selected. 
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Figure 3-2 The quantification of spatial pattern using, (a) and (b) L(r) and, (c) and (d) g(r). The 

effects of different ring widths on g(r) are shown in graphs (e) and (ý which use ring widths of 
1m and 4m respectively. The black lines on graphs (b), (d), (a) and (0 show the values of the 

empirical functions, whereas the grey lines show the values of approximately 99% Monte Carlo 

simulation envelopes constructed from the 5th-highest and 5 th_lowest value of 999 simulations of 
the CSR null model. The data underlying figures (b), (d), (e) and (0 are taken from Chapter 5. 
Specifically they display and analyse the point pattern of all S. supranubius individuals in the 5th 

replicate at an extent of 1 ha on Substrate 2 (see Chapter 5 for more details). 
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Both K(r) and L(r) are cumulative functions. Thus measurements made at small 

values of r will be incorporated into measurements made at larger values of r (Getzin 

et al., 2006). Because of this memory effect, both K(r) and L(r) can confound 

structures at large scales with structures at smaller scales. This can severely 

complicate interpretation (Getzin et al., 2006). Most notably, the ability of K(r) and L(r) 

to identify processes at large scales may be impeded, especially if small-scale 

patterns are strong. For example, the effect of small-scale aggregation may still be 

apparent at larger scales, leading to the misinterpretation of clustering over longer 

distances than operate in reality (Wiegand and Moloney, 2004). Consequently, K(r) 

and L(r) may not be ideal choices for exploratory analysis, especially if several 

independent processes may be influencing the population's spatial structure. In 

comparison, g(r) is easier to interpret (Law et al., 2009). However, despite the relative 

benefits of g(r), it has been less frequently applied in the contemporary ecological 

literature (see Section 1.3.4). 

The following sections describe some of the major features of spatial pattern analysis 

before providing a description of the calculation of the indices in the grid-based 

software Programita, which is used in Chapters 5-7 (Wiegand and Moloney, 2004). 

Specific details of analytical settings are provided in the subsequent chapters. The 

following sections focus on the analysis of point data. Techniques for the analysis of 

objects are described in Chapter 6. 

Null models 

Spatial patterns can be compared to null models of spatial processes, enabling 

researchers to test biological hypotheses. The most common null model is CSR, 

although alternative null models may be defined. The selection of a suitable null 

model is a critical step if misinterpretations and incorrect biological conclusions are to 

be avoided (Diggle, 2003). 
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Simulation envelopes 

The 'significance' of an observed pattern is usually assessed by comparing the 

observed data with Monte Carlo simulations of the processes underlying the spatial 

null model. Each Monte Carlo simulation generates a test function (g(r) or L(r)). 

Approximate n(n+l) x 100% simulation envelopes can be constructed from the highest 

and lowest values (at each scale r) of n simulations of the null model (Bailey and 

Gatrell, 1995). A more accurate approach constructs simulation envelopes from the 

5th -highest and 5 th_lowest values of the simulations of the function (Wiegand and 

Moloney, 2004). Departure from the null model is indicated if the empirical function 

lies outside the simulation envelopes. It is stressed that this technique does not 

provide a formal estimate of the statistical significance of an observed pattern, as 

Type I error rates are underestimated (Loosmore and Ford, 2006). Nevertheless, 

Monte Carlo envelopes provide an indication of the likelihood of an observed pattern. 

Monte Carlo simulations of the null model are used in subsequent chapters, although 

their interpretations are reinforced with additional analyses. In the subsequent 

chapters Monte Carlo simulation envelopes are constructed from the 5 th -highest and 

5 th_lowest value of 999 simulations of the null model to try to reduce the likelihood of 

making Type I errors. Increased sample sizes produce narrower simulation envelopes 

(Wiegand, 2004). Therefore, it is possible that, when comparing spatial patterns, 

apparent differences in pattern significance could be due to either a real difference in 

the magnitude of aggregation (for example), or a sample-size driven change in the 

width of the simulation envelope (Figure 3-3). 
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Figure 3-3 Sample-size driven changes in the width of Monte Carlo simulation envelopes. Two 

simulations of a Thomas cluster process (rThomas(10,0.2,5)) were performed in Spatstat 

(Baddeley and Turner, 2005), the first over a small area (n = 73 points; red lines), the second 

over a larger area (n = 819 points; blue lines). The simulations envelopes were produced from 

the highest and lowest value of 99 simulations of the CSR null model using each dataset in turn. 

Edge effects 

Individuals located near the edge of the sample window have fewer neighbours than 

individuals located nearer the centre of the sample window. If K(r), L(r) or g(r) were 

calculated from an individual near the edge of the sample window, portions of the 

circles and/or rings of the function would fall outside the sample window and they 

would necessarily detect a lower density of individuals than equivalent analyses 

centred on points closer to the centre of the sample window. When the size of the 

sample window is large relative to the scales of the analysis, relatively few individuals 

are located near the edge of the sample window, and the average function should not 

be greatly affected by edge effects. However, when the sample window is small 

relative to the scale of the analysis a high proportion of individuals will be located near 

the edge of the sample window and edge effects may influence the calculation of the 

statistic. In these situations corrections for edge effect should be used. The 

calculation of K(r), L(r) and g(r) includes a weighting factor that helps to account for 

edge effects. 
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The assumption of homogeneity 

Ripley's K(r) and the derivations of this function operate under the assumption that the 

density of points across the study region is constant (i. e., the point process is 

homogeneous). However, in natural communities, several internal and external forces 

may cause first-order intensity to vary across space. Baddeley et al. (2000) 

suggested an inhomogeneous K(r), and associated L(r) and g(r). However, it is often 

difficult to determine whether processes are truly homogeneous since a particular 

realisation of a homogeneous process may appear heterogeneous. The issue of 

heterogeneity is considered further in Chapters 5,7 and 8. 

Calculation of indices 

in Chapters 5 to 7, both L(r) and g(r) are used to analyse the spatial structure of S. 

supranubius. Because of the aforementioned complications with the interpretation of 

L(r), most emphasis is placed on g(r). in Chapters 5 to 7 analyses using L(r) and g(r) 

were performed in the software Programita (Wiegand and Moloney, 2004). Because 

of the need for modelling capabilities, analyses in Chapter 8 were performed using the 

spatstat package (version 1.17-4; Baddeley and Turner, 2005) in R (version 2.10.1; R 

Development Core Team, 2009). 

The analytical approaches described above use all pairs of points to derive K(r), L(r) 

and g(r). These calculations are based on complex algorithms that can be 

computationally intensive and time-consuming to compute, especially when large 

quantities of data are used (Law et a[., 2009). Programita uses an underlying grid to 

simplify the computation of second-order statistics (Figure 3-4). The calculation of 

point-point distances necessary for estimation of second-order statistics is then based 

on distances between cells, and counting points in cells (Figure 3-4). It may be 

argued that the use of grids will reduce the accuracy of pattern analyses at small 

scales as information on spatial location below the size of the cell will be lost 

(Wiegand and Moloney, 2004). This may introduce error into the small scale 

approximation of the location of points, which has been shown in previous studies to 
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affect the performance of L(r) (Freeman and Ford, 2002). However, if grid sizes are 

small relative to the size of the individuals considered, accuracy will not be lost. 

Analyses in Chapters 5 to 7 use a grid size of 1 M2 as this is the smallest S. 

supranubius canopy area investigated (see Section 4.4). 

(a) (b) 

Figure 3-4 Implementation of (a) g(r) and, (b) L(r) in the grid-based software Programita. Graph 
(a): For implementation of g(6 Programita counts the number of points inside the ring at 
distance r from the focal point (i. e., the grey shaded area), and the number of cells within this 

area. Graph (b): For implementation of L(t) Programita counts the number of points within a 
circle with a radius r (i. e. the grey shaded area), and the number of cells within thie region. 
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CHAPTER 4: DATA COLLECTION: MAPPING THE SIZE AND 

LOCATION OF S. SUPRANUBIUS 

To address the aims of the research (Section 1.2) data on the size and location of S. 

supranubius individuals over large spatial extents were required. When using such 

extents, remote sensing is the only feasible option for data collection. This chapter 

details the image classification techniques used to generate spatially referenced data 

on the size and location of S. supranubius individuals in the Las CaMadas caldera. In 

addition, this chapter discusses the application of remote sensing technologies in 

spatial ecology studies, with specific reference to and ecology. 

This chapter is divided into four sections. The first section considers the growing 

importance of remote sensing in ecological studies and the potential difficulties 

surrounding its use in and environments. This section also discusses the data source 

used in this thesis. The second section considers methods of image classification and 

introduces classification by support vector machines, specifically one-class 

classification by support vector data description. The third section details the 

extensive cross-validation used to determine the optimum classifier structure for 

analysis of the current imagery. In the final section methods of image post-processing 

are detailed and the optimum classifier is used to produce one-class maps of the 

distribution of S. supranubius on five contrasting substrates in the Las CaAadas 

caldera. 

4.1 ECOLOGICAL APPLICATIONS OF REMOTE SENSING 

Although ecological studies at all spatial extents remain important, the ability to 

conduct ecological studies at broad extents has arisen in part from advances in 

technology (Foody, 2007), in particular the increasing availability and utility of remote 

sensing and geographical information systems (GIS). Through the acquisition and 

interpretation of aerial and satellite images, remote sensing is able to provide 

ecologists with information on the Earth's surface and environment, whereas GIS 

provides a means to store, visualise and analyse the data generated (Foody, 2007). 
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Remote sensing is routinely used to produce thematic maps of land cover. Depending 

upon the spatial resolution of the imagery, these thematic maps can provide 

information ranging from the location of vegetation assemblages, to the location of 

specific species, and sometimes individuals. There is a long history of studies using 

aerial photography to classify, delineate and map broad vegetation types (e. g., Wilson, 

1920; Tiwari and Singh, 1984; Ibrahim and Hashimi, 1990; Turner et al., 1996; 

Huebner et al., 1999; Fensham et al., 2002; Mllerowl, 2004). Furthermore, aerial 

photographs have been instrumental in discovering vegetation organisations not 

observable from the ground, such as the discovery of spatially periodic vegetation 

patterns in and and semi-arid ecosystems (MacFadyen, 1950; Clos-Arceduc, 1956; 

cited in Couteron, 2002). 

Aerial photographs are one of the only information sources extending back into the 

20th century, with many areas photographed as early as the Second World War 

(Verheyden et al., 2002; Okeke and Karnieli, 2006). This provides an unparalleled 

opportunity to study medium- to long-term temporal vegetation dynamics with minimal 

time and financial input (e. g., Ambrose and Bratton, 1990; Jacobson et al., 1991; 

Tanaka and Nakashizuka, 1997; Huebner et al., 1999; Kadmon and Harari-Kremer, 

1999; Wu et al., 2000; Fujita et al., 2003). Furthermore, the availability of 

high-resolution imagery (particularly from airborne platforms) is increasingly allowing 

users to locate, identify and monitor the dynamics of individual plants and populations. 

Despite the potential utility of remote sensing, however, its application in ecological 

studies remains limited (Newton et al., 2009). This could be attributed to concerns 

over the accuracy with which the technique is capable of identifying vegetation cover 

types and individual species, financial limitations, or a lack of awareness of remote 

sensing techniques and their capabilities. 

The surface characteristics and structure of an object determine its reflectance. 

Different land covers usually have distinct spectral characteristics displayed in the 

ratio of red, green and blue wavebands. Most historical aerial images are 

monochromatic and, as such, many studies have employed grey-level threshholding 
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to discern floristic compositions. However, by expressing all visible wavelengths in 

grey tones, the spectral distinctiveness of different species is reduced. Thus many 

studies have been limited to identifying phytosociological groups of species (e. g., 

'tree', 'shrub' and 'herbaceous') instead of individuals (e. g., Carmel and Kadmon, 

1998; Hudak and Wessman, 1998; Kadmon and Harari-Kremer, 1999; Sharp and 

Whittaker, 2003; Laliberte et al., 2004; Briggs et al., 2007), or studying easily 

separable (often dominant) species (e. g., Goslee et al., 2003; Leckie et al., 2003). 

Realistically, classifications based upon grey values alone are merely mapping 

changes in image intensity (i. e., vegetation density) and inferring changes in 

vegetation class, which can result in many errors of omission and commission (Goslee 

et al., 2003). Colour photography provides greater between-species spectral 

discrimination. Using various measures of pixel colour, brightness and intensity, 

Meyer et al. (1996) and Leckie et al. (2003) were able to use semi-automatic analysis 

to identify four and six tree species respectively. The accuracy of automatic 

identification from colour photography depends upon species' spectral uniqueness 

(i. e., low within-species variation and high between-species variation in spectral 

responses) (MolleroA, 2004). Variations in crown structure (shading effects), crown 

density (background materials) and differing visibility of tree components (twigs, 

needles, leaves, branches) can all increase the within-species spectral variability, 

potentially reducing the accuracy of automatic identification (Meyer et al., 1996). 

4.1.1 REMOTE SENSING AND ARID ECOLOGY 

Aerial photographs covering large spatial and temporal extents provide an exciting 

opportunity to monitor the dynamics of slow-growing and shrubs. Several studies of 

and systems have employed digital imagery analysis to investigate the dynamics of 

woody vegetation encroaching into savannah grasslands (Hudak and Wessman, 

1998; Sharp and Whittaker, 2003; Laliberte et al., 2004; Briggs et al., 2007). The 

sparse and structurally simple vegetation of and regions means that the canopies of 

individual plants are often clearly discernable, making the delimitation and 
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identification of individuals easier than in less dispersed communities. It is therefore 

surprising, perhaps, that more studies have not used aerial photographs to investigate 

the demography and dynamics of and shrubs. However, despite offering a seemingly 

simple canvas, several attributes typical of and landscapes and vegetation can limit 

the accuracy of image classification, even when high resolution imagery is available. 

Substrate spectral qualities 

The accurate retrieval of pixel-based information is influenced by the nature of the 

substrate. With low organic matter content, desert soils tend to be bright. Therefore, 

the spectral qualities of the soil may interfere with the spectral contribution of the 

vegetation, especially when pixels are large (Okin and Roberts, 2004). This may 

result in the mis-classification of vegetation as substrate, especially when vegetation 

cover is sparse. 

Evolutionary adaptations of desert plants 

Because of the intense radiation they experience, many desert plants have evolved 

several morphological and physiological adaptations that can have a marked effect on 

their spectral reflectance. For example, because of the high water and energy 

demands of producing new leaves, many desert plants reduce leaf surface area, or 

avoid leaves altogether, moving photosynthesis to stalks and stems (Okin and 

Roberts, 2004). Many desert plants have highly reflective spines or hairs encasing 

their stems (Sandquist and Ehleringer, 1998). These are designed to further reduce 

evapotranspiration by reflecting radiation and creating a still-air layer around 

photosynthetic organs. Furthermore, because of the high concentration of ambient 

photosynthetically active radiation, many desert plants maintain low chlorophyll 

concentrations in their leaves and stems. 

Highly reflective organs and reductions in plant biomass can greatly reduce the per- 

pixel spectral contribution of vegetation (Ehleringer and Mooney, 1978; Okin and 

Roberts, 2004). Highly reflective vegetation may be difficult to distinguish from the 
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typically bright and reflective soils of and regions. Further, with numerous and species 

adopting these techniques, different species may be spectrally similar. For example, 

when using field reflectance spectra Okin et al. (2001) found that the desert shrubs 

Atriplex polycafpa (Torr. ) S. Wats. (Chenopodiaceae) and Laffea tridentata (DC) 

Colville (Zygophyllaceae) were spectrally alike. 

Intra-specific spectral variability 

The spatial and temporal heterogeneity of resources in deserts can produce parallel 

heterogeneities in intra-specific plant morphology (Okin and Roberts, 2004). 

Event-driven demographics may mean that individuals of the same species may 

exhibit highly variable spectral qualities across space and through time. 

Consequently, a priori knowledge of the spectral qualities of species during different 

phenological stages may be an important tool for and species identification (Karnieli et 

al., 2002). In addition to event-driven phenological changes, and plants are known to 

undergo temporally sequential morphological changes. For example, Atriplex 

hymenelytra (Torr. ) S. Wats. (Chenopodiaceae), found in the hot deserts of Mexico 

and the southwestern USA, changes its leaf characteristics (surface area) in time with 

the seasons in an apparently adaptive manner (Mooney et al., 1977). 

Perhaps because of the difficulties surrounding image interpretation of and vegetation, 

relatively few studies have used the technique to map and investigate the dynamics of 

and shrubs. However, with recent improvements in both spectral and object- 

orientated image classification techniques, several studies have been able to locate 

and quantify attributes of individual plants (Couteron, 2001; Strand et al., 2006; 

Malkinson and Kadmon, 2007). However, these studies typically only consider a small 

area of a species' range. By combining improved image classification techniques and 

high resolution imagery with pattern-process inference (see Section 1.3.3), ecologists 

are now ideally placed to investigate the dynamics of and shrubs. In addition to this 

theoretical opportunity, aerial imagery analyses have practical benefits. Arid 

ecosystems are often some of the most inhospitable and inaccessible regions of the 
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world, so field-based investigation of communities can be both expensive and 

physically demanding. 

4.2 IMAGE CLASSIFICATION 

A three waveband (red, green and blue) image of the Las Camadas caldera was 

obtained from Grafcan Pic. This imagery was captured on the 31s' of December 2006 

using a Wild RC-30 camera and provides high resolution, with pixel widths of 0.26 m. 

Imagery was obtained for the Parador colluvium, and the Majua, Arenas Blancas, 

Moritana and Conejos lava flows (Substrates 1 to 5 respectively, see Section 2.3.2). 

Other than geo-rectification in Erdas Imagine 9.1, no pre-processing of the image was 

necessary. 

Deriving data from remotely sensed images requires the image to be classified. 

image classification aims to categorise all the pixels in a digital image into one of a 

number of classes. This categorisation can then be used to produce thematic maps 

detailing the spatial distribution and extent of a particular class of interest. This 

chapter applies the most common classification technique: spectral classification. 

Spectral classification can be manual or computer-aided. Although manual 

interpretation has been shown to produce accurate distribution maps of species 

(Driscoll and Coleman, 1974; Myers and Benson, 1981; Trichon, 2001; Trichon and 

Julien, 2006), the technique has been criticised for two main reasons. Firstly, manual 

photo-interpretation lacks objectivity and consistency in measurement approach. 

Secondly, manual interpretation is labour intensive, increasing research costs and 

often limiting analysis to the consideration of either coarse vegetation structures over 

broad areas, or detailed structure (i. e., individuals) over small extents (Kadmon and 

Harari-Kremer, 1999; MUllerova, 2004). Furthermore, the success of manual photo- 

interpretation is largely determined by the familiarity of the researcher with both the 

technique and the area being studied, and therefore may be highly subjective and 

non-transferable (Driscoll and Coleman, 1974). 
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In contrast, automated techniques are non-subjective, transferable, efficient and 

capable of producing classification accuracies in excess of 80% (Meyer et al., 1996; 

Carmel and Kadmon, 1998; Kadmon and Harari-Kremer, 1999; Pouliot et al., 2002; 

MUllerovb, 2004). Automated spectral classifications either categorise pixels by their 

spectral similarity (unsupervised) or allocate pixels to classes based on their similarity 

with pre-defined spectral responses defined by the user (supervised) (Foody, 2002). 

Supervised spectral classification is by far the most commonly applied technique in 

image classification. 

Supervised classification comprises three distinct stages: training, allocation and 

testing. In the training stage, a quantitative description of the spectral characteristics 

of each class of interest is generated. Using this information each pixel in the image is 

allocated to the class with which it has the highest spectral similarity. Finally, the 

accuracy of the final classification is assessed. To avoid over-estimating classification 

accuracy, the testing stage should use a sample of pixels not used to train the 

classifier (Foody and Mathur, 2004). The accuracy of the classification is dependent 

upon the appropriateness of training data and the precise classification algorithm 

selected. Consequently, much research has focused on optimising these two stages. 

Achieving a high performance and transferable classifier is challenging. Specifically, 

the selection of training data (dataset size, composition and sampling design) and 

classifier algorithm are usually interdependent (Mathur and Foody, 2008), and often 

influenced by the research questions being addressed. 

One of the most commonly applied supervised techniques is the maximum likelihood 

(ML) classifier (Huang et al., 2002). The ML classifier is parametric, and as such 

requires an exhaustive quantitative description of the spectral characteristics of each 

class in the image. Furthermore, the classes must be spectrally discrete and mutually 

exclusive (Foody, 2004). Resulting classifications may be spurious if these conditions 

are not met. ML classification requires large training datasets to ensure any variation 

in the spectral response of a class is fully described. It is often suggested that 30 

independent training cases per class per waveband are needed to form a 
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representative training dataset, with a 'the larger the better' attitude often held 

(Mather, 2004). All classes within the image must be included in the training stage of 

the analysis (Foody et al., 2006). Standard supervised classifiers, such as ML, will 

typically seek to optimise the classification accuracy of all classes within the image 

even though researchers are typically only interested in the accurate classification of a 

single class of interest. Thus conventional classifiers are largely inefficient, and may 

produce poor classification accuracies. Several classification techniques have been 

developed that significantly reduce the effort required during training. This thesis 

considers classification by support vector machines (SVMs) which have been shown 

to be at least as accurate as other widely used techniques, if not more so. 

4.2.1 SUPPORT VECTOR MACHINE (SVM) CLASSIFICATION 

The principles of SVMs were established in the 1970s by Vapnik and Chervonekis' 

(1971) theories of statistical machine learning. The SVM algorithm was later 

developed by Vapnik (1995). SVM classifiers have been used in handwritten digit 

recognition (Gorgevik and Cakmakov, 2005), face detection (Osuna et al., 1997), text 

categorisation (Manomaisupat et al., 2006), signal recognition (Fagerlund, 2007) and 

automated animal species identification by sound (Acevedo et al., 2009). However, 

the potential of SVM in remote sensing has only recently been realised (Chapelle et 

al., 1999; Huang et al., 2002; Zhu and Blumberg, 2002; Pal and Mather, 2005). 

Comparative studies have shown that classification by a SVM can produce 

classifications that are at least as accurate as those from techniques such as 

maximum likelihood, neural networks and decision trees (Huang et al., 2002; Camps- 

Valls et al., 2004; Melgani and Bruzzone, 2004; Pal and Mather, 2005; Munoz-Mari et 

al., 2007; Sanchez-Hernandez et al., 2007; Dixon and Candade, 2008; Guo et al., 

2008). SVMs were designed for the binary separation of two classes, although the 

technique can be extended to multi-class scenarios (Huang et al., 2002). A detailed 

explanation of SVM can be found in Vapnik (1995). The salient features are 

discussed below. 
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SVMs provide a non-parametric boundary classification technique. Consider a 

situation in which there are two spectral classes whose values do not overlap (i. e., 

they can be easily separated by a linear plane): the class of interest and another class 

representing everything else in the image that does not belong to the former class. 

Each class occupies a unique location in n-dimensional feature space. For each of 

the r training cases there is a vector xi that represents its location in feature space 

along with a definition of class membership, yi. Using the training data represented 

by Ix,, y, 1, i=r, y, c jI, -Ij, an optimal separating hyperplane (OSH) is defined 

that divides the two classes (Foody and Mathur, 2006). The image can then be 

classified using the position of each pixel in relation to the OSH to determine which 

class the pixels should be allocated to. Theoretically several hyperplanes could be 

fitted, but only one OSH exists. The OSH is expected to generalise well when applied 

to unseen data requiring classification (Foody and Mathur, 2006). 

optimum separation is achieved by focusing on the data points located at the 

boundary of each class's distribution in feature space (so-called 'support vectors'). 

The support vectors of the two classes lie on two hyperplanes (H1 and H2 in Figure 

4-1). The OSH lies equidistant between the two hyperplanes such that all the samples 

of a class are on one side of it and the distance from the OSH to the training cases in 

both of the classes is as large as possible (Foody and Mathur, 2006; Figure 4-1a). 

Support vectors are the critical elements of the training dataset. If all other training 

points were removed or changed location, and the training was repeated, the same 

separating hyperplane would be created. Thus whereas other non-parametric 

classification techniques often require large training datasets (Hubert-Moy et al., 

2001), SVM classification is able to achieve high accuracies from a very small training 

dataset comprising of a few support vectors. Mathur and Foody (2008) have shown 

that by intelligently selecting training samples predicted to lie on the edge of a class's 

spectral distribution, SVM classifiers can achieve high accuracy (-91 %) with only very 

small training samples (see also Foody and Mathur, 2004). 
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Figure 4-1 Support vector machine (SVM) classification for (a) linearly separable classes and, 

(b) non-linearly separable classes. The optimal separating hyperplane is shown as a solid line. 

The boundary hyperplanes for each class are shown as dashed lines. Circled cases are 

support vectors. 

The above description applies when dealing with linearly separable classes (cf Figure 

4-1 b). However, datasets are rarely linearly separable. More often classes overlap in 

feature space. As such both classes will have a high proportion of outliers (i. e., 

training samples on the 'wrong side' of the linear hyperplane). In these situations it is 

possible to distinguish non-linearly separable classes (Figure 4-1b) by applying kernel 

functions. Kernel functions map the training data into a higher dimensional space 

where a linear learning machine can be applied (Figure 4-2). Kernels have several 

parameters that must be pre-defined by the user. The accuracy with which a SVM 

classifies is largely dependent upon these parameters; however, there is very little 

guidance in the literature on the criteria to be used to select the optimum kernel and 

parameter values (Pal and Mathur, 2005). The most commonly used kernels are the 

Gaussian radial basis function and the polynomial kernel. More information on these 

and other kernels is provided in 4.3.2. 
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Figure 4-2 Classifying non-linearly separable classes using kernels. Re-mapping data to a 
higher dimension via a polynomial kernel function can make the data more easily separable. 
Figure (a) shows two sets of data that are easily separable by a linear classifier (dashed line) 

whereas in (b) they are not. If the data in (b) are re-mapped at a higher dimension (quadratic in 

this case) they may be more easily separable (c). 

In the above examples, training data from two classes are used: the class of interest 

and another class representing everything that does not belong to the former class 

(Foody et al., 2006). However, it is possible to adapt the technique to a one-class 

classifier (OCC), requiring only data on the class of interest. OCCs have 

demonstrated considerable utility in many applications including ecological modelling 

(Guo et al., 2005; Drake et al., 2006; Kelly et al., 2007), document classification 

(Zhuang and Dai, 2006; Manevitz and Yousef, 2007), facial expression recognition 

(Zeng et al., 2006) and machine diagnostics (Shin et al., 2005). Although they have 

great potential in remote sensing, OCCs have been little used (but see Sanchez- 

Hernandez et al., 2007). OCCs can use a variety of analytical approaches, including 
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reconstruction methods, density methods and boundary methods (Sanchez- 

Hernandez et al., 2007). Using the principles of SVM, Tax (2001) was able to create 

an OCC that employs the boundary method and so requires relatively few training 

data. This technique, the support vector data description (SVIDID), is ideally suited to 

remote-sensing applications. 

4.2.2 ONE-CLASS CLASSIFICATION (OCC) BY SUPPORT VECTOR DATA 

DESCRIPTION (SVDD) 

Support vector data description (hereafter referred to as SVDD) is a boundary method 

OCC based on the principles of the support vector machine (SVM) (Tax, 2001; Tax 

and Juszczak, 2003; Tax and Duin, 2004). In the following text the basic operation 

and main features of SVDD are discussed. 

In SVDID classification a closed n-dimensional sphere (hereafter referred to as a 

hypersphere) is fitted around the training data, separating the class of interest from all 

other classes. The hypersphere can be described as having centre a and radius R 

(Figure 4-3). The hypersphere can be constructed using only the spectral data for the 

class of interest (hereafter referred to as the target data). SVDD aims to find a 

hypersphere of minimal volume containing all or most of the training data. Knowing 

the location of the centre of the hypersphere, a, and the hypersphere's radius, R, it is 

a relatively simple task for the classifier to test whether a new case (i. e., pixel) belongs 

to the class of interest (Foody et al., 2006). The distance of a new pixel, z, to the 

centre of the hypersphere is calculated. The pixel will be allocated to the class of 

interest when this distance (z) is smaller than or equal to R. Because a closed 

boundary is placed around the data, only those data points that lie on the edge of the 

hypersphere (the support vectors) are used in defining the classifier (Figure 4-3). 

Thus, as with SVIVI classification, SVDD has the advantage of needing very few data 

during training and does not rely on restrictive assumptions regarding data distribution. 

For instance, the example data plotted in Figure 4-3 are described by only five support 

vectors. 
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Figure 4-3 Classification using support vector data description (SVDD) and hyperspheres. A 
hypersphere is fitted around the class of interest; objects shaded grey are support vectors. The 
black object is classified as an outlier as it falls outside the hypersphere. 

As with a standard SVM classifier, the SVDD can be extended to allow for non-linearly 

separable cases by mapping the data to a higher dimension using kernel functions. 

The hypersphere is a very rigid model and will generally provide a poor description of 

the target data (Tax and Juszczak, 2003). By applying kernel functions and varying 

the parameter values, it is possible to improve the fit between the hypersphere and the 

actual boundary of the data. The kernels and parameter values considered in this 

research are discussed in 4.3.2. 

The SVDD requires only target training data. However, when data on outlier objects 

are available (i. e., pixels that do not belong to the class of interest), they can be 

incorporated into classifier training to improve the model description, By using two 

feature classes (target and outlier) the decision boundary is supported from two sides 

allowing a tighter boundary around target data to be calculated (Tax, 2001). As with 

SVM classifiers, two boundaries will be calculated to describe the distributions of the 

target and outlier data. The optimal hypersphere will be located equidistant between 

these boundaries. When large, representative samples of both the target and outlier 

data are available, a conventional two-class classifier may out-perform the SVDD 

(Tax, 2001). The SVDD is preferred when the outlier data are poorly sampled or 

unavailable. More detail on the incorporation of outlier data is given in 4.3.2. 
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4.3 CREATING THE S. SUPRANUSIUS SVDD CLASSIFIER 

The stages involved in the classification of imagery in this thesis are detailed in Figure 

4-4 
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4.3.1 STAGE ONE: COLLECTING TRAINING AND TESTING DATA 

For accurate classification, a reliable sample of the spectral characteristics of pixels 

belonging to the classes of interest must be provided. Although larger sample sizes 

may provide a more comprehensive account of the spectral characteristics of the 

class, collecting such data can be time consuming. It is usually suggested that a 

minimum sample size of 30p is collected per class, where p is the number of features 

(i. e., spectral bands; Mather, 2004). In the present analysis this corresponds to a 

minimum sample size of 90 pixels for both the target and outlier classes. Total sample 

sizes of 771 and 890 were collected for the target and outlier classes respectively. 

Summary statistics of the target and outlier data collected are shown in Table 4-1. 

From each dataset, 250 pixels were randomly selected (stratified: 50 pixels selected 

from each substrate) to create an independent testing dataset with which to assess 

the accuracy of the classifiers. The remaining data were used to train the classifiers, 

although, as explained below, only a subset of the remaining data were used to train 

the outlier class. 

Target data 

The geographical locations of 301 S. supranubius individuals were recorded during 

fieldwork in December 2007. Individuals were recorded from randomly located 

60 x6m transects as well as opportunistically. Locations were logged on a hand-held 

GPS receiver (ProMark3) allowing the reading to stabilise for a minimum of 

25 seconds. GPS recordings were taken as close to individual's rooting points as 

possible, although the sheer size and density of some individuals meant this was not 

always within two metres. The locations of individuals on the transects were also 

recorded using Cartesian co-ordinates (Figure 4-5). 
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Figure 4-5 Illustration of the collection of target data (S. supranubius) from 60 x6m transects 

(axes not to scale). GPS and Cartesian location of individuals were taken if part of their canopy 

fell within the transect, or if their canopy merged with an individual within the transect. 

The locations of the surveyed S. supranubius individuals were digitised and overlaid 

on the digital aerial imagery in ArcMap. Inspection of the data revealed unacceptable 

non-systematic error in the GIPS readings when both the internal and external aerial 

were used. Consequently the readings were adjusted by converting the Cartesian 

recordings to a Mercator grid (i. e., polar to rectangular co-ordinate conversion). This 

procedure could only be used on those individuals where the Cartesian locations were 

recorded, removing all opportunistic data from the analysis. It is important that no 

data belonging to other classes (hereafter referred to as 'outliers') are inadvertently 

incorporated into the target training data. For the purposes of this analysis, outliers 

are pixels belonging to anything other than healthy S. supranubius individuals. Thus 

only the locations of healthy individuals (i. e., those with a dense canopy) were 

digitised. Individuals recorded as 'dead', 'dying' or as having a 'sparse canopy' were 
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not digitised and were not used in the generation of the target data. Similarly, S. 

supranubius individuals with other species growing within or surrounding their canopy 

(mixed spectral responses) were excluded to prevent contamination of the training 

data with species other than S. supranubius. Removal of these individuals left 143 

positively identified healthy S. supranubius from which to create the target data set. 

The spectral responses (red, green and blue values) of pixels within each individual 

were recorded and compiled into a target dataset. Pixels were selected from 

throughout the canopy to prevent the creation of an artificially small data description 

(hypersphere) which may result from always selecting pixels from (e. g. ) the centre of 

the canopy. The target data were augmented with data taken from S. supranubius 

individuals in the area surrounding each transect if they could be positively identified 

from the imagery. This avoided sampling too heavily from any one individual which 

may bias the data collected. 

Statistical analyses (details below) were performed to determine whether there was 

any spatially systematic variation in the spectral responses of the S. supranubius 

individuals. Spatial variation in classification accuracy is common, although frequently 

not acknowledged (Foody, 2005). If marked spatial variation in the spectral response 

of S. supranubius existed, training a classifier on cases from across the site is likely to 

produce a high-volume hypersphere. When applied to unseen imagery, such a 

classifier would be likely to produce frequent misclassification errors, over-estimating 

the extent of the target class (i. e., false positive classification [commission] errors). 

The intra- and inter-substrate variation in S. supranubius spectral response was 

investigated. Because of violation of the normality assumption, all statistical analyses 

were non-parametric. The analyses were augmented with Cohen's d statistics to 

assess the practical significance of spectral differences. Cohen's d is given by 

d 
X1 -X2 

2 ------ 2 
S1 +S /2 

IT s+I 
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where x and s are the mean and standard deviation of groups 1 and 2. Cohen 

(1988) provided rough guidelines for interpreting d: values between 0.2 and 0.5 

represent a small effect size, values between 0.5 and 0.8 a medium effect size, and 

values greater than 0.8 a large effect size (d can exceed 1). 

Analysis of the intra-substrate (i. e., between transects) spectral responses by Mann- 

Whitney U tests (Appendix B) suggested statistically and practically significant within- 

substrate spatial variation in the spectral response (red, green and blue) of S. 

supranubius on Substrates 2 and 3. Spatial variation in the spectral of S. supranubius 

in the green and blue colour bands was detected on Substrate 1 (Appendix B). 

Substrate 4 showed no spatial variation in spectral response, although only two 

transects were analysed. Analyses could not be performed on Substrate 5 as data 

were only collected from one transect. 

Kruskal-Wallis analyses revealed significant differences in the substrate-specific 

spectral responses of S. supranubius on all three colour bands (R: X2 = 28.316, 

p<0.001; G: X2= 34.180, p<0.001; B: X2 = 37.751, p<0.001 [3 d. p. ], critical level 

reduced to 0.005 using Bonferroni correction). Assessing the pairwise differences 

with Mann-Whitney U-Tests suggests that the spatial variation in S. supranubius 

spectral response is not constant across the three wavebands (Tables 4-2). However, 

with large samples, especially when variances are small, statistically significant 

differences may be reported when little practical or theoretical difference exists. 
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Tables 4-2 Comparison of substrate-specific spectral responses of S. supranubius on the (a) 

red, (b) green and, (c) blue wavebands respectively. Differences in mean spectral intensity 

values ranging from 0 to 255 (column minus row). ** difference significant at the 0.001 level, * 

difference significant at the 0.05 level (pairwise Mann-Whitney U-tests). All values reported to 

2 d. p. 

Substrate 1 2 3 45 

I 

2 -3.86* 

3 -6.89** -3.03 

4 2.79 6.65** 9.68** 

5 -0.85 3.01 6.04* -3.64 
(a) Red 

Substrate 1 2 3 45 

1 - 

2 1.13 - 
3 -4.10 -5.23 - 

4 -4.89** 3.76 11.99 - 

5 3.23 2.10 7.33 -1.66 
(b) Green 

Substrate 1 2 3 45 

1 - 

2 4.89 - 

3 3.10 -1.78 - 

4 8.42** 3.54 5.32 

5 4.56** -0.32 1.46 -3.86* 
(c) Blue 

Spatial variations in the spectral response of S. supranubius are strongest at the local 

scale and more spatially consistent at broader (i. e., substrate) scales. Spectral 

variation at the local scale may result from the shading effects of local topography, or 

localised variation in canopy colour. Without producing location-specific classifiers for 

individual areas of the field site, it is not possible to incorporate spectral variation at 

the local scale into the classification procedure. There are few consistent statistical 

differences in the spectral signature of S. supranubius on the different substrates, and 

almost no practical differences. In terms of the SVDID classifier this means that the 

position and volume of the hypersphere around the target data is relatively consistent 
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between substrates. Therefore, assuming the target data are spectrally separable 

from the outlier data, a single classifier trained on target data from all five substrates 

should be suitable for the classification of all substrates. The training dataset for the 

target class (S. suPranubius) was created from the red, green and blue values of 

pixels (n = 521) belonging to S. supranubius canopies from all five substrates. 

Outlier data 

Recent research has shown that the intelligent selection of target training data 

believed to lie at the boundary of the data distribution can improve classification 

accuracy (Foody and Mathur, 2004; Mathur and Foody, 2008). It seems reasonable to 

suggest that when applying an SVM as a binary classifier, the intelligent selection of 

training cases from the outlier class could also influence classification accuracy. The 

optimal separating hypersphere will be located such that the distance to training cases 

of both classes is maximised. Thus if outlier training cases are spectrally dissimilar to 

the target training cases the SVDD will produce a higher volume hypersphere than if 

the outlier training cases were spectrally similar to the target cases (Figure 4-6). The 

hypersphere produced in the latter case will have greater generalisation ability than 

the former data description, which may misclassify outlier pixels as target. 

40- 

o 

0t%, 
, 11--o', ,II, 0 

(a) 

ik 

00 

00 

Figure 4-6 Intelligent training of outlier datasets for image classification. When outlier datasets 

are selected such that they are spectrally similar to the target data a higher generalisation ability 

is achieved (a) than when spectrally dissimilar outlier training cases are used (b). 
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S. supranubius may be expected to be most spectrally similar to other leguminous 

shrub species, notably Adenocarpus viscosus. Thus four dataset combinations were 

devised. All four used the same target training data. Dataset A used no outlier 

training data, whereas datasets B, C, and D used outlier training sets composed of 

substrate pixels, A. viscosus pixels, and all outlying classes (substrate and other 

species) respectively. 

The A. viscosus training data (Dataset C) were collected by digitising the locations of 

positively identified A. viscosus individuals and randomly selecting and recording the 

spectral responses of pixels within their canopies. The quantity of outlier data 

collected was deliberately restricted so that classification effort was focused on the 

class of interest (S. supranubius). Following Sanchez-Hernandez et al. (2007), the 

quantity of outlier and target training data were maintained at a ratio of 1: 3. Thus with 

521 target training cases, 174 outlier training cases were used, with the exception of 

the A. viscosus outlier training dataset which comprised only 65 cases as only a few 

positive identifications and GPS recordings of these individuals were collected in the 

field. The spectral characteristics of each outlier training dataset are summarised in 

Table 4-3. 

Table 4-3 The spectral characteristics of the outlier training data (mean[stdev]) in each of the 

four datasets. Dataset A used no outlier training data, whereas datasets B, C, and D used 

outlier training sets composed of substrate pixels, A. viscosus pixels, and all outlying classes 
(substrate and other species) respectively. 

Red Green Blue 

Dataset A 

Dataset B 153(28) 127(27) 95(25) 

Dataset C 113(16) 99(17) 65(17) 

Dataset D 146(30) 121 (29) 90(27) 

To assess the spectral separability of the target and outlier training classes in each 

dataset the Bhaftacharyya distance (B-distance) was calculated. The B-distance 

measures the similarity of two discrete probability distributions and is commonly used 
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to assess the separability of classes during classification (Schmidt and Skidmore, 

2003). Larger B-distances indicate greater separability. The B-distance is defined as: 

P2 
FI + Z2 ]-I ýA-p2]+ I 

In 
(El + E2)/ 2 

22- ýJ-ZIJJZ21 

_ 

where p, and 11 are the mean vector and the covariance matrix of class 1. The 6- 

distance is closely related to the probability of accurate classification. There are no 

predefined thresholds for the degree of class separability represented by B-distances. 

Therefore, only the relative separability of classes can be assessed. The B-distance 

of each of the three outlier training datasets from the target training data set was 

calculated using the Bhaftacharyya tool in Matlab (Cao, 2008). B-distances of 2.037, 

1.0373 and 1.4294 were obtained for the separability of the target training data from 

the substrate only, A. viscosus only, and mixed outlier training data sets respectively. 

As anticipated the outlier dataset comprising the spectral responses of A. viscosus 

individuals only was the least separable from the S. supranubius class. Although the 

classification accuracy provided by all three outlier datasets was assessed, it was 

hypothesised that classifiers trained on the A. viscosus outlier data would provide the 

highest accuracy. 

4.3.2 STAGE TWO: CLASSIFIER TRAINING AND ALLOCATION 

To ensure maximum classification accuracy was achieved, the performances of 

several classifier models were assessed. This section describes the classifiers that 

were employed. All classifications were performed in Matlab R2007a (MathWorks, 

2007) using the dd_toolbox (Tax, 2008). SVDD classification accuracy is largely 

determined by the selection of suitable kernels and parameter values (Ali and Smith- 

Miles, 2007). The literature provides little guidance on the selection of appropriate 

kernel functions and parameters. Most commonly, kernels are selected through a 

process of trial and error (Ali and Smith-Miles, 2007). This thesis uses the data 

intensive approach of cross-validation to determine the optimum parameters and 
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kernel functions. Following Sanchez-Hernandez et al. (2007) three kernels were 

assessed. These were the Gaussian radial basis function, 

X, -x -ii 
. 
iii' 

k(x� x, )= exp 
p2 

the polynomial kernel, 

k(x�x, )= (x, -x, 

and the exponential kernel 

k(x,, x, )= exp 

For each kernel, the value of the parameter p must be pre-defined. In the Gaussian 

radial basis kernel and exponential kernel, p controls the width of the kernel, whereas 

in the polynomial kernel function p determines the order of the kernel. Following 

Sanchez-Hernandez et al. (2007), the performance of each kernel was assessed 

using p values of 1- 10 inclusive. In addition to p, the user can define the value of a 

second parameter, C, also known as the rejection error. This parameter determines 

the fraction of the target data that is allowed to lie on the 'wrong side' of the data 

description (i. e., extreme values), and thus allows for outliers in the training samples 

(Sanchez-Hernandez et al., 2007). In this way it enables the user to control the trade- 

off between training error and model complexity. However, if too many target training 

points are allowed to lie beyond the data description (i. e., a large C) the optimal 

hypersphere will produce an over-fifted model with limited generalisation ability (Foody 

and Mathur, 2006). C values of 0.1,0.01,0.001 and 0.0001 were used (following 

Sanchez-Hernandez et al., 2007). 
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As well as testing the SVIDD classifier, the performance of the incremental SVDID 

(INCSVDD) was assessed, as preliminary analyses (not reported) indicated that this 

technique may produce higher classification accuracies than the standard SVDD. 

Including the training data combinations described in 4.3.2 this resulted in 960 

different classifiers (Figure 4-7). 

80 



I-. 
. 2) 

9- 
. cl) 
Cl) 
C 

C) 

(n 
C) 
Z 

a > 
C, ) 

.2 15Z W 

a- - -- 

LJJ 

LI I E LL L 
0 co C) 

(1) 

0 a-- -- 6 ýo 

z 
LU 

LL CL) c 

U) 
.4 

co W 
0 a x A cc w 

.2 
co 

/ 

LLJ 

Ch U- 
m 

a- 
- -6 c < 

a) 
cn I 

m 
z LL 
m co LL 

m 

4- 

1ý -6 
m 

m LL 
C) 
T. - 

ý -6 co ( A 
4) 
c 

UJ CD 

LL 

co U) 
4ý 

W 
Lo 
CD 

m 

LU C) 

(ý 6 LL E 

cc LLJ 

U- 
co 

0 
ID 
C 
cc 
cx 

La 
CD 
0 
E 
m 
m CL 
w 
. r- 
0 
c 0 
S 

(D 

81 



4.3.3 STAGE THREE: ACCURACY ASSESSMENT 

Quantitative assessment of classification accuracy 

The accuracy of the thematic map produced by a classification is of great importance, 

especially if the imagery is to be used in further analysis. Two clatasets comprising 

data known to belong to the target and outlier classes were created (hereafter referred 

to as the 'testing' datasets). Fifty target testing cases and fifty outlier cases were 

drawn randomly from each substrate, generating two testing clatasets of 250 cases. 

The pixels used in testing were independent from the training data to avoid any biases 

in the confidence of classifier accuracy. Because of the small number of A. viscosus 

data, the outlier testing data consisted only of known substrate cases. The accuracy 

provided by each classifier model is calculated as the proportion of testing pixels (both 

target and outlier) correctly classified (Foody, 2002). 

The testing dataset is small relative to the quantity of data that is being classified. 

Therefore it is important that the classifier selected has both a high accuracy and good 

generalisation capacity. However, very high classification accuracies as assessed 

from the testing data may be a consequence of over-fitting to the training data. Such 

classifiers are unlikely to classify large quantities of unseen data with high accuracy. 

Consequently, instead of selecting the highest performing classifier as measured by 

the testing datasets, statistical analyses were performed to investigate the average 

response of classifiers to changes in structure (e. g., changes in parameter value). 

Initially these analyses focused on the major elements of classifier structure; model 

(i. e., SVDD vs. INCSVDD), kernel and dataset. Selecting criteria that consistently out- 

performed competing criteria would result in greater confidence in the final classifier. 

The effect of both parameters (p and C) will be dependent upon selection of other 

criteria. Therefore the selection of values for p and C was made after the selection of 

classifier model, kernel and dataset. 

As the data were measured as proportions, the accuracy values were arcsine 

transformed prior to analysis. Analyses for paired and related data were used so that 

82 



the independent effect of each classifier variable (model, kernel, dataset, p, and C) on 

classification accuracy could be assessed. Because of normality violation, the non- 

parametric Friedman's test and VVilcoxon signed rank tests for related samples were 

employed. Because of large sample sizes, which can overemphasise small effects, 

the results of the Freidman's test were augmented with calculations of the average 

classification accuracy differences. Other studies have investigated the performance 

of SVM classifiers of differing structure (Cortes and Vapnik, 1995; Huang et al., 2002; 

Sanchez-Hernadez, 2006; Ali and Smith-Miles, 2007; Sanchez-Hernandez et al., 

2007). However, as the optimum classifier structure will be data-dependent, direct 

comparison of the classifier structure selected in this research with the classifier 

structures used in previous studies will not be made. 

Of the 960 classifiers tested, computational errors prevented 69 from producing 

output. Of the remaining 891 classifiers, ones providing an overall accuracy of 2: 85% 

were deemed to be 'high performance' classifiers. An example of the classification 

accuracies of the various models is provided in Appendix C. 286 models produced 

overall classification accuracies of 85% or greater. Seven classifiers achieved overall 

accuracies of 98% or greater. 80% of the high performing classifiers used the 

incremental SVDD model. On average INCSVDD models produced c. 13% higher 

classification accuracy than their SVDD counterparts (Wilcoxon signed rank test, 

Z= -14.592, p<0.0005 [3dp]). 

Out of the 286 high performing classifiers, almost equal proportions used the four 

different dataset combinations; datasets A, B, C and D were used by 77,75,64 and 

70 of the higher performance classifiers respectively. This indicates that the addition 

of outlier datasets, and the composition of those datasets, was of limited importance. 

However, statistical analysis indicated that the different datasets may influence the 

2 classification accuracies achieved (Friedman's test, X= 15.528, p=0.001 [3dp]). 

When all other classifier variables are kept constant, selecting dataset A (no outlier 

training data) produced routinely higher classification accuracies than datasets B and 

D (Wicoxon signed rank test, Z= -2-089, p=0.037 and Z= -3.200, p=0.001 [3dpl 
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respectively). Dataset C produced an intermediate level of accuracy which was not 

significantly different from the accuracy achieved by dataset A (Z = -1.845, p=0.065). 

Yet despite statistical significance, classifiers using dataset A produced classifiers that 

were on average < 1.5% more accurate than like-for-like classifiers using the other 

datasets. No statistically significant differences in classification accuracy were found 

when comparing classifiers using the three different outlier training datasets (datasets 

B-D). Therefore, there appeared to be no notable increase in classification accuracy 

when outlier training data were included, concurring with Sanchez-Hernandez et al. 

(2007). Previous studies (Foody and Mathur, 2004; Mathur and Foody, 2008) have 

suggested that the intelligent selection of target training data can significantly improve 

classifier performance. However, the use of A. viscosus outlier training data (dataset 

C) did not show improved classifier accuracy over other outlier training datasets. In 

explanation, it is suggested that the A. viscosus outlier training data shared too little 

feature space with the target training data (Figure 4-8). Such outlier training data 

would only influence the data description of the target class in the small area of 

feature space in which the outlier and target distributions overlap. As such, it was 

decided to perform the classifications without outlier training data as these classifiers 

produced slightly higher classification accuracies and will require less input to train. 
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All three kernel functions were capable of producing high accuracies, although the 

polynomial was used by 145 of the high performance classifiers, compared to 75 and 

66 using the Gaussian RBF and exponential kernel respectively. Pair-wise Wilcoxon 

tests revealed statistically significant differences between all three kernels (Gaussian- 

Polynomial: Z= -11.098, p<0.0005; Gaussian-Exponential: Z= -4.983, p<0.0005, 

Polynomial-Exponential: Z= -11.080; p<0.0005 [3dp]) with the polynomial kernel 

providing the highest overall accuracies and the exponential kernel providing the 

lowest overall accuracies. On average, classifiers using the polynomial kernel 

produced classification accuracies 13.65% and 13.87% higher than comparable 

classifiers using the Gaussian and exponential kernels respectively. Selecting a 

Gaussian kernel over an exponential kernel, however, only provided an increase in 

classification accuracy of 0.22%, These results concur with Sanchez-Hernandez et al. 

(2007). 
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The above analyses indicate that high classification accuracy should be achieved by 

the incremental SVDD using the polynomial kernel. Although the choice of dataset 

had only a small effect on classification accuracy, dataset A produced marginally 

higher accuracies and the lack of outlier training data greatly reduced computational 

time. The effect of parameter values (p and C) will depend largely upon the choice of 

classifier model and kernel, and are therefore discussed in this context. 

It is noted that the effect of rejection error (C) on classification accuracy is 

predominantly controlled by the selection of classifier model (Figure 4-9, Figure 4-10). 

When using SVDD classifiers an increase in the rejection error increases the average 

classification accuracy regardless of the dataset or kernel used. When INCSVDD 

classifiers are used there is still an increase in classification accuracy with increasing 

rejection error, but of a much smaller magnitude (maximum of 5.8% difference). 

When using the incremental SVDD, therefore, it seems that the choice of rejection 

error has little effect on classification accuracy, concurring with Belousov et al. 's 

(2002) conclusions that SVM based classification displays a large degree of 

robustness to variation in parameter values. It is known, however, that large values of 

C can result in over-fitting of the classifier to the target data which can reduce the 

classifier's generalisation capacity (Foody and Mathur, 2006). Thus, when there is no 

noteworthy difference in classification accuracy (as with the INCSVDD), lower values 

of C are preferable. 
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Figure 4-9 The change in overall accuracy (measured as a proportion) as the rejection error (C) 

increases from 0.0001 to 0.1. The results are divided by kernel (Gaussian RBF, Exponential 

RBF and polynomial) and by classifier model (INCSVDD and SVDD). The black line shows the 

mean accuracy and the shaded area shows the standard deviation (n = 40). 
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Figure 4-10 The change in overall accuracy (measured as a proportion) as the rejection error 
(C) increases from 0.0001 to 0.1. The results are divided by dataset (A, B, C and D) and by 

classifier model (INCSVDD and SVDD). The black line shows the mean accuracy and the 

shaded area shows the standard deviation (n = 30). 
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When using both the SVDD and INCSVDID classifier, increasing the parameter value 

(p) of the Gaussian RBF and Exponential RBF kernels (i. e., increasing kernel width) 

causes an increase in classification accuracy (Figure 4-11). For both kernels the 

increase in accuracy as parameter values increase is greatest when using the 

INCSVDD classifier. The above analyses revealed, however, that the polynomial 

kernel consistently outperformed the other two kernels. When increasing the 

parameter value of the polynomial kernel (i. e., the order of the kernel), the effects of 

classification accuracy were more complex. When using a SVDD classifier there was 

seemingly no systematic increase or decrease in classification accuracy as the order 

of the kernel increased. When using an INCSVDD classifier parameter values of 1 

and 2 underperformed relative to larger values, whereas increasing the parameter 

value above 3 caused a decrease in classification accuracy. For both classifier 

models, however, the effect on classification accuracy of increasing the order of the 

polynomial kernel was substantially less than the effect of increasing the width of 

either the Gaussian or Exponential RBF kernels. For all datasets increasing the 

parameter value caused an increase in classification accuracy. This increase was 

strongest when using the INCSVDD classifier. Increasing the parameter value of the 

polynomial kernel dramatically increases the dimensionality of feature space relative 

to similar increases in the Gaussian RBF and exponential kernels. This can cause 

polynomial kernels to over-fit to the training data, reducing the ability of the model to 

accurately classify unseen data (i. e., a reduced generalisation capacity; Cortes and 

Vapnik, 1995). To minimise the potential of classifier over-fiffing, it was decided to 

limit the range of parameter values considered to between 1 and 6. This increase was 

strongest when using the INCSVDD classifier. Increasing the parameter values 

beyond p=6 only resulted in minimal improvements in classifier accuracy (Figure 

4-12). 
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Figure 4-11 The change in overall accuracy (measured as a proportion) as the parameter value 
(p) increases from 1 to 10. The results are divided by kernel (Gaussian RBF, Exponential RBF 

and polynomial) and by classifier model (INCSVDD and SVDD). The black line shows the 

mean accuracy and the shaded area shows the standard deviation (n = 16). 
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Following the above analyses, and considering computation time and the risk of 

classifier over-fitting, the ideal classifiers for the data presented use the incremental 

SVDD classifier model trained on target data only (dataset A). The fit of the classifier 

to the data was improved using a polynomial kernel with a low rejection error (i. e., 

0.001 or 0.0001) and a parameter value of 6 or less. The 286 classifiers achieving 

classification accuracies ý: 85% were eliminated until the above criteria were met, 

leaving six potential classifier structures (Table 4-4). 

Table 4-4 The six optimum support vector data description (SVDD) classifier models. 

Classifier 
number 

Model Kernel p C Target Outlier 
Overall 
accuracy 

1 INCSVDD p 1 0.0001 250 224 0.95 

2 INCSVDD p 1 0.001 250 224 0.95 
3 INCSVDD p 2 0.0001 250 225 0.95 
4 INCSVDD p 2 0.001 250 225 0.95 
5 INCSVDD p 6 0.0001 178 248 0.85 
6 INCSVDD p 6 0.001 178 248 0.85 
'P' represents the polynomial kernel function. Columns' p' and 'C' provide the values of the 

parameter and rejection error respectively. Columns 'Target' and 'Outlier' contain the number of 

pixels classified correctly from the target and outlier testing datasets (each containing a total of 
250 pixels). The 'Overall accuracy' column shows the total proportion of pixels classified 
correctly. The model selected for the final image classification is highlighted in bold. 

Quantitative assessment of classification accuracy reduced the 286 classifiers 

producing ý! 85% accuracy to six potential classifiers. Quantitative accuracy 

assessments made from testing datasets can only provide an estimate of the eventual 

'correctness' of the thematic map (Foody, 2002). The final classifier should have high 

generalisation ability in that it should be able to classify previously unseen data to a 

high level of accuracy. To compare the performance and generalisation ability of the 

six remaining classifiers, each model was applied to areas of 4 ha (200 x 200 M) 

randomly selected from each of the five substrates. The classified images were 

displayed in raster format in ArcMap 9.2 with a cell size of 0.26 x 0.26 m. By 

comparing the images produced by the six different classifier models it was possible to 

assess the level of disagreement between the classifiers. 
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When applied to the 4 ha sample plots the differences in classifications provided by 

the six optimum classifiers were minimal (Table 4-5). Classification disagreements 

are primarily attributed to changes in p, with changes in C having little impact. 

Classifiers with a parameter value of 1 (i. e., Classifiers 1 and 2; Table 4-4) had the 

greatest disagreement with the remaining four classifiers, most notably Classifier 6 

(Table 4-5). The largest disagreement between any two classifiers occurred on 

Substrate 2. However, this disagreement totalled only 6714 cells, corresponding to 

only 1.17% of the 4 ha image classified (Table 4-4b). Investigation of the classified 

images suggested that classifiers with p=1 frequently mis-classified areas of 

substrate as belonging to the target class. Furthermore, classifiers with p=1 also 

incorrectly classified many shaded areas of S. supranubius canopy as 'outlier. These 

errors are despite the seemingly high accuracy of Classifiers 1 and 2 (Table 4-4) 

suggesting that, when applied to the current data, incremental SVIDD classifiers with 

polynomial kernels of order 1 have poor generalisation ability. This concurs with other 

studies concluding that linear class boundaries are rare, with most studies preferring 

to use non-linear solutions (e. g., Sanchez-Hernandez et a[., 2007). On all substrates 

the disagreement between classifiers with parameter values of 2 and 6 (Classifiers 3- 

6; Table 4-4) was in the classification of cells as 'target' by the former which were 

classified as 'outlier' by the latter (Figure 4-13). This is consistent with Table 4-4 

which suggests that Classifiers 5 and 6 have a low accuracy on the target class. 

Thus, the two classifier types identify the same objects as being S. supranubius 

individuals, but models with a parameter value of 6 produce slightly lower estimates of 

canopy cover (Figure 4-13). Given the increased potential for over-fitting as the order 

of the polynomial kernel increases, and the minimal differences between classifiers 

with parameter 2 and 6, a parameter value of 2 was deemed most appropriate given 

the data. With rejection errors of C=0.0001 and C=0.001 producing identical results 

when p=2, the selection of C was largely arbitrary. A rejection error of 0.001 was 

chosen to allow for a greater number of outliers in the training data. This gave a final 

classifier that used the incremental INCSVIDID model, trained on target data only using 

the polynomial kernel of the second order and a rejection error of 0.001. 
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Table 4-5 Comparison of six optimum support vector data description (SVDD) classifier models. 
Each classifier was applied to a randomly selected area of 4 ha on each of the five substrates. 
Values in the top right indicate how many cells were classified as'outlier' by the column 

classifier, but classified as 'target' by the row classifier. Values in the lower left indicate how 

many cells were classified as 'target' by the column classifier, but as 'outlier' by the row 

classifier. All values are out of a total 570025 cells. 

Classifier 
number 

1 2 3 4 5 6 

1 0 856 856 837 837 
2 0 - 856 856 837 837 
3 784 784 - 0 0 0 
4 784 784 0 - 0 0 
5 1355 1355 590 590 - 19 
6 1355 1355 571 571 0 - 
(a) Classification disagreements on Substrate 1 

Classifier 
number 

1 2 3 4 5 6 

1 0 3583 3583 3510 3578 
2 0 - 3583 3583 3510 3578 
3 2600 2600 - 0 0 0 
4 2600 2600 0 - 0 0 
5 3136 3136 609 609 - 68 
6 3136 3136 541 541 0 - 
(b) Classification disagreements on Substrate 2. 

Classifier 1 2 3 4 5 6 
number 
T - 0 1410 1410 1389 1402 
2 0 - 1410 1410 1389 1402 
3 761 761 - 0 0 0 
4 761 761 0 - 0 0 
5 1334 1334 594 594 - 13 
6 1334 1334 581 581 0 - 
(c) Classification disagreements on Substrate 3 

-d-l-assifier 
1 2 3 4 5 

number 
T - 0 2300 2300 2220 2299 
2 0 - 2300 2300 2220 2299 
3 938 938 - 0 0 0 
4 938 938 0 - 0 0 
5 1116 1116 258 258 - 79 
6 1116 1116 179 179 0 - 
(d) Classification disagreements on S ubstrate 4 

d-1-assifier 
1 2 3 4 5 6 

number 
i - 0 2902 2896 2782 2887 
2 0 - 2902 2896 2782 2887 
3 1033 1033 - 11 9 9 
4 1024 1024 8 - 7 7 
5 1534 1534 630 631 - 105 
6 1534 1534 525 526 0 - 
(e) Classification disagreements on Substrate 5 
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Classifier4 Classifier6 

Figure 4-13 Comparison of the classification of a4 ha sample area on Substrate 1 using 

optimum Classifiers #4 and #6 (Table 4-4). Subtracting the images produced by the two 

classifiers reveals minimal disagreements in the resultant maps. 
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When assessing classifier performance, global measures of accuracy can hide spatial 

variation in error (Foody, 2002). The performance of the selected classifier (INCSVDD 

using target training data only and a polynomial kernel with a parameter value of 2 and 

a rejection error of 0.001) on each of the five substrates was assessed. On each 

substrate the classification of the 50 target and 50 outlier cases in the testing datasets 

was assessed. The classification accuracy of the target testing data was 100% on all 

five substrates. Substrate 1 also had 100% classification accuracy on the outlier 

class. The other four substrates showed some classification errors in the outlier class, 

but all exceeded the aim of 85% accuracy. 

4.4 CLASSIFICATION OF THE S. SUPRANUBIUS IMAGERY 

Because of lava flow morphology, the extent of the sample window classified on each 

substrate varied. Table 4-6 details the areas and locations of the classified sample 

windows as well as the number of S. supranubius individuals identified by the 

classifier. The number of S. supranubius individuals classified was calculated after 

the images were post-processed in Matlab and ArcMap. 

Classification accuracies as measured from independent testing datasets can only 

provide an estimate of the overall accuracy of the resultant thematic map. Thus, 

despite the high estimated classification accuracy of the selected classifier, the 

classified imagery showed 'speckles' where outlier pixels were misclassified. These 

'speckles' were removed by applying a circular morphological filter with a radius of 2 

pixels (c. 0.52 m) to the image using the Image Processing Toolbox in Matlab. 

During image classification, individuals with adjacent canopies were often classified as 

a single object. Consequently, merged canopies were manually separated by hand- 

digitising in ArcMap. During visual analysis of the imagery it was often unclear 

whether small objects were juvenile S. supranubius, or large rocks and boulders. 

During the December 2007 field trip, very few individuals were observed to have 

canopy areas of <1 M2 . Therefore, all classified objects below this size were removed 

in ArcMap. This action was deemed appropriate because of the large area and 
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number of individuals mapped. With this quantity of data it was considered more 

important to reduce the likelihood of commission errors (wrongly classifying a shadow 

or rock as a S. supranubius individual), while accepting some errors of omission 

(failing to identify a S. supranubius individual), i. e., the set of objects identified as 

S. supranubius should have a high probability of being S. supranubius. Consequently, 

any classified objects greater than 1 M2 that were deemed unlikely to be 

S. supranubius individuals on the basis of their shape and spectral response were 

manually removed from the dataset. 

Table 4-6 Summary information of the classified images. The morphology of Substrate I 

prevented a single large area being classified. Therefore two separate areas were classified. 

Substrate ULX / ULY LRX / LRY Area (ha) S. supranubius 
la 340150 / 3124050 340700 / 3123700 19.25 1949 

lb 340080 / 3125350 340330 / 3125000 8.75 1029 
2 340400 / 3125100 341100 / 3124400 49.00 4880 

3 341710 / 3126780 342110 / 3126130 26.00 1967 

4 342600 / 3124300 343300 / 3123600 49.00 6478 

5 342585 / 3124995 342985 / 3124745 10.00 1174 

Figure 4-14 shows the final classified map of S. supranubius on Substrates 1 to 5. 

The classification of S. supranubius individuals was verified in the field. Using 

stratified random sampling, 54 quadrats (each 0.25 ha) covering a total area of 

13.5 ha were located within the focal plots (see Table 4-6). Twelve quadrats were 

located in each of Substrates 1 to 4, and six quadrats were located on Substrate 5. 

Within these quadrats there were a total of 1572 objects classified as S. supranubius. 

Of these objects, 1407 were verified as being S. supranubius individuals. Therefore, 

165 objects were incorrectly classified as S. supranubius. The majority of the 

incorrectly classified objects (n = 106) were identified as rocks and accompanying 

shadows. The remaining objects belonged to other species, either Pterocephalus 

lasiospermus or Adenocarpus viscosus. A further 35 S. supranubius individuals were 

identified that were not identified in the image classification. Since the objective of the 

classification was to reduce the probability of commission errors (i. e., the set of 

individuals identified as S. supranubius should have a high probability of being S. 
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supranubius individuals) the error matrices focus on user's accuracy. The overall 

user's accuracy was 90%, although this varied between 84% and 92% on the various 

substrates (i. e., commission errors of between 8% and 16%; Table 4-7). 
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Figure 4-14 Classified imagery of S. supranubius on the five focal substrates. Classification 

performed in Matlab using the Incremental SVDID classifier, training on target data only, using 

the polynomial kernel with a parameter of 2 and a rejection error of 0.001 
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On all substrates except Substrate 5 the target accuracy of 85% was exceeded. The 

accuracy on Substrate 5 was only marginally below the target. For analysis in 

subsequent chapters the thematic maps were converted into point patterns using 

ArcMap 9.2, using the centroid of the canopy to represent the point location of the 

shrub. This produced a mapped point pattern, the properties of which describe the 

horizontal spatial structure of the S. supranubius population. Point approximation is 

intended to represent the rooting location of the shrub. Clearly, however, the rooting 

location will not always be at the centre of the canopy. Thus the process of reducing 

the thematic map to points will have incorporated some error into the final mapped 

point pattern. 

4.6 CONCLUSIONS 

Following extensive cross-validation of different classifier structures, an area of 162 ha 

was classified using an incremental SVDD model, trained on 521 target cases, 

polynomial kernel with parameter 2 and a rejection error of 0.001. By testing so many 

classifier structures it was possible to assess the general effect of different factors on 

classification accuracy. Noteworthy results include that the polynomial kernel 

produced consistently greater classification accuracies than either the Gaussian RBF 

or exponential kernel. Secondly, when training the classifier, incorporating training 

data on the outlier classes caused an unexpected reduction in classification accuracy. 
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CHAPTER 5: THE EFFECT OF EXTENT ON PATTERN ANALYSES 

USING g(r) AND L(r) 

We can no longer-cling to the belief that the scale on which we view 

systems does not affect what we see... (Wiens, 1999 p. 371) 

6.1 INTRODUCTION 

The concept of scale is fundamental in ecological studies (Levin, 1992; Wiens, 1999; 

Schneider, 2001). Three attributes of scale are particularly important: grain, focus and 

extent. Grain describes the area represented by each observational unit, focus 

describes the area of the analytical unit, and extent refers to the total geographic area 

being investigated. Variations in all three can affect the results of an analysis, its 

comparability with other studies and our perception of the processes controlling 

ecological phenomena. This chapter considers the effect of the last measure, extent, 

on the accuracy of spatial point pattern analyses. The following terminology applies in 

the chapter. The area of each mapped plot defines the extent of the analysis, and 

scale refers to the intervals and distances of spatial autocorrelation reported by the 

g(r)-function and the L(r)-function (a commonly used transformation of Ripley's K(r)). 

These functions are hereafter referred to as g(r) and L(r). 

It has long been recognised that the choice of extent can dramatically alter results and 

interpretations in ecological systems (Gehlke and Biehl, 1934). Studies of broad-scale 

species richness have shown that the scale of observation can greatly affect estimates 

of alpha (Tylianakis et al., 2006) and beta (Kallimanis et al., 2008) species richness, 

and the predicted relationships between species richness and external influences 

such as disturbance (Hill and Hamer et al., 2004) and environmental factors (Rahbek 

and Graves, 2001; Foody, 2004; Hurlbert and White, 2005). Thus, through their 

selection of extent, researchers may instigate interpretative bias. Nonetheless, there 

is no pre-defined 'correct' extent at which to study a system or its components. 
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Point pattern data are increasingly being collected in plant communities and analysed 

using spatial point pattern statistics (Law et al., 2009; Section 1.3.4). Both g(r) and 

L(r) are commonly used to draw inferences about the biotic and abiotic processes 

driving plant population spatial structure. However, for a detailed analysis and 

meaningful interpretations, the robustness of the functions must be understood 

(Freeman and Ford, 2002). Despite the increasing frequency with which these 

techniques are being applied, only a few published articles have considered their 

robustness. Freeman and Ford (2002) found that both missing data and 

measurement errors could affect the magnitude and scale of the spatial patterns 

identified by L(r). Zenner and Peck (2009) provide the only known attempt, to my 

knowledge, to assess the effect of changing extent on the performance of spatial point 

pattern analyses. They concluded that an extent of 0.5 ha was sufficient to 

characterise the spatial structure of managed forests using Ripley's K(r). However, 

Zenner and Peck did not directly compare the performance of Ripley's K(r) in windows 

of different extent. Instead the authors compared the patterns indicated by Ripley's 

K(r) at 0.5 ha with other metrics (such as dbh distribution and tree density) measured 

in windows of 0.05 -1 ha in extent. Their conclusions were based on the assumption 

that spatial structures estimated at 1 ha represented the 'true' population structure. 

Despite the frequency with which such small extents are used (Figure 1-3), they 

represent only a minute fraction of the range of most species. No studies have 

considered the performance of g(r) and L(r) at larger extents and how they compare to 

the spatial patterns detected at more commonly published extents. This comparison 

is timely as, with the growing availability of aerial photographs and image classification 

software, the potential to digitally map extensive areas of plant populations is 

increasing (e. g., Moustakas et al., 2008; Chapter 4). 

Details of the analytical procedures used in 109 studies employing univariate spatial 

point pattern analyses are summarised in Appendix A. About 77% of the articles 

(n = 84) use plot extents of less than 5 ha, and just over half of all articles (n = 56) use 

a plot extent of 1 ha or less (see Figure 1-3). Several factors are likely to drive the 
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selection of small plot areas. Firstly, most studies aim to conduct analyses in 

homogeneous areas to eliminate the confounding effect of environmental 

heterogeneity (Wagner and Fortin, 2005; Getzin et al., 2008). These conditions will be 

more easily satisfied in smaller areas. Secondly, most studies collect data manually 

(Section 1.3.4). Mapping small extents reduces both the time and cost requirements 

of a field-based study. Furthermore, reducing the area mapped will usually reduce the 

number of units (e. g., shrubs) being mapped, potentially reducing the propagation of 

location (xy) measurement errors that have been shown to influence the detection of 

spatial patterns (Freeman and Ford, 2002). 

5.1.1 AIMS AND OBJECTIVES 

This chapter investigates the effect of varying plot extent on the identification of spatial 

patterns using g(r) and L(r). Three main hypotheses are outlined: 

Hypothesis 1: Quantitative pattern detection: Changes in plot extent will 

affect the spatial pattern described by g(r) and L(r). 

Hypothesis 2: Spatial consistency of quantitative pattern detection: The 

geographical location of the plot will affect the spatial pattern 

described by g(r) and L(r). 

Hypothesis 3: Qualitative pattern detection: Changes in plot extent will affect 

the interpretation of 'significant' patterning based upon Monte 

Carlo simulations of the CSR null model. 

5.2 METHODS 

5.2.1 STUDY AREA AND DATA COLLECTION 

Two sites were selected: the Majua and the Montafia lava flows (see Table 2-1). 

These substrates were selected as they had the largest mapped area of S. 

supranubius individuals (49 ha each). To maintain consistency with other chapters 

these are referred to as Substrates 2 and 4 respectively. Six experimental extents 

were selected, 0.0625 ha (25 x 25 m), 0.25 ha (50 x 50 m), 1 ha (100 x 100 m), 
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2.25 ha (150 x 150 m), 4 ha (200 x 200 m) and 6.25 ha (250 x 250 m). Ten replicate 

plots of each experimental extent were randomly located within both of the 49 ha 

plots. Table 5-1 provides summary statistics for the ten replicate plots at each extent 

on both substrates (more detail is provided in Appendix D). According to published 

sample size recommendations (see Section 1.3.4), extents of 1 ha and greater (in this 

system) have enough individuals to provide robust descriptions of spatial pattern. 

Pseudo-replication within extents was avoided by rejecting plots that overlapped 

substantially with another plot. Plots were randomly re-located if they overlapped with 

another plot by 25% or more. There were no pair-wise overlaps of greater than 25% 

at plot extents of 2.25 ha and lower. Some overlaps of greater than 25% had to be 

accepted at the two largest extents. On Substrate 2 there were four quadrat pairs with 

an overlap of greater than 25% at the 4 ha extent, and 10 quadrat pairs with an 

overlap of greater than 25% at the 6.25 extent. The corresponding numbers of pair- 

wise overlaps on Substrate 4 were three and five respectively. 

Table 5-1 Average number of shrubs per replicate plot at each extent. Standard error is given in 

parentheses 

Extent 

Substrate 0.0625 ha 0.25 ha I ha 2.25 ha 4 ha 6.25 ha 

6.9 25.6 97.9 218.9 377.2 619.4 
2 

(1.3) (4.2) (11.2) (22.4) (27.4) (31.8) 

5.8 31.2 128.5 300.7 500.8 802.4 
4 

(0.8) (2.0) (8.0) (16.7) (22.9) (24.4) 

5.2.2 SPATIAL POINT PATTERN ANALYSIS 

The pattern of all S. supranubius individuals within each plot was assessed using g(r) 

and L(r). At each experimental extent the empirical g(r) and L(r) calculated in the ten 

replicate plots were combined to produce a single g(r) and L(r). A ring width of 3m 

was used when calculating g(r). As the replicate plots within each extent class are 

congruent (i. e., the same size and shape), and the processes generating the patterns 

are hypothesised to be spatially consistent within each substrate, the combined 
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function was calculated as the unweighted average of the individual function values at 

each scale (Diggle, 2003: Eq. 4.20 on Page 52; Illian et al., 2008; Law et al., 2009). 

Alternative methods for the analysis of replicated spatial point patterns can be found in 

Mateu (2001) and Bell and Grunwald (2004). The pattern for each full 49 ha plot was 

also calculated. The results for the 49 ha plots were assumed to provide the most 

accurate, i. e., most 'correct', assessment of S. supranubius spatial pattern. This is 

hereafter referred to as the 'reference' pattern. 

All analyses were performed in Programita (Wiegand and Moloney, 2004). The 

commonly used estimator of K(r) (from which L(r) and g(r) are derived) proposed by 

Ripley (1976,1981) incorporates a weighting factor to account for edge effects (Getis 

and Franklin, 1987; Haase, 1995). Although the functions applied include weighting 

factors to correct for edge effects, additional measures were taken to ensure the 

results reported are accurate. To minimise edge effects indices should not be 

calculated up to the maximum scale of the sample window, unless the sample window 

is very large. Previous studies have recommended limiting the interpretation of g(r) 

and L(r) to distances equal to a quarter of the length of the plot (Baddeley and Turner, 

2005). Others have been less conservative, interpreting functions up to scales 

equalling two thirds the side length of the plot (Fortin, 1999). In the following analyses 

g(r) and L(r) were interpreted to a maximum scale that equalled half the side length of 

the plot (i. e., spatial patterns in plots of 50 x 50 m were only analysed up to scales of 

r= 25 m). 

The main aim of this chapter is to investigate whether the extent of analyses 

influences the detection of spatial pattern. Spatial patterns are frequently used to infer 

the operation of ecological processes. Thus, the analyses in this chapter focus on the 

performance of g(r) and L(r) at scales that are ecologically meaningful to 

S. supranubius individuals. The maximum scale of interaction between 

S. supranubius individuals is estimated at 22 m (see Section 7.3.2 for more detail). To 

allow some leeway, g(r) and L(r) are calculated to a maximum scale of 30 m (in plots 

2: 1 ha). Additionally, g(r) and L(r) are not calculated for scales <2m. At these scales 
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the influence of canopy extent will affect the reliable calculation of the statistics and 

may result in the incorrect detection of regularity (i. e. soft-core effects, Wiegand et al., 

2006, see Section 6.1). 

Preliminary analysis: environmental heterogeneity 

Preliminary analyses were conducted to assess the presence of large-scale 

environmental heterogeneity on both substrates as this may influence the pattern of 

individuals. The distribution of the largest adults (a 30 M2 ) across the entire plot 

(49 ha) was compared to the null model of complete spatial randomness (CSR) using 

g(r) and L(r). Based on the assumption that large adults persist only in 

environmentally benign areas, deviation of their distribution from CSR at large scales 

(r > 20 m) indicates the presence of environmental heterogeneity (Getzin et al., 2008). 

Further justification of this technique is provided in Chapter 7 (see Section 7.3.2). The 

spatial structure of large (2: 30 M) individuals was investigated to a maximum scale of 

50 m. A ring with of 4m was used in the calculation of g(r) as this gave a relatively 

smooth function. Spatial pattern was evaluated by comparing the empirical g(r) and 

L(r) to the 5 th_lowest and 5 th -highest value of 999 Monte Carlo simulations of the CSR 

null model, generating approximately 99% simulation envelopes. 

Analysis 1: the effect of extent on the estimation of pattern trend 

The unweighted average function calculated at each extent was compared to the 

reference function. Both the ability of analyses at different extents to identify the major 

pattern trend (i. e., aggregation or dispersion) and the scale-dependent accuracy of 

function estimates were considered. Greater differences between the average 

function and the reference function indicate less accurate pattern detection. The 

height of g(r) is taken as a measure of pattern strength, with larger values indicating 

the detection of stronger (aggregative) patterns (following Barbeito et al., 2009; Getzin 

et al., 2008). 
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Analysis 2: the spatial consistency of pattern detection 

This analysis considers the effect of extent on the accuracy and spatial consistency of 

pattern detection. Two aspects of pattern detection are considered: (un)reliability and 

pattern strength. 

Analysis 2a: the effect of extent on the (Un)reliability of pattem detection 

For each extent, the standard deviation in the g(r) and L(r) values was calculated at 

each scale across the ten replicates. The use of the standard deviation allows the 

analysis to investigate the range within which the empirical g(r) and L(r) functions may 

be expected to lie if individual plots were performed at each of the experimental 

extents. A large standard deviation indicates unreliable pattern detection for that 

scale. 

Analysis 2b: the effect of extent on the magnitude and scale of the dominant 

pattem 

This analysis considered whether extent affects the magnitude of the dominant pattern 

detected (i. e., the maximum value g(r) and L(r) attains) and the scale at which the 

dominant pattern occurs. For the ten plots at each extent the maximum values of g(r) 

and L(r), and scale at which the maximum value occurred were recorded. The 

average magnitude and scale of the dominant pattern was calculated for each extent 

(Figure 5-1) and compared to the magnitude and scale of the dominant pattern 

detected at 49 ha. For each calculation of the average magnitude and scale the 

coefficient of variation is reported. This is calculated as the ratio of the standard 

deviation to the mean, and is a useful measure for comparing the variability of 

datasets when their means differ greatly (see Table 5-2 and Table 5-3). 
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Figure 5-1 Calculation of the average magnitude and scale of the dominant pattern from several 

replicate plots. The maximum values of each replicate (open circles) are averaged to find the 

average magnitude and scale of the pattern (solid red circle). 

Analysis 3: the effect of extent on pattern detection by Monte Carlo simulation 
envelopes 

The majority of studies determine the presence of spatial pattern by comparing the 

empirical L(r) or g(r) to envelopes created from Monte Carlo simulations of a specified 

null model (Section 1.3.4). 'Significant' pattern is reported to occur at the scales 

where the empirical function falls outside the simulation envelope. This analysis 

investigated whether plot extent influences spatial pattern interpretation based upon 

Monte Carlo simulations. The results focused on the detection of significant 

aggregation, as analyses reveal the pattern of S. supranubius to be predominantly 

aggregative (see Section 5.3.2). For each replicate plot approximately 99% simulation 

envelopes were created from the 5 th -highest and 5 th_ lowest value of 999 Monte Carlo 

simulations of the CSR null model. Each Monte Carlo simulation used the same 

number of individuals as in the observed pattern. For each plot the number of 1m 

intervals at which the empirical g(r) and L(r) exceeded the simulation envelope was 

recorded (Figure 5-2). For each extent the results for the ten plots were combined to 

give the average number of scales at which Monte Carlo techniques detected 
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aggregation. The standard error of the mean is reported as an estimate of the 

precision of the mean (i. e. the deviation of the sample mean from the population 

mean). 
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Figure 6-2 Calculation of the number of scales at which g(r) exceeds the 99% CSR simulation 

envelopes. On graph (a) g(r) only exceeds the simulation envelope at 4 and 5 m, thus 

significant aggregation is detected at two scales. On graph (b) g(r) exceeds the simulation 

envelope between 4 and 14 m (inclusive), thus significant aggregation is detected at 11 scales. 

115 

0 10 20 30 

10 20 30 



6.3 RESULTS 

5.3.1 ENVIRONMENTAL HETEROGENEITY 

The pattern of mature individuals (ý: 30 M) was compared to the CSR null model to 

investigate the presence of large-scale environmental heterogeneity. For the 

purposes of this study, large-scale environmental heterogeneity is defined by deviation 

of the pattern of the largest individuals from CSR at scales r> 20 m. It is likely that 

patterns detected at smaller scales will result from biological interactions between 

individuals. Consequently, the patterns detected at scales of less than 20 m are not 

used in the assessment of environmental heterogeneity. To determine whether the 

two substrates differ notably in their heterogeneity g(r) and L(r) are plotted 

simultaneously (Figure 5-3). 

On Substrate 2 g(r) fails to detect a random distribution of individuals at all scales 

greater than 20 m. L(r) generally confirms this trend, but detects aggregation beyond 

40 m. On Substrate 4, g(r) detected aggregation at 24 m, whereas L(r) detected 

aggregation at all scales greater than 20 m. Both g(r) and L(r) suggest that large- 

scale environmental heterogeneity is greater on Substrate 4. Consequently, the 

homogeneous g(r) and L(r) were used to analyse spatial patterns on Substrate 2, 

whereas the inhomogeneous g(r) and L(r) were used on Substrate 4 (see Section 

7.3.2, page 187, for more information on the inhomogeneous g(r)). 
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Figure 5-3 Comparing the heterogeneity on Substrate 2 (blue lines) and Substrate 4 (red lines) 

as assessed by (a) the homogeneous g(r) and, (b) the homogeneous L(r). On both graphs the 

solid lines plot the function for all mature individuals (ý 30 M2 ) against their respective 99% 

simulation envelopes (doffed lines). Deviation from CSR at scales greater than 20 rn 
(represented by the vertical lines) is taken as evidence for large-scale heterogeneity, 
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5.3.2 THE EFFECT OF EXTENT ON THE ESTIMATION OF PATTERN TREND 

The effect of extent on pattern detection by g(r) 

Substrate 2 (Figure 5-4) - Analysis at 49 ha identified strong aggregation between 3 

and 7m with a peak in inter-shrub distances at 4 m. At scales beyond 7m the 

function approaches a value of 1 indicating a tendency towards a random distribution 

beyond this scale. All experimental extents identified a peak in inter-shrub distances 

at c. 3-5m. The best accuracy was achieved at the two largest extents, which 

showed minimal deviation from the reference g(r) at all scales. As the plots decreased 

in size, the accuracy of the function estimate decreased at all scales. Extents of 1 ha 

showed the greatest inaccuracy at small scales (2 to 4 m) where the strength of shrub 

aggregation was over-estimated. Analyses at 1 ha also detected dispersion at scales 

greater than 23 m. The patterns identified at the two smallest experimental extents 

were the least accurate. Analyses at 0.25 ha overestimated g(r) at 3 and 10 - 11 m, 

and incorrectly identified dispersion at 7-8m and scales over 15 m. Plots of 

0.0625 ha provided the least accurate estimation of the reference g(r), incorrectly 

identifying dispersion at almost all scales. 
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Figure 5-4 Unweighted mean homogeneous g(r) calculated from ten replicate plots at each of 
the six experimental extents plotted against the g(r) calculated at 49 ha on Substrate 2. The 

dotted line at g(r) =1 indicates the expected value under CSR. 
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Substrate 4 (Figure 5-5) - Analysis at 49 ha identified notable aggregation between 4 

and 6 m, peaking at 5 m. At larger scales g(r) decreases and approaches a value of 1 

indicating an increasingly random distribution of individuals at scales of c. 12 rn and 

greater. All experimental extents identified the same peak in shrub densities at 5 m, 

although at 0.0625 ha this peak was not strong enough to be considered aggregative. 

The accuracy of the estimates decreased with extent. The accuracies provided by the 

two largest extents were similar at all scales. Both showed the greatest inaccuracy at 

small scales (2 -3 m) with accuracy improving as the scale increased. Plots of 

2.25 ha also provided reasonably accurate estimates of g(r). The functions produced 

at extents of 1 ha and larger identified the same patterning trend as at 49 ha, 

decreasing towards a value of g(r) =1 at a similar rate as the reference pattern. 

Analyses at 0.25 ha overestimated g(r) at small scales (2 -3 m) and underestimated 

g(r) at most other scales. At scales larger than 20 m, dispersion was incorrectly 

identified. Analyses at 0.0625 ha under-estimated g(r) at all scales and incorrectly 

detected dispersion at all scales. In general, the functions produced at all extents 

were more accurate than at comparable extents on Substrate 2. 
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Figure 5-5 Unweighted mean inhomogeneous g(r) calculated from ten replicate plots at each of 
the six experimental extents plotted against the g(r) calculated at 49 ha on Substrate 4. The 

dotted line at g(r) =1 indicates the expected value under CSR. 
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The effect of extent on the estimation of pattern trend by L(r) 

Substrate 2 (Figure 5-6) - Analyses at 49 ha show that the shrubs are dispersed at 

the smallest scales, but increase in density to become aggregated by 4 m. The 

function stabilises between 14 and 27 m. Analyses at all experimental extents 

described the initial dispersion of shrubs at small scales. The accuracy of the average 

function, however, decreased with decreases in plot extent. The three largest extents 

provided the most accurate estimations, detecting a similar spatial pattern trend to that 

observed at 49 ha. The average function calculated at 1 ha was also reasonably 

accurate although overestimated the value of L(r) at all scales r< 25 m, detecting a 

peak in aggregation at 15 m. Analyses at the two smallest extents were the least 

accurate, failing to identify the correct spatial pattern trend. Analyses at 0.25 ha 

generally replicated the reference pattern up to 7 m, although over-estimated L(r) at 

4-5m, but underestimated L(r) at subsequent scales. At 0.0625 ha the estimated 

function bore little similarity to the correct spatial pattern, strongly under-estimating 

L(r) at almost all scales. 
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Figure 5-6 Unweighted mean homogeneous L(r) calculated from ten replicate plots at each of 

the six experimental extents plotted against the L(r) calculated at 49 ha on Substrate 2. The 

dotted line at L(r) =0 indicates the expected value under CSR. 
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Substrate 4 (Figure 5-7) - When analysed at 49 ha, L(r) detected dispersion at scales 

less than c. 6 m. Beyond this scale the pattern of shrubs becomes aggregated. The 

function continues to increase until it reaches scales of c. 23 m where it stabilises. 

Analyses conducted at 0.25 ha and larger correctly identified shrub dispersion up to 

scales of 5 m. Analyses at 0.0625 ha, however, incorrectly detected dispersion at all 

scales. The two largest extents (4 and 6.25 ha) correctly replicated the aggregation of 

individuals at scales of c. 20 rn and above. These extents provided the most accurate 

estimation of the reference function, although accuracy decreased slightly at smaller 

scales (r < 10 M). Analyses at I and 2.25 ha underestimated the strength of 

aggregation at large scales (r > 20 M). Plots of 0.25 ha in extent underestimate L(r) at 

all scales r>5m. The average function calculated at the smallest extent strongly 

under-estimated the reference function value at all scales. All extents provided a 

better estimate of pattern trend on Substrate 4 compared to Substrate 2. 
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Figure 5-7 Unweighted mean inhomogeneous L(r) calculated from ten replicate plots at each of 

the six experimental extents plotted against the L(r) calculated at 49 ha on Substrate 4. The 

dotted line at L(r) =0 indicates the expected value under CSR. 
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5.3.3 THE EFFECT OF EXTENT ON THE SPATIAL CONSISTENCY OF PATTERN 
DETECTION 

The effect of extent on the (un)reliability of pattern detection by g(r) 

Substrate 2 (Figure 5-8) - The reliability of g(r) estimates improves with increasing plot 

extent. The reliability at the two largest extents is very similar. Within each extent, 

except 0.0625 ha, the least reliable estimation of g(r) occurs at the scale of shrub 

aggregation. Unreliability increases notably when plot extent decreases to 1 ha. At 

this plot extent estimates of g(r) are quite unreliable up to scales of 15 m. 

Decreasing the plot extent to 0.25 ha reveals a peak in unreliability at 3-4m and a 

notable increase in unreliability at 10 m which is not observed at the other extents. 

Analyses at 0.0625 ha are unreliable at all scales. 

Substrate 4 (Figure 5-9) - As observed on Substrate 2, the reliability of g(r) estimates 

at all scales improves as plot extent increases. The largest three extents provided 

similarly reliable results. A notable decrease in the reliability of g(r) did not occur until 

plot extent was reduced to 0.25 ha, where the greatest unreliability occurred at 3- 

4 rn corresponding with the scale of maximum shrub aggregation. Function estimates 

were unreliable at all scales when estimated from plots of 0.0625 ha. The reliability of 

g(r) estimates was notably better on Substrate 4 when compared to equivalent extents 

on Substrate 2. 
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Figure 5-8 The unreliability of g(r) estimates calculated on Substrate 2 from ten replicate plots at 
six extents, (a) 0.0625 ha, (b) 0.25 ha, (c) 1 ha, (d) 2.25 ha, (e) 4 ha and (f) 6.25 ha. The grey 
area represents the standard deviation of g(r) estimates across ten replicates at each scale. 
The black line shows the reference g(r) calculated at 49 ha. 
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Figure 5-9 The unreliability of g(r) estimates calculated on Substrate 4 from ten replicate plots at 

six extents, (a) 0.0625 ha, (b) 0.25 ha, (c) 1 ha, (d) 2.25 ha, (e) 4 ha and (f) 6.25 ha. The grey 

area represents the standard deviation of g(r) estimates across ten replicates at each scale. 

The black line shows the reference g(r) calculated at 49 ha. 
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The effect of extent on the (un)reliability of pattern detection by L(r) 

Substrate 2 (Figure 5-10) - The reliability of L(r) estimates is remarkably consistent 

across scales when estimated in plots 1 ha, or larger, in extent, although there is an 

increase in reliability of L(r) at small scales. The reliability of the L(r) estimate does 

not show a notable improvement with increases in extent beyond 4 ha. Decreasing 

plot extent to 1 ha, causes a sudden decrease in function reliability. Figure 5-12 

suggests that the increased deviation at 1 ha compared to 6.25 ha may be driven by a 

single replicate. At the two smallest extents the unreliability of L(r) remains high but 

becomes more variable with scale. 

Substrate 4 (Figure 5-11) - At all extents, the reliability of L(r) estimates was notably 

better on Substrate 4 compared to equivalent extents on Substrate 2. LN estimates 

were largely consistent across scales, although slightly improved at small scales. The 

reliability of the L(r) estimates improved as extent increased, but little improvement in 

reliability was provided by increasing plot extent beyond 4 ha. Figure 5-12 suggests 

that the decreased reliability at extents of 1 ha (compared to 6.25 ha) may be 

attributed to spatial inconsistency in scale-dependent pattern detection across the ten 

replicates. 
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Figure 5-10 The unreliability of L(r) estimates calculated on Substrate 2 from ten replicate plots 

at six extents, (a) 0.0625 ha, (b) 0.25 ha, (c) 1 ha, (d) 2.25 ha, (e) 4 ha and (f) 6.25 ha. The 

grey area represents the standard deviation of L(r) estimates across ten replicates at each 

scale. The black line shows the reference L(r) calculated at 49 ha. 
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Figure 5-11 The unreliability of L(r) estimates calculated on Substrate 4 from ten replicate plots 

at six extents, (a) 0.0625 ha, (b) 0.25 ha, (c) 1 ha, (d) 2.25 ha, (e) 4 ha and (f) 6.25 ha. The 

grey area represents the standard deviation of L(r) estimates across ten replicates at each 

scale. The black line shows the reference L(r) calculated at 49 ha. 
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Figure 5-12 The L(r) functions produced in each of ten replicate plots of 1 ha and 6.25 ha on 
Substrate 2 and 4. Note the different y-axis scales used to present L(r) on Substrate 2 and 
Substrate 4. 
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The effect of extent on the magnitude and scale of the dominant pattern 
detected by g(r) 

Substrate 2 (Table 5-2) - The magnitude of the dominant pattern decreased as extent 

increased, with the exception of analyses at 0.0625 ha. The correct magnitude of 

gr(r) = 1.6 was identified at extents of 4 and 6.25 ha. At these extents there was also 

considerable consistency in the estimation of pattern magnitude across the ten plots. 

The scale at which the dominant pattern occurs was approximated well at all extents 

with the exception of results at 0.25 ha where the scale of the dominant pattern 

increased by c. 1 m. This increase was accompanied by an increase in the coefficient 

of variation suggesting instability in the scale of peak magnitude at 0.25 ha on 

Substrate 2. The consistency with which the scale of the pattern was detected 

generally improved as plot extent increased. 

Substrate 4 (Table 5-2) - Again, the magnitude of the dominant pattern decreased as 

extent increased. The 'correct' magnitude of g(r) = 1.3 is detected at extents of 

2.25 ha and above. With exception of analyses at 0.0625 ha, the consistency of 

magnitude detection was better on Substrate 4 than on Substrate 2. The scale of the 

dominant pattern changed considerably with extent. At the three smallest extents the 

scale of the strongest pattern was over-estimated. This was accompanied by an 

increase in the coefficient of variation suggesting instability in the identification of 

pattern scale at these extents. 
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Table 5-2 The average magnitude and scale of the dominant pattern detected across ten 

replicates at each of six experimental extents using g(r). The mean and coefficient of variation 
(in parentheses) are reported to 1 dp. The magnitude and scale of the dominant pattern 
detected at 49 ha is also shown. 

Substrate Extent Magnitude Scale 

2 0.0625 ha 1.8 (0.4) 4.3 (0.4) 
0.25 ha 2.0 (0.5) 5.3 (0.6) 
1 ha 2.0 (0.6) 4.2 (0.3) 
2.25 ha 1.8 (0.5) 4.3 (0.2) 
4 ha 1.6 (0.2) 4.2 (0.2) 
6.25 ha 1.6 (0.2) 4.1 (0.1) 
49 ha 1.6 4 

---------------------------------------- 0-. -0-6-2- -5 - h- a ------------ - ------------ 1--8 -(0-. -5-) ------------------ ------------- 7-. -2 -(0.4) --------------------- 

0.25 ha 1.6 (0.2) 6.2 (0.7) 
1 ha 1.4 (0.2) 8.1 (0.9) 
2.25 ha 1.3 (0.1) 5.4 (0.3) 
4 ha 1.3 (0.0) 4.8 (0.2) 
6.25 ha 1.3 (0.1) 4.9 (0.2) 

49 ha 1.3 5 

The effect of extent on magnitude and scale of dominant pattern detected by 

L(r) 

Substrate 2 (Table 5-3) - Although changing extent had little effect on pattern 

magnitude, the magnitude detected became increasingly consistent as extent 

increased. At all extents above and including 0.25 ha the magnitude of dominant 

pattern detected was over-estimated. The magnitude detected was much lower at 

0.0625 ha. Increases in extent did, however, improve the approximation of the scale 

of the dominant pattern. 

Substrate 4 (Table 5-3) - Analyses approximated the reference pattern magnitude at 

extents of 1 ha and above. These estimates became increasingly consistent as extent 

increased. The consistency of magnitude detection was generally better on Substrate 

4 compared to Substrate 2. Pattern magnitude was over-estimated at 0.0625 and 

0.25 ha. Increases in extent appear to cause an increase in the scale of the dominant 

pattern, although the relationship is not as clear as observed on Substrate 2. 
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Table 5-3 The average magnitude and scale of the dominant pattern detected across ten 

replicates at each of six experimental extents using L(r). The mean and coefficient of variation 
(in parentheses) are reported to 1 dp. The magnitude and scale of the dominant pattern 
detected at 49 ha is also shown. 

Substrate Extent Magnitude Scale 

2 0.0625 ha 0.7(1.2) 7.4(0.3) 
0.25 ha 2.2(1.2) 12.0(0.6) 
1 ha 2.2(1.0) 16.6(0.5) 
2.25 ha 1.9(0.6) 22.7(0.3) 
4 ha 1.8(0.6) 21.7(0.4) 
6.25 ha 2.0(0.6) 22.6(0.4) 
49 ha 1.6 30.0 

4 0.0625 ha 1.7(l. 3) 8.3(0.3) 

0.25 ha 1.3(0.8) 17.8(0.3) 

1 ha 1.0(0.6) 23.2(0.3) 
2.25 ha 0.8(0.4) 15.7(0.4) 
4 ha 1.0(0.3) 23.2(0.3) 
6.25 ha 1.0(0.3) 19.7(0.4) 

49 ha 0.9 24.0 

5.3.4 THE EFFECT OF EXTENT ON PATTERN DETECTION BY MONTE CARLO 

SIMULATION ENVELOPES 

This analysis focuses on extents 1 to 6.25 ha on Substrate 4 as previous analyses 

suggest these plots have greater consistency in the average quantitative pattern 

description by both g(r) and L(r) compared to equivalent extents on Substrate 2. 

Maximum stability in quantitative pattern detection across extents was desired so that 

any differences in qualitative pattern detection via Monte Carlo envelopes could be 

more certainly attributed to changing extent and/or sample size rather than real 

differences in spatial pattern. 

Both g(r) and L(r) detected fewer scales of significant spatial pattern as the plot extent 

decreased (Figure 5-13). The detection of significant aggregation at fewer scales in 

small plots could be due to one of two effects: a real decrease in the magnitude of 

aggregation (i. e., an increase in the empirical function value), or an increase in the 

width of the simulation envelope (or both) (see Figure 3-3). 
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envelopes. Averages are based on ten replicates at each extent. Error bars represent the 

standard error of the mean. 

og(r) 

93 L (r) 

The average simulation envelope width for both g(r) and L(r) increased as the extent 

of the plot decreased. At most scales the increase in the width of the simulation 

envelope as extent decreased was greater than the change in the function value. 

Thus, for analyses by both g(r) and L(r) the reduced detection of 'significant' spatial 

pattern in small extents can be primarily attributed to an increase in the width of the 

simulation envelope rather than an actual change in the magnitude of aggregation. 

The exception appears to be the increased detection of aggregation between analyses 

at 2.25 and 4 ha where increases in g(r) and L(r) exceeded any decrease in the 

simulation envelope at most scales suggesting a real increase in aggregation 

magnitude may by occurring. 

Table 5-4 summarises the main findings of this chapter. 
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5.4 DISCUSSION 

The majority of studies using second-order spatial statistics to investigate the spatial 

patterns of woody species use small plot extents (Chapter 1, Appendix A). However, 

the results presented in this chapter suggest that analyses conducted on data 

collected from plots of small extent may provide inaccurate descriptions of spatial 

pattern. 

5.4.1 THE EFFECT OF EXTENT ON QUANTITATIVE PATTERN DETECTION 

On both substrates the greatest agreement with the reference spatial pattern occurred 

when the function was estimated at large experimental extents. The detection of 

pattern trend was, however, consistently better on Substrate 4 compared with 

Substrate 2. The most accurate replication of pattern trend occurred at 6.25 ha on 

Substrate 2 and at 4 ha on Substrate 4 (this analysis was indistinguishable from 

analyses at 6.25 ha). Decreasing plot extent had a considerable effect on the spatial 

pattern identified by g(r). Extents of 2.25 ha and greater identified similar spatial 

structure to analyses at 49 ha, when estimated from ten replicate plots. Thus, if 

spatial pattern analyses are applied merely as an exploratory technique and 

interpretation is not intended to go beyond the visual assessment of graphical output, 

it seems that increasing sample effect beyond extents of 2.25 ha offers little 

improvement in pattern detection in the current ecosystem, as long as replicate plots 

are used. On Substrate 4 analyses at 1 ha also provided a good estimation of spatial 

pattern. Smaller extents, however, did not identify the correct pattern trend. The 

performance of the different extents differed when investigating L(r). For visual 

interpretation, analysis by L(r) generally requires greater extents (a 4 ha) than analysis 

by g(r). This is attributed to the cumulative nature of L(r), as discrepancies in spatial 

pattern at small scales will be propagated at larger scales. 

Unlike Zenner and Peck's (2009) study, this research investigated the patterns 

detected by L(r) and g(r) when applied to windows of different extent. The results 

suggest that, for accurate pattern description, a much larger extent is required than 

the 0.5 ha recommended by Zenner and Peck. Furthermore, pattern detection by both 
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g(r) and L(r) required much greater plot extents than used in the majority of published 

studies. An extent of 2.25 ha exceeds the plot size used in 75 (71%) of the studies in 

Appendix A (for which information on plot extent was available, n= 106). The 

selection of plot extent will largely depend on the study species, with greater areas 

needed as the size of individual plants increases, and/or plant density decreases. 

However, even studies of and shrubs and trees, which are typically low density, have 

predominantly used small plot extents. Eighteen of the studies reviewed in 

Appendix A investigate the patterns of woody species in and ecosystems. Eleven of 

the 17 studies for which information was available used an average plot extent of less 

than 2.25 ha. All of these studies used an average plot extent of !51 ha. Of these 

only three used more than one replicate plot (Haase et al., 1997; Schenk et al., 2003; 

Meyer et al., 2008). 

In the present study system, an extent of 2.25 ha corresponds to an average sample 

size per plot of 219 and 301 on Substrates 2 and 4 respectively. Summed over ten 

replicate plots the estimated functions at 2.25 ha were created from a total of 2189 

and 3007 individuals on Substrates 2 and 4 respectively, This sample size far 

exceeds any previous assertions of minimum sample size requirements (Eccles et al., 

1999; Plotkin et al., 2000; Malkinson et al., 2003; Wiegand et al., 2007a; Meyer et al., 

2008; Jacquemyn et al., 2009). Of the 75 studies using extents less than 2.25 ha 

(Appendix A), information on sample size was available from 37 studies. In fifteen of 

these articles the geometric mean sample size per plot fell below the minimum sample 

size of 70 recommended by Wiegand et al. (2007a). However, 29 studies performed 

at least one analysis on plots containing fewer than 70 individuals and 19 performed at 

least one analysis on fewer than 30 individuals. The validity of pattern interpretations 

generated at such low sample sizes and small extents is questioned. Formal tests 

comparing the pattern detected when varying numbers of points are removed from a 

known pattern would help elucidate the role of sample size in pattern detection. 
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5.4.2 THE SPATIAL CONSISTENCY OF QUANTITATIVE PATTERN 

DESCRIPTION AT ECOLOGICALLY MEANINGFUL SCALES 

Because of differences in the reliability of analyses by g(r) and L(r) they are discussed 

separately. 

The spatial consistency of g(r) 

Compared with smaller extents, analyses at 2.25 ha and larger were remarkably 

spatially consistent (Figure 5-8 and Figure 5-9). At these extents, there was little 

spatial inconsistency in the detection of dominant pattern magnitude (Table 5-2). 

Analyses at 4 and 2.25 ha, and larger, on Substrates 2 and 4 respectively, identified 

dominant patterns of the same strength as analyses at 49 ha (Table 5-2). At smaller 

extents the magnitude of the dominant pattern in the average plot was over-estimated. 

Correct approximations of the scale of the dominant pattern were achieved at extents 

of 4 ha. However, even at this extent the plots varied quite widely in the scale of the 

dominant pattern. These results suggest that reasonably reliable estimates of spatial 

pattern could be obtained from individual plots with a minimum extent of 2.25 ha. 

There was, however, some spatial inconsistency in the scale of the dominant pattern. 

The scale of the dominant (maximum) g(r) indicates the modal inter-shrub distance. 

Inaccurately quantifying this distance could affect interpretations of dominant 

ecological processes. It is therefore recommended that when using single or few 

replicates, especially when plot sizes are small, interpretation is limited to the major 

trends and range of distances indicated by the analysis rather than specific distance 

classes. 

At all plot extents, the greatest inconsistency in g(r) occurred at small scales (Figure 

5-8 and Figure 5-9). Patterns at these scales are presumed to represent interactions 

between individual shrubs. The inconsistency at small scales increased as plot extent 

decreased. At the smallest extents (0.0625 and 0.25 ha) the sample sizes are often 

very small (Appendix D) and thus inconsistency may in part be caused by a lack of 

statistical power. At 1 ha, however, where the results are assumed to be statistically 

robust, there is considerable inconsistency in g(r) at small scales, especially on 
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Substrate 2. This result is particularly concerning as 1 ha is a commonly employed 

extent (Figure 1-3). At larger extents (2- 2.25 ha) the sample size is large enough to 

assume that the results are statistically robust (Appendix D). This implies, therefore, 

that the detection of local interactions may vary with the extent of the plot. 

Therefore, as plots decrease in extent, the inference of biological processes from 

single plots may depend increasingly upon the locations sampled. The small-scale 

inconsistency of g(r) on Substrate 2 is of particular interest as analyses suggest that 

this substrate has little large-scale environmental heterogeneity. The results on 

Substrate 4, despite its apparent heterogeneity, were more spatially consistent. Much 

current statistical research focuses on methods to remove the confounding effects of 

large-scale environmental heterogeneity on the spatial signal generated by biological 

interactions (Law et al., 2009). One of the commonly recommended techniques is to 

define homogeneous sub-regions within the larger heterogeneous pattern and to 

calculate the spatial structure within these separately (Pufilissier and Goreaud, 2001). 

These separate functions can be combined into a single 'master' function (Illian et al., 

2008). Law et al. (2009) recommend this technique if the aim of the study is to 

understand spatial autocorrelation at small scales. However, the current study 

suggests that even within homogeneous subplots of congruent shape and size, there 

is inconsistency in the detection of small-scale spatial structure. If it is assumed that 

plots of c. 1 ha contain, on average, a large enough sample size (n -- 100) to produce 

statistically sound assessments of spatial structure, as published studies suggest, 

then it appears that there may be real differences in spatial pattern when assessed at 

this extent. Two possible explanations are suggested: the presence of small-scale 

heterogeneity, and the effect of remotely sensed data collection. Both these 

explanations have important consequences for the conduct of spatial pattern studies 

and are therefore discussed in turn. 

Remotely sensed data vs. manual field collection 

Although manually mapping plant distributions over small areas may take 

considerable time, it usually results in high accuracy maps of stem distributions. 
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Remotely sensed data enable large extents to be mapped quickly. This may, 

however, come at the expense of fine-scale accuracy. 

A major source of error when using remotely sensed data occurs when the centre of 

mass of the canopy is used to represent stem locations. Canopies are not necessarily 

symmetrically distributed around the central stem, and effects such as wind-throw may 

dramatically alter their relative position. If the approximation of rooting point shows 

spatially systematic error, this could cause spatial inconsistency in the quantification of 

small scale spatial structures. This must be considered when analysing spatial 

patterns obtained from remotely sensed data. Surveys in December 2007 and 

November 2009 did not provide any evidence of wind-throw affecting S. supranubius 

individuals. Furthermore, canopies were observed to be largely symmetrical about the 

central stem. Therefore, error in the estimation of S. supranubius rooting points is 

considered to be both small and spatially random and should not be driving the 

observed spatial inconsistency in small-scale patterns. 

When using remotely sensed data large extents are recommended to average any 

spatially systematic error in the data. If remotely sensed data were collected at the 

extents routinely used in field collections (e. g., Malkinson et al., 2003; Malkinson and 

Kadmon, 2007) small scale errors in the estimation of rooting locations may over-ride 

the true signature of plant-plant interaction. 

Small-scale heterogeneity and the Importance of replicates 

Although relatively homogeneous at the large scale, analyses indicate that 

environmental heterogeneity may be present at small scales. Large-scale 

heterogeneity has been shown to interact with plant dynamics to generate 

quantitatively different spatial patterns (Getzin et al., 2008; Chapter 7). It is therefore 

feasible that heterogeneity at smaller scales could have a similar effect. Individuals 

may inhabit different resource micro-habitats (Beckage and Clark, 2003). Small plots 

may sample different micro-habitats, whereas large plots will incorporate multiple 

micro-habitats and thus average their impact on species distributions. 
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Manually collecting data on the distribution of and shrubs may have a dual effect on 

spatial pattern reliability as the demanding environment may limit the extents covered, 

which, because of the typically low density populations, may result in inadequate 

sample sizes. Fourteen of the studies in Appendix A estimated the spatial patterns of 

woody species in arid areas using manually collected data. Seven of these studies 

estimated spatial patterns from single plots (per environmental context) of small extent 

(< 0.5 ha; Haase et al., 1996; Eccles et al., 1999; Zavala-Hurtado et al., 2000; 

Malkinson et al., 2003; Schurr et al., 2004; Malkinson and Kadmon, 2007; Biganzoli et 

al., 2009). The remaining studies either used multiple small plots, or single large plots 

(> 2.25 ha). Spatial pattern reliability may also be a problem in higher density 

systems, such as temperate forests. In such systems, achieving an adequate sample 

size will require much smaller areas to be mapped (depending on plant size) than if 

the same sample size were desired in an and system. As plot extents decrease the 

variation in small-scale heterogeneity within each plot will tend to decrease and 

estimates of spatial pattern will become less reliable representations of the population 

as a whole. 

In the present study, decreasing plot extent resulted in an increased inconsistency in 

pattern detection by g(r) and L(r). This is attributed to heterogeneity in the small-scale 

pattern. For example, a plot may have spatially consistent intensity (i. e., 

homogeneous), but individuals may be arranged in clusters of varying size. Whereas 

larger plots will detect aggregation at the average cluster size, small plots will pick up 

the variation in cluster size and so produce seemingly inaccurate results. Clearly, 

identifying and mapping small-scale heterogeneity in any system is unfeasible in most 

cases, requiring too much time and inconceivable amounts of knowledge of the 

species' resource requirements and fine-scale distribution of these resources (but see 

Chapter 8). Therefore, caution is urged when using small plot extents, even in 

seemingly homogeneous areas. Greatest concern is raised where plots of small 

extent are used to infer the operation of biological processes and extrapolate these to 

the dynamics of much more extensive populations. Unless a considerable portion of 
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the focal population (population here may refer to a forest or a species on a particular 

substrate) of interest can be mapped, an accurate estimate of spatial pattern will 

require replicate plots across the area of interest. However, despite the tendency of 

published studies to be based on sample plots with small extents, very few studies 

use replicate plots. More than two-thirds (n = 75) of the 109 articles summarised in 

Appendix A estimated spatial pattern from single plots per environmental context. Of 

the remaining 34 articles, 15 used only two replicate plots per environmental context. 

The number of replicate plots should increase as the extent of those plots decreases. 

In the current system, the reliability analyses reveal a strong need to increase the 

number of replicate plots used once the extent of the plots decreases from 2.25 to 

I ha. However, when mapping individuals by hand, increasing plot replication over 

large and/or multiple areas will considerably increase the time and financial costs of 

the study. In situations where spatial patterns are necessarily quantified from single 

small plots it is strongly recommended that interpretations of patterns are cautious and 

are not over-extrapolated. It is also recommended that strong inferences about 

ecological processes are not made from spatial structure alone. Where possible, 

spatial pattern investigation and interpretation should be supported with a priori 

knowledge, with the ultimate aim of experimentally verifying the operation of inferred 

processes (Perry et al., 2006). 

The spatial consistency of L(r) 

Spatial inconsistency in spatial pattern detection by g(r) was greatest at small scales. 

When assessed by L(r) spatial inconsistency in pattern detection was greatest at large 

scales reflecting the accumulation of inconsistencies occurring at smaller scales. As 

inconsistencies in pattern detection by L(r) are primarily at large scales, it is 

recommended that L(r) is only interpreted up to the scales of interest derived from a 

priori hypotheses. 
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5.4.3 THE EFFECT OF EXTENT ON PATTERN DETECTION BY MONTE CARLO 
SIMULATION ENVELOPES 

As the extent of the plot decreased, 'significant' aggregation was detected at fewer 

scales by both g(r) and L(r). This is attributed to an increase in the width of the 

simulation envelope rather than an actual decrease in the magnitude of aggregation, 

with the possible exception of increased detection of aggregation as extent increased 

from 2.25 to 4 ha, which may be driven by real increases in the empirical g(r) and L(r). 

Increasing sample size narrows the simulation envelopes as a random simulation of a 

few individuals shows a greater degree of apparent spatial variation than a random 

simulation of many individuals. This research suggests that the lower sample sizes 

associated with smaller extents will increase the width of the simulation envelope and 

may prevent notable patterns from being detected (i. e., Type 11 error). This effect was 

much more pronounced when analysing patterns with L(r) because of the cumulative 

nature of the statistic. 

Kenkel (1988) pioneered the use of Monte Carlo simulation envelopes to detect spatial 

pattern using K(r) (Loosmore and Ford, 2006). This method of interpreting spatial 

point pattern statistics dominates the literature (Section 1.3.4). Furthermore, the 

majority of articles limit interpretation to the scales at which the empirical function 

exceeds the simulation envelope limits, with no assessment of the height of the curve 

in relation to other curves or the values expected under the null model. Only six of the 

articles in Appendix A compare the magnitude of empirical function curves (see 

Section 1.3.4). Of these studies, the majority visually compared curves, with only one 

study (Peterson and Squiers, 1995) making numerical comparisons. Studies basing 

analyses and interpretations solely upon Monte Carlo techniques may be at risk of 

misinterpreting the range of spatial autocorrelation. Furthermore, the strong 

dependence of Monte Carlo simulation envelopes on sample size will make it difficult 

to make meaningful comparisons of spatial patterns formed from different numbers of 

individuals. 
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The reliance of spatial pattern analyses on Monte Carle simulation envelopes has 

been previously questioned (Diggle, 2003). Loosmore and Ford (2006) present a 

critique of the use of Monte Carlo simulation envelopes claiming that their use to 

determine whether, and at what scale, an observed pattern deviates from a specified 

null model is invalid because of incorrect type 1 error rates. Simulation envelopes are 

constructed from, at every distance, the maximum and minimum (or, e. g., the 

5th-highest and 5 th_lowest) value of the pattern statistic (g(r) or L(r)) calculated from a 

number of simulated patterns. Consequently, simulation envelopes are constructed 

from the results of many simulated patterns, each contributing to the envelope over 

different distances. Therefore, many tests are being performed concurrently at each 

distance class (Loosmore and Ford, 2006). This simultaneous inference yields 

underestimated Type I errors rates and can lead to Type I errors being made, 

especially when the empirical function is close to the simulation envelope. 

Studies have recommended alternative techniques, such as the accumulated 

deviation of an observed function from a theoretical statistic, to assess the departure 

of an observed pattern from a specified null model (e. g., Plotkin et al., 2000; Law et 

al., 2009). Despite these recommendations, the majority of studies continue to assess 

spatial pattern solely by comparing observed functions to Monte Carlo simulation 

envelopes. This chapter recommends that Monte Carlo envelopes are treated as an 

analogue to statistical assessment via p-values; they provide an indication of the 

importance of the pattern. Primary interest, however, should be in biological 

importance, which may be assessed using the magnitude of an effect rather than its 

statistical significance (Nakagawa and Cuthill, 2007). Monte Carlo simulation 

envelopes do not allow for the calculation of statistical power or effect sizes. 

Therefore, analysis of pattern by Monte Carlo envelopes should be supplemented by 

the direct comparison of empirical functions, and examination of the deviation the 

observed pattern has from its distribution under the null model, an analogue of effect 

sizes. 
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5.6 CONCLUSIONS 

Part of the allure of techniques such as L(r) and g(r) is the apparent ease with which 

they are able to provide information on the scale of departure of an observed pattern 

from a hypothetical spatial model (Loosmore and Ford, 2006). However, the 

increasing use of spatial point pattern statistics to gain ecological insights into the 

processes driving plant population structure has not been accompanied by critical 

analysis of the accuracy of the techniques, resulting in much variation in the methods 

and their application. This chapter investigated how variations in plot extent (and 

associated variations in sample size) affect both the quantitative and qualitative results 

of spatial point pattern analysis by L(r) and g(r). 

According to previously published studies, sample sizes in excess of 70 individuals 

should provide reliable estimates of spatial pattern when estimated by g(r) and L(r). In 

the present system this corresponds to a plot of c. 0.7 ha in extent. However, 

analyses suggest that larger plot extents (a minimum of 2.25 ha) are needed to obtain 

accurate descriptions of S. supranubius spatial pattern because of spatial 

inconsistency in the quantitative detection of small-scale pattern. These 

inconsistencies were most pronounced at the smallest extents, but still evident when 

plots contained relatively large sample sizes (n > 100). Assuming the statistical 

detection of pattern is robust at these sample sizes, it is hypothesised that on both 

substrates these inconsistencies arise from the effects of undetected heterogeneity at 

small scales. Mapping the distribution of small-scale heterogeneity is not usually 

feasible, especially if knowledge of the focal species life history is limited. 

Furthermore, small-scale heterogeneity will not necessarily be present in all systems, 

and the scale of any heterogeneity will be location dependent. Therefore, it is 

impossible to define a plot extent at which the effect of small-scale heterogeneity will 

be averaged out. Consequently, a cautious approach is recommended to prevent the 

incorrect extrapolation of localised patterns to whole communities. Randomly 

distributed replicate plots of congruent shape and size should be used, even in areas 

that appear to be homogeneous at broad scales. When sample plots are small and 
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there is no potential to either increase their size or number, researchers are urged to 

ensure their interpretations only consider the major pattern trends and scales, and 

should acknowledge the potential effect of location on their results. 

When assessing the 'significance' of a pattern, it is recommended that Monte Carlo 

envelopes are treated as an analogue to statistical assessment via p-values; i. e., they 

provide an indication of the importance of the pattern. This assessment should be 

supplemented by direct comparison of empirical functions, and examination of the 

deviation the observed pattern has from its distribution under the null model, an 

analogue of effect sizes. Assessments of this kind are vital if spatial patterns are to be 

meaningfully compared. 
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CHAPTER 6: THE CONSEQUENCES OF POINT VERSUS REAL- 

SHAPE APPROXIMATION IN SPATIAL PATTERN ANALYSIS 

6.1 INTRODUCTION 

Almost all studies of plant population spatial structure approximate the locations of 

individuals as dimensionless points (see Appendix A). Such techniques are probably 

favoured because of the relative ease with which data can be collected, and the 

reliance of most software on this data format. Plants, however, are not dimensionless; 

they are discrete entities occupying a non-zero, finite space within the landscape. The 

space they occupy, both above- and below-ground, largely determines the intensity 

and scale of biological processes operating between individuals. It is only in recent 

years that researchers have begun to consider the statistical and interpretative 

consequences of representing individuals as points (Wiegand et al., 2006; Barbeito et 

al., 2008; Muller-Landau et al., 2008; Rossi et al., 2009). Point approximation is now 

considered by some to be one of the major limitations in contemporary fine-scale 

ecological pattern analysis (Wiegand et al., 2006). 

Representing individuals as points is valid when the size of the plants is small relative 

to the spatial scales being studied. However, most ecologists are typically concerned 

with the interactions occurring at small scales where plant-plant interactions are 

assumed to occur. At these scales point approximation may obscure real spatial 

structures. There are three primary consequences of representing individuals as 

points instead of objects: the hard-core distance and soft-core effect (Mat6m, 1986) 

and the aggregation effect (Wiegand et al., 2006; see also Fehmi and Bartolome, 

2001). Wiegand et al. 's (2006) software Programita provides two techniques to 

control for these effects. These effects and techniques are summarised below. 

The hard-core distance 

The hard-core distance (HCD) applies in populations of non-overlapping individuals. 

As the distance under consideration by g(r) decreases, the HCD is the radius at which 
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the pattern detected begins to be influenced by the fact that the shrubs cannot 

overlap. In the simplest situation of a uniform population of shrubs with circular 

canopies, the HCD corresponds to the canopy diameter (Figure 6-1a). If 

approximated as points, randomisation during Monte Carlo simulations may locate 

individuals closer together than their canopy extents would in reality allow (Figure 

6-1 b). Consequently, distances less than the canopy diameter will occur less 

frequently in the observed pattern than expected under a random distribution leading 

to the incorrect detection of dispersion at small scales. In the more realistic case of a 

mixed size population, the HCD corresponds to the maximum canopy diameter. The 

populations used in this chapter (and thesis) are of mixed size. Therefore, the hard- 

core distance refers to the canopy diameter of the largest individuals. Consequently, it 

is possible for real interactions to occur at scales less than the hard-core distance, 

although the probability of such interactions occurring will be small and will decrease 

rapidly as the distance considered by g(r) decreases. At scales below the hard-core 

distance a soft-core effect occurs (see below). This definition is in contrast to the 

description of hard-core distances and hard-core effects in Wiegand et al. (2006) 

which apply to the less realistic situation of uniform shrub populations. 

The soft-core effect 

Soft-core effects occur at all distances below the HCD in populations of non- 

overlapping individuals of variable size (Figure 6-1c). As the distance considered by 

g(r) decreases the effect of the inability of shrubs to overlap on the pattern detected 

increases. When individuals are approximated as points, individuals that are 

separated by short distances will occur less frequently than expected under a random 

distribution. Consequently, the soft-core effect produces an ever more pronounced 

dispersion of shrubs as distance decreases (Figure 6-1 d). 
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Non-overlapping Monte Carlo simulations 

Both the hard- and soft-core effect can be mitigated by preserving the size and shape 

of individuals (i. e., real-shape analysis), and by preventing the overlap of individuals 

during Monte Carlo simulations (see Section 6.2.5). 

Aggregation effect 

An aggregation effect may occur when non-overlapping individuals vary greatly in 

size. Large individuals may occupy a considerable proportion of the available space, 

forcing smaller individuals into the intervening gaps (Figure 6-1e). If the pattern of 

small individuals were analysed, the restriction of small individuals to gaps between 

large individuals may be incorrectly diagnosed as aggregation when in fact they may 

be regularly distributed within the available space (Figure 6-1e). Thus, calculation of 

g(r) may be distorted if the spatial structure of older individuals is non-random at the 

scales at which plant-plant interactions may be occurring (Wiegand et al., 2006). 

Space restriction (free-space analysis) 

Wiegand et al. 's (2006) grid-based software Programita provides a technique of space 

restriction to control for the aggregation effect. The space available for individuals to 

establish, and therefore their spatial structure, may be limited by the presence of older 

individuals. By masking the location of older individuals and preventing individuals 

being placed in occupied locations during Monte Carlo simulations, the "genuine" 

pattern of the younger individuals may be quantified (Figure 6-1f). 

Considering the size and shape of individuals is important if accurate interpretation of 

the small-scale spatial structure of the community is required (Purves and Law, 2002). 

The interpretative effects described above are most extreme when populations consist 

of non-overlapping individuals, such as most and shrubs, especially when individuals 

reach large sizes, as observed in S. supranubius. 

Throughout this chapter the following abbreviations are used 
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gpp(r) - the pair-correlation function calculated from a pattern of shrubs 

represented as points (point analysis). 

g, (r) - the pair-correlation function calculated from a pattern of shrubs where the 

size and shape of individuals has been preserved (real-shape analysis). 

gf, (r) - the pair-correlation function calculated from a pattern of shrubs where the 

size and shape of individuals has been preserved and the space made 
inaccessible by larger individuals has been masked (free-space analysis). 

HCD - the hard-core distance. 

HCDg - the hard-core distance estimated from the convergence of gpp(r) and g, (r) 

(see Section 6.2.2). 
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6.1.1 PREVIOUS STUDIES 

The earliest attempt to account for the size of objects when investigating their spatial 

organisation was provided by Simberloff (1979), who developed a corrected form of 

Clark and Evans' (1954) nearest neighbour statistic. A few years later, Prentice and 

Werger (1985) adapted the CSR null model to account for the average size of objects 

during calculation of Ripley's K(r). However, despite the rapid growth in the 

application of second-order pattern analyses (such as Ripley's K(r)) and 

acknowledgement of the problems associated with point approximation, only three 

studies (to my knowledge) have since attempted to extend traditional pattern analysis 

to consider objects' sizes and shapes (Wiegand et al., 2006; Barbeito et al., 2008; 

Nuske et al., 2009). Both Wiegand et al. (2006) and Barbeito et al. (2008) concluded 

that point pattern analyses detected weaker spatial structure than real-shape analysis, 

and that the differences between the two types of analysis increased as the size of the 

individuals increased. Using simulated data, Nuske et al. (2009), however, found that 

real-shape analysis detected weaker (i. e., lower g(r)) patterns than point analysis 

when patterns were aggregated and regular. Nuske et al. (2009) also found that the 

peaks in g(r) produced by real-shape analysis were less distinct, detecting significant 

pattern over a wider range of scales. 

More research is needed to achieve a greater understanding of the ecological 

implications of employing real-shape analysis versus point analysis. One of Wiegand 

et al. 's main conclusions was that point analysis was unreliable at scales less than the 

hard-core distance (r < hcd, i. e. a soft-core effect). The accurate identification of 

spatial structures at small scales is important as it is at these scales that plant-plant 

interactions are expected to occur. Plants can, however, interact at scales beyond 

the limit of their canopy. Arid shrubs in particular are noted for their laterally extensive 

root systems, which can extend well beyond canopy limits (Hartle et al., 2006; Barbier 

et al., 2008; Caldwell et al., 2008). Nevertheless, there has been little emphasis on 

whether and how point approximation affects the detection of spatial structures at 

scales exceeding the hard-core distance. This may result from uncertainty in 
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detecting the hard-core distance. In this chapter a technique for detecting the hard- 

core distance is proposed (see Section 6.2.2), allowing analyses to consider the 

effects of point approximation versus real-shape analysis on the detection of spatial 

structure both above and below the hard-core distance. 

This chapter also investigates the effect of masking inaccessible space on the 

patterns detected. Wiegand et al. (2006) provide the only other investigation, of which 

I am aware, of the potential impact of masking inaccessible areas. In their study the 

locations of other dominant species were masked whilst the patterns of the focal 

species were investigated. They found that dispersive patterns were weaker when the 

areas covered by other species were masked. Unlike Wiegand et al. 's (2006) study, 

this chapter masks the locations believed to be made inaccessible by older 

S. supranubius individuals, under the assumption that larger individuals are also older. 

6.1.2 AIMS AND OBJECTIVES 

This chapter investigates the quantitative differences in the pattern detected by three 

data representation techniques: point analysis, real-shape analysis and free-space 

analysis. Three hypotheses are outlined: 

Hypothesis 1: The method of data representation (i. e. point or object) will 
affect the type of pattern detected (i. e., dispersed, random or 
aggregated). 

Hypothesis 2: The method of data representation will affect the magnitude 
and scale of the strongest pattern. 

Hypothesis 3: The method of data representation will affect the 
interpretation of ecological processes. 

6.2 METHODS 

6.2.1 DATA COLLECTION 

The following analyses were performed on the S. supranubius individuals on 

Substrate 2 (49 ha plot; see Section 2.3.2). The point locations of individuals were 
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estimated by taking the co-ordinates of the centre of the canopy. The size and shape 

of individuals for real-shape and free-space analyses were taken from the classified 

imagery with a resolution of 1 M2. 

6.2.2 IDENTIFYING THE HARD-CORE DISTANCE 

When the distribution of a population of sparse, non-overlapping shrubs of mixed size 

is represented as a point pattern, soft-core effects will cause g(r) to be underestimated 

at scales below the hard-core distance. Conversely, when the size and shape of 

individuals is preserved the g(r) will be overestimated at scales below the hard-core 

distance because there is an increasing chance of the presence of points within the 

same bush as the focal bush. Consequently, the g(r) produced by real-shape analysis 

(g, (r)) and by point pattern analysis (gpp(r)) will differ at scales up to the hard-core 

distance. Specifically: gPP (r) < g,,, (r) for r< HCD 

Assuming that only a very small proportion of canopies within the population will be in 

contact with neighbouring canopies, g,,, (r) and gpp(r) are expected to become 

equivalent at, or close to, the hard-core distance: g,,, (r) = g, (r) for r tý HCD 

Thus the scale at which g, (r) and gpp(r) converge provides an estimate of the hard- 

core distance. This method for identifying the hard-core distance only applies in 

univariate analyses and will work best for sparse communities. S. supranubius data 

were used to test this method (Figure 6-2). Individuals were divided into different 

datasets, of different canopy area. The hard-core distance was estimated (H(ýD) as 

the canopy diameter of the largest individual within the dataset (see Section 6.1). 

Both a real-shape and a point pattern analysis were run on each dataset. The hard- 

core distance was then estimated graphically (HCD. ) as the scale of convergence 

between g, (r) and gpp(r). In all datasets; the graphical estimate of the HCD 

corresponded (within 0.5 m) with the maximum canopy diameter. 
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Figure 6-2 Calculation of the hard-core distance from 1) the maximum observed canopy 

diameter (H(ýD) and, 2) from the scale of convergence of the real-shape and point g(r) 

HCDg ). The vertical lines illustrate the scale of convergence of the real-shape and point g(r) 

for individuals with canopy areas between (a) 15x55, (b) 5 :5xs 10, and (c) 10 :5x :5 20 

where x is canopy area in M2 . The estimates of H(ýD and H(ýDg are shown on each graph. 
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6.2.3 THE EQUIVALENCE OF GRs(R) AND Gpp(R) BEYOND THE HARD-CORE 
DISTANCE 

It is predicted that at scales beyond the hard-core distance, the patterns detected by 

point and real-shape analysis should become more similar than observed at scales 

below the hard-core distance. Both techniques should identify the greatest density of 

points at similar scales beyond the hard-core distance. However, calculations of g(r) 

from real-shape data are initiated from numerous points representing the same 

individual to numerous points representing the same neighbouring individual (Figure 

6-3b). Therefore, it is hypothesised that although both techniques should identify the 

same scales of the strongest pattern, real-shape analysis may detect significant 

spatial structure at a wider range of scales (Figure 6-3c; cf. Nuske et al., 2009). 

000 

(b) X 

z- 2R -\ 
, 

z+ 2R 

Figure 6-3 The calculation of plant-plant distance between one individual (X) and a 

neighbouring individual (Y) using point analysis (a) and real-shape analysis (b) and (c). 

Individuals X and Y have a canopy radius of R. In point analysis the distance separating 

individual X from Y is a single, discrete value, z. When real-shape analysis is used, X and Y are 

composed of multiple adjacent points. The distance separating X from Y is no longer a single 

value, but multiple distances separating each point in X from each point in Y (b). Although the 

average distance separating X and Y in (b) is still z, a high density of points will be detected at 

scales ranging from z- 2R to z+ 2R (c). 

6.2.4 ANALYSES 

The third hypothesis addressed in this chapter is that the method of data 

representation will affect the interpretation of ecological processes. As demographic 
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processes are often life-stage specific, the signature of certain processes will only be 

evident in the spatial pattern of individuals of a certain age. Understanding how 

patterns change with age can also provide important information on processes such 

as intra-specific competition. No information on the age of individuals is available. 

The size of individuals is, however, considered to be a good approximation of relative 

age. Consequently, all S. supranubius individuals were assigned to one of three size 

classes before analysis: small, medium-sized or large. These size classes correspond 

to canopy areas (x) of 1 :5x<2.8 M2 , 2.8: 5 x< 20.6 M2 and 20.6 SX M2 respectively. 

The size classes had sample sizes of 432,1711 and 329 respectively. Further 

information on, and justification of these size class divisions can be found in Chapter 7 

(see Section 7.3.2). Analyses were performed on each size class respectively. In all 

analyses the distribution of individuals was compared with the null model of CSR. 

Analysis 1: the effect of data representation on the type of pattern detected 

The type of pattern detected (aggregation, random or dispersion) at each scale (1 - 30 

m) was recorded. This was assessed by comparing the empirical g(r) to simulation 

envelopes created from the 5 th -highest and 5 th_lowest values of 999 simulations of the 

CSR null model. 

Analysis 2: the effect of data representation on the magnitude and scale of the 

strongest aggregation 

The height of the empirical g(r) above the CSR expectation (g(r) = 1) can be used to 

quantify the strength of aggregation at any one scale (e. g., Barbeito et al., 2009; 

Getzin et al., 2008). Larger magnitudes of g(r) indicate stronger patterns. An 

alternative technique defines the strongest aggregation as occurring at the scale at 

which the distance between the empirical g(r) and the upper simulation envelope is 

greatest (Wiegand et al., 2006). Another possible technique would calculate the ratio 

of the distance between the empirical g(r) and the upper simulation envelope and the 

width of the simulation envelope, with larger ratios indicating stronger patterns. All 

three measurements are employed and compared in this chapter. 
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Analysis 3: the effect of data representation on the interpretation of ecological 
processes 

In addition to the patterns detected within each size class, understanding how patterns 

change with the age/size of individuals can provide important information on the 

processes structuring the population. For each technique (point, real-shape and free- 

space) the empirical g(r) for each size class was plotted simultaneously. 

6.2.5 ANALYTICAL PROCEDURES 

Point pattern analyses 

Because of differences in data density, different ring widths were used to construct 

g(r) in the different size classes. Analysis of the small, medium-sized and large size 

classes used ring widths of 3,2 and 4m respectively, as these produced relatively 

smooth functions in all cases, while maintaining detail at small spatial scales. 

Real-shape analyses 

The grid-based software Programita (Wiegand and Moloney, 2004) has been 

extended to enable the analysis of objects (Wiegand et aL, 2006). Individual shrubs 

are approximated by a group of adjacent cells on a categorical raster map. Each 

shrub may occupy several adjacent cells, depending upon its size and shape. As cell 

size decreases, the accuracy with which the size and shape of canopies can be 

mapped increases. However, very small cell sizes increase computational time, 

Therefore, a minimal resolution should be selected, depending upon the biological 

questions being addressed. In the present analysis, the cell size was equivalent to the 

smallest S. supranubius canopy area (i. e., 1 M2) -A formal point pattern is generated 

from the categorical raster map. A point is created at the centre of each cell that is 

part of a shrub. Therefore, whereas the smallest individuals (1 M2 ) are represented by 

a single point, larger individuals may be represented by several adjacent points. The 

number of points is therefore much higher than the number of objects, and 

consequently much higher than the number of points in the conventional point pattern 

analysis. For calculation of the real-shape g(r) a ring width of 2m was used when 
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analysing the pattern of small individuals, and a ring width of 1m was used in the 

analysis of medium-sized and large individuals. These ring widths produced relatively 

smooth functions, while maintaining detail at small spatial scales. 

Simulations of the CSR null model are constructed by rotating (by 0,90,180 or 

270 degrees, with equal probability), mirroring (or not) and shifting the location of 

individual shrubs. Field observations of the focal system confirm that S. supranubius 

canopies rarely overlap. Therefore, objects were not allowed to overlap during Monte 

Carlo simulations of CSR, providing a more realistic simulation of the conditions 

observed in the field. Unlike points, randomised objects may fall partially outside the 

study region during Monte Carlo simulations. This would reduce the proportion of 

occupied cells in the null model (reducing first-order intensity), producing a (positive) 

bias towards aggregation (Wiegand et al., 2006). Programita provides several options 

for mitigating this effect (see Wiegand et al., 2006). In the present analyses a torus 

correction was applied, which wraps the window so that individuals that overlap the 

window edge also appear on the opposite side of the sample window. This correction, 

however, breaks individuals into two smaller individuals which can create a bias 

towards aggregation (Wiegand et al., 2006). Therefore, guard areas were also 

applied which prevented calculation of g(r) in the edges of the window. The width of 

the guard area should be selected so that it is greater than the diameter of most 

plants, but not so big that it dramatically reduces the sample window extent. 

Therefore, guard areas were selected to exceed the diameter of 90% of the individuals 

within each size class. This corresponded to guard area widths of 2 cells, 5 cells and 

8 cells when analysing the small, medium-sized and large individuals respectively. 

Free-space analyses 

As with the real-shape analysis, individuals were represented on a raster map with a 

resolution of 1 M2 , and shrubs were not allowed to overlap during Monte Carlo 

simulations of the null model. Further to the real-shape analysis, the calculation of g(r) 

and the simulations of the null model excluded areas that were considered to be 

inaccessible to the individuals being studied. Thus, when analysing the distribution of 
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the small individuals, the locations of the medium-sized and large individuals were 

masked. Similarly, when analysing the pattern of the medium-sized individuals the 

locations of the large individuals were masked. Free-space analysis was not 

performed for large individuals as the small and medium-sized individuals are 

assumed to be younger and therefore could not have driven the establishment of the 

large individuals (i. e., the analysis would be equivalent to the real-shape analysis of 

large individuals). 

6.3 RESULTS 

6.3.1 THE EFFECT OF DATA REPRESENTATION ON THE TYPE OF PATTERN 
DETECTED 

Small individuals 

All three analyses identified aggregation of small individuals at almost all scales, both 

above and below the hard-core distance of 2 m. The functions produced by the real- 

shape and free-space analyses are noted for being almost identical in shape (Figure 

6-4a). 

Mediurn-sized individuals 

All three analyses identified aggregation at all scales greater than the hard-core 

distance of 4m (Figure 6-4b). Slight differences in pattern were identified at scales 

below the hard-core distance (i. e. a soft-core effect). Point analysis detected 

dispersion at Im and a random distribution at 2 m. Real-shape analysis detected a 

random distribution at 1m whereas free-space analysis detected dispersion. Both the 

real-shape and free-space analysis identified dispersion at 2 m. All three techniques 

identified aggregation at 4 m, but whereas the point and real-shape analysis identified 

aggregation at 3 M, free-space analysis detected a random distribution. 
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Large individuals 

Notable differences were observed between the real-shape and the point analysis at 

scales greater than the hard-core distance of 8m (Figure 6-4c). Both analyses detect 

a random distribution between 19 and 29 m. However, whereas the real-shape 

analysis detected aggregation between 9 and 18 m, point analysis detected 

aggregation at 8- 11 and 15 m. Disagreement also occurs at scales below the hard- 

core distance (i. e. a soft-core effect). Whereas the real-shape analysis detected a 

random distribution at all scales below the hard-core distance, point analysis detected 

dispersion between I and 5 m, a random distribution at 6-7m and aggregation at 

8 M. 
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6.3.2 THE EFFECT OF DATA REPRESENTATION ON THE MAGNITUDE AND 

SCALE OF THE STRONGEST AGGREGATION 

Table 6-1 compares the magnitude and scale of the strongest aggregation detected by 

the different data representation techniques. Three measures of pattern strength are 

used. The first identifies the strongest aggregation as occurring at the scale at which 

g(r) reaches its maximum value. The second identifies the strongest aggregation as 

occurring at the scale at which the height of g(r) above the upper simulation envelope 

is greatest (the 'difference' technique). The final technique identifies the strongest 

aggregation as occurring at the scale at which the ratio between the height of g(r) 

above/below the simulation envelope and the width of the simulation envelope is 

greatest (the 'ratio' technique). 

When analysed as point data, all three measures of pattern strength detect the 

strongest aggregation at similar scales, although the ratio technique detected the 

strongest aggregation at slightly larger scales when analysing small and medium- 

sized individuals. When used in real-shape and free-space analysis, the difference 

and the ratio techniques typically identified the strongest aggregation at the same 

scales. When using the maximum value of g(r) however, the strongest aggregation 

was always detected at the smallest scale (1 m). Regardless of the pattern strength 

measure used, free-space and real-shape analysis detected the strongest aggregation 

at similar, or the same scale for both the small and medium-sized individuals. When 

measuring the pattern strength as the maximum g(r), the scale of the dominant pattern 

is larger when individuals are represented as points. However, when measuring 

pattern strength using the difference or the ratio technique, the scale of the strongest 

aggregation is shorter when medium-sized and large individuals are represented as 

points. With the exception of the maximum g(r) measure of pattern strength, analyses 

using points identified stronger aggregation than real-shape or free-space when 

analysing small and medium-sized individuals. When analysing the pattern of large 

individuals, real-shape analysis identified the strongest aggregation regardless of the 

pattern strength measure. 
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6.3.3 THE EFFECT OF DATA REPRESENTATION ON THE INTERPRETATION OF 
ECOLOGICAL PROCESSES 

When analysed as points the difference between the empirical g(r) indicated that 

aggregation was strongest among the small individuals (Figure 6-5c). The medium- 

sized individuals continue to show a weak aggregative signature at a slightly larger 

scale than the small individuals. The distribution of the large individuals is only slightly 

more aggregated than a completely spatially random distribution (i. e., g(r) = 1). 

Interpretation of the free-space analysis is limited as it was only performed on the 

small and medium-sized individuals (Figure 6-5b). These analyses concur with the 

point analysis by detecting weaker aggregation among the medium-sized individuals 

than among the small individuals. 

As with the point analysis, the real-shape analysis detected stronger aggregation 

among the small individuals then among medium-sized individuals (Figure 6-5a). 

However, unlike in the point analysis, the g, (r) of large individuals in the real-shape 

analysis is quite similar to the g, (r) of the small individuals, especially at scales less 

than r= 12 m. 
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Figure 6-5 Comparing the pattern detected in each size class when using (a) real-shape, (b) 

free-space and, (c) point analysis. Free-space analysis was not conducted for large individuals. 
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6.4 DISCUSSION 

It has recently been recommended that pattern analyses should preserve the size and 

shape of objects (Purves and Law, 2002; Wiegand et a[., 2006). Studies by Wiegand 

et al. (2006) and Barbeito et al. (2008) have added some weight to these assertions 

by concluding that real-shape analyses detected stronger and, in some cases, 

different patterns compared with point analysis. However, the results presented in this 

chapter question the utility of both real-shape and free-space analysis. 

6.4.1 THE IMPORTANCE OF FREE-SPACE 

The small-scale spatial structure of individuals is determined by biological interactions 

and abiotic conditions. In extreme situations, individuals may be prevented from 

establishing in certain areas because of their adverse biotic or abiotic conditions. If 

these effects are not considered during analysis, inaccurate patterns could be 

detected. Wiegand et al. (2006) provide the only example, to my knowledge, of 

masking inaccessible space during analysis. They found that by masking the location 

of other species, the dispersion detected between two focal species was stronger. 

This analysis assumed that the presence of individuals of other species would render 

the area inaccessible for occupation regardless of their age. It can be presumed, 

however, that a heterospecific individual could only influence the position of another 

individual if it was already present at the time of establishment (i. e., if it was older than 

the establishing individual). Using the masking technique for a single-species pattern, 

this research investigates whether adjusting for the area made inaccessible by older 

(i. e., larger) individuals influences the patterns detected among younger (i. e., smaller) 

individuals. 

Compared with real-shape analysis, masking the space considered to be inaccessible 

had no notable effect on the scale-dependent patterns detected in either the small or 

medium-sized individuals (Figure 6-4). Furthermore, both real-shape and free-space 

analysis found the strongest aggregation to occur at the same scale (Table 6-1). The 

only notable difference was that free-space analysis detected slightly weaker 
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aggregation than real-shape analysis (Table 6-1, Figure 6-1f), although the difference 

was minimal. In the current system, therefore, it seems that controlling for the location 

of larger individuals has little effect on the spatial structures, and the inferred 

ecological processes, of small or medium-sized individuals. This is despite the fact 

that many of the large individuals are considerably greater in canopy area than the 

small individuals. 

It is suggested that the S. supranubius population is so sparse that controlling for the 

effect of large individuals on the establishment of small does not affect the patterns 

detected at ecologically meaningful scales. The effect of older individuals' locations 

on the distribution of young individuals may be greater in denser communities. 

However, the justification and utility of the free-space analysis is questioned, 

especially when used to define biotically inaccessible locations. The most obvious 

theoretical restriction of this technique is the use of the contemporary distribution of 

(presumed) inaccessible space which, because of the senescence and growth of 

individuals, will be temporally dynamic. Free-space analysis may have greater utility 

when locations can be unequivocally determined as abiotically inaccessible. This too, 

however, would require much information on the abiotic requirements of the focal 

species, and is probably of limited utility given the plot extents commonly used in the 

literature (Figure 1-3). 

6.4.2 REAL-SHAPE VERSUS POINT APPROXIMATION 

interpreting real-shape analysis is difficult at small scales 

Approximating the size and shape of an individual as a group of adjacent points 

makes it harder to interpret the pair-correlation function at small scales. The distance 

between two objects is no longer measured as a single metric, but as a distribution of 

distance separating every point within one individual from every point in a 

neighbouring individual (Figure 6-3b). More importantly, however, the distribution of 

distances separating points within the same individual are also included in the 

calculation of the pair-correlation function. Consequently, there is a high frequency of 
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inter-point distances up to the scale of the canopy diameter which may mask any real 

interaction effects occurring in this range (Figure 6-4). This effect should be reduced 

in communities of non-overlapping individuals, as the spatial structure resulting from 

interactions should occur beyond the scale of the canopy diameter. It is suggested, 

however, that in denser communities, where interactions may occur at scales smaller 

than the canopy diameter, real-shape analysis may lose information at the scale of the 

individual and real interaction effects may be masked. In these situations it is 

recommended that the average canopy diameter is acknowledged and the strength of 

the pair-correlation function below this distance is investigated to ensure no interaction 

effects are being overlooked. 

Detecting the strength of aggregation In real-shape analysis 

One technique of assessing pattern strength is to define the scale at which the pair- 

correlation function obtains its highest value as the scale at which the strongest spatial 

structure occurs (e. g., Getzin et al., 2008; Barbeito et al., 2009). This technique 

appears to be suitable when individuals are represented as points. However, because 

calculation of the pair-correlation function in real-shape analysis incorporates the 

distances separating the cells belonging to the same individual, the function is inflated 

at small scales (Figure 6-4). Thereore, measuring pattern strength using g,,, (r) can 

result in an under-estimation of the scale of the strongest pattern (Table 6-1). When 

analysing individuals as objects composed of multiple points, evaluation of pattern 

strength should assess either the height of the empirical g(r) above the upper 

simulation envelope or the ratio between this measure and the width of the simulation 

envelope. The height of the empirical g(r) above the simulation envelope could be 

misleading as two patterns with (apparently) equal strength may have very different 

simulation envelope widths. Conversely, the ratio technique would enable the 

researcher to consider the likelihood of the pattern detected. 
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The difference between real-shape and point approximation depends on the size 

of the individuals 

As anticipated, the difference in the pattern detected by the real-shape and point 

analysis was greatest at scales less than the hard-core distance. At these scales 

point analysis detected a greater dispersion of both medium-sized and large 

individuals than the real shape analysis, as would be expected from a soft-core effect 

(Wiegand et al., 2006; Figure 6-1a, b; Figure 64, Section 6.1). Differences between 

real-shape and point analysis, at scales both below and above the hard-core distance, 

increased as the size of the individuals investigated increased. Both analyses 

detected the same spatial structure when analysing the distribution of small individuals 

(Figure 6-4 la and 2a). This is easily explained as the small size of the individuals 

(1-2.8 M2) and the small grid cell size (1 M2) would mean that once converted to 

points, the real-shape pattern would essentially replicate the point pattern. When 

analysing the medium-sized individuals, the most notable difference between real- 

shape and point analysis was in the scale of the strongest pattern, which was 

estimated at a higher scale by real-shape analysis. Real-shape analysis also detected 

the strongest pattern of large individuals at a greater scale than point analysis. 

Therefore, when individuals are represented as a group of adjacent points, real-shape 

analysis identifies a greater modal plant-plant distance than point analysis. The 

following explanation is provided. Unlike point analysis, the distance between two 

objects in real-shape analysis is not a single, discrete value but a distribution of 

distances measured between multiple cells (Figure 6-3b). Despite this, however, the 

average distance should equal the distance separating the centroids of those objects 

and should therefore be equivalent to point analysis. However, because real-shape 

analysis calculates multiple distances for every pair of individuals, pairs that consist of 

one or more large individual (i. e., larger than average) will contribute more distances 

to the estimation of the function than pairs that consist of average or below-average 

sized individuals (Nuske et al., 2009). Competition theory predicts that large 

individuals will be separated from neighbouring individuals by greater distances 

(Getzin et al., 2006). Consequently, a few object pairs containing large individuals 
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separated by great distances may overpower the effect of a larger number of smaller, 

less widely spaced individuals. This weighting effect, therefore, may explain the 

increased modal distance observed when using real-shape analysis compared to point 

analysis and indicates that when analysing the spatial structure of a population of 

individuals of varying size, real-shape may overestimate the scale of the strongest 

pattern. 

In addition to differences in the scale of the strongest pattern, real-shape analysis of 

large individuals detected aggregation over a larger spatial range than corresponding 

point analysis, agreeing with Nuske et al. 's (2009) analysis of simulated data. This 

may again be explained by the use of multiple distances between pairs of individuals, 

perhaps causing real-shape analysis to detect aggregation at scales ranging from the 

separation of near canopy edges to the separation of far canopy edges (Figure 6-3c). 

Both Wiegand et al. (2006) and Barbeito et al. (2008) concluded that point 

approximation detected weaker effects that real-shape analysis, whereas Nuske et 

al. 's (2009) study of simulated data found that point approximation detected stronger 

effects than real-shape analysis. In the present research, the patterns identified by 

real-shape analysis were weaker than identified by point approximation when 

analysing the small and medium-sized individuals, but slightly stronger than point 

approximation when analysing the large individuals. This is, again, attributed to the 

use of multiple distances separating individuals which dampens the signature at the 

scale where distances are more frequent (Nuske et al., 2009). This seemingly size- 

dependent effect has not been acknowledged in previous studies. 

Interpretative consequences of real-shape versus point analysis 

Implications for the interpretation of ecological processes arise from the analysis of 

medium-sized and large individuals where the differences between real-shape and 

point analysis were greatest. Most notably, the aggregation detected by real-shape 

analysis was more spatially extensive and the strongest pattern occurred at a larger 

scale than under corresponding point approximation. Both these effects are believed 
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to be consequences of the calculation of the real-shape pair-correlation function from 

multiple points within the same individual, leading to the overestimation of modal 

plant-plant spacing and overestimation of the importance of biological interactions in 

structuring a population. 

Further assessment of the ecological consequences of data representation type was 

made by comparing the empirical functions between size classes. When analysed as 

points, the aggregation of individuals decreased as size increased. This is usually 

considered to be consistent with the operation of density-dependent thinning (Phillips 

and MacMahon, 1981; Lept and Kindlmann, 1987). When analysed as real-shapes, 

there was a decrease in the pair-correlation function between small and medium-sized 

individuals, but the function for large individuals was similar to that of the small 

individuals. This could be considered as evidence for a shift towards facilitative 

interactions as a cohort ages (Bruno et al., 2003). However, the similarity between the 

functions for large and small individuals may also be evidence for the operation of 

clonal reproduction whereby clumps of clonally reproduced ramets; are of a similar size 

and shape as large individuals and follow a similar distribution (Figure 6-6). Such an 

interpretation is only possible with a piloil knowledge of the study system. However, 

although real-shape analysis may be capable of detecting patterns consistent with 

clonal reproduction, it does not give information about the relative spacing of ramets 

within clumps as point approximation does. When individuals are very closely 

distributed, real-shape analyses may lose information at the individual scale. Thus it 

seems that real shape analyses may be useful if there are specific hypotheses to be 

tested, and using both real-shape and point analysis in tandem may have merits when 

supported by knowledge of the study system. 
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(a) (b) 

Figure 6-6 Diagram explaining the potential use of real-shape analysis to examine clonal 

reproduction. The clonal dynamics of S. supranubius may explain why the real-shape pair- 

correlation function for small individuals was similar to the function calculated for large 

individuals (Figure 6-5). Figure (a) shows the expected distribution of recently produced ramets 

whereas figure (b) shows the expected distribution of the maternal shrubs. 

6.4.3 THE POTENTIAL UTILITY OF REAL-SHAPE ANALYSIS 

Real-shape analysis may reduce error and improve the precision of scale- 
dependent pattern detection 

Real-shape analysis has several potential advantages. Firstly, it removes the 

potential for error associated with measurements of precise point locations, which 

Freeman and Ford (2002) demonstrated can affect the significance and scale of 

identified patterns. The errors associated with point approximation could be 

considerable when data are obtained from remote sensing. In these situations the 

best approximation of the rooting point is usually the centre of the canopy, although 

effects such as wind-throw, asymmetric canopies or the underlying topography will 

increase the error of such approximations. 

When calculating the pair-correlation function the selection of ring widths is important 

as it determines the resolution with which patterns are detected. With point data there 

are often many empty rings, producing a jagged function, which can be difficult to 

interpret (Wiegand and Moloney, 2004; Illian et al., 2008). Increasing the ring width, 

however, reduces the ability of the pair-correlation function to isolate specific distance 

classes, Real-shape analysis increases the occupied proportion of the sample 
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window. Consequently, fewer rings are empty and narrower ring widths can be used. 

Real-shape analysis, therefore, has the potential to detect scale-dependent patterns 

with a higher precision than point analysis. Furthermore, the ability to use smaller ring 

widths may make real-shape analysis more useful when sample sizes are small 

and/or the density of points is low. Under these conditions, analysis of point patterns 

would require large ring widths with the associated problems with pattern 

interpretation mentioned above. This improved precision is, however, balanced 

against the tendency for real-shape analysis to over-estimate the extent of significant 

spatial structure and the scale of the strongest pattern, as discussed above. 

Identifying the hard-core distance and inferring density-dependent competition 

Much of the criticism of point pattern analysis comes from the inability of distinguish 

small-scale dispersion from soft-core effects. However, identifying the presence and 

scale of soft-core effects could be useful. When applied in a sparse community, the 

scale of convergence of the pair-correlation function produced by real-shape and point 

analysis reveals the hard-core distance below which soft-core effects operate. 

Understanding how the scale of the strongest pattern relates to the hard-core distance 

and how this difference changes with the size of individuals could have important 

implications for determining the presence of density-dependent competition. An 

increase in both the hard-core distance and the scale of maximum aggregation with 

size would provide strong evidence for density-dependent competition. In other 

words, as shrubs increase in size (i. e. increase in the hard-core distance) they 

become separated by larger distances (i. e. increase in the scale of maximum 

aggregation) as previous neighbours are outcompeted. Furthermore, the distance 

between the hard-core distance and the scale of maximum aggregation should 

increase as competition increases in strength. This technique is investigated further in 

Chapter 7. 
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The application of real-shape analysis in studies of biomass 

Real-shape analyses may have important applications where the distribution of 

biomass, rather than rooting points, is of interest. For instance, Barbeito et al. (2008) 

used a combination of real-shape and point analyses to investigate the influence of 

tree crown pattern on the spatial pattern of seedlings and saplings. Maheu-Giroux 

and de Blois (2007) suggested real-shape techniques may be important when 

analysing clonal species whose population growth and spread is predominantly by the 

contiguous expansion of existing patches rather than the establishment of new 

patches or ramets, as in S. supranubius. Real-shape analyses could also be useful in 

studies of the distribution of gaps in biomass, such as forest-gap dynamics and 

patch-gap dynamics in and systems. 

6.6 CONCLUSIONS 

The utility of real-shape analyses that approximate the size and shape of individuals 

as multiple adjacent points is questioned. Most of the limitations of the technique can 

be attributed to the fact that the distance between two neighbouring objects is not a 

single value as in point analysis, but a distribution of distances separating multiple 

points. This is believed to have many effects, including overestimating the spatial 

extent of significant structure, overestimating the scale of the strongest pattern and 

underestimating the magnitude of the strongest pattern. These effects are 

exacerbated as the size of the individuals being analysed increases. 

As expected, substantial differences between real-shape and point analysis occurred 

below the hard-core distance. These are attributed to soft-core effects making point 

analysis incorrectly detect dispersion at small scales. If only point data are available, 

caution should be practised when interpreting spatial structures at small scales. 

Ideally interpretation should be supported by consideration of the hard-core distance 

which could be estimated from field measurements of the maximum canopy diameter. 

However, although real-shape analyses do not incorrectly detect small-scale 

dispersion as readily, they can also be difficult to interpret at small scales. This is 
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especially so when neighbouring individuals are located close together. In these 

situations information at the scale of the individual may be masked by the calculation 

of multiple distances both within and between neighbouring objects. 

Real-shape analysis does, however, have some benefits. In addition to allowing more 

precise assessment of scale-dependent pattern, the technique may be useful where 

patterns of biomass, rather than individuals, are of interest. It is suggested, however, 

that the benefits of real-shape analysis may be greatest when it is applied in tandem 

with point analysis, and supported by knowledge of the study system. Clearly, 

mapping the real shape of plants is a lot more time consuming than mapping point 

coordinates, which may explain the lack of interest in the real-shape approach until 

recently. However, with the increasing availability of remotely sensed data it should 

become increasingly feasible to quickly and accurately map the size and shape of tree 

and shrub crowns (see Chapter 4; Getzin et al., 2008). 

The recommendations and comments in this chapter apply predominantly to analyses 

of populations of non-overlapping individuals. 
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CHAPTER 7: PATTERN AND PROCESS IN S. SUPRANUBIUS AND 

THE EFFECT OF HETEROGENEITY 

7.1 INTRODUCTION 

One of the central aims of ecology is to investigate and understand the processes 

driving patterns of ecological phenomena (Levin, 1992; Tuda, 2007). Experimental 

techniques for studying plant population dynamics cannot generally be applied to long- 

lived species in low productivity systems, as direct measurements of processes are 

not feasible within realistic time-frames (see Section 1.3.2). Consequently, this 

chapter uses detailed spatial analyses to investigate the fine-scale characteristics of 

the distribution of S. supranubius, and to infer the operation of abiotic and biotic 

processes. 

Despite much research, we have a poor understanding of the factors determining the 

spatial pattern of vegetation (Bestelmeyer et al., 2006). Process inference can be 

hampered by the presence of spatial environmental heterogeneity. Almost all natural 

environments are patchy (Hewitt et al., 2007). Topography, microclimate and 

resource availability all vary in space, producing a mosaic of habitat quality. Many 

studies have demonstrated the preferential location of individuals within, for example, 

certain habitats (Pueyo and Alados, 2007) or topographic regimes (Klausmeier, 1999). 

Thus spatial environmental heterogeneity can affect the broad-scale distribution of a 

species, known as first-order effects (see Table 3-1). Cases where the spatial pattern 

of individuals can be unequivocally shown to be a consequence of biological 

interactions between individuals alone are uncommon (Rohani et al., 1997; Perfecto 

and Vandermeer, 2008; Rietkerk and van de Koppel, 2008). The pattern induced by 

exogenous abiotic controls can be mistaken for spatial correlation that is due to 

demographic processes (Wagner and Fortin, 2005), or may mask true demographic 

effects. Consequently, much work in contemporary ecology attempts to separate the 

abiotic and biotic controls on species' patterns and dynamics. To achieve this, many 

studies are performed in what are presumed to be environmentally homogeneous 
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areas (Wagner and Fortin, 2005; Perfecto and Vandermeer, 2008) to try to remove the 

effect of environmental heterogeneity. These, and the majority of other studies, 

including simulation studies of species self-organisation (e. g., Barbier et al., 2008; 

Pueyo et al., 2008), are based on the assumption that the second-order spatial 

structure of a species (which is believed to result from ecological interactions between 

individuals) occurs independently of environmental heterogeneity. This is despite the 

fact that almost all natural communities are embedded in a landscape of numerous 

environmental heterogeneities, both spatial and temporal (Hewift et al., 2007; see 

Chapter 5). 

While theoretical studies have considered how spatial environmental heterogeneity 

can influence co-existence mechanisms (e. g., Chesson, 2000a; Amarasekare, 2003), 

few studies, either theoretical or analytical, have considered how spatial 

environmental heterogeneity can affect the secondary spatial structure of individual 

species. Those studies that have, used artificial research designs (Hartgerink and 

Bazzaz, 1984; Neatrour et al., 2007; Roiloa and Returto, 2006,2007; Roiloa et al., 

2007) and therefore cannot test the importance of natural heterogeneity, especially at 

large scales. Therefore, there is surprisingly little theory or understanding of how 

natural spatial environmental heterogeneity may interact with biological processes to 

determine population dynamics (Wagner and Fortin, 2005; Murrell, 2009). One 

exception is a study by Getzin et al. (2008), which demonstrated that the biological 

processes operating in Douglas fir (Pseudotsuga menziesit) forests interact with 

spatial environmental heterogeneity to produce qualitatively and quantitatively different 

population spatial structures in different areas. The interaction of abiotic and biotic 

processes operating at different scales poses a formidable challenge to ecological 

researchers (Shimatani and Kubota, 2004; Wagner and Fortin, 2005). Thus, in 

addition to investigating the spatial structure of S. supranubius, this chapter also 

considers whether, and how, spatial environmental heterogeneity interacts with 

biological processes to determine the spatial structure of S. supranubius. 
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A prior! predicted versus observed spatial patterns 

When investigating spatial point patterns most ecological studies apply Ripley's K(r) or 

the pair-correlation function (or their variants) to mapped distributions of points 

representing individuals of the species of interest. Despite the ubiquity of articles 

using these techniques (Figure 1-2), numerous studies have asserted that the analysis 

of pattern alone is not enough to infer underlying processes (Mahdi and Law, 1987; 

Borcard et al., 2004; Schurr et al., 2004). However, it is widely accepted that non- 

random processes frequently result in highly structured, distinctive patterns (McIntire 

and Fajardo, 2009). Biological organisation exists and, although the link between 

pattern and process may be imperfectly understood, patterns of ecological 

phenomena continue to provide important opportunities for enhancing our 

understanding of population dynamics and structure. To account for the inferential 

gap between pattern and process, increasing emphasis is being placed on deductive 

reasoning rather than inductive description of pattern (Schurr et al., 2004; Fajardo et 

al., 2008; McIntire and Fajardo, 2009). Instead of attempting to assign processes to 

observed patterns, deductive reasoning uses ecological theory and knowledge of the 

focal system and species to formulate precise a priori hypotheses of the likely abiotic 

and biotic processes of importance and their expected spatial signatures. Support for 

these hypotheses can then be tested by analysing the observed pattern of individuals 

and assessing how closely they fit the predictions. 
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7.2 AIMS AND OBJECTIVES 

This chapter addresses two main hypotheses: 

Hypothesis 1: The five focal substrates will exhibit differing levels of large- 

scale spatial environmental heterogeneity. 

Hypothesis 2: Large-scale environmental heterogeneity will not influence the 

spatial structure of, and (by inference) the biological 

processes structuring, the S. supranubius populations. 

A priori hypotheses of the likely biological processes are formulated and their support 

tested using detailed spatial analysis of the observed patterns of S. supranubius 

individuals. A summary of the hypothesised processes and their associated spatial 

predictions is provided in Table 7-1. 
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Hypothesised Process 1: vegetation reproduction by branch layering 

S. supranubius is capable of both sexual and vegetative reproduction (Kyncl et al., 

2006). Many studies have suggested that vegetative spread is more important than 

sexual reproduction for maintaining population growth rates in clonal species 

(Mandujano et al., 2001; Clark-Tapia et al., 2005; Mandujano et al., 2007). Vegetative 

spread by branch layering is therefore expected to be an important process driving the 

spatial structure of S. supranubius. The production of clonal offspring via branch 

layering primarily occurs when individuals attain large sizes (McAuliffe et al., 2007). 

Field observations indicate that S. supranubius individuals typically reproduce clonally 

once individuals reach a diameter of c. 10 m. The rooting of lateral branches 

produces independent ramets around the periphery of the senescing maternal shrub. 

This is expected to produce small-scale aggregations of young individuals at scales of 

less than 10 m. 

Hypothesised Process 2: intra-specific competition 

Limited water availability invokes strong competitive interactions between arid plants 

(Briones et al., 1998; Gebauer et al., 2002). Density-dependent thinning should cause 

cohorts of shrubs to become increasingly dispersed over time (Metsaranta and 

Lieffers, 2008). Field observations suggest that interconnections between ramets are 

lost shortly after ramet establishment and senescence of the maternal shrub. Thus, it 

is expected that density-dependent thinning will influence the distribution of S. 

supranubius individuals shortly after ramet establishment. This process should be 

evident in the decreasing strength of aggregation with cohort age (i. e., a decrease in 

the magnitude of the strongest pattern as cohorts age). 

Hypothesised Process 3: clonal reproduction will occur regardless of 

environmental heterogeneity 

Landscape-scale heterogeneity, perhaps associated with broad habitat types, has 

been shown to influence the dynamics of clonal plants, often by driving spatial 

variation in reproductive dynamics (Mandujano et al., 2001,2007). However, all focal 

S. Supranubius populations come from the same habitat type and it is therefore 
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predicted that S. supranubius will portray a spatially consistent signature of clonal 

growth, regardless of the degree of environmental heterogeneity present. Thus, 

where environmentally heterogeneity is present, individuals will be clustered at large 

scales but within these patches, the spatial pattern of young individuals should follow 

the signature of clonal reproduction (see Hypothesis 1). This should be evident in 

similar scales of aggregation of young individuals on all five substrates once the 

effects of large-scale heterogeneity have been removed from the species distribution. 

Hypothesised Process 4: the magnitude of spatial environmental heterogeneity 

will vary between substrates 

The five substrates considered are of different age and vary considerably in their 

surface geornorphological characteristics (pers. obs.; Kyncl et al., 2006; see Table 

2-1). Assuming that the geomorphology of the substrates affects the broad-scale 

distribution of S. supranubius it is hypothesised that the substrates will display differing 

levels of biologically relevant environmental heterogeneity. 

7.3 METHODS 

7.3.1 DATA COLLECTION 

The canopy areas and locations of 17,551 S. supranubius individuals were mapped 

over 162 hectares on five substrates, using spectral one-class classification (Chapter 

4). The locations of S. supranubius individuals were represented by points located at 

the centre of the canopies, defined by co-ordinates (x, y) (see Section 4.4). Sample 

windows on each substrate were rectangular. However, because of variation in the 

shape and extent of the five substrates, the sample window size had to vary between 

substrates (see Section 4.4). For each substrate the data were divided into two 

equally sized, spatially contiguous datasets. One dataset from each substrate was 

randomly selected for analysis in the present chapter (Table 7-2). The remaining data 

have been retained for the validation of a simulation model that is currently in 

development. 
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Table 7-2 Dimensions of the sample windows used in Chapter 7. The dimensions of the sample 

windows are given in Universal Transverse Mercator (UTM). ULX/ULY and LRX/LRY provide 
the x and y coordinates of the upper left, and lower right corners of the sample window 
respectively (metres). 

Substrate ULX / ULY LRX / LRY Area (he) 

1* 340150 / 3124050 340700 / 3123700 19.25 

2 340400 / 3125100 340750 / 3124400 24.50 

3 341710 / 3126780 342110 / 3126455 13.00 

4 342600 / 3123950 343300 / 3123600 24.50 

5 342785 / 3124995 342985 / 3124745 5.00 

* Substrate 1a in Table 4-6 

7.3.2 ANALYSES 

All paftern analyses were performed in Programita (Wiegand and Moloney, 2004). 

Analysis 1: environmental heterogeneity 

This analysis determined the level of spatial environmental heterogeneity present on 

each of the five substrates (Hypothesis 1; Hypothesised Process 4). Separating the 

true effects of environmental heterogeneity from the effects of biological processes is 

not a clear-cut task, and is the subject of current statistical research (Law et al., 2009). 

Heterogeneity is defined as spatially structured variability in a property of interest 

(Wagner and Fortin, 2005). Because of differences in resource requirements and life 

history attributes, species will differ in their response to the spatial distribution of 

particular resources. Thus, measures of heterogeneity should capture the distribution 

of resources important to the species of interest. To ensure this, S. supranubius 

individuals were used as a biological indicator of habitat suitability and thus 

environmental heterogeneity (following Stoyan and Penttinen, 2000; Getzin et al., 

2008, Barbeito et al., 2009; Zhu et al., 2010). It is assumed that very large S. 

supranubius individuals are either very old, or have a very high growth rate. Either 

way, the presence of very large individuals implies the local habitat quality is superior 

relative to surrounding locations. Thus, the location of the largest individuals is 
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assumed to provide a reasonable proxy for biologically relevant environmental 

heterogeneity 

The small-scale structure of plant communities is typically attributed to plant-plant 

interactions, whereas deviation from spatial randomness at larger scales is attributed 

to environmental heterogeneity (Stoyan and Penttinen, 2000; Wiegand et al., 2007b). 

Environmental heterogeneity should cause broad-scale patches of elevated plant 

density. This should be represented by deviations of g(r) and L(r) from the CSR 

expectation (i. e., g(r) = 1, L(r) = 0) at scales exceeding the distance at which shrub- 

shrub interactions are believed to be important (Wiegand and Moloney, 2004). Biotic 

interactions between S. supranubius individuals are not expected to extend beyond 

c. 22 m (see page 188). Because L(r) is a cumulative function small-scale spatial 

structure can influence the function values at larger scales. This may cause a steady 

increase in L(r) as scale increases independent of any heterogeneity effects. 

Therefore, L(r) was only considered to represent heterogeneity if statistically notable 

pattern (i. e., location of the empirical function outside the simulation envelopes) 

followed an increase in the gradient of the function. To ensure any heterogeneity 

indicated by the pattern analyses is genuine, it is important to support the analyses 

with knowledge of the heterogeneity processes that may be important (Law et al., 

2009). 

On each substrate the spatial pattern of the largest individuals (ý: 30 M) was 

compared to the null model of CSR using both g(r) and L(r). This excluded all but the 

largest mature adults and thus should be a good indicator of environmentally driven 

habitat quality. Sample sizes for this analysis were 431,131,47,141 and 15 on 

Substrates 1 to 5 respectively. A ring width of 5m was used in analyses using g(r) as 

it produced relatively smooth functions. 

Analysis 2: size-abundance distribution 

Several methods were used to describe the size-abundance distribution of S. 

supranubius (Hypothesis 2). For each substrate the density of individuals, the 

average canopy area and the standard deviation in canopy area was calculated. Size 
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inequality within substrates was characterised by the coefficient of variation (CV) in 

canopy area (Coomes and Allen, 2007). Larger values of CV indicate greater size 

inequality. 

Mathematical distribution functions can be used to model the size-abundance 

distribution of a population (i. e., the number of individuals that fall within each size 

class). Over recent years there has been an increasing emphasis on using size- 

abundance distributions to help understand underlying demographic processes (Wang 

et al., 2009). Under demographic equilibrium, the size-abundance distribution of 

plants can be understood as the consequence of size-dependent variation in growth 

and mortality (Coomes et al., 2003). Both mortality and growth reduce the number of 

individuals in a size class; mortality decreases the number of individuals in the present 

and subsequent size classes, whereas growth decreases the number of individuals in 

the present size class and moves individuals into the next larger size class (Muller- 

Landau et al., 2006; Figure 7-1 a). Depending on how growth and mortality scale with 

size, different size-abundance distributions will be created. Muller-Landau et al. 

(2006) used relationships between size, growth and mortality to derive three analytical 

predictions of size-abundance distributions: power law, exponential and Weibull 

functions. Using the predictions of Muller-Landau et al. (2006) and knowledge of the 

focal species the size-abundance distribution of S. supranubius could be predicted. 

In addition to the effects of mortality and growth, clonal reproduction is expected to 

have a strong influence on the S. supranubius size-abundance distribution 

(Hypothesised Process 1). Because of clonal reproduction, large individuals are not 

only lost from the system through mortality (as in Muller-Landau et al. 's models) but 

may re-enter the model as multiple small individuals (Figure 7-1b). New ramets are 

expected to be clustered and consequently, competitive interactions among the 

smallest individuals are expected to be intense. Therefore, mortality in the smallest 

size-classes is predicted to be a function of individual size, decreasing as individuals 

increase in size and become more dispersed (following the hypothesis of density- 

dependent thinning). These processes are predicted to generate a steep size- 
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abundance distribution among small S. supranubius individuals, which should be most 

closely fit by a scaling function (Coomes et al., 2003) or the Weibull distribution 

(Muller-Landau et al., 2006). In the intermediate size-classes competition is expected 

to be less intense and exogenous disturbance may be a major source of mortality 

(Coomes et al., 2003). The mortality rate should therefore be constant across the 

intermediate size classes, corresponding with a Weibull distribution (Muller-Landau et 

al., 2006). However, in the largest size classes clonal reproduction is again predicted 

to have a strong influence on mortality dynamics. In many demographic models, the 

mortality rate is often expected to remain constant in the largest size classes. Among 

S. supranubius individuals, however, the mortality rate is expected to increase with 

size as large individuals collapse and produce clonal ramets. Following the predicted 

effects of demographic processes on size-abundance distributions described Coomes 

et al. (2003) and Muller-Landau et al. (2006) it is hypothesised that the size- 

abundance distribution of S. supranubius should be most accurately described by 

either a scaling function or the Weibull distribution. 

m <O 

(a) 

13 

(b) 
Size of individuals Size of individuals 

-ý Growth 

11 Mortality 

1, Clonal reproduction 

Figure 7-1 Size abundance distributions as conceptualised by (a) Muller-Landau et al. (2006) 

and, (b) and with the addition of clonal reproduction. Clonal reproduction is expected to 

produce a steeper size-abundance relationship than when only growth and mortality determine 

its shape. Furthermore, whereas some demographic models predict mortality rate to be 

constant with size (e. g., the power-law and exponential distribution [Muller-Landau et al., 2006, 

al), mortality rate is expected to scale with size among the smallest and largest individuals (b) 

(see text for explanation). 
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Exponential, power, two-parameter Weibull, and lognormal functions were fit to the 

observed S. supranubius size-abundance data using maximum likelihood methods. 

The exponential, Weibull and lognormal functions were fit using the fit. distr tool in the 

MASS package of R (Ripley, 2009). The power law distribution was fit using the 

pareto. fit tool. Akaike's Information Criterion (AIC) (Akaike, 1974) was used to 

compare the fit of the different functions. 

Analysis 3: the spatial structure of S. supranubius 

This analysis aimed to compare the spatial structure of individuals between 

substrates, without the confounding effects of environmental heterogeneity. This 

comparison would reveal whether there were any differences in the structure of S. 

supranubius individuals on different substrates that could be attributed to 

environmental heterogeneity (Hypothesis 2). The biological processes driving the 

dynamics of a cohort of individuals are likely to change with the age of the cohort. it is 

therefore common to analyse the spatial structure of individuals of different age (e. g., 

Barbeito et al., 2009; Zhang et al., 2009). As information on the age of S. Supranubius 

individuals was not available, size was used as a proxy for relative age. Details of the 

size classes and the methodological techniques for removing the effects of 

heterogeneity are described below. The spatial structures revealed in this analysis 

allow the support for hypotheses 1 to 3 to be assessed. 

Defining the S. supranubius size classes 

The relative importance of different biological processes for the spatial structure of S. 

supranubius will change as a cohort ages. Therefore, the definition of size class must 

consider the processes being investigated. There is, however, a theoretical-statistical 

trade-off when defining size classes. On the one side it is important not to dilute 

spatial signatures by including individuals that are too large or too small for the 

predicted process. For instance, the signature of clonal reproduction is expected to be 

strongest among the youngest individuals before processes such as competitive 

thinning modify the pattern. On the other hand, narrow size classes may produce 

small sample sizes, potentially affecting the reliable identification of spatial pattern 
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(Chapter 5). There is, however, no formal definition of a minimum sample size in 

spatial pattern analyses. Published recommendations range from 15 individuals 

(Rossi et al., 2009) to 70 individuals (Wiegand et al., 2007a). 

Both clonal reproduction by branch layering, and intra-specific competition are 

expected to be major processes driving the spatial structure of S. supranubius. The 

spatial signature of clonal reproduction should be most pronounced among recently 

produced ramets (Hypothesised Process 1). Kyncl et al. (2006) assumed that recent 

S. supranubius clonal offspring would have canopy diameters of less than 1m (i. e., 

0.79 M2 canopy area). However, as individuals with a canopy area less than 1 M2 

were excluded from the dataset (see Section 4.4), replicating Kyncl et al. 's (2006) size 

class definition was not possible. Conversely, because of the slow dynamics of arid 

shrubs, the univariate signature of intra-specific competition may not be evident until 

cohorts are very old (Hypothesised Process 2). Therefore, the investigation of these 

processes requires size classes that allow the investigation of individuals that are 

reliably very young and very old. 

For subsequent analysis, S. supranubius individuals were divided into three canopy- 

size classes representing small, medium-sized and large individuals. For various 

reasons, size may be an inadequate representation of age. However, because of the 

slow growth of S. supranubius, it is assumed that a broad division based upon canopy 

area provides a suitable correlate of age. In general the log-normal distribution was 

found to fit the size-abundance distribution of S. supranubius most accurately (see 

Section 7.4.1). The canopy-area data were logged to give normally distributed data. 

Medium-sized shrubs were defined as those with (log)canopy area within one 

standard deviation of the mean. Individuals with smaller canopy-areas were defined 

as small, whereas individuals with larger canopy-areas were defined as large. This 

corresponded to canopy-area (x) ranges of 1: 5 x <2.8 M2 , 2.8: 5 x< 20.6 M2 and 

20.6: 5 x M2 for small, medium-sized and large individuals respectively. Table 7-3 

shows the number of individuals within each size class for each sample window. The 

definition of the large size class produced relatively small sample sizes on Substrates 
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3 and 5 (Table 7-3). It was decided, however, that reducing the lower size limit to 

increase sample sizes would risk diluting any spatial signature of intra-specific 

competition. For the purpose of describing large-scale environmental heterogeneity 

an extra size class was defined containing all individuals with a canopy area xa 30 

m2. This class excluded all but the largest mature adults and thus should be a good 

indicator of environmentally driven habitat quality. Small samples sizes, however, 

were produced on Substrates 3 and 5 (Table 7-3). 

Table 7-3 The number of S. supranubius individuals within each size class in each of the five 

sample windows used in Chapter 7. The number of individuals used in the analysis of 
heterogeneity (Het. ) is also given. 

Substrate 
Number of individuals per size class 
Small Medium Large Hot. 

1 342 988 619 431 
2 432 1711 329 131 

3 224 423 83 47 

4 345 2333 382 141 

5 219 264 43 15 

Removing the effect of heterogeneity. the inhomogeneous g(r) 

The inhomogeneous g(r) compares the distribution of individuals to a heterogeneous 

Poisson null model. The heterogeneous Poisson process displaces the original 

location of shrubs in accordance with a user-defined intensity function A(x, y) that 

represents first-order effects (i. e., environmental heterogeneity). This destroys the 

small-scale spatial structure (driven by biological interactions) whilst maintaining the 

large-scale pattern (driven by environmental heterogeneity). The intensity function 

was constructed from the distribution of the largest individuals (? 30 M2) using a 

circular moving window of radius h. The intensity A(x, y) is weighted by an edge- 

corrected Epanedhnikov kernel (Stoyan and Stoyan, 1994; Wiegand et al., 2007a). 

This technique produces a spatially explicit intensity function that is notably smoother 

than more traditional moving window approaches. The Epanedhnikov kernel is 

defined as: 
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eh(d) =3 I_d 
2 

4h j 

if - h:! ý dh and zero otherwise, where d is the distance from the focal point and 
I 

h is the bandwidth (Cousens et al., 2008; Zhu et al., 2010). 

The above approach is based on the assumption of the separation of scales (Wiegand 

et al., 2007a); that is, environmental heterogeneity will influence the distribution of 

shrubs at large scales, whereas shrub-shrub interactions will take place at small 

scales. Therefore, to account for environmental heterogeneity, the kernel bandwidth 

(h) should be greater than the scale of second-order effects, but smaller than the 

scale of environmental controls (Thorsten Wiegand, personal communication). In 

northern forests second-order effects are widely believed to extend to a maximum of 

15 m (Stephan Getzin, personal communication). However, no comparable studies 

are available for and shrubs. It is generally accepted that ecological interactions in 

and systems are primarily conducted below ground for water resources (Noy-Meir, 

1973) via laterally extended root systems, which can stretch well beyond shrub 

canopy limits (Hartle et al., 2006). Without excavation, which is not permitted in the 

study site or for the study species, scales of below-ground interaction can only be 

estimated from above-ground morphology. Although some studies have attempted to 

map the below-ground morphology of and shrubs, and in some cases its relationship 

to canopy morphology (e. g., Kummerow et al., 1977; Palacio and Montserrat-Marti, 

2007), results are species specific and based on the excavation of relatively few 

individuals, making it difficult to generalise to equivalent species. Barbier et al. (2008) 

estimated that and shrub root systems extended horizontally beyond the canopy by a 

minimum 25% of the canopy radius. Assuming isotropic root distributions and canopy 

circularity, S. supranubius individuals in the study system have a maximum canopy 

radius of c. 9 m. Using the above metric, this corresponds to a maximum horizontal 

root extent of 11 m, and thus a maximum interaction scale of 22 m. Conversely, 

Caldwell et al. (2008) found that the influence of Larrea tridentata and Lycium pallidum 

Miers. (Solanaceae) canopies on the structure of soils and their hydraulic properties 
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extended to 1.4 times the canopy radius. In the present system, this would represent 

a maximum scale of interaction of c. 25 m. Consequently, a conservative value of h= 

30 m was selected for the Epane6hnikov kernel. This incorporated both Barbier et 

al. 's and Caldwell et al. 's metrics, but also allowed for slightly longer-distance 

interactions to occur. 

To control for the effects of heterogeneity, the second-order structure of 

S. supranubius was analysed using the homogeneous g(r) and the inhomogeneous 

g(r) on environmentally homogeneous and heterogeneous substrates respectively. 

The g(r) for each size class on each of the substrates was compared. If analyses 

revealed similar spatial structures on the homogeneous and heterogeneous 

substrates it could be concluded that no interaction occurred between environmental 

heterogeneity and S. supranubius demographic processes (e. g., Hypothesised 

Process 3). Conversely, strong differences in the patterns detected in homogeneous 

and heterogeneous substrates would provide evidence consistent with feedback 

effects between heterogeneity and demographic processes (Hypothesis 2). 

Because of differences in data density, different ring widths (& ) were used to 

construct g(r) in each size class. Small ring widths can produce noisy function 

estimates, often producing spurious and meaningless spikes, especially when sample 

size is small (Wiegand and Moloney, 2004; Illian et al., 2008). However, large ring 

widths lose fine-scale information (see Figure 3-2e and f). Analysis of the small, 

medium and large size classes used ring widths of 3,2 and 4m respectively, as these 

produced relatively smooth g(r)-functions. 

When individuals in a population do not overlap, approximating their location as 

dimensionless points can lead to the g(r) incorrectly detecting dispersion at small 

scales (Wiegand et al., 2006; see Section 6.1). To estimate the hard-core distance 

below which g(r) may be influenced by the shape and size of individuals (i. e. soft-core 

effects), the analyses were performed once with the data estimated as points and 

again with the size and shape of the shrubs maintained (i. e., real-shape analysis; see 

Section 6.2.5). The scale at which these two functions have equivalent g(r) values 
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estimates the maximum canopy diameter (see Section 6.2.2). The convergence of the 

point and real-shape g(r) is interpreted as the hard-core distance below which soft- 

core effects may affect the pattern detected by g(r). For each analysis the maximum 

value of g(r), the scale at which it occurred. and the hard-core distance were recorded. 

Analysis of spabal patterns beyond the hard-core distance used the results of the point 

pattern analysis 

Comparing peften S&Gngth 

Studies of population patterns commonly use simulation envelopes generated from 

Monte Carlo simulations to generate qualitative interpretations of pattern aggregation, 

randomness or dispersion (see Section 1.3.4). Such interpretations can prevent 

meaningful comparisons being made between different populations or scenarios 

(Fajardo et al., 2006). especially as the width of the simulation envelope is closely 

related to the number of individuals mapped (see Sections 5.3.4 and 5.4.3). As these 

analyses used point paftems and the null model of complete spatial randomness 

(CSR) (expected values of g(r) =1 and L(r) =0 under CSR), differences in pattern 

strength between size classes and substrates were assessed by directly comparing 

the empirical g(r) curves (following Getzin et al., 2008, Barbeito et al., 2009; Meador et 

al., 2009, see Section 6.4.2 page 166). 
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7.4 RESULTS 

7.4.1 ENVIRONMENTAL HETEROGENEITY 

To determine the presence of large-scale spatial environmental heterogeneity, the 

pattern of the largest individuals (2: 30 M2) on each substrate was compared with the 

null model of CSR (Figure 7-2). A strong increase in L(r) at large scales (> 20 m) was 

observed on Substrate 4. Substrate 2 showed a weak increase in L(r) at large scales 

but as there was no obvious change in the gradient of the curve it was not considered 

to represent heterogeneity. The L(r) on Substrate 1 did not indicate the presence of 

heterogeneity. Analysis by g(r) largely confirmed the results of L(r), indicating 

homogeneity on Substrates 1 and 2, but a deviation from homogeneity at large scales 

on Substrate 4. 

The sample sizes used on Substrates 3 and 5 are considered to be small (Le., < 70; 

Wiegand et al., 2007a). The results of both the g(r) and L(r) may therefore be 

unreliable, especially on Substrate 5 where only 15 individuals were used. At such 

small samples sizes the simulation envelopes can become wide, increasing the risk of 

Type 11 error. As such, interpretation focuses only on the main patterning trends 

revealed by the functions, and whether these indicate any underlying heterogeneity 

(i. e., the 'significance' of the pattern is not considered as important as the presence of 

strong increases or decreases in the function values). Analysis by g(r) on Substrate 3 

does not exceed the simulation envelopes at any scale. The function does, however, 

increase sharply after 35 m and approaches significance at the largest scales. The 

L(r) function on Substrate 3 oscillates around the upper simulation envelope at all 

scales. These results suggest that the substrate is environmentally heterogeneous. 

Observations in the field revealed strong ridge-trough topography on this substrate 

which adds support to the apparent presence of heterogeneity. The L(r) function on 

Substrate 5 does not indicate the presence of heterogeneity, but the g(r) function 

shows considerable fluctuations. However, because of the small sample size 

(exacerbated by the non cumulative nature of the g(r) function) fluctuations in g(r) 

were expected. Furthermore, field observations did not reveal any obvious 
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heterogeneity forces. Analysis of the same data as real-shapes using g(r) detected 

dispersion (g(r) < 1) of the largest individuals between 21 and 30 m (see Appendix E). 

However, the real-shape g(r) remained within the simulation envelope at all scales. 

Therefore, along with Substrates 1 and 2, Substrate 5 was considered to be 

homogeneous in subsequent analyses. Conversely, both Substrates 3 and 4 appear 

to be environmentally heterogeneous (supporting Hypothesised Process 4). 

Knowledge of the different substrates supports this conclusion as both Substrates 3 

and 4 are pahoehoe flows and thus have pronounced ridge-trough topography. 

Substrate 5 is treated as homogeneous in the following analyses, but it is 

acknowledged that some heterogeneity may be present. 
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Figure 7-2 Assessing the presence of environmental heterogeneity on the five substrates. The 
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7.4.2 SIZE-ABUNDANCE DISTRIBUTION 

Density 

Table 7-4 summarises the characteristics of the S. supranubius population size- 

structure on each of the five substrates. Substrate 4 has the highest density of 

individuals. Substrates 1,2 and 5 have similar densities of individuals (c. 100 

individuals per hectare), whereas Substrate 3 has a much lower density, about half 

that of the other substrates. The highest density of small individuals is found on 

Substrate 5, with over twice the density observed on the remaining four substrates. 

The density of small individuals on Substrates 1 to 4 is remarkably similar. Greater 

inter-substrate variation is observed in the density of medium-sized individuals, which 

is highest on Substrate 4 and lowest on Substrate 3, with Substrates 1,2 and 5 

showing roughly similar, intermediate densities. Substrate I has by far the highest 

density of large individuals with roughly twice the density found on Substrates 2 and 4, 

and four and five times the density present on Substrates 5 and 3 respectively. 

Canopy area 

Substrate 1 has the largest mean canopy area, reflecting the greater density of large 

individuals. The mean canopy area on Substrates 2,3 and 4 are similar, differing by a 

maximum of only 1 M2. Substrate 5 had the smallest mean canopy area, reflecting the 

high density of small individuals on this site. Games-Howell test (used because of 

unequal variances and sample sizes) revealed statistically significant differences in 

mean canopy between all substrates (p < 0.05). Cohen's d (a measure of effect size) 

revealed most of these differences to have a medium or large effect (Table 7-5). Size 

inequality was greatest on Substrate 3, followed by Substrates 1,5,2 and 4 in 

descending order (Table 7-4). 
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Size distribution 

On all substrates the size distribution of S. supranubius was highly positively skewed, 

with abundance decreasing with plant size (Figure 7-3). On all substrates, therefore, 

the majority of individuals have a canopy area that is smaller than the mean. Larger 

size classes have relatively few individuals, but some individuals attain very large 

sizes (especially on Substrate 1). The log-normal function provided the closest fit to 

the S. supranubius size-abundance data for all individuals on Substrate 1 to 4 (Table 

7-6). Substrate 5 appears to have a different size-abundance distribution to the other 

four substrates, being most accurately described by a power-law distribution. 

Compared to the best-fitting function, there was little empirical support for the 

competing functions (AAIC > 10; Burnham and Anderson, 2002). The Weibull 

distribution provided the second closest fit on Substrates 1,2 and 4. On Substrate 3, 

the second closest fit was provided by the power-law distribution. The worst 

description of the size-abundance distribution on Substrate 5 was given by the 

Weibull distribution. 
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7.4.3 STRUCTURE OF DIFFERENT SIZE CLASSES 

Following the analysis of environmental heterogeneity, the homogeneous g(r) was 

used to analyse the spatial pattern of S. supranubius on Substrates 1,2 and 5, 

whereas the inhomogeneous g(r) was used on Substrates 3 and 4 (Figure 7-4). All 

analyses, with the exception of large individuals on Substrates 3 and 5, exceeded the 

minimum sample size of 70 individuals recommended by Wiegand et al. (2007a). The 

hard-core distance increased with the size classes reflecting the increase in canopy 

extent. At scales exceeding the hard-core distance, the use of real-shape or point 

analysis had little effect types of pattern identified. The only exceptions were in the 

analysis of large individuals on Substrates 3 and 5 where the function produced by 

analysis of points was more jagged than that produced by real-shape analysis. This 

was probably a result of the relatively low sample sizes in these size classes (Table 

7-3; Wiegand and Moloney, 2004). 

interpretation of the S. supranubius spatial structure uses the results of the point 

analysis. Any dispersion or decreases in g(r) detected below the hard-core distance 

are not discussed, as it is not possible to separate real dispersion from the effects of 

canopy extent at these scales. Increases or peaks in g(r) below and above the hard- 

core distance are, however, discussed as these represent real aggregation rather than 

an artefact of the canopy extent. 

The distribution of small individuals on all five substrates was aggregative 

(corresponding with Hypothesised Process 1; Figure 7-3). Aggregation of small 

individuals was strongest on Substrate 2 followed by Substrates 1,4,3 and 5 in 

descending order (Table 7-7). On all substrates the modal inter-shrub distance 

between small individuals occurred at distances of between 1 and 3m (corresponding 

with hypotheses I and 3). On Substrates 2 and 3 the scale of maximum aggregation 

coincided with the hard-core distance (Table 7-7). On Substrate 1 and 4 maximum 

aggregation occurred at scales below the hard-core distance, whereas the scale of 

maximum aggregation exceeded the hard-core distance on Substrate 5. 
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Table 7-7 The hard-core distance, maximum magnitude of g(r) (ga, (r)) and scale (6 of g,,, (r) 

for each S. supranubius size class on each of the five substrates. Both the hard-core distance 

and the scale Q) are measured in metres. 

Small Medium-sized Large 

Hard-core Hard-core Hard-core 
g. (r) r g. (r) r g,,,.. (r) r distance distance distance 

3 4.90 2 4 2.73 4 8 1.40 10 

2 2 6.47 2 4 1.82 4 8 1.42 11 

3 3 3.91 3 4 2.98 4 10 3.27 10 

4 3 4.15 1 4 1.42 4 8 1.61 9 

5 2 3.60 3 5 1.62 3 7 1.86 8 

The distribution of medium-sized individuals was also aggregative on all five 

substrates (Figure 7-4). On all substrates the aggregation among medium-sized 

individuals was weaker than the aggregation among small individuals (corresponding 

with Hypothesised Process 2; Table 7-7). The strongest aggregation of medium-sized 

individuals occurred at 4 m, except on Substrate 5 where the strongest aggregation 

was at 3m (Figure 7-3; Table 7-7). However, the strength of aggregation in the 

medium-sized shrubs does not follow the strength of aggregation among small 

individuals (Table 7-7). The strongest aggregation among medium-sized individuals 

was observed on Substrate 3, followed by Substrates 1,2,5 and 4 (Table 7-7). As 

with the small individuals, the g(r) for medium-sized shrubs remained above I at all 

scales on Substrates 1,2,3 and 5 (Figure 7-4). On Substrates 1 to 4 the scale of the 

maximum aggregation coincided with the hard-core distance (Table 7-7). On 

Substrate 5, however, the strongest aggregation of medium-sized individuals occurred 

at scales below the hard-core distance. 

Large individuals were aggregated on all substrates (Figure 7-4). The scale at which 

maximum aggregation occurred increased to between 8 and 11 m (Table 7-7). On all 

substrates this either coincided with, or exceeded, the hard-core distance. On 

Substrates 1 and 2 the aggregation was weak, with the function reaching a maximum 

height of g(r) = 1.4 at scales of 10 and 11 rn respectively (Figure 7-4a, b; Table 7-7). 
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On both Substrates 1 and 2 this aggregation is weaker than observed in previous size 

classes (corresponding with Hypothesised Process 2). Similar aggregation strengths 

were detected on Substrate 4 with maximum aggregation occurring at 9m (Figure 

7-4d; Table 7-7). On this substrate, however, the aggregation is stronger than the 

aggregation among medium-sized individuals. This increase in aggregative strength 

is also observed on Substrates 3 and 5 (disagreeing with Hypothesised Process 2; 

Figure 7-4c, e). Furthermore, the spatial pattern of large individuals on the latter two 

substrates shows notable structure at larger scales. Large individuals were dispersed 

between 20 and 21 m on Substrate 5, and there was a dip in g(r) to randomness 

between 15 and 18 m on Substrate 3. Re-analysing these data with a real-shape 

approach (because of small sample sizes) detected slight dispersion of large 

individuals between 29 and 39 m on Substrate 3, and between 16 and 21 m and 36 

and 41 m on Substrate 5 (Appendix F). 

On all substrates the scale of aggregation and the hard-core distance increased with 

size class (Table 7-7 and Figure 7-4). There is a general trend across all substrates 

for the scale of maximum aggregation to coincide with, or fall below, the hard-core 

distance among small and medium-sized individuals. Among large individuals the 

scale of aggregation exceeds the hard-core distance by up to 3 m. 

Figure 7-4 (pages 203 - 207) The spatial pattern of different size classes of S. supranubius on 

five substrates of contrasting spatial environmental heterogeneity. Substrates 1 to 5 are shown 
in graphs (a) to (e) respectively. The inset graphs compare the results of analyses using real- 

shape data (grey lines) and analyses using point data (black lines). The main graph shows the 

results of analyses using point data. The solid lines show the result for each size class (small, 

medium and large - blue, red and green lines respectively), whereas the vertical dotted lines 

show the hard-core distance below which point analysis g(r) may be influenced by the shape 

and size of individual shrubs. The black, horizontal dotted line at g(r) =1 show the expected 

value under the null model of complete spatial randomness. The homogenous g(r) was used on 

substrates 1,2 and 5, and the inhomogeneous g(r) was used on substrates 3 and 4. The 

intensity functions used in the inhomogeneous g(r) were constructed from positions of the 

largest individuals (? 30 M). 
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7.5 DISCUSSION 

This chapter investigated the spatial patterns of S. supranubius individuals on five 

substrates with the aim of inferring the biological processes underlying the species' 

spatial structure and investigating whether these processes interact with large-scale 

environmental heterogeneity. A priori hypotheses describing the expected processes 

of importance were developed and translated into expected spatial signatures (Table 

7-1). Support for the hypotheses was tested by applying detailed univariate spatial 

statistics to the observed spatial point pattern of S. supranubius. These results were 

compared between five spatially adjacent substrates with differing magnitudes of 

spatial environmental heterogeneity. To date, studies investigating the patterns and 

processes of species and their interaction with spatial environmental heterogeneity 

have focused on only two sites (e. g., Mandujano et al.. 2001,2007; Getzin et al., 

2008). Such studies are unable to determine whether observed differences are due to 

site specificity or the true effects of heterogeneity. By studying five independent sites 

the effects of heterogeneity, if present, could be assessed with greater confidence. 

7.5.1 ENVIRONMENTAL HETEROGENEITY 

Analyses detected large-scale homogeneity on two susbtrates (1 and 2) and 

heterogeneity on two substrates (3 and 4; corresponding with Hypothesised 

Process 4). Substrates 3 and 4 are pahoehoe lava flows with prominent ridge-trough 

topographies. Such topographic variation could feasibly influence the distribution of 

water resources (believed to be the most important resource to and shrubs) via run-off 

effects, adding support to the interpretation of heterogeneity. Substrate 5 was 

considered to be homogeneous, although this interpretation was based on an analysis 

of only 15 individuals. Indeed, re-analysing these data as 'real shape' (which may 

ameliorate the effects of small sample sizes; Section 6.4.3) indicated the presence of 

a heterogeneous process operating between 21 and 30 m on Substrate 5 (Appendix 

E). Because of the uncertainty regarding the level of heterogeneity on Substrate 5, 
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this discussion will focus most attention on Substrates 1 to 4, where the heterogeneity 

results are more conclusive. 

Water availability is widely believed to be the main driver of ecological processes in 

and environments (Noy-Meir, 1973; Walker and Langridge, 1997). Thus the observed 

heterogeneity on Substrates 3 and 4 may represent spatial variation in the provision of 

plant-available water. As inter-substrate distances are relatively small, external 

precipitation inputs are assumed to be consistent across the study area. Thus the 

spatial heterogeneity in plant-available water will be determined by the local balance 

of infiltration and evaporation, and any surface or subsurface flow, Soil and 

geomorphic conditions can determine the availability of plant-available water via their 

control on infiltration rates, depth of moisture storage and evaporative losses (Grayson 

et al., 2006). Broad-scale geornorphologically and edaphically induced variation in 

moisture regimes in arid environments have been shown to influence vegetation 

distribution (Bisigato et al., 2009) as well as the spatial patterns (Schenk et al., 2003), 

abundance (Hamerlynck et al., 2002; Bestelmeyer et al., 2006), physiological activity 

(Hamerlynck et al., 2000), mortality (Hamerlynck and McAuliffe, 2008) and competitive 

interactions (Hamerlynck et al., 2002) amongst and perennials. Similarly, substrate- 

driven water availability at the local scale can drive the response of individual plants to 

precipitation events (P6rez, 2000,2003). The potential for soil and geomorphic 

properties to vary at several spatial scales means they can theoretically produce 

highly heterogeneous plant-available water distributions. It is proposed that the ridge- 

trough topography on Substrates 3 and 4 drives meso-scale spatial variation in plant- 

available water, and thus the heterogeneous distribution of the largest individuals. 

Specifically, run-off effects are expected to reduce the quantity of water infiltrating the 

ridges, resulting in increased plant-available water in the intervening troughs. This is 

investigated further in Chapter 8. 

7.5.2 SIZE-ABUNDANCE DISTRIBUTION 

The S. supranubius populations on all five substrates followed a similar size hierarchy 

with monotonically declining abundance with increasing plant size. On Substrate 4 
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this distribution was interrupted by a lower abundance in the first size class (0 -5 M2; 

Figure 7-3). This reverse-J distribution has been observed in other semi-arid 

perennials (Barbour, 1969; Fonteyn and Mahall, 1981; Turner, 1990). The reverse-J 

distribution is often interpreted as representative of populations with a constant rate of 

recruitment and time-dependent survivorship and is often observed in clonal species 

(Mandujano et al., 2007). 

Understanding the size-abundance distribution Of a population can allow inferences to 

be made about the processes underlying its structure. Size distributions in nature are 

typically Gaussian with the average size of an individual dictated by physical and 

biological constraints (Manor and Shnerb, 2008). However, two recent studies (Kefi et 

al., 2007; Scanlon et al., 2007) have shown that vegetation patches in and zones are 

power-law distributed. Scanlon et al. (2007) concluded that the power law distribution 

of tree clusters arose from the interaction of resource constraint effects (water 

availability) and local facilitation. Other studies have suggested that power law 

distributions can occur when a system shows self-organised criticality (Allen et al., 

2008). The power-law distribution, however, did not provide a good description of the 

S. supranubius size-abundance distribution except on Substrate 5. On the remaining 

substrates the lognormal distribution provided the best description of the 

S. supranubius size-abundance distribution. These results suggest that the 

population dynamics of S. supranubius (i. e., growth and mortality) on Substrate 1,2, 

3, and 4 are approximately equivalent whereas Substrate 5 may have different S. 

supranubius dynamics. 

7.5.3 SPATIAL PATTERN OF DIFFERENT SIZE CLASSES 

Wheeler and Dickenson (1990) provide the only other known study of S. supranubius 

distribution patterns. Using Clark and Evans' (1954) nearest neighbour technique, 

they measured the distances separating 100 pairs of S. supranubius individuals and 

concluded that the species was uniformly distributed, a conclusion that this chapter is 

at variance with. Following germination experiments, Wheeler and Dickenson (1990) 

suggested intraspecific competition for water and/or herbivory as the mechanisms 
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behind the distribution of individuals. Although field observations suggest the 

presence of herbivory, it is not expected to affect the success of clonal reproduction in 

S. supranubius (Kyncl et al., 2006). The current research supports their suggestion of 

the importance of intraspecific competition (supporting Hypothesised Process 2). 

It has previously been assumed that abiotic heterogeneity will affect the broad-scale 

distribution of plants (i. e., the first-order properties of spatial patterns), but is less likely 

to affect the distribution and size of individuals relative to one another (i. e., the 

second-order properties of patterns). By using the inhomogeneous g(r) to remove the 

effect of environmental heterogeneity on Substrates 3 and 4, this study found notable 

differences in the second-order properties of S. supranubius patterns between 

homogeneous and heterogeneous sites, indicating that S. supranubius interactions 

and demographics are affected by habitat characteristics. 

The spatial structure of small individuals 

Some 70% of all plant species display capability for clonal growth (Klimeg et al., 

1997). Despite the ubiquity of clonal reproduction in and shrubs (Schenk, 1999), no 

studies, to my knowledge, have considered how this process, and specifically branch- 

layering, influences the spatial structure of a species. That vegetative reproduction 

can generate distinct spatial structures has been acknowledged in studies of 

herbaceous species (Mahdi and Law, 1987; Kenkel, 1993; Oborny and Cain, 1997; 

Pottier et al., 2007), but there has remained a lack of understanding of the role of 

clonal propagation in the population spatial structure of arid-zone shrubs (Jim6nez- 

Lobato and Valverde, 2006). The spatial patterns of small individuals were consistent 

with the operation of clonal reproduction (hypotheses 1 and 3). On all substrates the 

peak inter-shrub distance between small individuals occurred at small scales (between 

1 and 3 m), with high frequencies of inter-shrub distances relative to CSR observed up 

to 10 m. This indicates that small individuals in clumps are separated from their 

neighbours by between 1 and 3 m. Furthermore, clonal reproduction appears to have 

a strong influence on the spatial structure of older cohorts, with small-scale 

aggregation persisting among medium-sized individuals on all substrates (Figure 74). 
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Clonal reproduction may explain the reverse-J shaped size-abundance distribution 

and the constant recruitment rate this distribution implies. 

As with species of similar physiology (McAuliffe et al., 2007), field observations 

indicate that S. supranubius individuals generate clonal offspring only when they have 

attained a certain size. It is assumed that individuals are only capable of reaching 

these sizes in resource-rich/sufficient areas. As such, clonally reproduced ramets are 

also assumed to be located in resource-rich sites. With no anticipated differences in 

inter-ramet competition on the different substrates, it was hypothesised that any clonal 

signature should show little variation between substrates of differing heterogeneity 

(Golubski et al., 2008; Hypothesised Process 3). However, although clonal 

reproduction appears to be occurring on all substrates, the relative importance of the 

process seems to vary. The magnitude of aggregation among small individuals is 

notably stronger on the two homogeneous substrates (Substrates 1 and 2) compared 

to the heterogeneous substrates (Substrates 3 and 4). Assuming the observed spatial 

pattern is indeed a signature of clonal reproduction, the results suggest that clonal 

reproduction is more prevalent or more successful on homogeneous substrates 

(disagreeing with Hypothesised Process 3). 

Recent studies highlight the importance of environmental heterogeneity in describing 

plant regeneration dynamics (Barbeito et al., 2009 and references therein). McAuliffe 

et al. (2007) concluded that the successful growth and clonal reproduction of 

L. tridentata, an and shrub known to vegetatively reproduce in a similar fashion to 

S. supranubius (Vasek, 1980; McAuliffe et al., 2007), is largely dependent on 

substrate conditions. McAuliffe et al. (2007) contend that vegetative spread in 

L. tridentata requires fine, continually renewed aeolian deposits which have high rates 

of infiltration and moisture storage. These conditions, they propose, enhance 

individual plant performance and prospects for long-term survival, which are 

necessary for clonal development. The homogeneous substrates have much more 

extensive coverage of fine surface sediments than the heterogeneous substrates 

(pers, obs.; Table 2-1). However, large individuals were present on all substrates 
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indicating that all the substrates provide the resource conditions required for clonal 

reproduction. Therefore, in addition to the geo-hydrologic relationships proposed by 

McAuliffe et al. (2007), it is hypothesised that the geomorphologic conditions on the 

heterogeneous substrates may have a direct effect on reproduction by physically 

restricting the adventitious rooting of branches. Both Substrates 3 and 4 have 

prominent rocky ridges, with Substrate 4 also noted for the dominance of large, 

unsorted surface clasts in the intervening troughs (Table 2-1). Alternatively, the fine 

surface materials on Substrates 1 and 2 may enable lateral branch rooting and thus 

extensive clonal reproduction (Illa et al., 2006). 

The spatial structure of medium-sized and large individuals 

On all substrates the pattern of medium-sized and large individuals was predominantly 

aggregative. The scale of maximum aggregation among medium-sized individuals 

was 4m on all substrates except Substrate 5, perhaps suggesting inter-substrate 

consistency in the demographic processes operating on medium-sized shrubs. There 

was no apparent relationship between the magnitude of aggregation among either 

medium-sized or large individuals, and the heterogeneity of the substrate. However, 

there was a notable difference in the relative aggregation of medium-sized and large 

individuals on heterogeneous and homogeneous substrates. On the homogeneous 

substrates the strength of aggregation decreases in subsequent size classes with the 

weakest aggregation observed among large individuals, corresponding with the 

operation of density-dependent competition (e. g., Meyer et al., 2008; Metsaranta and 

Lieffers, 2008; Gray and He, 2009; Hypothesised Process 2). On both homogeneous 

substrates the large individuals show only minimal deviation from complete spatial 

randomness. Conversely, on the heterogeneous substrates the weakest aggregation 

is among the medium-sized individuals, with aggregative strength increasing among 

large individuals. As well as exceeding the intra-substrate magnitude of aggregation 

of medium-sized individuals, the aggregative strength of large individuals on 

Substrates 3 and 4 exceeds that of large individuals on Substrates 1 and 2. It 

therefore appears that the patterns of stand development on Substrate 3 and 4 are 
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more complex than predicted by competition alone (Metsaranta and Leiffers, 2008; 

Hypothesised Process 2). 

It has been proposed that as desert shrubs mature they gain access to less readily 

depletable, deep-soil moisture reserves, reducing the total impact of both inter- and 

intra-specific competition (Golluscio et al., 1998; Toft and Fraizer, 2003). Thus, it may 

be predicted that upon reaching a large size, mortality should become density 

independent and older cohorts should revert to a random distribution as individuals 

are lost from the system because of stochastic events. This explanation fits the 

distribution of large individuals on the homogeneous substrates which show only small 

deviations from complete spatial randomness. However, on the heterogeneous 

substrates the increase in aggregation among large individuals suggests that the 

relative risk of mortality increases with isolation as the shrubs age. Ontogenetic shifts 

in biological interaction have been previously reported (Miriti, 2006), but these 

generally describe an increase in competition, not facilitation, as individuals age. It is 

presumed that competition and facilitation in and environments are driven by water 

availability. Thus, one possible explanation is that the geological make-up of the 

heterogeneous substrates has prevented the formation of deep water reserves, or the 

distribution of deep water reserves is spatially heterogeneous. Alternatively, the 

geological make-up of the heterogeneous substrates may prevent the roots of S. 

supranubius from penetrating the substrate to access the deep water reserves. The 

positive feedback between plant biomass and infiltration is widely recognised (Rietkerk 

et al., 2004; Ludwig et al., 2005). Increasing aggregation among large individuals may 

increase infiltration enhancing the survival of individuals in clumps relative to isolated 

individuals. Alternatively, it is possible that clustering of large individuals has climatic 

benefits by reducing low-level wind speeds and thus reducing wind-induced 

desiccation. However, this explanation is deemed less plausible because of the 

sheltering effects of the caldera walls. 
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7.5.4 A SIGNATURE OF COMPETITIVE THINNING 

On all substrates the decrease in aggregation among medium-sized individuals 

relative to small individuals is consistent with commonly cited hypotheses of density- 

dependent mortality (Hypothesised Process 2). Further evidence in support of the 

operation of competition is provided by the comparison of the hard-core distance to 

the scale of maximum aggregation. On all substrates except Substrate 5, the scale of 

maximum aggregation of small and medium-sized individuals equalled or was slightly 

less than the hard-core distance (Table 7-7). In practice this means that within each 

cohort, an individual's neighbours are most commonly found immediately adjacent to 

their canopy, corresponding with the observed modal shrub-shrub distance of 

between 1 and 3 m. Occasionally the canopies of these individuals overlap (causing 

the scale of maximum aggregation to fall below the hard-core distance), but mostly 

they do not (i. e., scale of maximum aggregation equals the hard-core distance; Figure 

7-5). There may, however, be unobserved overlap in the root zones. The increase in 

both the hard-core distance and the scale of maximum aggregation with size is strong 

evidence for density-dependent competition. On all substrates except Substrate 3 the 

scale of maximum aggregation among large individuals exceeds the hard-core 

distance by between 1 to 3m (Table 7-7). In practice that means that within the large 

cohort individual canopies do not overlap or even touch (Figure 7-5). Instead they are 

separated by 1 to 3m at least. The increase in the spacing of large individuals 

relative to small and medium-sized individuals suggests that competition may become 

more spatially extensive as individuals reach large sizes (i. e., zone of influence 

increases disproportionately with canopy size; Figure 7-5). Furthermore, the distance 

between the hard-core distance and the scale of maximum aggregation should 

increase as competition increases in strength. Because the distance between the 

hard-core distance and the scale of the strongest pattern among large individuals was 

greatest on Substrates 1 and 2, the results suggest that competition, at least among 

large individuals, is strongest on the two homogeneous substrates. The decrease in 

the maximum g(r) of large individuals, compared to small or medium-sized individuals 

on Substrates 1 and 2 reflects the loss of previous neighbours whose canopies/root 
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systems began to interfere with other, more competitive individuals (i. e., density- 

dependent competition; Figure 7-4a and b; Table 7-7). 

Figure 7-5 A signature of competitive thinning derived from the changes in the difference 
between the hard-core distance and the maximum scale of aggregation as cohorts age. 

7.6 CONCLUSIONS 

It is generally accepted that while abiotic heterogeneity can affect the first-order 

structure of a species, it operates on too large a scale to have a quantitative influence 

on the second-order structure of a population. This study, however, has demonstrated 

that after removing the effects of environmental heterogeneity, neighbouring lava flows 

that differ in age and geornorphological structure, but which are not expected to differ 

significantly in climate, had notably different S. supranubius Population spatial 

structures. Differences in the inter-substrate first- and second-order properties of S. 

supranubius spatial pattern are both attributed to substrate geornorphological 

characteristics. However, whereas differences in the former are attributed to the effect 

of geornorphology on plant-available water, differences in second-order properties are 

attributed to the physical effects of geornorphology on the physiology of individuals. 

This latter effect is hypothesised to limit both the rooting of lateral branches (and thus 

clonal reproduction), and the access of large shrubs to deep water reserves on the 

heterogeneous substrates. Thus, in accordance with other studies (Hamerlynck et al., 

2000,2002; Peters et al., 2006) it is proposed that population spatial structures in arid 

environments cannot be understood without an understanding of how the soil- 

geomorphic template influences the spatial distribution of plant-available water. 
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CHAPTER 8: SPATIAL VARIATION IN THE DENSITY AND LOCAL 
SPATIAL STRUCTURE OF S. SUPRANUBIUS: THE ROLE OF 
TOPOGRAPHY 

8.1 INTRODUCTION 

Analyses in Chapter 7 concluded that spatial environmental heterogeneity had a 

notable effect on the spatial structures of, and therefore interactions between, S. 

supranubius individuals (following Getzin et al., 2008). This chapter aims to map 

potential biologically relevant heterogeneity sources to further investigate their 

influence on the density and the spatial structures of S. supranubius populations, 

Understanding the relationship between abiotic and biotic processes, and how they 

influence population dynamics, is a fundamental aim of ecology (Dahlgren and Ehrl6n, 

2009). Some studies have compared the spatial patterns of plants under different 

abiotic conditions (most commonly comparing patterns under different fire [FuI6 and 

Covington, 1998; Park, 2003; Yu et al., 2009] or disturbance regimes [Wells and Getis, 

1999; Call and Nilsen, 2003; Fajardo and Alaback, 2005; Malkinson and Kadmon, 

2007; Appendix A]). However, little attention has been paid to investigating and 

quantifying the effect of continuous abiotic gradients on plant population spatial 

structure, perhaps because the plot sizes commonly used are too small to contain 

noteworthy abiotic gradients (Figure 1-3). Consequently, there is surprisingly little 

understanding of how continuous spatial environmental heterogeneity may interact 

with biological processes to determine population dynamics (Wagner and Fortin, 2005; 

Murrell, 2009). If abiotic factors influence both long-term demographic processes 

(e. g., establishment and survival) and interactions between individuals, then both the 

density and second-order structure of the population should change simultaneously 

with abiotic gradients. Investigation of such phenomena has, to date, been limited to a 

study by Shimatani and Kubota (2004), in which they quantified changes in the spatial 

pattern of a coniferous tree by constructing and assessing the fit of a novel 

inhomogeneous point process model that incorporated spatial variation in both density 

and point-point interactions. 
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To investigate the role of spatial environmental heterogeneity, that heterogeneity must 

be identified and mapped. Soil water availability is widely believed to be the main 

driver of ecological processes in and environments (Noy-Meir, 1973; Walker and 

Langridge, 1997; Grayson et al., 2006; Robertson et al., 2009) and is therefore 

assumed to be important in the present system. Consequently, understanding the 

spatial structure of S. supranubius may require knowledge of the spatial distribution of 

water. Water availability at any one location is determined by the balance between 

the vertical transfer (infiltration and evaporation) and horizontal redistribution (surface 

and subsurface) of water (Grayson et al., 2006). This chapter assumes that any 

feature that significantly influences local hydrology is likely to have an effect on 

overlying vegetation structure and dynamics. Field studies have demonstrated that 

substrate characteristics in and regions, such as clast size (Diaz et al. 2005), clast 

depth (Tejedor et al., 2002) and clast sorting (PL&rez, 2000; Tejedor et al., 2003), can 

influence the local balance of infiltration and evaporation and thus the moisture 

availability in upper soil layers. This can have subsequent effects on the distribution 

and dynamics of individual plants (Nrez, 2003; Hamerlynck et al., 2002). However, 

woody shrubs which remain physiologically active throughout the year, such as 

S. supranubius, are expected to be more affected by the distribution and dynamics of 

water stored at depth (Gebauer et al., 2002; Schenk and Jackson, 2002). Therefore, 

the spatial structure and intensity of S. supranubius may be expected to correlate with 

abiotic features that influence the recharge of deep water reserves. 

Deep water stores are recharged when the storage capacity of upper soil layers is 

exceeded (Grayson et al., 2006; Wilcox et al., 2006a). Thus deep water recharge 

occurs when there are large precipitation pulses (Gebauer et al., 2002), or when the 

water from small precipitation pulses is concentrated into confined locations. 

Topography and slope influence the horizontal redistribution of water from 

precipitation events (Chaplot and Le Bissonnais, 2000; Wilcox et al., 2003; Grayson et 

al., 2006) and therefore may be important in determining the spatial distribution of 

deep water recharge. Topographically driven water availability has previously been 

shown to affect the density and biomass of and vegetation (Imeson and Prinsen, 
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2004; Ju et al., 2008; Hamerlynck and McAuliffe, 2008; Svoray et al., 2008; Popp et 

al., 2009). However, most of our current understanding concerns how topography 

interacts with hydrological processes to determine vegetation patterning at the patch 

scale, for example the generation of banded vegetation patterns or 'tiger bush' (Saco 

et al., 2007; McDonald et al., 2009). Our understanding of how topography influences 

vegetation dynamics at the scale of individuals is still poor. 

This chapter investigates whether topography influences the density and spatial 

structure of the S. supranubius population on Substrate 3. Substrate 3 is the youngest 

of the focal sites and has prominent ridge-trough topography (see Table 2-1). 

Chapter 7 concluded that intra-specific competition may be an important process 

structuring S. supranubius populations, and that the importance of competition may be 

influenced by spatial environmental heterogeneity. Consequently, this chapter 

investigates the presence of spatial structures that are consistent with the operation of 

intra-specific competition as an important organising force. The results are interpreted 

in relation to the following conceptual model of topographically driven water 

redistribution. 

8.1.1 A MODEL OF WATER REDISTRIBUTION ON SUBSTRATE 3 

Despite common acceptance of the importance of water availability in driving 

biological processes in add systems, there are very few datasets of sufficient duration 

and spatial extent to quantify aspects of water availability that are relevant to and 

shrub dynamics (Breshears et al., 2009). Given the large inter-annual variability in 

and precipitation events (Snyder and Tartowski, 2006), the typically short duration of 

precipitation events, and the slow demographic responses of arid shrubs (Cody, 2000; 

Bowers, 2005), many years of continuously collected data would be required to 

empirically investigate the relationship between water availability and shrub dynamics. 

Neither time nor financial resources allowed such measurements to be made. 

Consequently, a priori knowledge on the focal sites and the influence of 

geornorphological characteristics on the spatial partitioning of rainfall events (e. g., 

Monger and Bestelmeyer, 2006) was used to develop the following conceptual model. 

219 



Substrate 3 is composed of rocky ridges with intervening troughs of pumice and 

erosional deposits. It is hypothesised that the distribution of the ridges and the slope 

of the terrain will produce linearised spatial variation in water availability. The model 

predicts that there will be four zones of alternating high and low water availability 

between each ridge and the centre of the neighbouring trough (Figure 8-1). 

Zone 1: low water availability 

Zone 1 is located on the rocky ridges where the slope of the terrain is relatively steep. 

Runoff magnitude increases with increasing slope, reducing the chance of infiltration 

(Chaplot and Le Bissonnais, 2000; Wilcox et al., 2003; Monger and Bestelmeyer, 

2006). Furthermore, the presence of large rocks will reduce the volume available for 

moisture storage to the areas of soil/humus trapped between rocks. Consequently, it 

is hypothesised that the majority of the precipitation in this zone will be lost via run-off. 

Zone 2: high water availability 

Zone 2 occurs where the pumice troughs adjoin the rocky ridges. The zone 

represents a change in substrate characteristics and a sudden decrease in the slope 

of the terrain. Sandy and coarse textured soils have a high infiltration rate and enable 

deep drainage (Wilcox et al., 2006a; Popp et al., 2009). Much infiltration of run-off 

from zone 1 is expected to occur and recharge deep water reserves in zone 2. 

Zone 3: low water availability 

Much of the run-off from zone 1 has already been absorbed in zone 2. Therefore, 

zone 3 largely relies on precipitation inputs. It is hypothesised that much of the 

precipitation will be lost to evaporation before it can reach deep storage. 

Zone 4: high water availability 

Sub-surface topography is expected to result in the sub-surface flow of the water 

infiltrated in zone 2 through zone 3 to accumulate in zone 4. The subsurface 

movement of water is hypothesised to generate a reservoir of deep water in the centre 

of troughs. 
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8.1.2 AIMS AND OBJECTIVES 

Two main hypotheses are outlined: 

Hypothesis 1: Topography will influence the pattern and density of S. 

supranubius individuals. 

Hypothesis 2: Topography will induce spatial variation in the importance of 

competition as a force structuring the S. supranubius 

population. 

8.2 METHODS 

8.2.1 DATA COLLECTION 

A subset of the original field site on Substrate 3 was selected (Figure 8-2). The focal 

area was located such that it contained minimal variation in the ridge-trough 

orientation and no obvious broad-scale trends in the density of Adenocarpus Viscosus 

(the other leguminous shrub dominating the CaAadas caldera). Within this focal area 

(6.2 ha [200 x 310 m]), the locations of ridges tops were mapped using a Promark3 

differential GPS. Ridges were defined as linear features over 2m in height and 

greater than 10 m in length that were composed of more than one rock. The resulting 

map of ridge locations was used to create a map of the distance of each location to 

the nearest ridge (Figure 8-3). The elevation of the site was also mapped on a 

lox 10 m grid. A continuous map of elevation was produced using kriging 

interpolation in ArcMap 9.2. This map was subsequently used to generate a slope 

surface using the Spatial Analyst function in ArcMap9.2 (Figure 8-4). Both the slope 

of the terrain and the distribution of ridges were used as spatial covariates in the 

following analyses. They are hereafter referred to as the slope and ridge covariates 

respectively. 
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Figure 8-4 Raster image showing the slope (degrees) of the terrain. Superimposed on the 

image are the locations of S. supranubius individuals (small = blue, medium-sized = red, large = 

green). NB. although shown as a categorical map a continuous surface was used during 

analysis. 
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8.2.2 ANALYSES 

Analysis 1: the effects of ridge distribution and slope on the density of S. 

supranubius 

Point process modelling techniques were used to investigate whether the ridge and 

slope covariates were able to explain the spatial variation in the density of 

S. supranubius. Point process modelling allows the fit between a hypothesised point 

process and the observed point data to be assessed. Therefore, the technique can be 

used to assess how well spatial variables (e. g., the distribution of ridges or the slope 

of the terrain) account for the heterogeneous distribution of S. supranubius (as 

identified in Chapter 7). Hypothesised point processes are fit to the observed point 

pattern by the method of maximum pseudo-likelihood (Besag, 1975). 

Table 8-1 describes the models that were fit to the observed S. supranubius 

distribution. Model 1 is essentially a null model, attempting to describe the distribution 

of S. supranubius as a homogeneous Poisson process (i. e., the intensity of 

S. supranubius does not vary with spatial location). The remaining three models 

attempt to explain the distribution of S. supranubius as inhomogeneous Poisson 

processes (i. e., the density of S. supranubius varies with location in accordance with a 

spatial covariate). Two models are developed to assess how well the topography 

covariates (ridge and slope) account for the distribution of S. supranubius. Model 3 

fits an inhomogeneous Poisson process with intensity that is a loglinear function of the 

topographical covariates. Conversely, model 4 fits an inhomogeneous Poisson 

process with intensity that is proportional to the values of the topography covariates. 

Unlike models 3 and 4, model 2 does not use measured spatial covariates. Instead, 

model 2 attempts to describe the distribution of S. supranubius using Cartesian 

effects. The identification of Cartesian effects that account for the distribution of 

S. supranubius may imply the presence of gradients in abiotic conditions that have not 

been directly measured. 
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Table 8-1 The four point process models fit to the observed point pattern of S. suprenubius. 

Model Description Intensity term 

A homogeneous Poisson process where the A(u) =a density A(U) of shrubs is spatially uniform. 

An inhomogeneous Poisson process where the 

2 density A(U)of shrubs is log-linear in the 11(u) = exp 
ýa 

+ bx + CY 
)2ý 

Cartesian coordinates. 

An inhomogeneous Poisson process where the 

3 density of shrubs A(U) is a log-linear function of A(u) = exp(a + bZ(u)) 

the covariate Z(u) 
. 

An inhomogeneous Poisson process where the 

4 density of shrubs A(U) is proportional to the A(u) = aZ(u) 

covariate Z(u). 

in the intensity term, a, b and c are parameters to be estimated from the fitted model, and Z(u) 
is the value of the covariate (i. e., the distance to the nearest ridge or the slope of the terrain) at 
location u. The ridge and slope covariates are derived from Figure 8-3 and Figure 8-4. 

Akaike information criterion (AIC) was used to assess the relative fit of competing 

hypothetical models to the observed point pattern. The intensity term in model 2 

(Table 8-1) was simplified by removing terms to identify the individual Cartesian effect 

(e. g. x, xy) that best described the density of S. supranubius. The AIC values of the 

models were compared. The model producing the lowest AIC was assumed to 

provide the best available description of S. supranubius density. The difference 

between the AIC of each model and the best-fitting model was calculated (AAIC). 

Interpretation of AAIC follows Burnham and Anderson (2002). Models with 

AAIC > 10 provide a poor explanation of the variation in the data relative to the best- 

fitting model (i. e., little empirical support; Burnham and Anderson, 2002). Models with 

4 :5 AAIC: 5 7have 'considerably less' support than the best-fitting model (Burnham 

and Anderson, 2002: p. 70), whereas models with 0 : 5AAICS 2 have substantial 

support. If either of the models containing the topographical covariates (i. e., model 3 

or 4) provided the lowest AIC value it implies that topographical gradients are 

important in determining the distribution of S. supranubius individuals. However, if 

both models 3 and 4 produced higher AIC values than models 1 and 2, then two 
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possible interpretations existed. It could be that topography has little influence on 

S. supranubius density compared to other, unmeasured environmental gradients (cf. 

model 2). Alternatively, it could be that the relationship between topography and the 

density of S. supranubius is non-proportional (cf model 4). The hypothesised water 

redistribution model (Section 8.1.1) suggests that the effects of topography and 

geomorphology will generate distinct zones of vegetation response rather than a 

continuous surface, therefore a non-proportional relationship between S. supranubius 

density and the topography covariates was considered to be more likely. Therefore, if 

models 3 and 4 provided weak explanations of S. supranubius density, the topography 

covariate was adapted to test for discrete heterogeneity effects by dividing the original 

continuous image into a series of binary images where the value separating the two 

binary classes took increasing values. Each binary image was used as a covariate in 

model 3. The binary covariate that produced the lowest AIC value indicates the 

topographical position (i. e., the slope or the distance from a ridge) which has the 

greatest effect on the density of S. supranubius. 

The point process models described in Table 8-1 were fit to the observed pattern of 

S. supranubius in each of the three size classes (Section 7.3.2). Models 3 and 4 (and 

any binary models) were applied separately using the ridge (Analysis 1a) and the 

slope covariate (Analysis 1 b). Up to this point the models fitted to the S. supranubius 

distribution have contained only one term (i. e., either slope, ridge or Cartesian). In 

Analysis 1c, models incorporating a combination of these three terms are fit to the 

S. supranubius distribution. To try to achieve the best fit possible, these combined 

models used the best-fitting binary topography covariates and the best-fitting 

Cartesian effects as identified in Analyses la and 1b. All analyses were performed 

using the spatstat package (v. 1.17-2, Baddeley and Turner, 2005) in R (v. 2.10.0, R 

Core Development Team, 2009). 
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Analysis 2: the effect of ridge distribution and slope on the local spatial 
structure of S. supranubius 

This analysis investigates the presence of local spatial structures that are consistent 

with the importance of intra-specific competition as an organising force. 

Size-distance correlation as a signal of competition 

Competition may control both the size and the local density of shrubs. Nearest 

neighbour techniques provide a simple and intuitive approach to exploring local 

interactions (Perry et al., 2009). Under the presence of competition, the size of an 

individual is expected to be a function of the size and distance of all neighbouring 

individuals that fall within its zone of influence. A positive correlation between the size 

of an individual and the distance separating it from its nearest neighbouring individuals 

is expected if competition reduces growth (Getzin et al., 2006). Therefore, analysing 

the correlation between the sum of the area of several nearest neighbours and the 

sum of distances separating them from the focal shrub provides a good indication of 

the importance of competition as an organising force at the local scale. This 

technique has been employed in several recent articles (Schenk et al., 2003; Getzin et 

al., 2006; Getzin and Wiegand, 2007; Meyer et al., 2008; Gray and He, 2009). 

Steeper regression slopes between the two variables suggest the presence of local 

spatial structures that are indicative of an increased importance of competition. 

Quantile regression 

The relationship between the sum of the canopy area of the five nearest neighbours 

(following Gray and He, 2009) plus the canopy area of the focal shrub, and the sum of 

the distances separating them from the focal shrub, was analysed using quantile 

regression (following Meyer et al., 2008; Lawes et al., 2008) to reveal whether there 

was more than a single slope (rate of change) describing the relationship between 

area and distance (Cade and Noon, 2003). The presence of multiple rates of change 

would imply inconsistency in local spatial structure and the presence of a factor(s) that 

interacts with nearest neighbour distances to increase the heterogeneity of shrub size 

(i. e., an interactive factor that is influencing local spatial structure; Cade and Noon, 
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2003; Meyer et al., 2005). Further analysis could then be conducted to determine 

whether either the ridge or the slope covariate could be the interactive factor. 

Quantile regression can be used to fit linear (or non-linear) trends to quantile surfaces 

within the data (Koenker, 2005). Thus, whereas ordinary least-squares regression 

models the relationship between a variable X and the mean of the response variable 

Y, quantile regression models the relationship between X and the quantiles of Y, 

such as the 75 th percentile. For example, the r thquantile regression function Q(T) 

describes a linear (or non-linear) fit through the data so that r proportion of the data 

are located below the regression line (Q(r) ), and I-r proportion of the data are 

located above the regression line (Q(r) ). Thus, instead of just modelling the mean 

effect corresponding to a set of xs, multiple properties of the distribution are modelled 

(Guisan et al., 2006). Linear regressions were fit to the 0.95,0.9,0.75,0.5,0.25,0.1 

and 0.05 quantiles. The slope of the regression line for each quantile was extracted. 

The estimates of rates of change in quantile regression are semi-parametric in the 

sense that no parametric distributional form (e. g. normal, Poisson) is assumed for the 

error (i. e. residuals) of the model (Cade and Noon, 2003). Confidence intervals (90%) 

were constructed for the slope estimates (following Meyer et al., 2008). Where the 

lower 90% confidence limit was greater than zero, a significant positive relationship 

between the combined nearest neighbour distance and the combined area was 

deemed to exist. Differences in the regression slopes imply that factors other than 

nearest neighbour distances are having an (interactive) effect on shrub size (Meyer et 

al., 2005,2008). Analysis of deviance techniques were used to test the equality of the 

quantile regression slopes. 

Further analyses were performed to investigate whether either the ridge or slope 

covariate could explain any observed inconsistency in local spatial structure. As the 

effects of the covariates are anticipated to be non-linear (Section 8.1.1) the covariates 

could not simply be incorporated as interaction terms in linear regressions between 

size and distance. Instead, the data were divided into seven subsets of similar sample 

size such that each subset contained covariate values higher than the previous 
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subset, but lower than the next subset. Seven subsets were chosen as this provided 

a large sample size in each subset (n ;: z 100) but did not reduce the covariate into too 

few spatial categories. This was done once for the ridge and once for the slope 

covariate. Within each subset a bivariate linear regression between nearest 

neighbour distance and combined canopy area was performed and the coefficient of 

determination (R 2) calculated. Differences in R2 between the data subsets suggest 

that the covariate influences the local spatial structure. Higher values of R2 indicate 

spatial structures that are consistent with competition as an important organising 

force; lower R2 values indicate factors other than competition may be driving local 

spatial structure. In addition to reporting the values of R2, the statistical significance of 

the model and the slopes of the regression lines are also reported. This provides a 

more robust comparison of the relationship between nearest neighbour distance and 

combined canopy area in different locations within the terrain, and allows more 

confidence in making assessments of the likelihood that any observed differences in 

R2 may have occurred by chance. Nearest neighbour calculations were performed 

using Hawth's tools in ArcMap 9.2, quantile regression was performed using R and the 

quantreg package (Koenker, 2009). 

Shackleton et al. (2002) provide one of the only studies, to my knowledge, that uses 

the regression between nearest neighbour distances and the sum of shrub sizes to 

investigate how site factors (e. g. aspect, slope, landscape position) correlate with the 

presence/absence and relative importance of intraspecific competition between woody 

savanna species (as measured by R2 values). They concluded that slope position 

influenced the presence of competition. To maintain comparability with Shackleton et 

al. 's (2002) study the regressions discussed above used canopy area (M) as a 

measure of shrub size, instead of more commonly used measurements such as 

canopy diameter (e. g. Meyer et al., 2008). 
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8.3 RESULTS 

8.3.1 ANALYSIS IA: THE EFFECT OF RIDGES ON THE DENSITY OF S. 

SUPRANUBIUS 

Table 8-2 shows the AIC values when the four point process models were fitted to the 

S. supranubius point pattern in each size class. Model 2 (Cartesian trends) provided 

the best explanation of the density of S. supranubius in all three size classes. Relative 

to the competing models, model 4 (which assumed that shrub density was 

proportional to the distance to the nearest ridge) has no empirical support. Compared 

to model 2 there was considerably less support for either model 1 or 3 when 

attempting to explain the density of medium-sized and large individuals. When fit to 

the density of small individuals, however, the explanatory power of models 1-3 was 

largely indistinguishable. Therefore, if the distribution of ridges does affect the density 

of shrubs, the effect is probably non-linear. 

Table 8-2 The AIC values (1 d. p. ) for each of the four point process models described in Table 

8-1 when fitted to the pattern of S. supranubius individuals in each of the three size Classes. 
Models 3 and 4 use the ridge covariate. Bold text indicates the model with the lowest AIC. 

AAIC calculates the difference in AIC between each model and the best-fitting model. The 

Cartesian trends providing the best spatial fit are shown in parentheses. 

Model 2(best fifting 
Model 1 Model 3 Model 4 Cartesian model) 

Size 
AIC AAIC AIC AAIC AIC MIC AIC AAIC 

class 
2707.3 

Small 2708.1 0.8 0 2709.0 1.7 2855.8 148.5 
(X*Y) 

Medium- 5087.4 4.9 
5082.5 

0 5087.7 5.2 5322.1 239.6 
sized (Y) 

1299.5 
Large 1305.9 6.4 0 1304.9 5.4 1311.1 11.6 

W 

Figure 8-5 plots the AIC values of models using binary distance classes. For each 

size class the binary model providing the greatest improvement in fit over the 

Cartesian effects (model 2) is described. 

232 



Small individuals 

Compared to the Cartesian model, the binary distance classes did not improve the 

explanation of the observed point pattern until large distance classes were separated 

out (Figure 8-5a). The best model divided the ridge distribution covariate into two 

classes, separated at a distance of 28 rn (AIC = 2698.3). The model identified a 

decrease in density from 33 individuals at distances less than 28 m from a ridge, to 0 

individuals per hectare at greater distances. Compared to this model, the best fitting 

Cartesian model had AAIC = 9, and thus provided a considerably worse explanation 

of the data. 

Medium-sized individuals 

The only model which had a better fit than the Cartesian model divided the ridge 

distribution covariate at 12 m (AIC = 5082.2; Figure 8-5b). This model identified a 

density of 61 individuals per hectare in locations close (< 12 m) to a ridge compared 

with a density of 79 individuals per hectare at greater distances. However, compared 

to this model, the best-fitting Cartesian model had AAIC= 0.3 suggesting that there 

was little difference in the explanatory power of the two models. 

Large individuals 

When applied to large individuals, the binary ridge covariate provided a good fit when 

divided at distances of 5m (AIC=1288.6; Figure 8-5c). This model identified a low 

density of individuals in areas less than 5m from a ridge (3 individuals per hectare) 

and a higher density of individuals in locations more than 5m from a ridge 

(17 individuals per hectare). Compared to this model, the best-fitting Cartesian model 

had A, 4IC = 10.9 suggesting that it had relatively little explanatory power. 
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Figure 8-5 The AIC of models using the binary ridge distribution covariates to explain the 

density of (a) small, (b) medium-sized and, (c) large S. Supranubius individuals. The red line 

shows the change in AIC as spatial covariates using different distance classes are fitted to the 

data. The black dashed line shows the AIC value of the best-fitting continuous model (see 

Table 8-2). 
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&3.2 ANALYSIS I B: THE EFFECT OF SLOPE ON THE DENSITY OF S. 
SUPRANUBIUS 

Compared to the competing models, model 4, which assumed that S. supranubius 

density was proportional to slope, provides a poor explanation of the data 

(AAIC> 10) indicating that if slope has an effect it is spatially discontinuous (Table 

8-3). The slope covariate (model 3) provided a notably better explanation of the 

density of small and medium-sized individuals than either model I or 2. However, 

unmeasured Cartesian trends (model 2) provided the best explanation of the density 

of large individuals. 

Table 8-3 The AIC values for each model when fitted to the S. supranubius Point pattern. 
Models 3 and 4 use the slope covariate. Bold text indicates the model with the lowest AIC. 

AAIC calculates the difference in AIC between each model and the best-fitting model. 

Model 2 (best- 
Model 1 fitting Cartesian 

model) 
Size 

AIC AAIC AIC AAIC AIC 
class 

Small 2708.1 6.5 

Medium- 
5087.4 49.9 

sized 

Large 1305.9 6.4 

Model 3 Model 4 

AAIC AIC AAIC 

2707.3 5.7 2701.6 0 

5082.5 45.0 5037.5 0 

1299.5 0 1304.3 4.8 

2837.4 135.8 

5454.8 417.3 

1369.5 70.0 

Figure 8-6 plots the AIC values of models using binary distance classes. 

Small individuals 

Analyses revealed a change in the density of small individuals at slopes of 16 degrees 

(Figure 8-6a; AIC = 2696.6). The model identified greater densities (37 individuals per 

hectare) on shallower slopes, and lower densities (18 individuals per hectare) on 

slopes of 16 degrees and steeper. This model, however, was practically 

indistinguishable from the 11 degrees binary model (AAIC = 1.2) which also identified 

greater densities (39 individuals per hectare) on shallower slopes, and lower densities 

(23 individuals per hectare) on steeper slopes. Compared to these models, the best 

fitting Cartesian model had little empirical support (A, 4K'= 10.6 and 9.4 respectively), 
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and the best-fitting continuous slope model (Model 3 [see Table 8-3)) had 

considerably less support (AAIC = 3.8 and 5.0 respectively). 

Medium-sized individuals 

Binary covariates using a break in slope between 8 and 23 degrees all provided a 

notably better explanation of the density of medium-sized individuals than the best- 

fitting Cartesian model (Figure 8-6b). The difference in AIC between these models 

and the best-fifti ng Cartesian model was consistently greater than 10 ( AA IC > 10 ). 

The largest AAICwas obtained when the best-fitting Cartesian model was compared 

to the covariate identifying a break in slope at 18 degrees (A. 4IC = 56.8). This 

model identified greater densities on slopes of less than 18 degrees (79 individuals 

per hectare) and lower densities on slopes steeper than 18 degrees (19 individuals 

per hectare). Compared to this model, there is very little empirical support for either 

the Cartesian model ( AAIC = 56.8) or the best-fitting continuous slope model (Model 

3 [see Table 8-31, AAIC = 11.9). 

Large individuals 

All binary slope covariates provided a poorer description of S. supranubius density 

than the best-fitting Cartesian model (Figure 8-6c). The strongest effect of slope was 

observed at 19 degrees (AIC = 1301.8). 
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Figure 8-6 The AIC values of models using the binary slope covariates to explain the density of 

(a) small, (b) medium-sized and, (c) large S. supranubius individuals. The red line shows the 

change in AIC as spatial covariates using different distance classes are fit. The black dashed 

line shows the AIC value of the best-fitting continous model (see Table 8-3). 
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8.3.3 ANALYSIS I C: COMBINED MODELS 

In this section the fit of models using multiple terms (i. e., a combination of the 

topography covariates and Cartesian effects) is assessed. The models use the best- 

fitting binary topography covariates and the best-fitting Cartesian effect as identified in 

Analyses 1a and 1 b. In all size classes the best explanation of the data was obtained 

from models using a combination of terms, rather than a single term. 

Small individuals 

The best explanation of the data was obtained from the model containing both the 

ridge and slope covariate (AIC = 2685.5; Figure 8-7a). The model containing all three 

terms (i. e. ridge, slope and Cartesian) also provided a good fit to the data 

(AAIC = 2.2, AIC = 2687-7). 

Medium-sized individuals 

Slope provides the biggest single contribution to explaining the density of medium- 

sized individuals. The model containing both slope and Cartesian effects provided the 

best fit to the data (AIC = 5016.7; Figure 8-7b), suggesting the presence of notable, 

but unmeasured, gradients in environmental condition. Although indistinguishable 

from the model containing all three terms (AAIC = 0.1 ), the former model is simpler 

and therefore accepted as the best model. 

Large individuals 

The model containing all three terms (slope, ridge and Cartesian) provided the best 

explanation of the density of large individuals (AIC = 1274.3; Figure 8-7). The model 

containing only ridge and Cartesian effects also provided a good fit ( AAIC = 1.7 ). 
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best-fitting model (highlighted in red) is shown above each bar. 
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8.3.4 ANALYSIS 2: THE EFFECT OF RIDGE DISTRIBUTION AND SLOPE ON THE 

LOCAL SPATIAL STRUCTURE OF S. SUPRANUBIUS 

This analysis investigated the presence of local spatial structures that are consistent 

with the importance of intra-specific competition as an organising force. Competition 

is assumed to be an important organising force if there is a positive correlation 

between the size of an individual and the distance separating it from its nearest 

neighbouring individuals. Steeper regression slopes indicate an increased importance 

of competition in determining the local spatial structure. Quantile regression was used 

to assess whether there was any spatial inconsistency in the importance of intra- 

specific competition. Further analyses investigated whether any observed spatial 

inconsistency could be explained by either the distribution of ridges or the slope of the 

terrain. 

The lower 90% confidence intervals of all the quantile regression slopes between 

canopy area and the distance separating individuals, except the 0.05 quantile, were 

greater than zero (Figure 8-8). The slopes of the quantile regression lines became 

progressively steeper as the quantiles increased. The majority of slopes were 

significantly different at the a=0.05 level, with the exception of the slopes of the 0.05 

and 0.1 quantiles, the 0.5 and 0.75 quantiles and the 0.9 and 0.95 quantiles. This 

suggests that local spatial structure may be influenced by the interactive effect of an 

external factor. 
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Figure 8-9 shows the results of the regressions between nearest neighbour distance 

and canopy size in different locations within the terrain. When the data are subdivided 

by either distance to the nearest ridge or by the slope of the terrain, the slopes of the 

regression lines are of a similar range as the slopes of the quantile regression lines 

presented in Figure 8-8. However, notable differences in the regression slopes with 

location were only observed when the data were divided by their position relative to 

the ridges. Thus, Figure 8-9 suggests that the local spatial structure may depend 

partly upon the location of individuals in relation to ridges. At the furthest location from 

the ridges (20 - 30 m), the distribution of neighbours accounts for c. 20% of the 

variation in the size of individuals. This regression also had the steepest slope 

indicating that at these locations the distribution of individuals is having a greater 

effect of the size of those individuals than in other locations. The regression at 10 - 

13 m achieved the second highest R2 value (R 2=0.128) and had a steeper regression 

slope than other locations (except 20 - 30 m) although it is indistinguishable from the 

regression slope produced by the model at 20 - 30 m. Both these regression models 

achieved high statistical significance (p < 0.005). At other locations the distribution of 

individuals does not have as strong an effect of the size of those individuals, 

suggesting that factors other than shrub distribution are influencing the size of 

individuals. 

The effect of the slope of the terrain on the local spatial structure of S. supranubius 

does not appear to be as strong as the effect of the ridges (i. e. the standard errors of 

the regression slopes produced in all seven slope categories overlap). The regression 

model at c. 4-6 degrees achieved the highest R2 value (R 2=0.183). This model 

achieved statistical significance (p < 0.005) and had the steepest regression slope, 

although this slope was indistinguishable from the regression slope produced by the 

model at 17 - 20 degrees. 
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8.4 DISCUSSION 

Understanding the interaction between ecological and hydrological processes is 

particularly important in and and semi-arid regions (Svoray et al., 2008; Popp et al., 

2009). While heterogeneity in water availability has been shown to be important in 

organising and vegetation at the patch scale (i. e., the location and dynamics of woody 

vegetation patches relative to herb and grass dominated areas; Sankaran et al., 2005; 

Saco et al., 2007; McDonald et al., 2009), this chapter investigates how topography 

(and its assumed effects on water distribution) influences the density and spatial 

structure of S. supranubius at the scale of the individual. It is expected that vegetation 

cover and dynamics will be affected by topographically induced runoff regimes 

(Svoray et al., 2008). This chapter provides evidence that topography may influence 

both the density and local spatial structures of S. supranubius. 

8.4.1 THE EFFECT OF TOPOGRAPHY ON S. SUPRANUBIUS DENSITY 

The survival of perennial plants is largely determined by the availability of water, 

specifically the dynamics of deep water (Walter, 1971; Gebauer et al., 2002; Schenk 

and Jackson, 2002; Popp et al., 2009). Therefore, areas with deep water availability 

should have lower levels of mortality from drought stress. Topography was assumed 

to be the major determinant of the distribution of deep water availability on Substrate 3 

because of its expected effects on the horizontal redistribution of precipitation (Figure 

8-1). Analysis 1 revealed that topography was important in describing the density of 

S. supranubius. In the case of medium-sized and large individuals there appear to be 

additional, unmeasured gradients in environmental condition (i. e., Cartesian effects) 

that are influencing density in addition to the measured topographical variables (Figure 

8-7b, c). However, the small individuals appear to be well described by the measured 

topographical variables with little evidence that there are additional, important 

gradients in environmental conditions (Figure 8-7a). 

Assuming that topography influences the distribution of deep water, this research may 

support previous studies that show that topographically driven water availability can 
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affect the density and biomass of and vegetation (Imeson and Prinsen, 2004; Ju et al., 

2008; Hamerlynck and McAuliffe, 2008; Svoray et al., 2008; Popp et al., 2009). The 

effect of the topographical variables on the density of S. supranubius individuals of all 

size classes is spatially non-linear, with abrupt changes in density associated with 

certain positions within the landscape. However, the importance of the distance class 

furthest from the ridges (> 28 m) is questioned as only c. 3% of the study site falls into 

this category. The density of both the medium-sized and large individuals was lower 

at locations close to the ridges, and increased at greater distances. This interpretation 

is supported by the results for the slope covariate which suggest that the density of 

both the small and medium-sized individuals was greater on shallow slopes (< 16 and 

18 degrees respectively). A reduction in shrub abundance on steep slopes 

corresponds with the outcomes of simulation models applied by Popp et al. (2009). 

This could correspond with the expectations of the water redistribution model (Section 

8.1.1) which assumes that the steep slope and rocky composition of the ridges will 

reduce the chance of infiltration and thus reduce water availability in this location, 

resulting in a lower density of S. supranubius. It is also noted, although not studied, 

that the physical composition of the ridges could have an effect on S. supranubius 

individuals. Studies have shown that the presence of isolated large rocks may 

facilitate the establishment and growth of cacti and other desert plants by 

concentrating moisture (Peters et al., 2008). In the current focal system, however, 

rocks do not usually exist as discrete entities but as part of a solid ridge complex. 

Limited soil availability in these locations (pers. obs. ) could reduce the successful 

establishment of S. supranubius and thus reduce their density in this area. 

Interestingly, the influence of the two topographical variables considered seems to 

vary according to the size of the S. supranubius individuals. Whereas the density of 

both small and medium-sized individuals was influenced by the slope of the terrain, 

the distribution of ridges had a greater influence on the density of large individuals 

(Analysis 1c). These results suggest that the dynamics of S. supranubius populations 

may be influenced by multiple abiotic factors, and that the relative importance of these 

factors may vary with life stage. 
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8.4.2 THE EFFECT OF TOPOGRAPHY ON S. SUPRANUBIUS SPATIAL 
STRUCTURE 

A positive relationship between the size of individuals and the distances separating 

them is consistent with the operation of competition as a structuring force. Therefore, 

the positive regression slopes identified in Analysis 2 (Figure 8-8) provide further 

evidence of the importance of competition in driving S. supranubius spatial structure, 

as suggested in Chapter 7. However, differences in the quantile regression slopes 

suggest that the importance of competition is not consistent throughout the population. 

The steep slopes in the upper quantiles (e. g., the 95 th and 90th percentile) indicate that 

competition is an important structuring force in some locations. However, the less 

steep regression slopes in the lower quantiles suggests that in other locations 

additional factors may be over-riding the influence of competition as a structuring 

force. This corresponds with previous work by Shackleton (2002), who used nearest- 

neighbour techniques to show that the importance of both intra- and inter-specific 

competition between woody vegetation in the African savannah varied between sites. 

Shackleton (2002) observed that sites lacking evidence of intra-specific competition 

were at lower slope positions. 

Analysis 2 detected patterns that are consistent with spatial variation in the effect of 

the relative distribution of individuals on the canopy size of those individuals (Figure 

8-9). In locations that are between 20 and 30 m, and 10 - 13 m away from a ridge the 

distance separating individuals has a stronger effect on the size of those individuals 

than observed in other locations. These patterns are consistent with stronger 

competitive interactions in these locations. Although competition may still be 

occurring in the other locations (i. e., the regression slope is still positive), the effect of 

the distances separating individuals on the size of those individuals is not as strong 

indicating that factors other than competition may be influencing the local size- 

distribution. The implication of this interpretation is that while spatial environmental 

variation may not influence or alter the biological processes operating, it may influence 

their importance and thus their impact upon population spatial structure. 
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The results of Analysis 2 are consistent with the presence of terrain-induced 

alternating zones of competition importance. This interpretation would coincide with 

the predictions of the water redistribution model presented in Section 8.1.1. The 

stress-gradient hypothesis (Bertness and Callaway, 1994) predicts that under severe 

abiotic conditions, the importance of competition should decrease and facilitation 

should become the dominant structuring force. Based upon this hypothesis it is 

possible that the apparent spatial variation in the structuring force of competition 

indicated by Analysis 2 may be driven by topographically-induced spatial variation in 

resource (i. e. water) availability. It is important to note that this assertion is 

speculative and would require the direct measurement, or modelling, of water 

distribution and availability to substantiate the claims. It is also important to 

acknowledge the possible alternative explanations. For instance, Analysis 2 provided 

little evidence for the structuring force of competition close to the ridges. Under 

Bertness and Callaway's (1994) hypothesis this could be an area experiencing severe 

abiotic conditions (i. e. low water availability). However, it could also be explained by 

the physical properties of the ridges which may prevent the root systems of 

neighbouring individuals from overlapping. Consequently, competition for below- 

ground water resources will have a minimal effect on the local structure of the 

population. 

Despite the above interpretation, it is noted that in all locations the ability of the 

distribution of individuals to explain the size of those individuals was low (R 2<0.25; 

Analysis 2). This is at best equivalent to, or lower than, the results observed when 

applying similar techniques to woody vegetation in South African Savannas (Briones, 

et al., 1996; Shackleton, 2002) and temperate forests (Getzin et al., 2006; Getzin and 

Wiegand, 2007). This suggests that intra-specific competition is not the only force 

driving the structure of the S. supranubius population. Although the results presented 

in Figure 8-8 Graph b and Figure 8-9 Graph lb are consistent with topographically- 

induced spatial variation in the importance of competition, it is important to consider 

other possible alternatives for the observed heterogeneity in the effect of shrub 

distribution on the size of those shrubs (Figure 8-8). Two alternative explanations are 
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provided which may help account for the increased heterogeneity of canopy sizes 

when individuals are widely spaced (i. e. the right hand side of Figure 8-8a). (1) Large 

distances between S. supranubius individuals may be caused by the presence of 

other species. If so, and these other species are competing with S. supranubius 

individuals, the size of those S. supranubius individuals may be smaller than expected 

given their separation. (2) If a large S. supranubius individual, separated from 

neighbouring individuals by large distances, undergoes vegetative reproduction to 

produce few (i. e. one or two) ramets, the local population will remain similarly 

distributed (i. e. wide inter-shrub distances) but the average canopy size will have 

decreased. 

Ecological systems are typically complex, and it is likely that the spatial structure and 

dynamics of S. supranubius populations are influenced by a range of processes. 

Determining the relative importance of alternative processes will require further field 

observations and/or the application of mathematical simulation models. The results 

presented in this chapter are consistent with abiotic variation over short gradients 

influencing the spatial structure of and shrub populations. The implication of this is 

that even when investigating spatial pattern and process in small plots (as are 

commonly used; Chapter 1, AppendixA), studies should consider the potential 

influence of short gradients in environmental variation on the patterns and processes 

being investigated. 

The importance of topographically driven water availability 

The research presented in this chapter suggests that topography may affect the 

dynamics of woody vegetation perhaps through its effects on water availability. 

However, it is noted that additional, unobserved abiotic factors may be influencing the 

dynamics of S. supranubius. A review of empirical studies by Grayson et al. (2006) 

concluded that terrain properties rarely account for more than 50% of the variation in 

soil water availability. Similarly, Wilcox et al. (2006b) found that overland runoff only 

contributed to a very small part of the water budget in an and shrubland, and only 

occurred during extraordinary precipitation events. It is likely, therefore, that factors 
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other than topography are important in driving the spatial distribution of water 

availability in the focal site. One potential factor that may influence the spatial 

distribution of water availability is the feedback between vegetation patches and 

runoff. Following a review of their own data, and data from other studies, Ludwig et al. 

(2005) concluded that vegetation patches in and systems could obstruct and store 

more water than inter-patch areas. It is feasible that large S. supranubius individuals 

in particular could interact with topographically induced runoff to generate complex 

spatial variation in the availability of water. 

To date, almost all studies of and vegetation pattern and its relation to abiotic effects 

have been conducted in warm deserts. In contrast to many deserts, a large proportion 

of the precipitation in the Las CaMadas caldera falls as snow. Combined with the 

reduced potential evapotranspiration during winter months, snow melt can be more 

effective at recharging soil water than rainfall, per unit precipitation (Loik et al., 2004). 

A greater understanding of the dynamics and horizontal redistribution of snow melt 

may be required to understand the dynamics of vegetation in cold deserts. For 

example, if snow melt is slow, the majority of water will be infiltrated in sitU and there 

may be limited spatial variation in deep water recharge. Under these conditions 

differences in water availability may not be as important in influencing vegetation 

biomass in cold deserts, increasing the relative importance of other effects, such as 

the physical effects of the substrate. 

8.5 CONCLUSIONS 

In this chapter spatial variation in the density and spatial structure of an 

S. supranubius population was investigated and related to topographical features. 

The density of individuals was partly determined by a spatially non-linear response to 

both the slope of the terrain and the distribution of the ridges. The results suggest that 

multiple abiotic factors may influence the population dynamics of and shrubs, and that 

the relative importance of abiotic factors may depend upon the life stage of the 

individual. 
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Competition is commonly observed in and shrub communities. This chapter provides 

evidence that the importance of intra-specific competition as an organising force may 

vary spatially. In this chapter it is recommended that, even when investigating spatial 

pattern and process in small plots, studies of density-dependent effects should 

account for spatial environmental variation over short gradients. It is also 

recommended that further attention is paid to the horizontal redistribution of 

precipitation events (especially when precipitation is frozen) and its effects of 

vegetation dynamics. 
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CHAPTER 9: DISCUSSION AND CONCLUSIONS 

This thesis has addressed a number of methodological and ecological hypotheses. 

The main aim of the research was to investigate the potential methodological 

constraints of spatial point pattern analysis, as currently applied in the literature, and 

how, with the support of remotely sensed data, their application could be improved to 

help understand the biotic and abiotic processes structuring populations of 

Spartocytisus supranubius. As the results of each chapter have been evaluated in 

their specific context, this concluding chapter highlights only the key findings and 

major implications. Figure 9-1 provides a summary of the key findings, the implications 

of the research, methodological recommendations for the application of spatial pattern 

analyses, and future research questions. Section 9.1 discusses the utility of remote 

sensing in and shrub ecology. The following sections discuss the conclusions of the 

research in relation to the research hypotheses detailed in Chapter 1 (Figure 1-1): 

Section 9.2: Spatial pattern analysis: reproofs and recommendations 

(Hypotheses I and 2) 

Section 9.3: The biotic processes driving and shrub population dynamics 

(Hypothesis 3) 

Section 9A The abiotic processes driving and shrub population dynamics 

(Hypothesis 4) 

The final section of the thesis (Section 9.5) makes a critical evaluation of the thesis. 

This is subdivided in to two parts. The first part (Section 9.5.1) critically evaluates the 

assumptions made throughout the thesis and the potential implications these have for 

the reported results. The second part (Section 9.5.2) considers the potential role of 

other factors (i. e. alternative biotic and abiotic processes) on the observed S. 

supranubius spatial structure. 
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9.1 THE UTILITY OF REMOTE SENSING IN ARID SHRUB ECOLOGY 

Spatial ecology is a specialisation of geography and ecology that aims to understand 

the spatial dimensions of the processes driving the dynamics and spatial structure of 

populations and communities (Murrell et al., 2001). Such investigations require data 

detailing the locations of individuals within a population. Although imagery collected 

from spaceborne platforms does not usually provide resolutions suitable for the 

analysis of individual shrub dynamics (typical resolution 1-4m [Aplin, 2005]), the fine 

spatial resolution of data obtained from airborne remote sensors could provide a 

useful data collection tool. The extensive spatial coverage of these data sources 

could help avoid the problems associated with the small plot sizes that are typically 

used in the literature (Chapter 1, Appendix A, Chapter 5). Remotely sensed data 

could also allow temporal changes in population dynamics to be investigated (e. g., 

Moustakas et al., 2006), where a chrono-sequence of imagery is available. Despite 

these advantages, only seven of the 109 studies reviewed in Chapter 1 (Appendix A) 

used airborne remote sensors to generate data on the spatial pattern of individuals. 

Remotely sensed data are particularly suited to studies of and shrub dynamics. Arid 

vegetation is typically sparsely distributed with limited vertical stratification, making the 

delimitation and identification of individuals easier than in less dispersed communities. 

it is therefore surprising, perhaps, that only c. 20% of the studies of woody plants in 

and systems (n = 18) reviewed in Chapter 1 (Appendix A) used remotely sensed data. 

Several reasons could help explain the limited use of remotely sensed data in spatial 

ecology. The first issue concerns availability. Compared With the continuous 

acquisition of imagery from spaceborne platforms, airborne data are infrequently 

captured. Cost is another potential restriction as aerial photography can be expensive 

to obtain (Aplin, 2005), especially if flights must be commissioned. In addition to these 

logistical problems, spatial ecologists may be dissuaded from using remotely sensed 

data for other reasons. Unlike manually collected data which are typically of high 

accuracy, remotely sensed data can contain errors. A common error when mapping 

individual trees or shrubs is to incorrectly classify two or more neighbouring individuals 
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with overlapping or adjacent canopies as a single individual (Moustakas et al., 2008). 

Remotely sensed data can also suffer from errors of omission (e. g., failing to identify 

an S. supranubius individual) and commission (e. g., incorrectly identifying a different 

species or object as an S. supranubius individual). Typically, the primary objective is 

to minimise errors of commission (i. e., the set of objects identified as S. supranubius 

individuals has a high probability of being S. supranubius individuals; Atkinson et al., 

2007). Although errors of commission should be infrequent in sparse, and 

communities, they have the potential to distort the detection and interpretation of 

pattern (Freeman and Ford, 2002). Using simulated data, Atkinson et al. (2007) 

showed that commission errors could affect the strength of the pattern detected by g(r) 

(i. e., the position of the empirical g(r) in relation to simulation envelopes). Commission 

errors in this thesis ranged from 8% (on Substrate 3) to 16% (on Substrate 5), and 

could therefore affect the pattern detected when using Monte Carlo simulation 

envelopes (Atkinson et al., 2007). To avoid inaccurate interpretations of pattern it is 

recommended that attention is also paid to the magnitude of the empirical functions as 

a measure of pattern strength (Chapter 7, Section 9.2.2). Further research is needed 

to determine how greatly errors of commission and omission influence the 

quantification of pattern from real (i. e., not simulated) data, and whether this effect 

could be minimised by increases in plot extent. If large plot extents can successfully 

average the effects of occasional and random classification errors on pattern 

detection, then remote sensing may provide a realistic alternative to manual data 

collection. 

Errors in remotely sensed data may also occur from the necessary approximation of 

rooting points as the centre of the canopy, although such errors may be avoided by 

preserving the size and shape of individuals during analysis (Chapter 6). Another 

problem that may deter spatial ecologists from using remote sensing data is the 

restriction of subsequent analyses of pattern and process to individuals above a 

certain size (usually dictated by the pixel resolution of the image). This may prevent 

studies that use remotely sensed data from investigating the dynamics of dispersal 

and establishment. 
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Despite these potential problems, remotely sensed data offer a valuable, yet 

underused, resource in studies of and shrub dynamics. Hyperspectral and LiDAR 

data could provide information on the characteristics and spatial variation in abiotic 

conditions such as the texture and moisture properties of soil (Anderson and Croft, 

2009). These data could be used to investigate the relationship between abiotic 

conditions and biotic patterns and processes. A closer collaboration between remote 

sensors and spatial ecologists may provide exciting opportunities for research 

(Newton et aL, 2009), specifically in our understanding of the interaction between 

biotic processes and abiotic conditions and their spatio-temporal dynamics, 

9.2 SPATIAL POINT PATTERN ANALYSIS: REPROOFS AND 

RECOMMENDATIONS 

The spatial pattern of individuals within a population may provide valuable insights into 

the biotic and abiotic processes driving its dynamics. However, some authors have 

contended that the analysis of pattern alone is not enough to infer underlying 

processes (Mahdi and Law, 1987; Borcard et al., 2004; Schurr et al., 2004), whilst 

others have condemned the lack of empirical verification of the spatio-temporal theory 

upon which pattern-process inference is based (Murrell et al., 2001; Perry et al., 

2006). However, when the demographics of the focal species are very slow, such as 

and shrubs, it may not be feasible to empirically assess the operation of biological 

processes, especially when the focus of the study is on population-level dynamics 

(see Section 1.3.2). Until datasets; of sufficient spatial and temporal coverage are 

generated, pattern-process inference may be one of the few techniques available to 

investigate and shrub population dynamics. Therefore, we must ensure the inferential 

link between pattern and process is as strong as possible. The wide availability of 

spatial point pattern analysis techniques has led to a sharp increase in their 

application over the last 15 years (Chapter 1, Appendix A). However, our ability to 

infer processes from patterns is being impeded by the methodological procedures 

being used. Chapters 5 and 6 investigated the robustness of pattern detection to 

changes in plot extent and data representation. 
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The strength of pattem-process inference can be improved by using deductive rather 

than inductive reasoning; i. e., using ecological theory and knowledge of the focal 

system and species to formulate precise a ptiori hypotheses of the likely abiotic and 

biotic processes of importance and their expected spatial signatures (Chapter 7; 

McIntire and Fajardo, 2009). This approach can be extended by using point process 

theory to test and explore predictions. Chapter 8 used point process modelling 

techniques to investigate the influence of measured and unmeasured spatial 

covariates on the spatial structure of a S. supranubius population. 

Based on the review of ecological spatial pattern analysis studies (Chapter 1, 

Appendix A) and the results of Chapters 5,6 and 8, the following sections provide 

recommendations for future studies using spatial pattern analyses to infer population 

dynamics. 

9.2.1 PLOT EXTENT AND REPLICATION 

In Chapter 1 (and Appendix A) it was noted that studies investigating the spatial 

patterns of woody species typically used small plot extents. Analyses in Chapter 5 

demonstrated that the patterns detected by commonly used plot extents (< 1 ha) are 

spatially inconsistent, and that inconsistency was greatest at the scales at which 

biological interactions are presumed to occur. Furthermore, spatially inconsistent 

patterns were detected on both homogeneous and heterogeneous substrates. These 

results have implications for the utility of spatial pattern analyses as currently applied 

in the literature. Specifically, the patterns detected and the processes inferred from 

small plots may not be representative of the population as a whole. This is of 

particular concern when few or single plot replicates are used, as is common in the 

contemporary literature (Chapter 1, Appendix A). In Chapter 5, the spatial 

inconsistency in pattern detection was attributed to unobserved, small-scale 

environmental heterogeneity. Chapter 8 provides further weight to this argument by 

detecting a change in population spatial structure associated with local topography. 

This chapter concluded that small-scale environmental variability could have (spatially) 

non-linear effects on the local spatial structure of S. supranubius populations. 
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Therefore, it is important that the design of future studies into plant spatial patterns 

consider the potential importance of both long (Chapter 7) and short (Chapters 5 

and 8) gradients in environmental conditions. Based on my findings, I recommend 

that one of two approaches is taken: either use plots with an extent larger than any 

anticipated environmental heterogeneity effects, or use multiple replicate plots. Both 

techniques allow for any effects of small-scale heterogeneity to be averaged; however, 

as environmental variables of importance may not always be known, the second 

approach is preferred. Indeed, using a single large plot may obscure the effect of 

important environmental gradients. If multiple plots can be used, each of a size large 

enough to provide a reasonable estimation of pattern (see Chapter 5), analyses may 

be able to start investigating which external abiotic or biotic (i. e., other species) factors 

are affecting the dynamics of the focal species. However, more research may be 

required if the results of multiple plots are to be combined into a single pattern 

statistic, as methods for the analysis of replicated point patterns remain relatively 

under-developed and untested (Diggle et al., 2000; Bell and Grunwald, 2004; Illian et 

al., 2008). 

It is important to note that an alternative explanation may account for the increased 

inconsistency of g(r) at small plot extents. As noted in Chapter 5, changes in plot 

extent are inherently linked with the issue of sample size. Consequently, the 

inconsistency in g(r) at small plot extents may also be attributable to small sample 

sizes and associated reductions in statistical power. There is no consensus in the 

literature on the sample size requirements for either g(r) or L(r) (Chapter 1), and 

further research is needed to determine at which sample sizes the application of these 

indices becomes unreliable. That said, the results of Chapter 5 clearly demonstrate 

an increase in inconsistency with decreases in plot extent while sample sizes are high 

(i. e. n> 100). Further research is needed to disassociate the effect of small-scale 

heterogeneity and low sample sizes at the smallest extents (i. e. <1 ha). 
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9.2.2 ASSESSING PATTERN USING MONTE CARLO SIMULATION ENVELOPES 

As sample size increases (e. g., with increases in plot extent), the width of envelopes 

generated from multiple Monte Carlo simulations of a hypothesised null model 

decreases. Changes in the width of the Monte Carlo simulation envelopes with 

variation in plot extent can affect the detection of 'significant' pattern (Chapter 5). This 

adds weight to previous criticisms that the construction of Monte Carlo simulation 

envelopes from the result of many simulated patterns underestimates the Type I error 

rate and is consequently invalid for inferring pattern significance (Loosmore and Ford, 

2006). Despite these limitations, however, the majority of studies use Monte Carlo 

simulation envelopes to detect pattern and infer processes (Chapter 1, Appendix A), 

perhaps because the main authors in the field continue to recommend their usage 

(e. g. Diggle, 2003; Wiegand and Moloney, 2004; Illian et al., 2008). In Chapter 51 

recommend that Monte Carlo envelopes are treated as an analogue to statistical 

assessment via p-values; i. e., the position of the empirical function in relation to the 

simulation envelopes provides an indication of the importance of the pattern. Greater 

attention should also be paid to the magnitude of the empirical function relative to the 

null model expectation; an analogue of effect size. 

9.2.3 POINT PROCESS MODELLING 

In the majority of studies, analyses of spatial point processes focus on tests of 

deviation from complete spatial randomness. While such analyses can provide 

evidence for the occurence of a hypothesised process (Chapter 7), they are unable to 

explicitly test processes, and therefore may have limited applicability (Comas and 

Mateu, 2007). Point process modelling techniques, however, allow the effect of 

hypothesised abiotic and biotic processes and mechanisms on point patterns to be 

more rigorously tested and explored. The scope of possible models is very wide and 

may include spatial (Cartesian) trends, dependence upon measured covariates 

(Chapter 8), interpoint interactions, and dependence on marks (i. e., a categorical [e. g., 

species] or continuous [e. g., size] value assigned to each point; Baddeley and Turner, 

2005). Despite the relatively long history of point process theory, its application in 
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studies of plant population dynamics remains limited (Comas and Mateu, 2007). 

While studies are beginning to use non-Poisson point process models such as 

Neyman-Scott processes (e. g., Thomas processes or Mat6m cluster processes (e. g., 

Wiegand et al., 2007b; Yu et al., 2009]) to test and explore interactions between 

points, relatively few studies have used point process modelling techniques to explore 

the effects of abiotic gradients on either first- or second-order population spatial 

structure (Chapter 8; but see Shimatani and Kubota, 2004). This technique provides a 

promising technique to infer the influence of abiotic gradients (either measured or 

assumed) on population-scale structure. Such techniques Could be essential for 

improving our understanding of how biotic and abiotic processes interact to drive 

population dynamics, which remains a fundamental question in ecology (Dahlgren and 

Ehrl6n, 2009). 

9.3 THE BIOTIC PROCESSES DRIVING ARID SHRUB POPULATION 

DYNAMICS 

One of the aims of plant population and community ecology is to investigate biotic 

interactions and predict how these translate into consequences for the whole 

population/community (Freckleton et al., 2009). Shrubs are important, often dominant, 

elements of and and semi-arid vegetation communities. Understanding the dynamics 

of the dominant shrub species may be an important first step in understanding the 

dynamics of the ecosystem as a whole, yet little is known about their population 

processes and the factors underlying their dynamics (Kyncl et al., 2006; Jim6nez- 

Lobato and Valverde, 2006). The spatial structures of S. supranubius populations are 

consistent with the operation of clonal reproduction and intra-specific competition 

(Chapter 7). There is also evidence that the biotic processes driving the dynamics of 

S. supranubius may be influenced by spatial environmental heterogeneity (see 

Section 9.4). 

9.3.1 CLONAL REPRODUCTION 

The spatial patterns quantified in Chapter 7 are consistent with the clonal reproduction 

of S. supranubius. It is therefore reasonable to assume that clonal reproduction is an 
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important process organising S. supranubius populations. Asexual reproduction is 

assumed to be favoured in marginal or harsh environments (Peck et al., 1998; Klimeg, 

2008). In these locations sexual reproduction may be hampered, and so clonal 

reproduction enables the population to persist in the short and mid-term (Mandujano 

et al., 2001; Honnay and Bossyut, 2005; Wesch et al., 2005). As such, clonal growth 

can greatly increase the resilience of a plant population and, in the case of a keystone 

species, the whole community (Wesche et al., 2005). In the long-term, however, 

prolonged clonal reproduction can have implications for the future viability of a 

population (Honnay and Bossyut, 2005; Honnay et al., 2006). 

Clonal reproduction can influence the spatial structure and competitive interactions in 

plant communities (Song et al., 2002). S. supranubius follows a phalanx clonal growth 

form: i. e., ramets form consolidated groups compared to the spreading, widely spaced 

characteristics of ramets typical of guerrilla clonal growth (Ye et al., 2006). The 

phalanx growth form increases the frequency of S. supranubius intra-ramet contacts 

and may in part explain the importance of intra-specific competition posited in 

Chapters 7 and 8. By ensuring close proximity and strong intra-specific competition 

among S. supranubius individuals (as observed on the homogeneous substrates, 

Chapter 7), clonal reproduction could have implications for the structure of the 

Cafladas vegetation community. Additionally, the senescence of S. supranubius 

individuals following strong intra-specific competition may leave islands of fertility 

which could be exploited by other species (Alvarez et al., 2009). 

Clonal reproduction is believed to be a common attribute of and shrubs (Schenk, 

1999), and has been demonstrated in several species of tree and shrub in the cold 

deserts of central Asia (Bruelheide et al., 2003; Qong et al., 2002; Song et al., 2002; 

Wesche et al., 2005). The presence of clonal species, especially when those species 

dominate the community, as S. supranubius does, could be an important mechanism 

driving community dynamics. However, the importance of this strategy in the 

dynamics of and shrub populations, and the implications for the structure and 

dynamics of the wider vegetation community, has received little attention. 
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The use of deductive reasoning provides confidence in the interpretation of the 

observed spatial patterns as a signature of clonal reproduction. However, it is 

important to evaluate the other possible explanations. Scholes and Archer (1997; 

cited in Meyer et al., 2008) suggest that aggregated spatial patterns in savanna plants 

may be generated by topography (e. g. termite mounds), fire patchiness and soil depth. 

However, field observations did not indicate the presence of any topographical 

variation at the scales required to generate the aggregation observed (i. e. 3- 10 m), 

and there is no documented evidence of fires within the caldera. Although soil depth 

is a possible explanation it is believed to be unlikely because of the remarkable 

consistency in aggregation between the substrates (Chapter 7). It is unclear how 

spatial variation in soil depth would be consistent between substrates that were 

generated at different times and have different formations (e. g. aa and pahoehoe lava 

flows). 

9.3.2 INTRA-SPECIFIC COMPETITION 

Many studies have investigated the interactions between different functional groups in 

and systems (e. g., shrubs, herbs and grasses; Maestre et al., 2003; Armas and 

Pugnaire, 2005; Anthelme and Michalet, 2009), but relatively little has been concluded 

about the interactions between the dominant woody components of and systems. 

Bertness and Callaway's (1994) stress-gradient hypothesis Proposes that facilitation 

should dominate species interactions in systems where extreme abiotic stress limits 

productivity, such as and environments (Weedon and Facelli, 2009). Over the last 15 

years there has been much debate about the relative importance Of competition and 

facilitation in structuring and vegetation communities, leading to the generality of 

Bertness and Callaway's (1994) model being questioned (Michalet, 2006,2007; Lortie 

and Callaway, 2006; Maestre et al., 2005,2009). The results presented in Chapters 7 

and 8 are consistent with the operation of intra-specific competition as an important 

process driving the spatial structure of S. supranubius populations. This is in contrast 

to the predictions of Bertness and Callaway's (1994) stress-gradient hypothesis, 

perhaps suggesting that whereas facilitative interactions dominate inter-specific 
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interactions, intra-specific interactions are predominantly competitive. This 

interpretation is in contrast to a simulation study which found that neither facilitation 

nor competition were as important as random mortality from drought in structuring an 

intra-specific and shrub population (Malkinson and Jeltsch, 2007). Notably, however, 

the model developed by Malkinson and Jeltsch (2007) did not incorporate clonal 

reproduction, which may explain the absence of strong intra-specific competition (see 

Section 9.3.1). 

The importance of intra-specific competition in structuring S. supranubius populations 

supports previous assertions that when the limiting factor is a scarce, depletable 

resource, such as water, facilitation will be reduced. Under these conditions, 

facilitation will only occur when neighbours can increase the absolute volume of the 

resource (water) beyond their own requirements (Maestre and Cortina, 2004; Maestre 

et al., 2009). It is noted, however, that intra-specific competition alone does not fully 

explain the spatial structure of S. supranubius (Chapter 8), and that other factors 

(either biotic or abiotic) are important in driving the population's spatial structure. 

The interpretation of intraspecific competition is given extra credence by the variety of 

techniques used to assess its presence: spatial structures in different size classes 

(Chapter 7), comparison between the hard-core distance and the maximum scale of 

aggregation (Chapter 7, see also 9.3.3) and size-distance regressions (Chapter 8). 

All three techniques produced results that were consistent with the operation of intra- 

specific competition. In response to criticisms that snap-shot spatial patterns cannot 

be used to infer processes (Mahdi and Law, 1987; Cale et al., 1989; Moravie and 

Robert, 2003; references in McIntire and Fajardo, 2009) it is recommended that 

practitioners utilise multiple approaches when investigating the presence and 

importance of a hypothesised process. 

The following section considers the typical use of spatial pattern analysis to detect 

competition and makes recommendations for a more rigorous approach. 
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9.3.3 THE MYTH OF REGULARITY AND A NEW METHOD FOR DETECTING 
COMPETITION 

Spatial pattern analysis is often used to deduce the presence, or absence, of 

competition in a plant population. When individuals are competing, the fitness of an 

individual is expected to be a function of the distance separating that individual from 

neighbouring individuals, and the size of those individuals. If individuals successfully 

outcompete all others within their zone of influence then a regular (also known as 

dispersed) spatial pattern will result. A regular pattern of individuals can, therefore, be 

considered as strong evidence for the importance of competition (Stoll and Bergius, 

2005). However, there are very few documented examples of plant populations with 

regularly distributed individuals from any ecosystem. Indeed, regular distributions are 

most commonly observed in self-thinned, even-aged, single-species forest stands 

(Toft and Frazier, 2003). Even after removing the effects of heterogeneity (which is 

often cited as a cause of aggregated distributions), none of the S. supranubius size 

classes on any of the substrates displayed a regular distribution (Chapter 7). 

The lack of a regular pattern does not necessarily indicate the absence of competition. 

Many recent articles consider a decrease in the strength of aggregation with age to be 

evidence of competition, even if no individual age/size class achieves regularity (e. g., 

Getzin et al., 2008; Metsaranta and Lieffers, 2008; Meyer et al., 2008; Gray and He, 

2009). A decrease in the strength of aggregation of S. supranubius individuals with 

increases in size class was observed (Chapter 7). However, I suggest that merely 

investigating age/size-dependent changes in pattern is not enough to determine the 

existence, or otherwise, of competition. For instance, random (i. e., 

density-independent) mortality can have the same qualitative effect on the pattern of a 

population as density-dependent mortality (Toft and Frazier, 2003). Furthermore, 

using a spatially explicit individual-based model, Murrell et al. (2009) demonstrated 

that an increase in aggregation with size class may be consistent with a self-thinning 

process under certain conditions (i. e., slow growth, low fedundity or high juvenile- 

juvenile competition). Toft and Frazier (2003) suggest that in order to conclude the 

operation of competition, the pattern of individuals should become more dispersed 
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with increases in age/size than expected under the hypothesis of density-independent 

thinning. This approach would, however, be time-consuming; quantifying the pattern 

expected under density-independent thinning could only be achieved by repeatedly 

simulating the loss of individuals in a density-independent manner and calculating an 

average pattern expectation. 

In Chapters 6 and 7a more rigorous approach to detecting competition in sparse 

communities was introduced. The technique compares the scale of modal shrub- 

shrub separation within a cohort with the hard-core distance (i. e., maximum canopy 

diameter) below which interactions are not expected to occur. I suggest that a 

decrease in aggregation strength and an increase in the modal shrub-shrub distance 

(relative to the canopy diameter) with increases in age/size provides strong evidence 

for the operation of density-dependent thinning. Furthermore, this technique enables 

the relative strength of competitive forces in replicate populations to be compared, as 

a greater difference between the modal shrub-shrub distance and the hard-core 

distance indicates stronger competitive interactions. Although not tested in this thesis, 

this technique should be also applicable in populations with overlapping canopies 

where the modal shrub-shrub distance may be less than the average canopy 

diameter. Notably this technique is only possible if patterns are assessed using the 

pair-correlation function (g(r)) which, unlike its cumulative counterpart (L(r)), provides 

information on modal point-point separation. This provides further support for the 

application of this measure in favour of the more commonly applied cumulative 

measures (L(r) and K(r); Chapter 1, Appendix A). 

9.4 ABIOTIC PROCESSES DRIVING ARID SHRUB POPULATION 

DYNAMICS AND THEIR INTERACTION WITH BIOTIC PROCESSES 

Understanding how abiotic factors, especially water availability, influence biological 

processes is essential if we are to predict and manage the effects of future 

environmental and climatic change on and vegetation dynamics (Snyder and 

Tartowski, 2006). Current efforts are being directed towards investigating (empirically 

and theoretically) how temporal variation in precipitation timing (Snyder et al., 2004; 

264 



West et al., 2007), magnitude (Huxman et al., 2004) and frequency (Heisler-White et 

al., 2009) may influence and vegetation productivity. Comparatively little attention is 

being paid to the influence of spatial variation in water availability (Loik et al., 2004; 

Breshears et al., 2009). 

Although no direct measurements of processes were made, the results presented in 

this thesis are consistent with the influence of spatial variation in abiotic conditions 

(particularly topography) on the spatial structure of S. supranubius populations. 

Analyses in Chapter 7 suggest that spatial environmental heterogeneity can influence 

the spatial patterns and demographics of S. supranubius. These analyses were 

extended in Chapter 8, the results of which are consistent with an influence of 

topography on both the density of S. supranubius and the importance of competitive 

interactions between individuals. The results of Chapter 8 provide support for the 

assertions of Monger and Bestelmeyer (2006) who suggested that the effect of 

geomorphological and topographical conditions on water and nutrient conditions can 

influence the dynamics of and vegetation at a range of scales. Two possible 

explanations were proposed for the apparent spatial variation in the structuring force 

of competition: (1) the physical effect of pahoehoe ridges preventing the interaction of 

neighbouring root masses and reducing the effects of below-ground competition, and 

(2) topographically-induced spatial variation in resource (i. e. water) availability. The 

former explanation may also help explain why clonal reproduction appears to be less 

prevalent on the two pahoehoe lava flows (Substrates 3 and 4; Chapter 7). 

in response to the latter explanation it is acknowledged that further research is needed 

to investigate how geomorphological and topographic conditions might interact with 

precipitation events to determine spatial variation in water availability. Currently, our 

understanding of these processes is limited to independent studies of the effects of 

geomorphic features (e. g., P6rez, 2003; Zou et al., 2010), and the effects of changes 

in precipitation conditions (e. g., Huxman et al., 2004; Snyder et al., 2004; West et al., 

2007; Heisler-White et al., 2009). Studies of the latter are largely experimental 

whereas studies of both effects typically focus on the physiological response of 
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individual plants or the large-scale response of vegetation assemblages (i. e., biomass 

or productivity). Long-term datasets of water availability are needed to further our 

understanding of the factors that determine local water availability, the resulting 

natural spatio-temporal variation in water availability, and how it affects and shrub 

population structure. It should also be noted that, in addition to topography, other 

unmeasured abiotic gradients may influence the distribution of S. supranubius. 

Without further data the likelihood of either of the explanations suggested above 

cannot be assessed. Furthermore, the complexities of ecological systems mean that 

the spatial structure and dynamics of S. supranubius populations are likely to be 

influenced by a range of processes. As noted in Chapter 8, in addition to spatial 

variation in the importance of competition, the observed heterogeneity in the effect of 

shrub distribution on the size of those shrubs may also be influenced by the processes 

of clonal reproduction and interspecific competition. However, the results and 

speculations made raise some important questions and implications: 

(1) While vertical heterogeneity in water availability has been shown to be important in 

determining patch dynamics (i. e., the location and dynamics of woody vegetation 

patches relative to herb and grass dominated areas; Sankaran et al., 2005), horizontal 

heterogeneity in water availability may be important in determining population spatial 

structure. 

(2) The spatial structure and dynamics of S. supranubius and other and shrub 

populations may be influenced by the physical effects of abiotic variables that are not 

temporally transient over ecologically meaningful timescales (i. e. physical 

geornorphological effects). 

3) Spatial variation in individual abiotic variables may have multiple effects on the 

dynamics of and shrubs, and these effects may be life stage specific (Chapter 8), 

(4) The effects of abiotic variables on and shrub dynamics may be more complex than 

realised. it is generally accepted that the processes driving vegetation distribution 

vary with scale. It is a commonly held belief that whereas abiotic factors determine 

266 



vegetation heterogeneity at coarse, landscape scales, small-scale structure is 

determined by biotic processes (Stoyan and Penftinen, 2000; Wiegand et al., 2007b; 

Bisigato et al., 2009). However, the results presented in Chapter 7 and 8 suggest that 

spatial environmental heterogeneity (at a range of scales) may affect the fine-scale 

spatial structure of S. supranubius populations. The effect of abiotic variables on 

small-scale population structure can come from both long (Chapter 7) and short 

gradients in abiotic conditions (Chapters 5 and 8). Therefore, even when using small 

plots, studies of plant pattern and process should account for the potential effects of 

spatial environmental variation over short gradients. Research into population 

dynamics in all systems should place more emphasis on investigating the role of 

spatial environmental heterogeneity in determining plant pattern formation. 

9.5 A CRITICAL EVALUATION OF THE THESIS 

9.5.1 THE MAJOR ASSUMPTIONS 

Throughout the thesis, two major assumptions were made. In both cases these 

assumptions were deemed necessary to enable further analysis and were encouraged 

by the precedent set in the literature. This section reviews each of the major 

assumptions, considers how the assumptions may influence the results reported in the 

thesis, and how these assumptions could be empirically tested. 

The age and size of S. supranubius individuals are positively correlated 

Why and where the assumption was made: 

The relative importance of different biological processes (e. g. reproduction, 

competition) varies with the age of an individual. Therefore, if a researcher aims to 

use spatial patterns to infer the presence of multiple, age-specific processes, the 

spatial structure of individuals of different ages should be examined. Measuring the 

age of all individuals is typically unfeasible. Consequently, a common approach in the 

ecological literature is to use an individual's size as a proxy for its age, under the 

assumption that larger individuals will also be older (e. g. Meyer et al., 2008). This 
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assumption was utilised to define three size classes (small, medium-sized and large) 

which were assumed to represent cohorts of differing age. These size classes are 

used in the analyses found in Chapters 6-8. 

The potential implications of this assumption: 

Age and size are not necessarily related. For example, a young individual may grow 

very quickly, or an old individual that has experienced intense competition may have a 

low or minimal growth rate. Consequently, there may be occasions where individuals 

allocated to a size class (e. g. small) are not of the assumed age (e. g. young). In the 

context of the work presented in this thesis, deviations from this assumption would 

mean that the spatial signature of processes assumed to dominate at certain ages 

may be diluted by the presence of individuals of a differing age. However, because of 

the large number of individuals mapped (over 17,000) it is expected that the proportion 

of individuals incorrectly assigned to a size/age class would be very low and unlikely 

to adversely affect the detection of age-specific patterns and processes. 

How the assumption could be empirically tested: 

it is possible that this assumption could be empirically tested by taking cores of the 

main stem of individuals of a known size and counting growth rings to achieve an 

estimate of the individual's age. However, there are three issues that limit the use of 

this technique in the present system: (1) S. supranubius is a protected under regional 

legislation (Annex 11 of the Flora Order 20/02/1991). Under this protection it is illegal 

to remove any part of an S. supranubius individual, or knowingly disturb or destroy it, 

without governmental authorisation. (2) The dynamics of and shrubs are event driven, 

and discernable growth may only occur in climatically favourable years. 

Consequently, S. supranubius individuals may not possess annual growth rings which 

would impede any assessment of their absolute age, although relative ages could still 

be assessed. (3) S. supranubius individuals typically have a dense canopy with little, 

and frequently no, gap between the canopy and the ground. This would physically 
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impede access being made for the purpose of coring without contravening Annex 11 of 

the Flora Order. 

Large individuals persist in environmentally benign areas 

Why and where the assumption was made: 

This assumption underlies the analyses found in Chapters 5 and 7. The assumption 

of spatial environmental homogeneity is an important limitation of the second order 

statistics used throughout this thesis (g(r) and Qr)). If environmental conditions vary 

from one location to another (i. e. the environment is heterogeneous at a scale greater 

than the size of an individual shrub) the inference of biotic processes from the spatial 

pattern of individuals can be hindered because the distribution of plants may depend 

as much on the environmental template as on internal, biotic processes (Law et al., 

2009). The potential effects of environmental heterogeneity must be removed if the 

spatial patterns driven by biotic processes are to be uncovered. To remove the effects 

of environmental heterogeneity, that heterogeneity must first be mapped. Without 

information on the types of environmental conditions that may influence the 

distribution of S. supranubius, this research utilised S. supranubius individuals 

themselves as indicators of habitat quality (following Stoyan and Penttinen, 2000; 

Getzin et al., 2008; Barbeito et al., 2009; Zhu et al., 2010). Specifically, it was 

assumed that very large S. supranubius individuals were either very old, or had 

experienced much higher growth rates than other, smaller individuals, It was 

consequently assumed that these individuals would be located in optimal habitat. 

Deviation of the distribution of very large individuals from randomness would imply 

that the distribution of optimal habitat was also not random and therefore that the 

environment was heterogeneous. 

The potential implications of the assumption: 

Individuals may attain large sizes for reasons other than being located in an 

environmentally benign area. For example, individuals that occupy a suboptimal 

habitat but experience little or no competition may reach large sizes. Conversely, 
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individuals in optimal habitats that undergo intense competition may not achieve large 

sizes. Such discrepancies may result in an inaccurate representation of the 

magnitude of environmental heterogeneity, although assessments of relative 

heterogeneity between sites should remain valid as any discrepancies are unlikely to 

be spatially systematic. 

How the assumption could be empirically tested: 

A more accurate assessment of the environmental heterogeneity of a site could be 

provided by directly mapping the abiotic factors of importance. However, such a 

technique would require in-depth knowledge of the abiotic variables influencing the 

dynamics and distribution of S. supranubius and an ability to map the distribution of 

these variables at a scale relevant to individual shrubs. This level of knowledge was 

not available. Identifying and dealing with heterogeneous patterns is a matter of 

current research (Law et al., 2009). When measurements Of environmental 

heterogeneity are statistical (as in this thesis) it is recommended that the conclusions 

of the heterogeneity analyses are justified with non-statistical scientific arguments 

(Illian et al., 2008). In this thesis the statistical assessments of heterogeneity were 

supported by visual identification of a potential source of heterogeneity; the 

pronounced ridge-trough topography of Substrates 3 and 4. 

9.5.2 OTHER POSSIBLE EXPLANATORY FACTORS 

Interspecific interactions 

Evaluation and potential importance: 

Interspecific interactions between and shrubs and other species are well documented 

(e. g. Gebauer et al., 2002; Holzapfel et al., 2006; Armas and Pugnaire, 2009). It is 

therefore considered likely that other species may influence the dynamics and 

therefore spatial structure of S. supranubius populations. In particular, the following 

species were noted for being relatively common on Substrate 1-5: Adenocarpus 
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viscosus (leguminous shrub), Pterocephalus lasiospermus (small shrub) and 

Descurainia bourgeauana (small shrub). 

How the process could be measured: 

Because of the slow dynamics and demographics of and shrubs, investigating the 

potential influence of interspecific interactions on the dynamics of S. supranubius via 

experimental and/or observational techniques would be unfeasible. Pattern-process 

inference remains the most promising and accessible method of investigating 

interspecific interactions. The distribution of interspecific individuals could be 

manually mapped in the field, although the time and financial limitations of this 

technique would likely result in plots of small extent and low sample size. The 

imagery used in this thesis is not of a suitable resolution to map the distribution of 

small shrubs (e. g. P. lasiospermus and D. bourgeauan8) and attempts to apply the 

imagery classification procedure utilised in Chapter 4 to the distribution of A. viscosus 

have so far been unsuccessful (data not shown). One possible technique that has so 

far received little attention in ecology is that of remote sensing from kite platforms. 

Such techniques are capable of producing high resolution imagery from which 

individuals of multispecies assemblages may be identifiable. One of the major 

advantages of this technique would be that the equipment could theoretically be 

deployed at optimal times (e. g. during flowering) to allow maximum species 

discrimination. 

Grazing 

Evaluation and likelihood., 

Studies suggest that livestock grazing can influence and vegetation dynamics and the 

relative abundance of different functional groups (Metzger et al., 2005; Facelli and 

Springbeft, 2009). There are two herbivores that may influence the spatial structure of 

S. supranubius populations: the Corsican mouflon and rabbits. While attempts are 

being made to control both species, they are still present in the caldera. Field 

observations made in December 2007 indicate that at some locations active grazing 
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was occurring, to a height of c. 70 cm. This thesis investigates the spatial structure of 

S. supranubius individuals with a canopy area of ý1 M2 - These individuals are 

expected to have escaped the threat of grazing, although it is possible that the 

observed spatial patterns have been influenced by grazing-induced mortality of 

neighbouring individuals. 

Personal observations suggest that the presence of the herbivores may not be evenly 

distributed across the five focal substrates. In particular, faecal evidence of rabbit 

inhabitation was variable between substrates, and was notably lower on those 

substrates with a high proportion of large surface clasts (e. g. Substrate 4). Thus it 

may be reasonable to assume that the any impact of grazing on the spatial structure 

of S. supranubius would not be equal between sites. 

How the process could be measured: 

Direct measurements of the impact of grazing on the spatial structure and dynamics of 

S. supranubius would likely be unfeasible because of the slow response of the 

species. A short-term assessment of the impact of grazing could be obtained by 

establishing exclosures that prevent rabbits accessing areas of the population, The 

growth and survival of individuals within these exclosures and nearby control areas 

could be compared. However, an understanding of the long term impacts of grazing 

may only be obtainable via mathematical models. 

Sexual reproduction and dispersal 

Evaluation and likelihood. 

Although field observations provided evidence of seed production, there was 

remarkably little evidence of regeneration via sexual reproduction (i. e. established 

seedlings), corresponding with previous assertions by Kyncl et al. (2006) that S. 

supranubius seedling establishment is highly episodic. These observations, however, 

do not preclude the possibility that sexual reproduction may influence the spatial 

structure of S. supranubius. Gravity is believed to be the major mode of S. 

supranubius seed dispersal as there is no evidence (either observational or in the 
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literature) to suggest that dispersal is either ballistic or is aided by animals, wind or 

water. 

How the process could be measured: 

It is likely that the influence of sexual reproduction and dispersal on the spatial 

structure and dynamics of S. supranubius will be strongly linked to the presence and 

intensity of grazing. Because of the slow demographics and dynamics of S. 

supranubius both processes would be best studied in mathematical models. 

Disturbances 

Evaluation and likelihood., 

The CaMadas caldera is believed to be a relatively undisturbed habitat. There is no 

documented evidence of fires and the low precipitation level reduces the likelihood of 

hydrological disturbances. Furthermore, the substrates investigated are 

geornorphologically stable and there is no evidence of pathogen-induced disturbance. 

The only potential source of disturbance is believed to be the impact of human visitors 

to the area. There is, however, a well-defined network of paths in area and the focal 

plots used in this thesis were situated away from any major roads or tracks. 

Summarising remarks 

Pattern-process inference is typically limited to investigations of specific processes for 

which predicted spatial hypotheses can be developed. The technique provides little 

opportunity to investigate the operation and relative importance Of multiple and 

interacting processes. With observational and experimental techniques largely 

unfeasible when the focal species is a slow-growing add shrub, it seems that 

investigating the operation and potential interaction of alternative processes will 

require relatively sophisticated mathematical modelling techniques. In addition to 

improving the methodological application of pattern-process inference, the utilisation 

of mathematical simulation models is expected to be an important technique in 

advancing our understanding of and shrub ecology. 
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APPENDIX B: SPATIAL VARIATION IN WITHIN-SUBSTRATE S. SUPRANUBIUS 

SPECTRAL RESPONSE 

The S. supranubius spectral response on the red, green and blue wavebands was 

compared between transects to assess the level of with in-substrate spatial variation. 

All tables show the mean differences of spectral intensity values ranging from 0 to 255 

(column minus row). Statistically significant differences (assessed by pairwise Mann 

Whitney U-tests) at the 0.05 and 0.001 level are shown by '*' and '**' respectively. 

Cohen's d values are given in parentheses. Cohen's d values describing a medium or 

large effect (i. e., > 0.5) are highlighted in bold. No results are shown for Substrate 5 

as data were only collected from one transect. 

Substrate I 

Transect 1-A I-B 1-C 

I-A - 

I-B 0.81 (0.06) 

1-C -3.76 (0.28) -4.58* (0.44) 

Comparing the transect level spectral response of S. supranubius on the red waveband on 

Substrate 1. 

Transect 1-A 1-13 1-C 

I-A 

1-B 0.24(0.02) - 

I-C -6.82* (0.52) -7.06* (0.66) 

Comparing the transect level spectral response of S. supranubius on the green waveband on 
Substrate 1. 

Transect 1-A I-B I-C 

1-A 

I-B 0.14(0.01) 

i-C -5.17 (0.42) -5.31* (0.51) 

Comparing the transect level spectral response of S. supranubius on the blue waveband on 
Substrate 1. 
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Substrate 2 

Transect 2-A 2-B 2-C 2-D 

2-A - 

2-B 7.11 * (0.52) 

2-C -13.40- (1-09) . 20.51** (1.50) - 

2-D 2.63(0.21) -4.48 (0.32) 16.03" (1.26) 

Comparing the transect level spectral response of S. supranubius on the red waveband on 

Substrate 2. 

Transect 2-A 2-13 2-C 2-D 

2-A 

2-B 1.38(0.11) - 

2-C -7.27* (0.65) -8.65* (0.67) 

2-D 1.81 (0.16) 0.43(0.03) 9.08** (0.79) 

Zomparing the transect level spectral response of S. supranubius on the green waveband on 

Substrate 2. 

Transect 2-A 2-8 2-C 2-D 

2-A 

2-13 0.04(0.00) - 

2-C -5.44* (0.49) -5.48* (0.21) - 

2-D 1.43(0.13) 1.40(0.05) 6.88* (0.69) 

Comparing the transect level spectral response of S. supranubius on the blue waveband on 

Substrate 2. 
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Substrate 3 

Transect I 3-A 3-B 3-C 

3-A 

3-B -2.27 (0.18) 

3-C -11.96'- (0.98) -9.69'- (0.68) 

Comparing the transect level spectral response of S. 

Substrate 3. 
on the red waveband on 

Transect 3-A 3-B 3-C 

3-A - 

3-B -1.43 (0.12) 

3-C -13.11 ** (1.09) -11.69- (0.87) 

Comparing the transect level spectral response 
Substrate 3. 

supranubius on the green waveband on 

Transect I 3-A ; 5-ts j-L; 

3-A 

3-B 1.53(0.14) 

3-C . 7.84* (0.63) -9.37** (0.73) 

Comparing the transect level spectral response of S. supranubius on the blue waveband on 

Substrate 3. 
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Substrate 4 

Transect 4-A 4-19 

4-A 

4-B 1.62(0.10) - 

Comparing the transect level spectral response of S. supranubius on the red waveband on 
Substrate 4. 

Transect 4-A 4-19 

4-A 

4-B 1.60(0.12) - 

Comparing the transect level spectral response of S. supranubius on the green waveband on 
Substrate 4. 

Transect 4-A 4-B 

4-A 

4-13 1.87(0.14) 

Comparing the transect level spectral response of S. supranubius on the blue waveband on 
Substrate 4. 
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APPENDIX C: EXAMPLE OF CLASSIFIER ACCURACY OUTPUT 

Classification accuracies produced by the polynomial kernel using the INCSVDD classifier 

model. Classifiers trained on target training data only (dataset A). Accuracies are calculated 
from a total of 250. 'p' provides the order of the polynomial kernel, and 'C' details the fraction of 

target cases that can be rejected by the data description (the rejection error). The classifier 

highlighted in bold is the final model used in the image classification. 

p C Target accuracy (#) Outlier accuracy (0) Overall accuracy 
1 0.1 230 240 94.0 

0.01 250 228 95.6 
0.001 250 224 94.8 
U001 250 224 94.8 

2 0.1 235 240 95.0 
0.01 250 228 95.6 
0.001 250 225 95.0 
0.0001 250 225 95.0 

3 0.1 245 237 96.4 
0.01 250 227 95.4 
0.001 250 225 95.0 
0.0001 250 225 95.0 

4 0.1 245 235 96.0 
0.01 250 226 95.2 

0.001 250 225 95.0 

0.0001 250 225 95.0 

5 0.1 245 235 96.0 
0.01 250 228 95.6 
0.001 250 225 95.0 
0.0001 250 225 95.0 

6 0.1 245 235 96.0 

0.01 250 227 95.4 

0.001 250 225 95.0 

0.0001 250 225 95.0 

7 0.1 245 231 95.2 
0.01 250 225 95.0 
0.001 250 225 95.0 
0.0001 250 225 95.0 

8 0.1 246 229 95.0 
0.01 250 226 95.2 
0.001 250 225 95.0 
0.0001 250 225 95.0 

9 0.1 245 232 95.4 
0.01 250 225 95.0 
0.001 250 225 95.0 
0.0001 250 225 95.0 

10 0.1 246 229 95.0 
0.01 250 224 94.8 
0.001 250 225 95.0 
0.0001 250 225 95.0 
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APPENDIX D: INFORMATION ON QUADRATS USED IN CHAPTER 5 

Substrate 2 Substrate 4 

Extent 
(ha) 

Quadrat 

number 

Number of 
individuals 

ULX ULY 
Number of 
individuals 

ULX ULY 

1 6 340990 3124460 10 342994 3124162 
2 8 340421 3124566 5 343185 3124102 
3 4 341053 3124892 5 343196 3124176 
4 6 340528 3124073 5 342640 3124067 
5 2 340456 3124805 6 343248 3123911 

0.0625 
6 6 341006 3124534 4 342892 3123889 
7 14 340501 3124930 10 342631 3123937 
8 14 340806 3124491 4 342878 3123825 
9 4 340860 3124825 7 342647 3123767 
10 5 340510 3124752 2 343021 3123652 

------------ -------------- 1 ------------- 5 ------------ 340687 ------------- 3124946 -------------- 33 ------------ 342674 ------------- 3123682 
2 30 340555 3124936 27 342863 3123779 
3 17 340446 3124932 27 343210 3123851 
4 35 340431 3124641 42 343102 3123972 
5 22 340589 3124982 42 342980 3124063 

0.26 
6 22 340649 3124485 28 342606 3123803 
7 47 340791 3124488 30 342730 3123907 
8 43 340708 3124408 30 342779 3123642 

9 11 340763 3124953 22 342788 3124249 

10 24 340451 3125012 31 342718 3124085 

------------ -------------- 1 -------------- 31 ----------- 340652 ------------- 3124995 --------------- 169 ----------- 343044 ------------- 3123654 

2 65 340777 3124622 155 342720 3123731 

3 119 340764 3124689 140 342673 3123947 

4 130 340910 3124426 130 343129 3123991 

5 115 340435 3124436 87 342908 3123718 
1 

6 95 340649 3124613 114 342851 3123662 

7 75 340984 3124979 131 342851 3123662 

8 79 340944 3124553 119 342858 3123854 

9 146 340442 3124523 143 343079 3123746 

10 124 340648 3124733 97 342918 3123935 

------------- ------------- 1 -------------- 260 ----------- 3408D6 ------------- 3124637 -------------- 285 --- -------- 342757 ------------ 3123874 

2 246 340455 3124835 305 342614 3123647 

3 186 340476 3124656 274 342925 3123947 

4 290 340543 3124480 288 342817 3123604 

5 235 340612 3124688 247 342639 3123840 
2.25 

6 61 340694 3124941 277 342616 3124089 

7 252 340824 3124468 278 343103 3123853 

8 137 340672 3124833 337 343025 3123684 

9 272 340735 3124750 436 342998 3124131 

10 250 340780 3124746 280 342828 3124047 

------------- ------ I ------------ 395 ---------- 340431 ------------- 3124596 -------------- 399 ------------ 342817 ------------ 3123666 

2 410 340879 3124406 651 343011 3123061 
4 

3 181 340701 3124891 464 342911 3123926 

4 393 340645 3124568 500 342668 3123880 
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5 408 340752 3124555 531 342992 3123725 
6 409 340859 3124761 482 342765 3124034 
7 320 340515 3124889 528 343038 3123852 
8 349 340882 3124892 493 342600 3123672 
9 524 340692 3124439 409 342818 3123826 

10 383 340412 3124786 551 342967 3123608 
------------------------- 1 ------------- 388 ------------- 340619 -------------- 3124815 ------------ 791 ------------- 342993 ------------- 3123744 

2 622 340552 3124563 744 342870 3123913 
3 634 340627 3124678 731 342759 3123606 
4 665 340786 3124611 814 343045 3123939 
5 644 340751 3124722 763 342641 3123803 

6.25 
6 799 340421 3124431 750 342644 3124045 
7 594 340836 3124475 726 342605 3123695 
8 648 340657 3124481 858 342985 3123622 
9 587 340411 3124702 956 342942 3124037 
10 613 340420 3124579 891 342843 3124036 

Notes 

ULX = X-coordinate (UTM) of the lower left corner of the quadrat. 

ULY = Y-coordinate (UTM) of the lower left corner of the quadrat 

All quadrats are square. 
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APPENDIX E-. ASSESSING THE HETEROGENEITY OF SUBSTRATE 5 USING 

REAL-SHAPE ANALYSIS (CHAPTER 7) 
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The pattern of the largest individuals (2: 30 M2) on Substrate 5 was compared to the 

null model of CSR using the homogeneous g(r) to assess the presence of 

environmental heterogeneity. In contrast to the original analyses (Section 7.4.1), the 

real size and shape of the shrubs was preserved during analysis to ameliorate the 

effect of the small sample size (n = 15). While the empirical function (black line) falls 

below the CSR expectation of g(r) =1 between 31 and 30 m, the empirical function 

remains within the 99% CSR simulation envelope (constructed from the highest and 

lowest value of 99 simulations of the null model). 

Note. the lower simulation envelope returned values of 0 at several scales. To enable 

plotting on log-axes these values were replaced with the second lowest value for the 

lower simulation envelope (0.00062). 

328 



APPENDIX F: ANALYSING THE SPATIAL PATTERN OF LARGE INDIVIDUALS ON 

SUBSTRATES 3 AND 5 USING REAL-SHAPE ANALYSIS (CHAPTER 7) 
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The pattern of the large individuals on Substrate 3 was compared to the null model of 

CSR using the homogeneous g(r). In contrast to the original analyses (Section 7.4.3) 

the size and shape of the shrubs was preserved during analysis to ameliorate the 

effect of the small sample size (n = 83). The empirical function (black line) falls below 

the CSR expectation of g(r) =1 between 29 and 39 m. 
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The pattern of the large individuals on Substrate 5 was compared to the null model of 

CSR using the homogeneous g(r). In contrast to the original analyses (Section 7.4.3) 

the size and shape of the shrubs was preserved during analysis to ameliorate the 

effect of the small sample size (n = 43). The empirical function (black line) falls below 

the CSR expectation of g(r) =1 between 16 and 21 m, and between 36 and 41 m. 
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