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I 

 

Abstract 

 

The prevailing paradigm in indoor environment control of office buildings often excludes 

natural ventilation, due to the fact that its dynamic nature may not be compatible with the 

close control of mechanical conditioning systems. The challenges will be greater in terms of 

the potential high magnitudes of wind and buoyancy forces at high levels of tall buildings. 

This research is concerned with the prospect of tall office buildings that are purely naturally 

ventilated. It is proposed that ―segmentation‖ might offer the least risky approach for natural 

ventilation design of non-domestic tall buildings.  

Accordingly, the generic design procedure are proposed for investigating the influence of 

segmentation on ventilation air flows: firstly, the single-cell envelope flow model is adopted 

to evaluate the steady-state bulk flows through openings under a specified design condition; 

secondly, dynamic thermal modelling with an air flow network module is used, because of 

the particular importance of the coupling between the airflow and thermal process for 

evaluating the year-round ventilated cooling potential of targeted spaces. The chosen thermal 

model utilizes a multi-cell airflow network model (AFN) since the targeted buildings can no 

longer be described by a single-cell model; thirdly, computational fluid dynamics (CFD) 

simulation is suggested in the later design stage to cope with insufficient resolution of local 

airflow distribution in previous modelling stages; finally, the overall performance of 

comfort ventilation is then interpreted in relation to adaptive thermal comfort theory by the 

use of Building Bioclimatic Charts, which offers a way of rapidly testing whether or not 

natural ventilation is likely to produce comfortable conditions.  

The novelty of this work lies not in the methodology, which uses available modelling tools, 

but in the evaluation of naturally ventilated tall buildings with reference to segmentation in 

the climatic context of Taiwan. The effect of segmentation is evaluated by comparing the 

overall ventilation performance under three different building configurations, namely the 

isolated, segmented and non-segmented tall buildings. The overall objectives are to 

determine whether the magnitudes of air flow rates and the resultant flow velocity can 

achieve the desired comfort ventilation over a range of specified conditions. Potential 

scenarios where the design goals may not be ensured are identified. The feasibility for 

naturally ventilated tall office buildings in hot and humid climates is clarified accordingly. 
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Glossary of Notation 

 

Symbol           Meaning                                                                               Unit 
 

 

∆P0                     Reference pressure                                                                          (pa) 

∆Pi                     Pressure difference through opening i                                             (pa) 

∆T                      Temperature difference between indoors and outdoors                   (K) 

A                        Opening area                                                                                   (m
2
)       

Cd                       Discharge coefficient                                                                        (-)     

CP                      Wind pressure coefficient                                                                  (-)     

Cp                      Specific heat of air                                                                     (J/kgK) 

Cpn                     Pressure coefficient of grid number N in current modelling session  

Cpn-1                   Pressure coefficient of grid number N in previous modelling session  

g                         Gravitational force per unit mass                                                (m/s
2
) 

H                        The rate of internal heat gains                                                         (W) 

K                        Terrain dependent constants                                                             (-) 

N                        Total number of gridding system 

Pd                       Dynamic wind pressure                                                                  (Pa) 

PE0                      Outdoor Reference pressure                                                           (pa)  

PI                        Indoor Reference pressure                                                             (pa) 

Pw                       Surface (static) pressure of the wind                                              (pa) 

Px                       Static pressure at a given point on the building surface                 (Pa) 

Q                        Total ventilation rate                                                                    (m
3
/s) 

qi                        Flow rate through opening i                                                         (m
3
/s) 

R
2                  

            Correlation coefficient                                                                     (-)    

Si                        Flow sign                                                                                          (-)     

TE                       External temperature                                                                       (K) 

U                        External wind velocity                                                                  (m/s) 

U10                     Wind speed measured in open countryside at height of 10 m      (m/s) 

Uh                       Local wind speed at a height Zh above the ground                       (m/s)  

Urd                      Wind speed at some reference level r and from direction d         (m/s)   



XX 

 

Uref                      Reference wind speed taken at building height in the upstream 

undisturbed flow                                                                          (m/s) 

z                          Opening height                                                                                (m)       

Znode                     Height of node                                                                                (m)       

Δz                        Height difference between two openings                                        (m)       

ρ                          Air density                                                                                 (kg/m
3
)    

ρE                        Outdoor air density                                                                    (kg/m
3
)    

ρI                         Indoor air density                                                                      (kg/m
3
)    

σ                         Standard deviation 

σCp                      Root mean square deviation of wind pressure coefficient               (-) 

 

 

AFN   Air flow network 

BES Building energy simulation 

BBCCs Building bioclimatic charts 

EFM    Envelope flow model     

IC   Influence coefficient 

IP   Input 

NPL    Neutral point level 

Off-design condition               The steady result upon specific boundary 

conditions of a particular design 

Open wind floor The floor with open plan layout for 

receiving the wind driving flows 

OP   Output 

Wind core The vertical core of the building designed 

for receiving wind driving flows 

IP  Mean values of input 

OP  Mean values of output 

OP  Changes in output 

IP  Changes in input 

BCIP  Base case values of input 

BCOP  Base case values of output 
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1. Introduction   

 

1.1 Prospects of natural ventilation in tall office buildings  

 

A significant amount of the electricity consumed in office buildings of Taiwan 

goes towards fully air-conditioned commercial and institutional buildings. The 

situation is even more alarming in the case of tall buildings where greater energy 

consumption is required to provide comfort (Huang, 2006; Yang, 2004). Lin 

(2006) and Lin et al. (2007) claimed that the cooling load in Taiwan is the main 

cause for peak power demand and sometimes causes power shortages. They 

suggested that the air-conditioning load accounts for around 45% of the energy 

consumed in a typical office building of Taiwan on a daily basis (Fig.1-1).  

 

Figure 1-1: Typical energy consumption of office buildings in Taiwan 

 

Natural ventilation for low-rise buildings is widely acknowledged to be an energy 

efficient ventilation strategy with several advantages such as popularity, lower 

cost than other ventilation systems, and minimum maintenance (Liddament, 1996). 
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The design of non-domestic tall buildings which adopt a purely natural ventilation 

strategy is now increasingly common in many parts of the world (mainly in the 

mild climate). However, the adoption of natural ventilation in tall buildings for a 

hot and humid climate is less common. This is not surprising in view of the 

potential risks to a successful design as suggested by Etheridge and Ford (2008). 

The aim of natural ventilation for this research is to provide sufficient fresh air 

and thermal comfort for the occupants, meanwhile avoiding possible failures 

during operation such as cold draught and condensation in tall office buildings of 

a hot and humid climate under the free-running mode. The ideal scenario for this 

research goes toward the tall buildings which can deliver acceptable internal 

thermal condition through natural ventilation alone. For the purpose of ventilated 

cooling, the fresh air flow rates obtained are sufficiently high for indoor air 

quality. That is, the effect of ventilated cooling is of interest in this particular 

study. There are three ways in which natural ventilation can improve thermal 

comfort. First, indoor air can be cooled by increasing amount of outdoor air as 

long as external temperatures are lower than internal temperatures (sensible 

cooling). Second, natural ventilation can be used to cool the building structure, 

where the building thermal mass may play an important role in conjunction with 

night-time ventilation. Third, the ventilation flow can cool the human body 

directly by convection and evaporation (personal cooling).    

The issues to be investigated in this study, in terms of natural ventilation in a hot 

and humid climate, can be directed to the following aspects. Firstly, air 

conditioning in a hot and humid climate costs a considerable amount of energy to 

maintain the desired thermal comfort. The central hypothesis of this study is that, 

by appropriate natural ventilation strategies, building design will be able to reduce 

energy consumption and provide comfortable conditions in tall office buildings, 

for at least part of the year. The natural ventilation systems may reduce both 

capital and operating costs compared to air conditioning systems while 

maintaining ventilation rates that are consistent with acceptable indoor air quality.    
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Secondly, natural ventilation is being increasingly proposed as a means of saving 

energy and improving indoor air quality within commercial buildings, particularly 

in the ―green buildings‖ community. These proposals are often made without any 

engineering analysis to support the claimed advantages, e.g., without calculating 

expected ventilation rates or air distribution patterns. In addition, proven design 

approaches and procedures are not available in Taiwan to incorporate natural 

ventilation into commercial/office building system designs. Natural ventilation 

strategies in tall buildings are less likely to reach the Taiwan marketplace until 

design procedures and tools are made available. Thereby, this study investigates 

the strategies to tall buildings and demonstrates applicability for a variety of 

weather pattern and building configurations.  

Thirdly, Ji et al. (2009) stated that modern non-domestic buildings tended to be 

large and deep plan with sealed façades for security and noise control. In such 

cases, where traditional forms of natural ventilation are unlikely to deliver 

sufficient ventilation performance, ‗advanced natural ventilation‘ strategies 

(though the principles stay the same) should be considered and referred to specific 

building configuration design. Lomas (2007) used the term ‗advanced natural 

ventilation‘ to encompass special building shape which utilised the stack effect to 

drive an air flow. For this particular study, the segmentation concept is applied in 

the atrium and ventilated double-skin facades of the proposed building 

configuration. The naturally occurring wind pressure and/or the buoyancy force 

(stack effect) are considered. The term ‗segmentation‘ is defined where a tall 

building is divided into several sections to prevent the likely great pressure 

difference acting over the full height of vertical segments. The effect of 

segmentation on the resultant flow rates of associated office space is of interest. It 

is hoped to achieve a natural system that gives as much control as possible in the 

tall office buildings of a hot and humid climate. 

Furthermore, sustainable high-rise buildings that provide comfortable, healthy and 

efficient work environments are clearly desirable as the densification of cities to 

meet the needs of the world‘s increasing population proceeds. Nevertheless, the 
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issue of potentially high winds at higher levels of tall buildings needs to be 

addressed when natural ventilation at higher elevations is considered. While 

natural ventilation is becoming more common in Europe (the mild climate), 

opportunities have yet to be evaluated for its application in tall commercial/office 

buildings of a hot and humid climate as well.  

 

The above research issues are then summarized as following research questions: 

 

1) What is the potential for natural ventilation in tall buildings in hot and 

humid climates? 

2) What building configurations may be adopted to promote viable natural 

ventilation strategies for tall buildings? 

3) What design procedures can be adopted to achieve these natural 

ventilation strategies? 

4) How do the ventilation related parameters relate to overall thermal 

conditions and to thermal comfort criteria in the occupied spaces? 

 

In this Chapter, the prospects of natural ventilation in a hot and humid climate are 

addressed. The challenges and research questions for naturally ventilated tall 

buildings are raised. Previous studies of naturally ventilated tall office buildings 

particularly for a hot and humid climate are reviewed in Section 1.2. The cooling 

mechanism (design options) being explored for this particular study and tools 

available for ventilated cooling design are summarized accordingly. The 

objectives and issues to be investigated are then presented in Section 1.3. A 

research flow chart (Fig. 1-2) is provided for illustrating the structure of this thesis. 

The overall aims of this study are clarified accordingly. 
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1.2 Review of naturally ventilated tall office buildings in hot and 

humid climates 

Over years, a number of naturally ventilated towers have been built and evaluated 

using the concept of atria and double facades. The main advantages of a double 

skin or ventilated cavity are that it can provide a thermal and acoustic buffer 

between interior and exterior. As suggested by Irwin et al. (2008), double shells 

protect operable windows at higher elevations from high wind speeds and reduce 

acoustical problems from operable windows at the same time. One early example 

of such a building is the Commerzbank building in Frankfurt. The building 

features a double facade, with operable windows in the interior shell. To control 

stack effect, the building is subdivided into independent segments which also 

include four-story atria with gardens.  A detailed case study for the Commerzbank 

is presented in Chapter 2. 

From the aspect of atria design, Megri and Al-Dawoud (2007) compared the 

energy performance between the integration of HVAC system with covered 

atrium and an atrium open to the sky at the courtyard top. The multi-zones 

simulation program was adopted for investigating the effect of glazing type, 

glazing percentage and number of storeys under the hot and humid weather 

condition. Two real building applications were addressed in terms of integration 

between passive ventilation system and the architectural design. Though both case 

studies (Argonne National Laboratories and Foxconn Building project in China) 

were mixed-mode buildings, they demonstrated the possibility of natural 

ventilation in the hot and humid climates upon the viable weather conditions by 

the adoption of an open atrium and hollow walls and flooring respectively.    

Lomas (2007) proposed four generic building types for the natural ventilation in 

the large educational buildings. The generic building types (Edge-in/Centre-out; 

Edge-in/Edge-out; Centre-in/Edge-out; Centre-in/Centre-out) were defined in his 

study with reference to inlet and outlet locations of the ventilation system. The 

simple equations for sizing the lightwell, plenum and stacks at the preliminary 
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architectural design stage were obtained through the design experience of these 

buildings. It was suggested that a central supply route (lightwell) along with 

perimeter exhaust stacks could offer more benefit than other three generic 

building types. Some constrains for the Centre-in/Edge-out strategy (such as 

buildings with deeper floor plans and densely occupied condition as well as 

limitations in building site) were also identified. 

With regard to double facades, they have been used extensively in office 

buildings of mild climates to promote natural ventilation of the interior, using the 

driving force of thermal buoyancy generated within the glazed cavity. For 

example, the Deutsche Post Office tower in Bonn adopted ventilated facades 

along with sky gardens as spent-air shafts, which provide the driving force for 

natural ventilation and help to control varying diurnal and seasonal ventilation 

requirements (Blaser, 2004). In this building, the vertical continuity of the cavity 

along the double-skin façade allows the stack effect to draw heat off at high levels, 

hence decreasing the likelihood of overheating. However, the DSF mechanism 

only comprises part of the ventilation concept. The overall ventilation strategy 

relies on cross-ventilation where air enters the building through the DSF, flows 

through the offices and into the corridors which act as exhaust air collectors, 

allowing the stale air to pass into the central atrium (sky gardens). Air is finally 

exhausted through windows and vents located on the topmost level of the nine-

storey-high sky gardens. Unfortunately, ventilated facades have a tendency to 

overheat, particularly in hot and humid climates, and raise the cooling load of the 

adjacent occupied spaces (Ford and Schiano-Phan, 2005). Strategies adopted to 

mitigate this tendency can lead to higher envelope costs. 

Many studies have also addressed issues of a ventilated cavity in a hot and humid 

climate. Hensen et al. (2002) suggested that an airflow network method was 

suitable for assisting the decision-making of building design and it might also 

benefit from CFD or vice-versa. Additionally, their study found that the cooling 

load would increase with floor height for the higher air temperature in the cavity 

of the double-skin façade. This also led to the suggestion that it would be 
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advantageous to divide the cavity into segments with inlet and outlet openings at 

various heights. The challenges for coupling a double-skin façade to a natural 

ventilation system, due to the temperature and airflow fluctuations in the façade 

construction, were demonstrated as well. They concluded that the airflow was not 

only highly erratic in magnitude but could even take place in reversed direction. 

Another point was addressed that CFD might be of benefit for the prediction of 

the wind pressure distribution on the façade.  

Additionally, Ding et al. (2005) proposed an atrium type building with a double-

skin façade and a solar chimney attached to the DSF cavity. It was assumed that 

the natural ventilation performance could be enhanced by the stack effect 

produced from the solar chimney without the encouragement of wind. Reduced 

scale model experiments and full-scale CFD model were adopted to evaluate the 

natural ventilation performance. Though their system secured the ventilation rates 

and was profitable to obtain favourable pressure difference distribution, it 

necessitated a chimney reaching at least 11m above the building, which is a 

significant aesthetic constraint.  

Gratia and Herde (2007) examined how natural ventilation could be provided 

during a sunny summer day in an office building with double-skin façade. The 

possibility of natural ventilation during daytime in relation to the orientation of 

the double skin and the speed and direction of wind was investigated. However, 

their results could not be generalized to other configurations of double-skin 

facades and were not sufficient for technical design as well. Furthermore, Wong 

et al. (2008) looked into the possibilities of natural ventilation of an 18-storey 

office building in a hot and humid climate using a double-skin façade. Their 

research revealed a close link between natural ventilation design and the function 

of double-skin façade by using the concept of stack effect and solar chimney. The 

feasibility of passive ventilation and significant energy savings was demonstrated 

for multi-storey buildings.  
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Haase et al. (2009) proposed a ventilated DSF system for warm and humid 

climates using a combined thermal and airflow simulation, TRNSYS and 

TRNFLOW (coupled with COMIS). The simulation results were compared with 

on-site measurement data which confirmed the temperature reduction effect of 

different ventilated façade designs. However, the simulated dependence on 

incident radiation was not observed in the measurements, which showed a shift in 

the peak value with respect to incident solar radiation. Also, the simulated results 

on external and internal glazed surface temperatures were more sensitive to the 

incident radiation than the measured data. Further research was suggested to 

explain this dependency.  More recently, Zhou and Chen (2010) reviewed the 

problems and possibilities for applying ventilated double-skin façade to buildings 

in a hot-summer and cold-winter zone in China. The main research methods for 

ventilated facades were discussed. They suggested that the current problem with 

double-skin façade was that they require adequate dynamic operation to achieve 

the desired performance. This depended closely on the chosen ventilation rates 

within its cavity, location of shading system, geometry and size of cavity ect. 

 

The prevailing paradigm in indoor environment control of office buildings often 

excludes natural ventilation, due to the fact that its dynamic nature may not be 

compatible with the close control of mechanical conditioning systems. The 

literature reviews above addressed tools and design strategies available for 

naturally ventilated tall buildings. However, they rarely interpreted their 

observations with reference to occupant comfort. Because of the potential 

magnitudes of wind and buoyancy forces in tall buildings, the challenges for 

natural ventilation design are even greater. This research is concerned with the 

prospect of purely naturally ventilated tall office buildings. It is proposed that 

―segmentation‖ might offer the least risky approach for envelope design of non-

residential tall buildings. The overall objectives are to identify potential 

conditions where thermal comfort may not be ensured. The naturally available 

driving forces of wind and buoyancy are investigated separately or in combination. 

The wind alone case is not specifically investigated because the stack effect in tall 
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buildings is a natural phenomenon and cannot be avoided. Although cooling by 

wind alone condition is often taken to be a design core (e.g. Japan) with very 

large openings when temperature differences (∆T) are small, it is the vertical 

segment height that matters. Additionally, the wind alone case is not applicable 

for cases with significant stack height difference in the air flow network module 

of ESP-r because the buoyancy force caused by ∆T and stack effect cannot be 

ignored. Exclusion is the isolated case (where the ventilation of each floor is 

independent of the others) with small ∆T as well as limited stack effect due to 

constrain in the opening height difference between the air inlet and outlet.  

 

Furthermore, the cooling mechanism for comfort being explored in this particular 

study, for a hot and humid climate, includes the direct cooling of indoor space 

(sensible cooling) and the physiological cooling of the human body (personal 

cooling). The sensible cooling is evaluated by the heat being removed with the 

ventilation air; while the direct physiological cooling effect can be achieved with 

the introduction of air at a relatively high speed (1~2 m/s) even in high levels of 

humidity and indoor air temperature. The higher air speed increases the rate of 

sweat evaporation from the skin and minimizes occupant discomfort when their 

skin perspires. In another word, air movement not only increases the evaporative 

rate at the skin surface (in higher temperatures), it also determines the convective 

heat and mass exchange of the human body with the surrounding air, which 

affects thermal comfort. 

As for the night-time ventilation, it is a strategy used to cool down the building 

structure (with high thermal mass and exposed structure) from lower external air 

temperatures. This strategy employs the building‘s thermal mass as an 

intermediate storage medium, allowing the structure to absorb the heat built up 

during the day and to flush it away during the night. Whilst night ventilation is not 

the typical solution for cooling in hot and humid climates, it still may have 
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advantage for the purge and decrease of indoor pollutants. For the typical office 

buildings in Taiwan, the occupants work in the fully sealed environment from 

8:00 am to 6:00 pm or more with the mechanical cooling systems being operated 

for full occupied period. Previous studies (Rajapaksha
 
and Hyde, 2012) have 

identified the advantages of night purge and pre-cooling from the aspect of 

energy-saving operation of HVAC systems for tall office buildings in particular. 

The temperature fluctuation of typical weeks in summer, winter, and mid-season 

of Taiwan is plotted as Figure 1-2. The graph below suggests that the average 

temperature difference between day and night varies from 2 to 7 degrees depends 

on seasons, where the night-time cooling may not be significant especially for the 

summer with averaged high external temperature. 

 

 

Figure 1-2: The temperature fluctuation of typical weeks in Taipei 
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1.3 Research issues and objectives of this study 

 

A design procedure to evaluate the climate suitability for natural ventilation in tall 

office buildings is desirable. The inherent cooling effects due to the ventilation air 

flow with reference to sensible as well as personal cooling are of interest in this 

study. One of the aims is to examine the minimum required fresh air flow rates for 

ventilated cooling in terms of indoor thermal comfort. The desired flow pattern 

for ensuring the fresh and cooler air to be driven into the occupied space is 

investigated as well. The statistical distribution of the volume flow rates needed to 

offset the given internal heat gains to achieve thermal comfort during overheated 

periods is elucidated. The general objectives and expected outcome for this 

research are presented as table 1-1. The eleven objectives provide a general 

approach to design a natural ventilation system in tall office buildings of a hot and 

humid climate. These objectives can be catalogued into four distinct design 

phases, which are conceptual design (issues 1, 2 and 3

(issues 4, 5 and 6), performance evaluation (issues 7 and 8) and design 

optimization (issues 9, 10 and 11) respectively.  

 

Firstly, this study will start with the conceptual design phase. The main concerns 

for this stage include the building configuration, ventilation strategies and 

conceptual airflow pattern. Secondly, the tool for design development phase of 

this study is the theoretical envelope flow model. The initial sizing of openings is 

investigated in this design phase. The main issue for this phase is that the 

designed airflow rate should be determined for different ventilation purposes. The 

off-design condition under various boundary conditions is evaluated accordingly. 

Thirdly, the detailed performance evaluation will be carried out by a dynamic 

thermal simulation program with air flow network (AFN), ESP-r, which is 

expected to provide overall evaluation of ventilation performance on an hourly 

basis. The effect of segmentation on the resultant flow rates of different building 
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configurations can then be compared. Simulation results will then be interpreted 

using the building bioclimatic charts for revealing the level of thermally 

comfortable conditions in tall buildings. Further CFD technique is needed in 

terms of the optimum plan depth for indoor air quality issue and local discomfort. 

The overall the aim is to check to what extend that CFD approach can help with 

the proposed design procedure of naturally ventilated tall office buildings aside 

from all other models mentioned in the previous sections. 

Finally, the discussion is directed to design optimization with regard to natural 

ventilation performance. A parametric study is conducted for identifying the 

sensitivity of calculations to boundary conditions. The inter-model comparison is 

carried out in terms of building segmentation. A generic design for naturally 

ventilated tall office buildings is proposed with reference to plan arrangement and 

sectional treatment. Evaluation of the internal environment for occupants of the 

proposed building configuration is addressed by the use of building bioclimatic 

charts. It is important to identify whether or not the natural ventilation system can 

provide an acceptable environment for the occupants during the majority of the 

time. The expected outcomes and contributions of this study are summarized as 

follows: 

(1) Determining the ventilation requirements 

In the context of naturally ventilated tall buildings, the preliminary design lies in 

sizing and locating the main components: the lightwell(s); the stacks; and the air 

inlets and outlets to and from space. The ventilation purposes should be identified 

and the design conditions to be used in sizing the ventilation openings are 

determined accordingly. The design criteria at this stage are to maintain thermal 

comfort during warm and still-air summer conditions which invariably dictate the 

maximum free area of opening required. Similar approach was adopted by Lomas 

(2007) for the design of an advanced naturally ventilated building form. 

(2) Developing boundary conditions 
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The primary boundary conditions for the natural ventilation assessment include 

the weather data and internal heat gains. To assess the inherent potential for 

natural ventilation in a hot and humid climate, the statistical analysis of the hourly 

basis weather data is required. The viable period of time for the ambient weather 

condition to achieve ventilated cooling can then be identified. The assumptions on 

internal heat gains and operation schedule for a typical office building of a hot 

and humid climate are needed for the preliminary evaluation as required in the 

chosen modelling tools. 

(3) Conceptual air flow pattern design 

The desired air flow pattern is defined to encourage fresher and cooler air into the 

occupied spaces. The air flow network for natural ventilation is developed for the 

proposed building configuration in the conceptual design stage.  

(4) Development of ventilation openings 

The locations of ventilation openings are defined along with desired airflow paths 

during the design development phase. The arrangement of the opening height is of 

interest. 

(5) Initial Sizing of ventilation openings 

The zero wind speed condition can be the worst scenario for natural ventilation. 

For the initial cases investigated in this research, the effect of wind is therefore 

ignored. Further simulations on wind and buoyancy combined ventilation are 

taken for examining the influence of wind effect. The explicit method of the 

envelope flow model (CIBSE AM10, 2005) is adopted for sizing the openings 

under different ventilation conditions. 

(6)Off-design condition 

The implicit method of the envelope flow model (CIBSE AM10, 2005) is used to 

calculate ventilation performance under off-design conditions. The information 

required for this calculation includes the values of opening height (z), opening 

area (A) and wind pressure coefficient (Cp) for each opening. The opening area (A) 

is obtained from the explicit calculation in previous step. Thereafter, the wind 
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velocity (U) and outdoor temperature (TE) are changed for the boundary condition 

interested and the goal is to test the robustness of the design. 

 (7) Analysis of design performance 

The flow rates and flow pattern for ventilated cooling are evaluated in the third 

design stage, performance evaluation. The periods of time with insufficient 

ventilation performance are identified. The optimum segmentation height with 

reference to the building configuration adopted is examined as well. In addition, 

non-domestic buildings tend to have a deeper plan. Spaces further away from the 

source of the proposed natural ventilation system may not achieve the expected 

cooling effects and the required air quality. That is, the optimum floor plan depth 

for the desired air flow distribution should be investigated by the use of CFD 

approach.  

(8) Refinement of design 

Following the initial investigation with the proposed base case building 

configuration, potential situations where design goals might not be met are 

identified. The design parameters (e.g. opening size and building configuration) 

are then modified for optimum design performance. Inter-model comparison by 

the use of dynamic thermal simulation with an air flow network is then carried out 

with reference to segmentations and building configurations. 

(9) Parametric study of optimization 

The sensitivity of calculations to boundary conditions should be identified by the 

use of parametric study. Parametric studies are used to demonstrate the range of 

influence for design factors. Considerations and measures needed to be taken are 

elucidated accordingly.  

(10) The generic design of naturally ventilated tall office buildings 

The design solutions for naturally ventilated tall office buildings with reference to 

building plan and sectional treatment are proposed. The building plan design is 

discussed in terms of floor-plate sizes and core distributions. The sectional 

treatment focuses on the adoption of skygarden and segmented ventilation cavity. 
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(11) Suggestions on satisfactory environment for occupants 

It is required to identify whether or not the natural ventilation system can provide 

an acceptable environment for the occupants for the majority of time. The 

acceptable comfort boundaries especially for a hot and humid climate are 

reviewed and defined for the thermal comfort assessment of this study. 

 

Table 1-1: Research objective and expected outcomes 

Phase of design 

& tools used 
Objectives Expected outcomes 

I. Conceptual 

design (sketch 

and notes) 

 

1) Determine ventilation 

requirements  

-- Identifying ventilation purposes.  

-- Determining the design conditions to be 

used in sizing the ventilation openings.  

2) Develop boundary 

conditions 

-- Reviewing the potential driving forces in 

terms of weather data.  

-- Defining requirements on internal heat 

gains and operation schedule for a typical 

office building of a hot and humid climate. 

3) Conceptual airflow 

pattern design 

-- Developing the desired flow pattern with 

reference to the proposed building 

configuration.  

II. Design 

development 

(envelope flow 

model) 

4) Development of 

ventilation openings 

-- Determining the locations of ventilation 

openings required in the planned airflow 

paths.  

5) Sizing initial 

ventilation openings 

-- The explicit method of the envelope flow 

model for sizing the openings is adopted. 

6) Off-design condition 

-- The implicit method of the envelope flow 

model for investigating the preliminary off-

design condition 

III. Performance 

evaluation 

(ESP-r with 

airflow 

network 

&CFD) 

7) Analysis of design 

performance 

-- Evaluating the flow rates and flow pattern 

for ventilated cooling.  

-- Identifying periods of time with 

insufficient ventilation performance.  

8) Refinement of design  

-- Determining potential situations where 

design goals might not be met and to modify 

the design parameters.  

IV. Design 

optimization 

9) Parametric study of 

optimization 

 

-- Identifying sensitivity of calculations to 

boundary conditions. 

-- Inter-model comparison in terms of 

building segmentation. 

10) The generic design of 

naturally ventilated 

tall office buildings 

-- The design solutions for naturally 

ventilated tall office buildings with 

reference to building plan and sectional 

treatment. 

11) Suggestions on 

satisfactory 

environment for 

occupants 

-- Identifying whether or not the natural 

ventilation system to provide an acceptable 

environment for the occupants for the 

majority of time. 
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1.4 Thesis outline 

 

This thesis starts with the reviews on issues of naturally ventilated tall office 

buildings of a hot and humid climate in Chapter 1. The design objectives and 

issues to be investigated are identified accordingly. For Chapter 2, five case 

studies worldwide are used to demonstrate the potential gaps between theory and 

practical applications. The research issues for naturally ventilated tall office 

buildings in the climatic context of Taiwan are then discussed. The base case 

building configurations are defined according to literature reviews and case 

studies. The test models are then interpreted with reference to the generic diagram 

for naturally ventilated tall office buildings. The core distributions in building 

plan and the sectional treatments are considered. The novelty of this work lies not 

in the models used (which are available), but in the manner they are used (e.g. 

evaluation of segmented and non-segmented tall buildings). The design procedure 

and tools available for natural ventilation assessment for this study are described 

in Chapter 3. 

Three modelling approaches are proposed for investigating the segmentation 

effects in tall office buildings. Firstly, a single-cell envelope flow model (EFM) 

was adopted for evaluating the off-design conditions of three types of building 

configuration, namely isolated, non-segmented and segmented tall buildings with 

no internal partitions. The steady-state bulk flows through openings were 

evaluated under a specified design condition. Detailed discussions are presented 

in Chapter 4. 

In Chapter 5, further dynamic effect with multi-cell model is then examined using 

the dynamic thermal simulation with an air flow network (ESP-r). Segmented and 

non-segmented atrium buildings with ventilated double facades are adopted as the 

main building configurations in the second stage for coping with the potential 

magnitude of impinging wind at high levels. Additionally, the chosen thermal 

model utilised a multi-cell airflow network model because of the buildings would 

no longer be described by a single-cell model. 
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For Chapter 6, the CFD approach is adopted to investigate to what extend that it 

can help with the proposed design procedure of naturally ventilated tall office 

buildings aside from all other models mentioned in the previous sections. The 

potential pros and cons of using advanced tools are clarified. The whole building 

simulation will be carried out for investigating the airflow distribution of selected 

scenario. The detailed air flow speed distribution is needed for ensuring the 

selection of the comfort boundary. The overall ventilation performance is then 

interpreted by plotting the calculated dry-bulb temperature and relative humidity 

values from ESP-r. The air flow speed distributions from CFD modelling are used 

to confirm the selection of the comfort boundary of the building bioclimatic charts. 

The suggestions are then directed to selection of modelling tools during different 

design stage and its corresponding adequacy for the research questions at hand. 

The sensitivity analysis is carried out in Chapter 7 for examining the impact of 

input parameters on different simulation outputs. The relationship and relative 

importance of parameters can then be known. The optimum ventilation 

performance through proper selection of design variables and conditions can be 

achieved as well. The influence of input parameters on the resultant flow rates and 

flow patterns of associated spaces is of interest in this study. 

 

It is important to understand how the overall building design affects indoor 

thermal comfort and, ultimately, the energy used in the operation of the building. 

The feasibility for naturally ventilated tall office buildings under the proposed 

building configuration in Taiwan is clarified. The concluding remarks in Chapter 

8 are directed to the control of segmentation. The criteria include desired flow 

pattern and sufficient flow rates for cooling, and satisfactory comfort environment 

for occupants. The overall objectives are to determine whether the magnitudes of 

flow rates and desired flow pattern through openings can be achieved over a range 

of specified conditions. Potential conditions where the design goals may not be 

ensured are identified. Detailed research flow charts and thesis outline are 

illustrated as Figure 1-3. 
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Figure 1-3: Research flow charts and thesis outline 
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2. The Naturally Ventilated Tall Office Building Design  

 

2.1 Chapter overview 

 

Given that the HVAC systems in tall office buildings typically account for 33 

percent or more (depends on climate region) of overall building energy 

consumption, the increased efficiency or possibly elimination of these systems 

could be argued to be a step forward toward sustainability of tall office buildings. 

The reduction of the reliance on mechanical ventilation through the introduction 

of natural ventilation strategies is therefore the main focus of this research. It is 

extremely rare for a significant tall office building to totally rely on natural 

ventilation due to the potential failure of the system. Therefore the precedent case 

studies presented here are all mixed-mode buildings, for which natural ventilation 

is employed for periods where the external conditions allow. The ideal scenario 

for this research then goes toward the tall buildings which can deliver acceptable 

internal thermal condition through natural ventilation alone during the viable 

period of time in Taiwan. The building projects presented in this chapter 

demonstrate the combination of strategies for natural ventilation, with mechanical 

ventilation systems, are a viable alternative to full air conditioning in many parts 

of the world. 

Naturally ventilated tall buildings, though not completely unknown, are 

nevertheless very unusual. Lambot and Davids (1997) pointed out the reasons 

which included the difficulty of coping with high winds and the potential safety 

hazard of opening windows in high levels. Tall buildings on the traditional 

American model usually have deep plans, in which many of the occupants are too 

far from the perimeter of the building to benefit from natural light and ventilation. 

Permanent artificial light and air conditioning are therefore the norm. In Germany, 

however, planning regulations specify that all office workers should have a view 

out of the building, which inevitably means a shallower plan.  
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Nevertheless, the risk and challenges associated with natural ventilation in tall 

buildings are considerably higher than those of low-rise structures. The aspects to 

be considered include the potential greater magnitudes of wind and buoyancy 

effects at higher levels. Consequently, further cares should be taken with regard to 

envelop and opening design for natural ventilation in tall buildings. The general 

objective of this chapter is to learn from the past and to propose a conceptual 

building configuration for naturally ventilated tall buildings in a hot and humid 

climate. The system effectiveness and ventilation strategies being employed in 

each case study are reviewed for the benefit of applying similar techniques to tall 

buildings in Taiwan. The natural ventilation design issues for Taiwan in particular 

are addressed accordingly.  A generic building configuration is developed for the 

investigation of corresponding ventilation performance. 
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2.2 Case studies on naturally ventilated tall office buildings 

2.2.1 Commerzbank 

       

Figure 2-1: The Commerzbank Headquarter, Frankfurt, Germany. Source: Davies et al., 2002. 

 

 

 

Figure 2-2: Annual temperature profile in Frankfurt, Germany 
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2.2.1-1 Overview of building design 

 

―The ‗doughnut‘ plan of the Commerzbank tower (as presented in Figure 2-1), 

with its central atrium and four-storey-high gardens opening up views from the 

interior, cleverly combines the structural advantages of a deep plan with the 

environmental advantages of a shallow plan‖ (Lambot and Davids, 1997). The 

Commerzbank was the first skyscraper to seriously address all of the ecological 

and social issues that required innovative designs in building skin and ventilation 

systems. It opened up the possibility of using natural ventilation. The 

Commerzbank is located in Frankfurt, Germany where the weather pattern is 

presented as Figure 2-2. Frankfurt has a temperate-oceanic climate with relatively 

cool winters and warm summers. In general, the city of Frankfurt experiences 

year round mild weather. Its average annual temperature is 10.1 °C, with monthly 

mean temperatures ranging from 1.4 °C in February to 19.3 °C in July. 

 

Commerzbank has a rounded equilateral triangular plan with a central segmented, 

200-meter-high atrium. These 12-storeys segments are a repeating module 

throughout the building section. Each segment contains a four-storey-high sky 

garden on one side of the triangle plan, with offices on the remaining two sides. 

This leaves a central triangular atrium in the middle that run the height of the 

building, only separated by steel and glass diaphragms for every twelve floors. 

The three corners of the triangle plan accommodate the structural elements as well 

as the service core (Davies et al., 2002). A single-glazed pane on the outside, a 

naturally ventilated cavity containing heavy-duty blinds and a double-glazed 

opening pane on the inside are adopted in Commerzbank‘s final design. It is an 

ordinary double-glazed opening window with an external shading device 

protected by a fixed glass screen. Internal offices overlooking the atrium are 

naturally ventilated by the fresh air that flows through the atrium.  
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2.2.1-2 Natural ventilation strategies 

 

The building was designed to utilize natural ventilation for a large proportion of 

the operating cycle, using mechanically assisted air conditioning only under 

extreme conditions. Each section of the building has to be either in natural 

ventilation mode or in air-conditioned mode with chilled ceilings; there can be no 

mixing of the two. Under certain conditions, opening the window with the ceiling 

chilling on could cause condensation. Consequently, the building management 

system (BMS) decides when to switch from one mode to the other. When the 

building is in natural ventilation mode, the occupants can control the temperature 

and ventilation of their personal space by simply opening and closing the 

windows. Lambot and Davids (1997) addressed an important psychological 

benefit of being able to control the local environment. When the occupant knows 

that a nearby window can be opened to fresh air, they are usually willing to 

tolerate slightly higher or lower temperatures than if the ventilation is outside 

their control. This means that the comfort boundary can be slightly extended, with 

a consequent saving of energy. 

In order to make the air flow more manageable, the atrium is divided up into 12-

storey-high sections by triangular glass floors (decks). Each section includes three 

gardens, one on each of the three faces of the building. There is always a 

windward garden to admit the air and a leeward garden to exhaust it. Sometimes 

the air travels up the atrium, sometimes down. The atrium is therefore a quasi-

external space and the offices overlooking it can be ventilated by opening 

windows in the normal way. Outward-facing offices are ventilated directly from 

outside by means of a motorized inner window which is situated behind an outer 

protective pane. This creates a 200 mm ventilated cavity, which also contains a 

motorized blind. All of the offices have these motorized bottom-hinged windows 

which can be controlled both by the occupants and the BMS. The 14 (m) high 

garden façades can also be opened in good weather to ventilate the atrium space 

(connected to two other gardens) and indirectly provide fresh air to the offices 

facing the atrium (Fig. 2-3).  
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The air change in the cavity increases with rising solar insolation on the façade. 

The sun heats the glass, the frame and the blinds, and the surrounding air is 

warmed by these surfaces and experiences uplift. The warmer the façade elements 

compared to the surrounding air, the stronger the uplift effect and the stronger the 

air circulation in the cavity. Consequently, more heat is extracted from the surface 

of the blinds and the sun shading effect of the façade improves with increasing 

solar insolation. It was suggested that the motorized windows would provide 

effective means of ventilation for nearly 60% of the total hours of usage (Lambot 

and Davids, 1997). In periods of bad weather, or excessive heat or cold, each 12-

storey village is provided with its own back-up air-handling unit to supply fresh 

air mechanically. A mechanical air supply and exhaust system serves the central 

corridor zones of each storey at all times. 
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Figure 2-3: The natural ventilation mode in Commerzbank. Source: Lambot and Davids, 1997. 

 

 

 

2.2.1-3 The mixed-mode strategy and overall performance 

Comfort was the critical factor though it proved impossible to maintain ideal 

comfort conditions all year round relying on natural ventilation alone in the 

Commerzbank. Early in the design process of this project, therefore, it was 

decided that this would be a ‗mixed mode‘ building, switching from natural 

ventilation to air conditioning according to the weather conditions. It was 

predicted that air conditioning would be required for about 160 days of the year. 

Computer modelling suggested that natural ventilation would be effective for up 

to 60 % of the year. Office design temperatures were set at 20 °C (max. 40 % RH) 

minimum in winter and 27 °C (max 60 % RH) maximum in summer. There was 

an installed heating load of 4.5 MW and an installed cooling load of 5 MW. It was 

predicted that this 'ecological skyscraper' would consume approximately 25 to 30 
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% less energy than a comparable conventional building (Lambot and Davids, 

1997).   

The monitoring data by Gonçalves and Bode (2010) mentioned that the 

satisfactory conditions of the microclimate inside the villages, namely the control 

of the windows of the internal facing offices, were left to the occupants rather 

than the BMS since 2002. The occupants were used to opening the windows for 

natural ventilation. Interestingly, with more control over their naturally-ventilated 

environment, some occupants grew more tolerant to internal summer temperatures 

in excess of the 26 °C design temperature – and preferred this rather than closing 

the windows and switching to artificial cooling. Alternatively, the nine weather 

sensors that were originally located in each sky garden were replaced by a single 

one at the top of the building, aiming for better accuracy in recording wind data 

compared with the measurements taken from inside the gardens and, therefore, 

achieving more precision in the control of the windows on the three external faces 

The control of the internal environmental conditions was thus simplified as the 

building became increasingly ―manual‖, resulting in higher energy savings 

(Gonçalves and Bode, 2010). 

Since 2008, there has been an increase in the number of work stations from 2,400 

to 2,820. This increased population led to changes in the internal layout of the 

usable floors. The external facing offices were combined with the central corridor 

to create more of an open-plan layout. The entire space is now naturally ventilated 

using the same single-sided system through the double-skin façade, and has 

shown to continue to work effectively even with this increased depth. After a 

decade of monitoring, the building‘s energy consumption shows how natural 

ventilation in a tall office building can substantially minimize energy use and 

offset changes that might incur an increase in energy use such as the increase in 

occupancy density (Gonçalves and Bode, 2010). 
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2.2.1-4 The considerations for implementation of case study in Taiwan 

The following points should be considered if the same design approach as applied 

in the Commerzbank is implemented in Taiwan. First, the amount of floor areas 

taken for atrium and sky gardens is considerable and may not be appreciated by 

property companies who lack of green concern in Taiwan. The design of 

Commerzbank also requires a significantly larger façade area for the total floor 

area as compared to a typical office building, further increasing costs of building 

project. Second, from the technical point of view, the configuration and layout of 

Commerzbank does not specifically acknowledge prevailing winds or the 

asymmetry of the sun‘s path. The consideration for building orientation should be 

reviewed when the same building configuration is to be applied in the climatic 

context of Taiwan. Third, there is a further concern that sufficient flow rates may 

not be achieved for the inward offices when sky garden windows are closed 

during winter. For the case in Taiwan, where the winter is relatively mild, the 

investigations of the impact of window sizes in sky garden on the overall 

ventilation performance is desirable. With the combination of volume of the 

gardens and atrium, along with natural infiltration, sufficient air changes rates 

may be provided for adjacent office spaces for their lower fresh air requirements 

in winter. The optimum opening size can also eliminate the issue of cold draught 

during winter.  
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2.2.2 Deutsche Post office  

 

  

Figure 2-4: The Deutsche Post office, Bonn, Germany. Source: Brochure of Deutsche Post DHL 

Corporate Communications, 2009 

 

 

 

Figure 2-5: Annual temperature profile in Bonn, Germany 
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2.2.2-1 Overview of building design 

 

The Post Tower represents a new typology for an office tower. It is a fully glazed 

41-storey office designed by Murphy / Jahn in 2003, which is located in Bonn, 

Germany (Fig. 2-4). Bonn experiences four fairly distinctive seasons, with 

January being the coldest month, when daytime temperatures average around 3 °C, 

climbing to 10 °C by the end of March. During the winter months and coldest 

spells, snowy weather is light at most. Precipitation levels are surprisingly slightly 

higher, but by no means excessive in August. Summer temperatures regularly top 

20 °C, rising to more than 25 °C at times (Fig. 2-5). The prevailing winds come 

from the Southeast during most of the year and from the East and West from 

April through to July. The average annual wind speed in Bonn is 3.1 (m/s). 

 

The Deutsche Post tower consists of two offset elliptical segments. The north and 

south half shells are separated by 7.2 (m) wide spaces (the atrium), which are 

divided by glass floors into nine-story sky gardens and serve as communication 

floors. The service core is accommodated within the atrium as well. The façade is 

adaptable and switchable. It controls its environment by design and not through 

additional technical equipment. For each elliptical segment, it accommodates 

cellular offices around the building perimeter and with conference rooms towards 

the central atrium. The atrium itself is bridged by glazed steel bridges at each 

floor. The same glazed floor structure has been used in the skygardens for every 

nine floors (Eisele and Kloft, 2003). The outer skin has control flaps allowing 

natural ventilation in all seasons. The outer skin protects the inside against rain, 

wind and noise. The interior facades, which are facing the atrium, are equally 

fully glazed as well. 
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2.2.2-2 Natural ventilation strategies 

 

The building‘s twin-shell façade is made entirely out of glass. The twin-shell 

façade enables natural ventilation of the offices whenever the outside temperature 

permits, primarily in spring and fall. The outer skin of the façade protects against 

rain, wind and noise, while sunscreens are located in the intermediate space. In 

winter and summer especially, a ventilation system reinforced by a heating-and-

cooling component ensures comfort levels all along the interior façade. The 

building‘s ventilation strategy also relies on the stack effect. The spent air in the 

atrium is finally extracted out through vents located on the topmost level of every 

nine-storey-high sky gardens (Fig. 2-6 and Fig. 2-7). 

 

However, the double-skin facade mechanism only comprises part of the 

ventilation concept. The overall ventilation strategy relies on cross-ventilation 

where air enters the building through the double-skin façade, flows through the 

offices and then into the corridors via the inward facing double-layer glass walls 

of the offices as shown in Figure 2-8. The corridors act as exhaust air collectors, 

allowing spent air to pass into the central spaces via the raised floor grilles. The 

ventilation grilles for air exhaustion can be seen on the inner walls of the central 

atrium at each slab level (Fig. 2-9 & 2-10). For conditioning, air is taken from the 

controlled airspace between the shells through the windows or a special detail at 

the slab edge, heated or cooled by a convector in the raised floor and distributed 

from there along the displacement principle (Fig. 2-9). This system supports the 

basic heating and cooling through the integrated piping system in the coffered 

exposed concrete slabs (Blaser, 2004). 
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Figure 2-6: Natural ventilation strategy at the Deutsche Post Tower. Source: Ruba Salib (2008) 
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(a)                                                                                            (b) 

Figure 2-7: Extraction vents on the topmost levels of the nine-storey-high skygardens. a) Internal 

view of the skygarden vents; b) External view of the skygarden vents. Source: Ruba Salib (2008) 

 

 

 

 

Figure 2-8: The natural ventilation strategy at the Post Tower. Source: (Murphy / Jahn, 2003) 
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Figure 2-9: Airflow across the interior spaces showing the air intake and extract ventilation grilles. 

Source: Top: (Jahn, 2003); Bottom: (Ruba Salib, 2008) 

 

 

Figure 2-10: Summermode and wintermode ventilation strategy (during extreme temperatures). 

Source: (Welfonder, 2006) 
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2.2.2-3 The mixed-mode strategy and overall performance 

As summarized by Salib and Wood (2012), Post Tower is designed as a Zoned/ 

Complementary-Changeover building. The typical office floor of the Post Tower 

uses the twin-shell façade space as the intake air distribution and the inner sky-

gardens as exhaust collection. A mechanical floor is eliminated through this 

ventilation concept, using decentralized air intake units in the standard under-

floor convectors. During the extremes of summer or winter, thermal conditioning 

of the offices is augmented by both perimeter fan coil units and radiant ceilings. 

Perimeter fan coil units are located below the floor, adjacent to every other façade 

module and can be individually controlled in each office. The fan coils draw in 

outside air from the double-skin façade and then heat or cool the air according to 

the demand.  All these savings are transferred for covering the additional costs for 

the more complex facades. The use of building envelope for the air distribution 

allows the reduction of the technical building equipment for the space 

conditioning. The integrated comfort concept allows an individual temperature 

and airflow control per room even in summer, which is not usual in a typical 

office environment.  

A computerized BMS controls the operation of the outer façade flaps with 

reference to external temperature, rain, noise, and wind speed. The control of 

vents on the outer façade maintains a low pressure difference to ensure proper 

ventilation rates. The whole building is operating under the designed temperatures 

range of 22 °C and 26 °C in the offices spaces and 18 °C and 28 °C in the sky 

gardens under the monitoring of BMS. The radiant concrete slabs, the sunshades 

located in the double-skin cavity, the dimming of the artificial lighting, and the 

vents located in the exterior façade of the sky garden are controlled as well. While 

the building has a high level of centralized control, office occupants can override 

the BMS to ensure their individual comfort through a control panel located next to 

every door. This allows users to operate the blinds, control lighting levels, operate 

windows, and regulate internal temperatures. Through the controlled external skin, 
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the users up to the 40th floor can decide when they want to open the window, and 

the function of the shading is ensured. If the occupants decide to open the inner 

façade windows, the BMS will automatically switch off the perimeter fan coil 

units. As a result of the collaboration of building envelope, building structure and 

building environmental system, the energy demand of this building is predicted to 

be less than 100 kWh/m
2
 for heating, ventilation, cooling and artificial lighting.      

A study was conducted by Dassler in 2003, which evaluated the efficacy of this 

design. The survey suggested that though the energy levels did not achieve the 

aggressive benchmarks, they remained very impressive. The building was 

designed to utilize 65 kWh/m
2
 for ventilation, heating, and lighting. The 

benchmark is an 83 percent reduction in energy consumption compared to a 

typical air-conditioned building and a 63 percent reduction compared to a "Good 

Practice Office Building." The highly efficient radiant slabs, the exterior 

sunshades, and the use of natural ventilation and decentralized mechanical 

conditioning actually consumed 75 kWh/m
2
 during the year 2003. This is a 79 

percent reduction compared to a typical air-conditioned office building. 

 

 

 

2.2.2-4 The considerations for implementation of case study in Taiwan 

The following issues should be considered if the same design approach is applied 

in Taiwan. First, air temperatures in the façade cavity might be higher than 

external temperatures during the summer of Taiwan, and this presents a 

disadvantage, possibly causing spaces to overheat. This is likely to occur if the 

façade cavity is not ventilated sufficiently, the blinds are not being used, or 

relatively hotter air between the blinds and outer skin is allowed to penetrate the 

office interiors.  
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Second, the upper part of the nine-story-high façade section may experience an 

over-pressure that drives air out of the openings because of the stack effect in the 

intermediate space of the double-skin façade; while the under-pressured zone at 

the bottom of the façade cavity may pull relatively colder air inwards. 

Consequently, the lower levels of the nine-story-high sections may receive more 

fresh air than the top levels, and the air in the top part of the façade cavity may be 

warmer than in the bottom, and may sometimes cause the overheat  problem of 

top floors in summer in particular. Some measure has been taken for this issue in 

Post Tower by pre-cooling fresh air using the fan coil units.  

Third, the significant depth of the double-skin façade (1.2–1.7 meters) of this case 

could make the solution commercially unviable in other buildings, especially for 

those with restricted floor plates on constrained sites. In addition, the loss of 

usable floor space through the sky gardens could be deemed financially restricting 

by some developers. As concluded by Salib and Wood (2012), the design of a 

double-skin façade requires the commitment of a dedicated, long-term owner 

committed to the higher initial costs. In the case of Post Tower, the client realized 

the value of an investment in a headquarters that would minimize long-term 

energy consumption, while providing high quality office space with a high level 

of individual control. Finally, relative humidity should be carefully considered 

when using radiant surface cooling such as activated structural slabs in 

combination with natural ventilation. If outside air with a high relative humidity, 

such as Taiwan, is introduced to an interior space with chilled radiant slabs, there 

is a possibility for condensation to form on the radiant surface.  
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2.2.3 Liberty Tower of Meiji University 

 

Figure 2-11: Liberty Tower of Meiji University, Tokyo, Japan. Source: Chikamoto & Kato, 2002 

 

 

Figure 2-12: Annual temperature profile in Tokyo, Japan 

 



- 38 - 

 

2.2.3-1 Overview of building design 

The Liberty Tower of Meiji University is a high-rise building located at the centre 

of Tokyo Metropolitan area (Fig. 2-11). The centre Tokyo lies in the humid 

subtropical climate zone with hot humid summers and generally mild winters with 

cool spells. The region experiences a one-month seasonal lag, with the warmest 

month being August, which averages 27.5 °C, and the coolest month being 

January, averaging 6.0 °C. There's about 20 °C difference between summer and 

winter. The annual temperature profile is shown as Figure 2-12. Tokyo has four 

distinct seasons, mild spring and fall, hot summer, and winter with a few 

snowfalls. Relative humidity is around 70 % RH in summer and around 50 % RH 

in winter. The on-site measurement for wind speed and direction was taken and 

mean wind speed on the site was 1.9 (m/s). 

The Liberty Tower has a rectangular plan with its longitudinal-axis oriented along 

the northeast-southwest direction, and its main façade faces the southeast. The 

four semi-cylindrical structure located at each corner of the building 

accommodate staircase shafts and other circulation elements. Elevators and other 

service areas are placed along the north-western facade of the building. The plan 

features a central escalator shaft between 1
st
 and 17

th
 floors, known as ‗Wind 

Core‘, which serves as major means of transit for students. The 18
th

 floor of the 

tower is referred to as the ‗Wind Floor‘, which accommodate the mechanical 

facilities and serves as key element for natural ventilation of the building. 

 

2.2.3-2 Natural ventilation strategies 

The overall ventilation strategies rely on both wind and stack effect to drive air in 

and out of the building. The central core is beneficial for stack effect and the wind 

floor is designed to enhance driving forces from the wind. As air enters the 

building and flows across the occupied space, it is then led to the ‗Wind Core‘ or 

escalator voids which utilize the stack effect to exhaust out of the building on the 

18
th

 floor, namely the ‗Wind Floor‘ (Fig. 2-13). The occupied rooms along the 
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perimeter of the building feature single-glazed fixed windows with automatically-

controlled opening at the bottom part for air entry (Fig. 2-14 and 2-15a). The 

intake air through the envelope openings is then led to the wind core. On the 18th 

floor, there are openings to exhaust the air, which passes through 4 wind paths 

designed toward 4 different directions, and are finally led to outside of the 

building (Fig. 2-15b). As the wind floor open to 4 directions, the driving force is 

expected to be stable through the year regardless of wind direction. A wind fence 

(Fig. 2-16) is placed near the exhaust openings to prevent outdoor air passing 

through the ‗Wind Floor‘ from distributing the smooth flow of exhaust air through 

the top of the wind core. 

 
Figure 2-13: The natural ventilation system. Source: CTBUH (2012) 
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Figure 2-14: Automatically controlled ventilation window. Source: Chikamoto and Kato (2002) 

 
Figure 2-15: Floor plans: Typical floor plan (Top), Wind floor on the 18th level (Bottom).  

 

 
                           (a)                                                         (b) 

Figure 2-16: The wind fence on 18th floor. a) Wind pass through this floor; b) Exhaust opening on 

the top of escalator void. Source: Chikamoto T. & Kato, S. (2002) 
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2.2.3-3 The mixed-mode strategy and overall performance 

The Liberty Tower has a changeover mixed-mode system which switches 

between natural and mechanical ventilation on a seasonal or daily basis. The 

natural ventilation mode is inactive during the heating season. The building is 

naturally ventilated during the cooling season between 8 am and 10 pm when 

outside weather conditions allow. The building has a central BMS which 

automatically controls the operations of perimeter ventilation openings and 

exhaust openings of the 18
th

 floor. The operations of these openings depend on 

the dry-bulb temperature, relative humidity, wind speed and precipitation values 

measured by the use of sensors and meters places on roof of the tower. Night 

ventilation is activated when external temperature falls between 10 ˚C and 28 ˚C 

during the non-occupied hours of the cooling season. The building also features 

manually operated inlets which can be controlled by the occupants during the 

overtime period, on holidays and in case of emergency. The façade of the tower 

features recessed glass panel and sun-shading devices integrated within the 

window casement. Solar control is also achieved by internal blinds which limit 

the intensity of direct solar radiation. The energy saving monitored during April 

and November of 1999 is presented as Figure 2-17. Total annual cooling load was 

415 MJ/m
2
, for which 17 % was reduced by the use of hybrid ventilation system. 

 

 
Figure 2-17: The monthly energy consumption for removing cooling load (MJ/m2). Source: 

Chikamoto and Kato (2002) 

 



- 42 - 

 

2.2.3-4 The considerations for implementation of case study in Taiwan 

 

The following points should be taken into consideration if the design approach of 

the Liberty Tower is implemented in Taiwan. First, the air flow rates may be in 

excess of those required for comfort because of the combination use of ―Wind 

Floor‖ and ―Wind Core‖ that might lead to the development of an extreme stack 

effect in the escalator core. Second, the motorized ventilation openings are fully 

controlled by the BMS in result of the inability of occupants to control their own 

environment. Consequently, the comfort range for occupants may be limited and 

result in user dissatisfaction. Third, the complete free flow of air around the 

building, including an 18-story void, creates significant hazards for fire and 

smoke control. The fire safety issues are needed to be addressed in accordance 

with the local regulatory level. In the case of Liberty Tower, automatic fireproof 

and smoke proof shutters are distributed around the 18th floor atrium openings in 

emergency events. Finally, from the aspect of building segmentation, the ‗open 

wind floor‘ is placed in the 18
th

 level of the building, where only 5 floors are 

above the wind floor. The full benefit of the segmentation concept may be 

questioned. It is supposed that the concept of the ‗open wind floor‘ may be 

regarded as an alternative for building segmentation. More detailed engineering 

analysis (i.e. the optimum segmentation height for ventilated cooling) is required 

to demonstrate the claimed benefits for natural ventilation with above hypothesis.  
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2.2.4 Menara UMNO Tower 

 

Figure 2-18: Menara UMNO, Penang, Malaysia; Vertical wing-walls protruding from the 

Southwest and Northeast elevations. Source: Jankassim (2004) 

 

 

Figure 2-19: Annual temperature profile in Penang, Malaysia 
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2.2.4-1 Overview of building design 

The Menara UMNO, designed by the Malaysian architects T.R Hamzah and 

Yeang, is a 21- storey ‗bioclimatic‘ tower located on the island of Penang (Fig. 2-

18). Penang enjoys a year-round tropical rainforest climate which is warm and 

sunny, along with plentiful rainfall, especially during the Southwest Monsoon 

from April to September. The average annual temperature (Fig. 2-19) in Penang is 

27°C, while the mean annual precipitation is 2670 mm and the average relative 

humidity can reach up to 70% - 90%.. Penang‘s climate has little seasonal and 

diurnal variations and no distinct hot or cold seasons. The hottest months are 

between December and April with mean temperatures ranging between 26.2 °C 

and 27.6 °C, while the coolest months are between June and October with mean 

temperatures ranging between 26.3 °C and 27.3 °C. The temperatures fluctuate 

between 27°C-30°C during the day, and 22°C-24°C during the night, mounting to 

an average temperature difference of 5 °C to 6 °C between the day and night. The 

mean surface winds over Penang are generally mild, with the average wind speed 

of 1.5 m/s, and a maximum speed of less than 8 m/s. 

Menara UMNO accommodates fourteen floors of office spaces, atop a seven-

story podium. The building is almost rectangular in plan, with a gentle curve 

along the south-west corner of the tower (Fig. 2-20). The long axis of the building 

is oriented along the northeast and southwest direction, in line with two of the 

prevailing wind directions. The service core (containing the lift lobbies, staircases, 

and toilets) is placed along the south-east façade of the building, constituting a 

thickly buffered party wall that shades the offices from the morning sun (Royal 

Australian Institute of Architects, 1998). This configuration allows the public and 

circulation areas to receive day lighting and natural ventilation, thus reducing the 

energy demand. The remainder of the floor area on each level is devoted to open-

plan offices. The typical office floor has a gross area of 615 m
2
 and a 2:1 aspect 

ratio. The depth of the plan is about 14 meters, excluding the service core. Several 

sky courts and balconies are incorporated within the plan to serve as a social 

space where occupants can enjoy the cooling breezes as well as to provide solar 

shading. 
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Figure 2-20: Typical floor plan of the Menara UMNO. Source: Baird (2001) 

 

 
Figure 2-21: The Menara UMNO Tower North (left) and West (right) Elevations. Source: 

Jankassim (2004) 
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2.2.4-2 Natural ventilation strategies 

The warm and humid climate of Malaysia has necessitated the use of air-

conditioning in most of its office buildings. However, the poor rental rates in 

Penang at the time of the development of Menara UMNO did not justify the 

installation of a central air- conditioning system due to its economic 

impracticality. As a result, the UMNO tower was initially designed for tenants to 

install individual split unit air-conditioning. The natural ventilation strategy was 

then conceived as a backup system to the building in the incident of a power 

failure. Despite the fact that a central air-conditioning system was subsequently 

installed prior to construction, all office floors can still be naturally ventilated 

under suitable external weather. Due to the site limitations and the orientation of 

the building, a series of wind ―Wing Walls‖ were developed to fully maximize the 

use of prevailing winds (Fig. 2-22). The Wind Wall device is a shortened wall, 

which runs vertically up the building in order to capture a wider range of wind 

directions and increase the airflow rates into the occupied space. These devices 

funnel air flow into the internal spaces by establishing pressure difference across 

the office plan. The objective of the natural ventilation solution in Menara UMNO 

was to generate a high air-change rate for achieving comfort conditions through 

air movement and temperature control. The building exploits wind-induced 

natural ventilation not solely for the purpose of air-displacement and fresh air 

supply, but also for internal comfort conditions (Powell, 1998).  

The overall natural ventilation strategy in the building is primarily dependant on 

wind- driven forces to channel air across each floor plate with the aid of ‗wing-

wall‘ devices (cross-ventilation on a floor-by-floor basis). Air is funnelled into the 

building from the windward side, and is then directed to a zone with special 

balconies that serve as pockets with ―airlocks‖. The location of these balconies 

and airlocks are shown as Figure 2-23. These airlocks have adjustable doors and 

windows with manual control for the rate and the distribution of natural 

ventilation within the space. Menara UMNO is the first high-rise office building 

which employs the Wing Wall device for the purpose of natural ventilation. 
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Figure 2-22: The cross sectional floor-by-floor basis ventilation strategy. Source: CTBUH (2012) 
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Figure 2-23: Typical plan showing the location of balconies and airlocks. Sources: Powell (1999) 

 

 

 

 

2.2.4-3 The mixed-mode strategies and overall performance 

Menara UMNO was originally designed as a Contingency Mixed-Mode building 

to be naturally ventilated for up to 100 percent of the year with the provision for 

tenets to install individual air-conditioning units. Subsequently, a central air-

conditioning system was installed during construction and Menara UMNO 

operates as a Complementary-Changeover building. An active, user-controlled 

system allows occupant to choose between natural or mechanical ventilation 

modes. The building does not have a central building management system (BMS) 

to control the operation of the windows or the amount of airflow into the interior. 

However, the active and passive systems in the building have independent 

controls which can be operated by the users. The control for the active AHU is on 
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floor-by floor basis, and the occupants have access to windows that can be opened 

in most office spaces.  

During the design development of Menara UMNO, CFD simulations were 

conducted to test the effectiveness of various ventilation strategies. The analysis 

suggested that comfort ventilation could not be achieved solely based on 

buoyancy-induced ventilation because of the limited floor-to-floor height on a 

floor-by-floor basis of ventilation system. The effectiveness of Wing Walls on the 

overall thermal performance of the building was investigated. The air change rates 

of the occupied spaces were evaluated under different boundary conditions in aim 

of identifying the potential scenario of when and how the sufficient ACH can be 

supplied for different ventilation needs (either indoor air quality of cooling).  

 A post occupancy survey was conducted in 1998 which measured the level of 

thermal comfort by the use of Predicted Mean Vote (PMV) of Fanger. The study 

revealed occupants on floors 6, 7, and 8 tended to feel slightly warm, with an 

average scoring of 0.9 PMV (Jahnkassim, 2004). Another post occupancy study 

conducted in July 2004 (Ismail and Sibley, 2006) consisted of a questionnaire 

distributed to occupants in order to record the perceptions of the environmental 

qualities of their work space. Their study revealed that natural ventilation had an 

83 percent of positive response. For the thermal comfort, however, there was only 

57 % positive response and with negative feedback on temperature at work 

stations, elevator lobbies, and restrooms. Despite of the results from the thermal 

comfort survey, none of the respondents were dissatisfied with their overall 

working environment. 

 

2.2.4-4 The considerations for implementation in Taiwan 

Some potential areas of concern should be addressed when implementing the 

design strategies of Menara UMNO. First, the location of the service core along 

the edge of the building has resulted in a greater plan depth along the main wind 

flow axis (approximately 14 meters). This might have adverse effects on natural 
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daylight, especially for workers who are located at a far distance from windows 

and ventilation openings. Second, the ventilation concept mainly relies on wind-

driven natural forces, lower air flow rates (< 1 ac/h) would be observed if the 

ambient wind speeds are low or the windows are not fully opened. Third, 

buoyancy effect alone would not provide a significant ventilated cooling because 

of the limited ceiling height and low temperature difference between indoor and 

outdoor during the summer time of Taiwan. Given the natural ventilation design 

of the building on a floor-by-floor basis, it diminishes the possibility of designing 

a tall building that relies exclusively on stack effect. The sole use of natural 

ventilation may not provide optimal occupancy comfort in the case of high 

humidity levels under tropical conditions. Fourth, the effect of wind driven rain 

under monsoon season will need to be taken into account in developing a natural 

ventilation strategy. Finally, the development of future adjacent high-rises may 

negatively affect wind flow and speeds and thus the wind ―Wing Walls‖ strategy. 
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2.2.5 Torre Cube  

 

Figure 2-24: The Torre Cube. Guadalajara, Mexico. Source: Pagliari (2006) 

 

 

Figure 2-25: Annual temperature profile in Guadalajara, Mexico 
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2.2.5-1 Overview of building design 

The ‗Torre Cube‘ is a 16-storey (70 meter) high office tower located in the 

Guadalajara, Mexico. The building was designed by the Catalan architects Carme 

Pinos, and completed in 2005 (Fig. 2-24). Guadalajara is located in a relatively 

humid sub-tropical climate, featuring dry, mild winters and warm, wet summers. 

Although the temperature is warm year-round, it experiences a strong seasonal 

variation in precipitation. There is plenty of sun throughout the year and summer 

temperatures quickly rise to 30 °C and often approach 35 °C during the months of 

April and May. The wet season approaches shortly after May bringing extra 

moisture resulting in cooler days and warm nights. While the daytime winter 

weather tends to be mild, averaging around 25 °C, the temperature quickly drops 

to around 5 °C at night. The annual weather profile is shown as Figure 2-25. 

From the very beginning of the design process, the project was driven by the 

desire to eliminate the need for air-conditioning and to create naturally ventilated 

and daylit offices (Cenicacelaya, 2006). The tower consists of three triangular-

shaped, timber-clad office wings that are dramatically cantilevered from three 

concrete cores. Apart from being the primary supporting structure, these cores 

also contain all the service facilities and vertical circulation elements within the 

building (e.g. stairwells, lifts, and toilets). The post-tensioned cantilevered office 

slabs allow for open-plan, column-free interior spaces with minimal obstructions 

(Fig. 2-26). The triangular-shaped office spaces are approximately 12 m in depth 

(measuring from the outer skin to the central void). Both the offices and the 

service shafts are arranged around a central open space which functions as a light 

well and serves an important role for natural ventilation. The central void (Fig. 2-

27) is connected to the exterior by the omission of office floors which creates sky 

gardens in each office wing. These sky gardens, or "porches", serve to bring 

natural light and ventilation into the central void. These three storey porches also 

provide generous shade, allow for air circulation, and function as communal 

terraces for social gatherings (Slessor, 2006). 
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Figure 2-26: The Torre Cube typical floor plans. Source: Pagliari (2006) 

 

   

Figure 2-27: The internal (atrium) and external views of The Torre Cube. Source: Pagliari (2006) 
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2.2.5-2 Natural ventilation strategies 

The mild Guadalajara climate allows for natural ventilation throughout the entire 

year, without any reliance on mechanical ventilation, heating or cooling. The 

office spaces have a double-skin façade (Fig. 2-28) which facilitate natural 

ventilation and employ an open rain screen/brise-soleil, providing protection 

against glare and solar heat gain. The inner skin is comprised of a floor-to-ceiling 

glazed curtain wall with operable sliding windows; the outer skin, on the other 

hand, consists of a diaphanous screen of wooden latticework made from thin 

treated pine battens on a steel frame acting directly as a brisesoleil, protecting the 

office spaces from glare and solar heat gain. In addition, this outer screen acts as a 

buffer against wind-driven ventilation into the offices, reducing the speed of the 

air flow. 

The wooden latticework panels can slide horizontally by the occupants, giving a 

degree of flexibility to the amount of shade and controlling the flow of air into the 

offices. Since both elements can be manually controlled (the wooden screen and 

the sliding glazed windows), the occupants have direct control over the amount of 

sun, light and air entering the office. The intermediate zone between the two 

façade layers has grated floor panels which permit access into this space, but does 

not impede vertical air flow in the space itself.  

The building‘s overall ventilation strategy relies on the through-draft between the 

outer windows and the central light well (McGuirk, 2006). Air is drawn into the 

office space through the sliding windows from the façade and exhausted into the 

atrium through the sliding windows in the inner-facing façade (Fig. 2-29). The 

upward movement of air caused by the stack effect creates a negative pressure 

which pulls air out of the offices to be exhausted at the top of the building. The 

ventilation strategy of Torre Cube can thus be summarized as a combination of 

cross ventilation assisted by significant stack effect in the central atrium. 
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Figure 2-28: Double-skin façade in the Torre Cube (showing the brise-soleil). Source: Left: 

(Pagliari, 2006); Right: (Adria, 2005) 

 

 

Figure 2-29: Natural ventilation strategy.  
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2.2.5-3 The mixed-mode strategies and overall performance 

The Torre Cube is entirely dependent on natural ventilation (and solar shading 

devices) to cool down the building, thus there is no mechanical ventilation or 

mixed-mode systems operating. Even during winter, the climate is mild enough 

that there is no need for heating to warm up the interior. The design does 

incorporate duct work to all office spaces that would allow individual tenants to 

install air-conditioning units for their spaces. However, to date, no tenant has 

taken this action. The building employs low-tech solutions to its ventilation needs 

and thus there is no BMS system in place. Office occupants manually operate all 

the windows and wooden lattice screens of the façade. This allows the users direct 

control over the amount of air and sunlight entering the office spaces. 

 

2.2.5-4 The considerations for implementation in Taiwan 

The following points are potential areas of concern that should be addressed when 

implementing the design strategies of this case study. First, if strong winds are 

blowing from a specific direction, wind becomes the predominant driving force 

for natural ventilation in that particular office wing. In this case, the office wing 

facing the prevailing wind may be better ventilated than the others, unless the 

stack buoyancy in the central atrium is sufficient to draw air from the perimeter 

windows of those office wings. Second, the three-story sky gardens within the 

office wings may influence the effectiveness of the central atrium, being used as 

an exhaust device, by interrupting the stack buoyancy in the void.  

Third, the direct control of the windows may lead to preferential ventilation for 

some office occupants over others. For example, office workers closer to the 

external façade may choose to close the windows, which result in insufficient 

ventilation rates for occupants at the inner side of office space. Fourth, the timber 

screens of the Torre Cube would be unlikely to stand up to the greater wind 

speeds experienced at significant heights, or give a satisfactory longevity for 

durability, cleaning and maintenance in other climates such as Taiwan. 
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Fifth, a comprehensive analysis of surrounding environment is desirable when 

applying this design approach to different urban context. Existing and future 

developments would significantly affect the wind patterns around the building. It 

is then suggested that CFD and wind tunnel testing may be helpful for predicting 

air flow patterns around the building and evaluating control strategies associated 

with various design alternatives for natural ventilation. It should be noted that this 

particular ventilation strategy works primarily because of the mild local climate 

and with only 16 stories in height. It is unlikely that these strategies would work 

in climates with larger annual temperature and humidity variations, or with 

buildings of greater height. Figure 2-30 demonstrate one of the potential typology 

of super tall buildings being derived from this building configuration. 

 

 
Figure 2-30: The potential application of the Torre Cube design strategy for the super tall building 

typology. Source: Salib (2008) 
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2.3 Naturally ventilated tall office building design in the climatic 

context of Taiwan  

 

2.3.1 The weather pattern of Taiwan 

The Tropic of Cancer (23.5° N) runs across the middle of Taiwan and divides the 

island into two climates, the tropical monsoon climate in the south and subtropical 

monsoon climate in the north. High temperature and humidity, massive rainfall 

and tropical cyclones in summer characterize the climate of Taiwan. Taiwan's 

annual average temperature is about 24 °C in the south and 22 °C in the north. In 

July, the warmest month, the island's temperature goes up to 27 °C with the north 

slightly warmer than the south. In the winter, the coldest average temperature for 

the north is about 15 °C in February while that for the south is around 19 °C in 

January. Northern Taiwan thus experiences a greater range of temperature 

throughout the year than its southern counterpart. The year-round temperature 

distribution of Taiwan is presented as Figure 2-31. 

 

 

 

Figure 2-31: Year-round temperature distribution of Taipei, Taiwan  
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 The building bioclimatic charts (BBCCs) are used to demonstrate the potential 

year-round comfort distribution in terms of weather data in Taipei. More detailed 

background knowledge for the BBCCs is presented in Section 3.5.4. Generally 

speaking, the comfort zone can be extended (the blue outline of Figure 2-32) if an 

internal velocity of 1.5m/s is applied. The 1.5m/s criterion is defined according to 

Givoni (1994), where different building design strategies and ventilation system 

are adopted. The hourly external temperature and relative humidity was plotted in 

the chart where the comfort boundary was applied with reference to different 

internal wind speed. One thing to be noted is that the internal temperatures may 

be higher if significant internal and solar heat gains are applied. In this stage of 

analysis, it is assumed that internal and solar gains are low. The air change rate 

under the 1.5 m/s internal velocity would vary in terms of the actual envelope 

opening design. The results are presented as Figure 2-32, which suggest the 

preliminary potential of comfort ventilation; while the actual performance of the 

office building may vary case by case, especially when significant solar gains are 

considered.  
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(a) 

 

 

(b) 
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(c) 

 
(d) 

Figure 2-32: The thermal comfort distribution by the use of building bioclimatic chart. (a) 

December to February; (b) March to May; (c) June to August; (d) September to November 
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2.3.2 Summary of lessons learned from case studies  

The critical parameters for efficient design (in terms of economic implication and 

occupants‘ perspective) of tall buildings as suggested by Strelitz (2007) are storey 

height and size of both the floor plate and core. Issues in terms of space, ease of 

use, capital cost, architectural fit and performance for tall buildings design were 

raised in their study With regard to natural ventilation + mechanical ventilation 

design in tall buildings (ie mixed mode), the cost of installing two ventilation 

systems,is seen as a disadvantage.  It was suggested that the cost was far too high 

to be balanced by savings in running costs, but the investment was thought to be 

worthwhile nevertheless in terms of sustainability and satisfactory environment 

for occupants. The social and environmental costs should be taken into 

consideration as the scale of tall building increases, which enhance the importance 

of exploiting natural and renewable energy source. 

The spatial configuration of a tall building is key to natural ventilation design. 

The development of high-rise buildings in the US in the 1890s demonstrated how 

shallow plan depth and the incorporation of open (central) courts allowed tall 

buildings to rely exclusively on natural ventilation before the advent of air-

conditioning. The Chrysler and the Empire state building illustrate how the 

shallow wall-to-core depth allows sufficient daylight and natural ventilation 

(Oldfield, 2008). Case studies as presented in Section 2.2, demonstrate that 100 

years later applications of naturally ventilated tall buildings (all mixed-mode 

buildings). The design options for natural ventilation with reference to building 

plan and sectional treatment of the five case studies are summarized as follows: 

 

The spatial configuration of the four studied cases, namely Commerzbank, 

Deutsche Post Tower, Liberty Tower of Meiji University and Torre Cube, adopts 

the concept of central atrium. In these three cases, the use of atrium allows for 

wind and buoyancy forces to act together at the same time. As demonstrated by 

the Commerzbank, the use of a central atrium and sky gardens allows for outward 

facing offices to be directly ventilated from the outsides and for offices facing the 



- 63 - 

 

atrium to be indirectly ventilated through the sky gardens through the stack effect. 

However, the overall ventilation performance would be determined by the 

ambient weather conditions, for which the wind and buoyancy force may conflict 

with each other under specific boundary conditions. Detailed engineering analysis 

is required to identify the period of time when the natural ventilation is not 

available. 

The incorporation of sky gardens in the design of naturally ventilated tall office 

buildings is addressed in the Commerzbank, Post Tower and Torre Cube. For the 

Commerzbank, the sky gardens are used as air intake and the extraction. Each 

building segment includes three gardens, one on each of the three faces of the 

building. There is always a windward garden to admit the air and a leeward 

garden to exhaust it. The air travels up and down the atrium according to the 

weather conditions. In the Deutsche Post Tower, on the other hand, sky gardens 

are only used as extraction chimneys which allow the stack effect to exhaust air to 

the top of the atrium outlet. Additionally, sky gardens also function as buffer 

zones in both cases which mediate the temperatures between the exterior and 

interior. In such a scenario, the sky gardens offer some of the benefits as 

presented by double-skin facades. These include thermal insulation, protection 

against undesirable weather conditions, exterior noise and high wind speed. In the 

case of the Torre Cube, however, the three-story sky gardens within the office 

wings may reduce the effectiveness of the central atrium as an exhaust device by 

interrupting the stack buoyancy in the void. The central void as well as the 

duplication of some services in three off-centre structural cores results in the 

reduction of efficiency of the net-to-gross usable floor area and commercial 

viability of the project. 

 

From the aspect of segmentation, the Commerzbank and Post Tower demonstrate 

how segmentation prevents temperature differences from acting over the full 

height of the building. Therefore, the risk associated with the large buoyancy 

pressure difference at the top and bottom of the atrium is reduced. In this respect, 
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segmentation minimizes the risk of receiving significantly warmer air at top floors 

than those at the bottom consequently. Although, the design of natural ventilation 

on a floor-by-floor basis as demonstrated by the Menara UMNO can eliminate the 

above concern, sufficient flow rates may not be delivered when the external 

weather conditions are not viable (e.g. under low wind speed).  

 

Furthermore, with the presence of wind, the cold draught occurred in the bottom 

floor should be taken into consideration. One concern is in terms of sizing of inlet 

and outlet. The pressure difference due to the wind forces would be determined by 

the wind pressure coefficient at the location of the inlet and outlet. By the use of 

segmentation, the complexity associated with sizing the openings of the spaces 

connected to the atrium is reduced accordingly. Consequently, segmentation 

allows for the design of each segment in isolation. That is, although the Torre 

Cube is only 16 stories in height, the potential typology of super tall buildings can 

be derived from this building configuration as well (Fig. 2-30). The summary of 

the natural ventilation strategies being applied in the five case studies during 

different period of time of a year is illustrated as Table 2-1. 

 

Nevertheless, the feasibility and viable period of time for the adoption of natural 

ventilation in the five case studies are not addressed in detail in the available 

references. The claimed ventilation performance is supposed to be achieved by 

the use of appropriate modelling tools in the associated design stage. The overall 

objectives of this study are to determine whether the magnitudes of air flow rates 

and the desired flow pattern through openings can be achieved over a range of 

specified conditions. Potential conditions where the thermal comfort condition 

may not be ensured should be identified. Additionally, it is supposed that different 

modelling tool should be applied according to the research questions at hand 

under different design stages. The pros and cons of proposed modelling tools of 

this study are discussed in Chapter 3.  
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Table 2-1: The natural ventilation strategies of the five case studies  
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2.3.3 Options, limitations,  and design considerations of naturally ventilated 

tall office buildings in Taiwan 

 

Taiwan is located the sub-tropical area with a hot-and-humid climate. The 

monsoon and typhoon occur often throughout the year which complicates the 

natural ventilation design. Issues needed to be concerned include the thermal 

comfort control over challenging ambient temperature and humidity condition and 

the effective cooling effect with respect to ambient wind speed. For the natural 

ventilation in tall office buildings, the challenges for control are even greater with 

regard to potential great magnitude of wind and buoyancy forces in tall buildings. 

The cooling mechanism being explored in this particular study, for a hot and 

humid climate, includes the direct cooling of indoor space (sensible cooling) and 

the physiological cooling of the human body (personal cooling). For this 

particular study, the overall aim is to ensure that the proposed tall building 

configurations can deliver acceptable comfort environment for the occupant 

through natural ventilation alone. 

 

Nevertheless, current design fashion of tall office buildings in Taiwan often 

excludes natural ventilation due to its potential risk to a successful design. The 

isolated office spaces with mechanical ventilation are commonly seen in terms of 

close control of indoor thermal comfort. The building regulations with reference 

to ventilation design consider the minimum air change rates for indoor air quality 

mainly. In the regulatory level of Taiwan building industry, some concerns over 

the opening sizes and locations are defined with relation to the level of 

interference to the surrounding buildings. Special focuses with respect to the wind 

engineering of tall building are considered in terms of structural safety. For the 

green building assessment system of Taiwan, the rewards for natural ventilation 

design are evaluated in terms of percentage of floor areas with viable natural 

ventilation. General design strategies are provided without detailed technical data 

for further performance evaluation.  
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The case studies present various approaches to tall building design in their 

projects from other parts of the world, which are beneficial for deriving lessons 

for design in Taiwan. The case studies identify the differences between natural 

ventilation approaches in different climate zones and cultural contexts. The 

German model, in particular, is characterized by an architectural approach that 

challenges the conventional method of design, as observed through the 

introduction of atria and sky gardens with a resulting reduction of rentable area; 

while opening up the building more to the outside in terms of views, daylight, and 

natural ventilation. The overall environmental quality of a building is improved 

by having access to daylight through narrower plans, views towards the outside 

and transparency between internal and external environments, energy 

performance of facades, and the integration between natural and mechanical 

ventilation. Although natural ventilation in office buildings is increasingly 

common, the norm is to provide a mixed mode solution even in temperate 

climates. The Commerzbank Headquarters, however, shows that the various 

technical barriers and arguments for the successful use of natural ventilation in 

tall office buildings can be overcome and to work extremely effectively.  

 

From the aspect of façade design, the double-skin façade has been widely adopted 

in Europe, followed by Asia, mainly as a means of improving the thermal 

performance of building envelope for fully air-conditioned buildings. The 

effectiveness of the double-skin façade needs to be assessed on a case by case 

basis, as it related to local climatic conditions, the characteristics of the building 

form, and aspects of occupation and integration with the operation of building 

technical systems. Nevertheless, the performance of the facades in most office 

buildings of Taiwan has been associated with the type of glass, showing the use of 

high energy-performance glass and double-glazed facades without the 

considerations of double skins and possibilities of natural ventilation.  
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Apart from the basic characteristics of the facades, the attributes related to the 

label of the ‗green‘ building are drawn from the energy efficiency of building 

technical systems, more than architectural design, and are mainly related to the 

format of green certificates. The potential of the building form and the appropriate 

treatment of the facades in accordance with the local climate have not been 

addressed in depth as a mean to improve the environmental performance of the 

building. The deep floor plates are still an issue, being the main limitation for 

better daylight performance and natural ventilation. In the case of natural 

ventilation, robust adjustable apertures need to be designed for the facades of tall 

buildings, and lots of examples of different approaches have been demonstrated in 

the case studies. It could be one step towards less energy-intensive buildings 

though the efficiency is highly related to the building form. 

 

Occupant interaction and some level of control over the environmental conditions 

of the internal spaces in tall buildings have been found to be important. Lessons 

have been learned in the Commerzbank, Menara UMNO, Torre Cube, and 

Deutsche Post Tower, for which energy consumption can be substantially reduced 

when compared to fully automated controls. The selected case studies differ from 

the conventional model of tall buildings with regard to environmental control and 

occupant involvement. They can inform and inspire more environmentally 

challenging buildings but they are not universal solutions. For this particular study, 

different building configurations are evaluated by various modelling approaches 

according to the research questions being raised. The considerations for the 

natural ventilation design in the climate context of Taiwan are derived 

accordingly.   
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2.4 The prototype building and proposed building configurations of 

this study  

The key considerations for the generic building configuration design of naturally 

ventilated tall office buildings for this particular study are discussed with 

reference to floor-plate sizes, core distributions and sectional treatments. The 

prototype building and the proposed building configuration of this study are 

described in detail in Section 2.4.1 and Section 2.4.2. The key concerns for the 

development of proposed building configurations are summarized as follows. 

 

(1) Plan depth 

British Council for Offices (2009) suggested two types of building plan in terms 

of plan depth. Firstly, the deep plan building is defined when the distance of 

window to window (atrium) ranges between 15 to 21 m (can be deeper) or 

window to core is between 7.5 to 12 m or more. This plan type provides large, 

flexible floor plates. However, the increased depth may require mechanical 

environmental controls to maintain internal conditions. Key considerations for 

deep plan buildings include higher running costs, lack of daylight, flexible and 

efficient space and ability to occupy space densely while maintaining consistent 

internal conditions. The second plan type, namely the shallow plan, has the 

characteristic of window to window (atrium) distance of 12 to 15 m or with 

window to core of less than 6 to 7.5 m. The shallow plan building will allow the 

potential use of natural ventilation, but will need to be integrated with the external 

envelope to allow its controlled use. Key considerations for shallow plan type are 

the lower running costs, if non-air-conditioned, and potential occupant control via 

opening windows. The capital costs per m
2
 are more expensive than the deep plan 

of a tall building.  

Another definition for the maximum plan depth for natural ventilation and 

daylighting was proposed by Baker and Steemers (1996, 2000) in the LT Method, 

for which the concept of the passive and non-passive zone was used. In their 
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definition, the passive zone was defined as an area in the building within a 

maximum distance from a perimeter wall, or an area under a roof; the non-passive 

zones, on the contrary, were those away from the envelope. In the LT Method, the 

passive zone depth is normally twice the floor to ceiling height, or 6 m as a 

default. Many of the advantages and disadvantages are linked between the passive 

and non-passive zone. For example, the passive zones can enjoy the benefit of 

daylight and natural ventilation and some useful solar gain in the winter, but may 

suffer from the unwanted solar gains or heat loss through the envelope in summer. 

The non-passive zone vise-versa may require mechanical ventilation and artifical 

lighting, but do not suffer the envelope loss. 

 

 (2) Core distributions 

Core design is fundamental both to space efficiency and the building‘s operational 

effectiveness. Vertical circulation, services distribution and support functions for 

the floor plate are typically grouped in cores. Issues for core design include 

virtical circulation, configuration, floor-plate design, function of service core, 

service core types and placement, elevator design etc. The core integrates 

functions and service needs for occupants of multi-storey buildings. It is normally 

composed of toilet facilities, elevator banks, janitors‘ closet, utilities, mechanical 

facilities, smoke shafts and stair. The location and arrangement of cores are 

discussed according to the proposed building geometry. Considerations for core 

distribution should be taken with reference to typical floor-plate efficiency, 

flexibility in the layout and the view outward. Two typical arrangements of 

service core in tall buildings as suggested by Yeang (2000) are summarized and 

discussed as follows. 

 

 Centre core arrangements: 

Placing the core at the centre of the building will create a ribbon of usable space 

between the core and the building‘s perimeter. The relative size of the site and the 

core will determine the depth of the this usable space. The central core 
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arrangement offers several advantages in a tall building. First, it maximises the 

usable space at the bulding‘s perimeter, allowing a greater proportion of the 

workspace to be naturally lighted. It also places the core in a structurally efficient 

location where it can provide for the building‘s stability. In addition, when the 

central core combines with a square building plan, bearing exterior and core walls, 

this location permits a floor plan free of columns and thus totally flexible for 

office layout. Consequently, it allows for efficient sub-division of the floor plate 

to accommodate two or more sub-tenancies on a floor without sacrificing usable 

space. This arrangement allows extremely convenient access for all side and in 

some cases may be equidistant for the distribution of horizontal utility runs from 

the core. However, the central interior location limits the depth of offices in the 

mid-zone of each floor. From the aspect of natural ventilation, the centre core 

arrangement may lead to the single-sided ventilation for the offices in the 

perimeter zone. The office spaces near the central core can only obtain the 

indirect ventilation and may suffer from some air qualty issue if the window-to-

core distance is over 7.5 m as suggested in the deep plan building. However, the 

introduction of a tall atrium with internal ventilation openings may help to resolve 

the issue. More discussions are provided in Section 2.4.2.  

 

  Offset core arrangement: 

The centre core arrangement will not suit every occupier or every site.  It breaks 

up the floor plate by blocking views and access across its centre. Central cores 

may be particularly inappropriate on small sites where the resulting depth of floor 

would be inflexibly small. Many potential sites do not offer outlook in all 

directions and cores may be planned adjacent to party walls where workspace 

would be compromised. Cores may be set at the edge of the floor plate, either in 

one location or distributed at a number of smaller satellties. This arrangement 

frees the usable accommodation from the obstructions of the fixed service risers. 

The resultant floor plate is deeper and allows views and access across the centre. 

The offset core allows all window or building perimeter space to be used for 
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offices. More flexibility in maximum depth and arrangement of spaces are 

introduced. It also offers the opportunity of developing small secluded space in 

the relatively narrow portion of the floor plan where the core is close to the 

exterior walls. Nevertheless, the off-centre core design may present some 

problems of access and less flexibility of tenant distribution. It is less convenient 

for the far sides and corners of the building to reach the service cores. 

Additionally, the potential implications of ‗offset cores‘ for a natural ventilation 

strategy include the cross-ventilation on floor-by-floor basis  for the shallow plan 

building and the single-sided ventilation if the window-to-window distance is 

over 7.5 m. A demonstration of this type of natrual ventilation strategy is 

illustrated as Fiure 2-36 in Section 2.4.2. 

 

 (3) Sectional treatments 

The sectional treatment in this subsection is discussed with reference to the 

adoption of segmented atrium and ventilation cavities. Lessons learned from case 

studies of Section 2.2 demonstrate how the sky garden can be used as air intake 

and extraction as applied in the Commerzbank., so that natural ventilation can be 

achieved in the inward facing offices. In the Deutsche Post Tower, however, the 

skygarden is only used as extraction chimney.  The exhaust air is driven by stack 

effect out of the top of the building. On the other hand, the sky garden in both 

cases functions as the buffer zone which regulates the temperatures between the 

exterior and internal spaces. This offers some benefits as presented by the double-

skin facades, which can provide thermal insulation, protection against undesired 

weather condition and high wind speed at high levels. 
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2.4.1 The prototype building 

 

The configuration of the prototype building (the main models) is developed 

according to a current design in Taipei, Taiwan (Fig. 2-33 and Fig. 2-34). Some 

modifications are made to utilize the natural ventilation strategies. The 

architectural feature of the base model is a central atrium with segmentation 

strategy for the preliminarily investigations (as presented in Chapter 4); while a 

combination of an external ventilated facade and a central atrium along with the 

segmentation concept is proposed in the further revised building model (Chapter 

5). The potential generic floor plans for naturally ventilated tall buildings of this 

study are illustrated as (Fig. 2-35 and Fig. 2-36) and corresponding research 

issues are tabulated as Table 1-1.   

 

The prototype building is square in plan and is divided into four portions with 

similar configuration, but with different orientation as illustrated in Figure 2-34a. 

For each portion of the prototype building, an external ventilated facade and a 

central atrium are proposed as Figure 2-34b. The floor areas of individual office 

spaces of the initial design are 400 m
2
 (20m by 20m) and with floor to ceiling 

height of 3 (m). One thing to be noted is that the revised design reduced the floor 

area to a 12 (m) by 12 (m) square plan for modelling cases in Section 5.3 and 5.4.  

 

The cross sectional areas of the atrium are 100 m
2 

and with segments run up the 

height of the proposed building configurations. One air flow inlet (9 m
2
) is located 

in the ground level of the central atrium. The external envelope of the building is 

a ventilated double-skin façade (DSF) with one outlet (10 m
2
) at the top of the 

DSF cavity and vents connected to individual office spaces. The DSF-vents are 

located in the higher-end of the office wall while the atrium-vents are in the 

lower-end of the wall opposite to the DSF-vent side. The initial size of each vent 

is 9 m
2
 (0.5 m by 18 m)

 
in terms of the summer design condition and is fully 

opened throughout the simulation. Only one ventilated DSF envelope is applied in 

the eastern side of the building during the simulations, for simplification. The 
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ventilated DSF system is characterized by the outer and inner double glazing and 

a ventilated cavity in between (1 m depth). The internal walls other than the DSF-

side and atrium-side are assumed to be adiabatic. The other external wall applied 

in the southern side is double-glazed without opening. Detailed construction 

materials used in the simulation are listed as table 3-1.  

 

 

  

                                    (a)                                                                          (b) 

Figure 2-33: The prototype building. a) A current proposed design in Taipei, Taiwan; b) Building 

section 
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a) China Steel Corporation Headquarter,Taiwan 

  

 
b) 

Figure 2-34: a) A design of Taipei; b) The prototype building: simplified base case plan.  
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2.4.2 The proposed building configurations 

According to the above reviews in Section 2.4, it is found that the window to core 

distance of the original deisgn ranges between 8 to 16 m for each quarter portion 

of the whole building plan as shown in Figure 2-34a. Consequently, the present 

plan layout lies between the shallow and deep plan in terms of the definition in 

the BCO guide (2009). Moreover, with regard to the zoning for passive areas, as 

defined in the LT Method, the passive zones of the simplified building plan layout 

for the original design is illustrated as Figure 2-34b. The distribution of the non-

passive zones as shown in the graph suggests the need for further modification of 

the plan depth to encourage natural ventilation throughout the floor. On the other 

hand, though the current design falls short of the definition for receiving natural 

ventilation, it is supposed that a deeper plan depth along with the concept of 

ventilated vertical segments can still enjoy the advantages of shallow plan 

building as addressed above if detailed engineering analysis (e.g. CFD) supports 

the claimed benefits.  

 

To account for the above questioning, the proposed bulding configuration for 

natural ventilation is developed according to a current design in Taipei, Taiwan. 

Some modifications are made to utilize the natural ventilation strategies. The 

architectural feature of the base case model is a combination of an external 

ventilated facade and a central lightwell. For the present plan layout, the prototype 

building is square in plan and is divided into four portions with similar 

configuration, but with different orientation. As learned from the case studies in 

Section 2.2, the vertical circulation element (elevator shaft and staircase cores) 

and service facilities of the Commerzbank and Liberty Tower are pushed to the 

corners or sides of the tower, thus allowing for unobstructed air flow across office 

spaces. Another consideration is that the office partitions and furniture might have 

a direct impact on the performance of natural ventilation within spaces. Detailed 

CFD approach is required for the evaluation of local air flow distribution. As a 

general idea, the functions of core may be gathered into a single core or 

distributed to a number of smaller cores. The position of the core determines the 

usable space of the building.  
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For this particualt study, two potential options of plan layout for natural 

ventilation with reference to the proposed building configuration in second 

modelling stage are illustrated as Figure 2-35 and Figure 2-36. For design option 

1 (Fig. 2-35), the centre core arrangement is adopted. An access corridor is 

provided which divids the centre core into two parts and serves the floor with 

single or possible multiple tenants. However, the centre-core configuration may 

not be the most appropriate design for buildings with smaller typical floor plates, 

buildings with certain site conditions, or buildings with special functions such as 

trading floors. In terms of the implications for natural ventilation in the building 

plan with centre core, the single-sided ventilation strategy may be employed along 

with the tall ventilated cavities in the atrium and the double-skin facades. The 

cross ventilation is less likely to be applied because of the blockage of the 

ventilation path from the central core. The illustration of the potential ventilation 

path of the centre core arrangement is presented as Figure 2-35. One thing to be 

noted is that, the single-sided and cross ventilation on floor-by-floor basis (refer 

to the isolated case in Section 2.4.2-1) are not investigated in the main 

investigations of this study (refer to the ESP-r models in Section 2.4.2-2); while 

the it is evaluated in Chapter 4 by the use of Envelope Flow Model.  

 As for the second potential design option (Fig. 2-36), the core is distributed into 

four smaller cores and is pushed to the four corner of the building layout. The 

centre atrium can then be extended or remains as it is in the centre core 

arrangement. The core can open to the exterior environment and allow for natural 

ventilation. Also, the core can shade the office space from the sun. The usable 

area can usually be organized into one space. Nevertheless, its use is limited on 

large floor plates because travel distances to the fire stairs and elevators do not 

meet code requirements. From the aspect of natural ventialtion, the offset core 

with shallower plan depth may have the potential for cross ventilation; while the 

single-sided ventilation along with the concept of ventilated cavities as applied in 

the centre core may also be employed. Figure 2-36 demonstrates one of this 

ventilation strategy.  
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Figure 2-35: The generic diagram for naturally ventilated floor plan_ Potential design option 1 

 

 
Figure 2-36: The generic diagram for naturally ventilated floor plan_ Potential design option 2 

 

For the base case building configurations (Fig. 2-40a), two defferent plan depths 

for a quarter portion of office are adopted and presented as Figure 2-40b. For one, 
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the floor areas of individual office spaces (quarter portion) are 400 m
2
 (20 m by 

20 m) and with floor to ceiling height of 3 m; while the other is revised to a 

shallower plan with 12 m by 12 m in area. The cross sectional areas of the 

corresponding atrium are 5 m by 20 m (or 12 m) for each quarter portion of 

building plan and with diverse height according to the segmentation proposed. 

The external envelope of the building is a ventilated double-skin façade which is 

characterized by the outer and inner double glazing and a ventilated cavity in 

between (1 m depth). One thing to be noted is that the window to core distance of 

12 m is adopted for the modelling throughout Section 5.3, 5.4 and Chapter 6; 

while the 20 m case is adopted in Section 5.2. It is therefore the criteria for the 

corresponding required flow rates for cooling are varied. The total heat gains 

(defined by watt per square metre) needed to be removed with the ventilation air 

are caclulated by Equation 3-1, for which the required flow rates are derived.     

Furthermore, the floor plate efficiency is evaluated by the ratio of net internal area 

(NIA) to gross internal area (GIA) for a typical floor as defined by the British 

Council for Offices (BCO) in 2009. The suggested ranges for floor plate 

efficiency of typical multi-storey office buildings are presented as Figure 2-37. To 

take the potential design option 1 for example, the GIA for the porposed building 

plan is 1156 m
2
 while with NIA of 726 m

2
, when the core areas of the original 

design and two proposed atrim are applied. Accordingly, the floor plate efficiency 

of 63% is then derived, for which the number of storeys over 40 floors is required 

for achieving the requirement as addressed in the cost model. Generally speaking, 

the distribution of the passive zones as presented in Figure 2-35 and 2-36 

identifies the potential application for conventional single-sided and cross 

ventilation. It is supposed that a deeper plan depth along with the concept of 

ventilated vertical segments can be applied so as to improve the overall  floor 

plate efficiency. Nevertheless, the advantages of shallow plan building to the this 

building typology can only be applied if detailed engineering analysis supports 

the claimed benefits.  
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Figure 2-37: Ranges of floor plate efficiency of typical multi-storey office buildings (BCO, 2009) 

 

 

In the current study, the segmentation is proposed within the atrium and double-

skin-facades. To comply with the proposed square building geometry, the open 

atria solution is selected for current study, because they can be used to assist the 

operation of mixed mode and natural ventilation solutions in shallow plan. 

Furthermore, the floor plate efficiency can be improved and more creative space 

planning options are available by the employment of building shapes based on 

atria. Atria can also provide the opportunity to create a social hub for occupant 

interaction.  

Additionally, the concept of ventilated cavity is adopted in present study in the 

double-skin facades for the additional benefit of providing a climatic buffer zone 

between internal environmentally controlled space and external environment. In 

the Deutsche Post Tower, the double-skin facades are segmented for every nine 

floors through the use of horizontal divisions at the level of skygardens. The 

segmentation can then prevent the temperature differences from acting over the 

full height of the building. Consequently, the potential risks associated with the 

greater magnutudes of pressure difference in the bottom and top floors can be 

avoided. The sectional treatment for the proposed generic design is illustrated as 

Figure 2-38. The segmentation concept is adopted in both the cnetral atrium and 

ventilated facades of building envelope (Fig. 2-38a). 
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Furthermore, the concept of ‗wind floor‘ as introduced in the Liberty Tower of 

Meiji University is adopted for the proposed building configuration. The viable 

height of building segmentation for achieving the desired ventilation performance 

are discussed in Section 5.3. The second generic building configuration is 

proposed along with the adoption of ‗open wind floor‘ as presented in Figure 2-

38b, which also demonstrate an alternative for the segmentation concept in tall 

ventilated cavities in correspond to the jurisdiction of fire safety issues in Taiwan.  

 

This study is divided into two parts of investigations, namely the preliminary and 

the main investigation. Different modelling tools are used for different parts of 

investigation due to the research questions at hand as well as the complexty of the 

test models of the later investigation stage (the main investigation). In the 

preliminary investigations of this study, the single-cell envelope flow model is 

adopted for testing the ventilation performance of three basic configurations of 

tall office buildings. The effect of cross ventilation and building segmentation is 

identified accordingly. The building configurations are further revised to more 

complicated model with ventilated facades in the main investigations. This system 

is proposed to benefit from the tall ventilated cavities (the central atrium and 

double-skin facades) as well as the indirect cross ventilation through the occupied 

spaces. The building configurations being adopted for each part of investigation 

are described in detail in Section 2.4.2-1 and Section 2.4.2-2 respectively. 

 

 

(a) 
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                                  (b)                                                                     (c) 

Figure 2-38: The generic diagram of the plan and sectional treatment for naturally ventilated tall 

office buildings. (a) The building plan, (b) The base case, (c) Lifted case 
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2.4.2-1 The preliminary investigations: Single-cell building configuration  

 

In this study, the preliminary investigations are undertaken using the single-cell 

envelope flow model. Detailed background information for the modelling tool is 

described in Section 3.3.1. Three types of conventional naturally ventilated tall 

office building design, namely isolated, non-segmented and segmented, are 

defined for this part of investigations. The synoptic diagrams are illustrated as 

Figure 2-39.  

    
                                  (a)                                 (b)                                   (c) 

Figure 2-39: The single-cell models: (a) Isolated spaces, (b) Non-segmented and (c) segmented 

atrium buildings (Etheridge and Ford, 2008) 

 

For the single-cell model, spaces for which have relatively large openings 

between them can be considered as connected in the sense that there is negligible 

pressure difference between them. Consequently, when the spaces in a building 

are connected by large internal openings, they effectively form a single-cell, with 
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the flow through any opening dependent on the flow through the other openings. 

Such spaces are relatively common in naturally ventilated buildings, partly 

because of the desire to minimize internal resistance to flow and partly to enhance 

internal mixing. Figures 2-39(b) and 2-39(c) demonstrate one such strategy, based 

on the use of a tall atrium. The atrium is used to generate inward flow of fresh air 

into all of the occupied floors. However, this approach will cause problems to 

openings of lower floors in tall buildings due to the high pressure differences 

generated by buoyancy. In the preliminary investigations, the single-cell model is 

adopted for evaluating the ventilation performance over a range of specific 

ambient conditions. The effect of cross ventilation and building segmentation to 

the proposed building configurations (Fig. 2-39) is evaluated. The monthly 

average weather data over occupied hours is used to estimate the monthly 

averages of flow rates and temperatures. Time-averaged conditions are chosen to 

compare the suitability of the configurations for natural ventilation.  

 

2.4.2-2 The main investigations: Multi-cell building configuration 

 

The multi-cell model is one in which a building is represented by a series of zones 

or cells interconnected by flow paths. Flow equations are applied that relate the 

pressure difference acting across each flow path through openings. This is not 

only in the sense that partitions can increase the resistance to flow through the 

building, but also in the sense that they allow temperature differences between 

rooms to be defined. The equations that are solved and the assumptions that are 

made are in most respects the same as for single-cell EFM models (CIBSE AM10, 

2005). The building configurations being adopted in the main investigation are 

illustrated as Figure 2-40 and 2-41. In the main investigations with the multi-cell 

building configuration, the explicit method of EFM is adopted to size the external 

openings; while the dynamic thermal simulation with an air flow network (AFN) 

further divides the whole building into zones or cells, where the internal openings 

are then assigned a value equal to the external openings. For the proposed base 
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case models of the main investigations, the office spaces (cells) have one node in 

each; while the atrium and ventilated façade segments are divided into 5 zones. A 

detailed diagram showing the nodes used is presented as Figure 2-40c.  

 

 

a) Development of prototype building 

 

 

 b) Portion of the base case models: Ddeep plan(left)&Shallow plan (right) 
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c) 

Figure 2-40: The base case models of main investigations. a) The development of prototype 

building, b) Plan, c) Section and proposed ventilation strategy       

 

 

Further ventilation strategy, namely the ‗open wind floor‘, is evaluated in the 

main investigations as well. The difference of the base case and refined building 

configuration design is illustrated as Figure 2-41. The ‗open wind floor‘ can be 

regarded as an open ground floor in the bottom segment (lifted case) or a way for 

segmentation in the middle segments of a building. An open ground floor with 

different sizes of air intakes are shown as Figure 2-42. For the case with two-

sided air intake (Fig. 2-42c), namely in the south and the east, of the lifted case is 

revised from the base case building configuration of the main investigations. The 
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architectural features of a segmented atrium and ventilated double-skin facades 

remained, but with an open floor in the lowest level of each segment. The 

dimension of floor plan is reduced to 12 (m) by 12 (m) for better practice of cross 

ventilation across floor plan.  

 

  

                                       (a)                                                                    (b) 

Figure 2-41: The proposed building sections. (a) The base case; (b) The refined case 

 

     

       

                   (a)                                                 (b)                                                  (c) 

Figure 2-42: The air intake scenario of the lifted case. (a) Single, (b) 2 sides, (3) 4 sides 
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2.5 Summary 

This Chapter starts with overviews of naturally ventilated tall office buildings 

design in Section 2.1. The concerns for applicability of natural ventilation in tall 

office buildings are raised. Section 2.2 then continues with case studies of 

naturally ventilated tall buildings design worldwide. The design issues and 

ventilation strategies adopted in the real-world applications are reviewed. Their 

corresponding performances in terms of energy consumption are addressed as 

well. The issues of naturally ventilated tall office buildings design in the climatic 

context of Taiwan are raised in Section 2.3. The problems and limitations of 

natural ventilation design in tall office buildings of Taiwan are discussed. The 

proposed naturally ventilated building configurations for this study are 

determined for the corresponding modelling stage in Section 2.4. The assumptions 

and boundary conditions for the specific modelling tools are defined accordingly. 

The five case studies addressed the passive cooling strategies adopted and their 

corresponding mechanical back-up in detail. However, sufficient technical 

references to demonstrate their claimed benefits in terms of thermal comfort are 

limited. Though those design is framed in the context of energy efficient, their 

viability for providing satisfactory daily delight to the end-users are still in doubt. 

It is supposed that the sensation and expectation for comfort ventilation should 

also take the cultural and geographical factors into consideration. Nevertheless, 

this issue is rarely addressed in these case studies as far as known.  

In addition, although natural ventilation is considered as a global interest, but its 

detailed design issues are still specific to certain group of people in Taiwan at the 

moment. Maybe the regulatory authorities of Taiwan should be a more active 

partner in exploring the incentives of natural ventilation in building design (tall 

office buildings for this research in particular). The research outcomes can then be 

enjoyed by a broader audience. It is also supposed that the proposed design 

approach and procedure for naturally ventilated tall office buildings may be fed 

back on regulation levels in the near future. 
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3. Methodology 

3.1 Chapter overview 

This Chapter focuses on the methodology being adopted for this particular study. 

A method overview and recent applications of ventilation performance prediction 

for buildings are reviewed in Section 3.2. The Phases involve in the natural 

ventilation design of tall buildings are outlined in Section 3.3. For which the 

descriptions of three modelling stages within design phase 2 and 3 (design 

development and performance evaluation) and the corresponding theoretical 

background of tools being adopted are presented in Section 3.4. For this particular 

study, the overall aim is to ensure that the proposed tall building configurations 

can deliver acceptable comfort environment for the occupant through natural 

ventilation alone. That is, the approach for overall assessment of comfort 

ventilation is raised in Section 3.5. The manner in which individual methods feed 

into the subsequent chapters is described as follows.  

The overall design procedure for a naturally ventilated tall office of this particular 

study is presented as Figure 3-1, which include four design phases and with three 

different modelling stages in between. More specifically, the proposed design 

procedure is applied in the proposed main building configurations as stated in 

Section 2.4.2-2. The detailed results and discussion are presented in Chapter 5. 

The preliminary investigations of this study, however, is conducted by the 

implicit method of the envelope floe model (EFM) only; although the explicit 

method of EFM is adopted for sizing the envelope openings for both the 

preliminary (refer to Chapter 4 for more detailed result discussions) and main 

investigations. The CFD approach being adopted for this study aims to provide 

higher resolution of local performance (either temperature or air flow speed) of 

indoor spaces. The CFD results are then feedback to the Building Bioclimatic 

Charts for the assessment of thermal comfort. The overall ventilation performance 

of the proposed main building configurations is presented in Section 6.4.  
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Figure 3-1: The proposed generic design procedure for naturally ventilated tall office buildings 
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3.2 A method overview and recent applications of ventilation 

performance prediction for buildings 

 

There are a range of design tools available for natural ventilation design. The 

design process is progressive and iterative, different tools being more suited to 

different stages in the development of the design. Among them, envelope flow 

models are the simplest tool and are recommended for the initial sizing of 

openings at the chosen design conditions. Envelope flow models solve the 

equations that govern the flow of air through openings in the envelope of a 

building. They rely on assumptions about the internal density (temperature) 

distribution. The basic equations for a single-cell can be illustrated by considering 

an opening in the envelope. Multi-cell envelope flow models are the general case 

of single-cell envelope flow models. They include the effect of the internal 

partitions, not only in the sense that partitions can increase the resistance to flow 

through the building, but also in the sense that they allow temperature differences 

between rooms to be defined. The equations that are solved and the assumptions 

that are made are in most respects the same as for single-cell models. In this 

research, the single-cell envelope flow model is chosen as the design tool at the 

first modelling stage for sizing the openings (explicit method of EFM); while the 

implicit method of EFM is only adopted to evaluate the off-design condition of 

the preliminary building configuration, for which the detailed results are 

presented in Chapter 4. 

Chen (2009) and Chen et al. (2010) reviewed the tools for ventilation 

performance prediction in buildings. The model assessment was done in terms of 

capability and time cost. It was suggested that a multi-zone airflow network 

model was much preferred for giving the required information at a reasonable cost 

with reference to ventilation performance prediction in a moderately- or large-

sized building. He suggested that the experimental measurements with small scale 

and large-scale mock-ups would not be realistic in terms of their costs. The 

analytical and empirical models would not produce useful information for 
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ventilation performance analysis as well. A CFD model, however, would need 

more computing time for such a building, which made the CFD model not 

attractive as a tool in the initial stage of design development. They then concluded 

that the multi-zone models might be the best choice for a whole building. In this 

research, the dynamic thermal simulation (multi-zone) with an airflow network is 

proposed for the second stage of modelling. The main building configurations as 

proposed in Section 2.4.2 are adopted for the evaluation of ventilation 

performance of a whole building. The results and discussions are presented in 

Chapter 5. 

Nevertheless, the multi-zone models can only provide average characteristics of 

airflows due to the various assumptions used. The CFD models, however, provide 

the most detailed information about the performance of ventilation systems in a 

zone, and are the most accurate approach of the numerical models, but they are 

sophisticated and require very dedicated training of a user. Although it could be 

possible to apply the CFD models to a whole building, the computing time would 

be too long for initial stage of design development. Since the CFD models use 

approximations, it would be essential to validate the models. A validated CFD 

model would be a powerful tool for conducting a parametric study or for 

optimizing the design of ventilation systems in buildings. Chen (2010) then 

concluded that no universal model was available for predicting ventilation 

performance. Selection of an appropriate model would depend on the problem 

studied during different design stages. 

As Chen et al. (2010) suggested, CFD would continue to be a research tool for 

predicting ventilation performance in buildings in the foreseeable future. It is 

consequently that the CFD models should be more reliable and faster. Reliability 

as described by Chen (2009) is a major issue at present since the validation by 

experimental data requires a lot of effort regardless the data are obtained by the 

CFD modellers or from the literature. The CFD speed will continue to improve as 

computers are becoming faster. At the mean time, the demand on computing time 

will increase not only because of the need for more sophisticated CFD models to 
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model the more complicated ventilation problems, but also because more grid 

cells are adopted in the proposed ventilation problem. Now the question is to what 

extend that the CFD approach can help with the proposed design procedure of 

naturally ventilated tall office buildings for predicting ventilation performance in 

this particular study. This study aims to identify how tall buildings can deliver 

acceptable internal condition through natural ventilation alone. CFD is used to 

help evaluate the thermal comfort issues and the corresponding results are 

presented in Chapter 6. The proposed design procedure of the naturally ventilated 

tall office buildings for this particular study is derived from the overall research 

objectives as suggested in Table 1-1. A diagram to illustrate the design flow chart 

and issues being investigated for this study is presented as Figure 3-1. The three 

modelling stages involved in this study are described as follows.  

For the first modelling stage, the explicit method of the envelope flow model is 

adopted to size the envelope openings. It is then suggested that the year-round 

feasibility with reference to the resultant air flow rates of the occupied space can 

be obtained by the use of dynamic thermal simulation with an air flow network in 

the second modelling stage. The statistical analysis is conducted to look at the 

probability of potential scenario, especially for the time when the design goal 

cannot be achieved. The local ventilation performance under the fixed boundary 

conditions (derived from second modelling stage in ESP-r) is then identified by 

the detailed full CFD simulation in the third modelling stage.  

To be more specific for the three modelling stages, an explicit method of the 

envelope flow model approach is used to size the ventilation openings of the 

proposed main building configurations. The steady-state bulk flows through 

openings can then be evaluated under a specified design condition using the 

implicit method. The potential periods of time where the design condition cannot 

be met are addressed accordingly. One thing to be noted is that only the 

preliminary building configurations (Fig. 2-39) are evaluated using the implicit 

method of EFM.  Further modelling tool, the dynamic thermal simulation with an 

air flow network, is adopted in the second modelling stage for the main building 
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configurations (Fig. 2-40). The aim is to obtain more detailed information on the 

ventilation bulk flow of a more complicate model and its potential cooling effects 

for the corresponding thermal domain. The hourly variation of bulk flow and air 

flow direction through openings can then be found. The influence of revised 

building configuration (with ventilated double facades and open wind floors) are 

examined by the same modelling approach as well.  

However, the envelope flow model and the thermally conflated mass flow 

network approaches assume that the air in a room is well mixed, which implies 

uniform distributions of air temperature and air flow patterns. For small rooms, 

such as small offices, hotel rooms, and bedrooms, such an assumption is often 

acceptable. For large spaces, like buildings with tall atriums and open working 

spaces as proposed in this study, the complete mixing assumption may not be 

valid. For further quality assurance of the natural ventilation system, the local 

ventilation performance should be considered. The CFD approach is then adopted 

in the third modelling stage for more detailed air temperature and air flow speed 

distributions. Finally, the calculated results, namely the temperature, relative 

humidity and indoor wind velocity, are plotted in the Building Bioclimatic Charts 

(BBCCs) for comfort ventilation assessment. The refinement of design, i.e. 

vertical segments and wind floor, is then developed for next run of performance 

evaluation, when the calculated ventilation performance is not satisfactory.  

The novelty of this work lies not in the methods used (which uses available 

models), but in the evaluation of segmented and non-segmented tall buildings. 

The air flow patterns (and temperatures) observed with the proposed building 

configurations are compared, for otherwise identical conditions. Potential 

conditions where the design goals (thermal comfort) may not be ensured are 

identified. The overall ventilation performance is evaluated in terms of the 

required flow rates and flow patterns for cooling.  

 



- 95 - 

 

3.3 Plan for natural ventilation design of tall office buildings 

 

The key phases for the natural ventilation design of tall office buildings of this 

study are outlined as following sub-sections. 

  

 

(1) Design phase one: The conceptual design 

This study firstly starts with planning sketch and notes. The main concerns for 

this stage include the building configuration and ventilation strategies. The natural 

ventilation principle of buoyancy and wind are adopted separately or in 

combination in this study. However, the wind alone case is not discussed because 

of the stack effect in tall buildings is a natural phenomenon and cannot be avoided 

except for the isolated case with limited buoyancy effect. Due to the potential 

magnitudes of wind and buoyancy forces in tall buildings, the design challenges 

are much greater. Etheridge and Ford (2008) proposed that segmentation might 

offer the least risky approach for envelope design of non-residential tall buildings. 

For the preliminary investigations, the building configurations of the isolated 

floor and atrium type buildings are evaluated by the use of single-cell envelope 

flow model. The atrium type buildings are further divided into segmented and 

non-segmented cases as shown in Figure 2-39 (b) and (c). The steady-state bulk 

flows through openings are investigated under a specified design condition. 

Detailed results and discussions are presented in Section 4.3. The building 

configurations are revised further to accommodate the concept of segmentation 

along with ventilated cavities (double-skin facades and tall atrium), which is 

expected to provide more encouraging results for natural ventilation in tall 

buildings. Detailed descriptions on the building configurations adopted for this 

research are presented in Section 2.4.2.  
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(2) Design phase two: Design development  

This study aims to investigate the effect of air flow rates for ventilated cooling, 

where the air movement may also be helpful in improving people‘s sensation for 

thermal comfort. Detailed envelope design in this design phase focuses on sizing 

the openings. The air flow rates required will depend on the ventilation purpose. 

For cooling purposes, the incoming air should be at a lower temperature than the 

indoor air temperature for removing the internal heat gains. The minimum 

required flow rates for cooling purpose can be calculated from Equation (3-1) 

which is used as the input for evaluating the initial opening size in the explicit 

method of the envelope flow model approach. Detailed investigations of initial 

opening size are presented in Section 4.2. 

TC

H
Q

P



                                                                                                    (3-1) 

where H is the rate of internal heat gains (W), ρ is air density (kg/m
3
), CP is 

specific heat of air (J/kgK), Q is ventilation rate (m
3
/s) and ΔT is temperature 

difference between indoors and outdoors (K). 

 

 

(3) Design phase three: Performance evaluation  

For the preliminary investigations of this study, the envelope flow model is 

adopted for evaluating the off-design conditions of the single-cell tall office 

building configurations (Fig. 2-39). Envelope flow models rely on assumptions 

about the internal density distribution. The basic equations can be illustrated by 

considering an opening in the envelope (CIBSE AM10, 2005). In the approach of 

envelope flow model, basic ventilation strategies and flow pattern are decided. 

The initial design calculation, explicit method, is adopted for determining the 

sizes of openings needed to give the required flow rates. The maximum and 
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minimum sizes of openings for maintaining control over a specific condition can 

be decided as well (refer to Section 4.2). More detailed investigation on fresh air 

flow rate can then be obtained by the implicit method which is useful for looking 

at off-design conditions as presented in Section 4.3.  

For the main investigations with a more complicate building configuration (Fig. 

2-40), the investigations are extended to include dynamic thermal modelling with 

an air flow network (AFN), since the buildings can no longer be described by a 

single-cell model. Dynamic thermal modelling is used, because of the particular 

importance of the thermal behaviour of the DSF. The dynamic thermal simulation 

program with an air flow network model, ESP-r (ESRU, 2002), is used in the 

second modelling stage to provide an overall evaluation of ventilated cooling 

potential and to give details on ventilation rates and general air flow patterns with 

the proposed building configurations. Following that, CFD approach is chosen for 

looking at internal air flow speed distribution in the third modelling stage. The 

selection of comfort boundary under different wind speed condition can then be 

determined. Potential local discomfort would be identified by plotting the 

temperature and relative humidity in the building bioclimatic charts (BBCCs) 

within different comfort boundaries (to be determined from the CFD simulation). 

 

(4) Design phase four: Design optimization  

The design optimization of this study is undertaken with reference to the 

parametric study in Chapter 7. The generic building configurations for naturally 

ventilated tall office building are developed according to the simulation results 

derived from Chapter 4, 5, and 6. The suggestions on satisfactory comfort 

environment for occupants from the ventilation design point of view are 

summarized in Section 7.5. 
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3.4 Tools for natural ventilation assessment of this study 

 

Different approaches (tools) are applied in the three modelling stages of this study. 

Detailed theoretical background for the tools being adopted in the three modelling 

stages are described as following subsections. 

3.4.1 The envelope flow model 

3.4.1-1 Method overview 

 

For the first modelling stage, it is assumed that the internal heat gains are 

balanced by the heat removed with the ventilation air. The minimum required 

flow rates for cooling under specific weather condition can be calculated using 

Equation 3-1. The required opening sizes would then be calculated by the explicit 

method of solution of the envelope flow model (EFM) approach as described in 

CIBSE AM10 (2005).  

For the explicit method, it is assumed that the openings have discharge 

coefficients that are independent of flow rate (Reynolds number). This is 

consistent with the fact that the explicit method is used to determine the sizes of 

purpose-provided openings for given flow rates. The implicit method determines 

the flow rates for given openings by an iterative procedure. This method is 

implemented in MS Excel with a very simple iterative procedure. Initially the user 

enters the values of opening height (z), opening area (A) and wind pressure 

coefficient (Cp) for each opening. The values of A are obtained from the explicit 

calculation. Thereafter, the wind velocity (U) and outdoor temperature (TE) are 

assigned according to the weather data. Once the acceptable peak temperature rise 

of 3.3˚C has been decided, the flow rates required can then be calculated.  The 

flow equations are comprised as Equation 3-2 to 3-4).  

 

0 iq                                                                                                      (3-2)   
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The monthly averaged conditions are chosen for the single-cell envelope flow 

model (EFM) to evaluate the preliminary climate suitability. Consequently, the 

monthly average weather data is used to examine the natural ventilation 

performance under the steady state condition. For natural ventilation design, it is 

important to ensure that the system delivers the required quantity of air to the 

right places, at the right time.  For the current study, however, the effect of 

segmentation is of interest. To use the averaged value is a compromise, but a 

simple and meaningful basis for comparison has to be chosen.         

 

3.4.1-2 Assumptions and limitations 

The main assumptions in the envelope flow model as suggested by Etheridge 

(2002) are described as follows.  

(1) Wind pressure coefficient and reference wind speed for determining surface 

pressure distributions; 

The wind pressure coefficient Cp is influenced by a wide range of parameters, 

including building geometry, facade detailing, position on the facade, the degree 

of exposure/sheltering, wind speed and wind direction. As it is practically 

impossible to take into account the full complexity of pressure coefficient 

variation, this study utilizes correlations based on wind tunnel experiments 

(Bowen, 1976) for low-rise buildings which are summarized in the AIVC 

Technical Report (1996). It is assumed that pressure coefficients do not vary over 

the external surface of a wall and the internal temperature is uniform, resulting in 

a constant internal surface pressure gradient.  
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(2) Internal and external temperatures for determining internal surface pressure 

gradients due to buoyancy; 

The external temperature is according to the mean monthly temperature from 

Central Weather Bureau of Taiwan. The internal temperature is set at 28 °C, the 

acceptable upper boundary for thermal comfort of the hot and humid climates 

according to literature reviews as addressed previously. These two values are 

adopted in the envelope flow model for acquiring the initial opening sizes and 

required fresh air flow rates in the explicit and implicit method respectively.  

(3) Distribution of openings in the surfaces;  

In the envelope flow model, the distribution of openings is specified by the user in 

terms of the heights of openings. The height is calculated from the ground level to 

the central of specific opening.  

(4) Geometry (size and shape) of the openings; 

The initial size of the opening can be obtained from the explicit method of the 

envelope flow model. The mean external temperature and reference wind velocity 

(Uref) of summer, winter and mid-seasons are used in the explicit method. The 

calculated opening size from the explicit method is used as input to the implicit 

approach for modelling off-design conditions.  
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3.4.2 The integrated building simulation program: ESP-r 

3.4.2-1 Method overview 

The dynamic thermal simulation program with an air flow network model, ESP-r 

(ESRU, 2002), is used to provide overall evaluation of ventilated cooling 

potential and to give details on ventilation rates and general air flow patterns with 

the proposed building configurations. It is a finite volume method in which the 

model is transformed into a matrix of state-space equations and the flows of 

energy in the problem enclosure, plant components and mass flow network are 

solved. 

As described by Beausoleil-Morrison (2000), a building‘s thermal state affects air 

flow in two ways. Firstly, stack pressures caused by indoor-outdoor and inter-

zone temperature differences create buoyancy forces, which can significantly 

affect envelope and internal air flows. Secondly, windows may be opened and 

closed and fans may be operated in response to temperatures within the building.  

However, these are not taken into account in this work. The openings are fully 

opened and naturally ventilated at all time for the proposed modelling. Similarly, 

the building‘s thermal state is affected by external and inter-zone air flows. 

Consequently, a realistic treatment of this interdependency demands a coupling of 

the thermal and air flow modelling domains.   

Beausoleil-Morrison (2000) concluded that four principle steps are involved in the 

modelling process of ESP-r. First, the building is discretized into smaller volumes 

(usually zones) by nodes. Second, components are defined to represent leakage 

paths, and pressure drops associated with doors, windows, supply grills, ducts, 

fans, etc. Third, the nodes are linked together through components to form 

connections which establish a flow network. Lastly, a mass balance is expressed 

for each node in the building. The resulting system of equations is solved to yield 

the nodal pressures and the flows through the connections.  
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3.4.2-2 Modelling conditions and assumptions 

In this study, the prototype building is developed according to a current design in 

Taipei, Taiwan as described in Section 2.4.1. The main investigations are 

undertaken by the use of dynamic thermal simulation with an air flow network 

(ESP-r) in the second modelling stage; while the required envelop opening sizes 

are defined in the first modelling stage using the envelope flow model. The mass 

and energy flow of the main building configuration is illustrated as Figure 3-2. 

For the main building configurations as proposed in Section 2.4.2, the internal 

openings are then assigned a value same as the external (envelope) openings. That 

is, one air flow inlet (9 m
2
) is located in the ground level of the central atrium. 

The external envelope of the building is a ventilated double-skin façade (DSF) 

with one outlet (10 m
2
) at the top of the DSF cavity and vents connected to 

individual office spaces. The DSF-vents are located in the higher-end of the office 

wall while the atrium-vents are in the lower-end of the wall opposite to the DSF-

vent side. The initial size of each vent is 9 m
2
 (0.5 m by 18 m)

 
in terms of the 

summer design condition and is kept constant throughout the simulation.  

Only one ventilated DSF envelope was applied in the eastern side of the building 

during the simulations, for simplification. The ventilated DSF system is 

characterized by the outer and inner double glazing and a ventilated cavity in 

between (1 m depth). The internal walls, other than the DSF-side and atrium-side, 

are assumed to be adiabatic. The other external wall applied in the southern side is 

double-glazed without openings. Detailed construction materials used in the 

simulation are listed as Table 3-1. The office hours run from 7:30 to 18:30, 5 days 

a week. A total internal heat production of 30 (W per m
2 

floor area) is used during 

office hours. The external inlet (9 m
2
), internal vents (9 m

2
) and top outlet (10 m

2
) 

are fully opened at all times. The Typical Meteorology Year of Taipei from US 

DoE is used as the climatic boundary condition in all simulations.  
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One thing to be noted was that a shading control, blinds within the DSF cavity, 

was imposed throughout the simulation when solar radiation exceeds 270 W/m
2
. 

For the current study, the shading control within ESP-r is activated via a third 

party application, Window 5.2 (in North America). Optical properties are angular 

dependant (5 angles) and include overall solar band transmission at 5 angles. The 

shading and insulation module within ESP-r consult the model configuration file 

for zone geometry and shading construction. It then generates a file of temporal 

shading and insulation data to be used in the simulation. The shading data is used 

by the calculation engines to determine how much of radiation arriving at the 

outer surface is absorbed in each layer of the transparent construction at each time 

step, and how much is transmitted into the room. Separate calculations for 

shading tell the simulator whether it is necessary to modify the solar radiation 

arriving at surfaces of a building façade. 

ESP-r‘s flow network solver dynamically calculates the pressure-driven flows 

between zones and cells. The flows at nodes are a function of nodal pressures and 

the connected components‘ characteristics. The boundary wind induced node in 

ESP-r is a function of wind velocity, wind direction and wind pressure coefficient 

(Cp). In the proposed building configuration, only the lower atrium inlet and 

outlet at the top of ventilated facades are directly interactive with the ambient 

environment, where the Cp values should be defined. The natural ventilation 

within office spaces is achieved by indirect cross ventilation. That is, an internal 

unknown pressure node is defined for each internal opening connecting between 

zones. Detailed descriptions on the node types are listed as Table 3-2.  One thing 

to be noted is that the external wind velocity from the weather data of Taipei, 

Taiwan is modified to 0 (m/s) for modelling the buoyancy alone ventilation in the 

ESP-r program. For the second stage, the monthly time-averaged values of flow 

rates and temperature were derived from the calculated hourly results over the 

occupied hours of a specific month. The effect of segmentation was investigated 

by comparing the averages under identical ambient conditions. In addition, the 

times with insufficient air flow rates and undesired air flow pattern were 

quantified. 



- 104 - 

 

 

Figure 3-2: The mass and energy flow of the main building configuration. 

 

Table 3-1: Construction details 

Construction type Thick (mm) U values Boundary  condition 

Internal wall 162 1.731 surface in another zone* 

DSF-glazing-external 24 2.811 similar to current**  

DSF-glazing-internal 24 2.811 surface in another zone 

Roof 111 0.427 Exterior*** 

Floor 300 2.825 surface in another zone 

Ground floor 625 0.864 ground 

* ESP-r can automatically link adjacent surfaces based on the information available in zone 

geometry files. ‗Surface in other zone‘ is the surface exposed to the temperature and radiation 

condition of a specified surface in a other zone (but one time step in arrears). 

** The ‗similar to current‘ boundary is exposed to the same conditions as the inside face except 

for the treatment of solar insulation. A temperature (˚C) and radiation (W/m
2
) offset may be 

imposed. 

*** ‗Exterior‘ is the surface exposed to external weather. 

 

Noted: Ground (monthly profile) - exposed to a temperature defined by a standard monthly 

temperature profile embedded in ESP-r. 

 

Table 3-2: AFN Nodes of the 20 storey case 

Node  No. of nodes Node type & pressure 

Inlet  1 Boundary: wind induced 

Outlet 1 Boundary: wind induced 

Office  20 Internal unknown* 

Vent (in/out)  20/20 Internal unknown*  

Atrium  4 Internal unknown*  

DSF  4 Internal unknown*  

* For the internal unknown nodes, the temperature and pressure are unknown and are solved at 

each time step.  
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3.4.3 Computational Fluid Dynamics 

3.4.3-1 The use of CFD for natural ventilation assessment  

Due to the increased interest in using natural ventilation to reduce energy 

demands and to improve indoor air quality, the application of computational fluid 

dynamics (CFD) models for natural ventilation design are popular at present 

(Chen, 2007). The advantages of CFD are its capacity to calculate parameters 

which are not easily being measured. The numerical procedures for the solutions 

of partial differential equations can be used to describe the physical parameters of 

buildings such as temperature, airflow velocity, and humidity, etc. Even though 

CFD has been applied to ventilation studies for over thirty years, engineers are 

still seeking more accurate, more reliable, and faster CFD models (Chen, 2009) 

Simulation methods for natural ventilation fall into two broad categories: building 

energy simulation (BES) and computational fluid dynamics (CFD). BES tools 

include modules of thermal simulation and airflow network to solve the heat and 

mass transfer and airflow in the building systems. However, BES assumes the 

indoor air is well mixed. It can only provide the uniform results for targeted 

spaces, which does not meet the requirements for detailed indoor environment 

analyses. That is, the coupling strategies for natural ventilation between BES and 

CFD are highlighted. Previous studies (Beausoleil-Morrison, 2000; Clovis, 2001; 

Zhai et al., 2002; Zhai and Chen, 2003; Djunaedy et al., 2004; Djunaedy et al., 

2005; Wang and Wong, 2008; Wang and Wong, 2009) suggested that the 

integration of CFD was motivated by quite a few factors and they were 

summarized by the ESP-r developing group in the ESRU as follows:   

• The thermal and network air flow simulation domains can supply CFD with 

realistic and time-varying boundary conditions, thus improving CFD‘s ability to 

calculate room air flow and heat transfer. 

• The thermal and network air flow domains can drop the well-mixed assumption 

by using CFD to predict the details of flow and temperature fields within zones. 

• CFD can predict internal surface convection in response to local flow patterns. 
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Inspired by previous studies (Holmes et al 1990, Chen et al 1995, Moser et al 

1995, Negrão 1995, Schild 1997), Beausoleil-Morrison (2000) continued the 

development of CFD coupling within ESP-r which gave some intelligence to the 

coupled mechanism. In his study, the CFD model was integrated with the thermal 

and network air flow models within a single executable module but used its own 

customized solver. That CFD model exchanges information with the thermal and 

network air flow domains on a time-step basis. The general concept is that a 

thermal and a network air flow (optionally) representation of the whole building is 

established, while a CFD model is created for a single room. For each time-step, 

the boundary conditions for the CFD model are established by the thermal or 

network air flow domains. At the mean time, the CFD domain passes its results 

back to the thermal or network air flow domains once converged. Those data are 

used to calculate the surface temperatures, energy flows, and air flows throughout 

the thermal domain of the building. 

Although Beausoleil-Morrison gave some indicators on which method should be 

used for a certain type of flow, and suggested a decision mechanism to be 

implemented in ESP-r, he didn‘t test the stability and convergence of each method 

he suggested. Djunaedy (2004) further proposed a procedure to select an 

appropriate approach for airflow simulation in buildings. Inter-model comparison 

and empirical results from previous studies are adapted as methodology for 

validation. His study claimed that there were at least three approaches 

representing different resolution level in airflow simulation: 

I. Building energy balance models (BES) that basically rely on guessed or 

estimated values of airflow. 

II. Zonal airflow network (AFN) models that are based on (macroscopic) 

zone mass balance and inter-zone flow-pressure relationships; typically for 

a whole building. 
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III. Computational fluid dynamics (CFD) that is based on energy, mass and 

momentum conservation in all (macroscopic) cells that make up the flow 

domain; typically a single building zone. 

 

Djunaedy et al. (2004) concluded that each approach had its own merits and 

drawbacks. For this particular study, designers may need all of the above 

approaches, but at different stages of the design process. A higher resolution (and 

more complex) approach may not be able to provide answers for the design issues 

that may be answered by a lower resolution (less complex) approach. Djunaedy et 

al. (2005) classified the performance indicators (PI) into three categories: energy 

related, load related and comfort related. Each of these categories will be used for 

different kinds of decisions in the building design process. These indicators are 

used as the basis for the selection of the most appropriate approach to simulate the 

problem at hand. Wang and Wong (2008) adapted static coupling strategy for 

wind-driven natural ventilation. Commercial software FLUENT is used as the 

external CFD program to couple with ESP-r. Detailed thermal comfort prediction 

model for indoor environment is finally provided for evaluation in the data 

interface.  

The ventilation performance assessment of this study focuses mainly on the 

desired flow pattern and required flow rates for cooling in tall office buildings. 

The aim is to examine the physical phenomena of air flow within different 

building configurations under the naturally available driving forces. For large 

spaces, like buildings with tall atriums of this study, the complete mixing 

assumption may not be acceptable. One would need the distributions of air 

temperature, air speed, and air flow pattern to assess local ventilation performance. 

The tools for ventilation assessment as described in Chapter 3.3.1 and 3.3.2 

provide the initial insight for natural ventilation performance of tall office 

buildings. However, only the bulk flow through the building envelope was 

addressed. For further quality assurance of the natural ventilation system, the 

local air flow distribution should be considered by the use of CFD approach. 
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3.4.3-2 The CFD approach adopted for current study 

The routes for CFD approach adopted for this study are listed as Table 3-3. The 

options available and proposed modelling procedures for the current study are 

outlined. Two different CFD approaches are selected, namely the thermally 

coupled CFD approach and the stand-alone CFD using the commercial program 

FLUENT. The purpose and the capability of each CFD approach are described as 

follows. In the thermally coupled CFD approach of ESP-r, the CFD model can be 

integrated within the thermal domain (zone basis). One zone is chosen to be 

modelled by CFD and the remaining of the building is simulated by the 

conventional approach (dynamic thermal simulation with an air flow network). 

The integration is optional and a CFD flag is placed in the zone operation file. 

Data on coupling type, geometry, gridding, solution variables, boundary 

conditions, solver parameters, output files etc. are required for the CFD model in 

ESP-r. In this study, two types of coupling are taken into consideration in terms of 

research questions at hand.  

First, the surface convection heat transfer coefficients are calculated from the 

CFD-predicted flow and temperature fields. There is no interaction between the 

airflow network and CFD. In such cases, fixed mass flow rates are assumed for 

the opening boundaries. The aim for this type of coupling is to investigate the 

ventilated cooling effects and the corresponding temperature distribution within 

the examined space. One thing to be noted is that only one CFD domain is 

allowed to conflate with other thermal domains per simulation.  

The second type of coupling chosen for this study focuses on the instant air flow 

distribution where the airflow network is coupled with particular CFD domain for 

specific time steps. In other words, the opening boundary conditions will vary 

with the corresponding mass flow connections during the specific time steps. The 

worst case scenario with reference to the required flow rates for cooling and 

desired flow pattern during the typical weeks of a year can then be known. In this 

scenario, fixed internal surface temperature from the thermally coupled mass flow 

network approach is defined for the solid boundaries. Following that, a stand-
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alone CFD is proposed to investigate the possible discrepancy between different 

modelling approaches. The potential pros and cons of using advanced tools are 

clarified. The whole building simulation will be carried out for investigating 

airflow distribution of the worst and optimum case scenario. The detailed air flow 

speed distribution is needed for ensuring the selection of comfort boundary. 

 

 

Table 3-3: Routes of CFD approach for natural ventilation design of the current study 

Options available Descriptions of mechanisms  

CFD model 

within ESP-r 

Thermal 

coupling 

The surface convection heat transfer coefficients are calculated 

from the CFD-predicted flow and temperature fields and are 

then fed back to the thermal domain. There is no interaction 

between the air-flow network and CFD. 

Air-flow 

coupling 

The nodal air-flow network and CFD are integrated. A single air 

flow network node is replaced by a CFD domain, thus dropping 

the assumption of well-mixed conditions for that zone. There is 

no interaction on the thermal level. 

CFD-only 

(coarse-grid) 

All boundary conditions are supplied by the user when CFD is 

operated in stand-alone mode within ESP-r. But the options for 

the turbulence model are limited in the coarse-grid CFD of ESP-

r. 

Stand-alone 

CFD program 

(FLUENT) 

 

External flow 

field with 

wind profile 

inlet 

The modelling of surface wind pressure coefficient of the 

proposed building configuration is achieved by simulation of 

external flow field using the stand-alone CFD program 

(FLUENT). 

Whole 

building 

simulation 

(fine-grid) 

The one-way static integration between ESP-r (dynamic thermal 

simulation with an air flow network) and FLUENT-CFD is 

adopted in this modelling stage. For which the ESP-r predicted 

outputs are provided as boundary conditions for FLUENT-CFD. 

Advanced turbulence models are also available. Further inter-

model comparisons can be evaluated with those from coarse 

gridding results. 
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3.5 Criterion for ventilation performance assessment 

 

In this study, the criteria for assessing the ventilation performance are evaluated 

with reference to the time when the required flow rates and desired flow pattern 

are achieved as well as the overall thermal comfort condition. The hourly 

temperature, relative humidity, and air flow speed from the CFD simulation are 

plotted in the building bioclimatic charts for further assuring the ventilated 

cooling effect. The simulated air flow speed distribution using CFD is expected to 

provide insight for the ultimate potential for personal cooling. Detailed 

descriptions on the criteria chosen for this study are outlined as follows. 

 

 

 

3.5.1 The minimum required flow rates for cooling  

For cooling purposes, the incoming air should be at a lower temperature than the 

indoor air temperature for removing the internal heat gains (sensible cooling). The 

minimum required flow rates for sensible cooling can be calculated from 

Equation 3-1 which is used as the input for evaluating the initial opening size in 

the explicit method of the envelope flow model approach. For the proposed test 

models, it is proposed that the combination of solar, occupant, lighting and 

equipment gains gives a value of 30 W/m
2
. It is assumed that the internal heat 

gains are balanced by the heat removed with the ventilation air. For example, the 

base case model with floor areas of 400 m
2
 (Fig.2-40b), H is about 12000W. 

When ρ=1.2 kg/m
3
, CP=1006 J/kgK and ΔT =3.3 K (with set internal temperature 

of 28 ˚C) are applied in the calculation, the ventilation rate of 3 m
3
/s may suffice 

for removing the internal heat gains.  
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3.5.2 The desired air flow pattern 

For the preliminary investigations, the atrium type buildings with vertical shafts 

which run up the entire height of the building are used to extract air. Segmented 

cases take a normally continuous element and break it down into shorter segments, 

thereby reducing the height in the stack effect equation. The commonly used 

ventilation strategy for the atrium type buildings is that air enters through the 

envelope and flows through the building before being exhausted from the atrium 

at high level. The conceptual air flow pattern design is illustrated in Figure 2-39. 

It is assumed that fresh (external) air enters each occupied space from the 

envelope opening, irrespective of the weather condition and building 

configuration, and finally flows out through the outlet at the top of atrium.  

As for the main investigations, a conceptual air flow network for the proposed 

natural ventilation system is presented (Fig. 2-40c) and defined as follows. The 

ventilation strategy for the prototype building is Centre-in, Edge-out (C-E) in the 

terminology of Lomas (2007). With moderate setting of vents in the external-

facing and lightwell-facing side of the office space, air flow throughout the 

building is activated by the stack effect and ambient wind effect. It is assumed 

that fresh air enters from the lower inlet of the lightwell and feeds into each office 

space through its individual lightwell-vent. The stale air of each office space is 

expected to discharge into the high-end vents connected to the DSF cavity. Solar 

radiation is expected to pass through the building envelope, the ventilated façade, 

and the air within the DSF cavity is warmed up consequently. Finally, the 

accumulated warm and stale air will be exhausted through the outlet on top of the 

DSF cavity. The calculated flow rates are positive when follow the desired flow 

pattern in an air flow network. 

 

 

 



- 112 - 

 

3.5.3 Adaptive thermal comfort theory for a hot and humid climate 

 

One of the aims of this study is to evaluate the thermal comfort level of naturally 

ventilated tall office buildings. That is, a comfort-orientated indicator will then be 

adopted for investigating the performance of ventilated cooling. The perception of 

thermal comfort is heavily influenced by the social and cultural context of the 

occupants‘ expectations and their response to thermal stimuli (Harriman III and 

Lstiburek, 2009). People naturally adapt and may also make various adjustments 

to themselves and their surroundings to reduce discomfort and physiological 

strain. Occupants become adapted to the new environment after entering a 

building. When the temperature stays very uniform around the occupants, the 

building is perceived to be more comfortable, even if the temperature is slightly 

above or below the otherwise ideal range. As concluded by ASHRAE (2009), ‗the 

value of using an adaptive model to specify set points or guide temperature 

control strategies is likely to increase with the freedom that occupants are given to 

adapt‘. 

Baker and Standeven (1994, 1996) proposed the term of ‗Adaptive errors‘ and the 

associated concept of adaptive opportunity for the comfort criteria of passively 

cooled buildings. Their aim was to identify the key factor for discrepancy (scatter 

of field data) of field studies in free-running buildings with reference to thermal 

comfort. They found that the conventional comfort theory failed to account for the 

adaptive behaviour of the occupants and might consequently lead the designer 

into adopting the air-conditioning system. The findings provided an idea of 

allowing the neutral zone for thermal comfort to be extended, which encouraged 

the promotion for passive buildings. Following that, Wong et al. (2002) conducted 

a field survey to evaluate thermal comfort perception of the occupants in a 

naturally ventilated public housing in Singapore. The study investigated whether 

thermal perception was influenced by different sessions of the day, building 

height and flat types. The survey investigated the adaptive behaviour of the 

occupants in the usage of climatic control such as windows, fans and air-
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conditioning to modify the indoor environment. It was concluded that occupants 

were naturally acclimatized to the local hot and humid climate condition.  

Additionally, a field study had been conducted in five naturally ventilated office 

buildings in south east of France during hot and cold seasons (Moujalled 2008). 

Their results suggested that the thermal sensations were well correlated with the 

operative temperature. The occupants were less sensitive to the rise of 

temperature during the warm season. The variability of indoor conditions in the 

naturally ventilated buildings during the warm season with the availability of 

thermal control contributed to a relaxation of expectation and greater tolerance of 

temperature rise. They also commented on the lack of reliability of the PMV 

index to predict thermal comfort in naturally ventilated buildings in both warm 

and cold season. In their study, the adaptive comfort algorithms of EN15251 and 

ASHRAE 55-2004 were in close agreement with the measured comfort votes. The 

use of the PMV to determine thermal comfort conditions, as indicated by the 

standard ISO7730, would result in overheating buildings during the cold season 

and air conditioning during the warm season; while the adaptive algorithms are 

more advantageous for both thermal comfort and energy use in buildings as they 

took the variability of indoor comfort conditions into consideration. However, 

other field studies in different building types and outdoor climate conditions are 

needed to confirm these results.  

Furthermore, J.van Hoof (2008) argued that although the PMV model is still 

applied throughout every type of building all across the globe, it was found that 

the indoor temperature being regarded as most comfortable increases significantly 

in warmer climate contexts for naturally ventilated buildings, and decreases in 

colder climate zones. They found that the neutral temperature observed in air-

conditioned buildings differs from that observed in naturally ventilated buildings 

in the same climatic context. This led to the development of adaptive thermal 

comfort model, which is now an optional method alongside the PMV model in 

applications of naturally ventilated buildings. 
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Many studies on acceptable comfort boundaries had been conducted in the 

context of the hot and humid climate. Busch (1992) presented a study of adaptive 

thermal comfort in Thailand which proposed acceptable indoor temperatures of 28 

˚C for air-conditioned offices and 31 ˚C for naturally ventilated offices. Givoni 

(1998) suggested that comfort ventilation is applicable mainly to regions and 

seasons when outdoor maximum air temperature does not exceed 28-32 ˚C with 

less than 10 ˚C diurnal temperature range. The boundaries of outdoor temperature 

and humidity within which indoor comfort can be provided by natural ventilation 

during the day and with indoor airspeed of 2 m/s were presented as well. 

Additionally, Humphreys and Nicol (1998) observed that, through adaptive 

actions, an acceptable degree of comfort in residences and offices is possible over 

a range of air temperatures from about 17 to 31°C.  A separate study in Bangkok 

(Jitkhajornwanich et al., 1998) established an upper limit to thermal comfort of 

31.5 ˚C, 5.5 K beyond the upper boundary presented by ASHRAE (2004). The 

thermally neutral temperature was 30.6 ˚C when the air speed was 1 m/s and the 

relative humidity was between 50 and 60 percent and increased to 33.5 ˚C under 

more humid conditions (50-80 percent relative humidity) when the air speed was 

increased to 2 m/s. A survey conducted by Xia and Zhao (2000), directed toward 

occupants of 83 Beijing units, also found that 80 percent of occupants considered 

30 ˚C to be tolerable. 

de Dear and Brager (1998) proposed an adaptive thermal-comfort standard for 

naturally ventilated buildings, which is based on a review of 21,000 sets of raw 

data from 160 thermal comfort studies in 160 office buildings in four continents. 

With the 90 percent acceptability limits, the indoor comfort temperature increased 

with outdoor temperature. The comfort ranges were 23-28 ˚C at a monthly mean 

outdoor temperature of 25 ˚C and 26-31 ˚C for mean monthly temperatures above 

33 ˚C (de Dear 1998, de Dear and Brager 1998, Brager and de Dear 2000). This 

adaptive standard has been incorporated into the ASHRAE thermal-comfort 

standard (ASHRAE_55 2004).  
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3.5.4 The Building Bioclimatic Charts 

 

Ssensible as well as personal cooling are proposed as the main cooling 

mechanisms of this study. For the personal cooling in summer, increased air 

movement from large openings can provide an enhanced perception of thermal 

comfort, but care has to be taken to avoid draughts, such as those that might blow 

papers off desks. As suggest by CIBSE AM10 (2005), an air speed of about 0.25 

m/s is sufficient to illustrate an important mechanism by which natural ventilation 

can maintain thermal comfort in summer. To create thermal comfort, the heat 

dissipation mechanisms of the human body as well as four environmental 

conditions that allow the heat to be lost should be considered. The considerations 

for the four conditions, namely air temperature, humidity, air movement, and 

mean radiant temperature (MRT), are described as follows.  

 

First, the air temperature will determine the rate at which heat is lost to the air, 

mostly by convection. Above 37°C, as suggested by Lechner (2009), the heat 

flow reverses and the body will gain heat from the air. Second, high humidity not 

only reduces the evaporative cooling rate, but also encourages the formation of 

skin moisture (sweat), which body senses as uncomfortable. Third, air movement 

affects the heat-loss rate by both convection and evaporation. In the summer, air 

velocity has a pronounced effect on heat loss. The air motion is noticeable but 

acceptable depending on the activity being performed. A draught is an undesirable 

local cooling of the human body by air movement, and can be a serious thermal 

comfort problem, depending on surrounding conditions. Air motion is also 

required to prevent excessive stratification, which tends to make heads warmer 

and feet colder, exactly opposite of what is comfortable. Finally, the goal is to 

maintain the MRT close to the ambient air temperature in general. In a well-

insulated and shaded building, the MRT will be close to that of the indoor air 

temperature. Furthermore, or whenever possible, additional control should be 

made available for the occupants of a building so that they can create the thermal 
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comfort that is just right for them. Portable fans to promote air movement and 

operable windows are devices people can use to fine-tune their environment. 

 

Certain combinations of air temperature, RH, air motion, and MRT will result in 

what most people consider thermal comfort. The psychrometric chart involves 

only the temperature and humidity, while the MRT is assumed to be near the air 

temperature, and the air motion is assumed to be modest. The comfort zone 

defined in the psychrometric chart is not absolute, and may vary with culture, 

time of year, individual clothing, and physical activity etc. The comfort zone 

should be the goal of the thermal design of a building, where 80 percent of people 

in a specific region find comfortable. However, the comfort zone may shift when 

certain variables that had been held constant are allowed to change. i.e. an 

increase in MRT would require cooler air temperatures to compensate for the 

increased heating from radiation; the cooling effect of the air motion is offset by 

an increase in the air temperature, and the reversed situation when the air 

temperature is too high for comfort, the air motion is often used to raise the 

comfort zone. 

 

The building bioclimatic chart (BBCC) was developed (Givoni, 1998) to integrate 

architectural strategies with human comfort needs. To compare this chart (BBCC) 

with the comfort zone and various types of discomfort outside that zone of the 

original psychrometric chart, the relationship between strategies and discomfort 

(climate) conditions is then clear. In order to assess the potential of naturally 

ventilated cooling in a hot and humid climate, the Building Bioclimatic Charts 

(BBCCs) is adopted which offers a way of rapidly testing whether or not natural 

ventilation is likely to produce comfortable conditions in the offices. The BBCCs 

approach undertaken by Givoni (1994) preserves all the psychrometric 

relationships encapsulated in the chart. The key component in the chart is that 

boundaries of climatic conditions within which various building design strategies 

and natural cooling systems can provide comfort (Givoni 1998). The Givoni 

BBCCs for hot-developing countries offer thermal comfort envelopes for two 
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conditions: ‗still air‘ (assumed to be less than 0.25 m/s), which lies between 18˚C 

(winter) and 29˚C (summer) and for ‗a very light breeze‘ (2.0 m/s), which extends 

the envelope to 32˚C. The upper (summer time) temperature limits decrease above 

50% relative humidity (RH) and upper bounds are placed on RH of 80% for still 

air and 90% for a very light breeze.  

 

Lomas et al. (2004) examined the likely internal comfort conditions in an office 

using the Givoni BBCCs approach for developed countries and compared with the 

conditions predicted by a detailed thermal model. The differences were discussed 

and a strategy for producing BBCCs for different classes of non-domestic 

buildings and for representing the climatic boundaries was proposed. They retain 

the benefits of being plotted on a psychrometric chart but contain additional data. 

In their study, it is recommended that thermal simulation modelling could be used 

to derive BBCCs for many other types of non-domestic building cooled by 

different ventilation strategies. They also provide a route to explore a more 

precise definition of thermal comfort.  

 

In this study, the Givoni BBCCs boundaries are considered reasonable according 

to previous studies on the adaptive comfort theory and thus are used to assess the 

performance of ventilated cooling. By the way of BBCCs, the effect of latent heat 

is taken into consideration, which is not available with the equation 3.2-1 only. 

Ultimately, the thermal comfort assessment is achieved by plotting the calculated 

temperature and relative humidity from ESP-r into BBCCs. The local air flow 

speed distribution from CFD modelling is then adopted to ensure the selection of 

specific boundary in the BBCCs. The acceptable comfort boundaries of a hot and 

humid climate for this study are illustrated as Figure 3-3. 
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Figure3-3: The building bioclimatic chart for a hot and humid climate under different ventilation 

condition 
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3.6 Summary remarks 

This research is concerned with the prospect of purely naturally ventilated tall 

office buildings. It is hoped to achieve a natural system that gives as much control 

as possible. Segmented and non-segmented atrium buildings are adopted as study 

models. The aim is to ensure that the magnitudes of the air flow rates and the 

desired flow pattern through the envelope openings and consequently the thermal 

comfort can be achieved over a range of specified conditions. The investigations 

include two parts (preliminary and main investigation) with reference to the 

complexity level of building configurations. For the preliminary investigation of 

this study, a single-cell envelope flow model (EFM) is adopted for evaluating the 

off-design conditions of the three conventional typologies of tall office buildings. 

The steady-state bulk flows through openings are evaluated under a specified 

design condition.  

For the main investigation, the evaluations are divided into three stages and the 

objectives are basically the same; while the resolution level might vary. A tall 

atrium and ventilated double skin facades are proposed along with the 

segmentation concept. Dynamic thermal modelling is used, because of the 

particular importance of the thermal behaviour of the DSF. The chosen thermal 

model utilises a multi-cell airflow network model (AFN) since the buildings can 

no longer be described by a single-cell model. The dynamic thermal simulation 

program (ESP-r) with air flow network module is to provide overall evaluation of 

ventilated cooling potential in the examined building.  

One of the important tasks for natural ventilation simulation is to accurately 

predict the local airflow distribution. Thus, a computational fluid dynamics (CFD) 

simulation is proposed in the later design stage of this research. And more 

importantly is to evaluate the effect of air flow speed on personal cooling. The 

overall ventilation performance is then interpreted in relation to adaptive thermal 

comfort theory by the use of BBCCs.  

 

 



- 120 - 

 

4. The preliminary investigations: The envelope flow 

model approach 

 

 

4.1 Chapter overview 

As presented in the methodology (Ch3), the envelope flow model (EFM) for this 

study is adopted to size the envelope openings using the explicit method of EFM 

and to evaluate the ‗off-design‘ condition of the preliminary study model (Fig. 2-

39) by the use of implicit method of EFM. The ‗off-design‘ condition is defined 

by CIBSE AM 10 (2005), which indicate the design performance of a particular 

ventilation strategy under the specific weather condition. From the aspect of 

envelope openings, it is important to determine the maximum and minimum sizes 

of openings to enable adequate occupant control. The input data required for 

sizing the envelope openings are described in Section 3.3.1. In Section 4.2, the 

maximum sizes are determined by a summer design condition while the minimum 

sizes are from the winter condition. With the summer condition, this study adopts 

the averaged ambient wind speed over the occupied hours to represent the worst 

case. The design aim in the summer is to prevent internal overheating and to 

ensure the thermal comfort of the occupants. The ventilation rates required to 

achieve these goals will usually exceed that required for air quality issues.  

 

The monthly off-design conditions of the proposed building configurations under 

the preliminary investigations are discussed in Section 4.3. For the preliminary 

investigation of this study, a single-cell envelope flow model (EFM) is adopted 

for evaluating the off-design conditions of three preliminarily building 

configurations, namely isolated, non-segmented and segmented tall buildings with 

no internal partitions (Fig. 2-39). The steady-state bulk flows through openings 

are evaluated under a specified weather condition. Firstly, the effect of 

segmentation on the resultant flow rates of corresponding office spaces is 
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discussed in Section 4.3.1. The seasonal variation of ventilation is then 

investigated in Section 4.3.2.  

 

Additionally, this chapter looks at the required flow rates which can flow along 

the desired path under the naturally available driving pressures. The fresh air flow 

rates of the three preliminary building configurations under different 

arrangements of ambient temperature and wind speed are examined in Section 

4.3.3. The opening size for the summer design condition, as derived from Section 

4.2, is adopted in the three preliminary building configurations for comparison. 

The upper band of external temperature to cause flow reversal is investigated as 

well. The objective for this chapter is to investigate the effect of segmentation by 

the use of conventional typology of tall office buildings. The satisfactory flow 

rates as well as the desired flow pattern are investigated accordingly. The 

definition of satisfactory flow rates in this study includes the requirement for 

minimum flow rates for ventilated cooling, while the resultant flow velocity 

should not cause the uncomfortable air draught within the occupied spaces. The 

summary remarks in Section 4.4 are then directed to the potential scenario, where 

the design condition cannot be secured with reference to the proposed preliminary 

building configurations. 
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4.2 Investigations of initial opening size  

In this study, the required envelope opening size can be calculated by the explicit 

method of solution of the envelope flow model (EFM) approach as described in 

CIBSE AM10 (2005). It is important to determine the maximum and minimum 

sizes of openings to enable adequate occupant control. The maximum sizes are 

determined by a summer design condition while the minimum sizes are derived 

from the winter condition in this section. The purpose-provided openings are 

considered and it is assumed that the discharge coefficient (Cd) of a given shape 

of opening is independent of Reynolds number.  

In the general case, as presented in Figure 2-39, buoyancy and wind work at the 

same time. Thus the pressure difference across an opening at a given height z can 

be expressed as Equation 4.2-1. For the given assumption in terms of the 

discharge coefficient, Equation 4.2-2 is then obtained where ∆P denotes the 

pressure difference across the opening, A for the area of the opening and q for the 

volume flow rate. The equation can be rearranged to provide an expression for q 

in terms of ∆P as in Equation 4.2-3. Alternatively, if the flow rates, discharge 

coefficients and positions are known for each opening, the equations can be 

solved to give the areas. This is known as the explicit solution and is usually used 

in early stage of a design.  
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Table 4-1 shows the calculations for a summer design condition with ∆T= 3.3 ˚C 

and with the neutral height specified as being at the top of the occupied spaces. 

The minimum opening areas required for the design flow rates are then 

determined. For the purpose of inter-comparisons, the maximum opening area 
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from calculations is adopted for each floor of the building in the preliminary 

investigations. The modes of operation of the preliminary building configuration 

are illustrated as Figure 4-1. The relationship between flow rate qi through an 

opening and a pressure difference ∆pi is provided by magnitude |∆pi| and 

direction Si across an opening, by means of the discharge coefficient Cdi and a 

specified geometric area Ai as presented in Equation 4.2-3. 

 

 
Figure 4-1: Modes of operation of the preliminary building configurations  

 

Table 4-1: Calculated areas for summer design condition 

Opening location (1~12 FL) Zi (m) Cpi qi (m
3
/s) 

Flow 

pattern 
Si Cdi Ai (m

2
) 

Windward side 

1 1.5 

0.7 

3 outward -1 

0.65 

2.69 

3 7.5 3 outward -1 3.58 

6 16.5 3 inward -1 8.91 

9 25.5 3 inward 1 3.12 

12 34.5 3 inward 1 2.27 

Leeward side 

1 1.5 

-0.2 

3 outward -1 2.35 

3 7.5 3 outward -1 2.89 

6 16.5 3 inward -1 4.09 

9 25.5 3 inward 1 4.06 

12 34.5 3 inward 1 2.57 

Top outlet 36 -0.8 0 - 1 - 

* Boundary conditions: 

The external temperature over occupied hours: Texternal = 31˚C   

The internal temperature over occupied hours:  Tinternal = 27.7˚C  

The temperature difference over occupied hours:    ∆T=3.3˚C 

The averaged ambient wind speed:  1 m/s 
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4.3 The monthly off-design condition of the proposed building 

configurations 

 

4.3.1 The effect of segmentation 

The single-cell envelope flow model is adopted in the preliminary investigations 

for which monthly time-averaged flows are chosen to evaluate the suitability of 

the configurations. Consequently, the monthly average weather data over 

occupied hours is used to estimate the monthly averages of flow rates and 

temperatures. For natural ventilation design, it is important to ensure that the 

designed system delivers the required quantity of air to the right places, at the 

right time. Ideally therefore one would carry out calculations over a wide range of 

individual conditions. In this sense, the use of time-averages is a compromise. 

However, this study focuses on the effect of segmentation. Thus, the approach 

adopted is much simpler and should provide a meaningful basis for comparison in 

the preliminary investigations.  

 

The maximum opening size (9 m
2
) obtained from the summer design condition of 

the explicit method is adopted for the calculations (refer to Section 4.2). It is 

assumed that the opening size is consistent to all floors throughout the proposed 

building configurations (Fig. 2-39). Figure 4-2 and 4-4 illustrate the monthly 

results of volume flow rates against floor height, for the buoyancy alone and wind 

and buoyancy combined conditions respectively. Some examples of modelling 

results are discussed as follows.  

As stated above, the time-averaged results are chosen for comparison between 

different building configurations. For the buoyancy alone cases, the results as 

presented in Figure 4-2 show that the air flow follows the desired direction mainly 

in the lower floor levels during cooler seasons (January, February, November and 

December) and mid-seasons (March, April and October). Also, the volume flow 

rates decrease gradually with floor height and result in negative flow rates 
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(opposite to the desired flow direction as presented in Fig. 2-39) in high levels 

under such external weather conditions. This is caused by limited stack effect in 

the higher floor levels. The desired flow pattern for this simulation case is that 

fresh (external) air enters each occupied space from the envelope opening and 

flows out through the outlet at the top of atrium as proposed in Figure 2-39. The 

value of volume flow rates appears positive when follow the designed flow 

direction; while the values are negative when air flows along the opposite 

direction to the design condition.  

 

 

 

Figure 4-2: The monthly volume flow rates at each floor with the opening size of 9 m
2
_Buoyancy 

alone 
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However, the top-down flow reversal (opposite to those as illustrated in Figure 2-

39b and 1c) occurs in the warmer seasons, namely from May to September. 

Figure 4.3 demonstrates one of the potential scenarios of the top-down flow 

reversal. The reversed flow pattern as observed in the modelling is that the air 

flows in from the atrium-top opening and individual openings of upper floors and 

consequently exhausts through the envelope openings in the lower floor levels. 

Under such a scenario, though the amount of flow rates are secured for certain 

floors, the desired thermal comfort might not be achieved, because of the warmer 

air are driven into the occupied space.  

 

 

Figure 4.3: The top-down flow reversal under warmer seasons_ The buoyancy alone case 

 

 

As for the wind and buoyancy combined cases (Fig. 4-4), the same conclusion is 

made for the non-segmented cases in terms of air flow pattern. The fresh (external) 

air would enter each occupied space from the envelope openings and then exhaust 

through the outlet at the top of the atrium, mainly in the lower floors of cooler 

seasons. Nevertheless, the positive flow rates are achieved for both the isolated 

and segmented cases irrespective of ambient temperature due to the presence of 

prevailing wind. The overall ventilation rates could be much improved by the 

wind effect, irrespective of building configurations adopted. However, when the 

required flow rates exceed 18 (m
3
/s), the resultant air flow speed (2 m/s) might 
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cause uncomfortable draughts for occupants nearby openings (with the window 

size of 9 m
2
/s). This occurs mainly in the winter and mid-seasons of the non-

segmented case (Fig. 4-4). It is therefore important to determine the maximum 

and minimum sizes of openings for the occupants to exercise adequate control.  

 

Generally speaking, though the flow rates of the isolated cases are stable 

throughout floor levels and are relatively easier to exercise individual control 

compared to the atrium type buildings, the isolated case is heavily influenced by 

the external wind force. When the external wind velocity is low, it is unlikely for 

the isolated case to reach the required flow rates. In the extreme weather 

conditions where the external wind speed is relatively low, the non-segmented 

and segmented building configurations are much preferred for all floors to 

achieve the required fresh air flow rates. 

For the wind and buoyancy combined condition, however, the isolated as well as 

the segmented case has better performance than the non-segmented one, for its 

relatively small variation of flow rates between floors. One thing to be noted is 

that the opening sizes used in these three building configurations are the same for 

inter-comparison. The opening sizes might be adjusted by occupants according to 

the sensation of thermal comfort.     

 

Following that, varied external opening sizes are determined against building 

height using the explicit method of the envelope flow model as presented in 

Section 4.2. The summer design scenario under the no wind conditions (buoyancy 

only) is treated as the worst case. The revised volume flow rates against floor 

height are illustrated as Figure 4-5. The results suggest that the trends for air flow 

patterns are consistent with those cases with the same openings sizes of 9 (m
2
) 

throughout building height; while the volume flow rates are reduced by a 

considerate amount due to the smaller opening sizes adopted.  
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Figure 4-4: The monthly flow rates at each floor with the opening size of 9 m
2
_Wind and 

buoyancy combined 
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Figure 4-5: Monthly volume flow rates at each floor with varied opening size across floor 

levels_Buoyancy alone 

 

 

 

4.3.2 The seasonal variation of ventilation 

Seasonal variation of ventilation for the three different building configurations 

(Fig. 2-39) is examined under Taipei weather condition (Fig. 4-6). For the non-

segmented case (Fig. 2-39b) under the buoyancy alone condition (Fig. 4-7a), the 

monthly average flow rates decrease when the external temperature gets higher. 

The required flow rates for cooling as obtained from Equation 3.2-1 can be 

achieved from December to April for all floor levels except for the top-most floor 

of the non-segmented case. The required flow rates for the top-most floor is 

constrained by limited stack height compared to other floors under the low wind 

speed condition. As for the warmer months, namely between May and September, 

the negative flow rates occur due to the external temperature being close to or 

higher than the set internal temperature (28˚C). The set internal temperature (28˚C) 

was defined from the previous study on tolerable comfort temperature under the 

no-wind condition of a hot and humid climate (refer to Section 3.4.3).  
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The effect of wind on the non-segmented building configuration can be seen in 

Figure 4-7b. With the help of wind, the flow rates are increased for all months, 

compared to those in Figure 4-7a with the buoyancy alone condition, in general. 

The monthly variation of flow rates against floors under different weather 

conditions are elucidated accordingly. For the buoyancy alone case (Fig. 4-7a), 

the resultant flow rates are positive from October to April; while the negative 

flow rates occur when the external temperature gets higher (from May to 

September). In this case, the desired flow pattern (positive flow rates) can only be 

achieved with the presence of prevailing wind through the hot summer between 

June and August (Fig. 4-7b).  

 

 

Different building configurations, namely the segmented and isolated cases, are 

applied for examining the effect of segmentation. The monthly variation of 

ventilation under the Taipei weather condition is investigated. For the segmented 

case (Fig. 2-39c), the monthly variation pattern of ventilation is consistent with 

the non-segmented case. However, the positive flow rates (desired flow patterns) 

can be achieved for all floors during the hot summer (from June to August) under 

the wind and buoyancy combined condition. The difference of ventilation 

performance with reference to the building configuration adopted can be seen in 

Figure 4-7b and 4-8a. Also, the deviation of flow rates between floors is smaller 

for the segmented case compared to the non-segmented case under the same 

ventilation condition. As presents in Figure 4-8, high correlation in terms of the 

monthly ventilation performance is found between the isolated case and the top-

most floor of segmented case. This can be explained by the stack height is limited 

in the higher floors of non-isolated atrium buildings. Wind is then the dominant 

force for resultant flow rates. 
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Figure 4-6: The monthly average weather condition of Taipei 

 

 

 
(a) 

 
(b) 

Figure 4-7: The monthly flow rates by floor levels under different ventilation conditions (FL 

denotes floor level) 
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(a) 

 

(b) 

Figure 4-8: The monthly flow rates by floor levels under different building configuration (F 

denotes floor level) 

 

 

 

4.3.3 Parametric study with respect to the ambient weather conditions 

To clarify the main contributors to the resulting flow rates, the fresh air flow rates 

of three building configurations under different external temperature, namely 

22℃, 26℃ and 32℃, are examined against wind speed (Fig. 4-9). The same 

opening size against building height, as derived from the summer design 

condition (9 m
2
), is adopted for comparison study. The modelling results suggest 

not surprisingly that temperature difference between indoors and outdoors is 



- 133 - 

 

influential for the flow pattern control. The ambient wind effect has the positive 

influence on the volume flow rates with the wind attack angle of 0˚. 

  

For the case with external temperature of 22℃ (Fig 4-9a), which has the highest 

occurring frequency (35%) in November, we can see the volume flow rates 

decrease with floor height for all ranges of wind speed. The lower floor levels 

with larger stack height would result in higher flow rates consequently. The 

negative flow rate occur in high levels when the wind speed is lower than 2 (m/s).  

It is also observed that the variation of flow rates between floors decreases when 

the ambient wind speed exceeds 3 (m/s). The same flow pattern is observed with 

the external temperature of 26℃ (Fig 4-9b). However, higher external wind speed 

is required for the higher floor levels to achieve the required flow rates and 

desired flow pattern under the scenario of higher external temperature. 

 

In the envelope flow model approach, the internal temperature is assumed to be 

28℃. That is, the reversed flow pattern occurs when the external temperature 

exceeds the set internal temperature (Fig. 4-9). For the cases with the external 

temperature of 28℃ (Fig. 4-9c), where the temperature difference between 

indoors and outdoors is limited, the undesired flow pattern occurs in the non-

segmented case even with wind speed of 3 (m/s) applied. The much higher 

external wind velocity is needed for achieving the same volume flow rates, 

compared to the lower external temperature condition with the same building 

configuration being applied. For the cases with external temperature over 28 ℃ 

(Fig. 4-9d), the thermal comfort cannot be guaranteed. This is because the 

warmer ambient air is driven into the occupied space with flow reversal. 

Additionally, the upper band of external temperature to cause reversed flow 

pattern can be acquired by the trial by error approach, which is an experimental 

method of problem solving. The concept of this approach is to learn from failure 

itself, to make a change, and then try again. According to the calculated results, 

the upper temperature band of the non-segmented strategy with a wind speed of 1  
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m/s is about 26.3 ℃ (Fig. 4-10a), for avoiding the occurrence of flow reversal 

(negative flow rates); while the temperature band for the segmented case to have 

reversed flow pattern rises to 27 ℃ (Fig. 4-10b). This graph helps to rule out the 

period of time when natural ventilation is not applicable. The same approach can 

be applied to find out the upper temperature band of the examined building 

segmentation under specific external wind speed condition. 

From the flow pattern design point of view, it is desirable to have fresh air flow 

from outside, through the occupied areas and then to the exhaust point. For the 

atrium type building with the single-cell concept, the non-segmented building 

configuration might have flow reversal in the higher floor levels during the 

warmer periods irrespective of ventilation conditions applied. The flow reversal is 

that the air flows in from the atrium-top opening and individual openings of upper 

floors, and it then exhausts out through the envelope openings in the lower floor 

levels. This would be improved by increasing windward wind speed. However, 

there are only 718 hours of a year (8.2%) with wind speed over 5 (m/s). To rule 

out the time with external temperature over 28℃, only 578 hours (6.6%) of a year 

can achieve the desired flow pattern in the higher floors of the non-segmented 

case. The segmented cases, however, are relatively easier for all floors to have the 

desired flow pattern under low wind speed compared to the non-segmented cases 

during the warmer seasons.  

The above addressed trial by error approach can be applied to find out the 

minimum wind speed to achieve the desired flow pattern under various external 

temperatures. Under the worst case, the summer periods with zero ambient wind 

speed, the exhausted and warmer air would accumulate in the lower floors which 

might cause the thermal comfort issues. Although this could be solved by 

increasing the opening sizes, larger opening size is not always beneficial during 

the hot summer, because the cooling effect is constrained by the ambient 

temperature.  
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(a) 

 

(b) 

 

(c) 



- 136 - 

 

 

(d) 

Figure 4-9: The fresh air flow rates against floor height for different building configurations with 

different ambient temperature and wind velocity 

 

 
(a) 

 
(b) 

Figure 4-10: The resultant flow rates by floor level with reference to different ambient temperature. 

a) Non-segmented case; b) Segmented case. 
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4.4 Summary 

 

This research is concerned with the prospect of purely naturally ventilated tall 

office buildings in the hot and humid climate of Taiwan.  Specifically, the effects 

of segmentation are of interest. For the preliminary investigations using the 

single-cell Envelope Flow Model, three different building configurations, namely 

the isolated, segmented and non-segmented cases, are adopted. One thing to be 

noted is that the same building storey of 15 floors is used in the three building 

configurations in this chapter for the evaluation of segmentation effect. The 

optimum segmentation height is discussed in Chapter 5 with revised building 

configurations using the multi-cell model. 

 

For this chapter, it can be concluded that the isolated cases tend to have stable 

flow rates across floors and are relatively easier for flow pattern control. To 

account for the worst case scenario with low external wind speed (the buoyancy-

alone case), the atrium type buildings are much preferred for supplying sufficient 

fresh air flow rates with the help of stack effect. Segmented cases, especially, are 

much preferred for their relatively small variation of flow rates between floors. 

The potential risk of large pressure difference acting through the full height of the 

building is reduced accordingly.  

 

Furthermore, seasonal variation of ventilation for the three different building 

configurations is examined under Taipei weather condition, where the wind and 

buoyancy combined condition is applied. The monthly off-design conditions of 

the three building configurations are examined respectively. Consistency is found 

between the segmented and non-segmented case in term of the monthly variation 

pattern of ventilation. However, the positive flow rates (desired flow direction) 

for all floors during the hot summer (from June to August) can only be achieved 

with the help of the segmentation strategy; while the flow reversal (negative flow 
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rates) occurs in lower floors when the external temperature gets higher. In 

addition, strong similarity in terms of the monthly ventilation performance is 

found between the isolated case and the top-most floor of segmented case. This 

can be explained by the fact that the stack height is limited in the higher floors of 

non-isolated atrium buildings. The wind force is then the dominant for resultant 

flow rates. 

 

More parametric studies are needed for quantifying the influence of individual 

parameters on flow rates as well as flow patterns. Varied wind pressure 

coefficient against floor height should be applied for more realistic application in 

tall buildings. In this Chapter, general understanding of naturally ventilated tall 

office buildings with the proposed preliminary building configurations in a hot 

and humid climate is achieved by the single-cell envelope flow model approach. 

To cope with potential large wind and buoyancy pressures acting throughout the 

building, a ventilated tall atrium and double-skin facades are proposed along with 

the concept of segmentation in the next chapter of this study. The dynamic effects 

are evaluated by the use of dynamic thermal simulation incorporating an air flow 

network. Further results and discussions are provided in Chapter 5. 

 

 

 

 

 

 

 



- 139 - 

 

5. The main investigations: The thermally coupled mass 

flow network approach 

 

5.1 Chapter overview 

For the present study, it is proposed that ―segmentation‖ might offer the least 

risky approach for envelope design of non-residential tall buildings. The effect of 

segmentation on the resultant flow rates as well as the overall thermal comfort 

condition of corresponding office spaces is of interest in this study. For this 

chapter, the revised building configurations are proposed to counter 

environmental drivers (potential large wind and buoyancy pressures acting 

through the full height of the building), which necessitates for a more complex 

building geometry as presented in Figure 2-40. The evaluations are divided into 

three modelling stages with the same objectives but different resolution levels in 

terms of the research questions at hand. Detailed flow chart of the modelling 

procedure of this study is presented in Figure 3-1.  

At the first modelling stage of this study, the explicit method of the single-cell 

envelope flow model (EFM) is adopted for sizing the envelope openings. For the 

second modelling stage, however, a segmented atrium and ventilated double skin 

facades are adopted (Fig. 2-40). Dynamic thermal modelling is used, because of 

the particular importance of the thermal behaviour of the DSF. The chosen 

thermal model utilised a multi-cell airflow network model because the buildings 

can no longer be described by a single-cell model. 

For natural ventilation design, it is important that the designed system should 

deliver the required quantity of air to the right places, at the right time. The 

ventilation performance of this chapter is investigated with respect to the 

sufficient flow rates for cooling and the desired flow patterns, and particularly the 

effect of segmentation on the overall thermal condition of the occupied spaces is 

of interest.  
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For the second modelling stage, the monthly time-averaged values of flow rates 

and temperature are derived from the calculated hourly results over the occupied 

hours of a specific month. The effect of segmentation is investigated under the 

identical ambient condition. The specific time with insufficient air flow rates and 

undesired air flow pattern is clarified. Basically, this is a compromise, but a 

simple and meaningful basis for comparison had to be chosen.  

In Section 5.2, the discussions are directed to ventilation performance of the base 

case building configuration in terms of flow rates and flow patterns for cooling. 

For this purpose, the probability is defined as the percentage time that the desired 

flow pattern and ventilated cooling is achieved during the occupied hours. Further 

thermal comfort issues are examined using the building bioclimatic charts in 

Section 6.3.3. In Section 5.3, the revised building configuration with an open 

wind floor strategy is adopted. The issues for discussion in this section are carried 

out as those stated in Section 5.2. For the bottom segment of the building with an 

open wind floor, the lifted case is introduced. 

The comparisons are then made with reference to the segmentation effect on the 

resultant flow rates of different building configurations, namely the base and 

revised case, in Section 5.4. The comparison with regard to the overall ventilation 

performance of different building configuration is discussed.  The viable number 

of hours for comfort ventilation is investigated as well. Suggestions in terms of 

adoption of building configuration as well as segmentation are made with 

reference to the feasibility for comfort ventilation.  
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5.2 The natural ventilation performance of the base case building 

configuration in the main investigation 

 

5.2.1 The effect of segmentation 

5.2.1-1 The modelling conditions 

In this section, the systems under study are illustrated as Figure 5-1. More 

detailed input assumptions are identified in Section 2.4.2-2 (The main 

investigations: Multi-cell building configuration). The geometry and the key 

energy inputs to the systems are illustrated as Figure 3-2. The strategies utilising 

the naturally occurring wind pressures and/or the buoyancy force to drive an air 

flow are proposed along with the segmentation concept. It is hoped to achieve a 

natural system that gives as much control as possible. The monthly average 

volume flow rates through vents of associated office spaces are investigated. The 

effect of segmentation is then presented by plotting the resultant flow rates against 

height as well as the free running temperature data. The seasonal influence on the 

flow rates is examined as well.  

The hourly basis simulation results of ESP-r, in terms of flow rates, are collected 

and then the daily averaged value is determined by averaging the data sets over 

the occupied hours (07:30 ~ 18:30). The monthly averaged value is then derived 

from the daily averaged value of occupied hours. For the evaluation of overall 

ventilation performance on the thermal environment, the free running temperature 

data is presented on weekly basis, where the typical week is chosen for 

demonstrating the thermal condition of the examined spaces. The typical weeks of 

climatic context of Taipei is obtained by scanning the climate data for a week in 

each season. For which has the least deviation in heating degree days, cooling 

degree days and solar radiation. The heating and cooling base temperature are 

assumed to be 10 ˚C and 28 ˚C respectively. The weighting for heating degree 

days, cooling degree days and solar radiation could be given. The defaults are 

equal weightings for each. The typical week for the spring of Taipei is between 

22
nd

 March and 28
th

 March. 19
th

 to 25
th

 of June and 29
th

 September to 5
th

 October 
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are for the summer and autumn season respectively.  Two typical winter periods 

are also identified, which are between 12
th

 and 18
th

 of February and from 29
th

 

November to 5
th

 December. However, the winter periods are considered too cold 

and humid to apply natural ventilation as demonstrated in Figure 2-32a, which 

shows the thermal comfort distribution by the use of building bioclimatic charts.  

It is therefore the winter periods are not scheduled in the proposed modelling.  

 

 

 

Figure 5-1: Key input assumptions for the main investigations of this study 
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One thing to be noted is that a single atrium zone with different thermal mass 

assumption is evaluated before running a more complicated building 

configuration as shown in Figure 5-1. The aim is to ensure that the proper 

interpretation of simulated thermal environment as well as the ventilation bulk 

flow through the openings. The validation processes suggest that the simulated 

distributions of solar gains entering the zone is unable to justify, which may result 

in the underestimation of resultant indoor temperatures. Third-party software 

(TAS) for evaluation of building thermal environment is adopted to verify the 

solar gain distributions within ESP-r. The amount of temperature deviations 

within ESP-r programme is then justified and presented as Figure 5-4. To account 

for the perceived underestimation of solar gains within ESP-r, it is assumed that a 

certain level of shading control is activated within the atrium space. In this way, 

the air temperatures entering the office can be controlled and to ensure the proper 

interpretation of simulated thermal environment hereafter.    

 

 

 

5.2.1-2 The seasonal performance with reference to building segmentation height  

For the wind and buoyancy combined case, the simulation results for flow rates 

against building height (Fig. 5-2) suggest that larger segmentation is beneficial for 

increasing the overall flow rates through individual floor levels compared to the 

small segmentation case especially for the warmer months, namely between May 

and August. However, the impact of segmentation on the resultant flow rates of 

lower floor levels is limited when over 10 storey segmentation height. This can be 

explained by the total flow rates through the building being controlled by the inlet 

and outlet. The same inlet and outlet sizes are adopted in each segmentation cases 

for inter-comparison. Consequently, the volume flow rates through associated 

offices are constrained. For the buoyancy alone cases, the flow rates are reduced 

by a considerable amount and the reversed flow pattern occurs when the ambient 
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temperature gets higher. In such a scenario, the warmer air might be driven into 

the occupied spaces and cause thermal discomfort. Additionally, the simulation 

results suggest that flow rates of all buoyancy alone cases would be affected much 

by the ambient weather conditions. A sensitivity study for the temperature related 

parameters is discussed in Section 7.4.  

 

Some examples of modelling results are presented as Figure 5-2 and 5-3. In cases 

under the wind and buoyancy combined condition, it is found that the amount of 

flow rates in high levels would decrease against building height, namely between 

May and August; while it is relatively consistent in mid-levels of larger 

segmentation case, from March to August. During March and April, the flow rates 

of associated offices increases gradually with floor level irrespective of 

segmentation height adopted. For the warmer seasons, however, gradually 

decreasing flow rates are observed in the higher floor levels. As for the buoyancy 

alone cases (Fig. 5-3), we can see that the flow patterns are reversed (negative 

flow rates) for all floor levels between April and August. The mid-levels tend to 

have the least deviation between floors, compared to the bottom and top parts of 

floors. The bottom levels are influenced by the potential magnitudes of buoyancy 

force; while the top floors are greatly affected by the ambient weather conditions. 

Generally speaking, the design conditions (desired flow pattern, required flow 

rates and minimum variation across floors) for the buoyancy alone case can only 

be met when the weather conditions are favourable (March).  

 

For the base case building configuration, pressure nodes inside the DSF cavity are 

placed at the height of each DSF-vent. The pressure difference at each node is 

calculated by the height difference between individual DSF-vent and top-outlet. 

Under the favourable weather condition, the stack effect of individual node 

decreases gradually from bottom to top of the DSF cavity, which results in 

reduction of flow rates of individual DSF-vent across floor levels. In such cases, 

the required volume flow rates for cooling in the higher levels might not be 

guaranteed. It is argued that enlarging the vent opening size of the higher levels 
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might be able to increase the overall flow rates through openings. The eventual 

cooling effect, however, would be constrained by the ambient temperature, as 

well as sizes of inlet and outlet openings. Another concern is that the wind 

pressure coefficient (Cp) for the outlet might vary particularly for the case with 

larger segmentation height or where the building segment is located at high levels. 

For the present study, the Cp value for outlet (-0.8) is adopted and is consistent for 

all modelling cases. Further sensitivity analysis for identifying the influential 

range of Cp values on the resultant flow rates is presented in Section 7.3.4.  

 

For the cases with segmentation height over 10 storeys, the required flow rates 

can be ensured for most of middle floors during the warmer seasons (Fig. 5-2). As 

for the bottom and top floors of each segmentation case, with either buoyancy 

alone or combined conditions, detailed parametric study on how the resultant flow 

rates are affected by the external weather conditions are discussed in Sections 7.3 

and 7.4. This study adopted the same opening size for modelling air flows through 

each floor. In reality, satisfactory flow rates between floors could be achieved by 

slightly varying the areas of openings according to occupants‘ needs. Generally 

speaking, the natural ventilation performance is better in the mid-seasons in terms 

of satisfactory flow rates and desired flow patterns through office spaces under 

the wind and buoyancy combined condition. Additionally, the results show that 

the base case building configuration with segmentation height over 10 storeys has 

minor difference on ventilation flow rates, irrespective of weather conditions (Fig. 

5-2 & Fig. 5-3). This might be due to the total flow rates being constrained by the 

size of inlet and outlet, and the flow rates through individual floors are reduced 

accordingly.  
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Figure 5-2: The monthly volume flow rates against height_ Wind and buoyancy combined 
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Figure 5-3: The monthly volume flow rates against height_ Buoyancy alone 
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The overall thermal environment of the 12 storey segmentation case under the 

wind and buoyancy combined condition is illustrated as Figure 5-4, which 

demonstrates the general free running temperature of the occupied spaces during 

the typical weeks of mid-season (22
nd

~28
th

 March) and hot summer (19
th

~25
th

 

June). For both simulation periods, the office and atrium temperatures follow the 

ambient temperature swing in general. It is assumed that the air temperatures of 

internal spaces would be more close to the ambient with the presence of high air 

change rate. For the case with smaller air change rates in the hot summer, the 

office temperature may be 1 to 3 degrees higher than the ambient because of the 

perceived internal gains, especially during the peak solar gains period 

(12:00~14:00). The hourly air change rates are plotted along with the free running 

temperature in Figure 5.4 as well. The temperature stratification is observed in the 

tall atrium, which is divided into four zones, and the atrium temperature increases 

against the height as expected. The effect of internal gains on the overall indoor 

thermal as well as the airflow environment is investigated in Section 7.3.3. 

The thermal fluxes in the atrium are the result of the thermal balance among the 

ambient environment, the atrium, and the adjacent spaces. The air temperatures of 

the office nodes would be dominated by the air flowing through the atrium space 

(if following the desired flow pattern). The thermal simulation of heat transfer in 

an atrium includes solar gains, external conductive heat between the atrium and 

the ambient environment, internal conductive heat transfer between the atrium 

and the adjacent spaces, internal heat gains (lighting only), and the heat transfer 

through ventilation. For the main investigations in this study, the either side of the 

open atrium is connected with the office spaces. The opaque part of the atrium 

surfaces is massive and well insulated. It is assumed that the south-facing wall of 

the atrium is transparent with double-skin facades; while the top surface is shaded 

by the upper segment. The top transparent surface of the top atrium segment, 

however, should be provided with special care for preventing the extra solar heat 

gains. Nevertheless, the issue of the top segment is not evaluated in this study. It 

is expected that some sort of shading control would increase the overall 
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percentage of comfort ventilation. The key input assumptions for a typical 

segment in the middle of the building are summarized in Figure 5-1 and Table 3-1. 

 

 

 
(a) 
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(b) 

 
(c) 

Figure 5-4: The thermal environment of the typical weeks. a) Mid-season; b) Hot summer; c) 

temperature deviations between models with and without solar corections 
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5.2.2 The probability for ventilated cooling  

To achieve the ventilated cooling in the free running building, sufficient cooler air 

being driven into the occupied space is required. For the present study, the initial 

required flow rates for cooling is defined according to a simple equation (3.2-1), 

where the internal heat gains are balanced by the heat removed with the 

ventilation air. As mentioned in the methodology (Section 3.2.2), the ventilation 

rate of 1.084 (m
3
/s) would suffice for ventilated cooling in the proposed design 

with floor areas of 144 m
2
 when the ∆T of 3.3°C is applied. The probability is 

defined as the percentage time that the required flow rate is achieved during the 

occupied period. The preliminary seasonal potential for the 12 storeys 

segmentation case to have sufficient flow rates under different ventilation 

conditions is illustrated as Figure 5-5.  

 

For the wind and buoyancy combined condition, the probability for cases with 

less segmentation height, 6 storeys segmentation, would decrease by 10% to 30%, 

with reference to floor levels and simulation periods (Fig. 5-5a). The probability 

is defined as the percentage time that the minimum required flow rates for 

sensible cooling is achieved during the occupied period. The internal air 

temperature is set as 28°C in this case. As for the buoyancy alone cases, the 

probability for ventilated cooling would decrease with floor height and the 

variation between floors is larger than the wind and buoyancy combined cases 

(Fig. 5-5b). Consequently, the higher floor level might not be able to reach the 

required flow rate for ventilated cooling. It is also observed that the smaller 

segmentation cases can hardly achieve ventilated cooling under the buoyancy 

alone condition. A larger opening size might be required in such cases. However, 

the influence of opening size is insignificant when the resultant internal 

temperature is close to the ambient temperature, mainly in the hot summer. 

Generally speaking, the probability for all floors of the studied cases to reach the 

design condition is much higher in the mid-seasons. The ventilated cooling 

performance could be much improved with the help of prevailing wind force. 
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                                     a)                                 b) 

Figure 5-5: The probability for ventilated cooling of the 12 storey segmentation. a) Wind and 

buoyancy combined, b) Buoyancy-only 

 

The thermal environment of a typical day during the mid-season and hot summer 

is selected for demonstrating the free running temperature of the occupied spaces. 

It is suggested that comfort ventilation can be achieved for all floors during most 

of the time of a typical date on 24
th

 of March (Fig. 5-6a); while it may be difficult 

for the top floor of the 12 storey segmentation case to achieve ventilated cooling 

during a typical day in summer (Fig. 5-6b). For a typical day in mid-season (Fig. 

5-6a), the free running temperature of the bottom floor falls inside of the upper 

band of comfort temperature under the still wind condition (29 °C) in general. 

Although the temperature between 10: 30 and 15: 00 is slightly higher than the 

acceptable comfort temperature, the ventilation rate of 5 m
3
/s may help to create 

the personal cooling, where the maximum flow velocity through the openings 

should be around 1 m/s if the internal opening size of 5 m
2
 is applied. The 

summer condition as shown in Figure 5-6b, however, may be more difficult to 

obtain the desired thermal comfort if the variable ventilation rates is not sufficient 

for personal cooling (i.e. with the resultant flow velocity less than 0.5 m/s). 
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From the aspect of night ventilation, it may be an optional way for cooling during 

the mid-season because of the role of thermal mass in moderating the temperature 

swings. Figure 5-6a demonstrates the diurnal temperature swing of around 7 °C 

on a day in the mid-season of Taipei. In this case, the thermal mass may play a 

role for moderating the indoor temperature swings by coupling to external air and 

the occupied spaces. However, the ventilation rates during the night time 

(between 0:30 and 06:30 AM) on 24
th

 of March are relatively smaller than the day 

time. The potential for night ventilation would be reduced accordingly. One thing 

to be noted is that the effect of thermal mass to the overall thermal performance is 

not investigated in this study. The construction materials (Table 3-1) are assumed 

and kept fixed throughout the simulations. For a typical day in summer as 

presented in Figure 5-6b, it is more difficult to apply the night ventilation with the 

temperature fluctuation of less than 4 °C, especially when the air temperature is 

around 30 °C throughout the day. During the occupied hours, where the 

temperatures are over 32 °C for most of time, the use of fans is required to 

promote air movement for potential personal cooling. For the proposed base case 

building configurations of the main investigation (Fig. 2-40), the ventilation inlets 

of the bottom segmentation may cause security problems when the building is 

unoccupied at night; while this may not be an issue for the upper building 

segments. The solution to ensure the ventilation rates as well as the security is to 

provide intruder proof grills/bars or independent louvered to the inlets.  

 
(a) 
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(b) 

Figure 5-6: The thermal environment of the base case on a typical day. a) Mid-season; b) Hot 

summer (Free-running) 

 

 

5.2.3 The investigation of desired flow pattern 

The desired flow pattern for this study is examined in terms of the flow direction 

specified in the air flow network. The values of volume flow rates are positive (> 

0 m
3
/s) when the flow pattern follows the design flow direction. In the buoyancy 

alone scenario, the worst case, the flow rates are supposed to be influenced by the 

temperature difference between indoors and outdoors and the stack height 

between openings. To take the 10 storey segmentation case for instance, the 

monthly average flow rates under different ventilation strategies indicate that it is 

difficult to obtain the desired flow pattern under the buoyancy alone condition 

when the ambient temperature increases (Fig. 5-7). Also, with the gradually 

lessening volume flow rates against building height, the reversed flow patterns 

(negative flow rates) occur at the higher floor levels accordingly. The wind and 

buoyancy combined condition, on the other hand, is effective for achieving the 

desired flow pattern under the proposed building configuration. The desired flow 

pattern could be obtained for all floor levels irrespective of weather conditions 

with the presence of wind and buoyancy forces in combination.  
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Figure 5-7: The monthly volume flow rates against height by different natural ventilation 

conditions 

 

 

 

 

 

The probability for desired flow pattern is defined as the percentage time that the 

desired flow direction is achieved during the occupied period. The probability for 

the desired flow pattern under two different ventilation conditions is presented as 

Figure 5-8. According to the histogram analysis, the desired flow pattern could be 

obtained for over 80% of time under the wind and buoyancy combined condition, 

irrespective of simulation seasons and segmentation height. For the buoyancy-

only cases, however, the percentage for desired flow pattern would be lowered by 

20% in mid-seasons and tends to have larger variation between floors in the 

warmer seasons compared to the wind and buoyancy combined cases. The overall 

probability for desired flow pattern would be reduced to 30% for the warmer 

seasons with buoyancy alone strategy. 
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          a) 

 

 

             b) 

Figure 5-8: The probability for desired flow pattern. a) Wind and buoyancy combined, b) 

Buoyancy alone 
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5.3 Revision of design: The open wind floor strategy 

The planning and spatial configurations of tall buildings are regarded as key 

parameters which determine the possibility and efficiency of natural ventilation. 

As being demonstrated in the Liberty Tower of Meiji University, the combination 

use of ―Wind Floor‖ and ―Wind Core‖ may lead to the development of an extreme 

stack effect for natural ventilation. However, the ‗open wind floor‘ is placed in 

the 18
th

 level of the building, where only 5 floors are above the wind floor. The 

full benefit of the segmentation concept may not be achieved as identified in the 

base case models of Section 5.2. It is therefore, for the revised design of this study 

(Fig. 2-41b), an open wind floor with two air intakes, namely in the south and the 

east, is introduced to the base case building configuration (Fig. 2-41a). The 

architectural features of a segmented atrium and ventilated double-skin facades 

remained, but with an open floor in the bottom level of each segment. The ‗open 

wind floor‘ in this section is regarded as an alternative for building segmentation. 

The dimension of floor plan is reduced to 12 (m) by 12 (m) for better practice of 

cross ventilation across floor plan. The difference between the base case and 

revised building configuration design is illustrated as Figure 2-41.  

 

Sapian (2004) investigated the effect of high-rise open ground floor to the natural 

ventilation performance. His study suggested that the pressure distribution on 

either windward or leeward side of building surfaces would be affected by the 

introduction of a void at floor level. It was also found, not surprisingly, that the 

difference of wind pressure coefficient between the windward and leeward 

openings was crucial for cross ventilation performance. In the present study, an 

open wind floor is introduced in the revised design. For the ground level with the 

open wind floor strategy, the "lifted" building configuration is introduced. For the 

building segments within the mid-level of the whole building, the open wind floor 

can be regarded as a service floor accommodating the mechanical systems or a 

refuge floor for fire safety.  The aim of this section is to investigate the natural 

ventilation performance of the associated office rooms under the revised building 
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configurations. The monthly ventilation performance of the cases with the open 

wind floor strategy is evaluated under different ventilation conditions. The 

comparisons are then made between the base case and revised design in Section 

5.3.3 and Section 5.4.  

 

5.3.1 The effect of segmentation 

In this section of study, the monthly averaged flow rates against floor height of 

the open wind floor strategy are examined. Though the monthly average data sets 

are not necessarily representative with respect to instant ventilation performance, 

it is simple and easy for comparison in terms of the general ventilation 

performance of different segmentation cases. The reasoning for this is stated in 

Section 5.1. The monthly averaged data sets are evaluated over the occupied 

hours (7:30-18:30) during the month. The revised building configuration with 5 

different segmentation heights, namely the 3, 6, 9, 12 and 15 storeys are adopted 

in this section. The aim is to look at the segmentation effect on the resultant flow 

rates as well as the overall thermal environment of the associated office spaces.  

Some modelling results as presented in Figure 5-9 suggest that for the wind and 

buoyancy combined case, the larger segmentation is beneficial for increasing the 

overall flow rates through individual floors especially for the warmer months. 

However, the influence of segmentation on the resultant flow rates is limited 

when over 12 storey segmentation height. This could be explained by the total 

flow rates through the building being controlled by the inlet and outlet. By using 

the same inlet and outlet size for each segmentation case, the volume flow rates 

through the associated offices are constrained accordingly. It is also found that the 

smaller segmentation case (3 storeys) tends to vary with the weather condition 

more compared to the larger segmentation cases. This can be seen from the 

monthly averaged flow rates against height as presented in Figure 5-9.  

Additionally, the 3 storey segmentation case presents the smallest deviation of 

flow rates across floors. Also, the deviation between the top and bottom floor 
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would increase when larger segmentation height is adopted. At the mean time, the 

deviation of flow rates distribution between different segmentation cases 

increases when the external temperature gets higher (Fig. 5-9). Nevertheless, this 

study used the same opening size for modelling air flows through each floor. In 

reality, uniform flow rates between floors could be achieved by slightly varying 

the areas of openings according to occupants‘ needs.  
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Figure 5-9: The monthly volume flow rates against height_ The lifted case under the wind and 

buoyancy combined condition 

 

The effect of ventilation condition is also investigated in the revised building 

configuration. To take the 12 storey segmentation case for instance (Fig. 5-10), 

the monthly averaged flow rates under different ventilation conditions indicate 

that the flow reversal occurs at the higher floor levels, because of the gradually 

lessening volume flow rates against building height. The wind and buoyancy 

combined case performs relatively better than the buoyancy alone condition. The 

desired flow pattern could be obtained for all floor levels irrespective of weather 

conditions when with the presence of wind and buoyancy forces together.  It can 

also be seen that the monthly variation of flow rates, namely from March to 

August, is insignificant in terms of flow rates of associated floor levels of the 

revised building configuration. The base case building configuration, however, 

tends to have larger deviation on the resultant flow rates according to the 

ventilation conditions applied. Different inlet conditions are investigated in 

Section 5.4 for clarifying the impact of ventilation inlets on the resultant flow 

rates against building height. The influence of open wind floor strategy is 

evaluated by comparing the ventilation rates as well as the overall thermal 

environment between the base case and the revised building configuration in 

Section 5.3.2 and Section 5.4. The problem of applying open wind floor strategy 

in the bottom segment of the whole building, namely the lifted case, is 

investigated in Section 5.3.4. 



- 161 - 

 

 

Figure 5-10: The monthly volume flow rates against height by different ventilation conditions_ 

revised models with the open wind floor 

 

 

5.3.2 The probability for ventilated cooling  

In this section, the overall ventilation performance of the lifted and base case are 

compared with reference to the probability for ventilated cooling as well as the 

overall thermal environment. One concern is that the air intake sizes are different 

for the investigations of the base and lifted case in this section. For example, there 

is only single air intake of 9 m
2
 in the base case model (Fig. 2-42a); while there 

are four air intakes from different orientation located in the lifted case in aims of 

enjoying the benefit of open wind floor strategy (Fig. 2-42c). This arrangement is 

necessary because that the ventilation performance may not have significant 

difference during the buoyancy alone condition with the same inlet size being 

applied in the base and lifted case (only the stack height may be different due to 

the lifted height of 4 m in the lifted case).   

By using the same approach for estimating the minimum required flow rates for 

cooling, the ventilation rate of 1.1 (m
3
/s) would suffice for removing the internal 

heat gains under the condition of ∆T = 3.3°C for the revised building 

configuration design. One thing to be noted is that the ∆T of 3.3°C is defined 

under the summer design condition, which may present a typical ambient 

condition in the hot summer of Taipei. For other periods with larger diurnal 

temperature swing, lower ventilation rates are required to compensate the internal 
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heat gains. The histogram analysis on the simulation results of the revised cases of 

this section is used to identify the probability for achieving the design goal (> 1.1 

m
3
/s). The probability is defined as the percentage time that the required flow 

rates is achieved during the occupied period.  The preliminary seasonal potential 

for the 12 storey segmentation case to have sufficient flow rates under different 

building configuration and ventilation conditions is illustrated as Figure 5-11.  

 

For the buoyancy alone cases as shown in Figure 5-11a, the percentages for 

ventilated cooling decrease with floor height and the variation between floors is 

larger than the wind and buoyancy combined cases. Consequently, the higher 

floor level may not be able to reach the required flow rate for ventilated cooling. 

Additionally, the deviation for ventilated cooling potential between floors of the 

revised case is significant, compared to the base case building configuration. Also, 

the overall ventilated cooling potential would be reduced by 25% during the 

warmer season. It is supposed that the air intake size plays an important role in the 

lifted case (18 times as compared to the base case) during the buoyancy-alone 

condition, which improves the overall probability for achieving the desired flow 

rates. For the wind and buoyancy condition, however, the fully open wind floor 

may not be always of benefit, because the combination of wind and stack effect 

may conflict with each other depending on the ambient weather condition. One 

thing to be noted is that the extra internal heat loads of 20 W/m
2
 are applied in the 

open wind floor of the revised building configuration.  

 

The poor ventilated cooling potential in the top one-third floors of the revised 

case might be due to the change of neutral point level (NPL) where the warmer air 

is driven into the occupied spaces when above the NPL. The flow reversal occurs 

accordingly. Further NPL issues are discussed later in Section 5.4.2. Generally 

speaking, the probability for all floors of the examined cases to reach the design 

condition is much higher in the mid-seasons. The lifted case is more sensitive to 

the ambient condition as compared to the base case model during the buoyancy 

alone condition (Fig. 5-11a). However, the seasonal deviation is insignificant for 
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both building configurations under the wind and buoyancy combined condition 

(Fig. 5-11b). Perhaps not surprisingly, the potential for ventilated cooling can be 

much improved with the help of prevailing wind force. 

 

The free running temperatures of the base and lifted case under different 

ventilation condition are presented in Figure 5-12. The results suggest that the 

temperature of the office space is closely related to the external temperature. For 

the buoyancy alone condition, the deviation between the base and lifted case is 

insignificant as expected (Fig. 5-12c&d). For the wind and buoyancy combined 

condition, however, the lifted case is not always of benefit. Although sufficient 

flow rates are achieved for the both cases, more amount of warmer air is driven 

into the occupied spaces of the lifted case with 4-sided air intake along with the 

extra solar gains through larger envelope openings, which results in the office 

temperature is higher than the ambient in general (Fig. 5-12a&b).  

 

It is supposed that the resultant flow velocities through the openings may help 

with some personal cooling during the mid-season, even with a slightly higher 

temperature (>29 °C). But the personal cooling is much more difficult to achieve 

when the temperatures of the occupied spaces are over 32 °C for most of the time 

in summer. As discussed in Section 5.2.2, the diurnal temperature swing of 

around 7 °C on a day in the mid-season of Taipei is observed. For which, a 

ventilation flow path of low resistance can be incorporated into the building for 

night ventilation. However, the night ventilation seems not to be a long-term 

approach for cooling with reference to the seasonal temperature fluctuations and 

the corresponding low ventilation rates, especially for the hot summer.  
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                                        (a)                                                                        (b) 

Figure 5-11: The probability for ventilated cooling. (a) Buoyancy alone, (b) Wind and buoyancy 

combined 

 

 
(a) The base case: Wind and buoyancy combined condition 

 
(b) The lifted case: Wind and buoyancy combined condition 
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(c) The base case: Buoyancy alone condition 

 
(d) The lifted case: Buoyancy alone condition 

Figure 5-12: The thermal environment of the base & lifted case between 25
th

 ~28
th

 of March under 

varied ventilation condition 

 

 

5.3.3 The probability for desired flow pattern 

The same approach as used in Section 5.2 is adopted for investigating the desired 

flow pattern of the revised building configuration. The values of volume flow 

rates are positive (> 0 m
3
/s) when the flow pattern follows the design flow 

direction. To take the 12 storey segmentation case in the bottom segment of the 

building (the lifted case) for example, the seasonal averaged flow rates under 

different ventilation conditions indicate that it is less likely for the base case 

building configuration to obtain the desired flow pattern under the buoyancy 

alone condition when the external temperature increases (Fig. 5-13). Also, with 

the gradually lessening volume flow rates across building height, the reversed 
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flow patterns occur at the higher floor levels of both building configurations. 

Though the same phenomenon is found for the top two-third floors of both 

building configurations, the lifted case presents the better performance in terms of 

desired flow pattern in general. The difference found between these two building 

configurations may be because of the change of NPL in the lifted case, where an 

open floor with extra heat gains is introduced in the bottom floor of each building 

segment. The wind and buoyancy combined case, on the other hand, is effective 

for achieving the desired flow pattern under the lifted building configuration 

except for the top two floor levels. It is supposed that the moving of neutral point 

level (NPL) would cause the occurrence of flow reversal. Further discussions on 

the NPL issue is presented in Section 5.4.1. Generally speaking, the desired flow 

pattern could be obtained for all floor levels irrespective of simulation periods 

with the help of wind and buoyancy forces. The seasonal possibility for the base 

and lifted building configurations to achieve the desired flow pattern under 

different ventilation conditions is illustrated as Figure 5-13b. 

 

 

  

  

                                      (a)                                                                            (b) 

Figure 5-13: The probability for desired flow pattern. (a) Buoyancy alone, (b) Wind and buoyancy 

combined 
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5.3.4 The investigations of comfort wind environment of the lifted case 

 

For the ground level with the open wind floor strategy, the "lifted" building 

configuration is introduced. In the following subsections, the 12 story 

segmentation case is chosen for examining the impact of ventilation inlets on the 

resultant flow rates as well as the overall thermal environment of the occupied 

spaces. The lifted case with single, 2-sides and 4-sides air intakes is adopted to 

investigate the natural ventilation performance against floor height. The 

configuration and inlet conditions of the lifted case adopted in this section are 

presented in Figure 2-42 and Figure 5-14. The monthly ventilation performance of 

the cases with the open wind floor strategy on the ground level is evaluated under 

different ventilation conditions as follows. 

 

 

   

 
Figure 5-14: The air intake scenario of the lifted case. (a) Single, (b) 2 sides, (c) 4 sides 

 

5.3.4-1 The buoyancy alone condition  

For the buoyancy alone cases, the volume flow rates decrease with floor height 

for both building configurations in general. The desired flow pattern could be 

achieved for almost all floors of test cases in March irrespective of the size of air 
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intake adopted. The design condition, positive flow rates, is hardly achieved when 

the external temperature is higher than the simulated internal temperature, 

particularly for the case with large air inlets (4-sides). The results as shown in 

Figure 5-15 suggest the impact of air intake size on the overall flow rates against 

building height. It is found that the optimum size of ventilation inlet is crucial for 

the desired flow pattern and satisfactory thermal environment, especially when 

the external temperature is getting higher. 

To take the modelling results in March for example, the desired flow pattern can 

be achieved for the majority of floors for the all four cases. When the external 

temperature gets higher, namely from April, the case with larger inlet size is 

unlikely to have the desired flow direction. The base case presents similar 

performance as the lifted case with 2-sided air intake; while the completely open 

design (4-sided air intake) suffer from large flow reversal as compared with the 

design with 2 open sides. The open wind floor strategy with single air intake 

receives similar absolute flow rates as the base and 2-sided cases, but with the 

desired bottom-up flow direction for the bottom half of floors during the warmer 

season. From the desired flow pattern point of view, it is supposed that the open 

wind floor functions as the buffer zone which might regulate the incoming warm 

air to cool down to some extent under the favourable weather condition. Hence it 

may reduce the likelihood of flow reversal because of the moving of neutral point 

level (NPL) near to the top of the atrium. With the change of NPL for the 

otherwise test cases, the flow reversal occurs accordingly. According to the 

simulation results, the base case model could achieve the design condition mainly 

in the cooler seasons; while it is difficult for the base case model to obtain the 

same design condition with the low or no wind condition when the external 

temperature gets higher, mainly between April and August. On the other hand, the 

lifted cases with appropriate inlet opening size, namely the single air intake case, 

could achieve the desired flow pattern (> 0 m
3
/s) on the bottom two-thirds of 

segmentation; while the lifted case with 4-sided inlet is not always beneficial 

because of the moving of NPL to the bottom of the atrium. The undesired flow 

reversal occurs accordingly.  
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Figure 5-15: The monthly volume flow rates against height _Buoyancy alone  
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5.3.4-2 The wind and buoyancy combined condition 

For the wind and buoyancy combined cases, the base case and lifted cases with 

single and 2-sided air intake can obtain the desired flow pattern for almost all 

floors, except the top quarter floors, at all times. The same conclusion as stated in 

buoyancy alone condition could be made for the lifted case with 4-sided air intake, 

where the design condition is hardly achieved when the external temperature is 

not favourable. The ventilation rates of the base case model are comparatively 

larger than the lifted cases with single and 2-sided air intake, especially for the 

higher floor levels. For which the deviation of flow rates between floors is 

insignificant in the base case building configuration under the wind and buoyancy 

combined condition. The desired flow pattern could be obtained for all floors of 

the base case model, while it is unlikely to reach the design condition in the top 

quarter floors of the lifted cases when experiencing higher external temperature. 

The overall variation of flow rates against floors of the lifted cases is larger than 

those of the base case building configuration. Four selected cases can achieve the 

desired flow direction in March except for the topmost floors of the lifted case 

with single inlet (Fig. 5-16). The lifted case with 4-sided air intake is unlikely to 

obtain the desired flow direction with higher external temperature, namely after 

April. It is supposed that much warmer air being driven into the atrium through 

the 4-sided air intake, which causes the moving of NPL near to the bottom of the 

atrium, as compared with the otherwise cases, and the flow reversal occurs 

accordingly. It is therefore the lifted case with 2-sided air intake and the base case 

building configurations are much preferred in terms of desired flow pattern and its 

relatively smaller deviation between floors. The free running temperatures of the 

selected spaces with the 2-sided and 4-sided ventilation inlet conditions are 

illustrated as Figure 5-17. Similar thermal performance is found for the 2-sided 

and 4-sided cases (Fig. 5-17a&b). For the summer time (Fig. 5-17c&d), the office 

temperatures are quite close to the ambient when with sufficient flow rates (>3 

m
3
/s) passing through the occupied spaces. However, the thermal comfort cannot 

be guaranteed, resultant flow velocities from the bulk flows (opening size of 5 m
2
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applied) is not sufficient for personal cooling upon the presence of warmer air 

over 32 °C. 

               

       

       

Figure 5-16: The monthly volume flow rates against height _Wind and buoyancy combined  
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(a) The two-sided ventilation inlet condition on 25

th
 of March 

 
(b) The four-sided ventilation inlet condition on 25

th
 of March 

 
(c) The two-sided ventilation inlet condition on 22

nd
 of June 

 
(d) The four-sided ventilation inlet condition on 22

nd
 of June 

Figure 5-17: The free running temperatures of the lifted case with different ventilation inlet under 

the wind and buoyancy combined condition 
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5.4 Comparisons between the base case and revised building 

configurations of the main investigations 

5.4.1 Investigations of neutral point level (NPL) 

To achieve the desired flow pattern, the NPL has to be forced above the height of 

the highest occupied floor, otherwise warm air from lower floors would exhaust 

through the top occupied floor, resulting in poor thermal comfort on the top floor. 

This is for the buoyancy alone case since the NPL cannot be easily defined for the 

wind and buoyancy combined case. For the atrium space of the base case building 

configuration, the hourly temperature of the atrium is plotted along with the 

ambient temperature over the occupied hours on the chosen day (Fig. 5-18).  

The modelling results indicate that the warmer air would accumulate in the higher 

levels which cause 3 to 4 degree of temperature difference between the bottom 

and top atrium nodes of the base case on 25ht March (Fig. 5-18a). The same 

phenomenon is found for the lifted case, but the temperature difference between 

nodes is much smaller than those of the base case (Fig. 5-18b). This could be 

explained by having extra heat gains of 20 W/m
2
 in the open floor (the bottom 

floor of the lifted case), where the air may be warmer in the bottom segment as 

compared with the base case building configuration. The temperature distribution 

within atrium nodes would cause the movement of neutral point level, which 

results in the variation of flow pattern, because of pressure difference between 

nodes. The simulated temperature from ESP-r can be used in the explicit solution 

of EFM to obtain the required opening size for remaining the neutral point level to 

be at the roof height. But this is not studied in this thesis because it is the building 

segmentation and preliminary feasibility for natural ventilation in tall buildings 

under the proposed building configurations that concerned. The range of opening 

sizes may be suggested for specific building configuration where all other 

boundary conditions are defined in the later design phase. 

The simulated total flow rates through the air intake of both test cases are similar 

because of the employment of the same envelope opening size under the 

buoyancy alone condition, where only the stack height may cause minor 
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difference to the resultant flow rates. However, the temperature variation pattern 

within the atrium of the base case is different from those observed in the lifted 

case. That is why the same neutral height level could not be achieved for both 

case with the same boundary conditions under the buoyancy alone condition. The 

boundary conditions of this section include the inlet and outlet sizes, ambient 

weather conditions and size of vent associated with offices. Different flow 

patterns through individual flow connection with fixed opening size for each floor 

are observed accordingly.  

The equations 3-1~3-3 as described in the methodology (Ch3) are used to check 

whether the neutral height level could be fixed to the assumed upper roof level 

under the designed opening size. The assumption is made for ensuring the desired 

flow pattern where the air flow would go upward and exhaust through high level. 

If the required opening size exceeds the set conditions in simulations, the desired 

neutral height level (upper roof level) would not be achieved and the flow reversal 

occurs. It is also supposed that the extra heat gains in the wind floor would warm 

up the air flow entered from the inlet, which cause an influence on the neutral 

point level of the lifted case. The reasoning above demonstrates why different 

flow patterns are observed in the base case and lifted building configuration with 

buoyancy alone case applied under the same boundary conditions.   

 

 
(a) The base case 
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(b) The lifted case 

Figure 5-18: The free running temperatures of the atrium nodes 

 

 

5.4.2 Viable periods of time for comfort ventilation 

In terms of ventilated cooling, though the minimum required flow rates are 

secured, the thermal comfort would not be guaranteed because the warmer air 

may be driven into the occupied space. The acceptable thermal comfort boundary 

in the climatic context of Taiwan should be evaluated further to establish the limit 

of convective cooling. In this section, the number of hours is examined for 

looking at the viable time for comfort ventilation. The acceptable upper band of 

temperature for Taipei, Taiwan is set to 28 ˚C under the still air condition in this 

study, with reference to the reviews on thermal comfort for hot and humid 

climates as stated in Section 3.4.3. Additionally, the required flow rates for 

cooling are the second criterion for comfort ventilation in this study. The indoor 

air flow speed can be acquired from the ventilation bulk flow accordingly. The 

equation used for the minimum flow rates for removing the internal gains is 

described in Equation 3-1.  

The statistic analysis is conducted for both the base case and lifted building 

configurations, where the bottom segment of the whole building is concerned. 

The effect of wind and buoyancy is evaluated separately or in combination. The 
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viable time for the base case building configuration with buoyancy alone strategy 

to achieve the design conditions (T< 28 ˚C and q> 1.1 m
3
/s) is illustrated in Figure 

5-19. The statistical results suggest that the number of hours for comfort 

ventilation would increase slightly with floor level initially, and reach the 

maximum in the third or fourth level according to the ventilation strategies and 

season. It then decreases gradually with height irrespective of simulation period 

and ventilation strategies. Generally speaking, the averaged percentage for the 

buoyancy alone strategy to achieve the design condition is 38 % and 9 % for the 

mid-seasons and hot summer respectively. The viable time would be much 

improved with the help of wind, which increases the percentage to 68 % and 28 % 

respectively.  

  

Figure 5-19: The seasonal number of hours for comfort ventilation by different ventilation 

conditions _Base case 

 

As for the lifted case, however, it is not always advantageous for all seasons to 

reach the design condition when compared with base case building configuration. 

Two different opening configurations, namely the 2 sides and 4 sides, are adopted 

to construct the envelope of the wind floor for investigating the effect of inlet size. 

The simulation results suggest that the open floor strategy has little influence on 

the viable time for comfort ventilation in March and tends to have significant 

impact when the external temperature gets warmer, particularly for the case with 

large 4-direction inlets in the wind floor.  The warmer air is driven into the office 

spaces during the hot summer and results in the reduction of feasibility for 

comfort ventilation. In this case, the resultant flow velocities from the bulk flow 
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are of little help for personal cooling. Some examples of statistical results for 

comfort ventilation are presented as Figure 5-20.  

  

  

Figure 5-20: The seasonal number of hours for comfort ventilation by different ventilation 

conditions _Lifted case 

    

Nevertheless, the monthly viable time for comfort ventilation is required for more 

practical application. The monthly viable hours for comfort ventilation with the 

wind and buoyancy combined strategy under three different building 

configurations are shown as Figure 5-21. For the cooler period, March, the 

deviation between three different cases is small for the bottom half of floor levels. 

The deviation is increasing in the top half of floors between the base case and 

lifted case with 2-side air intake, for which the total inlet size is 9 times of the 

base case. Also, the deviation between these two cases increases when the 

ambient temperature is higher. As for the lifted case with 4-side air intake, where 

the total inlet size is 18 times compared to the base case, the design condition 

would not be achieved for over 90 % of the time for the top two-third of floors 

during the warmer season, namely between April and August. It is due to warmer 
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air is being driven into the occupied space, which reduces the likelihood of 

cooling effect. Detailed viable numbers of hours to achieve comfort ventilation 

are presented in Figure 5-21. 

It is obvious that the possibility for comfort ventilation decreases with higher 

ambient temperature. The lifted case with 2-sides air intake, for which the inlet 

size is 9 times of the base case, tend to have better ventilation performance for 

almost all floors with the buoyancy alone strategy. Its overall percentage for 

comfort ventilation ranges between 5% and 62%. The wind and buoyancy 

combined strategy, however, is more beneficial for the base case building 

configuration. For the lifted cases with larger ventilation inlets, the warmer air 

may be driven into the occupied spaces through the ventilation path with the help 

from wind force. The monthly percentage for comfort ventilation of the base case 

ranges between 17% and 83%. The statistical results are illustrated as Figure 5-22. 
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Figure 5-21: The monthly number of hours for comfort ventilation by building configuration 

 

   

 

Figure 5-22: The percentage for comfort ventilation by different building configurations and 

ventilation conditions 

 



- 180 - 

 

5.5 Summary 

 

The air flow patterns (and temperatures) observed with the proposed building 

configurations are compared, for otherwise identical conditions in this chapter. 

Potential conditions where the design goals may not be ensured are identified. 

The overall ventilation performance is evaluated in terms of the required flow 

rates, desired flow patterns and the free running temperature for cooling. One 

thing to be noted is that a certain level of shading control is assumed within the 

atrium space. In this way, the air temperatures entering the office can be 

controlled and to ensure the proper interpretation of simulated thermal 

environment because of the underestimation of resultant indoor temperatures in 

ESP-r. More detailed descriptions are provided in Section 5.2.1-1    

 

To cope with potential magnitude of impinging wind at high levels, a ventilated 

DSF is proposed along with the segmentation concept in the tall office building 

design for the main investigations of this study. The dynamic effects are evaluated 

by the use of dynamic thermal simulation with an air flow network in this chapter. 

In general, optimum segmentation could offer a major advantage for reducing the 

overall variation of flow rates between floors. The same conclusion was made in 

the preliminary investigation using the single-cell envelope flow model. This 

study used the same opening size for modelling air flows through individual floor. 

In reality, satisfactory flow rates between floors can be achieved by slightly 

varying the areas of openings according to occupants‘ needs.  

 

From the desired flow pattern point of view, the larger segmentation could offer 

more opportunities for flow pattern control; while it is unlikely to obtain the 

expected performance with the buoyancy alone strategy when the ambient 

temperature increases. This situation is improved with the help of prevailing wind 

force. In terms of ventilated cooling potential, though the minimum flow rates for 
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ventilated cooling are secured, the thermal comfort would not be guaranteed, 

because of the warmer air being driven into the occupied space. The illustrated 

free running temperatures in this chapter have demonstrated that the ventilation 

rates alone do not necessarily guarantee comfort. To set this in context, Building 

Bioclimatic Charts are proposed in Chapter 6 for the overall evaluation of comfort 

conditions under natural ventilation. 

 

It is found that the 10 storey segmentation case demonstrates the feasibility of 

comfort ventilation for over 60% of mid-seasons in Taipei. The overall ventilation 

performance is evaluated in terms of the desired flow pattern and required flow 

rates.  For the time when the design goal cannot be obtained, the control of air 

intake sizes as well as adjustment of segmentation by the use of damper between 

cavities can be adopted for regulating the ventilation rates. It is supposed that a 

seasonal control algorithm could be developed to provide the optimum desired 

flow pattern, sufficient flow rates and uniform air flow rates between floors; while 

this is not investigated in this study.  

 

The aim for the lifted building configuration (the ground level with the open wind 

floor strategy) is to avoid undesired air draught through the inlet which might 

cause discomfort for the nearby space. It is found that the size of the air intake for 

the lifted cases is crucial, especially for the warmer season. The optimum inlet 

size can be achieved by sensitivity analysis in terms of desired flow rates, flow 

patterns and viable time for comfort ventilation of associated office spaces. For 

the buoyancy alone condition, the lifted case with the same inlet size, as applied 

in the base case, tends to have better ventilation performance in terms of desired 

flow direction and flow rates. The increase of inlet size in the lifted case is not 

always of benefit and would cause flow reversal when the external temperature 

gets higher, and this is closely related to the Neutral Point Level (NPL) within the 

tall atrium. That is, the lifted case with optimum size of air intake is advantageous 
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for buildings blocked by its surrounding buildings where present the low or no 

wind condition.  

 

As for the wind and buoyancy combined condition, the base case tends to have 

better performance in terms of the deviation of flow rates between floors 

compared to the lifted case with the same inlet size. Though the deviation could 

be reduced by adopting the 2-sided air intake, the warmer air might be driven into 

the occupied spaces under the unfavourable weather conditions. The free running 

temperatures as plotted against the atrium nodes also demonstrate this finding.  

Consequently, the base case building configuration is still of interest under the 

scenario of wind and buoyancy combined condition during the hot summer.    

  

To conclude, the transformation between the base case and lifted building 

configuration can be achieved by the control of internal partitions or dampers. 

The ventilation rates alone cannot guarantee the overall thermal comfort 

environment though it is a reasonable approach for comparing the relative 

performance between different ventilation conditions as well as building 

configurations. The plots of the free running temperature of the selected occupied 

spaces have demonstrated this query. Consequently, the use of Building 

Bioclimatic Charts (BBCCs) is desirable for the overall assessment for comfort 

ventilation. The identification of the thermal comfort range is achieved by CFD 

modelling, where the local air flow speed distributions is crucial for the selection 

of comfort range in terms of personal cooling in the climatic context of Taiwan. 
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6. Computational Fluid Dynamics (CFD) 

6.1 Chapter overview 

With the rapid advance in computer capacity and speed, CFD models have 

become a powerful modelling tool for predicting ventilation performance in 

buildings (Chen et al., 2010). In this chapter, the aim is to check to what extend 

that CFD approach can help with the proposed design procedure of naturally 

ventilated tall office buildings aside from all other models mentioned in the 

previous sections. The routes of CFD for natural ventilation design (Table 3-3) 

and its corresponding outcomes to the present research issues as listed in Section 

1.3 are addressed accordingly.  

An envelope flow model approach is used to examine the preliminary ventilation 

performance of tall-atrium buildings. The steady-state bulk flows through 

openings are evaluated under a specified design condition. The potential periods 

of time where the design condition cannot be met are addressed. A more complex 

modelling tool, the thermally coupled mass flow network approach, is adopted in 

the main investigations of this study. The aim is to obtain more detailed 

information on the ventilation bulk flow and its potential cooling effects for the 

corresponding thermal domain of the proposed main building configurations. The 

influence of revised building configurations with an open wind floor strategy is 

also evaluated. The statistical analysis is then carried out to examine the year-

round probability for achieving the design condition, where the hourly variations 

of bulk flow and air flow direction through openings are evaluated.   

However, as summarized by Chen (2009), the envelope flow model and the 

thermally coupled mass flow network approaches assume that the air in a room is 

well mixed, which implies uniform distributions of air temperature and air flow 

patterns. His study concluded that, for small rooms, such as small offices, hotel 

rooms, and bedrooms, such an assumption is often acceptable. For large spaces, 

like buildings with tall atriums and open working spaces, where the floor area is 

over 12 m by 12 m as used in this study, the complete mixing assumption may not 



- 184 - 

 

be acceptable. One would need the distributions of temperature, velocity, and air 

flow pattern to assess local ventilation performance. The tools for ventilation 

assessment in Chapter 4 and 5 provide some insight for natural ventilation 

performance of tall atrium type buildings. However, only the bulk flow through 

the building envelope is addressed. For further quality assurance of the natural 

ventilation system, the local ventilation performance should be considered. 

Consequently, the necessities of CFD approach are identified as follows:  

The first concern of this study is with respect to accuracy of resultant flow rates in 

the thermally coupled mass flow network model, where one of the dominating 

influential factors is the wind pressure coefficient (Cp). It is in a sense that Cp 

values across building height, particularly in tall buildings, might have significant 

difference to those suggested in the available database (Bowen, 1976; Liddament, 

1986). For the base case model of the main investigations in this study (Fig.2-40), 

the Cp values in the locations of inlet and outlet are required. The ranges of 

influence with reference to Cp values on resultant flow rates are identified in 

Section 7.3.4 which suggests further investigation on the reliability of Cp database 

within ESP-r. In this Chapter, the reliability of Cp dataset is evaluated using the 

CFD approach. The simulations are carried out by the use of the stand-alone 

commercial CFD program, FLUENT 6.2.16. The results are then compared with 

the web-based TPU (Tokyo Polytechnic University) aerodynamic database which 

is developed from the wind tunnel testing. The same velocity profile and aspect 

ratio are selected for cross comparison. Detailed findings and analysis are 

presented in Section 6.2.  

Secondly, the air flow network assumes one node per opening/zone which denote 

the air flow connection to be single direction per time step. In reality, uneven 

pressure difference is distributed throughout the space which causes local 

variation of flow pattern. Therefore, CFD approach is required for examining 

detailed air flow distribution of openings and its connected spaces as well. In 

Section 6.3.1 of this chapter, the thermally coupled single-domain CFD approach 

within ESP-r is proposed to evaluate the initial local ventilation performance of a 
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particular occupied space. It is the coarse-grid CFD approach for which the grid 

size adopted in the CFD simulation is coarser than the conventional fine grid size 

for reducing the calculation time. The technical background and its adequacy for 

current research questions are described in Section 6.3.1 accordingly. Following 

that, FLUENT (with more sophisticated numerical models) is used to investigate 

the ventilation performance of the whole building under the selected boundary 

conditions. The potential pros and cons of using the stand-alone CFD program are 

compared with the thermally coupled single-domain CFD approach. Issues being 

investigated in this chapter are outlined as Table 6-1. For this study, the stand-

alone CFD simulation by the use of commercial program (FLUENT) is applied 

for the following investigations: 

 The adequacy of the use of wind pressure coefficient (CP) dataset in ESP-r  

 The whole building natural ventilation performance in terms of local air 

flow and temperature distributions  

 The selection of comfort boundary in the Building Bioclimatic Charts 

from the simulated indoor air flow velocity distributions of CFD 

 

 

Table 6-1: Issues being investigated by the use of CFD approach in this Chapter 

Issues to be 

investigated 
Descriptions reference 

Wind pressure 

coefficient 

(CP) 

 The adequacy of the use of wind pressure coefficient 

dataset in ESP-r 

 Comparisons of CP values among CFD, TPU 

aerodynamic database and inbuilt database of ESP-r  

Section 6.2 

Whole 

building 

simulation 

 

Single CFD domain simulation with ESP-r: 

 The necessity of coupling approach within ESP-r (BES-

CFD & AFN-CFD)  

 Resolution level on local air/temperature distribution 

 Computing efficiency and technical convenience   

Section 6.3.2 

  Stand-alone CFD simulation:The indoor air velocity 

distribution with reference to velocity inlet boundary 

condition 

 The lifted case with open wind floor on the bottom level 

of building segment 

Section 6.3.3 

BBCCs 
The feasibility for comfort ventilation of the proposed 

generic design 
Section 6.4 
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6.2 The adequacy of the use of wind pressure coefficient (CP) dataset 

in ESP-r 

 

6.2.1The theoretical background of air flow network and CP in ESP-r  

 

The theory for the air flow network as described by Hensen (1991) and Clarke 

and Hensen (2004) is that ESP-r involves calculation of fluid flow through the 

connections of a nodal network. The nodes of the network represent either 

internal or boundary pressures; the connections represent fluid flow paths. The 

single-direction steady flow is assumed. Information on potential fluid flows is 

given in terms of fluid type, node descriptions, flow component types, 

interconnections and boundary conditions. In this way a nodal network (or 

perhaps several decoupled sub-networks) of connecting resistances is constructed. 

The known pressures or pressure coefficient sets which represent the relationship 

between free-stream wind vectors and the zone surface pressures can then be 

attached to its boundaries. Each fluid flow component (i) relates the fluid mass 

flow rate (mi) through the component to the pressure drop (∆Pi) across it. 

Conservation of mass at each internal node is equivalent to the mathematical 

statement that the sum of the mass flow equals zero at such a node. A basic 

expression for turbulent flow through relatively large openings is the common 

orifice flow equation and is given by: 

 

PACm d  2

            

(kg/s)                                                                          (6-1)                                                                

The mass flow simulation (mfs) module in ESP-r offers a component called: air 

flow opening. This component is actually identical to a common orifice flow 

component with fluid type set to air and with discharge factor Cd equal to 0.65. 

Furthermore, it is necessary to map the "free stream" wind velocity (as read from 

the climate file) onto the surface as a function of the wind‘s vertical velocity 

profile and the sheltering effect of remote and local façade obstructions for 
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determining wind induced boundary pressures. This effect is usually accounted 

for by a dimensionless pressure coefficient: 

 

2
2/1 rd

i
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P
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i 
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(-)                                                                            (6-2) 

where CPi is the pressure coefficient for a surface location, i, corresponding to 

wind from direction d, Pi is the surface pressure due to wind (Pa), ρ is the air 

density (kg/m
3
) and Urd is the wind speed (m/s) at some reference level r and from 

direction d (expressed relative to the external surface normal vector). 

 

 

Furthermore, the airflow related equations used in ESP-r are defined as follows: 

 

nodeernalnode gZP int                                                                                       (6-3) 
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                                   (6-4) 

 

zgPstack                                                                                                      (6-5) 

 

nodenegativenodepossitiveconnection PPP                                                                         (6-6) 

 

PACQ d  2                            ; where stackconnection PPP                               (6-7) 

 

where Pnode-internal and Pnode-boundary are the pressure at node (includes stack 

pressure); ρ is the outdoor air density estimated using the Boussinesq 

approximation for boundary node calculation, which is accurate as long as actual 

density variation is small; g denotes the gravity; U is the wind speed at the 

reference height (building height); Δz is the height difference between two 

openings and Znode is the height of node.  
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Wind pressure coefficients within ESP-r are based on published measurement 

results from AIVC (Liddament, 1986) and are available through a data file 

(pressc.db1) holding a collection of standard pressure coefficients sets. These sets 

can be used (with care) for low-rise buildings, which is an issue to be investigated 

later. Manual input of Cp values (16 directions in a 22.5˚ basis) is allowed. 

∆Pconnection is the pressure difference between total pressures at nodes. The 

connection of a positive side and a negative side is used to keep track of the 

direction of fluid flow; for example, the flow rate is positive in value when 

following the predefined flow direction. Additionally, the ratio between the local 

wind speed and the wind speed as read from the climate file is called the wind 

speed reduction factor. Besides direct numerical input, the mfs module offers 

several user selectable wind profiles for evaluation of the wind speed reduction 

factor.  

 

In this section, the focus is to identify the adequacy of Cp database embedded in 

ESP-r for modelling naturally ventilated tall office buildings. The stand-alone 

commercial CFD program (FLUENT) is adopted for the investigations. The CFD 

modelling results are compared with the TPU aerodynamic database of high-rise 

building and the dataset used in the ESP-r modelling for validation purpose. An 

aerodynamic database for high-rise buildings has been constructed by the Tokyo 

Polytechnic University in Japan as one part of the Wind Effects on Buildings and 

Urban Environment. Its objective is to provide structural design engineers with 

wind tunnel test data of wind loads on high-rise buildings. 22 models of high-rise 

buildings were tested in their database. Contours of statistical values of local wind 

pressure coefficients, graphs of statistical values of area averaged wind pressure 

coefficients on the wall surfaces and time series data of point wind pressure 

coefficients for 394 test cases are shown on their web site. These data can be used 

to calculate local wind pressures, area averaged wind pressure coefficient on wall 

surfaces, and even wind induced dynamic responses of high-rise buildings. The 
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information required for the query of test results includes the Breadth v.s Depth, 

Breadth v.s Height, and the Alpha parameter for determining the exposure factor. 

One thing to be noted is that the same velocity profile and aspect ratio (building 

configuration) are selected for the comparison among CFD results, ESP-r dataset 

and the TPU aerodynamic database. The influence of pressure coefficient datasets 

on the resultant flow rates is discussed later in Section 7.3.4. One example from 

Figure 6-1 shows the potential range of difference on the calculated flow rates 

with reference to varied Cp values, where the Cp value is varied from 0.7 to 0.9 for 

the inlet while the value for the outlet is kept consistent as -0.8. Two different sets 

of wind pressure coefficient arrangements demonstrate the influence of pressure 

difference between inlet and outlet of the proposed base case building 

configuration (Fig.2-40). Detailed evaluations on the adequacy of wind pressure 

coefficient datasets in ESP-r are discussed as follows.  

 

 

 

Figure 6-1: Resultant flow rates with reference to different Cp arrangements in March 
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6.2.2 The modelling of surface CP of proposed building configuration 

The full CFD simulation is adopted for this section by the use of commercial 

program, FLUENT. The information required for this problem type is described 

as follows. 

 

(a) Computational domain  

Yang et al. (2006) set the computational domain size as 5H (H=building height) 

upstream, 10H downstream, 5H away from each side of the target building and 

5H above it. Tominaga et al. (2008) also suggested that for the single-building 

model, the lateral and the top boundary should be set 5H or more away from the 

building. The distance between the inlet boundary and the building should be set 

to correspond to the upwind area covered by a smooth floor in the wind tunnel. 

The outflow boundary should be set at least 10H behind the building. Similar 

requirements for the inlet and the top boundaries were suggested by COST 

(European Cooperation in the field of Scientific and Technical Research) group 

(Action C14 ‗‗Impact of Wind and Storms on City Life and Built Environment‘‘ 

Working Group 2—CFD techniques). The above results were summarized by 

Franke et al. (2004) and Franke (2006).  

Furthermore, Franke et al. (2004) and Franke (2006) summarized the conclusions 

from AIJ (Architectural Institute of Japan) and COST, both of which 

recommended similar grid resolution for actual building complex. They suggested 

that the minimum grid resolution should be set to about 1/10 of the building scale 

(about 0.5~5 m) within the region including the evaluation points around the 

target building. Moreover, the grids should be arranged so that the evaluation 

height (1.5–5.0 m above ground) was located at the 3
rd

 or higher grid from the 

ground surface (Yoshie et al., 2005a; Tominaga et al., 2005). The dimensions of 

the target building in this study is x×y×z = 30×30×60 m. The Breadth:Depth of 

1:1, Breadth:Height of 1:2, and the Alpha parameter of 0.25 for determining the 

exposure factor are adopted for the query of test results of TPU database. For 

which the same velocity profile and aspect ratio (building configuration) are 
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selected for the comparison among the CFD results, ESP-r dataset and the TPU 

aerodynamic database.  The three-dimensional computation domain for this study 

is set as Figure 6-2, where x×y×z = 900×600×360 m / (10H; 5H; 5H). 

 

Figure 6-2: The computational domain 

 

 

(b) Grid dependency tests 

Tominaga et al (2008) suggested that the minimum of 10 grids was required on 

either side of a building to reproduce the separation flow around the upwind 

corners. Furthermore, grid shapes should be set up so that the widths of the 

adjacent grids were similar, especially in the regions with a steep velocity 

gradient. In these regions, it was desirable to set up a stretching ratio of adjacent 

grids of 1.3 or less. However, these recommended stretching ratios might change 

according to the shape of the building and its surrounding. Ferziger and 

Peric (́2002) also recommended that the number of fine meshes should be at least 

1.5 times the number of coarse meshes in each dimension. It should be confirmed 

that the prediction result does not change significantly with different grid systems, 

the root mean square deviation (σCp) is applied in this study to represent the 

differences between values predicted by the proposed models. The equation used 

is expressed as:  
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where Cpn-1 is the pressure coefficient of grid number N in previous modelling 

session, Cpn is the pressure coefficient of grid number N in current modelling 

session and N is the total number of gridding system.  

 

The wind pressure coefficient defined in this section is provided as follows: 
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where Px is the static pressure at a given point on the building surface (Pa), P0 is 

the static reference pressure (Pa), Pd is the dynamic wind pressure (Pa), ρ is the air 

density (kg/m
3
) and Uref is the reference wind speed, which is taken at building 

height in the upstream undisturbed flow (m/s). 

 

 

The mesh sizes and ranges of deviations of different testing are listed in Table 6-2 

and 6-3 respectively.  

For this section, the distribution of pressure coefficient over the building surfaces 

is the main concern. The gird independent tests suggest that the total cell number 

for over 860000 would decrease the overall discrepancy of Cp values between 

different mesh sizes to 3.2% in general and is less than 2.5% for increasing the 

total cell number hereafter. It can be said that the impact of mesh size is 

insignificant when the total cell number is over 860000 because of the Cp values 

usually range between -1 to 1 in most practical application in buildings. 

Considering the accuracy and efficiency of CFD simulations as well as the 

capacity of current modelling machine, the mesh size of 863400 is finally adopted 

for evaluating the adequacy of the use of wind pressure coefficient dataset in 

ESP-r. The comparison is done among the CFD results, ESP-r dataset and the 

TPU aerodynamic database. 
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Table 6-2: Details for the grid dependency tests 

Mesh name 
Mesh length scale of building 

surface (m) 

Resolution on building 

surfaces 

Total number of 

cells 

Mesh1 3 10 348375 

Mesh2 2 15 625139 

Mesh3 2 15 863400 

Mesh4 1.5 20 1013700 

Mesh 5 1.5 20 1277830 

Note: 

The mesh length scale on the ground is 0.6 (m) and the first cell height from the ground surface is 

0.02 (m). The cell expansion factor is kept as 1.4 for Mesh 1,2 &4; while it is 1.2 for Mesh 3&5. 

 

Table 6-3: The Root Mean Square Deviation of the grid dependency tests 

 Testing type (pressure coefficient) forward leeward Side(L) Side(R) Top 

Case 1 
Standard k-ε v.s RNG k-ε (mesh0_1

st
 

order_pressure outlet) 
0.24% 4.1% 1.3% 1.4% 2.2% 

Case 2 
Pressure outlet v.s outflow (mesh0_ 

Standard k-ε _1
st
 order) 

0.24% 4.1% 1.3% 1.4% 2.2% 

Case 3 
Roughness height in the non-slip wall 

(mesh1_RNG k-ε) 
0.1% 0.9% 2.7% 2.1% 1.8% 

Case 4 
Mesh1 v.s mesh2 (2

nd
 order _RNG k-

ε_outflow)  
2.6% 5.5% 10.9% 6.6% 6.6% 

Case 5 
Mesh2 v.s mesh3 (2

nd
 order _RNG k-

ε_outflow) 
1.1% 2.2% 6.7% 3.2% 2.6% 

Case 6 
Mesh3 v.s mesh5 (2

nd
 order _RNG k-

ε_outflow) 
0.63% 1.7% 5.3% 2.5% 2.1% 

 

 

(c) Solution algorithm, turbulence models and convergence of solution 

The steady calculation using the RANS models with first-order upwind scheme 

for the convection terms is initially applied in this testing. However, the first-

order upwind scheme is not appropriate for all transported quantities. Tominaga et 

al. (2008) concluded that the spatial gradients of the quantities tended to become 

diffusive due to a large numerical viscosity. COST also does not recommend the 

use of first-order methods like the upwind scheme except in initial iterations 

(Franke et al., 2004).   

Additionally, to evaluate wind pressure distribution on a building by using CFD, 

it has been general practice to use k-ε models. However, it is known that the use 

of the standard k-ε model has disadvantages, such as overestimation of wind 

pressure coefficient and turbulent kinetic energy on the windward surface where 

wind impinges on the building as suggested by Endo et al. (2005). They 
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investigated various modified k-ε models for the estimation of wind pressure 

distribution on a parallelepiped shaped building. It was found that the quality of 

prediction of wall surface wind pressure distribution of various buildings was 

improved by applying RNG and Durbin models when compared with the standard 

k-ε model.  Evola and Popov (2006) also showed the accuracy of RNG model for 

the study of natural ventilation issues inside and around a building compared with 

the standard k-ε model. Their results were validated with experimental data. 

Another issue is that calculations needed to be finished after sufficient 

convergence of the solution. Tominaga et al. (2008) concluded that when the 

calculation diverges or convergence was slow, the points below should be 

examined: 

 The aspect ratio and the stretching ratio of the grids may be too large. 

 The relaxation coefficient of the matrix solver may be too small. 

 Periodic fluctuations such as a vortex shedding may be occurring. 

 

The testing of the solution algorithm and turbulence models is summarized as 

Table 6-3. The simulation results show that no significant different on the 

pressure coefficient when different turbulence models (Standard k-ε v.s RNG k-ε) 

and outlet boundaries (pressure outlet v.s outflow) are applied. As seen from 

Table 6-3, their RMS deviation ranges between 4×e
-2

 and 2×e
-3

 as presented in 

case 1 & 2. The influence of roughness height and different element sizes are 

examined in case 3 and cases 4 respectively. According to the recommendations 

from literature reviews above, the RNG k-ε model with three different mesh types 

is applied in the initial investigations of this study. The second order upwind 

discretisation scheme with a pressure relaxation coefficient up to 0.5 is used for 

achieving convergence. The convergence criterion used in this study is the root-

mean-square (RMS) of normalized residual for all variables to be less than e-04.  

 

(d) Boundary conditions  

In this section, the vertical velocity profile U(z) on city terrain is given by a power 

law: 
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where Uh is the local wind speed at a height Zh above the ground (m/s); U10 is the 

wind speed measured in open countryside (m/s) at a standard height of 10 m, and 

K are terrain dependent constants. Here K=0.21, and a=0.33 for city terrain and 

U10=5 (m/s) is used in this study.  

The vertical velocity profile is plotted as Figure 6-3. Other boundaries for steady 

state solutions are listed as Table 6-4. The modelling details for the whole domain 

flow field around the targeted building are listed as Table 6-5. 

 
Table 6-4: Boundary conditions in FLUENT 6.3.26 

Boundary Settings 
Inlet Power law velocity profile (Equation4) 

Outlet Normal gradient of all variables is zero, ∂/∂x =0 

Ground No-slip rough wall (roughness height =0.01 m) 

Building surfaces No-slip rough wall (roughness height =0.005 m) 

Upper domain Symmetry (vertical velocity component w=0 & ∂/∂z =0 

Side domains Symmetry (vertical velocity component v=0 & ∂/∂y =0 

 

 

Figure 6-3: Power law wind velocity profile  

 
Table 6-5: modelling details of the whole domain flow field around the target building 

The final setup and modelling details of the targeted building 

Domain size x×y×z = 900×600×360 m / (10H; 5H; 5H). 

Mesh type Structured 

Turbulence model RNG k-ε  

Convective differencing scheme 2
nd

 Order Upwind 

Resolution on the surface of target building 15 cells in width; 30 cells in height  

Total number of cells 863400 
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6.2.3 Simulation results on adequacy of wind pressure coefficient dataset 

within ESP-r 

 

The purpose of external flow field modelling using CFD (FLUENT) is to test the 

adequacy of the local wind pressure coefficient for the mass flow network 

modelling of ESP-r. The geometry of the examined building is W: D: H=1:1:2. 

The monitored points of the building surfaces are shown as Figure 6-4. 

Comparisons between the CFD simulation results and web-basis TPU 

aerodynamic dataset are achieved for the windward, leeward and side surfaces 

respectively (Fig.6-5~6-7). The simulated top surface result (Fig.6-8) is presented 

alone due to the lack of dataset in TPU database.  

 

Figure 6-4: The gridding system of windward building surface in TPU (right) and FLUENT (left) 
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For the base case model of the main investigations in this study (Fig.2-40), the CP 

values in the location of inlet and outlet are required. Consequently, the CP values 

in the lower section of each vertical surface (for inlet) and the side of top surface 

(for outlet) are considered. Following that, the surface averaged CP values in the 

locations of inlet (windward, leeward and side surfaces) and outlet (top surface) 

as used in ESP-r are plotted and compared with those from FLUENT CFD 

simulations and TPU datasets (Fig. 6-9). It is found that, for the windward surface 

(Fig.6-5), the simulated contour results fit well with the TPU dataset, though with 

discrepancies (roughly of 0.1 in values) for the higher part of the building surface. 

The CP value of 0.7 in the inlet is adopted for the windward surface of the ESP-r 

model which is 0.1 and 0.2 higher in value than the CFD simulations and TPU 

datasets respectively. As for the leeward (Fig. 6-6) and side surfaces (Fig. 6-7), 

larger mismatch is observed between the simulated results and the TPU dataset 

for the target locations. The discrepancy of the CP values between the ESP-r, CFD 

and TPU datasets for different building surfaces is shown as Figure 6-9.  

 

The comparison results show that the credibility of modelled flow rates using the 

thermally coupled mass flow network approach is justifiable, if the driving wind 

force is either from the windward or leeward direction; while the resultant flow 

rates caused by wind from side directions might be questionable. Additionally, 

though the TPU dataset for the top surface is absent, the contour line could be 

extended from the side surfaces for the rough distribution of CP on top surface. In 

this way, minor mismatch is found between CFD simulations (Fig. 6-8) and 

empirical results from TPU for the top surface. Generally speaking, the CP value 

(-0.8) adopted for the outlet of the ESP-r model is reliable because it has 

relatively small variation between three different datasets.  
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Figure 6-5: Testing results of windward surface. (L) CFD results; (R) TPU database 

 

 

Figure 6-6: Testing results of leeward surface. (L) CFD results; (R) TPU database 
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Figure 6-7: Testing results of side surfaces. (L) CFD results; (R) TPU database 

 

 

Figure 6-8: Testing results of top surface: CFD results 
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Figure 6-9: The surface averaged wind pressure coefficients from different dataset 
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6.3 Whole building CFD simulation  

For this section, the internal air and temperature distributions of the whole 

building (regardless of the external flow field) is of interest. The boundary 

conditions for the CFD simulations are derived from the hourly basis simulation 

results from ESP-r at a particular time-step. The modelling technique of single 

domain CFD modelling within ESP-r and the stand alone FLUENT-CFD is 

summarized in Section 6.3.1. The modelling results of single domain CFD 

approach within ESP-r and the full CFD simulation in FLUENT are investigated 

respectively in Section 6.3.2 and Section 6.3.3 as follows. 

 

6.3.1 The modelling technique of Single domain CFD modelling within ESP-r 

and the stand alone FLUENT-CFD 

For the proposed building configuration of the main investigations (Fig. 2-40), the 

office spaces (cells) have one node in each; while the tall atrium and ventilated 

façade segments are divided into multiple zones (one node per 3~5 storeys) . For 

most real world applications, the homogenous conditions within those predefined 

zones might not be satisfied. Therefore, investigations by the use of the single 

domain CFD modelling (with coarse-gridding manner) within ESP-r are proposed 

for the initial understanding on the local air and temperature distribution of a 

selected space. In the case of single domain CFD modelling within ESP-r, the 

coupling between the thermal and that particular CFD domain is allowed. For the 

single domain CFD modelling within ESP-r, data on coupling type, geometry, 

gridding, solution variables, boundary conditions, solver parameters, output files 

etc. are required for the CFD model. Two types of coupling methods, namely the 

BES-CFD and AFN-CFD, are available in ESP-r. The necessity of coupling 

within ESP-r is evaluated from view points of sufficient resolution on local 

distribution as well as computing efficiency and technical convenience. The 

corresponding modelling technique is summarized from the online source of the 

ESRU (Energy Systems Research Unit, University of Strathclyde) website. 
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For the first type of coupling (BES-CFD), the CFD model can be integrated 

within the thermal domain (zone basis). One zone is chosen to be modelled by 

CFD and the remaining of the building is simulated by the conventional approach 

(thermal simulation with an air flow network). The surface convection heat 

transfer coefficients for BES are calculated from the CFD-predicted flow and 

temperature fields. This is referred to the BES-CFD thermal coupling type. The 

BES here denotes ‗Building Energy Simulation‘. There is no interaction between 

the airflow network and CFD. In such cases, fixed mass flow rates are assumed 

for the opening boundaries. The aim for this type of coupling is to investigate the 

ventilated cooling effects and the corresponding temperature distribution within 

the CFD domain. As described by Beausoleil-Morrison (2000), the integration is 

optional and a CFD flag is placed in the zone operation file. One thing to be noted 

is that only one CFD domain is allowed to be coupled with other thermal domains 

per simulation.  

The second type of coupling (AFN-CFD) within ESP-r focuses on the instant air 

flow distribution where the airflow network is coupled with particular CFD 

domain for specific time steps. In other words, the opening boundary conditions 

would vary with the corresponding mass flow connections during the specific 

time steps. A single air flow network node is replaced by a CFD domain, thus 

dropping the assumption of well-mixed conditions for that zone. However, fixed 

internal surface temperature should be defined for the solid boundaries and there 

is no interaction on the thermal level.  

For the BES-CFD thermal coupling type and AFN-CFD air-flow coupling type of 

coupling in ESP-r, the results obtained can be compared with those from the BES-

AFN approach (dynamic thermal simulation with an air flow network). For the 

BES-CFD coupling type, the coupling on the thermal level is concerned. That is, 

the output on the temperature distributions of the single CFD domain is compared 

with those under well-mixed assumption. The AFN-CFD coupling type, however, 

the comparison results in terms of flow rates through the openings of that 

particular CFD domain are of interest. The ranges of improvement and computing 
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costs of coupling simulation within ESP-r can then be demonstrated. From the 

computing point of view, the BES-AFN approach takes only few minutes to run 

the year-round data on hourly basis. A coupled BES-CFD approach, on the other 

hand, would generally require more computing power than the thermally coupled 

mass flow network model. A two-day period simulation could take 3 hours to run 

in a machine with 2G ram. The CFD alone approach of ESP-r is on coarse-grid 

basis and only one CFD domain is allowed per run. This may not be realistic in 

terms of overall ventilation performance in tall buildings with multi-zones models. 

Consequently, to assess whether a dynamically coupled simulation within ESP-r 

can bring significant benefits to current research issues before committing into a 

more sophisticated method is necessary.   

 

This study focuses on the overall ventilation performance of the proposed 

building configuration, where the ventilation flow rates, flow pattern, and the 

overall thermal environment are concerned. The simulation results from 

dynamically coupled single domain CFD approach within ESP-r suggest the 

insignificance of the improved result resolution of that particular CFD domain per 

simulation run. Also, the resultant difference between two modelling approach, 

namely the BES-CFD and BES-AFN, is insignificant for the occupants to detect. 

For example, the temperature difference between two approaches is lower than 

1K for the CFD domain in the location of mid-level office space.  The remaining 

of the building which is simulated by the conventional approach shows no 

significant difference (in terms of well-mixed air temperature and resultant flow 

rates through the associated offices) with the adoption of coupling approach. 

Additionally, a third-party program (Tecplot or Matlab) is required for visualizing 

the calculated results from the coupling approaches within ESP-r. Because of the 

coarse-gridding manner of the CFD model within ESP-r, the resolution level of 

the simulation results is not sufficient for the problem investigated. Furthermore, 

only one CFD domain is allowed per BES-CFD run, which may not fulfil the 

need for the whole building CFD simulation. The number of simulations required 



- 204 - 

 

would depend on the quantity of CFD domains interested, which is regarded as a 

time-consuming act during the initial design stage. 

 

In view of the computing costs and level of result improvement for overall 

ventilation performance of the proposed building configuration, the BES-CFD 

and AFN-CFD coupling types are therefore not suggested in the early design 

phase of a building project and are consequently not considered in the proposed 

generic design procedure of this study. Alternatively, the CFD-alone approach 

within ESP-r is chosen for looking at coarse-grid temperature and air flow 

distribution of the chosen CFD domain for the initial whole building CFD 

investigations of this study. The coupling between CFD and the multi-zone model 

in the CFD-alone approach of ESP-r is not dynamically; while it is to conduct a 

whole building simulation first using a conventional multi-zone model (BES). 

And then the results of specific time-step are manually provided as boundary 

conditions for a selected CFD domain in ESP-r, where the well-mixing 

assumption is not realistic.  The boundary conditions of the CFD-alone approach 

should be defined in advance. Hence the time-step reports on internal surface and 

opening node temperatures from previous run (but the same time step) are used 

for solid and opening boundary conditions of the corresponding CFD domain. The 

CFD results (with 0.5 m resolution) from the single domain CFD simulation in 

ESP-r are presented in Section 6.3.2. For which provide an initial insight for the 

local air and temperature distribution of an occupied space.  

Furthermore, a more sophisticated CFD program, FLUENT, is adopted to 

examine and verify the CFD modelling results from ESP-r. The aim is to obtain 

the whole building ventilation performance (only one CFD domain is allowed in 

ESP-r) from a more advanced CFD tool, which also has more options for the 

solution algorithm, turbulence models and convergence of solution as compared 

to the CFD-alone approach in ESP-r. The boundary conditions required for the 

FLUENT CFD are also derived from the BES results of ESP-r at the same time-

step. More details descriptions on the model and the corresponding simulation 

results are presented as Section 6.3.3. 
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6.3.2 The initial whole building CFD investigations: The single domain CFD 

within ESP-r 

 

 (a) Problem definition 

 

The building geometry and gridding system of this section is presented as Figure 

6-10. The coarse-grid number used is X(24), Y(24) and Z(6) with grid size of 0.5 

(m) respectively. The solution variables used for the modelling cases are listed as 

Table 6-6. One of the focuses in this study is to examine the potential cooling 

effects due to ventilation air under the naturally available driving forces. The local 

thermal comfort conditions could then be understood through the temperature 

distribution within the space. The problems investigated by the use of single 

domain CFD approach within ESP-r of this section are defined as follows.  

 

One typical day in March is chosen for demonstrating the ventilation performance 

of that particular CFD domain. The date is selected because it represent the 

typical week of mid-seasons in Taipei. Three typical weeks of a year are chosen 

from the weather data of Taipei. The typical weeks are found by scanning the 

climate date for a week in each season which has the least variation in heating 

degree days, cooling degree days and solar radiation. The heating and cooling 

base temperature are assumed to be 10 ˚C and 28 ˚C respectively. The weighting 

for heating degree days, cooling degree days and solar radiation could be assigned. 

The defaults are equal weightings for each. The typical week for the spring of 

Taipei is between 22
nd

 March and 28
th

 March. 19
th

 to 25
th

 of June and 29
th

 

September to 5
th

 October are for the summer and autumn season respectively. 

Following that, varied mass flow rates are adopted for investigating the range of 

influence of ventilation flow rates on the thermal domain. The simulation cases 

for this problem type include volume flow rates of 1.7, 4.2, and 6.7 m
3
/s (equals 

to 2, 5, 8 kg/s in the definition of ESP-r modelling) with identical thermal 

boundary conditions on 22
nd

 March. 
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Figure 6-10: Building geometry and gridding system of the single CFD domain adopted in ESP-r  

 

 

Table 6-6: Solution variables of BES-CFD coupled approach 

Solution variables Descriptions 

Velocity 

X: Initial V 0.001; relaxation factor 0.2 

Y: Initial V 0.001; relaxation factor 0.2 

Z: Initial V 0.001; relaxation factor 0.2 

Temperature Initial T 20.00; relaxation factor 0.9 

Turbulence model 

k-e turbulence 

Initial k 0.005; relaxation factor 0.7 

Initial e 0.005; relaxation factor 0.7 

Buoyancy 
Boussinesq approx 

Ref. temperature 25 ˚C 

Mean age of air Not solved 

Convergence criteria 
Maximum iteration: 500 

Max sum of residual: 0.02 

Monitoring cell (i, j, k) (3, 3, 3) 
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(b) Results and discussions 

 

The results presented below are the CFD-alone approach of ESP-r. The reasoning 

for this modelling approach is presented in Section 6.3.1. For the first simulation 

case, the temperature and air flow distributions of office in the 8
th

 level at the 

time-step of 14:00 on 22th March are illustrated (Fig. 6-11 and 6-12). The date is 

chosen for it represents the averaged performance of a typical day of spring. The 

volume flow rates of 5.3 (m
3
/s) from the thermally coupled mass flow network 

approach of previous run at the same time step is adopted for the opening 

boundary condition in CFD domain. The visualized results by the use of third 

party program Tecplot (the trial version) present the temperature distribution 

referring to the CFD domain height. The distributions of air flow speed and flow 

pattern are illustrated as well. Following that, the test cases with varied volume 

flow rates, 1.7, 4.2, and 6.7 m
3
/s (or 2, 5, 8 kg/s), under the identical thermal 

boundary conditions are examined. The results demonstrate the potential cooling 

effect due to increase of mass flow rates (Fig. 6-13 and Fig. 6-14). These 

visualized results provide some insight for the ventilation performance of the 

typical office zone under specific boundary condition.  

Thought the coarse-grid simulation results (Fig. 6-11~14) can provide some 

insight for local air and temperature distribution, only one zone can be visualized 

at a time with the help of a third party program. The result resolution is not 

sufficient for local ventilation performance assessment because of the available 

numerical models and coarse-grid method adopted in CFD-alone approach of 

ESP-r. From the coupling point of view, Zhai and Chen (2006) suggested a 

reference table on average solution improvement possibilities and computing 

costs of coupling simulation. They concluded that although those data might vary 

with cases studied and methodologies used, it provided users a sense of potential 

pros and cons of coupled simulation. The dynamically coupled simulation within 

ESP-r may be adopted (BES-CFD or CFD-AFN), specifically when the 

convective cooling effect of specific space is of interest. For this particular study, 

however, the effect of segmentation on the resultant flow rates is of interest. This 
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can be achieved by comparison between different building configurations using 

the thermal simulation with an air flow network model. The information obtained 

from the hourly basis year-round data is sufficient for the early design phase.  

Nevertheless, the CFD simulation is still of importance in this study in terms of 

local air flow and temperature distribution under specific boundary conditions. 

For which is also required for ensuring the selection of comfort boundary in the 

Building Bioclimatic Charts (Section 6.4). As concluded in Section 6.3.1, a CFD-

alone approach within ESP-r is sufficient for the initial understanding on the local 

ventilation performance of an interested space as compared to other dynamically 

coupled approach (BES-CFD or AFN-CFD). Following that, the next step of this 

study is moving to the investigation of overall ventilation performance of the 

whole building while incorporating the surface boundary conditions from ESP-r at 

the same time-step. It is then desirable to use more sophisticated tool (FLUENT) 

for the whole building CFD simulation.  The need for this type of integration is 

clarified in Section 6.3.3.    

   
Figure 6-11: The temperature and flow speed distributions of office room at 14:00 pm of 22th 

March_ Z=2 (m) 

 

 

 
Figure 6-12: The temperature and flow speed distributions of office room at 14:00 pm of 22th 

March_ Y=6 (m) 
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                                   a) 2 (kg/s)                                                         b) 8 (kg/s) 

Figure 6-13: The temperature distribution at 2 pm of 22th March under mass flow rates of 1.7, 4.2, 

and 6.7 (m
3
/s)  

 

 

 

  
                                a) 2 (kg/s)                                                            b) 8 (kg/s) 

Figure 6-14: The air flow speed distribution at 2 pm of 22
nd

 March under mass flow rates of 1.7, 

4.2, and 6.7 (m
3
/s)  
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6.3.3 The main CFD investigations: The stand-alone FLUENT-CFD 

 

The FLUENT-CFD is adopted because of the capability of whole building 

simulation with more advanced numerical models as well as the arrangement for 

finer grid sizes. This section illustrates the potential scenario of air flow and 

temperature distribution of extreme cases under specific boundary conditions by 

the use of stand-alone CFD program with more sophisticated numerical models as 

compared to the single domain CFD within ESP-r. The required boundary 

conditions are derived from the ESP-r modelling at the same time-step. The 

highlights of coupling between the building energy simulation and CFD for 

natural ventilation are discussed in Section 3.3.3. The local ventilation 

performance of the proposed tall office building configuration in the main 

investigations of this study (Fig. 2-40 and Fig. 2-41) can then be known. The 

integration method chosen for this section is the one-way (one-step) static 

integration between ESP-r (dynamic thermal simulation with an air flow network) 

and FLUENT. Only particular time-steps are chosen for clarifying the potential 

air flow distribution under the proposed building configuration. Consequently, the 

unsteady effect over a longer period of time is not considered in the full CFD 

simulation of this study. Detailed descriptions on how the ESP-r outputs are used 

as boundary conditions of CFD modelling are as follows. 

Firstly, the whole building simulation by the use of the dynamic thermal 

simulation with an air flow network is carried out in ESP-r. Secondly, the 

boundary conditions required for the full CFD modelling are then derived from 

the hourly basis simulation results of ESP-r. The available parameters from ESP-r 

results during specific time step and the required boundary conditions for the CFD 

modelling are listed as Table 6-7. The external and internal surface boundary 

conditions are defined accordingly for detailed indoor CFD simulation. One thing 

to be noted is that only the wind and buoyancy combined condition of ESP-r 

modelling is considered for following CFD investigations.  
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6.3.2-1 Boundary conditions 

For the inlet boundary conditions, two types of boundary conditions within 

FLUENT, namely pressure and mass flow inlet, are studied. The pressure inlet is 

often used in the buoyancy-driven flows or a free boundary in an external or 

unconfined flow; while a mass flow inlet is adopted when it is more important to 

match a prescribed mass flow rate than to match the total pressure of the inflow 

stream. The information needed for the pressure inlet includes the total 

(stagnation) pressure, total temperature, flow direction, static pressure and 

turbulence parameters. The information for mass flow inlet condition of this 

section is derived from the ESP-r results where the total volume flow rates 

through inlet at specific time step are used.  

The outflow boundary conditions are used in this section for modelling flow exits 

where details of the flow velocity and pressure are not known prior to solution of 

the flow problem. Nevertheless, it is always suggested to use the pressure outlet 

boundary conditions when a problem includes pressure inlet boundaries. The 

outlet temperature is unknown in the modelling case of this section. It might not 

be appropriate to fix the air flow temperature to a specific value under the 

pressure outlet condition. The convergence could not be achieved under the 

pressure boundary conditions for this problem type as well. 

For the wall boundary conditions, the external walls of the proposed building 

configuration are provided with fixed heat flux in watt per meter square. The 

internal walls, which assume to be adiabatic, could be assigned with fixed 

temperature values to represent zero heat flux through the walls. Boundary 

conditions for two-sided walls, where the wall zone has a fluid region (in this 

problem type) on each side, are available in FLUENT. When a grid with this type 

of wall zone is read into FLUENT, a ‗shadow‘ zone will automatically be created 

so that each side of the wall is a distinct wall zone. Different thermal conditions 

can be specified on each zone, or to couple the two zones. For the internal 

openings, the ‗interior‘ boundary type is defined and requires no further 
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information from the user. All the wall boundary conditions required for CFD 

simulation are derived from ESP-r results at specific time-step.  

 

Table 6-7: Boundary conditions for the full CFD simulation 

Boundary 

conditions 

ESP-r FLUENT 

Inlet 
Mass flow rate (kg/s) 

Pressure at node 

Mass flow rate + total temperature 

Gauge total pressure + total temperature 

Outlet 
--- 

Pressure at node 

Outflow 

Gauge total pressure + total temperature 

Internal walls Surface heat flux Heat flux (W/m
2
) + wall thickness 

External walls   Surface heat flux Heat flux (W/m
2
) + wall thickness 

Internal glazing Surface heat flux Wall thickness + couples condition 

External glazing Surface heat flux Wall thickness + couples condition 

Floor plate Internal heat gains Heat flux (W/m
2
) + wall thickness 

Internal openings  Internal unknown pressure node interior 

 

 

6.3.2-2 Model descriptions 

In this section, the overall air flow pattern against floor height and temperature 

distributions of the occupied spaces are of interest. The indoor air flow 

distribution under the specific boundary conditions is investigated. The indoor 

temperature and air flow velocity magnitude are then used in Section 6.4 for the 

selection of thermal comfort boundary in the Building Bioclimatic charts 

(BBCCs). Full CFD simulations are carried out to determine the flow in an 

enclosure with the geometry shown in Figure 6-15. The inlet and outlet with 

opening sizes of 12 m
2
 are adopted throughout the simulations. The equally 

distributed heat source in the floor plate is assumed to represent the internal gains. 

In all cases, the strength of the heat source is set to 30 W/m
2
. The k-ε RNG model 

is used in the CFD simulation because this model has advantages of steady and 

easily convergent. Mesh independence is checked by running FLUENT with finer 

mesh for each case. In view of the influence of grid number in numerical results, 

grid independency tests must be made to ensure the accuracy of simulations. The 

grid number is increased till the grid size will not affect the numerical results. In 

this study, the root-mean-square error in temperature, as shown in Equation 6-12, 

of less than 2% is used as the criterion for grid independence. Where Tn-1 is the 
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temperature in the formal grid number, Tn is the temperature in the current grid 

number, T0 is the ambient temperature and N is the number of the examined 

sample points. The final gridding system is then set to 0.25 (m) for each 

dimension of all spaces, while the internal openings (vents) and the outlet have 

finer grid (0.125 m) in the short-side. The total cell number for the 12 storey case 

with this resolution is 726419. The grid dependency tests for the 12 storey case 

are summarized as Table 6-8. The visualized mesh is presented as Figure 6-15. 

The default convergence criterion for all residuals is set to a value of 1×e
-3

, except 

the energy residual, where the default criterion is 1×e
-6

. 
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Table 6-8: Mesh sizes for the grid dependency tests of the 12 storey case 

Mesh 

name 

Mesh length scale of building width, 

depth, & height (m) 

Total number of 

cells 

The Root Mean Square 

Deviation 

Mesh1 1 217056 11.6% 

Mesh2 0.5 668508 7.9% 

Mesh3 0.25 726419 2.1% 

Mesh 4 0.2 933606 1.3% 

Note: 

The mesh length scale on the internal vents and the outlet have finer grid of 0.125( m) in the short-

side for all case 

 

 

Four sets of simulation are undertaken for the base case and the lifted building 

configurations respectively (Fig. 2-41). The steady flow pattern is determined in 

each simulation case. The velocity inlet boundary is based on the calculated 

hourly velocity through the inlet from ESP-r modelling. The extreme cases are 

selected and defined where the maximum velocity magnitude through the inlet is 

over 6 (m/s). This value is from previous studies on pedestrian wind comfort 

(Blocken and Carmeliet, 2004). The statistical distributions (Figure 6-16) on 

numbers of hours with reference to velocity magnitude through inlet suggested 

that there are 7% occurrence for the velocity magnitude over 6 (m/s) between 
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March and August. The highest occurrence of inlet velocity during the examined 

period is between 1 and 2 (m/s). Consequently, the 2 m/s case is selected as 

another scenario to be investigated. The cases investigated in this section are 

listed as Table 6-9. 

 

Table 6-9: Scenarios of the full CFD simulation 

Base case building configuration 

 Condition 1 (6 storey segmentation) Condition 1 (12 storey segmentation) 

SET 1 2 m/s 2 m/s 

SET 2 6 m/s 6 m/s 

Lifted building configuration 

 Condition 1 (6 storey segmentation) --- 

SET 3 2 m/s --- 

SET 4 6 m/s --- 

 

 

 
(a)                                         (b) 

Figure 6-15: The building geometry and gridding system. (a) Base case, (b) Lifted case 
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(a) 

 

(b) 

Figure 6-16: The statistical distributions (Frequency and Cumulative) of inlet velocity magnitude. 

(a) March-May, (b) June-August  
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6.3.2-3 Results and discussions 

 

(A) The local ventilation performance of the base case building configuration 

In this sub-section, the highest occurrence of ambient velocity magnitude as well 

as the extreme case with strong wind environment is examined by the use of 

whole building simulation in CFD. For the case with the highest occurrence of 

ambient velocity magnitude, the aim is to evaluate the local comfort environment 

of the corresponding occupied spaces with reference to the local velocity and 

temperature distribution. The simulated local wind speed distribution is adopted 

to select the comfort range of the BBCCs in Section 6.4 as well. The mid-

interface along the width direction of the building geometry is determined by 

plotting the steady contour of velocity magnitude. The indoor air velocity 

distributions with two different velocity inlet boundary conditions as proposed in 

Table 6-8 are illustrated accordingly. It is supposed that similar ventilation 

patterns should be observed in the same building configuration, where the driving 

force is varied by predefined air velocity.  

 

For example, uniform velocity of 2 and 6 (m/s) is supplied for the inlet of the 12 

storey segmentation case respectively. Consequently, fixed mass flow rates 

through the inlet are defined because uniform air velocity is assumed for the inlet 

boundary. The resultant air flow velocity throughout the office spaces would be 

reduced by a considerable amount because smaller total amount of flow rates are 

contributed to those spaces (Fig. 6-17). The convective cooling effect is 

constrained accordingly due to less cool air is supplied to remove the internal heat 

gains. The visualized contours of total temperature are presented as Figure 6-18. 

The general air flow pattern against building height calculated by full CFD 

simulation is shown as Figure 6-19. The desired flow pattern is observed because 

the fixed direction is defined for the velocity inlet. For this set of simulation, the 

fresh air enters from the lower inlet of the atrium and feeds into each office space 

through individual vents connected with offices. The stale air of each office space 
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is then discharged into the high-end vents connected to the DSF cavity. Finally, 

the accumulated warm and stale air exhausts through the outlet on top of the DSF 

cavity.   

 

Additionally, it can be seen that the local air velocity near the inner corner of 

intake vent of the bottom floor office is about 1.5 (m/s) when the inlet velocity of 

2 (m/s) is applied through the 12 (m
2
) inlet. This may not satisfy the comfort wind 

environment for stationary work. However, the air speed in other locations of the 

bottom floor office is within the acceptable range (0.3~0.7 m/s). The same 

scenario is found in the top office level of the 12 storey segmentation case. 

Detailed velocity vectors coloured by velocity magnitude can be seen in a chosen 

plan at the height of intake vent level (Fig. 6-20).  

 

It is also observed that the extreme case with the inlet velocity of 6 (m/s) further 

worst the comfort working environment of the base case building configuration in 

terms of air draught. In Chapter 5, it is suggest that the lifted cases with 

appropriate inlet opening size could achieve the desired flow pattern (> 0 m
3
/s) on 

the bottom two-third of the segment irrespective of the weather condition under 

the buoyancy alone condition. The desired flow pattern for this particular is 

important because of the unwanted warmer air may be driven into the occupied 

spaces. The overall flow rates would be much improved and the desired flow 

pattern could also be achieved with the help of wind. Thereby, it is supposed that 

the multi-orientation inlets can help to secure the flow rates supplied into the 

occupied spaces despite of the weather conditions. The comfort wind environment 

in terms of air draught can also be ensured when larger total inlet areas are 

applied under the specific weather conditions. The lifted case is then evaluated 

under the same boundary conditions as those being applied in the base case model. 

The reason for the selection of inlet velocity is described in Section 6.3.2-2. In the 

next section, the base and lifted cases with 6 storey segmentation are investigated 

and compared under the scenario where the sufficient volume flow rates are 

secured for removing the internal heat gains as suggested in Equation 3.2-1.  
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Figure 6-17: Contours of velocity magnitude (Y=6 m). (a) 2 m/s, (b) ) 6 m/s 

 

    

Figure 6-18: Contour of total temperature against building height_ 12 storey. a) 2 m/s; b) 6 m/s   
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Figure 6-19: Velocity vectors coloured by velocity magnitude_ Y=6 m. (a) 2 m/s, (b) 6 m/s 

 

 

 

 
(a) 
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(b) 

Figure 6-20: Velocity vectors coloured by velocity magnitude_ Z=0.75 m. (a) 2 m/s, (b) 6 m/s 

 

 

 

 

 
 

Figure 6-21: Contour of total temperature of a building plan in the mid-level. a) 2 m/s; b) 6 m/s   
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(B) Evaluation of comfort wind environment of different building 

configurations 

To achieve a comfortable wind environment in the pedestrian level, the total mass 

flow rates of 60 (m
3
/s) through the inlets (the extreme case) are applied in two 

different building configurations, namely the base and lifted cases as proposed in 

Figure 6-15. The lifted case here refers to the revised building configuration with 

an open wind floor strategy at the bottom segment of the building as illustrated in 

Figure 5-13. Two-side inlet is selected for the lifted case because of its 

encouraging ventilation performance predicted by the thermally coupled mass 

flow network approach in Chapter 5. Detailed discussions can be found in Section 

5.3.4. For the lifted case, an open plan with two air intakes is defined in the 

ground level of the bottom building segment. The open floor interacts directly 

with the pedestrian level of the ambient environment. It is supposed that the 

optimum inlet sizes may minimize the resultant air velocity through the envelope 

opening so that the comfort wind environment surrounding those openings can 

then be satisfied. 

The 6 storey segmentation case is chosen for comparison study between the base 

and lifted case in this section. Firstly, the resultant flow rates, which are driven 

into individual office spaces of two building configurations, under the specified 

boundary conditions (velocity inlet) are presented as Figure 6-22. This figure 

suggests that sufficient amounts of cooler air are supplied to all office spaces for 

ventilated cooling purpose irrespective of building configuration adopted. The 

mid-interface along the width direction of the building geometry is determined by 

plotting the contour of velocity magnitude. It can be seen from Figure 6-23 and 6-

24 that the overall wind environment in the pedestrian level is improved by the 

adoption of open plan in the bottom level of building segment. The comfort wind 

environment can also be ensured in most of the occupied spaces of the lifted case, 

where satisfactory local air velocity distribution is observed. Additionally, the 

temperature distributions against building height as well as building plan are 

plotted as illustrated in Figure 6-25 and Figure 6-26.   
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Generally speaking, the lifted building configuration demonstrates the possibility 

to improve the comfort wind environment as compared to the base case building 

configuration with reference to the local temperature and velocity distribution of 

the ground level. The satisfactory air flow rates for the occupied spaces of the 

lifted case can also be ensured at the same time. Furthermore, more flexible 

control can be applied in openings of the open wind floor, because of its ranges of 

areas to be opened, without affecting the function as a lobby in the ground level of 

the bottom building segment. However, the optimum inlet size would be affected 

by the external temperature as suggested in Section 5.3.4. The ventilated cooling 

could not be achieved due to the warmer air being driven into the occupied spaces 

during the unfavourable weather conditions. The thermal environment during the 

typical day of summer as illustrated in Figure 6-25 and 6-26, which suggest that 

the distributions of free-running temperature of the occupied spaces is around 295 

K (22 °C) for a typical day (22
nd

 March) in the mid-season of Taipei. Some local 

temperature of the base case building configuration may reach 300 K (27 °C); 

while the lifted case is relatively consistent with the same boundary conditions 

applied. The thermal comfort is then being verified as those being concluded in 

Section 5.4. 

 

 

Figure 6-22: Mass flow rates through vents of office spaces under different building configuration 
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Figure 6-23: Contours of velocity (Y=6 m) _ total volume flow rates of 60 (m
3
/s) through the inlet. 

(a) Base case, (b) Lifted case 

 

 

Figure 6-24: Velocity vectors coloured by velocity magnitude (Y=6 m) _ total volume flow rates 

of 60 (m
3
/s) through the inlet. (a) Base case, (b) Lifted 

 



- 224 - 

 

  
Figure 6-25: Contours of total temperature (Y=6 m)_ total volume flow rates of 60 m

3
/s through 

the inlet. (a) Base case, (b) Lifted case 

 

 

 

 

 
 

Figure 6-26: Contours of total temperature of an occupied space in the mid-level (Z=9 m)_ total 

volume flow rates of 60 m
3
/s through the inlet. (a) Base case, (b) Lifted case 
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6.4 The feasibility for comfort ventilation of the proposed generic 

design by the use Building Bioclimatic charts (BBCCs) 

 

In this study, the thermal comfort boundaries as suggested by Givoni (1998) are 

considered reasonable according to previous studies on the adaptive comfort 

theory particularly in the climatic context of a hot and humid climate and thus are 

used to assess the performance of ventilated cooling. Detailed literature reviews 

on the adaptive thermal comfort theory for a hot and humid climate is presented in 

Section 3.4.3. By the way of building bioclimatic charts (BBCCs), the effect of 

latent heat is taken into consideration, for which is not available with the equation 

3.2-1. The thermal comfort assessment in this section is achieved by plotting the 

calculated dry-bulb temperature and relative humidity from ESP-r into BBCCs. 

The local air flow speed distribution from CFD modelling as presented in Section 

6.3.3 is then adopted to ensure the selection of specific comfort boundary in the 

BBCCs. The acceptable comfort boundaries of a hot and humid climate for this 

study are presented and illustrated in Section 3.4.4. The predicted comfort 

ventilation performance of the proposed generic building configurations in the 

selected months are shown as Figure 6-27 to Figure 6-34. 

 

By way of illustration (Fig. 6-27), the hourly basis data points of March indicate 

that thermal comfort will not be obtained for 35 % of time in the climatic context 

of Taipei ( 259 of 744 data points lie outside the still air boundary). For which 

most of time outside the comfort boundary is between 10:00 and 14:00 of the day. 

To plot the hourly values for the occupied period only, namely from 08:00 to 

20:00, 77 % of time would lie inside the comfort boundary when the wind speed 

of 1.5 m/s is applied. The illustrated results are shown as Figure 6-28. 

 

As for the modelling results in May (Fig. 6-29 and Fig. 6-30), there are 84 

percentage of time during the occupied period inside the comfort boundary of still 
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air condition. For the hot summer (August), however, the data points lie to the left 

and above the comfort boundary, which suggests that mechanical cooling may be 

needed when the design condition cannot be achieved. Detailed results are shown 

as Figure 6-31 and Figure 6-32. 

 

Scaling the result to the mid-season and hot summer, namely between March and 

August, the BBCCs (Fig. 6-33 and Fig. 6-34) indicates that comfort ventilation 

will be effective for 83 and 68 percentage of time during the occupied hours when 

the comfort boundary under the wind speed of 1.5 (m/s) is adopted. Further CFD 

investigations are required for identifying local air flow speed distribution for 

assurance the selection of comfort boundary. More discussions regarding the 

viable time for ventilated cooling are presented in Section 5.4.2, where the design 

criteria are confined to the acceptable comfort temperature and required flow rates 

for cooling, disregard of the local wind speed.  

 

Generally speaking, though the observations in BBCCs suggest that thermal 

comfort can be achieved for over 50 % of the year (disregard of the winter period 

from December to February), some concerns and questions are raised as well. 

Firstly, the non-domestic building maybe heavily glazed in the perimeter zones. 

The level of internal heat gains due to radiation may be felt more at the perimeter 

than in the centre areas of the space. That is, the well-mixed assumption of each 

zone in the dynamic thermal simulation may not be appropriate for evaluating the 

local discomfort. The illustrated results in BBCCs can only be used to suggest the 

roughly viable time for comfort ventilation. Secondly, the spaces far away from 

the source of ventilation air may not be able to enjoy the cooling benefits because 

of uneven distribution of air flows. Also, the selection of comfort boundary is 

uncertain because of the local air flow distribution may be blocked by furniture or 

internal small partitions. The overall ventilation performance should be evaluated 

along with the CFD investigation in terms of local airflow and temperature 

distribution. 
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Figure 6-27: The hourly data points in March_ The bottom level office space  

 

 
Figure 6-28: The hourly data points over the occupied hours in March_ The bottom level office 

space  
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Figure 6-29: The hourly data points of May_ The top level office space 

 

 
Figure 6-30: The hourly data points over the occupied hours in May_ The top level office space 
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Figure 6-31: The hourly data points of August_ The top level office space 

 

 
Figure 6-32: The hourly data points over the occupied hours in August_ The top level office space 
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Figure 6-33: The hourly data points over the occupied hours between March and May_ The 

bottom level office space 

 

 
Figure 6-34: The hourly data points over the occupied hours between June and August_ The 

bottom level office space 
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6.5 Summary 

 

In this chapter, Section 6.1 starts with an overview of the choice for more 

advanced modelling tools in terms of research questions of this study. The issues 

being investigated by the use of CFD approach in this Chapter is summarized in 

Table 6-1. In Section 6.2, the reliability of wind pressure coefficient dataset used 

in the thermally coupled mass flow network approach of ESP-r is discussed. The 

simulated surface pressure coefficient from the CFD modelling in FLUENT are 

compared with the web-based TPU aerodynamic database and those being 

adopted in the ESP-r modelling. The accuracy of modelled flow rates using the 

mass flow network approach of ESP-r is then identified. 

 

Following that, the local air and temperature distributions is investigated by the 

use of single domain CFD approach as well as the stand-alone CFD program 

(FLUENT). The modelling technique of Single domain CFD modelling within 

ESP-r and the stand alone FLUENT-CFD is summarized in Section 6.3.1. The 

necessity of coupling methods between the thermal and CFD domains within 

ESP-r is also evaluated in terms of resolution level, computing efficiency and 

technical convenience. According to the initial investigations on the dynamically 

coupled single domain CFD approach within ESP-r, it is suggested that the 

difference between two coupling approach, namely the BES-CFD and BES-AFN, 

is insignificant for the occupants to detect (less than 1 K). The coupling between 

CFD and the multi-zone model is then directed to the CFD-alone approach within 

ESP-r. It is to conduct a whole building simulation first using a conventional 

multi-zone model (BES), and the results of specific time-step are manually 

provided as boundary conditions for a selected CFD domain in ESP-r, where the 

well-mixing assumption is not realistic. The detailed results are described in 

Section 6.3.2. 
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Nevertheless, more sophisticated CFD tool is required because only one CFD 

domain is allowed in the CFD-alone approach within ESP-r, which is not realistic 

in terms of overall ventilation performance of the entire building. The need for the 

adoption of further CFD tools is also necessary in terms of options available for 

the numerical models for the presentation of real world physical phenomena. The 

whole building simulation is then carried out by the use of stand-alone CFD 

program (FLUENT) in section 6.3.3. The task for full CFD simulation in this 

section is to predict the local air flow distribution under the predefined boundary 

conditions, which the highest occurrence of potential condition as well as the 

extreme case is identified by the statistical analysis.  

 

The simulated air velocities of the occupied spaces are then applied in the 

selection of comfort boundary in the Building Bioclimatic Charts in Section 6.4. 

The observations in BBCCs suggest that thermal comfort can be achieved for over 

50 % of the year. However, those results in BBCCs can only be used to suggest 

the roughly viable time for comfort ventilation. The specific time for the proposed 

naturally ventilated tall office building design to achieve the desired ventilation 

performance would require a combination of tools being suggested in previous 

chapters of this study, namely the envelope flow model, dynamic thermal 

simulation with an air flow network, whole building CFD simulation, and the 

Building Bioclimatic Charts.   

 

To sum up, this chapter aims to indentify where the CFD method stands in the 

overall ventilation design procedure and the adequacy of different CFD modelling 

approach inbuilt in the proposed modelling tools. The potential pros and cons of 

different CFD modelling approach on proposed research questions at hand are 

clarified. It can be concluded that a building thermal simulation with an air flow 

network model as presented in Chapter 5 is sufficient for the early design phase 

with reference to the hourly basis bulk flow and flow pattern. For the evaluation 

of local air and temperature distribution, the adoption of single domain CFD 
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approach within ESP-r is proposed in the early stage of CFD simulation. However, 

more sophisticated CFD tool is required in terms of the need for the whole 

building simulation (particularly for the issues of segmentation and overall 

ventilation performance throughout the building) as well as the available 

numerical models for the real world applications. The whole building simulation 

is conducted under the predefined boundary conditions using the FLUENT 

program. These boundary conditions are derived from a particular time-step of 

conventional ESP-r modelling, which the highest occurrence of boundary 

conditions is identified by the statistical analysis. The overall ventilation 

performance of the entire building under a particular scenario is then clarified. 

The effect of inlet sizes is also investigated along with the ‗open wind floor‘ 

strategy, particularly for the bottom floor of each building segment. The results 

show that the optimum inlet sizes would minimize the resultant air velocity 

through the opening. The comfort wind environment surrounding the openings 

could be clarified accordingly.  

 

From the aspect of the adequacy of wind pressure coefficient, the reliability of 

wind pressure coefficient datasets within ESP-r is justified by the use of full CFD 

simulation in FLUENT. The comparison results between the ESP-r, CFD and 

TPU datasets show that the modelled flow rates using the thermally coupled mass 

flow network approach is acceptable if the driving wind force is either from the 

windward or leeward direction; while the resultant flow rates caused by wind 

from side directions might be questionable. The Cp value (-0.8) adopted for the 

outlet of the ESP-r model is reliable because it has relatively small variation 

between three different database. Further investigations on level of influence 

regarding the resultant flow rates with reference to varied wind pressure 

coefficient are presented in Section 7.3.4. 
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7. Parametric Studies  

 

7.1 A method overview for parametric study 

 

Parametric study is a tool for optimization and it can also offer useful information 

for gauging the accuracy of simulation. Many previous studies as summarized 

below also referred the parametric study to sensitivity analysis for the assessment 

of range of influence of a particular design parameter on the overall system 

performance.  As suggested by Lam and Hui (1996), sensitivity techniques can be 

a powerful tool for the study of thermal response of buildings and error analysis 

when integrated with building energy simulation methods. If the relationship and 

relative importance of parameters are known, we will be able to achieve optimum 

building performance through proper selection of design variables and conditions. 

The first step for an effective parametric study is to obtain a crude estimate of the 

impact of the uncertainties and to reveal the main contributors to the resulting 

uncertainty. Several parametrical studies have been done in the context of 

building performance which identifies the level of uncertainty of different 

parameter in building simulations. 

Vytlačil and Moos (1993) presented an example of thermal transfer through the 

envelope of a building using the sensitivity analysis. A sensitivity function, 

sensitivity characteristics and the relationship between sensitivities and tolerances 

were described in detail. They tried to examine the question that to what extent 

the thermal transfer was sensitive to the given percentage of variation of a 

particular parameter. Lam and Hui (1996) examined the sensitivity of energy 

performance of office buildings in Hong Kong. The sensitivity coefficients (Table 

7-1) for each parameter examined were determined. They also suggested that 

direct comparison of the sensitivity values in strict quantitative terms was not 

always practical and fair. Interpretations should be taken in context with clear 

understandings of the implications and limitations. To make the best use of 
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sensitivity methods, designers should focus more on problem definitions, 

understanding of the sensitivity theory and better interpretation of the simulation 

results.  

Moreover, Wit (1997) reported the results of a parametric study on the thermal 

comfort performance of a naturally ventilated office building without cooling 

plant. His study aimed to quantify the modelling uncertainty due to a lack of 

knowledge in particular aspects. The factorial sampling technique was applied to 

estimate the mean parameter effects and to reveal the relative importance of non-

linear effects and parameter interactions. He concluded that four parameters/sub-

models primarily contribute to the variability in the thermal comfort performance, 

which were the wind reduction factor, the wind pressure coefficient data set, the 

deviation of the local ambient temperature from the local meteorology, and the 

choice of a model for the internal heat transfer coefficients respectively. The 

effects of uncertainty on the modelling of the external heat transfer coefficients 

and the indoor thermal stratification are less striking, but still of importance. 

Contributions of parameter interactions and non-linear parameter effects were 

found to be insignificant. 

As concluded by Hanby (1994), the simplest approach of sensitivity analysis is to 

repeatedly vary one parameter at a time while holding others fixed. A sensitivity 

ranking can be obtained quickly by increasing each parameter by a given 

percentage while leaving all others constant, and quantifying the change in model 

output. A more powerful test of local sensitivity examines the change in output as 

each parameter is individually increased by a factor of its standard deviation. This 

sensitivity measure takes into account the parameter's variability and the 

associated influence on model output.  

For this study, the overall aim is to ensure that the proposed tall building 

configurations can deliver acceptable comfort environment for the occupant 

through natural ventilation alone. The range of influence of different ventilation 

related parameters on the overall comfort environment is of interest.  Data used to 

model and interpret building performance are susceptible to variations and errors. 
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Sources of error and uncertainty in building performance prediction have been 

addressed by previous studies (Wit, 1997; Fürbringer and Roulet, 1999). For this 

study, the input errors from users are not discussed because all the input for 

simulations in ESP-r are derived from a real building design (Chapter 5) and 

available technical reference (ASHRAE_2004, BCO_2009 and CIBSE 

AM10_2005). This study then focuses on the assessment of uncertainties with 

reference to the variability of input parameters to the overall ventilation 

performance. The uncertainty may be from the design specification, which 

includes the shape and materials of the building construction and building 

components etc. It may also be from the test conditions (scenario), where a 

performance prediction at the design stage can be interpreted as the outcome of a 

simulation under well-defined test conditions.  In such case, test conditions may 

include time-series weather data, behaviour of occupants, control of set points and 

other data concerning the operation of the building. For this particular study, the 

uncertainties are evaluated by the variance of parameters and their corresponding 

range of influence on the overall comfort environment with reference to the flow 

velocities from bulk flow and the free-running temperatures.       

Generally speaking, the parametrical approach of this study is adopted to examine 

the level of uncertainty for different input parameters on simulation outputs, as 

compared to a base case situation. The general goal is to investigate how the 

ventilation related parameters influence the ventilation bulk flow, flow velocity 

and free running temperatures of the proposed building configuration. The range 

of influence of the selected parameters on the overall ventilated cooling 

performance is then expressed by statistical terms of ‗standard deviation‘ and 

‗correlation coefficient‘ in the following subsections. The key variables for this 

particular study are identified and described in Section 7.2. Details on how the 

variance being decided is described accordingly. The discussions on how much 

the impact of individual ventilation related parameters on the overall comfort 

environment are presented in the Section 7.3 and Section 7.4 as follows.  
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7.2 Plan for parametric study on ventilation related parameters 

 

A sensitivity study requires a base case model, upon which the influential 

parameters can be intentionally adjusted item by item to examine the particular 

effect of the individual parameter on the whole system. Selected parameters for 

natural ventilation design of this particular study are discussed in this section. 

Their influence on the resultant flow rates of associated spaces can then be 

investigated. Seven ventilation related parameters are selected and categorized 

into two main groups as shown in Table 7-1. The two groups are the design 

specification and boundary conditions respectively. For the design specification, 

the selected parameters include the building segmentation and envelope opening 

sizes. The boundary conditions include internal heat gains, time-series weather 

condition (ambient temperature, temperature difference between indoors and 

outdoors and wind speed) and wind pressure coefficient. Generally speaking, the 

influence range of a particular parameter is determined by its corresponding 

output in respect of air flow rates and flow velocity through the openings of 

associated offices. More descriptions are provided as follows. 

 

(A) Design specifications 

From the aspect of design specification, the building construction and building 

components are concerned. The base case building configuration of the main 

investigation of this study has already assumed a level of good design in terms of 

construction materials and their corresponding thermal envelope. That is, this 

study then focuses on the ventilation related building components. Two variances 

are selected for their potential influence on the driving forces of natural 

ventilation in tall buildings. Firstly, the effect of building segmentation is 

investigated. The impact of segmentation height to the resultant flow rates as well 

as the velocities from bulk flow rates of the openings of associated office spaces 

is discussed. Also, the deviation of flow rates against floor height is adopted for 

demonstrating their potential influence on maintaining the satisfactory flow rates 
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of occupied spaces on a floor-by-floor basis. Different ventilation conditions, 

namely the buoyancy alone and wind and buoyancy combined conditions are 

examined. The comparisons with reference to different building segmentation 

height are presented in Section 7.3.1.  

 

Secondly, the influence of envelope opening sizes to the overall ventilation 

performance is investigated in Section 7.3.2. Their range of influence is 

interpreted by the deviation of resultant flow rates between cases as well as the 

estimate velocities from bulk flow for potential personal cooling. The envelope 

openings in this study refer to the air inlet at the bottom of atrium and the outlet at 

the top of the double-skin facades with reference to the proposed building 

segmentation (Fig. 2-40). The output (flow rates) is plotted against floor levels in 

this modelling case. The flow rates and the resultant flow velocities between the 

base case and otherwise selected cases (different arrangements of envelope 

opening sizes) is compared. Different ventilation conditions (buoyancy alone and 

wind and buoyancy combined conditions) under the extreme case (maximum 

envelope opening sizes due to constraints of building structure) is examined and 

compared to a base case as well. 

 

 

(B) Boundary conditions 

From the aspect of boundary conditions, the input information required for the 

modelling of a free-running building in ESP-r include the time-series weather data, 

behaviour of occupants, and other data concerning the operation of the building. 

In terms of the operation of the building, the schedule as well as the heat gains 

from the occupants, lighting, and equipments should be defined. From the aspect 

of ventilated cooling, the heat entering the building is assumed to be removed 

with the ventilation air. Consequently, the influence of internal heat gains with the 

combination of solar, occupant, lighting and equipment gains is firstly considered 

in this study. In section 7.3.3, the total internal heat gains of 30, 40 and 50 W/m
2 
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are selected according to different level of stationary work inside of the offices for 

investigating their corresponding impact on the resultant flow rates. The flow 

rates are plotted against the internal opening height (measured from the ground 

level) of associated occupied spaces. The internal openings here refer to those of 

associated office spaces, which connected to the double-skin facades and their 

height are 2.65 m above the individual floor level. In this case, the sensitivity 

coefficient is determined by the changes in output (flow rates) divided by the 

changes in input (internal heat gains) for demonstrating its range of influence. 

 

From the aspect of the time-series weather data, the investigations on the wind 

related boundary conditions are conducted in Section 7.3.4 with reference to wind 

pressure coefficient being adopted in the ESP-r program; while the temperature 

related parameters are discussed separately in Section 7.4 with the buoyancy 

alone cases. The effect of wind speed alone is examined in Section 4.3.3 using the 

envelope flow model approach. The sensitivity of wind speed on the flow rates is 

not discussed in this chapter, because the calculated hourly flow rates are derived 

from the time-dependent weather data in the ESP-r modelling; while it is 

impossible to vary the wind speed by a given percentage at a time within ESP-r.  

For the proposed building configuration (Fig. 2-40), the wind pressure coefficient 

at the locations of inlet and outlet (envelope openings) should be defined for 

modelling the flow rates through that particular building segment. To enable the 

calculation of wind-induced surface pressures within ESP-r, the database of 

direction dependent pressure coefficients is provided. In the ESP-r database, wind 

pressure coefficients are pressure coefficients for surfaces in typical positions and 

within several different exposure categories. The wind pressure coefficient (Cp) of 

the outlet is kept as -0.8 for the investigation; while the Cp of the inlet is varied 

from 0.9, 0.8 and -0.2 to represent the windward and leeward conditions as well 

as the discrepancy from different available wind pressure coefficient database. 

Those values are derived from the investigation of different wind pressure 

coefficient database as presented in Section 6.2. The sensitivity of pressure 

difference between the inlet and outlet to the flow rates through a specific office 
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space (i.e. the office in the bottom level) is expressed by the standard deviation 

values of flow rates as well as the resultant flow velocities. The standard deviation 

(σ) here refers to the variation of flow rates from the average value of the three 

different Cp arrangements at a particular time-step. The σ value is adopted 

because that it is relatively easy to interpret the influence of a particular variance 

on the overall ventilation performance. The flow velocities through the 

corresponding occupied spaces are derived later from the calculated bulk flow for 

estimating the potential effect on personal cooling. 

Furthermore, the buoyancy alone cases are investigated in Section 7.4 for 

clarifying the impact of temperature related parameters on the resultant flow rates. 

The isolated and segmented cases are adopted respectively for investigating the 

influence of segmentation on the overall ventilation flow rates under the low or no 

wind speed condition. The sensitivity of different temperature related parameters 

to the overall ventilation performance is expressed by the correlation values (R
2
) 

for clarifying their relative importance. The correlation coefficient (R
2
) is adopted 

to determine the relationship between two properties (i.e. between ambient 

temperature and the flow rates).  

 

Table 7-1: Plan for Sensitivity Analysis of Ventilation Related Parameters 

Input parameter Base case  Perturbations 

* Design specification 

1) Storeys of building segment 5storeys 8/9/10/15/18/20 storeys 

2) Inlet / outlet opening sizes Inlet=10 m
2
 / Outlet=10 m

2
 Inlet=40m

2
 / Outlet=20m

2
 

* Boundary conditions 

3) Internal heat gains 30 (W/m
2
) 40(W/m

2
) / 50(W/m

2
) 

4) Ambient temperature To be defined from typical 

weeks of Taipei weather 

data 

N/A 5) Temperature difference 

6) Wind speed 

7) Wind pressure coefficient Inlet=0.7 / outlet= -0.8 
Inlet=0.9 / outlet= -0.8 

Inlet= -0.2 / outlet= -0.8 
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7.3 The influence of ventilation related parameters on the overall 

comfort environment of the proposed building configuration 

7.3.1 The impact of  building segmentation 

 

The impact of building segmentation on the overall ventilation performance is 

investigated in this section by plotting the air flow rates against building 

segmentation height as well as the flow velocity calculated from the bulk flow of 

the associated openings. The standard deviation (σ) is adopted to examine the 

variation of flow rates of individual floor level from the average of a specific 

segmentation height. Standard deviation analysis is applied in this sub-section 

because it shows how much variation exists from the average (mean) value with 

reference to the chosen parameter. The impact of building segmentation can then 

be identified. The information obtained may be helpful for more manageable flow 

rates of individual floor level regarding the occupant control. 

Firstly, the influence of building segmentation on the flow rates of associated 

office spaces is investigated under different ventilation conditions. The standard 

deviation of flow rates (σ value) are plotted against building segmentation height 

as Figure 7-1, which show the monthly basis standard deviation (σ) with reference 

to the volume flow rates. In this case of investigation, the σ values increase with 

the external temperature under the buoyancy alone condition irrespective of 

segmentation height adopted; while the wind and buoyancy combined condition 

tends to be more stable in terms of monthly variation in σ values. For example, 

the σ values of the cases over 8 storeys segmentation height under the wind and 

buoyancy combined condition tend to be smaller than those with the same 

segmentation height under the buoyancy alone condition. For the 5 storeys 

segmentation case, however, the wind force appears to have more impact on the 

overall deviation of flow rates between floors. This can be explained by the fact 

that the stack effect being less significant in the case with limited segmentation 

height, where the wind force may dominate. 
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Furthermore, the seasonal variation of σ values with reference to segmentation 

height is illustrated as Figure 7-2. It can be seen that the lowest σ value during the 

mid-seasons is 0.52 (m
3
/s) for the 10 storeys segmentation case under the wind 

and buoyancy combined condition; while it is 0.79 (m
3
/s) under the buoyancy 

alone condition at the same building segmentation. As for the hot summer, 

namely from June to August,  the 8 and 9 storeys cases present the better results 

in terms of variations of volume flow rates between floor levels. They are 

respectively 0.41 (m
3
/s) for the 9 storeys segmentation under the wind and 

buoyancy combined condition and 0.79 (m
3
/s) for the 8 storeys segmentation 

under the buoyancy alone condition. Generally speaking, the σ values are quite 

steady in the mid-seasons when the segmentation height of over 9 storeys is 

adopted. Some odd points occur in the 10 and 15 storeys segmentation cases 

during July and August when the buoyancy alone condition is applied. The 5 

storeys segmentation case has the largest deviation between floors irrespective of 

simulation periods and ventilation conditions applied. The resultant variation of 

air flow velocity from the calculated bulk flow for the 5 storey and those over 8 

storeys are about 1 m/s and 0.2 m/s respectively (Fig. 7-3). For the case with air 

flow speed over 1 m/s (smaller segmentation height), the air draught may have 

potential impact on the stationary work of the occupied spaces. The findings 

above also correspond to those in Chapter 5, for which the optimum segmentation 

height may be around 8 storeys or more.  
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Figure 7-1: The monthly standard deviation of flow rates under different ventilation conditions 

 

   

Figure 7-2: The seasonal standard deviation of flow rates under different ventilation conditions 

 

  

Figure 7-3: The resultant variation of flow velocities with reference to the seasonal standard 

deviation of flow rates by different building segmentation 

 

 

Two scenarios with less manageable flow rates against floor levels are identified 

as follows, which may require extra expertise to run the proposed natural 

ventilation system successfully. 

 The largest σ value is observed for the case with smaller segmentation 

height (the 5 storey case) during the warmer months, irrespective of 

ventilation conditions adopted. 
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 The larger σ value is observed for all segmentation cases under the 

buoyancy alone condition in comparison with the wind and buoyancy 

combined condition.  

In the climatic context of Taipei, there is only 7 % of time (611 out of 8760 hours) 

that the external wind speed is lower than 0.5 m/s (refer to the buoyancy alone 

condition). The monthly number of hours with wind speed lower than 0.5 m/s is 

illustrated as Figure 7-4. Through this preliminary climate analysis, it may then 

suggest that the wind and buoyancy combined condition deserves more concern 

for the most of time. In such case, the segmentation height over 8 storeys is 

necessary for achieving more manageable flow rates of the proposed building 

configuration during the examined months, namely between March and August. 

Although the ventilation performance, in terms of the σ value, of the segmentation 

height over 8 storeys is quite consistent, the upper bound for the segmentation 

height may exist because of the jurisdiction for fire safety. In the case of building 

regulations of Taiwan, the continuous staircases with height of over 50 m or 16 

storeys in tall buildings should have special concern for fire safety. Consequently, 

the optimum segmentation height may range between 8 to 16 storeys with 

reference to satisfactory flow rates and jurisdiction for fire safety; while extra 

consideration in terms of floor plate efficiency of typical multi-storey office 

buildings is discussed in Section 2.4.2.     

 

 

Figure 7-4: The low wind speed distributions in the climatic context of Taipei 
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7.3.2 The influence of envelope opening sizes  

 

Various arrangements for the inlet and outlet sizes are evaluated in this sub-

section. The location of the inlet is at the bottom part of the atrium segment; while 

the outlet is at the top of the double-skin facades segment (Fig. 2-41). Three 

different investigations are conducted as follows. Firstly, the 8 storey 

segmentation case is chosen for examining the influence of inlet/outlet sizes on 

the flow rates under two different ventilation conditions. The flow rates are 

plotted against floor levels along with the standard deviation values (σ) between 

different envelope opening arrangements. The standard deviation here shows how 

much variation exists from the average flow rates of a particular floor level 

between six different envelope opening arrangements, for which the range of 

influence in terms of air flow rates is identified. The selected months, namely 

April and August, for the proposed investigation are illustrated as Figure 7-5, 

where the INLET10_OUTLET20 denotes the inlet and outlet openings with sizes 

of 10 m
2 

and 20 m
2 

respectively. It can be seen that the deviations of flow rates 

increase with external temperature (refer to April and August) irrespective of 

floor levels. These results imply that the influence of envelope opening sizes is 

more significant during the warmer periods. Also, the larger inlet and outlet sizes 

are not always of benefit when the external temperature gets higher than the 

simulated internal temperature, where the warmer air may be driven into the 

occupied space and cause thermal discomfort. 

Secondly, the 10-storey segmentation case is used for examining the influence of 

inlet/outlet sizes on the monthly flow rates under different ventilation conditions, 

namely the buoyancy alone and wind and buoyancy combined conditions. Two 

extreme cases with the minimum and maximum external opening arrangements of 

the proposed building configuration (Fig. 2-40) are investigated. The case with 

minimum external opening sizes should fulfil the requirement in terms of 

sufficient flow rates for cooling; while the maximum case is derived from the 

condition, where the opening layout is constrained by the building structure. The 
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simulation results are evaluated by averaging the hourly data during the occupied 

hours of a specific month.  

For the wind and buoyancy combined case, the modelling results (Fig.7-6) 

suggest that, as expected, the increase of opening size would enhance the absolute 

values of flow rates to some extent irrespective of external temperature. For the 

buoyancy alone cases (Fig.7-7), however, the increase of inlet and outlet sizes is 

not beneficial in terms of desired flow pattern during the warmer months. The 

reversed flow pattern occurs, though larger absolute values of flow rates are 

observed. Although the reversed flow pattern may not always be an issue, it may 

cause the thermal discomfort and air quality problem when the warmer air is 

driven into the occupied space. The monthly standard deviation of flow rates 

against floor levels under different envelope opening arrangements varies from 

0.32 to 1.13 (m
3
/s) for the buoyancy alone case; while it is between 0.35 and 0.51 

(m
3
/s) for the wind and buoyancy combined case. The standard deviation for this 

case refers to how widely flow rates are dispersed from the average value (the 

mean) under two envelope opening arrangements. In terms of resultant air flow 

speed through the occupied spaces, the variation is less than 0.8 m/s in general 

(Fig. 7-8). The negative flow speed represents the flow direction, which opposite 

to the design condition. The impact of envelope openings is relatively smaller 

than those caused by the building segmentation height as discussed in Section 

7.3.1, where the smaller segmentation may cause the resultant flow speed over 1 

m/s.  

Furthermore, the influence of wind under the maximum envelope opening design 

condition (inlet = 40 m
2
; outlet = 20 m

2
) is examined by plotting its flow rates 

under two different ventilation conditions (Fig. 7-9). The results suggest that the 

required flow rates and desired flow patterns can be achieved with the help of 

wind forces. The standard deviation of flow rates is plotted against floor level to 

demonstrate the deviation between two different ventilation conditions (Fig. 7-9). 

The standard deviation (σ) for this case refers to how widely flow rates are 

dispersed from the average value (the mean) under two ventilation conditions. 
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The range of influence in terms of different arrangements of external opening 

sizes on the resultant internal air flow speed under different ventilation conditions 

is illustrated as Figure 7-10. The summer condition suggests that the maximum 

and minimum external opening arrangements may cause the variation of resultant 

air speed for about 0.2 m/s between the two envelope opening arrangements, 

irrespective of ventilation conditions. For which is less than the impact caused by 

different building segmentation as discussed in Section 7.3.1.  

From the design specification point of view, both the segmentation height and the 

sizes of envelope openings deserve equal concerns at the development of planning 

and design though with minor discrepancy between the two parameters. The issue 

for the external opening sizes should focuses on sufficient flow rates for cooling 

as well as undesired air draught through the ventilation openings with regards to 

the comfort wind environment. The sufficient flow rates for cooling have already 

been discussed massively in Chapter 5; while the comfort wind environment for 

the ventilation inlet of the bottom segment of the building in particular is 

presented in Section 5.3.4 and Section 6.3.2. For this subsection, the impact of 

envelope opening size is interpreted by the calculated flow rates as well as the 

resultant flow speed.   
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Figure 7-5: The effect of inlet/outlet sizes to the resulting flow rates. The 8 storeys segmentation 

case 
 

 

Figure 7-6: The effect of inlet/outlet sizes on flow rates/ Wind and buoyancy combined case/ 10 

storey 

 

 

 

Figure 7-7: The effect of inlet/outlet sizes to flow rates/ Buoyancy alone case/ 10 storeys 
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Figure 7-8: The deviation of flow velocities in terms of different external opening arrangements  

 

   

  

Figure 7-9: The effect of wind under the maximum opening design condition (inlet = 40 m
2
; outlet 

= 20 m
2
) 

 

 

  

Figure 7-10: The range of influence with reference to flow velocity of different envelope opening 

arrangements under different ventilation condition 
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7.3.3 Internal heat gains 

In this sub-section, the 6 storey segmentation case is adopted. Three different 

internal heat gains with the combination of occupants, lighting and equipment 

gains are adopted for elucidating its influence on overall ventilation rates under 

the buoyancy alone condition. The heat gains due to the solar radiation are 

derived from the weather data on selected periods of simulation. The proposed 

building configuration has assumed a level of good design with regards to the 

thermal envelope, where the shading control is represented by different 

percentage of internal gains as presented in Figure 7-12. Accordingly, the impact 

of solar radiation and building orientation is expressed by different level of 

internal gains of the occupied spaces in this sub-section. The influence of internal 

gains on the resultant flow rates of associated office spaces can be investigated as 

well. The variance of the internal heat gains in this section are defined according 

to available references (ASHRAE, 2009 and BCO, 2009), which also correspond 

to different level of stationary work inside of the offices. The range of influence 

in terms of different arrangements of internal heat gains is expressed by the 

resultant flow rates against opening height as well as the hourly free running 

temperature of an occupied space on typical days of mid-season and hot summer. 

 

The volume flow rates are plotted against opening height, which is defined from 

the ground level to the centre of the opening. The results (Fig. 7-11) suggest that 

the flow rates decrease gradually with the opening height. The openings here are 

the vents connected to the double-skin facades. The stack height between the vent 

at the top floor of building segment and the outlet located on top of the facades is 

limited, which constrain the resultant flow rates accordingly. Although the 

ventilation flow rates increase with the greater amount of internal heat gains 

(buoyancy effect), the internal temperatures are increased by 2 to 6 °C (depends 

on the variations of solar radiation in a day). The free running temperatures of an 

office in the mid-level of building segment are presented in Figure 7-12. It can be 

concluded that the impact of shading control is crucial for the resultant internal 

heat gains (along with solar, occupants, lighting and equipments). For the 
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interpretation of comfort ventilation, the simulated free running temperatures 

(sensible cooling) as well as the velocity from bulk flow (personal cooling) are 

selected for this study. 

 

Figure 7-11: Volume flow rates against opening height by ranges of internal heat gains. 

 

 

 

Figure 7-12: The free running temperature of the 3rd-level office by different arrangements of 

internal heat gains on typical days of mid-season and hot summer 
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7.3.4 Wind pressure coefficient 

 

For this sub-section, the influence of wind pressure coefficient on the resultant 

flow rates of chosen floor levels is examined. The base case building 

configuration as presented in Figure 2-40 is adopted for the following 

investigations. Three different set of wind pressure coefficient arrangements at the 

inlet and outlet are applied on the 12 storeys building segmentation case. For the 

proposed building configuration, the inlet locates in the bottom level of the south-

facing side of the atrium segment; while the outlet is on the top of double-skin 

facades. The hourly modelling results on the date of 19
th

 of June are selected in 

this subsection. Theoretically, the wind direction and CP are unique functions of 

each other. So an assumed variation in CP could be considered to be a change in 

wind direction (the CP distribution is directly related to wind direction). 

Consequently, the influence of the wind direction on air flow rates can be derived 

from the sensitivity analysis referring to the wind pressure coefficient. The hourly 

plot of wind speed and wind direction on the day of 19
th

 of June is presented in 

Figure 7-13.  

 

The modelling results as shown in Figure 7-14 demonstrate the influence of 

pressure difference across inlet and outlet on the resultant flow rates of the bottom 

floor. The deviation (σ) of flow rates between three different CP arrangements 

vary from 0.5 to 3.2 (m
3
/s). The standard deviation (σ) for this case refers to the 

variation of flow rates from the average value at a particular hour, for which the 

average is derived from three different sets of pressure difference. The σ value 

here can be compared with those in previous subsections. However, the 

approximate estimates of velocities from bulk flow rates may have more direct 

reflection from the aspect of personal cooling. That is, the resultant air flow speed 

of associated office spaces during mid-season and hot summer is plotted against 

floor level in Figure 7-15. The results suggest that the impact of the pressure 

difference on the resultant flow speed of the occupied spaces may be over 1.5 m/s 

regardless of flow direction. In other words, the range of influence of wind 
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pressure coefficient is more significant than those caused by internal heat gains, 

envelope opening sizes, and the building segmentation height as suggested in 

Section 7.3.1, 7.3.2, and 7.3.3, i.e. less than 0.8 (m/s) for the impact of envelope 

opening size on the resultant flow speed through the internal opening. 

 

It can be said that uncertainties in CP may lead to unreliability in the resultant 

flow rates. In this particular study, the CP values are only required for the inlet and 

outlet (the envelope openings). It is the difference of CP values between two 

envelope openings that matters. Similarly flow rate should be virtually 

proportional to wind speed when direction is constant and temperature difference 

between indoor and outdoor is small.  Inappropriate assumption of the CP values 

may cause significant impact on the simulated flow rates (i.e. sensitive to wind 

direction). Investigations in terms of the reliability of the use of wind pressure 

coefficient dataset within ESP-r are discussed in Section 6.2. For which the 

adoption of pressure coefficient dataset is compared among the web-basis 

aerodynamic database, the full CFD simulations, and the inbuilt database of ESP-r 

program. The adequacy of the pressure coefficient being adopted in this study is 

demonstrated accordingly. 

 

 

Figure 7-13: The hourly wind speed and wind direction on 19
th

 of June 
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Figure 7-14: The influence of ΔCP on the resultant flow rates and the hourly basis standard 

deviations between three modelling cases 

 

 

 
Figure 7-15: The estimated air flow speed from the ventilation bulk flow on typical days of the 

mid-season and hot summer  
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7.4 Temperature related parameters and the resultant flow rates 

In this section, the effect of temperature related parameters on the flow rates is 

investigated under the buoyancy alone condition. The isolated and segmented 

cases are adopted respectively for investigating the effect of segmentation under 

the low or no wind condition. The influence of buoyancy driven flow by the 

adoption of ventilated cavities (segmented atrium and double-skin facades) can 

then be found.  

7.4.1 The isolated case 

Firstly, the isolated case with two ventilated cavities (isolated atrium and double-

skin facade) on either side of the office space is examined (Fig. 7-16). In the case 

of isolated office space, consequently, the ventilation flow rates may be 

contributed by the temperature difference between indoors and outdoors or 

between two connecting zones. The connecting zones in this simulation case are 

between office space and ventilated cavities on either side. The simulated daily 

average volume flow rates (over the occupied hours) in months of March and 

August are plotted along with the external and simulated DSF temperatures under 

the same time-line. For the two selected months, the results show that the 

resultant flow rates of the isolated case are highly related to the ambient (external) 

temperature irrespective of simulation period applied (R
2
 of 0.95 in March and R

2
 

of 1.0 in August). However, the correlation coefficient (R
2
) against the 

temperature of ventilated cavities is relatively lower and may vary monthly (Fig. 

7-17). The correlation coefficient is adopted to determine the relationship between 

two properties (i.e. between ambient temperature and the flow rates).  

 

 

Figure 7-16: Section of the isolated case 
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For the simple isolated case with no ventilated cavities, we would expect the total 

flow rates to be proportional to root ∆T (temperature difference between indoor 

and outdoor) according to the theory. However, with two ventilated cavities, two 

other temperatures are introduced as parameters, and the simple relation between 

flow rate and ∆T is less likely to be observed. This can be seen in Figure 7-18. 

The hourly flow rates are plotted against the corresponding root ∆T in this chart, 

which suggest that the correlation between these two parameters varies hourly. 

The model used in ESP-r is a dynamic model wherein thermal exchanges are 

modelled dynamically yet dynamic effects associated with the coupled air flow 

due to air inertia are not.  It is suspected that the ventilated cavities continuously 

adjust their performance not only to the radiative heat transfer (heat being 

penetrate through the DSF into the adjacent zone and being captured by the DSF), 

but also to the convective cooling (the heat being removed by the cavity air). Also, 

the air flow network within ESP-r is based on the mass flow balance, for which 

the resultant flow rates may be constrained by either side of the cavities. It is 

therefore the calculated temperature of the DSF and/or office may not be 

appropriate for deriving the temperature difference for the correlation analysis 

between the resultant flow rates and root ∆T. Previous studies (Manz and Frank, 

2005; Kalyanova et al., 2007) suggested that further empirical experiments may 

be needed to validate the modelling results of a naturally ventilated double-skin 

façade system. 

 
(a) 
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(b) 

Figure 7-17: The daily plot of volume flow rates against external and ventilated cavity 

temperatures_ Isolated cases.  The R
2
 is provided in the top-right corner of the graph. (a) March; 

(b) August 

 

 

 

 

Figure 7-18: Illustration of the calculated hourly volume flow rates through the DSF cavity against 

the root temperature difference between the DSF cavity and ambient temperature for the buoyancy 

alone condition. 
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7.4.2 The segmented case 

 

The base case building configuration (Fig. 2-40) with 12 storeys segmentation 

height is adopted as the study model in this sub-section. The same analysis 

approach as adopted in the isolated case is applied for the segmented case. 

However, the hourly volume flow rates of the typical weeks rather than the daily 

average data over a month are plotted along with temperature related parameters 

to examine its corresponding correlation values. Two weeks in March and June 

are selected respectively for representing the typical week of that particular 

season. The typical week for the spring of Taipei is between 22
nd

 March and 28
th

 

March; while 19
th

 to 25
th

 of June is for the summer. The method adopted to decide 

the typical week was described in Section 6.3.2.  

 

The temperature related parameters as well as the stack height are regarded as the 

potential drivers for buoyancy driven flows in the proposed building configuration. 

The associated temperatures on the bottom and top of the building segment as 

presented in Figure 7-19 are selected for examining the buoyancy effect on the 

resultant flow rates. Firstly, the external temperature is plotted along with the 

volume flow rates of the bottom and top floor. The results as presented in Figure 

7-20 and Figure 7-21 suggest that the flow rates are negatively correlated to the 

external temperature. Higher correlation, in terms of relationship between the 

flow rates and external temperature, is observed in the top floor because of the 

limited stack height of this floor. The overall buoyancy effect of the top office is 

dominated by the external temperature in this case. The bottom floor, however, 

extra buoyancy force due to stack height between the vent intake of the bottom 

floor and the outlet at the top of DSF should be taken into consideration. 

Consequently, the ventilation performance of the top floor of the segmented case 

can be regarded as the same as that in the isolated case. For which the overall 

flow rates are more sensitive to the external temperature (Fig. 7-17). 
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(a) 

 
 (b)  

Figure 7-19: The temperature plot of selected building spaces in the typical weeks. (a) The bottom 

floor of spring period; (b) The top floor of summer period 

   

 
Figure 7-20: Correlation analysis for the Texternal v.s volume flow rates_ 22

th
-28

th
 March 
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Figure 7-21: Correlation analysis for the Texternal v.s volume flow rates_ 19
th

-25
th

 June 

 

Furthermore, the correlation between the ΔT (temperature difference between 

indoors and outdoors, where the ΔT=Tindoor-Tambient) and the resultant flow rates is 

investigated. Although the total flow rates are not really proportional to root ΔT as 

observed in the isolated case, the relative sensitivity can be demonstrated by 

comparing the R
2
 values by floor levels as well as by varied segmentation height 

basis in the segmented case. As seen (Fig. 7-22 and Fig. 7-23), the results are 

positively correlated to the volume flow rates in the lower floors and the 

correlation decreases with floor levels accordingly for both typical weeks. These 

results show that the flow rates increase with larger temperature difference 

between indoors and outdoors as expected. For which the larger indoor 

temperature or lower ambient temperature may increase the resultant flow rates 

(disregarding flow direction) to some extent. As addressed earlier, the ventilation 

performance of the top floor of the segmented case can be regarded as the isolated 

case. It is observed that the R
2
 value between the flow rates and ΔT of the top 

floor is smaller than that in the bottom level. It is supposed that exhausted heat 

flow would accumulate in the offices of upper levels where the office temperature 

is not solely contributed by the internal artificial heat gains and external solar 

radiation. That is, the correlation for temperature difference in high levels is 

smaller than those of lower floors under the buoyancy alone condition. 
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Generally speaking, the influence of weather data on the input side can be 

examined by studying the sensitivity of the climatic variables in the weather file 

by the use of envelope flow model. However, quantitative generalizations 

regarding the influence of external climate on the thermal behaviour of a building 

structure are very difficult to make. Sensitivity analysis of building energy 

performance for time-varying variables will require an integration of time series 

techniques (averages) into building energy analysis as suggested by Lam and Hui 

(1995). This is what is done for the isolated case at the beginning of Section 7.4. 

For the segmented case, however, the effect of stack height is included along with 

the temperature difference between indoors and outdoors for evaluating their 

overall influence on the resultant flow rates. Thus, the hourly data of a typical 

week is selected for verifying the corresponding interaction between ventilation 

flows and temperature related parameters. Although the same issue in terms of 

reliability of modelling the naturally ventilated double facades as addressed in 

Section 7.4.1 still exists, the comparison results with reference to the R
2
 values 

between the bottom and top floors of the building segment do provide an initial 

understanding for the effect of segmentation on the flow rates through the 

associated office spaces under the low or no wind condition.  

 

 
(a) 
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(b) 

Figure 7-22: Correlation analysis for the temperature difference between indoors and outdoors v.s 

volume flow rates_ 22
th

-28
th

 March. (a) The bottom floor; (b) The top floor 
 

 
(a) 

 
(b) 

Figure 7-23: Correlation analysis for the temperature difference between indoors and outdoors v.s 

volume flow rates_ 19
th

-25
th

 June. (a) The bottom floor; (b) The top floor 
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7.4.3 Sensitivity analysis with reference to building segmentation height  

In this sub-section, the level of sensitivity of varied segmentation height to the 

temperature related parameters is investigated under the buoyancy alone condition. 

The correlation coefficient (R
2
), in terms of the relationship between flow rates 

and external temperature and to the ΔT respectively, is evaluated under different 

segmentation height. Specific segmentation height (the seven-storey case), where 

the variation trend (in terms of R
2 

values) changes, is selected for further 

parametric analysis with reference to all others temperature related parameters in 

the later sub-section.  

 

Firstly, 5 different building segmentations are chosen for examining the 

corresponding correlation between flow rates and external temperature. The 

variation trend against floor levels is illustrated as Figure 7-24. It is found that the 

variation trend in terms of R
2
 values may change (i.e. the R

2 
values increase with 

floor level) when the segmentation height of over 7 storeys is adopted. The R
2
 

value for this case can be interpreted as the proportion of the variance in flow 

rates to the variance in external temperature. For the cases with segmentation 

height over 8 storeys, the R
2
 increases with floor levels irrespective of simulation 

periods being adopt. The R
2
 values of the 5 storey segmentation case, however, 

decreases with floor height. The same trend is observed for the lower levels of the 

7 storeys case irrespective of simulation periods (Fig. 7-24). 

 

Additionally, the correlation between flow rates and ΔT (temperature difference 

between indoors and outdoors is investigated and presented as Figure 7-25. It can 

be seen that the R
2
 values between the resultant flow rates of associated office 

spaces and the ΔT are decreasing gradually irrespective of simulation periods, 

when the building segmentation height over 8 storeys is applied. Different 

variation trend is observed for the cases with smaller segmentation height, namely 

below 7 storeys. Theoretically, one would expect to see a strong correlation 

between flow rates and ΔT. This is clearly the case for most floors. The upper 
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floor, however, where with the least correlation is not acting as what we would 

expect. It is stipulated that the ventilation performance of the top floor of the 

segmented case is similar to that of the isolated case for its limited stack height.  

Therefore, the results obtained from the isolated case may be applied, which 

suggest that the flow rates through the isolated offices are much affected by the 

response of ventilated cavities to the radiative heat transfer and the heat being 

removed by the cavity air under the low or no wind condition.   

 

 
(a) 

 
(b) 

Figure 7-24: The correlation between flow rates and external temperature against floor levels by 

different building segmentation height. (a) January; (b) March; (c) July 
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(a) 

 

(b) 

Figure 7-25: The correlation between flow rates and temperature difference between indoors and 

outdoors by different building segmentation height. (a) January; (b) August 

 

 

 

 

From the above observation, it is interesting to note that the transitional 

relationship between flow rates and temperature related parameters is observed in 

the 7 storeys segmentation case. That is, further analysis is conducted for the 7 

storeys segmentation case for elucidating the corresponding relationship between 

flow rates and individual temperature related parameters. The correlation results 

as shown in Figure 7-26 suggest that zone temperatures, namely the atrium, office 
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and DSF, are positively correlated to the flow rates through the occupied spaces. 

The temperature difference between the indoors and outdoors as well as the 

temperature difference between the DSF and office, however, are negatively 

correlated to the resultant flow rates of associated occupied spaces. Higher 

correlation is found between the ambient temperature and the resultant flow rates 

irrespective of floor levels (with negative correlation coefficient of -0.9) when 

compared with otherwise temperature related parameters.  

 

An interesting point is found between the 2nd and 3rd level of the 7-storey 

segmentation case (an opposite variation pattern).  The influence of temperature 

difference between indoors and outdoors is more significant to the volume flow 

rates in these two levels. The results as shown in Figure 7-26 suggest that the first 

two floors of the 7-storey case are highly and negatively correlated to the ambient 

and room temperature; while the mid levels, from 3rd to 5th level, are influenced 

greatly by the ambient temperature as well as temperature difference between 

indoors and outdoors. It is speculated that the opposite driving forces exist in the 

2nd and 3rd level which cause such a variation pattern.  

 

As seen, the temperature difference between indoors and outdoors is highly and 

positively correlated to the flow rates in the 3
rd

 floor level irrespective of 

simulation periods, where the ΔT=Tindoor-Texternal.  These results imply that the 

flow rates would increase with larger ΔT. In other words, the larger indoor 

temperature or lower ambient temperature might increase the flow rates to some 

extent. The 2
nd

 floor level, however, is more sensitive to the ambient and office 

room temperature. Its negative correlation coefficient suggests that the higher 

office room and ambient temperature will result in reduction of flow rates of the 

2
nd

 floor. The conclusion for the 2
nd

 level is opposite to those made in the 3
rd

 floor 

level in terms of office room temperature. Consequently, the reason why an 

opposite variation trend being observed between the 2
nd

 and 3
rd

 level is explained.  
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As a general rule, Qtot increases with ΔT, where Qtot is the total ventilation rates of 

a building. The individual flow rates through openings may not behave in this 

way, but it would not be surprising if they did. Generally speaking, the 

segmentation height of over eight storeys is beneficial in terms of control issue, 

for which the dominating factors for the flow rates under the buoyancy alone 

condition are consistent. Although the low or no wind condition rarely happens in 

the climatic context of Taipei (as identified in Section 7.3.1), it still provide an 

insight for dealing the weather extremes or the scenario when the wind is blocked 

by surrounding obstructions. 

 

(a) 

 

(b) 

Figure 7-26: Correlation between the temperature related parameters and flow rates_7 storeys 

segmentation case. (a) January; (b) August 
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7.5 Summary 

In this chapter, the purpose of a parametric study is to determine which input 

parameters exert the most influence on simulation output. The significance and 

impact of various ventilation related parameters on the calculated flow rates and 

resultant flow velocities from the calculated bulk flow are provided for 

demonstrating the potential influence on personal cooling; while the free-running 

temperatures are useful for some direct insight for sensible cooling. It is hoped 

that the information obtained would provide some guidance at the planning and 

development of a naturally ventilated tall building design. The theory background 

and relevant reviews on parametric study are summarized in Section 7.1. The 

approach for carrying out the proposed investigations is decided and clarified 

accordingly. In Section 7.2, the plan for parameter study as well as the key 

variables and their corresponding variance for this particular study are identified 

and described. The results on the relative importance of the chosen ventilation 

related parameters for this particular study are discussed in Section 7.3 and 

Section 7.4 respectively. The same solar control assumption as applied in Chapter 

5 is used in this Chapter as well, where that a certain level of shading control is 

assumed within the atrium space. The corresponding outcomes are summarized as 

follows. 

 

From the aspect of design specification, firstly, the effect of building 

segmentation height and external opening sizes are discussed. It is found that the 

largest σ value is observed for the case with smaller segmentation height (the 5 

storey case) during the warmer months, irrespective of ventilation conditions 

adopted. Also, the larger σ value is observed for all segmentation cases under the 

buoyancy alone condition in comparison with the wind and buoyancy combined 

condition. The resultant variation of air flow velocity for the 5 storey and those 

over 8 storeys are about 1 m/s and 0.2 m/s respectively. For the case with air flow 

speed over 1 m/s (smaller segmentation height), the air draught may have 

potential impact on the stationary work of the occupied spaces. These results 

suggest that segmentation height of over eight storeys is required for achieving 
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more manageable flow on floor-by-floor basis (in terms of flow rates and flow 

velocity), particularly for the worst case scenario when the external wind speed is 

extremely low. However, the concern for jurisdictions in terms of fire safety 

should be considered along with natural ventilation design in tall office buildings. 

 

Secondly, the impact of inlet and outlet sizes (envelope openings) of the proposed 

building configuration is investigated. It is concluded that the increase of external 

opening size is not always of benefit under varied ventilation conditions. The 

warmer air may be driven into the occupied space and cause thermal discomfort, 

where the external temperature is higher than the simulated internal temperature. 

In addition, the monthly σ values of flow rates against floor levels under the 

minimum and maximum external opening arrangements vary from 0.32 to 1.13 

(m
3
/s) for the buoyancy alone case; while it is between 0.35 and 0.51 (m

3
/s) for 

the wind and buoyancy combined case. In terms of resultant flow velocity through 

the occupied spaces, the variation is less than 0.8 m/s between different envelope 

opening arrangements in general. The summer condition suggests that the 

maximum and minimum external opening arrangements may cause the variation 

of air velocity for about 0.2 m/s, irrespective of ventilation conditions (buoyancy 

alone or wind and buoyancy combined). It can be concluded that the impact of 

envelope openings is relatively smaller than those caused by different building 

segmentation height, where the smaller segmentation may cause the resultant flow 

velocity for over 1 m/s. From the design specification point of view, both the 

segmentation height and the sizes of envelope openings deserve equal concerns at 

the development of planning and design.  

 

From the aspect of boundary conditions, the time-series weather data, behaviour 

of occupants, and other data concerning the operation of the building are 

considered because they are the required input information for ESP-r modelling. 

In terms of the operation of the building, the schedule as well as the heat gains 

from the occupants, lighting, and equipments is investigated by varying the 

internal heat gains according to different level of stationary work inside of the 

offices. It is found that though the ventilation flow rates increase with the greater 
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amount of internal heat gains (buoyancy effect as expected), the internal 

temperatures are increased by 0.5 °C according to the free running temperatures 

of an office in the mid-level of building segment. The impact of internal heat 

gains is less significant in terms of sensible (the free running temperatures) as 

well as personal cooling (the velocity from bulk flow) as compared with other 

parameters being selected for this study in general.  

 

In terms of the time-series weather data, the investigations on the wind related 

boundary conditions of this chapter are evaluated with reference to wind pressure 

coefficient being adopted in the ESP-r program; while the temperature related 

parameters are discussed separately with the buoyancy alone cases. The effect of 

wind speed alone is examined by the envelope flow model approach because it is 

impossible to vary the wind speed by a given percentage at a time within ESP-r.  

The investigations of the influence of wind pressure coefficient arrangements 

suggest that the deviation of flow rates would vary from 0.5 to 3.2 (m
3
/s) with 

reference to the predefined pressure difference acting across the inlet and outlet 

(envelope openings) upon the presence of prevailing wind direction. This is more 

significant than those caused by internal heat gains. The resultant air flow 

velocities from the calculated bulk flows also suggest that the range of influence 

is over 1.5 m/s regardless of flow direction. In other words, the impact of wind 

pressure coefficient deserves more attention than those caused by internal heat 

gains, envelope opening sizes, and the building segmentation height as discussed 

early on. Thereby, inappropriate assumption of the CP values may cause 

significant impact on the simulated flow rates. The reliability of wind pressure 

coefficient datasets within ESP-r is justified by comparing results between the 

ESP-r, CFD and a web-based TPU aerodynamic datasets. The results  suggest that 

the Cp values adopted in the present study is acceptable if the driving wind force 

is either from the windward or leeward direction; while the resultant flow rates 

caused by wind from side directions might be questionable. The Cp value (-0.8) 

adopted for the outlet of the ESP-r model is reliable because it has relatively small 

variation between three different database.  



- 271 - 

 

 

Finally, the correlation coefficient (R
2
) is adopted to demonstrate the relative 

importance of individual temperature related parameters to the resultant flow rates 

of different building configurations (isolated and segmented cases) under the 

buoyancy alone condition.  Theoretically, we would expect the total flow rates to 

be proportional to root ∆T when there are only two temperatures involved (i.e. the 

simple isolated case with no ventilated cavities). In this particular study, the 

simulations involve two ventilated cavities, which two other temperatures are 

introduced as parameters. It is therefore the simple relation between flow rate and 

∆T is less likely to be observed. The results inevitably demonstrate the need of 

further empirical experiments for validating the modelling results on naturally 

ventilated double-skin façade system. As for the segmented case, a strong 

correlation between flow rates and ∆T is observed for most floors except for the 

upper floor. The upper floor of the segmented case presents similar results (with 

reference to the R
2
 values) as those suggested by the isolated case because of its 

limited stack height. It is supposed that the relative sensitivity can be 

demonstrated by comparing the R
2
 values between floor levels as well as on 

varied segmentation height basis. Consequently, the modelling uncertainty as 

identified in the isolated case can be ignored. Nevertheless, the actual of influence 

with regard to quantitative presentation of flow rates may be questionable.     

 

To sum up, the objective of identifying the relative importance of different 

ventilation related parameters is achieved. The range of influence of selected test 

parameters is identified by comparing their calculated flow rates and resultant 

flow velocities from bulk flow. The results suggest that the segmentation height, 

envelope opening size as well as the wind pressure difference acting across the 

inlet and outlet deserve more concern under the wind and buoyancy combined 

condition. Furthermore, although the low or no wind condition rarely happens in 

the climatic context of Taipei, it still provides an insight for dealing the weather 

extremes or the scenario when the building is blocked by surrounding 

obstructions.  
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8. Conclusions 

 

8.1 Summary of the thesis 

The aim of this study is to propose a design approach for naturally ventilated tall 

office buildings in Taiwan. The potential for comfort ventilation under the 

proposed building configuration is identified by the use of three different 

modelling tools in different design stages. The objective is to assess the relative 

performance of design options rather than the actual performance of a particular 

building design. It is therefore the proposed models have already been assumed a 

considerable degree of good design in terms of orientation, insulation and 

shadings.  

 

This thesis starts with discussions on issues of naturally ventilated tall office 

buildings in a hot and humid climate in Chapter 1.  Chapter 2 then continues with 

case studies of naturally ventilated tall office buildings design worldwide. The 

design issues and ventilation strategies adopted in those real-world applications 

are reviewed. The concerns for applicability of natural ventilation in tall office 

buildings are raised. The problems and limitations of naturally ventilated tall 

office buildings design in the climatic context of Taiwan are discussed as well. 

Furthermore, the proposed naturally ventilated building configurations for this 

study are determined for the corresponding modelling stage. Aspects to be 

considered for the generic design, in terms of plan layout and sectional treatments, 

of naturally ventilated tall office buildings in Taiwan are raised. 

 

The methodology adopted for this study is introduced in Chapter 3. Tools for 

natural ventilation assessment of this study are presented accordingly. The 

criterion for the performance of comfort ventilation is defined for the hot and 

humid climate in particular. Detailed result and discussions are presented in 
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Chapters 4, 5 and 6 respectively according to the modelling tool adopted. The 

assumptions and boundary conditions for the specific modelling tools are defined. 

Additionally, a parametric study is introduced in Chapter 7 to determine which 

input parameters exert the most influence on air flow rates, flow velocities, and 

the free running temperatures. It is hoped that the information obtained can help 

with the design decision at the planning and development of the naturally 

ventilated tall office buildings. It is hoped to provide a route and options with 

proven technical analysis for naturally ventilated tall office building design in the 

climatic context of Taiwan. 
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8.2 Concluding remarks 

The main conclusions corresponding to the objectives and expected outcomes of 

this thesis are summarized in the following subsections. 

 

8.2.1 Design procedure for naturally ventilated tall office buildings 

Four design phases, namely the conceptual design, design development, 

performance evaluation and design optimization, are proposed in the current study. 

The novelty lies in the design process and the tools for the assessment of overall 

performance of comfort ventilation. The objectives and expected outcomes of the 

design phase are outlined as Table 1-1. Among the four design phase, three 

different modelling tools are adopted for the three corresponding design stages, 

which are included in the second and third design phase (namely design 

development and performance evaluation) respectively. The proposed design 

procedure as illustrated in Figure 3-1 is summarized as follows.  

Firstly, for the conceptual design phase, the ventilation requirements are defined 

according to the ventilation purpose. The cooling mechanism for comfort being 

explored in this particular study, for a hot and humid climate, includes the direct 

cooling of indoor space (sensible cooling) and the physiological cooling of the 

human body (personal cooling). The boundary conditions and conceptual air flow 

pattern are determined for the proposed building configuration.  

During the second phase (design development), the explicit method and implicit 

method of the envelope flow model (EFM) are adopted for sizing the initial 

external openings (inlet and outlet) and investigating the preliminary off-design 

condition respectively. The adoption of the envelope flow model can also be 

regarded as the first modelling stage of the proposed main investigations in this 

study. 

In the third design phase, the performance evaluation includes two different 

modelling stages, namely the dynamic thermal simulation with an air flow 
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network (ESP-r) and CFD simulation. The main findings from the three modelling 

stages (EFM, ESP-r and CFD) are concluded with reference to the effect of 

segmentation on the resultant flow rates as well as the overall thermal comfort 

condition of corresponding office spaces. In the final design phase, the building 

bioclimatic chart (BBCC) is adopted to demonstrate the viability of comfort 

ventilation according to the predefined comfort boundary. The aim is to identify 

whether the natural ventilation alone can provide a satisfactory environment for 

the occupants during the majority of the time. 

 

The proposed design procedure aims to provide an insight for design of naturally 

ventilated tall office buildings during the early stage of a building project. The 

four design phase starts from gathering design requirements and boundary 

conditions of a particular building project. Three different modelling tools, which 

provide diverse resolution levels, are then adopted to evaluate the performance of 

proposed ventilation strategies. The criteria for comfort ventilation are defined 

from the reviews on satisfactory comfort environment, particularly in the climatic 

context of Taiwan. In terms of design optimization, it may not be desirable for the 

architects to conduct their own parametric study for a particular building project 

during the early stage of design. That is, the considerations for natural ventilation 

design of tall office buildings in a hot and humid climate are suggested in this 

study. Concerns for the ventilation related parameters relate to overall thermal 

conditions and to thermal comfort criteria in the occupied spaces are addressed. 

More findings with regard to building segmentation and design considerations for 

naturally ventilated tall office buildings of a hot and humid climate are 

summarized in Section 8.2.2 and 8.2.3. 
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8.2.2 Design performance in terms of building segmentation 

In this research, an isolated office space, segmented and non-segmented atrium 

buildings are adopted as study models. Although the non-segmented case may not 

be allowed in some jurisdictions in terms of the fire safety issue, the detailed 

investigation of flow rates and flow patterns with and without segmentation is of 

interest. Consequently, the effect of segmentation is evaluated by comparing the 

overall ventilation performance under different building configurations. The aim 

is to ensure that the required magnitudes of the air flow rates, the desired flow 

pattern, and flow velocities through the envelope openings as well as the 

comfortable free running temperatures can be achieved over a range of specified 

conditions. The evaluations are divided into three stages and the objectives are 

basically the same; while the resolution level might vary. Three different 

modelling tools are adopted for different modelling stages respectively. The 

remarks for this sub-section are directed to the ventilation performance with 

regard to building segmentation. 

  

(1) The envelope flow model approach (The preliminary investigations)  

For the first modelling stage (as presented in Chapter 4), a single-cell envelope 

flow model (EFM) is adopted for evaluating the off-design conditions. The 

steady-state bulk flows through openings are evaluated under a specified design 

condition. It is found that the isolated cases tend to have relatively stable flow 

rates across floors and are relatively easier for flow pattern control. To account for 

the worst case scenario with low external wind speed (or the buoyancy-alone 

case), the atrium type (i.e. non-isolated) buildings are much preferred for 

supplying sufficient fresh air flow rates with the help of stack effect. Segmented 

cases, especially, are much preferred for their relatively small variation of flow 

rates against segment height. The potential risk of large pressure difference acting 

through the full height of the building can be reduced accordingly.  
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The desired flow direction throughout floors during the hot summer (from June to 

August) can only be achieved with the help of segmentation strategy; while the 

reversed flow pattern (negative flow rates) occurs in lower floors when the 

external temperature gets higher than the set internal temperature (28 ˚C as 

defined in Section4.2). Although the reversed flow pattern may not always be an 

issue, it may cause the thermal discomfort and air quality problem when the 

warmer air is driven into the occupied space. In addition, higher correlation for 

the monthly ventilation performance is found between the isolated case and the 

top-most floor of atrium type buildings. This can be explained by the stack effect 

being small in the higher floors of atrium buildings, which is a characteristic of 

isolated floors. 

 

(2) The dynamic thermal simulation with an air flow network (The main 

investigations) 

To cope with potential magnitude of impinging wind at high levels, a ventilated 

DSF is proposed along with the segmentation concept in the tall office buildings. 

The dynamic effects are evaluated by the use of dynamic thermal simulation 

incorporating an air flow network (ESP-r), because of the particular importance of 

the thermal behaviour of the DSF. The chosen thermal model utilises a multi-cell 

airflow network model (AFN) since the buildings can no longer be described by a 

single-cell model.  

Generally speaking, optimum segmentation could offer a major advantage for 

reducing the overall variation of flow rates between floors. But the optimum 

segmentation may vary in terms of the sizes of the envelope opening and the 

corresponding excitations (weather data) applied. It is then suggested that the use 

of dampers between cavities could be adopted for managing the optimum 

segmentation height, and consequently to regulate the ventilation rates. The same 

conclusion is made in the first modelling stage using the single-cell envelope flow 
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model. This study used the same opening size for modelling air flows through 

individual floors. In reality, satisfactory flow rates between floors can be achieved 

by varying the areas of openings according to occupants‘ needs.  

For multi-story ventilated cavity (double-skin facades and tall atrium in this 

study), the vertical height of the cavity creates stronger uplift forces due to 

increased stack effect. However, the upper stories of the shaft can be overheated, 

leading to thermal discomfort in the adjacent office floor. From the desired flow 

pattern point of view, the larger segmentation could offer more opportunities for 

flow pattern control according to the modelling results presented in Chapter 5. 

The modelling results also suggest that it is unlikely to obtain the design goal with 

the buoyancy alone strategy when the ambient temperature gets higher than the 

simulated internal temperature, which occurs from late April in the climatic 

context of Taipei. However, there is only 1.3 % of time (117 out of 8760 hours) 

that the external wind speed is lower than 0.5 m/s (refer to the buoyancy alone 

condition) as suggested in Figure 7-4. This can potentially improve the above 

addressed issue with the help of prevailing wind force. In terms of ventilated 

cooling potential, although the required minimum flow rates (calculated from 

Equation 3-1) for removing the internal heat gins are obtained, the thermal 

comfort cannot be guaranteed, because of the warmer air being driven into the 

occupied space. The acceptable thermal comfort boundary in the climatic context 

of Taiwan may be evaluated further in terms of the post-occupancy evaluations 

for identifying the overall satisfactory comfort ventilation. 

 Additionally, the parametric study also suggests that the deviation values 

between floors increases with the external temperature under the buoyancy alone 

condition, irrespective of segmentation height adopted; while the wind and 

buoyancy combined condition tends to be more stable in terms of monthly 

variation in deviation values. However, this study adopts the same internal 

opening size in each floor for comparison. The internal opening size should be 

regulated according to the occupants‘ need in the real practice. During the 

extreme weather condition (low wind speed and high external temperature), 
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supplementary cooling such as desk fans, cooled workstations etc should be 

supplied for the desired thermal comfort. The parametric study suggests the 

largest σ value for the case with smaller segmentation height (the 5 storey case) 

during the warmer months, irrespective of ventilation conditions adopted (i.e. for 

the 5 storeys segmentation case, the wind force appears to have more impact on 

the overall deviation of flow rates between floors). The resultant variation of flow 

velocity for the 5 storey case is about 1 m/s, which may have potential impact on 

the stationary work of the occupied spaces regarding the air draught. Generally 

speaking, the standard deviation values between floors are quite steady when the 

segmentation height over 8 storeys is adopted during the mid-seasons. The range 

of influence of different building segmentation height is identified by comparing 

their calculated flow rates, resultant flow velocities from bulk flow, and the 

overall free running temperatures. The results from previous chapters suggest that 

the segmentation height, envelope opening size as well as the wind pressure 

difference acting across the inlet and outlet deserve more concern under the wind 

and buoyancy combined condition.  

Because of the low probability (1.3 % of time during a year) of the low or no 

wind condition (refer to the buoyancy alone condition) in the climatic context of 

Taipei, it is therefore the optimum segmentation height is determined under the 

wind and buoyancy combined case. However, there may be a scenario, where the 

wind is blocked by the surrounding obstructions (particularly in the urban areas), 

that the sufficient flow rates to be driven into the building are restricted. Also, the 

stack effect in tall buildings is a natural phenomenon that cannot be avoided. It is 

therefore the buoyancy alone condition is still of interest for indentifying the 

potential extremes (worst cases) in this particular study. 

By the use of building bioclimatic charts (BBCCs), the 10 storey segmentation 

case demonstrates the feasibility of comfort ventilation for over 60% of mid-

seasons in Taipei. The overall comfort ventilation performance is evaluated by 

plotting the hourly temperature and relative humidity data into the BBCCs, where 

the comfort boundary is determined according to the simulated local flow 
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velocities from CFD.  For the time when the design goal cannot be obtained, the 

control of air intake sizes as well as adjustment of segmentation by the use of 

dampers between cavities can be adopted for regulating the ventilation rates and 

flow velocities. Some supplementary mechanical cooling with low energy 

demand (such as desk fans and cooled workstations etc.) may be required during 

the weather extremes (low or no wind speed along with high external temperature 

over 28 °C). 

 

8.2.3 Considerations for naturally ventilated tall office building design in the 

climatic context of Taiwan 

 

By way of cross ventilation, comfort ventilation can be achieved under the 

condition where an indoor air speed of 1.5~2 (m/s) occurs and the outdoor 

maximum temperature does not exceed about 28 to 32 ˚C (7599 hours out of a 

year in the climatic context of Taipei). This is regarded as the simplest strategy 

for low-rise buildings in hot and humid climates. In tall office buildings, however, 

the greater magnitude of wind and buoyancy forces in high levels, the greater are 

the challenges for close control of satisfactory comfort ventilation. One of the 

aims of this study is to investigate the effect of building segmentation when the 

conventional cross ventilation strategy is not applicable in high levels of office 

buildings because of high wind speed (wind gust). Considerations for a generic 

design of naturally ventilated tall office buildings in hot and humid climates are 

identified as follows.  

 

(1) Building plan layout 

The key considerations for the generic design of naturally ventilated tall office 

buildings regarding architectural features are discussed with reference to floor-

plate sizes, core distributions and sectional treatment in the current study because 

of their potential influence on natural ventilation. The suggestions for plan layout, 

which includes issues of plan depth and core distributions, are summarized in this 
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subsection. To take the building configuration as proposed in the main 

investigations of this study for demonstration, the potential options for the 

arrangement of plan layout for natural ventilation are presented as Figure 2-35 

and 2-36. The distribution of the passive zones identifies the potential application 

for conventional cross ventilation; while the adoptions of double-skin facades and 

tall atrium help to increase the overall bulk flow from stack effect.   

Two viable options in terms of core design are suggested, though each of them 

has both pros and cons in many aspects. For the centre core arrangement (Fig. 2-

35), an access corridor is provided which divides the centre core into two parts 

and serves the floor with single or possible multiple tenants. However, the centre-

core configuration may not be the most appropriate design for buildings with 

smaller typical floor plates, buildings with certain site conditions, or buildings 

with special functions such as trading floors. 

 

As for the offset core arrangement (Fig. 2-36), the core is distributed into four 

smaller cores and is pushed to the four corners of the building layout. But this 

proposition is restricted to a shallower plan when the escape distances are 

concerned. The centre atrium can be extended or remain as it is in the centre core 

arrangement. As stated by Yeang (1999, 2000), peripheral service cores provide 

many benefits. They eliminate the need for mechanical ventilation and fire-

protection pressurization duct in the cores, which is prevalent in internal core 

staircases. The offset core can also provide natural ventilation and light to the lift 

lobby and stairs, thus resulting in lower energy consumption and lower operating 

costs. Additionally, a view out with greater awareness of place for users can be 

provided as well. For this particular study, the offset core arrangement can open 

to the exterior environment and allow for natural ventilation. Also, the core can 

shade the office space from the sun. The usable area can usually be organized into 

one space. Nevertheless, its use is limited on large floor plates becaues travel 

distances to the fire stairs and elevators may not meet code requirements. 
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(2) Building section 

The sectional treatment for this study is discussed with reference to the adoption 

of segmented atrium and ventilation cavities. Lessons learned from case studies 

demonstrate how the sky garden and the ventilated cavities (double skin facades 

and tall atrium in this particular study) can be used as air intake and extraction 

chimney respectively. The modelling results as presented in Chapters 4 and 5 also 

suggest that the potentially greater magnitudes of wind and buoyancy can be 

reduced with the adoption of segmentation strategy.  

From the aspect of atrium design, the open atrium solution is selected, because 

they can be used to assist the operation of mixed mode and natural ventilation 

solutions in shallow plan. Furthermore, the floor plate efficiency can be improved 

and more creative space planning options are available by the employment of 

building shapes based on atria. Atria can also provide the opportunity to create a 

social hub for occupant interaction. As for the concept of ventilated cavity, its 

benefits of providing a climatic buffer zone between internal environmentally 

controlled space and external environment are always appreciated. This is also 

being demonstrated by the free running temperatures of the atrium space as 

presented in Chapter 5. The segmentation concept can then prevent the 

temperature differences from acting over the full height of the building. 

Consequently, the potential risks associated with the greater magnutudes of 

pressure difference between the bottom and top floors can be avoided.  

 

Additionally, the concept of ‗wind floor‘, as introduced in the Liberty Tower of 

Meiji University, is adopted for every 16 storey of the proposed building 

configuration in this study (it is called the lifted case in this study). The openings 

of the ‗wind floor‘ in the current study are opened to four directions; while they 

may be regulated to 2-sided or single-sided openings depend on the weather 

condition. It is supposed that the feasibility for natural ventilation can be 

improved with the adoption of a ‗wind floor‘ along with the segmentation concept. 

Detailed modelling results to support the claimed benefit are presented in Section 

5.3 and Section 6.3. The results suggest that the possibility to achieve comfort 
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ventilation decreases with higher ambient temperature irrespective of building 

configuration (here refers to the base case and the lifted case) applied. The overall 

percentage for comfort ventilation of the lifted case varies from 5% to 62% during 

the examined months (from March to August). The wind and buoyancy combined 

strategy is more beneficial for the base case building configuration; while the 

same ventilation condition may not be always helpful for the lifted case. It is 

observed that much warmer air is driven into the occupied spaces of the lifted 

case with inadequate design of the envelope opening sizes, which may cause 

thermal discomfort and air quality issues.   

 

(3) Wind pressure coefficient (CP) 

The wind direction and Cp are interrelated of each other. So an assumed variation 

in Cp could be considered to be a change in wind direction. For the proposed 

building configuration of this particular study, the inlet is located in the bottom 

level of the south-facing side of the atrium segment; while the outlet is at the top 

of the ventilated façade segment. The deviation (σ) of flow rates between three 

different Cp values arrangements would vary from 0.5 to 3.2 (m
3
/s). This is more 

significant than the deviation caused by internal heat gains (σ < 0.2 m
3
/s). The 

resultant air flow velocities from the calculated bulk flows also suggest that the 

range of influence is over 1.5 m/s regardless of flow direction. In other words, the 

impact of wind pressure coefficient deserves more attention than those caused by 

internal heat gains, envelope opening sizes, and the building segmentation height. 

Consequently, inappropriate assumption of the Cp values may cause significant 

impact on the simulated flow rates. The credibility of wind pressure coefficient 

datasets adopted in this study (ESP-r) has been justified by comparing results 

between the ESP-r, CFD and TPU datasets in Section 6.2.  It is found that the Cp 

values used in the dynamic thermal simulation with an air flow network are 

justified for the wind from either the windward or leeward direction; while the 

resultant flow rates caused by wind from side directions might be questionable.  
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(4) Envelope opening sizes 

The envelope openings are referred to as the inlet and outlet openings of the 

proposed building configurations (Fig. 2-41), namely the base and lifted cases, in 

this study. Various arrangements for the inlet and outlet sizes are investigated 

according to their overall impact on the calculated flow rates and resultant flow 

velocities. The air intake size of an open wind floor in the bottom level of a 

building segment (i,e, the ―lifted‖ case) is evaluated in particular, because of its 

potential influence on the comfort wind environment in the pedestrian level. The 

design aim for the lifted building configuration is to allow more flexibility for the 

design of air intakes and consequently to avoid undesired air draught through the 

inlet.  

Generally speaking, the increase of inlet size is not always of benefit and would 

cause flow reversal when the external temperature gets higher than the simulated 

internal temperature, especially for the buoyancy alone condition. This may be an 

issue when the warmer air is driven into the occupied spaces and causes the 

thermal discomfort or air quality problem. The optimum size for the air intake 

should fulfil the requirement in terms of sufficient flow rates for cooling; while 

maintaining satisfactory flow velocities for the nearby spaces.   

In terms of flow velocities through the occupied spaces, it is found that the 

variation is less than 0.8 m/s between different envelope opening arrangements in 

general. The summer condition suggests that the maximum and minimum external 

opening arrangements may cause the variation of air velocity for about 0.2 m/s, 

irrespective of ventilation conditions (buoyancy alone or wind and buoyancy 

combined). Although the results from whole building CFD simulation confirm 

that the multi-orientation inlets can help to secure the required flow rates supplied 

into the occupied spaces, the optimum inlet sizes should be considered for 

satisfactory air flow velocity through the openings and consequently to the 

adjacent spaces (for the bottom segment in particular). Thereby, the comfort wind 

environment with regard to air draught issue can be ensured.  
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(5) Solar shading control  

In hot and humid climatic regions, high temperatures are accompanied by very 

high humidity levels leading to immense discomfort. Cross ventilation is hence 

very essential in this climatic context. Adequate shading measures are also 

necessary to protect the building from direct solar radiation. As being found in the 

preliminary model validation process, the ESP-r program may underestimate the 

solar gains entering into large transparent surfaces. It is therefore certain level of 

shading control is assumed, as to account for the perceived underestimation of 

solar gains into the occupied spaces. The amount of temperature deviations with 

and without solar control is justified in Section 5.2.  
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8.3 Originality and contribution to knowledge 

High-density urban development encourages the boom of tall buildings in Taiwan. 

Tall office buildings, in particular, consume a great amount of energy due to the 

employment of air-conditioning system. This study provides an understanding of 

how tall office buildings can be designed and operated to provide a viable 

(comfortable and affordable) alternative to air-conditioning system in the climatic 

context of Taiwan. The proportion of the year that natural ventilation can provide 

comfort conditions in tall office buildings of Taiwan is identified in Section 6.4, 

which suggests that over 50% of a year can benefit from the comfort ventilation. 

Nevertheless, for the periods of time when the thermal comfort cannot be 

achieved under the proposed natural ventilation strategies, namely during the hot 

summer, the mixed-mode ventilation is necessary. It is also supposed that the 

supplementary mechanical cooling with low energy demands, such as desk fans or 

cooled workstations etc., may be provided as an intermediate solution during the 

weather extremes. This study provides an understanding of how the overall 

building design affects the ventilation performance and, ultimately, indoor 

thermal comfort of occupied spaces. The feasibility for naturally ventilated tall 

office buildings under the proposed building configuration in Taiwan is clarified 

accordingly. 

 

The originality of this work can be directed to following points: 

I. This study proposed a viable design procedure for the naturally ventilated 

tall office buildings (for Taiwan in particular). It is believed that the 

proposed design procedure can fit well with the current development of a 

design project and lead to claimed benefits of natural ventilation. The 

designer may react to the findings of this study (for the time when natural 

ventilation is not applicable) in terms of supplementary mechanical 

cooling, and controls. 
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II. The novelty of this work lies not in the methodology (which uses available 

models), but in the evaluation of segmented and non-segmented tall 

buildings in the climatic context of Taiwan. The detailed investigation of 

flow rates and flow patterns with and without segmentation is analyzed. 

The air flow rates, flow velocities and patterns, as well as the free running 

temperatures observed within the proposed building configurations are 

compared, for otherwise identical conditions. Potential conditions where 

the design goals may not be ensured are identified in Chapters 4, 5 and 6. 

 

III. A generic building configuration with reference to building plan layout 

and building section is proposed to promote viable natural ventilation 

strategies for tall building. Design options are suggested in terms of the 

plan depth, core arrangements and sectional treatments (with atrium and 

ventilated facades). It is believed that the two suggested potential options 

can provide an insight for building configuration design of naturally 

ventilated tall office buildings. 

 

IV. A parametric study is conducted for clarifying the issue of how the 

ventilation related parameters relate to overall ventilation performance and 

to thermal comfort criteria of the occupied spaces of tall buildings. The 

relative importance of each parameter to be considered for the design of 

naturally ventilated tall office buildings in Taiwan is suggested. 

 

 

The remarks for the contribution to knowledge are outlined in terms of 

quantification of the effects of various parameters on tall office buildings. They 

are summarized as follows. 

 

 Effect of building segmentation 

The concept of segmentation is introduced for the building configuration 

with the adoption of tall ventilated cavities (atrium and double-skin 
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facades in this study), because the non-segmented case may not be 

allowed in some jurisdictions, particularly for the fire safety issue. The 

effect of segmentation is evaluated by comparing the overall ventilation as 

well as thermal performance, in terms of the required flow rates and flow 

velocities, desired flow pattern, and free running temperatures under 

different arrangement of building segments. 

 

 Relative importance of ventilation related parameters  

The ventilation related parameters with reference to design specification 

(building segmentation and the sizes of envelope openings) and boundary 

conditions (internal heat gains, weather conditions and wind pressure 

coefficient) are studied by the parametrical analysis. Their relative 

importance and the ranges of influence are identified. 

 

 The feasibility of naturally ventilated tall office buildings in a hot and 

humid climate 

The calculated hourly results (temperature and relative humidity) from 

ESP-r modelling are plotted in a building bioclimatic chart (BBCCs); 

while the simulated local air speed distribution from CFD simulation is 

adopted for ensuring the selection of specific thermal comfort boundary. 

The illustrated results in BBCCs provide an insight for the feasibility of 

natural ventilation of the proposed building configuration under the pre-

defined boundary conditions. Although it may not be realistic in terms of 

the actual values of ventilation rates (because of the assumptions used), 

this study demonstrates the relative performance through the inter-model 

comparison. The potential for the application of a naturally ventilated tall 

office building in the climatic context of Taiwan is clarified accordingly. 
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8.4 Suggestions for future work 

Previous research in this field has provided a wide assessment of natural 

ventilation applications, for the low-rise buildings in particular. However, the 

adoption of natural ventilation in tall and non-domestic buildings is less common, 

because of a potential risk to a successful design. This risk arises from the fact 

that practical design experience and accessible proven technical information of 

real buildings is relatively limited compared to the low-rise buildings. 

To account for the above addressed issues, this study proposes a design approach 

and ventilation strategies specifically for tall office buildings. The modelling 

results demonstrate the feasibility of naturally ventilated tall office buildings in 

the hot and humid climates with the proposed building configurations. It is 

believed that natural ventilation can provide the desired thermal comfort for the 

tall office buildings in the climatic context of Taiwan for nearly 50 % of a year. In 

particular, the effect of segmentation is shown to be of value. Nevertheless, some 

issues not being addressed in the current study are worthy of further investigation, 

and are outlined as follows.   

 

(1) Building orientations 

Consideration of the influence of building orientations on performance requires 

further investigation. In this study, only the influence of windward, leeward and 

side-facing directions are examined. The effect of wind direction is considered by 

the use of wind pressure coefficient (CP) in this study. Though an assumed 

variation in CP could be considered to be a change in wind direction, only three 

sets of ΔCP arrangements across the locations of inlet and outlet were investigated. 

The results demonstrate the sensitivity of ΔCP on the resultant flow rates of 

associated office spaces rather than the direct interpretation of influence of wind 

direction on the ventilation flow rates. Designers may be more interested in the 

explicit expression of wind directions for natural ventilation design. It is supposed 

that the impact of wind effect upon specific wind attack angles with reference to 
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the proposed building configuration can be tabulated for more practical 

application in the future. 

 

(2) Fire regulations 

In terms of fire safety, strategies embodied in the Building Regulations of Taiwan 

are the use of automatic suppression, phasing or staging of evacuation, and the 

use of lifts for the fire brigade in protected and ventilated stairs. The main fire 

safety features, with reference to vertical spaces for a tall building over 50 metre 

height (or 16 storeys), include floor-by-floor compartmentation with protection of 

shafts that link floors and fire brigade access via lifts in well protected fire-

fighting shafts. In the context of the current study, it is supposed that the 

segmentation as well as the wind floor concept can be extended to an integration 

design between ventilation system and fireproof refuge floor. More simulations 

can be conducted in terms of the zoning arrangements in the context of fireproof 

regulations in Taiwan.  

 

(3) Concerns of double-skin façade design 

In terms of double skin façade design for office buildings, the cavity geometry 

and the combination of the type of panes and shading devices are important for 

proper ventilation of the cavity. The purpose is to avoid overheating of the cavity 

and the interior space. From the aspect of cavity geometry, Lee et al. (2002) and 

Compagno (2002) both suggested that the width and height of the cavity and the 

size of the openings could be crucial for the intermediate temperatures and for the 

airflow if the cavity was naturally ventilated. However, the influence of the depth 

of ventilated cavity is not examined in this study (the depth is kept as 1 m). It is 

therefore desirable to have further sensitivity analysis with reference to the 

geometry of ventilated cavity against ventilation flow rates. 

Another important parameter to be considered is the positioning of the shading 

devices. Oesterle et al. (2001) and Lee et al. (2002) described the proper position 

of the sun shading. As they claimed, the shading devices should be positioned in 
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the outer half of the intermediate space. Stec et al. (2000) also suggested that ―half 

of the inner façade should be insulated if natural ventilation with comfort is the 

objective. Otherwise mechanical cooling should be applied‖.  

Lee et al. (2002) pointed out that inadequate air flow around the blind may occur 

and conductive and radiative heat transfer to the interior would increase if the 

blind was placed too close to the interior façade. He suggested that the blind 

should be placed toward the exterior pane with adequate room for air circulation 

on both sides. Nevertheless, the shading control within the ESP-r program, blinds 

within the DSF cavity, is activated only when solar radiation exceeds 270 W/m
2
 

for this particular study. It is supposed that the radiative transfer within the CFD 

model and, in particular, the effect of absorption and re-emission of radiation due 

to water vapour content of the air should be taken into consideration for better 

representation of a real building. 

 

(4) Control strategies 

The main concern in free-running buildings is the control of the natural 

ventilation system. In the case of mixed-mode ventilation system, it would require 

extra expertise to run them successfully. Opening windows in higher floors may 

cause papers to fly about and make it difficult for desk work. It should be noted 

that the assumption made regarding the cool draught may change according to the 

comfort criteria and/or the type of work environment. In view of adaptive comfort 

under the naturally ventilated condition, it may be reasonable to consider a 

slightly higher mean velocity for the claimed comfort.  

It is supposed that the comfort ventilation can be improved by modifying the 

design of the windows so as to better regulate airflow. In the current study, the 

openings are assumed to be fully opened. The size of opening is defined in the 

conceptual design phase under the summer design condition (the maximum 

scenario). It is therefore suggested that further control algorithm with reference to 

type and form of ventilation openings should be developed for better control of 
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free running office buildings. An occupant based control is also important to be 

considered as part of an ‗adaptive‘ approach to thermal comfort. A seasonal 

control algorithm can be developed to provide the desired flow pattern and 

sufficient flow rates for cooling as well as satisfactory air flow rates between 

floors. More detailed estimation about the proportion of a year when the natural 

ventilation is viable and the arrangement for the mixed-mode ventilation 

(combination of natural ventilation with mechanical cooling) can be calcified 

accordingly. 

 

(5) Perception for comfort ventilation 

Brager and deDear (2000) suggested that psychological adaptations would widen 

the range of acceptable interior temperatures. In other words, acclimatization or 

physiological adaptations are likely to result in changes for comfort perception. It 

is therefore suggested that occupants of those new buildings who are accustomed 

to air-conditioned space should be made aware of the design intent of naturally 

ventilated buildings. It is believed that the expectations for thermal comfort of the 

occupants may be more relaxed given this information. Further post-occupancy 

evaluations can be conducted to demonstrate the claimed comfort cooling 

performance. The information obtained will be helpful for the promotion of 

naturally ventilated tall office buildings in the future. 
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