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ABSTRACT

The thesis is divided into five sections:

iii

(a) Trigonometric sums involving prime numbers and applications,

(b) Mean-values and Sign-changes of S(t)-- related to Riemann's

Zeta function,

(c) Mean-values of strongly additive arithemetical functioms,

(d) Combinatorial identities and sieves,

(e) A Goldbach-type problem.

Parts (b) and (c) are related by means of the techniques used but

otherwise the sections are disjoint.

(a) We consider the question of finding upper bounds for sums like

Z_ el «p™ |

PEN

and using a method of Vaughan, we get estimates which are much better

than those obtained by Vinogradov. We then consider two applications

of these, namely, the distribution of the sequence

(@p?) modulo one.
p

O0f course we could have used the improved results to get improvements

in estimates in various other problems involving p2
'We also obtain an estimate for the sum
Zi_ elwp®) |
PN
and get improved estimates by the same method.
(b) Let N(T) denote the number of zeros of [(s)

function. It is well known that
N(T) = L(T) + S(T),

where

but we do not do so.

— Riemann's Zeta

-



iv

L(T) = 51; T log(T/2T) - T/21 + 7/8 + 0(1/T),

but the finer behaviour of S(T) is not known. It is known that

. t
St) « \GS v 5 S Slw) da <« \03 t,
o

so that S(T) has many changes of sign. In 1942, A. Selberg showed

that the number of sign changes of S(t) for t € (0,T) exceeds

T (log T)l/3 exp(-A loglog T), (1)

but stated to Professor Halberstam in 1979 that one can improve the
constant 1/3 in (1) to 1 - €. It can be shown easily that the
upper bound for the number of changes of sign is 1log T.

We give a proof of Selberg's statement in (b), but in the process
we do much more. Selberg showed that if k is a positive integer

then
TR 1t

& L
\S(t)\ 4at = Ck H OOS\OST) i I O( (\03\03"‘\ 1)} ' (2)
X

5
where T2 < H §_T2 and Ck is some explicit constant in k. We
have found a simple technique which gives (2) with the constant k
replaced by any non-negative real number. Using this type of result,

I prove Selberg's statement, with (log T)_E replaced by
-4
exp ( - A \l \03\03T (\05\03\03 L)) 7 ]

(¢) I use the method for finding mean-values above to answer similar
questions for a class of strongly additive arithemetical functidns.

We say that f is strongly additive if

(1) f(mn) = f(m) = f(n), if m and n are coprime,



(2) f(pa) = f(p) for all primes p and positive integer a.
Let
VS ( 3\‘(
:é ¢
A&(.x) - F
p<x
Halberstam and Delange showed that if then f 1lies in a certain

class, then one can show that for any k € N

2k ) &
2 \sG) - A ~ Pax-X Az 00

nex

where

Mg = = g t e at.
This ,is a moment problem and was motivated by a paper due to Erdos
and Kac. I use my technique to show that 2k can be replaced by
any positive real number.
(d) This section contains joint work with Profeésor Halberstam and
is still in its infancy. We have found a general identity and a
type of convolution which serves to be the starting point of most
investigations in Prime Number Theory involving the local and the
global sieves. The term global refers to sieve methods of Brun,
Selberg, Rosser and many more. The term local refers to things like
Selberg's formula in the elementary proof of the prime number theorem,
Vaughan's identity and so on. We have shown that both methods stem
from the same source and so leads to a unified approach to such research.
(e) I considered the question of solving the representation of an

integer N 1in the form

N = \)\L ‘*le - Ke3

)

where the pi's are prime numbers. This problem was motivated by

Goldbach's Problem and is exceedingly difficult. So I looked into

getting partial answers.



Let E(x) denote the numbers less than X not representable
in the required form. Then there is a computable constant ¢§ > 0

such that

E(xy <« X

To do this we use a method of Montgomery and Vaughan but the proof

is long and technical, and we do not give it here.

We show by sieve methods that the following result holds true:

N

N = P *?z.l *kPS?L&\)E

We have been unable to replace the product of three primes by two.

vi

Note: k is a constant depending on the residue class of N modulo 12.
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BRIEF INTRODUCTION

Each chapter has a detailed introduction describing the contents

and therefore I shall give at this stage only the scope of my thesis.

Chapters 1 and 2

We study exponential sums over prime numbers, using the Vaughan
identity. Applications are then made to the distribution of the
sequence {«f‘modulo 1 : ¢ prime numbers} , where o« 1is an

irrational number.

Chapters 3 and 4

We introduce a technique that is used to obtain all the moments
of V3 and we use these to obtain results on (a) the sign-changes
of St and (b) the finer behaviour of the limiting distribution

of Sy,

Chapter 5

We apply the method of moments, introduced above, to obtain

corresponding results for the limiting distribution for a general

class of additive functions.

Chapter 6

This is work done in collaboration with Prof. Halberstam. We
introduce a type of arithmetical convolution and a summatory formula
which is then used to derive the combinatorial identities underlying
all the known sieve methods. This account gives a unified approach

to the subject of sieves.



Chapter 7

We apply sieve methods to the problem of representing natural
numbers N in the form

N = pf+p) + Kpyp,ps , Py primes.



SECTION A. EXPONENTIAL SUMS IN PRIMES

Chapter 1. On the Distribution of «p" modulo 1

Chapter 2. Estimate for the Exponential Sum 2 __ elap®)
P<N



Chapter 1.

The Distribution of «¢ Modulo 1

§1.1. Introduction

In 1977, Vaughan [5] introduced an elementary method in prime-
number theory which enabled him to improve known results on the
distribution of the sequence (xp) modulo 1, where &4 is an irrational
number and p runs through the set of prime numbers. We shall con-
sider the corresponding questions for the distribution of (xp*)

modulo 1, The basic result is embodied in

THEOREM 1. Suppose « is a real number and a and q are

positive integers satisfying (o,4)=\ and |« ~%/q\< 9 % . Then,

for any positive integers i and N , given any real number €>o s

we have

[ ™~ N
AGony = 217 Ametnio] @ N (a7 e nTE L gt
h

/]
=l n=y

where the constant implied by the & notation depends at most on €.

Even the case W =1 of Theorem 1 appears to be new and we

record it as

THEOREM 2. Suppose that « and N are as specified in Theorem 1.

Then, given any real number &>o , we have

A

+ ‘J[,N_L)L‘r

N
7 Am el &« NTF (g, N2

Nn=\

J

where the constant implied depends at most on €.

Such results, due to Vinogradov [6,7], exist in the literature
but are weaker in the sense that they are non-trivial only for much

shorter ranges of ¢ . For the ranges of ¢ for which Theorem 2 is



non-trivial, Vinogradov appears to have in i;he exponent nothing
better than l_éZ where we obtain %, but he has a power of a logarithm
in place'r of Ne.

In 1958, Chen [1] showed that, for any real « <*/8,

S (N,%q) = T el gff) « N
P<N

- -
for 0;=LN\ 3 , where o.4 ,N and k are positive integers, and
p runs through prime numbers. Also, (a,q) =V ., For k=2 and
. 7
g =IN"/®)  this shows that S.(N,%4) « N ® , whereas

Theorem 2 implies that

7/3 + €
SN ,L%lg) € N

for all q satisfying N < 9 <N
As has been remarked by Vaughan [3], one would like to eliminate
the term not inolving 9 in the estimate in Theorem 2, This would

A

follow if it were possible to replace the term N2 by N

We shall give two applications of Theorem 1:

THEOREM 3. Suppose « is a real irrational number and g is an

arbitrary real number. Let |6l denote the least distance ﬁ g from

an integer. Then, given any real number ¢ >o , there is a positive

number c¢(<), depending only on £, such that

-\
81—&

hop* —pll < cedp

for infinitely many prime numbers p .

1.The € derives from repeated use of the classical estimate
di(n) « nt for the divisor functions. It follows that, if anything
were to be gained by it, then N® could be replaced everywhere by
exp (e (foglog )™ Vog D , where < is some suitable positive
constant and N 2z Wo(Q),



Heilbronn showed in [2] that for any integer N >\ and every

real number « , integers n can be found such that t<n <N and

-
[

Wntell € ce) N 2
where € is an arbitrarily small positive number and <() is a
positive constant depending on &. We call such a result a 'local
result'. A 'semi-local result' is a result of the same kind but
valid only for N ZWN®&). It can be shown that local and even semi-
local results are unattainable with wn restricted to primes when «
is a Louiville number., 1In general, such results are attainable by
our method if the denominators of the convergents of « do not increase

too rapidly (in some sense).

THEOREM 4. Suppose that o<Y <Y +§ <1 and « , a, and

q are as defined in Theorem 1. Let 38} denote the fractional part

of ¢ and let w*(Y.,$,N) denote the number of prime numbers p<N

such that v < Lxprl <y +$ . Then, for any real number < -o ,

Al
‘R“QY,S ,N) - dT(N) « \\\\—‘.E C C\/“ +N—‘\2— -+ 0\,8\“_2)4 (\0"})‘%)

NS (a7 N

where NW(N) denotes the number of prime numbers not exceeding W

and the constants implied by the & notation depend at most on €.

In 1946, Vinogradov [8] obtained a result like this but with the
weaker error term

L5 .
NCQ™ + N o = 33 (g 24)

for 9 <N . Theorem 4 implies a similar error term, valid for



9 <N, with 9=JL; but at the expense of having the additional

e
term N .

All these results will be proved in §§l.4 and 1.5.

§1.2, Notation

Throughout, every opportunity has been taken to make explicit

important notation used at the point where it has been introduced.

An) is von Mangoldt's function,

d;{(n) is the number of representations of n as the product
of exactly k integers,

Aln) = 4w denotes the divisor function,

f"‘“) is the Mobius function,

R (n) denotes number of primes not exceeding ",

On) = Z{N \ey p , where p always denotes a prime,

el P\is the integer part of &,

s e} is the fractional part of @ , that is &-i#8]l,

ey is the least distance of ¢ from an integer, i.e.
m.mhel in -8y,

e (@) = Cz_rri,-a

14\ denotes the cardinality of the set 4 .

The following shall always denote integers (even if suffixed):
Q,,d,h ,‘(,,\m,n)c‘,,r'}t, \Ai‘a ; H)N,V,W.
The following shall always denote real numbers:

g,eb,o(,(;]y,S,a,’*])w,c,x,t

We shall use Vinogradov's symbol & as an alternative to the

O -notation. We say §=O(9)or §<«¢9 if there is a constant ™M such

that 1§} <My . In all cases, constants implied by either symbol



will be absolute or dependent at most on £ , where the definition

of & 1s specified in the appropriate context.

§1.3. Auxillary Results

The proof of Theorem 1 will occupy us for most of the chapter.

As we shall show, it will be necessary to estimate exponential sums
of the type

v,y = 2 V7 amb, eChminta

‘$h$|—\ m;,n
(\'V\)V\)e‘%

b

where W,V , v', W, and W' are positive non-zero integers satisfying

V<v' <2V > W<w'<2w , and VW<N, and

4 = {(m,n) s V<MV Wensw/ mns\\ik ,

with (™) running through all the lattice points in the hyperbolic
region in RxWR as defined by ‘% . Note that ‘5 is empty if VW 7N
and that I\ <N . The weights (O"‘)me(v,\/'] and (bn)pe(w . wil

will be arbitrary complex numbers satisfying inequalities of the type
Am & A and b <« B

where A and B will be specified variously later.

In the analysis of S(w 4), two classes of sums need to be
distinguished:

Class I: b, =\ for all n in (w,w'];

Class II: b, %! for some n in (W.w'],
As one would expect, Class I sums are easier to estimate and, by the
well-known Weyl procedure, Class II sums can be reduced to Class I
sums in a small number of steps. Essentially, the idea is to apply
Cauchy's inequality to SM,9%) a number of times so as to yield sums

of the type



S 7 17 e(§inona) )| ;

Ny Nz Ny
here n, runs through all the integers in an interval of length 3
which may depend on ™ and "z, and §(n.n) is a polynomial in n,

and nz2 ., Such a sum is then

& 77 e Cmas NElon) 17 ),

nl Ny

and can be estimated by some classical results of Vinogradov (see
Lemma 1 below).

We have, from Cauchy's inequality

(1.3.1) ‘s < (> > (Gm\lf(Z—_ AR D e“""l“‘@r)t

ig <m sV’ 1ghg n
sheH V W (mm)eﬁ

& (H\/Al)li ( Z_Z P tealV’

(v:,n)eﬁ
X
P55 T T i)
h ™ Ny ¥ N2
(mniy ey
L:\;L
L z
(1.3.2) & () A(nigip™ 3 )

say, and 2, will be estimated in one of two ways, according as
S(h,4) is in Class I or Class II.
Suppose that S(wW,4) is in Class I. Then
zZ, = 2. 2 7 e(hw(nit-nyu)
IShsh veamsy' nign,

VTN,



10

(1.3.3)

if

Co 2 2 2 elhetylyeang)

Tshgy Vamsy' ishyi<aw
(mn) 6{1

(W\,n*ﬁ) 6'9

The variable n in the multiple sum above actually traverses an

interval of length

I{ni (m,h)é“\ej amd (m’n*\j\)é“gj}\ £ Nm-

ki

by the definition of 9. Hence, from (l.3.3),

136y 1S\« 2 0 2 we(Ne et yad ™)

V<hell VAmg2v  isigi<aw

and the expression on the right is of a kind to be estimated in

Lemma 2 below.

Suppose now that S(W,4) is in Class II. We may write 2, in

the form

135 T = > 7 D ) elhmta) :

ichell VameV' el 7
(vn,t)é-g‘

where

4, = %(m,t): V<mgV' 5 1<iel s W2, Im?t) éN‘} ,

and (mt) runs through all the lattice points in “é.. Also



W) = 7 ] bpba, & B*a(in) .

n, Ny
P, =€
(Y“lni) € gj

(_"—\)1,

Changing the order of summation in (1.3.5), we have

Z-3 7 swI e,

lehsh Lsigt<w'E
el=W (m, 04,

and this expression will be treated along the same lines as Class 1

sums. By Cauchy's inequality,

— Y
1.3.6) \Z2\ <S> 7 |2\ )

VSheld 18 <w'2

(55 17 etewf)

t<h€ istipigw'z ™

(mx)ed,
& B (S dml)t(j_ 1 g\~ Z;f
R PINWES \SheH ?

say, and

Sl . N -\
14,) = ) ; | < N 2 el &« Nw
N2 RNV
mE el N

and

2.7 2 2 2 ellmiomdya)
LShel 1sitl<w'2 midm,
(mi, Y€,

L=1,2.

Z Z Z 2—_ E(\'\ts(\\-)'?lm)o(>
V<held Vsiwel<w' > \$\3\<V' ™ .

(m,t) 6-@5.
(mlt1j) 6‘91

!

11
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7.\<¢ > 2 > | > eQantyma))| ’

Vehe sl <qpw? 1elyt<ay
(.m)'t) 6‘(31

(m*:))t)é‘gl
and the inner-most sum actually extends over all integers of a

certain interval, Thus, summing over  , we have

137 12,0« D Z Z m.n(L(t,gu,\llht3x\\"},
SR A AR

1eh <) z \$\3\<1V

where L(’f»3) is the length of the interval traversed by m . Indeed,

(1.3.8)  Lib,y) = | §m: (mi) ey and (may,eded )

A S N T I N T

Vimey'
m>lE) SN*
(m+9)* 161 € N*
so that, by (1.3.6), (1.3.7), and (1.3.8),

(1.3.9) 2., < er it (2 4o ) .

Ve <iwe

A
(w2 2 2 rw(N g1z ,\\2“‘?3“\\_‘}1 >
ot

and this we shall evaluate after Lemma 1 below, which we shall now

state,

LEMMA 1 (Vinogradov). Suppose that X and Y are positive

integers. Also suppose that \« —-%/q\ <« 9°* | where « is a real

number with a and q integers satisfying (a,4)=1. Then
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Z ™Min ( Y , de-“ﬂ> S XY CL—\ -~ (X ‘\‘CI,) \03 LC"

x <X

7 e XY/ ™) < (xvamt w X xq)(log 2x79)

x <X

These inequalities are essentially Lemmas 8a and 8b of

Chapter 1 of [9]. We are now in a position to prove

LEMMA 2. Let N,H ,V ,V' ,W, and W' be positive integers

satisfying V<V'<2V , W< w' <2w, and VW €N ., Suppose «,

0, and q are defined as in Lemma 1 with the additional requirement

that \03% <& \03 N

Let (a,,) and (bh)yg_two sequences of complex numbers such that

there are positive numbers A and B , depending on N, such that

On, & A and bn <« B .

Define the sum

S.o= :2_. \ :2_ R ;1_ b e(xhm?n®)
lshsl Veam sV’ Wensw

mn SN

Then, for any fixed real number €70,

(a) if b=l for all ne(w,w], we have

(1.3.10) S, & ANYTCHNTY +unviq s+ (Wvg)E) |

(b) otherwise, we have

. - Lo 3 N y L
(1.3.11) S, @ AB CNRDTCRNTVE N W™ g Nt e ® ),

Proof. (a) It will suffice to bound the expression in (1.3.4).

We put



14
(1.3.12) L= 2hmiy s that L LA < 8NV

and A will run through all the integers in the interval shown. Also,
the number of representations of Y in the form (1.3.12) is not more
than 4;(UB1). Next, note that Nm= = N 12Zhmg| 17 & N LY,

Thus, from (1.3.4),

(1.3.13) L >\ < > A0 min N S Wbl
1Ll < 8NWY

&« (t\n—\\/)8 Z mm(NZH\M",\'\L«H“),
LAL< SNRY

and by Lemma 1, this is

& (NLH)Q (N g™ 4 uNy + gD (log 2nNzviq),
By the conditions on 9, and from (1.3.2) and (1.3.13),
Ai A .
g & ACHNVE + Wy Z)7T)
& A CHNEVE D TRINTY G ey~ Rvg ) )

& AT (nEY chnyEgTE + (HvgdT ).

(b) We shall evaluate the multiple sum in (1.3.9). In (1.3.9)

put

W

(1.3.14) L = 2wty , so that 1 <11 <16 HNW L

Also,

NIEVTE = N aneRy) < NTR LT
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The number of representations of . in the form (1.3.14) is at most

d;(14)) and so, from (1.3.9),

2, & BlHt( 2 c\ll’c))t <HN\N * Z da(m)mm( ‘\T‘}f\l ;\u«\\-‘»lo

Pl S pwWE 1<l SlbHN W

For our purposes, it will suffice to have

7 Aty & NEwr
ISk<byw*

By Lemma 1, we then have that

T« NBWWHNW £ NN H ' v NWW +q) log (nThg)) "

and, since log g, & ‘g N,

2 L .xi
Z, & B (W s inw g E gt )T

and the result follows from (1.3.1) and (1.3.2).
We now establish a consequence of Lemma 2 which will be a

principal tool in the proof of Theorem 1 in &.

Suppose that « , a , 4 , and N are as defipned in

LEMMA 3.

be positive integers such that

Lemma 2, TLet M™M,, M, , N, , N,

M\(‘\"z_’ N\<Nl, ._a_rﬁ'. M\N\QN.

Also suppose that (dw,) and (b.) are complex sequences as in Lemma 2,

with

Am < A and b, < B,

Define the sum

S 1D a2 beethen |,
Ny <n &N,
M < N

S, =

he iy Mi<m< M,

i
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Then, given any real number ¢7vo

b

(a) if by=\ for all nelni,N.]Y,

A i - -&
(1.3.15)  S2 &€ AW (ANTM, + NI q T o (wmeq)? ),

(b) otherwise

.

A L Al L
(1.3.16) S, < AB(NW (HNZM,” +HN3”NL* *\*NCL“L* *HBMN‘%“}‘

Proof. We shall indicate the proof of (a) only since (b) is
analogous. We subdivide the interval (™M,,™M2.] (also (Ni,,N2] )
into‘O(\°3N3 subintervals of the type (V,V'] (also (w,w')) such
that M ¢V < v ' gy« ™M, (a_lso N W <W!' €2wW<£ Ny ) respectively.
Moreover, we may assume that VW <N 35 otherwise the contribution
from integers in these intervals to the sum below is zero. It is
clear that

Sz < %2‘__{ \ 2 G T Z b G(Hm"nlo()\}

i<hel Vamgy! Wenew'

mn < N

2

and the sum in brackets is estimated by Lemma 2 for the cases (a)

and (b). For case (a), this gives

€ —_— ~ A AR -1 ji
S, <« A(Nw) ) ) iHNL\/ +HNVZq % + (hvq) }
vV W

A L i
& AT (HNT™M, BN g7+ (BMag)™ )

which is as required with 3€& replaced by ¢
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