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Abstract 

"Fuel Consumption and Pollutant Emissions of Spark Ignition Engines 

During Cold-Started Drive Cycles", N J Darnton 

This thesis details the development and evaluation of a procedure to predict the 

fuel consumption and pollutant emissions of spark ignition engines during 

cold-started drive cycles. Such predictions are of use in the early development 

and optimisation of an engine and vehicle combination with regard to legislated 

limits on vehicle performance over defined drive cycles. Although levels of 

pollutant emissions are the main focus of legislation, reducing fuel consumption 

is also of interest and drive cycle fuel consumption figures provide a useful 

benchmark of vehicle performance appraisals. 

The procedure makes use of a combination of engine friction models and 

experimentally defined correction functions to enable the application of 

fully-warm engine test bed data to cold-start conditions. This accounts for the 

effects of engine temperature on friction levels, mixture preparation and start-up 

transient behaviour. Experimental data to support the models and assumptions 

used are presented and discussed. Although not an essential part of the procedure, 

neural networks have been used to characterise the fully-warm engine mapping 

data. These are shown to provide an effective way of interpolating between 

engine mapping points. To facilitate the prediction of tail-pipe emissions, a 

simple catalyst efficiency model has been included and the complete procedure 

incorporated into a single software package enabling second-by-second fuel and 

emissions flow rates to be predicted for a given engine and vehicle combination 

over a defined drive cycle. This package is called CECSP or the Cold Emissions 

Cycle Simulation Program. The program has been designed to run on PC 

machines. 
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The procedure has been validated by application to a typical 1.8 litre medium 

sized vehicle driven over the ECE+EUDC drive cycle and the predictions found 

to be within the target accuracy of +/-5% for fuel consumption and +/-10% for 

engine-out emissions. Envisaged applications of the procedure to rank the sources 

of increased fuel consumption and emissions due to cold-starting and engine and 

vehicle details are outlined. 
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Abbreviations 

AFR 

bmep 

CCC 

CECSP 

co 
cO2 

DOHC 

Air/fuel ratio by mass (measured using a UEGO sensor) 

Brake mean effective pressure 

Close-coupled catalyst 

Cold Emissions Cycle Simulation Program 

Carbon monoxide 

Carbon dioxide 

Double overhead camshaft 

EC European Community 

ECE+EUDC European drive cycle (also termed NEDC) 

ECT Engine coolant temperature 

EECIV 

EGR 

EHC 

FID 

fmep 

FTP 

HC 

HE GO 

HO 

IMechE 

Imep 

ISCO 

isfc 

ishc 

LEV 

MAP 

Electronic engine control unit, version 4 

Exhaust gas recirculation 

Electrically heated catalyst 

Flame ionisation detector 

Friction mean effective pressure 

Federal test procedure 

Hydrocarbons 

Heated exhaust gas oxygen 

High output 

Institute of Mechanical Engineers 

Indicated mean effective pressure 

Indicated specific carbon monoxide emissions 

Indicated specific fuel consumption 

Indicated specific hydrocarbon emissions 

Indicated specific nitrous oxide emissions 

Low emission vehicles 

Manifold absolute pressure 
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MBT Minimum advance for best torque 

NEDC New European Drive Cycle 

NOx Nitrous oxides 

PC Personal computer 

RON Research octane number 

RPM Revolutions per minute 

TDC Top dead centre 

TLEV Transitional low emission vehicles 

UBC Underbody catalyst 

UEGO Universal exhaust gas oxygen 

ULEV Ultra low emission vehicles 

ZEV Zero emission vehicles 
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Nomenclature 

D Catalyst dead time (s) 

F Initial friction correction factor 

L Catalyst light-off time (s) 

Mengine Engine brake torque (Nm) 

rna Mass of air induced (kg) 

me Mass of recycled exhaust gas (kg) 

minj Mass of fuel injected per stroke (kg) 

rilf Combusted fuel mass flow rate (g/hr) 

rilinj Injected fuel mass flow rate (kg/s) 

riloverall Overall fuel mass flow rate (kg/s) 

rilunaccounted for Unaccounted for fuel mass flow rate (kg/ s) 

N Engine speed (rpm) 

nR Number of revolutions per cycle 

P Pressure (N/m2) 

P Power(W) 

Plndicated Indicated power (k W) 

Pa Accessory friction power loss (W) 

P friction Predicted friction power loss (W) 

P
KE 

Power required to increase vehicle kinetic energy (W) 

Pprf Total friction power loss (W) 

Prf Rubbing friction power loss (W) 

Prl Road load power (W) 

RFDR Final drive ratio 

R Gear ratio gear 

rwheel Driving wheel radius (m) 

T Start temperature (OC) 

V Volume (m3
) 

VI 



vveh 

y 

'llcat 

'llt 

'lltrans 

v 

Displaced volume per cylinder (m3) 

Engine swept volume (m3
) 

Vehicle speed (km/hr) 

Net indicated work (J) 

Friction correction factor 

Delta HC constant 

Fully-warm catalyst conversion efficiency 

Catalyst conversion efficiency at time t 

Transmission efficiency 

Kinematic viscosity (m2/s) 
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Chapter 1 

Introduction 

1.1 Background to Thesis 

Pollution of the environment by emissions from road traffic and competitive 

pressures to improve fuel economy are maj or concerns during research and 

development efforts on spark ignition engines. With regard to levels of emissions, 

vehicle performance is assessed over a drive cycle of operating conditions for 

which maximum limits on the masses of particular pollutants have been set by 

legislation. These limits have been revised downwards through a series of 

amendments to the legislation since the 1970's. In some cases, the test procedure 

and drive cycle details have also been revised over the same period. Most 

recently, revisions designed to give due weight to the early period of engine 

operation, when the engine is not fully-warm and when post-combustion systems 

for emissions control may not be operating efficiently, have been debated and 

will be fully implemented before the turn of the century. 

The current European ECE+EUDC and USA FTP-75 drive cycles are designed 

to represent typical patterns of vehicle operation on these continents. For this 

reason, and because vehicles must pass tests on emission limits based on these 

cycles before introduction to the market, they are particularly important sets of 

operating conditions which manufacturers focus attention on during engine and 

vehicle development programs. In addition to emissions-related developments, 

the same cycles are used to benchmark fuel economy values. However, it is 

relatively late in a vehicle development program that final specifications are 

available for evaluation, and many critical engineering decisions must be made 

prior to this stage. 
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A technique to predict vehicle performance over drive cycles given information 

available relatively early on in a development programme has been investigated. 

This has major practical applications in, for example, screening possible design 

variants for potential impact on vehicle performance. At the outset of the 

investigation, no system was available to provide this facility. Of particular 

interest has been the problem of predicting the performance of vehicles during the 

early part of a drive cycle before the engine is fully-warm. In general terms, the 

objective ofthe investigation has been to provide a computer based system for the 

prediction of fuel consumption and pollutant emissions, for any specified engine, 

transmission and vehicle combination. The computer software which has been 

produced is termed CECSP (Cold Emissions Cycle Simulation Program). The 

experimental and theoretical studies carried out to develop CECSP, and 

applications of this, form the main body of the work described in the thesis. 

1.1.1 European Emissions Legislation 

The three main pollutant emissions produced by the spark ignition engine are: 

Carbon monoxide (CO). This is a colour free, odour free highly poisonous 

gas which is readily absorbed into the blood reducing its ability to supply 

oxygen around the body. A volumetric concentration of 0.3% can result 

in death in humans within 30 minutes. 

Unburned Hydrocarbons (HC). These are present as both unburned fuel 

and partially reacted fuel components, some of which are known to be 

carcinogenic. In certain conditions they react with low level ozone and 

nitrogen oxides to form photochemical smog. 

Nitrogen Oxides (NO and N02). Generally referred to collectively as NOx 

since NO is readily oxidised in air to form N02• N02 is in itself a 

poisonous gas but, in addition, it is readily soluble in water forming nitric 

acid. Thus, NOx emissions are believed to cause acid rain which is 
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thought to cause damage to both vegetation and buildings. 

The bulk of the exhaust gases are made up of nitrogen, carbon dioxide and water. 

Although non-poisonous, carbon dioxide emissions are believed to contribute to 

the "green-house effect". These may become the focus of future emissions 

legislation. However, the strictest legislation deals with emissions ofHC, CO and 

NOx and requires manufacturers to ensure tail-pipe emissions of vehicles are no 

more than a prescribed limit for a carefully defined vehicle operating regime or 

drive cycle. The legislation defines the exact drive cycle for the vehicle 

performance to be assessed over and certain conditions which must apply to 

enable test results to be representative for different vehicles and manufacturers. 

Vehicle exhaust emissions have been the focus of European legislation ever since 

the 1970's when a British Standard to limit 'visible' emissions was incorporated 

into an EC Directive [1.1]. As road traffic has increased the legislation has been 

tightened in response to environmental concerns and with the aim of bringing 

European legislation in line with the more stringent US standards. In 1985, the 

so-called 'Luxembourg Agreement' marked a significant step in European 

emissions legislation as it effectively ensured that catalytic convertors would be 

required to meet future emissions standards in Europe, as had been the case in the 

USA for several years. The agreement culminated in the adoption ofEC Directive 

911441IEEC [1.2]. This directive finally brought European legislation in line with 

US 1983 emissions standards. US legislation has typically been led by the State 

of California and in September 1990, the California Air Resources Board 

(CARB) introduced further legislation cutting the allowed emissions of new 

vehicles substantially in a series of stages, as shown in Table 1.1. In Europe, new 

legislation and proposals aimed at tightening the regulations defined in EC 

Directive 911441IEEC have already been introduced, as shown in Table 1.2. The 

proposed stages 3 and 4 of the European legislation, to be introduced in 2000 and 

2005, are expected to bring European requirements in line with the Californian 

ULEV standard to be introduced in 1997. Different approaches are used to 
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determine the emissions levels from actual motor vehicles for comparison with 

the allowed limits in the United States and Europe. In the US, the Federal Test 

Procedure (FTP) is used while in Europe emissions are evaluated using the New 

European Drive Cycle (NEDC) also known as the ECE+EUDC drive cycle. 

Although different in detail, these two cycles both define a series of engine idling 

and loading repeated in a manner to define a vehicle speed characteristic 

representative of the typical driving behaviour experienced by production 

vehicles. In addition to the drive cycle profile, the start-up temperature of the 

engine and allowed conditioning time before emission sampling begins is 

carefully defined with the intention of producing a repeatable test procedure 

which accurately represents the relative performance of a wide range of vehicles 

from different manufacturers. For the purpose of this work, the NEDC has been 

used in accordance with current and proposed European emissions legislation 

already discussed. 

1.1.2 The New European Drive Cycle (NED C) 

The NEDC consists of an elementary urban cycle repeated four times followed 

by the extra-urban cycle as shown in Figure 1.1. Each of the elementary cycles 

last 195 seconds and the extra-urban cycle lasts 400 seconds giving a total cycle 

length of 1180 seconds. The cycle is defined as a series of vehicle speed and gear 

number points with gear changes defined at appropriate points in the cycle, 

according to EC Directive 9114411EEC. Suitable tolerances are defined in the 

legislation for both vehicle speed and time from start to ensure cycle repeatability 

is maintained to as high an accuracy as possible. Current European legislation 

(EC Stage 2) defines a start/soak temperature of between 20°C and 30°C and 

permits a period of 40 seconds of engine idling before emission sampling begins, 

as illustrated in Figure 1.1. Possible changes to this procedure are currently under 

consideration and could include the removal of the initial conditioning period and 

a reduction ofthe start/soak temperature [1.4]. CARB have already adopted cold

start CO legislation at a test temperature of -7°C for current technology vehicles 

although it is not yet known if the ULEV legislation will require this test 
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temperature. In Europe, it is thought more likely that the start/soak temperature 

will eventually be reduced to between O°C and 5°C to reflect patterns of vehicle 

use and operating conditions in northern Europe more accurately without 

imposing the additional costs on industry of sub-zero test temperatures. Current 

proposals, however, suggest that test cycle modifications will be limited to the 

elimination of the 40 second conditioning period [1.5]. In addition, individual 

targets for HC and NOx are to be introduced from Stage 3 onwards instead of a 

single target for HC+NOx' 

1.1.3 Fuel Consumption and Emissions During Cold-Start and Warm-up 

The current European drive cycle includes a cold-start from a soak temperature 

of between 20°C and 30°C and as such is designed to represent a typical urban 

journey starting with a cold engine. The vehicle speed and gear number profile 

adopted for all light-duty vehicles does not account for variations in driving style 

and the different manner in which vehicles of varying performance are likely to 

be driven, as discussed by Andre et al [1.6]. Work done as part of the EC DRIVE 

program may result in a modified drive cycle format, but currently the 

ECE+EUDC drive cycle is believed to provide the most representative emissions 

performance comparisons between vehicles and as such is used extensively in the 

work presented in this thesis. Given that all European vehicles are assessed over 

the same drive cycle under the same operating conditions, techniques for reducing 

total emissions production over this drive cycle are of paramount interest to 

manufacturers. Whilst pollutant emissions are of primary importance, fuel 

consumption is of increasing interest and provides a useful benchmark for vehicle 

performance appraisals. Work done at the University of Melbourne [1.7] indicates 

that for hot-start operation the main influences on fuel consumption and exhaust 

emissions are vehicle acceleration and speed, revealing the importance of overall 

vehicle mass and choice of transmission ratios when applied to the fixed vehicle 

speed profile of the ECE+EUDC drive cycle. However, the primary area of 

concern in the current drive cycle is the initial period following the cold-start 

when various effects combine to give both poor fuel economy and increased 
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emission levels. This period contributes significantly to actual overall vehicle 

pollution in northern Europe. It has long been established that vehicle exhaust 

emissions from vehicles fitted with catalytic convertors are at their highest in the 

period immediately following a ,cold-start before catalyst light-off occurs, and 

that the driving conditions which yield the greatest adverse effects on emissions 

are at low ambient temperature and during urban driving [1.8]. Results from the 

United States Department of Energy show that vehicles used for short cold-start 

trips consume fuel at a much higher average rate than during long trips, and that 

the effect is magnified with decreasing ambient temperatures [1.9]. Furthermore, 

averaged over weekday trips in the 100 largest metropolitan areas in the United 

States, fuel consumption is between 13% and 17% higher than it would be if fuel 

consumption rates during engine warm-up were those of fully-warm vehicles 

[1.10]. Approximately one third of all motor vehicle travel in the United States 

consists of trips no more than ten miles in length [1.11]. A similar picture exists 

in Europe, where the bulk of weekday travel occurs in urban areas and starts with 

a cold engine. In fact, according to Andre, approximately one third of all journeys 

start with a cold engine (coolant and oil temperatures below 30°C) and a similar 

proportion are completed before the engine is fully-warm [1.12]. Thus the 

cold-start element of the European drive cycle is of vital significance to the 

overall fuel consumption and emissions produced over the cycle period, since the 

relative contribution of pollutants emitted during vehicle warm-up has been 

magnified due to the outstanding performance of modem catalytic convertors 

nearly eliminating pollutants emitted from fully-warm engines. This is most 

important when considering tail-pipe exhaust emissions, particularly those ofHC, 

as more than 80 per cent of these are generated in the warm-up phase before the 

catalytic convertor has reached its normal operating temperature [1.13]. The 

principle sources of HC emissions in the exhaust pipe have been reviewed by 

Heywood et al [1.14]. These can be summarised as follows: 

Release ofHC from narrow crevice volumes within the cylinder where 

the combustible mixture escapes burning because the flame cannot 

penetrate into these narrow volumes. 
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Flame quenching by the cold cylinder walls, resulting in the appearance 

of a thin layer of unburned mixture adjacent to the relatively cold surfaces 

in the combustion chamber. 

Absorption of fuel hydrocarbon components into thin oil layers in certain 

parts of the cylinder before combustion takes place and subsequent 

desorption at a later stage in the cycle. 

Leakage past the exhaust valve between compression and combustion. 

This effect is particularly significant in high mileage vehicles where worn 

valves and valve seats can lead to significant leakage. 

Presence of liquid fuel on the combustion chamber walls during early 

seconds of engine operation after a cold-start escaping combustion and 

passing directly into the exhaust stream. Further work by Heywood [1.15] 

suggests that liquid fuel films around the inlet valve can last for periods 

in the region of 60 seconds after a 20°C start. 

Work by Shayler et al [1.16] suggests that poor mixture preparation in the 

inlet manifold due to injector location and intake geometry can lead to a 

degree of mixture stratification in the cylinder resulting in some fuel rich 

mixture escaping combustion and entering the exhaust pipe. 

Each of the above mechanisms have a different effect on total HC emissions 

depending on the operating conditions and state of the engine with the result that 

HC emissions are poorly understood and difficult to predict, particularly in the 

period immediately following a cold-start. 

1.2 Aims of Work 

The aims of developing CECSP and the associated procedures to apply this are 

to predict fuel and engine-out emission mass flow rates on a second-by-second 

basis for the ECE+EUDC drive cycle and other patterns of operating conditions 

which might be specified. The procedure was to require only fully-warm engine 

mapping data to characterise the engine under consideration and the vehicle was 

to be defined by inputing appropriate definition parameters. As such, the 

procedure was intended to provide a means of determining to within a target 

7 



accuracy of 10% both the expected fuel consumption and engine-out (also tenned 

feedgas) emission levels expected for a given engine/vehicle combination and the 

effects on these values of changing the various engine, vehicle and drive cycle 

variables modelled. 

For a cold-start drive cycle, fuel consumption and engine-out emISSIOns, 

particularly those ofHC, are influenced by the increased friction levels and fuel 

enrichment associated with the cold-start and warm-up process. Engine-out 

emission production mechanisms, particularly those for HC emissions, are 

involved and complex. Tail-pipe emissions are influenced by the time taken for 

the catalyst to reach its normal operating temperature and by the conversion 

efficiency of the catalyst itself. In addition, actual vehicle and drive cycle details, 

such as total weight, transmission ratios and aerodynamics, will influence the 

total fuel consumption and emission levels. Thus, improvements in vehicle drive 

cycle emission performance can come from many different areas of both engine 

and vehicle design. The prediction procedure was intended primarily to enable the 

effects on total fuel consumption and engine-out emissions ofHC, CO and NOx 

of changing various vehicle and drive cycle parameters to be examined for both 

a fully-wann and cold-started drive cycle. Once engine-out emissions have been 

predicted, tail-pipe values can be calculated from basic knowledge of catalyst 

light-off and conversion performance. 

CECSP uses fully-wann steady-state dynamometer data to characterise the engine 

fuel and emissions perfonnance for the required operating conditions imposed by 

the drive cycle under consideration. In general, engine maps are produced for 

fully-warm operating conditions, which are most easily controlled and provide 

the bulk of the infonnation needed for engine development. In addition, these 

maps are usually available at an early stage of engine development and so 

predicting drive cycle performance from such maps will enable drive cycle 

perfonnance of pre-production vehicles to be assessed early in their development 

period. Figure 1.2 shows a brief outline of the procedure. A simple road load 
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model is used to deduce engine speed and brake load from a given vehicle and 

drive cycle description. An engine thermal model is used to predict engine 

friction levels on a second-by-second basis throughout the drive cycle for both a 

fully-warm start and a cold-start enabling indicated loads to be calculated, and 

then the fully-warm indicated engine map is used to deduce instantaneous fuel 

and emission mass flow rates. The emissions mass flow rates then need to be 

adjusted to account for the expected changes during engine warm-up and both the 

fuel and emissions flow rates adjusted to account for the transient effects 

associated with a cold-start. This procedure relies on several assumptions and 

engine models derived from experimental data. Figure 1.3 shows the inputs 

required and a brief summary of the route to achieve the desired outputs. 

1.3 Thesis Content 

This thesis deals with the various concepts and models which need to be 

combined to produce the final drive cycle prediction procedure. The following 

sections detail each of these and how this thesis covers the work done in 

developing the procedure. 

1.3.1 Engine Mapping 

The prediction procedure outlined in Figure 1.2 is based on the assumption that 

fully-warm engine mapping data will be used to characterise the engine under 

consideration. Fully-warm data is generally available even at an early stage in 

engine development. In order to use this to determine fuel and emissions mass 

flow rates at non-fully warm operating conditions the effects of differences 

between fully-warm and warm-up conditions on performance must be accounted 

for. A key step towards this is to recast the engine data, based on the rationale 

given in Chapter 4, into indicated operating conditions. The indicated mean 

effective pressure (imep), defined as the total work done by the engine is 

calculated from the brake mean effective pressure as: 

9 



hnep = bmep + frnep (1.1) 

where finep is the friction mean effective pressure. Thus, if the finep at each point 

in the cold-start drive cycle is determined, it should be possible to infer the fuel 

and emissions flow rates from the fully-warm engine map, providing the effect 

of engine temperature on the relationship between indicated operating conditions 

and exhaust flow rates can be defmed. Although not essential, in this application 

a neural network has been used as a simple way of characterising the engine map 

and interpolating between the fixed fully-warm engine mapping points to 

determine fuel and emissions mass flow rates at each point in the drive cycle. 

Chapter 2 deals with the engine mapping data processing and details the 

application and optimisation of the neural network to characterise the engine map. 

1.3.2 Predicting Cold-Start Fuel Consumption and Emissions 

In order to apply the fully-warm indicated operating map to the indicated load 

profile of the cold-start drive cycle, the effect of both engine operating 

temperature and the transient effects of start-up on the indicated engine operating 

map has to be established. Chapter 4 deals with the influence of engine coolant 

temperature on fuel consumption and the development of a model to predict the 

increase in fuel consumption during and immediately following a cold-start. 

Chapter 5 deals with the corresponding effect on engine-out exhaust emissions 

with particular attention being paid to the increase in HC emissions during the 

early minutes of engine operation. When applying the fully-warm engine map to 

the cold-started drive cycle, the engine management calibrations for parameters 

such as spark timing and EGR rate are, for simplicity, assumed to be identical to 

the fully-warm calibration. 

Predicting the increased engine friction and engine temperature distribution 

during the cold-started drive cycle is achieved by using a program for modelling 

engine thermal systems called PROMETS [1.17] previously developed at the 

University of Nottingham. Chapter 6 details the basic structure and validation of 
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this model and its application to the drive cycle prediction procedure. Chapter 7 

outlines the combination of the various elements of the prediction procedure that 

comprise CECSP. 

1.3.3 Assessment of Model Performance 

Chapters 8 and 9 detail applications of the CECSP software. The flexibility of the 

prediction software is investigated and its application to various possible 

engine/vehicle development programs illustrated. The effect of changes to 

engine/vehicle details such as total vehicle mass, transmission ratios and engine 

management strategy are discussed and possible future applications of the 

procedure suggested. Initially developed to predict engine-out emissions, the 

extension to predict tail-pipe emissions and account for appropriate 

after-treatment considerations is considered and the implication of the various 

proposed drive cycle changes investigated. The use of the software to prioritise 

the principle sources of emissions during the ECE+EUDC drive cycle, and 

possible areas of emissions reduction, is demonstrated. 

1.4 Contribution of Thesis to Engine Development 

The main objective of the work presented in this thesis was to develop a simple 

prediction procedure, based on fully-warm dynamometer test-bed data, to predict 

to within a target accuracy of 10% the total fuel consumption and engine-out 

emissions produced for a typical drive cycle. The work has resulted in the 

production of a software package (CECSP) which predicts fuel and emissions 

mass flow rates at each point in a defined drive cycle for given engine fully-warm 

mapping data and defined vehicle characteristics. The procedure requires no cold 

engine data and assumes that fully-warm engine calibration settings apply 

throughout the drive cycle, and as such provides a useful approximation of 

expected drive cycle performance for a loosely defined engine and vehicle 

combination. The procedure enables the relative effects of changing many engine 

and vehicle parameters to be examined and as such could be used to prioritise 

areas of performance improvement during vehicle development. In addition, the 
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requirement of fully-warm engine mapping data only means that the procedure 

can be used at an early stage of engine development to predict expected drive 

cycle results before engine and vehicle design parameters are fixed and before 

experimental measurements can be taken. 
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Chapter 2 

Characterising Engine Mapping Data Using 

Neural Networks 

2.1 Introduction 

Details of how fully-warm engine performance maps have been exploited in the 

modelling of cold-started drive cycle conditions will be described in later 

chapters. As a precursor to this, general trends in fully-warm steady-state engine 

behaviour and how these can be characterised in a suitable form are described 

here. In particular, the use of neural networks to relate independent and dependent 

engine state variables is considered. Although this is not an essential part of the 

model representing the physical processes involved, this form of data handling 

plays an important role in enabling efficient use of the model. 

The major operating variables that influence spark ignition engine performance 

are engine speed, load, air/fuel ratio (AFR) , spark timing and exhaust gas 

recirculation rate (EGR) [2.1]. The engine mapping data used in the work 

presented here has been derived from engines mapped with production engine 

management strategies. Hence the spark timing and EGR rate for a given engine 

speed, load and AFR during fully-warm operation are fixed by the strategy and 

so the engine variables of interest are limited to these three. The maj or part of this 

chapter deals with characterising engine mapping data in terms of just engine 

speed, load and APR and assumes that the spark timing and EGR rate are 

determined by the engine management strategy, since engine data in this format 

was readily available. However, in order to provide a more complete picture of 

engine map characterisation, the effect of changing the spark timing and EGR rate 

calibrations is also be considered here. This requires a much larger and more 
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complex engine map database but such an engine map could then be used to 

enable the effects of changing spark timing and EGR rate during a cold-started 

drive cycle to be assessed. 

Previous work carried out by Bacon [2.2, 2.3] has demonstrated that providing 

patterns exist within a sequence of data values, neural networks can be used to 

associate these with a corresponding set of input values. Neural network 

computing was originally conceived as a model for the brain and, as such, neural 

networks comprise several interconnected processing units connected in parallel. 

In essence, a neural network 'learns' the relationship between input and output 

parameters in a process called 'training'. The trained neural network can then be 

used to generate output values for input patterns not included in the training data. 

Bacon used a neural network to emulate certain elements of a current engine 

control strategy and found the interpolation and extrapolation accuracy to be high. 

In particular, the neural network approach was found to provide a significant time 

saving when compared to the standard control algorithm development times. 

Work by Stevens et al [2.4] demonstrated the use of neural networks to determine 

relationships between engine-out emissions and engine state variables and 

concluded that very accurate predictions of engine performance could be made 

providing the engine database was sufficiently large to characterise the engine 

performance map. Hence, neural networks provide a simple, time saving, 

alternative to regression analysis to characterise engine mapping data. In the work 

presented in this thesis a neural network has been optimised to predict fuel 

consumption and emissions as a function of engine speed, load and APR. In 

addition, work has been carried out to investigate the possibility of using a neural 

network to simulate a complete engine map with engine speed, load, APR, spark 

timing and EGR rate as the inputs. The characteristics of the engine maps used 

are given below. In addition, a brief description of neural networks and an 

overview of their application to engine mapping is given. A comprehensive 

introduction to the theory and application of neural network processing 

techniques can be found in publications by Rumelhart and McClelland [2.5-2.7]. 
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2.2 Engine Map Characteristics 

The engine mapping data are generally available as a series of steady-state 

fully-warm brake load sweeps at a range of engine speeds and AFRs. The engine 

performance parameters of interest here are fuel, HC, CO and NO
x 

mass flow 

rates. In order to keep the amount of data to be handled to a minimum the range 

of engine speeds and loads covered by the mapping data was restricted to that 

imposed by the ECE+EUDC drive cycle. By way of illustration, the results used 

in this chapter are taken from a 1.8 litre Ford Zetec engine. This 4-valve per 

cylinder engine is representative of engines currently in service and is designed 

to operate at stoichiometric mixture setting at most operating conditions. First, 

the influence of operating conditions for fixed tail-pipe AFR mixture calibration 

is considered. Figures 2.1 and 2.2 show a typical dataset plotting fuel and 

emissions against engine speed and brake load for stoichiometric AFR operation 

and with spark timing set to MBT (Minimum advance for Best Torque). Fuel 

mass flow rates increase with both engine speed and load in proportion to air 

mass flow rate increases, to maintain a constant stoichiometric tail-pipe AFR. 

Similarly, CO mass flow rates increase uniformly with both engine speed and 

load because CO concentrations are effectively dependent only on the AFR, 

which is constant. HC and NOx emissions behave less uniformly due to the 

variation in volumetric concentration with both engine speed and load. 

Consequently, the HC and NOx mass flow rates do not follow the fuel mass flow 

rate variations as closely as the CO flow rates. 

A more detailed picture of the effect of operating conditions on engine-out 

emissions can be obtained by considering emission concentrations. Again 

considering only stoichiometric mixture settings, the effect of engine speed and 

indicated load on HC emissions concentrations is shown in Figure 2.3. The HC 

formation mechanisms, discussed in Chapter 1, are sensitive to both engine speed 

and load. Whilst the way engine speed and load effect the various formation 

mechanisms is difficult to describe in quantitative terms the observed trends are 

attributable to a trade-off between combustion temperature and in-cylinder and 
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exhaust residence times [2.1]. Increasing engine speed at constant indicated load 

results in increased gas temperatures in both the expansion and exhaust strokes 

due to the reduced significance of heat transfer from the cylinder. This results in 

more oxidation of unbumt HC which more than offsets the reduced residence 

time in the cylinder and exhaust system. Consequently, unbumt HC emissions 

decrease with increasing engine speed. Similarly, when increasing indicated load 

at constant engine speed, gas temperature increases offset the effect of reduced 

residence time resulting in a slight decrease in HC emissions. 

Figure 2.4 shows the effect of engine speed and brake load on NOx emissions and 

shows it to be the opposite of that for HC emissions. NOx concentrations increase 

both with increasing engine speed and indicated load. As discussed above, 

increasing both engine speed and indicated load results in increased combustion 

temperature due to the reduced significance of heat transfer. In addition, increases 

in in-cylinder pressure result in increased combustion temperature and these 

effects combine to have a direct effect on NOx emissions which are extremely 

sensitive to combustion temperature. 

The engIne data presented in Figures 2.1 to 2.4 were all obtained with a 

stoichiometric tail-pipe AFR. The third and fmal engine variable of interest in the 

engine maps to be characterised here is AFR, since emission concentrations are 

particularly sensitive to this parameter. Figure 2.5 [2.1] shows (not to scale) the 

variation ofHC, CO and NOx emissions of a typical spark ignition engine with 

AFR. HC emissions decrease as the AFR is progressively increased and more and 

more of the injected fuel is oxidised. However, eventually the mixture becomes 

too lean to bum and partial misfiring occurs causing the HC emissions to rise 

again. CO emissions also reduce with increasing AFR as combustion becomes 

increasingly complete and the carbon in the fuel is increasingly oxidised to CO2. 

This effect is particularly significant when the AFR is richer than stoichiometric 

as oxidation is limited by lack of oxygen and so any increase in oxygen levels 

will significantly affect the completeness of combustion. As mentioned above, 
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NOx emissions are governed by combustion temperature and so peak when the 

AFR is just lean of stoichiometric when the combustion temperature is at its 

highest. NOx emissions then reduce uniformly with AFR either side of this peak. 

The combined effects of engine speed, load and AFR on the emissions produced 

by a spark-ignition engine is that engine emissions performance maps are more 

complex than the fuel consumption map. In order to characterise these engine 

performance variations with engine speed, load and AFR a neural network has 

been used to 'learn' the experimental engine data and enable the interpolation of 

fuel and emissions flow rates at points within the boundaries defined by the 

experimental data. 

The engine data considered so far has been obtained with MBT spark timing and 

no exhaust gas recirculation. Both these variables, like AFR, are generally fixed 

by the engine management strategy. However, if a complete engine map is to be 

simulated the effect of all the engine operating variables on fuel and emissions 

flow rates must be considered. 

The spark timing in an engine cylinder determines at what point in the engine 

cycle combustion begins. If combustion starts too early the work transfer from the 

piston at the end of the compression stroke on the combusting gases is too large, 

and results in an excessively high in-cylinder gas temperature causing 

pre-ignition of the remaining air/fuel mixture in a phenomenon often called 

'knock'. If combustion starts too late, the peak cylinder pressure is reduced and 

the expansion stroke work transfer from the gas to the piston decreases [2.1] 

resulting in reduced brake torque. Consequently, MBT spark timing gives the 

maximum brake power and minimum brake specific fuel consumption. 

Deviations from MBT spark timing influence fuel consumption and emissions 

performance through changes in combustion gas temperature and exhaust gas 

temperature. Retarding spark timing from the optimum (reducing the spark 

advance relative to TDC) results in lower combustion temperatures and higher 
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exhaust gas temperatures because combustion takes place later in the expansion 

stroke of the engine. Therefore, retarding spark timing relative to MBT reduces 

NOx emissions (due to reduced combustion temperature) and also reduces He 

emissions (due to increased exhaust gas temperatures). 

Exhaust gas recirculation (EGR) is used to reduce NOx emissions. The system 

involves recycling a fraction (typically up to 30%) of the exhaust gases from the 

exhaust to the intake system. This gas then acts, along with the normal residual 

gas fraction from the previous engine cycle, as a diluent resulting in reduced 

combustion temperature without significantly affecting the combustion AFR. 

Here, the EGR rate is defined as: 

EGR(%)= ( me ) X 100 
m+ m a e 

(2.1) 

where me is the mass of recycled exhaust gas and rna the mass of induced air. 

Increasing the EGR rate reduces NOx emissions due to decreased combustion 

temperature but also reduces the combustion rate making stable combustion more 

difficult to achieve. The amount of EGR a particular combustion chamber design 

can tolerate depends on its combustion characteristics, the speed and load, and the 

in-cylinder AFR. Typically, EGR rates in the range 15-30% are the maximum a 

spark ignition engine will tolerate [2.1]. As a result of the decreased bum rate and 

combustion and exhaust temperatures, He emissions increase with increasing 

EGR. As the EGR limit of an engine is approached the increase in He emissions 

is significant due to the reduction in combustion stability. 

2.3 Neural Network Description and Application 

The previous section outlines the effects of the main engine variables of interest 

here on fuel and emissions mass flow rates. The following gives a brief 

description of neural networks and how they have been applied to characterise the 

typical engine mapping data discussed above. 
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Figure 2.6 shows an illustrative example of a generalised neural network. The 

network is constructed of a series of interconnected units or nodes. In this 

example the units are arranged in three groups which by convention are referred 

to as the 'input', 'hidden', and 'output' layers. There may be any number of hidden 

layers, although most problems use a single hidden layer [2.5]. Each node in the 

input layer is connected to each of the nodes in the hidden layer. Likewise, each 

of the hidden layer nodes is also connected to each of the output layer nodes. 

There are no direct connections between the input and output nodes. Each of the 

connections has a weight term associated with it, which determines how strongly 

the incoming data value is transmitted to the node in the next layer. Networks are 

trained by adjusting the strengths of the connections between nodes in order to 

correlate the input and output patterns. Each node may be represented by three 

sections, as shown in Figure 2.7. The input to a node is calculated as: 

input.= ~ w .. output.+bias. 
1 L.; IJ J 1 

j 
(2.2) 

Wij is the weight on the connection between nodes j to i, outpu~ is the output from 

node j, and j is the number of nodes that are connected to the input side of node i. 

The bias is in effect an additional weight term which can be learned just like the 

other weights by treating it as the weight from a unit that always gives an output 

of 1. When a set of inputs is applied to the network an activation value is 

calculated for each node in the network. For the input layer, the activation value 

for each node is calculated from the network input applied to it. In the hidden and 

output layers the activations are calculated from the current values of activations 

and weights in the appropriate connected layer. Thus, the activations of the input 

layer and weights connecting input and hidden nodes are used for the hidden 

layer activation calculation. 

An individual unit's output is related to its inputs via an activation function. It is 

a requirement of many training methods that this function is both continuous and 

differentiable, and that its output is constrained between defined limits, usually 
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o and 1. For these reasons the sigmoid function is normally employed, and the 

activation a; is thus: 

1 

(l + e -inputi ) (2.3) 

The calculation of the output proceeds through all the units of each layer 

simultaneously, starting with the input layer and finishing with the output layer. 

The activation is computed for each unit in the input layer and the activations for 

the next layer are then calculated from the known connection weights and 

activations of the previous layer. This process is carried out for each layer until 

the output layer is reached and the network outputs calculated. Providing each 

layer is fully calculated before the next layer is started, this method of 

propagating the signals forward through the network mimics the desired parallel 

processmg. 

During the training process, the network learns to associate the required outputs 

with the defined inputs in the training data. Details of the training process used 

are given by Bacon [2.2] and summarised in Table 2.1. Several procedures are 

available for modifying the weights during network training. The most common 

of these, and the one used here, is the 'Back Propagation' or BP method. This 

method adjusts the weights that contribute significantly to the error calculated 

between the desired and actual output values in order to reduce the error. The 

training patterns are presented to the network randomly and each complete pass 

of the training samples is called an epoch. The number of iterations, or epochs, 

used during training can be set to an absolute number or, alternatively, the 

process may be set to iterate until the total error for all the input patterns in the 

training set is below a pre-defined threshold value. This total error is calculated 

as the sum of the squared errors in each of the outputs for all the patterns in the 

training dataset. Once the error threshold is reached, the weight values represent 

an optimised solution ofthe relationship between the input and output pairs in the 

training data. The accuracy of the solution can then be assessed by direct 
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comparison of the desired and actual output values for each input pattern. 

2.3.1 Network Configuration to Predict Fuel and Emissions Flow Rates 

The network configuration to predict fuel consumption, HC, CO and NO
x 

emissions from engine speed, imep and AFR inputs requires a three node input 

layer and a four node output layer. The network inputs were limited to these three 

because the bulk of the engine data available were obtained with MET spark 

timing and calibrated EGR rates. It is generally accepted that a certain degree of 

trial and error is required when selecting a neural network configuration for a 

particUlar problem [2.6]. Of particular interest here was the size of the hidden 

layer and the number of training epochs to use in order to provide the most 

accurate solution. The training time is sensitive to both hidden layer size and the 

number of training epochs and so a trade-off exists between network accuracy 

and network training time. 

In order to determine the optimum size of the hidden layer and the minimum 

number of training epochs to provide the desired training accuracy, a series of 

network configurations were examined. Figure 2.8 shows the effects of hidden 

layer size and number of training epochs on the correlation coefficient between 

predicted and target outputs. The engine data used were for a 1.8 litre Ford Zetec 

engine, as shown in Figures 2.1 and 2.2, and consisted of around one hundred 

input patterns covering the range of engine speeds from idle to 4000 rpm in steps 

of 500 rpm, and brake loads from 0 to 120 Nm in steps of 10 Nm, all at 

stoichiometric AFR. To determine the accuracy of output values, for data 

examples used during training, and separately for other examples not used during 

training, the dataset was split into two sets of cases. The training data set 

consisted of around 800/0 of the total number of input and output pattern pairs and 

was used to train the neural network. The remaining data patterns were not used 

to train the network but were used after training to confirm the accuracy of the 

network predictions at 'unseen' data points. The prediction accuracy at these 

points was of particular interest because these represent the drive cycle operating 
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conditions at which fuel and emission flow rates need to be inferred from the 

training data. The training data was scaled to lie in the range 0.1 to 0.9 as the 

network can only manipulate input and output values within a range of 0 to 1. 

Scaling the data between 0.1 and 0.9 avoids the network having to predict values 

at the extreme limits of 0 and 1 which would require extreme connection weights 

between nodes. Simple linear regression analysis was then used to determine the 

correlation coefficient between predicted and target output values. All the 

network preparation and results processing together with the network training 

have been carried out on an IBM compatible 486 PC. The results for fuel mass 

flow rates are given in Figure 2.8 and indicate that, for this database 

configuration, the optimum hidden layer size is 20 nodes and the best training 

accuracy is obtained after 10,000 training epochs. Predicted and target scaled fuel 

and emission mass flow rates for the training and validation data are shown in 

Figures 2.9 to 2.12. The closest agreement between target and predicted values 

can be seen to occur for fuel mass flow rates but in all cases the prediction 

accuracy is within +/- 10%. The prediction accuracy at the 'unseen' validation 

points is as good as that at data points used to train the network. 

Additional work has been carried out to investigate if the neural network 

approach used here could be extended to account for changes in the spark timing 

and EGR calibrations used on the test engine. This involved training a neural 

network with five inputs, instead of three, on a much bigger database. The engine 

data used were for a 1.6 litre Zetec engine and, although the data did not cover the 

complete range of values required during engine calibration, it did enable the 

possibility of using a neural network to predict the effect of spark timing and 

EGR rate on engine emissions performance to be examined. The network used 

had five input nodes and a hidden layer size of 80. The engine database consisted 

of around 1600 data points, all of which were used to train the neural network. 

The results of the network training are shown for HC and NOx emissions in 

Figures 2.13 and 2.14 respectively. The prediction accuracy is generally within 

+/-100/0, as for the simpler engine map, which suggests that a neural network is 
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capable of characterising the more complex engine map successfully. The trained 

neural network was then used to demonstrate the effect of both EGR rate 

(Figure 2.15) and spark timing relative to MBT (Figure 2.16) on HC and NO
x 

emissions. The predictions reflect the expected trends (discussed above) in engine 

performance. 

2.4 Discussion and Conclusions 

Before fuel consumption and emission mass flow rates at each point in the 

ECE+EUDC drive cycle can be determined, a full engine map covering all 

possible operating conditions has to be inferred from a much smaller set of 

fully-warm engine data. For the work in this thesis, the engine operating variables 

of interest are engine speed, brake and hence indicated load, and AFR. Other 

engine variables, such as spark timing and EGR rate, are determined by the 

engine mapping data and are fixed by the control strategy on the test engine. 

Initially, fuel and emissions flow rates have been predicted from engine speed, 

load and AFR information for fully-warm engine mapping data with a fixed spark 

timing and EGR rate calibration. 

In order to characterise the engine mapping data, a neural network has been used 

to 'learn' the engine map and enable fuel and emissions flow rates to be 

determined at all points within the boundaries of the engine mapping data. A 

degree of trial and error is required when optimising the configuration of a 

network to obtain the best training performance and this resulted in the selection 

of a 20 node hidden layer and a minimum of 10,000 training epochs for this 

application. Such a network is capable of predicting fuel and emissions flow rates 

to within +/-10% of the training data using engine speed, load and AFR as inputs. 

The network prediction accuracy at operating conditions from within the range 

of engine speeds and loads covered by the training data is equally good. This 

suggests that fuel and emissions mass flow rates can be predicted to within 

+/-100/0 for all operating conditions bounded by the data used to train the neural 

network. 
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The possibility of extending the neural network approach to a more complicated 

engine map, using spark timing and EGR rate as additional input variables, has 

been investigated. A single engine map of this type was available and this data 

did not include the complete range of operating conditions likely to be 

experienced over a cold-started drive cycle. This has limited the scope of the 

investigation. However, the results obtained are encouraging. A modified neural 

network appears to be capable of predicting the expected trends within the 

database. This suggests that the technique of characterising engine performance 

data with neural networks could be used successfully to account for deviations 

from the fully-warm spark timing and EGR rates during a cold-started drive 

cycle. However, before such an extension to the envisaged drive cycle prediction 

procedure can be achieved, further work is required to optimise the neural 

network set-up and more engine data for network training and validation 

required. Increasing the number of inputs to the neural network is likely to require 

a larger hidden layer to enable the network to learn the more complicated engine 

map and consequently increases the processing time needed to train and 

interrogate the network. Furthermore, the effect of increasing the complexity of 

the engine map is likely to result in a reduction in prediction accuracy and may 

result in the advantages of using a neural network, compared to regression 

analysis, being negated. 
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Chapter 3 

Fuel Consumption and Emissions Studies: 

Literature and Test Facility Description 

3.1 Introduction 

The effect of reduced engine operating temperature on indicated specific fuel 

consumption and emissions is important. When the engine is operating at 

conditions other than fully-warm, indicated operating conditions will differ for 

a given brake operating condition. This is due primarily to higher engine friction 

loads during engine warm-up. In addition, reduced engine temperatures will 

adversely affect mixture preparation conditions in the inlet port. These will 

influence emissions levels particularly, but may also have a small effect on fuel 

consumption. These influences need to be taken into account when applying 

fully-warm engine data to warm-up operating conditions. Examining how this 

should be done is the subject of this and the subsequent three chapters. Here, a 

review of the relevant literature is presented, the implications are described, and 

the associated needs for experimental work defined. The experimental facilities 

used in the subsequent investigation are described later in the chapter. 

3.2 Fuel Consumption and Emissions Literature 

The starting point for fuel consumption predictions during engine warm-up is the 

corresponding point on the fully-warm indicated operating engine map. During 

the period immediately following a cold-start there is a difference between the 

amount of fuel injected and the amount of fuel burned, as accounted for by 

exhaust gas analysis. Indeed, current engine strategies inject approximately five 

times the required fuel during the first one or two cycles at room temperature to 

get the engine started as soon as possible [3.1]. According to Shayler et al [3.2] 
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only 25-30% of the injected fuel is in vapor fonn inside the engine cylinder 

during the first few cycles of engine cranking. During the subsequent wann-up 

period a degree of fuel enrichment is used to ensure sufficient fuel vaporizes to 

facilitate stable combustion. This additional fuel causes accordingly large 

amounts of liquid fuel to be deposited on the intake port walls and in the engine 

cylinder. In addition, it has been shown [3.3] that hydrocarbons present in the 

gasoline are observed in the crankcase oil and that fuel related hydrocarbons in 

the sump oil can reach 1.35% by mass [3.4]. Hence, in additional to any mixture 

preparation effects on indicated specific fuel consumption during wann-up this 

additional 'lost' fuel has to be accounted for when predicting cold-start fuel 

consumption. 

Pollutant emissions are more sensitive than fuel consumption to changes in 

mixture preparation. Previous work by Shayler et al [3.5] investigated the 

influence of fuel injection system details on exhaust emissions at fully-wann 

steady-state operation. They concluded that system detail changes influenced 

emissions by affecting mixture preparation. In particular, mixture inhomogeneity 

in the cylinder at the start of combustion is believed to result in a degree of 

stratification of the air/fuel mixture. Much other work at fully-warm steady-state 

operating conditions has investigated the influence of various injector designs, 

locations and injection timing strategies on mixture preparation, including 

techniques to detennine droplet sizes using laser imaging [3.6]. Most spark 

ignition engines have individual solenoid controlled valves (injectors) which 

deliver fuel into the engine inlet of each cylinder. This arrangement for fuel 

delivery is known as multi-point injection. Early mUlti-point injection systems 

operated all injectors simultaneously. Later systems with computer controlled 

injection use sequential injection timing, meaning that injection can be timed to 

occur at the same point in the cycle for each cylinder. Such systems have fonned 

the basis for work investigating the effect of fuel injection parameters on mixture 

preparation and the associated effects on pollutant emissions. For example, Nogi 

et al [3.7] concluded that reducing the diameter of spray droplets and preventing 
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fuel from concentrating in the intake valve promotes vaporisation, reduces fuel 

concentration on cylinder walls, and prevents reductions in engine performance. 

However, the bulk of the literature available has concentrated on fully-warm 

steady-state operation and not on the vital warm-up phase of interest here, where 

mixture preparation variations are believed to be more significant. The bulk ofthe 

literature available concentrates on the sources of emissions of unburnt 

hydrocarbons. These sources are: crevice volumes, oil layer absorption and 

desorption, incomplete combustion, flame quenching and air fuel ratio 

abnormalities [3.8]. During engine starting and warm-up, these mechanisms can 

produce particUlarly high levels ofHC emissions. Of particular importance is the 

influence of poor mixture preparation under these conditions. Work resulting 

from a collaborative research project investigating the sources of unburnt 

hydrocarbon emissions [3.9] in cold engines has also shown the importance of 

minimising in-cylinder crevice volumes and optimising valve timing. In addition, 

work to investigate the effect of varying coolant flow to vary engine warm-up, 

inparticular cylinder liner warm-up time, suggested that coolant flow should be 

minimised to enhance warm-up and reduce wall quench effects. Andrews et al 

[3.10, 3.11] have shown that coolant and lubricant temperatures influence HC 

emissions significantly. Work by Guillemot and Gatellier [3.12] investigated the 

influence of coolant temperature on HC emissions, employing a dual system 

cooling the cylinder head and block independently. Their results indicated that 

the cylinder head temperature influences the HC emissions. They also concluded 

that mixture preparation, absorption/desorption and crevice volume effects were 

greatly reduced with increasing coolant temperature. The effect of coolant 

temperature on emissions formation mechanisms is still not fully understood. HC 

emissions have been shown to be dependent on engine coolant temperature, but 

the effect on CO and NOx emissions is less well documented. However, 

additional work by Andrews et al [3.13] investigating the transient warm-up 

behaviour of two Ford engines, detected a strong dependence of NO x emissions 

on engine coolant temperature concluding that NOx emissions increased during 

engine warm-up due to the appreciable time taken for the combustion process to 
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achieve its maximum flame temperature. Likewise, Lee [3.14] observed similar 

qualitative trends in emission levels with coolant temperature, using a single 

cylinder engine operating at constant speed and part throttle operation. Lee 

concluded that increasing coolant temperature from 65°C to 100°C decreased HC 

emissions by around 10%, increased NOx emissions by around 10% and increased 

CO emissions by around 5%. Hence, knowledge of the variation of steady-state 

emission levels with engine coolant temperature during engine warm-up is 

required when using fully-warm emissions data to predict emissions levels at 

lower engine temperatures. 

In addition to the variation of steady-state emission levels with engine coolant 

temperature, the effect of the initial engine start-up transient on each of the three 

emissions needs to be considered. Both CO and NOx emissions are closely related 

to the actual air/fuel mixture burnt in the combustion process whereas HC 

emissions result primarily from the air/fuel mixture left unburned at the end of 

each expansion stroke. As such, HC emissions are particularly sensitive to the 

fuelling strategy during engine start-up. HC emissions increase during 

cold-starting because the fuel vaporisation is insufficient [3.15]. As a result, 

excessive amounts of fuel need to be injected to enable sufficient fuel to vaporise 

to form a combustible mixture at the spark plug. Indeed, according to Shayler et 

al [3.2], at 16°C only 25-30% of the injected fuel is in vapour form inside the 

cylinder during the first few cycles of cranking. This extra fuel causes accordingy 

large amounts of liquid fuel to be layered on the surfaces of both the intake port 

and the engine cylinder [3.16]. Hence, although the combustible mixture may be 

close to the desired stoichiometric air/fuel ratio in the period immediately 

following a cold start, the HC emissions are much higher than would be 

associated with this mixture strength due to the large amounts of liquid fuel 

which do not take part in the combustion process. Much work has been carried 

out to both attempt to visualise the behaviour of the liquid fuel deposited on the 

engine intake and combustion surfaces [3.17] and to reduce the amount of liquid 

fuel that does not take part in the combustion process. Takeda et al [3.18] 
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investigated general fuel behaviour during cold-start and wann-up and concluded 

that to reduce engine-out He emissions it is important to reduce intake port 

wall-wetting and cylinder wall-wetting simultaneously. Injection system details 

are important if wall-wetting is to be minimised and various studies have been 

carried out to determine the effect of both injection timing and injector type on 

wall-wetting and engine-out He emissions [3.19-3.22]. However, the 

investigation into engine hardware configurations is beyond the scope of the work 

presented in this thesis. This has made use of standard production engines and 

fuelling strategies. 

3.3 Experimetal Test Set-up and Procedure 

Engine data presented in the subsequent two chapters of this thesis were acquired 

using an engine test facility built for a previous research project. The installation 

consists of three main parts: the engine and management system, the monitoring 

and control equipment, and the engine data acquisition system. It is convenient 

to desribe these at this point in the thesis for future reference. 

3.3.1 Test Engine and Management System 

The test engine used in this work was a 1989-specification Ford 2.0 litre DOHe 

8V engine, details of which are given in Table 3.1. This engine is a standard 

production four cylinder with multi-point fuel injection as used initially by the 

Ford Sierra and Granada ranges and currently by certain models in the Ford 

Scorpio range. The test engine was mounted at its original points onto a steel 

frame via rubber vibration dampers, the frame being mounted onto steel rails 

sunk into the concrete base of the engine test bed. Figure 3.1 shows the general 

layout of the test rig within the test laboratory. Fuelling and spark timing were 

controlled using the Ford EEeIV engine management system, shown 

schematically in Figure 3.2. The system uses a hot wire anemometer to determine 

air mass flow rate, an Electronic Distributorless Ignition System CEDIS) and 

sequential fuel injection with conventional single spray solenoid injectors. A 

standard Ford EEerV calibration console connected to the engine management 
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system enabled changes to the calibrated AFR and spark timing strategy to be 

made and various management signals to be logged on the PC based engine 

controller. Standard 95 RON unleaded gasoline was used throughout the engine 

testing. Measurements of AFR were made using an NTK MO-1 000 AFR meter , 

the UEGO sensor of which was mounted in the exhaust downpipe approximately 

1 m from the exhaust ports. 

3.3.2 Engine Monitoring and Control Equipment 

The engine was coupled to a Froude EC38TA eddy-current dynamometer via a 

Ford MT-75 five-speed gearbox, fourth gear of which gave a 1:1 gear ratio. 

Dynamometer load was determined by a Froude HD70B control module enabling 

the engine to be run at either constant speed or constant brake torque. In all tests, 

the dynamometer control was used to set engine speed with brake torque being 

adjusted by means of a stepper motor connected to the throttle linkage. 

The rig cooling system enables the engine to be cooled to temperatures as low as 

-10°C and the engine coolant as low as -25°C. The engine oil and coolant circuit 

is shown schematically in Figure 3.3. Oil and coolant flow was directed either 

through the heat exchangers activated by computer controlled solenoid valves or 

to the Drakes refrigerated water chiller. 

When soaking-down the engine the gate valves to the coolant heat exchanger 

were closed and those to the chiller opened. Refrigerated coolant, a 50/50 mixture 

of water and glycol antifreeze, was then circulated through the engine. As shown 

in Figure 3.3, the engine could be covered by a removable insulating blanket 

manufactured to fit over a steel frame enclosing the complete engine. The 

refrigerated coolant is pumped by the chiller pump through a standard automotive 

radiator and then through the engine block and cylinder head through the standard 

water jacket and thermostat bypass loop. The radiator was used to chill the air 

enclosed by the insulating blanket drawn up through the radiator by the fan 

mounted above the radiator. A second parallel path allowed coolant to circulate 
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through a fabricated copper coil located in the sump to cool the engine oil. Using 

this configuration, the engine oil and coolant temperatures could be reduced to 

-10°C from ambient temperature in around 3-4 hours. 

When the engine was at the desired temperature, the insulating blanket was 

removed and the gate valves to the heat exchanger opened and those to the chiller 

closed. In this configuration, the engine water pump was used to circulate the 

coolant through the thermostat bypass during warm-up and through the coolant 

heat exchanger once the thermostat was open. Cooling water was circulated 

through the heat exchanger and the dynamometer and returned by a centrifugal 

pump to a Carter fan-assisted cooling tower in the service yard outside the test 

laboratory. Before running for long periods at fully-warm operating conditions 

an oil heat exchanger was fitted to the oil filter inlet to prevent overheating, 

cooling water again coming from the external cooling tower. 

Certain engine tests (detailed in chapter 5) required steady-state running at 

non-fully-warm operating conditions. This was achieved by removing the 

thermostat and thermostat bypass loop. This enabled the engine to be 

force-cooled using either the chiller circuit (for coolant temperatures below 

ambient) or the heat exchanger circuit (for coolant temperatures between ambient 

and fully-warm). 

A schematic of the engine test facility monitoring and control system is shown 

in Figure 3.4. A list of the equipment used in the control and monitoring system 

is given in Table 3.2. The digital input/output card was used to switch the relays 

for the oil and coolant solenoid valves, and to index the throttle stepper motor. 

Table 3.3 lists the various temperatures monitored using the calibrated 

thermocouple board together with the analogue signals logged using the ADC 

board. Engine-out emissions concentrations measurements were made using an 

Horiba MEXA-324 GE analyser for CO emissions and Signal Series 3000 and 

4000 analysers for HC and NOx emissions respectively, the sample lines being 

31 



located in the exhaust downpipe alongside the NTK AFR sensor. 

3.3.3 Engine Data Acquisition 

Engine data acquisition was carried out on two separate PC systems. The first 

system uses the rig control PC to log specified engine parameters selected from 

the temperatures and analogue signals displayed by the rig control and monitoring 

system. The second system was used to capture cylinder pressure data from 

cylinder number one and calculate imep. 

The imep system is based on an Amplicon PC226 data acquisition card installed 

in an IBM-compatible 486-33 PC. The PC226 card was triggered using a one 

degree crank angle signal obtained from a Hohner Series 3000 optical shaft 

encoder, mounted on the engine block connected to the crankshaft via a flexible 

coupling. 

In addition to the one degree trigger signal, the shaft encoder also produced a 

once-per-revolution marker pulse. This marker pulse was aligned to cylinder one 

TDC using the polytropic exponent method described by Douaud and Eyzat 

[3.23]. Compression TDC was determined by comparing pressure data at 

successive TDC samples. 

Cylinder pressure from cylinder one was acquired usmg a Kistler 6121 

piezo-electric pressure transducer, flush mounted in the cylinder head. The 

transducer signal was amplified using a Kistler 5007 charge amplifier with a 

standard 180kHz filter. As the cylinder pressure signal obtained from the pressure 

transducer was not absolute a reference procedure was required. This involved 

offsetting the cylinder pressure data between the exhaust and induction strokes 

when both the inlet and exhaust valves are open to the manifold absolute 

pressure. Manifold absolute pressure was measured using a Setra 280E absolute 

pressure transducer connected to the inlet manifold using 4mm diameter 

polypropylene tube. In order to suppress any fluctuations in the pressure, the tube 
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was approximately Sm long. 

The hardware configuration of the 486-33 PC enabled about 200 consecutive 

cycles of engine data to be acquired. However, repeatable imep results were 

obtained from averaging pressure data from 10 consecutive cycles. In this thesis, 

the imep is defined as the work delivered to the piston over the entire four strokes 

of the cycle, per unit displaced volume. As defined is equation 3.1, the imep is 

calculated over a crank angle window of 7200 between consecutive non-firing 

TDCs of the same cylinder. 

6=TDC+720 

nnep ~ J PdV 
d 6=TDC 

(3.1) 

where P is the cylinder pressure at crank angle 8, V d is the displaced volume per 

cylinder, and dV is the change in cylinder volume between crank angle 8 and 

8+d8. 

3.4 Conclusions 

This chapter reviews the literature relevant to the fuel consumption and emissions 

studies carried out in subsequent chapters. In addition, details of the experimental 

hardware used are given. The tests performed using this hardware, and the results 

obtained, are detailed in the appropriate chapters. 
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Chapter 4 

Predicting Fuel Consumption From Fully-Warm 

Data 

4.1 Introduction 

In this chapter, consideration is given to how fuel consumption can be detennined 

from engine data taken at fully-wann operating conditions. Two aspects of this 

are covered in the following. The first concerns the relationship between 

indicated specific fuel consumption and indicated operating conditions. The 

assumption made is that this will be independent of differences between wann-up 

and fully-wann engine thennal states, and experimental studies have been carried 

out to examine and support this. This second concerns the differences between 

the amount of fuel injected and fuel combusted. This difference can be significant 

during cold engine operation. The amount of fuel injected is the appropriate value 

for fuel consumption calculations but it is the fuel combusted that is relevant to 

considerations of indicated perfonnance. 

Fully-wann engine mapping data are generally obtained at constant tail-pipe 

AFR. At fully-wann steady-state operation, the tail-pipe AFR gives an accurate 

measure of the overall in-cylinder AFR since all the fuel in the cylinder is 

vaporised. However, in the period immediately following a cold-start the tail-pipe 

fuel mass flow rate does not account for any liquid fuel stored in the engine 

cylinder and lubricating oil. During the wann-up period the overall fuel mass 

flow rate is thus: 

rhoverall isfc.P indicated + ~accounted for (4.1) 
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where: 

isfc 

P Indicated 
(4.2) 

isfc is in g/k Whr when rilr is the combusted fuel mass flow rate in g/hr and 

Plndicated the indicated power in kW. Consequently, when predicting the overall 

fuel mass flow rate during engine warm-up two effects have to be accounted for. 

The work presented here details the investigation into these effects. Throughout 

the work the tail-pipe AFR has been determined using a UEGO sensor mounted 

in the exhaust system. Recent work by Shayler et al [4.1] suggests that such a 

sensor records an AFR that is leaner than the true tail-pipe AFR in the early 

stages of engine warm-up due to the high concentrations of unbumt HC 

emissions in the exhaust gas stream. In this period, the UEGO sensor only 

accounts for fuel that has been combusted in the engine cylinder and not the 

unbumt fuel also present as unbumt HC emissions. However, during steady-state 

operation, both at fully-warm conditions and during force-cooled running when 

unbumt HC emissions are much lower, the UEGO sensor was found to give an 

accurate measure of the tail-pipe AFR. Consequently, when determining the 

overall fuel mass flow rate according to equation (4.1), the isfc is determined 

from the combusted AFR recorded by the UEGO sensor and the 'unaccounted for' 

fuel term includes the proportion of the injected fuel present in the exhaust gas 

stream as unbumt hydrocarbons, which are not accounted for by the UEGO 

sensor. The investigation of the fuel unaccounted for term is described in the 

second part of this chapter. The first part reports the investigation of the effect of 

engine coolant temperature on the indicated specific fuel consumption term. 

4.2 Effect of Coolant Temperature on isfc 

Tests were carried out to investigate the effect of changing engine coolant 

temperature on indicated specific fuel consumption over a range of engine 

operating conditions. The tests were carried out as a series of fixed engine speed 
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and throttle position warm-up runs, with engme data logged on a 

second-by-second basis throughout the warm-up. The experimental data were 

obtained using the engine test rig described in Chapter 3. Before each test the 

engine was run at fully-warm temperatures and the engine speed and brake load 

fixed using the dynamometer and throttle stepper motor controls. The engine was 

then stopped, with the engine speed and throttle position fixed, and allowed to 

cool down to 20DC. The coolant control valves were then switched to allow 

coolant from the chiller to be circulated around the engine and the engine coolant 

brought down to _2SDC. The insulating blanket was used to aid the cooling 

process and left in position until the oil sump temperature fell to -10DC. Once 

cool, the insulating blanket was removed and the coolant control valves switched 

to allow the engine water pump to circulate coolant through the heat exchanger 

once the thermostat opened. Cylinder pressure data were acquired at regular 

intervals during the warm-up and corresponding imep values calculated by the 

acquisition software. Imep values were produced at approximately SO second 

intervals due to the need to average cylinder pressure data over several cycles and 

because the imep calculations require intensive use of the 486 PC's processor. 

Table 4.1 shows the test conditions used and Table 4.2 lists the imep readings and 

corresponding time from start of test for one test condition. Two 

second-by-second fuel mass flow rates were recorded for each test. Fuel injected 

was determined from EECIV fuel injector pulsewidth from the calibration 

console and fuel combusted from the UEGO sensor tail-pipe AFR and EECIV 

measured air mass flow rate. 

The observed effect of engine coolant temperature on isfc is shown in Figure 4.1. 

The results show isfc plotted against imep at engine coolant temperatures 

between -10DC and 80DC at engine speeds of 17S0rpm and 2400rpm. At each test 

point, isfc is calculated from the measured imep and the tail-pipe detected fuel 

mass flow rate from the measured airflow and UEGO AFR. During each warm-up 

test the fully-warm tail-pipe AFR was set at stoichiometric using the EECIY 

calibration console. Initial data immediately following the engine start-up was 
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discarded as in this period accurate control of the tail-pipe AFR was not possible. 

This essentially replicates a cold-start in a current production vehicle where a 

HEGO sensor, operating on the same principle as a UEGO sensor, provides 

feedback to the engine management system to maintain a stoichiometric AFR in 

a process known as closed loop fuelling. According to Figure 4.2, the input isfc, 

calculated from the mass of fuel injected, decreases rapidly and converges to the 

UEGO sensor determined tail-pipe isfc value as the engine warms-up and the 

input AFR tends towards the stoichiometric tail-pipe AFR. The tests indicate that, 

by careful control of engine fuelling, a near stoichiometric tail-pipe AFR can be 

maintained once the coolant temperature has reached -10°C. From this point 

onwards, isfc calculated from the combusted fuel mass flow rate using a UEGO 

sensor remains approximately constant independent of coolant temperature. The 

scatter in the isfc data in Figure 4.1 is of the order of2% and within this scatter 

there is no definable trend in isfc with ECT. 

4.3 'Unaccounted For' Fuel During Warm-Up 

In addition to the constant AFR warm-up tests, tests were carried out using the 

standard EECIV cold-start fuelling strategy to vary the AFR during engine 

warm-up. As before, a series of fixed engine speeds and throttle positions were 

used (Table 4.3) and cylinder imep measurements were recorded during the 

warm-up period to enable indicated specific fuel consumption (isfc) values to be 

calculated. These tests were used to investigate the relationship between fuel 

injected and fuel burnt during the warm-up process, and so the same injected and 

UEGO detected fuel flow rate measurements as for the constant AFR tests were 

recorded to enable 'unaccounted for' fuel during warm-up to be calculated. 

The data presented above suggest that tail-pipe isfc is only weakly dependent on 

ECT during engine warm-up. However, Figure 4.2 indicates that a substantial 

difference between fuel injected and fuel burnt exists in the period immediately 

following engine start-up. This difference is due to fuel being deposited on the 

combustion chamber surfaces and being absorbed into the lubricating oil during 
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the early stages of engine warm-up. In addition, in the period immediately 

following start-up the UEGO sensor used to detect the AFR of the exhaust gases 

fails to account fully for unbumt fuel in the form of HC emissions present in the 

tail-pipe. Consequently, when determining fuel consumption during engine 

warm-up from fully-warm engine data, knowledge of the additional fuel required 

to maintain a stoichiometric AFR as detected by the UEGO sensor is important. 

The second set of engine warm-up tests, using the standard fuelling strategy, were 

used to investigate the behaviour of this 'unaccounted for' fuel during engine 

warm-up. Figure 4.3 shows a typical warm-up test result for AFR and fuel mass 

flow rate during engine warm-up and the resulting 'unaccounted for' fuel 

calculated as the difference between fuel injected and fuel detected by the UEGO 

sensor in the tail-pipe. At fully-warm conditions, any residual difference between 

fuel supply and exhaust fuel flow rate was attributed to calibration errors and 

zeroed by adjusting the air mass flow rate calibration. The results appear to show 

a near exponential decrease of 'unaccounted for' fuel from an initial peak. As 

reported elsewhere, a proportion of this fuel is believed to be due to in-cylinder 

storage of fuel on cold combustion chamber surfaces [4.2,4.3]. Recent work by 

Shayler et al [4.1] has investigated the behaviour of 'unaccounted for' fuel during 

the warm-up period and attempted to define the relative proportions of fuel lost 

to the lubricating oil and stored in fuel films in the engine cylinder, but such an 

investigation was beyond the scope of the work presented here. 

4.3.1 Characterising 'Unaccounted For' Fuel 

In order to predict fuel consumption during engine warm-up and the period 

immediately after start-up from fully-warm data, characterising the behaviour of 

the observed 'unaccounted for' fuel detailed above is important. Work to 

investigate the behaviour of this fuel under cold-start conditions has resulted in 

the development of a simple exponential function to simulate the observed 

experimental behaviour [4.4]. The tests were carried out on a Ford 1.8 litre 16V 

Zetec engine over a wide range of operating conditions. The amount of 

'unaccounted for' fuel at any point in the warm-up period as a percentage of the 
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fuel supplied can be expressed as: 

Unaccounted For Fuel = A.ex~ aE~T) x 100 (4.3) 

where .L\ECT is the difference between the instantaneous EeT and the initial 

coolant start temperature. 

The A value defines the initial peak of the 'unaccounted for' fuel and has been 

found to depend on the following: 

i) Initial start temperature 

Tests have indicated that a reduction in engine start temperature increases 

the magnitude of A. This is thought to be due to the increased amount of 

liquid fuel entering the combustion chamber as a result of reduced 

vaporisation within the intake port. Wall wetting in the combustion 

chamber will be more significant due to the combination of increased 

amounts ofliquid fuel entering and the lower wall temperatures. This fuel 

behaviour has been observed photographically elsewhere [4.5] and the 

liquid fuel films found to remain in the cylinder for a considerable portion 

of the warm-up [4.6]. 

ii) Fuel Injected 

The amount of fuel injected per stroke is a function of air charge and 

AFR. Increasing the amount of fuel injected increases the magnitude of 

A as the increased fuel mass in the intake port is believed to result in 

more liquid fuel entering the cylinder. 

iii) Engine Speed 

Increasing the engine speed has been found to reduce the magnitude of A. 

This is thought to be due to increased air mass flow rates resulting in 

better air/fuel mixing and fuel atomization and consequently reducing the 
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amount of wall wetting in the engine cylinder. 

A mathematical expression for A has been defined from experimental data and 

is a function of engine speed, fuel injected per stroke and start temperature, as 

shown below. 

A = minl-0.2N + 1300 - 6T? (4.4) 

where N is the engine speed in rpm, T the initial start temperature in °C and m
inj 

the fuel injected per stroke in kg. 

The p value is defined as the 'unaccounted for' fuel temperature constant and has 

been found to depend on the following two parameters: 

i) S tart temperature 

Decreasing the start temperature was found to decrease the p value. A 

lower start temperature is believed to result in a larger quantity of liquid 

fuel in the cylinder and consequently more time is needed for the coolant 

and wall temperature to rise sufficiently to vaporise this fuel. 

ii) Fuel injected per stroke 

The amount of fuel injected is believed to strongly influence the amount 

of liquid fuel in the cylinder. Consequently, a longer time is required to 

heat up the coolant and cylinder walls to vaporise this fuel resulting in a 

larger p value with increased fuel injected per stroke. 

Once again, experimental data were used to derive a function to define p as 

shown below [4.4]: 

~ 1 +(120000m .. ) (4.5) 
= [0.Sl+(0.012T)+(-0.00011T2)] ill] 
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Using equations (4.3)-(4.5) an 'unaccounted for' fuel fraction can be determined 

during a warm-up test. Figure 4.4 shows measured and predicted 'unaccounted 

for' fuel curves for two warm-up tests from -15°C on the 2 litre DORC 8V engine 

with different engine speeds, brake loads and AFR control during warm-up. 

Whilst, in both cases, the fully-warm AFR was 14.2:1 the AFR strategy during 

warm-up was different. The test in Figure 4.4a was run using the standard EECIV 

determined cold-start AFR strategy while the data in Figure 4.4b was obtained 

with constant tail-pipe AFR during warm-up. These tests illustrate the 

significance of the 'fuel injected' term in the model as with the standard EECIV 

fuel enrichment strategy the 'unaccounted for' fuel fraction is much more 

significant. 

4.4 Discussion and Conclusions 

The data presented in this chapter suggest that the relationship between isfc and 

imep is only very weakly dependent on ECT when fuel mass flow rates are 

calculated from exhaust gas analysis. Assuming this weak dependence to be 

negligible enables fully-warm fuel mass flow rate data to be applied to 

non-fully-warm operating conditions, providing indicated operating conditions 

are used to correlate cold operating conditions with fully-warm conditions. In this 

way engine friction considerations are accounted for. If fully-warm and cold-start 

engine indicated operating conditions are not available, an engine friction model 

is required to recast the engine brake operating conditions into indicated 

operating conditions. Such an engine model and its application is discussed in 

Chapter 6 of this thesis. 

The above assumption only applies to fuel flow rates calculated from tail-pipe 

AFRs which closely represent the fuel involved in combustion and do not always 

equate to the fuel mass injected. Thus, in order to determine the total fuel mass 

flow rate during non-fully-warm conditions, the difference between fuel injected 

and fuel detected by exhaust gas analysis in the period following a cold start has 

to be accounted for. A simple model has been developed at Nottingham 
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University to characterise this 'unaccounted for' fuel fraction [4.4]. This has been 

found to depend upon engine start temperature, mass of fuel injected per stroke 

and engine speed and decays exponentially with increasing ECT. 

The 'unaccounted for' fuel fraction can be more accurately described as the 

fraction of fuel supplied which is not accounted for by the UEGO sensor in the 

exhaust, and is believed to be due to a combination of several engine warm-up 

effects. Liquid fuel films have been shown to form in the intake port and on the 

intake valves and liquid fuel may be temporarily stored within the combustion 

chamber. Several studies [4.2, 4.3, 4.5] have shown this occurs in the period 

immediately following engine start-up. The in-cylinder films have been observed 

to last for several minutes after engine start-up, but do eventually vaporise as the 

cylinder wall temperature rises. In addition, liquid fuel has been shown to pass 

the piston rings and mix into the engine lubricating oil [4.7] and up to 1 % of the 

fuel injected during the first 20 minutes of a light-load warm-up test from room 

temperature was detected in the lubricating oil. This fuel is then believed to return 

to the cylinder via the crankcase breather system at a near undetectable rate. A 

further fraction of the liquid fuel in the cylinder is thought to pass directly into the 

exhaust system as unburnt hydrocarbons. After combustion has been completed 

and the in-cylinder pressure decreases during the exhaust stroke, some of the fuel 

wall-wetting in the cylinder is vaporised as unbumt hydrocarbons [4.8] with the 

result that the cold-start HC emissions are greatly increased in the period when 

liquid fuel is present in the engine cylinder. Shayler et al [4.1] have shown that 

in this period the UEGO sensor does not fully account for these hydrocarbons and 

records an AFR that is lean of the true tail-pipe AFR. As a result, the 

'unaccounted for' fuel fraction includes a proportion of the inj ected fuel that 

passes undetected down the exhaust tail-pipe. The relationship between 

'unaccounted for' fuel and the unburnt hydrocarbon emissions during cold-starting 

is considered in the following chapter of this thesis and is of particular 

importance when applying fully-warm HC emissions data to cold-start indicated 

operating conditions. 
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In conclusion, it can be seen that fully-watm fuel flow rate data can be recast to 

represent cold-start conditions and engine wann-up. This requires a combination 

of accounting for engine friction changes during engine Watm-up by using 

indicated operating conditions, and predicting the 'unaccounted for' fuel in the 

period immediately following engine start-up. In order to predict the percentage 

of injected fuel that is unaccounted for in the exhaust system, knowledge of the 

overall injected fuel mass flow rate is required. When applying predictions to 

fully-watm engine data to detennine the percentage increase in fuel consumption 

associated with 'unaccounted for' fuel, the overall injected fuel mass is not 

known. Consequently, an iterative approach has to be applied with the initial 

'unaccounted for' fuel percentage being calculated by assuming that the fuel 

injected is the same as the fuel detected in the exhaust pipe. A new fuel injected 

mass flow rate can then be calculated and the procedure repeated. After two such 

iterations the change in predicted instantaneous 'unaccounted for' fuel as a 

percentage of fuel injected is less than 0.5%, and the 'unaccounted for' fuel 

percentage assumed to have converged. 
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Chapter 5 

Predicting Emissions From Hot Test Bed Data 

5.1 Introduction 

Indicated specific engine-out emissions are more sensitive than fuel consumption 

to changes in air/fuel mixture preparation and in-cylinder temperature variations 

during engine warm-up, as discussed in Chapter 3. In addition, for a period after 

cold start-up, HC emissions are further influenced by the consequences of poor 

fuel utilisation [5.1]. This chapter deals with how the treatment of fuel 

consumption, described in the previous chapter, can be adapted to enable the 

prediction of emission levels during cold running. Firstly, the effect of reduced 

engine coolant temperature on the steady-state engine-out indicated specific 

emission levels is examined and then the additional effect of engine start-up 

transients on engine-out HC emissions is considered. The objective of the work 

has been to develop a simple technique for scaling fully-warm engine-out 

emission levels to account for changes in mixture preparation during warm-up 

and the effect of engine start-up transients in the period immediately following 

a cold-start. As such, the individual sources of the three pollutant emissions under 

consideration at fully-warm operating conditions are not of primary importance 

but the likely mechanisms that influence changes during warm-up are. The 

possibility of predicting the effect of engine coolant temperature changes on HC, 

CO and NOx emissions during steady-state operating conditions and the 

additional effect on HC emissions of the transient period immediately following 

a cold start have been investigated. Of particular interest was the possible link 

between the increase in HC emissions due to engine start-up and the observed 

discrepancy between the amount of fuel injected and the amount of fuel burnt as 

accounted for by exhaust gas analysis described in the previous chapter. 
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5.2 Experimental Test Set-up and Procedure 

Engine test data have been obtained from a 2 litre DOHC 8V engine installed on 

the test rig described in Chapter 3, and from a Ford 1.8 litre HO Zetec engine 

installed on an identical test facility. Two sets of experiments have been carried 

out. The first to establish how mixture preparation effects arise under relatively 

stable thermal conditions produced by force-cooling the engine. The second was 

to investigate the link between 'unaccounted for' fuel and HC emissions in the 

transient period immediately following engine start-up. 

The effect of ECT on indicated specific emissions has been investigated under 

stable thermal conditions maintained by force-cooling to limit the rate of engine 

warm-up. This enables steady-state emissions data to be taken at coolant 

temperatures down to O°C. Force-cooling entailed removing the engine 

thermostat and continuously circulating refrigerated coolant through the engine. 

By careful control of coolant flow rates and chiller temperature settings, ECT 

could be held at any temperature between O°C and 85°C for up to 10 minutes. 

Before an emission reading at each temperature was finalised, the emissions data 

were allowed to settle to a steady-state value after each step change in 

temperature. This ensured that any transient effects due to sudden temperature 

changes and cold-starting did not influence the results, and took about 5 minutes 

to achieve. At a given test temperature engine data were logged on a 5 second 

interval basis and imep readings recorded to enable indicated specific emissions 

(in g/kWhr) to be calculated. Each warm-up test was carried out with a fixed 

throttle position and VEGO sensor measured tail-pipe AFR giving an 

approximately constant imep during warm-up. Table 5.1 shows the range of 

operating conditions tested for the 2 litre DOHe 8V engine and the additional 

tests carried out on the 1.8 litre HO Zetec engine. 

5.3 Predicting the Effect of ECT on Indicated Specific Emissions 

To examine if the effects of mixture preparation on engine-out emission levels 

could be characterised by a relatively simple function ofECT, the experimental 
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indicated specific emissions data were plotted against ECT in Figure 5.1. At each 

ECT value, the absolute emission value is divided by the corresponding 

fully-warm value to give an ECT Correction Factor. The data presented in 

Figure 5.1 are from the full range of test conditions defined in Table 5.1, and 

demonstrate that, when normalised to values obtained at fully-warm operating 

conditions, the indicated specific emissions are strongly correlated to ECT. For 

each of the pollutants of interest, a simple function of ECT has been defined to 

characterise the correction factor required to define indicated specific emissions 

to within +/-5% of the observed values. This function is independent of engine 

speed, indicated load and AFR to within this level of accuracy and experimental 

repeatability. The three ECT Correction Functions for the three indicated specific 

emissions are defined in Appendix A. 

Previous work by Shayler et al [5.2] described studies of the relationship between 

emissions and operating conditions and fuel inj ection system details. They 

showed how many of the effects on emissions could be explained on the basis of 

mixture inhomogeneity within the cylinder at the time of combustion. In the work 

presented here, ECT is believed to provide a direct indication of mixture 

preparation conditions in the intake port, which in tum give rise to varying 

degrees of mixture inhomogeneity within the cylinder and consequently to 

variations in emissions from values at the corresponding fully-warm engine state. 

Emission concentrations for the 2 litre DORC 8V engine against AFR for one 

operating condition are shown in Figure 5.2. With reference to this, the lower isco 

emissions observed during warm-up are believed to be due to the bulk of the 

cylinder mixture being leaner than the overall AFR during the warm-up period. 

Figure 5.1 suggests that CO emissions at 20°C are between 5%-10% lower than 

those for the corresponding fully-warm operating conditions, irrespective of 

engine speed, load and tail-pipe AFR when normalised. 

Ishc emissions are relatively high during the warm-up period. Figure 5.1 shows 
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that ishc emissions are approximately 30% higher when the coolant temperature 

is 20DC, compared to the fully-warm case. 

Isnox emISSIOns were found to be around 30% lower at 20DC than at the 

corresponding fully-warm condition, again independently of engine speed, 

indicated load and overall tail-pipe AFR. Figure 5.2 indicates that the NO 
x 

emissions are influenced by the AFR of the lean part of the stratified mixture, but 

the changes in NOx emissions cannot be entirely due to this, since the same 

dependence on ECT was observed regardless of whether the engine was run lean 

or rich of the AFR producing peak NOx' It is likely that the reduction in NO
x 

emissions is more significantly influenced by the lower combustion temperatures 

during engine warm-up than by mixture stratification. 

The mechanisms that produce these trends are likely to arise in any engine but 

whether or not the simple ECT correction functions presented here are adequately 

representative is an open issue and requires further work. However, additional 

data were obtained from a Ford 1.8 litre RO Zetec engine to confirm that the 

above functions were representative for this engine, since data from this engine 

were to be used in the drive cycle evaluation procedure, described in Chapter 7. 

Figure 5.3 shows experimental data from the Zetec engine plotted in the same 

ECT correction factor format as for the 2 litre DORC 8V engine data. Figure 5.3 

also shows the model predicted correction factors obtained from the DORC data 

and indicates that the same trends in emissions occur on the Zetec engine. The 

Zetec data were derived from only three tests all at an engine speed of 2000 rpm 

and imep of 8.3 bar at tail-pipe AFRs of 12:1, 14.7:1 and 17:1. Despite the 

limited amount of data available, the general agreement with the ECT Correction 

Functions derived from the DORC data is generally good suggesting that the 

trends observed and modelled are generic to other engine types. 

5.4 Predicting the Effect of Engine Start-Up Transients on He Emissions 

In addition to the force-cooled tests, experiments were carried out to investigate 
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the relationship between 'unaccounted for' fuel in the period immediately 

following cold start-up and the increased HC emissions in this period. These tests 

were carried out using the standard EECIV cold-start fuelling strategy. Once 

again, a series of fixed engine speeds and throttle positions were used (Table 5.2) 

and cylinder imep measurements recorded during engine warm-up. The coolant 

circuit was the standard production circuit with the standard thermostat unit 

fitted. 

Figure 5.4 shows HC mass flow rates during two fixed throttle warm-up tests. 

The measured HC mass flow rate is that determined from exhaust concentrations 

and fuel and air mass flow rates logged throughout the test period. The predicted 

HC mass flow rate is calculated from the fully-warm steady-state value at the end 

of the warm-up test and is corrected to account for mixture preparation effects, 

using the ECT functions described above, and for changes in tail-pipe AFR 

during warm-up by interpolation using fully-warm AFR data. Since each test was 

carried out at near constant indicated load, the HC mass flow rate at each point 

in the warm-up, neglecting mixture preparation effects, could be calculated from 

the fully-warm HC mass flow rate scaled according to AFR. This was done using 

simple linear interpolation based on fully-warm engine data at corresponding 

indicated operating conditions and a range of tail-pipe AFRs. This HC mass flow 

rate was then scaled according to ECT to account for mixture preparation changes 

to give the predicted HC mass flow rate during engine warm-up. This mass flow 

rate can be seen to be significantly lower than the measured HC mass flow rate 

in the early seconds after engine start-up. 

The difference between the measured and predicted HC mass flow rates, termed 

the 'Delta HC Flow Rate', is closely related to the 'unaccounted for' fuel behaviour 

described in Chapter 4, as shown in Figures 5.5 and 5.6. Figure 5.5 shows the 

results from three warm-up tests at an engine speed of 1750 rpm and a range of 

fully-warm engine brake loads with a start temperature of -15°C. The relationship 

between Delta HC and 'unaccounted for' fuel is relatively insensitive to engine 
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load, engine speed and start temperature as indicated by Figure 5.6. This shows 

the results for a series of warm-up tests with a range of engine speeds, engine 

loads and start temperatures, detailed in Table 5.2. Linear regression on these data 

gIves: 

(5.1) 

where y has a value of 0.33. mini is the fuel mass flow rate inJ·ected and ri1 the 
" exh 

fuel mass flow rate determined by exhaust gas analysis with the UEGO sensor. 

Similar engine data obtained at Nottingham University from a Ford 1.S litre 16V 

HO Zetec engine demonstrate the same linear relationship [5.3]. However, in this 

case the value of y was found to be 0.5 which suggests that y is dependent on 

engine type. The DOHC engine data correlation has been used to predict total HC 

mass flow rates during engine warm-up and the methodology detailed below. The 

details and implications of the work using the Zetec engine data [5.3] are 

discussed later in the chapter. 

For the 2 litre DOHC SV engine examined, equation (5.1) gives a good first 

approximation to the increase in HC emissions during the period immediately 

following engine start-up, believed to be primarily due to liquid fuel films in the 

engine intake and cylinder. Using this relationship and the 'unaccounted for' fuel 

model described in Chapter 4, an additional HC mass flow rate during engine 

warm-up due to cold-starting was predicted for each of the warm-up tests carried 

out. The total HC mass flow rate at any point during the warm-up was predicted 

by summing the fully-warm value at the corresponding AFR corrected for 

mixture preparation effects and an additional 'Delta HC' term, calculated from 

equation (5.1). Figure 5.7 shows the results of two such tests, which correspond 

to the data presented in Figure 5.4. These tests demonstrate that the simple linear 

correlation with 'unaccounted for' fuel enables a good approximation to the actual 

HC mass flow rate in the early seconds of engine warm-up to be made from the 

fully-warm HC mass flow rate for the engine examined. 
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5.5 Discussion 

The experimental data presented in this chapter were obtained to illustrate the 

effects of reduced engine temperature on indicated specific emissions under 

steady-state conditions and the additional effect of engine start-up transients on 

HC emissions. These two phenomena are essentially coupled together as, in 

reality, both occur simultaneously during the standard engine start and wann-up. 

However, in order to predict the engine-out emissions at non-fully-warm 

operating conditions from fully-wann data the two effects have been separated 

and examined independently. 

The effect of mixture preparation on the engine-out indicated specific emissions 

have been characterised by three functions defining a correction factor to scale 

fully-wann emission values for engine coolant temperatures down to O°C. 

Indicated specific emissions have been used in order to compensate for the effect 

of increased engine friction at lower engine temperatures. The three functions 

were obtained by curve fitting to experimental data obtained from the 2 litre 

DOHC 8V engine test rig. The data indicate that the effect ofECT on each of the 

indicated specific emissions is independent of engine speed, indicated load and 

tail-pipe AFR when the emissions are nonnalised to the corresponding indicated 

operating conditions at fully-warm. Indicated specific CO emissions were found 

to be around 5%-10% lower at 20°C than at fully-warm and to increase linearly 

with ECT despite the tail-pipe AFR remaining the same at all ECT values. 

Conversely, indicated specific HC emissions decreased with increasing ECT and 

were in the region of 30% higher at 20°C than at fully-wann. Indicated specific 

NOx emissions increased with increasing ECT and were around 30% lower at 

20°C than at fully-warm. This behaviour is believed to be due to a degree of 

charge stratification in the cylinder due to mixture preparation changes in the 

intake system. Mixture preparation conditions in the intake port and HC 

emissions particularly are known to be very sensitive to ECT [5.4, 5.5] but the 

mechanisms governing the effects ofECT on emissions are less well understood. 

The tests presented here were carried out with a constant tail-pipe AFR measured 
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by a VEGO sensor which is believed to give an accurate measure of the overall 

in-cylinder AFR during steady-state operating conditions under force-cooled 

running [5.6]. Hence, even with a constant overall in-cylinder AFR, the degree 

of charge stratification decreases and the combustion AFR becomes progressively 

richer as mixture preparation improves with increasing ECT. This results in the 

observed increase in CO emissions and the corresponding decrease in HC 

emissions as the unbumt mixture fraction decreases. Figure 5.8 shows HC and 

NOx correction factors plotted against CO correction factor during the warm-up 

phase with typical experimental data points, and shows HC emissions decreasing 

and NOx emissions increasing during engine warm-up. Similar trends in HC and 

CO emissions have been observed qualitatively elsewhere [5.7, 5.8]. Lee's results 

are particularly interesting as he found that increasing ECT from 65°C to 100°C 

decreased HC emissions by around 10%, increased NOx emissions by 10% and 

decreased CO emissions by less than 5%. 

While the charge stratification theory outlined initially by Shayler et al [5.2] 

appears to hold for both CO and HC emissions, the behaviour of NO x emissions 

is less clear. CO emissions are, in effect, a direct measure of the combusted AFR 

and HC emissions are primarily due to the remaining uncombusted and poorly 

oxidised fuel. NOx emissions, like CO emissions, are heavily influenced by the 

combustion AFR and as such would be expected to either increase or decrease 

according to whether the combusted AFR was rich or lean of the peak NOx AFR. 

However, the additional effect of changing combustion temperature during 

warm-up is believed to out-weigh any effect of charge stratification, since NOx 

emissions were always observed to increase during warm-up independently of 

AFR. Similar trends in NOx emissions have been observed by Andrews et al [5.8] 

and Russ et al [5.9] and explained in terms of increasing combustion temperature. 

Both CO and NOx emissions are directly linked to the AFR of the combusted 

in-cylinder mixture at all times in the warm-up process. Thus, isco and isnox at 

all points in the warm-up can be determined by scaling the fully-warm indicated 
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specific emISSIOns to account for mixture preparation as described above. 

However, HC emissions arise primarily from fuel that does not take part in 

combustion and as such are particularly sensitive to any additional fuelling 

needed in the period immediately following a cold start. Consequently, an 

additional increase in HC emissions occurs over and above that associated with 

mixture preparation changes during this transient period. 

The additional increase in HC emissions is believed to be due to liquid fuel films 

existing in the engine cylinder in the early seconds after engine start-up. The 

build-up of these fuel films and additional absorption of fuel into the lubricating 

oil [S.1 0] contributes to the 'unaccounted for' fuel behaviour described in 

Chapter 4 of this thesis. Various studies [S.I1-S.13] have shown the existence of 

liquid fuel films in the engine cylinder and a significant fraction of this fuel is 

believed to pass directly into the exhaust system as unburnt hydrocarbons [S .14]. 

After combustion has been completed and the in-cylinder pressure decreases 

during the exhaust stroke, a proportion of the fuel wall-wetting in the cylinder is 

vaporised as unbumt hydrocarbons. The data for the 2 litre DOHC 8V engine 

presented in this chapter suggest that around 33% of the fuel 'unaccounted for' 

based on exhaust measurements made with a UEGO sensor is actually present as 

unbumt hydrocarbons in the exhaust system but passes the sensor undetected. 

Similar work on a Ford 1.8 litre HO Zetec engine [S.3] suggests that, for this 

engine, the additional HC emissions account for SO% of the UEGO 'unaccounted 

for' fuel fraction. Additional work on this engine [S.6] has attempted to identify 

the various sources of apparent fuel loss which result in the overall 'unaccounted 

for' fuel observed. Three sources of 'unaccounted for' fuel can be identified. 

Firstly, the UEGO sensor is demonstrated to record an AFR which is lean of the 

overall in-cylinder AFR during engine warm-up. This is because the UEGO 

sensor fails to fully account for the high proportion of unbumt hydrocarbons 

present in the period immediately following a cold start. As the warm-up 

proceeds and the HC concentration decreases, the UEGO sensor records an AFR 

which is progressively closer to the overall in-cylinder AFR. For the Zetec engine 
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examined, Shayler et al defined a UEGO sensor correction factor to scale the 

UEGO AFR to that calculated by analysis of all the exhaust gas products of 

combustion. This correction factor is specific to the engine examined and the 

same procedure cannot be applied to the DOHC engine data presented in this 

chapter since the rig instrumentation did not enable measurements of the carbon 

dioxide and oxygen concentrations in the exhaust gases needed to calculate the 

exhaust AFR. Consequently, for the DOHC engine data, the contribution of 

UEGO sensor errors to the total 'unaccounted for' fuel cannot be accurately 

defined and the 'unaccounted for' fuel, characterised from experimental data in 

Chapter 4, includes fuel, in the form of unbumt HC, undetected by the UEGO 

sensor. 

Predicting the amount of fuel stored temporarily in the engine cylinder and 

absorbed into the lubricating oil is difficult. After correcting the UEGO sensor 

AFR during warm-up, Shayler et al [5.6] estimate the relative proportions of fuel 

stored and fuel lost by analysis of the HC and UEGO corrected 'unaccounted for' 

fuel curves during warm-up, but once again, the lack of an accurate UEGO 

correction function for the DOHC engine prevents a similar analysis here. 

However, the fact that the additional HC contributes 33% of the total 

'unaccounted for' fuel on the DOHC engine and that this fraction is around 50% 

on the Zetec engine, given that the additional HC mass flow rate is similar for 

both engines, suggests that the proportion of fuel lost to the lubricating oil is 

greater for the DOHC engine. This is believed to be consistent with the 

comparitively more modem design and construction of the Zetec engine. 

Because the UEGO sensor does not provide an accurate overall AFR during the 

early period of engine warm-up, the 'unaccounted for' fuel predicted by the 

exponential functions detailed in Chapter 4 will give an over estimation of the 

additional fuel required when predicting cold-start fuel consumption from 

fully-warm engine data. However, using the UEGO sensor to determine the 

'unaccounted for' fuel is consistent with current vehicle technology which relies 
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on a similar sensor, the HEGO sensor, to maintain an assumed stoichiometric 

APR during both warm-up and fully-warm operation. In reality, such a sensor 

will maintain a tail-pipe APR that is slightly rich, in the region of one air/fuel 

ratio, of stoichiometric in the period when the exhaust hydrocarbons are high and 

not fully-accounted for by the exhaust mounted sensor. In addition, using such 

a sensor here enables the definition of a simple function to relate excess exhaust 

hydrocarbons during warm-up to the UEGO predicted 'unaccounted for' fuel 

detailed in Chapter 4. 

5.6 Conclusions 

In order to investigate the possibility of predicting engine-out emissions during 

cold-starting and engine warm-up two sets of warm-up tests have been carried 

out. The first set of tests involved force-cooling the engine to establish near 

steady-state engine conditions at non-fully warm temperatures and constant 

tail-pipe AFR. These tests suggest that, unlike indicated specific fuel 

consumption, indicated specific emissions are strongly dependent on ECT. The 

data suggest that fully-warm indicated HC, CO and NOx emissions can be scaled 

by a simple ECT Correction Function to account for changes in mixture 

preparation due to reduced coolant temperatures during engine warm-up. 

Indicated specific emissions were used to remove the effect of increased engine 

friction at lower engine temperatures enabling the effect of mixture preparation 

to be assessed independently. 

Changes in emISSIOns with ECT have been explained in terms of charge 

stratification due to poor vaporisation in the intake system and reduced 

combustion temperatures due to reduced in-cylinder metal temperatures. 

The relationship between the additional HC emissions immediately following 

start-up and the 'unaccounted for' fuel in this period has been investigated. 

Experimental data indicate that a simple linear relationship exists between the 

additional HC over that predicted by poor mixture preparation and 'unaccounted 

54 



for' fuel measured using a UEGO sensor, such that the additional He is around 

33% of the 'unaccounted for' fuel at any time during the warm-up. 

Similar work at Nottingham University [5.6] suggests that, in the period 

immediately following a cold start, the UEGO sensor does not fully-account for 

unbumt hydrocarbons in the exhaust pipe resulting in a measured AFR that is 

lean of the actual tail-pipe AFR. Consequently, the 'unaccounted for' fuel 

predicted based on UEGO measurements provides an over-estimate of the fuel 

stored in the engine cylinder and absorbed in the lubricating oil. Experimental 

data suggest that, for the engine examined, around 33% of the fuel unaccounted 

for by the UEGO sensor is actually present as unbumt hydrocarbons in the 

exhaust pipe. 
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Chapter 6 

Engine Thermal Model to Predict Friction 

Characteristics 

6.1 Introduction 

Both fuel consumption and emISSIOns are affected by changes in thermal 

conditions during engine warm-up. In order to apply the developments and results 

described in the preceding chapters, a means of predicting how thermal 

conditions vary from engine start-up onwards is required. This involves the use 

of an engine thermal model developed at the University of Nottingham called 

PROMETS which, amongst other things, provides the facility to predict engine 

frictional losses and oil and coolant temperature variations. The indicated mean 

effective pressure (imep), defined as the total work delivered to the piston over 

the entire four strokes of the engine cycle per unit displaced volume, is calculated 

from the brake mean effective pressure as: 

imep = bmep + fmep (6.1) 

where fmep is the friction mean effective pressure due to rubbing friction in the 

engine and ancillary friction losses such as the water and oil pumps. This chapter 

gives a brief description of the thermal model employed and details its 

application to the work presented in this thesis. A more detailed description is 

given elsewhere [6.1]. 

Increased frictional losses are responsible for a significant part of the increase in 

fuel consumption of a cold engine. Sorrell and Stone [6.2] found that combustion 

chamber wall temperatures rose rapidly to their steady-state values, indicating 

that reduced thermal efficiency due to cold cylinder walls is not a significant 
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cause of increased fuel consumption during warm-up. Work by Raahtela et al 

[6.3] investigated the warm-up behaviour of a 1.3 litre engine starting at -100C. 

Figure 6.l(a) shows the measured motoring frictional losses as a function of oil 

temperature. The excess motoring losses were attributed to the increased viscosity 

of the cold engine oil. Figure 6.1 (b) shows that the effect of oil temperature on 

frictional losses is different for various engine components. Temperature was 

found to have the greatest influence on the crankshaft group, which includes the 

crankshaft, connecting rod, piston and rings. It was also estimated that the fuel 

flow rate required at -10°C is 85% higher than that required by a fully-warm 

engine. Much work has been done to investigate the effect of engine oil viscosity 

on engine cranking, starting and warm-up fuel economy [6.4-6.7], but little work 

relates to the prediction of frictional losses during the period between start-up and 

fully-warm. 

6.2 Modelling Engine Friction Using PROMETS 

The PROMETS software package enables engine oil, coolant and metal warm-up 

rates to be predicted for a defined set of engine operating conditions. Thermal 

analysis of the engine structure is based on the lumped capacity approach. The 

engine is divided into elements, each of which has a spatially uniform 

temperature, a given thermal capacity, and is thermally coupled to adjacent 

elements and to any adjacent heat sinks. Energy balance equations are formed for 

each element and temperatures obtained by solving appropriate sets of 

simultaneous equations. In the version ofPROMETS used here, 36 elements are 

used to represent the engine structure around one cylinder of the 1.8 litre Zetec 

engine and 30 elements for the 2 litre DORC 8V engine. The additional six 

elements in the Zetec case are used to define the additional intake and exhaust 

valves in this engine configuration. 

The friction model in PROMETS is used to predict the increase in imep caused 

by higher friction losses during engine warm-up. In determining friction losses, 

it is important to clarify the component sources that are included in the 
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calculation. In this thesis, imep is defined as the net imep or the work delivered 

to the piston over the entire four strokes of the cycle, per unit displaced volume. 

As such, it follows that: 

imep = bmep + rfinep + amep (6.2) 

where rfinep is the rubbing friction mean effective pressure and amep the 

accessory mean effective pressure. 

The friction model developed by Patton et al [6.8] is used to predict the rubbing 

friction and accessory mean effective pressure terms for fully-warm engine states. 

The effect of the bore, the stroke, the number of cylinders, the number and size 

of bearings and the valve train configuration are accounted for. The bearings 

group includes friction from the main bearings, con-rod bearings and camshaft 

bearings. The piston groups includes friction from piston and piston rings and the 

valve train group is made up of friction from the cam followers and valve actuator 

mechanisms. The accessory friction is the sum of oil pump, water pump and 

alternator friction. The correlations used to define these terms are given for 

reference in Appendix B. 

In the implementation of the friction model used by PROMETS, the net indicated 

work, Wc,i' is determined over the whole engine cycle as: 

w . = f P.dV C,l 
(6.3) 

and imep is calculated as: 

unep (6.4) 

where Vs is the swept volume. Consistent with these definitions, the total friction 

losses described hereafter are only the sum of the rubbing friction loss and 

accessory friction loss and are independent of pumping losses during the 
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induction and exhaust strokes of the cycle. 

Power and mean effective pressure (mep) are related by: 

(6.5) 

where nR is the number of revolutions per cycle and N the engine speed in 

revolutions per second. In the following, the total friction power loss is denoted 

by Pprf , the rubbing friction loss by P rf , and the accessory friction power loss by 

1\. These terms are related by: 

Pf=Pf+P pr r a (6.6) 

6.2.1 Friction Power Losses During Steady-State 

The total friction power loss, Pfriction predicted using the Patton et al model [6.8], 

is split into four components so that the frictional generated heat can be 

distributed as heat sources within the thermal analysis of the engine. 

P friction = a(a+h+c+d)P prf (6.7) 

where: 

(6.8) 

where the coefficients a to d represent the proportions of the steady-state friction 

losses for the valve train, the bearings, the piston, and the accessory components 

respectively. The factor a is used to compensate for discrepancies between 

measured friction losses and the friction losses predicted by the model. 

Experience of applying the model [6.9] indicates that a is typically l.34 for a four 

cylinder engine. Table 6.1 lists the predicted friction losses for each component 

source of the 2 litre DORe 8V engine running at 3000 rpm and 30 Nm brake 
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load. It can be seen that piston friction accounts for the largest proportion of the 

total friction losses, and is dependent on gas pressure. 

6.2.2 Friction Power Losses During Warm-Up 

For other than fully-warm running conditions, the effect of oil temperature on 

viscosity and hence friction losses is taken into account by introducing a 

correction factor. This is used to scale the instantaneous friction loss in proportion 

to values at the same running condition for fully-warmed up conditions. The 

correction is given by: 

( ) 

n . v· p =-
warm-up V Pf 

ref 

(6.9) 

where the reference viscosity is for a temperature of 90°C and v is the viscosity 

at any time during warm-up, whose dependence on absolute temperature Tabs is 

calculated using the Walther equation [6.10]: 

(6.10) 

where C1 and C2 are constants determined from the oil viscosity specification. The 

reference oil temperature is that at the inlet to the oil pump and is taken as being 

representative of the mean sump oil temperature. The index n has been 

determined experimentally to be typically 0.19-0.24 [6.9]. Not all of the friction 

loss dissipated as heat goes into the lubricating oil. The majority is transferred to 

adjacent parts of the engine structure or piston. During the development of 

PROMETS the split between the proportion transferred to the surrounding 

structure and the proportion which heats the oil directly has been established by 

trial and error to best match measured temperature characteristics on a number of 

engines. Typically, about 10% of the friction power is dissipated directly to the 

oil. 

In the version of PROMETS used here, heat transfer from the gas side to the 

engine structure is described by a model which partly utilises the Taylor and 
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Toong correlation [6.11] for heat rejection rate to the coolant under fully-warm 

operating conditions. The calculation depends upon the mass flow rate of fuel 

induced which, during warm-up, will be higher than for fully-warm operating 

conditions at the same brake load and speed conditions due to the higher friction 

levels. Thus the increased fuel flow rate must be estimated to enable a prediction 

of warm-up and friction characteristics. This estimation is only used to generate 

the engine warm-up profile and, as such, only a relatively crude estimate is 

required. This is achieved by assuming that the indicated specific fuel 

consumption at the warm-up temperature (say 20°C) is equal to that at 90°C and 

thus that: 

(6.11) 

where Pf is the friction loss at the relevant temperature indicated by the 

subscripts and 1\ is the brake power. 

6.3 Validation of Friction Model 

Previous experimental work by Christian [6.12] investigated the warm-up and 

friction prediction accuracy of PROMETS for a Ford 1.1 litre Valencia engine 

over the temperature range from 20°C to 90°C using SAE 10W/30 engine oil. In 

addition to the experimental work, Christian validated the above procedure for 

determining friction power losses during engine warm-up using published friction 

data for a 1.3 litre Volkswagen engine [6.3]. He found that the difference between 

measured and predicted friction power losses was always less than 20% for 

temperatures between -10°C and 100°C and concluded that the above correlations 

provided an adequate friction prediction for PROMETS. In essence, equation 

(6.9) provides a useful approximation to describe the overall effect of oil 

viscosity on friction power losses for the entire engine, but further work is 

required to determine how accurate this approximation is over a wider range of 

test conditions. 
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In order to detennine if the above relationships are valid over wider temperature 

and viscosity ranges additional tests were carried out using the 2 litre DORe 8V 

engine test rig described in Chapter 3 of this thesis. The test facilities enabled 

start/soak temperatures down to -10°C to be used giving a much wider range of 

oil viscosity. To further extend this viscosity range, a series of tests were carried 

out with SAE 20W/50 oil and the effect of the value of the index n observed. The 

oil viscosity variation with absolute temperature was calculated using 

equation (6.10) and the variation for the two test oils is shown in Figure 6.2. The 

tests were carried out as fixed throttle free wann-up tests with start/soak 

temperatures of -10°C and +20oe with constant stoichiometric input AFR. 

Table 6.2 shows the range of operating conditions and start/soak temperatures 

used. 

Figures 6.3 and 6.4 show measured and predicted friction power losses and 

measured and predicted oil and coolant wann-up temperatures for two typical 

tests with start/soak temperature of 20°C and -10°C respectively, and demonstrate 

close agreement between measured and predicted values. Of particular interest are 

the friction power losses in the period immediately following engine start-up. 

During this period the friction is much higher and reduces more rapidly than is 

predicted by equation (6.9). Such behaviour indicates that the viscosity of the oil 

at pump inlet temperature does not fully account for friction level changes 

immediately following start-up. In the version ofPROMETS used here, a linear 

drop in friction power has been incorporated into the friction power loss 

representation. The friction power loss at engine start-up is assumed to be 1.5 

times the value predicted by equation (6.9). After 50 seconds, the friction power 

losses are assumed to be fully-dependent on oil viscosity and are then calculated 

directly from equation (6.9). While the linear drop in friction representation 

provides a good approximation to the friction behaviour for the 20°C start the 

approximation is less accurate for the -10°C start where the initial friction factor 

(F) is greater than 1.5 times the value predicted by equation (6.9) and takes longer 

than the allowed 50 seconds to decay. In order to develop a more representative 
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model of the initial start-up friction behaviour additional cold-start tests have 

been carried out on the 2 litre DORe 8V engine and additional engine test rigs 

at the University of Nottingham. This work is ongoing, but initial results suggest 

that an exponential decay function provides a more accurate model of the initial 

friction behaviour. The initial friction factor F is modelled as: 

(6.12) 

where t is the time from engine start-up and X and 1" are determined from 

experimental data. Initial work on a range of engines suggests that X is dependent 

on engine start/soak temperature and 1" on engine speed and oil viscosity. 

Figure 6.5 shows the predicted friction behaviour using this function for the two 

cold-start tests detailed above. Equation (6.12) can be seen to provide a more 

accurate representation of the initial fricton behaviour but canot be incorporated 

into the PROMETS friction model until the dependence of 1" and X on engine 

start temperature, speed and oil viscosity have been determined. 

Figure 6.6 shows In(friction power loss ratio) against In(viscosity ratio) for all the 

warm-up test data for both the lOW /30 and 20W /50 engine oils. In both cases, the 

deviation from the linear fit at high viscosity ratios is due to the increased engine 

friction immediately following engine start-up. The gradient of the linear fit to 

these data equates to the index n which was found to be 0.19 for the lOW /30 oil 

and 0.16 for the 20W/50 oil. This suggests that equation (6.9) provides a good 

approximation to the actual friction power loss behaviour for a given test oil and 

that the index n is dependent on oil type/classification. The much higher viscosity 

of the 20W/50 oil at low temperatures enables equation (6.9) to be validated for 

a larger range of viscosity ratios than would be possible with just the lOW /30 

standard test oil. 

6.4 Discussion 

The PROMETS engine thermal model enables predictions of both engme 
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temperature and friction power losses to be made. The correlations used to 

calculate fully-warm engine friction levels are derived from the Patton et al model 

[6.S] and reflect the importance of basic design variables and generate a 

distribution of frictional dissipation throughout the whole engine. 

Comparisons between measured and predicted friction power losses during 

engine warm-up for a Ford Valencia and, as presented here, for a Ford 2 litre 

DOHC SV engine give high confidence in the technique used to scale fully-warm 

engine friction levels according to oil viscosity. The experimental work presented 

in this chapter confirms the validity of this scaling over a wider range of oil 

temperatures and with two different test oil specifications. 

Predicting friction power losses in the period immediately following a cold-start 

requires an additional modification to the fully-warm friction levels over and 

above that described by equation (6.9). During this period, friction levels are 

higher than predicted by equation (6.9) and decay more rapidly, suggesting that 

friction levels immediately after start-up are not entirely governed by the bulk oil 

viscosity. Christian [6.12] suggested a linear correction function to predict this 

start-up friction, and the test data presented here suggests that this provides an 

adequate approximation to the measured friction behaviour. He postulated that 

the apparent independence of engine friction on oil viscosity in the first 50 

seconds of engine operation was due to a lack of oil on the rubbing surfaces and 

the time taken to fully develop flow conditions in the engine. The exact 

lubrication mechanisms that result in the observed behaviour are not fully 

understood. Work by Hashizume and Kumada [6.13] has investigated the effect 

of oil flow rate on bearing temperature and it is possible that the start-up friction 

behaviour could be explained by differences in the oil temperature at the bearing 

surfaces and in the oil galleries. Additional cold-start test data from the DOHC 

engine test rig suggests that the start-up friction behaviour is more accurately 

modelled by an exponential decay function and is influenced by engine start/soak 

temperature and engine speed. This is believed to be due to the effects of the 
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initial bearing temperatures and the time taken for the bearing oil temperatures 

to stabilise, governed by the rate at which fresh oil is supplied to the bearing 

surfaces. However, further work is required to determine the way these effects 

combine to determine start-up friction behaviour and is currently being 

undertaken. Consequently, the original linear friction correction model used in 

PROMETS was adopted for the work presented here as it provides a good 

approximation to the friction behaviour, particularly when start temperatures of 

20DC or higher are of interest. 
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Chapter 7 

Application to Cold-Started Drive Cycles to 

Predict Fuel Consumption and Emissions 

7.1 Introduction 

The Cold Emission Cycle Simulation Program (CECSP) draws on the various 

models and results described in previous chapters and further components of the 

prediction scheme described in this chapter. The complete CECSP package 

enables second-by-second fuel and emissions flow rates to be predicted for a 

given drive cycle from a cold-start initial condition. A combination of engine 

friction models and mixture preparation compensation functions enable the 

application of fully-warm engine test bed data to cold-start conditions. Neural 

networks are used to characterise the fully-warm engine mapping data as 

described in Chapter 2. 

To demonstrate the complete procedure, CECSP has been applied to the 

ECE+EUDC drive cycle with a 20°C start temperature and with the currently 

allowed 40 second idle conditioning period before emission sampling begins. A 

neural network is used to map fully-warm fuel and emissions mass flow rates as 

a function of engine speed, indicated load and AFR for the engine under 

consideration which is then used to interpolate fuel and emission flow rates at 

each point in the drive cycle. In order to predict cold-start fuel and emissions flow 

rates from fully-warm mapping data the PROMETS friction model is used to 

calculate the increased engine friction during warm-up and hence the new 

indicated load profile. The correlations derived in Chapter 5 are used to correct 

the predicted emissions values for the effect of changes in mixture preparation at 

low engine coolant temperatures. 
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In addition to predictions of engine-out emissions, tail-pipe emISSIOns are 

predicted using a simple catalyst model. This enables experimental catalyst 

efficiencies for a given drive cycle to be used, if available, or more generally, the 

definition of catalyst light-off times and conversion efficiencies. When predicting 

tail-pipe emissions, particularly those ofHC, the prediction accuracy in the early 

part of the drive cycle is of paramount importance as it is this period, before 

catalyst light-off occurs, that contributes the bulk of the total drive cycle 

emissions. The increased HC emissions immediately following start-up have been 

closely linked to differences in fuel injected and fuel combusted and to the 

corresponding liquid fuel puddles believed to exist in the engine cylinder during 

this period. 

CECSP enables the user to select different combinations of engines and vehicles 

and to change various vehicle characteristics such as transmission ratios, wheel 

radius and total vehicle mass. The drive cycle to be used is defined as a series of 

second-by-second vehicle speed and gear number points and the start/soak 

temperature defined in the PROMETS friction model module of the software. The 

ECE + EUDC has been used during the development of CECSP. The complete 

vehicle speed profile for this cycle is shown in Figure 7.1 and consists of two 

parts, the elementary urban cycle (repeated four times) and the extra-urban cycle. 

For a given vehicle and drive cycle specification, engine speed variations can be 

defined from knowledge of rolling tyre radius and transmission ratios. The engine 

speed N is defined as: 

N 
V vehRgearRFDR 

0.37699rwhee1 

(7.1) 

where Vveh is the vehicle speed(km/hr), Rgear the gear ratio, RFDR the final drive 

ratio and rwheel the driving wheel radius(m). The engine brake torque (Mengine) is 

then calculated by dividing the engine brake power requirement by the engine 

speed at each point in the cycle. Thus: 
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M. 
engme 

where: 

60(i> rl+ i> ICE) 

2nN 11 trans 
(7.2) 

(7.3) 

F 0, F 1 and F 2 are coefficients determined by experiment. PKE is the power required 

at the road wheels to increase the kinetic energy of the vehicle during 

acceleration. This term is set to zero when decelerating, as under these conditions 

energy is dissipated through the vehicle brakes and the engine is motored. This 

simple vehicle model enables the vehicle performance during a drive cycle to be 

translated into required engine performance at the engine flywheel. Figure 7.2 

shows a typical example ofthe variations in engine brake torque and speed during 

the ECE+EUDC drive cycle for a medium sized vehicle. It is assumed that the 

over-run periods when the engine is motored can be treated as zero load points 

at the appropriate engine speed. Once the required engine performance over the 

drive cycle has been determined in this way, fuel consumption and emissions 

mass flow rates are inferred from fully-warm engine data modified to account for 

cold-start effects. 

7.2 Predicting Drive Cycle Fuel Consumption and Emissions 

Although not an essential part of the procedure, using neural networks to 

characterise engine fuel consumption and emissions performance as a function 

of operating conditions and calibration details has proved to be both effective and 

efficient, as detailed in Chapter 2. Fuel and emissions flow rates are determined 

by a neural network which maps fuel and emissions flow rates as a function of 

engine speed, indicated load and AFR. This same network can then be used to 

predict cold-started fuel consumption once the cold-started friction values have 

been calculated for each point in the drive cycle. Details of the neural network 
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configuration used and the training procedure employed are also detailed in 

Chapter 2 of this thesis. Two neural networks are used. The first maps fuel and 

emissions flow rates as a function of engine speed, bmep and AFR and the second 

uses engine speed, imep and AFR as inputs. In order to train the second network , 

the fully-warm mapping data has to be recast to express brake operating 

conditions as indicated operating conditions. This is done using the fully-warm 

component of the PROMETS engine friction model which is detailed III 

Chapter 6. Indicated mean effective pressure (imep) is calculated as: 

1lllep = bmep + finep (7.4) 

Figure 7.3 shows the steps in the prediction procedure to enable fully-warm fuel 

consumption and emissions values to be determined. In order to predict friction 

power losses at each point in the fully-warm drive cycle, approximate fuel mass 

flow rate values at each point are needed. Hence, the first network trained on 

brake operating conditions is used to determine this fuel flow rate data, enabling 

friction power losses to be predicted and indicated operating conditions to be 

defined. The second neural network is then used to determine new fuel mass flow 

rates and emissions mass flow rates over the drive cycle. These new fuel mass 

flow rates are then used to re-calculate engine friction power losses and hence 

indicated loads, and the network used to predict new fuel consumption and 

emissions values. This process is repeated until the change in predicted total drive 

cycle fuel used is less than 0.5%, as indicated in Figure 7.3. Generally, not more 

than three iterations are required to achieve this level of prediction accuracy. 

Applying the procedure to a cold-started drive cycle entails the prediction of 

engine friction at each point in the drive cycle as the engine warms up in parallel 

with a time marching calculation of fuel consumption from the corresponding 

indicated operating conditions, as shown in Figure 7.4. The rate at which the 

engine structure and lubricating oil warm-up influences friction losses over the 

cycle, because these depend upon oil viscosity which in tum depends upon 
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temperature. The warm-up behaviour of the engine over the drive cycle is 

determined using the PROMETS engine thermal model. For each time step 

through the drive cycle, an iterative procedure is used to obtain a self-consistent 

variation of friction, indicated operating conditions and oil warm-up 

characteristics. Once the indicated operating conditions for the cold-started drive 

cycle have been determined the same neural network used to predict fully-warm 

fuel and emissions mass flow rates from indicated operating conditions is used 

to predict the cold-start values. However, in the cold-start case the values 

predicted by the network are not the final drive cycle flow rates, as the effects of 

poor mixture preparation during warm-up and initial start-up transient behaviour 

have to be accounted for. This is done by applying the 'unaccounted for' fuel and 

mixture preparation correcting functions described in chapters 4 and 5 

respectively. The corrected fuel and emissions mass flow rates are then summed 

over the drive cycle to give the total fuel consumption and emissions produced. 

To extend the prediction procedure to include predictions of tail-pipe emissions 

a simple catalytic convertor model has been included in the CECSP program. The 

model uses second-by-second catalyst conversion efficiencies for each of the 

three exhaust emissions to convert the predicted engine-out, or feedgas, emission 

mass flow rates to tail-pipe flow rates. The inputs to the catalyst model are the 

catalyst light-off and fully-warm conversion efficiency characteristics. After 

catalyst light-off, the conversion efficiency is assumed to remain constant 

throughout the remainder of the drive cycle. 

The catalyst conversion efficiency at time t in the period between the time when 

the catalyst starts to become active, referred to here as the 'dead' time D, and the 

catalyst reaching its fully-warm efficiency, referred to here as the light-off time 

L, is modelled by the following function: 

(7.5) 

70 



where: 

't= -6( t- D) 
L- D (7.6) 

T]cat is the fully-wann catalyst efficiency and t is the time elapsed from the start 

of the drive cycle. The above relationships were derived to fit the experimental 

data for the catalyst perfonnance of three catalyst types and locations for a 

particular vehicle. Consequently, the model requires the knowledge of catalyst 

light-off times and conversion efficiencies for each engine/vehicle/drive cycle 

combination, and is not a complete model of catalyst behaviour. 

7.3 Prediction Accuracy and Sources of Error 

The prediction accuracy achieved by CECSP for any gIven application is 

dependent on the magnitude of various error sources from the various stages of 

the procedure. These can be classified as known and unknown sources of error 

and the way in which these combine to influence the final results can only be 

detennined by comparisons with experimental data. The main known sources of 

error are the neural network/friction model characterisation of the fully-warm 

engine map (Chapter 2) and the temperature correction functions used to 

compensate for mixture preparation effects on emission levels during engine 

wann-up (Chapter 5). In each case, accuracy was discussed in the relevant 

chapter. Additional unknown errors are believed to arise as a result of engine 

management system details which cannot be generalised and are of concern 

during over-run conditions, AFR variations during throttle transients, start-up 

transients, and changes in engine calibration details at non-fully-wann operating 

conditions. This section deals with the overall prediction accuracy despite the 

engine management assumptions made in CECSP, by application to a Ford 1.8 

litre Zetec engine in a Mondeo driven over the ECE+EUDC drive cycle in 

accordance with EC Stage 2 legislation requirements. 
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7.3.1 Treatment of Idle and Over-Run Conditions 

CECSP assumes that all the over-run periods in the drive cycle can be treated as 

zero load idle points at the appropriate engine speeds. Fuel and emissions flow 

rates during over-run are thus predicted by inputing the appropriate engine speed, 

imep and AFR values to the neural network. The AFR during over-run is 

assumed to remain unchanged from the stoichiometric baseline and, as such, the 

over-run predictions are a simplification of the actual conditions. 

In order to model over-run conditions more accurately, detailed knowledge of the 

fueling strategy would be required. Fueling during over-run influences HC 

emissions particularly, as in this period the engine is prone to poor combustion 

stabili ty and misfire. Work by Boam et al [7.1] looked at HC emissions during 

over-run periods of the ECE+EUDC drive cycle and explained the observed 

behaviour in terms of features of the engine management strategy. Different 

engine fuelling strategies employ varying degrees of fuel cut-off during 

deceleration (Decel Fuel Cut-Off or DFCO) and so HC behaviour during periods 

of deceleration is difficult to predict. DFCO is beneficial in terms of reducing fuel 

consumption, CO and NOx emissions but not HC emissions, as liquid fuel films 

in the inlet port cause high HC concentrations due to either a partially or 

completely incombustible mixture entering the cylinder. During long periods of 

deceleration with complete fuel cut-off, wall film dryout may occur when all the 

liquid fuel in the intake system has evaporated. This phenomenon results in 

extremely low HC emissions during this period. However, when the engine is 

restarted a significant proportion of the injected fuel is needed to restore the 

intake port wall fuel films resulting in a lean mixture entering the cylinder and 

possible misfire once again until the wall films are fully restored. Hence, HC 

emissions during over-run may be sensitive to fuelling strategy details, which are 

beyond the scope of this work. 

Figure 7.5 shows experimental and predicted HC flow rate data for the 1.8 litre 

Zetec Mondeo application during the final and longest over-run in the 
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ECE+EUDC drive cycle. The predicted data, based on no-load idle conditions , 

provides a good basic approximation to the HC behaviour, but does not model the 

extremes believed to be caused by misfire and port wall dryout described above. 

Figure 7.6 indicates that only around 17% of the ECE+EUDC drive cycle is 

periods of deceleration and so any errors in the predictions during these periods 

are less significant than at all other operating conditions. This, combined with the 

generalised approximation of fast idle to deceleration conditions, results in the 

deceleration prediction performance illustrated in Figure 7.7, where deceleration 

fuel consumption and emissions are all predicted close to the target +/-10% 

accuracy. 

7.3.2 Overall Prediction Accuracy 

Prediction errors within CECSP come from neural network predictions, 

PROMETS friction model predictions and the mixture preparation compensation 

assumptions discussed in previous chapters. In addition, errors from the over-run 

and constant AFR during throttle transient assumptions are believed to exist, as 

well as errors resulting from the assumption that identical spark timing and EGR 

rates apply at both cold-start and fully-warm conditions. The errors due to both 

neural network engine map characterisation and mixture preparation 

compensation have been shown to be entirely random within the boundaries 

described in Chapters 2 and 5, and so predicting the error at any given point in the 

drive cycle is not possible. The overall prediction accuracy can be assessed by 

comparison with experimental data taken using a chassis dynamometer or 'rolling 

road'. However, such experimental data do not provide a direct comparison with 

predicted data due to several assumptions made in the predictions. In CECSP it 

is assumed that perfect mixture control maintains stoichiometric conditions 

throughout the drive cycle and that during over-run periods fuel and emissions 

mass flow rates for no-load apply at a given engine speed. Furthermore, during 

warm-up CECSP assumes that the same spark timing and EGR rate settings as 

at fully-warm apply. The only experimental data available for comparison for the 

engine and vehicle under consideration included a degree of fuel enrichment in 
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the first 50 seconds of the drive cycle and additional deviations from the desired 

stoichiometric AFR of around +/-0.5 AFRs at transient points in the cycle. 

Despite these differences, comparisons between experimental and predicted data 

for the 1.8 litre Zetec Mondeo indicate that both fuel and emissions drive cycle 

totals can be predicted to within the target accuracies of +/-5% for fuel and +/_ 

10% for emissions. Although these target accuracy tolerances appear to be quite 

large, experimental fuel and emissions results are only obtainable to similar 

degrees of repeatability. Generally, from a range of experimental results supplied 

by Ford Motor Company for various engine and vehicle combinations, emissions 

totals varied by up to 10% and fuel consumption by up to 4% from test to test. In 

order to confirm that the prediction accuracies obtained when considering drive 

cycle totals exist over the range of conditions imposed over the drive cycle, the 

cumulative fuel and emissions results can be broken down into four categories: 

accelerations, decelerations, idles and cruises. These results are shown for fuel 

and HC mass flow rates in Figure 7.8 and for CO and NOx mass flow rates in 

Figure 7.9. In all cases, predicted values lie within the target accuracy bands 

suggesting that the assumptions made do not compromise the overall prediction 

accuracy for this application. 

7.4 Discussion 

CECSP has been developed to predict fuel consumption and emissions flow rates 

for both fully-warm and cold-started drive cycles using a combination of neural 

networks and engine friction models. The data input to the procedure is 

fully-warm dynamometer engine mapping data covering the range of engine 

speeds, loads and AFRs imposed by the drive cycle. Other calibration details, 

such as EGR rates and spark timings, are currently determined by the form of the 

fully-warm data. The drive cycle is supplied as a series of vehicle speed and gear 

number points from which the engine speed and brake load profiles are calculated 

from various input parameters to define the vehicle under consideration. Thus the 

effect of changing both the vehicle and the engine can be investigated by 

changing the vehicle definition parameters or the engine mapping data. In 
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addition, the engine start/soak temperature at the beginning of the drive cycle can 

be varied. Tail-pipe emissions can be calculated from engine-out emissions using 

a simple catalyst efficiency model from defined catalyst conversion efficiency 

and light-off behaviour details for the particular engine/vehicle combination. 

In order to predict cold-start fuel and emissions flow rates from fully-warm 

mapping data account has to be taken of the increased engine friction due to 

increased oil viscosity, poor mixture preparation in the intake port during engine 

warm-up and the initial transient behaviour of the engine in the period 

immediately following a cold-start. In addition, two important assumptions made 

in the prediction procedure are that APR excursions during transient points in the 

drive cycle do not influence fuel consumption and emissions, and that zero load 

fuel and emission mass flow rates apply during over-run conditions. Comparisons 

with experimental data indicate that these assumptions allow predictions to be 

made to within the target accuracies of +/- 5% for fuel consumption and +/- 10% 

for engine-out emissions. Tail-pipe emissions can also be predicted by application 

of a simple catalytic convertor efficiency model enabling catalyst light-off times 

and conversion efficiencies to be defined. Consequently, the procedure outlined 

here provides the facility to investigate the likely influence of various vehicle, 

engine and drive cycle specification parameters on the instantaneous and 

cumulative drive cycle fuel and emissions mass flow rates. Furthermore, it 

enables possible routes to improve fuel consumption and emISSIOns over 

cold-started drive cycles to be prioritised. The following chapter deals with ways 

in which the procedure has been used to determine these priorities. 
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Chapter 8 

Illustration of Factors Influencing Drive Cycle 

Fuel Consumption and Emissions Performance 

8.1 Introduction 

The predictions of fuel and emissions flow rates detailed in Chapter 7 were 

computed using the assumptions that start-up effects on emissions are negligible, 

that mixture control is perfect and maintains stoichiometric conditions throughout 

the drive cycle, and that during the over-run periods of the cycle, fuel and 

emissions mass flow rates for no-load apply at a given engine speed. In this 

chapter, the extent to which these and other factors influence fuel consumption 

and emissions and their relative importance is investigated. As in the previous 

chapter, the vehicle data used were derived from a 1.8 litre Ford Zetec engine 

installed in a Mondeo vehicle. The data were obtained by driving the vehicle on 

a chassis roll dynamometer over the ECE+EUDC drive cycle with the initial 40 

second conditioning period and a 20°C start temperature. The effect on the 

predictions made of changing various aspects of the engine/vehicle/drive cycle 

application used are considered. This approach has been used to rank the various 

sources of increased fuel consumption and emissions over the ECE+EUDC drive 

cycle and demonstrate the suitability of the procedure to other 

engine/vehicle/drive cycle combinations. Both engine-out and tail-pipe emissions 

are considered. Total tail-pipe emissions are particularly sensitive to emission 

levels in the early seconds of engine operation before the catalytic convertor 

becomes effective. The factors investigated are increased engine friction due to 

reduced engine temperature, poor mixture preparation during engine warm-up, 

possible AFR mixture excursions during throttle transients and cold-start transient 

contributions due to poor fuel utilisation immediately following a cold start. 
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8.2 Increased Engine Friction During Warm-Up 

In order to investigate the effect of increased engine friction on total fuel 

consumption and emissions, comparisons were made between predictions for a 

fully-warm and a 20°C cold-started ECE+EUDC drive cycle. To enable the effect 

of engine friction alone to be assessed, the emissions mixture preparation 

correction functions were not applied and cold-start transient effects were 

assumed to be negligible. The results are shown in Table 8.1 and indicate that 

increased engine friction when reducing the drive cycle start/soak temperature 

from fully-warm to the legislated 20°C increases predicted fuel consumption by 

4.5%. With the 20°C start, the oil temperature does not reach 90°C until nearly 

1100 seconds of the drive cycle have elapsed, as shown in Figure 8.1. This 

suggests that, although the increase in engine friction is most significant in the 

first 400 seconds of the drive cycle, the effect of increased engine friction persists 

throughout most of the cycle. This is confirmed by the increased finep, predicted 

by the PROMETS friction model, when compared to fully-warm (delta finep) 

shown in Figure 8.2. 

8.3 Poor Mixture Preparation During Warm-Up 

The work presented in Chapters 4 and 5 of this thesis concerns the effect of 

mixture preparation changes during engine warm-up on indicated fuel 

consumption and emissions respectively. Indicated specific fuel consumption has 

been found to be only weakly dependent on engine coolant temperature down to 

coolant temperatures of -10°C. However, emissions concentrations and hence 

indicated specific emission levels are much more sensitive to mixture preparation 

variations. Chapter 5 details the derivation of three simple functions relating HC, 

CO and NOx emissions at a given coolant temperature to the fully-warm value at 

the same engine operating condition. These functions apply at all operating 

condi tions and on both the engines examined in the experimental work described 

to within the +/-5% target accuracy required for the drive cycle predictions. In 

essence, the HC emissions are around 30% higher at a coolant temperature of 

20°C, NOx emissions around 30% lower and CO emissions around 5-10% lower. 
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When applied to the ECE+EUDC drive cycle with a 20c C start temperature the 

changes in cumulative totals associated with the deterioration in mixture 

preparation during warm-up represent a 2.1 % increase in HC and decreases of 

0.7% and 1.6% in CO and NOx respectively. Poor mixture preparation increases 

the HC penalty but actually reduces the CO and NOx penalty associated with a 

cold start. The mixture preparation correction factors are functions of ECT and 

as such only apply in the period before thermostat opening occurs at around 300 

seconds into the ECE+EUDC drive cycle (Figure 8.1). 

8.4 AFR Mixture Excursions During Throttle Transients 

During the development of the prediction procedure, the APR over the drive 

cycle has been assumed to be constant and unaffected by rapid changes in charge 

flow rate due to throttle transients. The effect of any APR deviations due to 

throttle transients on fuel consumption are expected to be insignificant since rich 

and lean excursions would in effect cancel each other out. However, the effect on 

emissions flow rates is likely to be more significant. The experimental data 

presented in Chapter 7 suggest that the prediction accuracy is not compromised 

by the assumption that throttle transients do not significantly influence emissions 

since each of the emission levels during periods of both acceleration and 

deceleration is predicted to within the overall prediction target accuracy of 

+/-10%, as shown in Table 8.2. However, in the experimental case presented for 

the 1.8 litre Zetec engine Mondeo the APR during the drive cycle was controlled 

to within +/-0.5 APRs of stoichiometric, which may not always be possible. 

To take account of larger APR excursions during transient changes in operating 

conditions requires a prediction of these excursions. This requires knowledge of 

fuel transfer behaviour in the intake port and a representation of the fuel supply 

control strategy which is beyond the scope and objectives of this work. However, 

the potential influence of such variations has been examined by imposing fixed 

excursions of +/-2 APRs for two seconds at points in the cycle where rapid 

changes in charge flow rate or gear changes occur which represent a 'worst case' 
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scenario for a modem production engine. The ECE+EUDC contains 22 gear 

change points resulting in throttle transients and a further 80 throttle transients 

due to periods of acceleration or deceleration. Consequently, around 200 seconds 

or a sixth of the cycle is assumed to be run at a non-stoichiometric AFR when 

these excursions are imposed. This enables an approximate percentage change in 

each of the emission concentrations during the transient points to be calculated 

and hence the percentage change of the total drive cycle results to be determined. 

Figure 8.3 shows that the imposed excursions give rise to increases of 1.7% and 

33.2% in HC and CO emissions, respectively, and a 7.3% decrease in NOx 

emissions. The large increase in CO emissions is due to the sensitivity to AFR 

variations on the rich side of stoichiometric. 

Although the magnitude and duration of the excursions imposed above is likely 

to be at least as extreme as those seen in most modem multi-point fuel injected 

engines, it is still possible that the resultant effects on emissions, particularly HC 

emissions, are conservative. In practice, rapid changes in throttle position can 

lead to partial or complete misfire [8.1] and this possibility has not been 

evaluated. However, despite the limitations when predicting emissions at 

transient points, CECSP can be used to illustrate the importance of good APR 

control during transient changes on operating conditions. 

When extending the approach of imposing AFR excursions at transient points in 

the drive cycle described above to tail-pipe emissions, the additional effect of 

AFR on catalyst conversion efficiency has to be considered. In order to both 

oxidise HC and CO emissions and reduce NOx emissions a three-way catalyst 

requires the tail-pipe AFR to be maintained extremely close to stoichiometric 

[8.2], as shown in Figure 8.4. If the AFR becomes excessively rich then oxidation 

ofHC and CO emissions is not possible and ifthe AFR becomes excessively lean 

the reduction of NOx emissions is inhibited. Hence, when imposing the same 

pattern of drive cycle AFR excursions used when considering feedgas emissions, 

the catalyst conversion efficiency was assumed to be zero for HC and CO 

79 



emISSIOns during rich excursions and zero for NO
x 

emISSIOns during lean 

excursions. This generalised approach is expected to give a 'worst case' scenario 

but is intended to show how the procedure can be used to indicate the adverse 

effect on tail-pipe emissions if tight AFR control is not maintained during 

transient conditions. The results are shown in Figure 8.5. The modelled catalyst 

is electrically heated with a conversion efficiency of98% and light-off time of23 

seconds. As is the case for the engine-out emissions, the CO increase reflects the 

strong dependence on AFR. The HC and NOx tail-pipe emissions account for 

about 15% of the feedgas totals when the simulated mixture excursions are 

imposed, compared to around 2.5% over the same intervals of the cycle when 

mixture control is assumed to be perfect. 

8.S Cold-Start Transient Contributions 

During the period immediately following a cold-start at 20°C, HC emissions are 

higher than would be associated solely with mixture preparation changes. An 

additional increase in HC occurs which is attributable predominantly to liquid 

fuel passing through the combustion chamber and entering the exhaust pipe. 

Heywood et al [8.2] have shown that liquid fuel can be present in the cylinder of 

a firing engine upto 60 seconds after start-up. Experimental results, detailed in 

Chapter 4 of this thesis, indicate a difference between the fuel inj ected and the 

fuel burned as accounted for by the VEGO sensor mounted in the exhaust 

tail-pipe during this initial period and suggest that typically 33% of this fuel is 

actually present, but undetected, in the exhaust gas stream as unburnt 

hydrocarbons for the Ford 2 litre DOHC 8V engine. Chapter 4 details the 

development and application of a model to predict this 'unaccounted for' fuel. 

Figure 8.6 shows the predicted 'unaccounted for' fuel percentage against time for 

an engine started cold at 20°C and allowed to idle. After 40 seconds of idle, 

currently allowed at the start of the ECE+EUDC drive cycle before emission 

sampling begins, the 'unaccounted for' fuel percentage has decayed to around 1 %. 

The resultant effect on the drive cycle totals is minimal with the HC emissions 

increasing by a mere 0.3%. However if, as is likely in the future, the 40 second 
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conditioning period is removed the 'unaccounted for' fuel effect is more 

significant. Figure 8.7 shows the 'unaccounted for' fuel percentage and coolant 

temperature against time from start of the drive cycle when the conditioning 

period is removed and Figure 8.8 the increase in engine-out HC emissions 

associated with this 'unaccounted for' fuel prediction for the first 100 seconds 

after start-up. The total drive cycle fuel consumption increases by 0.1 % and the 

HC emissions by a more significant 2.2%. 

The increase in HC emISSIOns occurs during the first 60 seconds of the 

ECE+EUDC drive cycle. Consequently, the effect on tail-pipe emissions is much 

more significant than on engine-out values because the catalytic convertor has not 

reached its peak conversion efficiency. To illustrate these effects, computations 

were carried out with a catalyst with an assumed efficiency of 98% and light-off 

times typical of various catalyst types and locations. These times were assumed 

to be 23 seconds for an electrically-heated catalyst (ERC), 70 seconds for a 

close-coupled catalyst (CCC), and 130 seconds for an underbody catalyst location 

(UBC). Figure 8.9 shows that in the best case, and including the effect of start-up 

transients on HC emissions, tail-pipe emissions are reduced to around 2.7% ofthe 

feedgas totals. Including the start-up transient HC emissions increases the best 

case from 2.7% to 3.5% representing a 30% increase in tail-pipe HC emissions. 

This clearly demonstrates the importance of transient phenomena immediately 

following engine start-up and shows how the catalyst model in CECSP can be 

used to illustrate their importance over a drive cycle. 

8.6 Discussion 

CECSP has been used to assess the importance to both fuel and emissions totals 

over the ECE+EUDC drive cycle of the various factors influencing drive cycle 

results. While some of these factors were shown to be of little importance when 

predicting engine-out emissions for the initial engine/vehicle combination 

examined, they are believed to be more significant when extending the 

predictions to other engine/vehicle applications and particularly when predicting 
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tail-pipe emissions. 

As described in Chapter 7, CECSP predicts feedgas emissions initially and these 

can then be converted to tail-pipe emissions using the catalyst model described. 

Factors which appear to have insignificant influences on feedgas emissions 

cannot be disregarded when predictions of tail-pipe emissions are also required. 

CECSP has been used to demonstrate the significance of these effects when 

predicting both feedgas and tail-pipe emissions and to prioritise the factors that 

influence both feedgas and tail-pipe emissions over the ECE+EUDC drive cycle 

most significantly. 

The extent to which cold-start and warm-up affects the pattern of fuel 

consumption and emissions is shown schematically in Figure 8.10. The relative 

importance of higher engine friction during warm-up, poor mixture preparation 

penalties and start-up transient effects due to poor fuel utilisation are summarised 

in Table 8.1. The baseline for comparison here is ECE+EUDC drive cycle results 

generated assuming the engine is fully-warm from key-on and that cold-start 

transient effects are zero. All results are for the Ford 1.8 litre Zetec engine 

installed in a Mondeo. The results indicate that increased engine friction is the 

main source of increased fuel consumption and feedgas emissions and that poor 

mixture preparation and cold-start transient effects only influence He emissions 

detrimentally, and even then only by around 2%. Mixture ratio excursions 

throughout the drive cycle during transient changes in operating conditions have 

been shown to have a potentially large influence on HC and, partiCUlarly, on CO 

emlsslOns. 

When tail-pipe emissions are considered, poor mixture preparation and cold-start 

phenomena prior to catalyst light-off have substantial effects on cumulative 

emissions, particularly ofHC. Mixture ratio excursions have a more significant 

effect on emissions levels than for feedgas emissions due to the sensitivity of the 

catalytic convertor to AFR deviations from the stoichiometric baseline. The 
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sensitivity of tail-pipe emissions to engine calibration details makes absolute 

values difficult to predict accurately, and hence the application of CECSP 

presented here is intended to demonstrate the significance of the various factors 

influencing tail-pipe emissions rather than provide absolute predictions to within 

the accuracy possible with feedgas emissions. Table 8.3 shows the effects 

demonstrated to be of primary significance to tail-pipe emissions totals over the 

ECE+EUDC drive cycle together with suggested actions to limit these effects. 

In conclusion, this chapter demonstrates the application of CECSP to examine the 

influence of cold-start and engine management strategy implications on drive 

cycle fuel consumption, and both feedgas and tail-pipe emission levels. The 

illustration presented demonstrates the need to reduce engine friction levels and 

warm-up times to be of principal importance to minimise drive cycle fuel 

consumption and feedgas emissions. However, when tail-pipe emissions are 

considered, these priorities are overshadowed by the need for rapid catalyst 

light-off and good fuelling control to minimise excess fuel supply and maintain 

tight control of AFR excursions during transients. The following chapter goes on 

to detail the additional applications the CECSP prediction procedure has been 

used for and the appropriate changes to the model required for these applications. 
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Chapter 9 

Model Exploitation 

9.1 Introduction 

In the work presented so far, CECSP has been applied to a single engine/vehicle 

combination driven through the ECE+EUDC drive cycle from a cold-start 

condition. In this chapter, other applications of CECSP are considered. 

Essentially, the prediction procedure developed can be used in two ways. Firstly, 

predictions of the effect on drive cycle performance of changing various 

engine/vehicle parameters for different drive cycles can be made and the likely 

performance of new engine/vehicle combinations in the early stages of 

development assessed. Such predictions require assumptions or knowledge of 

likely exhaust gas after-treatment performance to enable tail-pipe emissions to be 

predicted. Secondly, predictions of feedgas emissions can be compared with 

desired tail-pipe values to enable target catalytic convertor characteristics and the 

associated exhaust gas after-treatment system development costs to be evaluated. 

In both cases, the prediction of feedgas emissions is influenced by various 

characteristics of the complete engine/vehicle/drive cycle package and the 

prediction procedure can be used to investigate the effect of these characteristics 

on the drive cycle performance. The following details five applications of 

CECSP, the interpretation of results and the implications of these. 

9.2 Case 1: Drive Cycle Definition Effects 

In this case, CECSP is used to demonstrate the effect on fuel consumption and 

emission levels of the drive cycle used. The software was developed using the 

ECE+EUDC drive cycle, also termed the New European Drive Cycle (NEDC). 

However, because engine fuel consumption and emissions performance is 

influenced by the characteristics of the drive cycle used to determine fuel and 
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emissions totals, the option to use different drive cycles was considered to be 

important. 

In the United States, the Federal Test Procedure (FTP) is used to represent typical 

patterns of light vehicle operation and emissions limits defined accordingly, as 

detailed in Chapter 1. CECSP has been used to investigate the differences 

between the FTP-75 and ECE+EUDC drive cycles as these are considered to be 

the two most important cycles in current use. Essentially both the cycles define 

a series of engine operating conditions thought to be typical of those experienced 

during normal driving behaviour, but significant differences in the definitions of 

the cycles exist. The ECE+EUDC drive cycle has a duration of 1180 seconds and 

is run continuously through two sections. The first section consists of four 

repeated ECE cycles and the second section of one extra-urban cycle (EUDC), the 

latter specifying speeds of up to 120 kmIhr. The current FTP-75 cycle lasts 1877 

seconds and consists of four sections. Unlike the European cycle, each section is 

given an assessment coefficient to determine what proportion of the emissions 

produced during that section will contribute to the drive cycle total. The sections 

are as follows [9.1]: 

Transient phase with a duration of 505 seconds and an assessment 

coefficient of 0.43, 

Stabilised phase with a duration of 867 seconds and an assessment 

coefficient of 1.0, 

Stop phase of 10 minutes, 

Repeat of the transient phase with a hot start and an assessment 

coefficient of 0.57. 

Figure 9.1 shows a comparison of the vehicle speed profiles for the two cycles 

and indicates that there is a significant difference in the proportion of time spent 

at particular operating conditions. To make comparisons of vehicle performance 

over the two cycles, predictions were made using the same 1.8 litre Zetec 

Mondeo application used previously. Both cycles involve a start/soak temperature 
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of 20°C and are assumed to be run at stoichiometric AFR conditions throughout. 

In the ECE+EUDC case, fuel and emissions are predicted from key-on without 

the 40 second idle period currently allowed for Stage 2 legislation and the cycle 

is run continuously from start to finish. The FTP-75 cycle, however, includes a 

10 minute stop phase where the engine is switched off and a degree of engine 

cooling and reduction in fully-warm temperature gradients in the engine structure 

will occur. When applying CECSP to this cycle, the temperature changes during 

the stop phase are assumed to be negligible and the fully-warm transient phase 

assumed to start with the engine in the same thermal state reached at the end of 

the fully-warm stabilised phase. 

Coolant and oil warm-up temperature variations are given for the first 800 

seconds of both cycles in Figure 9.2. The early part of the ECE+EUDC drive 

cycle is lightly loaded compared to the FTP-75 cycle and consequently warm-up 

extends for a longer period into the cycle. The effects of cold-start up persists for 

a similar period in both. Over the cycles as a whole, the mix of operating 

conditions can be broken down into periods of acceleration, deceleration and 

cruise conditions. A comparison of the proportions of each category is shown in 

Figure 9.3. The most striking difference between the two cycles is the higher 

proportion of transient (acceleration and deceleration periods) in the FTP-75 

cycle. 

The extent to which cold-start and warm-up affects the pattern of fuel 

consumption and emissions is shown schematically in Figure 9.4. The relative 

importance of higher friction during warm-up, poor mixture preparation penalties 

and cold-start transient effects is shown in Table 9.1. The effects of cold-starting 

and warm-up can be seen to be less significant for the FTP-75 cycle due to the 

more rapid warm-up and the assessment coefficient system for weighting the 

emissions flow rates from the different phases of the cycle. This, together with 

the high engine loads demanded by the EUDC section of the European cycle 

results in the fuel and emissions flow rates per kilometre on the European cycle 
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being higher than those for the FTP cycle, as shown in Figure 9.5. Fuel, HC and 

CO emissions are all increased by similar amounts due to the higher charge mass 

flow rate over the European cycle. However, a greater increase occurs for NO 
x 

emissions due to the additional sensitivity of NO x concentrations to increases in 

brake load. 

In conclusion, CECSP has been used to investigate the differences in fuel 

consumption and emissions performance between the two most widely used drive 

cycles. The ECE+EUDC drive cycle produces significantly higher fuel 

consumption and emission levels for the same engine and vehicle combination 

than the FTP-75 drive cycle due to the higher engine load conditions imposed. 

Fuel, HC and CO emissions are around 25% higher per kilometre with the 

European cycle and NOx emissions are 45% higher. This demonstrates the need 

for legislated emissions targets to be carefully matched to the vehicle test 

procedure and drive cycle characteristics. 

9.3 Case 2: Vehicle Effects 

During the development of a new vehicle, careful matching of the engine and 

vehicle characteristics is necessary to ensure optimum fuel consumption and 

emissions performance over the appropriate drive cycle. In this case, CECSP has 

been used to investigate the effect on drive cycle performance of changing the 

engine and vehicle combination to demonstrate its envisaged application to the 

optimisation of an engine and vehicle package. Two engines and three vehicles 

have been considered giving a total of six engine/vehicle combinations. The three 

vehicles simulated were a 900 kg 'super-mini', a 1200 kg family saloon and a 

1300 kg hatchback representing Ford's Ka, Escort and Mondeo models. The two 

engines considered were both normally aspirated DOHC 16V units with 

capacities of 1.25 and 1.8 litres. 

Figure 9.6 shows the effect on total fuel consumption and feedgas emissions over 

the ECE+EUDC drive cycle of increasing the engine size from 1.25 litres to 1.8 
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litres for the three vehicles considered. Increasing the size of the engine in a 

vehicle has only a small effect on the drive cycle torque demand as the only 

increase in vehicle mass is due to any increase in engine mass. However, the 

indicated load demand increases more substantially due to the increased engine 

friction levels associated with a larger engine. In addition, the larger engine is 

more heavily throttled to meet the required brake load demand for the drive cycle 

and hence operates at a lower volumetric efficiency than the smaller engine. 

These effects combine to increase the fuel consumption by 15-20% when the 1.8 

litre engine is used instead of the 1.25 litre engine in all three vehicles. The fuel 

consumption penalty associated with using the larger engine decreases as the 

vehicle mass increases because the significance of engine friction levels and 

throttling losses is reduced as the brake load required to drive the cycle increases. 

Similar trends occur for CO emissions. HC emission levels show little sensitivity 

to the change in engine and this is due to the reduction in HC emissions 

concentrations with increasing load tending to offset the increase in charge mass 

flow rate. NOx emissions are significantly reduced for all three vehicles when the 

engine size is increased. This is because NOx emissions are sensitive to 

combustion temperature and hence increase significantly as engine load 

approaches its maximum. Consequently, for each vehicle, the bigger engine 

results in lower NOx emissions because the drive cycle torque demand is a 

smaller proportion of the engine's peak torque. 

Figure 9.7 shows the effect of increasing the vehicle size for a given engine 

capacity. Increasing the vehicle size results in a substantial increase in engine 

torque demand as a result of increased vehicle mass together with possible 

aerodynamic and rolling resistance changes. This can be seen to have the most 

significant effect on NOx emissions which are particularly sensitive to increases 

in engine brake load. The 1.8 litre engine installed in the 1300 kg vehicle 

produces almost 40% more engine-out NOx emissions than the same engine in the 

900 kg vehicle despite the fuel consumption and CO emissions increasing by a 

much less significant 6%. Once again, HC emissions are only slightly altered and 
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are actually reduced for the 1200 kg vehicle compared to the 900 kg vehicle. This 

is again due to the reduction in HC concentrations with the increase in engine 

load required to drive the larger vehicle through the cycle. 

9.4 Case 3: Cold-Start Temperature Effects 

A major consideration when developing a new engine is friction. This detennines 

what proportion of an engine's indicated power is available as brake power at the 

flywheel. To demonstrate the effect of engine friction levels on fuel consumption 

over a drive cycle, CECSP has been applied to a Ford 2 litre DOHC 16V engine 

installed in a 1300 kg, escort sized, vehicle driven over the ECE+EUDC drive 

cycle. Simulated cold-start drive cycles were modelled with start temperatures 

ranging from 20°C down to -20°C and fuel consumption results compared. 

Emissions flow rates were not considered as the mixture preparation correction 

functions have only been experimentally validated down to coolant temperatures 

of O°C. A comparison of the results obtained for the 20°C cold-start and 90°C 

fully-warm start cases is shown in Figure 9.8 and the coolant and oil warm-up 

characteristics for the fonner case are shown in Figure 9.9. Although the coolant 

temperature rises rapidly the oil temperature lags substantially. In the fully-warm 

case the predicted fuel used was within 0.6% of the experimental value supplied 

by Ford Motor Company. For the 20°C cold-start cycle, the fuel consumption 

penalty associated with cold-start up was 4.98%. This is primarily associated with 

the higher fuel flow rate in the early part of the drive cycle, when the friction 

levels are most significantly different from the fully-warm values, although the 

effect of the warm-up period extends over the entire duration of the drive cycle. 

Figure 9.10 shows the total drive cycle fuel used and the penalty associated with 

cold operation for the range of start/soak temperatures examined. The fuel penalty 

of 4.98% for a 20°C start increases to 10.53% for a start/soak temperature of 

-20°C. All the predictions here are based on stoichiometric running conditions 

throughout the drive cycle to eliminate the additional fuel penalty associated with 

varying degrees and duration of fuel enrichment according to start temperature. 

Figure 9.11 shows how the ratio of total friction work to total indicated work for 
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the drive cycle (i.e friction ratio) increases as the engine start temperature is 

lowered. The generally high value of this ratio indicates the importance of 

frictional losses under the relatively light-load operating conditions imposed by 

the drive cycle. For the fully-warm engine case, 26% of the total friction work 

occurs during idle and over-run periods. The friction ratio increases from 0.39 to 

0.44 when the engine is started cold at 20°C rather than fully-warm. The 5% 

increase in fuel consumption is a direct consequence of this increase in friction, 

but is not in direct proportion because the higher indicated loads affect a change 

in indicated specific fuel consumption (isfc). For the engine map examined, the 

isfc was improved, and as such partly offsets the effect of the increased friction 

work, as indicated by Figure 9.12. 

9.5 Case 4: Engine Calibration Effects 

Once an engine and vehicle combination has been specified, optimisation with 

respect to drive cycle performance can be achieved by changes to the engine 

management strategy. For example, changes to the spark timing and exhaust gas 

recirculation (EGR) calibrations can be made to optimise a given engine for a 

given vehicle. A partiCUlar engine in one car may require aggressive use of EGR 

in order to meet the required emissions legislation and yet, in a smaller car, the 

manufacturer may be able to dispense with the EGR system and reduce the 

vehicle costs. Consequently, it is beneficial to be able to assess the likely effects 

of changes to the engine calibration details on the fuel consumption and 

emissions performance of a given vehicle over the relevant drive cycle, as the 

associated cost considerations can be explored at an early stage in vehicle 

development. 

CECSP enables the effects of changes to engine calibration details to be assessed 

in two ways. 

i) Changing Fully- Warm Engine Data Calibration 

Because the procedure uses fully-warm dynamometer data as the basis for the 
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predictions, any changes in the engine calibration used to obtain the fully-wann 

data will also be reflected in the drive cycle predictions. Consequently, changes 

in calibration details can be modelled by using multiple sets of engine mapping 

data to train the neural networks used to predict the drive cycle fuel and emissions 

flow rates. Such an approach has two disadvantages which limit it to giving only 

a first approximation to the likely effects of calibration changes. Firstly, the drive 

cycle calibration is fixed by the fully-wann data and so cannot be modified 

during the warm-up phase of the drive cycle when different spark timings and 

EGR rates from fully-warm may be desired. Secondly, because the neural 

network training errors can be up to +1-10% when predicting emissions flow 

rates, small differences between emission flow rates for two separate engine maps 

may not be accurately represented in the neural network characterisations. Hence 

this technique for investigating the effect of changes in engine calibration details 

should only be used within the context of the overall prediction accuracy and is 

only applicable to calibration changes that result in changes in fuel and emissions 

flow rates that are greater than the accuracy to which these can be predicted by 

the procedure. 

Figure 9.13 shows the effect on the predicted fuel and emissions totals for the 

same engine and vehicle combination of using two different fully-warm engine 

maps - one with EGR and one without. While the results suggest that the use of 

EGR has the most significant influence on NOx emissions, the overall prediction 

accuracy has to be known and accounted for before a more precise effect of EGR 

calibration can be determined. 

ii) Changing drive cycle calibration directly 

More accurate effects of changes to engine calibration details can be determined 

by defining the engine calibration details on a second-by-second basis throughout 

the drive cycle. This involves defining the calibration parameter to be 

investigated as an input to the neural network used to characterise the engine map 

and enables engine calibration variables to be changed during the drive cycle. 
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During the development of the prediction procedure, the defined input variables 

to the neural network used to define the drive cycle calibration were engine 

speed, indicated load and AFR. Consequently only changes in the engine AFR 

calibration can be assessed in this manner without changing the set-up of the 

software. However, modifications could be made to enable the effects of changes 

to spark timing and EGR rate to be assessed from a single fully-warm engine map 

if these were defined as additional input variables and providing that the engine 

map covered the range of possible values for all the input variables over the 

specified drive cycle. 

The main industrial application of the prediction procedure to date has been to 

predict the effect of changes to the engine AFR calibration on drive cycle fuel 

consumption and NOx emission levels. This involved defining certain areas of the 

drive cycle where an AFR lean of stoichiometric could be used to reduce drive 

cycle fuel consumption. Figure 9.14 shows the effect on fuel consumption and 

total feedgas emissions of running at an AFR of around 22: 1 during all the cruise 

points during the ECE+EUDC drive cycle. It can be seen that such an AFR 

calibration results in a reduction in total fuel consumption of around 4% and 

significant reductions in both feedgas CO emissions and feedgas NOx emissions. 

However, when tail-pipe emissions are considered there is a price to pay for the 

reduced fuel consumption. When running lean of stoichiometric a 3-way catalytic 

convertor as fitted to most modem vehicles cannot treat NOx emissions due to an 

excess of oxygen in the exhaust gases. Consequently, although the total feedgas 

NOx emissions decrease when running lean of stoichiometric, the tail-pipe NOx 

emissions increase in the absence of an alternative after-treatment system to the 

3-way catalytic convertor. CECSP was used to define a series of AFR calibrations 

to investigate the maximum reductions in fuel consumption possible and the 

associated requirements of an exhaust gas after-treatment system for NOx 

emissions during periods of lean operation. 
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9.6 Case 5: Tail-Pipe After-Treatment Effects 

Initially developed to predict fuel consumption and feedgas emissions, CECSP 

enables the definition of exhaust gas after-treatment characteristics to enable 

predictions of tail-pipe emissions to be made. In order to predict accurate tail-pipe 

emissions the catalyst model in CECSP requires catalyst data specific to the 

engine/vehicle/drive cycle combination which would not be available until the 

actual vehicle drive cycle performance could be measured. Consequently, the 

catalyst model is intended primarily to facilitate the investigation of the effects 

on tail-pipe emissions of imposed catalyst characteristics. These may be known 

characteristics or target values which may not yet be achievable with current 

catalyst technology. In the industrial application discussed above, CECSP was 

used to determine the required lean NOx conversion efficiency to achieve future 

emissions legislation whilst achieving the maximum reduction in drive cycle fuel 

consumption by use of a hybrid stoichiometric/lean AFR engine calibration. A 

simple extension of this application of CECSP would be to determine the 

required after-treatment performance for a vehicle under development. This could 

involve engine data from engines in the early stages of production or even from 

simulated engine performance programs which are now becoming increasingly 

available. 

9.7 Discussion 

CECSP is intended to provide a research tool to enable the prediction of drive 

cycle fuel and emissions performance at an early stage in vehicle development. 

A wide range of possible applications are envisaged for the software in the 

development and evaluation of proposed solutions in the ongoing quest for 

reduced fuel consumption and improved emissions performance from new 

light-duty road vehicles. Current and future emissions legislation worldwide 

provide many challenges for new vehicle design engineers and result in 

manufacturers adapting engine/vehicle specifications to suit the intended market. 

Factors such as the drive cycle used to determine fuel consumption and emissions 

performance and the associated range of engine options that can be offered in a 
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given vehicle need to be considered to ensure that new vehicles comply with 

legislated requirements. For a given market using a given drive cycle and test 

procedure fuel and emissions performance can essentially be optimised in two 

ways: by changing the vehicle characteristics or by changing the engine and 

exhaust after-treatment characteristics. In CECSP, vehicle characteristics can be 

altered by changing parameters such as transmission ratios, vehicle aerodynamics 

and vehicle mass. Different engines can be mated with different vehicles to assess 

the significance of engine performance and the effect of both engine friction 

levels and engine management calibration details. Finally, a major factor 

influencing drive cycle emissions performance is exhaust gas after-treatment. The 

efficiency and location of a catalytic convertor on a vehicle significantly 

influences the tail-pipe emissions produced throughout a drive cycle. Initially 

developed to predict engine-out emissions, CECSP can be used to assess the 

effect of, or requirement for, exhaust gas after-treatment performance for a given 

engine/vehicle/drive cycle combination. 

The case studies detailed above provide a brief summary of the applications 

considered to date and illustrate some of the important issues that need to be 

considered during modem engine and vehicle development. Further development 

work, detailed in the following chapter, will extend the scope of the existing 

CECSP software to cover more engineering problems. 
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Chapter 10 

Discussion and Conclusions 

10.1 Discussion 

This thesis details the development and exploitation of a PC based prediction 

procedure, called CECSP. The aim has been to facilitate predictions of fuel 

consumption and emissions during cold-started drive cycles. CECSP enables the 

relative effects of changing several engine and vehicle parameters to be examined 

and so can be used to prioritise areas of performance improvement during both 

engine and vehicle development. Because the procedure only requires fully-warm 

engine mapping data it can be used at an early stage in the development process 

to predict expected drive cycle results before engine and vehicle design 

parameters are finalised. Engine development teams generally now have access 

to thermodynamic performance simulation codes which have been developed 

in-house or which are commercially available. Also early test work on prototype 

engines rapidly generates engine performance maps. Both simulation and 

experimental data tend to be for fully-warm steady-state operating conditions, and 

CECSP makes use of such data to predict how a given engine/vehicle 

combination would perform over a defined drive cycle. 

CECSP has been validated by comparison with experimental data for a typical 

production vehicle driven over the ECE+EUDC drive cycle and the prediction 

accuracy found to be within the target +/-5% for fuel consumption and +/-10% 

for feedgas emissions. The application of CECSP to investigate and prioritise the 

various external factors influencing fuel consumption and emissions over drive 

cycles has been considered and the results and assumptions made justified and 

discussed. Additional applications have been considered in an attempt to illustrate 
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the contribution of the procedure to real engme and vehicle development 

situations. 

10.2 Further Work 

At various points in this thesis the requirement for further work to extend both the 

accuracy and the scope of the work presented has been highlighted. These 

requirements are now summarised in the context of the overall prediction 

procedure and the original objectives of the work. 

The first area for further work concerns the use of neural networks. These have 

been found to provide a simple and effective way of characterising engine 

mapping data for use over the range of operating conditions imposed by a typical 

drive cycle, and have been used in preference to regression analysis. However, 

the neural networks used extensively here use only engine speed, load and APR 

as inputs to define fuel and emissions mass flow rates as outputs. This is 

consistent with the original objective of the work to provide an initial prediction 

of the fuel consumption and emissions performance of a given engine and vehicle 

package over a defined drive cycle. Consequently, the drive cycle is defined in 

terms of a series of engine speed, indicated load and APR conditions. Such a 

configuration has been shown to be capable of predicting fuel mass flow rates to 

within +/- 5% and emissions flow rates to within +/- 10% of experimental data 

but imposes fixed spark timing and EGR rate settings throughout the drive cycle. 

Chapter 2 shows that the neural network characterisation procedure can, in 

principle, be extended to map fuel and emissions flow rates as functions of spark 

timing and EGR rate in addition to engine speed, load and APR, but that further 

work is required to determine the effect this extension has on both the prediction 

accuracy and the data processing time. Such an extension would enable the 

effects of spark timing and EGR rate changes on drive cycle performance to be 

investigated. Increasing the number of inputs to the neural network increases the 

size of the required database on which to train the neural network and 

consequently increases the processing time required. Since the optimisation of a 
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neural network setup for a given database has been found to involve a certain 

degree of trial and error, a significant amount of further work is required to 

determine the optimum network configuration for such an extension to the 

prediction procedure, together with the effects on the prediction accuracy that 

could be expected. More fundamentally, CECSP currently uses experimental 

engine mapping data to characterise engine performance. Ultimately, it may be 

possible to use a complete engine combustion model to accurately model fuel 

consumption and emissions and negate the current need for empirical engine data. 

Such engine simulation software is becoming increasingly available and provides 

a possibility for future development of CECSP. 

The second major area of interest for further work is the period immediately 

following engine start-up. During the first 100 seconds after a cold-start various 

phenomena combine to provide uncertainty in the predictions of fuel and 

emissions mass flow rates. This is particularly important for emissions flow rates, 

as it is in this period when the bulk of the drive cycle total emissions are 

produced, while the catalytic convertor efficiency is low. As detailed in Chapters 

4 and 5 of this thesis, a significant amount of the fuel injected into the engine 

intake system is not accounted for in exhaust gas analysis using a UEGO sensor, 

and is believed to pass undetected into both the engine lubricating oil and the 

exhaust system, resulting in extremely high HC emissions immediately following 

a cold-start. Further work is required to determine more accurately the 

proportions of the fuel injected that pass directly into the lubricating oil and 

exhaust stream and the mechanisms by which these phenomena occur. While the 

work presented in Chapters 7 and 8 suggests that these considerations are of little 

significance to the total fuel consumption and engine-out emissions predictions 

over a typical drive cycle, they are likely to be of much greater significance to 

both the instantaneous mass flow rate predictions in this period and the drive 

cycle tail-pipe emissions predictions. 

In addition to these two areas of envisaged development, the addition of a full 
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catalytic convertor model to the procedure would further extend the scope of the 

existing software package. It is envisaged that such a model could use exhaust gas 

temperature predictions made by a sub-model of the PROMETS package to 

predict catalyst light-off behaviour for a given engine/vehicle/drive cycle 

combination, enabling catalyst performance and warm-up behaviour to be more 

accurately modelled. 

The above areas of proposed further work will, it is believed, further extend the 

contribution of the work presented in this thesis to both engine and vehicle 

developent. CECSP will never ultimately be capable of modelling exactly the fuel 

consumption and emissions performance of an engine and vehicle combination 

but it is believed to provide a useful tool for predicting expected drive cycle 

performance to positively influence the development and optimisation of road 

vehicles in the future. 

10.3 Conclusions 

CECSP has been developed to predict fuel consumption and emissions over drive 

cycles starting with the engine at cold-soak temperatures. CECSP requires 

fully-warm test bed data to be available for the engine under consideration over 

the range of indicated loads and speeds imposed by the drive cycle. 

Experimental data support the assumptions made when applying fully-warm data 

to a cold-start situation. Indicated specific fuel consumption is a function of 

indicated operating conditions independent of engine coolant temperature. 

Indicated specific emissions ofHC, CO and NOx during warm-up can be related 

to the corresponding fully-warm values using simple functions of engine coolant 

temperature to account for the deterioration in mixture preparation. 

An engine friction model is used to infer indicated operating conditions from 

brake operating conditions. Experimental data confirm that warm-up friction 

power losses can be predicted by scaling fully-warm friction levels according to 
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oil viscosity. 

CECSP has been used to investigate and illustrate the factors that influence drive 

cycle fuel consumption and emissions performance with the following 

conclusions: 

Cold-start effects 

• Fuel consumption and engine-out emissions, particularly of HC, are 

influen?ed most by increased engine friction levels during warm-up and 

poor mixture preparation. 

• Cold-start transient effects due to poor fuel utilisation represent a 

negligible increase in fuel consumption and a very small increase in 

engine-out HC emissions of around 2% over the European drive cycle. 

• Poor mixture ratio control during transient operating points have a 

potentially large influence on engine-out HC and CO emissions. 

• Tail-pipe emissions are most sensitive to changes in emission levels in the 

period before catalyst light-off occurs immediately following a cold-start. 

Reductions in tail-pipe emissions are best achieved by rapid catalyst 

light-off and good fuel utilisation through engine calibration. 

• Mixture ratio excurSIOns influence tail-pipe emISSIOns more than 

engine-out emissions due to reduced catalyst performance at APRs rich 

or lean of stoichiometric. Close control of APR during transient operating 

points can significantly reduce this effect. 

Drive cycle effects 

• Comparisons between the US FTP-75 and European ECE+EUDC drive 

cycles have been made. The FTP-75 cycle results are less sensitive to 
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changes in cold-start engme friction, poor mixture preparation and 

cold-start transient effects due to faster engine warm-up. In addition, the 

cold and hot parts of the FTP-75 cycle are weighted so that the majority 

of the cycle totals come from fully-warm operating conditions. 

• Mixture ratio excursions have a more significant effect on the FTP-75 

cycle due to a larger proportion of transient operating conditions. 

Vehicle effects 

• Increasing vehicle mass results in significant increases in drive cycle fuel 

consumption and emissions. NOx emissions increase the most due to their 

sensitivity to the resulting increases in indicated load. 

• Increasing engine size in a given vehicle increases fuel consumption due 

to increased engine friction and reduced volumetric efficiency resulting 

from a larger engine working at a smaller proportion of its maximum 

power output. NOx emissions, however, may be reduced due to the 

reduction in the proportion of the engine's maximum indicated load 

required to drive the vehicle. 
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Table 1.1 

CARB Exhaust Emission Standards for Light-Duty Spark Ignition Vehicles [1.3] 

Legislative Introduced Exhaust emissions, glmile 

standard (F ederal Test Procedure) 

CO NMOG1 NOx Aldehydes 

1991 7.0 0.390 0.40 -

1993 3.4 0.250 0.40 -

TLEy2 1994 3.4 0.125 0.40 0.015 

LEy3 1997 3.4 0.075 0.20 0.015 

ULEy4 1997 1.7 0.040 0.20 0.008 

ZEy5 1998 0 0 0 0 

Non-Methane HC 

2 Transitional Low Emission Vehicles 

3 Low Emission Vehicles 

4 Ultra Low Emission Vehicles 

5 Zero Emission Vehicles 



Table 1.2 

European Emission Standards for Light-Duty Spark Ignition Vehicles [1.4] 

Legislative Introduced Exhaust emissions, g/km 

standard (European light duty test cycle) 

CO HC+NOx 

Directive 1993 2.72 0.97 

9114411EEC 

EC Stage 2 1996 2.2 0.5 

Expected Proposed European Emissions Standards for Light-Duty Spark Ignition 

Vehicles [1.5] 

Legislative Introduction Exhaust emissions, g/km 

standard (European light duty test cycle 

without 40 s idle period) 

CO HC NOx 

EC Stage 3 Proposal 2000 2.3 0.2 0.15 

EC Stage 4 Proposal 2005 1.0 0.1 0.08 



Table 2.1 

Summary of Neural Network Training Procedure (from Bacon [2.2]) 

Step Task 

Number 

1 Set all the weights in the network to random values 

2 Take each input pattern in tum and, for each one, carry out steps 

2(a) to 2(d) 

2(a) Apply each element of the input pattern as an input to the 

corresponding input unit 

2(b) Calculate the activation of the output units by progressing the 

activation values through the network 

2(c) Compare the actual output value or pattern with the desired 

output value or pattern 

2(d) Adjust the weights in the network to bring the actual output 

closer to the target 

3 Starting again at the first input pattern, repeat step 2 until a 

measure of the errors in the outputs is below a defined level or 

until the weights values have converged to a constant value 



Table 3.1 

Ford 2.0 Litre DOHC 4-Stroke Engine Specification 

Number of cylinders 4 

Bore (mm) 86.0 

Stroke (mm) 86.0 

Capacity (cc) 1998 

Compression ratio 10.3:1 

Con-rod length (mm) 149.25 

IVO COBTDC) 13 

IVC (oABDC) 51 

EVO COBBDC) 43 

EVC (OATDC) 13 

Firing order 1-3-4-2 

Table 3.2 

Engine Rig Monitoring and Control System Hardware 

Compaq 286 PC (mM PC-AT compatible) 

Blue Chip Technology AIP-24, 12-bit analogue input card 

Blue Chip Technology TIP-8, thermocouple input card 

Blue Chip Technology PIO-48, programmable input/output card 

RS232 serial interface 

RS stepper motor driver board 

Sigma Instruments stepper motor 

Setra 280E 0 to 25 psia pressure transducer 

NTK MO-1 000 AFR meter 



Table 3.3 

Engine Rig Monitoring and Control System Measurements 

Parameter Instrument 

Engine Condition: 

Engine Speed Froude HD70B control module 

Engine Torque Froude HD70B control module 

Throttle Position Stepper motor drive 

MAP Setra 280E pressure transducer 

APR NTK MO-l 000 APR meter 

Fuel Pulsewidth EECIV Calibration Console 

VMAP EECIV Calibration Console 

CO Concentration (%) Horiba MEXA-324 GE analyser 

HC Concentration (1000ppm) Signal series 3000 analyser 

NOx Concentration (1000ppm) Signal series 4000 analyser 

Temperature: 

Inlet air K-type thermocouple 

Exhaust gas " 

Engine coolant inlet " 

Engine coolant outlet " 

Engine oil inlet to filter " 

Engine oil in sump " 

Dynamometer cooling water " 



Table 4.1 

Cold-Start Fixed Throttle Warm-Up Test Conditions 

Constant Tail-Pipe AFR During Wann-up 

Test Number Engine Speed Fully-Warm 

(rpm) Brake Load (Nm) 

1 1750 26 

2 1750 50 

3 1750 80 

4 1750 90 

5 2400 30 

6 2400 50 

7 2400 75 

8 2400 93 

Table 4.2 

Tail-Pipe APR 

During Warm-up 

14.4 

14.3 

14.4 

14.4 

14.3 

14.2 

14.3 

14.3 

Measured imep Readings for DORC Engine During Fixed Throttle Warm-up 

Test Number 2 

Time From MAP (mbar) imep (bar) Peak Pressure 

Engine Start (s) (bar) 

25 424 3.82 23.60 

70 438 3.91 25.71 

115 446 4.08 23.19 

180 454 4.10 22.97 

270 467 4.09 23.38 

400 484 4.07 22.91 

505 488 4.05 22.16 

600 489 4.04 22.15 

730 489 4.03 22.01 

810 490 4.03 22.78 



Table 4.3 

Cold-Start Fixed Throttle Warm-Up Test Conditions 

EECIV Determined APR During Warm-Up 

Test Number Engine Speed (rpm) 

1-4 1250 

5-8 1750 

9-12 2400 

Fully-W ann Brake 

Loads Tested (Nm) 

30,50,70,90 

30,50,70,90 

30,50,70,90 



Table 5.1 

Constant AFR Force-Cooled Wann-Up Test Conditions 

No Thennostat, Constant Tail-Pipe AFR during Wann-Up 

i) 2 litre DORC SV Engine 

Engine Speed (rpm) Approximate imeps Tail-Pipe AFRs Tested 

Tested (bar) 

1250 3.2,4.6, 7.3 14.5, 13.0, 17.5 

1500 2.5, 3.2, 4.6 14.6, 12.0 

2000 2.5, 3.2, 4.6 14.6, 12.0 

2400 3.2,4.6, 7.3 14.5, 13.0, 17.5 

2500 2.5, 3.2, 4.6 14.6, 12.0 

ii) 1.S litre RO Zetec Engine 

Engine Speed (rpm) Approximate imeps Tail-Pipe AFRs Tested 

Tested (bar) 

2400 S.3 12.0, 14.7, 17.0 



Table 5.2 

Standard Fuelling Cold-Start Warm-Up Test Conditions 

EECIV Determined AFR During Wann-Up 

Engine Speed (rpm) Fully-W ann Brake Start/Soak 

Loads Tested (Nm) Temperatures (OC) 

1250 30,50,70,90 -15,20 

1750 50,70,90 -15, 20 

2400 30,50,70,90 -15,20 



Table 6.1 

Predicted Friction Power Losses for the 2 Litre Ford DORe 8V Engine Operating 

at 3000 rpm, 30 Nm Brake Load 

Friction Components Rubbing Friction Rubbing Friction Percentage of 

Mean Effective Power Loss (W) Total Friction 

Pressure (kPa) Power Loss 

Main Bearing Seals 2.474 123.6 2.6% 

Main Bearing 4.686 234.1 4.9% 

Hydrodynamic Term 

Main Bearing Turbulent 4.044 202.0 4.2% 

Dissipation Term 

Connecting Rod Bearings 4.229 211.3 4.4% 

Camshaft Bearings 5.559 277.7 5.8% 

Piston Body 29.400 1468.7 30.7% 

Piston Rings 7.319 365.6 7.6% 

(without gas pressure) 

Piston Rings 9.724 485.7 10.1% 

(extra due to gas pressure) 

Valve Train 4.124 206.0 4.3% 

Flat Follower Term 

Valve Train 0.274 13.7 0.3% 

Oscillating Hydrodynamic 

Term 

Valve Train 3.686 184.1 3.8% 

Oscillating Mixed Term 

Auxiliary Components 20.279 1013.1 21.2% 

TOTAL 95.799 4785.7 100% 



Table 6.2 

Friction Warm-Up Test Conditions 

Fixed Throttle Warm-Up Tests with Constant Stoichiometric Intake APR 

Engine Speed Fully-Warm Brake Start/Soak Oils Tested 

(rpm) Load (Nm) Temperature (OC) 

1000 20/50/80 -10/20 10W/30 

20W/50 

1500 20/50/80 -10/20 10W/30 

20W/50 

2000 20/50/80 -10/20 10W/30 

20W/50 

2800 20/50/80 -10/20 IOW/30 

20W/50 



Table 8.1 

Percentage Increases in Fuel Consumption and Feedgas Emissions Relative to 

Fully-Warm Start for 1.8 litre Zetec Mondeo 

Fuel HC CO NOx 

Increased Friction 4.5 3.0 3.9 l.7 

Poor Mixture - 2.1 -0.7 -l.6 

Preparation 

Cold-Start Transients 0.1 2.2 0.0 0.0 

Table 8.2 

Fuel Consumption and Engine-out Emissions Prediction Accuracy 

Vehicle: Ford Mondeo 

Engine: Ford 1.8 litre Zetec 

Drive Cycle: ECE+EUDC 

Other: 

Prediction 

Error(%) 

20°C start/soak temperature, 40 second conditioning period before 

emission sampling begins. 

Fuel HC CO NOx 

0.3 1.2 -4.7 6.8 



Table 8.3 

Factors Influencing Tail-Pipe Emissions 

Problem Means of Address 

Mixture Ratio Excursions Engine Control Strategy/Calibration 

Cold-Start Transients Rapid Catalyst Light-OfflMinimum Excess 

Fuel Supply/Fuel Control Calibration 

Friction Low Friction DesignlFast Engine Warm-Up 

Poor Mixture Preparation Not Critical 



Table 9.1 

Percentage Increases in Fuel Consumption and Feedgas Emissions Relative to 

Fully-Warm Start for 1.8 litre Zetec Mondeo 

% Increase (ECE+EUDCIFTP-75) 

Fuel HC CO NOx 

Increased Friction 4.5/2.1 3.0/1.3 3.9/1.7 1. 7/3.7 

Poor Mixture Preparation -/- 2.111.2 -0.7/-0.4 -1.6/-1.2 

Cold-Start Transients 0.110.1 2.2/1.2 -/- -/-
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NEDC or ECE +EUDC vehicle speed vs time description 



Deduce engine brake load from 

vehicle and drive cycle description 

~r 

Use PROMETS computer model to calculate 

engine thermal state and friction 

" 
Deduce engine indicated operating state 

" 

Apply fully-warm indicated engine map to 

deduce fuel and emissions flow rates 

~, 

Modify fuel and emission flow rates to account 

for start-up and engine temperature effects 

" 
Integrate to derive cumulative fuel 

and emissions since start-up 

Figure 1.2 
Outline of prediction procedure 



Input Data Required 

Fully-warm dynamometer test-bed data 

Engine geometry data for PROMETS 

Vehicle definition parameters 

Calculate engine warm-up profile and friction 

Interpolate fuel and emissions from fully-warm data 

Correct fuel and emissions for effects of temperature 

and start-up transient 

Figure 1.3 

Output Data Obtained 

Drive cycle oil, coolant and metal 
warm-up profiles 

Second-by-second fuel and emission 
mass flow rates 

Prediction software input/output regime. 
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stoichiometric AFR and without EGR at various engine speeds. 
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Figure 2.9 
Target and network predicted fuel mass flow rates (scaled 0" 1 to 0.9) 
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a) Training Data 
b) Validation Data 



He Mass Flow Rates: 

a) 

~ 1 
ctS 
0::: 
3: o 
u.. 
en 
en 
ctS 
~ 
(J 
::z:: 
"C 
cu -(.) .-
"C 
cu c: 0.1 -j"--"'------~~~--+~~~l________~__+_~+_____+_J_1J-

0.1 1 
Target HC Mass Flow Rate 

b) 

cu 1 -ctS 
0::: 
3: 
0 
u.. 
(/) 
en 
n:s 
~ 
(J 
::z:: 

-~-~;-:== 

I r-- ;--
L 

, -;- +~' -I 
! __ - // I - -1---- -

//~,,~I-~l--
/' 
~V---l~ '/ .. I 

» v --t I 
/' ; 

~ 
V 

1--

/ 
"C 
cu -(.) .-
"C 
cu c: 0.1 / 

v 

0.1 1 
Target HC Mass Flow Rate 

Figure 2.10 
Target and network predicted He mass flow rates (scaled 0.1 to 0.9) 
from speed and load inputs showing +/- 10% error bands for: 

a) Training Data 
b) Validation Data 



CO Mass Flow Rates: 

a) 

b) 

~ 1 ~ ~----------r-----~--~--

0::: 
~ o -LL 
U) 
fn 
cu 
:2: 
o 
(J 

"C 
c:u ...., 
(.) .-
"C 
(1) 

D: 0.1 

(1) 

'" 

0.1 
Target CO Mass Flow Rate 

1 

1 ...., 
~ 

0::: 
~ 

.~ 
//-~ -~--- - l 

0 
LL 

./~' 

./ 
~v~- .--: 

U) 
fn 
cu 
:2: 
0 
(J 

"C 
(1) ...., 
(.) .-
"C 
(1) a: 0.1 

./ 

/ 
0.1 

./ ~ 
~ V 

/' 

~ 
~ 

v 

Target CO Mass Flow Rate 

Figure 2.11 
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Target and network predicted CO mass flow rates (scaled 0.1 to 0.9) 
from speed and load inputs showing +/- 10% error bands for: 

a) Training Data 
b) Validation Data 
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Figure 2.12 
Target and network predicted NOx mass flow rates (scaled 0.1 to 0.9) 
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Target and predicted He emissions (scaled 0.1 to 0.9) for 1.6 litre spark 
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Figure 2.14 
Target and predicted NOx emissions (scaled 0.1 to 0.9) for 1.6 litre spark 
ignition engine characterised as a function of engine speed, load, AFR, 

spark timing and EGR rate. 
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Figure 3.1 
Engine Assembly and Dynamometer Mounted on the Test Bed 



C/1~ n _. 
::r!JC:I 
(D C 
3 ., 
~ ~ 
c. ~ n • 

N 
o 
"""t) 

....... 
::r 
(D 

'Tl 
o ...., 
0.. 

tTl 
tTl 
n -<: 
tTl 
::l 

(T'Q .... . 
::l 
(1) 

~ 
~ 
::l 
~ 

(T'Q 
(D 

3 
(D 
::l ...... 

C/1 
'< 
Vl ...... 
(D 

3 

, FUEL PRESSURE REGUL.~TOR 

2 FUEL OISTRI BUTION RAIL 

FUEL TANK 

• FUEL FILTER 

FUEL PUMP 

IDLE SPEED CONTROL VALVE 

7 THROTTLE POSITION SENSOR 

AIR METER 
(HOT WIRE ANEMOMETER) 

FUEL iNJECTOR 

10 CAMSHAFT POSITION SENSOR 

11 INLET AIR TEMPERATURE 
SENSOR 

12 ENGINE COOLANT 
TEMPERATURE SENSOR 

13 EXHAUST GAS OXYGEN 
SENSOR 

' . ENGINE SPEED SENSOR 

, 5 IGNITION COIL 

, 6 EVAPORATIVE EMISSION S 
CANISTER 

17 CAN!STER pu I=tGE VALVE 

18 AIR CLEANER 

19 POWER RELAY 

20 FUEL PUMP RELAY 

2' IGNITION SW ITCH 

22 EDIS MODULE 

23 BATTERY 

l ' THREE WAY CATALVT IC 
CONVERTOR 

25 EEC IV MODULE 

Alit ATMOSPHE R IC PR(SSUA! 

~ .., 11=1 l"Il'Altl ..... ,'u "Ol.O .,qESS Uq( 

==:J FUEL LOW " tlt ESSUA! - .NU T "NO AElVA", 

o FUEl IPO(C""Ot\l~SSURE 
- 1 ( J; OOj.LlJST(LA "I 

I COOL;} "" 

1 "U lE llf"~UA 

@ 

~},J!" ---10 

J 0) l 

MD1Drcnrft 

@ 

.,0 

0) 

EEe Ill: 

e 

Hf.C1'tltONIC CO""TAOl I'!'STUd 

GIS IS 1 110 

JUlY 1~ lSS Ut ~ 



To Ch iller 
..... -

From Ch iller 

Removable Insulating Blanket 
~ - -- - - - - - - - - - - - - - - - - - - - --I --------------------------------, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 
, , , , , , 
, , , , , , , 

... f1\ 
\lJ 

(1\ 

~ 
\J./ 

Engine 

-... 
SumR 

.... 
A A -

v v v 
E& 

@an - ... 
~- ---

Radiator 

, , 

, , , , 
(1\: 
\J.), 

, , , , , 
, , , , , , , , , , , , , , , , , , , , , 

1_--------------------------------------------------------------

Figure 3.3 
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Figure 7.8 
Comparison of measured and predicted flow rates during ECE+EUDC 
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Figure 9.8 
Cumulative fuel used over the ECE+EUDC drive cycle for cold-start (20°C) and 
fully-warm engine initial conditions for 2 litre engine in a 1200 kg vehicle. 
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Figure 9.9 
Oil and coolant predicted warm-up rate for ECE+EUDC drive cycle with 20
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start/soak temperature for 2 litre engine in a 1200 kg vehicle. 
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Figure 9.10 
Fuel consumption penalty (percentage increase compared to value for fully
warm initial engine state) as a function of test temperature for 2 litre engine in 
a 1200 kg vehicle. 
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Figure 9.11 
Friction ratio (defined as total friction work divided by the total indicated 
work summed over the drive cycle) as a function of test temperature for 
2 litre engine in a 1200 kg vehicle. 
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Figure 9.12 
Change in isfc (Delta isfc) when start/soak temperature is reduced from 
fully-warm start to 20°C, as a function of time from drive cycle start for 

2 litre engine in a 1200 kg vehicle. 
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Effect of removing EGR from fully -warm engine dynamometer data on 

ECE+EUDC drive cycle fuel consumption and feedgas emissions 
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Appendix A 

ECT Correction Factor Modelling 

A.I Introduction 

This appendix details the defInition and form of the three ECT Correction Factor 

functions used in Chapter 5 of this thesis. For each of the three indicated specifIc 

emissions examined (isco, ishc and isnox) a function relating the ratio of the 

indicated specifIc emission at a given coolant temperature to that at fully-warm 

coolant temperature has been defIned, such that: 

(AI) 

where F ECT,T is the ECT correction factor at engine coolant temperature T and 

value is the indicated specifIc emission value. All the test data correction factors 

were then plotted against ECT for each of the three indicated specifIc emissions 

and simple curve fItting to this data used to defIne three functions to predict ECT 

correction factors independently of engine speed, load and AFR. These functions 

are detailed in Table Al and shown in Figure AI. 



Table At 

ECT Correction Factor Functions 

Pollutant Function of absolute Coefficients 

temperature (T) a b c 

ISCO 0.39 0.001779 -FECT,isco(T)= a+ bT 

ishc 11.1897 -0.05762 8.143x10-5 
F ECT,ishcCT)= a+ bT + cT 2 

13.4620 -0.06907 9.564x10-5 Isnox 1 
F ECT isno (T)= 

a+ bT+ cT2 ' x 
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Figure Al 
Indicated specific emissions divided by fully-warm indicated specific 
emissions (ECT Correction Factor) against ECT for 2 litre DOHC 8V 
warm-up test data with range of speeds, imeps and AFRs. 
(1250-2500 rpm, 2.5-7.5 bar, 12:1-17.5:1) 



Appendix B 

Steady-State Friction Model Equations [6.9] 

Table Bl 

Components Description Equation 

Bearings Main Bearing 

1.22x10' ( Db ) Seals 

B 2 Sn e 

Main Bearings 

(ND'L ) Hydrodynamic 3.03xlO-4 b b~ 
B 2 Sn Friction e 

Main Bearings 

(N'D' ) Turbulent 1.35xlO-1o ncb ~ 
Dissipation 

Con Rod ( , ) NDb Lb~ Bearings 3.03xlO-4 

B 2 Sn e 

Cam Shaft 

4.12 • 2.44x10' ( ~n,. ) Bearings 
B Sne 



Table Bl (continued) 

Description Equation 

Piston Piston Body 

2.94xl~ ( ;) Friction 

Piston Rings 

4.06x104 
( 1 • l~OO) 1 

(without Gas -
B2 

Pressure 

Loading) 

Piston Rings 
P. [ (1.33 - kS,> ] 

(Due to Gas 6.89 'f O.088rc + O. 182rc 

a 
Pressure 

Loading) where 

k = 2.38 X 10-2 slm 



Table B1 (continued) 

Components Description Equation 

Valve Train tRoller 

Follower 
Cn ( ~::) 

tFlat Follower 

C. ( 1 • l~O) n v -
Sn c 

Oscillating 
[ L "No, 1 Hydrodynamic C v I\, 

Term 
011 BSn

c 

Oscillating 

Com ( 1 + l~O) LvI\, 
Mixed Term -

Snc 

Auxiliary Coolant Pump, 
6.23 + S.22xlO-3 N - 1.79xlO-7 N 2 

Component Oil Pump and 

Losses Alternator 

t For any given valve train configuration, only one of the two follower 

friction terms needs to predict cam follower friction. 

Nomenclature for Table B1 

B Bore (mm) 

c Radial journal bearing clearance 

Crf Constant for cam roller follower friction term 

CfT Constant for cam flat follower friction term 

Coh Constant for oscillating hydrodynamic friction term 

Com Constant for oscillating mixed lubrication friction term 

Db Bearing diameter (mm) 



Dv Valve diameter (mm) 

l1y Volumetric efficiency 

fmep Friction mean effective pressure 

~ Bearing length (mm) 

Ls Maximum valve lift (mm) 

N Engine speed (rpm) 

nb Number of bearings 

ne Number of cylinders 

l1y Number of valves 

Pa Atmospheric pressure (kPa) 

Pi Intake manifold pressure (kPa) 

re Compression ratio 

S Stroke (mm) 

Sp Mean piston speed (m/s) 
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