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ABSTRACT

In relation to the learning of mathematics, algebra occupies a very special place,
both because it is in itself a powerful tool for solving problems and modelling
situations, and also because it is essential to the learning of so many other parts of
mathematics.

On the other hand, the teaching of algebra has proven to be a difficult task to
accomplish, to the extent of algebra itself being sometimes considered the border line

which separates those who can from those who cannot learn mathematics.

A review of the research literature shows that no clear characterisation of the
algebraic activity has been available, and that for this reason research has produced only

a local understanding of aspects of the learning of algebra.

The research problem investigated in this dissertation is precisely to provide a

clear characterisation of the algebraic activity.

Our research has three parts:

(i)  atheoretical characterisation of algebraic thinking, which is shown to be
distinct from algebra; in our framework we propose that algebraic thinking
is

* thinking arithmetically,
e thinking internally, and
* thinking analytically.
and each of those characteristics are explained and analysed;

(ii) a study of the historical development of algebra and of algebraic thinking,
in this study it is shown that our characterisation of algebraic thinking
provides an adequate framework for understanding the tensions involved
in the production of an algebraic knowledge in different historically
situated mathematical cultures, and also that the characteristics of the
algebraic knowledge of cach of those mathematical culturcs can only be
understood in the context of their broader assumptions, particularly in

relation to the concept of nimber.



(1) an experimental study, in which we examine the models used by

secondary school students, both from Brazil and from England, to solve
"algebraic verbal problems" and "secret number problems"; it is shown
that our characterisation of algebraic thinking provides an adequate
framework for distinguishing different types of solutions, as well as for
identifying the sources of errors and difficulties in those students'
solutions.

The key notions elicited by our research are those of:

(2)
(b)

(©)

(d)

(€)
(0

intrasystemic and extrasystemic meaning,

different modes of thinking as operating within different Semantical
Fields;,

the development of an algebraic mode of thinking as a process of cultural
immersion— both in history and for individual learners; _

ontological and symbolical conceptions of number, and their relationship
to algebraic thinking and other modes of manipulating arithmetical

relationships;

the arithmetical ariculation as a central aspect of algebraic thinking; and,

the place and role of algebraic notation in relation to algebraic thinking.

The findings of our research show that although it can facilitate the learning of

certain early aspects of algebra, the use of non-algebraic models—such as the scale-

balance or areas—to "explain" paricular algebraic facts, contribute, in fact, to the

constitution of obstacles to the development of an algebraic mode of thinking; not only

because the sources of meaning in those models are completely distinct from those in

algebraic thinking, but also because the direct manipulation of numbers as measures,

by manipulating the objects measured by the numbers, 1s deeply conflicting with a

symbolic understanding of number, which is a necessary aspect of algebraic thinking.
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Introduction



1.0 THE RESEARCH PROBLEM

Algebra has always been a problematic area in school mathematics, while at the
same time being one of the essential parts of mathematics to grasp if one wishes to learn
and understand science and mathematics beyond the most elementary level.

A good deal of effort has been put both into developing new teaching programmes
and into developing theoretical frameworks which support the development of such
teaching programmes.

At the beginning of our research, our main interest was in how people give meaning
to the symbolism of mathematics; for this reason, we have always been aware that dealing
with the same expression can be done on the basis of different understandings, and that
attributing the possession of a certain form knowledge by simply verifying the ability to
deal with certain types of expressions is an approach bound to produce incorrect readings
of the learners’ knowledge. At this point Dr Alan Bell suggested that we concentrate our
study in the field of algebra, both because of the need to restrict and delimit the
mathematical topic of our research—for the obvious reason of the time available—and
because of the explicit emphasis of symbolism in algebra.

Gradually, we had become more and more aware of the fact that there was a clear
difference between students explanations of their solutions of "algebraic verbal problems”

and that which would correspond to a verbal description of an "algebraic” solution.

In reviewing the research carried out until now on the difficulties faced by students
in the learning and use of algebra, we were led to two conclusions:

(i) apart from the general theories of intellectual development, which are too general
and provide little insight into the nature of the mathematical activity, no clear
characterisation of algebraic thinking was available;

(i1) as a consequence, research into the learning and use of algebra was
ill-informed, and unable to produce deep and unifying results or insights; as we will show
on chapter 2, most results from research on the learning and use of algebra are local and
descriptive of failure, rather than offering a positive characterisation of students

knowledge.
The research problem we decided to investigate, then, was twofold. First, and

crucial, we had to develop a characterisation for algebraic thinking, in order to be able to

compare students’ solutions with that which we would expect to be present in an algebraic
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solution. We also decided that such a characterisation would have to be useful not only to
produce understanding of what happens with students, but also to produce understanding
of the historical development of algebra, and to offer a framework applicable from
elementary school algebra to abstract algebra. Second, we decided to investigate students’
solutions to "algebraic verbal problems" in order to understand what mode of thinking—if
not an algebraic one—those students were using to approach the problems. This was also
essential, both because we would be able to test our characterisation's ability to distinguish
different types of solution and identify sources of errors, and because by understanding the
models used by the students we would be in the position of better understanding the
possible obstacles they would face in the learning of algebra.

By providing such a characterisation of algebraic thinking, we also produced a
much better understanding of what it is that we want our students to learn when we teach
them algebra.

In the process of our investigation, both in the theoretical and experimental parts,
many new aspects of the research problem were revealed, and they are discussed in
different parts of this dissertation. To try an exhaustive presentation of those many aspects
at this early point is, we think, inadequate, mainly because only in the the light of specific
parts of the argument their relevance is understood. We prefer, thus, to describe our
research problem, at this point, in its simplest form: to provide a characterisation of
algebraic rhinking, to test the adequacy of this characterisation in the examination of
students' mathematical activity, and to investigate a specific part of that activity, namely,
the solution of "algebraic verbal problems.”

In Chapter 5, General Discussion, we will further examine general 1ssues related to
our characterisation, but from the point of view of the detailed insights accumulatﬁd along

our mnvestigation.

1.1 THE NATURE OF MATHEMATICS

The first task we must face in order to provide a clear picture of our research
approach, is to clarify what we understand to be the nature of mathematics.

Our main concern will not be with the internal nature of mathematics, eg, how it is
organised, or how its statements are shown to be correct (and what this means), we will

rather examine the place mathematics occupies within the frame of human thinking.

tJ
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A dichotomy which has been discussed in various forms and which provides a
useful starting point, is that composed, on the one hand, by mathematics as something that
exists "in the world," and as such is independent of the existence of human beings, and on
the other hand, by mathematics as a creation of human mind, and only existing within each
human being.

The central problems with such radical formulations are these. If one follows the
former position, ie, the Platonic idealism, it is difficult to explain why it took so long for
many aspects of mathematics which are conceptually simple to define to appear, as, for
example, the notion of group structure, which can be immediately grasped from number
systems. The second formulation brings with it a different problem; if "1t all happens within
our minds," how is it possible at all that mathematical knowledge accumulates, once
everything would have to be re-created from the beginning by each individual.

These are, of course, simplifications of the problems faced by each of the two
positions, but they provide enough ground for one to appreciate the value of the
contribution offered by Leslie White in relation to the subject of the place—or places—

occupied by mathematics in the framework of human existence.

In an extremely interesting paper, White (1956) discusses precisely why it is not
correct to oppose those two views, and offers a third way, which not only solves the
difficulties we have mentioned, but also opens a new perspective on the learning and
understanding of mathematics.

Briefly stated, White's thesis is that mathematics is part of cultures. From this point
of view, it is independent of individual human minds, which have to "discover” it in the
process of learning the existing mathematical knowledge, but at the same ume, mathematics
is a human invention, and as part of culture totally dependent on the existence of human
beings.

According to White,

"Culture is the anthropologist's technical term for the mode of life of any
people, no matter how primitive or advanced. It is the generic term of which
civilization is a specific term. The mode of life, or culture, of the human
species is distinguished from that of all other species by the use of
symbols...Every people lives not merely in a habitat of mountains or plains, of
lakes, woods, and starry heavens, but in a setting of belicfs, cusioms, dwellings,

tools, and rituals as well.” (op. cit., pp2351-2352)
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It is crucial to understand that, according to this view, mathematics is part of a
culture’s way of "seeing” the world, and consequently of its way of organising it; in this
context, our conception of mathematics molds and is molded by our conception of the
world as much as it happens with religious affairs.

On the one hand, it seems undoubted that the whole content of mathematics could
be reconstructed in a historical development beginning with, say, a group of Amazonian
native indians, but to say it could happen, is only to affirm our belief that all human beings

"

share the same type of "hardware,” the same physiological conditions to do it—
neurologically or otherwise. But as White (op. cit., p2352) says, "every individual is born
into a man-made world of culture, as well as the world of nature." It is that culture that
provides the "template,” not "raw nature" or some "primitive nature": "Had Newton been
reared in Hotentot culture, he would have calculated as a Hotentot." (White, op. cit.,
p2353)

This 1s our point of departure: Algebraic Thinking as a particular way of organising
the world, as a way of modelling it and of manipulating those models. The central aim of
this dissertation is, thus, to establish what this form of modelling the world—algebraic
thinking—is, the tensions involved in different manifestations of it, and how this mode of
thinking might develop within or be barred from the conceptual framework of different
mathematical cultures.

From this point of view, our study of the history of algebra and of algebraic
thinking will be conducted as much as possible within the framework of each culture
examined, and not in a search of chained results across time and not in search of "origins"
as such; our historical study will concentrate, however, on the mathematical cultures, rather
than exploring all other cultural factors, like economy, social and political organisation,
religions, and educational systems. It is not the case that this "epistemological closure,” as
Rashed (1984) calls it, goes without we paying the price of missing important information
regarding which kinds of cultural contexts make a suitable ground for given types of
mathematical cultures. Nevertheless, we think that ours is a necessary first step, that it is
necessary to study the articulation of algebraic thinking within different mathematical
cultures; in many instances, however, we will be able to establish some links between

mathematical cultures and the broader context of the cultures where they belong.

When we say that mathematics is part of culture, we are not referring only to the

contents of mathematics!, but also—and from the point of view of our research, much

1Eg. theorcms, algorithms, ctc.
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more important—we are referring to those forms of mathematical activity, those modes of
mathematical thinking, which are seen as relevant, or even legitimate, within a culture.
Within a given culture, number and geometric magnitudes may be understood exclusively
as distinct and irreconcileable things; in another culture, to associate numbers and things
may be understood as a magic act—with its possible consequences—and specific diagrams
may represent deities or magic beings. In yet another, there may be an explicit antagonism

to too much explanation, as one would find in Euclid's proofs, for example.

1.2 TWO CASES

FROM CULTURAL STUDIES IN PSYCHOLOGY

Our first example of how mathematical activity presents itself as a cultural trait, is
taken from the work of the Soviet psychologist A.R. Luria, who was a distinguished
member of the group of psychologists who studied, under the direction and inspiration of
L.Vygotsky, the impact of the new Revolutionary order—in post-1917 Soviet Union—on
people's consciousness and knowledge.

Luria (1976, p3) presents the research problem that is examined, by saying that,

"It seecms surprising that the science of psychology has avoided the idea that
many mental processes are social and historical in origin, or thal important
manifestations of human consciousness have been directly shaped by the basic

practices of human activity and the actual forms of culwre.”

In this book (Luria, 1976), one finds a number of interview transcriptions, in
which the subjects are either illiterate peasants or peasants who had been to school or
engaged in activities of political organisation. Luria and his assistants asked them simple
questions involving, for example, the classification of objects—Chapter 3, "Generalization
and Abstraction,” the chapter from which we will extract our examples.

The crucial point in the theoretical framework used by Luria to analyse the

responses 1s that,

"..higher cognitive activitics remain sociohistorical in nature, and that the
structure of mental activity—not just the specific content but also the
general forms basic to all cognitive processes—change in the course

of historical development.” (op. cit., p8) (our ecmphasis)
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and children’s intellectual development is also understood from this perspective (op. cit.,
p9).

The typical experiment in Chapter 3, is to present the subject with drawings of
objects and ask for the one that "doesn't belong" to the group.
We quote a somewhat long protocol, from pages 59-60:

"Subject: Abdy-Gap., age sixty-two, illiterate peasant from remote village. After
the task is explained, he is given the series: knife-saw-wheel-hammer.
‘They're all needed here. Every one of those things. The saw to chop
firewood, the others for other jobs.’
Evaluates objects in terms of ‘necessity’ instead of classifying them.
No, three of those things belong in one group. You can use
one word for them that you can't for the other one.
'Maybe it's hammer? But it's also neceded. You can drive nails with it.'
The principle of classification is explained: three of the objects are 'tools.’
'‘But you can sharpen things with a wheel. If it's a wheel from an araba
[kind of bullock cart], why'd they put it here?'
Subject’s ability to Icarn the principle of classification is tested through another
serics: bayonet-rifle-sword-knife.
"There's nothing you can Icave out here! The bayonet is part of the gun. A
man's got o wear the dagger on his left side and the rifle on the other.’
Again employs the idea of necessity to group objects.
The principle of classification is explained: three of the objects can be used
to cut, but the rifle cannot.
"It shoot from a distance, but up closc it can also cut.’
He is then given the scrics finger-mouth-ear-eye and told that three objects
arc found on the head, the fourth on the body.
'You say the finger isn't needed here. But if a fellow 1s missing an ear, he
can't hear. All these are needed, they all fit in. If a man's missing a finger,
he can't do a thing, not cven move a bed.’
Applies same principle as in preceding response.
Principle 1s explained once again.
‘No that's not truc, you can't do it that way. You have to keep all these

things togcether.”
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Luria himself expresses the central character of this passage very clearly:

"One could scarcely find a more clear-cut example to prove that for some people

abstract classification is a wholly alien procedure.” (ibid) (our emphasis)

The distinction Luria uses throughout the chapter is that between "situational” or
"concrete” thinking, and "abstract" or logical" thinking. The former two refer to
classifications based on everyday practical usage, while the other two refer to classification
based on properties of those objects such as to produce classifications like tools, animals,
etc..

Luria's comment on the procedure being alien to that subject is extremely
significant, specially because in many of the other protocols one finds the subjects
admitting that an "abstract” classification could indeed apply to those objects, but still then
refuse to use it unless prompted to (eg, op. cit., p61).

The important suggestion contained here, which Luria naturally elaborates further,
1s that 1t is the culture in which those subjects live, their cultural practice—and not their
intellectual development in the sense of stages of development somewhat "natural” to the
human race—which predominantly molds their responses.

A similar situation was observed in other studies, for example, in Gay and Cole

(1967), where the sorting abilities of people of the Kpelle of Liberia was tested.

Another 1nstance, which is somewhat distinct, but has strong implications to the
issues in question, is to be found in Rik Pinxten's study of the North American Navajo
Indian’s conception of space (Pinxten, 1988); Pinxten found that for the Navajos, the
world is in perpetual motion, and can only be understood so, and it is, thus, described in
terms of movement, not in terms of static objects. In this context, the Navajos had no word
for angle, as in each case the movement producing it was described instead; the process of
introducing a new word to denominate angle in a static manner, a requirement for the
people of a Navajo Reservation to approach White geometry, was important enough to
require a discussion in the Council of the tribe, and the condition that the word would not

be known to any white person, as it meant a weakening of their cultural positionZ. The

2This episode was described in detail in a presentation given by Pinxien at Cambridge
University, in 1988.
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reader is enthusiastically referred to Pinxten's book, as it provides vivid and illuminating
insights for anyone interested in the process of cultural interaction, in particular those
involving concepts we—White Men—would classify as mathematical matters.

FROM THE CLASSROOM

Our second instance, is presented in Freudenthal (1978, p242ff). It is essentialy a
teaching experiment, probably aimed at evaluating the efficiency of a certain teaching
method?; we are not told explicitly of the original aims.

Two groups, A and B, each of which composed by 25 students, were taught the
same subject, elements of statistics; in group A, the teaching used 70 minutes, in group B,
130 minutes. This difference in time spent was allowed so to guarantee that each group had
worked through the material at a convenient pace.

Group A belonged to a school leading to University and higher vocational studies;
group B belonged to a school leading to lower vocational instruction. In both cases they
were 7th graders (13-14 years-old).

The teaching method employed in both groups was based on investigation and
discussion of topics related to everyday life, such as going to the cinema. A test was
applied, at the end of the teaching period, aimed "at ascertaining whether the [students] had
understood the importance of size and representativity of samples in a qualitative sense.”
(op. cit., p243)

One of the questions in the test was,

"In order 10 investigate how many people walch a ceriain television programme,
the N.O.S. arbitrarily chosc 1500 people to fill out cach day on a form which
programme they had watched that day.

Right/Wrong Explanation.” (ibid)

Freudenthal says that in group A the students' answers were "predominantly
satisfactory,” but that 22 out of the 25 students in group B "did not grasp what was at

stake," and quotes the answers of five girls:

30nc can guess, given the approach of the teaching as described in the book, that it was par
of devcloping the "Rcalistic” approach to teaching statistics.
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“[1] Wrong, because the people can know themselves which programme they
like 1o watch.

[2]) Wrong, I find it ridiculous to do this.

[3] Wrong, it is not normal, it only costs the people postage.

[4] Wrong, I think it is not their business, the people must know themselves
which TV programme they want to watch.

[5] Wrong, because it is none of their business which programmes they watched
that day." (op. cit., p244)

Freudenthal's comments go directly to the heart of the matter:

"It is a paragon of—catastrophic—failure to grasp the context—I mean the
context which was of course intended, the mathematical context. The 22 pupils
who failed did see a context—the social one. They could not free themselves
from it, they could not achieve the required change of perspective. Was this so
silly? The longer I think about it, the more I become prone to answer the query
in the negative and to ask a counter query: Which screw was loose with the
pupils of group A (and the three girls of group B who did it well) that they
obcyed the crooked wishes of the mathematician, obediently disregarded the
social context, and had no problems in accepting the mathematical context?” (op.

CiL., p245)

There are some very important points here.

First, the distinction between the social context and the mathematical context;, the
former could be substituted by situational context, providing an adequate link with Luria's
subjects.

The second point is that we are led to the need to investigate and characterise the
contexts of mathematics, ie, the modes of thinking which make the intended mathematical
activities meaningful, but also the ways in which students in group B made sense of the
material presented to them so as to convince the teacher that they were progressing through
the material. To understand the contexts of mathematics is, we think, a necessary condition
to be fulfilled if we—researchers and teachers—are to understand what it is that we want
our children to leamn.

Finally, when Freudenthal speaks of a "change of perspective,” and of a "loose
screw,” we think that a correct interpretation has to lead to the fact that an "immersion” into

the mathematical context is a necessary condition for the learning of the various aspects
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and parts of the mathematical knowledge, and we are again led to the need of closelv
investigating which are the mathematical contexts we are presenting to the students, and
which kind of thinking is necessary to operate successfully within those contexts.

It is the central aim of the research work presented in this dissertation to provide
such a characterisation in the case of algebraic thinking, and to show that there is an

intention that drives the development and acquisition of algebraic knowledge.

From a much broader point of view, Bishop (1988) discusses the process of
learning and developing mathematical knowledge as a cultural process, ie, one which
requires the immersion into and acceptation of another culture—or ethos, as it is sometimes
more adequate to say, notably in relation to children— or a complex, and many times slow,
transformation of a mathematical culture (eg, the acceptance of negative numbers as
"equals” to positive numbers).

Among many interesting and well supported points, Bishop contrasts knowledge as
"a way of doing" and knowledge as "a way of knowing." (op. cit., p3) The importance of
this distinction is to provide a way of characterising mathematics (Which ways of knowing
does it comprise?) which makes of mathematics a driving force in producing knowledge of
certain kinds and in certain ways. The emphasis on the plural is important: it accounts for
different modes of thinking within mathematics, and also for individual differences within
and across those modes. Algebraic thinking is one of the modes of thinking within

mathematics.

1.3 WHAT ALGEBRAIC THINKING 1S

We now proceed to present our characterisation of algebraic thinking.

The first point on which we will insist, is that there is a clear distinction between
algebra and algebraic thinking. This distinction is not related to a separation between
process and product, nor it is intended to distinguish "what goes inside our minds” from
"what is outside our minds.” ‘

"Thinking" in algebraic thinking, has to be understood as an indication of algebraic
thinking referring to a way of producing meaning, while algebra can be understood as a
content to be made sense of; it is possible, of course, to make sense of algebra in many
different ways, and algebraic thinking is only one of them.

"Thinking" in algebraic thinking can also be understood as in expressions like

religious thinking or political thinking. In both cases we have forms of organising the
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world: in the former, through dealing with transcendental aspects of existence, in the latter
through dealing with the structures of power and representation of individual and collective
rights4. Algebraic thinking is a way of organising the world by modelling situations and
manipulating those models in a certain way, which we will describe a few paragraphs
ahead. All three modes of thinking mentioned here can be valued differently by different
societies, and they can, indeed, be altogether ignored by some of them, or be a dominant
form of organising the world, as it is the case of algebraic thinking in many contemporary
societies, specially through science and technology (see, for example, Davis and Hersh,
1988).

In our characterisation, algebraic thinking is better understood as an intention, ie,
"a way 1n which I want to do things,"” even in the cases in which the concepts or methods
necessary to carry through that intention are not available or developed. It is only by
adopting this approach that we can understand the mechanisms involved in the algebraic
development of an algebraic knowledge, be it in historically situated cultures or in
children’s learning; the intention of manipulating an equation algebraically must necessarily
precede the technical ability to do it, unless we postulate that people learning it find out
purely by chance a method that "works" and only then reflects upon it and transforms it
into a piece of knowledge that can be deliberately used. It is true, however, that the
development of such an intention 1s many times produced through the exposition to other
people doing it, for example the teacher solving equations on the blackboard, a picture
which remains for many students as inexplicable as it was when they first saw 1t, while for
others it may provide the paradigm that molds the intention and gives meaning to the whole
activity, possibly in a way very similar to that by which some people become political
thinkers by being immersed into an—at first inexplicable—environment in which questions
relative to power and the representation of individual and collective rights are in evidence.

This is not to say, of course, that "teaching by example"” is in itself the best, or even
4 good, teaching approach, but only to show that the way in which our characterisation is
developed can account for the well known fact that even the most rigid and thoughtless

presentation of algebra will almost certainly produce a couple of pupils who "understand

s important 1o observe thal, no matler how tempting these propositions might be,
"God” 1s not a nccessary content of religious thinking, and that "State” is not a necessary
content of political thinking. Modes of thinking, as we understand them, have no "necessary
content,” as there are other factors which strongly influence the production of "content,”
such as material needs—the problems to be solved, for example—and the overall possibilities
of the culture in which the process 1s developing.
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it." In fact, were it not for this effect, mathematicians would almost certainly be an extinct
species...

But our objective as educators must not be only the perpetuation of the homo
mathematicus, but rather to offer to the largest number possible of people the greatest
variety possible of ways of organising the world, and given the conceptual framework in
which we understand algebraic thinking, this must mean that teaching has to address
directly the fact that thinking algebraically requires a shift of perspective, a "loose screw,”
a specific intention, and this can only be achieved by consciously comparing different ways
of modelling the same situation, and openly discussing the characteristics, virtues, and
difficulties of each method used.

We finally armive at the direct characterisation: To think algebraically is,

(1) To think ARITHMETICALLY, and
(11) To think INTERNALLY, and
(1) To think ANALITICALLY.

First we will explain what we mean by each of those characteristics, and then we

will discuss their relevance for characterising algebraic thinking.

Characteristic (i), the arithmeticity of algebraic thinking, might initially sound
almost paradoxical, particularly because mathematical educators have for a long time
adopted the position of opposing arithmetical and algebraic solutions to verbal problems. It
1s true, however, that the basic material of both arithmetic and of elementary algebra is the
same: numbers and arithmetical operations.

In the sense used in our characterisation, arithmeticity means precisely "modelling
in numbers,"” which naturally implies the use of the arithmetical operations in order to
produce the relationships which constitute the model. Descartes' Analytical Geometry 1s
"modelling in numbers,"” as is al-Khwarizmi's algebraic method for solving problems; but
"problems in numbers" can be as well modelled by using geometry or whole-part relations,
which are non-arithmetical models.

Aruthmeticity means, for example, that a problem involving the determination of a
speed, a distance, a weight, or a the size of the sun is seen as the problem of determining a
number which satisfies some given arithmetical relationships. Any other considerations,

such as the maker of the car, the unit of measurement—rmiles or kilometres—the shape of
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the object, or the colour of the sunlight, are irrelevant as soon as the necessary arithmetical
relatonships are established.

As we have said before, a "problem in numbers" can be solved by modelling it back
into, for example, a geometrical configuration or a whole-part relationship. Let us examine
an example. ‘

Suppose that a given problem leads to the determination of a number which satisfies
the equation

3x + 150 = 450 (1)

An algebraic solution is immediately visible, and we will make no comments on it.

It 1s possible, however, that the solver produces the following solution:

"The 450 is composed of two parts, one of which is 150, the problem tells me.
So, if from the whole, ie, 450, I remove one of the parts, in this case, 150, |
will obtain the other part. So, the other part 1s 300. But this other part is
composed of three smaller parts. In order to determine each of them, I would

have to share the 300 into 3 parts, i¢, each of the small parts is 100."

Of course, this solution produces a correct result, and in fact this kind of solution 1s
many times taught to students as a way of “explaining” equations.

The true character of this type of solution—the use of a whole-part model-—only
becomes apparent when we try to apply it to other "formally"” identical equations, for

example,

3x + 150 = 60 (IT)
or
3.7 + 10 = 94 (I1T)

In equation (II), the first half of the previous whole-part model does not apply, as
the whole is smaller than one of the parts; in equation (III), the second half of the model is
difficult to apply, because the "sharing” into a non-integer "number” of parts is, to say the

least, a not very "natural” way of putting it.
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There are other difficulties, such as dealing with equations like,
150 - 3x = 94 (IV)

but those difficulties will be dealt with on the chapter on the Experimental Study.

What we wanted to make clear, is the essential difference between dealing with
those equations internally, ie, by reference only to the properties of the operations and the
equality relation, and dealing with them by modelling them back into a non-arithmetical
context; the internalism in our characterisation of algebraic thinking is precisely intended at
enabling us to distinguish internal solutions, ie, those which proceed within the boundaries
of the Semantical Field of numbers and arithmetical operations, and not by the
manipulation of non-arithmetical (in our sense) models.

The notion of Semantical Field appears first in linguistics (see, for example, Miller
and Johnson-Laird, 1976; Miller, 1978; Grandy, 1987), where it is used as a tool for
explaining how words—as opposed to sentential expressions—acquire meaning. A
technical discussion of Semantical Fields can be found in Grandy (op. cit), and it is
completely beyond the scope of this dissertation. Our own version of a Semantical Field,
which in fact had been elaborated before we learned of its existence in linguistics, 1s much
simpler than its linguistic counterpart; in our sense, a Semantical Field denotes a set of
meanings generated by a given "way of knowing." Mathematical expressions, an equation,
for example, have different meanings within the Semantical Field of numbers and
arithmetical operations and within the Semantical Field of whole-part relationships?, as
also have the arithmetical operations.

Within the Semantical Field of numbers and arithmetical operations, arithmetical
operations are objects, ie, they have properties and provide information on what can and
must be done to manipulate a relationship to a required effect; within other Semantical
Fields, as for example in the non-algebraic solution of equation (I) presented above, the
arithmetical operations are used only as tools which allow us to evaluate parts as
necessary.

It is characteristic of algebraic thinking that arithmetical operations

become objects, while also being used as tools and this is only a consequence of

SWinston ¢t al. (1987). describes "A taxonomy of part-whole or meronymic relations...10
explain the ordinary English-spcaker's use of the term ‘part of' and its cognates.” In a sense,
Vergnaud's analysis of additive problems produces on a taxonomy of whole-part relations as
applied to modelling thosc problems:
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the combined requirements of the arithmeticism and of the internalism of algebraic
thinking.

Third, and finally, the analiticity of algebraic thinking.
Pappus says:

"Now, analysis is a method of taking what is sought as though it were admitted
and passing from it through its consequences in order to something which is
admitted as a result of synthesis; for in analysis we suppose that which is sought
1o be already done, and we inquire what it is from which this comes about, and
again what is the antecedent cause of the latter, and so on until, by retracing our
steps, we light upon something already known or ranking as a first principle;
and such a method we call analysis, as being a reverse solution. (...) But in
synthesis, proceeding in the opposite way, we suppose 1o be already done that
which was last reached in the analysis, and arranging in their natural order as
consequents what were formerly antecedents and linking them one with another,
we finally arrive at the construction of what was sought; and this we cali

synthesis." (Fauvell and Gray, 1990, p209)

In synthesis, one deals only with "what 1s known and true,” and through a chain of
logical deductions, other true statements are obtained; it is the method exclusively used in
the whole of Euclid's Elements®. In analysis, on the other hand, what is "unknown" has to
be taken as "known," with the "unknown" elements being used "as if they were know," as
part of the relationships which are to be manipulated until one arrives at "something already
known," ie, the "unknown" elements have to be manipulated on the basis of properties
general to the class of objects to which they belong, and not as an actual manipulation of a
given, specific, object. This seemingly innocuous situation in analysis, is strongly relevant

in relation to Greek mathematics, as we will see in Chapter 3, precisely because

"...analysis is immediately concerned with the gencrality of the procedure,
[while] synthesis is, in accordance with the fundamental Greek conception of the
objects of mathematics, obliged to 'realize’ this general procedure in an

unequivocally determinate object.” (Klein, 1968, p163)

In the chapter on the history of algebra and of algebraic thinking, we will examine in detail
why the generality of Euclid's results could only be achieved through synthetic proofs, and
what forms analysis takes in Greck mathematics.
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Pappus distinguishes, moreover, two types of analysis:

"...one, whose object is to seek the truth, being called theoretical [zetetic, from
'to search’], and the other, whose object is to find something set for finding,
being called problematical |[poristic, from ‘to supply'].” (Fauvell and Gray,
1990)

Seen from this point of view, the analiticity of algebraic thinking serves to
characterise it as a "method for searching the truth"7—as one sees in Diophantus, in the
Islamic algebraists, in Vieta and in Descartes—but also to characterise the fact that in
algebraic thinking the "unknown" is treated as "known."

The explicit association of algebra and analysis is found in many authors
throughout history, but the forms and the reach of the analytic processes in algebra vary
tremendously in different mathematical cultures, a theme that we will examine closely.
Nevertheless, analiticity 1s clearly not sufficient to characterise algebraic thinking; as

Barrow said,

"...10 be sure analysis...seems to belong to mathcmatics no more than to
physics, cthics or any other science. For this is merely a part or species of logic,
or a manner of using reason in the solution of questions and in the finding or
proof of conclusions, and of a kind not rarcly made use of in all other sciences.
Therefore it is not a part or species but rather the servant of mathematics; and no
more is synthesis, which is a manner of demonstrating thcorems opposite and

converse to analysis.” (quoted in Whiteside, 1962, p198)8

TAs Klein (1968, p279) says, "Algebra for Vieta meant a special procedure for discovery. I
was analysis in the sensc of Plato, who opposed it to synthesis. Theon of Alexandria, who
introduced the term ‘analysis,’ defined it as the process that begins with the assumption of
what is sought and by deduction arrives at a known truth. This is why Vieta called his algebra
the analytic art. It performed the process of analysis, particularly for geometric problems.”
8Euler (1840, p2) identifies algebra and analysis, but in a footnote we read about the
dissenting voices: "Several mathematical writers make a distinction between Analysis and
Algebra. By the term Analysis, they understand the method of determining those general
rules which assist the understanding in all mathematical investigations; and by Algebra, the
instrument which this method employs for accomplishing that end. This is the definition
given by M. Bezout in the preface to his Algebra.”
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So, these are the three characteristics of algebraic thinking: arithmericiry,

internalism, and analiticity. We will now discuss some implications of this characterisation.

The first important point to be highlighted, is that our characterisation of algebraic
thinking does not imply in any form or to any extent, that algebraic thinking can only
happen in the context of symbolic—literal or other—notation. However, and this is
certainly a very attractive consequence of our characterisation, the compact algebraic
notation as it has developed—borrowing from the notation of arithmetic—is not only
possible in the context of algebraic thinking, but also adequate.

The reason for both its possibility and its adequacy is in the fact that the operations
used for manipulating algebraic expressions are exactly the same used to constitute them in
the first place: the arithmetical operations. When operating in Semantical Fields other that
that of numbers and arithmetical operations, the manipulation of the model is done, for
example, through composition and decomposition of wholes and parts, operations which
are simply and adequately described verbally or with the help of diagrams, while the actual
evaluation of the parts is done by using the arithmetical operations. There 1s nothing in the
algebraic manipulation of an algebraic expression that is not related to the elements (of the
base set of the operations), the operations and the equality: the "basic objects” of algebraic
thinking form a domain tight enough to permit the compact notation, as geometric

configurations in problems, for example, become irreievant.

The second aspect which is highlighted by our characterisation, is the fact that in the
context of algebraic thinking, numbers can only be understood symbolically. By this we do
not mean the use of "symbolic notation," but that numbers are meaningful only in relation
to the properties of the operations that operate on them, and not in relation to any possible
interpretation of them in other mathematical or non-mathematical contexts. The notion of

"symbolic number” is discussed in much greater detail on Chapter 3.

Third, our model shows that by equating the learning of algebra with developing
the ability of "doing algebra.” be it solving equations or squaring binomials, the
mathematical educator is naturally led to incorrect readings of the didactic situation, as, for
example, legitimate models for solving one type of equation might well be meaningless in
relation to other types: unless we understand the models guiding the use of any piece of

knowledge, we are bound to impose our understanding on other people’s actions—a
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behaviour which leads, more often than not, to some form of misguided and authoritarian
cultural action?.

In the more specific case of algebra, the explanations for, for instance, students
being able to solve some linear equations, but not others, have ranged from "stages of
intellectual development" to "misconceptions derived from arithmetic,” but little has been
done in the direction of providing a framework in relation to which those difficulties can be
understood without recourse to ad hoc hypothesis!9. We think that our characterisation of
algebraic thinking provides precisely a framework in which pupils' solutions can be
examined and understood, and which can guide the teaching of algebra in a much more
coherent and fruitful way than the previous models.

Fourth, and finally, we must stress that according to our characterisation, algebraic
thinking 1s not a priori a more powerful or more adequate mode of thinking than others,
not even within mathematics: it is simply different from other modes of thinking. From this
point of view, learning to think algebraically is as important as learning to think
geometrically or combinatorially; from a broader perspective, it is as important as learning
to think politically or religiously. It is the possibility of examining the world from different,
complementary and possibly conflicting, perspectives, that makes learning each of those
modes of thinking important!!.

Our characterisation of algebraic thinking puts much emphasis on the numerical

character of algebraic modelling.

M may be uscful to think of a related behaviour in a different context. The teacher
complains to the school's psychologist: "The drawings Litile Rom brings from home are all in
purple and black. | am a bit worricd.” The psychologist examines the drawings and agrees
that they depict a "heavy' atmospherc: "Maybe the family is going through some crisis!”
cic.. In the worst case, the parents will be called and some form of counsclling suggested; 1t
may well be that the parents do not really undersiand what is going on and are frightened
and agree. But. | say, it may wcll bc the case that all the other colour pencils were lost by
Littlec Rom, or even that his family's cultural background is one in which black and purple do
not have the same connolations as in the teacher and psychologist's @sthetics... The case of
"black and purple drawings” is a real one, told to me by a teacher who was alert enough to
investigale the matter properly.

101n the casc of the stage theories, the ad hoc element is provided by a characterisation of
the algebraic thinking that necessarily forces the conclusions arrived at by the theories, and
this results in a crystallisation of prejudices, rather than in understanding. In the next
chapter we return to this point.

111 think it was Proust who pointed out that the true journey is not secing a thousand places
with a pair of eyes, but to scc onc place with a thousand pairs of cyes.
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If we consider abstract algebra, but also groups of permutations, groups of
symmetries, and polynomial rings, for example, it seems that such emphasis is not only
restrictive, but also incorrect, even if we limit ourselves to discussing "elementary
algebra.”. We will argue, however, that this is not the case.

The central notion in the arithmetical operations, is that of "combining” two
elements of the base set to "produce” another element of the base set. Put in more formal
terms, the two original elements are not literally "combined," as this would imply the need
of an explicit law of "combination." We use, instead, the term "law of composition,” and
say that this law of composition associates to each ordered pair of elements of the base set,
another element of the base set. It is perfectly clear not only that the "law of composition”
formulation is "inspired” by the arithmetical operations, but also that even when dealing
with an algebraic system in which the laws of composition are as abstract as one can
imagine, we are still psychologically satisfied that a®a!=1 is like "calculating." And it is,
in fact, technically irrelevant whether we think or not of "calculations,” as long as we do
not require that the actual "law" be exhibited.

The other important aspect here, is that of number. For the ancient Greek,
irrationals were not numbers, and negative numbers were simply unthinkable. The Chinese
accepted negative numbers in specific mathematical contexts, but the notion was not
generalised. In Islamic mathematics, both zero and negative numbers were largely
disregarded, but surds were treated in some great detail. Even in the 19th century, there
were critics of negative numbers, and it was a long time before mathematicians fully
accepted imaginary numbers, while, in fact, they were "calculating” with them much before
a foundation was provided. It is clear that in Cardano, for example, V-4 does not
"measure’ anything, nor has any similitude with any of the previously accepted numbers,
and, rightfully, they were called "quantities,” not "numbers."

Today we call negatives, surds, fractions, complex, e, and 1, numbers. We do not
call quaternions numbers, but we naturally should, as there is nothing to distinguish their
general "outlook" from that of complex numbers: in the same way, we may ask ourselves
Why not to call polynomials, matrices, permutations, etc., numbers ? Certainly there is no

technical damage done.
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Strictly speaking, the following "definition" is technically acceptable:

"Number is any element of the base set of an algebraic system."

As we said before, once one is thinking algebraically, numbers are understood
symbolically, ie, they are dealt with only by reference to the properties of the arithmetical
operations. But this is exactly the case with polynomials, matrices and permutations when
they are collapsed 12 into elements of the base set of an algebraic system; the notion of
isomorphism between algebraic structures highlights precisely this aspect.

Of course, the definition we provided does not correspond to the way in which we
use the word number.

Nevertheless, we think that by using arithmeticity, instead of a more sophisticated
form of characterisation for this aspect of algebraic thinking, at least two important
functions are fulfilled: (1) the infuition generated by the arithmetical operations is clearly
preserved in our characterisation, in a way which is useful in extending algebraic thinking
for situations in which the base set is not a "numerical” set; and, (ii) the notion of symbolic
number 1s highlighted, as our characterisation emphasises the distinction between the
symbolic treatment of number, ie, in the context of algebraic thinking, and other models
for representing and manipulating relationships involving numbers—as measure, for

example.

Throughout the rest of this dissertation, we will keep in line with the conventional
usage, and reserve the word number only for those mathematical objects which are so
normally called. Nevertheless, the reader should bear in mind, at all times, that the essential
notion behind our choice of arithmeticism as a name for a characteristic of algebraic
thinking reflects the precise and crucial fact that algebraic thinking is a mode of thinking
for which the external interpretations—on the basis of which much of the usage of the

word number has been built— are irrelevant references.

12We will return to this very essential and illuminating notion on Chapter 3. For the
moment, the following example should be sufficient: a polynomial f(x) in the formal
variable x is formally defined as an expression of the form ag+a;x+...+apx", and with this
"internal" structure in view, we can speak, for example, of complete and incomplete
polynomials, etc. When we speak of an algebraic system in which the base set is a set of
polynomials, however, this "internal" structure is—at least temporarily—collapsed, and the
elements become f, g etc.; it is only the properties of the operations which operate on
them that are relevant, here, not how thy eventually "deal"” with the "internal” structure

of the polynomials.
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We think that one last word of explanation is necessary.

The result of our research effort is, without doubt, to "isolate" a mode of
thinking—algebraic thinking—and characterise it. This is not, however, part of a
"dissectionist" approach, a fact which will become even more evident in the subsequent
chapters, as we make clear that it is only possible to understand what algebraic thinking is
by articulating it and contrasting it to other modes of thinking within mathematics, and all
this in the broader context of the mathematical culture in question.

The importance of placing this observation here, is to discourage immediately
anyone from taking the work contained in this dissertation as an invitation to develop "a
new course in algebra," or even from reading it as a preliminary effort in that direction.

The main educational objective of our research work is precisely to enable teaching
to proceed in an as open framework as possible, by providing the tools for the teacher to
distinguish and understand, on the fly, the thinking and learning processes which are
developing on the part of the learner. As we have mentioned before, the specificities of
algebraic thinking are best grasped only by contrasting it with other modes of thinking,
and this is a possibility which only an open, investigative teaching setting can provide.
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Chapter 2
A Study of Previous Research



2.1 INTROD ION

Algebra has been seen, for a long time, as a difficult, although important, area
of school mathematics, and as a consequence a huge number of studies have been
carried out on the subject.

Our research has a "foundational” character; rather then a "didactic” onel, and
for this reason we will not include in our examination the many teaching approaches
and experiments in algebra produced in the past years, as, for example, Alan Bell's
richly suggestive teaching experiment (Bell, 1989b); there are two exceptions, namely
Lesley Booth's further investigation into the difficulties identified by the CSMS algebra
survey, which throws light into the survey itself, and Davydov's approach to the
teaching of algebra in elementary school, which embodies a theoretcal approach to the
problem which is radically different from the approaches we find in "Western"
literature.

The review of the relevant literature which follows, is primarily aimed at three
aspects of the research on the learning of algebra: (i) the topics examined by research;
(i1) the underlying epistemological and methodological assumptions of those researches;
and, (ii1) the issues raised by them.

We will not, however, present a thorough account of the available literature; we
choose, instead, to examine here only a selection of material which seemed sufficient to

allow a reflection on the research on the learning of algebra as a whole.

2.2 CRITICAL REVIEW QF THE PREVIOUS RESEARCH

THE SOLO TAXONOMY

The SOLO Taxonomy was developed by Biggs and Collis in order to provide
educators with a general framework for assessing the quality of learning. In Biggs and
Collis (1982), qualiry is characterised as the answer to the question "how well,” and
opposed to the quantitative aspect of learning, which is characterised as the answer to

"how much.” At the very beginning of the preface, they say:

"In this book, we suggest that the evaluation of thought, from childhood to

adulthood, gives an important clue as to quality. That clue 1s structural

I'It is never too much to emphasise that although at this point  we are conccrned.
primarily with the “foundational” side of our rescarch, it naturally aims at providmg a
solid foundation for the development of an approach and programme for the teaching
of algebra, as well as at providing a better understanding of the issues involved in

rescarch on the lecarning of algebra.
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organisation, which discriminates well learned from poorly learned material
in a way not unlike that in which mature thought is distinguishable from

immature thought." (op. cit., pxi)

The key characteristic of the SOLO Taxonomy, is that it examines the outcome
of learning focusing on how the response is structured, rather than on whether a given
content was or was not learned. Although postulating that the structure of the responses
can be characterised by levels—from "concrete” to "abstract"—of progressing
complexity, they examined the characteristics of the traditional models of Stage
Theories of development, and concluded that they are inadequate to deal with the
assessment of the quality of learning, as: (1) they postulate a stability for the stages that
1s not confirmed by research, ie, the same student answers at different levels at different
times and in relation to different situations; the concept of décalage, used by Piagetians
to account for this phenomenon, is too common to be only an exception, Biggs and
Collis say; (11) they are intended to predict, on the basis of logically related tests, how a
person will respond to a given test; this possibility is based both on the stability of the
stages and on the measurability of the hypothetical cognitive structure (op. cit., p22).

The crucial difference between the approach in the SOLO Taxonomy and the
Stage Theories, is that in the latter it is the learner that is categorised, whereas 1n the
former it is the outcome. This shift removes the need to appeal to the concept of
décalage as a corrective device, and at the same time makes for a better educational
instrument?; hypothetical cognitive structure is replaced by the SOLO Taxonomy 1n a
way similar to replacing ability by artainment. Biggs and Collis say that hypothetical
cognitive structure is not, in most cases, an issue to the teachers (see note 1).

The SOLO Taxonomy distinguishes 5 levels of outcome, Prestuctural,
Unistructural, Multistructural, Relational, and Extended Abstract, which are
characterised in relation to three "dimensions": (i) working memory capacity; (ii)
relating operation—the way in which cue and response relate; and (iii) closure and
consistency. A detailed explanation of those three aspects is provided in Biggs and

Collis (op. cit.).

In Chapter 4, the SOLO Taxonomy is used to analyse the responses to some
test-items given to students. We will briefly examine aspects of their analysis of one of

the items3.

2The stage thecorist, on the basis of standard tests, supposc the adequacy of predicting
the possibility of a lcarner learning a given material, 1o the exient of c_onsidcrmg that
"...rcading, as a symbolic and verbal activity, should not be taught until the high-school
years.” (Furth's position, in Biggs and Collis, 1982, p21; sce also p23)

The same criticism presented here, applies 1o the other sections of the chapter on
mathematics. and for this rcason wc will not examine them directly.
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The following problem was proposed:

You are to decide whether the following statements are true always,
someumes, or never. Put a circle around the right answer. If you put a circle
around "sometimes” explain when the statement is true. All letters stand for

whole numbers or zero (eg, 0, 1, 2, 3, etc.)

1. a+b=b+a Always
Never

Someumes, that is, when

2. m+n+g=m+p+gq Always
Never

Sometimes, that is, when

3. a+2b+2c=a+2b+4c Always
Never

Sometimes, that is, when

According to the SOLO Taxonomy, the different levels would be indicated by

the following behaviours:

"Unistructural responses. At this level of response the students saw each
letter as rcprcscming onc and only onc number...If...one trial did not give a
satisfactory result, they gave up working on that item.

Multistructural responses. Students giving responses at this level tried a
couple of numbers and if they satisfied the relationship they drew their
conclusions on this basis...

Relational responses. At this level the students seemed to have extracted a
concept of ‘gencralised’ number by which a symbol b, say, could be regarded
as an cntity in its own right but having the same properties as any
number with which they had previous experience...[our
emphasis)...Even though the responses showed that they possessed the

concept of gencralised number, students responding at this level were unable

4 Although in the book we find a "minimal age" associated 1o the levels, the ages of the
students answering the tests arc irrelevant for the purpose of examining the difference in
outcomes from the point of view of the theory.
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o cope adequately with the problem of making the necessary deduction in
the final step of the second and third items...Again with the third item. ..it
is the next level of abstraction, that of a pronumeral as a variable, where
thinking of zero occurs so that the number system is consistent with itself.

Exiended abstract responses. Responses in this category demonstrate an
ability to view a pronumeral as a variable and thus enable the final deduction

necessary in the second and third items to be made..." (op. cit., p69ff)

At this point, a strong objection to Biggs and Collis' analysis must be raised. In
all cases they are assuming that the students are working with numbers as such, ie, that
there are no nonnumerical models guiding their judgement. If we accept, instead, the
possibility that the students could be thinking of the letters as naming segments of lines,
much of the analysis could be different: (i) in the third item, the crucial question would
be the possibility of using a numerical model, as "zero" cannot be represented as a
segment; (1) in the second item, the difficulty could be related to the practice—common
and, in fact, necessary in life—of not giving the same object (a line segment, in this
case) two names; (ii1) in the first item, an "always" without calculations could well
mean the obvious fact that if you conjoin two segments of line, the total will always be
the same. In relation to (ii), even in the case of a numerical model being used, the
mathematical usefulness and acceptability of the possibility of two letters
representing the same number might play a crucial role, ie, the case is not considered
because the student does not know that it can be so. The possibility of this gap
highlights the fact that there is never any attempt—in this section or elsewhere in the
chapter on mathematics—to relate the types of responses to schooling conditions, such
as the sequence of the topics taught and the characteristics of the teaching material
used>.

It could be argued that the students had been rold that the letters stood for
numbers, but this is not sufficient to determine which model is used to guide the
manipulation of relations involving those numbers. From the text of the book, it is not
possible to know which—if any—indications the students tested gave of using
nonnumerical models, but the simple fact that this possibility is not mentioned or
discussed is indicative that the authors were probably unaware of the distinct

possibilities it would bring.

51t is true thal the book deals with "implications of SOLO for the tcaching of
mathematics.” Nevertheless, the definition of school mathematics adopted ("...a logical
system or structurc of relationships that has as its basec a set of elements ar_1d a ;lcarly
defined method of operating on them...”) naturally cxcludes the two considerations we

have mentioned.
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In the same way 1n which Biggs and Collis pointed out that several variables
may interfere with the production of a response, and, thus, the stages theories are not a
good model for assessing the quality of the response, we must point out that the quality
of a response, in the sense of the SOLO Taxonomy, can only be evaluated from the
point of view of the mathematical framework within which the learner is operating, ie,
his or her mathematical conceptualisations. Strictly speaking, the failure to answer
correctly a test-item, analysed in the absence of a knowledge of the model in relation to
which the learner tried to solve it, can only mean that "the learner was not able to deal
with that test-item.” We must make clear, nevertheless, that our criticism is only
directed at the impossibility for the SOLO Taxonomy to elucidate, by itself, the
characteristics of the learner's mathematical ethos, and in particular, the model used as a
support in any specific problem solving situation.

At the same time, it is clear to us that our characterisation of algebraic thinking
is not capable of, nor aimed at, distinguishing responses in a manner similar to the
SOLO Taxonomy. Instead, it is aimed exactly at distinguishing between different
models used to deal with and produce algebraic knowledge. The first phrase of Biggs
and Collis (1982) is, "In this book, we are concentrating on a common learning
situation: one that involves the meaningful learning of existing knowledge, or reception
learning.” It is precisely because one speaks of meaning, that it 1s necessary to
determine which is the conceptual framework in which this knowledge 1s supposed to
be inserted, and the central aim of this dissertation is to provide the means to to this

determination in the case of algebraic knowledge.

The interpretation given by Biggs and Collis to the responses, depends on a
second assumption, namely that the mathematical context of the response rests defined
by a content, in this case. that composed by the algebraic expressions proposed—this
meaning precisely a combination of letters and arithmetical symbols—together with the
knowledge that is required to answer correctly the questions if they are treated
numerically. As this knowledge cannot be communicated to the solver, or the questions
would not be questions, we are left with the algebraic expressions as supposedly
defining the mathematical context of the questions in the view of the researchers. On

page 87 we read:

"The necessity to communicate parts of the structure [mathematics] to
others gives risc to a formal symbolism that takes in both the clements and
the operations. The mathematical statement 4(a+b)=4a+4b may be used 1o
- demonstrate the point. The clements involved in the statement are numbers

and variables; the operations to be carried out on the elements,
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multiplication and addition are clearly defined...and the statement
iself indicates a link between two sections of the mathematical structure,
that concerned with addition and that concerned with multiplication.” (our

emphasis)

The possibility of the mathematical expression representing a statement about
areas 1s simply not considered.

THE CSMS ALGEBRA SURVEY

The objective of the CSMS project was to produce a survey of secondary
school mathematics, in a number of areas. The main results of the survey are reported
in Hart (1984).

One of the areas of interest, in the CSMS survey is the understanding children
have of letters in mathematics. In Hart (op. cit.) the results are presented under the title
of "Algebra,” but in Kiichemann (1978) they are described as an "investigation of
children’s understanding of generalised arithmetic."

In order to analyse the results of the testing, six categories were created,
describing different ways in which letters could be used in the context of the test-items;
those categories were based on earlier work by Collis. The six categories are (Hart, op.
cit., pl104):

(1) leuer evaluated: "This category applies where the letter is assigned a
numerical value from the outset.”

(i1) letter ignored: "Here the children ignore the letter, or at best
acknowledge its existence but without giving it a meaning.”

(iti) leuer as object: "The Ictter is regarded as a shorthand for an object or
as an object in its own right.”

(iv) letter as specific unknown: Children regard a letter as a specific but
unknown number, and can operatc upon it directly.”

(v) lctter as generalised number: "The letter is secn as representing, or
at lcast being able 10 take, several values rather than just one.”

(vi) letter as variable: "The letter is seen as representing a range of
unspecificd values, and a systematic relationship is seen 1o exist between

two such sets of values.”
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The actual results have no direct relevance for our research, so we will not
examine them in any detail. We will focus instead on the aims of the CSMS research on
algebra, and some aspects of its methodology.

First and of foremost importance, the study reports a link between the different
uses of a letter and Piaget's levels of intellectual development, but does not take into
consideration, at any time, the instruction received by those students on the topics
tested; Booth's follow-up study of the survey, which we will analyse a few paragraphs
ahead, shows that this 1s an aspect of crucial importance in relation to the results
collected by the survey. It also shows, however, a conception of knowledge and of
knowing well in line with the Piagetian tradition of the "little-lone-scientist.”

Second, the survey does not examine whether there was consistency within the
answers of single students, and thus, the validity of the association with developmental
levels is seriously jeopardised. |

From a more general point of view, Bell (1987, 1989b) showed that the six
categories are not adequate to describe all the different situations that may arise in the
algebraic activity; also, in focusing the investigation on simple and immediate uses of
letters, the survey does not provide any insights into the processes by which the
different uses proposed are developed or interrelated.

As we have already said, Lesley Booth produced a follow-up study of the
algebra part of the CSMS survey; the results are reported in Booth (1984). As with the
CSMS survey, her study deliberately concentrated on the use of letters in "generalised

arithmetic." The aim of Booth's study was,

...to investigate the rcasons underlying particular crrors in gencralised
arithmetic which the carlicr CSMS (mathematics) project had shown to be
widely prevalent among 2nd to 4th year children in English sccondary
schools, and to explore the cffectiveness of short teaching modules designed

to help children to correct or avoid these crrors.” (op. cit., p1)

Two hypothesis are investigated: the dependence of errors on the interpretations
given to the letters, and on the use of procedures that are imported by the children from
the solution of arithmetical problems.

The main conclusions of the study can be thus summarised:

(i) there seems to be support to the view that the possibility of using letters in
different ways is related to a cognitive awareness;

(i) part of the difficulties faced by the children result from the use of "informal”

methods, which are methods which are elicited by specific aspects of a problem, rather
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than general solution or manipulation procedures; Booth points out that it is highly
relevant that even after being taught formal methods, many children continue to use the
informal ones, and considers the possibility of interpreting this on the basis of Collis
interpretation of "concrete thinking," according to which the "child's thinking is
restricted to concrete-empirical experience so that the child tends to operate in terms of
the particular situation presented” (cf. Booth, op. cit., p89). She also points out that
children "do not look beyond the particular solution of immediate, concrete, problems,”
(ibid) but indicates that children benefited from teaching in overcoming this situation, in
that it assisted them "to move towards operating in the more formal systems"; this last
result seems to disagree with the idea that only when reaching the level of formal
operational thinking they would be able to think within formal systems.

(111) the notational conventions of arithmetic might influence children's
construction of meaning for algebraic expressions. An important result, is that the
"acceptance of lack closure"” (see, for example, Biggs and Collis, 1982) was shown to
be much less resistant to teaching than expected, leading Both to consider that "the
acceptance of lack of closure, and the view of letters as generalized rather than
particular number, may relate to different levels of conceptual difficulty, rather than be
manifestations of a single cognitive structure as suggested by the Collis-Piaget

formulation.” (op. cit., p91)

It seems, from the written report of the research, that by "informal methods”
Booth always means "informal numerical methods," as in for example, dividing 525 by
5 by separating 525 in 500 and 25, dividing each part by 5, and adding the parual
results, rather than considering which is the model for quantities guiding this process (it
could be, for example, a whole-part model, or it could be a model based on properties
of the notational system). She suggests that further research is needed on the informal
methods used by children in generalised arithmetic, and of the five points she
highlights, two are more directly related to our research: "How do those informal
methods develop?." and "Why do many children fail to assimilate the formal taught

procedures.”
Z.P. DIENES ON THE TEACHING OF ALGEBRA

In this section. we want to examine briefly Dienes' conception of what should
be aimed at by the teaching of algebra, by summarising Chapter 4 of his Building up
mathematics (Dienes, 1960).

First, Dienes points out that the learning of arithmetic requires in fact the

learning of some "algebraic facts,” and also that symbolization should follow the
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development of algebraic concepts, not precede it. He argues that "It is no earthly use to
put a variable [in the form of a letter] before a child until he has seen it vary." (op. cit.,
p76)

As it is well-known, Dienes conceives the construction of mathematical
knowledge by children as abstracting the mathematical structure from experience with a
number of mathematically similar situations (the Principle of Perceptual Varability), so
he proposes that from activities with tiles and scale-balances, the laws of algebra (eg:
A x B =BxA) be derived as abstractions.

Dienes also suggests that equations be set and solved with concrete material,
and then symbolised, and that in a similar way, formulas such as for the square of a
binomial, and procedures for factoring quadratic polynomials, be derived. The use of
concrete models, however, precludes the same approach with expressions involving

negative quantities, but Dienes justifies the correctness of the approach saying that,

"We are quitc happy to tell children that X2+1=0 has no solutions, and yet
proceed happily to contradict ourselves a few years later. The same should
apply to any stage of learning in which only a restricted field of numbers is

considered.” (op. cit., p100)

The use of concrete models in this manner, to justify and illustrate the rules and
procedures of algebra, has certainly become influential (see section Research...reported
at PME, below), but some authors have considered that features of the concrete models
can stay too firmly tied to the mathematical construction (eg, Booth, 1987), and also
that children do not see the relationship between the concrete model used and the
mathematical concepts which they are supposed to illustrate, although the concrete
model was seen as "useful” by children (eg, Hart, 1988, 1989).

Summarising, we can say that Dienes view of the algebraic knowledge that is to
be achieved by the children, corresponds more to the content of algebra, ie, its laws
and rules of manipulation, and less to a mode of thinking according to which those
aspects are more meaningful; according to Dienes' approach, the means of providing
meaning to algebra is to relate its laws and procedures to a model that can be directly
and concretely manipulated, and not by appealing to properties of the algebraic
expressions as expressions of numerical relations; in many ways, Dienes’ approach
amounts to providing an ontology for the objects being manipulated, ie, to say "what

they are,” and from then derive the properties of operations on them®.

5The notion of an ontology is discussed in detail in Chapter 3, on the historical
development of algebra.
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RESEARCH ON THE LEARNING OF ALGEBRA REPORTED AT PME’

Since its first conference in 1977, the PME group has been recognised as the
most important international research forum in the Psychology of Mathematical
Education. The interests of people belonging to PME range over a variety of themes,
from more theoretical issues (eg, Wachsmuth, 1981), to concept formation (eg, Meira,
1990), to the use of non-specific computer software to promote the learning of specific
aspects of mathematics (eg, Sutherland, 1989).

The interest in algebra and algebraic learning has varied over the years: 7 papers
in 1981, 1 paper in 1982, 16 in 1987, 6 in 1988, 5 in 1989, 14 in 1990, 13 in 1991 8

Those papers can be roughly divided into three main areas®: (A) difficulties in
algebra caused by the use of literal notation; (B) difficulties in algebra caused by an
insufficient understanding of arithmetic; (C) models for characterising the algebraic
activity. We will briefly examine those areas in turn.

(A) Difficulues in algebra caused by the use of hiteral notation

A common approach here is to propose test-items in algebra and to analyse the
distribution and types of errors. Pereira-Mendoza (1987) examines the way in which
students make incorrect generalisations of algorithms to deal with expressions in
arithmetic, and apply them to algebraic (literal) expressions; he distinguishes the
"arithmetic space" from the "algebraic space." Becker (1988) does a similar
investigation, but focusing on the role of the literal symbolism on the formation of
errors.

A second approach is to investigate directly the characteristics of the algebraic
symbolism. Kirshner (1987 and 1990); in the first paper he examines the syntax of
algebraic symbolism from the point of view of the parsing of expressions, and in the
second paper he examines issues on the acquisition of algebraic language from the point
of view of a model for its syntax. Filloy (1987) also examines algebra from a linguistic
point of view, but in a broader perspective, relating the -linguistic issues with the
tension between semantic and syntax, arguing, with Thorndike, that emphasis must be

put on practice with the syntax in order to free the individuals attention from the syntax

TThe annual conferences of the International Group on the Psychology of Malhcmalical
Education. PME is a group within ICME, the International Conference on Mathematical
Education, which mects cvery four years. ‘

8Papers on functions werc not included, unless they focused on algebraic aspects of

functions.
9Many papers, of course, examine more than onc of those aspects.
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and allow him to concentrate on other—less "automatic”"—aspects of the problem he is
handling.

In Gallardo and Rojano (1987), a number of specific aspects of the use of literal
symbolism are examined, with almost total reference to "the unknown" in the context of
solving equations; the paper refers to the "didactic cut” that happens when the students
are requested to deal with equations in which the unknown appears on both sides, and
account for this difficulty on the basis of a refusal to "operate on the unknown.”

(B) Difficulties in algebra caused by an insufficient understanding of arithmetic

In the past five years, very few PME papers deal directly with this aspect of the
learning of algebra. Booker (1987) provides a brief review of the main issues examined
until then. Booth (1989) also provides a brief review, and examines the results of an
experimental study designed to investigate students’ understanding of Inverse
operations, association and commutativity, and relates those results with possible
consequences to the learning of algebra. Booth's study is based on students’ ability to
manipulate arithmetical expressions with varying degrees of complexity, and the use of
non-numerical models by the students is not examined; she argues for the teaching of
arithmetic to put more emphasis on the structural properties of numbers, which, in fact,
would amount to a greater degree of algebraisation of the teaching of arithmetc.

In the beginning of the 1980's, the interest in the transition between arithmetic
and algebra was more intense than today, with papers such as Kieran's (1981),
examining both the difficulties introduced in algebra by the undue transfer of concepts
and procedures from arithmetic, and the ability of some pre-algebra students to
understand intuitively some aspects of algebra, as the solution of simple linear
equations.

To some great extent, the main issues related to this theme were "exhausted,”
but failed to produce a deeper understanding of the learning of algebra, as many of the
students who had a good understanding of arithmetic also faced sharp difficulties with
algebra. Nevertheless, those studies informed teaching in a very useful way, pointing
out that merely "generalising” arithmetic was not sufficient to lead to the learning of

algebra, and let the field open to other investigations.

A Study of Previous Research 33



(C) Characterisations of the algebraic activity

The papers under this heading are of three kinds.

First, there 1s a small group of papers where the algebraic activity is organised
around the uses of algebra. Bell (1987), discussing the basis for designing an algebra
curriculum, argues that such curriculum should be organised around different modes of
algebraic activity, of which he distinguishes four: generalising; forming, solving and
interpreting equations; functions and formul®; and, general number properties. He
opposes his proposal to the traditional organisation around different types of algebraic
manipulation, and to the organisation around the different uses of letters. Bell's model
is flexible and designed to provide students with a sense of purpose for algebra, but a
discussion of the mathematical nature of the algebraic knowledge is not provided. Lee
(1987), [Ursini] Legovich (1990) and Ursini (1991), examine algebra in the context of
generalisation. In all three cases, the usefulness—as perceived by the students—of
algebra, in expressing generality, is examined, and also how the use of algebra is often
replaced, by students, with other models, in dealing with the generality of, for

example, patterns. In her paper, Lee points out to four major conclusions:

"1. A majority of students do not appreciate the implicit generality of
algebraic statcments involving variables.

2. For most students, numerical instances of generalisation carry more
conviction than an algebraic demonstration of the generalisation.

3. Many students do no appreciate that a single numerical countcrexample is
sufficient to disprove a hypothesised gencralisation.

4. Students who can competently handle the forms and
procedures of algebra rarely turn spontaneously to algebra to
solve a problem even when other methods are more lengthy

and less sure.” (our cmphasis)

There seem to be two possibilities, here. First, that the students did not consider
the possibility of modelling those patterns in numbers, and for this reason refused to
use algebra to manipulate the—non-numerical—generality they perceived. Second, that
precisely because the generality perceived by the students was not an arithmo-algebraic
one. it was not visible in the algebraic statements, as there is an implicit shift in the
objects in the process of modelling a situation algebraically. In Lee, we find some of
the attempts to manipulate the generality of a pattern directly, through the manipulation

of the geometric configurations that generated 1t.

4
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In Friedlander et al. (1989), "visual" and "numerical" forms of justifying the
solution of "algebraic” problems are examined.

In second group of papers, the algebraic activity is examined by organising it
around the content of algebra: equations, equation solving, variables, expressions
(Kieran, 1988 and 1991; Linchevsky and Vinner; 1990; Rubio, 1990), and specific
difficulties examined.

In a number of papers in this group, the use of non-algebraic models to provide
"meaning"” for algebra is advocated (Cortez and Vergnaud, 1990, scale-balance;
Garangon et al., 1990, computer-aided arithmetic model; Filloy, 1991, scale-balance
and areas) or the procedures that can be generated through such support models
examined (Carraher and Schliemann, 1987, scale-balance used in a professional
context; Sutherland, 1989, Logo; Rojano and Sutherland, 1991, spreadsheet). Only
Booth (1987), however, examines the effect of using such models in the
conceptualisation of the algebraic activity that is produced by the students; she points
out that "...careful thought needs to be given to the kind of [concrete] model used, to
the ways in which the model is related to the formal procedure, and to the limitations
and misleading notions that might be inherent in the particular models adopted.” She
does not consider, however, the possibility of mistakes observed in students of algebra

being due to the "background," ie, not explicit, use of such models!?.

The third, and last, group of papers, is quite limited in size, and varied in
approaches. It is composed by attempts, more or less comprehensive, to characterise
the algebraic activity in itself, ie, to characterise the mode of thinking that is peculiar to
it, and not through its content!!.

Sfard (1987, 1989), develops the distinction between the operational and
structural aspects of mathematical—and in particular, algebraic—notions; to the
former, she associates processes. and to the latter, static "entities.” Sfard's model is
intended to characterise the passage from simple to complex levels of the algebraic
activity, based on the mechanism of "reification" of processes into "compact static
wholes." In both papers she analyses the learning of the concept of function from the
point of view of her framework, concludes that "the fully fledged structural conception

of function is rather rare in high-school students,” and draws possible implications for

10Rosamund Sutherland. of the Institute of Education, University of London, is. at
present carrying oul an investigation aimed at cliciting the models used by pupils who
solve "algebraic verbal problems” using a spreadshcel. .

'IThe model proposed in Harper (1981), and its developments, will be analysed

scparately, in a later scction.
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the teaching of mathematics. Sfard's model will be more closely examined a few
paragraphs ahead.

Arzarello (1991), prefers the distinction between procedural and relational, but
uses it as a "double-polarity” which "lives in every solution of an algebraic problem."
Arzarello briefly points out to the use of "[the] subject's actions, the very process of
their constructions and generations, every other extramathematical information about
them," to "express the meaning of mathematical objects." Arzarello says:

“a. The discovery-construction of an algebraic rule is not a trivial process of
generalization from particular 1o general, but it is stirred by the strained
connections between the two polarities. Typically, the dialectic between the

two polanties marks the birth of algebraic work."

indicating that his model intends to characterise a mode of thinking firsz, and then
examine the nature of the objects generated, from the point of view of the requirements
of this mode of thinking.

Sfard's model is strictly within the structuralist tradition, and inherits its
difficulties; for example, it fails to provide a reason for the passage from procedure to
structure—even in the case of functions, which she examines in some detail.
Arzarello's model, on the other hand, correctly points out to the fact that the objects of
algebra are generated in the process of dealing with situations or problems with
different intentions, ie, aiming at different aspects of the model.

None of the two models, however, provide any indication of which is the
intention that drives the production of an algebraic knowledge or of an algebraic mode

of thinking.

The characterisation of algebraic thinking that is the object of this dissertation,
was first presented—in provisional form—in Lins (1990), a PME paper which belong

to the small group of papers we have just examined.
LEARNING AND THE HISTORICAL DEVELOPMENT OF ALGEBRA

In this section we will examine three approaches to this question, all of which
have in common the fact that they accept, as a principle or as a hypothesis to be
investigated, the notion that the learning of algebra by individuals, closely recapitulates
the historical development of the subject; it is usual to refer to this hypothesis by saying
that "ontogenesis—the development of the individual—parallels philogenesis—the

development within the history of the human race.” Garcia and Piaget prefer
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"psychogenesis” to "ontogenesis,” and this choice, far from casual, indicates an
empbhasis on the "psychological,” in the "internal," side of the individual, which is in
agreement with Piaget's understanding of knowledge, while with "ontogenesis" the
many possibilities of the "being" remain open. Similarly, "philogenesis” may be
replaced by "sociogenesis,” but it also implies a sort of judgement of the crucial aspect
in "philo.” We will adopt "ontogenesis" and "sociogenesis," in agreement with our
position, made clear in the previous chapter, that the social factor is a necessary and
determining feature of the human endeavour.

Eon Harper and three uses of letters in algebra

The essence of Harper's approach to this question is the following:

"It 1s generally accepted by historians of mathematics that algebra has passed
through three important stages: rethorical, syncopated, and symbolic.”
(Harper, 1987, p77)

and from that point of departure, ie, the classification of the uses of letters in algebra in
those three categories—which we will subsequently examine—to analyse the responses
of children of various ages to test-items especially devised.

We will first examine the historical aspect!?.

The three stages to which Harper refers, were in fact proposed by Nesselmann,
in his Die Algebra der Griechen, published in 1842. Heath (1964, p49) points out that
Nesselmann speaks of the three stages "In order to show in what place, in respect of
systems of algebraic notation, Diophantus stands..." (our emphasis)

The three stages are thus characterised:

"(1) The first stage Nessclmann represents by the name Rethorical Algebra
or ‘reckoning by complcte words.” The characteristic of this stage is the
absolutc want of all symbols, the whole of the calculation being carried on
by means of complcte words, and forming in fact continuous prose...(2) The
second stage Nessclmann proposcs to call the Syncopated Algebra. This
stage is essentially rethorical, and therein like the first in its reatment of the

questions; but we now find for often-recurring operations and quantities,

1Zwe prefer to do it here rather than to refer the reader to the ;haplcr on the histqrical
development of algebra, both because there are specific issues which w>ould bc}lost in a
more gencral discussion, and becausc this discussion is not of special intercst in the

context of our historical investigation.
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certain abbreviational symbols...(3) To the third stage Nesselmann gives the
name Symbolic Algebra, which uses a complele system of notation by

signs having no visible connexion with the words or things which they

represent..."”

Most of the agreement to which Harper refers, stops here. Heath, while using
Nesselmann's classification, gives his own interpretation, saying that Vieta belongs to
the third stage, while Klein (1968, p146) informs us that "according to Nesselmann
even Vieta belongs to the stage of syncopated algebra,” and points out that
Rodet, in 1881, "opposed this tripanité division with the thesis that only two types of
algebra should be recognized, namely 'l'algebre des abbréviations et des données

tn

numériques' and 'l'algebre symbolique."" M. Kline (1990) remarks, almost casually,
that, "Because he does use some symbolism, Diophantus' algebra has been called
syncopated...”, and this is the only mention to the three stages, and van der Waerden
(1985) ignores altogether Nesselmann's classification. Moreover, Whiteside (1962,

pl97) says that,

"The development of the concept of variable is very closely tied up with the
notation uscd to express it...But the variable is somecthing more than its
mere symbolic denotation and Nesselmann's classification is perhaps a little

too narrow and ngid, and certainly arbitrary.”
Harper makes a claim which is historically inaccurate. He claims that,

"The use of the letter as a representation of a ‘given’ quantity (Viela called
his letters 'species’) introduces a ncw numerical concepl into
mathematics—the ‘algebraic number concept’ (Harper, 1979) or ‘symbolic

number concept’ (Klcin, 1968)" (our emphasis)!3

It is true that Klein uses the term "symbolic number" to denote the conception

that underlies Vieta's species, but he also says that,

"The new [symbolic] 'number’ concept...already controlled, although not
explicitly, the algebraic expositions and investigations of Sufel, Cardano,

Tanaglia...” (Klem, 1968, p178)

13There is in fact an improper usc of the term "algebraic number,” a‘non'o‘n whi_ch only
appears when Legendre conjecturcs that 7 is not a root of a polynomial with rational
coefficients, and a term very clearly understood in mathematics.
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an aspect that we will examine in more detail on Chapter X. Vieta's species are a
remarkably useful condensation of the "symbolic number,” and not that which
introduces it.

This distinction is important because it is precisely on the basis of its lacking
that Harper uses Nesselmann's classification to analyse pupils' work, as he
characterises the solutions according to how they are presented, rather than how they
are produced.

One of the problems proposed by Harper, and in which responses he bases
most of his argument, is the following:

"If you are given the sum and the difference of any two numbers show that
you can always find out what the numbers arc. Make your answer as general

as possible.”
and 1n Harper (1981) we find what each of the three types of solution would be:

"(1) Rethorical: The pupil typically writes down little cxcept perhaps two
numbers to represent a sum and a difference, and the 'solution”: "You add the
sum and the difference together and divide by two. That gives you one
number. Take the difference from the sum and divide by two and that gives
you the other number.”
(i1) Digphantine: The pupil chooses a particular sum and difference, writes
down two cquations containing two unknowns, and solves them. He (she)
often suggests, verbally or in writing, that the same method can be used
whatever the numbers chosen for the sum and the differcnce.
(ii1) Viewan: The pupil writes down two simultancous cquations involving
two unknowns and a Ictter for cach of lhcbsum and U;)c difference. Thesc are
a+ a -

solved to producc, for cxampic: x =5,y 5

- -

The data obtained indicates a clear swing from "Rethorical” to "Diophantine”
and then to "Vietan" responses, from Year 1 (11y9m, average) to A-level (17y3m),
which Harper (1981) sees as, "an age-related transition Rethorical — Diophantine —

Vietan." He considers the possibility of an influence of teaching, but counters that

possibility by arguing that,

"(1) pupils in the school were not encouraged to provide rcthorical type

responses in any of their work
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(11) pupils were introduced to "letters for unknowns' and were expected to use
these in problem solving activities during Year 1 and onwards

(i11) pupils were using letters as 'givens' in the context of functions, and to
make generalisations as early as Year 2

(iv) simultaneous equations were introduced in Year 2." (Harper, 1987)

We think that the reason why the students did not use the techniques they had
been taught, may be related to the fact that the problem itself is, probably, unusual for
them, as it is not asking them to solve a problem, but rather to show that it can always
be done. The subtle, but crucial, difference, is similar to that which exists between the
problems in Diophantus' Arithmetica, and in Euclid's Data, in which only the

possibility of a construction is required to be shownl14.

As we said before, Harper's categorisation of the answers focus strongly on the
way in which the solutions are presented, and does not examine in detail how they are
produced. In relation to this, we think that a few observations are relevant.

First, if a mathematician gives the "rethorical” response in reply to the question,
classifying it as "rethorical," could not imply a cognitive impossibility on the part of the
solver. But if this is the case, it implies that categorising children's responses, and
considering a possible correlation between the types of responses and levels of
cognitive development, depends precisely on the special assumption that the choice of a
specific approach means something different in children and in adults, and, as a
consequence, history could not inform Harper's model, unless he is prepared to
assume that Diophantus' was at a lower intellectual level —1n a developmental sense —
than Vieta.

Second, as we have pointed out, in Bombelli one finds a symbolical conception
of number, but not the adoption of generic coefficients; as a consequence, historically
informed only, there is no way to characterise the "Diophantine” solutions as indicating
a lack of such symbolic understanding of number. What characterises the "symbolic
number" of Klein, is not a notational form per se, but the way in which number is
understood, as intending the "things" which are measured by it, or, instead,
symbolically, as meaningful only in relation to the —algebraic—system in which 1t is

defined, ie, in relation to the properties of the operations of that system.

The difficulties in Harper's model suggest two areas in which extreme care has
to be taken, if we are to elicit the informative value—1f there 1s any—of history to

research into cognition in mathematics: (1) the problems used have to aim deeper in the

l4we will examine this difference in Chapter 3.
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students’ knowledge than the presentation of the solutions; and, (ii) history cannot be
arbitrarily dissected and reassembled into a lifeless, linear, progression from the

particular to the general, from the simple to the complex, from the primitive to the
sophisticated.

Anna Sfard and the process of reification

Anna Sfard proposes a model of concept formation in mathematics, a model
which is based on the distinction between two ways in which mathematical objects can
be perceived: as a process—the operational aspect—or as product—the structural
aspect. She examines the concept of function from this point of view: operationally,
functions are "certain computational procedures"; structurally, functions are "aggregates
of ordered pairs.” (Sfard, 1989)

Central in Sfard's model is the thesis that the operational aspect precedes the
structural aspect; on one hand, she argues that the latter is much more "abstract” than
the former, and that,

"...in order to spcak about mathematical objects onc must Lo be able to
focus on input-output rclations ignoring the intervening transformation.
Thus, to expect that the student would understand a structural definition
without some previous experience with the underlying processes scems as
unrcasonable as hoping that he or she would comprehend the
two-dimensional scheme of a cube without being acquainted with its
"rcal-lifc” three-dimensional model. In the classroom, thercfore, the

operational approach should precede the structural.” (Sfard, 1989)
while at the same time she says that,

" .a closc look at the history of such notions as number or function will
show that they had been conceived operationally long before their structural

definitons and representauons were invented.” (Sfard, 1991)

There is a difficulty with Sfard's model. One can reasonably say, thatitis nota
good idea to introduce the notion of functions as elements of an algebraic system—for
example, the additive group of polynomials in a formal variable, and with coefficients
in Q—before the learner has had plenty of opportunities to add polynomials, to deal
with their additive inverses, and to examine the properties of those polynomials 1n

relation to that operation. But it is a totally different matter to say that one has to
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"substitute a lot of values for x and calculate the result,” in order to be able to
understand the algebraic system described above. In the former, one has to see
polynomials as formal expressions, in the latter as formule, and, in fact, given the
similarity of the notation—a situation which has its advantages—the two notions are
conflicting. The difficulty, then, consists in defining exactly what operational means, if
it means "using to calculate,” or if it means "doing calculations on," or something else.

Similarly, Sfard never defines "structural,” let alone "structure,” directly. As a
consequence, structural, which 1s a word with a rich—to say the least—net of
meanings around it, has to be re-understood on the basis of her use of it.

Sfard says that,

"Of the two kinds of mathematical definitions, the structural descriptions
seem 10 be more abstract. Indeed, in order to speak about mathematical
objects, we must be able 1o deal with the products of some process without
bothering about the processes themselves. In the case of functions and sets
(in their modem sensc) we are even compelled to ignore the very question of
their constructivity. It seems, therefore, that the structural approach should
be regarded as the morce advanced stage of concept development.” (Sfard,

1991, p10)

The word "structural” appears twice: in "structural description” and in
“structural approach...to concept development.”

In the former, we can take it as meaning, for example, "functions can be
described in different ways, one of them is as a set of ordered pairs, which we will call
structural.” But why should we call that form of description "structural,” instead of
“static™? Does it reveal the structure of a function? Sfard also offers (1991) a structural
definition of "circle”: "The locus of all points equidistant from a given point,” while an
operational definition would be "a curve obtained by] rotating a compass around a
fixed point." But if I define "circle” as "x24y2=r2" without adding "the set of points
such that..."” or "plotting the set of points such that...", it seems that the distinction
does not work.

In the latter of the two uses of "structural,” the more likely meaning is that
"concept development will be seen as the progressive unveiling of the structure of the
concepts in question.” From this point of view, history and learning should necessarily
follow a similar path, precisely because in both cases human beings are unveiling the
same structure, ie, along history Man learns this structure. But this can only be true if
the structure is a "property” of the concepts, and moreover, if this structure is

"deposited" somewhere. The second of those conditions we have addressed in Chapter
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113, The first condition is a key one in Sfard's model, as she postulates that without
operational understanding—as indicated by a given definition—structural
understanding is not possible. But this means only that given thar a structural
understanding is a form of abstraction from an operational understanding—a form of
abstraction that Sfard calls reification, the transformation into "object"—ir is not
possible to have structural understanding before operational understanding. In other
words, the vicious circle is forced by the attempt to prove the precedence of operarional
over structural, when structural is defined precisely as a transformation of operational.

If instead, we consider that there are plenty of situations from which to
construct a notion of function that does not depend ar al/l on the notion of
"calculation"—for example, water from a tap filling a tank, pupils being paired in
preparation to a game, the length of the shade of a stick vertically set during various
hours of the day, or even using throws of dice—it becomes clear that the precedence of
operational over structural cannot be established in general; a table is no less a way of
"calculating” the value of a function for a given "input" than formul®. Sfard herself
accepts that "Geometric ideas...can probably be conceived structurally even before full
awareness of the alternative procedural descriptions has been achieved.” (Sfard, 1991,
p10)

Sfard's approach to historical research is at least incomplete; saying that the
"transition from computational operations to abstract objects is a long and inherently
difficult process,” (Sfard, 1991) does not help, unless this difficulty is justified. The
historical example of the distinct speed of developments in algebra and in geometry
seems to suggest that such explanation is still some way from being reached, and a
number of historians do not hesitate in calling it "a paradox.”

The question that has to be asked in relation to history, is about which were the
conditions in which a given conception was "natural,” and also which aspects of those
conditions could make the development of another, given, conception—the modern
one, for example—impossible. It is precisely from this point of view that history can
inform education, by revealing ways in which mathematical knowledge is biased and
"organic" within a culture. As we had pointed out in relation to Harper's attempt at
linking history and learning, Sfard's model is based in a "progressivist" reading of
history, which means that she looks at history as some sort of struggle to unearth true
knowledge from the depths of...some sort of "structure” living in a Platonic world of
ideas. Jacob Klein's (Klein, 1968) analysis of the conditions in which Vieta's symbolic
invention was produced, clearly indicates that there is a strong shift in the intention that

animated Diophantus' and Vieta's concept of number, and that the mathematics in the

150n the section "On the naturce of mathematics.”
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former cannot be seen as a "primitive stage" of the mathematics in the latter. We are
again led to stress that the "progressivist” reading of history is, in fact, a projection of
the modern understanding, conceptualisation, into the historical texts, and its "result" is
not an understanding of history, but the reconstruction of history according to a
pre-fixed hierarchy of contents and concepts. In Chapter X we provide some of the
elements necessary to redress the relations between history and learning.

The difficulties in Sfard's model are due to two factors.

First, 1t fails to appreciate that the obstacles identified in the transition from an
operational 1o a structural conception, implicitly assume the previous existence of the
former; as we saw in the case of function, it is possible—precisely because we,
educators, already know the "ordered pairs” definition—to consider situations where
the "ordered pairs" conception is achieved without going through the operational one
as Sfard defined it, ie, it is possible to present the "much more abstract” form directly.

Second, it fails to consider that what we find in history are mathematical
conceptual systems which belong "organically” the whole of each culture; as one
changes, so does the other. To say that an "object” is more abstract than another one 1is,
a priori, a statement that depends on a given formalisation; unless Sfard—or, for that
matter, anyone—is able to prove that for a given mathematical concept, or "object” A,
there can be no interpretation in which A does not depend on the "reification” of
another "object” B, any attempt at postulating the precedence of B over A, purely on
the basis of one possible interpretation, is bound to meet the vicious circle we have

indicated to exist in Sfard's model.

It is a good point in Sfard's work, that she prefers dualities to dichotomies, but
the route she actually takes in the three papers we have examined, leads in fact to

hierarchies. It 1s very good that she says,

"When analyzing the process of learning mathematics, one should be aware
of the crucial role played by such cpistemological issucs as students’
implicit beliefs about the nature of mathcmatics on the wholc, and of

mathematical entitics in particular” (Sfard, 1989)

but similar observations apply to the researchers’ beliefs about the nature of history and

about the nature of learning.
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Rolando Garcia and Jean Piaget

In a book published for the first time in 1982, Psicogénesis e Historia de la
Ciencia (Garcia and Piaget, 1984)16, Rolando Garcia, a physicist and epistemologist,
and Jean Piaget, a psychologist and epistemologist, approach the question of which are
the basic mechanisms involved in the production of knowledge in mathematics and in
physics. They look into two directions, into history and into stages of cognitive
development. They say about the objective of their investigation, that,

"...it is not, in any way, to put into correspondence the succession in
history with those revealed by the psychogenetic analysis, by highlighting
contents. It ts, on the contrary, an entirely different objective: to show that
the mechanism of transition between historical periods are analogous to the

mechanisms of transition between psychogenetic stages." (op. cit., p33)

They claim that two of those mechanisms can be identified both in history and
in psychogenesis. The first is

"...a general process that characterises any cognitive progress: every time
there is a breakthrough, that which is surpassed is in some way integrated

into that which surpasses it..." (ibid)

The "nature" of what is surpassed or surpasses is not clarified, and the word
used in Spanish for "breakthrough,” and "surpass,” come from the same root,
"rebasar,” which means "to gb beyond"; this means that, from the point of view of this
mechanism, no hierarchies are established, but it is stated that the "initial configuration”
plays a key role in the process of producing knowledge, and also that it is, in fact, an
essential element in this process.

- The second mechanism is described by them as the process which produces a
succession of three stages: intra-objectal, the analysis of the objects, inter-objectal, the
study of relations and transformations involving those objects, and trans-objectal, the
construction of structures. According to Garcia and Piaget, reaching stage j is a
necessary condition for reaching stage j+/, but, we must add, it is not a sufficient

condition; we will return to those two points later.

16 A5 far as we could find, there is no English translation of the book, and we will quote
our own translations of the original Spanish.
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In relation to algebra, which study is on Chapter V of their book, Garcia and
Piaget make a clear-cut choice: it is only with Vieta's symbolic invention that one can
speak of the beginning of algebra. They claim to have found the historical support in
Jacob Klein's Greek Mathematical Thought and the Origins of Algebra (Klein, 1968), a
work to which we will many times return on Chapter X of this dissertation. The key
notion that they borrow from Klein, is the distinction between the conceptualisations of
number in Diophantus and in Vieta, that being a symbolic number in the latter.

The "object” that replaces the general place-holder in the three stages described
two paragraphs above, is "operation"; so, in algebra, they study the succession from
intra-operational, through inter-operational, to trans-operational. The text where those

three stages are characterised, is quite obscure, so we present it in full:

"The intra-operational stage is characterised by intra-operational relations
that present themselves as detachable forms, without transformations from
one to another which imply the existence of invariants, and without
composition among them that conduce to the definition of structures...The
inter-operational stage is characterised by correspondence and transformations
between the detachable forms of the previous stage, with the invariants
which such transformations require...The trans-opcrational stage 1s
characterised by the construction of structures which internal relations

correspond to the inter-operational transformations.” (op. cit., p134)

Some of the examples they provide to characterise each of the stages are: (1)
Cardano and the algebraists of the Renaissance are in the intra-operational stage, as
they work with solutions for various and isolated problems; (11) Lagrange is at the
inter-operational stage, as he examines the nature of the methods employed
successfully to solve cubic and quartic polynomial equations; and, (iii) Galois "opens”
the rrans-operational stage. Other examples are analysed, such as Gauss's work with

quadractic forms.

On the side of psychogenesis, Garcia and Piaget briefly examine the
development of the notion of conservation of equality in relation to the action of adding
to both sides of the equality, and conclude that the mechanisms observed there are the

same they explored in relation to history.

It is not our intention to go beyond this short account, which, nevertheless,
provides elements for a reflection on their model, and the reader is referred to the book

for a much fuller account of the authors' points of view.
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It is clear that the model is strongly characterised by the assumption of the
necessity of the succession intra, inter, trans; Garcia and Piaget attempt to solve the
difficulty of accounting for the necessary order of succession by saying that,

"We could also come to sustain that the [intra, inter, trans) successions
plunge their roots in biology: they [the successions] are that which justify
the dream of an integral constructionism, that will link, through all the
necessary intermediate steps, the biological structures which are at the point
of departure and the logico-mathematical creations which are in the point of

arnval." (op. cit., p172)

The unavailability of such link with biology, which would establish the
necessity of the succession, leaves open other possibilities to investigate. One of them
1s to consider that in history, for example in the 18th century, the notion of structure as
we have now had not been established, and that it may be possible to construct new
mathematical objects from the initial construction of a general structure within which
those new objects can be given meaning!”.

A difficulty in examining those successions in history, is that one has a double
possibility: (i) to examine history "searching" for such successions, ie, choosing an
initial object and attempting to trace the corresponding succession; or, (1i) to examine
each mathematical culture in order to understand the developments within that culture in
terms of its own possibilities, ie, from the point of view of its own conception. If
approach (ii) is adopted, as it is by Garcia and Piaget, than one is left with the task of
explaining why the succession did not take less time to be completed, and also why it
happens for some initial objects but not for others; but this can only be understood by
using approach (i). As we saw with Sfard and with Harper, the "progressivist” reading
of history presents other difficulties.

To give more flexibility to the model, Garcia and Piaget propose that within
each stage, there are sub-stages, which follow the same sequence: intra, inter, trans.
From this perspective, they identify in the development of the Theory of Categories,
three sub-stages, trans-intra, trans-inter, and rrans-trans. Because the trans stage 1S
"stronger" than the other two, there seems to be no difficulty here, but can we think of
intra-intra, intra-inter, and intra-trans sub-stages? Would it not be true that in this case
the characterisation of the stages cannot be directly applied, or we would meet a

contradiction, namely that we reach the last stage in the course of completing the first?

17 For example, to define negative numbers directly as additive algebraic invcrsqs of
positive numbers, and not as "debts,” or as directed numbers in the sense of using .th.e.
number line to define them. On the conclusions to Chapter 3 we examine this possibility

in some more dectail.
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The authors emphasise the "dialectic” character of their model, but we think the
inflexibility of the model creates, at this particular point, for example, an unnecessary
conflict.

Another difficulty is this. Although Garcia and Piaget aim at a general
succession, one that is not content dependent!8, one would have to explain why the
constitution of the notion of "structure" in one branch of mathematics does not
immediately sets the paradigm which is followed by other branches; it is true that one
hundred years after Galois, the notion of structure was firmly in place within
mathematics, but mathematics itself was not reduced to the study of abstract structures,
although 1t may be seen as the abstract study of structures; the subtle distinction
indicates that the tension between the "initial objects” and the "final structure” has not
been resolved, and we think that, in fact, it cannot be totally resolved if mathematics is
to remain meaningful within a culture!9. In relation to psychogenesis, the phenomenon
is more complex to study, and Piaget had to take refuge in the notion of décalage, in
order to explain the failure of the model to account for differences in cognitive
developments where they should not exist according to it (see, in this chapter, the

sub-section on the SOLO Taxonomy).

Underlying Garcia and Piaget's model, we have the notions of assimilation and
of accommodation (op. cit., p246ff), which give to the model its constructivist
character, and leave open the possibility of explaining the interaction between the

individual and the social context. They also say that,

" ..we must differentiate, on the one hand, the mechanisms of acquisition of
knowledge that an individual has at his disposition, and on the other, the
form under which it is presented the object which will be assimilated by that

individual. Society modifics the latter, but not the former.” (op. cit., p245)

Garcia and Piaget's position amounts to say that the internal character of the
cognitive apparatus of individuals is that which keeps knowledge on the tracks, so to
speak, of the successions; another possibility to consider, would be that culture 1s
precisely that which focus the enormous power of our cognitive apparatus in one

direction or the other, but they reject this possibility:

18Cf Garcia and Piaget (op. cit., p33), quoted at the beginning of this subscction.

9Not only because it is through this tension that mathematical modelling becomes
possible, but also because it allows mathematics to retain an unified character that does
not depend on strong reductions such as a set-theoretical foundational program.
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"That the attention of the subject be directed to certain objects (or situations)
and not to others; that the objects be situated in certain contexts and not in
others; that the actions on the objects be directed in a certain way and not in
others: all this is strongly influenced by the social and cultural environment
(or by that which we call the social paradigm). But all those conditions do
not modify the mechanisms that such a pzirlicular biological species—
human beings—needs to acquire a knowledge of those objects, in given
contexts, with all the particular significations, socially determined, that have
been assigned to them." (op. cit., p245)

As pointed out by Collis, it remains to be proved that those "ultimate"
mechanisms can be directly examined, a possibility on which the correctness of Garcia
and Piaget's model depends. It is important to emphasise that, as we saw in the first
paragraphs of this this sub-section, the succession which they present is introduced as
the result of a process which is never discussed directly: we know about it only through
its result, the succession.

SOVIET RESEARCH ON THE TEACHING OF ALGEBRA

If not for anything else, Soviet research in the field can be immediately
distinguished from its "Western" counterpart by its explicit interest in t\he teaching of
algebra at the lower grades of elementary school. There is at once a conflict between
such approach and the canons of Piagetian and other stage-theories of intellectual
development, in particular in relation to the belief that "algebra" requires "formal
operational thinking," and, thus, it cannot—or it should not—be taught to children
younger than 13 or 14 years-old. It is very likely, that Soviet research could proceed
with its investigations precisely for its isolation from Western research, although it 1s
true that Professor Davydov himself faced opposition, from teachers, to the
implementation of his teaching programme?20. There are in general very few sources
available on Soviet research in education, and in particular on the teaching of algebra?!.
We will rely on a paper by Freudenthal, and on an English translation of a paper by
Davydov; that the paper by Freudenthal was published in 1974, but almost no reference
to Soviet research is made by Western researchers on the subject, is at the same time
sad and remarkable, and it is a strong indication of how difficult it can be to absorb that

which contradicts our deep beliefs, even if scientifically supported.

20personal communication from Dr M. Wolters, from the Dept. for Devclopmental

Psychology, University of Utrecht, The Netherlands. '
A number of papers have been translated into Dutch and German, but very few into

other languages.
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A paper by V.V. Davvydov

We will examine now, the paper An experiment in introducing elements of
algebra in elementary school, by V.V. Davydov. It was first published in the
Sovetskaia pedagogika, in 1962, and later translated into English (Davydov, 1962).

The paper is divided in two parts. In the first, Davydov presents the rationale
for the pedagogical approach adopted, and in the second he describes briefly the
resulting teaching programme.

As Davydov sees it, the most important reason for introducing elements of
algebra in the first grades of elementary school, is the need to provide a scientific, as
opposed to a practical, mathematical education. But this has to be understood correctly,
as in fact he does not mean, by scientific, an education that is "theoretical” in the sense
of its links with "reality” being severed. On the contrary, he believes that a teaching

programme to achieve such scientific education, must meet three requirements:

"1) To overcome the existing gap between the content of mathematics in
clementary and secondary schools??; 2) 10 provide a system of knowledge of
the chief laws of quantitative relationships in the objective world; the
properties of numbers as a special form of expressing
quantity must become a special but not the main section of
the program; 3) to cultivaie in the pupils mathematical thinking
methods, and not calculating habits; this involves building a sysicm of
problems which is based on a deeper study of the sphere of dependencies of
real magnitudes (the conncctions of mathematics with physics, chemistry,
biology, and other scicnces dealing with specific magnitudes)...” (op. cit,

p3())23 (our emphasis)

The scientific education proposed by Davydov, is one in which the systematic
examination of the mathematical material support the development of the mathematical
technique and its applications. In relation to algebra, the basis of this scientific
mathematical education is to be found in quantitative relationships24, which, Davydov

says, "[as] numerous observations made by psychologists and educators...[indicate,]

225uch gap cxists in the Sovict school sysiem and it certainly still exists in most Western

school systems. : L
23There is a fourth point, related to the simplification of calculation, but in view of the

availability of electronic calculators and computers, it tends 1o become completely

irrelevant. _ _ '
24Quantitalivc relationships, as used by Davydov, are those implicd in a whole-part
model.
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arise in children long before they acquire a knowledge of numbers and methods of
operating with them.” (ibid.). Here lies the strength of Davydov's approach: on the one
hand, the introduction of algebra is not seen as a "generalisation” of the
arithmetico-numerical knowledge, and, thus, it does not face the problems identified by
so many researchers in the transition between arithmetic and algebra; on the other hand,
on the basis of those first algebraic elements, the construction of a number system is
much more solid, as it is not done on the basis of a collection of procedures and ad hoc
Justifications, but on the basis of a mode of thinking. Moreover, Davydov observes that
the tendency to call those quantitative conceptions "pre-mathematical," is derived from
an undue—according to Davydov—association between "an object's quantitative
characterization with a number":

"And it sometimes happens that the depth of these allegedly
‘pre-mathematical formations' is more important for the development of the
child's own mathematical thinking than knowledge of the fine points of
calculating techniques and the ability to find purely numerical dependencies.”
(ibid)

We will now present a summary of Davydov's programme for the first half of
the first year of elementary school; in Soviet Union, at that time, pupils entered

elementary school at the age of seven.

Theme I. Comparison of magnitudes:

1. Operations involving practical equaling-out and matching of things by
length, volume, Wcighl, composition, €Lc;
a) sclecting the 'same article’ (a sample is given) according o a
given paramcter from the set;
b) making the 'same article' (a sample is given) according 10 a

given parameter.

2. Comparing things according o given parameters and recording the
result of comparison in lctter symbols:
a) actual comparison of things...
b) recording the results
° first only by the symbols >, =, <, without designating
the things
° then, recording the things compared by symbols and

drawings
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¢ finally, by symbols and letters: A=B, A>B, A<B,
solving problems of the type ‘compare those things
by...and write down the result as a formula.’

¢) deriving by a formula the relationships of equality and
inequality: 'If A=B then B=A; if A>B the B<A" etc..

Theme 1. Disturbance of Equality and its preservation. Introducing addition
and subtraction

1. Disturbance of equality if one of its elements increases or diminishes.
A=B - A+e>B lelc.]

2. Preserving of equality by a corresponding ‘balancing-out.’

A=B (— A+e>B) - A+e=B+e [elc.]

3. Solving problems in which these relationships appear

Theme I11. Reduction to Equality

1. A<B — A+e=B [or] A=B-e...('e'is equal to the difference between

A and B) [elc.]
2. A+e=B — A<B [elc.]

3. Solving relevant problems [two baskets of apples, with A and B

apples, and A is more than B, etc.]

Theme IV. Dependencies Between Elements of Structural Equality

A+e=B A-c=B
A<B (byc) A>B (bye)
A=B<¢ A=B+e
c=B-A c=A-B

On the paper a more detailed description of the teaching process is provided.

On the second half of the first year, numbers are introduced as measure—"the
relationship of the magnitude under examination to that accepted as the unit of
measure”—and the arithmetical operations treated on the basis of the preceding

development:

Theme VI, Addiction and subtraction of numbers (by reducing inequality 10

equality) introducing the 'x’

3«7
3(+x)=7 [sic]
x=(7-3) [cic.]
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Multplication and division are also understood in relation to the "formulas.”

The paper's content does not allow us to have any detailed insight into the exact
results of the experiment, but, overall, the indication is that they were positive23. A few
comments, however, are possible.

First, there is the distinctive intention of founding the learning of arithmetic on a
more general framework, in particular the characterisation of pairs of inverse operations
in relation to the equality relationship, which is mathematically sound, as the "undo™
character is more closely related to the idea of inverse elements, and not to inverse
operations. Second, by presenting the notation before the formal introduction of
numbers, the problem of "if it is any number, why not choose one and use it?", but
also, and of immense significance, the idea of "different uses of letters” simply does
not arise: there are, instead, different uses of that algebraic knowledge, an idea which is
in agreement with Bell's conception of a curriculum for algebra (Bell, 1988). Third, the
concept of equality is presented from the beginning as a symmetric relationship, and as
an object, with its properties highlighted.

It is clear that much refinement of the approach is possible, and the task has
been taken on by a group of Soviet educationalists, to which we will refer in the next
paragraphs, and also by Dutch educationalists, who developed a programme for the
first two grades of elementary school based on the results of Soviet research, but have

also extended those results considerably (see, for example, Wolters, 1983 and 1991)

Freudenthal on Soviet research on the teaching of algebra

Freudenthal (1974) published a paper centrally concerned with reporting and
analysing the contents of three chapters of a book edited by Davydov, which was
then—and still is today, as far as we know—only available in Russian (Davydov,
1969).

The paper concentrates on chapters 1V, V, and VI, respectively, Psychological
foundations of solving problems with literal dara, by G.G. Mikulina, Developing
general solving methods, by G.1. Minskaja, and Developing a general method of
solving problems with young children, by F.G. Bodanskij.

We will concentrate in collecting Freudenthal's comments, rather than the actual
content of the chapters, which are conveniently summarised in the paper, where we
also find diagrams produced by pupils and extracts of transcriptions from actual

lessons.

23A test was applicd, and the results are presented. Through the test, however, we can
only assess the direct retention of formulz manipulation rules, but not the overall
impact in the children's thought.
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The first task the paper undertakes, is to understand the principles on which the
traditional teaching of mathematics in the elementary grades—numbers and arithmetic
first—is based, and what kind of support is offered to the alternative proposal.

In the Soviet Union, the traditional teaching of mathematics is justified by the
existence of four "levels of abstraction": in arithmetic, the first is the level of
whole-numbers (7 to 10 years-old), the second is the level of fractions—or guantity
relations—(11 to 12 years-old). In those two levels the numbers are "empirical.” The
third level is that of "arbitrary non-empirical numbers, indicated by letters,” (13
years-old), and the fourth level is that of "ratios and equations, the laws of numerical
relations.” (op. cit., p392ff). Expressing a very strong judgement, which is in
agreement with the results of the research carried out by Davydov and others following
his ideas, Freudenthal says that,

"I think that this order of succession is based upon tradition rather than upon
independent research; just as elsewhere theories are more often created in
order 10 justify old habits than to create new ones." (op. cit., p393, footnote
3)

Davydov's approach has already been characterised a few paragraphs above.

According to the tradition in Soviet schools, where teaching the solution of
word problems takes a good part of the programme, the introduction of elements of
algebra has to be analysed from that perspective. Freudenthal comments on the

traditional use of "arithmetical methods," and concludes that,

"The fallacy of traditional didactics is the diversity of methods according to
the—direct or indircct—wording of the problem. There should be a unique
mcthod, which, however, cannot be rcalized unless letters are used to
indicate unknown magnitudes. But even this is not cnough; the technique of
solving equations can be better acquired within the explicit context of literal

calculus.” (op. cit., p395)

The central notion that is to be used in the new programme, is that of whole and
parts, which can be perceived—although not directly mentioned—in Davydov's paper.
To those general considerations, there follows a summary of the teaching
activity using the notion of whole and part, diagrams of various kinds, and literal

notation.
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The real merit of this approach emerges in full when problems are solved using
the knowledge about quantitative relations gathered in the first parts of the teachin g, and
the examples provided on pages 399-400. We present an extract of the teaching

activity, involving, as far as one can gather from the paper, children 8 to 9 years-old.

"An example from the 37th lesson.

The text was: 'One day a boy read a pages of a book, the next day k -and
both days together c.' It was noted down in three formulas (c=a+k, k=c-a,
a=c-k). The teacher asked the class to substitute numbers for ¢ and c.

Gena F.: a is equal to S, and ¢ is equal to 2.

Misa Z.: Wrong, ¢ cannot be 2. This is very small.

Teacher: Why not?

Ljuda B.: It was 5 pages the first day, and ¢ ié the whole. The whole cannot
be smaller than a part, thus ¢ cannot be 2, for example, it can be 10 or 8.
Teacher: Well let us write ¢ is equal to 8. We still have the magnitude &
left. I propose to write k=4. Or is there another proposal?

Andrej K.: It is equal to 3.

Teacher: Who proposcs another number?

Sasa Z.: k is equal to 8.

Teacher: Still another proposal?

Misa P.: We cannot think up the magnitude k. It is precisely fixed. This
number must be computed, but not thought up. k equals 3.

Teacher: According to which formula must we compute & ?

Anderj S.: k equals ¢ minus a.

Andrej M.: k equals 8 minus 5, that is, 3." (op. cit., p400)

The considerations of Mikulina, the author of the chapter from which this
passage was extracted, concludes that it is perfectly possible to teach young children to
deal with literal representation of whole-part relations even before they learn numbers,
and that this knowledge can be purposefully used in the solution of literal problems.
Moreover, and crucially important, we think, the use of such approach avoids the
distinction between "direct and indirect problems," as both types are treated in the same
way; more than an unity in relation to solving problems, it is the unity of a mathematical
model that is being developed, and this unity may well serve as paradigm for examining
other problems.

The treatment of more advanced topics, in grades 2nd to 4th, is described in the

following section. The conclusions of the author of the chapter, Minskaja, point out
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that the continuation of the teaching approach in those grades proved possible; she also
highlights the fact that

"Compared with traditional views, the algebrisation of initial mathematics
is closely connected to a qualitatively different interpretation of

generalisation and abstraction.” (op. cit., p406)

After examining the solution of problems with equations, in the four initial
grades, Freudenthal comes to his final conclusions. First, he indicates his disagreement
with using the approach only in relation to a small range of types of problems,
suggesting that the approach could be used in the context of more meaningful

problems, but then he says,

"I started my appreciation with pointed criticism in order to finish with well
deserved praise of what is valuable. In vivid contrast with the stress on
subject matter and the complete disregard for all details of teaching method
and style which prevails in Western literature, one is struck by the
manifestation of scrupulous care for details and the clear image of the
didactic process. ..

What is morc important is what I called in the introduction a sound
pedagogical idea behind the experiments. I mean the idea that abstraction and
gencrality are—in many cases—not reached by abstracting and generalising
from a large number of concrete and special cases. They are rather reached by
one—paradigmalic—example, or if this is not available—as in algebra—by
a straightforward abstract and general approach. Algebra as it is traditionally
taught, by making algebraic ideas and laws plausible through ridiculous
examples, is a fake, which does not scrve any reasonable aim. The
experiments convincingly show that algebra can be taught more adequately,

and at an even carlier age than it is now." (op. cit., p412)

2.3 CONCLUSIONS TQ THE CHAPTER

Although not covering in detail all the research into the learning of algebra, this
survey clearly shows that no generally accepted characterisation of algebraic thinking is
available.

Most researchers approach the learning of algebra as the process of abstracting

and generalising from the arithmetic knowledge learned at the initial series of
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elementary school; the Soviet research provides the only exception to this approach that
we could find.

Underlying this evolutionist approach, there are three main beliefs. First, that
thinking algebraically is doing or using algebra, usually including the notion of
"calculating with letters."” Second, that algebra is, in some sense which is not always
made very clear, a generalisation of arithmetic; this position has been criticised, but it
still is quite common. Third, that there exist age-related levels of intellectual
development, and that algebraic thinking can only be achieved by people at the level of
formal operations; difficulties with stage theories have been pointed out, particularly the
lack of stability, within the stages, of the answers given by a same person.

Soviet research has challenged all three beliefs, and as far as we can know,
successfully; the key notion of their approach, is that achieving generality and
abstraction can be done directly, rather than through processes of generalisation and
abstraction from, respectively, particular cases and "concrete” cases. Its theoretical
foundations indicate that it might be the case that building "structures” by first dealing
with the "elements,"” presents an obstacle that is not totally inherent to "structure,” but

to this specific process for constituting them.

The contrast between the SOLO Taxonomy and the Stage Theories, highlights
the difference that there is between categorising responses and categorising individuals'
thinking as a whole; although the latter is an obvious aim of epistemology, and a most
valued would-be tool for educators, it is not clear at all that it is possible to achieve it.

The approach of categorising responses, however, is not enough to reveal how
that knowledge is situated within the learner's mathematical ethos, and for this reason
the technique seems to be better used in the context of broader examination of students’

mathematical performance.

In most of the approaches we have examined, "learning algebra" is strongly—if
not totally—identified with "learning the contents and techniques of algebra.” What
remains hidden in such approaches, is the fact that the content of algebra can be
produced, in many cases, by non-algebraic means, as for example, using areas to
prove that (a+b)2=a2+2ab+b2. In fact, the use of non-numerical models to teach the
contents and techniques of algebra, for example scale-balances and areas, is seen as a
correct way of smoothing the transition from "arithmetic" to its generalised counterpart,
"algebra.” The Soviet teaching approach for elementary school does use whole-part
models to generate the relationships which are to be later manipulated in "literal" form,

but this "handicap" is to some extent compensated by the firm commitment to
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progressing from there to a clearly algebraic approach, as it is seen, for example, in the
treatment of inverse operations26.

Very few researchers actually examined the implications of using geometric and
other analogies in doing algebra, Lesley Booth being a remarkable exception; it seems,
indeed, that this is an area, within the broader subject of learning and using algebra,
that badly needs more investigation.

The distinction between algebraic and non-algebraic thinking in algebra has to
be clearly understood, and the interplay between them examined. The primary aim of
this dissertation, is to establish a characterisation for algebraic thinking that enables us
to approach those questions on a sound basis; moreover, in the course of making clear
the adequacy and usefulness of our characterisation of algebraic thinking, we examine
some aspects of non-algebraic thinking in algebra.

From the analysis of the research previously carried out, four points emerged,

in relation to which our research exercises as much care as possible:

(i) to avoid focusing the analysis on the use of a given notational form, in
particular the use of letters, unless there is other evidence to support that its
use or lack of use corresponds to, or tells us about, the underlying mode of
thinking;

(i) to examine pupils' solutions always aiming at the underlying model that
guided the solution process—be the solution correct or incorrect; the
"outcome" is to be understood as the "visible" solution together with
underlying model. Whenever it is possible, we will examine the
possibilities and impossibilities of the model used by the students in
relation to the problem proposed;

(iii) in the analysis of the history of algebra, to avoid a "progressivist” reading;
each mathematical culture will be examined "internally," ie, in relation to its
own conceptualisations, possibilities and impossibilities. Only from this
perspective, the relation between different mathematical cultures is to be
analysed: the assimilation, rejection or re-interpretation of "imported”
knowledge into the conceptual framework of a given culture;

(iv) overall, to examine the relationship between algebraic thinking—as we

define it—and the algebraic activity, in order to understand in which ways

2611 would be unwise to belicve that there can be an approach which completely avoids‘
the problem of gencrating the first relationships to be examined; it scems, though, that if
the step towards cxamining thosc relationships algebraically is taken soon cnough,. .
subscquent difficultics arc minimised. Also, there are clear advantages In not associating
numbers, as measures, to the parts and wholes, because we can than focus on a general
reasoning procedure which is not dependent of or based on calculating particularitics.
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the former may drive the latter, but also the ways in which the latter
highlights the former.
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3.1 GENERAL INTRODUCTION TO THE HISTORICAL RESEARCH

THE NEED FOR AND THE ADEQUACY OF THE HISTORICAL RESEARCH

Our discussion of mathematics as part of a culture, and our understanding of
learning as a culturally bound process, naturally lead to the need of investigating the
learning of algebra from that perspective. It is not reasonable, however, to expect that
by directly questioning our students on what they think about numbers, algebra,
solving problems, or mathematics in general, we can get consistent, precise
information, exactly because such "metamathematical” considerations are usually not a
part of their lives; in many cases those questions are simply considered absurd by them.
If we ask the mathematician, we will, of course, get answers that reflect a modern
conceptualisation of mathematics; the discussion itself may serve to raise a number of
interesting points about this conceptualisation, but usually it sheds little light on other
forms of conceptualising mathematics.

The study of the historical development of algebra, on the other hand, is the
perfect source for such an inquiry. Our informants are mature thinkers, well used to
thinking about their activity, and, more often than not, they do not represent only
themselves, but a trend, as people who achieved some degree of public recognition. By
studying their mathematical production—which many times include "nonmathematical,”
ie, non-technical, considerations—we can learn about the intention of their work,
about the ways in which mathematical objects and concepts are treated, and we can
determine, at least in most cases, around which of those the algebraic activity is
organised. The study of history, then, can provide us with clusters of mathematical
concepts and objects and of conceptualisations of the mathematical activity, and those
clusters, in turn, provide patterns against which students’ mathematical activity can be
examined.

What this historical inquiry cannot provide, however, is a way of arranging the
different aspects and modes of the algebraic activity in a "linear progression” which
could be used to justify, in some sense, the adequacy of this or that order of
presentation of the content in a programme for teaching algebral, and if such "linear
progression” is seen in history by some authors, it is precisely because they are not
following history, but their own conceptual frameworks. Our investigation of the

historical development of algebra will establish the truth of this claim.

ITo exemplify it bricfly: the concept of number in Babylonia is much richer than its counterpart ip
Classic Greece: the same Vieta that introduces literal notation for the coefficients of an equation rejects
negative numbers; and in the 17th century Pascal and Barrow—in his time considcre.d a mathematician
second only 1o Newton—objccted algebra because it lacked justificauon (Cf. M. Kline, 1990, p279).
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AIMS AND METHODOLOGY

In the context of our research, there are three objectives to be achieved with a
study of the historical development of algebra.

First, we want to determine to what extent it is possible to identify, in the
mathematcal cultures examined, a knowledge that can be said to correspond to what we
call today "algebra.” The central criteria used to identify "algebraic knowledge," will be
that of a piece of knowledge that explicitly deals with manipulating relationships
involving number-expressions? and arithmetical operations. It is in this tradition that
algebra develops historically, and until quite recently in history it was in fact the only
tradition in algebra. That in many cases numbers are explicitly associated with
geometric magnitudes, does not affect our criteria, but if it is the case that a
mathematical object which is clearly recognisable as number is dissociated from
another mathematical object, we will not recognise knowledge related to the latter as
having to do with algebra. In the case of Greek mathematics, this aspect will be
examined 1n some detail, and our distinction shown to be adequate.

Second, this algebraic knowledge that we identify, has to be understood in the
context of the cultures where it was created, ie, we must determine which is the
meaning of that knowledge within those cultures. This is not only a requirement for the
correct understanding of the knowledge achieved in a historical perspective—as we will
show in the following paragraphs—but it is essential if we want to get, from history,
insights into the process of learning algebra and developing an algebraic mode of
thinking, by individuals. A piece of algebraic knowledge has to be charactenised in
relation to: (i) the possibilities of the mathematical culture where it 1s produced, ie, the
ways in which the mathematical activity, mathematical concepts, and mathematical
objects are conceived: and (ii) the intention of the knowledge produced, ie, the scope
and character of that knowledge as perceived within the mathematical culture which
produces it.

Third, it is precisely from that perspective that the methodology employed to
study the historical development of algebra can be seen as paradigmatic for the study of
the development of an algebraic mode of thinking by individuals, as long as this
development is understood—as we do—as the insertion into an aspect of a
mathematical culture, and the mastery of its technical means. It is important, then, that
along our historical study, the reader's mind is focused on the relation between the way
in which mathematical objects are conceived, the ways in which mathematical

methods—in particular algebraic methods—intend their objects in different

2We could take, for cxample, Martin Ohm's definition of "expression™: ™....an arbitrary numerical
symbol or as an arbitrary symbol which has the nature of a numerical symbol.” (sce, Novy, 1973, p86)
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mathematical cultures, and the limits to the production of algebraic knowledge

intrinsically expressed in those conditions.

In our historical investigation, we will be concerned with the broader cultural
context to which each of the mathematical cultures we will examine belongbut only to
some extent, as we explained on Chapter 1. We will be concerned with vertical
developments—ie, along time, within a same culture—but only to the extent to which
such development can elucidate changes in conceptualisation, and not in relation to
technical developments per se. The question of "sources,” for example whether
al-Khwarizmi's Algebra is or not a compilation of Babylonian and Hindu mathematics,
is not a central concern, unless 1t can help us to understand the conceptual framework
of a period, or to highlight the fact that a given mathematical culture deliberately
disregarded technical achievements 1t could have borrowed from another culture.

In their technical aspect, the mathematical results of none of the cultures
examined will be described in detail, apart from the few cases where we judged them to
be worth as illustrations of the points we wanted to make, or to make possible the

comparison with other results.
RATIONALE FOR THE METHODOLOGY USED

Broadly speaking, the historians' approach to the history of mathematics can be
divided into two groups.

The first group, to which Bourbaki and van der Waerden, belong, see the
history of mathematics as the history of the production of mathematical results.
Matzloff (1988, pS5) points out that one of the central characteristics of this approach is
that "there is only one universal science, teleologically structured from its ongins
according to categories of thought comparable to those of present day science.”" (our
ranslation)

To a second group, to which we can associate the names of Rashed, Marntzloff,
Unguru, and Jacob Klein, the history of mathematics has to be studied as & history of
mathematical cultures. Klein will adopt the view that it is necessary to understand the
philosophical context underlying a culture, if we are to understand the mathematics it
produces. and obtains very elegant and deep results with this approach; Rashed will
prefer what he calls an "epistemological closure,” ie, to examine the development of

algebra "internally,”

"Par ‘cloturc épistemologiquc’, je voudrais dirc simplement qua partr d'un certain seutl,

a partir d'un certain stade dc développement de la science, un théoreme dc I'algtbre est
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produit, et seulement produit, par une séries d'autres théoremes qui existaient

auparavant; il n'y a pas des raisons extérieures." (Rashed, 1984, p67)

Such "epistemological closure” has the merit of forcing us to look much more
closely to the presentation of the mathematical treatises, and produces important
insights, but 1t also points out to the possibility of examining the mathematical
production of an individual—a student solving problems, or a carpenter using
mathematics in his job—and to investigate not only the technical content of the
mathematics being used, but also the way in which this knowledge is organised and
treated.

The differences between the two approaches—the result-wise and the
culture-wise investigations—have some far reaching consequences.

More frequently than not, isolating the technical result from the cultural context
produces strong distortions of the historical reading. Martzloff (1988, p57), for
example, argues that the technique of "translating" ancient terms by means of modemn
terminology involves that assumption that, as one obtains the same results, ancient and
modemn procedures are but superficially different, two forms of expression of a same
"deep reality.” On the other hand, he says, there is a great risk involved, as modern
concepts are more general, and one can easily attribute to the ancient terms more than
they actually meant or intended. He also quotes, on a footnote, Marrou, who says that
"Sous prétexte d'atteindre a la réalité profonde, on substitue en toute ingénuité au réel
authentique un jeu d'abstractions réifiées..." We will show, 1n the course of our
investigation of the historical development of algebra, that Diophantus' algebra does not
admit the substitution of letters as generic coefficients for the specific coefficients he
uses, and that negative numbers in the Chinese fang cheng cannot be understood as a

general mathematical object ransferable to other methods within Chinese mathematics.

A result-wise reading of history is also bound to produce the impression that
mathematics proceeds linearly, from counting stones to the sophisticate theories of the

20th century, which is, of course, untrue. Novy (1973, p1) reminds us that

"The nature of mathematics, morc than of any other discipline, tcmpts one (o interprel
the history of mathematics only as a scquence of logically linked discoverics which

culminates in the present state of science...”

but such an approach does not tell us anything about the factors that precluded, in a

given mathematical culture, the development of "stronger” results or methods—as, for
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example, in the case of Diophantus not dealing directly with "generic" coefficients—nor
it tells us of why an axiomatic treatment of algebra was not developed in Chinese
mathematics. Summing up beautifully, Rashed (1984, p259) says,

“Comment, en effet, déterminer les véritables changements de style qui purent survenir
alors, et localiser avec rigueur leurs manifestations, si Bachet et Fermat succedent tout
simplement a Euclide et Diophante? Comment, dans ces conditions, se garder d'un

jugement qui n'‘exprime le plus souvent que l'incapacité de discerner les différences?”

In relation to the overall objective of our research, we are exactly interested in
learning about the different ways in which algebraic knowledge can be conceived and
produced, interested in understanding what precludes or bolsters the development of an
algebraic mode of thinking, and the only useful reading of the history of algebra is one

that explores how those aspects are manifest in different mathematical cultures.
THE RELEVANCE OF THE HISTORICAL RESEARCH IN THE OVERALL RESEARCH

The findings of our historical research will help us to establish at once the
cultural character of the development of an algebraic knowledge and of the development
of an algebraic mode of thinking. In different mathematical cultures, we will find a
variety of approaches to number, providing a number of insights into how individuals’
conceptions of number may affect their understanding of algebra; we will also find
different ways of characterising and organising the mathematical activity, and, again, a

number of insights important to mathematical education are produced.

As we have said before, it must be clearly understood that in no instance it is
our objective to produce any sort of "hierarchy" of levels of development of algebraic
thinking, as it is exactly our thesis that algebraic thinking must be understood as an
intention, and the development of an algebraic knowledge seen both as a result of
employing algebraic thinking and as the development of tools that give greater power
and reach to algebraic thinking. As we learn from history, algebraic thinking drives the
development of algebra, but not exclusively, although it is only the realisation that
extrasystemic interpretations have no relevance 1o the algebraic acuivity that makes
possible the establishment of algebra as a theoretical discipline, with the subsequent
changes in the character of the algebraic acuvity.

The historical development of algebra shows that the algebraic activity involves
a tension between the inner structure of the elements in an algebraic system—for

example, what complex numbers or negative numbers "are,” or the fact that
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permutations do not "look like" numbers—and thinking algebraically. We think that
there is an extremely important insight for the teaching of algebra, here, namely, that
the teaching of algebra has to address this tension directly, and this implies that the
development of an algebraic mode of thinking should become an explicit objective of
teaching, rather than wishing that pupils would simply "absorb it" through the learning
of algebraic techniques.

It will also be seen that there 1s a tension—of a different sort, though—between
"solving problems" and making algebraic thinking explicit, and Vieta's Analytical Art
has the double ment of highlighting this tension and of providing a notational form
which will allow algebra to develop in the direction of "method," rather than that of
"solving problems."” Traditionally, algebra is introduced in school through "solving
problems with equations.” Our findings suggest that this might not be the best
approach, but this suggestion only implies that "solving problems algebraically” be
taken as distinct from, not secondary to, activities which aim is deliberately the
development of an algebraic mode of thinking; moreover, we think that the activity of
"solving problems algebraically” is better understood as modelling, in which case the
nature of an algebraic model can be distinguished from that of a geometnc,
combinatorial, or functional model, and the nature of algebraic thinking can undergo

further clanfication.

3.2 ASPECTS OF GREEK MATHEMATICAL CULTURE

GREEK DOCTRINES OF NUMBER

The three doctrines which we will examined, are associated to the names of
Pvthagoras, Plato. and Aristotle. These three philosophers are of particular interest to
us not only because their work had an immense impact in the formation of our modemn
western civilisation, but also because there we find a discussion of the Greek
conceptions about mathematics, and in particular Greek conceptions about numbers.
There should be no doubt that Greek mathematics—or Greek philosophy, for that
matter—was not as homogeneous and linearly developing as our exposition might
make it seem, and also that what we present here is a compact version of a complex
subject. In respect to the relation between Greek philosophy and mathematics, we think
that Jucob Klein's Greek Mathematical Thought and the Origin of Algebra is

unsurpassed. and should be a central reference in any study concerned with the subject.

6
Historical Study 6



Pythagoras, the first philosopher we will consider, lived in southern Italy about
582-500 BC. He—or more precisely, his school, the Pythagoreans—is credited with
the notion that everything in the Universe is number. An example is that of the relation
between the lengths of strings and the tones they produce, so an octave in relation to the
original tone is produced by a string which length is in the ratio 1:2 to another string
(the other characteristics of the strings being the same), and a fifth is produced when
the ratio of the lengths is 2:3.

The distinctive aspect of this Pythagorean notion, is that what it is saying is not
that "the Universe can be expressed through quantitative relationships,” as a modern
physicist might say, but that "the being of the Universe is numbers." The two pillars
supporting this conception are exactly those which define the Pythagorean concept of
number. First, number 1s only a whole number, and even more, a definite number of
things. Second, number for them, could not be understood "outside" the world of
things34. In other words, number is only manifested in the manyness of a collection
of things>, at the same time it was that which allowed us to know the Universeb. It is as
an immediate consequence of the nature of number being assimilated to that of counted
collections, that there has always to be a unit, representing "what is being counted,"
and only whole numbers can be conceived. Ratios of whole numbers are never taken as
"fractional numbers" in our sense (as we will see in many passages ahead).

The well known proof that the diagonal of a square is not commensurable with
its side, deeply shook the Pythagoreans' beliefs, and one has to have in mind that
Pythagoras was not "simply a mathematician"; mathematics occupied a very central role
in his philosophy, which embraced mystical, cosmological and moral considerations
(Abbott, 1985). Nevertheless, nor the Pythagoreans neither the other Greek
philosophers opted for "extending” the notion of number to accommodate those new
“ir-rational” quantities; instead, their mathematics, following the philosophical

demands, adheres to a strict separation between numbers and geometrical magnitudes,

3Klein (1968, p67): "Aristotle stresses again and again that 1t is characterisuc of the Pythagorean view
that ‘they do not make number separable [from the things]; this means that they do not go so far as o
suppose the existence of ‘purc’ numbers of ‘purc’ units, although they were the very men who .
concerned themselves with numbers not for a practical but for a theoretical purpose, who conceived of
the arithmos as arithmos mathematikos, as scientific number.”

*Morris Klinc (1990, p29): "When the carly Pythagorcans said that all objects were composed of
(whole) numbers or that numbers were the essence of the universe, they meant it literally, because
numbers were o them like atoms arc to us.”

SKlein (1968, p65): "The Pythagorcan mode of definition is, then, chara_cucrich by Lhe attempt to
define the being of things by reducing and assimilaiing them to conditions ‘primarily’ exhibited in the
rcalm of counted collccuons as such...” o

K lcin (1968, p63)" Their [the Pythagorcans] chicf object was to understand the ‘order within
hcavens™; also, page 67, "Thus the science of the Pythagoreans _is an onlolqu c_)f (he.el cosmos, a
doctrine concerning the mode of being of the world and of the things comprisced 1n 1t
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and geometry, developing free of such "limitation", is definitely brought to the
forefront of Greek mathematics.

In respect to our overall argument, the important point here is that the
Pythagoreans did not deny the study of "irrationals,” but the only mode! that allowed
them to continue their study was that of geometry, ie, they made sense of irrationaliry
in the context of geometric figures; not only they did not, they could not conceive the
study of geometry as relating to that of numbers’. Nevertheless, the Pythagarean study
of number will continue to make use of forms (eg, the gnomon, as well as the notion
of figurate number8), which we may well read as geometric, but which have in fact a
deeper significance to the Greek study of number, as we will see in relation to the

notion of eidos.

In Plato, who lived in 427-347 BC, in Athens, we find a reformation of the
Pythagorean conception of number, mainly in that for the Pythagoreans number was
the being of things themselves, whereas 1n Plato, the possibility of counting, which
was on the basis of any knowledge of number (Cf. Klein, 1968, p46)%, is derived from
the existence of a realm of pure monads!9, or units, distinct from that of the counted
things!1+12. According to Morris Kline (1990, p43), the distinction between objects of
sense and objects of thought—which will remain in Aristotle—is probably of Socratic
origin!3. In the Pythagorean conception, the fact that number was always "a number of
something," and that number always intended the counted things themselves, in their
multitude, accounted both for the determinedness of each number and for the fact that
number is always a definite number. In the Platonic view, however, there are no
"specific” collections in the realm of pure monads, and the latter can only be accounted

by introducing the notion of eidos (“literally: 'looks'; kind, form, species, 'idea’;

7As we will sce, this alone is sufficicnt to seriously undermince the claim of a geometrical algebra 10
be found in Euclid's Elements.

8Squarc, triangular, pentagonal, cic.

9And, thus, any possibility of a ncgative or irrauonal number is completely precluded.

0Which arc not in any way presupposcd by the Pythagorcan concepuon, as Klein notes on page 69.
HKicin (1968, p70): "Especially in discussing numbers, Aristotlc never ures of stressing that Plato,
in opposition to the Pythagorcans, made them 'scparable’ from objects of sense, so that they appear
‘alongside perceplible things' as a scparate realm of being.”

12K Icin (1968, pSO): "...now our concem is rather with undcrstanding the very possibility of this
activity [counting], with understanding the meaning of the fact that knowing 1s inv_o_lvcd apd Lh_al there
must therefore be a corresponding being which possesses that permanence of condition which first
makes it capablc of being known'... What is required [in the Platonic doctrine] 1s an object which has a
purcly noctic [noetdn. object of thought] character and which exhibits at the same ume all thg: _
characteristics of the countable as such. This requirement is exactly fulfilled by the ‘pure’ units, \yhnch
are ‘nonscnsual,’ accessible only to the understanding, indistinguishable from onc another, and resistant
1o all parution (Cf. Pp. 23{f and 391, also p53 [of thc Republic]).” ‘ | '
]3Morris Kline (1990, p43) refers to this distincuon as that "between abstraction and matcrial objects”.
although tempting, given the modern conceptualisation, Kline's formulation does not apply correctly.
In Plato, the purc monads arc not abstractions.
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sometimes: 'figure'’; Translator's note to Klein, 1968)14.15.16_ Here. it is the eidos,
and not number, that is to be the object of arithmetic ("Only the arithmoi eidetikoi make
something of the nature of number possible in this our world." Klein, op. cit., p92).

Before we progress any further, it is necessary to clarify a distinction essential
in Greek mathematics, that between arithmetic and logistic. In Heath (1981, vol 1,
p13ff) we find that,

"Arithmetic, says Geminus [Rhodes, 1st century BC), is divided into the theory of
linear numbers, the theory of plane numbers, and the theory of solid numbers. It
investigates in and by themselves, the species of number as they are successively
evolved from the unit ...As for the [logistic], it is not in and by themselves that he
considers the properties of numbers but with reference 1o sensible objects; ... The
scholiast to [Plato's] Charmides is fuller still: 'Logistic is the science that decals with
numbered things, not numbers ... Its subject-matter is everything that is numbered. Its
branches include the so-called Greek and Egyptian methods in multiplication and

division...”

Arithmetic 1s a science, an episteme, and logistic an art. The crucial reason for
this distinction lies in the indivisibility of the unit. The logistician can speak of and
operate with fractions by virtue of the bodily nature of the objects being counted, which
may be divided at will, while the arbitrarily assumed unit of calculation, an apple, for
example, still remains intact. This is not that case in the realm of pure monads, as the
division of the unit can only produce—paradoxically—an increase in the number of
units, as they are all the same.

In Plato, then, the eidos provide a delimited object, and a notion that solves the
difficulty of number being one and many at the same time: number 1s always

"many,"17 and the eidos to which it belongs is "one"18.

14The notion of eidos in Greek mathematics is a complex one, but instead of trying to offer a
downright "definition,” we preter 1o let it gamn substance as we repeatedly usc it in our argument.
I5Kein (1968, p56): "Preciscly because the arithmos as such is not one bui many, its delimitation in
particular cases can be understood only by finding the eidos which delimits its muluplicity, in other
words, bv means of arithmetike as a theoretical discipline.”

16Typical examples of eide arc the odd, the cven, the odd times even, for example. Also, the
tnangular, the square, ctc, as in figuratc numbers.

K lein (1968, p46): "...the arithmos [number] indicates in cach case a definite number of definite
things...it intends the things insofar as they arc present in this number, and cannot, at Icast at first, be
scparated from things at all.” : .

”‘Also‘ Klein (1968, p59): "...the absence of any mention of cither arithmos or arithmoi 1n the
definitions of arithmetic and logistic in the Gorgias and in the Charmides ... expresses the fact that the
multitude of arbitrarily chosen asscmblages of monads is accessible o episieme only through the
determinate eide which can always be found for these assemblages...”
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The introduction of the pure monads, which may seem a simple step in view of
our “modern” conceptualisation of number, is crucial enough to produce Klein's
observation that ,

"The thought of 'pure’ numbers separated from ali body is originally so remote that it
becomes the philosopher's task precisely to point out emphatically the fact that they are

independent and detached, and to secure this fact against all doubL" (op. cit., p71ff)

Now, this "somatic” nature of numbers which is to be substituted by Plato's
construction, seems to be the source of many obstacles students face in dealing with the
internalism of algebraic thinking, for example in relation to negative numbers; also,
many of the students we worked with in the experimental part of our research, failed to
produce "purely numerical” models to solve the problems we proposed, suggesting that
the "unknown" or the "indeterminate” number could only be dealt with by recourse to a
"somatic” interpretation of some kind. It is true that Plato’s model certainly does not
allow for negative numbers, as the pure monads are conceived in a way to allow the
"replication” of collections of counted things, but at the same time, it is this
construction that gives arithmetic the status of episteme, and allows Aristotle to
elaborate further to achieve a conceptualisation flexible enough to provide grounds for
Diophantus’ work!9. We think it is adequate, thus, to point out at this early stage, the
roots of such a deep reaching process, so we can be alert to other aspects in it that may
provide us with insights into the obstacles faced by our students.

Plato's construction involves a much less evident difficulty: since the eide are
the objects of arithmetic, the general notion of number is not possible, once—as
Aristotle noticed and criticised—each eidos has its own nature20. Plato's project of a
theoretical logistic is prevented by this difficulty2!, and only with Aristotle it becomes

possible.

Aristotle (384-322 BC, born in Macedonia) was for 20 years pupil and
colleague of Plato. In 355 BC he founds the Lyceum, in Athens (which comes to be

"9Which, in wrn, becomes the object of a much later reinterpretation that s 1o a good cxtent
responsible for our modern view of number and of algebra.

2010 Aristotle, this difficulty is solved by attributing to the eide a classificatory role, but not a
constitutory onc.

2iThe objective of a theoretical logistic would be 1o offer a "scientific” treatment of number as
counted, ic, in ils manyness, as opposcd 1o the treatment offered, by arithmetic, 10 n_umber as one, ie,
the eide. As Klcin (page 23) puts it, "...theorctical logistic arises from practical loglsllc"whgn its
practical applications arc ncglected and its presuppositions are pursued for its own sake.” With number
as counted, ie, with the logisticians, fractions were allowed by virtue of the qully nature of the objects
being counted, but this fractioning of the unit is exactly what is not pos_snble n the realm of pure
monads and that which led Plato to turn to the eidos as the object of arithmetic.
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known as the Peripatetic school). In his doctrine, Aristotle operates a radical
transformation of the Pythagorean and Platonic conceptions of number. Instead of
positing, with Plato, that there is a separate, independent, realm of pure monads,
Aristotle argues that the pure "numbers" are obtained by abstraction from (definite)
collections of things. It is necessary, we think, to emphasise that this position is also
substantially different from that of the Pythagoreans, as for them, number is identical
with the being of things, whereas in Aristotle they are distinct, although inevitably
dependent of, the being of things. This situation is arrived at by postulating that the
"pure” numbers arise by disregarding the sense-related qualities of the counted
collections?2, and at the same time asserting that number exists only as long as things
are being counted?3. In Aristotle's framework, three types of numbers are
distinguished: (1) the arithmos eidetikos, the idea-number; (ii) the arithmos aisthetos,
which corresponds to the things themselves, which are present for perception in this
number (amount); and, (ii1) the arithmos mathematikos or monadikos, which "shares
with the first the 'purity’ and 'changelessness’ and with the second its manyness and
reproducibility.” (Klein, 1968, p91). The numbers with which the arithmetician deals
are objects of thought, although abstracted from collections of sensible objects, and the
noetic—as opposed to "somatic”—character introduced by Plato is preserved.

In Aristotle, "A number is [only] that which has been counted or can be
counted.” (quoted by Klein, op. cit., p107) Number is revealed only in the process of
counting, and not by virtue of each number by which we count being available through
a "pure" number that exists independently and before any counting. It is in this sense
that number is "...derived from the experience of counting multitudes and of culling
from them those different formations 'by abstraction'.” (Klein, p107) A most important
consequence of all this, is that it is impossible, in the context of the Aristotelian
conception, to conceive a number that is neither known nor intended to be known
immediately.

One crucial aspect in Aristotle’s conception of number, in fact that which makes
Plato's project of a theoretical logistic possible, appears in his solution to the problem
of the dual "one-many" nature of numbers. In the Aristotelian framework, this question

is solved by observing that counting is possible only insofar as the things being

22chin (1968, p104N"| Aristotle:] The mathematician makes those things which arisc from
abstraction his study, for he views the after having drawn off all that is scnsible. ..and he leaves only
the {object of the question) 'how many’ and continuous magnitudes.(Mctphysics, K3, 1061_a
28f0)"...Not original 'detachment’ bul subsequent ‘indifference’ characterizes the mode of being of purc
numbers..."

23Kicin (1968, p101): "...thc asscruon 'three trees’ presupposels) the asscrtion 'three,’ but what the
assertion ‘threc' intends has no cxistence ‘outside of the trees of which there arc said 1o be three... Al the
root of this Aristotclian conception lics the ‘natural’ meaning of arithmos; the asscnion that certain
things arc prescnt 'in a certain number’ means only that such a lh‘ing Is pr_cscnnl' in just this defimite
multitude: "To be present in numbcer is 10 be some number of a [given] object.
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counted—after the "disregarding" of its visible qualities—become homogeneous, ie
they are all the same. But this sameness is expressed exactly in the existence of a
common measure, a unit :

"[Anstotle:] For each number is 'many’ because each is [made up of] ‘ones' and because
each is measured by [its own] ‘one’.’ (Metaphysics, 1 6, 1056 b 23 f....) In this sense
the ‘one’ (or the one thing subjected to counting) makes counting and thus the
‘counting-number’ possible... The priority of the one over number does not follow from
a relationship of genus over species, but rather from the character of the one as
'measure’...We comprehend a number as one because we do our counting over one and
the same thing, because our eyes remain fixed on one and the same thing." (Klein,

1968, p108)

This approach enables one to deal with fractional parts, not by "fractioning” the

unit—which 1is, of course, indivisible—but by using different units: to speak of % 1s

simply to speak of five % 's, where % 1s a unit, and not a number in its own. With

Arnstotle, "number is a multitude measured by a unit” (Klein, p109; our emphasis). A

crucial shift from Plato and Pythagoras, is that here the pure unit is the property of
heing a measure, rather than being a thing itself. It is precisely this characteristic that
produces the flexibility necessary to Diophantus’ work, and explains why his main
work can be called Arithimetica, a science, at the same time it deals with fractional
parts, an activity previously restricted to logistic. A second shift 1s seen in the role
played by the eide, which are now much less significant?4; we'll see, in fact, that in
Diophantus they have only an instrumental function, whereas before they were part of

the core of the possibility of understanding nuwmber.

Summarising, we saw in the course of this brief examination of the three most
influential doctrines conceming number in Greek mathematics, that the conceptions
contained in each of those doctrines, far from simply being a matter "for philosophy,”
played a major role in determining what could and could not be done in the Greek study
of numbers. Plato's framework allowed for a somewhat "general” treatment of number
through the study of the eide, but it made any attempt to include fractions in this study,
impossible. Aristotle's framework, on the other hand, allowed for the treatment of

fractions in the form of “numbers of fractional parts,” but limited the study of numbers

24K ein (1968, p110): "The 'cven, the ‘odd,’ the ‘even-times-odd,’ eic.,...ar¢ now no more than the
'peculiar charactenistics' of numbers... They represent merely a quality 0( numbers... The 'what of each
number insofar as it is a number 1s preciscly that quanmy which it indicates; thus 'six’ units are not in
themsclves ‘two umes lhrcc units or ‘threc Limes two' units, for this indicates only their ‘composite

quality,” but 'once six'...

Historical Study 72



to that of numbers that are either known or only as yer unknown, ie, intended 1o be
known. Moreover, by determining what is to be called number, those frameworks
suggest—if not determine—what can be done with those numbers: From Plato to
Aristotle, we move towards a more "natural” conception of number, but as a result we
are held back to a context in which numbers are very much like things, and neither the
assimilation of counting to measuring nor the assertion that mathematics deals with
objects of thought will take us far away from the context of "the natural world." This is
hardly surprising, as the objective of Greek episteme grew more and more to be the
understanding of the natural world; the association between mathematics and "the
world" as we find in Pythagoras ("everything is number"), in Plato's postulating of the
existence of a world of ideas independent of us, or in Aristotle's "natural” conception
of number, all point in that direction.

Common to the three doctrines we examined, are the indivisibility of the unit,
and the conception that one is the principle of number but not [a] number itself. Also, in
all three cases, number means "whole number” and "a number of..."; number is a
definite number of things, be they pure monads or objects of the sense.

Another feature common to them is that number has a discrete nature, as a
consequence of them always arising in relation to counting. Geometric magnitudes, on
the other hand, are always continuous, and on this basis alone a first distinction could
be established between the two realms, as the Pythagoreans in fact did. On the
arithmetical Books—VII, VIII, and IX—Euclid represents numbers by lines, but this
is to be seen in the framework of the Aristotelian conception of number, as the
possibility of representing number, understood as a measured multitude, in a
convenient way25:26_ It is not the case that in Euclid number become continuous; the
true conception has to be permanently kept in mind, or we are bound to misunderstand

the texts.

Before moving to the Greek mathematical production "proper”"—Euclid and
Diophantus, in this case—we have to deal a little more with the problem of
incommensurability. It is frequently asserted that the discovery made by a Pythagorean

was that "the ratio of the hypothenuse to either side [of an isosceles rectangle triangle]

25Klein (1968, p11): "The ‘arithmetical’ books of Euclid (VII, VII, IX) dircctly mirror this ontological
transformation. .. The ‘purc’ units of which the numbers to be studied arc compounded are here _
understood precisely only as ‘wnits of measurement’ such as can be represented most simply by straight
lincs which arc directly measurable (rather than by points...), quite indcpendently of vyhelher they form
a 'lincar' (prime), ‘plane,’ or 'solid’ number. The same approach is indicated by Dcﬁmuons'8, 9,11, 12,
14 of the seventh book (namely that of cven-limes-even, even-lmes-odd, odd-umcs-odd, prnime and
composile number. .. which delinc the nature of cach number with respect 1o the measuring character of
its factors. .." B
2(’Morris Kline (1990, p136), refers to the usc of lines 1o represent numbers as a way of visualising

them,
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is the irrational number 2 " (eg, Abbott, 1985, p110). Although, of course, correct
from the point of view of our understanding of number, this formulation hides many of
the problems faced by the Greeks. What in fact they concluded was that the ratio
between the side and the diagonal of a square is not the ratio between two numbers, ie.
whole numbers. The Pythagorean "numerical” theory of proportions could not deal
with incommensurability, so the finding did hurt not only the non-mathematical, so to
speak, aspects of their philosophy, but also the certainty of proofs that depended on
such a theory of proportions (Heath, 1981, vol 1, p326).

The theory of proportions developed by Eudoxus (Asia Minor, c408-c355 BC)
solves the problem of incommensurability, but not, as Dedekind for example did, by
legitimating the existence of irrational numbers. Instead, Eudoxus' theory is
exclusively concerned with geometric magnitudes, and not intended to be applied to
numbers?’. In a very reassuring passage, Morris Kline (1990, p48ff) says that,

"Eudoxus introduced the notion of a magnitude...It was not a number, but stood
for entiies such as linc segments, angles, areas, volumes, and times which could vary,
as we would say, continuously. Magnitudes were opposed 1o numbers, which jumped
from onc value to another, as from 4 to 5. No quantitative values were
assigned to magnitudes. Eudoxus then defined a ratio of magnitudes and a
proportion, that is, an cquality of two ratios, 10 cover commensurablc and
incommensurable ratios. However, again, no numbers were used to express
such ratios. The concepts of ratio and proportion were tied to
geometry...What Eudoxus accomplished was to avoid irrational as numbers.” (our

cmphasis)

Now, neither arithmetic nor a theoretical logistic—at the time of Eudoxus still
not possible— could deal with incommensurability, precisely because number was
always a whole number, and only Eudoxus’ theory provided a way of dealing with it.
As a result, geometry and number are forced apart, and geometry assumes the leading
role by virtue of offering a way out of the central ontological problem of Greek
mathematics of that time. Morris Kline (1990, p49) points out that "The Eudoxian
solution to the problem of treating incommensurable lengths...actually reversed the
emphasis of previous Greek mathematics. The early Pythagorean had certainly

emphasised number as the fundamental concept..."

2THeath (1990, vol 1, p90): "This subject [the irrationals] was rcgarded byvlhc Qrccks as belonging o
geometry rather than arithmetic. The wrationals in Euclid, Book X, arc suz;:ghl lines or arcas, and
Proclus mentions as special topics in geometry matters relaung (1) to positions (fqr nu‘mbcrs hayc no
positions), (2) to contacts (for Langency is between continuous things). and (3) 10 irrational straight
lines (for where there is division ad infinitum, there is also the trrauonal).”
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It 1s then, the solution to the problem, and not "the problem” itself, that turns
Greek mathematics towards geometry; as we will see, the situation in Chinese, Hindu,
and Arab mathematics was quite distinct, and the irrationals are absorbed as numbers.
The effect of such a solution, however, can only be understood, as we indicated
before, in the context of the Greek conception of number.

What we have said so far, immediately enables us to make one very important
point. It 1s certainly beyond all doubt that all the Greek thinkers mentioned here were
mature thinkers, and indeed sophisticated thinkers. One naturally asks, then, "How
could they had held such 'simplistic’ and limiting conceptions about numbers?" This
question is the more relevant to our research as we remember that children, too, have
difficulties in grasping the notion of a fractional number, of a negative number, and
even more that of an irrational number. And we do not mean providing sound logical
foundations for them, but only accepting their being. What the example of Greek
mathematics shows us, is that underlying conceptions, and not intellectual power, are
responsible for the situation that resulted. This is not to say, of course, that a seven
years-old child is as able as an Aristotle to deal with such matters, but simply to point
out that such conceptions, which are unequivocally culrural, part of their culture, of
their whole system of ideas, can and do prevent powerful minds from accepting or
producing some forms of knowledge, and thus, they can and do prevent the production
of whole systems of knowledge—which, in fact, would have no place in that
culture. The paralle] with children's learning should not be made on the basis of the
empirical finding that "these and those conceptions imply this and that that
difficulty,”2® but rather in terms of the overall conclusion that "my understanding and
learning depends on the knowledge being offered having a place in my conceptual

world.

Two other schools should be mentioned in the context of Greek philosophy.
The Ionian school, founded and led by Thales (Mileto, c640-c¢546 BC), is credited with
starting the drive towards a rational knowledge of nature and with providing the first
definition of number, ".. .defined as a collection of units, 'following the Egyptian
view'," according to lamblichus quoted in Heath (1981, vol 1, p69ff); the Eleatic
school, to which Zeno and Parmenides (Sth century BC) belonged, is better known by
the studies carried there about continuity and the infinitely small (as seen, for example,

in Zeno's paradox about the impossibility of Achilles beating a tortoise in a race), but

28An approach that would ccrtainly produce the most paradoxical didacuc situauons, as even if a seven
years-old child in today's world thinks that number can only be a whole number, her or his expericnces
with numbers—telephone numbers, house numerauon, car plates, prices, and so on—arc infinitely

distant from that of Pythagoras.
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they also produced results in geometry proper, for example Democritus' discovery that
the volume of the cone is one-third of the volume of the cylinder with the same base
and height (M. Kline, 1990, p37). The contributions of both those school to the
understanding of number, however, are far less important than the ones we have
examined in some detail.

We will now turn our attention to the work of two Greek mathematicians:
Euclid and Diophantus, who belong to the Alexandrian—or Hellenistic—period of
Greek culture, which succeeds the Classical period.

Alexandria, the geographical centre of this new phase of Greek culture, was
founded in northern Egypt, in 322 BC, by Alexander of Macedonia, son of Phillip of
Macedonia, the conqueror of Athens, and himself a conqueror of Greece and Egypt. In
the context of this new culture, the old belief that educated people should not be
concerned with an art such as logistic, was slowly discredited. It is also probable that
the much more intense and deliberate exchange with other cultures—by Alexander's
designation—brought into Greek mathematics many new elements, for example a
concern with producing the means for dealing with more "practical” problems. As
Mormis Kline observes, "It might be logically satisfactory to think of V2 - V3 as an area
of a rectangle, but if one needed to know the product in order to buy floor covering, he
would not have it."; Kline also says that, "...the mathematicians of the Alexandrian
period severed their relation with philosophy and allied themselves with engineering."
Archimedes, we are reminded, was Alexandrian. Alexandrian mathematics, however,
does maintain the Classical approach of considering the objects of mathematics as
objects of thought?%.

This is the context in which the shift towards arithmetic produced in the
Alexandrian mathematics has to be understood: not only a theoretical logistic 1s made
possible by the Aristotelian framework and by the imports from other cultures, but is in
fact required by the enterprises and scientific context of the time. Rubens Lintz in his
Historia da Matemdtica (of which I only had access to the manuscript version),
supported by a substantial historical research and a convincing argument, suggests that
in fact one should consider Diophantus not as part of a then declining Greek tradition,

but rather as part of a new, emerging, tradition30.

29 fine example of this was Archimedes acceptance of mechanical analogies as means 1o suggest the
truth of thcorems, but not as mcans 1o prove them, for which task gecometry was essental (Cf. Heath,
1981, vol 2, p21).

30Lintz's argument in this respect is mainly bascd on the fact that Diophantus work is—in relauon (o
Lintz's framework—more akin o the magic culture of the Arabs, than to the plastic culture of the
Greeks. In the context of the magic culture, the solution of an equation corrcsponds to the—almost
hturgical—process of revealing what is hidden in the equation, ic, the unknown number.
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The work of the Alexandrians Euclid and Apollonius (in relation to his
geometry) are exceptional in this context, but one has to remember that in both cases,
although more particularly in the case of Euclid, what we have is a reorganisation of the
Greek Classical mathematics; Euclid is at Alexandria only 30 years after its foundation,

and Apollonius’ work both in astronomy and on irrational numbers are influenced by
the Alexandrian culture (M. Kline, 1990, 104).

EUCLID

The first Greek mathematician whose work we will examine is Euclid. We
know of his life that he has probably studied in Plato's school in Athens, and after that
moved to Alexandria, where he founded his own school. (Heath, 1981, vol 1, p356).

We will restrict our examination of Euclid's work to his Elements, more
specifically some parts of the Elements which are relevant to our research, ie, those
explicitly concerned with number (yet in the Greek sense), ie, the anthmetical Books
VII, VIII, and IX, and those parts which could be interpreted—from the point of view
of our modern mathematical notions—as referring to numbers, ie, the "geometric

algebra,"” in particular Book II.

Analysis and Svynthesis in Euclid

An important aspect of the Elements we would like to emphasise, i1s made clear
in the words of Heath (1981, vol 1, p371):

"The Elements is a synthctic treatisc in that it goes directly forward the whole way,
always proceeding from the known to the unknown, from the simple and particular to
the more complex and gencral; hence analysis, which reduces the unknown or the more
complex 1o the known, has no place in the cxposition, though it would play an

important part in the discovery of the proofs.”

In the case of geometric propositions, the proofs always contain the

construction of the elements sought, so in 11,11, for example,

"To cut a given straight linc so that the rectangic contined by the whole and onc of the
scgments is cqual o the squarc on the remaining segment.” (Fauvel and Gray, 1987,

pl19)
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the solution consists in the construction of the sought cut, followed by the proof that
such cut 1s actually the required one.

There are two points to consider here. First, not only the Elements, but the
general lack of Classical Greek mathematical texts dealing with the process by which
theorems and proofs are suggested, indicate the extent to which the ultimate aim of
mathematical activity was to provide proofs for mathematical facts: that is what
remained in the final form of the texts. Second, as Heath points out, one should be
aware that some form of analysis must have been used in order to find the
constructions that are part of the proof, and we shall investigate to some extent, what
form this analysis took in Greek mathematics.

We will examine the second point. An indispensable source on the Greek use of
analysis 1s Pappus' On the Treasury of Analysis, to which we have already referred as

containing a most clear definition of analysis and synthesis. In Pappus' words,

"The so-called AvaAdvouevoc [torog, The Treasury of Analysis] is...a special body of
doctrine provided for the use of those who, after finishing the ordinary Elements, are
desirous of acquiring the power of solving problems which may be set them involving
(the construction of) lines, and it is uscful for this alone. It is the work of three men,
Euclid.... Apollonius of Perga and Aristzus the elder, and proceeds by way of analysis

and synthesis.” (quoted in Heath, 1981, vol 2, p400)

The first book listed by Pappus as belonging to The Treasury, is Euclid's Data,
in which the propositions are intended to prove that, "...if in a given figure certain parts
or relations are given, other parts or relations are also given, in one or another of these
senses [to be found in the Definitions)...It is clear that a systematic collection of Data
such as Euclid's would very much facilitate and shorten the procedure in analysis.”
(Heath, 1981, vol 1, p422) The example provided by Heath of Prop. 59 of the Data
(op. cit., p423), is illustrative. Analysis, then, 1s to be understood as the process that
goes like, "I want to solve this problem. If X and Y were given, I could solve the
problem; but to construct X and Y, | would need to know Z and W, etc..” At some
point I either arrive at the need of magnitudes that can be constructed only by using the
ones given in the problem—and the problem can be synthetically solved—or I
conclude that some required construction is contradictory with the problems data—in

which case the problem is impossible. It is in this latter sense that the reductio ad

absurdum is a form of analvsis?!.

3ICY. Heath, 1981, vol 1, p372. We must add that when Euclid uscs this type pf proof, as, f'(')r A
example in IX.20 ("Prime numbcrs arc morc than any assigned multitude of prime numbers.”) he 1s
always dcaling with determinatc numbers, and what is supposed is a property of that number, only.
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We now offer a possible way in which Euclid's analysis leading to the solution
of 11,11 might have taken place. The figure bellow is used, which depicts the problem
as if it had been solved. AB is the given line, E is the middle point of AC, and the
letters are used in exactly the same way as in Fauvel and Gray (1990, p119ff), where
Euclid's demonstration is given, so the reader can easily follow the "way back," ie, the
synthesis. T(x) denotes the square with side x, and O(x,y) denotes the rectangle with
sides x and y, following Mueller's notation (Mueller, 1981, pp42 and 45)

F G
A
A H B
(E) 9 A,
C K D

Euclid might have thought: "If the problem had been solved, then Aj=Ay, ie,
O(CF,FA)=T(AB). Now, using 11,6 I could relate O(CF,FA) to T(AE) and T(FE),
because I1,6 says that O(CF,FA)+T(AE)=T(FE). Good. But, wait...all this means that
T(AB)+T(AE)=T(FE). Hmmm...it smells Pythagoras, this one. Let me look at the
drawing again...Of course!! FE has to be made the same as EB!!"32

Characteristic of analysis used in this way, one is always looking for ways of
producing other magnitudes from the already known, as the objective of the analysis 1s
exactly to provide the construction of the required magnitudes. Analysis does not
prove, it only shows how the proof can be effected. In algebraic thinking, however,
the central aspect of the process is exactly the analysis, to the extent that establishing
rules by which one can move from the supposition of the unknown being known 10 the
actual production of the unknown become a central part of the method, in the same

way that a book like Euclid's Dara —by providing a knowledge of what can be

32In his 1976 anticle Defence of a "Shocking” Point of View, quoted in Flauvel and Gray (1987), van
der Waerden states that "al-Khwarizmi's solution of quadratic cquations is equivalent to Euclid's
procedure,” and in van der Wacrden (1983, p83(f) he offers his rcasons for stating it. Having read both
al-Khwarizmi's and Euclid's books. I was not satsfied with the first assertion, as the only way in
which it could make sense of it was 1o take it as meaning that by both procedures one would arrive at
the same final solution, what is hardly surprising, oncc they are both correct, and his later
"explanation" is artificial—although, of coursc, possible. It was, thus, to my great pleasure, 'Lhal I
worked out the solution here presented, totally geometrical and leading directly to Euclid's

construction and synthesis.
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obtained from a given geometric configuration—would greatly help the geomerric
analysis. The crucial difference is that algebraic thinking intends analysis, whereas the
Data intends the possibility of constructions.

In the solutions given by the students in our Experimental Study, we frequentdy
observed analysis used in the Euclidean sense, and in many cases only the steps that
actually produce the answer are exhibited.

The claim of a Geometric Algebra in Greek Mathematics

In recent years a debate involving historians of mathematics and mathematicians
concerned with the history of mathematics, has developed around the interpretation of
what came to be known as the Greek "geometric algebra.” According to Klein (p122),
"[Hieronymus Georg] Zeuthen was not the first to understand the ancient mode of
presenting mathematical facts as a 'geometrical algebra,' although he was the first to
use the term consistently.” We will examine the merits of arguments for and against the
"geometric algebra" interpretation, not with the objective of producing an answer to the
question of whether this interpretation 1s accurate—although in the course of our
examination a negative answer is produced, at least in the case of the Elements—but
rather aiming at the arguments themselves and to the conceptual frameworks which
support them. As a result, we will learn about the impact of conceptual frameworks 1n
the interpretation of mathematical knowledge, which is closely related, we think, to
their impact on the acquisition and understanding of such knowledge, but we will also
learn about some specific aspects of the context of this debate—namely, about
geometric models and about the use of algebraic notation in the context of those
models.

Behind the idea of a "geometric algebra” to be found in the Greeks, is the
understanding that a substantial part of the "geometrical” theorems are, in fact,
"algebraic” theorems "dressed up” in a geometrical form33. In his Science Awakening,

van der Waerden goes as far as to say that,

"Presently we shall make clear that this geometric algebra is the continuation of
Babylonian algcbra. The Babylonians also uscd the terms 'rectangle’ for xy and 'square’

2 . . . . . .
for x=, but beside these and alternating with them, such anithmetic expressions as

Bitis clear, from for cxample the quotation that immediately follows this notc in Lhe main body of '
the text, that the "geometric algebra” refers to numbers, and not, as one might conceive, 10 a geomeuic
"calculus” where propositions arc proved to be used later on. Would this be the casc, mcrc would be no
casc at all, apart from dismissing the ierminology as inappropriatc. A srong mollvz'xluo_n for lhc )
"geometric algebra™ hypothesis, seems to be the desire 1o account for the lack of an “arithmeucal
treatment of irrational numbers. The lack exists, it is ruc, but it is just a consequence of the Greek
conceptual framework for mathematics.
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multiplication, root extraction, etc. occur as well. The Greeks, on the other hand,
consistently avoid such expressions...everything is translated into geometric
terminology. But since it is indeed a translation which occurs here and the line of
thought is algebraic, there is no danger of misrepresentation, if we reconvert the

derivations into algebraic language and use modern notation.” (quoted in Fauvel, 1990,
pl42)

In Euclid, the most relevant Book in relation to the debate about "geometric
algebra” is Book II. The "translation" according the "geometric algebra” interpretation,
gives for the first few propositions:

Prop. I: a (b+c+d+...) = ab+ac+ad+. ..
Prop. II:  (a+b)a+(a+b)b = (a+b)?

Prop. Ill:  (a+b)a = ab+a®

Prop. IV:  (a+b)? = a?+2ab+b?

Prop. V:  ab+{2 (a+b)- b} = {1 (@+0)}?

Prop. VI:  (2a+b)b +a°= (a+b)?

If we understand those propositions as meaning what the use of the algebraic
notation suggest—ie, numerical equalities—we have to assume their symmerry. But in
this case, propositions I and 1V put together make proposition VI in the most direct
way34. In Euclid, however, the construction has to be effected, because the
geometrical configuration that results from Prop. IV (the well known square divided
into two squares and two reétangles) cannot but by means of a geometrical construction
be associated to the geometrical configuration resulting from Prop. VI, no matter how

evident the equality of areas is from its diagram (see figure bellow).

34And, "There are, for cxample, simple algebraic denvatons of [Prop. 11 and I11] from .
(Prop. I]...Similarly, 11,3 is a consequence of 11,1 becausc (x+y)y=y(x+y)=yx+yy=yx+y*. Since Euclid
normally takes for granted such gcometrically obvious assertions as T(x)=0(x.x) and O(x,y)EO(y_,x)
[where T(x) is a squarc with side x, and O(x,y) a rectangle with sides x and y] , he cAould have carmned
out geometrized versions of these arguments.” (Mucller, 1981, p46) Heath also points out 'Lhal "It
appears to be Heron [of Alexandria, ¢. 250 AD] who first introduced the easy but uninstrucuve
semi-algebraical method of proving the propositions 11.2-10 [in the Elements} which 1s now so
popular. On this method the propositions are proved 'without figures' as consequences of Il.l_ .
corresponding to the algebraical formulaa(b+c+d+...)=ab+ac+ad+.... Hcron explains that it
is not possiblc to prove 11.1 without drawing a number of lines (ic, wiLhoql drawm.g thc actual
rectangles), but the following propositions can be proved by merely drawing one line. (1981, vol 2,
p31l)
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Prop. VI, Book II (the Elements)

The "algebraic translation” of Prop. V certainly is not immediately identifiable
with that of Prop. VI. The "translation” presented above is to be found in, for example,
Morris Kline (1990, p65), and corresponds literally to the text in Euclid, which is,

"I1,5. If a straight line be cut into equal and unequal segments, the rectangle contained
by the unequal segments of the whole together with the square on the straight line
betwecen the points of scction is equal to the square on the half.” (van der Waerden,

1983, p78)

Van der Waerden himself, when trying to fit the algebraic notation to the
propositions, notices that Prop. V and Prop. VI correspond exactly to the same
algebraic identity (v.d. Waerden, 1983, p78ff), and says that "This shows that there 1s
something wrong [in the way he is trying to make sense of the propositions].”, but
does not consider the possibility of the "geometric algebra” not being a sensible
interpretation. An adequate way of understanding the essential difference between the
two propositions is this: in the figure bellow (Prop. V), we represent proposition V,
with XY corresponding to the "whole", Z the middle point of XY, and T the point of
the "unequal section." It is immediately clear that Prop. V can be "translated” into
(2a+b)b +a?= (a+b)2, which is exactly the translation of Prop. VI. However, and this
is the crucial difference between the two propositions, in Prop. VI only a rectangle
(corresponding, for example, to rectangle X'Y in the diagram for Prop. V) is required
to be "moved.” while in Prop. VI, the rectangle and one of the squares are required to
be "moved" (altogether, rectangle XW, which has to be proven identical with rectangle
X'W'). The two propositions are geometrically different, and the inclusion of both
offers strong support to the view that the intended objects are in fact geometric ones,

making the hypothesis of 4 geometric algebra untenable.
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Prop. V, Book II (the Elements)

Van der Waerden believes that the "geometric algebra” of the Greeks actually
intended numbers—rational and irrational—but represented them with lines and areas.
As we have shown above, this cannot be the case. On the one hand, the Greek
distinction between number and geometric magnitudes is sharp; on the other hand,
number 1s always a whole number, never an irrational magnitude. Had Euclid simply
used the geometric representation to avoid the problem of incommensurability, he
would have certainly considered that whole numbers and fractions were particular cases
which were "included"” in the general treatment using geometric magnitudes, and a
substantially self-contained treatment of number, as we have in the arithmetical Books
of the Elements, would not have been necessary3>. Szab6 (quoted in Berggren, 1984,
p397) says that the term Geometric algebra should be replaced by Geometry of Areas,
"...in order to emphasize that the theorems are geometric theorems, used to prove other
theorems in geometry, and that there is no concrete evidence that pre-Euclidean Greeks
took over Babylonian algebra and recast it in geometric form.” Mueller (1981, p44)
considers a geometric interpretation "...sufficiently plausible to render the importation

of algebraic ideas unnecessary."

Of great importance to our understanding of algebraic thinking, the "translation”
into algebraic notation that van der Waerden considers harmless (and that many times 1s
assumed as the only difference between "the problem" and "the algebraic expression”)
creates a situation where the intended objects are replaced without this fact becoming
apparent: the arithmetisation of Greek geometry it produces could never be accepted—
and, thus, understood—by the very men who produced it, as much as Euclid would

certainly dismiss—probably as ignorant, possibly as mad—anyone that proposed him

35Mucller (1981, p107): "It is striking...that although Euclid's arithmetic thought is often governed by
geometric analogics, nothing in books VII-IX which has been discussed involves an actual transference
of a geometric truth into arithmetic. In particular, although such notions as those o_f plgne and square )
numbers scem 10 invite the use of gcometric algebra, we have seen no cases in whlch it has been used.
M. Kline (1990, p77) also obscrves that many of the proposiuons of the ar(lhmetzcal Books are
"proved again,” when they could be referred to propositions alrcady proven in Book V.
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to consider non-Euclidean geometries. The "translation"” of the propositons in Book I]
of the Elements hides the true geometric nature of the objects intended.36 By studying
the debate about the notion of a Greek "geometric algebra,” we have become more able
to understand the process by which a conceptualisation—and, thus, an intention—is
imposed on the reading of mathematical production or knowledge, in this case, the
imposition of a much more general framework, leading to the introduction—in the
conclusions by the one imposing his or her views (the impose-tor), but hidden from
his or her eyes—of improper elements through an improper interpretation. In the
study of history, this leads at least to superficiality, and at the worst to paradoxes, but
in the case of mathematical education it easily leads to misguided didactic efforts.

A second point that emerges from investigating the adequacy or not of the
"geometric algebra” interpretation, is that, as we saw with propositions V and VI, if the
intended objects are geometric ones—even when they are being used to represent
numbers—the geometric configuration in which they are displayed, and the
manipulation of that configuration which takes us to a solution of the problem, play a
central role in the solution process; properties of the geometric objects will be guiding
the solution process. We exemplify. If a square is drawn and lines used to cut the
square in four parts as to illustrate the equality (a+b)? = a’+2ab+b?, the insight is easily
achieved, and the proposition means simply that the square "on the left” can be
decomposed into the pieces represented "on the right". If, however, the proposition 1s
looked at "backwards,” ie, as representing a’+2ab+b? = (a+b)?, a number of
difficulties arise; with a substantial amount of goodwill (or mathematical enculturation),
one will agree that the proposition is saying that the pieces "on the left” can be
assembled to produce the square "on the right". But the pieces "on the left” could be in
any of many different configurations—they could even be scattered; from a geometric
point of view, the problem is ill-formulated. Only when a precise configuration is
required to be shown transformable into the square “on the right” is the problem clear,
and that is exactly why Euclid proves "twice" the “algebraic" proposition, in Prop. Il
and Prop. VL.

The third point we want to make here, is in connection with Klein's strong

argument against the "geometric algebra™

36When we look at students in our expenmental study that can do “"pure calculauons” with negauve
numbers, and also 1o solve successfully the equation 100-3x=10 by doing: "100-1():90; 90/3=30," but
fail 10 solve the equation 100-3x=190, wc arc led to think that the inlended objects of the first process
were not numbers, but possibly the clements in a whole-part rclationship.

4
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"This interpretation can arise only on the basis of an insufficient distinction between
the generality of the method and the generality of the object of investigation. Thus
Zeuthen...immediately relates his concept of 'geometric algebra’ to that of 'general
magnitude.’...[A]ncient mathematics is characterised precisely by a tension between
method and object. The objects in question (geometric figures and curves, their
relations, proportions of commensurable and incommensurable geometric magnitudes,
numbers, ratios) give the inquiry its direction, for they are both its point of departure
and its end... The problem of the 'general’ applicability of a method is therefore for the
ancients the problem of the 'generality'...of the mathematical objects themselves, and
this problem they can solve only on the basis of an ontology of mathematical

objects.” (1968, p122)

He directly points out to a necessary distinction between method and object in
Greek mathematics. Objects in Greek mathematics are, as Klein lists, lines, figures,
numbers, ratios. One is always speaking of the objects that are "in fact” manipulated.3’
To say, as Klein does, that, "The problem of the 'general' applicability of a method
is...for the ancients the problem of the 'generality'...of the mathematical objects
themselves," is to say that the nature, the constitution, of the objects determine in which
ways they can be manipulated, and, thus, what can be done to solve problems or prove
theorems ahout them—never using them. As we will see, a central aspect of the
"symbolic invention" of Vieta, is that the focus of attention is explicitly directed to the
method. The predominance of object over method in Greek mathematics, precludes
operations from becoming objects; once they are understood only as natural
possibilities derived from the ontological nature of the objects proper, studying them is
equivalent to studying the objects proper. Allowing the operations to have an
independent existence is not possible in Greek mathematics, precisely because there
would be no insight into the objects on which they operate, and, again, were this
insight produced, it could only come from examining the objects proper directly, and
the independence of the operations would rest annihilated.

In many cases. the students in our experimental study behaved very much in
that way: the "operations” which they use to manipulate the objects present in the
model. ie, to solve the problems, are directly dependent of or derived from properties
that those objects are perceived as having. For instance, if two parts make up a whole

and one of them is removed, we are left with the other part; the "removal” is possible

37Thc inclusion, in Klein's list, of relations, must bc undcrstood as mecaning a specific geometric
configuration, or the relauon between two consccutive triangular numbers and asquare number, anq not
as it might mcan, for examplc, the cquality rclauon, which is only a tool (as in the Common Notions
in the Elements) and never the object of study.
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precisely because of the whole being conceived as composed by its parts38, and the
mentioned property of "removal” is a consequence of that and of the non-overlapping

of the parts, ie, it is reduced to properties of a whole and its parts, rather than
irreducibly belonging to the "removal” itself.

The Arithmetical Books

Books VII, VIII, and IX of the Elements are known as the arithmetical
books, in which we find 102 propositions about whole numbers and ratios of whole
numbers, most of them dealing with properties of divisibility and proportion.

As we have said before, the arithmetical books are mostly self-contained
(Mueller, 1981, p58). As Mueller also observes, given the independence of those
books, one would expect to find in them specific postulates for arithmetic, but what we
find, instead, are 23 definitions, in which number, prime and composite numbers, etc.

are defined. Definitions 3 and 4 deal with the notions of parr and parts:

"(3) A number 1s part of a number, the less of the greater, when it measures the greater.

(4) But parts when 1t does not measure.” (Mucller, 1981, p337)

The interesting point about those definitions, 1s that they reproduce in a very
natural way—on the basis of the notion of a number "measuring” another—the notion
of part; if the whole number b 1s a divisor of the whole number q, then there is a whole
number ¢ such that a=bc. If b is taken as the divisor (as we would tend to do when we
say that "b divides a"), it means that ¢ goes into a, b times; but we can also
understand, in a more direct way, that it is & that goes into a an exact number of times,
in which case a can be decomposed into exactly ¢ parts, each of "size” b. Euclid's
definition is elegant, in that it does not deal with "how many parts,” but only with the
fact that b is naturally a part of a. Definition 4 says parts, on the other hand, because:
(i) the greater and the lesser number being whole numbers, there is always a common
measure (in the worst case the unit): (ii) this common measure is a part of the greater
number; (ii1) it is also a part of the lesser number, which can be said to be composed
by a number of them. So, in the lesser number, we have (a number of) part's of the
greater number.

Those definitions establish the character of the use of lines as a notational form

in the context of the arithmetical Books: not as continuous lines, but as objects

38This remark may scem somewhat circular, but it is not. The notion of a wholc and 1ts parts is" o
independent of whatever onc wishes to do or docs with them. “The wholc 1s greater than the part” is In
fact the only Common Notion stated by Euclid in relauon 1o the whole and its parts.
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measurable by a unit (Klein, 1968, p11). Moreover, considering the question of "how
many times one 1nto another,"” ie, considering the ¢ in a=bc, is not possible in Euclid,
as it would impply the acceptance of fractional numbers.

Only one operation is defined, multiplication (Definition 16), in which
definition addition is taken for granted3®. We suggest an interpretation for the adoption
of that definition which 1s compatible with the Greek commitment to an ontology of the
mathematical objects. In Euclid, adding is seen as concatenation (Mueller, 1981, p70),
and the nature of the object produced by addition is obviously the same as that of the
numbers being added, as in fact the parts added are both contained in the result; with
the multiplication of numbers, however, a definition is required exactly to guarantee
that the result is still a number9; a further requirement is that the commutativity of
multiplication be proved, as it is not "obvious" as in the case of the "geometric
multiplication” of lines—and which Euclid takes for granted—and this is done in Prop.
16 of Book VII. It is now possible to represent numbers always by lines, and the
expressions plane, square, solid, and cube numbers refer only to their composition in
terms of factors, and not to a geometric nature: literally read, Euclid adds "plane”
(number) with a number that is one of its "sides," a procedure unthinkable 1n relation
to true geometric objects.

Of interest to us, is the way in which the representation by lines 1s used in the
arithmetical Books. In those Books, the lines representing numbers are never used
geometrically in the sense of, for example, Book II, although both multiplication and
proportion could be dealt with by using "true" geometric constructions—as Thales’
theorem, or some of Euclid's own constructions—and thus avoiding the problem of
representing multiplication by the construction of a rectangle, which would limit the
number of factors to three (unacceptable, for example, in Euclid's demonstration of the
infinitude of the set of prime numbers). Instead, the lines in the arithmerical Books are
used either as a mnemonic device (to indicate, for example, the order of the sizes of
different numbers involved, as in Prop. VII,14, or to indicate that the sum of certain
numbers produce another one, as in Prop. VII, 22), or to support a combinatorial

argument.

3Mueclicr (pS9IT) obscrves that in Euclid's definition of multiplication, number is used both as a
number proper and as a "metalanguagc variable or subscript,” and that "Such usage 1S imposslb!e _
within first order logic bul not in an cxtension to higher order logic...[which] incorporates within isclf
all of elementary arithmetic.” We think that this double usage is a natural conscquence of the natwre of
the Greek number, which is incxtricably associating with counting. As we have mentoned before, the
operations arc subordinated 10 the objects proper, and addition here is no cxception; in the framc‘w(?'rk. of
Greek mathematics, the formal distinction between the two usages (number proper and "subscript”) 1s
not required. S

he importance of this step can be better appreciated if we consider that the "multiplication” of lines
produce a rectangle, and not another line.
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We would like to remark, at this point, that in the use of geometric objects 1o
deal with problems requiring the determination of a number, our students' methods
resemble much more the "geometric analogies” used in the arithmerical Books, than a
fully fledged "geometric algebra"—the latter taken in the sense intended by van der
Waerden. In fact, whenever multiplication is represented in that way, the multiplier is
only understood as Euclid's multiplier, ie, as the number of times a line is being
added?!. If in Euclid the definition of multiplication is natural in the context of the
Greek number, as he is dealing only with whole numbers, in our students, who are
sufficiently acquainted with the multiplication of decimal numbers, this behaviour must
represent a restriction imposed by the model being used, an aspect that is examined in
detail in the chapter in the Experimental Study.

Proportion appears in Definition 21, and it does not involve multiplication:

“(21) Numbers are proportional when the first is an equal multiple of the second and the

third of the fourth, or they are the same part or parts.” (Mucller, 1981, p338)

In view of our interpretation of parr and parts, this definition should be
understood as follows. In the case of equal multiples and equal parz, 1t simply states
that the lesser numbers determine the same number of parts in the corresponding
greater numbers. In the case of equal parts, it would say that the number of parts of the
greater numbers to be found in the corresponding lesser numbers are equal; but if we
remember that in the notion of parts any measure common to both numbers will do, a
serious problem arise, because unless the common measure is in each case the greatest
possible, the number of them in each of the lesser numbers would always have to be
compared with reference to the total number of common measures in the corresponding
greater numbers, and we would return to the original problem#2. It is probably for this

reason that Prop. 2 of Book VIl 1s,

"2. Given two numbers not primc to onc another, to find their greatest common

mcasurc.” (Muclier, 1981, p339)

and Prop. 1 is precisely a preliminary step for the Euclidean algorithm for determining
the GCD of tho whole numbers:

“Mn the Ticket & Driving group of problems, for example, it will be scen that this restriction 1
responsible for difficulties when the multiplier is not a whole number. ' .
42Using the greatest common measure corresponds Lo taking both ratios in its least terms, in which
casc the proportionality is reduccd to an identity of ratios.
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1. If two unequal numbers are set out and the lesser is always subtracted 1n tum from
the greater...then, if the remainder never measures the number before it until a unit is

left, the onginal numbers will be prime to one another " (ibid.)

The importance of understanding in some detail the arithmeric definition of
proportion (VIL,21) is to enable us to compare it to the geometrric definition of
proportion—or rather, of equality of ratios—that is given in V,5. The geomerric
definition of proportion is:

"Magnitudes are said (o be in the same ratio, the first to the second and the third (o the
fourth, when, if any equimultiples whatever be taken of the first and third. and any
equimultples of the second and fourth, the former equimultiples alike exceed. are alike
equal, or alike fall short of, the latter equimultipics taken in corresponding order.”
(Heath, 1981, vol 1, p385)43

Euclid's Book V contains in fact Eudoxus' theory of proportion, and as we
have seen before, no magnitudes or ratios were expressed by numbers. Bearing this in

mind, we might represent Definition V,5 as:

ab::cd < VY mn €N then, m-a>n-b & m-<>n-d

m-a=n-b om- c=n-d

m-a<nb &m-c<n-d

An essential difference between VII,21 and V.5 is this: because in the case of
incommensurable magnitudes the notions of par: and parts do not apply, Eudoxus is
forced 1o define his "general” proportion in terms of a criteria that cannot be finitely
verified, as opposed to the arithmetic one, which immediately allows the development
of an algorithm by which equality of ratios of whole numbers can be verified. The
difficulty here involves the essential difference between the continuity of geometric
magnitudes and the discreteness of number™. In the context of Greek mathematics a
(general) theory of proportions cannot be developed on the basis of the equivalence,

ab::cd < ad=bc
precisely because with the difficulties with the definition of multiplication?3.As we have

pointed out, the general applicability of the method depends, in the conceptual

43we preferred 1o use Heath's version of the text, which in this casc is clearer than Mucller’s whose

text we have followed until here. _ , .

4“4Mentioning Proclus, Heath (1981, vol 1, p90) obscrves that "...arrational straight lzrfes [1s a topic In

§cometry matters) (for where there is division ad infinitum, there is also the urauonal).” _
5In our "translation” of V.S, it must be clear that the "multiplication” means only that the geometmnc

magnitude is 1o be Laken that number of umes.
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framework of Greek mathematics, on the generality of the object, and the development
of a theory based on multiplication could not be generally applicable, as we would need
distinct definitions of multiplication for different objects?. The theory of proportion in
Book V of the Elements, achieves its generality—in the sense of a theory generally
applicable to all geometric magnitudes—by dealing only with ratios as objects proper??.

In relation to our research problem, that of characterising algebraic thinking and
understanding how different conceptualisations of number and of mathematics can
promote or hinder its development, the comparison of the two definitions of proportion
throws light into important aspects.

First, the non-homogeneity of the realm of geometric magnitudes presents a
problem for the development of an algebraic mode of thinking; the use of a geometric
model to produce algebra, be it in the form of a "geometric algebra" supported by Book
II of the Elements, or in analogies like the use of a diagram to "prove" the "formula” for
the square of the sum of two terms, will only introduce or reinforce the
non-homogeneity. Euclid's solution in the arithmetic Books, ie, to force a definition of
multiplication that directly produces the sought homogeneity is adequate in this aspect.
The modern notion of operation addresses the difficulty correctly.

Second, a model for numbers based on properties of whole numbers present
difficulties beyond the obvious inadequacy of Euclid's definition of multiplication for a
multiplier that is not a whole number. In themselves, notions as those of part and paris
suggest the "counting” role of a multiplier; moreover, the notions of addition and
subtraction naturally remain too tightly linked to that of counting, posing an obstacle,
for example, to the acceptance of negative numbers or to the acceptance of 6+7 as an
expression in its own right. |

Third, any ontology of irrational numbers derived from or based in rational
numbers will inevitably have to involve either a potential—as in the Intuitionistic
version—or an actual—as in the Formalist version—notion of infinity. Nevertheless,
and this is a key distinction, algebraic thinking is only concerned with the way in
which the operations defined on those elements work, their properties, and not an

ontology of the elements on which 1t operates.

46W¢ remind the reader, if at all nccessary, that before the theory itself 1s established it is not pos.SIble

to definc a general muluplication in terms of, for example, Thales' theorem. The product of two lines

can be defined as a rectangle, but the problem with the multiplication of two rectanglces, for example, 18
unsolvable 1n Euchid's gcometry. ,

4711 must not be understood, however, that those ratios arc "abstract” and generally applicable: they arc
always ratios of gcometric magnitudes, and never of numbers. Sce Unguru (1979, p5591f)
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DIOPHANTUS

Diophantus lived in Alexandria, and his main work, the Arithmerica, is dated by
historians as being produced about 250 AD. Diophantus' other works include On
Polygonal Numbers, of which only fragments survived, and the Porisms, a collection
of propositions from which existence we know only through its mention in three
propositions of the Arithmetica. The Arithmetica was originally composed, according
to a remark by Diophantus in its text, by thirteen volumes, but until recently only six of
those had been recovered*8. In 1976 Jacques Sesiano completed the translation of
another four Books, which were translated from Arabic manuscripts; his translation
was published in the book form, which is Sesiano (1982).

It 1s almost unnecessary to point out the importance of Diophantus' in the
history of mathematics. That his name is attached to Diophantine Analysis, and that
Vieta' Analytical Art was inspired by the Arithmetica seem to be sufficient indication.

From the point of view of our research, however, there are specific reasons for
investigating in some details aspects of the Arithmetica. First, Diophantus is a Greek,
but his work departs in many aspects from the previous Greek mathematics; as Morris
Kline (1990, p143) observes, "...we cannot find traces of Diophantus’ work in his
predecessors.” We will examine his work in order to identify the conceptual framework
that makes it "possible" in comparison with the previously existing Greek mathematics.
Second, the Arithmetica undoubtedly involves algebra, and we shall investigate what
form algebra and algebraic thinking took in Diophantus, particularly against the

background of Greek mathematics.

We begin by briefly comparing the arithmerical Books of the Elements with the
Arithmetica of Diophantus. In the arithmetic Books we have a study of the properties
of whole numbers and of proportions involving whole numbers, whereas in the
Arithmetica we have a collection of problems solved with the aid of equations. The
former is systematic, the latter only insofar as to "...arranging the mass of material at
his disposal...[in order to] make the beginner's course easier and to fix what he learns
in his memory." (Heath, 1964, p131). Euclid, as we saw, represents numbers by lines,
Diophantus uses an "arithmetical” notation, which we will examine further ahead.
Finally, the numbers in the arithmetic Books are never specific, while in the
Arithmetica they are all—including the "unknown" ones—specific.

In view of all that, both works would seem to have no connection possible, but

this is not the case. In both of them, number is the Aristotelian number, 1e, "a

“BFor a thorough examination of the history of the manuscripts and translations of the Arithmetica up
10 1910, the reader is referred to pages 14-31 of T.H. Heath's edition of the Arithmetica (1964).
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multitude measured by a unit."4% As we saw, this is what allows Euclid to represent
numbers by lines—which are not made into continuous magnitudes because of it—and
it is also what allows Diophantus to speak of "fractions," as a number of "fractional
parts.”

The question of why Diophantus' does not solve his problems for "generic"
numbers, although he always proposes them in "generic" terms, is a most important,
and at the same time, a difficult one to answer. One possibility is that the notation
available to Diophantus prevented him of doing so, but in view of Euclid's use—five
and a half centuries before Diophantus—of lines to represent numbers, and of
associating letters to the lines so he could easily refer to them in the text, it would be
puzzling that Diophantus, whom almost certainly knew the Elements, had not borrowed
the notation for the Arithmetica had he intended the "generality” of the numbers
involved in the problem in the sense of our "general” coefficients of equatons. Only to
put the problem in a more complex, but certainly more interesting perspective,
Diopahntus' did use, in his On Polygonal Numbers the same type of line-and-letter
notation employed 1in the arithmetic Books (see, Heath, 1964, p247ff). The subject of
On Polygonal Numbers being obvious, we are left to say that it is collection of
propositions, all proved 1n all the possible generality, 1e, no particular cases are taken to
be solved as paradigmatic, and it proceeds synthetically>0.

We must emphasise that the question of "generality” in Diophantus 1s not one of
historical interest only; a number of issues in the learning of algebra have been related
to it, as we saw in the review of previous research on the subject, and as we will show,
precious insights can be gained in the process of clarifying and finally answerning the

question.

We shall now examine Diophantus’ notational system.
Specific numbers in Diophantus are written using the Greek alphabeuc notation
for numbers, which is described in detail by Heath (1981, vol 1, p36ff). In this system

we would have, for example, p representing 100, X representing 20, and o7
representing 208: the stroke on the top of the letters was one of the forms used to
distinguished them from verbal text. For the unknown, Diophantus used the final ¢3!,
and for the "powers of the unknown" he used: AY for the square, KY for the cube,
AYA for the fourth power (square-square), AKY for the fifth power, and KYK for

490n the Peripatetic character of Diophantus' work, see also pages 112, 113, 133 and 143 of Klein
(1968).

30The first proposition of the On Polygonal Numbers in Heath's version is, "If there are threc
numbers with a common difference, then 8 times the product of the greatest and thga middle + Lhe"squarc
of the least = a square, the side of which is the sum of the greatest and twice the middle number.

31Sce Heath (1964, p32-38) for a thorough discussion on the origins of the symbol.
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the sixth power. The word used for square, in Greek, was dvvapig, which means
"power,” and whose first two letters capitalised become AY; the same happens with
xufog, "cube.” We see that Diophantus in fact created, from the limited stock at his
disposition, new symbols; the argument raised that he did not solve the problems in
their "generic” form because no letters were available is, thus, awkward, once he could
have easily made clear the fact that he would use small letters for numbers, with the
stroke, and capital letters for "generic" coefficients.

Other difficulty with his notational system would be the lack of a symbol for a

second, third, etc., unknown. This could be solved, for example, by adding dots on

the top of the ¢, with é, for example, being used for a second "unknown,” etc. The
problem would arise with the representations of the powers, but a solution is not
difficult to be worked out. Curiously, we find in Heath himself, one of the proposers
of the "lack of letters" theory, that,

"Again we find two cases, 11,28 and 29, where for the proper working out of the
problem two unknowns arc imperatively necessary. We should of course use x and y;
but Diophantus calls the first ¢ as usual; the second, for want of a term, he agrees to
call ‘one unit,' ic, 1. Then later having completed the part of the solution necessary to
find g, he substitute its value, and uscs ¢ over again to denotc what he had originally
called '1'—the second variable—and so finds it. This is the most curious casc of all, and
thc way in which Diophantus, after having worked with this '1' along with other
numerals, is yct able 10 put his finger upon the particular places where it has passed to,
S0 as 1o substitute ¢ for it, is very remarkable. This could only be possible in particular
cases such as those whiéh I have mentioned; but even here, it seems scarcely possible
now to work out the problem using x and 1 for the variables as originally taken by
Diophantus without falling into confusion. Perhaps, however, in working out the
problems before writing them down as we have them Diophantus may have given the
'I' which stood for the [sccond) variable some mark by which he could recognise it and

distinguish 1t from other numbers.” (Heath, 1964, p52)

The idea of using numeral-letters plus a special sign to distinguish them as a
symbol for an "unknown,” which would not be operated with the normal numbers
could also have been considered. So, we have to look bellow the surface of the
problem:.

A few paragraphs above, we enclosed powers of the unknown in quotes for a
very specific reason. Given our modern conceptualisation of algebra, it is only natural
to expect the "unknown" to be defined first, and only then "the powers of the

unknown," but this is not the case in Diophantus. First, he defines number (which are
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all "...made up of some multitude of units...") and the five eide which we have termed
"powers of the unknown," and only then he introduces the notion of the "unknown"
and a symbol for it. It is truly amazing that of all the books we have consulted on
Diophantus (Heath, 1964 and 1981; M. Kline, 1990; Klein, 1968; Lintz, undated
manuscript; van der Waerden, 1983), only Klein's book takes notice of this fact. This
"inversion” 1s crucial in determining the character of Diophantus' algebra, and we must
examine it52,

First, it is necessary to remember that in the Aristotelian framework for nwnber
to which the Arithmetica belongs, a number is always determinate or intended to be
determined. With this in mind, we understand that the "unknown" number in
Diophantus can only be as yer indeterminate, or, as Klein puts it, "provisionally
indeterminate,” and not "potentially determinate only." (p140) After defining the eide,
Diophantus’ says that, "It is from the addition, subtraction or multiplication of these
numbers or from the ratios which they bear to one another or to their sides respectively
that most arithmetical problems are formed...[and] each of these numbers...is
recognised as an element in arithmetical inquiry.” (Heath, 1964, p130)33 This is the
firm foundation which allows the notion of arithmetic problem to be formed, and it is
this, the problem, that constitutes the "eidos"—to use a very stretched, but illuminating,

metaphor—of the "unknown": "...as the concept of [indeterminate number] becomes
fully understandable only on the basis of figures 'similar' to one another (ie, given
only in shape and not determinate in size), so also is the unknown to be
understood. . .from the point of view of the completed solution...and as a number which
is about to be exactly determined in its multitude..." (Klein, p140), and, we should
emphasise, a number that rests characterised by the conditions of the problem.

We are now in a position from which we can elucidate why Diophantus does
not solve the problems in their "generic" form, although he proposes them so. In the
Diophantine framework, 1o solve a problem can only mean to exhibit in full the number
or numbers that satisfy a given, definite problem. Unless the problem is given in
definite terms, the "eidos” of the "unknown"—ie, the equation—is not established, and
the "unknown" itself cannot make sense. To do as we would today, ie, to exhibit the

potential only solubility of a problem by using an algebraic expression such as

S21f only for it pointing out the inversion, we would already be greatly indebted for Klein's work.
However, he also sets with his overall analysis, the only context in which the problem could be
solved. I cannot think of a finer piecc of historical analysis in all the very many texts I have consulted
during the research for preparing this text, and I am only obliged, and delighted, to follow closely his
line of reasoning in this part of my exposition. '

331t is worth noticing that, naturally, each of those eide have its side, which is not, however, Its
reason of being nor its "origin,” as we would understand nowadays.
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is precisely a non-solution in the framework imposed by the ontological
presuppositions of the Arithmetica. As we have conclusively shown, a notation for
generic coefficients was certainly possible from the notational point of view only, but
we now see that it was also meaningless in the context of solving arithmetical
problems. Neither our "extension” of Diophantus' notation nor Euclid's lines and
letters notation had a reason to be in the Arithmetica. Euclid can use it in the arithmetic
Books because he is not solving problems, he is proving theorems; his procedure is
totally synthetic, which means that all numbers are definite numbers. Diophantus'
procedure, however, is analytic, and as each element in the presuppositions that form
the equations has to be determined either in its manyness or in its form, the requirement
of a determinate eidos is imperative for a number that is not known in its multitude.

The other difficulty to be explained, that of using only one symbol for
"unknown," can be elucidated in similar lines.

We chose the detour of first trying to offer a "surface” solution for the questions
on Diophantus’ notational system in order to create a true question about the generality
or not of his solutions, one that was to be answered by our analysis. We can now
safely say that his solutions were truly general, but not in the sense conveyed by
expressing a general solution in algebraic notation. The detour, moreover, highlights
the key role of conceptualisation in the understanding of mathematical knowledge, a

crucial point in our overall argument.

After introducing the definition of number, the eide, and the "unknown,”
Diophantus introduces a sign, fl, "...denoting that which is invariable in determinate
numbers, namely the unit..."” (Diophantus, in Heath 1964, p130), and the notation for
the reciprocals of the eide, which uses a sign that we will, for the lack of a better
typographical sign, represent by *. For example, AYA* meant the reciprocal of
AYA, and AY * the reciprocal of 4¥4, etc..

Diophantus uses no special sign for addition; the "forthcoming” terms—the
terms being added—are simply juxtaposed. For the "wanting" terms—the terms being
subtracted—he uses a specially created sign, a monogram: A34. Expressions in

341n explaining the process—as he sees it—by which Diophantus generated his sign for wanting,
Heath says that the use of the initial A in Aguyig (or the inflected form Aum) would not be
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Diophantus are typically composed of two blocks, the "forthcoming” and the
"wanting”, which are characteristics of the expression and not of the numbers involved,
and any association of the "wantness” with negative numbers can make no sense in that
context. That Diophantus had a rule for multiplying expressions involving "wanting,"
is well known; the rules are justified in a combinatorial way, very similar to the
inclusion-exclusion principle (see, for example, Anderson, 1989, p67). A sign for
multiplication 1s not used, because, as Heath (1964, p39) indicates, "...it is rendered
unnecessary by the fact that his coefficients are all definite numbers or fractions, and
the results are simply put down without any preliminary step which would call for the
use of a symbol.” For our "=" Diophantus had the sign 19, an abbreviation of 100¢,
equal.

Further discussion of Diophantus' notational system is irrelevant to our
purposes, but we think it i1s worth "tasting” Diophantus' notation "in action," so we
examine a sample solution using it. In the original form, the equations were written into
the course of the speech, ie, they were not displayed each step on a separate line. The
example bellow is extracted from Heath (1964, p48), and the arrangement in lines is
credited to Maximus Planudes (about 1260-1310 AD); we added the algebraic form, in
brackets, to make the comparison of the two systems easier>>. The problem is
Diophantus' 1,28, "To find two numbers such that their sum and the sum of their
squares are given numbers.” Notice how Diophantus actually solves the problem of

finding half the difference between the two numbers. (figure follows on next page)

acceptable, as it alrcady denoted a number, and "Therefore an addition 1s nccessary,” the adopted one
being a monogram for Al

55We believe that this illustration should be enough to convince the reader that gettng used o
Diophantus’ notation is not a difficult task.
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[given numbers:]

setting out:

squaring:

adding:

subtracting:

dividing:

result:

0
HK
(20, the sum)

— 00—

ca 1l
(x +10)

— — 0 —

AYaggKUp
(x2 + 20x + 100)

AYB po 1°
(2x2 + 200) (=
AY B 1°
(2x2) (=

AYa 1°
([11x?) (=
c 1
([T]x) (=

0 —
Hon

(208, the sum of sq's)
o —

L1A Co

(10 — x)

AYap A gix
(x2 +100 — 20x)

0 —
Hon
(208)

Solution of a problcm using Diophantus' notauon.

The eide are never used on their own, not even when there is only "one

square," as in the line squaring, or "one unknown," as in the line serting our’s,

indicating that the eide are denominations rather then numbers proper. It is also

o- -
56Actually. in Heath's book onc docs find in the linc squaring, on the right-hand side, aY pp A ek,
which can only be a misprint, as we were not abie to find such usage in any other book where

Diophantus' notation is discussed.
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interesting that the ¢ is declined—for example in the line squaring, where we find gk

a practice that would produce, in our modern notation, something like 20x's !

We shall now summarise and add some conclusions to our analysis of
Diophantus and the Arithmetica.

Undoubtedly, the Arithmetica of Diophantus has many points of contact with
that which we came to call algebra. In this sub-section, we set out to investigate what
form algebra took in the Arithmetica, in particular, in what sense and to what extent it
could be said to deal with each problem proposed "in generality." The removed
paradigm of algebra, against which Diophantus' is to be examined is our literal or
symbolic calculus, and the question naturally arises, in view of the lack of such
calculus in Diophantus, "...whether Diophantine ldgistic may not contain within itself
the possibility of a symbolic calculating technique.” (Klein, 1968, p139). Klein says,
moreover, that,

"Since Vieta this question has been...answered positively...by those who see the
Diophantine science merely as the primitive 'preliminary stage’ of modern algebra.
From the point of view of modern algebra only a single addiuonal step seems necessary
to perfect Diophantine logistic: the thoroughgoing substitution of 'gencral’ numerical

expressions for the 'determinate numbers,' of symbolic for numcrical values.” (ibid)

Through our study of Diophantus' work, we were led to conclude that such a
substitution is simply not possible in the Arithmetica, not for circumstantial reasons
such as a "lack of letters," nor, it goes without saying, for a supposition of Diophantus’
intellectual limitations®7. Instead, it is the very possibility and intention of his
episteme, to show how, in each specifically given case, the problem can be solved. In
the Arithmetica, 1o solve a problem is to show actual numbers that satisfy the given
conditions, not just to assert the possibility of determining them, and this as a
consequence of Diophantus’ conceptudlisalion of number and of his theoretical
logistic, which by virtue of the Aristotelian conception of number, can now be named
also as arithmetic. A deep aspect of this knowledge is that the eidos to which the
"unknown" belongs, its species, that without which the "unknown in multitude” is
even unthinkable, is exactly the problem, or, more exactly, the relationships given in

the problem, which when presupposed in the process of analysis blur the distinction

57Whm I have in mind here, 1s the surrcalistic phrase "Diophantus had not rc.achcd lhp intellectual stage
of formal operations,” which although never uttered in my presence, I sometimes believe 1o have seen
its ghost.
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between known and unknown, and through which the problem is finallv solved: the
equations.

But we can now ask about someone involved in learning algebra—"our"
algebra—the same question Klein asks about history, thus construed: "Does the
learning of techniques to solve equations in x and possibly y , with specific numbers
as coefficients, contain in itself the possibility of a symbolic calculating technique?”
The case of Diophantus has certainly provided us with richly suggestive insights as to
how approach this question.

CONCLUSIONS

The richness of the insights both into algebraic thinking and into a methodology
for the research in the history of mathematics produced in this section, fully vindicates,
we think, our choice of Greek mathematics as the first historical period to be presented.

From the methodological point of view, Klein's approach to the history of
mathematics must have been felt throughout this section, by anyone who read his book
on the origins of algebra. The benefits of studying the history of mathematics from the
point of view of the conceptual framework of those who produced it are immense, and
they range from the possibility of understanding ways of doing mathematics that
otherwise remain obscure or paradoxical—as the lack of "generic" coefficients in
Diophantus' solutions—to understanding how a conceptualisation of mathematics and
mathematical objects interacts with the production of mathematical knowledge. More
important, however, in relation to our research, this approach actually provides us with
specific instances of this interaction, and those specific instances form, in turn, a rich
model for understanding processes involved in the acquisition of algebraic thinking by
individuals.

From the point of view of algebraic thinking, then, our study of aspects of
Greek mathematics showed that:

(i)  The knowledge of u calculating practice with numbers, in which different
types of numbers are dealt with, does not imply per se the possibility of
establishing a theoretical study of it, and it is only through the
transformation of tool-operations into object-operations that algebraic
thinking becomes possible.

(ii) There is a tension—potentially difficult to overcome—between an
ontological understanding of number and the transformation of

arithmetical operations into objects; one way of overcoming this tension 1s

: 9
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(i)

(iv)

(v)

by collapsing3® ontologically defined numbers into "dimensionless”
elements, which become simply "the elements on which the operations
operate.” In order to do this and still retain the possibility of investigating
propositions involving those elements, meaning is shifted to the
operations, i€, they become objects, although having been conceived as
more or less natural consequences of an ontology. The problem with this
approach is that the stricter the ontological commitment is, the greater the
difficulty of introducing new elements—numbers—that are consistent
with the operations but not with the ontology of the "primitive" elements.
Arithmetic operations are homogeneous, ie, if @ and b are numbers, and
@ is an arithmetical operation, then a®b is, whenever defined9, also a
number. This clearly distinguishes the arithmetical treatment of numbers
from, for example, a geometric treatment in which the multiplication of
two lines is a rectangle, which cannot be directly added to another line. If
the elements of an operation are collapsed, "dimensionless” elements, as
in (ii), it means that they are not distinguished from one another by a
possible ontology, and the operation is homogeneous. The arithmeticity
of algebraic thinking, in our theoretical model, asserts the homogeneity of
the operations which become objects of in algebraic thinking.
Internalism, in our theoretical model, means disregarding any ontology of
the elements of the operation. As we saw in (ii), this abandonment may be
provisional only, as the degree of autonomy given to the operations
depends on the strength of a possible commitment to an ontology of its
elements.

In Diophantus' Arithmetica, analysis is central and directly dealt with; in
the arithmetic Books of Euclid's Elements, and in Diophantus’ On
Polygonal Numbers, it is auxiliary and kept hidden. In those works, the
possibility of manipulating given but non-specific numbers, as in the
latter, or the requirement of specific numbers, as in the former, are
determined by the ontology of number to which those mathematicians are

committed.

38As, for example, in collapsing a "window" in the graphical interface of a cc_)mputcfis operating
system, into an "icon,” which may then be manipulated in its character of being an “icon only,
irespective of being "the icon of a window" and not “the icon of a tlext dc_)cumem,' the icon of a
graphics document,” or "the icon of a programme.” Later in this disscrtauon we will examine this
metaphor again. For the moment it suffices o say that this notion of collapsed elements is similar to
what Klein (1968, p109) calls “reduced” siructures. . o

e are using, of course, the word "operation” in the sense n Whl‘Ch subtraction is called an
"operation,” which it is not, for cxample, if we consider only positive numbers.
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Greek ontological commitments are strong enough to keep numbers and
geometric magnitudes apart, even if, from the point of view of the modern
conceptualisation of mathematics, numbers can be taken as particular cases of
"magnitudes.” The separate treatment of proportions involving each of the two types of
mathematical objects, suggest that we should be aware of the possibility of finding such
strong ontological commitments in learners, with the difficulties that would follow.

3.3 ISLAMIC ALGEBRA

INTRODUCTION

The culture of Islam has its historical beginning at a very precise date, the year
622 AD, when Muhammad, the Prophet, travels from Mecca to Medina. Before that
time, Arabic peoples lived within a tribalistic social structure; the emergence of Islam
answers to the challenge of reforming the old tribal order, and the teachings of the
Coran, the Sacred Book of Revelations, will produce a unity unprecedented in the Arab
world (Pryce-Jones, 1989). In less than a century from Muhammad's journey,
Islamism will have extended over the Middle East, North Africa and Spain.

In one essential point the Islamic culture differs from Greek culture. In Islam
the religious aspect takes over all other aspects of life®Y; faith and revelation are central
notions, and, in fact, "The very word islam means both 'submission’ and '‘peace'—or
'being at one with the Divine Will'." (Nasr, 1968, p22). But, Nasr (op. cit., p23)
points out, Islam has three levels of meaning: (i) all men are Muslims, by the mere fact
that they were created by God in that way, and have no alternative to it, as much as a
flower cannot escape being a flower; (ii) there are those who surrender their will to the
law of Islam, as the warrior who, leaving for battle, says, "And now, God, take my
soul."; and (iii) there 1s the gnostic, who surrenders his whole being to God, in his way
to achieve pure knowledge and understanding. Istam, then, did not imply a religious

dogmatism that prevented the search for knowledge, and, as Nasr (ibid) puts it,

"...’knowledge’ and 'science’ arc defined as basically different from mere curiosity and
even from analytical speculation. The gnostic is from this point of view ‘one with
naturc" he understands it 'from the inside, he has become in fact the channcl of grace

for the universe. His islam and the islam of Nature are now counterparts.”

S0For example, "...Muslim philosophers were Muslim first and philosophers second.” (Qadr, 1990,
P9)
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The Coran itself is unmistakably clear:

"Whoever wishes 10 have the benefits of the immediate world let him acquire
knowledge; whoever wishes to have the benefits of the Hereafter, let him acquire
knowledge and whoever wishes to have both together, let him acquire knowledge."

(quoted in Qadr, 1990, p16)

to what Qadr immediately adds, "Further it may be noted that Islam favours both
rational and empirical knowledge. No dogma, however sacred and ancient it might be,
is acceptable in Islam and to Muslims unless it stands the test of reason.”

The central notion of Islam is unity, not a unity produced by intellect alone, by a
systematisation of our understanding of Nature, but an original unity, one emanating
from God. The prohibition of portraying individual objects in Islamic art has to be
understood in this context, as the avoidance of the particular®l; it is also in this context
that the importance of mathematics in the Islamic culture has to be understood, as a way
to overcome the distance between the multiplicity exhibited in Nature and the unity

underlying Nature.

It would be impossible for us—in the context of this dissertation—to go any
deeper into the study of the influence of the Coran in Islamic science, but the important
point to be made is this: the Coran provided not only a code for the restructuring of the
tribal social structure of the Arab world of the time, but also, and for us of more
interest, it provided a drive towards the search for knowledge. This is a key aspect of
the Islamic culture, as it prepares the ground for the study, by Muslim scientists and

philosophers, of the work of the Greeks.

From the Greek philosophers, Pythagoras, Plato, and Aristotle were more
deeply studied by the Arabs. Nasr (1968, p70) argues that the interest in the Greek
philosophers probably arose from the position of inferiority in which early Islamic
theologians and philosophers found themselves, unable to defend the precepts of Islam
against Christians and Jew thinkers, who were—specially the former—an important
source for Greek knowledge in the Islamic culture. From the Pythagorean tradition, its

interest in the mystic aspects of numbers, in its aspect of making possible an

61For a good sample of Islamic art, sce Prisse d'Avennc (1989), where on page 10 we read that,
"...freezes bearing great foliated scrolls intermixed with human aqd animal ﬁgu{res. 'r‘nuSL have appeared
to the Arabs as monstrous manifcstations of the warped imagination of pantheism.

L 02
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understanding of the world, was taken by Arab falsafah—philosophy. The influence of
Plato, and in particular of Aristotle was much greater62.

In view of the importance of mathematics as a "ladder” to higher levels of
understanding (Nasr, 1968, p147), together with the importance given to the reading
and interpretation of Greek philosophy, it is almost paradoxical that one will not find in
Islamic philosophers the same kind of discussion of number, for example, that is found
in Plato and Aristotle. In itself, this is a strong indication that the ontological
commitment of the Greek had to a great extent been abandoned, and this for the reasons
that follow. Although it can be said that the Arabs shared with the Greek the urge to
know Nature, within the Islamic culture the Greek dismissal of empirical knowledge as
lesser and even misleading was rejected. Number as used in all sorts of situations
seems to be the number dealt with by Islamic mathematicians, and not the ontologically
determined number of Plato and Aristotle. There should be no doubt that the Arabs
knew the incommensurability problem, as Euclid's Elements were know to Islam by
al-Khwarizmi's time®3, and it would be unreasonable to think that not being able to
understand it properly, they dismissed it. It seems, instead, that in Islamic mathematics
the factor determining number was the possibility of calculating with them, and as a
consequence the philosophical discussion about number was substituted by a technical
one, as o