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Abstract 

In the field of radiation protection, complex computationally expensive al

gorithms are used to predict radiation doses, to organs in the human body 

from exposure to internally deposited radionuclides. These algorithms con

tain many inputs, the true values of which are uncertain. Current methods 

for assessing the effects of the input uncertainties on the output of the al

gorithms are based on Monte Carlo analyses, i.e. sampling from subjective 

prior distributions that represent the uncertainty on each input, evaluat

ing the output of the model and calculating sample statistics. For complex 

computationally expensive algorithms, it is often not possible to get a large 

enough sample for a meaningful uncertainty analysis. This thesis presents 

an alternative general theory for uncertainty analysis, based on the use of 

stochastic process models, in a Bayesian context. The measures provided 

by the Monte Carlo analysis are obtained, plus extra more informative 

measures, but using a far smaller sample. The theory is initially developed 

in a general form and then specifically for algorithms with inputs whose 

uncertainty can be characterised by independent normal distributions. 

The Monte Carlo and Bayesian methodologies are then compared us

ing two practical examples. The first example, is based on a simple model 

developed to calculate doses due to radioactive iodine. This model has two 

normally distributed uncertain parameters and due to its simplicity an in

dependent measurement of the true uncertainty on the output is available 

for comparison. This exercise appears to show that the Bayesian method

ology is superior in this simple case. The purpose of the second example 

is to determine if the methodology is practical in a 'real-life' situation and 

to compare it with a Monte Carlo analysis. A model for calculating doses 

due to plutonium contamination is used. This model is computationally 

expensive and has fourteen uncertain inputs. The Bayesian analysis com

pared favourably to the Monte Carlo, indicating that it has the potential 

to provide more accurate uncertainty analyses for the parameters of com

putationally expensive algorithms. 



1. INTRODUCTION 

1.1. Motivation for this research 

The aim of this thesis is to develop and test a general theory for performing 

uncertainty analysis. The motivation for this project is related to my back

ground as a statistician working for the National Radiological Protection 

Board (NRPB). This body was established by the Radiological Protection 

Act, 1970, to provide advice to the UK government on matters regarding 

the protection of the public from all forms of radiation. At NRPB, complex 

computationally expensive mathematical algorithms are used to simulate 

the activity of radioactive substances taken into the human body. These al

gorithms are mainly used in the calculation of doses due to exposures from 

radioactive substances carried within the body. This field of work is known 

as internal dosimetry. Over the last decade analyses have been performed 

at NRPB on a selection of these algorithms, in an attempt to quantify the 

effects of various sources of uncertainty on the reliability and accuracy of 

the predictions obtained from these algorithms. These uncertainty analy

ses made inferences about an algorithm based on a sample distribution of 

its output. As a general rule, the larger the sample the more accurate was 

the picture of the associated uncertainty obtained. 

The algorithms used in the field of internal dosimetry tend to be com

plex and computationally expensive. Consequently, the accuracy of these 

analyses is limited by the number of evaluations of the algorithm that can 

be performed within the available time scale. An examination of some 

stochastic process methodology, used in the related field of estimating the 

output of algorithms, led me to believe that from this methodology a gen

eral theory might be developed, from a Bayesian perspectiye. to perform 

more infornlative and efficient uncertaint~· analyses, in terms of the nUID-

-
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ber of evaluations of the algorithm required, for an accurate uncertainty 

analysis to be performed. 

In this thesis, a general theory for uncertainty analysis, based on sto

chastic process methodology, will be developed and tested on examples of 

internal dosimetry algorithms. Although these examples come from one 

specific field, the theory is of a general nature and could be applied more 

widely to other algorithms. 

The next section of this chapter will introduce the field of radiation 

protection and explain why the monitoring of human exposure to ionising 

radiation is so important. The final section will introduce and explain the 

development of the internal dosimetry algorithm and will indicate why it 

is important to obtain accurate measures of the uncertainty about their 

outputs. 

In the first part of chapter two, the current classical methodology for 

uncertainty analysis will be described along with its drawbacks. Following 

this, the stochastic process methodology referred to above will be detailed 

to provide a background to the development of the new uncertainty analysis 

theory. Finally, the specific objectives of this thesis will be identified along 

with a description of the remaining chapters. 

1.2. Human exposure to radiation 

Throughout history man has always been exposed to radiation from natural 

sources. In 1895 William Rontgen [Ron95] observed that certain crystals 

gave off light when placed near to an electrical discharge taking place in 

a partially evacuated tube. He had discovered a way of producing X

rays artificially. This breakthrough led to a number of diagnostic and 

therapeutic applications for X-rays in the field of medicine that resulted in 

the first human exposures to radiation generated from an artificial source. 

Today in the UK, an average member of the population receives a ra

diation dose of 2.6mSv. Exposure to all forms of natural background ra

diation contributes 85.5% of the total dose (50% Radon gas. 1~% Gamma 

rays, 10% Cosmic rays and 11.5% food and drink) while the largest ar

tificial source of radiation exposure, which constitutes 1~% of the total. 
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is attributed to medical procedures , e.g. X-ray examinations and cancer 

treatments. Other artificial sources such as nuclear discharges . fallout and 

occupational exposure make up only 0.5% of the total dose. Figure 1.1 

details the full breakdown of the sources of exposure to a typical member 

of the UK population. 

50% Radon Gas 

11 .5% Food & Drink 

14% Gamma Rays 

14% Medical 

0 .5% Other Artificial 

10% Cosmic Rays 

Figure 1.1 : Breakdown of the average annual radiation dose to the popu

lation of the UK. 

Unexpected illnesses and deaths amongst the first people to work v;ith 

artificially produced radiation quickly led researchers to the conclusion that 

over exposure to radiation was harmful. Since then considerable effort has 

been devoted to developing radiation protection strategies to enable its safe 

use. 

The detrimental effects of radiation exposure can be di,"ided into t,\"O 

categories: 

1) Early effects: these occur ,,"hen the body is exposed to an extremely 

large dose over a short p eriod of time. For example. an in ' tant ancou:o; 

uniform dose to the ,,"hole bod," of 5G," ,,"ill result in ' en ' rc damag to 
v v ... 
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the bone marrow and gastrointestinal tract that is almost certain to cause 

death within weeks, even with medical treatment. 

2) Late effects: these occur following exposures that are too small to 

cause early effects. The most important late effect of exposure to ionising 

radiation is cancer induction. Groups of people exposed to radiation in sub

lethal doses were found in subsequent years to have higher incidence and 

mortality rates from various cancers than comparable unexposed groups. 

The other important late effect of radiation exposure is an increase in the 

risk of hereditary disease in the offspring of exposed individuals. 

Protecting people from the early effects of radiation, also referred to 

as deterministic effects, was found to be relatively easy. The first signs of 

these effects such as reddening of the skin, irritation of the eyes could be 

recognised and with the use of early dosemeters the high exposures that 

cause these and other more serious life threatening effects could be avoided. 

Guarding against the risk of the late effects of radiation, also referred to 

as stochastic effects, was found to be more complicated. The first problem 

is that these effects are not easily quantifiable. For early effects, exposure 

of sayan area of skin to a certain dose can be predicted with reasonable 

accuracy to cause a particular observable effect. For late effects, i.e. cancer 

induction, the consequences of an exposure can only be expressed in terms 

of an elevated risk of contracting a cancer at some point later in life. It 

is not possible to define a cut-off dose level above which the risk of can

cer is increased and below which it is not. Thus the quantification of an 

individual's risk of a late effect is difficult. 

The precise method by which an exposure causes cancer is not yet 

understood. This means that only empirical evidence may be used to 

quantify the risks of contracting, for instance, radiation-induced leukaemia. 

Current evidence regarding the late effects of radiation exposure comes 

principally from three sources: 

1) Animal experiments. A number of different types of animals have 

been and are still used as experimental subjects. The advantage of using 

animals is that it is considered 'acceptable' to perform experiments in ,,"hich 
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potentially dangerous doses are given to subjects such as rats or Illlce, 

whereas it would be ethically unacceptable to perform such experiments on 

humans. The main disadvantage of using animals is that even when using 

mammals such as rats, differences have been found in the physiological 

responses of these animals to radiation exposures compared to those of 

man. 

2) The Life Span study. In 1945, the United States dropped two atomic 

bombs on the Japanese cities of Hiroshima and Nagasaki. This resulted in 

the killing of a large number of people who were close to the explosions. 

However, a considerable number of people, within these cities, were far 

enough from the explosions to escape instant death or a lethal dose but 

who still received a measurable exposure. In 1950, a cohort of 120,000 of 

these survivors was created. The various criteria used for the selection of 

this cohort are detailed by Preston, Kato, Kopecky and Fujita [PKKF87]. 

The health status of this cohort has been followed since that time with 

particular reference to the incidence of cancer. The Life Span study still 

represents the largest and most important body of data on the exposure 

of man to radiation currently available. 

3) Human experiments. A small number of experiments have been car

ried out on humans using volunteers, mainly terminally ill patients, who 

received low doses. Most of these experiments looked at the behaviour of 

radioactive substances taken into the body either by inhalation or inges

tion. 

The data collected from the three sources listed above have highlighted 

a number of features concerning the pattern of cancer risk. Firstly, the 

increased risk of cancer does not begin immediately following the exposure. 

In fact, the evidence suggests that radiation-induced cancers do not start 

to appear until a number of years following the exposure. This delay is 

called the latency period and has been observed to differ between cancer 

types. Solid cancers, such as lung or liver cancer, seem to take a minimum 

of about ten years to develop following exposure. In contrast, for leukaemia 

the period is much shorter at around two years. 
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Empirical evidence also shows that a radiation-induced cancer does 

not always appear directly following the end of the latency period but 

can occur a number of years later. The period during which a radiation 

induced cancer can occur is known as the expression period. As with the 

latency period the expression period has been seen to vary with cancer 

type from as short as forty years with leukaemia to the end of life for solid 

cancers. Furthermore, there is some evidence that the cancer risk during 

the expression period does not remain constant although current evidence 

available on this point is limited. 

Different cancer types also exhibit varying sensitivity to induction by 

radiation. For example, evidence suggests that in general leukaemia is the 

most sensitive form of cancer to induction by radiation exposure, based on 

the proportional increase in risk. However, the incidence of the leukaemia 

subtype known as chronic lymphatic leukaemia does not appear to be al

tered by radiation exposure. Other less extreme differences occur between 

the excess incidence rates of various solid cancers. 

Finally, the empirical evidence suggests that there is variability between 

people in their susceptibility to contracting radiation induced cancer. A 

good analogy to this is the effect of smoking on lung cancer risk. There is 

a generally accepted rule that as a person's rate of smoking increases then 

so does their risk of lung cancer. However, some people can smoke heavily 

and still not contract lung cancer while others who smoke relatively little 

in comparison do succumb to the disease. A current theory, that has been 

proposed to explain this anomaly, is that a person's genetic characteristics 

affect their sensitivity to cancer induction due to environmental exposures 

such as smoking and radiation. 

Clearly, the important task of deriving a relationship between the risk of 

cancer and the radiation dose received is not a simple one. Various national 

and international bodies have attempted to quantifying this relationship. 

They have produced a range of mathematical models which are used to 

calculate various dose constraints that are intended to define acceptable 

levels of risk to both the general public and to radiation workers. Thus, 

given a person's dose profile. these models can be used to predict their 
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radiation induced excess risk of contracting cancer and ensure that this 

does not exceed current 'acceptable' levels of risk. 

An essential component of such risk calculations is the person's dose 

profile, but obtaining this information can be a difficult problem. Expo

sure to the three types of radiation, alpha, beta and gamma can occur 

from two types of source; those external to the body and those taken into 

the body. Measurement of the dose received from external sources is rela

tively straightforward. Levels of radiation entering the body from external 

sources can be measured using personal dosemeters worn about a person's 

body or can be derived from environmental measurements in some cases. 

These can provide a relatively accurate picture of a person's external ex

posure. Considerably more difficult, and potentially more important, is 

the measurement and consideration of exposures from internal radiation 

sources. The problems concerning the measurement of internal exposures 

will be discussed in the next section. 

1.3. Internal dosimetry 

Internal contamination from radioactive substances can be extremely dan

gerous since they can remain in the body for extended periods of time and 

result in high doses to parts of the body. Radioactive substances can enter 

the body though three main pathways; by ingestion, by inhalation, and 

directly through the skin, for example, at the site of a wound. Once in the 

body, radioactive substances behave in various different ways that make 

dose calculations extremely difficult. In common with a lot of materials, 

radioactive substances tend to become concentrated in particular parts of 

the body. Also, certain types of radioactive substance have an affinity for 

specific organs or systems within the body. 

These features can make internal exposures potentially dangerous. For 

example, a quantity of a radioactive substance when evenly dispersed 

throughout the body might give a small relatively inconsequential dose 

to the whole body. However, the same quantity of the material 1 concen

trated in one organ, may give a larger and more hazardous dose to that 

particular organ and surrounding tissue with only a negligible dose to the 
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rest of the body. Thus, when considering the effects of internal exposures 

it is not only the type and quantity of the radioactive substance that is 

important but also its location in the body and the time spent at that 

location. 

The uneven distribution of radioactive materials in the body causes a 

large problem for the assessment of internally generated doses. To accu

rately quantify such doses it is desirable to measure the amount of the 

radioactive substance in each of the organs in which it concentrates. Addi

tionally, information is needed on how the amount in each organ changes 

with time following the initial exposure. In general, obtaining these mea

surements directly is not possible for a living subject so various mathemat

ical models have been created to simulate the time-dependent distribution 

of radioactive substances in the various organs of the body. 

The first generation of these models consisted of simple mathematical 

expressions that attempted to predict the time-dependent distribution of 

various radioactive substances in a few major organs. The next develop

ment was the introduction of mechanistic compartmental models. These 

were so called because they could be thought of as consisting of a number 

of boxes or compartments with pathways between them along which the 

radioactive material could move at a predetermined-determined rate. 

These models introduced an additional level of complexity because they 

allowed for the possibility of recycling. Recycling is the process by which 

material excreted from an organ is not removed from the body, but is 

returned to the blood stream where it can be reabsorbed by the same organ 

or another part of the body. Recycling has been shown to be a critical 

factor in the calculation of internal doses. Further, the term 'mechanistic' 

was applied to these models as they were the first to attempt to simulate 

the actual pattern of movement of radioactive material in the body. 

An integral part of this type of model is the specification of pathways 

between the model's compartments. These pathways represent the routes 

that the radioactive material can take round the body. Each path has an 

associated coefficient that determines the transfer rate along that path. In 

nlany cases the true values of these rate coefficients are not known. Often 
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they are not directly (physically) measurable, nor, owing to the complexity 

of the human body is it possible to obtain definitive experimental data from 

which accurate estimates of these coefficients can be derived. Thus, the 

coefficients have to be estimated by 'experts' using any available subjective 

information and their expert knowledge. 

Often such models are applied to a reference subject. That is, a ficti

tious person whose characteristics are selected to be in some way represen

tative of an average member of the population. However, problems occur 

when a model is applied to a specific individual as opposed to the refer

ence subject. Suppose, for example, that a model requires, as an input, the 

mass of an internal organ. For the reference subject a suitable represen

tative value can be chosen but for a specific individual obtaining the mass 

of an internal organ without resorting to invasive actions is very difficult. 

Therefore, subjective information, based for example on the individual's 

body size, must be used to derive an appropriate estimate. 

This lack of knowledge about a model's parameters or inputs introduces 

uncertainty into the model's output since the output will, to an unknown 

degree, vary according to the values of the subjectively defined parame

ters. For a model to be used with confidence in the radiological protection 

environment, it is important to quantify this uncertainty. 
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2. INTRODUCTION TO UNCERTAINTY 

ANALYSIS 

2.1. What is uncertainty analysis? 

Uncertainty analysis, in the context of this work, is the name given to 

any technique that investigates the accuracy with which a computer-based 

mathematical algorithm or model can represent a complex (possibly phys

ical) system. 

Under this definition it is possible to define two sub-types of uncertainty 

analysis: 

1) Analysis of model inadequacy : A computer algorithm that is 

used to provide a mathematical representation of a complex system will 

usually also be a simplification of the system. As a result of this simplifi

cation there are likely to be systematic differences between the output of 

the algorithm and the true value of the system. If it is intended to use the 

outputs of such an algorithm in place of measurements from the complex 

system then it is desirable to quantify these differences. 

This can be a very difficult task since an exact definition of the complex 

system is not usually available. A good example of such a scenario is 

the problem of the measurement of internal radiation doses described in 

chapter one. In this case the exact nature of the movement of radionuclides 

about the body is unknown so that the computer algorithm represents our 

current understanding of the system. Thus, without a clear definition of 

the complex system it is difficult to assess how good a computer algorithm 

is at representing it. 

Currently, it is usual to define the structure of an algorithm on the 

basis of the currently available information and then to ignore this source 
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of uncertainty. This type of uncertainty will not be considered further. 

2) Analysis of parameter value uncertainty: A computer algo

rithm that represents a large complex system, although a simplification of 

reality, can also be complex with many parameters and inputs that rep

resent underlying features of the system. In many cases it is not possible 

to define precisely the true value of each input or parameter. To overcome 

this problem estimates are used in place of the true, but unknown, values. 

This lack of knowledge about the true values of the parameters propa

gates through the algorithm and results in uncertainty about the true value 

of the output. Again, if outputs of the algorithm are to be used in place 

of measurements from the underlying system then it is important that the 

effects of the choice of particular estimates of the uncertain parameters 

on the output of the algorithm are known. The aim of parameter value 

uncertainty analysis is to quantify these effects. 

Unlike the problem of model inadequacy, classical statistical techniques 

have been developed to investigate this problem. 

2.2. Parameter value uncertainty analysis 

As discussed above, the aim of this analysis is to assess how the lack of 

knowledge about the true values of particular parameters will affect the re

liability of the output of a mathematical algorithm. All forms of parameter 

uncertainty analysis techniques have the same basic structure. 

The first task in the analysis is to select which parameters are going 

to be considered as uncertain. This may seem a trivial task: either the 

true value is known or it is unknown. However, for large and computation

ally expensive algorithms, and especially when using classical techniques, 

it may not be possible to analyse all of the uncertain parameters simul

taneously. It is then necessary to select the most important uncertain 

parameters upon which to perform an analysis. A good way of resolving 

this selection problem is on the basis of how sensitive the output of the 

model is to changes in each of the uncertain parameters. Regardless of 

how much uncertainty exists about the value of a particular parameter, no 

useful information about the resulting uncertainty in the algorithm's out-
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put will be obtained if this output is insensitive to the chosen value of the 

parameter. A wide range of sensitivity analysis techniques exist, [Ham95]. 

The next task is to quantify the uncertainty about the true value of 

each of the parameters selected for the analysis. The ideal way of doing 

this is to associate a joint probability distribution with all the uncertain 

parameters. This requires knowledge of the correlation structure between 

the parameters which is often not available. Thus it is usual to associate 

a single probability distribution with each parameter. The selection of 

these distributions forms a large topic of research on its own. In some 

cases, data can be used to construct a sample distribution from which a 

suitable distribution can be selected and the necessary parameters esti

mated. In other cases, if no data are available or if the parameter is not a 

physically measurable quantity then 'expert' judgment can be used. The 

process of defining parameter distributions using expert judgment has been 

approached in various ways, [Coo9l]. 

Having selected the uncertain parameters and their associated distrib

utions, upon which to perform the analysis, the distribution of the output 

induced by the input distributions can now be determined. 

The ideal method would be to replace the estimates of all the uncertain 

parameter values with distributions, possibly multivariate for correlated 

parameters, and then to analytically determine the resulting distribution 

on the output of the model. In all but the simplest cases this is not pos

sible due to mathematical complexity. An alternative method would be 

to evaluate the output of the model for all possible values of the uncer

tain parameters and then to construct the output distribution from the 

resulting values. This is theoretically impossible for continuous distrib

utions and unrealistic for discrete distributions due to its computational 

expense. Instead, it is usual to perform a statistical analysis which avoids 

these mathematical complexities. All such statistical analyses have the 

same basic format. 

The first step is to obtain data about the computer algorithm. One 

value is selected from each of the distributions associated with the uncertain 

parameters. The output of the algorithm is then evaluated using this set 
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of input parameter values. This process is repeated n times. The whole 

group of n sets of inputs will be referred to as the 'design set'. Each set of 

parameter values used to obtain an output value from the algorithm will 

be referred to as an element of the design set. 

Clearly, the more evaluations of the algorithm's output that are made 

the more data will be obtained and hence the more accurate will be the 

subsequent uncertainty analysis. However, if an algorithm is computation

ally expensive to evaluate then the size of the design set will be limited 

by available computer time. This means it is important to maximise the 

quality of information about the parameter value uncertainty derived from 

each evaluation of the algorithm. The positions in the parameter space of 

the elements of the design set are the most important factor in maximising 

the quality of the information obtained. For example, if the uncertainty 

distribution of a parameter is uniform between two values a and b then a 

sample of points evenly spread between a and b would be more appropriate 

than one in which the values were irregularly spaced. In contrast, for model 

input that has an associated normal uncertainty distribution it would be 

preferable to select more of the values around the mean with fewer values 

in the tails. This means that more information will be gathered about the 

output of the algorithm from areas of the distribution that are considered 

to have a high probability of containing the true value of the uncertain 

parameter. 

The second step of the analysis then consists of obtaining suitable sta

tistical measures from the data to make inference about the effect of the 

parameter value uncertainty on that of the algorithm's output. 

Clearly, the methods by which both the design set is selected and the 

resulting data analysed will greatly affect the quality of the uncertainty 

analysis and thus the inferences made about the suitability of the algorithm 

to represent the underlying system. 

A number of different design selection techniques have been proposed. 

In classical uncertainty analysis these are mainly based on Monte-Carlo 

selection methods. However. other design selection methods have been 

proposed based on the idea of selecting a design that maximises a criterion 
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that in some way measures the predicted quality of the information that 

will be obtained. 

Having obtained the data, classical methods of deriving measures of 

the parameter uncertainty are mainly based around an analysis of the 

characteristics of the sample output distribution. 

2.2.1. Classical design selection 

As noted above, the quality of the results of an uncertainty analysis will be 

affected by the positions of the design points in the parameter space. The 

selection of the design set should be made so as to maximise the quality of 

the information obtained from each element. Classical techniques for the 

selection of designs are based on various forms of Monte-Carlo selection. 

In the most basic form of Monte-Carlo selection, each of the distribu

tions of the uncertain parameters is sampled, at random, the required num

ber of times. This method can result in a poor coverage of the parameter 

space and hence a sample that does not maximise the information provided. 

To overcome this problem a structured random selection method called 

Latin Hypercube sampling, LHS, has been devised by McKay, Conover 

and Beckman [MCB79]. It is a widely used and popular method. 

Suppose a design set, of size n, is required for a model with uncertain 

parameters, Xl, ... , X k . A single sample from this set will contain k values, 

one value from each of the distributions of the uncertain parameters. 

To select a design set using LHS, the distribution of each uncertain 

parameter, Xi, (i = 1,··· ,k) is first divided into n nonoverlapping intervals 

on the basis of equal probability. One value is then selected, at random, 

from each interval to obtain the set Xi = (Xi,l,· .. ,Xi,n). 

To obtain the first sample of the design set, a value is selected at random 

from each of the sets Xi. The next n - 2, samples are obtained similarly by 

sampling without replacement from the remaining values. The final sample 

in the design set consists of the remaining n values. 

The use of this method ensures that the whole range of the parameter 

space is covered by the sample and thus provides more information than 

a simple unstructured sample. An empirical investigation, Rose [Ros83], 
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demonstrated that for a variety of statistical measures a simple random 

sample of size 400 was equivalent, in terms of the information it provided, 

to an LHS sample of size 200. The relative efficiency of LHS compared to 

MC sampling does not appear to have been considered theoretically. 

2.2.2. Classical parameter uncertainty analysis 

The measures obtained from a classical parameter uncertainty analysis are 

usually estimates of the mean and variance of the output distribution, 

as well as a 95% confidence interval for the mean. These measures are 

derived from the sample output distribution. The sample estimates of the 

mean and variance are then considered to be good estimates of the true 

population values, i.e. those values that would be obtained if all possible 

values of the algorithm's output were available. 

A histogram of the output distribution is also usually constructed in 

order to examine the shape of the sample distribution. This is usually the 

extent of the analyses performed. 

Three examples of classical analyses are Crick, Hofer, Jones and Hay

wood [CHJH88], Haywood and Smith [HS93] and Helton, Garner, McCur

ley and Rudeen [HGMR91]. 

This simple form of uncertainty analysis suffers from one major prob

lem. As the number of uncertain parameters being analysed increases then 

so does the size of the sample of the outputs required to perform a mean

ingful uncertainty analysis. 

Consider the following examples that demonstrate this problem using 

simple additive and multiplicative models. The additive model, as defined 

in 2.1, will be examined first. Let y be the output of the model with x and 

z as inputs. 

(2.1) 

Suppose that the true value of z is unknown and that we asSIgn a 

distribution N(/kz, a-;) to represent our lack of knowledge about it. The 

uncertainty in z will propagate through the model and generate uncertainty 

in the value of y. For instance, if a sample of size n selected from the 

distribution of ::: is used to generate, fron1 the model, a set of y values then 
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the variance of y, the sample mean of the outputs, can be written as 

CJ2 
Var[y] = 2. 

n 
(2.2) 

Now suppose the true value of x is also unknown and that its uncer

tainty can be represented independently of z by the distribution N(f.-Lx, CJ;). 

If we also take a sample of size n from this distribution and evaluate y for 

each of the n pairs of inputs then the variance of y becomes 

2 2 

V [ -] CJ x + CJ z ary = . 
n 

(2.3) 

We can determine m, the number of extra samples needed from each 

input distribution, for the two sample variances to be equal as 

(2.4) 

Thus for the variance of y to be the same for the model with two 

uncertain inputs as that of the model with one uncertain input the number 

of samples from each must be increased by m. In the case where CJ; and 

CJ; are equal this will mean doubling the size of the sample. The number 

of extra samples required will increase further if the distributions of x and 

z are positively correlated since the expression for Var[y] will contain an 

added covariance term. 

Now, using a simple multiplicative model, as defined in (2.5), the same 

calculations can be performed. 

y=xxz (2.5) 

Initially, the value of x will be considered known and z unknown with 

uncertainty distribution, N(f.-Lz, CJ;), as above. The variance of y is then 

obtained as 

(2.6) 

where n is again defined as the sample size. If the value of x is now also 

considered unknown with uncertainty distribution, N(f.-Lx, CJ;), independent 

of z, then the variance of the sample mean becomes 

(2.7) 
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Thus, m, the number of extra samples needed from each input distribution, 

for the two sample variances to be equal is 

n (a2 a 2 + 1/
2 a 2 + 1/

2 a 2 _ x2( 2 ) m = x Z t"'x Z t"'z X z 
x 2a 2 . 

z 
(2.8) 

In the case where the means and variances of the uncertainty distributions 

are identical m becomes 

_ (a2 + 2J-L2 ) m-n 2 -1. 
x 

(2.9) 

Further, if the known value of x is assumed to be J-L then m becomes 

m = n C: + 1) (2.10) 

Thus, for the variance of y to be the same for the model with two uncertain 

inputs as that of the model with one uncertain input the number of samples 

from each must be at least doubled. If the magnitude of x is smaller than 

J-L then the number of extra points will increase, while for values of x with 

a greater magnitude the number of extra points will decrease. 

These simple examples illustrate that the sample size required to achieve 

a particular level of accuracy for y will be dependent on the number and 

distributional assumptions of the uncertain parameters in the model. It 

can also be seen that the form of the model itself will affect the exact 

number of extra samples required. For algorithms with a large number of 

uncertain parameters this means that potentially a large number of eval

uations could be required or that the uncertainty ranges for the measures 

of the analysis could be wide. 

It is quite possible that for an algorithm with many uncertain parame

ters, it would not be possible to perform enough evaluations, using Monte 

Carlo methods, to obtain a reliable uncertainty analysis. 

2.2.3. Alternative methodology for parameter uncertainty analy-
. 

SIS 

Little attention has been given to the problem of developing alternative, 

more efficient methods of performing parameter uncertainty analysis. A 
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method is required that makes more efficient use of the information pro

vided by each data point. In addition it would be advantageous to develop 

a better method of design selection, that is, one that maximises the infor

mation provided by each point in the sample. 

In recent years, considerable work has been done on the closely related 

problem of predicting the output of computationally expensive algorithms 

for specified inputs. 

These methods are based on the use of a stochastic process (random 

function) to model departures of the algorithm's output from simple func

tions. An important assumption made in this methodology is that the 

output of the algorithm is, to a certain degree, smooth. That is, evaluat

ing the output of the algorithm at a value x of an uncertain parameter will 

provide information about the value of the output at other points in the 

local neighbourhood of x. 

The classical development of these methods still requires the sample 

to be selected using Monte Carlo based methods as described in 2.2.1. 

However, if they are considered from a Bayesian point of view, the sample 

of the algorithm's output does not have to be selected at random. Instead, 

it can be selected in such a way as to maximise the information provided 

by each element of the design set, using the smoothness assumption. In 

the next section we will describe the development of the stochastic process 

prediction techniques from both the classical and Bayesian viewpoints. 

2.3. Predicting an algorithm's output using stochastic 

process techniques 

As introduced above, the principle around which these methods are based 

is of modelling the departures of the algorithm's output from a constant 

or a regression function as a realisation of a stochastic process. Let the 

known output of a deterministic algorithm be represented by y(x) where 

x represents a vector of values from the distributions of the uncertain pa

rameters. 

The unevaluated value of the algorithm for the general input yector x~ 
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represented by Y (x), is considered as a realisation of a stochastic process 

that includes either a constant term, i.e. 

Y(x) =J-L + Z(x) (2.11) 

or a regression function 

(2.12) 
k 

where Z ( .) is a stationary stochastic process with mean zero. It is also 

usual to assume for computational convenience that Z ( . ) takes a Gaussian 

form. For two sets of inputs wand x the correlation between Z(x) and 

Z(w) is given by the covariance function (72 R(w, x), where (72 is the vari

ance of the process and R(w, x) is a suitably defined correlation function. 

That is, it must be a positive function that decreases with increasing dis

tance between the two points. 

Two papers by Welch, Buck, Sacks, Wynn, Mitchell and Morris [WBS+92] 

and Sacks, Welch, Mitchell and Wynn [SWMW89] both cite one rationale 

for this use of stochastic processes: that departures of the complex func

tion from J-L or ~k (3kfk(X) , though deterministic, may resemble a sample 

path of a (suitably chosen) stochastic process Z ( . ). The second form of 

the model allows for the inclusion of a trend with the uncertain parameters 

if the behaviour of the algorithm indicates such a trend. However, Sacks, 

Welch, Mitchell and Wynn [SWMW89] found that the use of the simple 

model (2.11) did not affect the performance of their predictor. 

The most crucial part of this methodology is the correlation function 

R(., .) which defines the extent to which information about the output of 

the algorithm at w is useful for predicting the value at x. For algorithms 

with p uncertain parameters it is usual and computationally convenient to 

apply a product correlation rule that takes the form 

p 

R(.,.) = II Rj (., .). (2.13) 
j=l 

This implies that a priori the effect of each uncertain parameter is consid

ered independent of the other uncertain parameters. A number of different 
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correlation functions have been used. All are based on two elements: firstly~ 

a distance function component relating wand x; and secondly, a scale pa

rameter. The scale parameter represents a measure of the smoothness 

of the algorithm with respect to an uncertain parameter, i.e. the extent 

to which knowledge about the value of the algorithm at one value of an 

uncertain parameter will be of use in the prediction of the algorithm at 

another value. One commonly used example of a correlation function is 

the Gaussian correlation function, 

carr (Z(w),Z(x)) = exp ( - i~Oj (Xj - Wj)2) . (2.14) 

The actual choice of the function R(., .) is determined individually for 

each application so that it best represents the predicted form of the corre

lation. 

For situations where the output of the algorithm cannot be measured 

deterministically, for instance, when the uncertain parameters represent 

inputs to some physical system then the model is extended to include a 

stochastic process, c:(x) that represents this measurement error, i.e. 

Y(x) = L (3kfk(X) + Z(x)+c:(x). (2.15) 
k 

This form of the model will not be pursued further since our interest lies 

mainly with the prediction of deterministic mathematical algorithms. 

The way in which a predictor for the algorithm is obtained from this 

model differs depending on whether a classical or Bayesian analysis is being 

performed. In both scenarios, however, the data used to construct the 

predictor takes the form of a sample of evaluations of the algorithm over 

the uncertain parameter space. The values of the uncertain parameters 

at which the algorithm is evaluated are referred to as the design set S = 

[Sl' ... , sn] while the vector of the algorithm's output at the design points 

is defined as Ys = [Y(Sl), ... , y(sn)]T . 
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2.3.1. The classical predictor 

The classical method for obtaining estimates using these models is to con

struct a linear predictor for y(x) i.e. 

y(x) = C(X)T Ys. (2.16) 

To obtain c(x) the estimate y(x) is considered as a random quantity and its 

mean square error is then minimised subject to an unbiasedness constraint 

to obtain the best linear unbiased predictor (BL UP). The calculation of the 

BL UP is clearly defined by Sacks, Welch, Mitchell and Wynn [SWMW89] 

as follows. First, define Y s as the random vector Y s = [Y(Sl), ... , Y(sn)JT. 

Further, let 

f(X)T = [h(x), ... , fk(X)], 

r(x)T = [R(Sl' x), ... , R(sn) x)], 

where (J"2 is considered known. 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

Now if c(x)T Ys is a linear predictor of y(x) then it has mean square 

error (MSE) defined as 

E[cTy S _ Y(X)]2 = E [t ( c; [~~~1 !3dj(Si) + Z(Si) 1 )] 2 , 
i=l -L:j=l [(3ifJ(X~) + Z(X~)] 

E [ L:~=l [L:~=l CiCmZ(Si)Z(Sm)] J ) 
+Z(Xi)2 - 2CiZ( Si)Z(Xi) 

(J"2 [c(x)TRc(x)+ 1-2c(x)T r(x) ] ' (2.21) 

where the summations i and m are over the set of n design points and the 

summation j is over the k estimating functions. 

To obtain the BLUP the MSE must be minimised subject to the Ull

biasedness condition, FT c(x) = f(x). This constraint on the predictor 
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ensures that it will interpolate the data points. The constrained minimi

sation can be performed using Lagrange multipliers. Thus, the coefficient 

c(x) of the BLUP must satisfy the matrix equation 

[ OFT] [ A(X) ] = [ f(x) ] . 
F R c(x) r(x) 

(2.22) 

where A(X) is a Lagrange multiplier. Now, by inverting the initial parti

tioned matrix, the following matrix equation is obtained, 

[ 
A(X)] [_(FTR-1F)-1 (FTR-1F)-lFTR-1 ] [f(X)] 
c(x) - R-1F(FTR-1F)-1 R-l(I-F(FTR-lF)-lFTR-l) r(x)· 

(2.23) 

Thus c(x) equals 

c(x) = f(x)R-1F(FTR-1F)-1 + r(x)R-1(I - F(FTR-1F)-lFTR-1). 

(2.24) 

The resulting predictor can be written as 

(2.25) 

where 

(2.26) 

is the standard generalised least squares estimate of f3. It is now clear why 

the correlation function R(., .), must be selected with care since to obtain 

the predictor fj( x), it is necessary to invert the matrix R of correlations 

between the elements of the design set. 

This form of prediction is very similar to the method of 'kriging' used 

in geostatistics. In kriging, the stochastic process Y(x) is also taken to 

be second order stationary, as in (2.11) and (2.12). That is, for given 

x, the mean of the process is constant. The main difference is in the 

specification of the spatial correlation, which, for kriging, is obtained using 

a variogram. To estimate a variogram from data, half the mean value of 

the squared distance between all data points separated by a distance h is 

plotted against h or I hi. The parameters Cl and a of a selected variogram 

function are then obtained by fitting the function to these points using 
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non-linear regression. Typical isotropic variogram functions, i.e. those in 

which the value of the function depends only on the distance h between 

two points, include the exponential function, 

ry(h) = Cl [1 - exp( -Ihl fa)] , (2.27) 

and the Gaussian function, 

(2.28) 

An extra constant Co is also sometimes included in the function~ e.g., 

ry(h) = Co + Cl [1 - exp( -lhl 2 /a2
)] to represent non-spatial variability 

and/ or spatial variability below the sampling density. This constant is 

estimated at the same time as Cl and a. This fitted variogram function is 

then used in place of the correlation function R(.,.) to define a BLUP. 

2.3.2. Examples of the use of the classical predictor 

Two typical examples of the use of the stochastic process model with the 

Gaussian correlation function are provided by Sacks, Welch, Mitchell and 

Wynn [SWMW89] and Sacks, Schiller and Welch [SSW85]. The first of 

these papers shows, that in a circuit simulator example in 6 dimensions the 

BL UP is a more accurate predictor than a polynomial regression model. 

The BLUP, in this case, is based on the basic form of the model (2.11). It 

is suggested by Sacks that from past experience this simplification will not 

affect the performance of the predictor. In both studies the selection of the 

smoothing parameters, constant, j.L, and the process variance, (J2, for the 

calculation of the BL UP is by maximum likelihood. 

Other classical applications of the basic stochastic model (2.11) are 

provided by Welch, Buck, Sacks, Wynn, Mitchell and Morris [WBS+92] 

and Bowman, Sacks and Chang [BSC93]. Welch applies the model to two 

examples, both having 20 uncertain inputs, using the full exponential cor

relation function R(d) = rr~=l exp (-e j Idjl Pj
) . Due to the size of the 

examples the values of e j and Pj are estimated by a constrained maximum 

likelihood technique to reduce the computational burden of maximising the 

likelihood over 42 parameters. A screening exercise to eliminate the para

meters to which the output of the algorithm is insensitive is suggested as an 
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alternative way of reducing the computational burden of high dimensional 

problems. 

Bowman uses exactly the same methodology as described by Sacks, 

Welch, Mitchell and Wynn [SWMW89] with the same correlation functions 

as Welch, Buck, Sacks, Wynn, Mitchell and Morris [WBS+92] but with 

the simpler formulation of the model. It is applied to a two dimensional 

problem. The values of e j and Pj are also estimated by maximum likelihood 

using the design point evaluations. 

2.3.3. The Bayesian predictor 

We now turn to consider the development of a predictor, from the sto

chastic process model, in a Bayesian framework. The stochastic process 

(2.11) or (2.12) is now considered as a prior process that represents our 

knowledge about the algorithm before any evaluations are made. The as

sumption that the process, Z( . ), is stationary and that it takes a Gaussian 

form is retained. The data vector Ys is taken to be multivariate normally 

distributed such that 

(2.29) 

or 

(2.30) 

for models (2.11) and (2.12) respectively. 

The mean of the posterior process obtained using the data and the 

prior is used as a point predictor for the algorithm. Since the prior takes a 

Gaussian form and the data are considered as multivariate normal then the 

posterior will also take a Gaussian form and it is possible, using standard 

techniques, to obtain the posterior process. The Bayesian predictor will be 

taken as the mean of this posterior process and can, conditional on both 

(j2, {3 or J-L be written as 

(2.31 ) 

when the basic model (2.11) is used, or as 

(2.32) 
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when the model including a regression function, (2.12) is used. In the 

former predictor, J.L is a vector of length k with elements J-L. If a standard 

non-informative prior is placed on the vector (3 in the latter expression 

then the mean of the posterior process becomes 

T'" T '" f(x) (3 + r(x) R-1 (ys - F(3) (2.33) 

'" 
where {3 is as defined in (2.26). 

This last predictor is the same as the BL UP defined in the classical 

analysis. However, for informative priors we would not expect the two 

estimators to be equal. In the Bayesian analysis the posterior variance of 

the process may also be obtained to provide a measure of the uncertainty 

associated with the point estimate. 

In both the classical and Bayesian frameworks it can be seen that the 

choice of the correlation function is not arbitrary, The function must be se

lected so that the R matrix is invertible else it is not possible to calculate 

the BLUP /posterior mean. This indicates that the choice of correlation 

functions is restricted to those for which the R matrix has non-zero de

terminant. Further, it is assumed that the process variance, 0'2, and the 

smoothness parameters, e, one for each uncertain parameter, are known. 

Unfortunately these assumptions are not usually realistic and, as a result, 

a number of different ways of estimating these parameters have been ad

vocated. 

Both of these forms of prediction have been used with complex mathe

matical algorithms in a number of different scenarios. 

2.3.4. Examples of the use of the Bayesian predictor 

Probably the first use of the stochastic model in a Bayesian form to predict 

the output of an unknown function is by Kimeldorf and Wahba [KW70]. 

O'Hagan [O'H78], develops the same model but using a non-stationary 

stochastic process, also in the Bayesian framework, in order to find a new 

approach to the theory of optimal design selection. O'Hagan describes the 

fitting of a 'localised regression model' to a set of values. analogous to Ys· 

drawn from a normal distribution. The general theory for the model is de-
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tailed for the situation where the data are obtained subject to measurement 

error. 

To illustrate the theory, a number of one dimensional examples are given 

in which the simpler form of the theory is used in which the points Ys are 

assumed to be obtained without measurement error. In these examples, 

a Gaussian correlation function of the form exp (_~h2 jB2)is used and a 

linear regression function, (3Tf(x) where f(x) = (1, x). The problem of 

having to estimate the coefficients of the regression function is overcome 

by placing a prior multivariate normal distribution on the coefficients, i.e. 

(3 '" N({3o, kB) and letting k tend to infinity. The effects on the predictive 

function of estimating the values of Band B are considered by comparing 

the quality of the predictions for two different values for B and various 

values for the elements of B. O'Hagan [O'H78] shows that a value of B 

that overestimates the smoothness of the algorithm will cause the posterior 

predictive process to be overconfident, while one that underestimates it will 

result in the predictive process being pessimistic in assessing its accuracy. 

The effects of varying the elements of B are shown to be a change in the 

smoothness of the posterior predictive process. 

In a technical report, [CMMY88], and subsequent paper, [CMMY91], 

Currin, Mitchell, Morris and Ylvisaker use the basic model, (2.11), in a 

Bayesian framework. Here it is suggested that a fully specified prior distri

bution for the smoothing parameters, B, the mean value, j..1, and the process 

variance (}2 would be optimal. However, this is not pursued further. In

stead three optimization criteria, the 'leave one out' predictive density, the 

'leave one out' bias and the maximum likelihood are proposed with which 

to select suitable values. In the multidimensional examples described by 

Currin, an ad hoc method that uses all three criteria is applied to obtain 

estimates of the parameter values. 

A number of different correlation functions were also examined by Cur

rin; linear, non-negative linear, cubic, non-negative cubic and an exponen

tial function due to Sacks, Welch, Mitchell and Wynn [SWMW89] of the 

form R(d) = rr~=l exp ( -B j Idjl P
) (the case of P = 2 gives the Gaussian 

form used by O'Hagan [O'H78]). For the examples provided, no one cor-
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relation function performed consistently better than the others when they 

were used to predict over a set of randomly selected test points at which 

the true value of each example function was known. 

Morris, Mitchell and Ylvisaker [MMY93] also used the Gaussian form 

of the exponential correlation function i.e. with P = 2 in a Bayesian 

framework. However, Morris also assumes that information about the first 

partial derivatives of the function with respect to each uncertain parameter 

is available at the design points. The method of maximum likelihood is 

used to estimate the unknown parameters of the model but it is noted 

that this can be a computationally expensive operation for problems with 

a large number of dimensions. 

2.3.5. Criterion based design selection 

The LHS sampling scheme, described in 2.2.1, has been used extensively 

to provide 'good' designs for the stochastic process models, e.g. Welch, 

Buck, Sacks, Wynn, Mitchell and Morris [WBS+92], and Bowman, Sacks 

and Chang [BSC93]. However, the LHS design selection technique does 

not make the assumption of the smoothness of the output of the algo

rithm over the input parameter space discussed above. Thus, by using this 

assumption, the LHS methodology could potentially be improved upon. 

Extensive research has been devoted to the definition of suitable criteria 

for design selection that do take account of the smoothness assumption. 

A range of such criteria based on minimising the expected variance or 

expected error of the predictor have been widely explored. The first use 

of such a criterion was by Box and Draper [BD59], who selected designs 

that minimised the average of the mean squared error over the parameter 

space (and normalised with respect to the variance of the function and the 

number of design points). 

Three further criteria that have been used extensively are the G, A, 

and D optimisation measures. Mitchell and Morris and Ylvisaker [M11Y94] 

define these as follows. A design selected to be asymptotically G (global) 

optimum is obtained by minimising the maximum posterior variance of an 

unspecified point, Xo. on the parameter space. The A (average) criterion 
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is similar but in this case the average posterior variance is minimised. 

The D (determinant) criterion, on the other hand, is based on maximising 

the determinant of the correlation matrix of the design set. Other recent 

references to the use of these criteria are Johnson, Nloore and Ylvisaker 

[JMY90] and Mitchell, Sacks and Ylvisaker [MSY94]. 

Another widely used criterion is called entropy. This criterion, pro

posed by Lindley [Lin56], is based on Shannon's entropy measure which 

quantifies the 'amount of information' provided by each element in the de

sign. Currin, Mitchell, Morris and Ylvisaker [CMMY88] show that when 

the prior stochastic process has a Gaussian form and the coefficients f3 
(as in equation (2.12)) are considered known then this criterion reduces 

to maximising the determinant of the matrix of prior correlations between 

the design points, and is the same as the D-optimal criterion. 

Additionally, the minimisation of both the integrated mean squared er

ror and the maximum mean squared error have been used by Sacks, Schiller 

and Welch, [SSW85] and Sacks, Welch, Mitchell and Wynn [SWMW89]. 

In both these studies, the inclusion of a weight function in the integrated 

mean squared error criterion is advocated but not implemented. O'Hagan 

[O'H78] defines a loss function using the mean squared error of predic

tion. The design which minimises the integral of this loss with respect to a 

weight function is considered optimal. 0 'Hagan defines the weight function 

to be the normal prior density of the unknown parameter indicating that 

the prediction of the algorithm close to the mean value of the uncertain 

parameter is most important. 

There is one major problem with using these criteria. They are all 

functions of the correlation function 2.14, defined in 2.3, which contains 

one smoothing parameter for each uncertain input in the algorithm. As 

stated above, these describe the smoothness of the algorithm's output with 

respect to each uncertain input. In order to use the criteria above to 

select 'good' designs it is necessary to specify the values of the smoothing 

parameters. However, until the algorithm has been evaluated for a design 

set no objective information is available to estimate these values. 

Sacks, Schiller and Welch [SSW85] performed a robustness study in 
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order to find a suitable estimate of the smoothing value that would per

form well over a range of true values. A value of one was found to be 

most efficient in terms of minimising the integrated mean square error of 

the predictor when the true value of the smoothness parameter ranged be

tween 0.25 and 100. Selection of a large estimated value, 100, was found to 

protect against very large errors in the predictor but also resulted in a pre

dictor that was uniformly poor over the input parameter space. Another 

study by Sacks, Welch, Mitchell and Wynn [SWMW89] implements a two 

stage selection procedure in which the first 16 points of a 32 point design in 

six dimensions is selected based on robust estimates of the smoothing pa

rameters. This data is then used to update the estimates using MLE. The 

remaining 16 points are then selected sequentially using the new estimates. 

The remaining problem with this form of design selection is that it is 

usually computationally expensive to optimise these criteria in all but the 

smallest problems. Ideally, one would like to perform an unconstrained 

search over the input parameter space. It is more usual to find designs 

selected from a grid of potential points using a variety of search procedures. 

The use of a grid brings in the extra problem of determining the best grid 

spacing. Too fine a grid and the computational burden is large but too 

coarse a grid and the design obtained may not be optimal. 

2.4. The specific objectives of this research 

The stochastic process methodology described above provides a powerful 

way to predict the value of an algorithm for particular values of the uncer

tain parameters. The critical link in using these methods for uncertainty 

analysis is made by O'Hagan [O'H91] who uses these stochastic process 

methods to perform not just point estimation but also the prediction of 

the integral of a complex algorithm. Thus, as well as estimating y(x), 

O'Hagan details the estimation of 

k = J r(x)y(x) dG(x) (2.34) 

where r(.) is a known vector of functions of x and G(x) is a measure over 

x. In the current context, dG(x) will be the distributions of the uncertain 
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parameters. If the value of r(x) is set to 1 then k becomes the expectation 

of y(x), one of the measures obtained in a classical uncertainty analysis. 

The methods for uncertainty analysis that will be developed will expand 

on these techniques. 

The objectives of this research can be described as follows: 

1) to develop a general approach to parameter uncertainty analysis 

based on a Bayesian interpretation of stochastic process models that im

prove on the currently available classical methods in three ways. Firstly, to 

obtain more accurate estimates of the mean and variance of the algorithms 

output using fewer evaluations of the algorithm. Further, to develop other 

measures of parameter uncertainty not available in the classical analysis, 

and to define an efficient design selection criterion. 

2) to objectively demonstrate any improvement in the Bayesian method

ology over the classical methodology 

3) to demonstrate that the Bayesian methodology is useable in a 'real

life' uncertainty analysis. 

2.5. Overview of the remaining chapters 

In chapter three, the basic theory underlying Bayesian uncertainty analysis 

will be detailed. This will consist of the development of the estimates of 

the mean, variance and other measures of the algorithm's output, and the 

derivation of a design selection criterion. In chapter four, the general theory 

will be reworked specifically for the analysis of algorithms with normally 

distributed uncertain parameters. The following two chapters, five and six, 

detail the application of this theory to two internal dosimetry algorithms. 

In chapter five, the Bayesian and classical methodologies are compared 

objectively using a simplified recycling algorithm for the calculation of 

committed effective dose following ingestion of radioactive iodine, 1311. 

This model was selected for a number of reasons. First, a classical un

certainty analysis had already been performed on this model at NRPB. 

For this NRPB analysis only two of the model's parameters had been con

sidered as uncertain, so it provided a simple two-dimensional problem on 
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which to test the performance of the Bayesian methodology. Further, For

tran code was available, at NRPB, to run the algorithm with user-defined 

values for the uncertain parameters. This code took a relatively short pe

riod of time to run on the NRPB mainframe computers and so estimates of 

the true uncertainty in the algorithm's output could also be derived using 

a very large set of model evaluations. Thus, the classical and Bayesian 

estimates of the uncertainty could be compared not only to each other but 

also objectively to the true uncertainty. 

The iodine algorithm provided a suitable test of the potential of the 

Bayesian methodology. However, for the size and complexity of the 1311 

algorithm it would be possible to produce results from a classical analysis 

to a high degree of accuracy by simply using a suitably large sample. To 

be of any use the Bayesian methodology must be shown to perform better 

than the classical methodology when applied to higher dimensional and 

more computationally expensive models. 

Chapter six describes such a 'real life' uncertainty analysis problem 

also from the field of internal dosimetry. The algorithm used is for the 

metabolism of plutonium in the human body and was considered, after 

some transformations were carried out, to have fourteen uncertain para

meters. In parallel to the Bayesian analysis a classical analysis was being 

performed by staff at NRPB. It was thus possible to compare the results of 

the Bayesian and classical uncertainty analyses. Since this was a 'real life' 

problem for which the true uncertainty was not obtainable, other means of 

validating the Bayesian methodology were also considered. 

Finally, in chapter seven the merits and pitfalls of the Bayesian method

ology are discussed and compared to those of the classical methodology and 

further areas of potential research are identified. 
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3. GENERAL METHODOLOGY FOR 

BAYESIAN UNCERTAINTY ANALYSIS 

3.1. Introduction 

In this chapter the general theory underlying the Bayesian approach to 

uncertainty analysis, based on the use of stochastic process models, is de

tailed. Initially, a hierarchical Bayesian stochastic model is defined. From 

this model a number of measures are derived to quantify the uncertainty 

in the output of a computer algorithm. 

The development of the uncertainty measures falls into four sections: 

a) construction of the Bayesian model, 

b) predicting the output of the algorithm for specific values of the un

certain parameters, 

c) estimating the expected value of the algorithm's output over the 

range of possible values of the uncertain parameters, 

d) estimating the variance of the algorithm's output over the range of 

possible values of the uncertain parameters 

The purpose of parts a and b is mainly to lay the foundations of the 

Bayesian methodology that will be required for the development of the 

uncertainty measures in sections c and d. However, in part b, the de

velopment of the Bayesian predictor as described in 2.3.3 is illustrated. 

This predictor, although not a measure of uncertainty has two relevant 

uses. First, it can be used as a means of quantifying the accuracy of the 

Bayesian uncertainty analysis methodology. Secondly~ it can be adapted 

to provide a probability that the true output of the algorithm does not 

exceed a predefined critical value. Both of these uses will be demonstrated 
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in the following chapters. 

3.2. Development of the Bayesian model 

Let TJ(.) represent the complex computer algorithm to which the uncer

tainty analysis is to be applied. In general, such algorithms will be compu

tationally expensive and often too complex to represent as a single explicit 

mathematical expression. Models used in the field of radiation protection 

are frequently defined by large sets of differential equations. 

Let TJ(x) , TJ(z) represent the known output of the algorithm when the 

p uncertain inputs/parameters are given by x = (XI, X2,' .. ,xp) and Z = 

(Zl' Z2, ... , zp) respectively. Following the Bayesian philosophy, our prior 

knowledge about TJ(.), at a point prior to evaluation, will be expressed as 

a hierarchical stochastic model. This model, which has four key elements, 

was first proposed in the context of Bayesian quadrature [O'H91]. 

We first make the assumption that the function TJ(.) can be approxi

mated, to a reasonable degree, as a linear combination of k simple functions 

hj (.), j = 1, 2, ... , k. Then, we define the expectation and variance of TJ (x) 

for all x in the space X of possible input values as 

E (TJ(x) I (3,0"2) 

Var (TJ(x) I (3, 0"2) 0"2 , 

(3.1) 

(3.2) 

where {3 = (f31' f32,' ", f3k) is a vector of unknown 'regression coefficients', 

0"2, an unknown parameter that quantifies the variability of TJ(.) about 

its expected value, and where h(x) = (h1(x), h2(x),"', hk(x)) defines the 

vector of chosen 'regressor functions'. 

The next part of the model, defines the covariance between TJ(x) and 

TJ(z) as 

(3.3) 

where C(.,.) is a correlation function, such that C(x, x) 1 and where 

C(x, z) is a monotonically decreasing function with respect to a selected 

measure of the distance between x and z. This covariance function is the 

most important part of the Bayesian model since it represents our belief in 

the smoothness of TJ( . ) with respect to x. 
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The third component of the model combines these elements by assuming 

that conditional on the vector {3 and the parameter (72 the joint prior 

distribution of rt(.) at a finite set of n points (rt(Xl), rt(X2),"', rt(Xn)) IS 

multivariate normal. 

Formally, the prior distribution of rt(.) conditional on ({3, (72) is a Gaussian 

process and is written 

(3.4) 

where h ( . ) T {3 is the mean function and (72 C ( ., .) the covariance function. 

Finally, to complete the hierarchical model we must specify prior dis

tributions for the hyper-parameters {3 and (72. If suitable prior information 

is available a conjugate prior can be specified as a Normal inverse Gamma 

distribution such that 

f (r.:l 2) 2-(d+p+2)/2 (-({3 - (30)TV- l ((3 - (30) + a) 
jJ, (7 ex: (7 exp 2(72 . (3.5) 

This implies that the conditional prior distribution of {3 I (J2 is multivariate 

normally distributed and that the prior marginal distribution of (72 has an 

inverse gamma form. Often, little prior information is available and so a 

noninformative prior 

(3.6) 

is usually substituted. Formally it can be obtained from (3.5) by letting 

the elements of V tend to 00 and by setting a = 0 and d = -po 

A comparison with chapter two will show that (3.4) is in fact the same 

as the stochastic process defined in (2.12). 

3.3. Predicting the output of the algorithm 

Suppose the computer algorithm is run for n different sets of uncertain 

parameter values, then define yT = [rt(Xl), rt(X2) , ... ,rt(xn )] as a vector 

containing the n outputs of rt( .) at XI, X2, ... ,Xn . These n sets of points 

will in future be known as the set of 'design points', X = [Xl, X2,"', xn]T. 

as described in 2.3. The vector y represents the objective data about the 

output of the algorithm and will be used to derive a posterior distribution 

for rt(. ). 
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The vector of observations y, conditional on {3 and (]'2 will be considered 

multivariate normally distributed 

(3.7) 

where 

(3.8) 

and A is the n x n symmetric matrix with the [i, j]-th element C(Xi,Xj). 

From this distribution a likelihood function for ({3, (]'2) can be obtained. 

The application of Bayes theorem to this function and the prior distrib

ution of ({3, (]'2) will enable posterior distributions to be obtained. The 

conditional posterior distribution of {3 I y, (]'2 and the marginal posterior 

distribution of (]'2 are obtained in [O'H91] as 

(3.9) 

and 

(3.10) 

where 

j3 = (HT A -lHT) HT A -ly, (3.11) 

~2 yT(A-l_A-lH(HTA-lH)-lA-l)y 
(]' = , (3.12) 

n-q-2 
and where n is the length of the vector y and q is the rank of H. 

The posterior distribution of TJ( .) is obtained in three stages. First 

the posterior distribution of TJ( .) I {3, (]'2, Y must be derived from the joint 

distribution of TJ( .) I {3, (]'2 and y I {3, (]'2. Next, the product of TJ( .) I 

{3, (]'2, Y with that of {3 I (]'2, Y must be integrated over {3 to obtain the 

Gaussian process 

(3.13) 

where 

m*(x) = h(x)T j3 + t(X)T A -l(y - Hj3), (3.14) 

and 

C*(x, z) C(x, z) - t(x)T A -It(Z) 

+ (h(x)T_t(x)TA -lH) (HT A -lH) -l(h(z)T_t(z)TA -lH)T . 

(3.15) 
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and 

(3.16) 

Finally, integrating the product of 7](.) I (J2, Y (3.13) and (J2 I y (3.10) 

with respect to (J2 yields a posterior distribution for 7]( .) I y which for a 

given x can be written as 

7](x) - m*(x) I 
a-JC*(x, x) Y r-.J tn

-
q

. 
(3.17) 

This distribution is a generalisation of the multivariate t distribution in 

the same way that a Gaussian process generalises a multivariate normal 

distribution. Thus given a set of inputs Xo the output of the model can 

be predicted. For example, a point estimate is provided by the posterior 

expectation, m*(xo), the same function as noted in 2.3.1 and 2.3.3. The 
..-... 

posterior variance of this point estimate is obtained as (J2C*(XO, xo). At 

the design points, X, the point estimate will equal the true value and the 

variance will be zero. For all other points, m*(x) represents a smooth 

interpolation of the objective data. Further, at all points, X, the estimates 

are also unbiased. 

3.3.1. Calculating the probability that the true output of the al

gorithm will exceed a critical value 

A useful measure that can be obtained from the previous result with lit

tle effort is the probability that the true value of the algorithm's output 

exceeds a specified value for given input values. Let P(x) be the proba

bility that the unknown true value of the output of the algorithm using a 

particular selection of the uncertain parameters exceeds some predefined 

value. Let Xo be the vector of selected parameter values and let c be the 

predefined critical ~alue. The t distribution (3.17) gives P(xo) as 

(3.18) 

where tv is the complementary cumulative distribution function for the t 

distribution on lJ degrees of freedom and where lJ = n - q. 
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3.4. Estimating the mean of the algorithm's uncer

tainty distribution 

In this section we will derive a distribution to represent our information 

about the mean value of the algorithm's output. Let G be the distribution 

function for the uncertain inputs x. Then for the purposes of uncertainty 

analysis we are interested in the distribution of the random variable TJ(X) 

where X has the distribution G. The most important feature of this dis

tribution to obtain is a measure of its location. In this section a posterior 

distribution for the mean of the uncertainty distribution associated with 

TJ(x) will be derived. We will denote the mean by K. Therefore, 

K = 1 '7(x) dG(x). (3.19) 

If the form of the algorithm were known and found to be analytically in

tegrable then in principle the value of K could be obtained immediately 

from (3.19). However, in the scenario considered here our knowledge about 

TJ( .) is restricted to a posterior distribution (3.13) consequently it is not 

possible to obtain the exact value of K although, since K is a linear func

tional of TJ( . ), we can derive a posterior distribution for it. This situation 

represents a particular form of the general Bayesian quadrature problem 

described in [O'H91]. By following the same approach we obtain 

2 (A 2 ) K I ()" ,Y f'..) N k, ()" W . (3.20) 

The mean and the variance are obtained as 

k = 1 m*(x) dG(x) = R,6 + TK' (Y - H,6) , (3.21 ) 

and 

w 11 C*(x, z) dG(x)dG(z) 

U - TA -ITT + (R - TA -IH) (HT A -IH)-I(R - TA -IH)T, 

(3.22) 

in which 

R = 1 h(x)T dG(x), 
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T = 1 t(x) dG(x), (3.24) 

U = 11 C(x,z) dG(x) dG(z). (3.25) 

The distribution for K, (3.20) is conditional not only on y but also (52. 

This is not desirable since (52 will rarely be known. The conditioning on 

(52 can be removed by integrating the product of the distribution function 

for K with the marginal distribution of (52, (3.10), giving a posterior t 

distribution for K of the form 
A 

K-k 
8"VW I y f"V tn - q (3.26) 

where nand q are as previously defined (3.10). A point estimate and 

variance for the value of K can be obtained from this distribution. 

This theory has been already published as Haylock & O'Hagan [H096]. 

3.5. Estimating the variance of the algorithm's uncer

tainty distribution 

Let L be defined as the variance of 7](X), where 

(3.27) 

and 

K2 = l,l(X) dG(x). (3.28) 

K2 is a p-dimensional integral taken over G, the joint distribution function 

of the uncertain parameters. As with the quantity K, we would like to 

derive the posterior distribution for L. Due to the form of K2 (3.28), this 

is not a mathematically tractable problem since the posterior distribution 

for 7]2 (.) would take the form of a non-central F distribution and it would 

then be difficult (if not impossible) to obtain distribution for K2 in closed 

form. It is, however, possible to obtain posterior moments of L. The first 

two moments of L about the mean will now be derived. 



3.5.1. Calculation of the posterior expectation of L 

The expectation of L I y, that is, the mean of the unknown posterior 

distribution for the variance of 7](X) can be expressed as 

E[L I y] = E[K2 - K2 I y] = E[K2 I y] - (Var[K I y] + E[K I y]2) . 

(3.29) 

It is only the component, E[K2 I y], of this formula that is unknown (the 

other components can be extracted from (3.26) ). To derive E[K2 I y] 

we first obtain E[K2 I (}2, y] and then marginalise this expectation with 

respect to (}2. 

Now, 

E[K2 I ,,2, y] = E [1 rt"(x) dG(x) I ,,2, y] = 1 E [rJ2(x) I ,,2,y] dG(x) , 

(3.30) 

where 

(3.31) 

Substituting (3.31) into (3.30) and expanding the expressions for m*(x), 

(3.14), and C*(x, x), (3.15), gives 

E[K2 I (}2, y] = j3T Qj3 + (y - Hj3)T A -1 PA -1 (y - Hj3) 

+2(y - Hj3)T A -ISj3 + (}2[1 - tr {A -lp} 

+tr {(HT A -IH)-IQ} - 2tr {A -IH(HT A -IH)-IS} 

+tr { A-I H(HT A-I H)-1 HT A -1 p}], (3.32) 

where 

p 1 t(x)t(xf dG(x) , (3.33) 

Q 1 h(x)h(xf dG(x) , (3.34) 

S 1 t(x)h(xf dG(x), (3.35) 

with Rand T defined as in (3.23), (3.24) respectively. 

The conditioning of E[K2 I (}2, y] on (}2 can now be removed by taking 

its expectation with respect to the posterior distribution of (}2 I y, (3.10) . 
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This will result in an expression identical to E [ K 2 I (T2, Y ] but with (T2 
"'-

replaced by (T2, the posterior expectation of (T2 I y given in (3.12). 

Now, all the components of (3.29) are obtained and E[L I y] can be 

calculated. 

3.5.2. Calculation of the posterior variance of L 

The variance of L I y, that is, the variance of the posterior distribution for 

the variance of 'f](X) is derived using the standard formula 

(3.36) 

The component E [(K2 - K2) I y] has already been obtained in the previ

ous section, so it only remains to calculate 

uSIng 

E [K? I (T2,y] - 2E [K2K21 (T2,y] 

+ E [K4 I (T2, y] . (3.38) 

We now quote a general result. The normal moment generating function 

is defined as 

Mx(t) = exp (0.5t'Ot + lit) (3.39) 

and the fourth partial derivative of this function, evaluated at t = 0, gives 

f..LiWjkf..Ll + WjkWil + f..LjWikf..Ll + WikWjl + f..LkWijf..Ll + WijWkl 

+ f..Lif..Ljf..Lkf..Ll + f..LiWklf..Lj + f..LiWjlf..Lk + f..LjWilf..Lk· (3.40) 

where the W represents the various elements of the variance-covariance 

matrix O. 

Using this result, the various components of (3.38) can be expanded 

and evaluated. Thus, the first element becomes 

E [Ki I (T2, y] = E [1 1)2 (X) dG(x) 1 1)2(Z) dG(z) I (T2, y] , (3.41) 

11 E ['72(X)1)2(Z) I (T2. y] dG(x) dG(z). 
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Now using (3.40) with i = j and k = l we obtain 

E [K~ 10-', y] = 114m'(x)m'(C'Z) 

+ (m*(x)2 + C*(X,x)(j2) (m*(z)2 + C*(Z,Z)(j2) 

+2C*(x, z)2(j4dG(x) dG(z), 

- 4[M MC](j2 + 2[C2](j4 + ([M2] + [V](j2) 2 . (3.42) 

The second element of (3.38) can be expanded as 

E [K,K' I o-',y] - E [l 1J'(X) dG(x) l 1J(V) dG(v) l 1J (Z) dG(z) I 0-', y] , 

-111 E[1J'(x)1J(V)1J(Z) 10-', y] dG(x) dG(v) dG(z), 

(3.43) 

again using (3.40) this can be expressed as 

E [K,K' Io-',y] = 1114m'(x)C'(X, v)o-'m'(z) 

+2C*(x, v)C*(x, z)(j4 

Finally, 

+m * (x) 2 m * ( v ) m * (z ) 

+C*(x, x)C*(v, Z)(j4 

+m*(v)C*(x, x)(j2m*(z) 

+m*(x)C*(v, z)(j2m*(z) dG(x)dG(v)dG(z), 

_ 4[M] [MC](j2 + 2 [CC](j4 + [M2] [M]2 

+[V][C](j4 + [M]2[V](j2 + [M2][C](j2. (3.44) 

E [K4 I o-',y] = E [l1J (X) dG(x)l1J(v) dG(v) l1J (Z) dG(z) l1J( q) dG( q)1 0-', Y] , 

= J J J 1 E [1J(X)1J(V)1J(Z)1J(q) 10-', ~ dG(x)dG(v)dG(z)dG(q), 

= J J J 13C'(X, v)C'(q, Z)0-4 + 6m'(x)C'(q, z)a'm'(v) 

+m*(x)m*(v)m*(z)m*(q) dG(x) dG(v) dG(z) dG(q). 

= 3[C]2(j4 + 6[i\J]2[C](j2 + [JJ]\ 
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where 

[M] 1 m*(x) dG(x) , (3.46) 

[MC] 11 m*(x)C*(x, v) dG(x) dG(v), (3.41) 

[MMC] 11 m*(x)m*(v)C*(x, v) dG(x) dG(v), (3.48) 

[CC] 111 C*(x, v)C*(x, z) dG(x) dG(v) dG(z), (3.49) 

[C2J 11 C*(x, vf dG(x) dG(v) , (3.50) 

[M 2
J 1 m*(x)2 dG(x) , (3.51) 

[V] 1 C*(x, x) dG(x) , (3.52) 

[C] 11 C*(x, v) dG(x) dG(v). (3.53) 

Each of the expressions (3.46) to (3.53) can now be evaluated following ex

pansion. In fact, the evaluation of [M2] and [V] was implicit in the deriva

tion of the expectation of L. The resulting expression for E [(K2 - K2)2] 

given (52 and y is large and so is not listed. 

To remove the conditioning of this expectation on (52 a further expec

tation must be taken with respect to the posterior distribution for (52 I y 

(3.10). The result of this action will be to cause instances of (52 and (54 to 
-" -" 

be replaced by their posterior expected values (52 and (54, where (54 is calcu-

lated as Var((52) + E [(52]2 . Thus the variance of the unknown distribution 

estimating L conditional on y is obtained. 

This development of the estimate of L has been already published as 

Haylock & O'Hagan [HO]. 

3.6. Selection of optimum design points 

When performing a classical uncertainty analysis the points at which the 

computer algorithm is evaluated must be selected according to some ran

dom selection procedure, such as the Latin Hypercube sampling scheme. 

as discussed in 2.2.1. 
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This is necessary to ensure that the sample statistics can be used to 

make inference about the population values. In contrast ~ the method of 

selection of the design points for a Bayesian analysis is not subject to this 

constraint. In fact the Bayesian sample is specifically selected to provide 

the highest quality information about the hypothesis in question. 

For this reason we consider the Bayesian methodology to be most ad

vantageous when inference is required about computationally expensive 

functions. In such situations each element of y, the vector of function 

evaluations, will be costly to obtain but by selecting the positions of the 

design points to provide the highest quality information, the total number 

of points required will be minimised. 

The selection of optimum designs based on the optimisation of a crite

rion has been discussed in 2.3.5. A criterion for the selection of optimum 

design points based on a simple squared distance loss function will now be 

derived as follows. 

Initially, the loss function is defined as 

(3.54) 

where 

X is the selected design, 

y is the vector of true observations evaluated at the design points X, 

Xo is the point on the parameter space at which it is required to 

estimate the value of the algorithm TJ( . ), 

d(xo) is the estimate of the algorithm at the point Xo, 

TJ(xo) is the true value of the algorithm at the point Xo· 

Clearly, this function is not suitable since it depends on TJ(xo) , d(xo), Xo, Y 

as well as X, the design. A criterion with which to select best designs must 

only depend on X since when selecting the design the other parameters 

will be unknown. The first step to obtaining from L[TJ(xo), d(xo), Xo, y, Xl 
such a criterion is to take the expectation of the loss function over TJ(xo)~ 

the true value of the function, giving 

L[d(xo), Xo, y, Xl = E [(TJ(xo) - d(XO))2 I d(xo), xo~ y. X] . (3.55) 
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Moving to the next parameter, we now minimise the loss function over 

d(xo) by replacing d(xo) with the expected value of 77(Xo)~ i.e.~ substituting 

E[77(Xo) I Xo, y, X] for d(xo). This further modifies the loss function to 

reveal 

L[xo, y, X] E [(77 (xo) - E [7] (xo) I xo, y, X]) 2 I xo, y, X] 

Var[77(xo) I xo, y, X] (3.56) 

since E [A - E[A]]2 = Var [A]. 

Now in general, 

Var[A I C] = E[Var[A I B,C] I C] + Var[E[A I B,C] I C] (3.57) 

thus 

L[xo, y, X] E [Var[77(xo) I xo, y, X, a2] I xo, y, X] 

+Var [E[7](xo) I xo,y,X,a2] I xO,y,X]. (3.58) 

Further, 

E [77(xo) I Xo, y, X, a 2
] = m*(xo) (3.59) 

which is independent of a 2
, hence 

Var [m*(xo) I a2, Xo, y, X] = o. (3.60) 

Also, 

so 

E [Var[77(xo) I xo, y, X, a2] I xo, y, X] E [a2C*(xo, xo) I Xo, y, X] 

and hence 

E [a 2 I xo, y. X] C*(xo, Xo) 

(3.62) 

L[xo,y,X] = E [a2
1 xO,y,X] C*(xo,xo). (3.63) 

Next, we must take the expectation of L[xo, y, X] with respect to Xo. In 

taking this expectation we must decide at which points on the parameter 
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space it is most important to best estimate the function. If all points on the 

parameter space are equally important then we might take the expectation 

with respect to a uniform distribution over the uncertain parameters. How

ever, in this case the expectation of L[xo, y, X] will be taken with respect 

to the joint distribution of the uncertain parameters, denoted by G(x). 

This means that point estimates of the function will be most accurately 

estimated for values of the uncertain parameters that, according to their 

prior distributions, are most likely to occur. 

Thus, 

L[y, X] = 1 E [0-2 I X, y, Xl C*(x, x) dG(x). (3.64) 

This expression can be simplified further by observing that 

E[[0-2 I xo, y, X] = E [0-2 I y, X] (3.65) 

sInce the calculation of the expected value of 0-
2 from its distribution 

(3.10,3.12), only involves functions of y and X, thus 

L[y, X] = E [0-2 I y, Xli C*(x, x) dG(x). (3.66) 

Finally, to obtain the desired criterion the expectation of the loss function 

over y must be taken. 

Now considering the first part, 

(3.67) 

using the general formula 

E[A I C] = E[E[A I B,C] I C] (3.68) 

and since the second part, Ix C*(x, x) dG(x), does not depend on y it 

remains unchanged when its expectation with respect to y is taken. Hence, 

L[X] = E [0-2 I Xli C*(x, x) dG(x) 

E [0-2 I Xli [C(x, x) ~ t(xf A -It(X) 1 dG(x). (3.69) 

51 



Two further steps can be taken to simplify the selection criterion. Firstly. 

considering the expectation of 0'2, 

since knowledge about the positions of the design points without also ob

taining the values of y will provide no extra information about the expected 

value of 0'2. Thus this expectation will remain constant for all designs and 

so constitutes only a scaling factor in the design selection criterion and 

may be excluded. Hence, 

L[X] ex 1 [e(x, x) - t(xf A -It(x)] dG(x). (3.70) 

The other simplification of the criterion is based on the prior assumption 

that C(x, x) = 1 '\Ix E X, see 3.2, so this component of L(X) can also be 

excluded since it will remain constant for all designs. 

Therefore, the best design, of size n, independent of any knowledge 

about y, Xo, d(x) or TJ(x), will be that which maximises 

1 t(x)T A -It(X) dG(x). (3.71) 

This can be thought of, in general terms, as the design that is predicted 

to give the maximum reduction in the average posterior variance of the 

predictor, weighted by G(x),over the parameter space. 
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4. METHODOLOGY FOR BAYESIAN 

UNCERTAINTY ANALYSIS OF UNCERTAIN 

PARAMETERS WITH NORMAL PRIOR 

DISTRIBUTIONS 

In this chapter, the methodology appropriate to performing a Bayesian 

uncertainty analysis in which the uncertain parameters are associated with 

independent normal prior distributions will be examined. 

We will first outline some definitions. Let 7](x) represent the algorithm, 

which has p uncertain inputs/parameters where x = (Xl, X2, ... ,xp). The 

symbol X a , where 1 < a < p, will be used to represent a general element of 

x. We will assume that the prior knowledge about each of these parameters 

is best expressed as independent normal prior distributions. The mean and 

variance of these distributions will be represented by the vectors 

(4.1) 

and 

(4.2) 

It would in theory be possible to use multivariate normal distributions to 

represent groups of correlated uncertain parameters. However, this would 

increase considerably the complexity of the development of the uncertainty 

measures. In addition, it would be necessary, as part of the prior informa

tion, to define the values of the covariances between the various correlated 

parameters. In cases where little information is available about the uncer

tain parameters it would be difficult to provide such values with any degree 

of confidence. Further, in many cases it will be possible to transform cor

related uncertain parameters to obtain a set of independent parameters. 
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Thus, the Bayesian theory will be developed assuming prior independence 

between the uncertain parameters. 

Next, we will represent a set of n design points as X = [Xl,"', Xp]T 

where Xa = [Xa,l,"', xa,n]T. Thus, Xa,i represents the value of uncertain 

parameter Xa in the ith design point. 

Vector h( ) will be defined using the assumption that the function 7]() 

is approximately a linear additive function of the uncertain parameters, 

thus 

(4.3) 

It would be possible to develop the Bayesian uncertainty measures using 

a more complicated form of h( ), eg, with non-linear components. How

ever, in general the true form of the relationship will be unknown and 

there is no reason to suppose that in this situation more complicated func

tions in h( ) would be any better at approximating the true relationship 

than would linear functions. Further, the inclusion of more complicated 

functions would greatly increase the complexity of the calculation of the 

uncertainty measures. 

Finally, we will also define the correlation function as 

C(X, x') = exp [-(x - x')TZ(X - x')] (4.4) 

where 

z = diag(6) (4.5) 

and 

Ii = [;" ;, ... , ;J . (4.6) 

By assuming this exponential form for C (., .) we indicate a belief that 

the function 7]( .) is locally smooth with respect to each of its uncertain 

parameters and further that it is infinitely differentiable. 

The elements of Z describe our prior information about the smooth

ness of 7](.) with respect to each of the uncertain parameters and about 

the extent of correlations between the uncertain parameters. In this gen

eral scenario, the off-diagonal elements of Z are set to zero to indicate an 

initial belief that the uncertain parameters are independent. That is. we 



do not believe that the smoothness of 7](.) with respect to one parameter 

is influenced by the value of any other parameter. 

The actual size of the elements 81; ... ,8p are determined by our beliefs 

about the smoothness of 7](.) with respect to each of the uncertain para

meters. Assigning a large value to an element implies a belief that 7](.) is 

smooth with respect to that parameter, a small value implies a belief that 

7](.) is rough. 

The assumption that the uncertain parameters are independent, as in

dicated by the diagonal nature of Z, is very useful as it enables us to 

consider this analysis not as a p-dimensional problem but as the product 

of p one-dimensional problems. This will greatly simplify the Bayesian 

uncertainty analysis. 

Thus, consider a single dimension, (x, from the p dimensions of the 

problem. If Xa,i represents the coordinate of design point, i in this dimen

sion and Xa,j that of point j then we will represent the contribution to the 

correlation between 7](Xi) and 7](Xj) from this dimension by 

a,2 a,) 

[
-(x . - x .)2] 

C (Xa,i, Xa,j) = exp 8
a 

. (4.7) 

Thus, the total correlation over all dimensions C(Xi' Xj) is given by 

(4.8) 

This technique of rewriting p-dimensional expressions as the product of p 

'I-dimensional' expressions will be used throughout this chapter. 

Prior to observing at least two values of 7] ( .) there is no way of 0 b j ec

tively estimating the smoothness of 7](.) with respect to each parameter. 

The best that can be done is to make estimates based on prior subjective 

information. Smoothness is not an absolute quantity it depends on scale of 

the function. Thus two different 8 values can represent the same degree of 

smoothness depending on the range of possible values of the parameters. 

As in the previous chapter, however, the problem of selecting the design 

points will be considered first. 

55 



4.1. Selection of the design points 

In 3.2 a criterion for the selection of the design points was obtained. In 

its most general form it states that for a particular design X the value of 

the criterion is defined as Ix t(x)T A -It(x)dG(x), (3.71). 

For the case of p independent uncertain parameters considered here this 

criterion can be re-written as 

1 t(xf A -It(X) dG(x) = J~.,P [1, t(Xof A;lt(XO) dG(Xo)] (4.9) 

where G(xe) is the normal density function of the prior distribution for un

certain parameter e and Xe is the parameter space of x e . Now t (xe ) T A; 1 t (xe ) 

can be re-written as tr (A;lt(xe)t(xe)T) , because 

1 t(xf A -It(x) dG(x) = II [1 tr (A;lt(XO)t(xof) dG(xo)] 
e=l, ... ,p Xe 

II [tr (j A;lt(XO)t(Xof dG(xo)) ] 
e=l, ... ,p Xe 

(4.10) 

since the integration and calculation of the trace of a matrix are commu

tative operations. Next, since the matrix A;l is independent of Xe the 

criterion can be expressed as 

1 t(xf A -It(X) dG(x) = oII,p [tr ( A;l 1, t(Xo)t(xof dG(Xo)) ] 

II [tr(A;l Pe) ] (4.11) 
e=l,···,p 

where Pe is as defined in (3.33). 

In order to evaluate this criterion we need to evaluate Ae and Pe. We 

obtain the [i, j] th element of the n x n matrix Peas 

Pe[i,j] = 1 C(xe, Xe,i)C(Xe, Xe,j) dG(xe), 
Xe 

1 1 exp [-(Xe - Xe,i)2 - (xe - Xe,j)2] 

Xe J2~~~ be 

[
-(xe - J.Le)2] 

x exp 2 2 dXe, 
~e 
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( 4.12) 

( 4.13) 

In order to use the criterion it is necessary to supply the values of 8. It 

would be an unusual situation to know the true values of these parame

ters when selecting a design, so it is necessary to estimate them. Before 

obtaining at least two evaluations of the algorithm for different values of 

the uncertain parameters it is not possible to objectively estimate the true 

values of the smoothing parameters. Thus, subjective prior knowledge will 

be used to provide initial estimates for 8. 

4.2. Updating the smoothing parameter values 

The selection of a design and the evaluation of the output of the algorithm 

at each point in the design, y, provides objective information that can be 

used to improve on the initial estimates of the smoothing parameters used 

to select the design. 

The multivariate normal distribution for y (3.7) contains an implicit 

conditioning on 8 through the A matrix. Its density function can be rewrit

ten explicitly conditional on 8 as, 

I A 1_1. [ A-I 1 f (y I ,8, (72, 6) = (7n(27f)~ exp -(y - H,8)T 2(72 (y - H,8) . ( 4.14) 

This density function can be thought of as a likelihood function for {3, (j2 

and 8. Now by taking the product of this likelihood with the conjugate joint 
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prior distribution for j3 and (J2 (3.6), and independently an uninformative 

uniform prior on 6, the joint posterior distribution can be obtained as 

(4.15) 

Ideally, the parameters j3, (J2 would now be integrated out of this joint 

distribution to obtain a marginal posterior distribution for 6 1 y. Now, the 

first integration to remove j3 can be performed to reveal 

2 1 A 1- ~ 1 HT A -1 H 1- ~ [ A A-I A 1 
f ((J ,61 y) ex: (J2(27r)~ exp -(y - Hj3)T 2(J2 (y - Hj3) 

( 4.16) 

where i:J = (HT A -lHT) HT A -ly {3.11). However, it is not possible to 

further integrate this distribution with respect to (J2. The integral that 

must be performed takes the general form 

( 4.17) 

where c and k are constants with respect to (J2. If a change of variable is 

performed, using x = 2~2 and d(J2 = - 2~2 dx, then this integral becomes 

l
OOc 

- exp [-x] dx 
o x 

( 4.18) 

which does not converge. 

Thus posterior estimates of 6 were obtained by calculating the poste

rior mode of either the full joint distribution of j3, (J2, 6 1 y, (4.15) or the 

marginal distribution of (J2, 61 y, (4.16). In both cases the point estimates 

of 6 were calculated by partially differentiating the distribution function 

with respect to each parameter, setting each of the resulting expressions 

to zero and solving them simultaneously. 

In the rest of the chapter all expressions that contain the correlation 

function will be considered to have an implicit conditioning on the value 

of 6. 
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4.3. Estimation of TJ(xo) for normally distributed un

certain parameters 

In 3.3 we obtained at-distribution (3.17) to represent our knowledge about 

TJ( .) at a general point Xo· From this distribution, a predictor and a mea

sure of the accuracy of the predictor, the mean and variance, were obtained 

as 

E[TJ(xo) I y] = m*(xo) ( 4.19) 

and 

yT ( A -1 _ A-I H (HT A -1 H) -1 A-I) y 
Var[TJ(xo) I y] = C*(xo, xo) . 

. n-q-2 
( 4.20) 

Now, by substituting into these expressions the specific forms of h(xo) and 

C(xo, xo) defined for parameters with independent normally distributed 

priors in (4.3) and (4.4) respectively, estimates of TJ(xo) for all x E X can 

be obtained. 

4.4. Estimation of K the expected value of TJ(X) for 

normally distributed uncertain parameters 

The general theory relating to this question is detailed in 3.4. There a 

t distribution (3.26) was described that contained all the subjective and 

objective information available about the expected value of the algorithm. 

defined as K. From the t distribution generic expressions for E[K I y] and 

Var[K I y] were obtained as 

(4.21) 

and 

yT (A -1 _ A -lH(HT A -lH)-lA -1) Y 
Var[KIY]=W n-q-2 ,(--1.22) 

where n" is defined in (3.22). 

To derive E[K I y] and Var[K I y] specific to parameters with normally 

distributed priors we need to evaluate the expressions R. T and [T defined 

in equations (3.23)~ (3.2--1), (3.25). 

59 



Consider the evaluation of vector expression R, 

R = 1 h(xf dG(x) , 

[1,1 x, dG(XI),' ",1 Xa dG(xa), ... ,1 Xp dG(XP)] (.--1.23) 
Xl Xc> Xp 

A general element of this vector, excluding the first, can be expanded in 

the form 

1= !~a 2 exp [-(X
2
- ;a)2] dXa = J-La. (4.2-1) 

-00 7ra a a a 

thus, 

( 4.25) 

The evaluation of T is as follows, 

T = 1 t(x) dG(x) , 

[1 C(x, Xl) dG(x) , "',1 C(x,xn ) dG(X)]. (4.26) 

Now expanding the element relating to the ith design point we obtain 

1 C(x, x;) dG(x) = II 1 C(xo,xo,i)dG(xo), (4.27) 
e=l, ... ,p Xe 

II 1: exp [ -(Xo ~ XO,i)2] 
e=l,···,p 

1 [-(xe - J-Le)2] d 
x ~exp 2 2 Xe, 

V 27ra~ ae 

II [-(xe - J-Le)2] 100 

1 
exp 8e + 2a~ -00 J27ra~ 

e=l,···,p 

[ -(2a~ + 8~) [ (2xe'ia~ + J-Lea~)]2] 
x exp 2a~8~ Xe - 2a~ + 8~ dxe. 

II [-(xe - J-Le)2] 8e (-1.28) 
exp 8e + 2a~ 8e + 2a~ 

e=l,···,p 

dXe. 
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IT (-L29 ) 
e=l,.··,p 

where (4.29) is obtained from (4.28) using the fact that the integral is that 

of a normal density function, which always integrates to one. The elements 

of T can now be calculated. 

The derivation of U is slightly more complicated in that it involves a 

double integral, over dG(x) and dG(z). 

U = 11 C(x, z) dG(x) dG(z), 

IT j j C(xo, zo) dG(xo) dG(zo), (4.30) 
e=l, ... ,p Xo Xo • 

J.Ll: I: exp [ -(xo 8~ ZO)2] dG(xo) dG(zo). (4.31) 

Now, consider the integral with respect to G(xe). A similar integration 

has already been performed in the evaluation of an element of T above, 

thus 

I: exp [-(xo8~ ZO)2] dG(xo) 1 (X) [-(xe - ze)2] 
exp 15 

-(X) e 
( 4.32) 

1 [-(Xe - {te)2] x exp 2 
v'27r0'~ 20' e 

dXe, 

The expression for U can now be written as 

U IT I: e=l, .. ·,p 

l5e [-(ze - {te)2] dG( ) 
2 exp 2 Ze , 

l5e + 20' e l5e + 20' e 

IT 1(X) 1 [-(ze - {te)2] 
r.>:::::2 exp 2 2 

e=l, ... ,p -(X) V 27r0' e 0' e 

8 e [ - (ze - {te) 
2

] d 
x 2 exp 2 Ze, 

l5e + 20' e l5e + 20' e 

l5e 1 (X) 1 [- (40'~ + l5e) (ze - {te)2] d-
exp 2 ( 2 ~) ~O . 

l5e + 20'~ _(X) v'27r0'~ 0' e 20' e + ve e=l, .. ·,p 
IT 
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II be be + 2(J~ 
be + 2(J~ be + 4(J~ e=l,···,p 

roo 1 

x } -00 J27r(J~ 
be + 4(J~ [- (4(J~ + be) (ze - J.Le)2] 
.s:: 2 2 exp 2 (2 ) dze, ue+ (Je (Je 2(Je+be . 

,-----

II be + 2(J~ 
be + 4(J~' e=l, .. ·,p 

II ( 4.33) 
e=l, .. ·,p 

Having evaluated the above integrals, the specific t distribution repre

senting the available information about K I y along with E[K I y] and 

Var[K I y] can be calculated. . 

4.5. Estimation of L the variance of'T](X) for normally 

distributed uncertain parameters 

The general theory relating to this problem is described in 3.5 where the 

first two moments of the distribution describing the subjective and objec

tive information about L = Var[7](X)] are obtained. All that remains is to 

interpret the general theory and obtain the formulae specific to uncertain 

parameters with normal prior distributions. 

4.5.1. Calculation of the posterior expectation of L 

Now as described in 3.5.1 the expected value of L I y can be written as 

E[L I y] = E[K2 I y] - (Var[K I y] + E[K I yf) . ( 4.34) 

The t distribution obtained in the previous section, 4.4, provides values of 

E[K I y] and Var[K I y]. It only remains to evaluate E[K2 I y]. 

This expectation is calculated using the formula (3.32) with (J2 replaced 

by (;2 derived from (3.10) and where P, Q, and S, the unknown compo

nents, are defined by (3.33), (3.34) and (3.35). 

Now, 

p = 1 t(x)t(xf dG(x). 

62 

( -,1,35) 



is an n x n matrix that has elements of the form 

P[i, j] = IT Po[i, j] ( -:1.36) 
O=l,··.,p 

where Po[i,j] is defined in (4.12). Further, Q is a (p+ 1) x (p+ 1) matrix 

defined as 

Q = 1 h(x)h(xf dG(x) ( 4.37) 

such that 

Q[l,l] = 1, (4.38) 

Q[l, a + 1] = Q[a + 1,1] = 1 h[a] dG(Xa) = /la, 1 < a <p, (4.39) 
Xo: 

and· 

Q[¢, a] 

( 4.40) 

Finally, S is an n x (p + 1) matrix defined as 

s = 1 t(x)h(xf dG(x). (4.41 ) 

The first column of this matrix is the vector T, and of the other p columns 

the ith element of column a will take the form 

1 Xa C(Xa, Xa,i) dG(xa) x IT 1 C(Xo, XO,i) dG(xo) (4.42) 
Xo: O=l,···,p O=f.a. Xo 

which can be expanded as 
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1CX) 1 [- (20"~ + 8e) 
x 2 exp 2 

-CX) ..j27rO"e 20"e8e [
X 2Xe,i0"2 + f-Le 8] 2] 

e - 2 2 8 dxe, 
O"e + e 

8e [-(xe i - f-Le)2] ------,:::- exp , 
8e + 20"~ 8e + 20"~ . 

( 4.43) 

Having evaluated the above integrals, all the components of E[L2 I y] are 

now available and posterior expectation of L can be calculated. 

4.5.2. Calculation of the posterior variance of L 

The general theory for this problem is described in 3.5.2 where Var[L I y] 

is given by (3.36) as 

The component E [(K2 - K2) I y]2 is the square of the expectation of L I y 

derived in the previous section. Thus it only remains to calculate the 

specific form of E [(K2 - K2)2 I y] for the case of uncertain parameters 

with normally distributed priors. We recall that 

E [(K2 - K2)21 0"2,y] = E [K? I y] - 2E [K2K21 y] + E [K41 y] , 

( 4.45) 

where each component is defined by (3.41), (3.43) and (3.45) respectively. 

To calculate E[(K2 - K2)2 I y] for this specific case we need to evaluate 

[M], [MO], [M MO], [00], [02], [M2], [V] and [0], as defined by equations 

(3.46) to (3.53). 

The expression [M] is equal to k, (3.21) and the calculation of [M2] and 

[V] were implicit in that of the expectation of L above. Thus, if we let 

and 

V = (AHG)T (4A7) 
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then 

and 

[V] = 1 - tr {A -lp} + tr {GP} + tr {A -lHGHT A -lp} . (4.49) 

The remaining expressions are evaluated as follows, 

[MC] = MCI {3 + ,BQGR - ,BQVT - ,BQ,BT + MC2 AF + FA -lSGR 

-FA -lSVT - FA -lp,BT - ,BSVR - FA -lpVR, (4.50) 

where M C l is a vector of length (p + 1) obtained by integrating, 

11 h(x)C(x, z) dG(x)dG(z). 

Thus, 

MCdI] = 11 IC(x,z)dG(x)dG(z), 

which equals U as illustrated in (4.31), so 

MCl [l] = II 
O=l,···,p 

The other p elements of the vector have the general form, such that 

MCI [a + 1] = 11 hx [a]C(x, z) dG(x) dG(z) 

(4.51) 

( 4.52) 

( 4.53) 

f: f: XnC(Xn, Zn) dG(xn)dG(zn) (4.54) 

x II f: f: C(Xo, 20) dG(xo)dG(zo),(4.55) 
O=l,···,p,O=l-a 

/laMCd1]. (4.56) 

Now, consider the evaluation of (4.54). To perform the integration of this 

expression with respect to G(za), reveals 

( 4.57) 

If the component Xa is taken outside the integral sign the remaining ex

pression has already been evaluated as part of T, ( 4.27). The further inte

gration of this expression with respect to G(xa) can be written as 
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The expression, (4.55), has the same form as MC1 [1], thus 

( 4.58) 

The next element of [MC] , MC2 is a vector of length n with elements of 

the form 

MC2[i] = II 11 C(xo, zo)C(zo, xo,;) dG(xo)dG(zo), (4.59) 
O=l, ... ,p Xe Xe 

Now, 

1 C(xo, zo)C(Zo, XO,i) dG(xo) 
Xe 

1 1 [-(xo - ZO)2] [-(ZO - XO,i)2] [-(XO - J-l0)2] 
~ exp 8 exp 8 exp 2 dxo, 

Xe V 27r0" 0 0 0 20" () 

[ 
- (zo - uo) 2] [ - (zo - X 0, i) 2] 

exp 8 2 exp 8 
o + 20"0 0 

100 1 [-(20"~+80) ( 2Z00"~+J-l080)2] d x ~exp 2 XO- 2 XO, 
-00 V 27r0"~ 20" 080 20" 0 + 80 

80 [ - (zo - UO) 2] [ - (zo - X 0, i) 2] 
2 exp 2 exp . 

80 + 20"0 80 + 20"0 80 
( 4.60) 

The second integral is evaluated in the same way as the first, by com

pleting the square with respect to Zo, to construct a normal density function 

which integrates to one. Thus, 

II [ 80"~ (X~,i + J-l~) + 60"~80 (X~,i + J-l~)] 
exp - (2 2 2) 2) 

O=l, ... ,p 40"0 + 6800"0 + 80 (80 + 20"0 
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Next, 

[C] 

x exp _ [(X~'i + J.1~) 8~ - I6xe,i()~J.1e - I2xe,i()~Me8e - 22'e'i()~Me] 
(4()~ + 68e()~ + 8~) (8e + 2(}~) 

x 8e x 8e (8e + 2(}~) 
8e + 2(}~ 4(}~ + 68e()~ + 8~ . (4.61) 

11 C(x, z) dG(x)dG(z) - Tt3T + RGR - 2RVT, 

( II 
8e A 

- T/3T + RGR - 2RVT 
e=l, ... ,p 8e + 4()~ 

( 4.62) 

since, /~ Jx C(x, z) dG(x)dG(z) equals MC1 [1] (4.53) . . 
Also, 

[MMC] {3 M MC1 {3 + {3QGQ{3 - {3QVS{3 + 2{3 M MC2 A -1 F 
A -1 A -1 A A 

+/3QGSA F - /3SVSA F - /3S(A -l-D)S/3 

-{3S(A -l-D)PA -1 F + {3QGSA -1 F _ {3QVPA -1 F 

+FA-1 MMC3 A-1 F+FA-1 SGSA-1 F 

-FA -1 SVPA -1 F - {3S(A -l-D)PA -1 F 

-FA-1 P(A-1 -D)PA-1 F-{3SVQ{3-FA-1 PVQ{3 

-{3SVSA -1 F - FA -1 PVSA -1 F, (4.63) 

where M M C1 is the (p + I) x (p + I) symmetric matrix that results from 

performing the integral 

11 h(x)C(x, z)h(zf dG(x)dG(z) ( 4.64) 

such that 

MMC, [l, 1] = 11 C(x, z)h(zf dG(x)dG(z) (4.65) 

which equals U, (4.30). 

The details of the evaluations of the remaining expressions in this chap

ter will be kept brief since they are all performed in a similar way to those 

already detailed. That is, by converting each integral into the product 

of an expression and a normal density function~ the second of which will 

always integrate to one. 
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Thus, 

Similarly, 

11 hx[a]C(x, z) dG(x)dG(z). 

1: 1: XaC(Xa, Za) dG(xa) dG(Za) 

x II 1= 1= C(xo, zo) dG(xo)dG(zo) , 
e=l,. .. ,p,e-=!=a -<Xl -<Xl 

/-leU. (4.66) 

MMC1 [(a + 1), (¢ + 1)] - 11 hx[a]C(x, z)hz[¢] dG(x)dG(z) , 

-1: 1: x¢C(x¢, z¢) dG(x¢)dG(z¢) 

x 1: 1: xaC(Xa, Za) dG(xa)dG(za) 

x I} 1: 1: C(Xo, zo) dG(xo)dG(zo) , 

- /-lcjJ/-le u. (4.67) 

where e = 1,··· ,p, e i= ex, e i= cp and where 1 < cp, ex < p excluding the 

case where ex = cp. Finally, the diagonal of this matrix has elements of the 

form 

M MCd(a + 1), (a + 1)] - 11 hx[a]C(x, z)hz[a] dG(x)dG(z) , 

1: 1: xaC(Xa, Za)Za dG(Xa)dG(za) 

x I} 1: 1: C(Xo, zo) dG(XB)dG(zo), 

( 4.68) 

where e = 1, ... ,p, e i= ex for 1 < ex < p. 

Next, AI AIC2 is an nx (p+1) matrix obtained by evaluating the integral 

11 h(x)C(x, z)t(Z)T dG(x)dG(z), ( 4.69) 
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the ith row of this matrix will consist of p + 1 elements such that 

II 11 C(xo,zo)C(xo, ZO,i) dG(xo)dG(zo). 
8=1,···,p Xe Xe 

M C2 [i], (4.70) 

as defined in (4.61), and 

MMC2 [i,et+l] = II 11 hx[et]C(xo,zO)C(XO,ZO,i)dG(xo)dG(zo), 
8=1,···,p Xe Xe 1: 1: XaC(Xa, Za)C(Xa, Za,i) dG(Xa)dG(za) 

x oX}.,P 1: 1: C(xo, zo)C(Xo, ZO,i) dG(xo)dG(zo), 

[
4/Laba(}; + 4Xa,i(}; + 2Xa,i(};ba + /Lab;] 

4(}; + 6ba (}; + b; 

x [2U~~ 8J X MC2 [i] 

[ 
2/Laba ] [ ] + 2 b X MC2 i. 

2(}a + a 
( 4.71) 

Finally, M MC3 is an n x n matrix obtained by evaluating the integral 

11 t(x)C(x, z)t(zf dG(x)dG(z), (4.72) 

a general element M MC3 [i, j] from this matrix takes the form 

x (4.73) 
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Next, 

[CC] - RGQGR - 2RGQVT + TVQVT 

-2T(A -l-D)S(GR-VT) + T(A -I-D)P(A -I-D)T 

-2RVSGR + 2RVSVT + T(A -I-D)PVR + RVPVR 

+CC1 + 2MC1GR+ MC1VT - MC2 (A -I-D)T 

+MC2VR, (4.74) 

where 

CC, - 111 C(v, x)C(x, z) dG(v) dG(x)dG(z), 

- oIl,pl: I: I: C(~o,xo)C(xo, zo) dG(vo) dG(xo)dG(zo), 

(4.75) 

In conclusion, 

[C2J = tT{GQGQ} - 2tT{GQVS} -tT{GS(A-I_D)S} 

+tT {VQVP} + 2tT {VS(A -l_D)P} - 2tT {GSVQ} 

+tT {(A -I-D)P(A -I-D)P} + 2tT {SVP(A -I_D)} 

+2tT{VSVS} + tT {VPVQ} + C? + 2tT {GMMCI } 

-4tT{V MMC2 } - 2tT {(A-I_D) MMC2 } , (4.76) 

where 

Cf - 11 C(x, z)C(x, z) dG(x) dG(z), 

- oJI.,p I: I: C(xo, zo)C(xo, zo) dG(xo)dG(zo), 

II (4.77) 
8=1,···,p 

Using the above results the specific form of E [(K2 - K2)2 I y] for uncertain 

parameters with normally distributed priors is obtained and thus VaT[L I 

y]. 
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The expressions evaluated above demonstrate that the Bayesian un

certainty analysis is analytically tractable for the case of independent un

certain parameters that have normal prior distributions and in which the 

function to be analysed is assumed to be approximately linear in each 

of the uncertain parameters. The justification for these assumptions \yas 

considered at the beginning of this chapter. Although they seem rather 

constricting, it is often possible to obtain, through transformations, pa

rameters with normal prior distributions, ego the log transformation for 

parameters with lognormal prior distributions. Further, in most cases the 

form of the relationship between an uncertain parameter and the output of 

the function will not be known, so the assumption of a linear relationship 

is not unreasonable. 
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5. COMPARISON OF BAYESIAN AND 

CLASSICAL UNCERTAINTY ANALYSIS 

METHODOLOGIES USING AN ALGORITHM 

FOR THE CALCULATION OF DOSE DUE 

TO INGESTION OF 131r 

5.1. Introduction 

Iodine, in its stable form occurs naturally in the human body where it 

concentrates in the thyroid gland. This organ uses iodine to produce two 

hormones called thyroxine and triiodothyrosine which the body uses to 

regulate cell metabolism. If the radioactive form of iodine, 131 I, is taken 

into the human body, it will also concentrate in the thyroid where it will 

'Undergo radioactive decay. The exposure of this gland to ionising radiation 

may lead to an increased risk of thyroid cancer [doc93]. 

It is important to quantify the size of this risk so that if a potential 

dose, as measured by the committed effective dose equivalent (CEDE)1, is 

predicted to result in an unacceptably high level of risk then remedial action 

can be initiated. An effective form of remedial action involves the prompt 

administration of a large dose of stable iodine which will be taken into 

the thyroid, saturating it and blocking the absorption of the radioactive 

element causing it to be excreted from the body more quickly. 

Contamination of the environment with 1311 is one potential effect of 

a nuclear reactor accident. Consequently, the accurate prediction of a 

1 This is a widely used measure that quantifies detriment from an exposure as the 

dose accumulates over the following 50 years. 
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person's CEDE value due to an intake of 131 I is important. CEDE cannot 

be measured directly; its value, amongst other things, is a function of the 

amount of 131 I remaining in the body. It is also a function of the rate 

at which the 131 I is removed from the body (referred to as its biological 

half-life) and the radioactive decay half-life. The quantity and dispersion 

of 131 I in the body is very difficult to measure directly. Consequently. 

its behaviour is usually inferred from a mathematical algorithm or model 

designed to predict the movement and retention, over time, of this element 

in the human body. 

A number of algorithms exist for performing this task. All contain 

many parameters for which an exact value is not known, owing either to . . 
lack of knowledge or because a value cannot be assigned until a specific 

situation is envisaged. To illustrate this second point, in some models the 

subject's age is defined as a parameter. Until the subject for measurement 

is selected their age is unknown. It can thus be considered as a random 

variable. Quantification of the uncertainty induced in the output of these 

algorithms by their uncertain parameters is vital if CEDE values obtained 

using them are to be reliable for the purposes of radiation protection. 

In this chapter, one such algorithm will be used to demonstrate, in a 

simple low-dimensional scenario, the viability of the Bayesian uncertainty 

analysis methodology. The algorithm selected is a simplified recycling al

gorithm for 131 I which was developed at NRPB during the 1980's. The 

Bayesian methodology will be applied to the same uncertain parameters 

that were investigated in a classical uncertainty analysis previously per

formed at NRPB. This will enable the relative quality of the two methods 

to be compared directly. 

In addition, because the chosen algorithm is relatively inexpensive to 

evaluate, two measures of the 'true' uncertainty will also be derived to pro

vide an absolute measure of the effectiveness of the Bayesian methodology. 

5.2. A simplified recycling algorithm for 1311 

The algorithm that will be examined is a simplified recycling algorithm 

proposed by Adams and Fell [AF88]. A graphical representation of the 
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algorithm is presented in Figure 5.1. 

.... Transfer Thyroid 
Compartment .... - ~ Ph = 80days 
T1h = 0.2 5 days .. 

~ 

, ,~ 

Body Pool 
T1h = l2days 

V 

Figure 5.1: A graphical representation of the 1311 algorithm. 

This is known as a compartmental algorithm or box model. Different 

parts of the body are represented by the three boxes or compartments. 

Once a quantity of 1311 has been ingested it moves down through the oe

sophagus to the stomach. From there the iodine can take one of two routes. 

Either it passes on down the digestive tract and is then excreted, or it is 

absorbed through the stomach wall into the blood stream and is transferred 

to the thyroid gland. The time taken for both these processes to remove 

half of the iodine from the stomach, T 1. is estimated at a quarter of a day. 
2 

They are represented in the algorithm by the transfer compartment. 

The iodine component transferred to the thyroid will remain there for 

considerably longer than a quarter of a day. In fact, the algorithm estimates 

that it takes 80 days for half of any quantity of iodine to be removed from 

the thyroid back to the blood. Once there it is supposed that it will be 

retained in the rest of the body, known as the 'body pool', for a certain 

period, T1. = 12 days. On leaving the body pool a proportion will be 
2 

returned to the thyroid, a process known as recycling, while the remaining 

iodine will be excreted. 

Each of the arrowed lines in the figure has a transfer rate associated 

with it which quantifies the flow rate from one compartment to another. In 

addition to the transfers and losses described above, the radioactive iodine 
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will also be decaying naturally to become stable iodine. The time taken 

for half a unit quantity of this radioactive form of iodine to decay to its 

stable form (i.e .. its radioactive half life) is approximately eight days. 

At time zero a unit quantity of 131 I is considered ingested. The algo

rithm provides as its output the quantity of iodine in each of the three 

compartments at a specified time t following ingestion. These values can 

be used to calculate an appropriate measure of exposure, the CEDE. At 

NRPB a program called Pedal [KP90] was developed which evaluates the 

algorithm and calculates the CEDE from a unit ingestion of 1311. This 

program is written in Fortran 77 and, using the fastest main frame com

puter available at NRPB at the time the program was developed, it took . 
approximately 4.5 seconds to calculate one CEDE value. 

In the remainder of this chapter we will denote the mathematical form 

of the 1311 algorithm by TJ(.). 

5.3. A classical analysis of the uncertainties associated 

with the 131 I algorithm 

Soon after the publication of the simplified iodine algorithm by Adams 

and Fell [AF88], as described above, the NRPB decided to perform an 

uncertainty analysis in order to determine the variability in the CEDE 

caused by the uncertainties in the parameters of the algorithm. Sensitivity 

calculations were first performed and the two parameters whose values most 

affected the algorithm's output were selected for the uncertainty analysis. 

5.3.1. The uncertain parameters of the simplified recycling algo

rithm 

The classical uncertainty analysis performed at NRPB considered two pa

rameters of the algorithm to be uncertain. They were 

a) the mass of the thyroid, W 

b) the fraction of iodine, f, contained in a unit quantity of blood that 

is taken up by the thyroid. 

The value of the parameter W is uncertain because thyToid mass \"aries 
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from person to person. It would be most accurate to use an individual's 

thyroid mass in a calculation of CEDE. However, it is difficult to obtain 

a safe, cheap and accurate estimate of an individual's thyroid dose~ so an 

estimate is usually made. 

The other uncertain parameter, the uptake fraction j, is a quantity that 

is usually considered to be the same for everybody. Unfortunately, methods 

have not yet been devised to measure it accurately, so the uncertainty 

associated with this parameter is caused by a lack of knowledge about how 

iodine behaves in the human body. 

5.3.2. The methodology of the classical uncertainty analysis 

The first step in the analysis involved the selection of prior distributions 

to represent the uncertainties about the values of wand j. Dunning and 

Schwarz [DSS81] have collected and analysed data from various sources 

about both the fractional uptake and the thyroid mass. The data show 

a good fit to the log-normal distribution in both cases. Actual plots of 

the data can be found in Dunning and Schwarz [DSS81]. Other informa

tion concerning these parameters was obtained from ICRP Publication 23 

[ICR75]. 

As a result of combining the information from both these sources log

normal prior distributions were selected for both wand j. The parameters 

of these prior distributions are given in Table 5.1. 

Thyriod mass, w (grams) Fractional uptake, j 

f-L (J f-L (J 

2.889 0.463 -1.315 0.355 

Table 5.1: Parameters of the lognormal prior distributions 

The next step in the classical analysis was to choose 1000 values from 

each of these distributions using simple Monte Carlo random selection. 

The PEDAL program [KP90] was then run with each of the 1000 pairs of 

wand j values to generate a set of 1000 CEDE \"alues. 

This set of values was then used to create a frequency histogram. Sum

nlary measures were obtained in the fornl of the sample mean and \"ariance. 
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A confidence interval for the predicted value of the CEDE was also derived. 

These were the only measures obtained from this analysis and are detailed 

in 5.6.2. 

5.4. Calculation of the 'true uncertainty' associated 

with the 131 I algorithm 

One of the main reasons that the iodine algorithm was selected for testing 

the viability of the Bayesian uncertainty analysis methodology was that 

independent estimates of the true uncertainty could be obtained for the 

purposes of comparison. . 
The 131 I algorithm is relatively simple and the computer processing 

power available at the NRPB has increased considerably since the classical 

analysis of this algorithm was carried out in 1988. The 1000 evaluations 

required for that analysis originally took 75 minutes CPU time to calculate, 

whereas now they take 2 minutes. As a result it has been possible to per

form many more than 1000 evaluations of the CEDE in a reasonably short 

time. This has enabled estimates to be made of the true uncertainty in the 

algorithm independent of either the classical or Bayesian methodologies. 

A 1000 x 1000 regular grid of points was selected from the two dimen

sional parameter space of wand f, the original lognormally distributed 

parameters. The grid was determined by selecting the points so that the 

it extended 2.5 standard deviations, in each direction, either side of each 

parameter's prior mean value as defined in Table 5.1. The CEDE was eval

uated using the PEDAL program [KP90] at each grid point. This took 

approximately 33 hours CPU time. Using the computers available at the 

time the classical analysis was performed, in 1988, this would have taken 

about 51 days. From this large set of values a sample mean and a sam

ple variance for the CEDE, weighted by the distributions of the uncertain 

parameters, were obtained as measures of the true uncertainty. 

Further, to determine if the restriction of the grid to within 2.5 stan

dard deviations of the mean values had an effect on the values of the sample 

nlean or variance. a 40 x 40 regular grid of CEDE \'alues \\'<:15 selected a~ 
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a subset of the larger grid of values constructed above. The best fitting 

regression function, to estimate the value of the CEDE, was then selected 

for this data using GLIM [AAFH90]. The values for the mean and vari

ance of the CEDE were obtained analytically by integrating the regression 

function over the parameter space, X. 

The results of both calculations of the true uncertainty on 131 I algorithm 

are detailed in section 5.6.1. 

5.5. Bayesian analysis of the 1311 algorithm 

This analysis was based on the theory detailed in chapter four. The first 

step was to define the uncertain parameters and their prior distributions. 

The theory detailed in the previous chapter requires that the uncertain 

parameters of the problem have normal prior distributions. Hence this 

Bayesian analysis was performed using the log of the thyroid mass and 

fractional uptake as the uncertain parameters which were considered to 

have normally distributed priors. The transformed parameters log thyroid 

mass and log fractional uptake are denoted by Xlw and xlf respectively. 

Although in the five years since the NRPB classical uncertainty analysis 

was performed new data has become available, the same prior distributions 

were used for the Bayesian analysis in order to ensure the closest compar

ison of the two methodologies. The means, J-Lw and J-Lf' and the variances, 

0"; and O"J, of these priors are detailed in Table 5.l. 

The general elements of the analysis specified at the start of chapter four 

will now be detailed specifically for this analysis. Hence, p which represents 

the number of uncertain parameters in the problem will therefore become 

2. A general point on the uncertain parameter space was defined by the 

vector x = [Xlw , xlf]' The vector of regression functions, h(x), was set to 

h (x) = [1, XZ w , Xlf] • (5.1) 

while 
(5.:?) 

and 

C(x, z) 
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= exp [-(XlW - ZlW)2] x exp [-(Xl! - Zl! ?]. (5.3) 
Dlw DI! 

The next step in the Bayesian analysis was to define the set of design 
points. 

5.5.1. Selection of the design points 

It would have been perfectly legitimate to select points at random and 

use these as a set of design points as is required for the classical analysis. 

However, this would not have maximised the potential of the Bayesian 

methodology. In this analysis the design points were selected using the 

criterion defined in (4.11). This criteri.on can be simplified from the general 

p-dimensional case to this two dimensional problem as 

(5.4) 

where the general forms of P e and Ae are defined in (4.12) and (4.13) 

respectively. 

Now, the parameter space for the normally distributed uncertain para

meters is continuous. This meant that it was not practical to perform an 

unrestricted search for the best design (of a given size) as this would take 

a prohibitively large amount of computer processing time. To overcome 

this problem a 20 x 20 regular grid was defined over the parameter space 

of wand f, with the largest and smallest values in each dimension of the 

grid 2.5 standard deviations either side of the parameter's expected value 

as defined by its prior distribution (i.e. at the 99th percentiles). 

The best n point designs were selected from those points defined by 

the grid using a one-step replacement algorithm. This can be described as 

follows. First, a design of the required size is selected at random. The value 

of the criterion is then evaluated using prior estimates for 8. A new point 

is then selected from the grid and the value of the criterion calculated n 

times with the new point replacing each one of the design's original points 

in turn. The criterion values are then compared and the point whose 

replacement by the new point leads to the largest increase in the criterion 

value over that of the original design is discarded in favour of the ne\\' 
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point. If the substitution of this point does not result in any improvement 

in the criterion value then the original design is retained. This process 

is repeated many times until the potential for further improvement in the 

criterion is thought to be small, at which time the current design is selected 

and used as the 'best design'. A computer program was written in APL to 

perform this search 

5.5.2. Updating the smoothing parameter values 

Once a design had been selected and the output of the algorithm evaluated 

for each point, to give the vector y, this objective data could be used to 

update the prior estimate of 8 as describe.d in 4.2. 

An APL program was written to numerically determine the values of 

8 that had the highest posterior probability. The program was designed 

to obtain the modal values of 8 using both the full joint posterior distrib

ution and the distribution that has been marginalised with respect to {3. 

The program calculates both of these estimates using a downhill simplex 

algorithm due to NeIder and Mead [NM65]. 

5.5.3. Estimation of the value of the 1311 algorithm for specified 

values of lw and If 

This calculation is not strictly part of the Bayesian uncertainty analysis. 

However, the ability to measure the accuracy with which the Bayesian 

methodology can predict the output of the algorithm for particular values 

of the uncertain parameters will be useful. The exact value of the 1311 

algorithm has already been calculated over a 1000 x 1000 grid of points on 

the parameter space, in order to obtain independent estimates of the mean 

and variance of the algorithm 5.4. 

By comparing the predictions over this grid to the true values it can be 

determined how well the Bayesian methodology estimates individual values 

of the algorithm. The effect on the quality of the predictions of increasing 

the design size and updating the estimates of 8 can also be examined. 

This should provide valuable information as to the most useful allocation 

of resources in order to obtain the most accurate uncertainty analysis. 
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Strictly speaking, this analysis will only give information about how to 

optimise the estimation of individual values of the algorithm. However, we 

hope to demonstrate that measures which maximise the accuracy of the 

point predictions will also have a beneficial effect on the estimates of the 

mean and variance. 

5.5.4. Estimation of the mean and variance of the 1311 algorithm 

over the distributions of the uncertain parameters 

The generic form of the expressions for the mean and variance of an algo

rithm for which the uncertain parameters have normally distributed priors 

is detailed in 4.4 and 4.5. Thes~ can be directly applied to the 1311 algo

rithm. The results of the Bayesian analysis are detailed in 5.6.3. 

5.6. Results 

5.6.1. The 'true' uncertainty 

The two sets of 'true value' estimates of K and L, the mean and variance 

of the 131 I algorithm, are detailed in Table 5.2. 

Weighted Sample method Model based method 

Mean, K Variance, L Mean, K Variance, L 

2.532 x 10-8 2.286 X 10-16 2.578 X 10-8 3.213 X 10-16 

Table 5.2: Measures of the 'true' uncertainty 

The first set of 'true value' estimates was calculated as weighted av-

131 I h b . b' erages over the 1000 x 1000 grid of I va ues, eac 0 servatlOn emg 

weighted by the probability of selecting the associated parameter values 

when sampling from the distributions of the uncertain parameters. 

The second set of estimates was obtained from the linear regression 

model 

'T](w, f) = a + 'Y.W + ~.f + E.w.f + e.w2 + )...f2 (5.5) 

which was found to be the best-fitting, most parsimonious model. using 

GLIM [AAFH90]. based on a subset of 1600 points selected from the grid 
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of true values of TJ(·). The fitted function, which takes a linear-quadratic 

form in both wand f, was then integrated to obtain analytical expressions 

for the expected value and the expected value squared of TJ(.), from which 

the values for the 'true' mean and variance were calculated. i.e. 

K E[TJ( w, f)] 

1= 1= (a + "I.w + ~·f + f.W./ + B.w' + '>-./') dG(w) dG(f) 

(5.6) 

The difference between the two estimates of K is small, less than 2%, 

suggesting that both estimates are close to the true value of K. For the 

estimate of L, the weighted sample method gives a smaller value than the 

model based method. A plausible explanation for this difference is that the 

grid of CEDE values from which the weighted sample variance is calculated 

only extends in each direction to the 99th percentile of the distributions 

of wand f. This could result in some variation in the extreme tails of 

the distributions being lost and thus causing this estimate of the variance 

to be smaller than the correct value. The model based method will not 

suffer from this problem since the generalised linear model extends over the 

whole w, f parameter space. However, it may be subject to other errors 

since the simplified model may not be a good enough representation of the 

true function to enable a sufficiently accurate estimate of the variance of 

TJ(.) to be obtained. Hence, the value of L is likely to be greater than the 

weighted sample mean but there is no way of determining if the model 

based estimate is too large or small. 

Of course, in a 'real-life' analysis the above calculations would not be 

possible but in this case they will provide a valuable independent compar

ison of the Bayesian and classical methodologies. 

5.6.2. The NRPB Monte Carlo analysis 

The results of the Monte Carlo (MC) analysis consist of 1000 output values 

from the 1311 algorithm. From this set of values the frequency distribution 

was constructed, as shown in Figure 5.2, along with a sample mean. a 

sample variance, and a 95% confidence intervaL whose bounds were defined 
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as the 2.5 and 97.5 percentiles. These values are provided in Table 5.3. 

Sample Sample 95 % confidence interval for the 

Mean Variance prediction of a future single value 

2.34 x 10 8 4.21 X 10-16 3.88 X 10-9 - 8.18 X 10-8 

Table 5.3: Results of the Monte Carlo analysis 

C3 N = J.000 

4 Ohse~vations a~e ahove the last class 

Midpoint Count 

5.00E-09 29 

J.. 00E-08 J.43 

J.. 50E-08 200 

2. 00E-08 J.96 

2. 50E-08 J.40 

3.00E-08 93 

3.50E-08 64 

4. 00E-08 37 

4.59E-98 27 

5.99E-98 25 

5.59E-98 29 

6.99E-98 J.9 

6.59E-98 8 

7.99E-98 3 

7.59E-98 J. 
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Figure 5.2: Frequency histogram of the sample output of the Monte Carlo 

analysis 

From the frequency histogram it can be seen that the sample distrib

ution is approximately lognormal. The sample mean represents the MC 

estimate of K. Its value differs from the lower of the two 'true value' es

timates by just over 7.5%. Similarly the sample variance represents an 

estimate of L which differs from the upper of the two 'true values' for L by' 

almost 24%. In addition, the confidence interval provides bounds for the 

value of a future single evaluation of the CEDE. These are the only results 

provided by the Me analysis. 

However, a 95% confidence interval of the sample mean, based on the 

central linlit theorem, can be calculated to represent a confidence interval 
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for K based on the MC sample. This interval is obtained as 2.21 x 10-8 _ 

2.47 X 10-
8
. Clearly, the interval does not contain either of the estimates 

of the true value of K derived above. 

5.6.3. The Bayesian analysis 

To enable the Bayesian methodology to be studied in detail, three different 

sets of design points were selected, one each of 10,15 and 20 points, all using 

6 = [1, 1]. As has been discussed previously there is no practical 'way of 

selecting the correct smoothing parameter values, at the design selection 

stage, so the value one was arbitrarily selected as a default value for the 

point selection process. ThE: three designs will be referred to as d
lO

, d
15 

and d20 respectively. For each of the designs, the set of n outputs from the 

131 I algorithm was obtained using the Pedal program [KP90]. These will 

be referred to as YlO, Y15 and Y20. 

The next step in the analysis was to update the estimates of the smooth

ing parameters, 6 = [bz w , bZ!] using each of the selected designs in turn. Ini

tially, estimates were obtained using the posterior distribution 1(8,0-2 I y) 

(4.16). Unfortunately, the surface of this function was very fiat and by 

starting the search at different positions on the, parameter space greatly 

different answers were obtained for the estimates. In many cases the values 

of bzw , bZ! tended to zero or infinity indicating that no non-trivial modal val

ues existed. Consequently, these estimates were rejected and new estimates 

were calculated using the full joint posterior distribution 1({3, 0- 2 , 8, I y) 

( 4.15) . The original and corresponding updated 8 values are shown in 

Table 5.4. 

Design Size Original bzw , bZ! Improved estimates2 for bzw , bl! 

YlO 10 1,1 1.35,1.15 

Y15 15 1,1 3.62,2.34 

Y20 20 1,1 5.46,3.7-1 

Table 5.4: The improved estimates for blw and bl! 

In all cases the improved estimates of 8 are larger than the original yal-

8-1 



ues. This indicates that the original values underestimated the smoothness 

of the algorithm with respect to the uncertain parameters. 

The next step of this analysis was to examine how well the Bayesian 

methodology estimated individual values of the CEDE for given values 

of the parameters wand f (see 5.5.3). Using designs dlO , dI5 and d20 

with both their original 6 values and the improved estimates for the 6 

parameters, the value of the CEDE was estimated over a 30 x 30 regularly 

spaced grid of points selected from the 1000 x 1000 grid that was used to 

calculate the 'true uncertainty' and at which the true value of the CEDE 

had already been calculated. The Bayesian point estimates were compared 

with the true values to assess their quality. Summary measures for this . 
comparison are shown in Table 5.5. 

Design 6 Indicators of percentage error 

y 6lw ,6lj Max Min Absolute Absolute 

error error mean weighted mean 

YlO 1,1 386 -20.4 12.8 3.95 

YlO 1.35, 1.15 353 -17.8 11.1 3.36 

YI5 1,1 116 -22.4 3.48 1.20 

YI5 3.62,2.34 3.63 -48.1 2.24 0.69 

Y20 1,1 53.1 -23.4 3.11 1.28 

Y20 5.46,3.74 8.60 -7.40 0.90 0.19 

Table 5.5: Summary statistics for the quality of the estimates of CEDE 

A number of observations can be made from this table. Firstly, as 

the number of points in the design increased the errors in the Bayesian 

estimates decreased. Secondly, for a particular set of design points the 

magnitude of the percentage errors was smaller when the improved esti

mates of the smoothing parameters were used in place of the original values. 

The importance of using the best estimates of the smoothing parameters 

is demonstrated by the observation that the estimates, generated using the 

15 point design with the improved 6 estimates. are more accurate than 

those generated using the 20 point design and the original 6 values. This 

indicates that it may be more efficient to optimise 6 than to increase the 
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number of points in the design. In this example, it is possible to see the 

effects of increasing the design size and optimising the estimates of 8 on the 

estimates of the mean and variance. Unfortunately, in a 'real-life' analysis 

the effectiveness of these optimisations would be difficult to quantify since 

the construction of Table 5.5 would not be feasible. 

Next, using each set of design points with both their original 8 values 

and the improved estimates, the mean and variance of the posterior t dis

tribution for K, the expected value of the CEDE was calculated. From this 

distribution a 95% probability interval for K was derived. These results 

are shown in Table 5.6. 

Design Size Dzw,Dzf 
. 

Mean Variance 95% probability 

YlO 10 1,1 2.549 x 10-8 6.748 X 10-21 2.529 - 2.568 x 10-8 

YlO 10 1.35, 1.15 2.550 x 10-8 4.933 X 10-21 2.533 - 2.566 x 10-8 

Y15 15 1,1 2.559 x 10-8 2.750 X 10-20 2.522 - 2.595 x 10-8 

Y15 15 3.62,2.34 2.565 x 10-8 1.699 X 10-21 2.536 - 2.593 x 10-8 

Y20 20 1,1 2.565 x 10-8 4.983 X 10-21 2.550 - 2.579 x 10-8 

Y20 20 5.46,3.74 2.566 x 10-8 1.333 X 10-22 2.563 - 2.568 x 10-8 

Table 5.6: Parameters of the posterior t distribution for K, the mean of 

the CEDE 

There is a high level of consistency between the Bayesian point esti

mates of K; the largest and smallest differ by less than 1%. Also, all of 

these estimates lie between the two 'true value' estimates suggesting that 

the Bayesian results are reliable. Further, as either the design size is in

creased or the estimates of 8 are updated then the variance associated with 

the point estimate for K decreases. Again it can be seen that a smaller 

variance can be obtained for the point estimate by updating 8 than can 

be obtained by increasing the design size by 5. The variance can be inter

preted as a self-assessment of how accurate the Bayesian methodology is 

at estimating K. All but the 20 point design using the updated 8 values 

provide a 95% probability interval that contains at least one of the ·true 

value' estimates. The interval for the 20 point design lies between the 'true 

value' estimates which could indicate that either the Bayesian met hodol-
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ogy is being too optimistic in assessing its accuracy or that the 'true value' 

estimates could be improved. 

Finally, the mean and variance of the posterior distribution for L. the 

variance of the CEDE, was derived for each design and with both the 

original and improved estimates of the 8 parameters. These values are 

given in Table 5.7. 

Design Size Dzw , DZf Mean Variance 

YlO 10 1,1 2.448 x 10-16 5.992 X 10-33 

YlO 10 1.35,1.15 2.451 x 10-16 6.505 X 10-33 

Y15 15 1, 1 2.571 X 10-16 2.099 X 10-32 

Y15 15 3.62,2.3'4 2.629 x 10-16 7.068 X 10-32 

Y20 20 1, 1 2.586 X 10-16 1.562 X 10-32 

Y20 20 5.46,3.74 2.664 x 10-16 2.874 X 10-31 

Table 5.7: Mean and Variance of the posterior distribution for L, the 

variance of the CEDE 

This table again shows a high level of consistency between the Bayesian 

point estimates of the variance, L. All the estimates lie between the 'true 

value' estimates of the variance. The classical methodology does not pro

vide a measure to predict the accuracy of its estimate of the variance of the 

output that can be compared with the Bayesian estimates. The Bayesian 

estimates run counter to what might be expected. As the number of design 

points increases the variance of the unknown distribution also increases. 

This indicates that the methodology is less confident in its estimate of the 

variance of the CEDE as the number of design points increases. One pos

sible explanation for this is that little variability is observed when very few 

design points are used, but as more objective data are provided further 

variability is revealed. If this were the case then one would expect the 

variance to continue to increase as the number of design points increases 

up to a certain number of points and then fall. 
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5.7. Discussion 

The object of this analysis was to demonstrate that, in a simple low di

mensional problem, the Bayesian uncertainty analysis could achie\'e greater 

accuracy than the classical Me based methods. The 131 I algorithm pro

vided an ideal subject for this purpose as it was possible to estimate the 

true uncertainty in the model's output with respect to the parameters w 

and j, independently of the choice of methodology. 

The Bayesian estimates of K were all in close agreement with the 'true 

values', while the Me estimate was more than an order of magnitude fur

ther from the 'true value' than any of the Bayesian estimates. 

The close proximity of the Bayesian estimates to the 'true values' was 

also seen in the estimation of the variance of the algorithm's output. Again, 

all the Bayesian point estimates lie between the two 'true value' estimates 

whereas the Me estimate exceeds both of these values considerably. An

other point in favour of the Bayesian analysis is that it provides a measure 

of uncertainty for the point estimate of the variance, in contrast to the Me 
methodology. 

In each of the Bayesian analyses, the improvements in the accuracy of 

the estimates of the mean, K, and the variance, L, were associated with an 

increase in the size of the set of design points used and with the updating of 

the estimates of 6. It could be seen, in a number of cases, that improving the 

estimates of the smoothing parameters was more beneficial than increasing 

the size of the design. This has important implications for the use of this 

methodology when performing uncertainty analyses on large algorithms 

with many uncertain parameters in which evaluating extra points could 

be more computationally expensive than updating the estimates of the 

smoothing parameter values. 

A useful and informative addition provided by the Bayesian methodol

ogy is the ability to provide a P-value, representing the probability that the 

true value of the model's output, for particular parameter values, exceeds 

some predefined critical value, see 3.3.1. Using a grid of these P-values a 

contour plot can be drawn. This provides a clear picture of how sensitiyc 

the value of the algorithm is to uncertainty in the values of the parameters. 
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An example of such a contour plot is shown in Figure 5.3 for the 10 point 

design. 
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Figure 5.3: Contour plot of the probability that the output of the algorithm 

for particular wand f values will exceed the predicted mean output value 

The contours on this plot indicate the various levels of probability that 

an output will exceed the 'true value' of the mean for the particular para

meter value combinations. It can be seen that for most of the parameter 

space the probability is close to either one or zero. For only a small region 

is there any sizeable doubt as to which side of the true mean the actual 

value would fall. 

Taking these results at face value, it is easy to conclude that the reason 

the Bayesian measures were closer to the 'true values' was that this was a 

more accurate form of uncertainty analysis, compared to the MC analysis. 

However, the following factors should be taken into consideration before 

this conclusion is accepted. 

The 1000 points of the MC dataset were randomly selected from the 

full distributions of the uncertain parameters. In contrast. the data for 

the 'true' value and Bayesian estimates \\"ere selected from within a range 

of 2.5 standard deviations either side of the lllean \"alue of the uncertain 
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distributions. We would expect the ~rc dataset to contain about 10 ob

servations outside the 2.5 standard deviation range. Thus the ·true values' 

and the Bayesian estimates are really measures of the uncertainty in out

put of the algorithm based on uncertain input distributions truncated to 

approximately the 99th percentiles whereas the MC analysis provides esti

mates of the algorithms uncertainty based on the full input distributions. 

As a result, the closeness of the 'true values' and Bayesian estimates 

might be expected since both are using data from the same bounded para

meter space to measure the same thing. Furthermore, a difference between 

these values and the results of the MC analysis may occur not because the 

MC analysis is less accurate but because it is in fact estimating something . . 
slightly different. 

The degree to which these differences in the input parameter space 

affects the analyses depends on the behaviour of the algorithm for values 

of the uncertain parameters outside the 2.5 standard deviation range, i.e. 

in the tails of the distributions. This behaviour will be dependent on the 

type of distribution assigned to each uncertain parameter. For a reliable 

comparison of the methodologies the bounds of the sample space of the 

input parameters, from which the Bayesian and 'true value' datasets are 

selected, should be sufficiently wide to ensure that the effects of excluding 

the tails of the input parameter distributions are negligible. 

In this example, normal distributions were selected to represent the 

uncertainty in the thyroid mass and uptake fraction. These distributions 

are symmetric with short tails and thus it was considered that the exclusion 

of the sample space outside the 99th percentile range of these distributions 

should not adversely affect the validity of the comparison of the rvrc and 

Bayesian uncertainty analysis methodologies. 

In conclusion, taking into account the factors highlighted above, the 

Bayesian methodology has, in the case of this small example, demonstrated 

its ability to provide a wider range of measures about the uncertainties in 

the output of an algorithm resulting from uncertainties about its parame

ters. Further, these measures are based on a smaller quantity of data than 

required by an MC based analysis to obtain a similar or higher degree of 
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accuracy. Thus, the results of these analyses support the testing of the 

Bayesian methodology on a 'real-life' problem. A paper based on a subset 

of the above results has been published [H096]. 
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6. COMPARISON OF BAYESIAN AND 

CLASSICAL UNCERTAINTY ANALYSIS 

METHODOLOGIES USING THE ICRP 67 

MODEL FOR PLUTONIUM METABOLISM 

6.1. Introduction 

In the previous chapter it was established that Bayesian uncertainty analy

sis was feasible in a simple two-dimensional problem. The object of this 

chapter is to demonstrate the application of Bayesian uncertainty analysis 

to a 'real-life' multi-dimensional problem. In contrast to the analysis of the 

iodine algorithm it will not be possible to check the accuracy of this analy

sis by comparing it to an independently calculated set of 'true' answers. 

This being a 'real-life' problem, if it were possible to obtain the true uncer

tainties then performing either a Bayesian or classical uncertainty analysis 

would be pointless. However, it will be possible to examine any differences 

between the various Bayesian analyses and make a comparison with the 

results generated by the classical analysis. 

The model selected for these analyses is that used currently at NRPB 

for the estimation of radiation doses due to plutonium (Pu) absorption 

into the human body. Due to its very long biological and decay half

lives Pu is an important source of long-term radiation exposure since a 

large proportion of any inhaled or ingested Pu will persist in the body for 

the remainder of a person's life. The selected model is also that currently 

recommended by the International Commission on Radiological Protection 

(ICRP) for the measurement of plutonium metabolism and so is wieldy 

used in the radiation protection community for the prediction of doses. It 
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is a large and computationally expensive algorithm upon which it is hoped 

to demonstrate that when compared to a classical analysis a Bayesian 

uncertainty analysis is more informative and accurate using fewer data 

and less computational effort. 

6.2. The development of the ICRP 67 biokinetic model 

for plutonium metabolism 

The International Commission on Radiological Protection (ICRP) was 

founded in 1928 and, since 1950, has provided guidance on the wide-spread 

use of radiation sources caused by developments in the field of nuclear en-. . 
ergy production. Part of this guidance has been the provision of intake 

limits for radiation workers to ensure that dose limits are not exceeded. 

To perform this task it was necessary to develop models to determine 

the dose received from a unit intake of a radioactive substance. These 

models differ between elements, to reflect the wide range of behaviour of 

radioactive substances in the human body. 

Plutonium has been recognised by ICRP as a potential health hazard 

since it was first produced in the 1940's. Biomedical experiments to exam

ine the behaviour of Pu in the human body were begun in 1944. Initially, 

data were obtained from studies using the rat as a surrogate subject for 

man. These data indicated that only a small fraction of ingested Pu en

tered the blood stream but that a much larger fraction of inhaled Pu was 

absorbed through the wall of the lung due to the prolonged retention in the 

lung as compared to that in the gut. The early experiments also indicated 

that once Pu entered the blood stream, it was quickly deposited around 

the body, mainly in the skeleton and the liver. Pu was also found to have 

a long biological half-life. This means that once taken up it remains in 

the body for a prolonged period of time. In fact a large proportion will 

remain to the end of life. As a result the accurate measurement of the 

quantity and location of Pu in the human body, for the purposes of dose 

calculations, is very important. 

Between 1945 and 1946 an experiment was carried out, on 18 human 
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volunteers, [LBHC50], [Lan59], all of whom were seriously ill and had short 

life expectancies. Each subject was injected with trace quantities of Pu, 

either in a nitrate or citrate form. The aim of the experiment \vas to 

determine the relationship between urinary and faecal excretion rates and 

the amount of Pu remaining in the body. Quantities of Pu in the excreta 

of the subjects were measured in the weeks following the injection of the 

Pu and measurements of tissue concentrations were taken after the deaths 

of some of the subjects. Tissue measurements were not possible for the all 

subjects, within the time frame of the experiment, since not all the subjects 

died in the short period expected; eight lived longer than eight years and 

four were still alive 30 years later. This experiment still represents a large . . 
proportion of the direct human evidence concerning the metabolism of Pu. 

From this study and data on the accidental contamination of radiation 

workers Langham [LBHC50] derived simple urinary and faecal excretion 

curves that related the quantity of the injected Pu in the excreta to the time 

since administration. These equations were for many years used by ICRP 

as the basis for the quantification of Pu intakes and hence the calculation 

of CEDE, the quantity used to set dose limits. 

Since the 1980's a number of studies have indicated that Langham's 

equations may overestimate the CEDE received for a given intake. Lang

ham's equations are based on data covering a relatively short period fol

lowing first exposure and assume that the removal of Pu from the various 

organs and structures of the body continues at a constant rate over the life

time of the subject with no possibility of recycling between organs. This 

has been found to be an unrealistic assumption since Pu deposited on the 

surface of the skeleton will be buried by new bone growth and therefore 

be immobile until uncovered again in later years by the natural process of 

bone loss in old age. 

As a result, Langham's equations become less accurate with increasing 

age and time since exposure. It has been shown by Norwood and Xewton 

[NN75], and McInroy [McI76] that at times more than five years following 

exposure these equations can overestimate the actual amount of Pu in the 

body, as determined by autopsy, by as much as 10 times. 
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The inaccuracies in Langham's equations cause a problem in radiolog

ical protection scenarios, since intake limits are set with reference to the 

CEDE which estimates a subject's predicted dose over the 50 years follow

Ing exposure. 

In recent years, further work has been done on the metabolism of Pu 

and other similarly behaving radioactive elements such as Americium and 

Neptunium in the human body. These new data were used by Leggett 

[Leg85] to derive a mechanistic model to predict the behaviour of these 

elements. The term mechanistic is used since the model attempts to de

scribe, at least in a relatively simplistic way, the physiological processes 

involved in the actual movement of Pu about the body . . 
The ICRP saw this type of model as an advance in the drive towards 

improving standards in radiological protection and, in its Publication 56 

[ICR89], adopted this form of model for the calculation of doses from in

takes of Plutonium, Americium and Neptunium. The mechanistic models 

are much better able to describe the time-dependent behaviour and thus 

provide more accurate predictions of committed effective doses. They do, 

however, have the disadvantage of requiring considerably more computing 

power than their simpler predecessors to implement. 

The current model recommended by ICRP for dose calculations of Pu 

intakes is a modification of the mechanistic model described in Publication 

56. It is identical in structure to that recently published by Leggett [Leg92] 

except that a second liver compartment has been included. This latest 

model is detailed in Appendix B of ICRP 67 [ICR93]. 

As with the iodine algorithm, the model is defined in terms of body 

compartments and transfer coefficients between the compartments. It com

prises 19 compartments, with 29 transfer rates detailing the patterns of 

movement of Pu between the compartments. One restriction is that it 

only describes the behaviour of Pu once it has entered the bloodstream; 

extra components can be added to simulate the method of entry to the 

blood stream, namely inhalation, ingestion or directly through a wound. 

A pictorial representation of the model is given in Figure 6.1, and the 

standard values of the transfer coefficients between the various compart-
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ments are listed in Table 6.1. 
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Figure 6.1: The ICRP biokinetic model for plutonium metabolism 

The illustration shows that this is a large and complex model incor

porating many recycling pathways. Again the output is in the form of a 

CEDE value. In contrast to the iodine example, no ingestion path\\'a~' \\'ill 

be specified for this uncertainty analysis. It will be assumed that a unit 
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!I Transfer coefficient I Standard value II 

blood to liver 1 0.1941 

blood to cortical surface 0.1294 

blood to trabecular surface 0.1941 

blood to urinary bladder contents 0.0129 

blood to kidney (urinary path) 0.00647 

blood to other kidney tissue 0.00323 

blood to upper large intestine contents 0.0129 

blood to testes 0.00023 

blood to ovaries 0.000071 

blood to soft tissue 0 0.2773 

blood to soft tissue 1 0.0806 

blood to soft tissue 2 0.0129 

soft tissue 0 to blood 0.693 

kidneys (urinary path) to bladder 0.01386 

other kidney tissue to blood 0.0139 

soft tissue1 to blood 0.000475 

soft tissue1 to urinary bladder contents 0.000475 

soft tissue 2 to blood 0.000019 

trabecular surface to volume 0.000247 

trabecular surface to marrow 0.000493 

cortical surface to volume 0.0000411 

cortical surface to marrow 0.0000821 

trabecular surface to volume 0.000493 

cortical volume to marrow 0.0000821 

cortical/trabecular marrow to blood 0.00076 

liver 1 to liver 2 0.00177 

liver 1 to small intestine 0.000133 

liver 2 to blood 0.000211 

gonads to blood 0.00019 
! 

Table 6.1: Standard transfer rates per day for the Plutonium model 
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quantity of Pu is injected directly into the blood stream, thus avoiding the 

need to complicate the model further by specifying an intake pathway. 

6.3. Why is an uncertainty analysis of the Pu model 

required? 

The true values of most of the parameters of the model listed in Table 6.1 

are not known. They are not directly measurable, neither is it possible 

to obtain definitive experimental data from which to estimate these val

ues. Thus these parameters must be estimated by 'experts' using available 

subjective information. 

This lack of knowledge causes parameter value uncertainty to be intro

duced into the model. Hence, the output of the model will vary in some 

unknown way with the expert's choice of coefficient values. For the model 

to be used with confidence in the radiological protection environment, it is 

important to quantify this uncertainty. 

This means that a reliable analysis of the model's parameter value 

uncertainty is of great importance. Ideally, this analysis should provide an 

estimate of the expected value of the model's output for a unit intake and 

also estimate the variability on both a single predicted value of the model's 

output and the expected output. 

6.4. Classical uncertainty analysis of the Pu model 

6.4.1. Selection of the parameters on which to perform the clas

sical analysis 

To perform a classical uncertainty analysis encompassing all 29 estimated 

transfer coefficients would be a large task and in fact this may not actually 

be necessary. It is likely that the value of the model's output is only 

sensitive to variation in the values of a subset of these coefficients. Hence, 

at NRPB, a sensitivity analysis was performed which identified a subset of 

the coefficients to which the model was most sensitive. The members of 

this subset were not all independent and to perform a classical uncertaillt~· 
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analysis on this set of dependent coefficients would be difficult. Therefore 

a substitute set of independent parameters was created. This process is 

illustrated by the following example. 

The output of the model was found to be sensitive to the rate of transfer 

of Pu from the blood to the cortical bone surface and from the blood to 

the trabecular bone surface. These are the only two bone compartments of 

the model into which Pu can be transferred from the blood' hence the sum , 
of these two transfer rates must equal the total rate of transfer from the 

blood to the skeleton. However, the total transfer to the skeleton is also 

an uncertain parameter to which the model is sensitive. In order to retain 

coherence, the setting of two of these parameters should automatically . 
define the value of the third. Thus the cortical and trabecular transfer 

coefficients were replaced, for the purposes of the uncertainty analysis, by 

a single parameter representing the fraction of the total Pu transferred to 

the skeleton that is deposited on the cortical bone surface. The remainder 

of the Pu is then assumed deposited on the trabecular bone surface. 

Similar procedures were carried out on other parameters of the subset, 

at the end of which a new set of 14 independent and coherent parameters 

(in terms of our prior beliefs about them) had been defined to describe 

the coefficients to which the model output was sensitive. An 'expert' was 

then asked to provide distributions and 95% ranges for the uncertainty 

associated with these parameters, as shown in Table 6.2. 

6.4.2. Details of the analysis performed 

Five hundred sets of the fourteen parameters defined in Table 6.2 were 

selected using a Latin Hypercube salnpling procedure which was discussed 

in 2.2.1. For each of these sets of 14 values and using those fixed coefficients 

to which the model was found to be insensitive (set to their standard 

values as in Table 6.1), a full complement of the 29 coefficients for the 

model was calculated. The model was then run with each set of coefficients 

and assuming a standard unit of Pu injected into the bloodstream. This 

produced 500 values forming a sample distribution of the output which was 

then used to obtain the same descriptive statistics as in the analysis of the 
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Parameter Distribution 

Rate of clearance from blood Lognormal 

Rate of clearance from liver 2 to blood Lognormal 

Rate of clearance from soft tissue1 Lognormal 

Rate of clearance from cortical surface Lognormal 

Rate of clearance from trabecular surface Lognormal 

Batio of fraction soft tissue 1-> ubc to soft tissue 1 -> blood Beta 

Fraction of initial deposition to skeleton Beta 

Fraction of initial deposition to trabecular/cortical surface Beta 

Fra.ct.ion of initial deposition in the t.estes Lognormal 

Rate of clearance from testes Lognormal 

Rate of clearance from small intest.ine to upper large intestine Lognormal 

R aLe of cle(trance from upper large intestine to lower large intestine Lognormal 

RaLe of clearance from lower large intestine to f(teces Log11orrnal 
--- _._---

Tahle C.2: The parameters (day~ 1) and their sn bjective prior clistrilmtiolls 

t () which the plntoninm model is sensitive. (# = upper and lower honnds 

## = shape parameters) 

Lower 95% Upper 95% 

bound bound 

0.1085 7.870 

3.744 X 10-5 1.189 X 10-5 

1.11568 X 10-4 8.0892 X 10-3 

3.520 X 10-5 4.313 X 10-4 

2.114 X 10-4 2.590 X 10-3 

0.00, 1.5# 22## , 
0.25,0.75# 22## , 
0.3,0.9i1- 22## , 

4.11 X 10-5 2.98 X 10-:{ 

4.11 X 10- 5 2.98 X 10-:{ 

0.7046 51.09 

0.2114 15.;33 

0.1174 8.515 



iodine model. The results of this analysis are described in 6.6. 

6.5. Bayesian uncertainty analysis of the Pu model 

For the iodine example, software was written specifically to perform the 

calculations required. For instance, the dimensions of the problem and the 

parameters of the prior distributions were hard-wired into the software. 

However, the Bayesian methodology which was found to be superior in 

the simple iodine example would be of little use if new software had to be 

written to analyse each new problem. Thus, to perform the calculations 

for this 'real-life' problem, two general programs were written that allowed 

the user to specify the details of the specific uncertainty analysis under 

consideration. The first was designed to select optimum design sets while 

the second provided the means to update the smoothing parameters and 

also to obtain the summary measures of the analysis. Both were conceived 

to be user-friendly and adaptable to a wide range of problems. All the re

sults of the Bayesian analyses in this chapter have been obtained using this 

software. A detailed description of the programs is given in the appendix. 

6.5.1. Transforming the parameters 

The first problem that had to be overcome, in order to perform a Bayesian 

uncertainty analysis, was that the 14 independent parameters used in the 

classical analysis have a number of non-normal uncertainty distributions 

associated with them, i.e. Beta or Lognormal as defined in Table 6.2. The 

Bayesian methodology as described in chapter four was constructed to be 

applied only to parameters with independent normal uncertainty distrib

utions. To overcome this difficulty, for each of the non-normal uncertain 

parameters, transformations were applied to each of these parameters to 

normalise them. 

Lognormal: For these parameters the standard log transformation was 

applied. 

Beta: For these parameters the logistic transformation ,,'as applied. 

Thus for example if a parameter e was distributed as Beta(o. J) with 
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upper and lower bounds of A and B respectively then the parameter 

8 = log [
8 - A] 
B-8 

would be considered as normally distributed with mean and variance given 

by 

p, 2 log Z - C Z2 ; Z2)) + Z2, 

0-
2 (Z2 - Z2) + Z2 - 2 log Z, 

respectively, where 

Z 
;3 - l' 

a(a + 1) 
(;3 - 1) (;3 - 2) . 

Gamma: For these parameters the uncertainty distribution was initially 

replaced by a lognormal distribution with the same mean and variance. The 

standard log transformation was then applied as described above. 

Using these transformations a set of 14 normally distributed parameters 

was obtained on which to perform a Bayesian analysis. 

6.5.2. Selection of the design points 

The sets of design points were chosen using the criterion defined in 4.1. 

To recap, the 'best' design of a certain size was defined to be that which 

maximised 1 t(x)A ~lt(X) dG(x) (6.1) 

which for the Pu model, having only independent uncertain parameters, 

can be written as 

II [1 t(xi)A~'t(Xi) dG(Xil] = II [tr(A~/PxJJ (6.2) 
I XI I 

where the subscript i runs over the 14 dimensions of the problem and the 

matrices A and P take the same form as described in (4.13) and (4.12). For 

the iodine problem it was sufficient to simply define a grid of point:-;. and 

then choose each design by starting with a random selection and updating 
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it with randomly drawn selections from the remaining points of the grid. 

In a 'real-life' problem this method of optimising the set of design points 

is not practical. 

For the iodine problem the 20 x 20 grid equated to only 400 points 

in total. However, to create a comparable grid for the current problem 

the grid would have to contain approximately 1.6 x 1018 points which is 

not practical to maintain in electronic format. Furthermore, while the 

method of updating the design, by selecting points at random from the 

grid, is effective in the initial stages of the selection process, its efficiency 

falls rapidly as the design gets close to the optimum. Hence, the selection 

procedure was modified in two ways . . 
First, the initial random design was selected, then new points with 

which to update the design were also obtained by random selection from 

each of the parameter's uncertainty distributions and tested for inclusion 

in the design. It was noted that as the number of iterations increased, 

the frequency with which the new points were incorporated into the design 

decreased. Thus a second stepwise procedure was implemented in order 

to improve the speed and efficiency of the selection process as the design 

approached the 'best' design. 

The principle behind this stepwise procedure is that, instead of testing 

for the improvement in the design when a point in the design is replaced by 

a new point, each existing point in the design is moved in turn a random 

number of steps of a predefined size in a random direction. The size of 

a step is user-defined. At each move the design criterion is recalculated 

and, if it has improved, the new position of the point is retained. As the 

design gets closer to its optimum the step size can be decreased. in order 

to make the procedure more sensitive. Hence, the most efficient method 

for selecting designs is to start with the random selection procedure and, 

when this becomes inefficient as the design approaches the 'best' design, 

to switch to the stepwise procedure. 

The general design selection program detailed in the appendix has the 

option to use either the random or stepwise procedure. It allmvs the ll~er 

to monitor the progress of the optimisation and to switch between the 
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procedures at an appropriate time. 

A number of different sized designs were selected for comparison. As 

with the iodine model, it was necessary to select appropriate initial values 

for the smoothing parameters. For the current problem an attempt was 

made to select suitable values according to a more objective method. 

The initial estimates of the smoothing parameters were derived as fol

lows. For each transformed uncertain parameter the associated normal 

uncertainty distribution was used to determine the bounds of a 99% prob

ability interval for the parameter's values. Using these upper and lower 

bound values the two smoothing parameter values that result in correla

tions of 0.99 and 0.01 respectively between the bound values were derived . . 
These two smoothing parameter values were then taken to be the upper 

and lower 99% probability bounds of a lognormal prior distribution for the 

true value of the smoothing parameter. The mean and median values for 

this lognormal distribution were then obtained and used as initial estimates 

of the smoothing parameters. 

6.5.3. Updating the smoothing parameter values 

In the Bayesian uncertainty analysis of the iodine model it was observed 

that updating the smoothing parameter values could improve the accuracy 

of the analysis more than the addition of another five points to the size 

of the design. It was also found that the use of the posterior distribution 

f ((J"2 , 6 I y) to obtain a modal point estimate for 6 was impractical in that 

example, owing to instability of the estimates, and was discarded in favour 

of optimisation using the full joint posterior distribution f ({3, (J"2, 6 I y). 

In recognition of the fact that for 'real-life' problems the updating of 

these parameters could well be less computationally expensive than select

ing a larger design, this updating procedure was extended to include the 

choice of another criterion. This criterion is based on the same likelihood 

function, (4.14), but the independent uniform prior distributions of 6 were 

replaced by the lognormal distributions derived as part of the definition of 

the initial values of the smoothing parameters, 6.5.2. 

The main advantage of this new criterion is that because of the infiu-

10-1 



ence of the prior distributions it tends to produce posterior values that are 

not very large or small compared to the size of the prior estimates. Using 

the uniform priors, each prior value was given equal probability whereas 

with the lognormal priors, very large or small values were given a small 

prior probability. Hence the risk of the updated values becoming unrealis

tically large or small was reduced. The general program written to perform 

Bayesian analyses allows the user to optimise the smoothing parameters 

using either of these criteria. The appendix contains the details of this 

program. 

6.5.4. Details of the analyses performed 

For this problem a number of different analyses were performed. Three 

different sizes of design were selected with 50, 100 and 150 points. The 

Bayesian uncertainty measures were then calculated based on both the 

original and improved smoothing parameter estimates for each design, us

ing the general program detailed in the appendix. In order to provide a 

direct comparison between the two uncertainty analysis methodologies, a 

further Bayesian analysis was carried out using the Latin Hypercube de

sign selected for the classical analysis. This design was also used to provide 

a means of objectively estimating the relative performance of the various 

Bayesian analyses. The results of these analyses are detailed in 6.7. 

6.6. Results of the classical uncertainty analysis 

As described above, the output of the classical analysis consisted of a sam

ple of 500 values. Figure 6.2 shows a frequency histogram of these values. 
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Figure 6.2: Frequency histogram of the sample output of the classical 

analysis 

From these 500 values the sample mean and variance were derived as 

shown in Table 6.3, along with a 95% confidence interval for the mean. 

Sample Sample Sample Variance 

Mean Variance of the Mean 

5.35 x 10-4 7.20 X 10-9 1.44 X 10-11 

Table 6.3: Results of the Monte Carlo analysis 

A 95 % confidence interval for the prediction of a future value was also 

obtained as 5.27 x 10-4 ,5.43 X 10-4
. 

6.7. Results of the Bayesian uncertainty analysis 

As in the previous example, a number of different analyses were performed 

based on designs of different sizes and using various scenarios. Three dif

ferent sizes of design were selected, consisting of 50, 100, and 150 points 

respectively. Two different sets of smoothing parameter values were used 

to select a design of each size. The set of initial smoothing parameter 

values called Prior5 are the means of the derived uncertainty distributions 

while the set labelled PriorS are the medians of these distributions. 
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Once the six designs had been selected, improved estimates of the 

smoothing parameters were calculated using both criteria for each design 

and each set of initial smoothing parameter values. 

The mean and variance of the t distribution for K and unknown distrib

ution for L were then calculated for each design and smoothing parameter 

combination defined above, (see Tables 6.4 and 6.5). In addition, two extra 

analyses were performed using the classical Latin Hypercube sample of 500 

points. The first analysis used smoothing parameters all set to a default 

value of 1. The other used a set of optimised values derived using one of 

the 150 point designs. 

It can be seen from Table 6.4 that the difference between the largest . . 
and smallest values for the mean of K is only 1.3%. The size of the point 

estimates increases slightly as the number of points in the design increases 

from 50 to 150 but the change is only in the second decimal place. 

A greater difference is, however, noticeable in the estimates of the vari

ance of the distribution for K. For the calculations based on the original 

smoothing parameter values, Prior5 and Prior8, the variance of the dis

tribution decreases by around an order of magnitude between the 50 and 

150 point designs. Looking within each design, in each case the use of 

the updated smoothing parameters also reduced the size of the variance. 

The improvement was similar irrespective of which method was used to 

optimise the smoothing parameters. 

The estimates of the mean and variance of the unknown distribution 

for L, (i.e. the variance of the model's output) follow a similar pattern 

to those for K. The mean values do, however, show less of a consistent 

increase in size with that of the design. Further, for the variance of L there 

appears to be no consistent trend in the values as either the size of the 

design increases or when the optimised smoothing parameters are used. 

As discussed at the beginning of this chapter it was not possible to 

obtain an objective measure of the accuracy of these analyses since, in a 

real-life problem, this would defeat the object of the uncertainty analy

sis. However, it was possible to provide bvo forms of consistency check 

for the different Bayesian analyses. The first of these is based on the 
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Estimation of K 

Design Size Smoothing Parameters MeanK Variance K 
g3 50 Original : Prior5 5.43 x 10-4 1.JJ X 10-11 

g3 50 Improved : Lognormal 5.42 x 10-4 6.51 X 10-12 

g3 50 Improved: Uniform 5.42 x 10-4 6.82 X 10-12 

g7 50 Original : Prior8 5.47 x 10-4 2.34 X 10-11 

g7 50 Improved : Lognormal 5.47 x 10-4 9.48 X"10- 12 

g7 50 Improved: Uniform 5.49 x 10-4 9.67 X 10-12 

g8 100 Original : Prior5 5.48 x 10-4 3.32 X 10-12 

g8 100 Improved : Lognormal 5.45 x 10-4 1.78 X 10-12 

g8 100 Improved: Uniform 5.46 x 10-4 1.58 X 10- 12 

g4 100 Original : Prior8 5.47 x 10-4 4.51 X 10-12 

g4 100 Improved : Lognormal 5.47 x 10-4 3.27 X 10-12 

g4 100 Improved : Uniform 5.46 x 10-4 3.14 X 10-12 

g6 150 Original : Prior5 5.48 x 10-4 2.32 X 10-12 

g6 150 Improved : Lognormal 5.46 x 10-4 1.07 X 10-12 

g6 150 Improved: Uniform 5.47 x 10-4 8.80 X 10-13 

g9 150 Original : Prior8 5.46 x 10-4 2.94 X 10-12 

g9 150 Improved : Lognormal 5.46 x 10-4 1.15 X 10-12 

g9 150 Improved: Uniform 5.46 x 10-4 1.05 X 10-12 

LHS 500 AlII 5.28 x 10-4 4.15 X 10-12 

LHS 500 g9 : Improved: Uniform 5.44 x 10-4 1.97 X 10-13 

Table 6.4: Mean and Variance of the posterior distribution for K, the mean 

of the CEDE (Prior5 : mean values, Prior8 : median values) 
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Estimation of L 

Design Size Smoothing Parameters Mean L Variance L 

g3 50 Original : Prior5 5.50 x 10-9 5.33 X 10-19 

g3 50 Improved : Lognormal 5.36 x 10-9 7.6S X 10-19 

g3 50 Improved: Uniform 5.71 x 10-9 9.11 X 10-19 

g7 50 Original : PriorS 6.30 x 10-9 S.OO X 10-19 

g7 50 . Improved : Lognormal 6.14 x 10-9 7.S4 X 10-19 

g7 50 Improved: Uniform 6.63 x 10-9 5.40 X 10-19 

gS 100 Original : Prior5 5.96 x 10-9 S.16 X 10-19 

g8 100 Improved : Lognormal 5.52 x 10-9 3A1 X 10-19 

gS 100 Improved: Uniform 5.62 x 10-9 4.33 X 10-19 

g4 100 Original : PriorS 5.97 x 10-9 5.S7 X 10-19 

g4 100 Improved : Lognormal 5.01 x 10-9 3.95 X 10-19 

g4 100 Improved: Uniform 5.66 x 10-9 9.42 X 10-19 

g6 150 Original : Prior5 7.23 x 10-9 1.51 X 10-18 

g6 150 Improved : Lognormal 6.61 x 10-9 1.33 X 10-18 

g6 150 Improved : Uniform 6.61 x 10-9 1.62 X 10-18 

g9 150 Original : PriorS 6.04 x 10-9 5.91 X 10-19 

g9 150 Improved : Lognormal 6.15 x 10-9 7.22 X 10-19 

g9 150 Improved: Uniform 6.09 x 10-9 S.05 X 10-19 

LHS 500 AlII 6.54 x 10-9 6.95 X 10-20 

LHS 500 g9 : Improved: Uniform 6.45 x 10-9 6.92 X 10-19 

i i i 

Table 6.5: Mean and Variance of the posterior distribution for L. the 

variance of the CEDE 
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Latin Hypercube sample obtained for the classical analysis. The Bayesian 

methodology described in 4.3 was used to predict each of the elements of 

the Latin Hypercube sample. These were then compared to the true yalues 

and a maximum and an average absolute percentage error were obtained 

for each design. The other consistency check was based on a 'leave-one

out' strategy. In turn, each of the points in a design was removed and the 

remaining set was used to predict the excluded point. Again a maximum 

and an average absolute percentage error were obtained for each design. 

The results of these analyses are detailed in Table 6.6. 

6.8. Discussion 

Considering first the estimation of the expected value of the model's out

put, it can be seen that the classical sample mean, 5.35 x 10-4 , is smaller 

than the mean of K derived from any of the Bayesian analyses. The two ad

ditional Bayesian analyses based on the Latin Hypercube samples gave dif

ferent values depending on which set of smoothing parameters was applied. 

The use of the optimised smoothing parameters resulted in an estimate of 

K, 5.44 x 10-4 , that was consistent with the other Bayesian analyses. How

ever, the estimate based on the default value (i.e. one) differed from both 

the Bayesian and classical estimates. This suggests that the use of the 

default smoothing parameters was not advisable. 

The variance of the sample mean, calculated from the classical analysis, 

is comparable to the variance of the distribution for K calculated in the 

Bayesian analyses using 50 points and the original smoothing parameter 

values. All the other Bayesian analyses have smaller variances for the 

distribution of K indicating a greater confidence in the accuracy of their 

point estimates. 

TUrning to L, the variance of the model's output. the Bayesian point es

timates are of the same order of magnitude as the classical estimate. There 

is no comparable measure produced from the classical anal~'sis with which 

to compare the variance of the estimate of L. However. these \'aluc~ de

crease with the number of points in the design and the use of the improycd 

snl00thing parameter estimates. This indicate~ that the predicted ;u('u-
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Type of check 

Design Size Smoothing LHS Leave-one-ou t 
set Parameters Max Mean Max Mean 

error error error error 

g3 50 Original : Prior5 4S.S 5.6 16.3 -to 
g3 50 Improved : Lognormal 32.5 3.S 10.7 2.5 

g3 50 Improved: Uniform 31.9 4.0 1--1.9 2.9 

g7 50 Original : PriorS 39.2 6.1 lS.S --1.4 

g7 50 Improved : Lognormal 33.1 4.4 11.2 2.6 

g7 50 Improved: Uniform 32.0 5.2 13.4 2.7 

gS 100 Original: Prior5 47.5 4.6 17.3 4.0 

gS 100 Improved : Lognormal 39.3 3.6 12.S 2.1 

gS 100 Improved: Uniform 40.5 3.5 12.9 1.9 

g4 100 Original : PriorS 66.9 5.1 16.2 3.7 

g4 100 Improved : Lognormal 46.0 3.5 14.1 1.9 

g4 100 Improved: Uniform 42.5 3.7 7.9 1.6 

g6 150 Original : Prior5 35.S 4.9 22.7 4.0 

g6 150 Improved : Lognormal 33.S 3.0 12.9 1.7 

g6 150 Improved: Uniform 32.1 3.0 10.S 1.5 

g9 150 Original: PriorS S5.6 3.9 lS.0 3.2 

g9 150 Improved : Lognormal 49.9 2.5 6.1 1.5 

g9 150 Improved : Uniform 40.5 2.--1 6.0 1.5 
, , 

Table 6.6: Consistancy checks on the Bayesian analyses (values in the table 

are percentages). 
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racy of the Bayesian point estimates is increasing with increasing design 

size and improved parameter estimates. 

The Bayesian analyses using the Latin Hypercube sample both gi\"e 

values of the mean and variance of L consistent with those of the standard 

Bayesian analyses, except for the variance of L calculated using the default 

values for the smoothing parameters which is rather small. 

Thrning finally to the table of consistency checks. Table 6.6, it can be 

seen that in both cases as the number of points in the design is increased 

or if the improved smoothing parameter estimates are used, then both the 

maximum error and the average error of the predictions decreases. The 

estimates of the maximum percentage error are considerably larger for the 

LHS based check than those for the 'leave-one-out' check, but there is 

reasonable consistency between the average percentage error values across 

the two checks. 

Thus, the Bayesian analyses provide measures of uncertainty that are 

consistent with those provided by the classical methodology. Some of the 

above results are included in a comparison of the classical and Bayesian 

methodologies that has been accepted for publication [HOJ. 
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7. COMMENTS, DISCUSSION AND 

FUTURE WORK 

This project was motivated by a desire to find a more efficient and informa

tive methodology with which to perform parameter uncertainty analyses; in 

par~icular, on the algorithms used in the field of radiatioI,l protection. The 

current Monte Carlo based methodology was identified as having a number 

of failings. First, the range of uncertainty measures available was limited 

to point estimates of the mean and variance of the algorithm's output and 

a measure of the variance of the mean. Secondly, for computationally ex

pensive algorithms or those with many uncertain parameters it may not be 

possible to obtain a sample large enough for a reliable assessment of the 

uncertainties. 

Thus, a method was required for performing parameter uncertainty 

analyses that produced a wider range of uncertainty measures and that 

reduced the number of elements required in the sample of output. 

Computationally efficient methods are used in the related field of es

timating individual output values for algorithms. These are based on the 

use of stochastic process models to analyse a sample of the algorithm's 

output. These methods assume that the output of the algorithm is. in 

some sense, a smooth function of its uncertain inputs. This implies that 

knowledge about the output of the algorithm at one point also provides 

some information about the algorithm in the local neighbourhood of the 

point. The amount of extra information provided by each sample point 

is dependent on the degree of smoothness. Classical uncertainty anal~'sis 

does not assume such smoothness, and so makes no use of this extra source 

of information. O'Hagan, [O'H91], showed that stochastic process models 

could be used, in a Bayesian context, to estimate the integrals of such 
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algorithms over the uncertain parameter space. 

Now parameter uncertainty analysis consists mainly of estimating func

tions of the integral of the algorithm, e.g. the expectation. Thus. it was 

considered worthwhile examining these methods to determine if they had 

the potential to be adapted and used for the purposes of uncertainty analy

SIS. 

In the first chapter, an introduction to the field of radiation protec

tion and an overview of the development of complex internal dosimetry 

algorithms were provided. The reason that it is necessary to perform un

certainty analyses on these algorithms is also discussed. 

In chapter two the general concepts of uncertainty analysis were intra-. 
duced and the classical methodology, including the selection of a set of 

design points was examined. Details were given of the use of stochastic 

process models, in both a Bayesian and classical framework, to predict in

dividual values of the output of computationally expensive algorithms for 

specified inputs. At the end of this chapter the aims for the investigation 

of these methods were listed. 

The first aim of the project was 

'to develop a Bayesian approach to parameter uncertainty analysis based 

on stochastic process models that improves on the currently available classi

cal methods in three ways; firstly, to obtain more accurate estimates of the 

mean and variance of the algorithms output using fewer evaluations of the 

algorithm. Further, to develop extra measures of parameter uncertainty not 

available in the classical analysis, and to define an efficient design selection 

criterion' . 

Classical methodology provides three main measures of parameter un-

certainty. These are an estimate of the expected output. K, an estimate 

of the variance of this expectation, and an estimate of the variance of the 

output, L. All these measures are based on an analysis of a sample of the 

algorithm's output. In addition, the sample mean is usually assumed to be 

normally distributed, according to the central limit theorem. 

In chapter three, the most general form of the alternati\'e Ba~'esian 

methodology. based on stochastic process models, \\'as de~cribed. Here. 
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the Bayesian estimate of the mean, K was shown to take the form of a t 

distribution. The mean and variance of this distribution were considered to 

constitute the Bayesian measures of K comparable to the classical sample 

mean and variance of the sample mean. 

The distribution representing the Bayesian estimate for L was also 

shown to be difficult to derive in a closed form. However ~ the mean and 

variance of this distribution were obtainable. Thus in contrast to the clas

sical methodology where only a point estimate of the variance can be con

structed, this methodology also provides a prediction for the accuracy of 

the point estimate of L. 

A further, potentially useful measure, not available from the classical 

analysis was also identified. Part of the process of developing the measures 

for K and L involved defining a distribution to predict the value of an 

algorithm for selected individual values of the uncertain parameters. It 

was shown that this distribution could be used to obtain the probability 

that, conditional on the selected values of the uncertain parameters, the 

true value of the algorithm exceeds some predefined value. 

Consider, for example, a radiation worker who receives an unplanned 

internal exposure. It would be usual to obtain an estimate of the dose 

received, in order to determine if the worker is likely to exceed a statu

tory dose limit. An algorithm would be used with its uncertain parameters 

set to their 'best estimate' values to calculate a measure of the dose re

ceived, usually in the form of a CEDE. This would then be compared to 

the dose limit. If the predicted dose were slightly under the prescribed 

limit, then it is plausible that the predicted dose based on a slightly dif

ferent set of parameter estimates may have exceeded the limit. Using the 

methodology above it would be possible to obtain a probability that the 

true dose received by the worker exceeded the prescribed limit using the 

'best estimates' of the parameters. This probability measure would take 

into account the uncertainty on the best estimates. 

For both the Bayesian and classical methodologies the data on which 

all the measures of uncertainty are based come from a set of outputs from 

the algorithm, obtained at specific points on the space of uncertain para-
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meters, referred to as the design set. The Bayesian methodology could be 

implemented with samples obtained for use with the classical methodology. 

i.e. via Monte Carlo sampling. However, one advantage of the stochastic 

process methodology is that it does not require the design to be selected at 

random. Rather, it can be selected to maximise the amount of information 

obtained. In chapter three, a criterion for the selection of an optimum 

design set, of a predetermined size was developed. At the time the design 

is selected the information available about the algorithm is likely to be 

very limited. Thus, the derived criterion is weighted to select a design that 

best estimates the algorithm close to the expected values of the uncertain 

parameters, and positions the points according to the smoothness of the 

algorithm. 

A big incentive for choosing designs based on such a criterion is that 

if more information is gained from each element in the design set then 

fewer points will be needed in total, to obtain estimates with the same 

degree of predicted accuracy, as compared to the number required if the 

design is selected at random. Thus, even if the Bayesian analysis does not 

produce more accurate estimates of uncertainty for the same amount of 

information then, because the design can be selected more efficiently than 

for the classical analysis, the actual number of points required in the design 

set will still be reduced. 

One of the major problems with the classical uncertainty analysis is 

that the size of the design set required to obtain a reliable result can be 

unrealistically large for algorithms that are computationally expensive to 

evaluate or which have many uncertain parameters. A large reduction in 

the number of evaluations required could therefore justify the use of the 

Bayesian methodology in itself. 

In conclusion, chapter three satisfied the first aim of the project by 

demonstrating that in general theoretical terms it is possible to use stochas

tic processes, in a Bayesian framework, to obtain measures of parameter 

uncertainty comparable to those obtained via classical forms of analysis. It 

also demonstrated the potential to obtain these and other estimatc~ using 

fewer evaluations of the algorithm. 
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The second aim of the project was 

'to objectively demonstrate any improvement in the Bayesian method

ology over the classical methodology'. 

To fulfil this aim, a simple computationally inexpensive algorithm with 

two uncertain parameters for quantifying radiation doses due to internal 

contamination with radioactive iodine was selected. Owing to the com

putational cheapness of evaluating this algorithm, independent estimates 

of the uncertainty generated on its output by the two uncertain parame

ters could be obtained with which to objectively evaluate and compare the 

performance of the classical and Bayesian methodologies. 

To apply the stochastic process methodology to this test problem, it was 

necessary to rework the general theory detailed in chapter three specifically 

to define the uncertainty measures for an algorithm with normally distrib

uted uncertain parameters and in which the correlation function describing 

the smoothness of the algorithm was of an exponential form. Chapter four 

detailed these definitions. 

In chapter five, the 'true' uncertainty in the algorithm's output induced 

by the two uncertain parameters was calculated along with both the clas

sical and Bayesian uncertainty measures. A number of observations can be 

drawn from these analyses. 

The Bayesian methodology required definition of h(x) and the smooth

ing parameter values whereas the classical methodology required no further 

assumptions. However, in this example, the Bayesian analysis generated 

far more accurate measures of the uncertainty on the algorithm. Had the 

design set that was used in the original classical analysis in 1988 been 

available, it might have been possible to re-run the Bayesian analysis using 

this design set (provided the required matrix inversions were possible). A 

comparison of accuracy of the classical and Bayesian based measures would 

then have considered solely comparing the efficiency of the methodolog~' 

and would have been independent of the way in which the design was SC'

lected. However, a Bayesian analysis using a 10 point design was found 

to be more accurate than the classical analysis based on 1000 points. It 

seems unlikely that the information provided b:,; 1000 points selected at 
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random, from the two dimensional parameter space. would be Ie than 

that provided by 10 points selected using the optimisation criterion. Thi ' 

suggests that the improved accuracy of the Bayesian analyse \\'a due not 

only to the use of more informative data but also to a OTeater efficiency in b _ 

the methodology. 

This means that regardless of the method by which the design is selected 

it would be better to use Bayesian rather than classical uncertainty analysis 

methodology. 

Now the problem of defining the parameters of the Bayesian analysis, 

i.e. the function vector h(x) and the smoothing parameter values, \Va 

minimal for this simple example. The function h (x) was taken to be a 

linear function in log wand log f , as a default and for computational ease. 

In this example, it was possible to use the data from the calculat ion of the 

true values of the mean and variance of the algorithm, to obtain a picture 

that gives an idea of the gross relationship between w , f and the output of 

the algorithm, Figure 7.1. 

10 

I131 5 
Value 

2.5 
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1IJ 99% 99% 

Figure 7.1: Evaluation of the 1311 algorithm, extending to approximatcl)' 

2.5 standard deviations either side of the mean values 

From this figure it can be seen that the rela tion hip bCt\\'CCll the al

gorithm's output and w is approximatel)' exponcnt ial. \\'hilc for J it i:-; 
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approximately linear . Unfortunately, the assumption of independence be

tween the two parameters in defining h(x) is clearly not correct. Howeyer. 

the Bayesian analysis, using h(x) as defined, was able to produce far more 

accurate measures of the uncertainty despite the inaccuracies in the defini

tion of the components of h(x). The ability of the Bayesian methodoloo'y to 
0. 

provide accurate measures despite the mis-specification of the relationship 

between the uncertain parameters and the algorithm's output is important. 

In more complex problems, it will be rare for relevant objective information 

to be available when the function h(x) is selected. Further, the integrals 

that must be evaluated to obtain the uncertainty measures will only be 

analytically possible for certain forms of h(x) . . 
One of the ways in which the performance of the Bayesian analysis was 

measured was to examine the errors in the estimates of individual values 

of the algorithm's output on a regular grid over the parameter space. The 

maximum, minimum and mean percentage errors for the various Bayesian 

analyses performed are given in Table 5.5. Another way in which these 

errors can be usefully viewed is as a surface. The percentage errors for the 

design Y15 with the default smoothing parameter values have been used to 

generate the surface in Figure 7.2. 

This figure clearly shows that the Bayesian methodology best estimates 

the value of the function close to the prior mean value for each of the 

uncertain parameters. This was to be expected since the criterion for the 

selection of the best design was constructed so that the Bayesian point 

estimates of the algorithm would be most accurate for the expected value 

of each uncertain parameter. 

If the same surface is generated using the 20 point design and with 

the improved estimates of the smoothing parameters then the Figure ,.3 

is obtained (using the same plotting axes). 

Comparing this figure with the previous one it can be seen that the area 

over which the estimates are most accurate has enlarged and also that the 

nlagnitude of the maximum and minimum errors are much smaller. Thu:-; 

these figures support the conclusion that the Ba~'esian c:-;timates become 

nlore accurate with both an increase in the number of points in the de~ign 
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Figure 7.2: Surface representation of the percentage errors in the point 

estimates generated by the Bayesian analysis using design Y1 5 ' 

and also with improved estimates for the smoothing parameters. 

In fact , the magnitude of all the measures of percentage error decreased 

by at least an order of magnitude between the initial ten point design us

ing t he default smoothing parameter values and the twenty point design 

using the improved estimates. These improvements parallel the changes 

in the values of the variance of the expected output and t he variance of 

the variance of the output across these designs. Hence , in (real-life' exam

ples it might be possible to get an idea of the methodologies ' accuracy at 

estimating the mean and variance of the algorithm's output by determin

ing the size of the errors in point predictions . At the end of chapter five 

a contour plot was provided which illustrated the use of the probabili ty 

lueasure described above. This clearly shows the potential of thi mea ure 

for determining the effect of the uncertain parameters on the output of the 

algorithm. 

In conclusion , the comparison of t he Bayesian and clas ical method-

ologies to the true uncertainties associated with the iodine alo'orithm hm'c 

satisfied the second aim of the project . It has been objc ti\'cly . hO\\'11 

that , in a simple low-dimensional example. t he Baye ian mcthodology out 
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Figure 7.3: Surface representation of the percentage rrors in thc point 

estimates generated by the Bayesian analysis using design Y20 . 

performs the classical approach in its ability to produce accuratc and use

ful measures of parameter uncertainty using fewer , but more informativc, 

evaluations of the algorithm. 

Finally, t he third aim of the project was 

Ito demonstrate that the Bayesian m ethodology is useable in a 'real-lif e' 

uncertainty analysis J. 

The Pu239 algorithm was selected for this 'real-lif ' analysis. It was 

ideal for a number of reasons . First ly, it was a large computationally 

expensive model wit h 29 parameters. Secondly, an investigat ion of its 

uncertainties was already being performed at NRPB at the t ime. In this 

analysis 14 of the 29 parameters were assumed to be uncertain. T hu , thi ' 

model provided a realistic test for the Bayesian methodology. 

In order to provide the closest comparison with the cla ical anal)' i: 

t he Bayesian analysis was performed assuming the samc 1.J parametcrs a.s 

being uncertain. So that the theory detailed in chapter four ould bc ap

plied , all the uncertain parameters vvere t ransformed to ha\'c normal prior 

distributions. The function h (x ) was defined as a linear funct ion of thc 

transformed uncertain paramet ers, a choicc which c\'cn though ill curn ct 
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had still produced acceptable results for the iodine algorithm. Of course. 

for the Pu239 model it is not possible to determine if the assumed form of 

h(x) was good or bad. 

The construction of the optimum design sets proved more complicated, 

compared to the iodine example. This was due mainly to the increased 

number of dimensions of the problem. Choosing default smoothing para

meter values for this process was accomplished, as discussed in 6.5.2, by 

defining independent lognormal prior distributions and then selecting ei

ther the mean or median values from them. An examination of the results 

revealed no consistent difference in the measures generated using either the 

mean or median values as the prior estimates. 

A potential problem was identified when the smoothing parameters 

were updated using the same method as for the iodine algorithm, i.e. se

lecting the mode of the full posterior distribution, (4.15) assuming inde

pendent uniform prior distributions for the smoothing parameters. Some 

of the values obtained were either very large or very close to zero. This 

caused some concern, since such extreme values did not seem plausible. 

Therefore the optimisation process was repeated assuming the indepen

dent lognormal priors used to obtain the initial estimates, instead of the 

uniform priors. The use of these lognormal priors deterred the posterior 

estimates from taking values very large or small in comparison to the prior 

estimates. Examination of the results of the analyses shows little differ

ence in the results based on the different improved smoothing parameter 

estimates. 

The only major difference between the results of the various Bayesian 

analyses was in the estimates of the variance of the distributions for J\ 

and L. As expected the size of the variances decreased as the number of 

points increased and with the use of either type of improved smoothing 

parameter estimate. Unfortunately, without estimates of the 'true' values 

for K and L it is not possible to determine if 95% probability intervals 

generated around the Bayesian estimates of K and L would contain the 

true values. 

The consistency checks performed on the Bayesian analY:-ic:-i ren'aled 
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that both increasing the number of points in the design and the use of im

proved smoothing parameter estimates increased the accuracy of the point 

predictions. As with the iodine example, the use of improved smoothing 

parameter estimates increased the accuracy of the estimates more than 

the addition of extra points, in some cases. This indicates that for future 

analyses it would be a more efficient use of resources to spend less time 

selecting the design by reducing the number of points in it and more time 

optimising the smoothing parameter estimates. For the iodine example an 

increase in the accuracy of the point predictions was associated with an 

increase in the accuracy of the estimate of K and L. Thus, the reductions 

in the variance of the K in this example could be taken to indicate an . . 
improvement in the performance of the estimation procedure. 

Another way of examining the results of the Bayesian analysis was 

included in the software. This involved plotting the predicted uncertainty 

in the algorithm's output as a function of one uncertain parameter but 

taking the expectation of the output with respect to the uncertainty in 

the other parameters into account. Figure 7.4 shows this plot for the 

parameter 'Loss from testes' constructed using the 50 point sample and 

the initial smoothing parameters, PriorS. The error bounds show that the 

most confident prediction of the algorithms output is around the mean of 

the uncertain parameter, 0.00034, and that as the value of the uncertain 

parameter moves away from this mean value the estimate of the output 

becomes more uncertain. 

Figure 7.5 shows the same plot but constructed using the 150 point 

design, selected using the PriorS smoothing parameters The 'Improved: 

Lognormal' smoothing parameters were used instead for actual construc

tion of the plot. It can be seen that the use of the larger design set and 

improved smoothing parameters has resulted in reduced uncertainty in the 

relationship. It should be noted that it would have been equally possible 

to have fixed the values of the other uncertain parameters instead of av

eraging over them to obtain a similar plot. Both of these measures could 

be useful for visualising parameter uncertainty. );"either is available from a 

classical analysis. 
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Figure 7.4: Uncertainty plot for t he parameter 'Loss from test , 1 bas · d on 

a 50 point design. 

Thus in conclusion it can be seen t hat the Bayesian uncertainty analysis 

of this a lgorithm provides measures of the parameter uncert aint y that arc 

comparable to those of t he classical analysis. Most import ant ly for the u e 

of the Bayesian methodology, t hese results ,vere achieved llsing design sets 

that contained at most one-third of t he evaluations used for t.he Jassical 

analysis. 

Overall , the Bayesian methodology has a number of advantages and 

disadvantages compared to t he classical methodology. The main advan

tage is its ability to produce more accurate and informative mea 'ure of 

uncertainty. It can make use of any evaluat ions of an algorithm previously 

obtained whereas the classical analysis requires a set select d at random. 

This is a useful property since it means that. no evaluations of a compu

t.ationally expensive a lgorit. hms would be wast ed in an uncert ainty analy

sis. Further , if a design has already been selected at random th 11 it ha:-, 

been shown t.hat the Bayesian met hodology will ext ract more informat ion 

and produce more accurate uncertainty mea ure ' than " 'ould a d a..-;-,ical 

aJlalysis. The full potent ial of the Bayesian met hodology is oIlly l"C 'ali:-,( 'd . 

however , if a new design 'et i !::ielected ba cl on a criterioll to optillli:--c ' tlw 
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Figure 7.5: Uncertainty plot for t he parameter 'Loss [rom testes ' based on 

a 150 point design. 

information provided by t he evaluat ions. 

The major disadvantage of t he Bayesian methodology is its complexity. 

The classical methodology requires no assumptions to b made regarding 

the algorithm, whereas the Bayesian methodology r quire. t he specificat ion 

of the function vector h(x) , the selection of a correlation function and 

smoothing parameters. The analyses described above, however, how that 

the Bayesian analysis is more powerful t han the cla sical. Thus, the extra 

complication of t he Bayesian calculations is likely to result in more ac urat e 

results. If some of the assumptions are avoided by, for instance, using a 

randomly selected design set t hen the Bayesian methodology is ,t ill likely 

to be more accurate due to its more efficient use o[ the data. 

The other major disadvantage of the Baye ian methodolo~"V i · that 110 

software is currently available to implement it, except that \\Titt en [or t hi. 

project . This would be a large deterrent to it s usc. The prognuns det ailed 

in the appendix Vlere, hmyever, con 'truct ed to hmy that it i ' possible to 

¥,Trite fairly user-friendly general oft,,-are [or the irnllell1C"lltat iOll o[ 11<' 

Bayesian methodolo~y. 

In conclusion the three amI of I his proJ ct l1 cwC' IW('I! [uUilkd. ' I J1<' 
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Bayesian methodology can produce estimates of an algorithm's parame

ter uncertainty equivalent to those given by the classical methodoloo-y and 
0, 

other additional measures. It has been demonstrated objectiYely to out-

perform the classical methodology in a simple example and has been found 

to perform well in a 'real-life' problem. Hence, as the assessment of para

meter uncertainties is becoming more important, for example in the field 

of radiation protection, the development of Bayesian uncertainty" method

ology has the potential to be very worthwhile. 

7.1. Future work 

There are a large number of areas of Bayesian uncertainty analysis tliat 

could benefit from further investigation. For example, it would be desirable 

to determine other functions that could be used to define the estimating 

function, h(x), and to determine what effect the use of different functions 

has on the results of the uncertainty analysis. Also, it would be useful 

to develop other measures of uncertainty. For instance, the expectation 

and the variance of the algorithm are estimated currently. However, it 

would also be useful to be able to estimate the actual distribution of the 

algorithm's output, not just summary measures from it. 

A third area that could benefit from extra research is the selection of 

the design points. This is the most computationally expensive part of 

the analysis. Consequently, testing different selection criteria to find the 

best would be useful, as would be the development of efficient methods of 

searching for the 'best' design. 

Thus, there are many areas that could be investigated to extend and 

improve this methodology. 
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8. ApPENDIX: THE DESIGN SELECTIO~ 

AND ANALYSIS PROGRAMS 

8.1. Introduction 

The analysis of the iodir:e model was performed using two programs written 

in the mathematical programming language APL. The software was written 

to analyse this specific problem and was sufficient to demonstrate that the 

basic theory of Bayesian uncertainty analysis could be put into practice. 

Unfortunately, these programs were not suitable for adapting to solve other 

uncertainty analysis problems. 

An important part of this project is to demonstrate not only the theo

retical plausibility of Bayesian uncertainty analysis but also to show that 

the theory can be put into practice; in particular that the calculations 

required to obtain the measures of uncertainty can be implemented, in a 

reasonable time scale, using today's computer technology. With these aims 

in mind new software was written to perform the analysis of the plutonium 

model. The software is divided into two programs : 

1) a program to select the designs, 

2) a program to perform the analyses, including the updating of the 

smoothing parameters. 

Both these programs were written to be able to solve a general problem 

(with one small exception in the analysis program). that is~ \\·here both 

the number of uncertain parameters and their prior distribution~ are spec

ified by the user. The programs were written in the \Yindows \Oersion of 

the APL language. This enabled a user-friendly graphical interface to be 

incorporated. 
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8.2. The Design selection program 

The object of t his program is to enable the user to define the paramet e r ~ of 

t he uncertainty analysis problem and to select sets of 'best' de . . 19n POll1ts . 

A flow chart of t his program is det ailed in Figure 8. 1 

Start 

Enter new name and 
size of the problem 

Select prev iously 
defined problem 

DeHne/edit the 
parameters of the 
problem 

Calculation of a 
'best ' design 

End 

No 

T he program is comprised of t\yO maj or parts : the problem ~ pec i ficat i o l1 

component ; where each uncertain parameter is defin ed along \\'ith i :-; prior 

distribution (these are det ailed in green on the flO\\'Chart ): and tbe clC'~i .0.)1 

selection part , outlined in r d. The t\\'O sect ions of the progT<1 l1l \\'ill Ill)\\' 

be considered in more detail. 
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8.2.1. Reloading an old problem or defining a new problern 

The figure below details the first form of the program. It gi,-e - the U::- l' 

the opportunity to specify whether a previously defined problem is to be 

reloaded or if a new problem is to be started. 

If the 'Yes' button is pressed then a new form is rendered labelled 'Select 

previously defined problem' . This provides the means for t he user to select 

a previously defined problem from those listed . Th figure belO\\' 'hows 

two currently defined problems. 

~ S elect previously defined problem I!!lIiII3 

Please select the required problem from the list 

i131 
PU239 INJ 

Quit 

If the 'No ' button is pressed then two forms are provided for the user 

to enter a new name and to specify the number of uncertain parameters ill 

the new problem. 
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~~ Specify a new title for the problem "iii 13 

e number of uncertain parameters 

Regardless of which of the above options was selected the program 

then provides a form on to which the components of a new design can be 

defined or the paramet ers of a previously defined problem can be revicwcd 

and edited. 

8.2.2. Defining/editing the parameters of the problem 

The form det ailed in Figure 8.2 enables the user to spec ify the \"ariou · 

components of a new problem or to edit and change those of a prc\·ious]y 

defined problem. The form is init ialised wi th the detail of the first un

certain parameter of the problem displayed. If a new problem ha: b en 

specified then a default selection is displayed for each of the opt i llS. ex-

cept the parameter name which is left blank. 
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Parameter name 

.:JI I stl-> UB C I st1-> blood 

I Lognormal ~I 

Variance L-I _____ O_.O_96_3_0_00_o_°---l°1 

Smoothing Value 17 .81 1 

!luit print Load SM I 

Figure 8.2: The form provided to define or edit the parameters of a 

problem. 

To change the details of a parameter) other than the first. t he box la

belled 'Choose a parameter for editing' (which shows the value six in Figure 

8.2) should be selected and the required parameter number chosen from 

t he list to reveal the current details of the select ed parameter. Alternative 

values can t hen be specified. 

T he prior distribution for a new uncertain parameter is et to normal. 

mean equal to zero and variance set to one as a default. Thi default prior 

distribution can be changed to one of lognormal. beta or gamma. If a b ta 

distribution is selected then two extra edit boxe are prm'ided to 'pcc if)' 

the bounds of the distribution. 

The program has an option to search for a 'be t ' de ign st art i ng fro l11 

one selected at random. The "grid range' and 'grid pacin o
" yaluc:-; arc lI ~('d 

to define the initial values for each point in the random clc::-.ign. Fur each 

uncertain parameter the required number of points arc ~ lcctcd from a . l ' l 
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of regularly spaced points. The number of points in this grid is defined by 

the value of 'grid spacing'; the smallest and largest values are defined as 

the bounds of a probability interval on the prior distribution with \yidth 

defined by the 'grid range' value. 

The figure entered in the smoothing value box defines the value of the 

smoothing parameter for the currently selected uncertain parameter. The 

default values for these components are 1000 for the grid spacing, 95% for 

the grid range, and one for the smoothing value. 

At the bottom of the screen four buttons are placed: 'OK' causes the 

current information to be saved and the program to move on to the cal

culation of a best design; the 'Quit' button exits the program; the 'Print' 

button causes the current parameter definitions to be printed to hard copy; 

and the 'Load SM' button allows a previously saved set of smoothing para

meter values to be loaded from an ASCII file using a standard 'Windows' 

dialogue box. 

8.2.3. Selecting a design 

The form used to define and monitor the selection of a design is illustrated 

in Figure 8.3. 
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I Random .:JI 

Initial step size I-17_0 __ -=.:J=1 

.:JI 

1°.980812361 Step size % 170 
'------' 

Figure 8.3: The form used to define the parameters of the search for a 

best design. 

The elements in the top half of the form are used to define the parame

ters of the ' best' design search , while those in the bottom half are provided 

to enable the progress of the search to be monitored. 

The search specification components 

The components used to define the search are as fo llow 

Set the search start location 

This option defines the initial de ign. If' PreyiOlls' is sclc ,t d t hCll ;\ 

further forn1 is displayed to enter the name of the prc\'iou.-l.\' ~nn)d dc~i g ll. 
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If the option 'Random' is selected then an initial de ign i elected at 

random using the grid range , grid spacing and smoot hing \-alue paramete r ~ 

entered on the 'Define/edit the parameters of the problem ' form. 

1
10 ~I 

This box enables the size of the design to be defined if an initial random 

design has been specified or it displays the size of the desio-n if a previollsh-
b , 

created design has been selected. 

This box defines which of the two types of search routine will be u ed: 

Random: This algorithm is defined as follows. The value of the cri

terion is calculated for the initial design. Then a new point is selected at 

random and the criterion is recalculated with this random point substituted 

in turn for each of the current points in the design. If any of the criterion 

values for the adjusted designs is greater than that for the original design . 

then the design with the largest associated criterion value is retained and 

the original design is discarded. If none of the adjusted designs resul t. in 

an in1provement in the criterion value then the original design is retained. 

A new random point is then selected and the proces repeated. 

Step: If the 'step ' search algorithm is selected then an extra form is 

revealed for the user to indicate the initial step size . 

Initial step size 1
30 ~I 

The 'step ' algorithm is defined as follmv . A for the random ,·earch. 

the value of the criterion is first calculat ed for the init ial de,- ign . .\ext . the 

position of the first point in the design is changed . . random nUlllber of 

steps is selected using a predefined Poi 'on di ~ tribution and then Cl;-" i~Il( \ c1 
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randomly to be either in the positive or negative direct ion. The ize of 

each step is then derived by taking the magnitude of each of the point" ' 

coordinates and calculating a percentage of the e value defined by the 

initial 'step size' value. Each of the coordinates of the point i then mm'ed 

the select ed number of steps in the chosen direction alon o' each a..'C i . Thc 
D 

value of the criterion is then derived again for this ne,v de ign. If it , "aIue 

has increased then the new coordinates are kept for the point. el ' e the 

original coordinates are retained. The second point in the design i then 

moved the selected number of steps and the value of the criterion rea e ' ed . 

This process is repeated on the remaining points of the design re-using the 

selected number and direction of the steps. Having run through each of 

the points , one iteration of the algorithm has been completed. The entire 

process is then repeated for the whole design after first selecting a new 

random number of steps and step direction. If, at any time during the 

optimisation procedure, two iterations are completed without any chang !::l 

being made to the design then the 'step size ' parameter is reduced by 10 10 

of its current value. 

i Set the number of repetitions for the algorithm 1 10 ~I l 
I 

This form provided the means of selecting the number of iterations that 

the chosen algorithm will make. A value can be sel cted from a predefined 

list or a user-defined figure may be entered. 

The calculation monitoring components 

The number of parameters used to monitor the search for a be t de ign 

depends on which algorithm has been selected to perform the calculat ion ' . 

The following figure illustrates those components that are common to bot h. 

Once the final parameter of the calculat ion ha been defined the program 

will automatically calculate the value of the crit erion for the ini t ial cl ~i g ll 

whether this is a previously defined design or a ne" " random ele tion. Thi . 

value is t hen displayed in th box labelled 'Current \'aluc of th cr it er ion ' 

and the number of iterat ions performed is displayed as '0 '. A butt on 1(\

belled 'start ' is then added for the UScI' to initiat e the re .. t of the ca lculat iOll . 
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The box displaying the iteration on which the crit erion \\-as la t chano-ed 
o 

will always be blank init ially. It is provided to enable the u er to a -e--

the value of performing further iterations using the selected algorithm. 

\°.826234541 

nned I~o ________ ~ 

For calculations in which the step algorithI!l is used two extra measures 

are provided to enable the user to more effectively monitor the calculations. 

Stepsize% ~ 

Hit rate % Lll_0_0_~ 

The first box details the current step size and the second gives the hit 

rate. This represents , in percentage terms , the number of points of the 

design that are moved in one iteration of the algorithm. 

Once the calculations are initiated by the user pressing the 'start ' but-

ton , this push button is replaced by a radio button. 

! 
r Stop iterations j 

This enables the user to interrupt the calculation if fur ther iteration ' 

are not likely to improve the design or if further calculations are requi red 

using a different selection algorit hm. 

If this button is pressed or if the full number of iteration ' ha\'e been 

performed then the user is asked to save the final de ign both a ' an internal 

variable and as an externaJ , space delimited. AS CII text fi le or to discard it. 

Finally, the user is asked to choose between performing anot her calcu latiol1 

or to exit the program. 
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8.3. The Analysis program 

The objective of this program is to perform a Bayesian uncertainty analysis. 

The program is designed to work in conjunction with the design selection 

program. A flow chart is detailed in Figure 8.4. In order to avoid the neces

sity of putting all the information about an uncertainty analysis problem 

in an ASCII file to transfer it between the two programs, the analysis pro

gram has been designed to read the relevant information directly from the 

wor kspace containing the design program. 

The analysis program needs three sets of information: 

1) the parameters of the problem, i.e. the uncertain parameters and 

their prior distributions. All the details of a problem will be saved 

under one user specified name in the design program's workspace. 

2) the grid of coordinates representing the positions of a set of design 

points. 

3) the values of the algorithm at the associated design points. 

Perform 
analysis 

Test Quality 
of analysis 

Edit/examine 
problem 
parameters 

St rt 

Load Program 

Select Task 

Exit 
Program 

Plot 
analysis 

Figure 8.4: A flow chart of the analysis program. 
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8.3.1. Loading the details of the problem 

The user enters the information required for the analysi using a ino'le 

form . First the file containing the workspace for the design program. must 

be defined . Then the name of the variable containing the details of the 

selected problem must be entered, as illustrated belmv. The butt on labelled 

'Change workspace ' is provided to enable the user to select a workspace 

file , using a Windows dialogue box as opposed to entering the file name 

directly in the space provided. 

~H Selection of problem to be analysed III!] Ef 
,R. /," :0 '%"'/3 "if • 

: 3 if1li' sr;, ?" · 
i ;;;;~ai';'enter'he name'of the design in workspace !A:\DESIGN3.0WS 

/, IpU239J NJ Change workspaceI' 

Once these details are entered the program will perform consistency 

checks to determine if the user has entered a valid file name for the workspace 

and if the named variable exists . If an inconsistency is detected then an 

error message is displayed and the user is requested to re-enter the infor

mation. Once the problem's details have been successfully loaded the user 

is requested to enter the variable name defining a set of design points (cre

ated via the first program) , and then the fil e containing the evaluations of 

the algorithm at these design points, see the illustration below. This file 

of outputs from the algorithm must be in ASCII format and contain only 

a single colUllln of values . 

Enter the name of the matrix of selected points from A:\DESIGN3.0WS 

Jgrid_l 

Enter the name of the file containing the grid evalualtions. 

IA:\grid_1.CED J ~ 
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Having obtained all t he data required for the analysis of the problem 

the program moves on to the results form. 

8.3.2. Analysis of the selected problem 

The results form is shown in the following figure. 

When this form is first opened no calculations have been made, so 

no results are presented. The row of buttons at the bottom of t he form 

provides access to the various functions of the program. 

This button will cause the results of the uncertainty analy i to be 

calculated using the currently defined information . If information 'uell 

as the values of the smoothing parameters are changed then pre ~ 'ing tlli ~' 

button will cause the results to be re-calculated u ing th ne\\' yaluc ... 
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This button provides access to the analysis consistency checkino· facility 
v b , 

of the program. In chapter six this checking procedure was introduced a ~ 

a way of obtaining a measure of the accuracy of the Bayesian analy i in 

the absence of independent measures. Each point of the selected de ign i 

removed in turn (with replacement ) and the remaining points are u ed to 

obtain a Bayesian point estimate of the true known value of the algorithm 

at the excluded point . Various summary statistics , including the m~'(imum 

absolute percentage error and the average absolute percentage error are 

then calculated to determine the overall accuracy of the estimates. These 

measures were considered as substitutes for independent measures of the 

accuracy of the analysis. For the plutonium example, det ailed in chapter . 
six, an independent set of points , the Latin Hypercube sample, was avail

able. An extra test procedure was implemented in the program , specifically 

for this problem. This used the complete design to evaluate Bayesian esti

mates of the output of the plutonium algorithm over the points of the Latin 

Hypercube sample. As in the standard test procedure summary measures 

of the accuracy of the estimates were calculated. 

,. ...................... . --........... , 
! Details 1 
~ .=~ .. "., .. '" .. _ .. .J 

This button provides access to a screen similar to that used to define the 

uncertain parameters in the design program, Figure 8.2. In this program, 

however , the details are only provided for reference and cannot be changed . 

This button will quit the program - all current results will be lost fol

lowing this action. 

8
···.~. ··-···~···- · ··-··; 

: Print ~ 
1 ....... . :: .... .. --. ........... 1. 

This button enables access to the program's print facility \\'hich \\'ill 

provide the user with a hard copy of the current re uIt ::; ane! the c1 etaib of 

the problem ' uncert ain parameter ' . 
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This button provides the user with a form, illustrated in Figure .5 that 

allows the values of t he vector of smoot hing parameters. 8 . to b changed 
. . 
In vanous ways. 

Qefault I 
~ 
I 

values to file 

Current Original 

Clearimcefrom blood 46 46 .. 
Liver2 a) blood 30 30 

Loss from st1 43 43 

" Loss from cort surf 15 15 

Figure 8.5 

The grid object at the bottom of the form displays in four columns the 

number , name, current and original smoothing parameter values for each 

uncertain parameter in the current analysis. By placing the cursor over a 

particular cell in column 3 the user can change individual 5 values at will . 

f Default 1 8
···-···_········_· .. _ .. ·: 

~..,...= ......................... j 

This button will cause the current valu s fo r all the moothin o' paral1l -

t ers in the problem to be reset to their original value, as defined in colulllll 

four . 

Alternatively, a previously saved set of a parameter ' can be applied t() 

the problem from an ASCII file by entering it - name in the edit held next 
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to the button marked 'Load ' and/ or pressing thi button (ju t pre in a- the 

button will cause a Windows dialogue box to specify the fi le to be opened ). 

In a similar way the current set of 6 parameters can be sayed to a fi le by 

entering a name in the edit field next to t he button marked 'Sa\'e" and/ or 

pressing this button. 

The 'Calc ' button provides access to the form t hat controls the updating 

of the smoothing parameters using the design points. 

8.3.3. Updating the smoothing parameters 

The calculation of improved estimates of the smoothing parameter values 

is controlled from the form illustrated below. It is accessed by pressing the 

'Calc' button on the screen illustrated in Figure 8.5 . 

.Pi Optimise the Sht parameters I!JIiJI3 

Maximum number of iterations is 500001 

The ConVergence tolerance is 0.00011 

Number of iterations performed 01 

Quit 

Name Initial Best 

1 Clearance from blood 24.78 

2 Liver2 a) blood 16.28 

3 Loss from st1 23 .1 

4 Loss from cort surf 8.499 

5 Loss from trab surf 8.499 

, Optimisation criterion -

I C Uniform prior 

I @ Lognormal prior 

boad prior 

~ave prior 

Mean Variance 

3.21 1.25 • -
2.79 1.25 -

3.14 1.25 

2. 14 1.2 5 

2. 14 1.25 ... 

The first t vlO columns of t he grid at the bottom of thi ' form arc thc 

same as those of the grid in F igure 8.5. The n xt column. lab llcel . ini t ia]' . 

contains the starting values for the search for the best ' Illoot hing \·a lnc:-.. 

These are set to t he currently selected \'alucs \\'h 11 thc forIll i:-. opcncd hilt 
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can be changed at will by the user. The next column 'Best' \yill contain 

the results of the search when complete, 

The last two columns are provided for entering the mean and \'an

ances of the lognormal prior distributions that are used in the 'loo'normal" 
b 

optimisation criterion, see section 4.2, Again t hese means and \'ariance 

can be entered either by hand or loaded from and saved to an ASCII fi le 

using the Load/Save buttons and fields above t he grid. 

The criterion to be used for the derivation of the improved smoothing 

parameter estimates is selected using the set of two radio buttons in the 

top right hand corner of the form. The two criteria are described in 4 .2. 

Opposite these radio buttons are three edit fields that contain parameters 

of the optimisation calculations. The top value is the maximum number 

of iterations that the selected method will cycle through in order to obtain 

a best design. The second value is t he convergence tolerance . T he third 

value shows the current number of iterations performed. 

Once a selection procedure has been started the (Calc ' button is re

placed by a radio button 

r Stop iterations 

that when pressed will halt the calculations after the current iteration 

has been completed . The current (Best ' values will t hen be displayed in 

the grid. Upon exiting this form, the focus of t he program returns to the 

form from which it was called . Before t his happens the user is pre nted 

with a dialogue box to choose if the current 8 values are to be replaced by 

the newly calculated (best ' values. 

8.3.4. Sensitivity Plots 

The sensitivity of the output of t he algorithm to change in the input : 

can be assessed graphically via the 'P lot ' button on the ini tial form of th 

program. T his facility enabl s t he user to produce a plot of the predicted 

output of t he algorithm against one of the uncert ain input · of the aJgorithm 

but which is averaged o\'er the ot hers. The facility i ' acces~ d \'in the 

following window: 
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~ Plot of predicted output against a selected input IlliID 

Please select the required input ;parameter 

..... . ' .. 

Clearance from blood 

Loss from st1 
Loss from cort surf 
Loss from trab surf 
stl->UBC I stl->blood 
Iflit dep skeleton 
init dep trab/cort surf 
Init dep soft tissue 

frae to testes 
Loss from testes 
SI -) ULI 

(luit 

.... -

-

The user, having selected an input parameter to plot, presses the plot. 

button. After a short wait for t he calculat ions to be performed an anno

tated plot is obtained , as illustrated below. 

~ ... 
0.0008 

~0.O(i07 
T 
P 
U 0.0006 
T 

P 
Fl (1.0005 

E 
D 
J 
C 0 . 000'1 

T 
I 

~ 0. 0003 

+ 2 St Dev 

- EXPECTED UALUE 

-- - 2 St. Dev -
--

.. ~ ..... " ... " 

0.0002 -1------,--, ---',.-----c---......,----l'. -,l:'-IU·-l---r----~- (' ") I . o 0.0002 0.0004 0.0006 0.0008' 0.0012 0.0014 '." 0 

Loss f rom testes 
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8.4. Discussion 

The descriptions above are intended to provide an overview of the scope 

of the software. The application of Bayesian methodology to statistical 

problems has long suffered from a lack of suitable software for its imple

mentation. With these programs it is hoped that the potential for provid

ing software in a user-friendly format for performing Bayesian uncertainty 

analyses has been shown. 
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