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Abstract 

A general displacement-based shear and transverse normal deformable plate theory 

is reviewed. Shear and transverse normal deformable plate theories suitable for cylindrical 

bending problems have been deduced from the general plate theory by introducing certain 

general functions of the transverse coordinate into the displacement field approximation. 

This theory takes into account the transverse shear and normal deformation effects and 

unifies most of the classical and shear deformable theories available in the literature. 

A predictor-corrector method has been used for improving the accuracy of transverse 

stress analysis results and assessing the accuracy of composite plate/beam theories. In 

more detail, uniform shear deformable plate theory, parabolic shear deformable plate 

theory, general three-degree-of-freedom shear deformable plate theory, general four- 

degree-of-freedom transverse shear and normal deformable plate theory and general five- 

degree-of-freedom shear deformable plate theory are employed to improving their 

prediction performances of transverse shear and normal stresses. 

By means of the assessment of plate theories for simply supported beams, general 

three-degree-of-freedom shear deformable plate theory, general four-degree-of-freedom 

transverse shear and normal deformable plate theory are applied for other sets of boundary 

conditions of cross-ply laminates subject to mechanical loading. General five-degree-of- 

freedom shear deformable plate theory is applied for angle-ply laminates subject to 

mechanical loading. In addition, general four-degree-of-freedom transverse shear and 

normal deformable plate theory is employed for cross-ply laminates subject to thermal 

loading. The numerical results of the present studies are compared with the corresponding 

exact solution results available in the literature. 
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Chapter 1 

Introduction 

Composite materials have become increasingly important in industrial applications 

over recent years, particularly in the components of aircraft structures, where low weight 

and high strength are desired properties. Materials such as Boron-epoxy and graphite- 

epoxy consist of fibres (boron, graphite, etc. ) and matrix (epoxy, etc. ) providing the 

integrity of the composite by binding the fibres together. Using these types of highly fibre- 

reinforced materials enables the designer to control the strength and the stiffhesses of the 

structure. By stacking layers of different composite materials and/or changing the fibre 

orientation, one can form composite laminates. By construction, composite laminates have 

their planar dimensions one or two orders of magnitude larger than their thickness. Often 

laminates are used in applications which require axial and bending strength and so, 

composite laminates can be treated as plates. 

Those composite laminated plates considered in this study are made of special 

orthotropic layers (i. e. cross-ply laminates) and generally orthotropic layers (i. e. angle-ply 

laminates). Their properties will be described in more detail in the relative chapters. The 

reference surface is an important feature of a composite laminate due to fact that the 

equations implying the deformation of the plate are defined in terms of those reference- 

surface deformations. The middle surface of the plate, which lies equidistant from the 

bounding lateral surfaces, is usually chosen as the reference surface. It may, however, be 

appropriate to choose the top or bottom lateral surface as the reference surface. In addition, 
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the edges of the plate, which cut the reference surface perpendicularly, are important in 

characterising the plate geometry. 

Plate theories are a part of the theory of elasticity concerning the study of elastic 

bodies under the action of external mechanical forces. In linear plate theories, which are 

the main concern of this study, deformations are considered to be small compared to the 

plate thickness and strains are linearly proportional to stresses. Hence, Hooke's law and the 

theory of linear elasticity are valid throughout this study. Due to the complicated nature of 

three-dimensional (3D) elasticity equations for plates, their simplified two-dimensional 

(2D) forms have been mostly used in the literature. Taking advantage of the small 

thickness, 3D elasticity equations can be reduced to 2D ones, while the quantities 

implicated become functions of the reference surface coordinates. 

1.1 Composite plate theories subject to mechanical loading 

Early developments in plate theories date back to the first half of the 19th century when 

structures were usually made of homogeneous isotropic materials whose material 

properties are identical in any direction. The two main approaches developed were by A. 

Cauchy and S. D. Poisson and subsequently by G. Kirchhoff in the latter half of the 

century [Love, 1952] [Novozhilov, 1964]. Their methods still provide the basis of more 

refined plate theories in use today. 

The method proposed by Cauchy [1828] and Poisson [1829] considers the 

displacements and stresses to be expansions of the transverse coordinate measured from 

the middle surface of the plate along its thickness. Although it is theoretically possible to 

approach exact solutions of plate deformation by retaining a great many terms in those 

series expansions, the series considered may not be convergent [Novozhilov, 1964]. 
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The second method proposed by Kirchhoff [1850] is based on several assumptions. 

In the classical laminated plate theory (CLPT), it is assumed that the Kirchhoff hypothesis 

holds. Kirchhoff's assumptions are [Reddy, 1997]: 

1. Straight lines perpendicular to the middle surface (i. e., transverse normals) before 

deformation, remain straight after deformation. 

2. The transverse normals do not experience elongation (i. e., they are inextensible). 

3. The transverse normals rotate such that they remain perpendicular to the middle surface 

after deformation. 

The first two assumptions imply that the transverse displacement is independent of the 

transverse (or thickness) coordinate and transverse normal strain sz = 0. The third 

assumption results in zero transverse shear strains, y, = y, =0. Kirchhoffs assumptions 

simplify the relations describing the mechanical behaviour of plates under deformation, 

and solve the problem of boundary conditions encountered in the first method. Using these 

assumptions the deformation of the plate is reduced to studying the deformation of its 

middle surface only. 

The extensive use of composite materials having non-homogeneous or anisotropic 

character (i. e., having a directional dependency) has necessitated a refinement of the 

existing theories. Most refined 2D shear deformable theories are a mixture of the methods 

of expansion and hypotheses as reviewed by Noor and Burton [1990a]. These approaches 

are mostly based on a displacement field approximation that involves unknown 

displacement components. The first part of this displacement field is involved in a 

corresponding classical theory, while the additional degrees of freedom are usually 

multiplied a-priori by a certain function of the transverse coordinate. The choices of such 

shear deformation "shape" functions are based on satisfying certain mechanical, material 

and/or geometrical constraints of the problem considered, and subsequently characterise 
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the degree of accuracy and sophistication of the resulting theory. Consequently, different 

shape functions have been utilised by different researchers. The so-called uniform shear 

deformable theories (USDT) (or first order shear deformable theories [Timoshenko, 1921], 

[Reissner, 1945] and [Mindlin, 1951)) assume a linear variation in in-plane displacements 

as transverse shear strains (and stresses) become uniform throughout the thickness of the 

plate. Hence, shear stress-free lateral boundary conditions are not satisfied and transverse 

shear stresses between two continuous layers are not compatible. 

In higher order shear deformable theories (HSDT), the displacement field is 

expanded to a higher degree polynomial in thickness coordinate compared to USDT. These 

theories [Bickford, 1982] [Bhimaraddi and Stevens, 1984] [Reddy, 1984] [Soldatos, 1987] 

allow the development of a simple model for composite plates by imposing the top and 

bottom surfaces stress-free boundary conditions upon the displacement expansions. For 

that reason a parabolic variation of transverse shear strain along the thickness of the plate 

is assumed and the theory is referred to as the parabolic shear deformation theory (PSDT). 

Touratier [1992] [Soldatos, 1993] attempted the generalization of shear deformable 

theories by using general shape functions. When the elastic coefficients at a point have the 

same value for every pair of coordinate systems which are the mirror images of each other 

with respect to a certain plane, the material is called a monoclinic material that has only 13 

independent coefficients. When three mutually orthogonal planes of material symmetry 

exist, the number of elastic coefficients is reduced to 9, and such materials are called 

orthotropic. 

In dealing with laminated composite plates, the above mentioned theories cannot 

fulfil the continuity conditions of transverse shear stresses between two continuous layers 

of laminated plate. For that reason, a number of theories have been proposed in order to 

account for these conditions. DiSciuva [ 1986] proposed a zig-zag shear deformation theory 
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for anisotropic plates which accounted for continuity conditions between neighbouring 

layers. This was achieved by assuming a piecewise linear variation of in-plane 

displacements through the laminate thickness. This model was further improved to allow 

for bending in symmetric cross-ply laminated plates by Lee et al [1990]. In addition, Cho 

and Parmerter [1993] employed parabolic variation of transverse shear stresses instead of 

using a linear function of thickness coordinate for general lamination configurations of 

cross-ply plates. They were therefore able to satisfy the zero transverse shear stress 

conditions at the free lateral surfaces of the plates considered. 

All of the conventional refined plate theories assume that the transverse shear 

deformation is distributed in the form of a lower order polynomial of the transverse co- 

ordinate, z, (some of the coefficients of which may appropriately depend on the transverse 

elastic moduli) or in the form of a certain elementary function of z (trigonometric or 

hyperbolic). Hence, they all suffer from the main stress-analysis drawback of conventional 

one-dimensional beam models and two-dimensional plate and shell theories; that is, they 

cannot accurately predict the well-known boundary layer behaviour of in-plane stress and 

displacement distributions either near the interfaces of a laminate or near the lateral planes 

of a highly reinforced structural element. 

Soldatos and Watson [1997a-c] developed an advanced shear deformable plate 

theory that unifies most of the existing shear deformable plate and classical plate theory, 

i. e., by taking into consideration the effects of transverse shear or both transverse shear and 

normal deformation. This is achieved with the introduction of general shape functions (see 

also Soldatos, 1993) into the formulation of the theory. The shape functions are associated 

with the geometry and material properties of the composite plates or cylindrical shells. 
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1.2 Composite plate theories subject to thermal loading 

Advanced composite materials offer numerous superior properties such as high 

strength-to-weight ratio and nearly zero coefficient of thermal expansion in the fibre 

direction. Their strength and stiffness can be tailored to meet stringent design requirements 

for high-speed aircrafts, spacecrafts and other space structures. The properties of 

composite materials are frequently compromised by the environment to which they are 

exposed. Environmental factors that induce expansion strains are of particular concern, one 

such factor being fluctuations in temperature. Thermal stresses, particularly at the interface 

between two different materials can be a significant factor in the failure of laminated 

composite structures. Thus, there is a necessity to predict more accurately the thermal 

stresses in composite structures. 

The thermal bending of homogeneous anisotropic thin plates has been investigated 

by Pell [1946]. Stavsky [1963] then considered the thermal deformation of laminated 

anisotropic plates. These early studies employed the classical laminated plate theory 

(CLPT) based upon the Kirchhoff-Love hypothesis. Wu and Tauchert [1980], Noor and 

Burton [1992], Vel and Batra [2001] used the CLPT to study the thermal deformation of 

laminated rectangular plates. The CLPT neglects transverse shear deformation and can lead 

to significant errors for even moderately thick plates. Reddy et al. [1980], Noor and Burton 

[1992] and Vel and Batra [2001] employed the uniform shear deformable theory (USDT) 

for thermal deformation and stresses (see Jones [ 1975], Tauchert [ 1991 ], Reddy [ 1997] and 

Vel and Batra [2001] for a historical perspective and review of various approximate 

theories). 

Various higher-order theories for the thermal analysis of laminated plates have been 

reported by Cho et al. [1989], Khdeir and Reddy [1991,1999], Noor and Burton [1992] 
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and Murakami [1993]. The validity of those plate theories and finite-element solutions can 

be assessed by comparing their predictions with the analytical solutions of the three- 

dimensional equations of anisotropic thermoelasticity [Murakami, 1993]; [Noor et al., 

1994]; [Ali et al., 1999]. Srinivas and Rao [1972] obtained a three-dimensional solution for 

the flexure of laminated, isotropic, simply supported plates. Tauchert [1980] gave exact 

thermoelasticity solutions to the plane-strain deformation of orthotropic simply supported 

laminates using the method of displacement potentials. Thangjitham and Choi [1991] gave 

an exact solution for laminated infinite plates using the Fourier transform technique and 

the stiffness matrix method. Murakami [1993] generalized the work of Pagano [1970] to 

the cylindrical bending of simply supported laminates subjected to thermal loads. Tungikar 

and Rao [1994], Noor et al. [1994] and Savoia and Reddy [1995,1997] gave exact three- 

dimensional solutions for thermal stresses in simply supported anisotropic rectangular 

laminates. For other boundary conditions, Vel and Batra [2001] analysed the generalised 

plane strain quasi-static thermoelastic deformations of laminated anisotropic thick plates 

by using the Eshelby-Stroh formalism. 

The accuracy of conventional shear-deformable plate theories (USDT and PSDT) in 

predicting thermal deformation in cylindrical bending problem was examined by 

Murakami [1993]. Murakami [1993] found that the transverse displacement changes 

rapidly in each layer due to thermal mismatch and so conventional plate theories may lead 

to approximately 5% error in the predicted transverse displacements even for simply 

supported edges. There is therefore a need to develop a new model that is more suitable for 

accurate stress analysis. In this study expanding on the previous work by Soldatos and 

Watson (1997b, c] and taking into account thermal loading, the new derivations of general 

four-degree-of-freedom beam theory subject to thermal loading are established. A new set 

of shape functions has been chosen for a sinusoidal temperature distribution along the span 

7 



and both constant and linear variations across the thickness of the plate, yielding the exact 

solution [Murakami, 1993] for simply supported boundary condition. This is further 

confirmed by comparison between explicit solutions of the proposed method and an 

analytical solution [Murakami, 1993]. 

1.3 A predictor-corrector method 

It is well known that conventional beam and plate theories yield poor stress analysis 

results when dealing with stress predictions in highly reinforced laminated components. A 

predictor-corrector method that can improve the accuracy of such stress analysis results has 

been employed by Jones [1975], Sun et al [1975], Reddy [1984], DiSciuva [1986], Noor 

and Burton [1990b], Savithri and Varadan [1990], Noor and Burton [1991,1992], Heuer 

[1992], Noor and Malik [1999), Jane and Hong [2000]. In more detail, working on a 

predictor-corrector basis, the in-plane stresses that are initially predicted by means of a 

certain conventional beam or plate theory are substituted into the differential equations of 

three-dimensional elasticity, which, in a corrector phase, are integrated through the plate 

thickness. The resulting transverse shear and transverse normal stress distributions are 

expected to be improvements and therefore, more accurate stress predictions of their 

initially predicted counterparts. However this can only be verified by comparison with 

corresponding results obtained from the few existing exact elasticity solutions. 

A variety of two-dimensional plate theories have been associated in references [Sun 

et at, 1975] [Reddy, 1984] [DiSciuva, 1986] [Noor and Burton, 1990] [Savithri and 

Varadan, 1990] [Heuer, 1992] [Jane and Hong, 2000] with the predictor phase of the above 

mentioned predictor-corrector method. The classical theory (CLPT) was employed by 

Jones [1975], Sun et at [1975], Reddy [1984], DiSciuva [1986] and Jane and Hong [2000], 

8 



the uniform shear deformable theory (USDT) was used by Reddy [1984], DiSciuva [1986], 

Noor and Burton [1990], Heuer [1992], Noor and Burton [1991,1992] and Noor and Malik 

[1999], whereas the parabolic shear deformable theory (PSDT) was employed by Reddy 

[1984]. DiSciuva also used a theory that assumes a zig-zag displacement model [1986] 

whereas Savithri and Varadan [1990] used a theory that employs a piecewise cubic 

distribution of the in-plane displacement. 

As already mentioned in Section 1.1, Soldatos and Watson [1997a, b, c] proposed 

some new generalised beam and plate theories which can produce the classical as well as 

their conventional shear deformable counterparts as particular cases. This became possible 

by incorporating into the theory of some general shape functions of the transverse co- 

ordinate parameter, simple forms of which were essentially the corresponding particular 

shape functions used in conventional theories. Moreover, they [Soldatos and Watson, 

1997a, b, c] proposed a method allowing the general shape functions involved to be 

determined in a manner that accounts for both geometric and material properties of the 

highly reinforced beam or plate component to be considered. Subsequently, it is believed 

that the stress analysis results presented in references [Soldatos and Watson, 1997a, b, c] 

are particularly accurate. 

As far as simply supported laminated beam and plates are concerned, the stress 

distributions presented in [Soldatos and Watson, 1997b, c] are identical to the 

corresponding exact elasticity solutions of Pagano [1969] and Srinivas and Rao [1970]. 

This is due to the fact that the general four-degree-of-freedom theory (G4T) employed in 

[Soldatos and Watson, 1997b, c] takes both the transverse shear and the transverse normal 

deformation effects into consideration. The corresponding general three-degree-of-freedom 

theory (G3T) [Soldatos and Watson, 1997a] neglects the effects of the transverse normal 

deformation and so the corresponding results [Soldatos and Watson, 1997a] are still 
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approximate even for simply supported beams and plates. There is no doubt that the 

predictor-corrector method could further improve the already very accurate results 

predicted in [Soldatos and Watson, 1997a]. 

In Chapter 5 the predictor-corrector method is used in connection with the most 

commonly used conventional shear deformable beam theories [Timoshenko, 1921] 

[Bickford, 1982], as well as the G3T and G4T presented in [Soldatos and Watson, 1997a, 

b, c]. As far as simply supported boundary conditions are concerned it allows comparisons 

with the results obtained from their exact elasticity counterparts. Based on the conclusions 

of this type of assessment, further comparisons are performed for other sets of edge 

boundary conditions for which explicit 3D elasticity results are intractable. These 

comparisons and assessment deal with the accuracy of the distribution of transverse shear 

and transverse normal stresses through the entire beam thickness. As far as single-layered 

beams are concerned, some similar preliminary comparisons with certain exact elasticity 

results [Vel and Bartra, 2000] are presented in [Soldatos and Liu, 2001], though they only 

consider displacements and stresses at particular points of the beam span. Furthermore, the 

correction on the transverse stresses which are predicted by general five-degree-of-freedom 

beam theory for angle-ply composite laminates subject to mechanical loading and four- 

degree-of-freedom beam theory for cross-ply composite laminates subject to thermal 

loading, are performed in Chapters 6 and 7. 

1.4 An overview into chapters 

Chapter 2 describes a theoretical unification of displacement-based plate theories, 

yielding the general six-degree-of-freedom plate theory (G6PT) that accounts for both 

transverse shear and transverse normal deformation [Soldatos and Watson, 1997b]. A 
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procedure of simplification from general six-degree-of-freedom plate theory into the 

general five-degree-of-freedom plate theory (G5PT) that ignores the transverse normal 

deformation [Soldatos, 1997a] is illustrated. 

Chapter 3 presents general three-degree-of freedom shear deformable beam theory 

(G3BT) that ignores transverse normal deformation, general four-degree-of freedom beam 

theory (G4BT) that considers both transverse shear and transverse normal deformation, and 

general five-degree-of freedom shear deformable beam theory (G5BT) that ignores 

transverse normal deformation. These are also suitable for the study of a composite 

laminated plate deformed in cylindrical bending. G3BT and G5BT are simplified from 

G5PT, while G4BT is simplified from G6PT. 

It is well known that conventional beam and plate theories yield poor results when 

dealing with stress analysis predictions in highly reinforced laminated components. For 

more accurate transverse shear and normal stresses, a correction procedure might be 

necessary. Chapter 4 introduces a predictor-corrector method (Section 1.3) that can 

improve the accuracy of transverse stress analysis results. This will be then used to 

improve the accuracy of the predicted transverse shear and normal stresses and hence to 

assess the accuracy of several composite plate/beam theories. 

In Chapter 5, preliminary comparisons of USDT [Timoshenko, 1921], PSDT 

[Bickford, 1982] and G4T [Soldatos and Watson, 1997b, c], with certain exact elasticity 

results [Vel and Batra, 2000], are presented for single layered beams [Soldatos and Liu, 

2001]. Based on the conclusions of this initial assessment, the application of the predictor- 

corrector method (Chapter 4) on general three-degree-of-freedom beam theory and general 

four-degree-of-freedom beam theory are made for cross-ply and other sets of boundary 

conditions. 
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Chapter 6 details applications of the predictor-corrector method (described in 

Chapter 4) upon general five-degree-of-freedom beam theory. The improvement of the 

performance of transverse shear and normal stresses for angle-ply composite laminates 

subject to mechanical loading is investigated. 

In Chapter 7a new method for accurate strain-stress analysis in composite laminates 

subject to thermal loading is proposed in the form of general four-degree-of-freedom beam 

theory. The predictor-corrector method described in Chapter 4 is further used for the 

prediction of transverse shear and normal stresses. 
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Chapter 2 

Generalized plate theories subject to mechanical loadings 

2.1 Introduction 

In this chapter a theoretical unification of displacement-based plate theories is 

presented (Section 2.3) in the form of the general six-degree-of-freedom plate theory 

introduced in [Soldatos and Watson, 1997b]. Almost all conventional plate theories 

including classical plate theory and refined shear deformable plate theories can be 

considered as particular cases or simplifications of the general six-degree-of-freedom plate 

theory by specializing the choice of shape functions. A procedure of simplification for the 

general six-degree-of-freedom plate theory into the general five-degree-of-freedom plate 

theory that neglects transverse normal deformation [Soldatos, 1993] is also presented 

(Section 2.4). 

2.2 General considerations 

Consider a composite laminated plate of N orthotropic layers with the principal 

material coordinates (X, y(r), Z(r)) of the r th lamina oriented at an angle 8(') to the 

laminate coordinate, x. The r th layer is located between z= hr_, and z=h. as shown in 

Figure 2.2-1. It is convenient to take the xy-plane of the coordinate system to be the 

undefonned middle plane of the laminate. The z -axis is taken to be positive in an upward 
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Figure 2.2-1 Coordinate system and layer numbering used for laminated plate 
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direction from the middle plane. The plate thickness is denoted by h while its dimensions, 

along the x and y directions, are denoted by Lx and Ly L. 

In formulating the theory, certain assumptions and restrictions are as stated here: 

1. The layers are perfectly bonded together (assumption). 

2. The material of each layer is linearly elastic (restriction). 

3. The strains and displacements are small (restriction). 

Since the plate material is elastic, it is generally assumed that there exists a strain 

energy density function, VO (e 
z, eY, eZ5y�, y ,z)yY) such that [Solkolnikoff, 

1956]: 

aVo av0 aVo av0 0V0 0V0 (6x'may'UZ 'rn, r', ' r', y ) __ ac ' aE ' ac., 'a'a'a 
(2.2-1) 

For small plate deformation, it is further assumed that strain and displacements are related 

according to the well-known linear kinematic relations: 

au au av 
Ex= , _ rxy =a +&, 

av au aw 

aw av aW 

(2.2-2) 

where e, and y. (i, j=x, y, z) denote the strain components while U, V and W 

represent the plate displacements in the x, y and z directions, respectively. It is finally 
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assumed that stresses satisfy the equilibrium equations of three-dimensional elasticity, 

namely: 

aas+azm+ar 
=o e &Z 

are 
+ 

acT y+ az 
-o, 

CIS a+ aryz 
+=o. (2.2-3) 

2.3 Development of general six-degree-of-freedom plate theory (G6PT) 

2.3-1 Displacement field, kinematic relations 

In dealing with a static analysis, the general-six-degree-of-freedom plate theory 

begins with the displacement model 

U(x, y, z) = uo (x, y) -z wo, x 
(x, y) + 91 (z) ul (x, y), 

V(x, y, z)=vo(x, y)-zwo, y(x, y)+co2(z)v1(x, y), (2.3-1) 

W (x, y, z) = wo (x, y) + yi(z) w1 (x, y), 

where ( )x =ate) , etc. uo, vo and wo represent the unknown displacements of the plate 

middle plane and u, , v, and w, represent the unknown values of the transverse strains on 

the plate middle plane. There are six main unknowns (degrees of freedom) of the theory. 

Here, the functions q' (z), V2 (z) and VI(z) are assumed to be given functions of the 
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transverse co-ordinate parameter that can dictate the shape of transverse shear and normal 

strains (see equation 2.3-4 below). At this stage, no particular forms will be assigned to 

these functions. For notational convenience, it is assumed that they all have dimensions of 

length. For the convenience of determining the constants appeared when deriving shape 

functions, further constraints might be imposed on q' , (z) , Spe (z) and Vi(z) [Soldatos and 

Watson, 1997a, b, c]: 

el (O) = 422 (0) _ V/«» = 0, (2.3-2) 

and 

d, p, 1. 
d972 

I 
ý=o = ýýV 1 

". 0 = 1. (2.3-3) 
dz _0 dz dz 

These constraints are only potential requirement for determining the unknown constants 

when deriving shape functions. 

Upon applying the kinematic relation of three-dimensional elasticity (Equation 2.2- 

2) to the displacement approximation (Equation 2.3-1), one obtains the following 

approximate strain field: 

sx = es +z kx + 9pß (z) 

cy =ey+zky+V2(z)ky, 
C. _ y' (z) e", 

r, = pi (z) e. 1.1 + Vi(z) k, 

Y, ý = pi (z) e; + yr(z) k, (2.3-4) 

yam, = ems, +z k' +g (z) k+ q'2 (z) kyx 
, 

where a prime denotes ordinary differentiation with respect to z, and 
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exc =uox, ° k x- 
ul, 

x 
c e= vo Y . Y, 

° 
Y= 

vI. 
Y ý 

e' = uo, Y +vo, x, e., ' = w,, 
° eý = u1 , ° 

xj, = utY 
kx = -Wo,., e°=v ° k= vl, x , 

c kY ` -wo, YY, 
kx ° 

s=w,, x s 

kam, _ -2wo, ý, kZ = w,, Y 

2.3-2 Definition of the force and moment resultants 

(2.3-5) 

In a close connection with the 3D elasticity relations (2.2-1), the approximate stress 

field considered can be represented by introducing the generalized stress components 

[Soldatos and Watson, 1997b]: 

(Cz, mac, Tc) = x 
avo avo 

, 
avo 

y Y aex aey aeý 

ccc (mx, MY, MXY)= ava 
akc 

avo 
aky, 

avo 
aka, , 

Qa av. ev� evo (mss, za, zn)= ae='ae , aen , 

mQ mamý m, m, ma 
ev� ay� ay� ev� ev� ayo 

( 
"' y' ý' 'ý' ý' n) = akx ' aky 3 aka, ' akyx ' aka ' akn 

(2.3-6) 

(2.3-7) 

Applying the chain rule of partial differentiation in connection with the present 

approximate strain field (Equation 2.3-4), force and moment resultants are defined by 

integrating through the thickness as follows: 
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h/2 h/2 
(NC Ny' NC )= f(o-X' ay, z') dz = J(cr, Qy, z, ) dz, 

-h12 -h/2 

h/2 h/2 
(Ms' My' M )= 5(ms, my, m') dz = 

j(Qs, cry, z,, Y)z 
dz; (2.3-8) 

-h/2 -h/2 

h/2 
(NZ QX 

, 
Qy) = 

jýo 
,z, zn) dz 

-h/2 
h/2 

=f 
(u. 

yi'(z), r 9>i (Z), r pi (Z» dz, 
-h/2 

h/2 
(M° M°Mxy° M° pa P°)= j(m° m° m°m° m° m° 

)dz 
sý yý ý ysý s'y sý y, syý ys, xz, ys 

h12 
-h12 (2.3-9) 

=f 
(O's 

4>> (z)' Uy OP2 (z), Z, OPI (z), zxy 922 (z), r VI(z), in ii(z)) dz. 
-h/2 

Terms with superscript (c) are the same as those in classical plate theory, while terms with 

superscript (a) account for the transverse shear or normal deformation. 

2.3-3 Equilibrium equations and boundary conditions 

For convenience, it is assumed that the plate is subjected to a given stress 

distribution q(x, y) , which acts normally and downward on its top lateral plane (z =h/ 2). 

It should be noted however, that any other external loading configuration could be 

considered and successfully treated in the same way. The six equations of equilibrium of 

the general six-degree-of-freedom plate theory can be obtained using the theorem of 

minimum potential energy [Sokolnikoff, 1956, p 382]. We define the potential energy by 

the formula 
19 



r1= I 12 
t V0 (x, y, z) dx dy dz -fc q(x, y) W (x, y) dx ay. (2.3-10) 

/2 t 

Of all displacements satisfying a given set of boundary conditions, those which satisfy the 

equilibrium equations make the potential energy an absolute minimum, i. e., 

sr1=0. 

Noting that the variation of Vo is given by 

(2.3-11) 

SVo = 
aV° 

86, + 
ayo 

Bey + 
aV° 

Se + 
aVo 

sYn + 
ayo 8r. + 

aVo 
Sys , (2.3-12) 

ac, acy ac. ay,., ay. " aYý, 

equations (2.2-1), (2.3-4) and (2.3-5) yield 

as-v° 
Scc = Qx (Suo. 

x - zSwo� + o1Su,, s 
), (2.3-13) 

x 

with corresponding expressions for the remaining terms appearing on the right-hand side of 

Equation (2.3-12). 

Inserting equations (2.3-10), (2.3-12) and (2.3-13) into Equation (2.3-11), integrating 

through the plate thickness with the simultaneous use of equations (2.3-8) and (2.3-9) and, 

finally, making use of the calculus of variations, the six equations of equilibrium of general 

six-degree-of-freedom plate theory are obtained as follows, 
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NC x+NC =0, x, XYIY 
N 

,, x + NY. 
Y = 0, 

Mx.. 
� + 2M +Myy, = q(x, y), 

Max+Ma. 
Y-Qx =0, 

oa _Qo__O' 
MYX. 

x 
+ 

Y. Y Y 

PzX +P'Y -Nz =W(h/2) q(x, y)" 

(2.3-14) 

Each one of the first three equations appears identical to its corresponding classical plate 

theory counterpart. Hence they balance conventional force and moment resultants 

consistent with Kirchhoff 's assumptions. The last three equations address the balancing of 

force and moment resultants due to the transverse shear and normal deformation effects. 

The equations of equilibrium (2.3-14) are accompanied by several sets of edge 

boundary conditions, which are obtained on the basis of a variational approach. Assuming 

for simplicity that the plate is rectangular with side lengths LX and Ly, all sets of boundary 

conditions applicable at the edges x=0, Lx are given as: 

uo prescribed or ff. prescribed, 

vo prescribed or s prescribed, 

wo prescribed or Ms's + M, 
y 

prescribed, 

w0. s prescribed or Ms prescribed, 

u, prescribed or M° prescribed, 

v, prescribed or May prescribed, 

w, prescribed or P. prescribed. 

(2.3-15) 
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Corresponding sets of boundary conditions are equally applicable on the other two plate 

edges y=0, L,,. 

2.4 A brief description of general five-degree-of-freedom plate theory (G5PT) 

2.4-1 Displacement field, kinematic relations 

Application of the second assumption of Kirchhoffs hypotheses (Section 1.1) to the 

three-dimensional general-six-degree-of-freedom plate theory yields in a straightforward 

manner the general-five-degree-of-freedom shear deformable plate theory. This procedure 

begins with the displacement model 

U(x, y, z) = uo (x, y) - zwo,, (x, y) + vi (z)u r (x, Y), 
V (X9 y, z) = vo (x, Y) - Z'o, y 

(x, Y) + q'2 (z)vi (x, Y), (2.4-1) 

W(x, Y, z) = wo (x, y), 

that neglects the effects of transverse normal deformation (w, = 0). u0, vo and wo 

represent the displacements of the plate middle plane and ul and v, represent the values of 

the transverse strains of the plate middle plane. The functions gyp, (z) and p2 (z) are again 

assumed to be given functions of the transverse co-ordinate parameter, and by means of 

derivatives they dictate the shape of transverse shear deformation effects. In the refined 

plate theories [Soldatos, 1993] [Soldatos and Watson, 1997a], the following remaining 

constraints are imposed on the displacement field (see also Section 2.3-1): 

91(0) = 92(0) = 09 (2.4-2) 
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de, del 
+s_O iZ_o =1. dz dz 

(2.4-3) 

By the assumption of this displacement field (Equation 2.4-1) all those terms 

involving w, and yr in the derivations of six-degree-of-freedom plate theory are neglected. 

The approximate strain field simplifies to: 

e =ez+zkx+9pß(z)k* X, 
cy =ey +zky +V2(z)ky, 

ex =0, 

Y lpý (z)e. 
ýO 
a Y,. ='P2 (z)en, 

Yj, = e, + zk, + AA (z)k, + 922 (z)kys. 

(2.4-4) 

where a prime denotes ordinary differentiation with respect to z, and all the variables and 

expressions in Equation (2.4-4) remain the same as defined in Equation (2.3-4) and 

Equation (2.3-5). 

2.4-2 Equilibrium equations and boundary conditions 

Using the same variational procedure as described in Equations (2.3-10)-(2.3-13), 

the five equilibrium equations of general five-degree-of-freedom plate theory are obtained 

[Soldatos, 1993], 

N°, 
x + N, 

Y = 0, 

N�, +Nyy =0, 
Mx, u + 2Mc +My, yy = q(z, y), xylAy 

Mo a Qa 
x=U, xx+ 

Mz. 
r - 

M° +M°. r -Qr° =0 n. ý r 

(2.4-5) 
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where the force and moment resultants are defined in Equation (2.3-8) and Equation (2.3- 

9). Each one of the first three equations again appears identical to its corresponding 

classical plate theory counterpart. Hence it deals with balancing conventional force and 

moment resultants consistent with Kirchhoff's assumptions. The last two equations address 

the balancing of force and moment resultants due to the transverse shear deformation 

effects. 

The equations of equilibrium (2.4-5) are accompanied by several variationally 

admissible sets of edge boundary conditions. These can be obtained naturally on the basis 

of a variational approach. With disregarding the specific form of shape functions, A certain 

boundary condition prescription differs only with the degrees of freedom involved. 

Assuming that the plate is rectangular with side lengths LX and Ly, all sets of boundary 

conditions applicable to the edges x=0, Lx are given as follows: 

uo prescribed or N prescribed, 

VO prescribed or 1Vc, prescribed, 

w0 prescribed or Mý 
x+M, y prescribed, 

y0o, z prescribed or MIC prescribed, (2.4-6) 

u1 prescribed or prescribed, 

v1 prescribed or Mý prescribed. 

Corresponding sets of variationally admissible boundary conditions are applicable on the 

other two plate edges y=0, L,,. 
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Chapter 3 

Solutions to cylindrical bending problem of laminated composite plates 

using several versions of generalized beam theories 

3.1 Introduction 

Consider a plate strip (Figure 2.2-1) of infinite extent in the y direction, having a 

constant length, L, in the x direction. It is made of an arbitrary number, N, of linearly 

elastic layers that satisfies the generalized Hooke's law [Jones, 1975]: 

a, = Cues (i, f=1,2,..., 6) (3.1-1) 

where a, are the stress components, Cy is the three-dimensional stiffness matrix, and -j 

are the strain components. 

The three-dimensional constitutive equations used in G4BT [Soldatos and Watson, 

1997b, c] are those of plane strain elasticity, namely [Jones, 1975]: 

oX = C�sx +C�Ea, 
Uz = C13ex +C338=, 

"r 7= 
CSSYýz, 

(3.1-2) 

It may be worth clarifying that sj and y, (i, j=1,2, ..., 3) in Hooke's law represent 
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(c) Simply supported composite beam (SS) 

(d) Clamped-clamped composite beam (CC) 

(e) Clamped-free composite beam (CF) 

Figure 3.2-1 Coordinate system and Geometry of laminated beam 
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elastic strains only. For the shear deformable beam theory employed in this study, namely 

the G5BT [Shu and Soldatos, 2000], constitutive equations are expressed as [Jones, 1975] 

Qx 
QII Q12 Q16 

ex 

o"y - 
Q12 Q22 Q26 Ey 

Zxy Q16 Q26 Q66 r 

Zyz Q44 Q45 YYZ 

z Q45 Q55 y 
(3.1-3) 

Moreover, in the G3BT [Soldatos and Watson, 1997a], the USDT [Timoshenko, 1921] and 

the PSDT [Bickford, 1982], the corresponding constitutive relations are simplified as 

[Jones, 1975]: 

Qººex' 
(3.1-4) 

T, ý = Q55 Y. 

where Qy (i, j =1,2, ..., 6) denote the appropriate reduced elastic stiffnesses. 

Assume further that the plate is subjected to a loading that acts normally and 

downwards on its top lateral plane but is independent of the y co-ordinate. Due to the 

symmetries involved in both the geometrical and loading characteristics, all the 

displacement components u0, vo, wo, u� v, and w, of the plate, are independent of the y 

parameter and, therefore, all their partial derivatives with respect to y are zero. Such a 

plate problem in plane-strain state can be simplified to a beam problem. Therefore the 

stress analysis of such a plate can alternatively be performed by a beam theory. Hence the 

term `three-dimensional elasticity' should be interpreted as ̀ two-dimensional plane strain 

elasticity. It may worth to note that, in determination of the shape functions and derivation 
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of the predictor and corrector phases plain stain state is assumed. Justifications are required 

as different assumptions may lead to rather different results [Li, 1996]. 

By dropping its dependency on the y co-ordinate parameter and nullifying the minor 

displacement component in y direction (vo and v, ), the general five-degree-of-freedom 

shear deformable plate theory (Section 2.4) is simplified into a general three-degree-of- 

freedom shear deformable beam theory (G3BT) that is applicable for cross-ply laminated 

beams, and a general five-degree-of-freedom shear deformable beam theory (G5BT) that is 

applicable for angle-ply laminated beams. The general six-degree-of-freedom plate theory 

(Section 2.3) is simplified into a general four-degree-of-freedom beam theory (G4BT), 

which is suitable for cross-ply laminated beams. 

3.1.1 External loading 

Assume the N -layer linear elastic beam (Figure 3.2-1) with unit width in the y 

direction and finite length, L, in the x direction, is subject to the loading 

q(x) = 4M sm(P, �X), p,, = m, r/L, m =1,2,... (3.1-5) 

which acts normally and downwards on its top lateral plane, z=h/2. This can be thought 

as a simple harmonic in the corresponding Fourier sine-series expansion of any relevant 

loading distribution. 

Similarly, where thermal loading is considered, this is assumed the temperature field 

is of the form: 
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OT(x, z) = (To +T z) sin(pmx), pm = mir IL, (m = 1,2,... ). (3.1-6) 

This can be understood as being a simple harmonic in a Fourier sine-series expansion along 

x- direction of any relevant temperature field satisfying Fourier's Heat Conduction Law. 

3.1.2 Displacement field of conventional beam/plate theories 

The general displacement field is defined in Equation (2.3-1) can also be given by 

U= U(x, y, z) 1+V (x, y, z) j+W (X, y, z) Z. (3.1-7) 

Here i, j and k are unit vectors. U, V and W are displacement components, can be 

expressed as an expansion in a Taylor series form: 

U(X, y, Z) = ua (X, Y)+ Z UI (X, y) + Z2 u2 (x, y) + Z3 u3 (x, y) + ..., 

V(X, Y, Z) = vu(X, Y)+z v, (X, Y)+Z2 v2(X, Y)+Z3 v3(z, Y)+..., (3.1-8) 

W(X, Y, Z) = wo(X, Y)+Z w1(X, Y)+Z2 w2(X, Y)+Z3 W3(X, Y)+..., 

here, u0, vo and wo are reference (middle) plane displacement components. The unknown 

functions with sub-indices 1,2 and 3 are the first, second and third derivatives of 

corresponding displacement components with respect to the transverse coordinate, z. 

In principle, it is possible to extend these displacement series expansions of the 

thickness coordinate up to any desired degree. However, due to the algebraic complexity 

and computer effort involved with higher-order theories in return of marginal gain in 
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accuracy, conventional theories [Timoshenko, 1921] [Bickford, 1982] involve only limited 

numbers of terms after truncation of the above Taylor series. Additionally, the advanced 

shape functions of G3BT [Soldatos Watson, 1997a], G4BT [Soldatos and Watson, 1997b, 

c] and G5BT [Shu and Soldatos, 2000] will be detailed in the following corresponding 

Sections 3.2.2,3.3.2 and 3.4.2, respectively. 

3.1.3 Shape functions in classical beam theory subject to mechanical loading 

In the classical beam theory, it is assumed that the Kirchhoff's hypothesis holds 

(Section 1.1). In formulating the theory, certain assumptions or restrictions are adopted 

(Section 2.2). Under these assumptions and restrictions, the shape functions of classical 

beam are of the form: 

cPº (z) = 0,4oz (z) = 0, KV(z) = 

3.1.4 Shape functions in uniform shear deformable beam theory subject to 

mechanical loading 

In uniform shear deformable beam theory (first-order shear deformable beam theory) 

[Timoshenko, 1921], the Kirchhoff's hypothesis (Section 1.1) is relaxed by removing the 

third part, i. e., the transverse normals do not remain perpendicular to the middle surface 

after deformation. Under these assumptions and restrictions (Section 2.2), the choices of 

shape functions (five-degree-of-freedom) are of the form: 
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el (Z) = z, e2 (Z) = (3.1-10) 

3.1.5 Shape functions in parabolic shear deformable beam theory subject to 

mechanical loading 

The parabolic shear deformable beam theory [Bickford, 1982] [Reddy, 1984] to be 

developed is based on the same assumptions and restrictions (Sections 2.2), except that we 

relax the Kirchhoff's assumption (Section 1.1) on the straightness and normality of 

transverse normal after deformation. The shape functions (five-degree-of-freedom) are of 

the form: 

i2 
ýD(z)=z(1--- ), 9, (z)=z(1- 

--i), 
Vf(z)=0. (3.1-11) 

3.2 General three-degree-of-freedom beam theory (G3BT) for cross-ply laminated 

beams subject to mechanical loading 

3.2.1 Formulation 

The general three-degree-of-freedom beam theory (G3BT) begins with displacement 

approximation [Soldatos and Watson, 1997a]: 

U(x, z) = uo (x) - zwo, x 
(x) +, p1 (z)u, (x), 

W(x, z) = wo(x), 
(3.2-1) 
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and contains only three unknown degrees of freedom, u0, wo and u,, and involves one 

shape function, p, (z). 

The equations of equilibrium of the G3BT are therefore simplified as follows: 

NC , sx =O 
M` = 

x, xx 
9(z), 

M° °=0 x, x - 
Qx 

(3.2-2) 

where Nx , Mx , Mx and Q, ' are the force and moment resultants as defined in equations 

(2.3-8) and (2.3-9). 

The equilibrium equation can be converted into the following three Navier-type 

differential equations, 

Aý1uo -Býýwo,, +Biu1,. = 0, 

-B�uo� +Di, »'o, -Dto, u�. =4(x), 

Bo a 
,, uo. -D,, w0, +D1"1 ui, -Assui = 0, 

(3.2-3) 

for the three main unknown displacement functions: u0, wo and u, . Here, the appearing 

rigidities [Soldatos and Watson, 1997a] are given as follows: 

ýA` B` D` B° DIl, D°° 

k/2 

As = joss) 
(,,, )2 dz. 

-b/2 

h/2 
2 

JQ«)(i, z, z2ýýýZý, ý , -h/2 (3.2-4) 
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Equations (3.2-3) form an eighth-order of simultaneous ordinary differential 

equations. Regardless of the particular form of the shape functions employed, the eight 

constant coefficients of general solution of the ordinary differential equations can be 

obtained by applying edge boundary conditions. For simply supported, clamped and free 

edge, the following boundary conditions are as follows: 

Simply supported edge : Nx = wo = Mx = Mx =0 
Clamped edge : UO = wo = wo, = u, = 0, (3.2-5) 

Free edge : NX = Mx = Mx x= Ms = 0. 

As may be easy to verify, the set of simply supported boundary conditions is 

satisfied exactly by a displacement choice of the following form, 

(u0, u, ) = (A, B) cos(pmx), wo =C sin(px) . (3.2-6) 

which is the set of particular integrals of the equilibrium equations. The unique solution of 

unknown constant coefficients A, B and C can obtained through the equilibrium 

equations (Equation 3.2-3). 

3.2.2 Determination of shape functions subject to mechanical loading 

The shape function ip, (z) of G3BT can be determined by making use of the first of 

the three-dimensional equations of equilibrium (Equation 2.2-3) only. For the cylindrical 

bending, this equation is simplified as follows [Soldatos and Watson, 1997a]: 
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6xx +Z'xzs =0. (3.2-7) 

Using strain-stress relation in connection with kinematic relation (Equation 2.2-2), 

displacement components (Equation 3.2-6) for simply supported edges, Equation (3.2-7) 

yields a second-order ordinary differential equation. The general solution of equation is 

given as follows in r th layer (r =1,2,..., N ): 

(r) 

B (r) (z) = C(r)e + C(')e-a(, ) +Cz-Ao, (r)) 2_ QII 
P2 (3.2-8) A2 Opm 0ý n(r) m Q(r) 

Here, the superscript (') is associated with the number of layers. C; ') (i = 1,2) represent 

two arbitrary constants of integration in the r th layer. Q;; and Q55) denote the 

appropriate reduced elasticity stiffnesses [Jones, 1975]. 

For an N- layered beam, however, there are 2N unknown constants (C; ') 

i=1,2; r=1,2,..., N) to be determined. These will be determined by means of the 

2(N -1) continuity conditions (in-plane displacement, U and shear stress, r.. ) employed 

on the N -1 material interfaces of the laminated beam considered and the two zero shear 

traction (shear stress, Tom) boundary conditions specified on both top and bottom. 

For a simply supported beam in cylindrical bending problem, values can initially be 

assigned to all these unknown constants (A0, Bo and CO) in an almost arbitrary manner. In 

doing so, the only essential requirement is that non-zero values should be assigned to BO. 

Thus, by pre-setting Bo =1 and applying constraints of shape functions (Equations 2.3-2 

and 2.3-3), their values (Ao, Co) can be determined uniquely. 
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3.3 General four-degrees-of-freedom beam theory (G4BT) for cross-ply laminated 

beams subjected to mechanical and thermal loadings 

3.3.1 Formulation 

G4BT for cross-ply laminated beams subject to both mechanical and thermal 

loadings begins with the displacement field [Soldatos and Watson, 1997b, c], 

U(x, z) = uo (x) - zwo�, + qo(z) ui (x), 

W(x, z) = wo(x)+! V(z) wt(x), 
(3.3-1) 

where, uo , wo, u, and w, are four unknown degrees of freedom, cp(z) and V(z) are two 

functions. 

The three-dimensional thermoelastic anisotropic strain-stress relations are [Jones, 

1999]: 

E; = Soap +a, AT(x, z), i, j =1,2,..., 6 (3.3-2) 

where, the total strains, e is the sum of the mechanical strains, S, aj, and the free thermal 

strains, a, AT . 
OT (x, z) is the temperature change and a; is coefficient of thermal 

expansion. In addition, for an infinitesimal deformation, non-zero total strain components 

can be obtained by kinematic relations of three-dimensional elasticity (Equation 2.2-2) 

incorporated with the displacement approximation (Equation 3.3-1). For plane stress in an 

35 



orthotropic lamina in principle coordinates, the three-dimensional thermoelastic stress- 

strain relation [Jones, 1999] [Reddy, 1996] in r th layer is simplified as follows: 

1T) C, T) C;; ) 0 ss') -ax') AT 
(r) 

z 
C(r) 

13 
C(r) 

33 
0 F(r) 

z - a(r) AT 

z( r) 0 0 C5(5F) 
/ zzr) 

(3.3-3) 

Note that the coefficients of thermal expansion affect only extensional strains, not the shear 

strain in this case. Here the layer superscript (') has been introduced in order to emphasise 

the dependency of the shape functions on the different elastic properties of each layer. 

The four equilibrium equations of G4BT can be deduced from the six equilibrium 

equations of general six-degree-of-freedom plate theory (Equation 2.3-14) and written as 

follows, 

NC 
ý=0, 

x, = 4(xl M` 

° -° =U Mx, x Qx 

Px -N= = yr(h/2)q(x), 
(3.3-4) 

where the force and moment resultants are defined in equations (2.3-8) and (2.3-9). 

It yields the following set of Navier-type differential equations: 

A;, Iu0, -Bliwo. +BI'luI... +B3wi,: =Ei 
B;, uo, -D�wo,. +D, u,, +D3w,, xx =E2, 

B; l uo,. - D; I wo,. + Dl" u1- A" u1 + (Dis - Ass ) wI, X = E3 ' 
°ubw (Db Aab )u + Abbw Dbbw h) (x r 

(3.3-5) 
; -B13 O, x+D 13 O, ýrx 13 55 l, x 55 I, u 33 1- 

ý(N+l ql )+E 
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The appearing rigidities and constants are given as follows: 

h/2 
/ 

922 = 
JcI1)`1, 

Z, Z2, p, Zm, m2/dz, 
(Ac 

B' 

11 11 11 
D', Ba, 

L11, 
D 

11 
) 

-h/2 

Y 

h12 
rbb 

ab (r)( rr rl 
`B13 ' 

D13, D13 
- 

JC13 

l, 

-h/2 

h/2 

ss 
((,, r)2, q' ' VV 2) dZ, Ass, Ass, As°s=f C(r) 

-h/2 
h/2 

D" = Css) (yi')2 dz, 
-h/2 

h/2 

Ei- T= (a(')C 
II 
I'ý +a( C(is`)) (OT),: dz, 

-h/2 

h/2 

E3T a( s')C(3') +a(')C(') r 33 AT /da ý- 

-h/2 

(3.3-6) 

h/2 

E2 = 
J(ax 

11 + az C13 ý) (OT ), 
xx z dz, 

-h/2 

V2 

Eä =- 
J(ax') C13) +a(r)C33)) AT y/dz, 

-h/2 

where a superscript T denotes the constants associated with thermal expansion, while 

yr(hN+, ) q(x) is contribution related to the mechanical loading only. 

The equilibrium equations (3.3-5) form a tenth-order of four simultaneous ordinary 

differential equations and are accompanied by several sets of boundary conditions. All sets 

of boundary conditions applicable to the edges x=0, L are given as follows: 

at simply supported edge: Nx =w= M' = Mx = w, = 0, 

at rigidly clamped edge: uo = wo = wo, = u, = w, = 0, (3.3-7) 

at free edge: N, ' = Mx, X = Mx = M, " = P° = 0. 
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As may easily be verified, the simply support boundary conditions (3.3-7) are 

satisfied exactly by the following trigonometric displacement representation: 

uo = Acos(p. x), u, = Bcos(pmxl wo = Csin(pmx), w, = Dsin(pmx). (3.3-8) 

Moreover, they also satisfy the set of the differential equations (3.3-5), yielding the 

following set of linear algebraic equations: 

I -PmAii PmB,, -PMB1i P,. B sA Hi 

- PýDii p Dü - PmD iC HZ 
(3.3- 

- p2Dt*a - A° P. 
(Dii 

- Ass B H3 
Symmetric - p, ý� Abb - Dbb D yr(h / 2) q, ý + HT 

9) 

here 

h/2 

H; = 
fpm(ax')C;; ) +as')C;; ))(To +T, z) dz, 

-h/2 

h/2 

HT =- 
JP' (ax") Cii) + a=') C13))(To + T, z) z dz, 

-h/2 

h/2 

Hi =fp. (axr)Cii' + a, C13 )(7 + Ti z) 4ý dz, 
-h/2 

h/2 

Hä =- 
f (a(x')C13) +a(z')C3"))(To +T, z) w'dz. 

-A/2 

(3.3-10) 
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where the superscript (') denotes the number of layers. Given a suitable set of shape 

functions, the coefficients A, B, C and D can be determined through the Equation (3.3-9) 

uniquely for simply supported beam. 

3.3.2 Determination of shape functions subject to mechanical and thermal loadings 

Shape functions q' (z) and VI(z) in Equation (3.3-1) can be determined by making 

use of the three-dimensional equilibrium equations (Equation 2.2-3). The three- 

dimensional equilibrium equations of linear plane strain elasticity are given as follows 

[Soldatos and Watson, 1997b, c]: 

Qx s+ rý, = = 0, rxrlx + o"z, z = 0. (3.3-11) 

Assume the beam is subjected to the combination of a mechanical loading of the form 

(Equation 3.1-5) and to a temperature field of the form (Equation 3.1-6). In connection 

with the three-dimensional thermoelastic stress-strain relation (Equation 3.3-6), 

displacement-strain relation (Equation 2.2-2) and the displacement components (Equation 

3.3-8) for simply supported edge, the equilibrium Equations (3.3-11) yield the following 

0-order set of ordinary differential equations in rth layer: 

Css B-P., C(r)Bop +Pm(Cis +Css))DýV' 11 
=p Cii)(A- p zC) +p (C(')a(r) +C(r)a(r))(T0 +T1 z) ý ýn 11 x 13 ý 

(r) w-2. (r) (r) (r) ' 

(3.3-12) 

C33 DW PCss DW -Pý, 
(C13 +Css )B9ý 

-p2 C')C + (C(')a(t) + C(r)a(r) )T ýa , 3(C3, x 33 z 
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It is of particular importance to note that the right-hand-sides of Equation (3.3-12) are 

entirely dependent upon the basic displacement field, mechanical and thermal loadings, 

while their left-hand-sides depend on the corresponding additional displacement field. 

The general solution of Equation (3.3-12) can be written in the following form: 

(r) (r) f'(') 

(ý) = (r)(z) + 
0P"' 

Coz- 
CO + 1. 

(r) (3.3-13) lDo(z) iv 2 

ll 

where 

j(r) =-(a(r)C(1 13 1, r)+a, (s')C(r))(T0 +Tl z)/(pm C(1 1')) 1s 

f(rý =ýýý)(a(r)C(ý) +a(1*) Cýr-Cý'ý(a(') C(') +a(')C('ý) /3.3-14 
2 [(Cr 13 SS s It 13 ll x 13 33 l) 

T, /(Pm 1 55 

The term that involves the functions ' and 'P in the right-hand-side of the equation 

represent the complementary solution of Equation (3.3-12), while the other terms represent 

the particular integrals in the r th layer of a simply supported laminate (r = 1,2,..., N). In 

more detail, a) and ̀ ' can be given in the following form: 

q)(r) (z) = (c(. ) + c( r) 
4 

kcº), tc") e°=4''s 13 SS i 
i=l 

ý(')(z) = k(r)(C(') -ýý')2Cý'ý)eP° 
, >= 

II ss 
r-1 

where r) are the four roots of 
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Ct'ýCý'). ý4 - 
LC(. )C(') - 

(C(')) 
- ZCý. )C(. ) ý2 

+ Cc"ýCcr> =U (3.3-16) 33 55 11 33 13 l3 55 ll 55 

and k; 'ý (r = 1,2,. .., N; i=1,2,3,4) are 4N unknown constants. It is worth noticing that 

D and ̀ Y are exponential functions of the transverse co-ordinate, z, with the exponents 

being dependent on the material and the geometrical properties of the beam considered. 

The 4N unknown constants, k; ') , will be determined from an equal number of interface 

continuity and lateral plane boundary conditions briefly outlined next. 

The continuity of displacements (U and W) at all material interfaces z=h, (r =1,2, 

..., 
N -1) in a simply supported beam implies, 

(ü(r) (h )_ ýcr+l) (h) =[a (r) C(r) - a(r)C(r) ](T +T h)'(p C(f) ) 
rrx 13 s 13 0lfm Il 

-ra(r+l)/+(r+l) _a(r+)C(r+l)](T +T 
j 

C"(r+l)) 
Lx 1"l3 a 1.13 01rm I1 

T(r) 
lýl(L 

)- p(r+l)(hr) = -[\C(r) +C(r))(a(r)C(r) +a(r)C(r)) 
r 13 55 x 11 z 13 

- C(r) a(r)C(r) +cr(r)C(r) T2 C(r)C(r) Il x3s 33 
ýý 

1 pm 11 55 

+ /C(r+l) + C(r+l) a, (r+l)C(r+l) + Q, 
(r+l)C(r+l) 

(3.3-17) 
ýl 

13 55 
)(x 

Il z 13 

- 
C(r+l)! a(r+l)C(r+1) +a(r+l)C(r+l))] T1 /(P2 C(r+l)C(r+l) ) 

11 lx 13 z 33 l lpm 11 55 

Moreover, continuity of the inter-laminar stresses, o and r., at those material interfaces 

of a simply supported beam implies, 

_P C(. -1)ßc. -1) (h )+ C(º-1). ý, cr-1) (h )+P C(º); (r) (h) - C(')`1'(') (h ) 13 3m 13 r3r 

_ [a(r-1) (C(r-I) - Cr-1)2 / C('-1)) / C(~') - a(') (C(') - C(')2 / C('))](1 +Th) z 33 13 II II z 33 13 Il 01rs 

(3.3-18) 
r)(D(r)(hr)+P. T(r)(hr)) C (r, )((D(r-1) (h. )+P,, `Y(r-I)(�r))-C( 

55 

[a('-') (C('-') - C('-1)2 / C(r-1)) / C('-') - a(') (C(') - C(')2 / C(') )] T /P 
z 33 13 11 11 : 33 13 11 1m 
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Finally, the zero stress boundary conditions (o = 0, r,, ý = 0) imposed on lateral surfaces 

require, 

P, ýCii)ý(1)(ho)+C3°` 
1 )(ho) = (C' -C1»2 /C;; ))aZ') (T0 +T ho) 

(1) (')' cý> cnz cq a) 
(3.3-19) 

Css (ý (ho) + Pm Y'()(ho )) = (Css - Cis / Ci i )a T/P, 
� 

PmC13 
)(D(N)(hN)+C33 )T(N)(hK) 

_ 
(C33) 

-C13 
)2)I CiN))a(N)(To +T, hN) 

()/ ýN) 

l 

() Q1L (N) (N)2 ON) (N) 
(3.3-20) 

Css 
lý 

ýhN) + Prn`' N 
)) = (C33 

- Cl3 / C11 )a: T, ý Pm 

where ho and h, represent the value of the transverse coordinate at the bottom and the top 

lateral planes of the beam, respectively. 

Given the constraints (Equation 2.3-3) on the shape functions (Equation 3.3-13), we 

further obtain four algebraic equations, the solution of which provides the following unique 

values Ao, Bo, Co and Do : 

4 

A= (C 
31+ Cl«-> k()X )_T (&' c () + a()C(ý°ý) ý(P C{`°ý 0 13 5ii0x 11 z l3 m CI(Ica) 

1-1 

Bo = pm k; ̀ ) 
[C; 

+ lý; ̀°> C'3 - (Cý`°ý - Cc`°>2 / C(ca))a(`°)T l(p C(') ) l 33 13 11 zIm 55 
r-1 

C -, 
Ek(')[C(°°) 

-(2 °)YC(c°), +[(CýC°) +C{cZ))(a(ca)C(ca) +aec>C, (cc) 
0- l II i SS 13 55 x ll s 13 

i-I 

- C(' (acs>Cc-° +a(ca)Ccca>))T1 /( zC{ý`ýC5`Qý) (3.3-21) 11 x 13 : 33 1 
pm 11 55 

4 

Do = PM k(ca)X-> C(iI _ 
(A(-) Y C(') rr ss 

r-i 

Those quantities indicated by a superscript (ca) are related to the layer that contains the 

central axis of the beam considered. 
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3.4 General five-degree-of-freedom beam theory (G5BT) for angle-ply laminated 

beams subject to mechanical loading 

3.4.1 Formulation 

Assuming that the beam (or plate in cylindrical bending) is angle-ply laminated, 

general five-degree-of-freedom beam theory can be formulated starting with a displacement 

approximation of the form [Soldatos and Watson, 1997a] [Shu and Soldatos, 2000]: 

U(x, z)= uo(x)-z wo, x 
(x)+coy(z) ui(x), 

V (X, z) = vo (x) + q'2 (z) v1(x), (3.4-1) 

W (x, z) = wo (x). 

where, u0, v0, wo, u, and v, are five unknown degrees of freedom, and V, (z) and q, 2 (z) 

are two shape functions. 

The equations of equilibrium of the present G5BT are simplified as follows: 

NXc 
,x=0, 

N, =0, 
mc= q(x), 

M° ° =0 x, x - 
Qx 

ý 

M°Yx. x -QY°=0 
(3.4-2) 

where the force and moment resultants, N", Nom,, M.,,, M;, Qx and Qy , are defined in 

equation (2.3-8) and (2.3-9). 
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It can be converted into the following five Navier-type differential equations in 

terms of the five unknown functions, 

A� uo, + A16 v0 + B, I, u,, + B162 v,. - B11 wa, =O, 
A16u0 

xx 
+ 4Vo,. + B161u1, 

sx 
+ B66ZV1, - B, 

6w� m=0, 

B11uo. +B16vo, +D11, u,. +D, 6sv1.,. -D�wa. =-q(x), 
B�1uo, +B, 6, vo... +D��u,, +DI6I2v1, » -Ass11u1-Aasuv1 -D111wo, =0, 
B[62U0,. xx + B662v0, + D16I2U1, xx + D6622v1- A4512u1 -A 4422V1 - D162w0, 

xxx = 0. 

(3.4-3) 

where the appearing rigidities are quoted from the following definitions [Soldatos and 

Timarci, 1993] [Timarci and Soldatos, 1995]: 

h12 
Ay = 

JQijk)f, 

-h/2 

h/2 

D, = Q(k)y z2dz, 
-h/2 

h/2 
jQy(" 

vl ipm dz, 

-h/2 

h/2 

D, = JQyk'v, zdz , 
-h/2 

h h/2 
B. 

- = 
JQijk)Zdz, B= jQjk)d 

, 
-h/2 -h/2 

h12 

Dyrm = JQ k)corcomdZ, (3.4-4) 
-h/2 

by assigning appropriate indices. Here, Q; u (i, j=1,2,..., 6) denote the appropriate 

reduced elastic stiffnesses (Jones, 1975). 

Equations (3.4-3) form a twelfth-order of five simultaneous ordinary differential 

equations that, for a given appropriate set of the shape functions involved, can be solved 

for the five unknown displacement functions. Regardless of the particular form of the 

shape functions employed, the twelve constant coefficients of the general solution of that 

set of ordinary differential equations can be obtained by applying the same number of edge 
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boundary conditions. For a simply supported, a clamped and a free edge, these boundary 

conditions are as follows (x =0 or x= L): 

Simply supported edge : Nx = Nom, = wo = Mx = MX = M' =0 
Clamped edge: uo =vo =wo =w, =ul =v, =0, 

Free edge : Nx = N' =Mx = MzX =Mx x =0. 

(3.4-5) 

Finally, note that the sets of edge boundary conditions described by equation (3.4-5) are the 

one-dimensional analogues of the following "point by point" sets of plane strain boundary 

conditions (x = 0, L) : 

Simply supported edge : Qs =W=O, 
Rigidly clamped edge :U=W=0, 
Free edge : Qs =z. =0. 

(3.4-6) 

As may easily be verified, the set of simply supported boundary conditions is 

satisfied exactly by a displacement choice of the form, 

`u0, u1 , v0, v1) = 
(A, BgC, D)COS(PmX), 

wo =E sin(PmX) (3.4-7) 

which is the set of particular integrals of the Equilibrium equations (Equation 3.4-3). For 

any given set of shape functions V, (z) and ßp2 (z), the integrations (Equation 3.4-4) can be 

performed either analytically or numerically. The unique solution of unknown constant 

coefficients A, B, C, D and E can be obtained through the equilibrium equations (3.4-3). 
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3.4.2 Determination of shape functions subject to mechanical loading 

The shape functions, q (z) and q(z), can be determined by making use of the first 

and second of the three-dimensional equations of equilibrium. For the cylindrical bending 

of angle-ply laminated beam, these equations are simplified as follows [Shu and Soldatos, 

2000]: 

a., s + T., = U, Z-,, + rn s=U. 
(3.4-8) 

Using Hooke's law in connection with kinematic relation (Equation 2.2-2) and the 

displacement components (Equation 3.4-7) for simply supported edge, Equation (3.4-8) 

yields the following fourth-order of simultaneous ordinary differential equations, 

Q(r) (r) + Q(r)ý(r) �-(r) 2 q>(r) - 
Q(r)2 ý(r) = Q(r)2 (A - ZEp )+ Qýr)G, 2 

Si Liz 45 2'a a1 Pm r 16 Pm 2 11 Pm 
m 16 Pm 

/ 
Q(r) (r) + Q(r)q (r) 

- 
Q(r) 2 ý(r) 

- 
Q(')2 (D(r) = Q(r)2 (A - ZEp )+ Q(ý]G' 2 

(3.4-9) 
Pl 

66 
Pm 

2 16 
Pm 

m 66 Pm 
45 1, n 44 2, a 16 m 

where, 

r) (Z) = Bogi') (Z), (D2") (z) = Dojo( (Z) " (3.4-10) 

Here, the superscript ('ý is associated with the shape functions in order to make it clear 

that, in general, their distribution changes from layer to layer. Q(') (i, j=1,2,..., 6; r =1, 

2, ..., N) denote the appropriate reduced elastic stiffnesses (Jones, 1975). 
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The general solution of equations (3.4-9) is given as follows: 

4 
(D(, 

1r) 
(Z) Cý")eaý'l +Eo-d 

ý0 
Pm `ý0 , 

7: 1 

(3.4-11) r) ) (r) 2 4( 

fi(r) (Z) _ 
Qss (a,! 

- QI I Pm C(r)ea'`r'z -C 
16 Pm 4s r 

2 
r=1 Q(r) 2- Q(r) 

la(r) 

0 

where Cdr) (i = 1,2,3,4) represent four arbitrary constants of integration in the kth 

layer. The appearing constants a; ') are the four roots of the following quartic algebraic 

equation: 

iQ44)Q55) 
-(SC45»I4 -(QII)Q44) +Q666)Q55) -2Q1(6)Q45»pma2 

r (r) (r) (r) 2l,, 4- 
3'4-12) 

+ LQI1 
Q66 - ýQ16 

Jt'm - 
ýý 

and, in general, differ from layer to layer. 

For an N layered beam, however, there are still 4N additional unknown constants, 

C; '' (i =1,2,3,4; r=1,2, ..., N ), to be determined. They can be determined by means of 

the 4(N -1) in-plane displacement and shear stress continuity conditions (U(x, z) , 

V (x, z) , rß , rn) employed on the N -1 material interfaces considered and the four zero 

shear traction boundary conditions (re, r) specified on top and bottom lateral planes. 

Thus, 4N unknowns (C, (k)) can be determined by a set of 4N linear algebraic equations. 

In a close relation to the corresponding results obtained in [Soldatos and Watson, 

1997a], the right-hand-sides of Equations (3.4-11) are entirely dependent upon the 

displacement field of the classical plate theory, whereas the left-hand-sides depend on the 
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corresponding additional field that incorporates the effects of transverse shear deformation. 

This is further clarified by the fact that, with the form of Equation (3.4-9) and (3.4-11), 

their equivalent elasticity Equations (3.4-8) are satisfied regardless of the values of all the 

five unknown constants (A0 
, BO, Co 

, Do and Eo ). As a result, for the cylindrical bending 

of simply supported, angle-ply beam, values can initially be assigned to all these unknown 

constants in an almost arbitrary manner. Thus, by pre-setting Bo =1 and using the shape 

function constraints (Equation 2.3-2 and 2.3-3), the Equation (3.4-11) provides the unique 

solution of A0, Co , Do and E0. Here, Bo is chosen to be the non-zero proportionality 

factor that, since its value leaves the final numerical results unaffected, can be left 

undetermined or set equal to unity without loss of generality [Soldatos and Watson, 1987a] 

[Shu and Soldatos, 2000]. 
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Chapter 4 

A predictor-corrector method for accurate stress analysis of composite 

beams and plates 

4.1 Introduction 

It is well known that conventional beam and plate theories yield poor results when 

dealing with stress predictions in highly reinforced laminated components. In more detail, 

the classical plate theory disregards the transverse stresses. The uniform shear deformable 

plate theory assumed the transverse shear stress distributed as a constant in each layer 

through the plate thickness. The parabolic shear deformable plate theory considered the 

transverse shear stress on the top and bottom plane of the plate, but it do not take the inter- 

laminar interface shear stress continuity into account. Due to the shear deformable plate 

theories use the plane stress-reduced stiffnesses, they are not able to predict the transverse 

normal stress in predictor phase. In this chapter, a predictor-corrector method that can 

improve the accuracy of transverse stress analysis results has been used for comparing the 

accuracy and assessing the performance of composite plate/beam theories. 

In more detail, working on a predictor-corrector basis the in-plane stresses that are 

initially predicted by means of a certain conventional or generalized beam or plate theory 

are substituted into the differential equations of three-dimensional elasticity, which in a 

corrector phase are integrated through the plate thickness. The resulting transverse shear 

and transverse normal stress distributions are expected to be improvements and are actually 

found to be more accurate stress predictions than their initially predicted counterparts. This 
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can only be and is verified however through appropriate comparisons with corresponding 

results based on the few existing exact elasticity solutions. 

4.2 Determination of stresses in the predictor phase 

The beam theories employed in this study are all based on displacement 

approximations that are particular cases of the generalised displacement field: 

U(x, z) = uo (x) - zwo, X 
(x) + ei (z)ur (x), 

V(z, z) = vo (X) + 92x (Z)v1(x)» 

W (x, z) = wo (x) + v(z)w, (x), (4.2-1) 

detailed in the preceding chapters. The displacement field can be obtained through the 

general solution of equilibrium equations (Equations 3.2-3,3.3-5,3.4-3) of corresponding 

plate/beam theories. The uniform shear deformable theory (USDT) [Timoshenko, 1921] 

(Section 3.1 and 3.2), parabolic shear deformable theory (PSDT) [Bickford, 1984] (Section 

3.1 and 3.2), general 3-degree-of-freedom beam theory (G3BT) [Soldatos and Watson, 

1997a] (Section 3.2) and general 4-degree-of-freedom beam theory (G4BT) [Soldatos and 

Watson, 1997b, c] (Section 3.3) are employed for the analysis of cross-ply composite 

laminates, while general 5-degree-of-freedom beam theory beam theory (G5BT) [Shu and 

Soldatos, 2000] (Section 3.4) is used for the analysis of angle-ply composite laminates 

subject to mechanical loading. Further, a newly derived general 4-degree-of-freedom 

50 



theory (G4BT) (Section 3.3) for the analysis of cross-ply composite laminates subject to 

thermal loading is employed in this study. 

As described in Chapter 2 and can be easily verified, most conventional plate/beam 

theories (including the uniform shear deformable theory and parabolic shear deformable 

theory) are particular cases of the general five-degree-of-freedom plate theory. Also, 

following Chapter3 the uniform shear deformable beam theory and parabolic shear 

deformable beam theory can be considered as the specific cases of the general five-degree- 

of-freedom beam theory for a cross-ply plate of cylindrical bending. 

Stresses are obtained through the generalized Hooke's law (Equation 3.1-1). In 

dealing with individual beam theory, the appropriate reduced constitutive relations are 

employed [Jones, 1975] (Equation 3.1-4) in G3BT [Soldatos and Watson, 1997a], the 

USDT [Timoshenko, 1921] and the PSDT [Bickford, 1982]. The three-dimensional 

constitutive equations used in G4BT [Soldatos and Watson, 1997b, c] are those of plane 

strain elasticity, namely [Jones, 1975] (Equation 3.1-2). The transformed reduced 

constitutive relations [Jones, 1975] (Equation 3.1-3) are employed in G5BT [Shu and 

Soldatos, 2000]. In the application of the USDT predictor phase, a shear correction factor 

is used to improve the values of the shear stresses. The determination of accurate 

correction factor was studied by several investigators (see, for example, references 

[Timoshenko, 1921], [Copper, 1966], [Chow, 1971], [Whitney, 1973] and [Raman, 1996]) 

but in this thesis its most commonly used value, namely 5/6, is adopted. 
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4.3 Corrector phase 

In the plane strain state considered, all physical quantities are independent of the y 

co-ordinate parameter. Accordingly, the equilibrium equations of three-dimensional 

elasticity are simplified to: 

au. +a =o, 

az aQ '. +s= 

ax az 

(4.3-1) 

The bending stress, Qx , is calculated in the predictor phase by substituting the 

displacement field obtained through a chosen beam theory, into the strain-displacement 

relations and then using the appropriate constitutive equation. Upon integrating three- 

dimensional equilibrium equation (4.3-1) with respect to z, the corrected shear stress in the 

rth layer can be obtained as follows: 

U(r) (x, Z) 
Zý'> (X, Z) _-J -psi + cÖ (X)ý (r = 1,2, 

... , 
N) 

äx 

where co(") (x) represent N arbitrary functions of x (r =1,2, ... , N) 

(4.3-2) 

These can be 

determined by using the following lateral surface shear stress boundary conditions together 

with the appropriate interface shear stress continuity conditions applied at material 

interfaces, h,: 
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r (x, ho) = 0, 

z(N) (x, hN) = 0, (4.3-3) 

rt (x, hr) = rx, (X, h, ). (r = 1,2,..., N -1) 

Here, ho = -h /2 and hN =h/2 represent the transverse co-ordinate parameters of the 

lateral planes of the beam. This forms an apparently over-determined problem, in which 

the N unknown functions co')(x) should satisfy the N+1 constrains (4.3-3). In the 

numerical calculations, the N-1 constraints (4.3-3c) are combined with either (4.3-3a) or 

(4.3-3b), which then makes the shear stress distribution to automatically satisfy the 

remaining lateral surface boundary condition, namely (4.3-3b) or (4.3-3a), respectively. 

Under these considerations and combining Equation (4.3-3c) with Equation (4.3-3a), the N 

functions c(o') (x) (r = 1,2,..., N) can be determined in the following form: 

co, »(x)= jao 1)(x, Z) dz 
3 

c(). +ý> (x) =3X. 
+1> (x, z) 

- 
3�(r) (x, z) dz + co( ) (x) - (4.3-4) oaJ& 

z=h, 

(r =1,2,..., N-1) 

Upon subtracting the partial derivative of equation (4.3-1b) with respect to z from 

the partial derivative of equation (4.3-1 a) with respect to x and, then, integrating the result 

twice with respect to z, the corrected transverse normal stress is next obtained in the 

following form: 

53 



v='ý (X) =J2 dz + C(r) (x) Z+ C(') (X) . (4.3-5 

(r =1,2,..., N) 

where c; ' and c2'ß are arbitrary functions of x. These can be obtained by using the 

known lateral transverse normal stress boundary conditions together with the appropriate 

continuity conditions of transverse normal stress and its derivative at the beam material 

interfaces, namely, 

oiýý (x, ho) = 0, 

u. (z, hw) = q(x), 

aZ. +1> (x, hr) = or(") (x, hr ), (4.3-6) 

, au (r+1) (X, Z) I aQ=, x, Z) 
s_h, _ Z=tir . 

(r =1,2,..., N -1) 

These yield the following 2N linear algebraic equations, 

c'°(x) h0 +c'ß(x) 
(Ja2oU)(xz)')1 

eXZ 
dz dz 

N c72or (N) (X, z) 

c, (') (x) hN + cZ )(x) =-Z dz dz 
aX 

)1 

z=hN 

c( r+1) (x) hr + C2r+1) ̀ x) - Ci r) (x) hr _ C2(r) (x) 

- 
Ja2ersr+1) 

(X, 
�a2Qr) (X, Z). 7 

(4.3-7) 

ÖX2 
+ 

ÖX2 ý 

z=h, 
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cl r+l) `x) 
- C'r) (x) 

-. 

a2Uz(r+l) (x, Z) 

2 
dz 

OX 1a2, 
r, 

`X Z) 
dz 

ÜXZ 

(r=1,2,..., N-1) 

which are solved simultaneously for the determination of the same number of unknown 

functions Cdr) and C2(r) (r = 1,2,..., N. 
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Chapter 5 

Application of the predictor-corrector method for cross-ply composite 

laminates subject to mechanical loading 

5.1 Introduction 

This chapter assesses the stress analysis performance of the most commonly used 

conventional shear deformable beam theories as well as the advanced beam theories 

presented in references [Soldatos and Watson, 1997a, b, c], by employing the predictor- 

corrector method detailed in the preceding section. The assessment deals with the accuracy 

of the distribution of interlaminar (transverse shear and transverse normal) stresses through 

the entire beam thickness. As far as simply supported laminated beams are concerned, it 

compares the corresponding stress analysis results obtained with their exact elasticity 

counterparts [Pagano, 1969,1970]. 

Based on the conclusions of this type of initial assessment, the application of the 

predictor-corrector method on general three-degree-of-freedom beam theory and general 

four-degree-of-freedom beam theory are made for other sets of boundary conditions. 

Comparisons are also performed, between the general three-degree-of-freedom beam 

theory and the general four-degree-of-freedom beam theory results, for other sets of edge 

boundary conditions for which explicit 3D elasticity results are unavailable or very 

difficult to obtain. 

For single-layered beams having both their edges clamped, some preliminary 

comparisons with certain exact elasticity results [Vel and Batra, 2000] are also presented 
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(see also [Soldatos and Liu, 2001]). However, those dealt only with the values of 

displacements and stresses at particular points along the beam span and not with 

corresponding detailed distributions through the beam thickness. 

5.2 Assessment of certain refined models for cross-ply laminated simply supported 

beams 

A two-layered anti-symmetric cross-ply simply supported laminated beam, with the 

material interface placed at z/h=0.2 and fibres in the bottom layer aligned along the x- 

axis (00 / 900), is now considered. As mentioned in references [Soldatos and Watson, 

1997b, c], the particular lay-up employed has been selected in an attempt to magnify the 

effects of the possible discontinuity that the inter-laminar stresses predictions may exhibit 

in the predictor phase and, therefore, to quantitatively estimate the extent to which these 

can affect the accuracy of the results obtained. The laminated composite beam considered 

is subject to a sinusoidal loading distribution that has the following form (Equation 3.2-1): 

q(x) = 9_ sin(P, xj Pm = m, r / L, (m =1,2,... ) (5.2-1) 

and is applied downwards on the top lateral plane of the beam. For simplicity, m is taken 

equal to 1 in this study. Hence, q(x) might be thought as the one of the terms of the 

Fourier sine-series expansion of a general mechanical loading. 

The orthotropic material of the laminates considered in the following applications 

has the following elastic properties: 
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EL / ET = 40, GLT / E,. = 0.5, G ,. lE,. = 0.2, VLT = v,,. = 0.25, (5.2-2) 

where the subscripts L and ,. denote properties associated with the longitudinal and 

transverse fibre directions respectively. EL / E,. = 40 is chosen in almost all applications 

except cases showing stress variations with varying the stiffness ratio (Figures 5.2-2 and 

5.2-5). Similarly, the aspect ratio L/h= 10 is chosen for most applications except cases 

showing stress variations with varying aspect ratios of the laminated beam (Figures 5.2-3 

and 5.2-6). The percentage error denoted in Figures 5.2-1 to 5.2-6 for simply supported 

beams is defined as follows: 

(U (e) 
- Q(Q) ) Er% =y 

ýýý7 
* 100, (i = x, z; j= z) (5.2-3) 

where o represents exact stresses calculated by means of Pagano's exact elasticity 

solution (ES) [Pagano, 1969], and o represents approximate stresses obtained by means 

of the corresponding approximate beam model employed. 

For a notation convenience, the following abbreviations have been used in Figures: 

(i) USDTC and PSDTC indicate results obtained by means of the corrector phase of the 

USDT [Timoshenko, 1921] and the PSDT [Bickford, 1982], respectively, (ii) G3TP and 

G3TC indicate results obtained by means of the predictor and the corrector phase of the 

G3BT [Soldatos and Watson, 1997a] (see also Chapter 3 and Chapter 4), respectively, and 

(iii) G4TP and G4TC indicate results obtained by means of the predictor and corrector 

phases of the G4BT [Soldatos and Watson, 1997b, c] (see also Chapter 3 and Chapter 4), 

respectively. For simply supported beams, the shear stresses obtained by means of the 
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predictor phases of USDT and PSDT are very inaccurate. Hence, the corresponding 

percentage errors are so large that do not fit and therefore are not shown in Figures 5.2-1 to 

5.2-6. The shear stress distribution obtained by means of the corrector phase of G3BT is 

essentially identical to its predictor phase counterpart given that corresponding results 

agree to more than six significant figures. This shows that the corrector phase is not needed 

for shear stress results evaluated via the G3BT. As was pointed out in references [Soldatos 

and Watson, 1997b, c] G4BT yields the exact elasticity results [Pagano, 1969] for simply 

supported plates, so the corrector phase is not needed in this case neither for transverse 

shear nor for transverse normal stress predictions. 

Specific co-ordinate points where maximum transverse stresses occur along the 

beam span and/or across the beam thickness have been chosen for a better illustration of 

some of the results. Accordingly, the points (x = 0, z= -0.1h) and (x =L /2, z= -0. Ih) 

are chosen to illustrate the variation of the maximum shear stress and transverse normal 

stress values, respectively, for the simply supported beam results shown (Tables 5.2-1 and 

5.2-2 and Figures 5.2-1 to 5.2-6). 

Table 5.2-1 gives the transverse shear stress values across the thickness of the beam 

obtained by the various theories and the corresponding percentage errors are given in 

Figure 5.2-1. In the predictor phase, the USDT yields a very inaccurate constant value of 

shear stress across the thickness of each layer. Hence, neither the zero shear stress 

boundary conditions on the beam top and bottom lateral planes nor the inter-laminar shear 

stress continuity at the interface are satisfied. On the other hand, the shear stress 

distribution of the predictor phase of PSDT satisfies the top and bottom zero shear stress 

boundary conditions but it is still inaccurate and does not satisfy the inter-laminar 

continuity condition. Contrary to this, the shear stress distributions of the USDTC, PSDTC 

and G3TP satisfy both the top and bottom zero shear stress boundary conditions and the 
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Table 5.2-1. Comparison of shear stress distributions, r (0, z) / ql , for a two-layered simply 

supported beam 

USDT USDT PSDT PSDT G3BT G4BT, ES* 

z/h Predictor Corrector Predictor Corrector Predictor & 

Corrector 
0.5 -2.1724 0 0 0 0 0 

0.4 -2.1724 -0.1552 -0.7677 -0.1593 -0.1813 -0.1881 

0.3 -2.1724 -0.2843 -1.3648 -0.2876 -0.3272 -0.3410 

0.2 -2.1724 -0.3873 -1.7913 -0.3880 -0.4385 -0.4593 

0.2 -5.4309 -0.3873 -4.4782 -0.3880 -0.4385 -0.4593 

0.1 -5.4309 -3.4634 -5.1180 -3.3684 -3.5412 -3.5483 

0 -5.4309 -5.4957 -5.3312 -5.3650 -5.4657 -5.4633 

-0.1 -5.4309 -6.4842 -5.1180 -6.3946 -6.3653 -6.3565 

-0.2 -5.4309 -6.4289 -4.4782 -6.4404 -6.3116 -6.2991 

-0.3 -5.4309 -5.3298 -3.4120 -5.4517 -5.3002 -5.2873 

-0.4 -5.4309 -3.1868 -1.9192 -3.3442 -3.2508 -3.2414 

-0.5 -5.4309 0 0 0 0 0 

* ES-Pagano's elasticity solution [Pagano, 1969] 

Table 5.2-2 Comparison of transverse normal stress distributions, o (L / 2, z) / q, , for a two- 

layered simply supported beam 

z/h USDT Corrector PSDT Corrector G3BT Corrector G4BT, ES* 

0.5 -1 -1 -1 -1 

0.4 -0.9975 -0.9974 -0.9971 -0.9970 

0.3 -0.9905 -0.9903 -0.9890 -0.9885 

0.2 -0.9799 -0.9796 -0.9769 -0.9759 

0.2 -0.9799 -0.9796 -0.9769 -0.9759 

0.1 -0.9167 -0.9180 -0.9110 -0.9096 

0 -0.7732 -0.7783 -0.7667 -0.7652 

-0.1 -0.5823 -0.5910 -0.5783 -0.5770 

-0.2 -0.3767 -0.3868 -0.3767 -0.3757 

-0.3 -0.1893 -0.1972 -0.1917 -0.1912 

-0.4 -0.0528 -0.0560 -0.0545 -0.0543 

-0.5 0 0 0 0 

* ES-Pagan's elasticity solution [Pagano, 1969] 
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interface continuity condition. However, they have larger percentage errors in the domain 

of 0. ih <z<0.5h than in the domain of - 0.5h <z<0. lh . At the material interface 

z/h=0.2, these errors are about 16%, 16% and 5% respectively, thus showing clearly that 

the corrector phase of G3BT is more accurate than the corrector phase of either USDT or 

PSDT. 

Figure 5.2-2 illustrates the variation of percentage error in the maximum shear stress 

values, zR (0, - 0. lh) , with increasing stiffness ratio, EL / ET . Apart the G4BT that yields 

the exact elasticity values, the percentage errors on the shear stress predictions of all 

remaining models increase with increasing EL / E,. taking on maximum values at 

EL I ET = 40. Figure 5.2-2 shows clearly the excellent performance and effectiveness of 

G3BT, the magnitude of the relative error never exceeding 0.2%. Figure 5.2-3 illustrates 

the variation of corresponding percentage errors with increasing length-to-thickness ratio, 

L/h. As expected these errors decrease for all models with increasing L/h. However, of 

the models USDT, PSDT and G3BT it again exhibits the most reliable performance, even 

from its predictor phase. 

Table 5.2-2 presents corresponding transverse normal stress distribution values 

across the thickness of a simply supported beam and the corresponding percentage errors 

are illustrated in Figure 5.2-4. Due to their limitations, none of the USDT, PSDT or the 

G3BT can yield estimates of the transverse normal stress distributions during its predictor 

phase. However, the maximum errors of the transverse normal stress value obtained via the 

corrector phase of the USDT, the PSDT and the G3BT are approximately 3%, -3% and - 

0.3%, respectively, appearing at about x=0, z= -0.4h (bottom layer). These errors 

clearly indicate the effectiveness of both the predictor-corrector method and the shear 

deformable theories employed in predicting transverse normal stresses. They show that 
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G3BT is the best among the shear deformable theories employed and yields the most 

accurate numerical results. 

Figure 5.2-5 illustrates the variation of corresponding percentage errors in transverse 

normal stress predictions with increasing the stiffness ratio, EL / E. These can be seen to 

increase with increasing stiffness ratio though the magnitude of their maximum values (at 

EL I E,. = 40) do not exceed 1%, 2.5% and 0.3% for the USDTC, the PSDTC and the 

G3TC, respectively. Figure 5.2-6 shows the variation in percentage errors with increasing 

length-to-thickness ratio, L/h. As expected, these errors decrease with increasing L/h. The 

maximum error, at L/h=4, is less than -2% for the G3TC whereas it is as large as -6% 

and -15% for the USDTC and the PSDTC respectively. Hence, those results given in 

figures 6 and 7 illustrate once again the high efficiency of the G3BT. 

5.3 Application on general three-degree-of-freedom and four-degree-of-freedom 

beam theory for different sets of boundary conditions 

Following the considerations of Section 5.2, the outlined predictor-corrector method 

is now applied to the accurate determination of stress distributions in composite beams 

subjected to different sets of boundary conditions (clamped-clamped and cantilevered 

beams), but only in connection with the G4BT and G3BT, namely the most accurate 

theories among the ones already employed and tested. Certain relevant preliminary results 

dealing with beams having both their edges clamped have already been published in 

reference [Soldatos and Liu, 2001]. They are also compared against corresponding exact 

elasticity results [Vel and Batra, 2000] and found to be very accurate. However, these 

preliminary results will be listed in Section 5.4. Hence, the stress analysis results shown in 
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Tables 5.3-1,5.3-2 and Figures 5.3-1 to 5.3-4 for clamped-clamped and clamped-free 

(cantilevered) beams are entirely new in the literature. 

For clamped-clamped and clamped-free beams, the cross-section x=L/4 is chosen 

to show the transverse shear stress variation, while the cross-section x=L/2 illustrates 

transverse normal stress variation across the thickness (Tables 5.3-1 and 5.3-2). The points 

(x =L/4, z= -0. lh) and (x =L/2, z= -0. lh) are used to illustrate the transverse shear 

and transverse normal stress predictions, respectively, when increasing the length-to- 

thickness ratio (Figures 5.3-1,5.3-3 and Figures 5.3-2,5.3-4). 

Table 5.3-1 presents corresponding transverse shear and normal stress values 

obtained by means of both the G3BT and G4BT for clamped-clamped beams. The shear 

stress of the G3BT predictor phase satisfies the lateral surfaces zero shear stress boundary 

conditions and the interface continuity. The shear stress predictor phase of G4BT yields 

non-zero values on the top and bottom lateral surfaces and discontinuity at the interface, 

which are negligible. The shear stress distributions obtained through the predictor phase of 

the G3BT are in very good agreement with the improved shear stress distribution obtained 

through the corrector phases of both G3BT and G4BT. It is of interest to note that the 

difference in corresponding maximum shear stresses, at about z= -0. lh, remains much 

smaller than 1% in either the predictor or the corrector phase of the two theories. As 

already mentioned the G3BT cannot yield transverse normal stresses in its predictor phase, 

whereas the transverse normal stress distribution obtained through the predictor phase of 

the G4BT is quite unrealistic and therefore inaccurate (it satisfies neither the lateral surface 

boundary condition nor the continuity at material interface). Contrary to this, the corrector 

phase of both G3BT and G4BT improve their transverse normal stress distributions and are 

both being in excellent agreement. 
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Table 5.3-1. Shear stress, rß (L / 4, z) , and transverse normal stress, a, (L / 2, z) , for a two- 
lavered clamped-clamped beam 

Shear stress Transverse normal stress 

z/h G3BT G3BT G4BT G4BT G3BT G4BT G4BT 

Predictor Corrector Predictor Corrector Corrector Predictor Corrector 

0.5 0.0000 0.0000 0.0000 0.0000 -1.0000 -0.4265 -1.0000 

0.4 -0.1282 -0.1286 -0.1330 -0.1333 -0.9971 -0.4182 -0.9970 

0.3 -0.2314 -0.2320 -0.2411 -0.2415 -0.9890 -0.4107 -0.9885 

0.2 -0.3100 -0.3108 -0.3248 -0.3253 -0.9769 -0.4038 -0.9759 

0.2 -0.3100 -0.3108 -0.3248 -0.3253 -0.9769 -0.3799 -0.9759 

0.1 -2.5036 -2.5052 -2.5089 -2.5098 -0.9110 -0.3565 -0.9096 

0 -3.8642 -3.8644 -3.8628 -3.8629 -0.7667 -0.3184 -0.7650 

-0.1 -4.5003 -4.4992 -4.4943 -4.4936 -0.5783 -0.2720 -0.5770 

-0.2 -4.4623 -4.4612 -4.4537 -4.4531 -0.3767 -0.2231 -0.3757 

-0.3 -3.7472 -3.7474 -3.7382 -3.7384 -0.1917 -0.1776 -0.1912 

-0.4 -2.2983 -2.2996 -2.2916 -2.2926 -0.0545 -0.1411 -0.0543 

-0.5 0.0000 0.0000 0.0002 0.0000 0.0000 -0.1205 0.0000 

Table 5.3-2. Shear stress, z,, (L / 4, z) , and transverse normal stress, az (L / 2, z) , 
for a two- 

lavered clamped-free beam 
Shear stress Transverse normal stress 

z/h G3BT G3BT G4BT G4BT G3BT G4BT G4BT 

Predictor Corrector Predictor Corrector Corrector Predictor Corrector 

0.5 0.0000 0.0000 -0.0004 0.0000 -1.0000 0.4152 -1.0000 

0.4 -0.1827 -0.1552 -0.1891 -0.1614 -0.9971 0.4310 -0.9970 

0.3 -0.3297 -0.2843 -0.3427 -0.2969 -0.9890 0.4372 -0.9885 

0.2 -0.4418 -0.3873 -0.4619 -0.4064 -0.9769 0.4357 -0.9759 

0.2 -0.4418 -0.3873 -0.4608 -0.4064 -0.9769 0.4946 -0.9759 

0.1 -3.5676 -3.4634 -3.5720 -3.4695 -0.9110 0.4550 -0.9096 

0 -5.5065 -5.4957 -5.5016 -5.4928 -0.7667 0.3373 
-0.7652 

-0.1 -6.4129 -6.4842 -6.4026 -6.4756 -0.5783 0.1756 -0.5770 

-0.2 -6.3587 -6.4289 -6.3466 -6.4175 -0.3767 0.0008 
-0.3757 

-0.3 -5.3398 -5.3298 -5.3297 -5.3185 -0.1917 -0.1576 -0.1912 

-0.4 -3.2750 -3.1868 -3.2718 -3.1791 -0.0545 -0.2685 -0.0543 

-0.5 0.0000 0.0000 -0.0109 0.0000 0.0000 -0.2973 0.0000 
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Figures 5.3-1 and 5.3-2 illustrate the variations in certain transverse shear and 

transverse normal stress values, respectively, for clamped-clamped beams. These were 

obtained by means of predictor and corrector phases for both G3BT and G4BT with 

increasing length-to-thickness ratio, L/h. Figure 5.3-1 shows that the shear stress values 

based on the G3BT and the G4BT predictor and corrector phases are in good agreement 

and vary almost linearly with increasing length-to-thickness ratio. In a similar manner, 

Figure 5.3-2 illustrates the excellent agreement of the transverse normal stress values 

obtained through the corrector phases of both G3BT and G4BT. Note, the thinner the 

composite beam, the better the agreement of transverse normal stresses obtained through 

the corrector phase of both theories. Given that the G3BT and G4BT are approximate in 

the present case of stress predictions in clamped beams, the remarkable agreement between 

numerical results obtained through the corrector phase of the two theories appears to 

favour the G3BT, which uses a smaller number of degrees of freedom. 

Table 5.3-2 presents corresponding transverse shear and normal stress values 

obtained by means of both the G3BT and the G4BT for clamped-free beams. The shear 

stress of the G3BT predictor phase satisfies the lateral surfaces zero shear stress boundary 

conditions and the interface continuity, while the G4BT shear stress predictor phase yields 

negligible non-zero values on the lateral surfaces and a slight discontinuity at the interface. 

The distributions of shear stress predictor phases of the two theories are in very good 

agreement, and so are distributions of the shear stress corrector phases. It is interesting to 

note that the difference between maximum shear stresses, at about z= -0. Ih 
, remains 

smaller than 1% in either the predictor or the corrector phases of the two theories. The 

corrector phase of both G3BT and G4BT improve greatly their transverse normal stress 

distributions and both being in excellent agreement. 
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Figures 5.3-3 and 5.3-4 illustrate the variation of certain transverse shear and 

transverse normal stress values, respectively, for clamped-free beams. These were obtained 

by means of predictor and corrector phases of both the G3BT and G4BT with increasing 

length-to-thickness ratio, L/h. Figure 5.3-3 shows that the shear stress values based on the 

G3BT and the G4BT predictor and corrector phases are in good agreement and vary almost 

linearly with increasing length-to-thickness ratio. In a similar manner, Figure 5.3-4 

illustrates the excellent agreement of the transverse normal stress values obtained through 

the corrector phases of both G3BT and G4BT. The thinner the composite beam, the better 

the agreement of the transverse normal stresses obtained through the corrector phase of 

both theories. With both G3BT and G4BT being approximate for stress predictions in 

cantilever beams, the remarkable agreement between corresponding numerical results 

obtained through the corrector phase of the two theories appears to be in favour of the 

G3BT, which uses a smaller number of degrees of freedom. 

5.4 On the generalised plane strain deformations of thick anisotropic composite 

laminated plates 

Vel and Batra (2000) presented an analytical elasticity solution based on the 

Eshelby-Stroh formalism, as well as corresponding numerical results for the plane strain 

problem of a clamped-clamped anisotropic laminated plate subjected to a certain kind of 

sinusoidal lateral loading. This new development comes as a welcome addition to the well- 

known and considerably simpler Pagano's (1969) elasticity solution that deals with plates 

having both their edges simply supported. 
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The comparisons shown in Table 5.4-1 are for homogeneous orthotropic plates 

having the following material properties: 

EL / E7 = 25, GL,. / Er = 0.5, G. l ET = 0.2, VLT = v,,. = 0.25. (5.4-1) 

It should be noted that these material properties differ considerably from the ones used in 

[Soldatos and Watson, 1997] and, therefore, the numerical results denoted in Table 5.4-1 

as ̀ present results' are new. Moreover, all the results presented in Table 5.4-1 are tabulated 

by means of the non-dimensional quantities employed in [Soldatos and Watson, 1997]. 

These have been found preferable to those employed in [Vel and Batra, 2000], because 

they show in a more clear manner the difference in order of magnitude, between the 

bending stress, a, , and the transverse stresses, (T� or 0'33 . 

As far as transverse displacements and bending stresses are concerned, the numerical 

results provided in this study can be based only on its predictor phase. Compared with 

corresponding results due to Vel and Batra (2000), there appears to be excellent agreement 

between corresponding displacement bending stress values, particularly for L/h>6. 

Given that two-dimensional plate theories are generally known to be inadequate for the 

accurate prediction of through thickness displacement and stress distributions, while their 

applicability in other types of problems (e. g. vibrations, buckling) is not unconditionally 

trusted for L/h>6.5 (approximate span limit of moderately thick plates), this agreement 

between the corresponding transverse displacement and particularly bending stress results 

as a very successful result of this approximate stress analysis methods is regarded. 

This conclusion is further verified by the comparisons shown in Table 5.4-1 between 

corresponding transverse shear stress predictions. The fact that for relatively thin plates 
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Table 5.4-1 Comparison of corresponding numerical results for increasing values of length to 

thickness ratio 

Uh all U2, h /o E, W U2, h/2 /o E, W L2, h / o-E, W 2,0 /o 

Vel et al G3BT G4BT Vel et al G3BT G4BT Ve! et at G3BT G4BT 

Predictor Predictor Predictor Predictor Predictor Predictor 

4 -7.8192 -7.7165 -8.4211 -0.9565 -0.8735 -0.8605 -0.1156 0 -0.1206 

6 -12.7152 -12.5377 -12.9456 -1.6010 -1.5040 -1.4967 -0.0777 0 -0.0829 

8 -19.1168 -18.8957 -19.1296 -2.4003 -2.2970 -2.2922 -0.0584 0 -0.0603 

10 -27.1600 -26.9355 -27.0400 -3.4020 -3.2960 -3.2930 -0.0467 0 -0.0403 

15 -54.8325 -54.6401 -54.6750 -7.1246 -7.0162 -7.0133 -0.0312 0 -0.0116 

20 -93.5200 -93.3323 -93.4000 -13.2160 -13.1110 -13.1040 -0.0234 0 -0.0069 

30 -203.9400 -203.8108 -203.9400 -35.6940 -35.5857 -35.5860 -0.0156 0 -0.0050 

40 -358.5600 -358.4554 -358.5600 -77.1200 -77.0473 -77.0560 -0.0117 0 0.0039 

60 -800.2800 -800.2789 -800.2800 -242.3520 -242.2477 -242.1360 -0.0078 0 -0.0027 

Uh Q, U4, h/21 , a� U2, W2 /o 

Vel et al G3BT G4BT Vel et at G3BT G4BT 

Predictor Corrector Predictor Corrector Corrector Predictor Corrector 

4 . 1.1060 -1.2181 -1.1876 1.2142 -1.1781 -0.490 -0.500 -0.513 -0.493 

6 . 1.8066 -1.9249 -1.9172 -1.9242 -1.9164 -0.497 -0.500 -0.531 -0.498 

8 -2.5280 -2.6214 -2.6199 -2.6216 -2.6200 -0.499 -0.500 -0.515 -0.499 

10 -3.2460 -3.3107 -3.3105 -3.3110 -3.3110 -0.500 -0.500 -0.431 -0.500 

15 -4.9995 -5.0192 -5.0192 -5.0190 -5.0190 -0.500 -0.500 -0.185 -0.500 

20 -6.7120 -6.7181 -6.7181 -6.7180 -6.7180 -0.500 -0.500 -0.148 -0.500 

30 -10.1040 -10.1055 -10.1055 -10.1070 -10.1070 -0.500 -0.500 -0.159 -0.500 

40 -13.4880 -13.4847 -13.4847 -13.4880 -13.4880 -0.500 -0.500 -0.168 -0.500 

60 -20.2440 -20.2455 -20.2455 -20.2440 -20.2440 -0.500 -0.500 -0.175 -0.500 

73 



(L /h> 8) the corrector phase cannot improve any further the value of the initial prediction 

is a consequence of the evident fact that, for thin plates, the initially predicted stress values 

are already very accurate. Apart the case of the thickest plate considered (L /h= 4), the 

differences between the present and the exact approach predictions are within acceptable 

engineering limits. Moreover, the trend of the corrector phase is to move the initially 

predicted transverse shear stress values towards their exact elasticity counterparts [Vel and 

Batra, 2000]. 

In contrast to the outlined observations (G4BT) both the initially predicted value of 

the transverse normal stress, a33, and the difference of the transverse displacement from 

the top to the bottom lateral plane appear to be relatively inaccurate, and surprisingly the 

inaccuracy increases with decreasing plate thickness. It should be noted however that 

although the exact value of 4733 remains essentially constant with decreasing plate 

thickness, the corresponding values of W, Q� and z13 increase. Hence with u33 being 

essentially two to four orders of magnitude smaller than either W or ar� , small errors in 

the prediction of the later quantities are substantially magnified during the prediction of the 

quantities measured in the last two columns of Table 5.4-1. Under these considerations, it 

is of particular importance to further notice that the inaccuracy detected in the initial 

prediction of C N3 has essentially disappeared in the corrector phase, which yields almost the 

exact transverse normal stress value, regardless of the value of the aspect ratio L/h. 

Moreover, with W remaining practically constant throughout the thickness of a thin plate, 

a slight inaccuracy in measuring the difference that values of W take on the lateral plate 

planes is not a considerable disadvantage to the approximate stress analysis method 

developed in [Soldatos and Watson, 1997b, c]. The zero difference of transverse 

displacement yielded by general three-degree-of-freedom beam theory on the top and 
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bottom lateral surfaces is due to the Kirchhoff hypothesis applied, and the transverse 

normal stress corrector phase of G3BT keeps the same value, 0.5, which is the accurate 

result for a thinner plate (L /h> 8). 

Finally, apart from the plate cross-sections, which are in the vicinity of the plate 

edges, all the stress distributions plotted in [Vel and Batra, 2000] look very similar to those 

obtained on the basis of our analysis. Solving however only one-dimensional (ordinary) 

differential equations, the order of which differs from the order of the partial differential 

equations solved by Vel and Batra (2000), our analysis treats the edge boundary conditions 

in a different, through thickness averaged, manner. 

5.5. Conclusions 

The assessment performed in this study has clearly verified the fact that the shear 

stress distributions obtained through the predictor phase of conventional theories (USDT 

[Timoshenko, 1921 ] and PSDT [Bickford, 1982]] are very inaccurate. Contrary to this, the 

predictor phase of the generalized G3BT [Soldatos and Watson, 1997a] gives practically 

identical shear stress results with its corrector counterpart, at least as far as simply 

supported beams are concerned. Hence the predictor phase of G3BT [Soldatos and Watson, 

1997a] is already much more accurate than even the corrector phase of either USDT or 

PSDT. In dealing however with simply supported beams only, the generalized G4BT 

[Soldatos and Watson, 1997b, c] yields straight away the exact elasticity stress 

distributions and, therefore, it does not need the application of corrector phase. Unlike the 

shear deformable theories (USDT, PSDT or G3BT), the G4BT also yields predictions of 

transverse normal stress distributions, regardless of the edge boundary conditions 
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employed. For simply supported beams, however, such G4BT normal stress predictions are 

again identical to their exact elasticity counterparts. 

For beams with more complicated edge boundary conditions the stress distributions 

obtained through the predictor phase of either G3BT or G4BT may be not as accurate as 

their simply supported counterparts. In their corrector phases, however, both G3BT and 

G4BT improve considerably their initial predictions and produce almost identical 

transverse shear and transverse normal stress distributions, at least for the particular 

material arrangement considered in this paper. This remarkable agreement of the 

corresponding numerical results obtained through the corrector phase of the two 

generalized theories appears to be in favour of G3BT, which uses a smaller number of 

degrees of freedom. 

As compared with corresponding results due to Vel and Batra (2000), there is a very 

good agreement of corresponding displacement values and an excellent agreement of 

corresponding bending stress values, which were provided based on predictor phase of 

both G3BT and G4BT. These conclusions are further verified by the comparisons shown in 

Table 5.4-1 of corresponding transverse shear stress predictions. For relatively thin plates 

(L /hz 10) the corrector phase does not improve at all the value of the initial prediction, is 

the evident fact that, for thin plates, the initially predicted shear stress values are already 

very accurate. Apart from the case of the thickest plate (L /h= 4) the differences between 

the exact approach prediction and the predictions of the present approach do not exceed the 

trend of engineering acceptable error (5%). Moreover, the value of the corrector phase is to 

move the initially predicted transverse shear stress values towards their exact values [Vel 

and Batra, 2000]. Apart from plate cross-sections in the vicinity of the plate edges, all the 

stress distributions plotted in [Vel and Batra, 2000] look very similar to those obtained on 

the basis of the present analysis. 
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Chapter 6 

Application of the predictor-corrector method for angle-ply composite 

laminates subject to mechanical loading 

6.1 Introduction 

In this chapter the predictor-corrector method described in Chapter 4 is applied to 

improve the performance of transverse shear and normal stresses for angle-ply composite 

laminates subject to mechanical loading. General five-degree-of-freedom beam theory 

(G5BT, Chapter 3) is employed for this application. Formulation derivations and shape 

functions of G5BT were illustrated in Chapter 3. Arbitrary N- layered angle-ply 

laminated composite plates are considered, with a; denoting the angle that the fibres make 

in i th layer with x- axis. 

6.2 General considerations 

Consider a straight elastic beam as described in chapter 3 (Figure 3.2-1) with 

external transverse load, q, as considered in Chapter 5 (Equation 5.2-1) taking the 

following general form (Equation 3.2-1), 

9(x) = 9_ Sin(p. x), p,, =mit/L, m =1,2,... (6.2-1) 
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which acts normally and downwards on its top lateral plane, z= h/2. The integer value m 

that characterises the particular harmonic employed in the Fourier sine-series expansion of 

any loading distribution applied on the top lateral plane (Equation 6.2-1) is chosen as 1. 

For the static analysis in plain strain state all these quantities are independent of the y 

parameter and, therefore, all their partial derivatives with respect to y are zero. 

The orthotropic material used in all of the applications has the following elastic 

properties: 

EL / ET = 25, GLT / ET = 0.5, G, T / ET = 0.2, VLT = vTT = 0.25, (6.2-2) 

except of cases dealing with varying stiffness ratio, EL / E. The plate thickness is mainly 

determined by the ratio L/h= 10 except of cases dealing with varying aspect ratio, L/h. 

This (L /h =10) characterises a moderate thick plate, and in conjunction with the high 

value of the stiffness ratio EL/Er, is considered to be an adequate test of the reliability of 

both the theoretical model and the method. Some cases of thin and thick, stiff and soft, 

small and large angled-ply beams have however also been examined to find the limitation 

of the general five-degree-of-freedom beam theory tested. All the numerical results shown 

in what follows are presented by means of the following non-dimensional parameters: 

T, zý h/q. L, ös =o /q,. (6.2-3) 

In this chapter, the shear stress r,. percentage error (in the corresponding paragraph 

described for tables 6.3-3 and 6.3-4) between predictor and corrector phases is defined as 

follows: 
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*100, (6.2-4) 

where r(' and r(c) represent shear stress in predictor phase and corrector phase, 

respectively. For notation convenience, the general five-degree-of-freedom beam theory is 

written as GSBT. 

6.3 Numerical results and discussion 

When deriving the shape functions of GSBT predictor phase, for simply supported 

arbitrary layered laminates [Shu and Soldatos, 2000], the shear stress, z, is required to be 

zero at the top and bottom lateral surfaces and continuity at the inter-laminar material 

interfaces. As a consequence, for a simply supported beam, when one changes the number 

of layers, angles of fibre alignment, span or stiffness ratio, the shear stress r of predictor 

phase is always required to satisfy the applied conditions, i. e., the top and bottom lateral 

surface zero shear stress and interface continuity. Its corrector phase is almost always 

identical to its predictor phase given its high accuracy. Hence the shear stress z.. corrector 

phase is not needed. For simply supported homogenous beam, the accuracy of G5BT 

predictor phase was assessed by comparing the exact elasticity solution [Pagano, 1970] 

[Ren, 1986], and tabulated by Shu and Soldatos, [2000]. So, corrections of the transverse 

shear and normal stresses for simply supported beams will not be presented in this chapter. 

Only the clamped-clamped and clamped-free beams are chosen as cases to show the results 

of the predictor-corrector method applied to the GSBT. In addition, given the fact that the 
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five-degree-of-freedom beam theory uses the properly reduced stiffness, it is not able to 

predict the transverse normal stress o in predictor phase, but only through the corrector 

phase. 

In this chapter, three-layered laminates with the thickness ratios of h, / h2 / h3 /h= 

0.3/0.4/0.3/1.0 and the angles of a, = -a, a2 =a and a3 _ -a counted from the bottom 

layer to the top layer have been selected to attempt to magnify the effects of possible 

discontinuity of the inter-laminar stresses. Here, h,, h2, h3 and h are the thickness of 

bottom layer, middle layer, top layer and the beam thickness, a� a2 and a3 present angles 

that bottom layer fibres, middle layer fibres and top layer fibres make with x axis, 

respectively. It could be mentioned that, in the special case of two-layered antisymmetric 

lay-up with equal thickness and the angles of -a/a which was employed in [Shu and 

Soldatos, 2000] for both clamped-clamped and clamped-free beams, the transverse shear 

stress r, a satisfies both top, bottom lateral plane zero shear stress boundary conditions, and 

inter-laminar interface transverse shear stress continuity. The transverse shear stress 

corrector phase and predictor phase, in such specific lay-up, are in very good agreement 

except at the vicinity of clamped and free edges. Hence this particular choice can not show 

clearly the improvement of transverse shear stress in corrector phase. 

Table 6.3-1 presents numerical values of normalised transverse normal and shear 

stresses at the selected points, which were evenly distributed through the beam length and 

thickness (a = 30°). It should be noted that, due to the symmetries of the problem, the 

shear stress i,. and transverse normal stress Qz at x/L and 1 x/L have identical through- 

thickness distributions. Moreover, due to the fact that the shear deformable beam theories 

completely ignore the effects of transverse normal deformation, the through-thickness 

transverse shear stress predictions, f., are also symmetric with respect to the plate middle 
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Table 6.3-1. Transverse shear and normal stress predictions for three-layered clamped- 

clamped beam (a = 300) 

z/h x/LO. O 0.1 0.2 0.3 0.4 0.5 

r.. Predictor 0.5 

0.4 

0.3 

0.2 

0.2 

0.1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-0.1534 

-0.2621 

-0.3300 

-0.3800 

-0.4404 

-0.4603 

0 

-0.1408 

-0.2406 

-0.3028 

-0.3206 

-0.3762 

-0.3946 

0 

-0.1042 

-0.1780 

-0.2240 

-0.2298 

-0.2710 

-0.2846 

0 

-0.0551 

-0.0941 

-0.1185 

-0.1202 

-0.1420 

-0.1492 

0 

0 

0 

0 

0 

0 

0- 

r.. Corrector 0.5 0 0 0 0 0 0 

0.4 -1.1370 -0.1998 -0.1468 -0.1059 -0.0556 0 

0.3 -0.9642 -0.2949 -0.2433 -0.1786 -0.0943 0 

0.2 0.0624 -0.3077 -0.2955 -0.2216 -0.1178 0 

0.2 0.0624 -0.3077 -0.2955 -0.2216 -0.1178 0 

0.1 0.4131 -0.4350 -0.3782 -0.2717 -0.1422 0 

0 0.5576 -0.4760 -0.4053 -0.2882 -0.1503 0 

Q: Corrector 0.5 0.0000 -0.3090 -0.5878 -0.8090 -0.9511 -1.0000 
0.4 2.1412 -0.2362 -0.5675 -0.7846 -0.9227 -0.9702 
0.3 5.3610 -0.1272 -0.5215 -0.7224 -0.8490 -0.8926 
0.2 6.1687 -0.1041 -0.4681 -0.6373 -0.7457 -0.7834 
0.2 6.1687 -0.1041 -0.4681 -0.6373 -0.7457 -0.7834 
0.1 3.8279 -0.1369 -0.3942 -0.5300 -0.6188 -0.6498 

0 0.0000 -0.1545 -0.2939 -0.4045 -0.4755 -0.5000 

-0.1 -3.8279 -0.1721 -0.1936 -0.2790 -0.3323 -0.3502 

-0.2 -6.1687 -0.2049 -0.1196 -0.1717 -0.2053 -0.2166 

-0.2 -6.1687 -0.2049 -0.1196 -0.1717 -0.2053 -0.2166 

-0.3 -5.3610 -0.1818 -0.0663 -0.0867 -0.1020 -0.1074 

-0.4 -2.1412 -0.0728 -0.0202 -0.0244 -0.0284 -0.0298 

-0.5 0 0 0 0 0 0 
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plane. Hence, the numerical results for i are only presented for the left and top quarter of 

the beam and the numerical results for d=z are only presented for the left half of the 

clamped-clamped beam. In corrector phase, the observations may be detailed with regard 

to the corresponding through-thickness distributions of the shear stress i,. (Figure 6.3-1) 

and transverse normal stress (Figure 6.3-2). At the middle cross-section of the beam, 

x=L/2, it yields the point by point zero shear stress and large variations of the transverse 

shear and normal stresses at the clamped edge (these edge stress distributions are not 

plotted in figures). As has also been pointed out in [Soldatos and Watson, 1997a, b] and 

[Shu and Soldatos, 2000], although the magnitude of the F. distribution is naturally 

increasing when approaching the clamped edge, the predictor phase erroneously predicts 

that t. suddenly becomes zero at that clamped edge (Table 6.3-1). This slight drawback, 

which is corrected and clearly illustrated by the results of the corrector phase of transverse 

shear stress r.,, is apparently due to the limitations of the G5BT. As was initially detailed 

in [Soldatos and Watson, 1997a] and verified afterwards [Soldatos and Watson, 1997b, c] 

[Shu and Soldatos, 2000), an apparent way to improve this drawback, which might be 

considered as a more accurate theory, is to replace G5BT with a theory that also accounts 

for transverse normal deformation effects. Such a change of the beam theory which, for the 

cylindrical bending problem of angle-ply laminated beam, would involve the appropriate 

determination of at least three inter-related shape functions, is beyond the scope of the 

present study. 

Table 6.3-2 presents numerical values of normalised transverse shear and normal 

stress distributions for a three-layered clamped-free beam (a = 30°). The shear stress z 

distributions occur again in symmetric form with respect to the beam middle plane and, 

hence, the corresponding numerical results are only presented for the top half of the beam. 
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Table 6.3-2. Transverse shear and normal stress predictions for three-layered clamped-free 

beam (a = 30°) 

z/h x/LO. 0 0.2 0.4 0.6 0.8 1.0 

r Predictor 0.5 0 0 0 0 0 0 

0.4 0 -0.3200 -0.2387 -0.1285 -0.0387 -0.0044 

0.3 0 -0.5465 -0.4076 -0.2194 -0.0660 -0.0074 
0.2 0 -0.6880 -0.5129 -0.2761 -0.0831 -0.0093 

0.2 0 -0.7131 -0.5050 -0.2645 -0.0712 0.0026 

0.1 0 -0.8396 -0.5995 -0.3155 -0.0866 0.0008 

0 0 -0.8812 -0.6306 -0.3322 -0.0916 0.0002 

rm Corrector 0.5 0 0 0 0 0 0 

0.4 -2.2740 -0.3201 -0.2276 -0.1164 -0.0265 0.0078 

0.3 -1.9284 -0.5434 -0.3992 -0.2106 -0.0572 0.0014 

0.2 0.1247 -0.6781 -0.5167 -0.2813 -0.0885 -0.0147 

0.2 0.1247 -0.6781 -0.5167 -0.2813 -0.0885 -0.0147 
0.1 0.8262 -0.8453 -0.6017 -0.3172 -0.0883 -0.0009 

0 1.1151 -0.9005 -0.6299 -0.3293 -0.0885 0.0034 

Q: Corrector 0.5 0.0000 -0.5878 -0.9511 -0.9511 -0.5878 0 

0.4 4.2997 -0.5646 -0.9226 -0.9228 -0.5703 0 

0.3 10.7629 -0.5184 -0.8491 -0.8489 -0.5246 0 

0.2 12.3765 -0.4774 -0.7471 -0.7445 -0.4599 0 

0.2 12.3765 -0.4774 -0.7471 -0.7445 -0.4599 0 

0.1 7.6748 -0.4084 -0.6205 -0.6173 -0.3813 0 

0 0.0000 -0.2939 -0.4755 -0.4755 -0.2939 0 

-0.1 -7.6748 -0.1794 -0.3306 -0.3338 -0.2065 0 

-0.2 -12.3765 -0.1104 -0.2039 -0.2066 -0.1278 0 

-0.2 -12.3765 -0.1104 -0.2039 -0.2066 -0.1278 0 

-0.3 -10.7629 -0.0694 -0.1019 -0.1022 -0.0631 0 

-0.4 -4.2997 -0.0231 -0.0285 -0.0283 -0.0175 0 

-0.5 0 0 0 0 0 0 
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Figure 6.3-3. Normalized shear stress distributions, %,, , 
in corrector phase for a CF beam 
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In this case, the associated complete through-thickness distributions of transverse shear and 

normal stresses obtained in the corrector phase are shown graphically in figures 6.3-3 and 

6.3-4, respectively, using selected x- coordinate values across the beam length. Shear 

stresses vary rapidly at the vicinity of the free edge of an angle-ply laminated clamped-free 

beam in both predictor and corrector phases. They become negligible at x/L=1.0, to 

approximately meet the boundary conditions. In more detail, the transverse shear and 

normal stresses predicted in corrector phase are very large on the clamped edge (x = 0), on 

which its value is almost 2 times the value that it takes at the edge of the corresponding, 

less flexible, clamped-clamped beam (see Tables 6.3-1 and 6.3-2). 

Table 6.3-3 presents the variation of shear stress z,,, in both predictor and corrector 

phases with varying angles, span and stiffness ratios for clamped-clamped beam. It is noted 

that, at the points, z=0, of selected corresponding cross-sections, the transverse shear 

stress distributions are close to maximum values (Table 6.3-1). The point (0.25L, 0) on the 

middle lateral plane is selected to investigate variations of the shear stress F. with varying 

angles, span and stiffness ratios. For the purpose of observing the influence of the interface 

shear stress discontinuity onto the maximum shear stress corrector phase, the point, 

(x = 0.25L, z=0.2h), which is allocated at the interface of the corresponding cross- 

sections is selected to show the results. For varying angles, span and stiffness ratios, Table 

6.3-3 shows that at the point (0.25L, 0), the correction percentage of the shear stress is 

always less than about 3%. In more detail, when one keeps L/h =10 , EL / ET = 25, and 

then changes the angles a of fibres, the correction percentage of the shear stress is always 

less than about 2%. At a= 75°, the shear stress predictions of predictor and corrector 

phases are practically identical. At a= 30°, EL / ET = 25 and L/h=8, the correction 
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Table 6.3-3 Normalised transverse shear parameters, z= (0.25L, z) , of three-layered clamped- 
clamped beam 

Predictor Corrector Predictor Predictor Corrector 

a Lih EI/ET Z=O z=0 z=0.2h+0+ z=0.2h+0' z=0.2h 
15° 10 25 -0.3349 -0.3370 -0.2780 -0.2793 -0.2760 
30° -0.3434 -0.3497 -0.2677 -0.2779 -0.2635 
45° -0.3464 -0.3523 -0.2639 -0.2809 -0.2640 
600 -0.3421 -0.3437 -0.2723 -0.2839 -0.2756 
750 -0.3372 -0.3372 -0.2829 -0.2834 -0.2831 
30° 4 25 -0.3451 -0.3536 -0.2175 -0.2516 -0.1994 

8 -0.3462 -0.3565 -0.2590 -0.2760 -0.2519 
15 -0.3397 -0.3414 -0.2773 -0.2800 -0.2767 
25 -0.3381 -0.3382 -0.2817 -0.2819 -0.2817 
50 -0.3377 -0.3377 -0.2831 -0.2831 -0.2831 

30° 10 5 -0.3376 -0.3378 -0.2813 -0.2825 -0.2814 
10 -0.3389 -0.3403 -0.2778 -0.2812 -0.2773 
20 -0.3419 -0.3465 -0.2710 -0.2790 -0.2682 
30 -0.3447 -0.3528 -0.2646 -0.2769 -0.2590 
40 -0.3472 -0.3583 -0.2587 -0.2748 -0.2502 

Table 6.3-4 Normalised transverse shear parameters, rß (0.75L, z), of three-layered clamped- 
free beam 

a Uh E, /ET 
Predictor 

Z=O 

Corrector 

z=0 

Predictor 

z--0.2h+0+ 

Predictor 

z=0.2h+0" 

Corrector 

z--0.2h 
15° 10 25 -0.1406 -0.1431 -0.1189 -0.1168 -0.1225 
30° -0.1407 -0.1375 -0.1225 -0.1106 -0.1278 
45° -0.1396 -0.1354 -0.1272 -0.1077 -0.1270 
60° -0.1385 -0.1380 -0.1261 -0.1112 -0.1215 
75° -0.1396 -0.1404 -0.1184 -0.1170 -0.1179 
30° 4 25 -0.1454 -0.1461 -0.1288 -0.0850 -0.1536 

8 -0.1411 -0.1369 -0.1245 -0.1069 -0.1327 
15 -0.1402 -0.1386 -0.1199 -0.1144 -0.1223 
25 -0.1400 -0.1394 -0.1184 -0.1163 -0.1193 
50 -0.1399 -0.1397 -0.1177 -0.1172 -0.1179 

30° 10 5 -0.1396 -0.1402 -0.1195 -0.1162 -0.1190 
10 -0.1398 -0.1395 -0.1207 -0.1146 -0.1213 
20 -0.1404 -0.1381 -0.1220 -0.1119 -0.1257 
30 -0.1410 -0.1369 -0.1229 -0.1093 -0.1299 
40 -0.1416 -0.1359 -0.1235 -0.1068 -0.1337 
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percentage becomes as big as about 2.5%, but when the beam gets thinner, the agreement 

of shear stress predictor and corrector phases gets better. When the beam is as thin as 

L/h= 50, the shear stress predictions of predictor and corrector phases are practically 

identical. At L/h =10 ,a= 30° and EL / E,. = 40, the correction percentage is about 3%, 

then as the stiffness ratio becomes smaller, the agreement of shear stress predictor and 

corrector phases improves. Similar observations can be obtained at the point, 

(x =0.25 L, z=0.2h) , which is located at the interface of the same cross section. In Table 

6.3-3, z=0.2h + 0+ denotes the bottom lateral surface of the upper layer, while 

z=0.2h + 0- denotes at the top lateral surface of the lower layer at the material inter- 

laminar interface. Table 6.3-3 shows also clearly that, at the material interface, the shear 

stress corrected is not certainly to be evaluated between those two values originally 

predicted at the bottom of the upper layer and the top of lower layer. Fixing the span ratio 

at 10, stiffness ratio at 25 and changing the material fibre aligning orientation, the 

correction percentage at the interface is always less than 6%. The thinner the beam, the 

better the agreement of the shear stress predictor and corrector phases at the material 

interface. For L/h= 50 (a = 300, EL / ET = 25), the shear stress predictor and corrector 

phases are almost identical. The smaller the stiffness ratio, the better the agreement of the 

shear stress predictor and corrector phases at material interface. For EL / Er =5 

(a = 300, L/h =10 ), the differences between them are negligibly small. However, at the 

z=0, the fact that the shear stress correction percentage is larger at the interface does not 

significantly affect the good agreement of maximum shear stress predictor and corrector 

phases. Such as when a= 30°, EL / ET = 25 and L/h=4, at z=0.2h, the correction 

percentage of shear stress is about 20% at the material interface; at the z=0, the 

maximum shear stress correction percentage is about 2.5%. 
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Table 6.3-4 presents analogous results for corresponding clamped-free beams. At the 

points, z=0, of selected corresponding cross-sections, the transverse shear stress 

distributions near maximum values (Table 6.3-2). In order to show the influence from the 

free edge, the points (0.75L, 0) and (0.75L, 0.2h), which are located near the free edge 

side, are chosen to illustrate variations of the shear stress f with varying angles, span and 

stiffness ratio. Given these variations, Table 6.3-4 shows that at the point (0.75L, 0), the 

correction percentage of the shear stress is always less than about 4%. In more detail, when 

one fixes L/h =10 and EL / E,. = 25, and then changes the angles a of fibres orientation, 

the correction percentage of the shear stress is always less than about 3%. Once more, 

Table 6.3-4 shows that, in the same cross-section, the big shear stress correction percentage 

at the interface does not significantly affect the good agreement of maximum shear stress 

predictor and corrector phases. For example, when a= 300, EL / E,. = 25 and L/h=4, at 

z=0.2h, the correction percentage of shear stress is as large as 80% at the material 

interface; at z=0, the maximum shear stress correction percentage is as small as 0.5%. 

6.4 Conclusions 

For simply supported beam, the z.,, corrector phase is always practically identical to 

its predictor phase. Hence the z, a corrector phase for simply supported composite beam is 

not needed. In addition, given the fact that the five-degree-of-freedom beam theory uses 

the properly reduced stiffness, it is not able to predict the transverse normal stress Q= in 

predictor phase, but only through the corrector phase. G5BT predictor phase yields exactly 

the point-by-point zero but non-realistic shear stress distribution at the clamped edge. For 

both the clamped-clamped and clamped-free beams, the shear stress r. predictor phase 
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satisfies both the top and bottom lateral plane boundary conditions, but there is a 

discontinuity at the material interface. Thus, both transverse shear and normal stresses 

predictions needs to improve. 

When varying angles, span and stiffness ratio at the selected points, the correction 

percentage of the maximum shear stress always remain less than about 3% and 4% for the 

clamped-clamped beam and clamped-free beam, respectively. The larger shear stress 

correction percentage at the interface does not significantly affect the good agreement 

between maximum shear stress predictor and corrector phases predicted at beam middle 

plane, z=0. As expected, the agreements of predictor and corrector phases at both the 

material interface and middle plane get better when the beam gets thinner or as the 

stiffness ratio becomes smaller. In general, the agreement of shear stress corrector and 

predictor phases is better in clamped-clamped than in clamped-free beams. 
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Chapter 7 

Application of general four-degree-of-freedom beam theory (G4BT) for 

cross-ply laminated composite beams subjected to thermal loading 

7.1 Introduction 

A method for accurate strain-stress analysis in composite laminates subject to 

thermal loading is proposed (Sections 3.4) (Section 3.6-5). The general four-degree-of- 

freedom beam theory (G4T) [Soldatos and Watson, 1997] is employed in developing this 

model that it is accompanied with an appropriate set of through-thickness shape functions. 

A predictor-corrector method (Chapter 4) is used for the improvement of transverse shear 

and normal stresses and further verification of the reliability of the new proposed method. 

The method produces an excellent choice of both shape functions involved, and it 

leads to the exact elasticity solution presented by Murakami [1993] subject to thermal 

loading for simply supported infinite strips. By means of those shape functions, exact 

through-thickness displacement and stress distributions are "extracted" from the well- 

known elasticity solution and are appropriately "fitted" into the corresponding distributions 

assumed for the development of general four-degree-of-freedom beam theory. 

7.2 General considerations 

Consider an elastic beam (Figure 3.2-1) in plane strain state. Assume next that the 
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thermal deformation of the beam is due to the non-uniform temperature field (Equation 

3.2-2): 

ET(x, z) = (To +T, z) sin(p, �x), p,, = mr IL, (m =1,2,... ). (7.2-1) 

This can be understood as being a simple harmonic in a Fourier sine-series expansion of 

any relevant temperature field satisfying Fourier's Heat Conduction Law [Reddy, 1997]. 

The integer value that characterises the particular harmonic employed in the Fourier sine- 

series expansion of any thermal expansion applied is taken as m =1 (Equation 7.2-1). 

The orthotropic material in all of the applications considered has the following 

elastic properties: 

EL / ET = 25, Grr / ET= 0.5, VLT = 0.5, v,,. = 0.25 (7.2-2) 

and the coefficients of thermal expansions 

aL I a., = 0.1 (7.2-3) 

where the subscripts and ,. denote properties associated with the longitudinal and the 

transverse fibre direction, respectively. The large differences in material properties and 

coefficients of conductivity along longitudinal and transverse fibre directions have been 

chosen in an attempt to magnify their effects in laminates and to quantitatively estimate the 

extent to which it can affect the accuracy of the results obtained. 
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For the purpose of showing clearly the corresponding results that are induced by 

either constant part, 7o sin(m me / L) , or linear variation, T, z sin(m'rx / L) , along z, 

numerical values will be illustrated, individually. All the numerical results shown are 

presented in terms of the following non-dimensional parameters: 

(a) For numerical results induced by ET(x, z) = To sin(p, �x) 
(Equation 7.2-1), 

_U 
uaLTOL' W 

W=aLTOL, 

(7.2-4) 
ýz 

Qx=ETaLTO 
Qz 

_ 
zý 

ö'z=ETaLTO, 7-ETaLTo, 

(b) For numerical results induced by AT(x, z) =T, z sin(pmx) (Equation 7.2-1), 

IOU 

aýT, LZ 

10 ax ax = EraLT1L, 

W= 
low 

aLTIL2 ' 

10Qz 10r 
F. _E, 

aLT, L' 
T= 

E,. aLT, L 

(7.2-5) 

7.3 Numerical results and discussion 

A two-layered anti-symmetric cross-ply laminated beam, with equal-thickness and 

fibres in the bottom layer aligned along the x-axis (0° / 900 ), is now considered. The beam 

thickness considered in all cases is determined by the ratio L/h =10 . 

Tables 7.3-1 and 7.3-2 present numerical values of normalized displacement and 

stress distributions caused by uniform temperature variation for simply supported beam. 

Corresponding figures of in-plane displacement, in-plane bending stress and transverse 
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Table 7.3-1 Normalised displacements given To sin p, x for simply supported beam 

x/L 

z1h 0.0 0.1 0.2 0.3 0.4 0.5 

U 0.5 -2.3229 -2.2092 -1.8793 -1.3654 -0.7178 0 

0.4 -2.0642 -1.9632 -1.6700 -1.2133 -0.6379 0 

0.3 -1.8005 -1.7124 -1.4566 -1.0583 -0.5564 0 

0.2 -1.5304 -1.4555 -1.2382 -0.8996 -0.4729 0 

0.1 -1.2528 -1.1915 -1.0136 -0.7364 -0.3871 0 

0 -0.9664 -0.9191 -0.7818 -0.5680 -0.2986 0 

0 -0.9664 -0.9191 -0.7818 -0.5680 -0.2986 0 

-0.1 -0.7249 -0.6895 -0.5865 -0.4261 -0.2240 0 

-0.2 -0.5068 -0.4820 -0.4100 -0.2979 -0.1566 0 

-0.3 -0.3011 -0.2864 -0.2436 -0.1770 -0.0931 0 

-0.4 -0.0978 -0.0930 -0.0791 -0.0575 -0.0302 0 

-0.5 0.1133 0.1077 0.0916 0.0666 0.0350 0 

W 0.5 0 2.5236 4.8001 6.6068 7.7667 8.1664 

0.4 0 2.4805 4.7183 6.4942 7.6343 8.0272 

0.3 0 2.4369 4.6352 6.3798 7.4999 7.8859 

0.2 0 2.3925 4.5508 6.2637 7.3634 7.7423 

0.1 0 2.3474 4.4651 6.1456 7.2246 7.5964 

0 0 2.3016 4.3778 6.0256 7.0835 7.4480 

0 0 2.3016 4.3778 6.0256 7.0835 7.4480 

-0.1 0 2.2720 4.3216 5.9481 6.9925 7.3523 

-0.2 0 2.2417 4.2640 5.8689 6.8993 7.2544 

-0.3 0 2.2109 4.2054 5.7882 6.8045 7.1546 

-0.4 0 2.1796 4.1458 5.7062 6.7080 7.0532 

-0.5 0 2.1477 4.0851 5.6226 6.6098 6.9500 
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Table 7.3-2 Normalised stresses given To sin p, x for simply supported beam 

x1L 
z/h 0.0 0.1 0.2 0.3 0.4 0.5 

Qý 0.5 0 -1.6116 -3.0655 -4.2193 -4.9601 -5.2154 
0.4 0 -1.8632 -3.5440 -4.8779 -5.7343 -6.0294 
0.3 0 -2.1192 -4.0310 -5.5481 -6.5222 -6.8579 
0.2 0 -2.3808 -4.5286 -6.2330 -7.3274 -7.7045 
0.1 0 -2.6492 -5.0391 -6.9357 -8.1534 -8.5730 

0 0 -2.9255 -5.5647 -7.6591 -9.0038 -9.4672 
0 0 15.7760 30.0078 41.3022 48.5537 51.0524 

-0.1 0 9.9031 18.8368 25.9267 30.4786 32.0471 

-0.2 0 4.5934 8.7371 12.0256 14.1369 14.8644 

-0.3 0 -0.4138 -0.7870 -1.0833 -1.2735 -1.3390 
-0.4 0 -5.3641 -10.2032 -14.0435 -16.5091 -17.3587 

-0.5 0 -10.5007 -19.9736 -27.4913 -32.3180 -33.9811 
0.5 0 0 0 0 0 0 

0.4 -0.1766 -0.1680 -0.1429 -0.1038 -0.0546 0 

0.3 -0.3790 -0.3604 -0.3066 -0.2228 -0.1171 0 

0.2 -0.6077 -0.5779 -0.4916 -0.3572 -0.1878 0 

0.1 -0.8633 -0.8211 -0.6984 -0.5074 -0.2668 0 

0 -1.1466 -1.0905 -0.9276 -0.6740 -0.3543 0 

0 -1.1466 -1.0905 -0.9276 -0.6740 -0.3543 0 

-0.1 0.1528 0.1453 0.1236 0.0898 0.0472 0 

-0.2 0.8860 0.8427 0.7168 0.5208 0.2738 0 

-0.3 1.0970 1.0433 0.8875 0.6448 0.3390 0 

-0.4 0.8038 0.7645 0.6503 0.4725 0.2484 0 

-0.5 0 0 0 0 0 0 

vý 0.5 0 0 0 0 0 0 

0.4 0 0.0008 0.0016 0.0022 0.0026 0.0027 
0.3 0 0.0035 0.0067 0.0092 0.0108 0.0114 

0.2 0 0.0083 0.0157 0.0217 0.0255 0.0268 

0.1 0 0.0154 0.0293 0.0403 0.0474 0.0498 

0 0 0.0251 0.0478 0.0658 0.0773 0.0813 

0 0 0.0251 0.0478 0.0658 0.0773 0.0813 

-0.1 0 0.0295 0.0561 0.0772 0.0907 0.0954 

-0.2 0 0.0240 0.0456 0.0628 0.0738 0.0776 

-0.3 0 0.0140 0.0265 0.0365 0.0430 0.0452 

-0.4 0 0.0043 0.0082 0.0113 0.0133 0.0140 

-0.5 0 0 0 0 0 0 
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Table 7.3-3 Normalised displacements given T, z sin p, x for simply supported beam 

z/h 0.0 0.1 

x/L 

0.2 0.3 0.4 0.5 

U 0.5 -0.7315 -0.6957 -0.5918 -0.4300 -0.2260 0 

0.4 -0.6256 -0.5950 -0.5061 -0.3677 -0.1933 0 

0.3 -0.5168 -0.4915 -0.4181 -0.3038 -0.1597 0 

0.2 -0.4060 -0.3861 -0.3284 -0.2386 -0.1255 0 

0.1 -0.2941 -0.2797 -0.2380 -0.1729 -0.0909 0 

0 -0.1822 -0.1733 -0.1474 -0.1071 -0.0563 0 

0 -0.1822 -0.1733 -0.1474 -0.1071 -0.0563 0 

-0.1 -0.0823 -0.0783 -0.0666 -0.0484 -0.0254 0 

-0.2 0.0122 0.0116 0.0099 0.0072 0.0038 0 

-0.3 0.1048 0.0997 0.0848 0.0616 0.0324 0 

-0.4 0.1989 0.1891 0.1609 0.1169 0.0615 0 

-0.5 0.2977 0.2831 0.2408 0.1750 0.0920 0 

W 0.5 0 1.0235 1.9467 2.6794 3.1499 3.3120 

0.4 0 1.0033 1.9085 2.6268 3.0880 3.2469 

0.3 0 0.9878 1.8789 2.5861 3.0401 3.1966 

0.2 0 0.9768 1.8580 2.5573 3.0063 3.1610 

0.1 0 0.9703 1.8457 2.5404 2.9864 3.1401 

0 0 0.9684 1.8421 2.5354 2.9805 3.1339 

0 0 0.9684 1.8421 2.5354 2.9805 3.1339 

-0.1 0 0.9703 1.8457 2.5404 2.9864 3.1401 

-0.2 0 0.9751 1.8548 2.5529 3.0012 3.1556 

-0.3 0 0.9829 1.8695 2.5732 3.0250 3.1806 

-0.4 0 0.9935 1.8898 2.6011 3.0578 3.2151 

-0.5 0 1.0071 1.9157 2.6367 3.0996 3.2591 

96 



Table 7.3-4 Normalised stresses given T, z sin p, x for simply supported beam 

x/L 

z/h 0.0 0.1 0.2 0.3 0.4 0.5 

Qx 0.5 0 -1.2243 -2.3287 -3.2052 -3.7680 -3.9619 
0.4 0 -0.9399 -1.7879 -2.4608 -2.8928 -3.0417 
0.3 0 -0.6582 -1.2520 -1.7233 -2.0258 -2.1301 
0.2 0 -0.3783 -0.7196 -0.9904 -1.1643 -1.2242 
0.1 0 -0.0993 -0.1889 -0.2600 -0.3056 -0.3213 

0 0 0.1797 0.3417 0.4704 0.5529 0.5814 

0 0 4.4357 8.4372 11.6128 13.6516 14.3542 

-0.1 0 2.7803 5.2885 7.2789 8.5569 8.9973 

-0.2 0 1.2539 2.3850 3.2827 3.8590 4.0576 

-0.3 0 -0.2262 -0.4303 -0.5923 -0.6963 -0.7321 

-0.4 0 -1.7404 -3.3104 -4.5563 -5.3563 -5.6319 

-0.5 0 -3.3705 -6.4111 -8.8241 -10.3734 -10.9072 
T, z 0.5 0 0 0 0 0 0 

0.4 -0.1100 -0.1046 -0.0890 -0.0646 -0.0340 0 

0.3 -0.1912 -0.1818 -0.1547 -0.1124 -0.0591 0 

0.2 -0.2439 -0.2319 -0.1973 -0.1434 -0.0754 0 

0.1 -0.2682 -0.2550 -0.2169 -0.1576 -0.0829 0 

0 -0.2641 -0.2511 -0.2136 -0.1552 -0.0816 0 

0 -0.2641 -0.2511 -0.2136 -0.1552 -0.0816 0 

-0.1 0.1013 0.0963 0.0819 0.0595 0.0313 0 

-0.2 0.3056 0.2906 0.2472 0.1796 0.0944 0 

-0.3 0.3578 0.3403 0.2895 0.2103 0.1106 0 

-0.4 0.2585 0.2458 0.2091 0.1519 0.0799 0 

-0.5 0 0 0 0 0 0 

0.5 0 0 0 0 0 0 

0.4 0 0.0006 0.0011 0.0015 0.0017 0.0018 

0.3 0 0.0020 0.0039 0.0053 0.0063 0.0066 

0.2 0 0.0042 0.0079 0.0109 0.0129 0.0135 

0.1 0 0.0067 0.0127 0.0175 0.0206 0.0216 

0 0 0.0093 0.0177 0.0243 0.0286 0.0301 

0 0 0.0093 0.0177 0.0243 0.0286 0.0301 

-0.1 0 0.0099 0.0189 0.0260 0.0306 0.0322 

-0.2 0 0.0078 0.0149 0.0205 0.0241 0.0254 

-0.3 0 0.0045 0.0086 0.0118 0.0139 0.0146 

-0.4 0 0.0014 0.0026 0.0036 0.0043 0.0045 

-0.5 0 0 0 0 0 0 
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Figure 7.3-1 In-plane displacement distributions for a simply supported beam induced by 
To sin(p1x) 
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Figure 7.3-2 In-plane bending stress distributions for a simply supported beam induced 
by To sin(p1x) 
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Figure 7.3-3 Transverse shear stress distributions for a simply supported beam induced 
by To sin(p, x) 
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Figure 7.3-4 In-plane displacement distributions for a simply supported beam induced by 
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Figure 7.3-5 In-plane bending stress distributions for a simply supported beam induced 
by T, z sm( p, x) 
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Figure 7.3-6 Transverse shear stress distributions for a simply supported beam induced 
by T, z sin( p, x) 
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Table 7.3-5 Normalised displacements and stress in predictor phase given To sin plx for 

clamped-clamped beam 

x/L 
z/h 0.0 0.1 0.2 0.3 0.4 0.5 

U 0.5 0 -0.4666 -0.5998 -0.5183 -0.2953 0 
0.4 0 -0.4097 -0.5281 -0.4571 -0.2606 0 
0.3 0 -0.3493 -0.4527 -0.3930 -0.2244 0 
0.2 0 -0.2845 -0.3726 -0.3253 -0.1862 0 

0.1 0 -0.2146 -0.2869 -0.2533 -0.1458 0 
0 0 -0.1385 -0.1947 -0.1762 -0.1027 0 
0 0 -0.1385 -0.1947 -0.1762 -0.1027 0 

-0.1 0 -0.0935 -0.1358 -0.1249 -0.0733 0 

-0.2 0 -0.0646 -0.0942 -0.0868 -0.0509 0 

-0.3 0 -0.0444 -0.0619 -0.0558 -0.0324 0 

-0.4 0 -0.0257 -0.0312 -0.0261 -0.0146 0 

-0.5 0 -0.0018 0.0051 0.0079 0.0055 0 

0.5 0 0.4779 1.1635 1.8390 2.3213 2.4952 
0.4 0 0.4288 1.0755 1.7201 2.1826 2.3497 
0.3 0 0.3789 0.9861 1.5995 2.0419 2.2021 

0.2 0 0.3283 0.8953 1.4769 1.8989 2.0521 

0.1 0 0.2768 0.8030 1.3523 1.7536 1.8996 

0 0 0.2245 0.7092 1.2256 1.6058 1.7445 

0 0 0.2245 0.7092 1.2256 1.6058 1.7445 

-0.1 0 0.1907 0.6487 1.1439 1.5105 1.6445 

-0.2 0 0.1562 0.5868 1.0603 1.4130 1.5422 

-0.3 0 0.1210 0.5237 0.9751 1.3137 1.4380 

-0.4 0 0.0852 0.4595 0.8885 1.2126 1.3320 

-0.5 0 0.0488 0.3943 0.8004 1.1098 1.2242 

(Tx 0.5 -7.5721 -6.7726 -7.6253 -8.6229 -9.3238 -9.5712 
0.4 -6.6159 -6.4141 -7.5856 -8.7871 -9.6097 -9.8982 
0.3 -5.5862 -6.0409 -7.5492 -8.9616 -9.9089 -10.2393 
0.2 -4.4649 -5.6496 -7.5173 -9.1491 -10.2248 -10.5982 
0.1 -3.2337 -5.2366 -7.4907 -9.3521 -10.5608 -10.9786 

0 -1.8739 -4.7983 -7.4704 -9.5735 -10.9204 -11.3842 
0 -44.0295 -32.2558 -18.8806 -7.8085 -0.6139 1.8736 

-0.1 -27.4556 -25.3658 -18.3255 -11.7275 -7.3013 -5.7575 

-0.2 -18.8300 -19.9612 -17.2328 -14.3120 -12.2947 -11.5856 

-0.3 -14.4720 -15.3539 -15.8510 -16.1794 -16.3778 -16.4449 

-0.4 -10.9093 -10.8948 -14.4145 -17.9120 -20.2900 -21.1224 

-0.5 -4.7087 -5.9419 -13.1551 -20.0858 -24.7623 -26.3960 
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Table 7.3-6 Normalised stresses given T. sin p1x for clamped-clamped beam 

x! L 
z/h0.0 0.1 0.2 0.3 0.4 0.5 

r., Predictor 0.5 0.8404 0.1199 0.0310 0.0080 0.0020 0 
0.4 0.6776 -0.0255 -0.1059 -0.0942 -0.0522 0 
0.3 0.5123 -0.1890 -0.2621 -0.2112 -0.1143 0 
0.2 0.3443 -0.3711 -0.4379 -0.3433 -0.1844 0 
0.1 0.1736 -0.5722 -0.6337 -0.4907 -0.2627 0 

0 0.0000 -0.7928 -0.8502 -0.6539 -0.3494 0 
0 0.0000 -0.7928 -0.8502 -0.6539 -0.3494 0 

-0.1 -0.2798 0.0657 0.1030 0.0845 0.0459 0 

-0.2 -0.5662 0.5319 0.6361 0.4999 0.2687 0 
-0.3 -0.8579 0.6361 0.7817 0.6174 0.3323 0 
-0.4 -1.1545 0.3911 0.5534 0.4474 0.2423 0 

-0.5 -1.4565 -0.2078 -0.0538 -0.0139 -0.0034 0 

z Corrector 0.5 0 0 0 0 0 0 
0.4 0.2805 -0.0666 -0.1165 -0.0970 -0.0529 0 
0.3 0.4707 -0.1757 -0.2586 -0.2103 -0.1141 0 
0.2 0.5587 -0.3307 -0.4274 -0.3405 -0.1837 0 
0.1 0.5299 -0.5355 -0.6243 -0.4882 -0.2621 0 

0 0.3669 -0.7951 -0.8509 -0.6541 -0.3495 0 
0 0.3669 -0.7951 -0.8509 -0.6541 -0.3495 0 

-0.1 0.1812 0.1614 0.1278 0.0909 0.0475 0 
-0.2 -0.5819 0.5399 0.6382 0.5004 0.2688 0 
-0.3 -1.0291 0.5931 0.7705 0.6145 0.3316 0 

-0.4 -0.7902 0.4258 0.5623 0.4497 0.2428 0 

-0.5 0 0 0 0 0 0 

o, Predictor 0.5 -1.9167 -0.7012 -0.5369 -0.4944 -0.4836 -0.4814 
0.4 -1.6747 -0.5368 -0.3948 -0.3578 -0.3480 -0.3461 
0.3 -1.4140 -0.3653 -0.2476 -0.2155 -0.2063 -0.2043 
0.2 -1.1302 -0.1852 -0.0942 -0.0668 -0.0575 -0.0551 
0.1 -0.8185 0.0050 0.0661 0.0892 0.0993 0.1024 

0 -0.4743 0.2069 0.2343 0.2533 0.2651 0.2691 
0 -0.5871 -0.1754 -0.1554 -0.1382 -0.1269 -0.1229 

-0.1 -0.3661 0.0108 0.0212 0.0379 0.0503 0.0548 
-0.2 -0.2511 0.1574 0.1694 0.1839 0.1942 0.1979 
-0.3 -0.1930 0.2836 0.3039 0.3157 0.3226 0.3249 
-0.4 -0.1455 0.4074 0.4384 0.4484 0.4521 0.4532 

-0.5 -0.0628 0.5466 0.5865 0.5967 0.5993 0.5998 

Qs Corrector 0.5 0 0 0 0 0 0 
0.4 -0.0488 -0.0062 -0.0002 0.0017 0.0024 0.0026 
0.3 -0.1914 -0.0231 -0.0002 0.0074 0.0103 0.0111 
0.2 -0.4205 -0.0478 0.0012 0.0179 0.0244 0.0263 
0.1 -0.7269 -0.0770 0.0054 0.0341 0.0457 0.0490 

0 -1.0992 -0.1070 0.0136 0.0569 0.0749 0.0801 
0 -1.0992 -0.1070 0.0136 0.0569 0.0749 0.0801 

-0.1 -1.2945 -0.1259 0.0159 0.0667 0.0878 0.0940 

-0.2 -1.0969 -0.1109 0.0108 0.0537 0.0713 0.0764 

-0.3 -0.6522 -0.0673 0.0055 0.0311 0.0414 0.0444 
-0.4 -0.2007 -0.0205 0.0018 0.0096 0.0128 0.0138 

-0.5 0 0 0 0 0 0 
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Table 7.3-7 Normalised displacements and stress in predictor phase given T, z sin p, x for 

clamped-clamped beam 

x/L 
z/h 0.0 0.1 0.2 0.3 0.4 0.5 

U 0.5 0 -0.1405 -0.1823 -0.1584 -0.0905 0 
0.4 0 -0.1201 -0.1559 -0.1354 -0.0774 0 
0.3 0 -0.0977 -0.1272 -0.1108 -0.0633 0 

0.2 0 -0.0738 -0.0971 -0.0850 -0.0487 0 

0.1 0 -0.0492 -0.0662 -0.0586 -0.0338 0 

0 0 -0.0245 -0.0352 -0.0321 -0.0188 0 

0 0 -0.0245 -0.0352 -0.0321 -0.0188 0 

-0.1 0 -0.0083 -0.0132 -0.0126 -0.0075 0 

-0.2 0 0.0041 0.0047 0.0039 0.0021 0 

-0.3 0 0.0152 0.0213 0.0192 0.0112 0 

-0.4 0 0.0272 0.0388 0.0354 0.0207 0 

-0.5 0 0.0427 0.0600 0.0543 0.0316 0 

W 0.5 0 0.1480 0.3848 0.6278 0.8045 0.8687 

0.4 0 0.1247 0.3435 0.5722 0.7397 0.8007 

0.3 0 0.1066 0.3116 0.5292 0.6895 0.7481 

0.2 0 0.0939 0.2891 0.4988 0.6541 0.7109 

0.1 0 0.0864 0.2758 0.4810 0.6333 0.6891 

0 0 0.0842 0.2719 0.4757 0.6271 0.6827 

0 0 0.0842 0.2719 0.4757 0.6271 0.6827 

-0.1 0 0.0864 0.2758 0.4809 0.6333 0.6891 

-0.2 0 0.0920 0.2857 0.4942 0.6488 0.7053 

-0.3 0 0.1009 0.3015 0.5156 0.6737 0.7315 

-0.4 0 0.1133 0.3234 0.5451 0.7081 0.7675 

-0.5 0 0.1290 0.3513 0.5826 0.7519 0.8135 

QY 0.5 -2.1880 -2.7832 -3.7388 -4.5787 -5.1326 -5.3249 
0.4 -1.8700 -2.2788 -2.9994 -3.6410 -4.0654 -4.2129 
0.3 -1.5102 -1.7660 -2.2622 -2.7094 -3.0062 -3.1093 
0.2 -1.1222 -1.2474 -1.5265 -1.7821 -1.9522 -2.0115 
0.1 -0.7196 -0.7259 -0.7916 -0.8568 -0.9010 -0.9165 

0 -0.3158 -0.2041 -0.0567 0.0683 0.1500 0.1783 

0 -7.4206 -4.5466 -0.8926 2.1976 4.2158 4.9145 

-0.1 -1.9320 -1.1107 0.9150 2.7870 4.0362 4.4712 

-0.2 1.7887 1.9858 2.8525 3.6853 4.2459 4.4415 

-0.3 4.8729 4.9601 4.8367 4.6946 4.5954 4.5605 

-0.4 8.4215 8.0233 6.7864 5.6223 4.8422 4.5703 

-0.5 13.5579 11.3910 8.6189 6.2719 4.7386 4.2078 
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Table 7.3-8 Normalised stresses given T, z sin p, x for clamped-clamped beam 

x/L 
z/h0.0 0.1 0.2 0.3 0.4 0.5 

T. Predictor 0.5 0.3120 0.0258 0.0063 0.0016 0.0004 0 
0.4 0.1979 -0.0609 -0.0782 -0.0620 -0.0334 0 
0.3 0.1098 -0.1253 -0.1408 -0.1090 -0.0583 0 
0.2 0.0474 -0.1674 -0.1814 -0.1395 -0.0745 0 
0.1 0.0108 -0.1875 -0.2003 -0.1536 -0.0819 0 

0 0.0000 -0.1855 -0.1975 -0.1513 -0.0807 0 
0 0.0000 -0.1855 -0.1975 -0.1513 -0.0807 0 

-0.1 0.0270 0.0734 0.0763 0.0581 0.0310 0 
-0.2 0.0950 0.2226 0.2305 0.1755 0.0935 0 

-0.3 0.2046 0.2683 0.2718 0.2060 0.1096 0 

-0.4 0.3559 0.2111 0.2005 0.1498 0.0794 0 
-0.5 0.5484 0.0454 0.0112 0.0027 0.0006 0 

r, a Corrector 0.5 0 0 0 0 0 0 
0.4 0.0123 -0.0788 -0.0826 -0.0631 -0.0336 0 
0.3 0.0252 -0.1350 -0.1432 -0.1096 -0.0584 0 
0.2 0.0357 -0.1701 -0.1821 -0.1396 -0.0745 0 
0.1 0.0421 -0.1852 -0.1998 -0.1534 -0.0819 0 

0 0.0438 -0.1805 -0.1963 -0.1510 -0.0806 0 
0 0.0438 -0.1805 -0.1963 -0.1510 -0.0806 0 

-0.1 0.0105 0.0825 0.0785 0.0587 0.0311 0 
-0.2 -0.0650 0.2037 0.2259 0.1744 0.0932 0 
-0.3 -0.0811 0.2360 0.2638 0.2040 0.1091 0 

-0.4 -0.0305 0.1831 0.1937 0.1481 0.0790 0 

-0.5 0 0 0 0 0 0 

Q: Predictor 0.5 -0.5538 -0.0384 -0.0223 -0.0183 -0.0174 -0.0172 
0.4 -0.4734 -0.0549 -0.0393 -0.0352 -0.0341 -0.0338 
0.3 -0.3823 -0.0674 -0.0536 -0.0492 -0.0476 -0.0471 
0.2 -0.2841 -0.0771 -0.0660 -0.0612 -0.0589 -0.0581 
0.1 -0.1821 -0.0855 -0.0774 -0.0721 -0.0689 -0.0679 

0 -0.0799 -0.0936 -0.0886 -0.0827 -0.0787 -0.0772 
0 -0.0989 -0.1184 -0.1141 -0.1085 -0.1045 -0.1031 

-0.1 -0.0258 -0.0985 -0.0925 -0.0862 -0.0818 -0.0802 
-0.2 0.0238 -0.0884 -0.0784 -0.0721 -0.0683 -0.0670 
-0.3 0.0650 -0.0820 -0.0674 -0.0616 -0.0589 -0.0581 
-0.4 0.1123 -0.0736 -0.0555 -0.0504 -0.0487 -0.0483 
-0.5 0.1808 -0.0574 -0.0384 -0.0338 -0.0326 -0.0324 

6: Corrector 0.5 0 0 0 0 0 0 
0.4 -0.0166 -0.0013 0.0006 0.0013 0.0017 0.0018 
0.3 -0.0587 -0.0050 0.0022 0.0049 0.0062 0.0066 
0.2 -0.1162 -0.0106 0.0043 0.0100 0.0126 0.0134 
0.1 -0.1804 -0.0174 0.0068 0.0160 0.0202 0.0215 

0 -0.2435 -0.0247 0.0093 0.0223 0.0281 0.0298 
0 -0.2435 -0.0247 0.0093 0.0223 0.0281 0.0298 

-0.1 -0.2426 -0.0283 0.0095 0.0237 0.0300 0.0319 

-0.2 -0.1862 -0.0229 0.0074 0.0187 0.0237 0.0252 

-0.3 -0.1162 -0.0120 0.0045 0.0108 0.0136 0.0145 

-0.4 -0.0430 -0.0029 0.0016 0.0034 0.0042 0.0045 

-0.5 0 0 0 0 0 0 
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Figure 7.3-7 In-plane displacement distributions in predictor phase for a clamped- 
clamped beam induced by To sin(plz) 
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Figure 7.3-8 In-plane bending stress distributions in predictor phase for a clamped- 
clamped beam induced by To sin( p1x) 
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Figure 7.3-9 Transverse shear stress distributions in corrector phase for a clamped- 
clamped beam induced by To sin( p, x) 
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Figure 7.3-10 In-plane displacement distributions in predictor phase for a clamped- 
clamped beam induced by T, z sin(p, x) 
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Figure 7.3-11 In-plane bending stress distributions in predictor phase for a clamped- 
clamped beam induced by T, z sin( p, x) 
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Figure 7.3-12 Transverse shear stress distributions in corrector phase for a clamped- 
clamped beam induced by Ti z sin( p, x) 
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shear stress are illustrated in Figures 7.3-1,7.3-2 and 7.3-3. Tables 7.3-3 and 7.3-4 present 

numerical values caused by linear temperature variation. The corresponding distributions 

of in-plane displacement, in-plane bending stress and transverse shear stress are illustrated 

in figures 7.3-4,7.3-5 and 7.3-6. For the case of simply supported beams, the general four- 

degree-of-freedom beam theory subject thermal loading yields the exact solution 

[Murakami, 1993]. 

The exact elasticity solution of general 4-degree-of-freedom beam theory subject to 

thermal loading allows investigation of other sets of boundary conditions. Due to the 

symmetry of applied edge boundary conditions, results for a clamped-clamped beam are 

presented only for the left-half part of the beam (0 <x/L50.5). Tables 7.3-5 and 7.3-6 

present numerical values of normalized displacements, in-plane bending stress and 

transverse shear and normal stress given uniform temperature variation. Corresponding 

figures of in-plane displacement and in-plane bending stress in predictor phase, and 

transverse shear stress in corrector phase are illustrated in Figures 7.3-7,7.3-8 and 7.3-9. 

Tables 7.3-7 and 7.3-8 present numerical values for given a linear temperature variation, 

and the corresponding figures of in-plane displacement, in-plane bending stress in 

predictor phase and transverse shear stress in corrector phase are illustrated in Figures 7.3- 

10,7.3-11 and 7.3-12. 

Tables 7.3-6 and 7.3-8 show clearly that, the through-thickness distributions of shear 

stress predictor phase are continuous at the inter-laminar interface, in the main due to its 

specific lay-up. Further, it satisfies exactly point by point zero transverse shear stress at the 

middle cross-section of the beam. It should be noted that there is a small and away from 

the edge negligible shear stress in predictor phase on both top and bottom lateral surfaces. 

However, this is not considered as a serious disadvantage of the present method. Although 

this is not expected to influence the accuracy of numerical results, it does have an addictive 
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effect on the small error given the singular nature of the corner edge points. With disregard 

to the shear stress prediction in the vicinity of clamped edges, the difference of shear stress 

predictor and corrector phases is always much smaller than 1% in between of 

0.2: 5 x/LS0.8 caused by uniform or linear temperature variations. These further verify 

the accuracy of prediction of the transverse shear stress, and then the displacements and 

stresses in predictor phase. The transverse normal stress predictor phase caused by both 

uniform and linear temperature variations neither satisfies the lateral surface boundary 

conditions nor the inter-laminar interface continuity, but is dramatically improved in 

corrector phase. 

7.7 Conclusions 

A new method for accurate stress analysis of laminated composite beams subject to 

thermal loading has been proposed. The method is based on G4BT and appropriate 

specification of through-thickness shape functions, which are associated with unknown 

displacement components. These allow consideration of the effects of both transverse shear 

and transverse normal deformation. Further, it involves four unknown displacement 

functions (degrees of freedom), each one of which is assigned a certain physical meaning. 

In particular applications, these are determined from the solution of four one-dimensional 

Navier-type equations of equilibrium, which form a tenth order set of simultaneous 

ordinary differential equations with respect to the axial co-ordinate parameter, x. 

The method produces an excellent choice of both shape functions involved, and it 

leads to the exact elasticity solution presented by Murakami [1993] subject to thermal 

loading for simply supported infinite strips. By means of those shape functions, exact 

through-thickness displacement and stress distributions are "extracted" from the well- 
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known elasticity solution and are appropriately "fitted" into the corresponding distributions 

assumed for the development of general four-degree-of-freedom beam theory. Hence, the 

main physical characteristics of an exact elasticity solution are successfully incorporated 

into the proposed beam theory. Implementation of these new types of shape function is not 

difficult to achieve, as shape functions enter general four-degree-of-freedom beam theory 

only by means of the constitutive equations. Therefore, as far as accurate stress analysis of 

complicated material configurations is concerned (multi-layered beams), implementation 

of even more complicated forms of such shape functions is not regarded as a possible 

drawback of the proposed method. 

At the edges of clamped-clamped beams, the displacement distributions exactly 

satisfy in a three-dimensional point-by-point sense, the same as the edge boundary 

conditions applied. The shear stress predictor phase is predicted to be continuous at the 

material interface, in the main due to the specific lay-up chosen. It is able to satisfy 

accurately, but not exactly, the stress boundary conditions imposed on the lateral planes of 

the beam. The practically negligible non-zero shear stress predictor phase on lateral 

surfaces cannot be considered as a serious disadvantage of the present method. This is 

because the values of transverse stresses are at least one order of magnitude lower than the 

values of the bending stresses whose distributions of which are considered to be extremely 

accurate. Furthermore, the accuracy of this method was tested by comparing the transverse 

shear stress predictor and corrector phases obtained through a predictor-corrector method 

[Soldatos and Liu, 2001 ] [Liu and Soldatos, submitted]. The transverse shear stress 

distributions of both predictor and corrector phases maintain excellent agreement in cross- 

sections away from the clamped edge. 

Nevertheless, a procedure to improve or even entirely eliminate the effects of the 

slight inaccuracy given this method, has been outlined in [Soldatos and Watson, 1997a]. 
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This would require the solution of a highly non-linear system of simultaneous algebraic 

equations, the number of which depends on the number of the layers in a particular 

laminate. Such a laborious and numerically complicated procedure was not employed in 

the present study, mostly because it is currently uncertain whether its possible success will 

be found to have any practical importance. The possibility, however, has been left open for 

a future extension of the present method towards that direction. It should be finally noted 

that, in its present form, the proposed model has been outlined and is therefore only 

available in connection with geometrically linearly elastic problems. However, the 

possibility of extending its applicability for the accurate stress analysis of beams subjected 

geometrically non-linear deformations is wide open. 
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Chapter 8 

Conclusions 

A specific displacement field assumption of certain conventional plate/beam theory 

can be thought as the truncations of the displacement field in a Taylor series expansion. 

Classical plate/beam theories and uniform shear deformable plate/beam theories take the 

first two terms of this Taylor series. Parabolic shear deformable plate/beam theories 

consider the first four terms of this Taylor series. In principle, it is possible to extend the 

displacement field in terms of the thickness coordinate up to any desired degree. However, 

due to the algebraic complexity and computer effort involved with higher-order theories in 

return of marginal gain in accuracy, conventional theories [Timoshenko, 1921) [Bickford, 

1982] only involve limited terms truncated from Taylor series. Further shape functions of a 

conventional plate/beam theory can be determined by its displacement field incorporated 

with particular assumptions and restrictions (Chapterl and Chapter2). 

The so called `degree' of a certain plate/beam theory can be counted and identified 

from the number of the unknown functions left in the displacement field during the 

problem simplification. These theories are based on the appropriate specification of 

through-thickness shape functions, which are associated with unknown displacement 

components. Through them, it enables the consideration of the effects of both transverse 

shear and transverse normal deformation. Further, by involving a number of unknown 

functions of displacement components (degrees of freedom), it also enable the three 

dimensional elasticity can be solved one- or two- dimensional, Navier-type equations of 

equilibrium, with respect to the axial co-ordinate parameter, x. 
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Classical plate/beam theories neglect the transverse shear stress, while uniform shear 

deformable plate/beam theories consider transverse shear stress as a constant through 

thickness. Parabolic shear deformable plate/beam theories improve the predictions by 

taking into account the zero shear stresses on lateral planes but not interlaminar stress and 

displacement continuity at interfaces. Non-linear choices of the shape functions (parabolic 

or hyperbolic) yield closer results to corresponding exact 3D solutions than lower order 

shape functions (classical and uniform). The shape functions of G3BT [Soldatos and 

Watson, 1997a], G4BT [Soldatos and Watson, 1997b-c] and G5BT [Shu and Soldatos, 

2000] adopted exponential variation along the z- axis and sinusoidal variation in the x- 

direction. They are high order shape functions and suitable for more accurate stress 

analysis due to their shape functions taken account of both lateral plane stress boundary 

conditions and interlamina stress and displacement continuity at interfaces. 

A predictor-corrector method (Chapter4) can improve the accuracy of transverse 

stress analysis results. The assessment performed in this study has clearly verified the fact 

that the shear stress distributions obtained through the predictor phase of conventional 

theories (USDT [Timoshenko, 1921] and PSDT [Bickford, 1982] are very inaccurate. 

Contrary to this, the predictor phase of the generalized G3BT [Soldatos and Watson, 

1997a], G5BT give practically identical shear stress results with its corrector counterpart, 

at least as far as simply supported beams are concerned. Hence the predictor phase of G3T 

and GSBT [Soldatos and Watson, 1997a] [Shu and Soldatos, 2000] are already much more 

accurate than even the corrector phase of either USDT or PSDT. In addition, for the 

problem of cross-ply laminates, GSBT degenerates to and yields identical results with 

G3BT. In dealing however with simply supported beams only, the generalized G4T 

[Soldatos and Watson, 1997b, c] yields straight away the exact elasticity stress 

distributions and, therefore, it does not need the application of corrector phase. 
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The generalized platelbeam theories [Soldatos and Watson, 1997a-c] [Shu and 

Soldatos, 2000] discussed in this study are all displacement field based theories. The 

general four-degree-of-freedom beam theory (G4BT) takes transverse shear and transverse 

normal deformation into consideration. The general five-degree-of-freedom beam theory 

(G5BT) and general three-degree-of-freedom beam theory (G3BT) are all shear 

deformable theories that ignore transverse normal deformation. G3BT, G4BT and G5BT 

are all suitable for stress analysis of cross-ply laminates, while GSBT is also suitable for 

stress analysis of angle-ply laminates involved in cylindrical bending. Due to G3BT and 

G5BT use appropriate reduced stiffnesses, they can predict transverse normal stress 

distributions only through corrector phase. As shown in Section 3.6, the conventional 

platelbeam theories (including Classical beam theory, Uniform shear deformable theory 

(USDT) [Timoshenko, 1921] and parabolic shear deformable theory (PSDT) [Bickford, 

1982]) can be considered as simple and special cases of G5BT or G3BT determined by the 

number of their non-zero displacement components and shape functions. 

For beams with more complicated edge boundary conditions, the stress 

distributions obtained through the predictor phase of either G3T, G4T or G5T may be not 

as accurate as their simply supported counterparts. In their corrector phases, however, 

G3T, G4T and G5T improve considerably their initial predictions and produce almost 

identical transverse shear and transverse normal stress distributions, at least for the 

particular material arrangement considered in this study. For cross-ply laminates tested, 

this remarkable agreement of the corresponding numerical results obtained through the 

corrector phase of these three generalized theories appears to be in favour of G3T, which 

uses a smaller number of degrees of freedom. As compared with corresponding results due 

to Vel and Batra (2000), there is a very good agreement of corresponding displacement 
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values and an excellent agreement of corresponding bending stress values, which were 

provided based on predictor phase of both G3T and G4T. 

G5BT is suitable for stress analysis for angle-ply laminates. When varying angles, 

span and stiffness ratio at the selected points (Chapter 6), the correction percentage of the 

maximum shear stress always remains less than about 3% and 4% for the clamped- 

clamped beam and clamped-free beam, respectively. These excellent agreement of shear 

stress distributions obtained in both predictor and corrector phases, confirms its great 

applicability and feasibility. 

G4BT is also suitable for accurate stress analysis for cross-ply laminates subject to 

thermal loading. This method produces an excellent choice of both shape functions 

involved, as it led to the exact elasticity solution presented by Murakami [1993] subject to 

thermal loading for simply supported infinite strips. These allow consideration of the 

effects of both transverse shear and transverse normal deformation. The accuracy of this 

method was tested by comparing the transverse shear stress predictor phase and its 

corrector phases counterparts obtained through a predictor-corrector method [Soldatos and 

Liu, 2001) [Liu and Soldatos, submitted]. As clamped-clamped beam concerned, the 

transverse shear stress distributions of both predictor and corrector phases maintain 

excellent agreement in cross-sections away from the clamped edge. 

Nevertheless, a procedure to improve or even entirely eliminate the effects of the 

slight inaccuracy given these general beam theories, has been outlined [Soldatos and 

Watson, 1997a]. This would require the solution of a highly non-linear system of 

simultaneous algebraic equations, the number of which depends on the number of the 

layers in a particular laminate. Such a laborious and numerically complicated procedure 

was not employed in the present study, mostly because it is currently uncertain whether its 

possible success will be found to have any practical importance. The possibility, however, 

115 



has been left open for a future extension of the present method towards in that direction. It 

should be finally noted that, the discussed theories have been outlined and are therefore 

only available in connection with geometrically linearly elastic problems. However, the 

possibility of extending their applicability for the accurate stress analysis of beams 

subjected geometrically non-linear deformations is wide open. 
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Appendix 1: 

General solution of general three-degree-of-freedom beam theory 

equations 

The general solution of the ordinary differential equations (3.5-3) is given as 

follows: 

u0 =1 [E3(K, e`" +K2e-`")+Dii(Kjx+K4)-B, i(KSx2 +K6x+K7) 

+2KdE2E']+Acosp1, x, 
Ass Ei 

w0 =1[ 
E2 

(Kie` - Kee-) + Bii (1 K3x2 + K4x) - Ail (1 Ksx3 +1 K6x2 + K7x) 
EI p232 

z 

+ Kg + 
2KSE2 ]+C sin px, Asas Ei 

u, = K, e`' + Kee-du` + 
2K5E2 

+B cos px, (A1-1) 
Ass E1 

where 

E, = A;, D;, -(B;, )Z, E2 =MIDI, -B;, B;,, E =BD� -D; B; 

Ass EI (AI-2) 

B° E D° E2 + DoaE II 3 II 2 11 1 

and K, (i = 1,2, ..., 8) are arbitrary constants of integration to be determined when a set of 

edge boundary conditions (Equation 3.5-3) is specified. The remaining constants A, B and 

C are the coefficients of the particular integrals of Equation (3.5-3) with the form of (3.5- 

6) and, as such, are identical to the solution of the simply supported beam. 
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Appendix 2: 

General solution of general four-degree-of-freedom beam theory 

equations 

The general solution of the system of ordinary differential equations (3.4-3) can be 

written in the following form, which is independent of the choice of the shape functions: 

u141 
[A°°FF 

+ 2(FG FG )]K e"ý` +Q K x-Q 
(4K 

x2 +K x)+K 0- F. S5 1S ßi 3251i3S2267g 
1 i. l Iii 

+A cos p. x, 

1 '4 
wo=FZ12 

[Ass I1+p (F2G2 - F4G, )]K eu'x 
, i. i Iii 

F 
{+Q2KSx2-Q, ( K6x3+2K7x2)+K9x+K, 

o}+Csinpmx, 

u, ='4 G2 K, e Pox + 
F2G - F`G2 

K6 +B cos p x, 
-i 

Ass F G, m 

w, =4 
(A"F, 

-, u G, )K. 
el "+ 

FS 
K5 - 

F° (K6x + K7)+ D sin p, x, 
. -i 

G, Ga 

where, 

F, = A;, D;, - B;, 2, 
ece F2 = A�cD� - B�B11 , 

F, = BleIDII - Djc, Bla,, 

F4 = A;, D; - B;, B;, 

FS =B;, D) -D,, B3, 

F2 
G, =B;, F, -D;, FF+DaaF,, Q, __ A12i +G 

ýr a 
G2 = Bii FS - DI", Fa + 

(DI3 
- Ass lß'1, F 

6b ab abýT 
QZ = Bi 

1+a 

FS 

G; = Bi3Fi ' D13Fs +(D 13 -Ass /ý'i Ga 

G4 =B ; Fs -D 3Fa + D; ý F, , Fs2 Q3 =DI', +G4 
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and A are the four roots of the following equation: 

. ls3 FG�u' - 
(G, G4 - G2G3 + As A: s F, 2)p2 + ASýF, G4 = 0. (A2-3) 

The trigonometric terms in the displacement general solution represent the particular 

integral of differential equations (3.4-3) with the form of (3.4-6) for the corresponding 

solution of simply supported beams. Their constant coefficients are determined from the 

solution of (3.6-17). In the particular case of a beam having both edges simply supported, 

all 10 arbitrary constants of integration K. (i =1,2,..., 10) take zero values and equations 

(3.4-3) are naturally reduced to their appropriate trigonometric form. The ten arbitrary 

constants of integration K; are free to be determined by means of an appropriate set of 

boundary conditions (Equation 3.4-5) imposed at the edges x=0 and x=L of the beam. 
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Appendix 3: 

General solution of general five-degree-of-freedom beam theory 

equations 

Regardless of the particular form of the shape functions employed, the general solution of 

the ordinary differential equations (3.3-3) can be written as follows: 

u= (E, E� +EZEa; +Esp )K, e' +K9 +K, ox+ESKex2 +Acos pmx, 

4 
v=>(E3E7t +E4Es; +E6p; )Kje' +K1I +K12x+E6K8x2 +Ccospmz, 

i-I 

u, _ý E7; K; e "ýr +2 
C3 A« - C6 A42 512 Kg +B cos p. x, (A3-1) 

i-I A,. u Asse 1- A4512 

V, =4 Ei, K e"ý= +2 
Ce'4ss ii- C3'42s iz Kg +D cos p. x, L"ý" A4422 A5511 - A4512 

4 

w=K, e"` + K5 + K6x + K7x2 + ; K8x3 +Esinpx, 

where K, (i =1 , 2,..., 12) are arbitrary constants of integration to be determined when a set 

of edge boundary conditions (Equation 3.3-5) are specified. Moreover, u, (i =1,2,3,4) 

are the four roots of the following quartic equation: 

(C1C, C9 +C2C6C7 fC3C4Cs -Cl 
C6C8 

-C2C4C9 -C3C5CA)O4 + 

((C3C, -C1C9)Auu +(C6Ca -C5C9)45511 + (A3-2) 
(C9C2 +C9C4 -C3C1 -C(, 

C7)As, 

2]1u2 +C904422411-A4512)_ O, 
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Where, 

C, = B,,, E, + B, 6, E3 + D,,,,, C2 = B,,, E2 + B, 6, E4 +D, 6,2, 
C, = BlIlEs +B,,, Ee -D111, C4 = B, 62E, + B662E3 +D, 6, s 
C5 = B16, E2 +B E4 + D6622 , C6 = B, 6s2 E5 + B662 E6 - D, 629 
C7 = B,, E, + B16E3 +D,,,, C8 = B,, E2 +B16E4 +D162, 
C9=B�Es+B16E6-D,,, 

and, 

E= 
A16B161 - A0B, 

E 
A16B662 - 4B, 62 E3 = 

A, 6B,,, - A�B, 61 +222 A� A66 ̀A6 A� A66 -A, 6 A� A66 -A, 6 

E=A, 6B, 62 - A�B662 E 
A6B� - A168,6 

E_ 
A�B, 6 - A, 6B� s+6+ .- A' I 

A66 .-A6 Al 1 Aý -A 6 A1 
1 A6 -A 

2 

_ 
C6 (C2 P i2 - A4312) - C3 (Cs p? - A4422 ) 

E'' 
(C 2-A )(C3Ni 2- AM22 )- (C2 Ni2 - A4312 )(C4Ni 2A)' 

1Nr 3311 4512 

C3 (C4 N; 2- A4512) - C6 (Cl N; 2- A5311) 
E6i 

(CIN? - Ass11)(C5Ni - A4422) - (C2Ni - A4512)(C4fý? - A4512 ) 

(A3-3) 

(A3-4) 

The remaining constants, A, B, C, D and E, appearing in equations (A3-1) are the 

coefficients of terms that represent particular integrals of the set of equations (3.3-3). As 

such, these terms are identical to the solution of the simply supported beam obtained with 

the form of (Equation 3.3-7). For plates subjected to a different set of edge boundary 

conditions, corresponding values to those constants, K. (i=1,2, 
..., 12) are determined by 

applying that set of boundary conditions to equations (Equation 3.3-5). 
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