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Abstract

Optical interferometry offers a powerful tool for the study of the mechanical motion

of micro- and nano-electromechanical systems (MEMS and NEMS). By examining the

modulation of reflected light the displacement can be measured with sub-nanometre

precision. Recent work with fibre interferometers carried out by other groups has studied

the motion of nanomechanical systems down to temperatures as low as 1 K.

Dissipation measurements in the last few years of a number of devices fabricated from

high-stress amorphous silicon nitride have shown a marked increase in quality factors

when compared to similar low-stress devices. The high quality factors and small masses

of these devices have attracted a great deal of interest within the nanomechanical and

optomechanical communities.

Measurements of dissipation in nanomechanical resonators carried out in Nottingham

to date have used the magnetomotive effect to detect nanomechanical motion. This has

required that a layer of metal be applied to the high-stress silicon nitride, modifying the

mechanical properties. In this thesis we present an overview of the design and construc-

tion of an optical detection system designed to study MEMS and NEMS devices from

room temperature to liquid helium temperatures. Optical detection is able to measure

the displacement of purely dielectric structures and as such is an ideal method with

which to measure dissipation in these high-Q silicon nitride resonators, complementing

the other nanomechanical measurement techniques available within Nottingham.

Using this system, measurements have been made on a number of micro- and nano-

electromechanical systems fabricated using processes developed during this work. Con-
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focal images of these devices obtained using the fibre interferometer show a spatial

resolution of 0.75 µm, a value close to the diffraction limit of the system.

Micromechanical quartz tuning forks have been measured to confirm the frequency

response of the interferometer, with a value for the piezo-electro-mechanical coupling

constant of α = 2.18 ± 0.06 µCm−1 obtained that is in very good agreement with the

values published in the literature.

Nanomechanical measurements of 200 µm square high-stress silicon nitride mem-

branes have revealed thermoelastic damping to be the limiting dissipation mechanism

for these resonators at room temperature. Using elastic theory it is possible to quantify

the fQ floor predicted by thermoelastic damping seeing good agreement with experimen-

tal data.

At lower temperatures inter-membrane coupling was observed, with acoustic vibra-

tions from neighbouring membranes coupling into and being amplified by the membrane

under observation. Discrepancies in quality factor between the observed and unobserved

membranes are most likely due to optomechanical damping of the observed membrane

by the laser. This inter-membrane coupling offers a powerful technique for the indirect

observation of the flexural modes of nearby membranes without optically damping the

response.
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Chapter 1

Introduction

Research, over the last few decades, has lead to the development of commercially avail-

able microelectromechanical systems (MEMS) that are used as sensors in a range of

applications. With recent advances in nanofabrication techniques the sizes of these de-

vices can be decreased, with a new class of nanoelectromechanical systems (NEMS)

emerging.

The reduced dimensions of these mechanical devices, with cross sectional areas of

less than 1µm2, and resonant frequencies ranging from several MHz well into the GHz

range have attracted a great deal of interest in recent years. The reduced mass of these

nanomechanical systems and quality (Q) factors in the range 103−105 make them ideally

suited for use as highly sensitive detectors in a range of physical systems, such as mass

sensing [1, 2], force detection [3, 4], and spin detection [5].

1.1 Dissipation

An external force acting upon a nanomechanical resonator will damp the resonator,

shifting the resonant frequency. The dissipation, (Q−1) of the resonator places a lower

limit on how small a frequency shift it is possible to measure; a larger dissipation results

in an increased line width, obscuring any frequency shift. The improvement in Q-factor

also reduces the power required to operate these devices.
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Nanomechanical devices also have applications in the observation of quantum be-

haviour in mesoscopic structures. A typical nanomechanical resonator would have many

more (1010) degrees of freedom when compared to a collection of several atoms and if one

were able to cool these devices sufficiently then it should be possible to observe quantum

mechanical behaviour in these larger systems. In order to attain a quantum state the

resonator would need to be cooled such that the thermal energy of the resonator was

less than the energy of the lowest eigenmode [6]:

kBT ≤ ~ω (1.1)

which for a GHz nanomechanical resonator with resonant frequency, ω = 2π × 109

would correspond to a device temperature of T ∼ 50 mK, something easily achieved

with current dilution refrigerators. Unfortunately cooling the device is only half the

challenge, as in order to prepare the resonator in a quantum state the device must

also be sufficiently isolated from the surrounding environment, i.e. minimal dissipation.

These challenges were overcome in 2009 when O’Connell et al. managed to successfully

cool a dilational resonator into the quantum ground state and couple it to a qubit [7].

To these ends the study of dissipation in a range of nanomechanical structures has

received a lot of attention in the last decade. Figure 1.1 shows quality factors mea-

sured for a range of nanomechanical systems fabricated from a variety of materials and

measured at a range of temperatures. The general trend shows that as the volume of

the devices decreases so too does the quality factor. This suggests that as device size

decreases there is a change in the dominant dissipation mechanisms.

As devices decrease in size there is an increase in the surface to volume ratio which

could result in increased contributions to the dissipation by surface effects and tunnelling

two-level systems within the device. In order to improve the device sensitivity for use

as sensors and the study of quantum mechanical behaviour the dissipation mechanisms

at work must be understood and as far as possible minimised.
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arguments,42–45 a quality factor due to the gas dissipation can
be determined as Qgas!Meff!0" /pA. Here, "="kBT /m is the
thermal velocity of the gas molecules each with mass m, p is
the surrounding the gas pressure, and A is the surface area of
the resonator. The so-called loaded Q of the device can then
be determined as QL= #Qi

−1+Qgas
−1 $−1, where Qi is the intrinsic

Q. In Fig. 6#a$, we plot Qgas
−1 as a function of p. At low p, Qgas

−1

depends linearly on p. At high p, a crossover into a viscous
dissipation regime46 is apparent; Qgas

−1 #p1/2. The same cross-
over is also manifest in the resonance frequency shift,
$! /!0, displayed in Fig. 6#b$. In the molecular regime, neg-
ligible frequency shift is observed; in the viscous regime,
mass loading reduces !0. This crossover pressure can be
determined by comparing the sound wavelength in the me-
dium to the mean free path of the gas molecules.47

A resonator can lose the energy in its resonant modes via
the acoustic coupling to its clamps.48–50 Most high frequency
NEMS have been realized in the doubly clamped beam con-
figuration #see Fig. 3$. One of the possible reasons for the
decrease of Q factor in these devices is the clamping loss
intrinsic to the doubly clamped boundary condition. Recent
demonstration of augmented clamping loss in doubly
clamped NEMS beam resonators agrees with this claim.
Huang et al.51 have compared the Q factor from identical
nanomechanical beams with free–free and doubly clamped
boundary conditions, clearly showing a %2.5-fold enhance-
ment in the Q of the free–free beam.

The possibility exists that displacement transduction pro-
cess itself may contribute to the dissipation,52,53 causing ap-
parent changes in the observed Q—sometimes also called the
loaded Q, QL. Cleland and Roukes,

52 for instance, quantified
the contribution of the magnetomotive transduction circuitry
to the observed dissipation in NEMS. They developed a tech-
nique whereby the external electrical damping could be mea-
sured and controlled locally, enabling the manipulation of
QL.

In looking at intrinsic dissipation sources, it is essential
to discriminate between energy dissipation that occurs in a
perfect crystal lattice and energy dissipation that occurs in a
real, imperfect crystal with bulk and surface defects. The loss
mechanisms in a perfect crystal are fundamental. These im-
pose the ultimate upper bounds to attainable Qs; such pro-
cesses include thermoelastic damping arising from anhar-
monic coupling between mechanical modes and the phonon
reservoir,54 and losses due to electron–phonon and phonon–
phonon interactions. The intrinsic mechanisms due to imper-
fections in the crystal may be suppressed by careful choice of
materials, processes, and handling. These include anelastic
losses involving defects in the bulk55,56 and surfaces.

NEMS devices patterned from single crystal, ultrapure
heterostructures can contain very few #even zero$ crystallo-
graphic defects and impurities. Hence, the initial hope was
that within small enough structures bulk acoustic energy loss
processes should be suppressed and ultrahigh Q factors
thereby attained. Surprisingly, to date, a wide collection of
NEMS resonators—fabricated from different materials and
processed using different surface nanomachining
techniques—have yielded relatively low Q factors in the
103–105 range.

There is overwhelming experimental evidence that sur-
faces contribute to the energy dissipation in NEMS in a
dominant fashion. Surface treatment experiments in ultrahigh
vacuum #UHV$ on nano- and micromechanical devices have
shown that surface oxides, defects, and adsorbates augment
the energy dissipation. Annealing nanometrically thin Si can-
tilevers in UHV,57,58 for instance, increased their Q factors by
1 order of magnitude. In subsequent x-ray photoelectron
spectroscopy experiments,59,60 removal of oxygen from
nanoscale cantilever surfaces was correlated with improve-
ments in the mechanical Q factor. More recently, methyl
monolayers were shown to suppress dissipation in silicon
micromechanical devices.61 Figure 7 displays the rough trend
that seems to be manifest in mechanical resonators in
general—from those that are truly macroscopic in size, to
those well within the domain of NEMS. The maximum at-
tainable Qs seem to scale downward with linear dimension,
i.e., volume-to-surface ratio. We note that the Q measure-

FIG. 6. #Color online$. Effect of surrounding gas pressure upon the reso-
nance parameters of a GaAs doubly clamped NEMS beam with !0 /2%
!4.38 MHz. The intrinsic Q of the device was Qi!104. QL and $! of the
beam were measured as a function of the gas pressure in the measurement
chamber. Qgas was later extracted using Qi. The measurement was done with
He3 and He4 gases. Note the crossover in the plots from the ideal gas regime
to the viscous regime.

FIG. 7. #Color online$. Maximum reported Q factors in monocrystalline
mechanical resonators varying in size from the macroscale to nanoscale. The
data follow a trend showing a decrease in Q factor that occurs roughly with
linear dimension, i.e., with increasing volume-to-surface ratio.

061101-6 K. L. Ekinci and M. L. Roukes Rev. Sci. Instrum. 76, 061101 !2005"

Downloaded 05 Oct 2007 to 128.243.220.22. Redistribution subject to AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp

Figure 1.1: Survey of previous work on dissipation in nanomechanical systems. The

measurements shown are for resonators made from a range of materials measured using

a variety of different methods and at a range of temperatures. Figure reproduced from

[8].

1.2 Nanomechanical Displacement Detection Techniques

As the dimensions of a mechanical resonator decrease there is a corresponding increase

in the device resonant frequency, which can range from a few MHz to several GHz. The

combination of increasing resonant frequency and decreasing displacement amplitudes

means that detection schemes for NEMS must be ultra sensitive and those that worked

well in the MEMS regime may now struggle to detect motion.

In order to successfully detect nanomechanical motion a transduction and detection

scheme is required. The input should couple strongly to the device which in turn should

couple strongly to the output port, however there should exist an orthogonality between

input and output. The majority of detection schemes can be classified as electrical

or optical. For an electrical detection system the resonator couples directly into an

electrical circuit. This can limit (at least in part) the materials from which a resonator
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proportion to its size. In Table I, the critical amplitude !xc"
for a number of NEMS devices are displayed. Such minis-
cule displacement amplitudes indicate that to effectively op-
erate these devices, ultrahigh sensitivity displacement trans-
ducers are needed. To couple into the motion of NEMS
devices in ultrafast applications, a large operation bandwidth
is essential. Orthogonality of actuation and transduction
ports, i.e., having input and output ports that strongly interact
with the mechanical element but with only weak direct cou-
plings to each other, is another desirable property.

The mainstay displacement detection in the domain of
MEMS is through electronic and optical coupling. Electroni-
cally coupled displacement detection in MEMS has been
successfully realized using magnetic,78 electrostatic,79
piezoelectric,80 and piezoresistive81 transducers. In optical
MEMS devices, optical interferometry82 and optical beam
deflection83 techniques have been successfully used. Both
approaches, however, become quickly insensitive at the re-
duced dimensions of NEMS. The major problem in elec-
tronic coupling is that, as the device size shrinks and the
frequency of operation increases, the motional modulation of
the impedance becomes progressively smaller—while the
parasitic embedding impedances continue to grow. The at-
tractive electronic two-port actuation–detection configuration
of most MEMS devices becomes hard to realize at the scale
of NEMS, due to the unavoidable stray couplings encoun-
tered at the reduced dimensions of NEMS. On the other
hand, optical displacement detection in small structures is
limited by the diffraction of light.

Among the most needed elements for developing NEMS
based technologies are broadband, on-chip transduction
methods sensitive to subnanometer displacements. It has
been rather challenging to implement displacement detection
schemes with the aforementioned attributes. A variety of
techniques appear to hold promise for NEMS. Below, we
shall discuss in some detail some of these transduction
schemes and evaluate the promise they hold.

A displacement detection scheme that scales well into
the NEMS domain and offers direct electronic coupling to
the NEMS displacement is magnetomotive detection.2,52 It is
based upon the presence of a uniform static field, through
which a conducting nanomechanical element #usually a na-
nomechanical doubly clamped beam in a conducting loop$ is
moved. A schematic of magnetomotive detection is shown in
Fig. 8. Usually, the beam element is driven by a Lorentz
force, generated by passing an ac current through it in the

static magnetic field. The time-varying flux generates an in-
duced electromotive force in the loop. For a doubly clamped
beam #see Fig. 3$, the responsivity of the magnetomotive
transduction can be evaluated as %R%= %!V /!X%=!lB", where
B is the magnetic field strength and l is the length of the
beam; here, the midpoint of the beam displaces at a fre-
quency ". ! is a geometric factor and !&0.885. Using Fig. 8
and the concepts developed in Sec. II F, one can obtain an
amplifier limited displacement sensitivity for the scheme as

'SX#"$(1/2 = ) SV#"$
#!lB"$2

+
SI#"$l2B

Meff
2 '#"2 − "0

2$2 + "2"0
2/Q2(

2*1/2.
Here, SV#"$ and SI#"$ are the voltage and current noise spec-
tral density of the amplifier, respectively.

By employing optical interferometry, shot noise limited
displacement sensitivities SX

1/2+10−6 nm/,Hz are routinely
attainable on objects with cross sections larger than the dif-
fraction limited optical spot.82,84 Recently, optical interfer-
ometry techniques, in particular path stabilized Michelson
interferometry and Fabry–Pérot interferometry, have been
extended into the NEMS domain.85–89 Figure 9 shows a typi-
cal room temperature optical interferometer setup. In path
stabilized Michelson interferometry, a tightly focused laser
beam reflects from the surface of a NEMS device and inter-
feres with a reference beam. In the case of Fabry–Pérot in-
terferometry, the optical cavity formed in the sacrificial gap
of a NEMS—between the NEMS surface and the substrate—
modulates the optical signal 'Fig. 9#b$(. In both techniques
strong diffraction effects emerge89 as the relevant NEMS di-
mensions are reduced beyond the optical wavelength used.
Consequently, shot noise limited displacement sensitivities
demonstrated on larger objects are not easily achievable on
NEMS. Possibilities, however, do exist for integrated90 and
near-field optical displacement sensors. In particular, solid
immersion lens microscopy91 and tip enhancement92 tech-
niques appear to hold promise.

In electrostatic transduction, dynamical capacitance
changes due to NEMS motion—on the order of 10−18 F—are
obscured by parasitic capacitances that are many orders of
magnitude larger. There may be an escape from this spiral of
decreasing motional impedance accompanied by increasing
parasitics that occur when device size is scaled downward.
The solution would be to eliminate the large embedding and
parasitic impedances. A balanced bridge technique,10 for in-
stance, has been shown to reduce the resistive and capacitive
backgrounds. Impedance matching techniques might also of-
fer remedies.93 One could also locate a subsequent amplifi-
cation stage #which would, in effect, act as an impedance
transformer/line driver$ directly at the capacitive transducer.
Recently, a single-electron-transistor #SET$ has been inte-
grated to a NEMS resonator69,94 with the NEMS electrode
serving a dual purpose—as both motion sensor for the
NEMS, and as gate electrode of the SET readout.95,96

Piezoelectric displacement transduction can be realized
by detecting the time-varying polarization fields created by
local time-varying strain fields within a piezoelectric me-

FIG. 8. #Color online$. Magnetomotive displacement detection scheme. The
displacement sensitivity in the text is estimated by assuming that the domi-
nant source of noise is the noise generated in the first stage amplifier.
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Figure 1.2: The magnetomotive detection scheme. Figure reproduced from [8].

is fabricated to those that are able to conduct electricity.

The focus of the work described in this thesis is the design and construction of a fibre

interferometer to allow the optical detection of micro- and nano-mechanical motion at low

temperatures. In Chapter 3 an overview of optical techniques are presented, however

before that it is useful to look at other commonly used methods in the detection of

nanomechanical motion.

1.2.1 Magnetomotive Actuation and Detection

One of the most commonly used detection schemes that has scaled well from MEMS

to NEMS is magnetomotive detection, the arrangement of which is shown in figure 1.2

[8, 9]. An alternating current passed through a conductive loop, typically a doubly

clamped beam, positioned in a static magnetic field, B will experience a Lorentz force

perpendicular to both the static field and the flow of current. The resulting movement

of the resonator through the static field produces an EMF across the device that can be

measured. This induced emf, VEMF is:

VEMF(t) = ξlB
dx(t)

dt
(1.2)

where B is the size of the static field with l and x the length and displacement of the

beam respectively. The constant ξ is a geometric factor quantifying the area swept out,

and consequently the flux cut by the motion of the beam [10]. With VEMF proportional
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to the amount of flux that is cut by the beam this limits the detectable modes to odd

harmonics (where the total area swept by the resonator does not equal zero). This finite

flux requirement also limits the geometry of devices that can be measured using this

technique to doubly clamped beams.

The motion of the mechanical element in the static magnetic field causes a damping

of the resonator that results in a lower Q-factor referred to as the loaded-Q. In order

to generate VEMF a current, I, which is proportional to B, must be induced within the

beam. Resistive losses within the beam, with resistance R, are equal to I2R resulting in

a loaded-Q that varies as B2.

The magnetomotive technique has been used successfully to detect nanomechanical

motion at frequencies up to a GHz with a sensitivity of 2×10−15 m/
√

Hz (for a resonator

of frequency 116 MHz) [11]. While the magnetomotive scheme has shown itself to be

a highly sensitive method for measuring displacements in nanomechanical systems, it

does suffer from some drawbacks. The large magnetic fields needed to actuate and

detect the motion of the device requires cryogenic temperatures and superconducting

solenoids. The ability of a current to flow through the mechanical device restricts the

materials that can be studied using this technique to conductors (or at the very least

a nanomechanical device containing a conductive element). Detection is also limited to

odd modes, where the geometric factor ξ 6= 0. As the harmonic of the resonator increases

there is a decrease in the ability of the system to detect the motion of these modes as

the amount of flux cut by the current loop decreases.

1.2.2 Capacitive Detection

In this technique a capacitor is formed between the mechanical element and a ground

electrode. As the resonator is actuated there is a variation in plate separation and

consequently capacitance. The dynamic capacitance changes observed will generally be

of order 10−18 F and in order to detect such small changes measurements are often made

using balanced bridge arrangements [12], impedence matching the measurement circuits

to the resonator [13] or fabricating the NEMS directly into a resonant circuit .
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In work by Truitt et al. [13], a gate ∼ 2 µm in length separated from the resonator

by ∼ 100 nm was used. In this arrangement the static capacitance will be ∼ 10−17 F

(giving an impedance of 108 − 109 Ω for ω0 = 10 − 100 MHz), with nanoscale flexural

motion of the beam changing the capacitance by ∼ 10−19 F. A signal this small will be

lost in the parasitic capacitance of the measurement electronics, degrading both signal

and bandwidth. If a voltage, Vg, is applied to the gate the resonator becomes part of

an LCR circuit, and will describe the behaviour of a 1D simple harmonic oscillator. In

this case the impedance of the resonator is matched to that of the detection electronics,

allowing measurements of the nanomechanical motion to be made [13].

For simplicity the majority of capacitive detection schemes detect in-plane nanome-

chanical motion, as from a fabrication point of view it is easier to form a gate next to, as

opposed to below, the resonator. Given the magnitude of the dynamic capacitances that

are detected it is often simpler to actuate the resonator electrostatically using the same

arrangement while detecting the mechanical motion using an optical technique. An ac

drive voltage with dc bias is applied to the resonator resulting in motion of the beam.

The main drawback of a capacitive transduction scheme is that for a system with only

one set of electrodes it can only be used to drive or detect the motion.

The limitations of capacitive detection lie in the geometric requirements. As device

dimensions decrease so too does the area that is able to form the plates of the capacitor.

This decrease in capacitance can to a certain extent be overcome by placing the gate

electrode closer to the mechanical element, although this then introduces additional

complexities to the fabrication as it becomes technically challenging to position a gate

close enough. While capacitive detection has proved invaluable in MEMS it does not

scale well into NEMS and is often used to electrostatically actuate devices the motion

of which is then detected optically [14–16].

Gradient Field Transduction

In an electrostatic actuation scheme a capacitor is formed between a gate and the me-

chanical element, requiring that the resonator be conductive. Unterreithmeier et al.



CHAPTER 1. Introduction 8

AuAu
SiO

d

Figure 1.3: Schematic illustrating lines of constant potential produced by the electrodes

as part of the gradient field technique. The dielectric element (blue) placed within this

field will experience a dipolar moment and will be attracted to regions where the gradient

of the electric field is largest. Figure reproduced from [17].

[17, 18] modified this scheme to allow both the actuation and detection of nanome-

chanical motion in dielectric resonators. The arrangement employed is shown in figure

1.3.

Two electrodes deposited on the substrate are biased with a dc voltage (Vdc) to

generate the non-uniform electric field shown in figure 1.3. A dielectric element placed

within this electric field will experience a dipolar moment that will be attracted towards

regions within the E-field with a larger gradient. Modulating the dc voltage with an ac

signal (Vac) causes these regions to shift and the resonator to be driven.

The gradient field technique can also be used to detect motion. For this two pairs of

electrodes are used; one pair to actuate, while the second monitors the motion. As the

resonator moves in the electric field the capacitance is modulated and a charge generated

which is monitored using an IV converter placed near the sample. Using this dielectric

detection scheme the ultimate sensitivity of this system is estimated at 20 pm/
√

Hz [17].
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1.2.3 Optical Detection

The majority of electrical detection schemes place requirements on the material from

which the resonator is fabricated. Optical detection uses an optical spot to monitor the

motion of the resonator, this allows the material requirements to be relaxed and allows

the study of purely dielectric materials (such as silicon nitride).

In micromechanical systems motion can be detected in two ways using beam de-

flection or interferometry. In beam deflection, which is normally used to detect the

deflection of an AFM cantilever, an optical spot is focussed onto the tip of a cantilever

and the deflection of this beam caused by the motion of the cantilever is measured. In

interferometry a coherent laser beam is used to probe the resonator, and variations in

the intensity of the reflected light are monitored. Beam deflection is ideally suited for a

micromechanical system, where deflections are “large” (on the order of the wavelength)

and as such the distance over which the beam is deflected is large enough to be measured;

interferometry on the other hand will struggle when the deflections are larger than λ/4

and the periodicity of the interference makes it difficult to determine the displacement

of the resonator [19].

As device dimensions decrease, so too does the amplitude of the mechanical motion

and as a result the majority of optical measurements of nanomechanical displacements

are made using interferometric techniques, and it is these methods that will be focussed

on in this thesis.

1.3 Outline of Thesis

The aim of this thesis is to outline the design and construction of a fibre based inter-

ferometer capable of detecting nanomechanical motion to temperatures less than 1 K.

In recent years much work has been done on the study of dissipation in dielectrics as

they have shown far higher quality factors than metals. The majority of nanomechan-

ical detection schemes rely on an electrical measurement and in the majority of cases

requires the devices be made (at least in part) from a metal. Optical detection schemes
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eliminate the requirement that the resonator contain a metallic element, allowing the

measurement of purely dielectric devices.

Previous measurements carried out in Nottingham on low temperature dissipation in

doubly clamped beams of high stress silicon nitride [20, 21] saw quality factors in excess

of 106 and a temperature dependent dissipation. These measurements were carried

out using a magnetomotive detection scheme that required a thin layer of gold to be

deposited upon the dielectric, altering the physical properties. Optical detection does

not have these requirements and would allow measurements of purely dielectric devices to

be made, complementing the nanomechanical measurement techniques already available

to the NEMS group of Nottingham University.

In addition to the design and construction of the fibre interferometer a range of

nanofabrication processes for high-stress silicon nitride were developed to fabricate nanome-

chanical devices with high quality factors. In addition to flexural structures (including

membranes and doubly clamped beams), torsional resonators were also fabricated from

high-stress silicon nitride. It is hoped that these high-stress torsional resonators could

display significantly higher quality factors than their low-stress counterparts.

Chapter 2 provides an overview of nanomechanical systems, focussing on the mechan-

ics of resonant systems and how the resonant frequencies of nanomechanical membranes

and torsional resonators are calculated. The most common dissipation mechanisms af-

fecting nanomechanical resonators are then introduced with a review of recent dissipation

studies in high-stress silicon nitride.

Having introduced nanomechanical systems, Chapter 3 will present the working prin-

ciple behind several of the optical detection schemes commonly used in the detection of

their motion. Multi-layer film theory is also introduced and used to calculate the film

thicknesses required in a substrate suitable for use with the experimental setup. Cur-

rent work into optical detection of nanomechanical motion is then reviewed and decisions

made regarding the design and construction of the fibre interferometer outlined.

Chapter 4 outlines the fabrication of nanomechanical systems, introducing the nanofab-

rication techniques that are used before giving an in-depth discussion of the fabrication
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of high-stress silicon nitride membranes and torsional resonators. More detail on these

fabrication recipes including in-depth processing parameters are included in Appendix

A.

The experimental setup designed and constructed during this work is outlined in

Chapter 5, including design considerations and the interfacing of the fibre interferom-

eter with a commercial dilution refrigerator. A range of measurements on micro- and

nanomechanical devices are then presented to demonstrate the modes of operation of

the interferometer, including measurements on a quartz tuning fork used to calibrate

the response of the interferometer.

Chapter 6 presents measurements of high-stress silicon nitride membranes at both

room temperature and low temperature and explores several of the dissipation mecha-

nisms at work. In Chapter 7 we summarise the thesis and outline possible future work.



Chapter 2

Nanomechanical Systems

In this chapter the mechanics of resonant systems are presented. In the linear response

regime the nanomechanical resonator behaves as a harmonic oscillator, so in the first part

of this chapter an overview of harmonic oscillators is presented. We will then move on

to look at the vibrational modes of two nanomechanical devices discussed in this work,

the torsional resonator and the stressed membrane. Having introduced several common

nanomechanical structures the dissipation mechanisms that can affect their operation

are described before reviewing previous work on dissipation in nanomechanical systems.

2.1 Mechanics of Resonant Systems

Mechanical resonant systems are simple harmonic oscillators that can be modelled as

systems composed of a mass, m, and a spring of constant, k. If we displace the mass

from rest by a distance x the spring exerts a restoring force, F = −kx. In the linear

regime this restoring force is proportional to the displacement and the system will behave

as a simple harmonic oscillator with the mass oscillating about the rest position with

resonant frequency ω0 =
√

k
m . The equation of motion for an undriven simple harmonic

oscillator is [20, 22–24]:

mẍ(t) + kx(t) = 0 (2.1)
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Once in motion the undamped system will continue to oscillate indefinitely, a more

realistic description is that of the damped driven harmonic oscillator. The damping

term is dependent on the velocity of the resonator, and proportional to the damping

coefficient, γ. For a resonator driven by a sinusoidal force of magnitude Fd at frequency

ωd the equation of motion becomes:

mẍ(t) +mγẋ(t) + kx(t) = Fde
iωdt

ẍ(t) + γẋ(t) + ω2
0x(t) = Fde

iωdt

m

(2.2)

which we first solve for the undriven case, i.e. Fd = 0, using the initial solution x(t) =

R[x0e
iωt] which allows the equation to be reduced to −ω2 + iγω + ω2

0 = 0, of which the

roots are:

ω± = i
γ

2
±

√
1− γ2

4ω2
0

(2.3)

For a system with small damping the quality factor is defined as Q = ω0
γ , which

allows the solution for the displacement of the system to be rewritten as:

x(t) = R[x0e
iω0t/2Q(e±iω

′
0t)] = x0e

iω0t/2Q cos(ω′0t) (2.4)

where the damped resonant frequency, ω′0, is related to the undamped frequency via:

ω′0 = ω0

√
1− 1

4Q2
(2.5)

The quality factor is the ability of a mechanical system to store energy. For an

underdamped system where Q � 1 the system approximates to a simple harmonic

oscillator, with ω′0 ≈ ω0. An overdamped system (Q ≈ 1) has a resonant frequency

that will be lower than for the undamped case, with an amplitude of oscillation that

decreases rapidly over several cycles once the driving force is removed. The time taken

for the system to damp to 1/e of the initial amplitude is known as the damping time,

τ , related to the damping by τ = 2/γ. In the case of small damping, where γ � ω0, the

quality factor can be approximated by Q = ω0/γ = ω0τ/2 [20, 22, 24].
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Having solved the system in the absence of a driving force (Fd = 0) we now look at

the behaviour of the system under the influence of a driving force (Fd 6= 0). In this case

the solution of equation 2.2 is composed of two parts, a transient response (equation

2.4) and a steady state solution for the system (with motion at frequency ωd). For time

scales longer than the damping time, τ , the solution will be a sinusoidal displacement

at ωd. This results in a steady state solution of the form R[Reiωdt], with amplitude, R,

found using the transfer function [23]:

R =
Fd/m(

ω2
0 − ω2

d

)
+ iω0ωd

Q

(2.6)

which can be written in the form R = R0e
−iφ, with amplitude R0 and phase angle φ,

with:

R0(ωd) =
Fd/m√(

ω2
0 − ω2

d

)2
+

iω2
0ω

2
d

Q2

(2.7)

and

φ(ωd) =


arctan

(
ω0ωd

Q(ω2
0−ω2

d)

)
for ωd ≤ ω0

π + arctan

(
ω0ωd

Q(ω2
0−ω2

d)

)
for ωd > ω0

(2.8)

From which we see that on resonance (ωd = ω0) the amplitude of oscillation is equal

to QFd/mω
2
0, with displacement proportional to quality factor. The frequency response

takes the form of a Lorentzian, with a peak centred at ω0. A plot showing the amplitude

and phase of a resonator as the drive frequency passes through resonance is shown in

figure 2.1.

The quality factor relates to the full-width at half maximum (FWHM), ∆ω by Q =

ω0/∆ω. As the drive frequency passes through ω0 there is a phase shift of π, resulting

in a phase difference of π/2 between the drive and response on resonance [20, 22–24].
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Figure 2.1: Response of a driven oscillator showing the amplitude response (red) and

the phase (blue) as the drive frequency is swept through resonance.

2.2 Frequency Calculations

Nanomechanical resonators come in a range of geometries, as determined by the ap-

plication for which they are intended. The focus of this work is on high-stress silicon

nitride so in the following section we will introduce two of the nanomechanical struc-

tures that were fabricated from silicon nitride. Given that the aim of this work is to

detect nanomechanical motion using interferometric techniques the focus is on devices

that have vibrational modes capable of producing out of plane motion.

2.2.1 Torsional Resonators

Doubly-clamped nanomechanical devices will exhibit two modes of oscillation, flexural

and torsional. In a flexural mode the beam experiences a bending force, while in a

torsional mode a torque is experienced, with rotation about the centre axis of the rod.

For torsional modes the displacement (z) is now measured in terms of a rotation angle

(θ), while the spring constant (k) and mass (m) are replaced by the torsion constant (κ)
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(c) (d) (e)

(a) (b)

Figure 2.2: The typical device geometry of the (a) one-paddle and (b) three-paddle

torsional resonators discussed in this section. Finite element models of the (c) first, (d)

second and (e) third torsion mode of a three-paddle resonator. The colour scale in (c)-(e)

indicates the amplitude of the z−displacement. Finite element models reproduced from

[25].

and inertia (I) respectively. For this system the natural frequency becomes ω0 =
√
κ/I

[22].

For a bar of constant rectangular cross section (width w, thickness t) and length l

the torsional constant is:

κ =
βwt3E

2l(1 + ν)
(2.9)

where β is a geometric factor (∼ 0.2), E the Young’s modulus and ν the Poisson ration.

As the torsion rod dimensions decrease so too does κ, leading to an increase in the angle

of rotation, θ, observed for an applied torque. The out-of plane displacement due to an

angle θ applied to a beam of width w is z = wθ/2, so in order to increase the magnitude

of z it is common to include one or more paddles in the design [22, 25]. In this section

we introduce two classes of torsional resonator: one-paddle and three-paddle types, the

geometry for which is shown in figures 2.2(a) and (b) respectively.
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A one-paddle torsional resonator has only one torsional mode, in which the cen-

tral paddle rotates about the central torsion beam. A three-paddle torsional resonator

however has three unique torsional modes for which finite element models (in order of

increasing frequency) are shown in figures 2.2(c)-(e). The lowest frequency mode (figure

2.2(c)) has all three paddles rotating in-phase, in the second mode (figure 2.2(d)) the

outer paddles oscillate out of phase with one another while the central paddle is station-

ary and for mode three (figure 2.2(c)) only the smaller central paddle is in motion.

The inhomogeneous cross section of these resonators complicates finding an expres-

sion for the torsional frequencies. As such a numerical technique known as Finite Element

Modelling (FEM) is often employed to solve the wave equation numerically. This breaks

the structure broken down into a mesh composed of smaller subdomains. The FEM

solver (a package such as COMSOL) then finds a solution to the governing equation

for each of these subdomains which are then combined by ensuring continuity at the

boundaries between domains to give a solution for the complete system [26].

An example of nanoscale torsional resonators are those fabricated by Davis et al. [25,

27] where a three-paddle nanotorsional resonator was fabricated to allow the magnetic

properties of nanoscale magnetic elements to be studied. Resonators were fabricated

from commercially available low-stress silicon nitride membranes using focussed-ion-

beam milling. Patterning the resonator with a permalloy film allowed the resonator to

be actuated using a magnetic field and the amplitude of oscillation monitored. The

torque constant of these devices was found to be ∼ 108µB, 3 orders of magnitude lower

than previous torque magnetometers.

The frequency responses of the first (3.35 MHz) and third (21.05 MHz) torsional

modes of a nanotorsional resonator actuated magnetically are shown in figure 2.3(a)

and (b). The resonator is coated with a 10 nm thick layer of permalloy that in the

presence of an external magnetic field will produce a torque on the resonator. The first

mode demonstrates a reduced Q (Q=800) when compared to the third mode (Q=2000),

where the stationary outer paddles are able to act as counterweights, isolating the central
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(a) (b)

Figure 2.3: Frequency responses of the (a) first and (b) third torsion modes of a three

paddle torsional resonator that is actuated magnetically. Figures reproduced from [25].

paddle from the supporting structure and minimizing energy loss.

In the work of Davis et al. [25, 27] the resonators studied are fabricated from low-

stress silicon nitride as their fabrication techniques are not compatible with high-stress

silicon nitride. In Chapter 4 a method for fabricating torsional resonators from high-

stress silicon nitride will be presented. High-stress silicon nitride increases the mechanical

stability of the device along with the ability to store energy. This may be of interest

for the third torsion mode of a three paddle resonator as the increased mechanical

stability and ability to store energy coupled to the isolation of the central paddle from

the supporting structure may lead to an increased quality factor in this torsional mode.

2.2.2 Membranes

Membranes are thin sheets clamped around their perimeter that resonate in the out of

plane direction. The two-dimensional nature of these structures requires that two modal

numbers be used to describe the shape and frequency of the membrane vibrational

modes. In order to predict the resonant frequency of these membrane it is necessary to

solve the wave equation [26]:

∂2z

∂t2
− c2∇2z = 0 (2.10)

where z is a function that describes the displacement of the device and the speed of
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sound in the membrane is c =
√
T/µ, where T is the tension per unit length and µ is

the mass per unit length or area [26].

In solving the wave equation it is important that a suitable coordinate system be

chosen for the membrane geometry. A rectangular membrane lends itself to a cartesian

description of the form, z(x, y, t), while a circular membrane is better described using

a polar system of coordinates, z(r, θ, t). For a membrane of thickness h, density ρ, and

initial stress σ the tension per unit length and mass per unit area are T = σh and µ = ρh

respectively.

Rectangular Membrane

Let us first consider the case of a rectangular membrane with sides of length a and b in

the x and y directions respectively. In cartesian coordinates equation 2.10 becomes:

∂2z

∂t2
− c2

(
∂2z

∂x2
+
∂2z

∂y2

)
= 0 (2.11)

To solve the wave equation boundary conditions are required, which for a rectangular

membrane fixed around the perimeter are [26]:

z(0, y, t) = z(a, y, t) = z(x, 0, t) = z(x, b, t) = 0 (2.12)

The general solution (z(x, y, t)) needs to not only satisfy these boundary condi-

tions, but also be separable, with spatial (Z) and temporal eiωt components, z(x, y, t) =

Z(x, y)eiωt, which when substituted into the wave equation yields the Helmholtz equa-

tion:

∂2Z

∂y2
+
∂2Z

∂x2
− ω2

c2
Z = 0 (2.13)

with general solution:

Z(x, y) = A1 cos(αx) cos(βy) + A2 cos(αx) sin(βy) +

A3 sin(αx) cos(βy) + A4 sin(αx) sin(βy)
(2.14)
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Making use of the boundary conditions allows an expression for the (n,m)th mode

of a rectangular membrane to be obtained [26]:

Z(x, y) = A4 sin(αx) sin(βy) (2.15)

where:

α = mπ
a and β = nπ

b
(2.16)

The first 9 modes of a square membrane are shown in figure 2.4, along with the node

structure from which it can be seen that within the membrane there are n−1 and m−1

nodal lines lying within the membrane.

Inserting Z into equation 2.13 also yields an expression for the eigenfrequencies:

ωn,m = πc

√
m2

a2
+
n2

b2
(2.17)

which for a square (a = b) membrane shows a frequency that is proportional to
√
m2 + n2

[26].

Circular Membrane

The wave equation for a circular membrane of radius a described using polar coordinates,

with a solution of the form z(r, φ, t) is:

∂2z

∂t2
− c2

(
∂2z

∂r2
+

1

r

∂z

∂r
+

1

r2

∂2z

∂φ2

)
= 0 (2.18)

As before the displacement around the edge of the membrane must be equal to zero,

i.e. z(a, φ, t) = 0. The symmetry of the system means that only one boundary condition

can be defined in this way. A second boundary condition arises from the fact that the

displacement at all points of the membrane must be finite [26].

A separable solution, z(r, φ, t) = W (r, φ)eiωt is used which when substituted into the

wave equation yields:
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Figure 2.4: Mode shapes of the first 9 modes of a rectangular membrane. The displace-

ment, z, of each mode has been scaled to lie in the range −1 ≤ z ≤ 1, and the red lines

indicate the positions of the nodal lines within the membrane.
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W +
c2

ω2

(
∂2W

∂r2
+

1

r

∂W

∂r
+

1

r2

∂2W

∂φ2

)
= 0 (2.19)

A solution for the spatial component, W , is required that should be separable into

radial (Φ(φ)) and azimuthal components (R(r)) of the form W (r, φ) = R(r)Φ(φ). When

this is substituted we are left with:

ω2

c2
+

(
1

R

∂2R

∂r2
+

1

rR

∂R

∂r
+

1

r2Φ

∂2Φ

∂φ2

)
= 0 (2.20)

the circular, periodic nature of the membrane allows a solution for Φ to be written as

Φ(φ) = eimφ, which when inserted into the wave equation (and substituting γ = ω/c)

results in the Bessel differential equation:

∂2R

∂r2
+

1

r

∂R

∂r
+R

(
γ2 − m2

r2

)
= 0 (2.21)

for which the solution is:

R(r) = DJn(γr) + EYn(γr) (2.22)

where D and E are constants of integration and Jn and Yn are Bessel functions (of order

n) of the 1st and 2nd kinds respectively. The symmetry of the Bessel functions, Jn = J−n

and Yn = Y−n means we need only consider solutions where n = 0, 1, 2, . . . We are also

able to ignore the Bessel functions of the 2nd kind as Yn has a logarithmic singularity

at r = 0 and we require that the displacement of the membrane be finite at all points.

As such we set the constant of integration, E to zero, which yields a solution for the

azimuthal component of the form [26]:

R(r) = Dn,mJn(γr) (2.23)

In order to satisfy the boundary condition R(a) = 0, the mth root of the Bessel

function must lie on the boundary of the membrane and we define a scaling factor for

the radial component of ζn,m = ωn,ma/c where ζn,m is the mth root of the nth Bessel
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function of the 1st kind [26]. Rearranging this gives an expression for the eigenfrequency

of the (n, m)th mode of a circular membrane of radius a:

ωn,m =
ζn,mc

a
(2.24)

This scaling also determines the mode shape of the membrane. Earlier we introduced

the constant γ = ω/c, which using equation 2.24 can be rewritten as γ = ζn,m/a, which

allows an expression for the mode shape of a circular membrane to be written as:

W (r, φ) = Dn,mJn(γr)einφ

= Dn,mJn

(
ζn,mr
a

)
einφ

(2.25)

with Jn(γr) describing the azimuthal and einφ the radial profile, with n = 0, 1, 2, . . . and

m = 1, 2, 3, . . .. The first nine mode shapes for a circular membrane are shown in figure

2.5.

In figure 2.5 we see the effect of the mode number on the mode shape. The number

of azimuthal node lines is controlled by the index m, which must take a positive value

greater than or equal to 1. As this increases, so too does the number of radial node

lines, whose locations are defined by the roots of the Bessel function of the 1st kind. The

location of the azimuthal lines are described by index n which takes an integer value

(that can include 0).

2.3 Dissipation in Nanomechanical Devices

In the earlier discussion on the behaviour of a driven harmonic oscillator (section 2.1) we

introduced the quality factor, a measure of a mechanical systems ability to store energy.

The dissipation is the inverse of the quality factor (1/Q) and is a measure of the rate at

which the resonator loses energy. It can be defined as the ratio between the energy lost

per cycle (∆U) and the energy within the system (U):

1

Q
=

1

2π

∆U

U
(2.26)
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Figure 2.5: Mode shapes of the first 9 modes of a circular membrane. The displacement,

z, of each mode has been scaled to lie in the range −1 ≤ z ≤ 1, and the red lines indicate

the positions of the nodal lines within the membrane.
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Dissipation mechanisms within a mechanical device can be classified as either intrinsic

(caused by processes within the structure) or extrinsic (due to the interaction of the

resonator with its surroundings). For a resonator subject to several damping mechanisms

(i, j, k, . . .) the overall dissipation in the system is the sum of the dissipation due to the

individual components (Q−1
i , Q−1

j , Q−1
k , . . .):

1

Q
=

1

Qi
+

1

Qj
+

1

Qk
+ · · · (2.27)

In the following sections the main dissipation mechanisms in nanomechanical systems

are introduced.

2.3.1 Extrinsic Mechanisms

Extrinsic losses arise from the interaction of a resonator with the surrounding environ-

ment. As the mechanical device is losing energy directly to its surroundings it is often

possible to control and reduce the amount of energy dissipated.

Gas Damping

For a resonator oscillating in an atmosphere of gas molecules energy will be lost through

collisions with individual molecules. The type of gas damping that occurs is controlled

by the pressure of gas present. The molecular regime is observed in a low pressure

environment where the mean-free path of a gas molecule is far larger than the device

dimensions. In this case the energy lost through gas collisions is given by:

1

Qgas
=

pA

meffω0v
(2.28)

where p is the pressure around the resonator, A and meff are the surface area and

effective mass of the resonator respectively, and v =
√
kBT/m is the thermal velocity of

the gas molecules (with mass m) [8]. As the pressure surrounding the resonator increases

the damping moves from the molecular to the viscous damping regime where Q−1
gas ∝

√
p.
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At a low pressure the dissipation due to gas damping will vary linearly with pressure,

up to a crossover pressure (where the mean free path of the molecules is equal to the

sound wavelength in the gas) above which there is a p1/2 dependence. To minimize the

effects of gas damping experiments are normally carried out under vacuum.

Clamping Losses

Energy can be lost through acoustic waves propagating into the the substrate. For

a doubly-clamped beam it has been shown that dissipation due to clamping losses is

related to the length of the beam, l and the thickness, t by [28]:

1

Qcl
∝ t4

l5
(2.29)

from which it is clear that the dissipation in a doubly-clamped beam due to clamping

losses will increase with aspect ratio (t/l), so as the frequency of a device increases so too

will the dissipation due to clamping losses [28]. It is interesting to note that as clamping

loss is a temperature independent process it will impose an ultimate limit on the quality

factor of a resonator at low temperatures.

In membranes the energy lost into the supporting structure has been shown to be

strongly influenced by mode shape. In work on rectangular and circular membranes

carried out on membranes made of high-stress silicon nitride [29–31], classes of high-Q

modes have been observed. The square membrane modes of index (n, n)|n>1 and the

circular membrane modes of index (n, 1)|n>1 show increased quality factors compared to

nearby modes. These high-Q modes are composed of nodes intersecting the perimeter

at equally spaced points. In this configuration the equivalent segments of the membrane

are able to destructively interfere, cancelling out the elastic waves that are radiated into

the supporting structure thereby reducing clamping losses.

Transducer Damping

The act of measuring the nanomechanical displacements of a device will influence the

motion, damping the resonator. In an optical detection scheme this damping can arise
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in two ways: through heating of the resonator by the optical spot and through optical

forces associated with the optical cavity acting upon the resonator (which are discussed

in Chapter 3), but in order to minimize these optical effects the smallest possible optical

power should be used.

2.3.2 Intrinsic Mechanisms

Intrinsic dissipation mechanisms are specific to the material from which the resonator is

fabricated and as such are difficult to influence.

Thermoelastic Damping

The motion of a nanomechanical resonator will introduce temperature gradients across

the resonator, and consequently there will be a flow of heat from hot to cold regions. In

order to relax back to an equilibrium temperature the resonator will couple to thermal

modes of the surrounding environment. This results in a temperature dependent dissi-

pation process, the effects of which can be eliminated by carrying out measurements at

low temperatures (T < 2 K) [20].

Surface Effects

As the dimensions of nanomechanical devices decrease there is a corresponding increase

in the surface area to volume ratio of the devices along with a decrease of quality factors

[8]. This suggests that losses due to surface effects caused by dangling bonds, oxide layers

or water layers that are able to behave as two-level systems at low-temperatures. These

losses can be reduced (but not eliminated) using surface treatments such as annealing

and passivation using thiol monolayers [20].

Two-Level Systems

Two-level systems (TLS) refer to the way in which dissipation due to defects within solids

are described using a double well potential [20, 22]. These defects arise from dislocations,
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Δ0

Δ

v

d

Figure 2.6: The double well potential used to describe defects in a solid at low tempera-

tures when only the lowest energy levels are occupied. ∆ is the asymmetry between two

wells separated by a distance d. The barrier between the wells has height v and requires

a tunnelling energy of ∆0 to cross. At low temperatures only the lowest two eigenmodes

of the wells will be occupied.

contaminants and dangling bonds and have the biggest influence on the dissipation at

low temperatures, where the lowest eigenstates of the double well potential are occupied.

The double well potential is shown in figure 2.6 and is described in terms of a poten-

tial, ∆, characterising the asymmetry between the wells and the tunnelling energy, ∆0.

In the Standard Tunnelling Model (STM) it is assumed that these TLS have a broad

distribution of energies and relaxation times able to couple to their environment and

lose energy [20]. This coupling occurs by either resonant or relaxation absorption. For a

mechanical resonator vibrating at a frequency of ω the behaviour of the TLS will depend

on the ratio of ~ω
kBT

. When ~ω
kBT
≥ 1 a transition from the ground to the excited state of

the TLS will occur, with phonons being resonantly absorbed by TLS with the correct

energy splittings.

For ~ω
kBT

� 1 the TLS are likely to be in their ground state and the resonant ab-

sorption (and contribution to damping) should be minimal, however in a number of
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measurements made in this regime a temperature dependent dissipation and frequency

shift has been observed [20, 21, 32, 33]. In this regime the anelasticity of the system

allows the out of phase strain field to couple to the TLS, modifying ∆ or ∆0. In order

for these TLS to relax back into equilibrium they are able to absorb and emit phonons,

resulting in dissipation and a shift in the resonant frequency.

The STM has been used to analyse dissipation in a number of nanomechanical sys-

tems with varying success, however as it was developed to describe the behaviour of bulk

amorphous solids it does not take into account the dimensionality present in nanome-

chanical devices. It also cannot differentiate between TLS present on the surface or

within the bulk, it is therefore necessary to know where the TLS lie within the device.

2.4 Review of Measurements in Silicon Nitride Systems

Silicon nitride is an amorphous solid grown on silicon substrates by chemical vapor

deposition. It has been widely used in micro-mechanical systems and is the material

from which a large number of AFM cantilevers are fabricated. Through careful control

of the deposition parameters it is possible to modify the intrinsic stress within the silicon

nitride layer. This pre-stressing has led to the fabrication of a number of devices with

quality factors in excess of 106 [29–31, 33, 34]. In the following section previous work on

dissipation in mechanical systems of high-stress silicon nitride are reviewed.

2.4.1 Dissipation in Doubly-Clamped Beams

The doubly clamped beam is the simplest form of device that can be fabricated from

high-stress silicon nitride. A recent study by Unterreithmeier et al. [35] measured the

dissipation in a family of doubly clamped beams of silicon nitride with length 35/n µm

(where n = 1, . . . , 7), width 200 nm and thickness 100 nm, an example of which are

shown in figure 2.7(a). Devices were actuated using the gradient field technique (in-

troduced in Section 1.2.2), with motion detected via optical interferometry. Harmonics

with frequencies of up to 80 MHz were detected, the results of which are shown in figure
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Figure 2.7: (a) SEM image of a typical high-stress silicon nitride doubly-clamped beam

along with the electrodes used to dielectrically actuate the resonator. (b) Mechanical

quality factor as a function of frequency for the harmonics of a family of high-stress silicon

nitride doubly clamped beams (width 200 nm, thickness 100 nm and length 35/n µm

(where n = 1, . . . , 7)) with frequencies below 80 MHz. Figures reproduced from [35].

2.7(b).

As the mode number increases there is a decrease in quality factor, and as the

resonator length decreases so too does the quality factor of the lowest mode. This

behaviour can be understood in terms of the way in which energy dissipates in an

anelastic solid. As the beam oscillates under the influence of a periodic external force the

stress and strain fields induced within the resonator are not in phase. This is described

using a complex Young’s modulus, E = E1 + iE2 where E2 is the loss modulus. In this

case some of the energy supplied to the resonator via the stress field is unable to couple

to the strain field which results in this energy being converted to heat and lost.

The quality factor is related to the energy stored within the beam, Un,m (dominated

by the displacement induced elongation energy in a stressed beam) and the energy

lost in an oscillation cycle, ∆Un,m (proportional to the bending energy) through Q =

2πUn,m/∆Un,m [35]. In a stressed beam it is the elongation energy that is more strongly

influenced by the stress than the the bending energy. This stronger relation between

stress and elongation energy predicts a near linear increase in quality factor with stress

[35].
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This influence of bending loss on quality factor is also evident in the modal de-

pendence of the quality factor. As the number of nodes within a doubly-clamped beam

increases, so too does the bending energy, while the beam elongation will remain roughly

constant, leading to a decrease in the quality factor. A decrease in overall beam length

has a similar influence on the quality factor, as the length of the beam decreases, so too

does the elongation energy, while the bending energy remains roughly constant [35].

2.4.2 Dissipation in Membranes

Nanomechanical devices fabricated from high-stress silicon nitride (σ = 1.0 − 1.2 GPa)

grown by low-pressure chemical vapor deposition (LPCVD) were studied by Southworth

et al. [33]. Using standard nanofabrication processes (which are described in section

4.5.1) square membranes with sides of length 255 µm along with ∼ 5 µm long cantilevers

with thicknesses of 30 nm were fabricated and their motion detected using the optical sys-

tem described in section 3.1.3. The dissipation at a range of temperatures was measured

and is shown in figure 2.9 alongside comparable data for single crystal silicon and a-SiO2.

A plateau region in the dissipation of values between 1.5 × 10−4 ≤ Q−1 ≤ 1.5 × 10−3

(as indicated by the blue line and bar in figure 2.9) is expected for amorphous solids

at temperatures between 0.1 and 10 K, however in the measurements made by South-

worth et al. high-stress silicon nitride showed a dissipation 3 orders of magnitude less

than that of a-SiO2. Comparison with the dissipation seen in cantilevers (where the

initial stress has been relieved) reveals a dissipation closer to that expected for a-SiO2

(although still around an order of magnitude lower than expected) suggesting that this

decrease in dissipation is due to the increased stress.

For a glass in this plateau region (occurring between 0.1 and 10 K) the dissipation

can be described using the standard tunnelling model which models the effect of de-

fects within the solid such as dislocations, contaminations or dangling bonds upon the

dissipation. Using this model the dissipation of the solid in the plateau is described by:
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m

Figure 2.8: High-stress silicon nitride membranes and cantilevers measured in the work

by Southworth et al.. Figure reproduced from [33].

1

Q
=
π

2
C =

π

2

P̄ γ2

ρc2
(2.30)

where P̄ is the spectral density of the tunnelling states, γ is the coupling energy of

the tunnelling states, ρ the density of the material and c is the speed of sound. The

difference in dissipation between the stressed (membrane) and unstressed (cantilever)

silicon nitride is believed to be due to a modification of either the spectral density or

coupling energy of the states by the stress. The tunnelling states are expected to reside

on internal surfaces within the solid and it appears that the stress within the nitride

introduced a strain that was sufficient to alter the asymmetry of the tunnelling states,

decreasing dissipation [33].

In addition to studying material loss of high-stress silicon nitride work has also been

done to study the modal dependence of energy loss in high-stress membranes [29–31] at

room temperature. Wilson-Rae et al. [29] studied the modal dependence in high-stress

silicon nitride membranes with both rectangular (sides of length 253.2 µm) and circular

(diameters from 14.5 to 400 µm) geometries.

As mentioned earlier the clamping loss within a membrane is strongly influenced by

mode shape, with classes of high-Q modes identified for rectangular (L = 253.2 µm)

and circular membranes ((m,n)|m,n>1 with m ∼ n for a square [31] and (n, 1)|n>1 for

a circular membrane [29, 30]). The common feature of these high-Q modes is their

symmetry, with nodes intersecting the perimeter at evenly spaced points, resulting in
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Figure 2.9: Temperature dependent dissipation measurements for high-stress silicon ni-

tride membranes and stress relieved silicon nitride cantilevers. Also presented is com-

parable dissipation data for single crystal silicon and a-SiO2. Figure reproduced from

[33].

the membrane being divided into segments of equal size for which the elastic waves

produced within the segments are able to destructively interfere which limits the energy

lost into the supporting structure.

The dissipation measured as a function of frequency at room temperature for both

membrane geometries is shown by the red plots in figure 2.10. For the rectangular

membrane (L = 253.2 µm) quality factors of ∼ 5× 105 − 1× 106 were measured, while

for the circular (D = 14.5 µm) membrane quality factors of ∼ 1 × 104 − 1 × 105 were

observed.
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Figure 2.10: (a) Dissipation as a function of frequency at room temperature for a square

membrane with sides of length 253.2 µm and thickness 12.5 nm. (b) Idem for a 14.5 µm

diameter, 110 nm thick high-stress silicon nitride drum resonator. In both graphs the

measured data (with an error of 10 %) is shown in red, a least squares fit to theoretical

model in blue and the dissipation without the offset due to clamping losses is shown in

green. Figure reproduced from [29].

The dissipation dependence within the membrane was modelled as the sum of two

dissipation contributions, a frequency dependent contribution due to clamping loss and

a frequency independent component due to material losses within the membrane. In

calculating the losses due to the supporting structure the membrane was assumed to

be in the “high-stress” regime, where t2/D2 � σ/ER � 1 and energy loss through the

supporting structure was evaluated by looking at the overlap in frequency between the

membrane and the plane wave eigenmodes (longitudinal, transverse in-plane and surface

waves) within the support structure. Using this approach Wilson-Rae et al. were able

to predict the existence of the high-Q modes observed, as shown by the least squares

fit indicated by the green plots in figure 2.10, where the intrinsic dissipation 1/Qint has

been left as a fit parameter [29]. Fitting to this model allowed Wilson-Rae et al. to

extract values for the intrinsic dissipation of 8.5 × 10−7 and 4.6 × 10−5 for the square

and 14.5 µm diameter drum respectively. The difference in magnitudes of these quality

factors is most likely due to the dimensions of the membranes, as the square membrane
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was far larger than the circular membrane.

Measurements made by Wilson-Rae et al. suggest that the size of a membrane can

have a large influence upon dissipation. To investigate this further Adiga et al. [30] at

Cornell (again working with Wilson-Rae of TUM) performed further room temperature

measurements on a number of circular membranes of high-stress silicon nitride with

diameters ranging from 50 µm up to 400 µm. These measurements were performed under

vacuum (3× 10−7 Torr) and were designed to investigate whether the dissipation trends

seen in other work [29, 31] were frequency or mode shape dependent. Measurements of

a 400 µm (t = 27 nm) diameter membrane are shown in figure 2.11(a), where the modes

have been grouped into radial families (same m index). The mode frequencies follow

equation 2.24, which indicates that the membrane is stress dominated, with a phase

velocity of ∼ 540 ms−1. As the number of azimuthal node lines increases the resonators

display a decrease in dissipation, tending towards a dissipation floor of ∼ 5× 10−7 and

a decreased dependence of the dissipation on the mode shape.

Similar behaviour is observed for the purely radial modes (m = 1, 2, 3, . . ., n = 0) for

which the dissipation tends towards a dissipation floor of ∼ 2× 10−6. For higher order

radial modes (m ≥ 3) the modal dependence of the dissipation was also seen to drop off

rapidly as the number of azimuthal node lines increase.

In figure 2.11(b) the effect of membrane size is explored, with dissipation as a func-

tion of frequency for membranes of 50, 150, 300, and 400 µm in diameter plotted. The

dissipation of the fundamental modes of the membranes (n = 0, m = 1) show a dissi-

pation which appears to be independent of mode diameter. As mode numbers increase

the resonators tend towards a dissipation floor dependent on both size and frequency

with fQ and D/Q both constant. The solid line in figure 2.11(b) indicates an fQ floor

corresponding to 10 THz, to which the higher order modes appear to tend.

Another interesting feature of figure 2.11(b) is the behaviour of the membranes as

the number of radial nodes increase. For a larger membrane (d = 400 µm) the dissi-

pation shows a strong modal dependence, with dissipation decreasing as the number of
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(a) (b)

Figure 2.11: (a) Modal dependence on dissipation for 400 µm diameter circular mem-

branes of 27 nm thick high-stress silicon nitride at room temperature for radial mode

families. The lines are spline fits used as guides to the eye. (b) Dissipation and resonant

frequency for a range of different diameter circular membranes at room temperature.

The straight line indicates a dissipation floor corresponding to an fQ product of 10

THz. Figures reproduced from [30].
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azimuthal nodes increase. For the smaller membrane (d = 50 µm) the opposite is true,

with the dissipation increasing with the number of azimuthal nodes, suggesting that

there is a dissipation floor for higher order azimuthal modes that is strongly dependent

on membrane diameter. In the work of Yu et al. [31] the losses were attributed to the

local curvature of the membrane, a smaller membrane would experience an increased

curvature, leading to an increase in the dissipation. This was also observed by Unter-

reithmeier et al. [35] in measurements of doubly-clamped beams of high-stress silicon

nitride where quality factor decreased with beam length.

Measurements of commercially available 50 nm thick membranes of high-stress silicon

nitride (σ ∼ 0.9 GPa) at room temperature were made by Yu et al.. Measurements of

membranes of size 0.5 mm × 0.5 mm and 1.0 mm × 1.0 mm were made for which the

same class of high-Q modes were observed with symmetric material loss limited modes

and asymmetric radiation loss limited modes.

Having identified the high-Q modes within the membrane Yu et al. then deposited

a 50 nm thick film of Al onto the membrane. Figure 2.12(a) shows the dissipation

measured before (green circles) and after (blue squares) the Al film was deposited. This

resulted in a decrease in not only the resonant frequency of the modes (f1,1 decreased

from 410 to 260 kHz) but also the maximum Q of the membrane from ∼ 5 × 107 to

2 × 105. Using data from the pure silicon nitride measurements the modes that were

material loss limited (indicated by filled markers in figure 2.12(a)) were identified.

The membrane can be modelled as an anelastic material dissipating energy under

cyclic loading. When oscillating, the stress and strain within the membrane are out of

phase with one another and the energy supplied by the stress will convert to heat and

be lost. In Yu’s model the membrane is analysed as a plate acting under the influence of

an in-plane force, with mode shape approximated as the product of two stressed beam

functions. This gives a mode shape nearly sinusoidal in nature with a correction at the

membrane edge to satisfy the boundary conditions.

The anelasticity of the plate is described in terms of oscillating strains introduced
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(a) (b)

Figure 2.12: (a) Measured quality factors at room temperature for a 1.0 mm × 1.0 mm

high-stress square silicon nitride membrane before (green circles) and after (blue squares)

a 50 nm thick layer of Al is deposited. Radiation loss limited modes are indicated

by open markers, while filled markers indicate the material loss limited modes. (b)

Measured quality factors at room temperature for a membrane completely covered with

Al (red) and with Al only in the centre of the membrane (blue). Open markers indicate

asymmetric modes (where one mode index is less than or equal to 2) and the line shows

the calculated quality factor for each geometry. Measurements made at 300 K. Figures

reproduced from [31].
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by the plate motion, which make it possible to determine a quality factor for each of the

vibrational modes of the membrane. Taking a complex Young’s modulus, E = E1 + iE2,

where the losses in the membrane are described by the loss modulus, E2, an effective

value for the loss modulus of the SiN/Al bilayer of E2 = 0.55 GPa was determined by a

least squares fit. The value obtained is in good agreement with typical values obtained

for thin-film polycrystalline Al.

The strain induced within the membrane (and consequently the energy loss per cycle)

is proportional to the curvature of the membrane to which there are two contributors,

the edge of the membrane and the region in the vicinity of membrane antinodes. If

the dominant contribution comes from the edge curvature there should be a flat Q

dependence with frequency, if on the other hand the curvature around antinodes were

dominant then as the frequency (and the number of antinodes) increases there should be

an associated decrease in Q. A large membrane displays a fairly flat Q-dependence with

increasing frequency, indicating that the dominant loss contribution arises from bending

at the edge of the membrane. As membrane dimensions decrease however the antinode

contribution increases and a frequency dependent Q-factor is seen (as in the work by

Adiga et al. [30]).

Yu et al. were able to increase the quality factor of a 1 mm × 1 mm membrane

through selective application of an Al film to the membrane. An Al film was applied,

with a 50 µm wide uncoated border around the membrane edge. Figure 2.12(b) shows

the measured quality factors for a completely coated (red) and partially coated (blue)

membrane.

The solid line in figure 2.12 was obtained by assigning a finite loss to the Al coated

region and zero to the uncoated region around the perimeter. A least square fit yields

a loss modulus of E2 = 0.3 GPa, which when used to predict the behaviour of the

fully coated membrane gives the red dashed line which shows good agreement with the

measured quality factors of the higher modes. This ability to tune the membrane through

the selective application of metallic layers is of great interest in optomechanics and may

also provide a route to achieve ground-state cooling of MHz mechanical resonators, where
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the highest Q-factors possible are desirable.

2.5 Summary

In this chapter we have introduced the fundamentals of nanomechanics. In addition to

looking at the dynamics of resonant systems we have introduced two nanomechanical

geometries, the torsional resonator and the stressed membrane, looking at their mechan-

ical modes of oscillation. In reviewing recent studies of dissipation in high-stress silicon

nitride mechanical systems we have seen that the addition of stress results in far higher

quality factors than are observed in low-stress counterparts.





Chapter 3

Optical Detection of

Nanomechanical Motion

Nanomechanical systems have displacements of order 1 nm in magnitude, as we shall see

later this makes the wavelength of light an ideal tool for their measurement. This chapter

will describe how optical techniques can be used in the measurement of micro- and nano-

mechanical systems as well as reviewing previous work by other groups that informed

the decision to design and construct a low-finesse Fabry-Perot fibre interferometer.

Before we begin it is useful to define what is meant when we describe a system

as free-space as opposed to fibre based; Free-space systems rely on separate optical

components (beam-splitters, objective lenses, mirrors) precisely aligned and susceptible

to perturbations of the optical path. A fibre-based system relaxes these requirements

and makes it possible to guide the beam to and from the mechanical element in a single

fibre optic without worrying about the misalignment of optical components or changes

in path lengths. This is particularly advantageous when the mechanical device is located

in the cryogenic and UHV environment found at the bottom of a dilution refrigerator.

Many of the interferometers discussed in this chapter use a fibre to direct light to the

device, however in this thesis when we say an interferometer is fibre based we require

that a fibre coupler has been used in place of a beam splitter.
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We start by describing and analysing the operating principles of the two main types of

interferometer used in the optical measurement of nanomechanical devices, the Michelson

and Fabry-Perot interferometers, before expanding the Fabry-Perot to include multiple

layers and looking at how we can design devices with as large a responsivity as possible.

Several systems used in the study of nanomechanical devices are then reviewed and the

ways in which the sensitivity and operating modes have been modified to allow a wider

range of devices to be measured will be discussed.

3.1 Optical Interferometry

An interferometer measures changes in path length by interfering two or more coherent

beams of light. As the phase of the interfering beams varies a series of interference

fringes are formed. In work by Karabacak et al. [36] interferometers used to detect

nanomechanical motion are classified in two ways, the Michelson interferometer, shown

in figure 3.1(a), which interferes light reflected from the resonator with a reference beam

and the Fabry-Perot type, shown in figure 3.1(b), where a cavity (of which the NEMS

is part) is formed. Mechanical motion modulates the reflectivity of this cavity, with the

displacement measured by monitoring variations in the reflected optical power.

For an interferometer the contrast between adjacent fringes, known as the visibility

is defined in terms of the maximum (Imax) and minimum (Imin) detected intensity as

V =
Imax − Imin
Imax + Imin

(3.1)

the fringe visibility of the interferometer, which takes a value between 0 and 1, provides

a measure of how sensitive the interferometer is to changes in the path lengths [37].

In order to produce fringes the interfering light must have a spatial coherence, with a

phase correlation existing between the interfering beams. There are two types of spatial

coherence, longitudinal coherence, which relates to the spectral purity of a source and

lateral coherence, related to the size of the source [37].



CHAPTER 3. Optical Detection of Nanomechanical Motion 44

Figure 3.1: Diagram showing the two most common interferometric schemes employed

in the optical detection of nanomechanical motion. (a) A Michelson interferometer and

(b) A Fabry-Perot interferometer. Figure reproduced from [36].

In interferometry the most important type of coherence is longitudinal coherence,

for which the coherence length, lc, for a source of wavelength λ is related to the spectral

width (δλ) by [37]

lc =
λ2

δλ
(3.2)

As the spectral purity of a source increases so too does the coherence length. As

an example a highly monochromatic source such as a HeNe laser will have a coherence

length of 30 cm 1, while for a broadband source such as an LED this will be ∼ 50 µm 2.

The strength of interference between two coherent beams (E1 and E2) of light is then

proportional to the correlation function

|γ12| =


1− ∆l

lc
for ∆l < lc

0 otherwise

(3.3)

where ∆l is the difference between the path lengths [37]. From these relations three

1Typical coherence length specified for a Thorlabs 633 nm HeNe laser.
2For a typical red LED (Thorlabs part no. LED631E) where λ = 633 nm, δλ = 10 nm and lc = 40 µm.
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regimes3 can be identified:

1. Complete incoherence where l > lc, |γ12| = 0 and V = 0; Path difference is

greater than the coherence length meaning beams are incoherent and amplitudes

of beams sum incoherently - no fringes visible.

2. Partial coherence where 0 < l < lc, 0 < |γ12| < 1 and 0 < V < 1; Path difference

less than coherence length, meaning beams will interfere - fringes visible. Contrast

decreases as path difference increases.

3. Complete coherence where l = 0, |γ12| = 1 and V = 1; No path difference, so

interfering light is completely in phase.

The regime within which an interferometer operates is where the light is partially

coherent and as the path difference increases there is a decrease in the fringe contrast to

the point where ∆l = lc and interference fringes are no longer visible i.e. V = 0. In the

following sections we will see how the property of coherence influences the operation of

an interferometer.

3.1.1 Michelson Interferometry

The Michelson interferometer, shown in figure 3.2, is a simple and versatile arrangement

first introduced by Albert Michelson in 1881 [37]. Figure 3.2 shows the typical Michelson

arrangement. Light from a collimated optical source is split between the two arms by a

beam splitter. In the reference arm mirror M1 is positioned at a fixed distance, z1. The

measurement arm contains a second mirror, M2, the position of which, z2, can be varied.

The reflected light in both arms is recombined at the beam splitter where, provided it

is coherent, constructive or destructive interference can occur.

The behaviour of the interferometer can be described mathematically by looking at

the electric fields (the magnitude of which is the square root of the optical intensity) of

3Visibility calculated for the case where the interfering beams have equal amplitude. See section

3.1.1.
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Figure 3.2: The optical arrangement of a typical Michelson interferometer.

the light in both arms. If light of intensity I0 is injected into the interferometer then the

E-field will be E0 =
√
I0e

iωt with light returning from each arm of the interferometer

given by:

E1 =
√
I1e

i(ωt−2kz1)

E2 =
√
I2e

i(ωt−2kz2)
(3.4)

where k = 2π/λ is the wavenumber and I1 + I2 = I0. Upon recombining at the beam

splitter (where the beam is again split) the intensity at the photodetector, IPD, is

IPD = 1
2 |E1 + E2|2

= 1
2

[
I1 + I2 +

√
I1I2

(
ei(2k(z1−z2)) + e−i(2k(z1−z2))

)]
= 1

2

[
I1 + I2 + 2

√
I1I2 cos (2k(z1 − z2))

]
= I1+I2

2

[
1 + 2

√
I1I2

I1+I2
cos (2k(z1 − z2))

] (3.5)

From this we see that the intensity of light at the photodetector is dependent on the

difference in path length between the reference and measurement arms of the interfer-

ometer, ∆Z = z1 − z2, which will introduce a phase difference between the two beams
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Figure 3.3: Optical intensity at photodetector for a Michelson interferometer as a func-

tion of difference in arm length. The amount of light in each arm is varied between

plots, with I1 + I2 = I0. The blue circles indicate the positions of highest sensivity for

the interferometer.

of interfering light, φ = 2k∆Z. Figure 3.3 shows the reflected optical power for several

amplitudes of light in each arm as the difference in path length is varied.

In equation 3.5 the response of the interferometer has two parts, an incoherent con-

tribution equal to one half the sum of intensities in the two arms ((I1 + I2)/2) and a

coherent contribution where light in the two arms interferes (2
√
I1I2 cosφ). The strength

of the interference is influenced by |γ12|, which allows the intensity at the photodetector

to be rewritten as [37]:

IPD =
I1 + I2

2

[
1 + 2|γ12|

√
I1I2

I1 + I2
cos (2k∆z)

]
(3.6)

The fringe visibility of the interferometer, defined in equation 3.1, is a measure of

the sensitivity of the interferometer to changes in the arm lengths. Equation 3.6 allows
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expressions for Imax and Imin to be written:

Imax = I1+I2
2

[
1 + 2|γ12|

√
I1I2

I1+I2

]
Imin = I1+I2

2

[
1− 2|γ12|

√
I1I2

I1+I2

] (3.7)

from which we can rewrite the visibility as

V =
2|γ12|

√
I1I2

I1 + I2
(3.8)

recalling from equation 3.3 that as the difference in path length increases we see a

decrease in the degree of coherence between the two arms and consequently a decrease

in fringe contrast. Using equation 3.8 the optical intensity at the photodetector (equation

3.6) can be rewritten as

IPD =
I0

2
(1 + V cos(2k∆Z)) (3.9)

Having described the detected optical intensity at the photodetector we turn our

attention to the conversion of this from a change in optical power to a displacement.

The responsivity (R) of the interferometer is the rate of change of IPD with arm length

i.e. the gradient of the curve in figure 3.3 [38]. Differentiating equation 3.9 gives

R = −kV I0 sin(2k∆Z) (3.10)

From which it is clear that the responsivity is dependent on three factors, (i) the

intensity of light injected into the interferometer, I0, (ii) the visibility of the fringes,

V and (iii) the initial path difference from which the displacement is measured, ∆Z.

Increasing the total optical power injected into the system leads to a linear increase in

responsivity. Similarly the arrangement where I1 = I2 with the interferometer arms as

close in length as possible should be used to give the largest possible visibility, V = 1.

If the displacement to be measured oscillates about an equilibrium position, ∆Z, with

an amplitude of z0, then for maximum responsivity ∆Z should be chosen such that the

interferometer lies where the gradient of the response curve in figure 3.3 is at a maximum
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(sin 2k∆Z = 0), as indicated by the blue circles. This corresponds to a difference in arm

length of ∆Z = ±(2m + 1)λ/8 (with m = 0, 1, 2, . . .). At this position and for small

displacements (where sin z0 ∼ z0) the change in optical power due to the motion of

the resonator will be linear with oscillation amplitude (z0), and the responsivity of the

system is then

R = kV I0 (3.11)

To ensure that the interferometer has maximum responsivity path-stabilized Michel-

son interferometry is often used. The reference mirror is mounted upon a piezoelectric

actuator connected to a PID loop. The response of the mechanical resonator produces

a high frequency (> 5 kHz) modulation of the signal at the photodetector, by moni-

toring the low frequency components using the PID loop z1 can be controlled via the

piezoelectric actuator to hold the responsivity of the interferometer at a maximum [39].

A path-stabilised Michelson interferometer was used by Kouh et al. [38] in the

measurement of doubly-clamped beams of silicon with a 40 nm thick layer of Cr to allow

electrostatic actuation of the devices. The experimental setup used in the measurements

is shown in figure 3.4.

Light from a HeNe laser (with λ = 632 nm), was passed through a beamsplitter

and focussed down onto the device using a 50x objective lens with a numerical aperture

of 0.5 to produce a spot with a FWHM diameter of ∼ 1 µm. In order to explore the

suitability of a Michelson interferometer in the detection of nanomechanical motion a

range of devices with identical lengths and thicknesses, l = 6.4 µm and t = 219 nm but

varying widths, w =1200, 600, 250 and 170 nm were measured. The substrate behind the

nanomechanical resonator introduces a cavity, formed between the device and substrate.

As such the responsivity of the interferometer, Rm+c, will be the sum of the Michelson

responsivity, Rm and the cavity responsivity Rc [38].

The responsivity of the Michelson interferometer, Rm, was calculated by subtracting

the cavity responsivity (measured separately) from the total responsivity for the inter-
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(a)

(b)

(c)

Figure 3.4: (a) Optical setup of the path-stabilized Michelson interferometer used by

Kouh et al. in the measurement of doubly clamped silicon beams. The interferometer

comprises a beam splitter (BS), objective lens (OL), reference mirror (RM) and a pho-

todetector (PD). (b) Displacement responsivity, Rm measured (points) and modelled

(line) as a function of device width, with an inset showing the frequency response for a

l × w × t = 8.5 × 0.9 × 0.219 µm3 doubly clamped beam. (c) Displacement sensitivity

per unit bandwidth,
√
Sz, as a function of device width. Figures reproduced from [38]

ferometer, the results for which are shown in figure 3.4(b). This subtraction is equivalent

to the removal of the substrate from behind the device and allowed a numerical model

to be used to generate the solid line in figure 3.4(b).

There was a decrease in Rm with device width due to a decrease in the amount of light

reflected from the device, leading to an increased mismatch in the optical power in each

arm, degrading the visibility and consequently the responsivity of the interferometer.

The plateau visible for larger widths occurs when the optical spot diameter is smaller

than the device width, at this point any increase in the width of the device does not



CHAPTER 3. Optical Detection of Nanomechanical Motion 51

affect the amount of light reflected from the device and consequently the responsivity

will remain constant.

In figure 3.4(c) we see the effect of device width on the sensitivity per unit bandwidth

of the interferometer, defined by the relation

Sz ≈
√
SI

Rm(w)
(3.12)

where
√
SI is the dominant noise source within the interferometer, which in this case

is the current noise within the amplifier,
√
SI = 7 pA/

√
Hz, resulting in a decrease in

interferometer sensitivity with responsivity [38].

The work by Kouh et al. illustrates that as device dimensions decrease so too does

the ability of a Michelson arrangement to measure these displacements. In the same

work by Kouh et al. [38] measurements were also made using a cavity arrangement which

showed that smaller devices were able to better couple to the optical field within a cavity.

This degradation in sensitivity and increase in cavity effects with device size makes the

Michelson arrangement poorly suited to the measurement of nanomechanical devices

and led to the decision to use an optical cavity to detect mechanical displacements.

While the Michelson interferometer may not be suited to measurements of high-

aspect ratio nanomechanical structures where a length scale of the devices under study

are smaller than the wavelength of the light, they have been successfully applied to the

measurement of nanomechanical membranes with large (> 10 µm) lateral dimensions

and thicknesses on the nanometre scale. Of particular interest are the measurements

made by Yu et al. [31] of dissipation in a high-stress silicon nitride membrane that were

introduced in Chapter 2.

3.1.2 Fabry-Perot Interferometry

One of the best known optical cavities is the Fabry-Perot interferometer which is made

up of two plane parallel plates between which the optical cavity is formed. While the

Michelson interferometer only interferes two beams of light, the Fabry-Perot interferes

the multiple reflections that occur within a cavity. A standing wave is set up within the
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cavity which results in a reflectivity that is strongly dependent upon the ratio of cavity

length to wavelength [37].

As with the Michelson interferometer we will begin by analysing the behaviour of

the cavity mathematically, calculating the reflectivity, R = Ir/I0 for the arrangement

shown in figure 3.5.

E0

Er1 Er2 Er3
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θ
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Figure 3.5: Multiply reflected rays beams in a cavity formed between two surfaces of

different refractive indices. Figure adapted from [37].

Light incident upon the interface between two media of different refractive indices will

undergo reflection and transmission, the magnitude of which is defined by the reflection

and transmission coefficients (r and t respectively). Using these coefficients it is possible

to quantify the successive reflections taking place within a cavity [37]:

Er1 = E0r1e
iωt

Er2 = E0t1t
′
1r2e

i(ωt−δ)

Er3 = E0t1t
′
1r
′
1r

2
2e
i(ωt−δ)

(3.13)

where δ = 2kn1L cos θ′ is the phase difference between successive reflections. A general

form for the mth (for m ≥ 2) reflection can then be written as

Erm = E0t1t
′
1r
m−2
1 rm−1

2 ei(ωt−(m−1)δ) (3.14)
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The total reflected light is the sum of the reflected beams which using this general

form can be written as [37, 40]:

Er = E0e
iωt
[
r1 + t1t

′
1r2e

−iδ∑∞
m=2(r′1r2e

−iδ)m−2
]

= E0e
iωt
[
r1 +

t1t′1r2e
−iδ

1−r′1r2e−iδ

] (3.15)

and using Stokes’ relations, r1 = −r′1 and t1t
′
1 = 1− r2

1 [37] simplified to

Er = E0e
iωt

[
r1 + r2e

−iδ

1 + r1r2e−iδ

]
(3.16)

The reflected irradiance of the cavity is the square of the E-field amplitude and from

this we obtain an expression for the reflectivity of the cavity:

Ir
I0

=
|Er|2

|E0|2
=

(r2
1 + r2

2) + 2r1r2 cos δ

(1 + r2
1r

2
2) + 2r1r2 cos δ

(3.17)

from which we see that the reflected optical power is dependent on the cavity length,

contained within δ. A mechanical resonator can be used to modulate the cavity length

and the motion detected via the change in the reflected optical power. Figure 3.6 shows

equation 3.17 evaluated as a function of cavity length for r2 = 0.8 with r1 varied from

0.2 to 0.8. Two figures of merit for the Fabry-Perot cavity are also shown, the fringe

visibility (defined using equation 3.1) and the cavity finesse, F :

F =
∆λ

δλ
(3.18)

which relates the spacing between (∆λ), and the full width half maximum, (δλ), of peaks

in the transmission spectrum4 and is a measure of both resolving power and how how

well the cavity is able to store the injected optical power. As the finesse increases the

sharp peaks typical of a Fabry-Perot cavity begin to appear, as can be seen from the

plot for r1 = 0.8 in figure 3.6.

4The transmission of the cavity, T = 1 −R
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Figure 3.6: Simulation of the reflectivity of a Fabry-Perot cavity as a function of cavity

length. The value of r2 is fixed at 0.8, while r1 takes a range of values.

When detecting a mechanical displacement that modifies the overall cavity length a

larger Finesse allows a smaller change in cavity length to be detected, with the maximum

gradient of the curves in figure 3.6 increasing with r1.

The plot of r1 = 0.2 shows the response of a low-finesse cavity, which more closely

resembles the two-beam interference seen in a Michelson interferometer. For the interface

between glass (n = 1.5) and air (n = 1.0) there will be a reflectivity of R = 0.04, by

including only the contributions from Ir1 and Ir2 we can approximate the cavity as a

two-beam interference. This is a reasonable approximation to make as the low reflectivity

at interface 1 means that after just one pass through the cavity 96 % of the light will

exit and higher order reflections can be ignored.

The response of a two-beam system is of the form R = R0 +Rsig cos 2δ [41, 42]. This

is shown in figure 3.7 and is analogous to the Michelson interferometer introduced in

section 3.1.1 with the 4 % of light reflected at the fibre interface providing a reference

beam that interferes with the light reflected from the mechanical element.
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approximation to it by the function R0 +Rsig cos 2δ.

As in the case of the Michelson interferometer in order to detect changes in the path

length introduced by the mechanical motion the light must be coherent and able to

interfere. At a minimum this requires that the coherence length be at least twice the

cavity length, however the initial path difference will decrease the correlation function,

|γ12|, and consequently the fringe visibility.

Having introduced the Fabry-Perot interferometer in both the high- and low-finesse

configurations we now turn our attention to how micro- and nano-mechanical resonators

can be incorporated into the cavity. There are three common ways in which this is

achieved, with a cavity formed between (i) the fibre and the top surface of a non-

transparent mechanical element, (ii) the fibre and the substrate with a semi-transparent

mechanical element positioned within the cavity, or (iii) within the layers of the mechan-

ical resonator itself, which will now be discussed.
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Multi-Layer Film Theory

In a nanomechanical resonator the separation between the mechanical element and the

substrate upon which the resonator is fabricated can be used to form an optical cavity.

As the resonator-substrate separation varies, so too does the reflected optical power.

This decrease in overall cavity length makes it possible to use light with a far shorter

coherence length, lc, reducing interference between defects within the optical system and

allowing the cavity length to be well defined within the device itself.

For a resonator designed to act as an optical cavity it is important that the substrate

be designed to give a resonator with maximum responsivity. For several layers of varying

refractive index a beam of light propagating through the device will experience successive

reflections and transmissions at the layer boundaries, the interference of which can be

described by a transfer matrix for the system which is defined using multi-layer film

theory.

Using the method described in [37] it is possible to use matrix algebra to calculate

the reflectivity of a multi-layer film stack. In this analysis it is assumed that the films

are both isotropic and homogeneous and that the beam size is large compared to any

lateral displacements (allowing the multiple reflections to be recaptured). To ensure

path differences are less than the coherence length of the light we also require that the

thickness of the individual layers be of the same order as the wavelength of the light,

ensuring that interfering beams are coherent.

A ray of light with wavelength λ incident at an angle of θ upon a medium of thickness

t and refractive index n will experience a phase shift, δ, after passing through the layer

of:

δ =
2π

λ
nt cos θ (3.19)

For coherent light the successive reflections occurring at the interfaces between dif-

ferent media can be summed coherently using a transfer matrix. The system studied in

this work for which we will calculate the reflectivity is shown in figure 3.8.
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Figure 3.8: Diagram used in the multi-layer film theory calculation described in this

section. Diagram adapted from [37], with values for refractive indices obtained from [43]

The magnitude of the E- and B-fields on either side of an interface (the yellow

boxes in figure 3.8) must be equal to ensure continuous tangential components across

the boundary. Using the relation B = E
ν =

(
n
c

)
E = n

√
ε0µ0E we can relate the E- and

B-fields to one another via the wave speed, ν, and refractive index of the media. This

allows the fields at one boundary to be related to the next by the relation:

 Ea

Ba

 =

 cos δ i sin δ
γ

iγ sin δ cos δ

  Eb

Bb



= M

 Eb

Bb


(3.20)

where M is referred to as the transfer matrix and γ = n
√
ε0µ0 cos θ0. The overall transfer

matrix for the system is then the product of the transfer matrices of the individual layers
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 Ea

Ba

 = M1M2M3 . . .MN

 EN

BN


 Ea

Ba

 = Mstack

 EN

BN


(3.21)

with the matrix elements of the transfer matrix describing the entire system labeled as:

Mstack =

 m11 m12

m21 m22

 (3.22)

which can then be used to calculate a value for the reflection coefficient, r = Er1/E0, of

r =
γ0m11 + γ0γsm12 −m21 − γsm22

γ0m11 + γ0γsm12 +m21 + γsm22
(3.23)

To maximize the interferometer responsivity the resonator is designed to give a large

change in reflectivity on resonance. By varying the thickness of the layers making up the

resonator and evaluating equation 3.23 we can determine a range of thicknesses where

we expect a large change in the reflected optical signal when the NEMS resonator is

displaced.

Taking values for the refractive indices of silicon nitride as n = 2.022 and silicon

as n = 3.882 [43] the reflectivity for a range of vacuum and silicon nitride thicknesses

for light (with λ = 633 nm) normal to the sample were calculated. Figure 3.9 shows

calculated reflectances for a range of film thicknesses, with the box indicating the starting

point for determining the thickness of dielectric layers to be deposited.

The reflectivity of four nitride thicknesses as a function of the vacuum gap thickness

are shown in figure 3.10. In order that the interferometer have maximum responsivity

a target nitride thickness after processing of 130 nm with a vacuum gap of 570 nm was

chosen. This allowed some tolerance in processing parameters while still giving a fairly
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Figure 3.9: Plot of the calculated reflectance at normal incidence of the multi-layer film

structure for a range of nitride and vacuum thicknesses at a wavelength of 633 nm. The

region enclosed by the dashed lines is the target range of film thicknesses.
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high sensitivity, with an expected reflectance after processing of 0.3 − 0.4. Full details

of the processing parameters and the substrates purchased are given in Chapter 4.

3.1.3 Review of Previous Work Using a Cavity to Detect Nanome-

chanical Motion

We now turn our attention to work previously carried out to detect mechanical motion

using an optical cavity, these will be divided into high- and low-finesse systems.

High-Finesse Cavities Used in the Detection of Mechanical Motion

In the previous section it was shown that as the value of r1 increased so too did the

finesse of the cavity. Experimentally this has been achieved by evaporating a thin layer

of gold onto the bare end of a fibre, as in the case of several micro- and nano-mechanical

systems [44–46], producing a higher finesse cavity with an increased responsivity.

Favero et al. [44] used this approach to optically cool a silicon micromirror. Light

from a diode laser (λ = 1.3 µm) was coupled into one input of a 2× 2 single mode fibre

coupler and directed to a cavity formed between the end of the fibre and a square silicon

micromirror (2.4 × 2.4 × 0.1 µm3) mounted on a cantilever. Light emerging from the

fibre (the polished face of which was coated with 32 nm of gold) was collimated and

focussed onto the mirror by a pair of lenses to produce a cavity with F = 5.85.

Measurements made at a pressure of 10−5 mbar and a temperature of 300 K are

shown in figure 3.11. Using an optical power of P1 = 18.5 µW a quality factor of

Q = 1059 was measured that was unrelated to the detuning of the cavity. For higher

optical powers (P2 = 320 µW and P3 = 530 µW) the power spectrum was found to

depend strongly on the cavity detuning, with the quality factor ranging from 20 to 1100.

For a tuned cavity a standing wave will form, with a node at both of the interfaces,

in this case the net flow of optical power into or out of the cavity is 0. If the cavity

length is changed (detuned), power will flow into or out of the mechanical element. The

direction of this power flow is defined by the direction in which the cavity is detuned,
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Figure 3.11: The lower plot in (a) shows the measured (black) and the modeled (red)

reflectivity from the cavity, along with markers indicating negative detuning (position

1) and positive detuning (position 2). The upper plot shows a simulation of reflectivity

of the cavity. (b) shows measurements of the thermal noise of the cantilever at negative

detuning (175 and 218 K) and positive tuning (470 and 885 K). The measurement at

300 K was made using a low optical power. Figure reproduced from [44].

for red detuning (position 1) power flows out of the resonator, resulting in cooling, while

for blue detuning (position 2) power flows into the resonator leading to heating (or

amplification) [47].

An effective temperature calculated from the Brownian motion of the cantilever

showed these detuning effects. For negative detuning (position 1 in figure 3.11(a)), the

cantilever was seen to cool, with effective temperatures of 218 K (P2) and 175 K (P3).

When positively detuned (position 2), heating was seen, with effective temperatures of

470 K (P2) and 885 K (P3).

This effective temperature change arises from the fact that an optical field incident

on a surface exerts a radiation pressure. For a low optical power this pressure is small

enough to be ignored, but as the optical power increases, so too does the magnitude of

this force. The optical field circulating within a high-finesse cavity is reinforced by the

multiple reflections, amplifying the force experienced by the micromirror. Detuning to

a position where the cavity lies on a slope of the reflectivity allows this force to modify
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the damping of the mirror, leading to the changes seen in the effective temperature of

the cantilever.

In a similar experiment Vogel et al. were able to optically tune the spring constant

of an AFM cantilever [46]. This is similar to the measurements made by Favero et al.,

but in this instance the cantilever is actively driven on resonance and the photoinduced

damping of the resonator analysed in terms of a change in the effective spring constant

of the system. A similar damping effect was also seen in work carried out on doubly-

clamped beams of high-stress silicon nitride measured by Unterreithmeier et al. [48] that

will be discussed in the following section.

Mulhern et al. [49] constructed a fibre displacement sensor where, to avoid the

complication of thermally evaporating gold onto the fibre a layered compound such

as NbSe2 or TiS2 was attached to the tip. These crystal layers are then cleaved by

repeatedly touching them to adhesive tape until laser light penetrates the layers, which

allowed sharp (if somewhat asymmetrical) fringes to be obtained.

Low-Finesse Cavities Used in the Detection of Mechanical Motion

One of the first uses of a fibre interferometer in the study of nanomechanics is the

system used by Azak et al. [16], the experimental setup shown in figure 3.12 was used

to measure the motion of doubly-clamped beams of silicon coated with a 10 nm thick

optically transparent layer of aluminium for electrostatic actuation. The cavity is formed

between the fibre and substrate, with the NEMS positioned between the two as shown

on the right hand side of figure 3.12.

Light from a diode laser (λ = 658 nm) was coupled into port 1 of a single mode fibre

coupler. This optical power was equally split across ports 3 and 4 of the coupler, with a

photodetector at port 3 monitoring the light incident on the sample. Light was directed

to the NEMS by the bare fibre at port 4 which was placed within 10 µm of the surface

(approximately 2 core diameters). Light incident on the nanomechanical beam and the

substrate was reflected and recaptured by the fibre. The motion of the mechanical
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displacement signal amplitude is roughly linear with the in-
cident laser power !Fig. 2"a# inset$. Figure 2"b# shows the
resonant response of the same beam measured at different
fiber-sample separations zFB !see Fig. 1"a# inset$. To deter-
mine zFB, we gently touch the fiber tip to the chip surface
"zFB=0#, and then calibrate against the interference fringes
formed between the light reflecting from the surface and the
fiber-air interface, as zFB is increased. We note that the con-
tact with the chip surface may sometimes contaminate the
cleaved fiber tip. The sign of a contamination is usually a
reduction in the optical signal.

In an effort to understand the limits of displacement de-
tection in this system, we have measured the optical spot

diameter d of the cleaved-fiber as a function of the distance
between the fiber tip and the probed surface. The measure-
ments are performed using an optical knife-edge technique13

on a photodetector with lithographically defined Cr patterns.
Figure 3 displays the spot diameter d as a function of the
separation zFB between the fiber tip and the photodetector.
The dashed line is a best fit to the Gaussian beam14 with
d"zFB#=d0!1+ "zFB/z0#2$1/2. The beam shape with the relevant
parameters is illustrated in the lower inset of Fig. 3. In the
fitting, the fiber mode diameter d0 and the Rayleigh range z0
are taken as fit parameters and are determined to be d0
%5.14 !m and z0%33.85 !m. For the fiber used, the manu-
facturer specifications are d0%4 !m and z0%20 !m. The
discrepancy may be due the deformation of the fiber during
the cleaving process. The upper inset of Fig. 3 shows the
displacement signal amplitude as a function of the optical
spot diameter. The data in Fig. 2"b# and the d vs zFB function
obtained from Fig. 3 "main# are used in generating the plot.
As the spot becomes larger, the displacement signal goes
down, indicating that it is advantageous to keep the fiber tip
close to the chip.

We now turn to a simplified analysis of the displacement
signal. First, due to Fresnel reflection,14 &4% of the optical
power arriving the cleaved end is reflected back into the

FIG. 1. "Color online# "a# Block diagram of the experimental setup. The inset shows a closeup of the fiber and the NEMS device. "b# SEM and "c#
fiber-scanned image of 500 nm wide doubly clamped beams. The field of view in both images is %30"30 !m2. Fiber-scanned image is obtained through a
raster scan with step sizes of 100 and 250 nm along the x and y axes, respectively. The slight disagreement in the y scales may be due to the drift in the
translation stage.

FIG. 2. "Color online# "a# Resonance of a NEMS beam with dimensions
"w"h" l# 360 nm"230 nm"8 !m, measured at varying laser power
level P0=1.25, 1, 0.75, 0.50, and 0.25 mW and constant zFB. The inset
shows the signal amplitude as a function of P0. "b# Same measurement at
constant P0=0.75 mW but varying fiber-beam distance zFB=1.5, 4, 6, and
10 !m. The inset is a plot of the signal amplitude as a function of zFB. The
dashed lines in both "a# and "b# are linear fits.

FIG. 3. "Color online# Optical spot "1/e2# diameter d measured as a func-
tion of the distance zFB between the cleaved end of the fiber and the surface
where the spot forms. The dashed line is a fit to d=d0!1+ "zFB/z0#2$1/2 with
d0%5.14 !m and z0%33.85 !m. The lower inset is an illustration of the
light exiting the fiber with the relevant parameters. The upper inset shows
the displacement signal amplitude as a function of the optical spot diameter
d.

093112-2 Azak et al. Appl. Phys. Lett. 91, 093112 !2007"

Downloaded 15 Sep 2008 to 150.244.54.104. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp

Figure 3.12: Experimental setup used by Azak et al.. 658 nm wavelength light from a

diode laser is coupled into a 3 dB coupler at port 1. The light is equally split across

ports 3 and 4. Light exiting port 3 is monitored via photodetector 1, allowing the

sample irradiance to be measured. Light exiting the bare fibre at port 4 is incident on

the nanomechanical device. Light reflected by the resonator is recaptured by the fibre

and the intensity of reflected light monitored using photodetector 2 at coupler port 2.

Image reproduced from [16]
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element within the cavity modulated the reflectivity, which was monitored at port 2

using photodetector 2. A bare fibre minimizes the overall length of the optical cavity,

however the small separation between sample and fibre can lead to a contamination of

the tip if care is not taken when positioning the sample.

In figure 3.13(a) we see images of the nanomechanical resonators obtained using a

scanning electron microscope and (b) by moving the substrate relative to the fibre while

recording the reflected dc light level. The blurring of the image is due to the spreading

of the light as it leaves the fibre. The beam profile was measured using a knife edge

technique [50], where the fibre was scanned across a photodiode patterned with Cr and

the fibre to sample separation (ZFB) varied, the results of which are shown in figure

3.13(c). The diameter of the fibre core was measured to be 5.14 µm, with the spreading

of the beam described by a Gaussian function with a Rayleigh range, Z0 = 33.85 µm.

Given that the features lay well within 2Z0 (the distance over which a gaussian beam is

considered collimated [37]) and should have a uniform reflectivity the contrast seen in

figure 3.13(b) is attributed to the diffraction of light from the NEMS [16].

Measurements of the frequency response of a l × w × t = 8 × 0.36 × 0.23 µm3

doubly clamped beam are shown in figures 3.13(d) and (e). The resonant frequency was

measured to be f0 ∼ 35.5 MHz, with a quality factor, Q ∼ 175. The effect of varying

the optical power from 0.25 to 1.25 mW on the displacement signal amplitude is shown

in figure 3.13(d). The amplitude was seen to scale linearly with optical power, with no

discernable effect on the quality factor or resonant frequency of the device. It should

be noted however that these measurements were made at atmospheric pressure, so gas

damping would be the dominant dissipation mechanism and as such optical damping

will have little effect upon the resonator.

The effect of the fibre separation distance, ZFB, on the displacement signal at

P = 0.75 mW is shown in figure 3.13(e). As ZFB was increased the amount of light

recaptured by the fibre (and consequently the detected signal) decreased. From this

it is clear that for a bare fibre interferometer to successfully measure the displacement
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(a)

(b)

(d)

(e)

(c)

Figure 3.13: Experimental results obtained by Azak et al.. Images of the sample taken

using (a) a Scanning Electron Microscope and (b) the interferometer are shown. (c)

shows the spot size produced by the fibre measured as a function of the fibre to sample

separation, zFB, along with a fit to a Gaussian function. (d) and (e) Shows the frequency

response of a doubly clamped silicon beam as a function of optical power and fibre sample

separation (ZFB) respectively. Figures reproduced from [16]
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of a nanomechanical resonator it is essential that the resonator be within several core

diameters of the fibre (ZFB . 10 µm).

In the work of Azak et al. the fibre tip could become contaminated if it came

into contact with the surface. To minimize the risk of this occurring the fibre-sample

separation can be increased by inserting a pair of aspheric lenses into the cavity (in

the same manner as Favero et al. [44]). This approach was employed by Southworth

et al. [33] where the commercially available attoCFM II confocal microscope produced

by Attocube Systems [51] was used in the measurement of high-stress silicon nitride

membranes (discussed in Chapter 2). The design of this system is shown in figure

3.14(a), and is described in the work carried out by Hoegele et al. [52] in collaboration

with Attocube Systems.

Light is coupled into one port of a fibre directional coupler and directed to a pair

of aspheric lenses housed within a titanium assembly. The collimating lens has a focal

length of 5.00 mm with numerical aperture 0.15, chosen to match the numerical aperture

of the fibre (0.13), ensuring that light exiting the fibre is captured and collimated by

the lens. The collimated light is then focussed down onto the sample surface by a lens

with a shorter focal length (1.5 mm) and higher numerical aperture (0.55), allowing

a smaller lens-sample separation and an increased light capturing ability. The use of

aspheric lenses reduces spherical aberrations in the beam, but will introduce chromatic

aberrations into the system, with light of different wavelengths being bought to a focus

at different focal lengths. For an interferometer where only one wavelength of light is

used this can be accounted for by adjusting the vertical position of the sample. Light

reflected from the sample passes back through the lenses where it is recaptured by the

single-mode fibre and the intensity monitored using a photodetector [52].

Figure 3.14(b) shows the reflected optical power as the cavity length (fibre-sample

separation) is varied through the focal point of the system. The graphs illustrate the

response for incoherent (top) and coherent (bottom) light. In the coherent case the

fringes expected from the interference of coherent light (as predicted by equation 3.17)
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Figure 3.14: (a) Optical arrangement of a low temperature confocal microscope similar to

that used by Southworth et al. in their measurement of high-stress silicon nitride NEMS

devices. Light from a tunable laser is coupled into one port of a single mode fibre coupler

that directs half the light to the sample where it is collimated and focussed onto the

sample by a pair of aspheric lenses. Light reflected from the sample passes back through

the lenses and is recaptured by the fibre coupler that directs it to a photodetector used

to monitor the reflected optical intensity. (b) Normalized reflected optical power from a

GaAs heterostructure as the sample is swept in the z-axis through the focal point of the

optics for incoherent (top) and coherent (bottom) light. Figure reproduced from [52].
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are visible, while for incoherent light the fringes are no longer present. For a confo-

cal microscope the fringes are not desirable as the detected optical power should vary

smoothly through the focus. When used as an interferometer a degree of coherence is

required to increase the responsivity of the interferometer. For maximum stability the

cavity length should be minimized as far as possible [52].

The insertion of aspheric lenses into the optics makes it possible to increase the

separation between the sample and optics, from ∼ 10 µm in the case of the bare fibre

to several millimetres, as well as leading to an increase in the ability of the optics to

recapture the light reflected from the sample when compared to a bare fibre arrangement.

One of the key limitations in any transduction scheme used to detect nanomechan-

ical motion arises from the large frequency range over which the vibrational modes lie,

requiring detection electronics with large bandwidths which will introduce noise into the

system. A well defined component at a lower frequency for which the detection elec-

tronics have been specifically engineered can be produced using a technique known as

downconversion. When a modulation, fLO, and an rf signal, frf , are mixed the output

will have both sum and difference components, frf ± fLO. This technique has been used

in several nanomechanical experiments where piezoresistive [53] and magnetomotive [54]

detection was used. Stroboscopic downconversion was used to optically detect nanome-

chanical motion in doubly clamped beams of stressed silicon nitride by Unterreithmeier

et al. [15, 17], the experimental setup of which is shown in figure 3.15, with the beams

actuated using the gradient field method discussed in section 1.2.2.

A free-space Fabry-Perot arrangement was used, with light directed to the nanome-

chanical resonator by a single mode fibre, the face of which also formed one interface of

the cavity. A diode laser gated at frf , produced a modulation of the incident optical

power. This optical modulation frequency was also mixed with the output of a network

analyzer, fLO = 0.9 MHz, and the difference component used to drive the nanomechani-

cal device. Light incident upon the photodetector contained both the sum and difference

components of the drive frequency and the optical modulation, frf ± (frf − fLO). Mea-

suring the response at fLO using a network analyzer allowed Unterreithmeier et al. to
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Coherent detection of nonlinear nanomechanical motion using
a stroboscopic downconversion technique

Quirin P. Unterreithmeier,a! Stephan Manus, and Jörg P. Kotthaus
Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität,
Geschwister-Scholl-Platz 1, München 80539, Germany
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A method is presented that overcomes bandwidth limitations arising in a fiber-optic setup
transducing mechanical motion. The reflected light from a sample incorporating a nanomechanical
resonator is analyzed. Modulating the incoming laser intensity at a suitably chosen frequency, the
mechanically induced oscillation of the reflected light is coherently downconverted to a frequency
within the detection bandwidth. Additionally, based on the mechanical nonlinear response, the
optical signal can be quantitatively converted into displacement, yielding a sensitivity of 7 pm /#Hz
at optical power levels of 20 !W. We detect and image mechanical modes up to the seventh
harmonic of the fundamental mode at 7.7 MHz. © 2009 American Institute of Physics.
$DOI: 10.1063/1.3155164%

The resonant motion of micro- and nanoelectromechani-
cal systems is increasingly investigated. Their small masses,
high quality !Q" factors, and high integrability make them
equally interesting for fundamental research as well as appli-
cations in sensing and signal processing.1,2 Optical setups are
among the most sensitive ones for the detection of the me-
chanical motion. With decreasing dimensions and increasing
resonance frequencies of the mechanical systems the detec-
tion of the motion requires increasingly complex setups.3 In
particular, sensitive optomechanical transduction typically
employs reference beams3 and/or optical cavities.4 These ap-
proaches equally require very stable lasers and optical paths.
We employ a simpler fiber-optical setup, as sketched in
Fig. 1 and described, e. g., in Ref. 5.

In this setup the sample is illuminated with light coming
out of a bare close-by glass fiber and the scattered light is
collected with the same fiber without additional optical com-
ponents. Our investigated nanomechanical system consists
of a stretched SiN wire6 of dimensions 35 !m"250 nm
"100 nm, length, width, and height, respectively. The me-
chanical actuation is induced by dielectric forces caused by
an essentially spatially inhomogeneous electrical field gener-
ated by suitably biased electrodes close to the resonator as
discussed elsewhere.7 Since the motion of the resonator only
weakly modulates the reflected laser intensity, significant
amplification of the detected signal oscillating at radio fre-
quency of the mechanical resonances is required. Typically,
amplifiers exhibit a trade-off concerning bandwidth, amplifi-
cation factor, and amplifier noise. The photodiode with an
integrated preamplifier !Thorlabs PDA55" used for this work
has variable gain and bandwidth !maximum of 10 MHz". The
datasheet shows that these quantities are approximately in-
versely proportional whereas the amplifier noise is rather
constant with varying bandwidth. In order to exceed the am-
plifier constraints, we introduce a modulation of our laser
intensity at frequency fRF, as sketched in Fig. 1. Here, a
square-wave modulation of the laser intensity is imple-
mented with a homemade switching circuit. We actuate the
mechanical resonator with frequency fRF− fLO. This driving

signal is coherently generated by mixing the signal that
modulates the laser with the signal of a local oscillator, op-
erating at fixed frequency fLO=0.9 MHz employing a home-
made single sideband modulator. Consequently, the light re-
flected from the driven mechanical resonator contains
frequency components at the sum !2fRF− fLO" and difference
!fLO" frequency. The sum frequency typically exceeds the
bandwidth of our detector and is suppressed. However, the
difference frequency is coherently detected using a network
analyzer. Sweeping fRF while retaining fLO=0.9 MHz yields
the frequency-dependent response of the mechanical resona-
tor at fRF− fLO. In the following all experiments are per-
formed at room temperature and a pressure below 5
"10−4 mbar.

A typical response curve can be seen in Fig. 2!a"; fitting
a Lorentzian line shape yields the mechanical resonance fre-
quency and quality !Q" factor. With the stroboscopic detec-
tion scheme, we are able to investigate also harmonic modes

a"Electronic mail: quirin.unterreithmeier@physik.uni-muenchen.de.
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FIG. 1. !Color online" Schematical transduction setup; the electronic path is
plotted in black; the area surrounded by the dashed rectangle depicts the
optical path; arrows indicate the direction of signal propagation. The sample
containing a string as nanomechanical resonator is mounted in vacuum just
below the end of the optical fiber as indicated. As the sample is actuated at
fRF− fLO and the illuminating laser intensity is modulated at fRF a coherent,
low-frequency beat at fLO is created on the photodetector.
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Figure 3.15: Experimental setup used by Unterreithmeier et al. for stroboscopic down-

conversion. A diode laser is modulated at frf and passed through a beam splitter and

on to the NEMS by way of a single mode fibre. The NEMS is driven at a drive frequency

of frf − fLO. The light reflected from the NEMS will contain both sum and difference

components, by monitoring the difference component (at fLO) using a network analyzer

the frequency response is obtained. Figure reproduced from [15].

measure harmonics of the beam up to 60 MHz using a photodetector and amplifier for

which the maximum bandwidth was 10 MHz. The fixed detection frequency meant that

any amplification electronics and filters need only operate at fLO allowing the bandwidth

to be tightened and the noise within the system to be reduced.

Measurements made on the second harmonic of a l × w × t = 35 × 0.25 × 0.1 µm3

doubly clamped beam are shown in figure 3.16(a), with (b) showing the effect of mode

number on frequency (left axis) and quality factor (right axis), the line is a linear fit

of frequency to mode number, indicating that the beam is behaving as a string under

tension as opposed to a stiff beam. By scanning the spot along the length of the beam
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of our mechanical resonator at frequencies beyond the band-
width of our photodetector. The ability to record several
modes has been demonstrated to be advantageous for
sensing.8 In Fig. 2!b", resonance frequencies and quality fac-
tors are displayed versus the respective mode number n cor-
responding to the number of antinodes along the length of
the resonator. In contrast to a doubly clamped beam,9 the
frequencies can be clearly seen to scale linearly with mode
number. As the implementation of the employed actuation
scheme is spatially symmetric, we are not able to excite all
antisymmetric, even n, modes. From the resulting spectrum,
one can deduce that the model of a string can be safely
employed to describe the resonant motion. The relatively
large Q values are found to decrease with increasing fre-
quency, a phenomenon generally observed6 but still not
quantitatively understood. In Fig. 2!c", we scan the detection
fiber along the wire and plot the locally obtained phase of the
oscillation; a method for convincingly identifying a given
mode. It is noteworthy that techniques relying on modulation
of the driving amplitude are not able to retrieve this informa-
tion, see for example Ref. 10. Using a direct detection
scheme of the mechanical resonance under cw illumination,
we obtain a somewhat higher displacement resolution !yet
bandwidth limited" and are able to measure the Brownian
motion of the fundamental mode at 300 K. This enables us
to quantitatively convert the measured signal into
displacement.11

In the following, we describe how the nonlinear behav-
ior of the resonator can be employed to transfer this displace-
ment calibration to the higher harmonics. Related experi-
ments have been reported in Ref. 12. At large driving
amplitudes, the restoring force F!z" exhibits nonlinear terms

in displacement z. For convenience we write F!z"=k ·z
+meff!3 ·z3. Here meff, k=meff!2"f"2, and meff!3 denote the
effective mass, linear spring constant, and cubic contribution,
respectively, of the mechanical mode considered. For the
case of a string, the spatial modes are described by a cosine,
thereby a simple calculation yields the restoring force up to
cubic order. We define L as half the wavelength of the reso-
nant mode, which for the fundamental mode equals the
length of the string l and for the higher modes L= l /n with
n=2,3 , . . .. With E, #, and $ being Young’s modulus, tensile
stress, and density of the resonator material, we obtain

F!z"
meff

=
"2#

L2$
z +

!E + 3/2#""4

4L4$
z3. !1"

We note that this result reflects the well-known fact that
a string doubles its resonance frequency when halving its
length. Assuming a density of $=3000 kg /m3,13 the mea-
sured frequency of the fundamental mode translates into a
tensile stress of #=830 MPa, significantly less than the
given specifications of the unprocessed SiN films !1400
MPa". For the amplitude conversion we note that the nonlin-
ear term scales with the length as !3#L−4. The differential
equation employing the nonlinear restoring force, the so-
called Duffing equation, can be solved in the case of a
steady-state oscillation, yielding a frequency-dependent
amplitude $z$= $z$!f". The explicit calculations are not pre-
sented here and can be found for example in Ref. 14. With
increasing actuation amplitude, the initial Lorentzian line
shape begins to bend over to one side and eventually be-
comes bistable, a nonlinear phenomenon often seen in
nanomechanics.15 We fit the measured resonance curves near
the onset of bistability with the solution of the Duffing equa-
tion. For the fundamental mode we thereby derive an abso-
lute value for !3. With the given geometry this translates into
a Young’s Modulus of E=100 GPa, reduced with respect to
the literature value of spatially homogeneous SiN films
around 300 GPa.13 Applying the obtained values, continuum
mechanics predicts a flexural contribution to the restoring
force less than 2%.6 To extend the calibration to the case of
the harmonics, the values for !3 are rescaled to obey 1 /L4

scaling with respect to the fundamental mode %see Eq. !1"&.
Thus a scaling factor is obtained to convert the measured
detector signal into displacement. Figure 3!a" shows such

1/2π

-π

-3/2π

Position along the beam [µm]x

(a)

(b)

(c)

Mode number n

-1/2π

FIG. 2. !Color online" !a" Mechanical response and Lorentzian fit of a
nanomechanical stretched SiN wire with dimensions 35 %m&250 nm
&100 nm length, width, and height, respectively, driven around the second
harmonic mode. !b" Resonance frequencies and quality factors of the fun-
damental mode and all observed harmonics are plotted vs mode number n,
reflecting the number of antinodes along the length of the wire. To empha-
size the scaling behavior of the frequencies a linear fit is shown. !c" Spatial
distribution of the phase of the observed mechanical modes as measured
with the detection fiber moved by position x along the wire !see Fig. 1". For
clarity the curves are offset in phase with respect to each other.
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FIG. 3. !Color online" !a" Nonlinear response of the fifth harmonic mode;
experimental data !black" and theoretical fit !red". The fit is employed to
convert the detected signal into mechanical displacement. %!b" and !c"& Com-
parison of signal transduction using stroboscope !a" and !b" and cw illumi-
nation !c" measuring with 50 Hz bandwidth. Note that the driving amplitude
in !a" and !c" are identical; therefore the noise floor in !c" can be estimated
to be about 2 nm and is substantially larger than the one of about 50 pm !b"
achieved in the stroboscopic detection scheme.
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Figure 3.16: Experimental results obtained by Unterreithmeier et al.. (a) Shows the

frequency response of the second harmonic of a 35 µm long doubly clamped beam. (b)

Shows the relation between resonant frequency and quality factor as the mode number

is increased. (c) Shows the phase of the detected signal as a function of position along

the doubly-clamped beam, as a node is passed through the phase changes by π. Figure

reproduced from [15].

it was possible to confirm the mode under study by monitoring the phase, as shown in

figure 3.16(c). On passing through a node on the beam a π phase shift was observed,

arising from the fact that on either side of a node the direction of beam displacement

will change.

In another set of measurements Unterreithmeier et al. [48] formed not only the

cavity, but also the photodetector within the resonator itself. Measurements were made

of doubly-clamped beams of high-stress silicon nitride fabricated on an n-doped silicon

substrate (≈ 10 Ωcm) coated with a 400 nm thick layer of silicon dioxide. A hole etched
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a b

Figure 3.17: Experimental setup of the on-chip detection scheme used by Unterreithmeier

et al.. (b) Shows a schematic arrangement of the detector configuration, along with the

optical intensity in the near-field of the resonator. (d) The response of the NEMS as a

function of optical power incident upon the sample. Figure reproduced from [48].

through the silicon dioxide allowed metal electrodes to be deposited in direct contact

with the silicon to form a Schottky diode that when biased would act as a photodiode.

A schematic of this arrangement is shown in figure 3.17(a) along with a simulation of

the resulting optical field in the vicinity of the NEMS. Biasing the electrodes relative to

the substrate produced a photocurrent which the movement of the resonator modulated.

This arrangement is of particular interest, as by integrating the photodetector into the

NEMS itself the optics required could be reduced to only an optical source. A fibre was

used to direct light from either a diode laser (DL, λ = 670 nm) or a superluminescent

diode (LED, λ = 750 nm) to the sample within a vacuum chamber (P≤ 10−4 mbar) at

room temperature.

The resonator responses shown in figure 3.17(b) are for a range of illumination pow-

ers and while larger optical powers led to an increase in the measured photocurrent,

there was an associated decrease in resonant frequency with optical power, indicating

a damping of the resonator. At higher intensities the non-uniform optical field damps
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the resonator, shifting the resonant frequency to a lower value. This force arises from

the non-uniform E-field in the vicinity of the nanomechanical device produced by the

incident light. Interestingly the mechanism behind the damping force that arises from

the optical E-field is identical to the way in which the resonator is actuated using the

gradient field technique to generate a time varying non-uniform E-field (as introduced

in section 1.2.2).

3.2 Design Decisions Based on Previous Work

Based on the previous work carried out on optically detecting nanomechanical motion

it was decided to design and construct a cavity based interferometer. The Michelson in-

terferometer was discounted as the decrease in responsivity and increase in cavity effects

with device dimensions, combined with the geometry of the nanomechanical structures

makes a cavity based interferometer the logical choice.

A fibre was chosen to allow access to the IVC of a dilution refrigerator, with the

cryostat having previously been used successfully as a low temperature AFM [55] with

light directed to the mixing chamber by means of a single mode fibre directional coupler.

A low-finesse cavity should minimize the magnitude of the optomechanical force

acting upon the device. A silicon nitride structure substrate will gave a maximum

reflectivity of around 0.4 with the untreated fibre face providing a reflectivity of 0.04

which would result in (for the case of a cavity between the fibre and the sample) a finesse

of 2.4. In other nanomechanical and optomechanical measurements high-finesse cavities

(F > 5.5) were used to optically cool mechanical systems which would influence the

mechanical behaviour as seen in the work by Unterrerithmeier et al. [48]. This lead to

the decision not to treat the tip of the fibre to increase the finesse.

For the highest stability the coherence length of the light can be decreased and

the cavity formed within the nanomechanical resonator. A diode laser that could be

operated above (to produce coherent light) and below (to produce incoherent light) the

lasing threshold was chosen as the optical source for nanomechanical measurements. A
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HeNe laser was also available should a longer coherence length be required for two-beam

measurements.

3.3 Summary

In this chapter, two of the most commonly used optical arrangements for detecting

nanomechanical displacements, the Michelson interferometer and the Fabry-Perot inter-

ferometer have been introduced and their operation described. Using multi-layer film

theory appropriate substrate film thicknesses were calculated such that the nanomechan-

ical device would have maximum responsivity. A number of optical arrangements used

in the study of nanomechanical systems were then reviewed and based on these findings

a number of design decisions for the interferometer were made.



Chapter 4

Device Design and Fabrication

This chapter will look at how devices were fabricated from high-stress silicon nitride. In

Chapter 2, we saw how devices made from high-stress silicon nitride [18, 20, 29, 30, 33–

35] have demonstrated very high quality factors. This is attributed to the high stress

of the silicon nitride giving the device a high mechanical stability, which results in high

mechanical quality factors [34, 35].

High-stress silicon nitride has been studied extensively at Cornell University [29, 30,

33, 34]. With this in mind the Cornell Nanoscale Science and Technology Facility (CNF)

was chosen as the supplier of high-stress silicon nitride grown using LPCVD1 similar to

that studied in [33] with an intrinsic tensile stress of ∼ 1.2 GPa.

This chapter will begin by giving a brief overview of the techniques used in the fab-

rication of these devices, before looking at the substrate from which the devices are

fabricated, before moving on to look at the design and fabrication of metallic align-

ment marks. These are used to aid with the electron-beam lithography steps and to

assist with locating devices when using the interferometer. Fabrication methods for two

nanomechanical devices, membranes and torsional resonators are then discussed.

Detailed recipes containing processing parameter for all the procedures discussed in

this chapter can be found in appendix A.

1Low-Pressure Chemical Vapour Deposition
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4.1 Lithographic Techniques

Lithography is a process whereby a pattern is transferred onto the surface of a wafer.

Two types of lithography were used in the course of this work, optical and electron-beam.

Both of these techniques transfer the pattern to a radiation sensitive resist. For the sake

of clarity and to avoid repetition later in the chapter, the following section gives a brief

overview and description of these techniques.

The first step in both techniques is to apply a thin layer of a radiation sensitive resist

to the substrate. The resist is supplied in a solvent that is dispensed onto the surface of

the substrate. Spinning the substrate at high speed (several thousand rpm) will produce

centrifugal forces that cause the resist to flow to the edges of the substrate. Excess resist

is expelled from the sample, leaving a uniform film of resist on the substrate. Varying

the spin parameters (speed and time) and/or the concentration of resist in the solvent

(i.e. the viscosity of the resist) allows the resist thickness to be controlled. The solvent

remaining in the resist is driven off by baking the resist using either a hot plate or

convection oven.

Resists are classified as either positive or negative tone, based on the behaviour of

the resist once exposed. For a positive resist, the exposed region becomes soluble in the

developer, and will be removed, while for a negative resist the exposed region becomes

insoluble in the developer and will remain [56, 57].

Photolithography

Photolithography uses a photomask made of a glass substrate patterned with chrome

to block UV radiation to specific regions of a substrate. All areas of the substrate are

exposed to the radiation in one go, so the process is ideal for patterning large areas

quickly.

In this work the photomask used was patterned using a laser-write system. The

manufacturer of the mask2 was able to work to a minimum feature size of 5 µm, which

2JD Photo-Tools
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placed a lower limit on attainable feature size. The mask is placed in direct contact with

the resist and a mercury lamp used to expose the mask and substrate to UV radiation.

Light is able to pass through the regions of the photomask where the chrome has been

removed, exposing the underlying resist which is then developed [56].

Electron-Beam Lithography

Electron-beam lithography uses a beam of electrons to expose the resist, this allows

the patterning of features with smaller dimensions than those achievable with optical

lithography. The pattern is defined using a set of deflection coils in the electron column

to raster the electron-beam over the surface of the substrate. This serial process, where

the pattern is “drawn” onto the resist means exposure times can range from several

minutes to several hours for patterns with large exposed areas [56, 57].

The substrate is coated with an electron-sensitive polymer, poly-methyl methacrylate

(PMMA). When exposed to a beam of electrons in a scanning electron microscope, breaks

in the long polymer chains are caused, resulting in shorter polymer sections that are more

soluble in the developer.

The dose (D) specifies the amount of charge absorbed by a specific area of the resist

and has units µCcm−2. It is defined in terms of the beam current (I), dwell time (t)

and pixel size (l). The beam current is fixed at the start of the exposure, so the dose is

controlled by varying the time the beam dwells on each pixel. The dose can be calculated

from:

D =
It

l2
(4.1)

For the 495 k PMMA used in this work the manufacturers suggested doses lie in the

range 50− 500 µCcm−2. This value is heavily influenced by the substrate on which the

exposure is performed due to the fact that the forward scattered electrons do very little

damage to the polymer. It is instead the backscattered electrons that cause the majority

of the scissions within the polymer.

A by product of the scattering of electrons is the proximity effect. The backscattered
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Figure 4.1: Schematic of the multi-layer structure of the substrate from which the

nanomechanical devices are fabricated. Figure not to scale.

electrons expose a region larger than the spot size of the electron beam. This effect

is cumulative, so must be accounted for when writing patterns with features in close

proximity through careful design of the pattern or by tailoring the doses for different

regions [57].

4.2 Substrate

The samples were fabricated from 450 µm thick p-type silicon coated on both sides with

a 575 nm thick layer of silicon dioxide and a 166 nm thick layer of stoichiometric silicon

nitride with an in-built tensile stress of ∼ 1.2 GPa. This was supplied in the form of

100 mm diameter wafers. A diagram showing the structure of the substrate is shown in

figure 4.1.

The film thicknesses were chosen by applying the multi-layer film calculations dis-

cussed in section 3.1.2. The fabrication process requires that the sacrificial layer of

silicon dioxide be removed using a wet etch in hydrofluoric acid. As silicon nitride etches

slowly in 49 % hydrofluoric acid (∼ 15 nm/min compared to ∼ 2300 nm/min for thermal

oxide [58]) it was necessary to increase the thickness of the nitride layer to allow for this

thinning. The wet etch was predicted to take between 3 and 6 minutes, depending on

the device being fabricated, resulting in the thickness of the nitride layer being reduced

by between 45 and 90 nm. The target nitride thickness was 90 nm, so it was requested
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that silicon nitride of thickness 170 nm was deposited on 570 nm of silicon dioxide by

CNF to account for this. Upon receipt of the substrates the film thickness was measured

using a reflectometer3, giving the dimensions shown in figure 4.1.

4.3 Optical Mask Design

Alignment marks were defined on the substrate using optical lithography and the thermal

evaporation of gold. The optical mask shown in figure 4.2(a) was designed to include

the following features:

• Global marks for aligning the electron-beam lithography coordinate system to that

of the sample, allowing any slight rotation of the sample to be accounted for.

• Local marks 4 for precise alignment of features written by electron-beam lithogra-

phy to a 500µm write field.

• Metallic contacts for attaching a surface mount ruthenium oxide resistor to the

sample to act as a thermometer.

• A border defining the area accessible by the nanopositioning stages.

The global marks, figure 4.2(b), consist of a cross, with arms of length 250 µm, and

width 50 µm. During electron-beam lithography these marks are used to globally align

the sample to the coordinate systems of both the scanning electron microscope and the

lithography system. This allows any rotation and scaling between these systems to be

accounted for.

Once globally aligned, local marks are used to precisely position lithographic features

within a write field. These marks are placed at the four corners of a device field, allowing

3Ocean Optics USB4000-UV-VIS with a Hammamatsu L10290 High Power UV-Vis Fibre Light Source
4Referred to as chip marks in the electron-beam lithography software, (ECP package from Xenos

GMBH)
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(a)

2 mm

(c)

100 µm

(b)

100 µm

Figure 4.2: Schematic showing the optical mask designed as part of this work. (a)

Shows the complete mask including global marks (green), local marks and device fields

(orange), thermometry contacts (blue) and scan area border (purple). (b) Shows a global

mark used for sample alignment, while (c) shows a device field, surrounded by four local

marks, used for precise alignment during electron-beam lithography.
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patterning to an accuracy 5 better than 50 nm within the box bounding the device field

to be achieved.

For the thermometry contacts, it was decided to use a meandering pattern for the

metallic contacts for the thermometer. This helped to thermalise the thermometer to the

substrate temperature. Pads 3.5 mm by 1.0 mm were defined, spaced to allow a 2.2 kΩ

surface mount ruthenium oxide resistor to be attached using conductive epoxy 6. These

are connected to a second set of pads by a track 100 µm wide and 40 mm long. This

second set of pads are used to provide an electrical connection to a resistance bridge.

Unfortunately in initial tests it was found that mounting and connecting the thermometer

to a resistance bridge was problematic, so in all measurements the thermometer was

omitted.

The border defining the edge of the scan region, purple in figure 4.2(a) was originally

intended to be used for step size calibration, and as a coarse positioning system for the

stages. Upon testing this system was found to be too coarse to be practical. This led to

the introduction of the location markers to be discussed in section 4.4.

4.3.1 Optical Mask Processing Steps

Processing steps for defining the pattern using the optical mask are outlined in this

section. In depth processing steps can be found in Appendix A.2.

The 100 mm diameter silicon wafer, coated with silicon dioxide and silicon nitride

was first scribed into squares 9.8 mm on a side before being solvent cleaned (ethyl lactate,

acetone, methanol and isopropyl alcohol (IPA)), with ultrasonic agitation. Once cleaned

the samples were dehydrated in a convection oven.

After cooling the samples were spin coated with a 1.4 µm thick layer of AZ5214E

photoresist 7 and baked before being soaked in toluene to toughen the resist and avoid

5for a 500µm write field
6Epotek H20E-PFC
7AZ5124E photoresist from Clariant (supplied by MicroChemicals) is an image reversal resist, which

by varying the processing parameters can be used in positive or negative tone. In this work it is processed

to behave as a positive resist.
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overdeveloping after exposure. The resist was then exposed to UV radiation using an

optical mask aligner before being developed.

Any traces of resist remaining in the exposed regions were removed in an oxygen

descum step. This is important as hydrofluoric acid readily attacks photoresists and, as

was seen in early tests, can cause metallic layers to lift off if the substrate is not properly

descummed. To improve adhesion between the metal and the substrate a reactive ion

etch in CHF3 was used to roughen the top surface of the silicon nitride and provide a

better surface for the metal to adhere to.

The pattern defined in the resist is transferred to the sample by thermally evaporating

a 50 nm layer of gold. Titanium is normally used as an adhesion layer for gold, however

it is also etched by hydrofluoric acid. This led to a 5 nm layer of chrome, which is only

very slowly etched by hydrofluoric acid [58], being used as the adhesion layer.

Once deposited, the unwanted metal is lifted off by soaking in warm acetone or NMP-

based resist stripper8, with ultrasonic agitation if required. This removes any gold that

has a layer of resist beneath it, leaving the metal deposited in the exposed regions intact.

4.4 Location Markers

When a sample is imaged on the interferometer, a picture is built up pixel by pixel. This

can make finding and positioning the optical spot on a nanomechanical device a time

consuming and frustrating task. In order to simplify this a set of marks were designed

to allow the location on the sample to be determined and the positioning stage step size

calibrated.

Initially the location of the spot on the sample was to be determined using the

border defining the scan region, however during initial tests it was found that due to the

unreliability of the positioning stages over large distances this system was too coarse to

be practical. Following on from this a set of markers were designed that would allow the

location of the spot on the surface to be determined to within a few hundred microns.

8Microposit Remover 1165
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The marks were designed to be imaged quickly (< 20 minutes) by the interferometer,

which limited the size of one unit of the pattern to a field ∼ 50 µm on a side. For this

reason, the letters and numbers were made 5 µm in width and height, giving a repeating

pattern 15 × 15 µm. For a 5 µm character the minimum feature size would be less

than a micron and at these dimensions optical lithography would struggle to produce

these features [56], so it was decided to define the location markers using electron-beam

lithography.

These marks divide the scan field accessible to the nano-positioning stages into 11

columns (labeled A to K) and 7 rows (labelled 1 to 7). Into each of these cells a repeating

pattern consisting of a letter denoting the column, a number denoting the row, and two

2.55 µm squares was defined. The labelling system, and an example of the location

markers is shown in figure 4.3. A similar approach was taken with the labelling of the

individual device fields, which were labelled from R to Z, along with numbers indicating

the position of the optical spot within the field.

Once defined the patterns are transferred onto the sample by evaporating a thin film

of metal. Alternatively the marks can be defined using a reactive ion etch, this can

however expose the oxide layer, which will be attacked by the hydrofluoric acid during

the wet etch step. As such this method can only be used to define the marks after the

wet etch has been carried out, for example in the case of torsional resonators fabricated

via an intermediate membrane discussed in section 4.5.2.

4.4.1 Location Marker Processing Steps

Location markers were patterned using an electron-beam lithography system9. A 450

nm thick layer of poly-methyl methacrylate (PMMA), an electron sensitive resist was

spun onto the substrate before being patterned with location markers in a scanning

electron microscope. The global marks were used to align the location marker cells

9Lithography system comprised an XPG2 high-speed writer from XENOS Semiconductor Technolo-

gies Gmbh mounted on a JEOL FEI Scanning Electron Microscope with a maximum acceleration voltage

of 30 kV
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Figure 4.3: The location markers used for coarse positioning of the sample beneath the

interferometer. (a) Shows a schematic showing the labeling system used to determine

the sample location, the region in the blue box is enlarged in (b) where the design of

the individual location markers is shown alongside an optical microscope image, (c), of

a set of location markers metalised with 50 nm of gold.
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to the substrate. For the device field markers, local marks were also used for precise

alignment to the device fields.

After development the exposed regions are descummed and etched as discussed in

section 4.4 and a 50 nm layer of gold deposited.

4.5 Nanomechanical Device Fabrication

The following sections give an overview of the processes employed to fabricate the

nanomechanical devices, with step-by-step fabrication recipes (including processing pa-

rameters) given in Appendix A.4.

4.5.1 Membranes

Membranes, thin sheets of silicon nitride clamped around their perimeter were fabricated

using a combination of electron-beam lithography, reactive-ion etching and wet etching.

The complete process is shown in figure 4.4, and is similar to that used by Southworth et

al. [33]. A detailed description of the processing parameters appear in Appendix A.4.1.

A silicon substrate coated with a 570 nm thick layer of thermally grown silicon dioxide

and 170 nm of high stress silicon nitride is first cleaned before coating with a 450 nm

thick layer of 495k PMMA, as shown in figure 4.4(a). Electron-beam lithography is used

to pattern the resist with an array of circular holes of diameter ∼ 0.8µm.

For a square membrane, holes are patterned on a 5 µm pitch square array, as shown

in figure 4.5(a). A circular membrane requires they be arranged radially about a central

hole in rings spaced by 5 µm. In order to maintain the separation of approximately 5µm

between holes, the first ring (n = 1) contains 6 dots (60◦ separation), with consecutive

rings containing n×6 holes. An example of these holes patterned in PMMA can be seen

in the optical microscope image in figure 4.6(a).

Once developed the PMMA is used as an etch mask and the holes transferred into
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Figure 4.4: Fabrication process for silicon nitride membranes. (a) The substrate is

coated with a layer of PMMA (b) into which an array of 0.8 µm holes is patterned using

electron-beam lithography. (c) The exposed pattern is developed and transferred into

the nitride using a CHF3-based reactive ion etch to expose the underlying oxide. (d) The

oxide is wet etched using 49% hydrofluoric acid to produce an undercut of the silicon

nitride layer and suspend the membrane.
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(a) (b)

n = 1
n = 2

n = 3

5 µm

Figure 4.5: Locations of dots patterned into the PMMA for (a) a square membrane and

(b) a circular membrane. The yellow region indicates the extent to which the wet etch

undercuts the nitride layer to suspend the membrane.

(a) (b) (c)

Figure 4.6: Images showing stages in the fabrication of a circular membrane, with a

diameter of 200µm. (a) Shows a PMMA layer, patterned with a radial array of ∼ 0.8µm

diameter holes, in (b) this pattern of holes has been transferred into the silicon nitride

layer using a reactive ion etch. (c) Shows a close up scanning electron microscope image

of the holes at the centre of the membrane.
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the silicon nitride using a reactive ion etch10 in CHF3/O2. This etches through the

silicon nitride, exposing the underlying silicon dioxide. These holes can be seen in figure

4.6(b-c) for a circular membrane.

The silicon dioxide acts as a sacrificial layer. Wet etching in concentrated hydrofluoric

acid removes the oxide layer, undercutting and suspending the membrane, as shown in

figure 4.4(d). In concentrated hydrofluoric acid the etch rate of silicon dioxide is ∼ 1200

nm/min [58]. The holes through the silicon nitride limit the access of the acid to the

oxide layer, reducing the lateral etch rate of the oxide to between 600 and 1000 nm/min.

This resulted in a wet etch time of between 3 and 6 minutes. The hydrofluoric acid

was measured to etch the silicon nitride layer at around 15 nm/min, which would result

in a thinning of the nitride by a maximum of 90 nm, which was accounted for in the

design of the multi-layer structure of the substrate as discussed in sections 3.1.2 and 4.2.

Accurate thickness measurements of a suspended membrane were made by removing the

membrane using a sheet of PDMS, and are discussed in section 4.5.1.

During the wet etch the silicon dioxide behind the nitride layer will have been removed

and the resulting volume behind the membrane filled with a liquid. Initially this would

be hydrofluoric acid, but ultimately, after the sample is rinsed, this will be replaced

with water. If the membranes were dried at this stage, the surface tension of the water

would be enough to pull the membrane down and cause stiction between membrane

and substrate, collapsing the membrane. It is sometimes possible to overcome issues of

stiction by placing the sample into a solvent (commonly methanol) with a lower surface

tension that that of water and blow drying in dry nitrogen gas. While this will work

for membranes up to ∼ 50 µm in diameter, above this the evaporating liquid is able to

stretch the membrane sufficiently that it will touch and stick to the silicon substrate. To

avoid this the water is replaced with isopropyl alcohol and a critical point drier used.

Critical point drying uses liquid carbon dioxide as a transitional fluid in the drying

process. The phase diagram of carbon dioxide is shown in figure 4.7. The sample

(immersed in alcohol) is placed in a sealed chamber. The chamber is then filled with

10Corial 200IL RIE system
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Figure 4.7: Phase diagram of carbon dioxide showing the path taken during a critical

point drying process. (1) The chamber containing the sample, immersed in alcohol is

purged with liquid carbon dioxide and sealed. (2) The temperature of the chamber is

increased, causing the carbon dioxide to move from the liquid to the supercritical phase.

(3) The pressure is isothermally reduced allowing the carbon dioxide to return to the gas

phase avoiding the liquid-gas phase boundary. Data used to generate this phase diagram

from [59, Chap. 6, pp 36-37].

liquid carbon dioxide at ∼ 1000 PSI into which the alcohol dissolves (point 1 in figure

4.7). Fresh carbon dioxide is flowed through the chamber, removing the alcohol and

leaving the sample immersed purely in liquid carbon dioxide. If the chamber is now

sealed and the temperature raised the carbon dioxide will pass from the liquid to the

supercritical phase (point 2 in figure 4.7). By isothermally reducing the pressure, the

carbon dioxide can return from a supercritical fluid to a gas (point 3 in figure 4.7). This

phase transition from supercritical to gaseous has zero surface tension and allows the

membrane to dry without collapsing due to the forces associated with the surface tension

[22].
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100 µm

Figure 4.8: Optical image of a square membrane with sides L = 200 µm and a circular

membrane of diameter 200 µm.

Critical point drying is the final stage in the fabrication process. Optical images of

complete 200µm membranes can be seen in figure 4.8. Scanning electron microscope

images are not shown, as due to the dielectric nature of the silicon nitride charge will

accumulate on the membrane. This charge, combined with the large dimensions causes

the membrane to be attracted to and stick to the underlying substrate. For smaller

devices this charging is not such an issue.

Membrane Thickness Measurements

In order to determine the final thickness of the membrane, an approach similar to that

employed by Adiga et al. [30] was used. A sheet of polydimethylsiloxane (PDMS) 11

was used to peel off the membrane, allowing the back surface topography and thickness

of the membrane to be measured using an AFM and a surface profiler.

PDMS is a silcone compound, widely used in nano-imprint lithography and micro-

and nano-fluidics; it is a transparent, chemically inert compound, that when applied to

a surface will take on the topography of the surface without leaving a chemical residue

behind [60]. PDMS is supplied as a two part resin that was cured in a convection oven

11Dow Corning Sylgard 184 Silicone Elastomer
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at 150 ◦C for 2 hours to give a sheet of PDMS ∼ 8 mm thick.

To promote adhesion between the PDMS and silicon nitride the surfaces can be

activated using an oxygen plasma to create covalent siloxane bonds [61, 62]. If one (or

both) of these activated surfaces are bought into contact, bonds will form between the

silicon nitride membrane and the PDMS and upon separation the membranes will be

removed with the PDMS.

This procedure was carried out by exposing the silicon nitride membrane to a 60

second oxygen plasma before placing the two surfaces together for 60 seconds before

peeling them apart. This process worked to remove the silicon nitride membranes from

the sample, which could then be imaged using an AFM. Images taken using this technique

for a drum and rectangular membrane are shown in figures 4.9 and 4.10 respectively. It is

important that only the silicon nitride surface be activated as in earlier trials with both

surfaces activated the siloxane bonds on the surface of the PDMS were able to interact

with the silicon in the AFM cantilever used to image the sample12. This interaction

interfered with the z-control of the microscope and prevented imaging.

The limited access offered by the holes etched through the silicon nitride means that

the majority of wet etching occurs on the front surface of the membrane. On the back

of the membrane a honeycomb structure formed as can be seen in figures 4.9(e) and

4.10(d) which show the topography of the back surface of the membrane and that the

silicon nitride layer has thinned from a thickness of 165 nm to around 100 nm. Surface

profiling13 carried out on several of the holes left where a membrane was removed showed

a step height of 700 nm at the edge of the membrane. This change in height is composed

of 575 nm of silicon dioxide and 125 nm of silicon nitride, equating to 40 nm of silicon

nitride removed from the front surface, with a maximum of 25 nm removed from the

back surface. The AFM images of the back of the nitride membranes reveal a change in

height between etch holes of ∼ 20 nm and a membrane thickness of 100-125 nm.

12Bruker TESP cantilever
13KLA Tencor Alpha-Step D-120
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Figure 4.9: Optical and atomic force microscope images of the back surface of a silicon

nitride drum membrane peeled from the substrate using a sheet of PDMS. (a) and (b)

show optical images of the membrane on PDMS at (a) 50× and (b) 100× magnification.

Images (c)-(e) show AFM images of the back surface topography, taken using a Veeco

Dimension V AFM at (c) 50, (d) 25 and (e) 16 µm fields. The lower plots show sections

through the topography at the locations indicated by the dashed lines.
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Figure 4.10: Optical and atomic force microscope images of the back surface of a rect-

angular silicon nitride membrane peeled from the substrate using a sheet of PDMS. (a)

shows an optical microscope image of the membrane on PDMS at 20× magnification.

Images (b)-(d) show AFM images of the back surface topography, taken using an Asylum

Research MFP-3D AFM at (b) 30, (c) 10 and (d) 20 µm fields. The lower plots show

sections through the topography at the locations indicated by the dashed lines.
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Figure 4.11: Shape and dimensions of the torsional resonators fabricated

4.5.2 Torsional Resonators

Torsional resonators, designed for use as torque magnetometers were introduced in Chap-

ter 2. In the work by Davis et al. they were fabricated from commercially available

low-stress silicon membranes intended for use as TEM holders [25, 27]. In these devices

a layer of magnetic material is deposited on the membrane and a focussed-ion beam

(FIB) used to define the shape of the resonator. This method of fabricating a torsional

resonator cannot be used with high-stress nitride; the stress within the nitride will cause

it to curl up while being released with the focussed-ion beam [27].

In this section we look at two methods developed to fabricate torsional resonators

from high-stress silicon nitride14 using a combination of electron-beam lithography and

wet and dry etch steps. The dimensions of the torsional resonators are shown in figure

4.11, while full processing parameters can be found in appendices A.4.2 and A.4.3.

14In this chapter these methods are used to fabricate torsional resonators, however these techniques

can and have been used to fabricate other structures such as doubly clamped beams and stress relieved

cantilevers.
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Direct Fabrication of Torsional Resonators

This method allows the direct fabrication of torsional resonators with only one stage of

electron-beam lithography. This process is shown in figure 4.12.

(b) (c) (d)

(a)

165 nm Si3N4

570 nm SiO2

450 µm Silicon
Substrate

Figure 4.12: Fabrication process for high-stress silicon nitride torsional resonators using

one electron-beam lithography step. (a) The substrate is first coated with a layer of

PMMA. (b) Into this layer the resonator pattern is exposed using electron-beam lithog-

raphy. (c) The exposed pattern is transferred into the nitride using an CHF3 reactive

ion etch to expose the underlying oxide. (d) A wet etch in 49% HF removes the silicon

dioxide below the device, releasing it.

A 200 nm thick layer of electron sensitive resist, PMMA, is spun onto the substrate

and patterned at 30 kV with the negative pattern of the resonator, i.e. after developing,

a PMMA etch mask in the shape of the resonator remains on the silicon nitride. The

exposure map used to pattern a PMMA etch mask is shown in figure 4.13(a), when an

area is exposed part of the exposure occurs due to the incoming electrons, with a second

contribution arising from the scattered electrons (the proximity effect). For a larger area
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the contribution due to the proximity effect will be larger and as a result a lower dose is

needed. This can be seen in the exposure map shown in figure 4.13(a) where the cutouts

in the outer torsional paddle require a larger dose to ensure that the exposure is to the

same extent. An AFM image of one of these PMMA masks patterned in this manner is

shown in figure 4.13(b).

This pattern is then transferred into the silicon nitride using a reactive ion etch in

CHF3, exposing the silicon dioxide layer. The exposed silicon dioxide and the region

underlying the resonator can then be removed using a wet etch in 49 % hydrofluoric

acid. After rinsing in water and transferring to methanol the resonator is dried using

nitrogen gas. The smaller dimensions of the devices and larger areas through which the

solvent can evaporate mean that stiction does not pose a problem for these devices.

Figure 4.14 shows images of a torsional resonator fabricated using this method.

Indirect Fabrication of Torsional Resonators via an Intermediate Membrane

Step

In the previous section the resonator was patterned directly into the nitride and a wet

etch used to remove the silicon dioxide beneath the paddles. This increases the wet etch

time, which in addition to releasing the resonator also undercuts the clamping points

where the resonator connects to the substrate, leading to an increase in clamping losses.

To minimise these losses, torsional resonators were fabricated using the process described

below and shown in figure 4.15.

The substrate was first coated with a 200 nm thick layer of PMMA electron-beam

resist (figure 4.15(a)). Using a 30 kV electron beam the PMMA was then patterned with

four 0.8 µm holes on a 6× 4 µm square (figure 4.15(b)). A CHF3 reactive ion etch was

used to etch down through the nitride, with the PMMA acting as the etch mask (figure

4.15(c)).

The holes etched through the silicon nitride provide access for 49 % hydrofluoric acid
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Figure 4.13: Exposure map for a torsional resonator. (a) Shows the pattern used to

define a torsional resonator etch mask in PMMA. The different colours denote different

doses. Larger areas (green) are written with a lower dose, and the cumulative exposure

due to proximity effect ensures sufficient exposure. For the isolated regions (red) a higher

dose is needed to ensure sufficient exposure occurs. (b) An AFM image taken using an

Asylum Research MFP-3D AFM showing the resist profile obtained from this exposure.

The higher (lighter) regions are PMMA, while the lower (darker) regions are the silicon

nitride substrate.
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(a) (b)

Figure 4.14: Microscope images of the final devices made using the direct method. (a)

Shows an optical microscope image of an array of torsional resonators, while (b) shows

an SEM image of a single resonator.

to the sacrificial layer of silicon dioxide. Once the oxide layer is removed a membrane

remains onto which the resonator can be patterned (figure 4.15(d)). Due to the high-

stress within the nitride stiction does not prove to be a problem, allowing the sample to

be transferred to methanol after the wet etch and blow dried with nitrogen.

The membrane can now be coated with a new 200 nm thick layer of PMMA (figure

4.15(e)), which is patterned using electron-beam lithography (figure 4.15(f)). A second

CHF3 reactive ion etch then releases the resonator (figure 4.15(f)). Any residual PMMA

can be removed using an O2 barrel asher. Microscope images of torsional resonators

fabricated using the indirect method are shown in figure 4.16.

Comparison of Torsional Resonator Fabrication Methods

Torsional resonators were fabricated using both the methods outlined. In figure 4.17

we reproduce the SEM images of the resonators shown earlier, with suspended regions

of silicon nitride highlighted in green. From figure 4.17(a) we see a large undercut

around the edge of the resonator. This suspended apron will serve to increase clamping

losses within the flexural modes of the resonator. In contrast the clamping points in
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(e) (f ) (g)

(a)

165 nm Si3N4

570 nm SiO2

450 µm Silicon
Substrate

Figure 4.15: Fabrication process for high-stress silicon nitride torsional resonators using

two electron-beam lithography steps. (a) The substrate is first coated with a layer of

PMMA. (b) An array of 0.8 µm diameter holes are then patterned into the resist. (c)

The holes are transferred into the nitride using an CHF3 reactive ion etch to expose the

underlying oxide. (d) A wet etch in 49% HF removes the silicon dioxide beneath the

holes, forming a membrane. (e) This membrane is then coated with electron-beam resist.

(d) This is patterned to leave an etch mask in the shape of the torsional resonator. (e)

A second reactive ion etch is then used to remove the unwanted silicon nitride, leaving

a suspended resonator.
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(a) (b)

1 µm5 µm

Figure 4.16: Microscope images of the final devices made using the indirect method. (a)

Shows an optical microscope image at 100× magnification of 3 torsional resonators (also

shown are doubly clamped beams, one of length 6 µm and two 11 µm long), while (b)

shows an SEM image of a single resonator.

figure 4.17(b) are far cleaner, only contacting the substrate at the edge of the membrane

formed earlier in the process.

Another advantage of this process lies in the fact that by carrying out the wet etch

step before defining the resonator it is possible to include a ferromagnetic layer in the

resonator. An additional electron-beam lithography step can then be used to pattern a

1 µm dot on the central pad of the torsional resonator. A multilayer structure of cobalt

and platinum that can be magnetised in the out of plane direction [63]. By magnetising

the dot in the out of plane direction it is then possible to actuate the torsional modes of

the resonator by placing it near an rf coil, in a process similar to that used in references

[25, 27], this is advantageous as the piezoelectric actuator will preferentially excite the

flexural modes.

4.6 Summary

In this chapter the fabrication methods used in this work were introduced. We initially

dealt with the design and processing of an optical mask to aid with the fabrication
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Figure 4.17: Scanning electron microscope images of torsional resonators made using the

two methods discussed in this section. (a) Shows a resonator fabricated using one stage

of electron-beam lithography, while (b) shows a torsional resonator fabricated with two

stages of electron-beam lithography and an intermediate membrane step. Suspended

regions of silicon nitride are highlighted in green.

of nanomechanical devices, before moving on to look at how a set of markers were

designed to simplify the procedure of locating devices using the interferometer. The

latter half of the chapter concerned itself with the fabrication of nanomechanical devices

(membranes and three-paddle torsional resonators) from high-stress silicon nitride and

the considerations that had to be taken into account when defining these processes. Full

processing recipes can be found in Appendix A.





Chapter 5

Experimental Setup

A fibre interferometer that is mounted on a dilution refrigerator capable of measuring

the motion of nanomechanical resonators to temperatures below 1 K has been designed

and constructed. This system is described in this chapter, which focuses on the experi-

mental design considerations, operating principles, control electronics and measurement

techniques. A selection of preliminary measurements are presented to demonstrate the

behaviour of the system.

5.1 Operating Principle

A schematic diagram showing the arrangement of the interferometer is shown in figure

5.1. The centre of the optical setup is a 3 dB single mode fibre coupler1 with a numerical

aperture of 0.12. Light is coupled into arm I1 of the fibre and equally split across the

two output arms, O1 which runs to the sample at the base of the dilution refrigerator

and O2 which is used to monitor the optical irradiance at the sample.

In order for fibre O1 to reach the sample space the coupler is specially manufactured

so that O1 is 10 m in length (as opposed to ∼ 1 m for I1, I2 and O2). Light directed to

the sample space exits the fibre in a cone, which is collimated and refocussed to a spot

1GOULD Industries
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Figure 5.1: Experimental setup of the fibre interferometer. (1) Light is coupled into port

I1 of a 3 dB directional coupler which splits the light equally across the two output arms.

(2) The optical irradiance of the sample is monitored using the photodiode attached to

port O2. (3) Light is directed to the sample by port O2 and upon exiting the fibre

is collimated and focussed onto the sample using a set of aspheric lenses. (4) Light

reflected from the sample passes back through the aspheric lenses and is recaptured by

the fibre. (5) On passing back through the directional coupler the light is monitored by

the photomultiplier on port I2, with an IV converter passing a voltage to the detection

electronics.
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on the sample surface using a pair of aspheric lenses. Positioning of the sample beneath

the optical spot is achieved via a set of xyz-positioning stages2. Actuation of the device

is achieved by mounting the sample on a piezoelectric shaker.

Light reflected from the sample passes back through the aspheric lenses and is re-

captured by the single mode fibre. Upon passing through the directional coupler the

reflected optical power is split across arms I1 and I2. The optical power exiting I2 is

monitored using a photomultiplier tube. A transimpedence amplifier is used to convert

the photocurrent to a voltage, the dc component of which is monitored using a DAQ

card while the ac component is detected using a lock-in amplifier synchronised to the

drive frequency.

5.2 Low Temperature Considerations

The fibre interferometer was installed below the mixing chamber of a commercially avail-

able dilution refrigerator3. Figure 5.2 shows the placement of the components comprising

the fibre interferometer within the cryostat.

The sample space of the dilution refrigerator is isolated from the main bath of the

cryostat by an inner vacuum can. In order to achieve the lowest temperatures allowed

by the system a mixture of 3He and 4He is condensed into the fridge using the 1K pot.

Liquid 4He is drawn into the pot via a capillary connected to the main bath by a needle

valve. Pumping on this 4He using a rotary pump allows the pot to reach a temperature

of around 1K through evaporative cooling.

Incoming 3He/4He mixture is cooled by the pot and condenses through a flow

impedance into the mixing chamber. Here a phase boundary forms between a 3He

rich (upper) and a 3He poor (lower) layer. Cooling is achieved by pumping 3He across

this boundary and into the lower layer which is mainly superfluid 4He through which

the 3He passes with very little impedance. The superfluid 4He layer acts as a volume

2Supplied by Attocube Systems AG.
3Oxford Instruments Kelvinox 100
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Figure 5.2: Schematic showing the positioning of the interferometer within the cryostat.
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into which the 3He is able to expand. This expansion leads to a change in entropy which

in turn leads to cooling. To continually cool the fridge the removed 3He is recondensed

back into the mixing chamber by the 1K pot [64].

The dilution unit sits within the vacuum of the IVC, with the interferometer mounted

below the mixing chamber. Thermal coupling to the fridge is achieved by means of three

copper rods bolted directly to the mixing chamber.

The single mode fibre enters the IVC through a flange on the top plate that is sealed

with wax. The fibre runs down the cryostat, with excess fibre being coiled around the

still. This allows the tip of the fibre within the interferometer to be replaced without

having to continually remake the wax seal to the IVC.

Unfortunately the operation of the fridge was beset by technical problems that pre-

vented it from cooling. Over the course of this work attempts were made to identify

and remedy these issues, unfortunately it was not possible to operate the fridge at a

temperature below 1 K for any great length of time.

5.2.1 Wiring Considerations

Electrical signals within the experiment can be divided into three groups with different

requirements:

1. ac signals applied to or received from the sample

2. dc signals used for thermometry, heaters and dc sample measurements

3. control voltages to drive the nanopositioning stages.

The design of these wiring systems is discussed in the following sections. It was

decided early in the design process that the fridge should be wired to allow a range of

experiments to be carried out, as such extra wiring was included in the fridge.
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High Frequency Wiring

Semi-rigid coaxial cables, with a cupronickel shield were used for ac signals. To allow for

future experiments four lines were installed, with fixed 50 Ω attenuators4, the values of

which are shown in table 5.1. These were used to heat sink and thermally isolate the core

at the 4.2 K plate, cold plate and mixing chamber. The shield of these attenuators were

thermally linked to the fridge using copper speaker wire soldered in place and bolted

onto the fridge with a high-pressure joint5.

The shields of the coaxial cables were also thermally linked to the fridge using copper

speaker wire at the two intermediate stages, the 1 K pot and the still. One line was left

without attenuation to allow current measurements, as in the case of a quartz tuning

fork, to be made.

In order to access the vacuum space the cables are attached to a room-temperature

hermetic SMA feedthrough6.

Temp. Sample A Sample B

(K) Drive Return Drive Return

4K Plate 4.2 20 dB - 20 dB 3 dB

1K Pot 1.2 - - - -

Still 0.7 - - - -

Cold Plate 0.4 10 dB - 10 dB -

Mixing Chamber 0.1 13 dB - 13 dB 3 dB

Table 5.1: Attenuation used on high frequency rf lines between the 4 K plate and the

mixing chamber of the dilution unit.

4Mini-Circuits Precision fixed attenuators, BW-S series
5Suggested in email communication between Dr. Chris Mellor (University of Nottingham), Dr. Phil

Meeson (Royal Holloway University) and Dr. Grégoire Ithier (Royal Holloway University)
6RADIALL R143753000; Farnell part no. 4195632
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Low Frequency Wiring

The original low frequency wiring on the fridge was replaced to ensure adequate heat

sinking at the various stages. Wiring looms7 composed of 12 twisted pairs of 42 SWG

constantan wire woven together with nomex to form a ribbon were used. This was joined

to the original wiring at the 1 K plate, and thermally grounded by winding the loom

around 12 mm diameter copper posts bolted to the fridge, at the intermediate stages.

The looms were secured to the copper posts with GE varnish and dental floss.

For the heaters (still and mixing chamber) the constantan was replaced with 47

gauge copper wire to minimize heating along the length of the loom. Two additional

constantan wiring looms were installed for additional thermometry and sample wiring.

Stage Control Wiring

Due to the capacitance of the piezoceramic elements within the nanopositioning stages

it is important to ensure the wiring to the stages has a resistance of less than 10 Ω

[65]. This ensures the time constant of the stages is kept sufficiently low to prevent

attenuation of the ac control voltages. To meet this requirement 34 AWG teflon coated

copper wire8 was chosen for the stage control wiring. Teflon coated wires were required

as voltages of between 20 and 70 V are applied to the stages.

The wires were thermally grounded by wrapping the wire around copper posts

mounted at the 1 K, still and cold plates. Due to the large voltages carried in the

wires (20-70 V at 200-500 Hz) the wires were enclosed in grounded cupronickel tubing

to shield the other wiring from these large ac signals.

5.2.2 Material Selection

In order to minimize any misalignment of the optics at low temperatures the optics

and sample mounting space was fabricated from grade-II titanium, the same material

7CMR Direct CMR/CWL-12CO
8Phoenix Wire, Inc.
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used in the construction of the nanopositioning stages [65], avoiding differential thermal

contraction between the stages and their mounts.

In order to cope with the low temperature, UHV nature of the sample environment

the LT/HV version of the nanopositioning stages were used. These stages are specifically

designed to operate at low temperatures and under HV conditions.

5.3 Room Temperature Optical Arrangement

The room temperature optics are composed of a light source, fibre coupler, directional

coupler and the photodetectors. To avoid damage and misalignment of the room tem-

perature optics they are mounted on a rack directly above the dilution refrigerator. This

minimises the length of exposed fibre running to the dilution refrigerator and reduces the

chance of damage during cryostat operation. In order to protect the fibre optic running

from the rack to the cryostat it is enclosed within a length of rigid compressor tubing.

5.3.1 Optical Source

The interferometer is designed to be operated with two optical sources, both with wave-

lengths of 633 nm, a HeNe laser9 and a semiconductor diode laser10.

The light source used for the measurement depends on the length of cavity that needs

to be formed. Light from a HeNe laser, with a typical coherence length of ∼ 30 cm [66],

is able to form a cavity between the end of the fibre and the sample itself, while a diode

laser has a shorter coherence length (typically a cm), in this case the cavity forms within

the sample, or between a microscope cover slip inserted after the focussing lens and the

sample, as discussed in section 5.4.3.

9Thorlabs 2 mW HeNe laser
10Hitachi 3 mW laser diode, HL6314MG
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5.3.2 Fibre Coupler

Light is coupled into arm I1 using a commercially available fibre coupling system11.

The coupling system is composed of an FC fibre mount, an aspheric lens, and a 6-axis

adjustment system. The lens is positioned so collimated light entering the system is

brought to a focus. By adjusting the x, y and tilt the fibre can be positioned to lie at

the focal point of the system.

The end of fibre I1 was connectorized with an FC connector to be compatible with

the coupling system. Once connectorized the fibre was polished to maximize the amount

of light coupled into the system.

5.3.3 Fibre Directional Coupler

The single mode fibre coupler around which this interferometer is based is, as previously

mentioned, analogous to a beam splitter in a free space arrangement. It is made up of

two lengths of single mode fibre, of core diameter ∼ 5 µm and numerical aperture 0.12.

These fibres are twisted together and heated such that the fibres begin to fuse. This

allows the evanescent field of light in one fibre to couple into the core of the other. The

degree to which the fibres fuse influences the coupling strength. A 3 dB coupler is used

in this work, which splits the optical power equally across the outputs [67].

5.3.4 Photomultiplier Tube

The light leaving fibre I2 is incident on a 1P28A photomultiplier tube from Hamamatsu

Photonics12. Photomultiplier tubes are incredibly sensitive light detectors and are com-

monly used for single photon counting because of their large gains and low shot limited

noise. They are ideally suited for interferometry thanks to their frequency response and

the ease with which light exiting a fibre can be collected by the large active area of the

photocathode. The 1P28A has a rise time of 2.2 ns, which corresponds to a maximum

detection frequency of around 400 MHz, well in excess of our detection electronics.

11Thorlabs FibrePort Coupler PAF-X-5-B
12Hammamatsu Photonics, 1P28A
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Light incident on the photomultiplier tube strikes the photocathode, which for SbCs

at a wavelength of 633 nm has a cathode radiant sensitivity of ∼ 2 mA/W [68]. SbCs

has a lower resistivity compared to other photocathode materials, so a larger current

is able to flow through the photocathode making it suited to applications where a high

light intensity is to be measured [68, 69].

Amplification of the photoelectrons occurs at 9 intermediate dynode stages between

the cathode and anode. The 1P28A is driven by a voltage (VPMT ) of up to 1250 V,

which is equally divided between the 10 stages. As the electrons pass between stages

a cascade effect multiplies the number of electrons. This is what gives photomultiplier

tubes gains on the order of 103 - 108 depending on the voltage applied.

Photomultiplier Tube IV Converter

The current generated by the photmultiplier tube needs to be converted to a voltage

for measurement. The transimpedence amplifier shown in figure 5.3 was constructed for

this purpose. It was designed by Dr. C. J. Mellor and constructed by Bob Chettle.

A low-noise FET-input operational amplifier13 was used for the current to voltage

conversion. This amplifier is commonly used in current conversion, where a relatively

large source impedance is present. A feedback resistor of 10 kΩ used with this amplifier

results in a transimpedance gain of G ≈ −10× 103 V/A.

After conversion to a voltage the signal undergoes further amplification. The dc

component (f < 1.6 kHz) is passed through an operational amplifier14, with a further

gain of 10. This gave a low-impedance output that is recorded using the analog input of

a data-acquisition card.

The ac signal is passed through an OPA847 operational amplifier with a gain of 40.

After the ac amplification stage, there are a set of selectable low-pass filters (< 0.7,

< 10.7 and < 27 MHz) between a pair of buffer amplifiers that ensure a 50 Ω output

13Texas Instruments OPA657
14Linear Technology LT1128



CHAPTER 5. Experimental Setup 112

AC
Ampli�cation Stage

I-V
Conversion Stage

DC
Ampli�cation Stage

DC
Output

PMT
Input

OPA657

OPA847

LT1128

10 kΩ
10 kΩ

1 pF
30 pF

1 kΩ

0.1 µF

100 Ω

470 nF

3 kΩ

1 pF

AC
Output

1 kΩ

Figure 5.3: Current to voltage convertor for photomultiplier tube. This amplifier has

three stages (indicated by the background colour). The current to voltage conversion

(green) is carried out with a gain of ∼ −104 V/A. This is followed by two amplification

stages, a dc voltage amplifier (blue), with a gain of 10, and an ac amplification stage

(yellow), with a gain of 30.
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impedance. This output is monitored using either a network analyser15 or an RF lock-in

amplifier16.

5.3.5 Photodiode

The optical irradiance at the sample can be monitored at output O2 using a photodi-

ode17. This photodiode also optically isolates the fibre from ambient light in the lab.

The index matching gel at the optical inputs help to minimize reflections at the fibre

end that can interfere with light in the fibre and introduce noise to the measurments.

This was seen by Breen et al. [70] who found that the index matching gel reduces the

amount of light reflected back from the fibre termination at O2.

5.4 Low Temperature Optical Assembly

Light emerging from arm O1 of the coupler is collimated and focussed down onto the

sample. This is achieved using two aspheric lenses mounted in a grade 2 titanium

frame similar in design to the microscope described in [52]. The entire low temperature

assembly is shown in figure 5.4.

The key requirement in the design of this section is the ability to adjust the separation

between the fibre and the collimating lens while minimising stress on the single mode

fibre. This was achieved by having a modular design for the optical assembly, where the

fibre screwed into the collimating lens holder which could then be rotated to adjust the

separation without twisting the fibre before coupling with the focussing lens mount. In

the following sections the components that make up the low temperature assembly are

presented.

15Agilent 8172ET
16Stanford Research Systems SR844
17ThorLabs AC110-AC
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Collimating Lens

Locking Nut

Focussing Lens

Sample Holder

Attocube Stages

Fibre Chuck

(a) (b)
20 mm

Figure 5.4: (a) Cutout of the low temperature optical assembly with the key components

labeled. (b) Shows a photograph of the complete assembly with visible components

labeled. Also visible in (b) are the copper posts used to thermally link to the mixing

chamber, and the electrical connection block used to attach the rf lines to the sample

holder.
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5.4.1 Fibre Chuck

The fibre chuck consists of a threaded titanium piece with a hole running through the

centre into which the fibre is secured. The core of the single mode fibre and cladding

is ∼ 125 µm in diameter, so to protect the fibre and simplify mounting into the inter-

ferometer the end of the fibre is cleaved at right angles and mounted in a 1 mm outer

diameter glass capillary tube [71] secured using fibre optic epoxy18, with 0.5 to 1 mm

of fibre protruding from the chuck. The threaded mount allows adjustment of the sep-

aration between the fibre tip and the collimating lens. Once set the separation is fixed

using a knurled locking nut.

Fibre optic epoxy was chosen to secure the fibre in the chuck as it has a low thermal

decomposition temperature. If the fibre needs replacing the epoxy is removed using a

blowtorch and the fibre chuck reused.

5.4.2 Collimating Lens Mount

As mentioned earlier, the single mode fibre used in the coupler has a numerical aperture

(NA) of 0.12. The numerical aperture is related to the half angle of the cone, θ, by

NA = n sin θ. This means that the light exiting the fibre is divergent, with a half angle

of ∼ 7◦. In order to collimate as much of the emerging light as possible the aspheric

lens must have a numerical aperture equal to or greater than that of the fibre19. A short

effective focal length minimizes the overall length of the optical assembly.

The lens is placed in a threaded tube and held in place with a retaining nut. The

other end of the tube is threaded to receive the fibre chuck. Rotating the lens tube

allows the the bare fibre to be bought to the focal point of the lens and a collimated

beam of light produced. Once a collimated beam is achieved a locking nut secures the

fibre chuck in position, fixing the fibre lens separation.

18Capillary tube removed from Thorlabs reusable Fibre-to-Fibre splice, TS125, held in place using

Thorlab Fibre Epoxy F120
19LightPath Technologies 325280B, NA = 0.15; EFL = 18.4 mm



CHAPTER 5. Experimental Setup 116

5.4.3 Focussing Lens Mount

A second aspheric lens20 focuses the now collimated light onto the sample. A larger nu-

merical aperture lens has an increased ability to capture light reflected from the sample,

so a lens with a numerical aperture of 0.54 and an effective focal length of 5.50 mm was

chosen. This lens sits within a mount into which the collimating lens tube and fibre

chuck assembly mounts. To avoid twisting, and potentially breaking the optical fibre

the collimating assembly slides into the focussing lens mount where it is held in place

by three grub screws. The sample is moved to the focus by the z-positioning stage.

Cover Slip

In order to modify the cavity length it is possible to insert a microscope cover slip between

the focussing lens and the sample. This introduces a reflective surface into the cavity

nearer to the sample which allows light of a shorter coherence length to be used. The two

cavity configurations (in addition to the cavity that can form within the NEMS itself) are

shown in figure 5.5. The aspheric lenses making up the interferometer have anti-reflective

coatings and as such should not introduce reflections into the interferometer.

In the absence of the microscope slide the cavity shown in figure 5.5(a) is formed

between the sample and the bare fibre, for which the cavity length is ∼ 65 mm. For the

two-beam case of a low-finesse cavity this arrangement will require a light source with

a coherence length of at least 130 mm (twice the cavity length) to ensure light reflected

from the sample is coherent with the light reflected from the fibre, in this case the HeNe

laser is used.

The microscope cover slip is made of BK7 glass and will introduce a 4 % reflection

at the top and bottom of the coverslip. In order to minimize one of these reflections

an anti-reflective coating was applied to the surface of the cover slip nearest the lens as

indicated in figure 5.5(b). The anti-reflection coating is composed of silicon nitride and

silicon dioxide deposited using plasma enhanced chemical vapour deposition (PECVD)

20LightPath Technologies 325105B, NA = 0.54; EFL = 5.50 mm
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Figure 5.5: Without a microscope cover slip the cavity shown in (a) is formed within

the interferometer, with a microscope coverslip inserted between the focussing lens and

the sample cavity (b) is formed. (c) Shows the make-up of the anti-reflective coating

applied to the cover slip to minimize reflections from the top-surface of the microscope

slide.

carried out by Dr. C. J. Mellor. The composition of the anti-reflection coating is shown

in figure 5.5(c), with layer thicknesses that were determined using the multi-layer film

theory outlined in section 3.1.2.

With the microscope cover slip in place the cavity length reduces to the separation

between the top of the sample and the bottom of the cover slip, a distance of ∼ 4 mm

which allows a light source with a far shorter coherence length, such as a diode laser, to

be used.

For light of λ = 633 nm a change of ∆L in the cavity length, L, will alter the

responsitivity of the interferometer as R ∝ cos(4π∆z/λ). For ∆L = 15 nm this equates

to a ∼ 5 % decrease in responsivity, while 30 nm will decrease the responsivity by ∼ 18

%. This change in length will have the same effect on the responsivity regardless of

the overall cavity lengths, however assuming the extension and contraction of the cavity

per unit length is uniform the shorter cavity should be more stable. This was seen

in a set of stability measurements made by Attocube on a titanium reference cavity at
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4.2 K using a Fabry-Perot interferometer [72]. The standard deviation was calculated for

measurements made over a 10 hour period for three cavity lengths. As the cavity length

increased so too did the standard deviation from 345 pm for a 20 mm cavity to 1035

pm for a 110 mm cavity. It is important to note that the reference cavities measured by

Attocube were made from a single piece of titanium, while the cavity discussed in this

work is made from several pieces of titanium and contains a set of positioning stages

that are designed to be adjustable so a larger deviation in cavity length is expected.

In an ideal situation the cavity length is reduced as much as possible, as in the case

of the silicon nitride devices where the cavity can be formed within the sample itself

(L < 1 µm).

At longer coherence lengths interferences within the fibre can become more pro-

nounced. These arise where defects in both the core and the cladding reflect light,

especially where the fibre curves. Acoustic vibrations modulate the distance between

these defects and introduces noise to the detected signal. If these defects are assumed to

be uniformly distributed throughout the fibre then as the coherence length of the light

decreases, so too does the number of reflections from defects that are coherent to one

another.

5.4.4 Nano Positioning Stage Assembly

Correctly positioning the sample below the focussing lens within the interferometer is

achieved using 3 commercially available linear positioning stages supplied by Attocube

Systems21. These stages are constructed from grade-2 titanium and are designed to

provide positioning with nm precision in low temperature, UHV environments.

The positioners operate using the slip-stick principle and are composed of three parts.

A base that is firmly anchored, a piezoceramic element, and a carriage connected to the

piezoceramic by a set of leaf springs. The stages are controlled by applying a sawtooth

voltage to the piezoceramic. As the voltage (and consequently the length) is rapidly

increased the friction between the piezoceramic and the leaf springs is overcome and

21ANPx51/LT/HV, ANPx101/LT/HV and ANPz101/LT/HV
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the stage will “slip”. The voltage is then slowly decreased, the carriage “sticks” and is

drawn along with the piezoceramic.

Typically at room temperature voltages of 20-30 V are applied at a frequency of 200

Hz. As the temperature decreases, so too does the extension of the piezoceramic with

applied voltage, requiring the application of higher voltages (and frequencies). Voltages,

frequencies and step sizes measured at several temperatures are given in table 5.2.

Temperature (K) Voltage (V) Frequency (Hz) Step Size (nm)

300 25 200 100

77 40 200 70

4.2 60 500 30

Table 5.2: Typical frequencies and voltages applied to the linear positioning stages along

with step sizes for a range of temperatures

The positioning stages are mounted at the base of the dilution fridge within a cage of

grade-2 titanium, the design of which is shown in the lower part of figure 5.4. The cage

in which the motors are mounted serves two purposes. The first is to ensure that the

alignment of the optics and sample do not change as the system is cooled, consequently

grade 2 titanium was chosen, the same material as the nanopositioning stages are made

of. This reduces the chances of misalignment due to differences in thermal contraction

between the different sections.

The second role is to provide a firm base to anchor the positioners and allow the

slip-stick motors to operate efficiently. This is achieved by mounting the stages on a

titanium base plate that has a tight fit into the base of the mount, secured in place

by three grub screws. To ensure sufficient thermal contact the experimental region is

connected to the mixing chamber by three copper struts, tapped to screw directly into

the mount and the mixing chamber. These struts are split approximately half way up

and rejoined using a copper collar with a tight fit, held in place by grub screws.
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5.4.5 Sample Holder

The sample holder shown in figure 5.6 was designed and constructed to allow the sample

to be attached to the nanopositioning stages and inertially actuated. The base of the

sample holder is made from MACOR into which a copper block and four 20 SWG wires

are affixed using a non-conductive epoxy22. These copper wires act as anchoring points

for drive wires to avoid stressing the piezoceramic.

The piezoelectric element is a 6 mm × 6 mm sheet of EBL#2 piezoceramic23. In

order to obtain the frequencies required to actuate the nanomechanical devices a sheet

of thickness 0.165 mm was chosen. When operated in the thickness mode this sheet has

a resonant frequency of 12.0 MHz. Gold is coated on both sides of the piezoceramic to

assist with electrical contacting.

The piezoceramic is affixed to the central copper block using electrically conductive

silver epoxy24. Once the epoxy is applied the sample holder is held in a PTFE jig and

baked in a convection oven at 100◦C for 2 hours. The electrical contact to the top of the

sheet of piezoceramic comprises a 12 × 12 mm sheet of 0.25 mm thick titanium, again

attached using silver epoxy. The sample is affixed to the titanium top plate using a spot

of superglue in one corner, this minimizes any additional stress that is applied to the

sample while allowing the sample to be easily removed and the sample holder recycled.

A drive voltage is applied to the central copper block, while the titanium top plate

is held at ground as shown in figure 5.6(c). Both electrical connections were made using

47 swg copper wire, soldered to the thicker copper wires attached to the MACOR base

as shown in figure 5.6(b).

The MACOR base acts to electrically isolate the piezoceramic sheets from the At-

tocube stages. A titanium block was machined to enable the sample holder to be secured

to the positioning stages.

22JB Weld
23EBL Products inc.
24Epotek H20E-PFC
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Figure 5.6: (a) Photo showing the sample holder used as part of this work. (b) Cutout

showing the makeup of the sample holder. (c) Cross section of the sample holder showing

the electrical connections to the piezoceramic.
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5.5 Measurement Techniques

So far in this chapter we have introduced the components that make up the experimental

setup. We will now turn our attention to the control electronics and measurement

techniques employed in this work. These can be divided into two measurement types:

confocal imaging, where the sample is imaged by scanning the positioning stages and rf

measurements where the frequency response of a mechanical device is measured.

This section outlines how the measurements are taken and the data are analysed.

As part of this measurements made using the interferometer on nanomechanical devices

(made from high-stress silicon nitride) and on quartz tuning forks will be presented.

Measurements are made using control software written in LABVIEW, while the data

analysis is carried out in MATLAB.

5.5.1 Confocal Imaging

In order to accurately position the device an image must be built up of the surface of

the sample beneath the optical spot. This is done by operating the interferometer as a

confocal microscope.

In confocal microscopy light from a laser source is spatially filtered by passing the

light through an aperture such as a pinhole or, as in this case, the core of a single

mode fibre. This produces a beam with a Gaussian profile which is then collimated and

focussed onto the sample by an objective lens. The beam is reflected and scattered by

the surface before being recaptured by the objective lens. Spatial filtering occurs once

more with only light in focus passing back into the core of the fibre while the out of

focus light is rejected [19].

If the stage is scanned while recording the intensity of light at I2 it is possible to

build up an image of the sample surface pixel by pixel. In the following sections an

overview of how surface scans are acquired using the interferometer are presented.
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Stage Control

As mentioned previously an image is constructed by moving the sample relative to the

fibre and recording the reflected optical power as a function of position. The acquisition

of each pixel is made up of three parts, each with an associated time: moving the

stage (Tstep), allowing the stage to stabilise at the new position (Tstab) and taking a

measurement (Tmeas). Hence the total time taken to acquire a datapoint is T = Tstep +

Tstab + Tmeas.

The step time is defined by how quickly the control electronics can make a step and

the time taken for the stage to move. Control voltgages are applied at frequencies of

at least 200 Hz, which means the time taken for a single step is at most 5 ms. The

unit that drives the positioning stages25 has two inputs that can be used for computer

control, an RS232 connection and a TTL input. The RS232 connection is used to send

ASCII commands to configure and control the stages, while the TTL inputs can only be

used to step the stages [73].

A serial port is used to send ASCII commands, for which the manufacturer specifies

a minimum time per command of 50 ms, the TTL input on the other hand can step the

positioner by being held high for just 10 ms. It was decided to use the RS232 interface to

configure the stages, while the actual stepping of the positioner would be accomplished

using the TTL input as during earlier tests the TTL input was seen to not only be

quicker, but also more reliable as the RS232 connection would on occasion not register

commands when they were sent in rapid succession.

TTL pulses were generated by a DAQ card26, in order to control the motion of travel

6 digital lines were required, two (corresponding to the up and down directions) for each

of the three axes. A digital output was also used to trigger the data acquisition on an

analog input of the DAQ card.

The other two times (stabilisation and measurement) are defined by the user. In

tests it was found that a time of 20 ms for both the settling and data acquisition gave

25Attocube ANC150 control unit
26National Instruments PCI6052E
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good results. A spike during Tstep due to the sharp motion of the stage was observed,

so a value of Tstab = 20 ms was chosen to allow the sample to settle and the signal to

stabilise. In order to remove any noise arising from the mains supply measurements were

made over Tmeas = 20 ms (corresponding to one cycle of the 50 Hz mains frequency) and

a mean taken. Images acquired generally consisted of 10,000 pixels (a 100 × 100 pixel

field), for which the acquisition time is approximately 8 minutes.

Scan Patterns

Slip-stick motors are normally used for coarse positioning only. This is due to issues

in reproducibility that arise from the way in which they operate. For the stages used

in this work, the manufacturer gives a typical step asymmetry of 5 % for the xy- and

5 − 10 % for the z-positioner[65]. Previous work [74] has shown the step asymmetry

does not pose as large a problem as first thought, with the fast scan axis “locking” into

a stable region after a few rows and giving reproducible consecutive scans.

In order to determine the sample position and locate the optical spot on a device of

interest, images were acquired by rastering the surface of the sample beneath the optical

spot. The axes can be thought of in terms of a fast and a slow axis. On the fast axis

one (or more) rows of datapoints are recorded before the slow axis is moved, allowing a

new region of the sample to be imaged and a picture of the sample built up row by row.

The two scan patterns shown in figure 5.7 were used in this work. The quicker of the

two, figure 5.7(a), scans the fast axis in one direction before a step is taken on the slow

axis and the fast axis scanned in the opposite direction.

In the slower scan pattern, figure 5.7(b), the fast axis is scanned up and down between

each slow axis step. This scan pattern therefore produces twice the datapoints (and

consequently take twice as long ) as the faster scan, but appears to give the most

reproducible results and minimizes the effects of step asymmetry on the scan pattern.

This performance is attributed to the locking of the stages mentioned earlier.

Any asymmetry in the step sizes in the up and down directions of the fast axis will
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Figure 5.7: Scan patterns used when acquiring confocal images. (a) Shows the quicker

of the two scan patterns, where between each fast axis scan the slow axis is stepped.

(b) Shows a slower scan pattern, where a scan up and down the fast axis is carried out

before stepping up in the slow axis.

tilt the features as the up and down rows shift out of alignment on successive scans. If

the stages lock into a specific range of motion this asymmetry will no longer cause a

problem and successive fast axis scans will align. The downside to this is that, if the

range of motion to which the stages lock is too small, then for part of the fast scan, the

stages will be stationary. An extreme example of this is shown in figure 5.8 which was

obtained using the faster of the two scan patterns.

Figure 5.8(a) shows all of the pixels obtained during the scan, and at first glance

appears to show two sets of location markers. If we separate the fast scan axis data into

points recorded in the down (figure 5.8(b)) and up (figure 5.8(c)) directions the extent

to which the stages have locked becomes clear. For almost half the fast axis scan the

stages are not in motion, and when they are in motion it appears that the steps in the

up direction are larger than those in the down direction. If the stages were not operating

over a fixed range then the rows would not line up and the scan would be distorted.

Meyer et al. [74] attribute this locking to self organisation of the surface between
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Figure 5.8: Confocal image of a gold pattern on silicon nitride imaged at 4.2 K using

the fast scan pattern. (a) Shows the full scan, while the down and up scans in the fast

axis have been isolated and are shown in (b) and (c) respectively.

the piezoceramic element and the mount. This “locking” while useful when imaging a

small region of the sample did cause issues if the region to which locking occurred was

not of interest. In these cases it was sometimes necessary to scan the offending stage

over a large range of motion several times to break the locking effect.

Confocal Imaging of Silicon Nitride Nanomechanical Devices

In this section, a range of confocal measurements made on silicon nitride samples are

presented. We examine how the coherence length of the light can affect the image

obtained, and the quality of images that can be generated when the stages are behaving

as expected. We will then move on to examine how images of the frequency response of

a nanomechanical resonator are obtained.

In order to improve the resolution, the coherence length of the laser diode was reduced

by decreasing the supply current to just below the lasing threshold, this results in a lower

detected optical power and drastically reduces the intensity of interference fringes seen.

The lower optical power is compensated for by increasing the gain of the photomultiplier.
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Two examples of this are shown in figure 5.9.

For metalised features, such as those shown in figure 5.9(a) and (b) a cavity is formed

between the sample, and the microscope slide at the top of the sample mounting can. In

the case of light where the coherence length is greater than twice the separation between

the sample and the reflective surfaces interference fringes are seen that correspond to

any tilt there may be on the sample. This tilt introduces a gradual change in the cavity

length as seen in figure 5.9(a), where fringes of varying intensity can be seen. In the case

of light with a shorter coherence length, figure 5.9(b), the light reflecting from the surface

at the top of the cavity and the sample is no longer coherent and does not interfere and

as such these fringes are no longer present.

In the case of a nanomechanical device, such as the cantilevers shown in figures 5.9(c)

and (d), two cavities exist within the experimental setup; one where reflections from the

sample and the coverslip at the top of the sample space interfere and a second cavity

within the layers of the sample itself. If the coherence length of the light is reduced,

the interference fringes visible in figure 5.9(c) are no longer present, as shown in figure

5.9(d).

In figure 5.9(d) we also see the effect that nitride thickness has on the reflectivity of

the sample. A variation in the intensity of the reflected light can be seen along the length

of the cantilever, with a maximum lying near to the tip of the beam that corresponds to

the point at which the thickness of the vacuum gap, and the nitride combine to give a

maximum in reflectivity. This variation in nitride thickness arises from the fabrication

process, and the variation in accessibility of the hydrofluoric acid to the sacrificial oxide

layer beneath the mechanical element.

A large area scan, 500× 500 pixels in size was taken, and is shown in figure 5.10(a)

alongside SEM and optical images of the same region of device, showing very good

correlation between the confocal images taken using the system described in this thesis,

and images taken using commercially available systems during fabrication.

The optical spot probing the sample has a finite size that will introduce a blurring to
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Figure 5.9: Confocal images of two samples. Images were taken of a gold patterned

substrate ((a) and (b)) and stress relieved silicon nitride cantilevers ((c) and (d)). A

diode laser was used as the optical source, operated above the lasing threshold, resulting

in a longer coherence length ((a) and (c)) and below the lasing threshold, resulting in a

shorter coherence length ((b) and (d)).
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(a) (b) (c)

~15 µm ~15 µm~15 µm

Figure 5.10: (a) Confocal scan at ∼ 4.2 K, short coherence; (b) Optical microscope

image (100× magnification); (c) SEM image.

the recorded image. The profile of the optical spot is described by a Gaussian function

of width σ [75]:

G(x) =
1√

2πσ2
e−x

2/2σ2
(5.1)

The blurring due to the optical spot is equivalent to convolving a Gaussian with the

expected response [37]. To determine the resolution of the system the expected response

was convolved with several Gaussian functions of varying width and compared with

experimental data. A comparison of this kind is shown in figure 5.11 where a subset of

the confocal data presented in figure 5.10(c) was compared with the expected response

for several Gaussian functions of varying widths.

The subset analysed is indicated by the box in the inset of figure 5.11 and a mean of

the rows (indicated by the direction of the arrow) calculated. The idealised response of

the sample was made up of three top hat functions representing the three paddles. The

central paddle was not present in all of the lines and to account for this the amplitude of

the central top hat function was reduced from 1.00 to 0.8527. Once convolved the signals

are normalised such that the maximum amplitudes were equal and compared with the

27Central paddle detected in ∼ 85% of the lines from which the mean was taken
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Figure 5.11: Comparison of experimental data with simulated data obtained by convolv-

ing a step function representing the three paddles of the torsional resonator with three

gaussian functions of varying widths.
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Figure 5.12: Confocal image of an array of torsional resonators imaged at 4.2 K. The

image on the left shows the dc response, with the magnitude and phase of the ac response

shown in the central and right images respectively. The sample was driven at 12.709

MHz with a power of -16 dBm inserted at the top of the fridge. The square is a guide

to the eye, identifying the area of the sample in which the torsional resonator of interest

lies.

experimental data the resolution of the system was determined to be ∼ 0.75 µm.

In addition to the static response of a nanomechanical device the ac response of a

device was also imaged. An example of this sort of a measurement made on a three

paddle torsional resonator is shown in figure 5.12. Having located and determined the

resonant frequency of the first flexural mode of the resonator, the stage was relocated

and the resonator scanned. The piezoelectric holder was driven at 12.709 MHz with

the ac output of the photomultiplier monitored using a lock-in amplifier. In addition

to recording the dc signal, the magnitude response was also recorded using the monitor

output of the lock-in amplifier connected to an analogue input of the DAC card.

Figure 5.12(a) shows the dc scan, in which an array of 4 torsional resonators is

visible. During the ac scan, figure 5.12(b), only the torsional resonator that is in motion

is visible and moving in phase, as seen in figure 5.12(c), which confirms that we are

observing the lowest order flexural mode of the torsional resonator. A frequency sweep
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of the torsional resonator measured it to have a quality factor of ∼ 1.05 × 104, this is

presented in the following section where rf measurement techniques are discussed. The

fact that only one device is seen to be in motion indicates that the resonant frequencies

of the other resonators are sufficiently different, most likely due to variations in the

fabrication process over the sample, that the resonances do not overlap significantly.

5.5.2 RF Measurement Techniques

Once amplified the ac signal was monitored in one of two ways. A network analyser28

was used initially to determine the resonant frequency of the devices, as it allows a

large range of frequencies to be swept in a short amount of time. Once a resonance

was detected an rf lock-in amplifier29 was used to demodulate the frequency response of

the device into orthogonal in-phase (X) and quadrature (Y) components. This response

could be recorded in two ways, by sweeping the frequency and recording the response

of the device (frequency domain), or applying an rf pulse at the resonant frequency and

recording the temporal decay (time domain).

Frequency Domain Analysis

The frequency domain method allows a direct measurement of the response of the res-

onator which when operating in the linear regime is described by the Lorentzian (intro-

duced in section 2.1):

R(f) =

Af20
Q(

f2
0 − f2

)
+ iff0Q

(5.2)

In the following section the fitting procedure is illustrated using measurements made

on a 28 µm long doubly clamped high-stress silicon nitride beam at 2 K.

The in-phase (X) and quadrature (Y) components are recorded and Matlab is used

to perform a 6 parameter fit to R = X+ iY allowing the resonant frequency and quality

factor to be extracted. The fit parameters are the magnitude of the response (A0),

28Agilent 8172ET
29Stanford Research Systems SR844
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the resonant frequency (f0) and the quality factor (Q). The fit also takes into account

the experimental setup via Cx and Cy which account for any dc offsets in the lock-

in amplifier. The phase angle, φ, between the resonator response and the detection

frequency is applied to R(R) and I(R) using the rotation matrix [75]:

 X

Y

 =

 cosφ sinφ

− sinφ cosφ

 R(R)

I(R)

 (5.3)

Given the large number of fitting parameters good initial guesses are required. The

first stage is to fit a Lorentzian to the absolute data

|R(f)| =
Af20
Q√(

f2
0 − f2

)2
+
(
ff0
Q

)2
+ C0 (5.4)

which is a 4 parameter fit consisting of A0, f0, Q, that were introduced previously and

C0 that accounts for any dc offsets in the system. From this initial fit values used as

starting points for the 6 parameter fit are obtained.

In order that the solver converge on a solution within a reasonable amount of time

good initial guesses for the fit parameters are needed and the magnitude of the coefficients

guessed by the solver should be similar. To ensure this the frequency data, measured in

kHz, is shifted so that the centre frequency lies at 0 Hz. The data is normalised such

that the maximum value of R (and consequently the initial guess for A0) is equal to 1,

with f0 taken to be the frequency at which this maximum value occurs.

An estimate of Q is obtained by finding the FWHM, ∆f , with Q = f0/∆f . The

quality factors are expected to be in excess of 104, for a resonator with f0 = 1 MHz this

would correspond to a FWHM of 0.1 kHz. Working in kHz and centring the frequency

range on 0 Hz ensures that when guessing the resonant frequency the changes made by

the solver to f0 are of a similar magnitude to those made to the other coefficients. The

quality factor is also rescaled by dividing by 104. An estimate for C0 is obtained by

taking the mean of the first and last 10 normalised datapoints away from resonance.

A fit to the displacement magnitude data for a doubly clamped silicon nitride beam is
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shown in figure 5.13.
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Figure 5.13: The magnitude of the displacement response of a 28 µm doubly clamped

beam of silicon nitride measured in vacuum at a temperature of 2 K. The points show

the experimental data, with the fit indicated by the solid line.

Once initial values have been calculated, a full 6 parameter fit can be carried out,

using values from the previous fit as starting guesses. Additional coefficients required

are a phase angle for the rotation matrix (assumed to be π/4) and values of Cx and Cy

which are assumed to be unique to each channel of the lock-in amplifier and therefore not

affected by the phase angle. These are again estimated by averaging the first and last

10 datapoints away from resonance, and are added after the rotation matrix has been

applied. A full fit to the experimental data is shown in figure 5.14, for which a quality

factor of (1.135 ± 0.003) × 105 was measured, with a resonant frequency of 8.78 ± 0.01

MHz. Errors were taken to be the standard deviations of the coefficients, obtained from

the covariance matrix of the fit.
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Figure 5.14: The X and Y response of a 28 µm doubly clamped beam of silicon nitride

measured in vacuum at a temperature of 2 K. The points show the experimental data,

with a non-linear fit indicated by the solid line.

Time Domain Analysis

For a time domain measurement (sometimes referred to as a ringdown measurement)

a pulse of rf is applied to the resonator and the evolution of the response with time

recorded. A lock-in amplifier is used to demodulate the resonator signal which is then

recorded using a DAQ card.

Measurements are made using the arrangement shown in figure 5.15, where two

signal generators30 (synchronised by connecting their 10 MHz timebases) are used. One

drives the sample with the other synchronising the lock-in generator to the excitation

frequency. A digital pulse from the DAQ card is used to gate the rf output of the drive

signal generator. Typically a 1 Hz square wave with a 20 % duty cycle is used to produce

200 ms long pulses of rf.

The rf signal drives the nanomechanical resonator at the resonant frequency, with

the ac output of the photomultiplier tube connected to the lock-in amplifier, the time

30Agilent E4420B (drive signal) and Agilent E4400B (detect signal).
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Figure 5.15: Diagram of the experimental setup used to make time domain measure-

ments. Two signal generators are used to drive the sample and synchronise the lock-in

amplifier. Pulses are generated using the digital output of a DAQ card to provide TTL

pulses that gate the rf output of the drive signal generator. These pulses are used to

drive the NEMS and the evolution of the resonator over time is recorded using the analog

inputs of the DAQ card.

constant of which is set to 100 µs. The monitor outputs for the X and Y channels of the

lock-in amplifier are recorded using the analog inputs of the DAQ card.

Upon removing the rf drive from the resonator, the signal will decay exponentially.

The rate at which this decay occurs is directly related to the damping of the resonator

and is described by

X(t) = Axe
−t/τ sin(2πft)

Y (t) = Aye
−t/τ cos(2πft)

(5.5)

In both channels the function is sinusoidal with an exponentially decaying envelope
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function the form of which contains information regarding the damping of the resonator.

The damping time can be extracted from the absolute response of the resonator, R(t)

which is

R(t) =
√
X(t)2 + Y (t)2 = A0e

−t/τ (5.6)

Ringdown measurements are quicker than swept frequency measurements, but the

fast time constant of the lock-in amplifier introduces noise to the measurement. In

order to overcome this the measurement is repeated a number of times and an average

taken. Unfortunately the pulses produced by the signal generator are not phase coherent

(starting at different points in the excitation cycle) and as such averaging the X and Y

values will result in the signal averaging to zero. Therefore R is calculated for each

run and a mean of this value taken. If the signal were to be Fourier transformed, the

frequency domain response of the resonator would be obtained, which could then be

analysed in the way described in section 5.5.2 requiring a fit with 4 coefficients. A

simpler approach is to analyse the response in the time domain by taking the natural

log of equation 5.6 which can then be rewritten as

ln(R(t)) = ln(A0)− t

τ
(5.7)

for which a solution can be obtained using linear regression. This results in a solution

with a gradient of 1/τ , and an intercept of ln(A0).

In figure 5.16 the time domain response of a 200 µm square high-stress silicon nitride

membrane is shown. The measurement was made at 1.2 K, with a driving frequency

of 3.401 MHz (corresponding to the (1, 2)th mode) averaged over 128 repetitions. The

lower plot shows the response of the NEMS plotted on a logarithmic scale, with a linear

fit to the first 25 ms of data. The coefficients from this fit have been used to generate

the red line in the upper plot. A value of τ = 19.4 ms is obtained, recalling from section

2.1 that the quality factor of a resonant system with small damping is Q = ω0τ/2 gives

a quality factor of Q = 2.1 × 105. This value is in fair agreement with the value of
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Figure 5.16: Ringdown measurements made on a 200 µm square high-stress silicon nitride

membrane driven at a frequency of 3.401 MHz and averaged over 128 repetitions. The

blue squares indicate experimental measurements, while the red lines show the fit to the

data.

Q = 3.1× 105 obtained from a frequency domain analysis.

5.6 Sensitivity Calibration Using a Quartz Tuning Fork

Measurements to test the frequency response and calibrate the responsivity of the inter-

ferometer were made on quartz tuning forks31. A microscope image of one of these forks

which have a resonant frequency of 32.768 kHz (215 Hz) and quality factors of order 105

[76, 77] is shown in figure 5.17. They are normally used as the frequency standard in

clocks and watches, but have also found applications in physics as sensors for scanning

probe systems [76, 78–81] and in studying the dynamics of quantum fluids [77, 82].

The quartz crystal is machined into the shape of a tuning fork and electrodes de-

31Epson Toyocom C-005R
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Figure 5.17: Optical microscope image of a quartz tuning fork used in these measure-

ments.

posited (as shown in the image). A voltage applied to the fork will cause the tines to

move, which induces a current within the fork that was detected using a lock-in amplifier

with built-in IV converter32.

There is a linear relation between the current induced within the fork (I) and the

tine displacement from equilibrium (x). The constant α is referred to as the piezo-

electro-mechanical constant and describes the charge upon the electrode, Q, per unit

displacement from equilibrium, x. If the current within the fork is known from measure-

ments it can be related to the tine displacement by:

Q = αx

I = αẋ

Irms = αωxrms

I = 2πfαx

(5.8)

Using this equation it is possible to convert the induced current within the fork to a

displacement. One tine of the fork is affixed to a sample holder using a non-conductive

epoxy. The fork motion is measured by positioning the optical spot onto the tip of the

free tine. The oscillation of the fork causes a modulation of the cavity length, which

can be converted to a displacement. In the following sections the optical calibration

of the interferometer is discussed and optical measurements of a quartz tuning fork

presented. The optical and electrical measurements are then compared and a value for

32Stanford Research Systems SR830
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the fork constant calculated. By comparing the fork constant to values published in the

literature the optical calibration of the interferometer was confirmed.

5.6.1 Optical Measurements of a Quartz Tuning Fork

Optical measurements of the motion of the quartz tuning fork were made by focussing

the light from the fibre onto the tip of the fork. A HeNe laser (λ = 633 nm) was used,

as the cavity formed needs to be between the fibre and the fork as light reflected from

the end of the fork must be coherent with the ∼ 4% of light reflected at the air-fibre

interface. In this way it was possible to measure the modulation in the length of the

optical cavity due to the motion of the fork.

Sensitivity Calibration

The interferometer responsivity was determined by changing the overall length of the

cavity. As the cavity length was changed, the intensity as a function of change in cavity

length (I(z)) was recorded. This change in intensity is described by:

I(z) = A0 cos

(
4πz

λ
+ δ

)
+ C0 (5.9)

Here A0 is related to the magnitude of the sinusoidal function, λ is the wavelength

of the light, δ is a phase angle that describes the starting position of the fork within

the cavity and the dc offset of the system is C0. A dc voltage, V is applied to the z

positioner, which produced a linear extension of the piezoceramic element in the stage

of z = CpV . The constant, Cp, allows the voltage applied to the positioning stage to be

converted to a displacement.

An example of the intensity pattern obtained when sweeping the cavity length is

shown in figure 5.18. Here the dc light level recorded while sweeping the z-position of a

quartz tuning fork at 4.2 K is shown along with a least-squares fit to equation 5.9.

By obtaining values for the fit parameters the responsivity, the change in the detected

signal with cavity length, dI
dz , can be determined from:
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Figure 5.18: Graph showing the detected dc optical signal as a function of z position at

4.2 K. The red line shows a least squares fit to the data.
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Figure 5.19: Optical measurements of a Quartz Tuning Fork made at 4.2 K, experimental

datapoints are indicated by the points, with the lines of best fit shown by the dashed

lines. (a) shows the absolute displacement of the fork, while (b) shows the X (blue) and

Y (red) channels of the lock-in amplifier.

dI

dz
= −4πA0

λ
sin

(
4πz

λ
+ δ

)
(5.10)

From this relation we can extract the maximum responsivity of the interferometer

4πA0
λ and obtain a value for the conversion factor from a voltage to displacement (at

maximum responsivity) of 768 µV/nm for the dc output of the transimpedance amplifier.

Recalling from section 5.3.4 that the gain of the ac output of the amplifier is 40 times

that of the dc allows the responsivity to be scaled. This yields an ac responsivity of

30.7 mV/nm, which is used to calculate the fork displacement as the frequency is swept.

Optical Measurements of a Quartz Tuning Fork

Optical measurements as the fork is swept through resonance were made to allow the

quality factor and optical displacement on resonance to be measured. An example of

a frequency response measurement calibrated using the values obtained in the previous

section is shown in figure 5.19.

To the displacement data a Lorentzian has been fitted and the resonant frequency
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and quality factor extracted. These were Q = (81.64 ± 0.15) × 103 and f0 = (32.716 ±

0.001)× 103 Hz, which give good agreement with the values obtained from an electrical

measurement carried out at the same time (Q = 93.71× 103 and f0 = 32.716 kHz). The

difference in the values of the quality factors for the two measurement techniques may

arise from the frequency dependent background associated with the parallel capacitance

of the quartz tuning fork [76, 81]. Failing to account for this background signal in the

fit to the data could explain the difference in measured quality factors.

These measurements were made during an initial run of the system, where there

was a leak from the main bath into the IVC. Measurements were made while pumping

directly on the IVC using a rotary pump, however a low pressure of helium was present

in the sample space, which explains the lower than expected quality factor and resonant

frequency. It was however suitable to demonstrate the ability of the interferometer to

measure displacements on the nanometer scale.

5.6.2 Comparison of Electrical and Optical Quartz Tuning Fork Mea-

surements

In order to confirm the validity of the responsivity calibration carried out the current

induced within the fork was compared to the displacement amplitude. As discussed

earlier the responsivity of the interferometer is related to the position of the fork within

the cavity; any drift in the vertical position, or misplacement of the fork will reduce

the responsivity. In order to overcome this the oscillation amplitude of the fork on

resonance was measured as the z position was varied. This allowed the amplitude of the

fork to be measured at every responsivity within the cavity. From this the displacement

amplitude of the fork was calculated. This measurement was repeated at a range of

drive amplitudes and optical powers to produce the plot shown in figure 5.20.

A straight line fit to the data was carried out and the gradient, equal to 2πfα,

calculated. Averaging the result for each dataset gives a value for alpha of 2.18 ±

0.06 µCm−1. Table 5.3 shows fork constants measured by other groups on different size
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Figure 5.20: Fork displacement against current induced in fork at a range of drive

amplitudes and optical powers. The inset plot shows a close-up view of the 425 µW

data.
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forks.

The value obtained using the setup in Nottingham gives very good agreement with

measurements made by other groups on forks of similar dimensions. Any variation can

be accounted for by the position of the optical spot on the tine of the tuning fork, for

maximum accuracy this spot should be at the very end of the tine. While the spot was

positioned as accurately as possible to maximise the signal, this may not correspond

to the point of maximum displacement. The value obtained for α shows very good

agreement with the other values that have been measured and gives confidence that the

interferometer responsivity has been calibrated reliably.

5.7 Summary

In this chapter the design and construction of the interferometer has been described.

Measurements of a range of nanomechanical devices have been presented that demon-

strate the different modes of operation of the interferometer.

In order to verify that the responsivity of the interferometer operating in the two-

beam interference mode is correct, measurements were made on a quartz tuning fork and

a value for the piezo-electro-mechanical constant were made of α = 2.18± 0.06 µCm−1

obtained, which is in good agreement with the values published in the literature.
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Fork Length α Measurement Method Ref.

[mm] [µC/m] Method

∼ 2 2.18± 0.06 As discussed –

1.7 2.09± 0.06 Optically [77]

1.7 1.90 Electromechanically [77]

∼ 3 4.26± 0.06 Optically [76]

3.2 4.90± 0.11 Optically [83]

Table 5.3: Comparison of α values measured by several groups.





Chapter 6

Measurements of High-Stress

Silicon Nitride Membranes

In this chapter results from dissipation measurements of square (200 × 200 µm) and cir-

cular (r = 100 µm) membranes of high-stress silicon nitride with a thickness of ∼ 125 nm

are presented. These membranes were fabricated using the process outlined in Chapter 4

using substrates grown at the Cornell Nanoscale Science and Technology Facility. The

silicon nitride should possess almost identical mechanical and thermal properties to that

used in the work by Wilson-Rae [29], Adiga [30] and Southworth [33].

Membranes were fabricated on a 1 cm2 square silicon substrate with centre to centre

separations of 250 µm such that the majority of the sample surface was covered. A

typical membrane thickness was measured to be ∼ 100 nm (see section 4.5.1), two or

three times thicker than those measured in previous work [29–31, 33]. This increased

thickness results in a stiffer membrane which combined with an increase in the interface

area with the substrate leads to an increase in dissipation through clamping losses.

6.1 Frequency Dependence

In Chapter 2 expressions for the resonant frequency of membranes (of thickness h) were

derived, which were for a rectangular membrane (of sides a× b):
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ωn,m = πc

√
n2

a2
+
m2

b2
(6.1)

and a circular membrane (of radius a):

ωn,m =
ζn,mc

a
(6.2)

where c is the speed of the sound within the membrane, c =
√
σ/ρ, with stress σ, density

ρ and ζn,m representing the mth zero of the nth Bessel function of the first kind.

The silicon nitride from which the membranes were fabricated had an initial intrinsic

stress of ∼ 1.2 GPa 1. When the membrane is released there will be a local deformation

of the membrane which will result in a decrease of stress within the membrane [29]. The

actual stress in the membrane can be determined by examining the ratio of the frequency

between the fundamental and higher harmonics.

The rectangular membranes studied in this work were designed to have sides of equal

length (a = b). Due to processing tolerances they will not be a perfect squares, but by

examining the difference in frequency between asymmetric modes (for example (1, 2)th

and (2, 1)th) the lengths are seen to lie within 4 % of one another and we are able to

describe the membrane in terms of a mean side length, L. This allows us to rewrite

equation 6.1 as ωn,m = πc
√
n2 +m2/L, with the fundamental mode having a frequency

of ω1,1 = πc
√

2/L. Taking the ratio between ωn,m and the fundamental mode allows us

to obtain an expression for the mode number:

√
n2 +m2 =

√
2

(
ωn,m
ω1,1

)
(6.3)

If we plot
√
n2 +m2 against resonant frequency we should obtain a straight line, the

gradient of which is equal to πc/a. A similar approach can be taken with the circular

membranes to extract the value of ζn,m:

ζn,m = ζ0,1

(
ωn,m
ω0,1

)
(6.4)

1As quoted by the supplier Cornell Nanoscale Science and Technology Facility
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Figure 6.1: Plots of (a)
√
m2 + n2 against fn,m for a 200 µm membrane measured at

3.7 K and (b) ζn,m against fn,m for a 200 µm diameter circular membrane measured at

2.5 K. The red lines are linear fits of the data with y intercept fixed at 0.

In figure 6.1 a plot of the modal dependence against frequency is shown for square and

circular membranes at 3.7 K and 2.5 K respectively. The straight lines in figure 6.1 show

linear fits to the data that are constrained to pass through the origin. From the gradients

of these fits values for the speed of sound within the membranes of csquare = 616±15 ms−1

and ccircular = 671± 12 ms−1 were obtained.

The frequency dependence of these plots indicate that the resonators are operating

within the membrane regime, where with a large tension the bending moments can be

ignored. In a plate these forces needed to be accounted for and as such result in modal

dependences of fn,m ∝ (m2/a2 + n2/b2) for a square and fn,m ∝ (m + 2n)2 for circular

geometry [26].

Using the speed of sound we are able to determine the internal stress, σ of the

membrane using the relation c =
√
σ/ρ. Taking ρ = 2700 kgm−3 [29] gives a value for

the stress within the membranes of σsquare = 1020 MPa and σcircle = 1150 MPa.

Upon cooling from 300 K to ∼ 4 K the membrane and substrate will undergo dif-

ferential thermal contraction, introducing a compressive strain into the membrane and
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reducing the internal stress. The magnitude of this thermal compression is given by the

difference in the coefficients of thermal expansion (α) of silicon (α = 2.8 × 10−6 K−1)

and silicon nitride (α = 2.0 × 10−6 K−1) [20]. Upon cooling by ∆T the strain induced

within the membrane will be:

εSiN = (αTSiN − αTSi)∆T (6.5)

which can be used to calculate the compressive stress contribution [20]:

σSiN =
ESiN
1− ν

εSiN (6.6)

Using the values of α given above with values for the Young’s modulus and Poisson

ratio of ESiN = 211 GPa and ν = 0.3 respectively [84] we expect a compressive stress

upon cooling from 300 K to 4 K of σTSiN = 71 MPa. In calculating this value the

silicon dioxide layer is ignored as during fabrication the region beneath the membrane

was removed. Any thermal contraction affecting the membrane will therefore be due

to the difference in thermal expansion coefficients of the silicon nitride and the silicon

substrate [64].

This compressive stress will reduce the tensile stress within the membrane from 1.2

GPa (as specified by supplier) to ∼ 1.13 GPa once cooled. This gives good agreement

with the values obtained from the fit to the drum data, but is out by ∼ 100 MPa in

the case of the square geometry. This discrepancy can be accounted for by a local

deformation of the membrane during the release stage in processing. The etch holes

used to allow hydrofluoric acid to the underlying silicon dioxide have a hole to hole

spacing of 5 µm, however their arrangement differs between membranes with the square

membrane etch holes arranged on a rectangular grid, while the circular membrane has

holes arranged radially about the membrane centre producing a hexagonal arrangement.

The hexagonal arrangement of holes in a circular membrane might allow the membrane

to retain the tensile stress better when compared with the long rows of holes that run

across the surface of the square membrane.
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After the low temperature measurements were made the membranes were allowed

to warm back up to room temperature, where the internal stress of square membrane

was measured to be 1050 GPa. When compared to σsquare = 1020 MPa at 3.7 K this

shows a decrease upon cooling of just 30 MPa less than half that predicted from the

compressive stress calculation. This may be due to these measurements being made

after the low temperature set with the thermal cycling affecting the overall stress within

the membrane.

6.2 Thermoelastic Damping

Much of the behaviour observed in the membranes studied as part of this work can be

described in terms of the theory of elasticity as presented by Landau and Lifshitz [85]. In

this section we will use this framework to describe the behaviour of the flexural modes of

a membrane and see how this can be used to predict the fQ floor bought about through

thermoelastic damping and how this then relates to our experimental measurements.

The membrane discussed here is a square membrane with sides of length L and a

thickness h with the membrane centre lying at (x, y, z) = (L/2, L/2, 0). The membrane

motion is described in terms of a neutral plane that lies in the centre of the membrane

and does not undergo compression or extension when the membrane is bent. This plane

lies in the centre of the membrane at z = 0 with the displacement of this plane defined

by equation 2.15 which is reproduced here:

ξ(x, y)e−iωt = ξ0 sin(αx) cos(βy)e−iωt (6.7)

where ξ0 is the amplitude of displacement and ω the mechanical frequency. The values

α = mπ/L and β = nπ/L define the node structure within the membrane. In the limit

of small displacements any transverse motion of the membrane can be ignored and we

simply state that z = ξ(x, y). The free energy per unit volume within the membrane

can then be written as [85, 86]:
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F = z2 E

1 + ν

{
1

2(1− ν)

(
∂2ξ

∂x2
+
∂2ξ

∂y2

)2

+

[
∂2ξ

∂x∂y
− ∂2ξ

∂x2

∂2ξ

∂y2

]}
(6.8)

which when integrated over the membrane volume yields the total energy within the

system:

U =
Eh3

24(1− ν2)

∫ L

0

∫ L

0

[(
∇2ξ

)2
+ 2(1− ν)

{(
∂2ξ

∂x∂y

)
− ∂2ξ

∂x2

∂2ξ

∂y2

}]
dxdy (6.9)

When determining the quality factor of a system we are interested in the fraction of

this energy lost over one cycle, Q = 2πU/∆U [86]. One dissipation mechanism present at

room temperature is thermoelastic damping. Figure 6.2 shows a plot of the dissipation

in even (m = n) modes of a 200 µm square membrane measured at 300 K. In previous

measurements of membranes it was seen that the dissipation in even modes exhibits a

strong modal dependence, decreasing as the mode number increases [29]. This behaviour

is due to the destructive interference of elastic waves within the membrane minimising

clamping losses and is observed in this data up to a frequency of 13 MHz at which point

the dissipation mechanism changes and an increase in dissipation is observed tending

towards a constant fQ product, indicative of thermoelastic damping.

In these measurements we see an fQ floor of 0.5 THz, indicated by the red line

in figure 6.2. At lower temperatures this fQ floor is no longer visible, indicating a

temperature dependent mechanism, the most likely of which is the thermoelastic effect.

For an elastic solid with a non-zero coefficient of thermal expansion, α, a deformation

will lead to a localised heating and cooling of the membrane, displacing it from thermal

equilibrium. In order to return to thermal equilibrium heat must flow along the thermal

gradient between these two points. This flow of heat is driven by the mechanical energy,

leading to a finite Q. The time taken for the heat to diffuse across this gradient is

given by the thermal diffusion time of the solid, which was defined by Lifshitz and

Roukes [87] as τth = h2/(π2a) where a is the thermal diffusivity of the solid. In the

regime where the thermal relaxation time of the phonon gas, τth is much less than the
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Figure 6.2: Dissipation in the even modes of a 200 µm square membrane measured at

300 K and 1.2 K. The solid line is a linear fit to the 300 K data indicating an fQ floor

of ∼ 0.5 THz.



CHAPTER 6. Measurements of High-Stress Silicon Nitride Membranes 155

period of oscillation of the strain field, 1/fnm the thermal phonons are able to relax

faster than the oscillating strain wave and thermoelastic damping will occur. When the

mechanical period is shorter than τth the phonons are no longer able to diffuse across

the solid quickly enough and thermoelastic damping will decrease. For the 125 nm thick

membranes discussed here, where the speed of sound is 616 ms−1, this occurs above a

frequency of ∼ 5× 109 Hz and as such is not observed.

In order to quantify the dissipation due to these heat flows we return to the theory

of elasticity introduced earlier and consider the even (m = n) flexural modes of a square

membrane, which allows the expression for the membrane displacement to be rewritten

as:

ξ(x, y)e−iωt = ξ0 sin(αx) cos(αy)e−iωt (6.10)

by using this expression to evaluate equation 6.9 for the (m,m)th mode we obtain an

expression for the total energy within the membrane of:

U =
Eh3ξ2

0m
4π4

24L2(1− ν2)
(6.11)

As the membrane undergoes flexural motion there will be periodic changes in the local

strain of the membrane leading to temperature gradients between which heat will flow in

order to bring the membrane back into thermal equilibrium. In order to determine the

energy lost per cycle we must first determine the temperature profile across the thickness

of the membrane which should satisfy the driven heat equation [10, 85, 86]:

(
cv
∂

∂t
− κth

∂2

∂z2

)
∆T =

EαT0z

3(1− 2ν)

∂

∂t
∇2ξe−iωt (6.12)

where cv is the specific heat capacity and κth is the thermal conductivity. With the

strain varying most rapidly across the thickness of the membrane we are able to ignore

the relatively small transverse temperature gradients and find a temperature field of the

form T = T0 + ∆T (x, y, z, t). The strains induced within the membrane will be periodic
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at the mechanical resonant frequency, so we take a solution for ∆T = Θ(z)e−iωt allowing

equation 6.12 to be rewritten as:

iωcvΘ(z) + κth
∂2Θ

∂z2
=
iωEαT0z

3(1− 2ν)
∇2ξ (6.13)

∂2Θ

∂z2
=
iωcv
κth

(
EαT0z

3cv(1− 2ν)
∇2ξ −Θ(z)

)
(6.14)

which when starting from a solution of the form Θ(z) = A sin(kz) +B cos(kz) we obtain

[87]:

iωcv
κth

[
EαT0z

3cv(1− 2ν)
∇2ξ −Θ(z)

]
= k2 [A sin(kz) +B cos(kz)] (6.15)

where k =
√
iωcv/κth. The values of coefficients A and B are determined by requiring

that ∂Θ/∂z = 0 at z = ±h/2, i.e. zero heat flow across the membrane boundary, for

which the solution is:

Θ(z) =
EαT0

3cv(1− 2ν)
∇2ξ

(
z − sin(kz)

k cos
(
kh
2

)) (6.16)

Having determined an expression for the thermal gradient induced within the mem-

brane by the time-varying strain we are now in a position to determine the energy lost

per cycle, which is given in [86] as:

∆U ≈ πωα2E2d5T0

1080κth(1− ν)2

∫ L

0

∫ L

0
(∇2ξ)2dxdy (6.17)

for which the integral over the surface of the membrane for an even mode is:

∫ L

0

∫ L

0
(∇2ξ)2dxdy =

n4ξ2
0π

4

L2
(6.18)

The thermoelastic quality factor is Q = 2πU/∆U [86], which by substituting in

equations 6.11 and 6.17 we obtain an expression for the thermoelastic quality factor of:

fQTE =
45κth

πα2ET0h2

(1− ν)

(1 + ν)
(6.19)
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Quantity Value Units Ref.

κth 3 Wm−1K−1 [88]

α 4.8× 10−6 K−1 [86]

cv 2× 106 Jm−3K−1 [86]

E 211 GPa [20]

ν 0.3 - [86]

T0 300 K -

h 125× 10−9 m -

Table 6.1: Parameters used in estimating the fQ product for a square silicon nitride

membrane at 300 K. The value of alpha given in this table is the linear coefficient

of thermal expansion, which is related to the coefficient of volumetric expansion by

αV = 3αL [64]. This scaling factor is included directly in equation 6.12.

Evaluating equation 6.19 using the parameters shown in table 6.1 gives a value for fQ

of 0.8 THz, very close to that observed in the experimental data. The strong agreement

between the predicted fQ floor and the measured value indicates that above 13 MHz

the dominant dissipation within the membrane is thermoelastic dissipation.

The fQ product in equation 6.19 has a 1/h2 dependence, with a decrease in mem-

brane thickness leading to an increase in the fQ product. In the work of Adiga et al.

where measurements were made on thinner (27 nm) circular membranes the authors

suggest an fQ floor of 10 THz. Evaluating equation 6.19 for their system gives fQ = 17

THz, these disagreements between the theory and experimental can be attributed to the

value of κth which can vary greatly between materials, in reviewing the literature there

was seen to be an order of magnitude difference between quoted values. The value of κth

used in these calculations was obtained from measurements of an LPCVD membrane of

low-stress amorphous silicon nitride with a thickness of 180− 200 nm [88].

In amorphous solids the phonon mean free path is of the same order as the structural

disorder, this results in a size independent thermal conductivity [89]. Orbach et al. [90]

suggest that heat transfer within amorphous solids occurs by phonons coupling to, and
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hopping between, highly localised vibrational modes within the solid known as fractons.

The low (but non-zero) thermal conductivity of amorphous solids suggests that the

spatial overlap between adjacent fractons must be minimal. A strain applied to the solid

is able to modify this overlap and in work by Alam et al. [89] a decrease in the thermal

conductivity of silicon nitride with increasing strain was seen.

The fact that the dissipation measurements are made dynamically (with a time-

varying strain) on a stressed silicon nitride membrane make it reasonable to assume

that the thermal conductivity will be lower than that of an unstressed silicon nitride

membrane. Using the experimentally observed fQ floor a value for κth of 1.9 Wm−1K−1

is observed, 2/3 that given in [88]. From the measurements of Alam et al. [89] this

corresponds to a strain of approximately 0.5 %. With a Young’s modulus for silicon

nitride of 211 GPa a strain of 0.4 % would equate to a stress within the membrane of

∼ 1 GPa, similar to the stress within the membrane determined from the frequency

dependence shown earlier.

The silicon nitride used to fabricate the membranes measured as part of this work

and by Adiga et al. [30] were grown at the same facility using the same equiptment and

processes and as such should have essentially identical physical properties. Repeating

the fQ calculation for the Adiga membranes this time using a thermal conductivity of

κth = 1.9 Wm−1K−1 we obtain fQ = 10 THz, identical to the value stated in [30].

6.3 Inter-Membrane Coupling

The large number of membranes present upon the surface of the substrate allowed in-

direct observation of nearby membranes that were able to couple into the response of

the membrane under observation. An example of one of these measurements is shown

in figure 6.3. The fit shown is the sum of multiple Lorentzian functions, which allows

an overall response for the coupled membranes to be obtained. The quality factors and

resonant frequencies shown in figure 6.3 are obtained from these individual plots.

In order to observe this effect it is essential that the resonant frequencies of the
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Figure 6.3: Example of intra-membrane coupling in a 200 µm square membrane of high-

stress silicon nitride measured at a temperature of 2 K. Displayed is the complete fit to

the experimental data along with the responses from the individual Lorentzian functions

that comprise the complete response.



CHAPTER 6. Measurements of High-Stress Silicon Nitride Membranes 160

unobserved resonators lie within the bandwidth of the illuminated membrane. Incident

acoustic waves from the nearby membranes are then able to couple into and be amplified

by the mechanical resonance of the illuminated membrane. If the response lies outside

the bandwidth of the illuminated mode the amplitude of the acoustic wave is insufficient

to produce detectable motion within the membrane.

Looking at the difference in frequency between the observed modes it is possible

to quantify the processing tolerances of the membranes on the sample. Taking values

from figure 6.3 the difference in frequency between observed and unobserved modes is

approximately 200 Hz. For a resonant frequency of 2.176 MHz this represents a difference

of 1 part in 104 between membranes.

Comparing the quality factors observed we see a quality factor for the observed

membrane half that of the unobserved membrane. This damping could arise in two ways:

through a heating of the membrane by the optical spot or by the optical field exerting

a force on the membrane, amplified by the low-finesse cavity of which the membrane is

part. In order to determine whether one of these is responsible for the heating of the

membrane we will estimate their effect.

6.3.1 Optical Heating

The amount of optical power absorbed by the silicon nitride can be determined by the

optical absorption coefficient, α which for silicon nitride is 150 dB/m [91]. A 125 nm

thick sheet of silicon nitride will therefore attenuate the incident light by A = 2× 10−5

dB. The fraction of optical power absorbed is therefore equal to γ = 1 − 10−0.1A. In

these measurements the optical powers used were typically of order ∼ 50 nW, resulting

in the membrane absorbing 0.2 pW during one passage through the membrane. At the

silicon substrate the reflectivity is R ∼ 0.5 at 633 nm, so on the return trip a further 0.1

pW will be absorbed, giving a total power absorbed by the membrane of P0 = 0.3 pW.

In order to simplify things we assume that the membrane is circular with a radius of

R2 = 100 µm and the optical power is deposited into the membrane in a spot of radius

R1 = 0.5 µm positioned at the membrane centre. The difference in temperature between
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the edge of the optical spot and the edge of the membrane (assumed to be heat sunk to

the fridge temperature) is given by the solution to Fourier’s equation:

∆T =
−P0

2πκthh
ln

(
R2

R1

)
(6.20)

where κth, the thermal conductivity for silicon nitride is 5 × 10−2 Wm−1K−1 at 2 K

[92]. This gives a value for the difference between the membrane perimeter and centre,

∆T ∼ 50 µK. If optical heating was responsible for the difference in quality factors

observed between membranes then a change in bath temperature of 5 µK should halve

the quality factor (doubling the dissipation). As an indicator of the temperature change

required we can revisit the work of Southworth et al. [33]. Figure 2.9 shows dissipation

as a function of temperature in high-stress membranes we see that in order to double

the dissipation seen at 2 K (1/Q ∼ 4 × 10−7) requires a temperature rise of more than

10 K. When compared with the magnitude of the required temperature change this

temperature change due to optical heating is so small that at this temperature it cannot

be responsible for the reduced quality factor of the observed membrane.

Having obtained a value for ∆T it is now useful to look at how this heating will

vary as the temperature decreases. For a dielectric at low temperatures the thermal

conductivity will scale as T 3 [64] which if we assume a spatially homogeneous value for

κth allows us to estimate the optical heating of the membrane at lower temperatures,

the results of which are shown in Table 6.2.

From this calculation we see that as the bath temperature is decreased so too does κth,

leading to an increase in the magnitude of the optical heating. At a temperature of 0.2 K

the difference in temperature between the membrane edge and centre would be 50 mK,

a difference of 25 %. This would most likely have an effect on the mechanical response

of the observed membrane. Using the inter-membrane coupling however it would be

possible to indirectly observe surrounding membranes that are still at 50 mK without

reducing the optical power. As stated earlier we have assumed a spatially homogeneous

value for κth, however moderate heating will change the value of κth and so the estimates
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T0 ∆T ∆T/T0

2.0 K 50 µK 2.5× 10−5

1.0 K 400 µK 4.0× 10−4

0.5 K 3.2 mK 6.4× 10−3

0.2 K 50 mK 0.25

0.1 K 400 mK 4.0

Table 6.2: Estimate of the optical heating experienced by a membrane as the temperature

decreases with κth ∝ T 3 [64].
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Figure 6.4: Magnitude of the optomechanical force for the silicon nitride setup as the

cavity length is varied. The red dot indicates the positioning of the silicon nitride

membrane in these measurements.

given in Table 6.2 are upper limits on heating caused by an optical spot.

6.3.2 Optomechanical Forces

Light incident on the membrane will exert a radiation pressure that will work to damp

the vibrational motion of the membrane. The magnitude of this force will be amplified

by the three optical cavities formed within the membrane shown in figure 6.4.

Within the cavity reflections will occur at three points, the two surfaces of the silicon

nitride and the silicon substrate. Each reflection will affect the motion of the resonator
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to a different extent dependant upon the separation of the two reflective surfaces. As

the membrane moves on resonance there will be a change in zsep which will modify the

force, with the gradient of this force leading to either a damping or an amplification of

the mechanical mode.

The mathematical description of this cavity is non-trivial and unfortunately it was

not possible to quantify the magnitude of the optomechanical effect in the time available.

Having ruled out optical heating as a source of damping in the observed membrane it is

highly likely that an optomechanical force is damping the cavity.

6.4 Summary

In this chapter several results from measurements of a high-stress silicon nitride mem-

brane have been presented. Through analysis of the resonant frequencies of the har-

monics it was possible to determine the stress present in the membrane after cooling

and attribute much of it to differential thermal contraction between silicon and silicon

nitride. In studying the dissipation of these membranes at room temperature a trend to-

wards an fQ floor of 0.8 THz was observed in the even modes whose resonant frequency

is above 13 MHz. Using the theory of elasticity [85] we were able to show that this

dissipation arises from thermoelastic effects. From this analysis a thermal conductivity

∼ 2/3 that published in the literature was observed. This decrease is due most likely to

the internal stress of the silicon nitride modifying the spatial overlap of fractons within

the solid.

Inter-membrane coupling was also discussed, where the vibrational mode of the ob-

served membrane is able to amplify acoustic waves radiated from nearby unobserved

membranes. The observed quality factor is considerably lower than that of the unob-

served modes suggesting that an optical effect may be damping the observed mode. In

attempting to determine the source of this damping we were able to exclude optical heat-

ing as the cause and showed that as the temperature (and the thermal conductivity) is

decreased optical heating will increase, which makes inter-membrane coupling an ideal
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method by which to observe nearby membranes at mK temperatures without optically

heating them.

The second possible cause for the observed membrane damping are optomechanical

forces, the cavity arrangement makes a mathematical description of this system difficult

and unfortunately it was not possible to quantify the effect that optomechanical forces

may have on the membrane.





Chapter 7

Summary and Future Work

7.1 Summary

In this thesis a fibre interferometer capable of detecting nanomechanical motion at low

temperatures has been designed and built. The fibre interferometer was mounted on

the mixing chamber of a comercial dilution refrigerator and used to successfully measure

both micro- and nano-mechanical devices.

In order to confirm the behaviour of the interferometer, measurements on quartz

tuning forks were made at liquid helium temperatures. From these measurements it

was possible to extract a value for the piezo-electro-mechanical coupling constant of

α = 2.18± 0.06 µCm−1, in good agreement with the values published in the literature.

High-stress silicon nitride has been identified as a material able to exhibit very high-

quality factors due to the intrinsic stress. With an interferometric setup it is possible

to measure the dissipation in pure dielectrics such as silicon nitride, for which high

quality factors have been observed. As part of this work fabrication recipes for a num-

ber of nanomechanical devices made of silicon nitride have been developed, and results

from measurements of a number of these devices presented. In addition to performing

frequency response measurements it has also been possible to confocally image nanome-

chanical resonators with a resolution of ∼ 750 nm, a value only just above the diffraction

limit of 633 nm imposed by the wavelength of the light.
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A modal analysis of the resonant frequencies of square and circle high-stress silicon

nitride membranes allowed the internal stress of these devices to be calculated. An

examination of the modal dependence of the even (m = n) modes of these membranes

at room temperature showed a regime of dissipation via thermoelastic damping with

the fQ floor tending towards a value of 0.8 THz that can be predicted by the theory

of elasticity. From this fQ floor the thermal conductivity of the membrane can be

calculated which is in good agreement with thermal conductivity measurements made of

low-stress silicon nitride subjected to a level of strain comparable to the intrinsic stress

of the membranes.

Measurements of the silicon nitride membranes at low temperatures (2-4 K) revealed

inter-membrane coupling for the fundamental mode of square membranes. When com-

paring quality factors between observed and unobserved modes a lower quality factor

in the observed mode was seen that is most likely due to optomechanical damping. In

determining the likely cause of these differences in quality factor, the optical heating

was evaluated, for which there will be significant optical heating of the membrane at

temperatures below 0.5 K. In this instance the inter-membrane coupling would allow the

observation of the surrounding modes that will be at T0 without requiring a decrease in

the optical power.

The thermoelastic damping seen in silicon nitride membranes at room temperature

was analysed with respect to the even modes of a square membrane it would be of interest

to extend the mathematical description of thermoealstic damping included in this thesis

to allow analysis of the odd modes to determine the extent to which thermoelastic

damping is affecting them.

Three-paddle torsional resonators fabricated from high-stress silicon nitride were

fabricated for measurement using the interferometer, but due to time constraints it

was not possible to detect torsional motion in these devices. The dissipation in torsional

modes of low-stress silicon nitride membranes have been studied which displayed a strong

relation between mode and quality factor. The effect of stress on these torsional modes is

unclear but using the fabrication techniques developed and the interferometer it should
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be possible to study this effect.

7.2 Future Work

During this work the dilution refrigerator was beset by problems and was unable to

cool sufficiently to allow the measurement of membranes at temperatures below 1 K.

Determining and resolving the cause of this inability to cool would allow measurements

on the dissipation in these devices at temperatures lower than 1 K to be performed.

This would be of great interest, as to date measurements below 1 K of silicon nitride

have been performed magnetomotively [20, 21] which requires devices that are fabricated

with a layer of gold to allow actuation, thereby modifying the physical properties of the

high-stress silicon nitride.

The membranes measured in this work were several times thicker than membranes

measured in other work, resulting in increased clamping losses and a lower observed

quality factor when compared with thinner membranes of comparable lateral dimensions.

In order to determine the effect that thickness has on clamping losses it would be of

interest to fabricate thinner membranes to study the effect of thickness on dissipation.

This should hopefully allow a family of modes to be identified for which dissipation

through clamping loss is minimal and the dominant dissipation mechanism is material

based.

For vibrational modes with dissipation identified as being material loss dominated

a systematic study of the temperature dependence of dissipation below 1 K could be

performed. In previous work carried out in Nottingham a strongly temperature depen-

dent dissipation was observed below 1 K for doubly clamped beams of high-stress silicon

nitride coated with a layer of gold to detect motion magnetomotively. Through a dissi-

pation study using optical techniques it would be possible to investigate the effect that

the metallic layer has on the mechanical properties of the silicon nitride.

It was not possible to detect the torsional modes of three-paddle resonators fabricated

as part of this work. This is due to the inertial actuation method used which couples
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preferentially to the flexural modes of oscillation. In the future it would be of interest to

explore the effect of stress on the quality factors of the torsional modes. The actuation

of the torsional modes may be achievable using inertial actuation but failing that an rf

coil could be used to produce a time-varying magnetic field that could induce motion

in a resonator patterned with a magnetic layer. If successful, these high-stress torsional

resonators could be used to perform torque magnetometry studies of magnetic materials.

7.3 Conclusion

In conclusion the interferometer fabricated as part of this work has shown itself to be

a versatile tool capable of measuring nanomechanical motion from room temperature

down to liquid helium temperatures. Initial measurements of high-stress silicon nitride

membranes have shown behaviour in agreement with work being carried out by other

groups, and have highlighted the role of thermoelastic dissipation in high-stress silicon

nitride membranes at room temperature. It has also been possible to detect coupling

between nearby membranes allowing the indirect detection of motion in these other

coupled devices.



Appendix A

Fabrication Recipes

Detailed fabrication recipes for the devices discussed in this thesis are presented in this

thesis to supplement the information given in Chapter 4.

The processes consist of three main parts. Defining the alignment marks via optical

lithography and metallization (section A.2), defining the location markers via electron-

beam lithography and metallization (section A.3) and finally fabricating the nanome-

chanical structures via electron-beam lithography and etching (section A.4).

A.1 Reactive Ion Etch Recipes

Two reactive ion etch recipes are used in the processes described in this appendix. The

recipe settings for the Corial 200IL system are shown in table A.1. Process times are

given in the following sections.

A.2 Alignment Mark Metallization

1. The substrate is cleaved into 9.8 × 9.8 mm squares, followed by a four solvent

cleaning process (ethyl lactate, acetone, methanol and isopropyl alcohol (IPA)) at

20 ◦C, 5 minutes per solvent with ultrasonic agitation.
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Process Name A Descum Graphite A SiO2 RIE

Gas (Flow Rate) O2 (25 sccm) CHF3 (100 sccm)

O2 (5 sccm)

Working Pressure 10 mT 50 mT

RF Forward Power 60 W 150 W

RF Bias -350 V -490 V

Shuttle Temperature 20 C 20 C

Shuttle Material Graphite Graphite

Table A.1: RIE recipe settings used in these processes.

2. The samples are baked at 115 ◦C for 10 minutes to dehydrate them.

3. The samples are coated with a 1.4 µm thick layer of AZ5214E1 photoresist by

spinning at 5, 000 rpm for 45 seconds followed by baking on a hotplate at 110 ◦C

for 50 seconds. After baking the samples are soaked in toluene for 5 minutes to

toughen the top layer of the resist.

4. The alignment marks are then exposed through an optical mask at a power of

12 mW/cm2 for 7.8 s. The sample is developed in AZ726MIF (metal-ion free)

developer for 15 seconds followed by a rinse in DI water.

5. A 60 second O2 descum step (A Descum Graphite) is then performed to remove

any residual resist from the exposed regions. This is followed by a 30 second silicon

dioxide reactive ion etch to roughen the nitride surface and improve the adhesion

of the metallic film (A SiO2 RIE).

6. The samples are then loaded into a thermal evaporator, where a 30 second argon

plasma clean is carried out.

7. The pattern is then transferred to the sample by thermally evaporating 5 nm of

1AZ5214E is an image reversal resist, but in this work it is used in positive tone
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chrome and 50 nm of gold onto the sample. This is done at a pressure below 10−6

mBar at a rate of ∼ 0.2 nm/s.

8. Lift-off of the unwanted metal is achieved by soaking the sample in acetone at

50 ◦C followed by a two solvent clean (methanol and IPA), 5 minutes per solvent

at 20 ◦C with ultrasonic agitation.

A.3 Location Marker Definition

1. A sample patterned with alignment markers is given a four solvent cleaning process

(ethyl lactate, acetone, methanol and isopropyl alcohol (IPA)) at 20 ◦C, 5 minutes

per solvent with ultrasonic agitation.

2. The sample is coated with a 450 nm thick layer of 495 k PMMA (A5, 5% in anisole)

electron-beam resist by spinning at 5, 000 rpm for 45 seconds followed by baking

on a hotplate at 180 ◦C for 60 seconds.

3. The location markers are exposed at an acceleration voltage of 30 kV and a current

of 500 pA. A dwell time of 550 ns is used, which is equivalent to an area dose of

275 µC/cm2.

4. The exposed sample is developed in a solution of 3 parts IPA to 1 part methyl

isobutyl ketone (MIBK) for 120 seconds followed by a rinse in IPA and blow drying

with nitrogen.

5. A 60 second O2 descum step (A Descum Graphite) is then performed to remove

any residual resist from the exposed regions. This is followed by a 30 second silicon

dioxide reactive ion etch to roughen the nitride surface and improve the adhesion

of the metallic film (A SiO2 RIE).

6. The samples are then loaded into a thermal evaporator, where a 30 second argon

plasma clean is carried out.
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7. The pattern is then transferred to the sample by thermally evaporating 5 nm of

chrome and 50 nm of gold onto the sample. This is done at a pressure below 10−6

mBar at a rate of ∼ 0.2 nm/s.

8. Lift-off of the unwanted metal is achieved by soaking the sample in acetone at

50 ◦C followed by a two solvent clean (methanol and IPA), 5 minutes per solvent

at 20 ◦C with ultrasonic agitation.

A.4 Nanomechanical Device Fabrication

A.4.1 Membranes

1. The sample is given a four solvent clean (ethyl lactate, acetone, methanol and

isopropyl alcohol (IPA)) with ultrasonic agitation.

2. The sample is coated with a 450 nm thick layer of 495 k PMMA (A8, 8% in anisole)

electron-beam resist by spinning at 5, 000 rpm for 45 seconds followed by baking

at 180 ◦C on a hotplate for 60 seconds.

3. An electron-beam lithography exposure is carried out at an acceleration voltage

of 30 kV and a current of 500 pA. An array of ∼ 1 µm holes separated by 5µm are

patterned over an area equal to the desired membrane dimensions. A dwell time

of ∼ 1500 ns is used, equivalent to an area dose of ∼ 750 µC/cm2.

4. The exposed sample is developed in a solution of 3 parts IPA to 1 part methyl

isobutyl ketone (MIBK) for 120 seconds followed by a rinse in IPA and blow drying

with nitrogen.

5. The sample is given a 20 second oxygen plasma descum (A Descum Graphite)

followed by a CHF3/O2 reactive ion etch (A SiO2 RIE) for between 300 and 360

seconds.

6. Any residual PMMA is removed by soaking in Microchem Remover PG at ∼ 70◦C,

followed by a rinse in DI water.
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7. Before wet etching the sample is wetted by placing it first in acetone, before trans-

ferring to methanol, IPA and then DI water without allowing it to dry.

8. The sample is then transferred from the DI water into hydrofluoric acid for 240-300

seconds.

9. After etching, the sample is rinsed by soaking in several DI water baths, before

being transferred to IPA. Care must be taken to ensure that the sample does

not dry when being transferred between baths to protect the membrane from

collapsing. Once in the IPA the sample and 10 ml of IPA are loaded into a Tousimis

Samdri 215B critical point dryer.

10. The chamber of the critical point drier is slowly pressurised to ∼ 1000 PSI with

liquid carbon dioxide over a period of 60 seconds. The carbon dioxide and IPA

mixture is then flushed through using a steady flow of pure liquid carbon dioxide

for 4 minutes, at the end of which the chamber is sealed and heated to drive the

carbon dioxide to the supercritical regime.

11. Once in the supercritical regime the pressure in the chamber is isothermally reduced

(at a flow rate of ∼ 5 SCFH), allowing the supercritical carbon dioxide to evaporate

with no surface tension.

A.4.2 Direct Fabrication of Torsional Resonators

1. The sample is given a four solvent clean (ethyl lactate, acetone, methanol and

isopropyl alcohol (IPA)) with ultrasonic agitation.

2. The sample is coated with a 200 nm thick layer of 495 k PMMA (A5, 5% in anisole)

electron-beam resist by spinning at 5, 000 rpm for 45 seconds followed by baking

at 180 ◦C on a hotplate for 60 seconds.

3. An electron-beam lithography exposure is carried out at an acceleration voltage of

30 kV and a current of 500 pA. The inverse of the resonator is exposed.
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4. The exposed sample is developed in a solution of 3 parts IPA to 1 part methyl

isobutyl ketone (MIBK) for 120 seconds followed by a rinse in IPA and blow drying

with nitrogen.

5. The sample is given a 20 second oxygen plasma descum (A Descum Graphite)

followed by an CHF3/O2 reactive ion etch (A SiO2 RIE) for between 240 and 300

seconds.

6. Any residual PMMA is removed by soaking in acetone at ∼ 50◦C.

7. Before wet etching the sample is wetted by placing it first in acetone, before trans-

ferring to methanol, IPA and then DI water without allowing it to dry.

8. The sample is then transferred from the water into hydrofluoric acid for 240 sec-

onds.

9. After etching, the sample is soaked in DI water, before being transferred to IPA

and then methanol; At this stage the sample is blow dried with nitrogen.

A.4.3 Indirect Fabrication of Torsional Resonators using a Membrane

1. The sample is given a four solvent clean (ethyl lactate, acetone, methanol and

isopropyl alcohol (IPA)) with ultrasonic agitation.

2. The sample is coated with a 200 nm thick layer of 495 k PMMA (A5, 5% in anisole)

electron-beam resist by spinning at 5, 000 rpm for 45 seconds followed by baking

at 180 ◦C on a hotplate for 60 seconds.

3. The first electron-beam lithography exposure is carried out at an acceleration volt-

age of 30 kV and a current of 500 pA. An array of ∼ 1 µm holes are patterned,

their spacing determined by the final device dimensions. A dwell time of ∼ 1000

ns is used, equivalent to an area dose of ∼ 500 µC/cm2.

4. The exposed sample is developed in a solution of 3 parts IPA to 1 part methyl

isobutyl ketone (MIBK) for 120 seconds followed by a rinse in IPA and blow drying
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with nitrogen.

5. The sample is given a 20 second oxygen plasma descum (A Descum Graphite)

followed by an CHF3/O2 reactive ion etch (A SiO2 RIE) for between 240 and 300

seconds.

6. Any residual PMMA is removed by soaking in acetone at ∼ 50◦C.

7. Before wet etching the sample is wetted by placing it first in acetone, before trans-

ferring to methanol, IPA and then DI water without allowing it to dry.

8. The sample is then transferred from the water into hydrofluoric acid for 360 sec-

onds. The etch can be done in one go, however if the gold alignment marks begin

to wrinkle and discolor the etch should be broken into smaller sections separated

by 30 − 40 second periods where the sample is transferred to DI water. 3 × 120

second long sections seems to work fairly well.

9. After etching, the sample is soaked in DI water, before being transferred to IPA;

At this stage the sample is blow dried with nitrogen.

10. The sample is recoated with a 200 nm thick layer of PMMA by spinning at 5, 000

rpm for 45 seconds followed by baking in a convection oven at 180 ◦C for 30

minutes.

11. The second electron-beam lithography exposure is carried out at an acceleration

voltage of 30 kV and a current of 500 pA. The resonator structures are defined

during this exposure. A dwell time of ∼ 500−600 ns is used, equivalent to an area

dose of ∼ 250− 300 µC/cm2.

12. The exposed sample is developed in a solution of 3 parts IPA to 1 part methyl

isobutyl ketone (MIBK) for 60 seconds followed by a rinse in IPA and blow drying

with nitrogen.

13. The devices are released using a 20 second oxygen plasma descum (A Descum Graphite)

followed by an CHF3/O2 reactive ion etch (A SiO2 RIE) for ∼ 120 seconds.
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14. Residual PMMA can be removed either by soaking in acetone or using an oxygen

plasma.
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